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Abstract

Although the market for biometric technologies is expanding, the existing biometric sys-

tems present still some issues that the research community has to address. In particular,

in adverse environmental conditions (e.g., low quality biometric signals), where the error

rates increase, it is necessary to create more robust and dependable systems. In the lit-

erature on biometrics, the integration of multiple biometric sources has been successfully

used to improve the recognition accuracy of the unimodal biometric systems. Multibio-

metric systems, by exploiting more information, such as different biometric traits, multiple

samples, multiple algorithms, make more reliable the biometric authentication. Benefits of

multibiometrics depend on the diversity among the component matchers and also, on the

competence of each one of them. In non-controlled conditions of data acquisition, there

is a degradation of biometric signal quality that often causes a significant deterioration of

recognition performance. It is intuitive the concept that, the classifier having the higher

quality is more credible than a classifier operating on noisy data. Then, researchers started

to propose quality-based fusion schemes, where the quality measures of the samples have

been incorporated in the fusion to improve performance. Another promising direction in

multibiometrics is to estimate the decision reliability of the component modality matcher
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based on the matcher output itself. An interesting open research issue concerns how to

estimate the decision reliability and how to exploit this information in a fusion scheme.

From a security perspective, a multimodal system appears more protected than its uni-

modal components, since spoofing two or more modalities is harder than spoofing only one.

However, since a multimodal system involves different biometric traits, it offers a higher

number of vulnerable points that may be attacked by a hacker who may choice to fake only

a subset of them. Recently, researchers investigated if a multimodal system can be deceived

by spoofing only a subset but not all the fused modalities. The goal of this thesis is to

improve the performance of the existing integration mechanisms in presence of degraded

data and their security in presence of spoof attacks. Our contribution concerns three im-

portant issues: 1) Reducing verification errors of a fusion scheme at score level based on

the statistical Likelihood Ratio test, by adopting a sequential test and, when the number of

training samples is limited, a voting strategy. 2) Addressing the problem of identification

errors, by setting up a predictor of errors. The proposed predictor exploits ranks and scores

generated by the identification operation and can be effectively applied in a multimodal

scenario. 3) Improving the security of the existing multibiometric systems against spoof

attacks which involve some but not all the fused modalities. Firstly, we showed that in such

a real scenario performance of the system dramatically decrease. Then, for the fingerprint

modality, we proposed a novel liveness detection algorithm which combines perspiration-

and morphology-based static features. Finally, we demonstrated that, by incorporating our

algorithm in the fusion scheme, the multimodal system results robust in presence of spoof

attacks.
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mai ha certezza dove si vada.

Leonardo

Chapter 1

Introduction

1.1 Biometric Recognition

The authentication process determines or verifies the identity of an individual. It assumes

significant importance in high security applications, such as logical access to personal com-

puters, cellular phone, ATMs, or physical access to buildings, border crossing [63]. Tradi-

tionally, to ensure that only authorized users access to the protected services, possession-

based (badges) or knowledge-based (passwords) solutions have been adopted. However,

when a password is divulged to an unauthorized user or a badge is stolen by an impostor,

these authentication schemes may be deceived. Vulnerabilities of such schemes are being

addressed by the emergence of biometric systems which establish the identity of an individ-

ual based on what the person is, rather than what the person carries or remembers [45].

The identity of an individual is encoded by different biometric traits, such as fingerprints,

hand geometry, iris, retina, face, hand vein, facial thermograms, signature, voiceprint, gait,

palmprint, referred to as biometric modalities (see Fig.1.1).

The biometric recognition process involves firstly the acquisition of biometric data and

3
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Figure 1.1: Examples of some of the biometric traits used for authenticating an individual.

the extraction of features from the acquired data, then the comparison of these features to

the feature set previously stored in the database, referred to as template.

A biometric system may operate in the two modes:

� Biometric identity verification

� Biometric identification

In the verification mode, the system has to verify the authenticity of a claimed identity,

while in the identification mode it has to assign the correct identity label to one person out

of a watch-list [32].

A typical biometric system is composed by four main modules:

1. Sensor Module, which defines the interaction of an individual with the system by

capturing his biometric data.

2. Feature Extraction Module, which extracts feature values from the acquired data.

During enrollment, the extracted feature set, referred to as template, is stored in the
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database and it represents the identity of a subject.

3. Matching Module, which compares the feature vector extracted from the query to the

template. The match score determines the amount of similarity (similarity score) or

distance (distance score) between the feature set of enrolled template and the query

data. The matching is 1:1 to verify a claimed identity, while it is 1:N to determine an

identity.

4. Decision-making Module, which accepts or rejects the user’s claimed identity based

on the matching score generated in the matching module, in the verification task or

declares the user’s identity based on the best match score, in the identification task

(see Fig.1.5).

1.1.1 Performance Evaluation

The feature set extracted from the probe biometric data does not exactly correspond to the

template, and subsequently, the matching process is never perfect. This variation may be

due to several factors such as non-controlled sensing conditions, changes of the biometric

characteristic, etc. This aspect clearly impacts on the performance of a biometric system

which never achieves a perfect recognition where the accuracy is 100%.

Two types of errors can be made by a biometric verification system:

� TypeI, False Rejection. It occurs when an authorized user is wrongly rejected by the

system.

� TypeII, False Acceptance. It occurs when an impostor is wrongly accepted by the
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system. This error is very costly.

Performance is evaluated in terms of False Acceptance Rate (FAR) and False Rejection

Rate (FRR), where FAR is usually fixed by the specific application.

The two errors are complementary, trying to lower one of them by varying the threshold,

the other error rate automatically increases. Biometric verification looks for the best trade-

off between these two types of errors. The Equal Error Rate (EER) point is obtained

when FAR and FRR coincide. The complete performance curve which represents the full

capabilities of the system at different operating points, is given by the Receiver or also

Relative Operating Characteristic (ROC) plot, in which FAR is a function of FRR (see

Fig.??). A common variant of this, is the Detection Error Tradeoff (DET) plot which is

obtained using normal deviate scales on both axes. (see Fig.1.4).

Ranking capabilities of an identification system are evaluated using the Cumulative

Match Curve (CMC) (see Fig.1.3). While the ROC curve plots the FAR of a 1:1 matcher,

CMC represents a measure of 1:N identification system performance [5].

1.1.2 Limitations of unibiometrics

Most of the biometric systems, deployed in real world applications requiring a high security

level, for authentication rely on the evidence of a single biometric source (e.g. fingerprint,

face, voice etc.) [38]. Although if the biometric technique is becoming popular, there are still

a variety of vulnerabilities that need to be addressed. Some of the challenges are described

below:

Susceptibility to noise. Noisy input biometric data may be not accurately matched with the
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Figure 1.2: ROC curve for a fingerprint modality taken from Nist database.

templates, and subsequently, this may lead to a false rejection.

Non-universality. A particular biometric trait may not be possessed by a subset of the

users; this may cause an increase of the enrollment failure rate.

Distinctiveness. A single biometric trait is expected to vary significantly across different

subjects; however, there may be a large similarity among the values of features used to

represent that trait [61].

Intra-class variations. The matching process may be affected by a significant variation

between the biometric data acquired at authentication time and that one used to generate

the template.

Spoofing. A biometric system may be circumvented by presenting a fake biometric trait to

the sensor [23].
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Figure 1.3: CMC curve for a fingerprint modality taken from WVU database. The con-
sidered probe (the fourth one) is not very similar to the gallery sample. This impacts the
unimodal identification performance.

Examples of application of biometric technologies are showed in Fig.1.6.

1.2 Multibiometrics

The latest researches indicate that using a combination of biometric modalities, the human

identification is more reliable [24]. Several works in the literature on biometrics demon-

strate the efficiency of the multimodal fusion to enhance performance and reliability of the

automatic recognition [61]. In particular, the work [64] shows the merit of both multimodal

and intramodal fusion, and [31] demonstrates the effectiveness of using quality measures in

the fusion. Integrating biometric information from multiple sources, multimodal biometric
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Figure 1.4: DET curve for a fingerprint modality taken from Nist database.

systems are able to improve the authentication performance, increase the population cov-

erage, offer user choice, make biometric authentication systems more reliable and robust to

spoofing [29].

However, the benefits of multibiometrics depend on the accuracy, complementarity, re-

liability and quality measurement of their component biometric experts. Moreover, when

designing a multibiometric system, several factors should be considered. These concern

the choice and the number of biometric traits, the level of integration and the mechanism

adopted to consolidate the information provided by multiple traits.

� Fusion at match score level is usually preferred due to the easy to access and combine

the scores presented by different modalities.

� The parallel fusion strategy has been extensively explored, however serial and hybrid
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Figure 1.5: The sensor acquires the biometric data of a user from which a representative
feature set is extracted. This feature set is matched against the feature set stored in the
database of the system. The decision taken by the system is based on the match scores
generated during the matching process [21]. In an identification system, these scores are
transformed to ranks in order to determine potential matching identities.

architectures present important advantages. In particular, the serial fusion considers

the biometric matchers one at a time, and makes a reliable decision by employing few

experts and activating the remaining experts only for difficult cases.

In general, it is desirable that a fusion scheme involves statistically independent modality

matchers. In a multimodal fusion, the set of expert outputs is expected to be statistically

independent, while in intramodal fusion, where the component matchers rely on the same

biometric trait, a high dependency is expected among the expert outputs [55].

1.2.1 Challenges and Difficult in Multibiometrics

Error Rates

Although individual modalities have proven to be reliable in ideal environments, they can be

very sensitive to real environmental conditions. In real scenarios, it is difficult to acquire high

quality samples, then biometric authentication errors are inevitable [17]. The performance
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Figure 1.6: 1) Fingerprint sensors installed on a keyboard (the Cherry Biometric Keyboard
and on a mouse (the ID Mouse manufactured by Siemens). 2) A border passage system
using iris recognition (at London’s Heathrow airport).

of several current unimodal systems is reported in Fig.1.7.

The impact of adverse environmental conditions on the characteristics of the collected

biometric data can be quantified by quality measures. It is evident that, a degradation in the

quality level of the biometric signal input may affect the reliability of the matching process.

The performance of the single modality matcher may change as the data quality changes and

different modality matchers are sensitive to different aspects of the signal quality. Then, the

opinion of a matcher in the decision of the ensemble have to be appropriately weighted, by

assigning a higher weight to the matcher with higher quality data. The same observation has

to be considered for the reliability, accuracy and competence of each component matcher.

From the viewpoint of a human observer, a sample of good quality may be a fingerprint

image with a good contrast and clear ridges. However, if only few minutiae points can be

detected, a matcher based on minutiae will be not effective [19], (see 1.9). This can happen,

for example, in presence of cuts on a finger, (see Fig.1.8), which alters the ridge structure
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Figure 1.7: Unimodal error rates associated with fingerprint, face, and voice biometric
systems [25]. FNMR indicates False Non-matched Rate (FRR) while FMR indicates False
Matched Rate (FAR).

of the fingerprints resulting in less efficiency of the matching process.

Figure 1.8: A fingerprint image when the presence of minor cuts alters the ridge structure.

Figure 1.9: Quality measures for fingerprint images input for a minutiae-based matcher.

The quality of collected biometric samples can significantly vary, due to the intrinsic

variability of behavioral factors and to the not always well-controlled acquisition conditions.

For example, a visible-light face image may change by varying the illumination conditions,

facial expressions, makeup, etc. (see Fig.1.10), while a fingerprint image may be affected



Chapter 1. Introduction 13

by factors like humidity and ambient temperature.

Figure 1.10: An example of a face image acquired in adverse conditions, taken from BANCA
database.

Spoof Attacks

A hacker may gain an unauthorized access by exploring several points of a biometric system.

The main vulnerabilities are shown in Fig. 1.11). For example, an impostor may attack

the server where the templates are stored by introducing his own template. In this thesis,

we focus on attacks at sensor level, where artificially created fingers are presented during

authentication.

Previous studies [70] have shown that it is not difficult to create fake fingers using

play-doh, gelatin and silicon based on molds of latent fingerprints (see Fig.1.12 and 1.13).

An example of live and spoof fingerprint is shown in Fig.1.14.

The treat of spoofing, where an impostor fakes a biometric trait, has encouraged the use

of multimodal biometric systems. However, multimodal systems are not more secure than

their unimodal systems alone since the use of multiple modalities offers more vulnerable

points to a hacker. The security risk in multimodal systems due to spoof attacks has been

evaluated under the assumption that an impostor must fake all the fused modalities to be

accepted. However, a malicious user may attack only one or a subset of modalities in the
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Figure 1.11: Vulnerable points of attacks in a biometric system [12].

system.

Other Issues

Multibiometric systems are still rarely used in real applications since combining multiple

traits induces some drawbacks as the increase in complexity of the overall system. Moreover,

a multibiometric system is expected to have a higher cost, a longer authentication time and

a lower user convenience with respect to its unimodal component. Thus, in the evaluation

these aspects have to be take into account.

1.3 Thesis Contributions

1.3.1 Improvement of Performance

Reducing verification errors of a score level fusion scheme based on the Likelihood Ratio

(LR)-test statistic. Due to the diversity of scenarios, the use of a single rule may be
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Figure 1.12: Examples of some inexpensive materials employed for creating artificial finger-
print (Play-Doh and Silicon).

Figure 1.13: Use of gelatin to make a fake fingerprint.

not always efficient, thus we adopted two schemes: i) a sequential fusion technique in

conjunction with a majority voting strategy to improve the performance of a framework

based on LR test; ii) a LR-based voting strategy alone, when the number of training

samples is limited.

The sequential fusion strategy considers unimodal systems sequentially, so the decision

can be made by employing as fewer systems as possible. In this mechanism, the induced cost

of the multimodal system increases with its security level, as required by the application.

The component systems are sorted in a decreasing order of confidence.

Addressing the problem of identification errors by setting up a predictor of errors. The pro-

posed predictor exploits ranks and scores generated by the identification operation and can



Chapter 1. Introduction 16

Figure 1.14: An example of live and fake (gummy) fingerprint image.

be effectively applied in a multimodal scenario. The motivation for using reliability infor-

mation in fusion emerged in relation to multimodal biometric systems, where the modalities

performing poorly as a results of degraded quality of biometric information or a low com-

petence of a single matcher should influence the final decision. This suggested a reliability

dependent weighting of modalities as solution to the fusion problem. The idea is to combine

multiple independent modalities which are not degraded, so the system will offer a more

robust authentication in adverse conditions. In a fusion mechanism, it is necessary to take

into account the fact that individual decisions depend on the acquisition condition of the

data presented to the expert as much as they depend on the discriminating skills of the

classifier.

1.3.2 Improvement of Security

Improving the security of the existing multibiometric systems against spoof attacks. We

demonstrated that there is a significant security risk where only a subset of the modalities

used in the system are spoofed. We experimentally showed that, in such a real scenario, the

performance of the score sum scheme and of the statistic Likelihood Ratio test decreases in

presence of spoofing. For the fingerprint modality, we proposed a novel liveness detection
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algorithm which combines perspiration- and morphology-based static features. Further, we

demonstrated that, by incorporating our algorithm in the fusion scheme, the multimodal

system results robust in presence of spoof attacks involving a only subset but not all fused

modalities.
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Chapter 2

Information Fusion in Biometrics

2.1 Multiple Biometric Sources of Information

Classifier combination may involve a set of classifiers where all the components use the

same representation of the input pattern or each one of them can use its own representation

[28]. In the context of biometrics, information fusion concerns the consolidation of evidence

provided by multiple biometric sources in order to output a decision [60]. These biometric

sources of information may be derived from the same biometric or different biometric traits

(see Fig.2.1). In presence of multiple sensors (e.g., capacitive and optical fingerprint sen-

sors), multiple instances (e.g., multiple face images captured under different poses), multiple

representations (e.g., texture- and minutiae-based), multiple units (e.g., right eye and left

eye), the information is derived from a single biometric modality, while in presence of multi-

ple traits (e.g., iris, face and fingerprint) the information is derived from different biometric

modalities [61]. A multimodal system where different traits are fused, is expected to be

more robust to noisy data, non-universality, provide higher accuracy and protection against

spoof attacks. Exploiting multiple traits can significantly enhance the recognition accuracy

18
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[63]. Further, physically uncorrelated modalities (e.g., fingerprint and iris) are expected to

result in a better performance improvement than that achieved by fusing correlated traits

(e.g., voice and lip movement).

Figure 2.1: Different sources of biometric information which can be fused.

Besides enhancing matching accuracy, there are several advantages of multibiometric

systems over traditional unibiometric systems [59].

� Multibiometric systems address the issue of nonuniversality (i.e., limited population

coverage) encountered by unibiometric systems. They guarantee a certain degree of

flexibility during the user’s enrollment since he can use several different traits (e.g.,

face, voice, fingerprint, iris, hand). Based on the nature of the application and the

convenience of the user, only a subset of these traits (e.g., face and voice) is requested



Chapter 2. Information Fusion in Biometrics 20

during authentication.

� It makes difficult for an impostor to spoof multiple biometric traits of a legitimately

enrolled individual. Furthermore, by asking the user to present a random subset of

traits at the point of acquisition, a multibiometric system ensures that the system is

interacting with a live user.

� When recognition has to take place in adverse conditions where certain biometric

traits cannot be reliably extracted. For example, in the presence of ambient acoustic

noise, when an voice characteristics of an individual cannot be accurately measured,

then the authentication may be based on the fingerprint.

� Multibiometrics help also in applications where a continuous tracking of an individual

is needed, a single trait is not sufficient.

� Amultibiometric system may also be viewed as a fault tolerant system which continues

to operate even when certain biometric sources become unreliable due to sensor or

software malfunctioning. The notion of fault tolerance is especially useful in large-

scale authentication systems involving a large number of subjects (such as a border

control application), where the distributions of the subjects may overlap.

2.2 Different levels to make Fusion

The key to create a secure multimodal biometric system is in how the information from

different modalities is fused, (see Fig. 2.2) [61]. The consolidation of biometric information

can be performed at various levels: sensor level, feature extraction level, match score level,
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rank level (identification operation) and decision level. An additional post-matching fusion

level, which we will not be analyzed in this thesis, regards the dynamic classifier selection

scheme, which chooses the results of the modality matcher with highest probability to

output a correct decision about the input pattern [48]. Consolidating data at an early stage

of the recognition process involves a higher informative contain concerning the biometric

input. Thus, it is potentially able to provide better recognition results, but in practice

concatenating data at a level before matching may result difficult or not possible. When the

information fusion is performed at sensor level, raw data from different sensors are combined.

For example, the fingerprint images taken from different sensors are combined to form a

single fingerprint image (fingerprint mosaicking). However, images captured from sensors

with a different resolution are not compatible. Fusion at feature level is difficult since the

features vectors to be fused may be not compatible (e.g., fingerprint minutiae and eigenface

coefficients) and not accessible (feature sets can be proprietary). When the output of each

biometric matcher is a subset of possible matches sorted in decreasing order of confidence,

the fusion can be done at the rank level. Each possible match is assigned the highest

(minimum) rank as computed by different matchers. Ties are broken randomly to arrive at

a strict ranking order and the final decision is made based on the combined ranks. Fusion

at decision level involves only a limited amount of information since each biometric matcher

individually decides about which is the best match based on the biometric input presented

to it. Combining match scores provided from different matchers is the most effective fusion

strategy because they offer the best trade-off between the informative contain and the ease

to implement the fusion.
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Figure 2.2: Levels of fusion in biometrics.

2.2.1 Match Score Information

Match scores are commonly used to consolidate the decisions rendered by multiple biometric

classifiers since they are easy to access and to combine. However, the scores output by

different biometric matchers may not be homogeneous, can conform to different scales. For

example, face matcher may output a distance measure while fingerprint matcher may output

a similarity measure. Further, they may follow different statistical distributions [61]. Thus,

before integration, match scores must be transformed into a common domain via score

normalization. Choosing an effective normalization scheme is a critical part in the design

to combine different matchers. It refers to changing the location and scale parameters

of the match score distributions outputs of the individual matchers [21] [6]. For a good

normalization scheme, the location and scale parameters of match score distributions must

be robust and efficient [48]. Many methods for score normalization have been proposed [22],

and fusion rules performance changes by varying the technique. The technique adopted in

our fusion framework is the min-max, which retains the original distribution of scores except
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a scaling factor and transform the scores to a common range of zero to one, based on the

minimum and the maximum score values (see Fig. 2.3). Given a set of matching scores sk,

Figure 2.3: Distributions of genuine and impostor match scores after min-max normalization
for fingerprint modality [48].

k = 1 . . .K, the normalized scores are given by (2.1).

sk =
sk −min

max−min
(2.1)

The most commonly used score normalization technique is the z-score, which exploits the

average score and the score variations of each matcher. The normalized scores are given by

(2.2).

sk =
sk − µ

σ
(2.2)

A technique which presents high efficiency and robustness is the tanh. The normalized

scores are given by (2.3).

sk =
1

2
{tanh (0.01(sk − µGH

σGH
)) + 1} (2.3)
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where µGH and σGH are the mean and standard deviation of the genuine score distribution

as given by Hampel.

Median normalization is a robust technique which is not sensitive to the points compos-

ing the tails of the score distributions. The normalized scores are given by (2.8).

sk =
sk −median(sk)

MAD
(2.4)

where MAD = median(|sk −median(sk)|) This scheme does not retain the input distribu-

tions (see Fig. 2.4). The main drawback appears in presence of score distributions which are

not Gaussian, since median cannot be accurately estimated. When the scores of different

Figure 2.4: Distributions of genuine and impostor match scores after median-MAD normal-
ization for fingerprint modality [48].

matchers are on a logarithmic scale, applying decimal scale can be useful. The scheme is

the following (2.5), where n = log 10maxsk

sk =
sk
10n

(2.5)
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2.2.2 Rank Information

At the rank level, each biometric matcher orders the candidate identities in the gallery

according to their similarities to the given probe and transforms this ordering into a set of

N integer values or ranks. A fusion scheme at this level consolidates the rankings provided

by multiple biometric matchers in order to obtain a consensus rank for each identity in the

gallery [61]. If we consider an input image having low quality, the genuine score as well as

the impostor scores are likely to be low [44] [66]. The use of such a score (for a genuine

user) during the fusion process may confuse a fusion algorithm. The rank, on the other

hand, is a relatively stable statistic and does not require normalization; combining this

rank with other ranks (for the genuine class) in a judicious manner can result in a correct

classification.

2.2.3 Hybrid Rank-Score Information

The use of both ranks and match scores [6] is expected to be more reliable and has been

demonstrated to increase the recognition accuracy of a multibiometric system [49]. For a

given probe image, a N × C score matrix S = [sik] can be generated where sik represents

the similarity score computed by the kth modality matcher Ck after comparing the probe

against the ith entry in the gallery database, i = 1 . . . N and k = 1 . . . C. For each modality,

the corresponding scores can be sorted in decreasing order. So a N×C rank matrix R = [rik]

can be generated where rik is the rank assigned to the ith identity in the database by the

matcher Ck. Thus, the output of each matcher, Ck, can be viewed as a two-tupled entry

(sik, rik), i = 1 . . . N , (see Fig.2.5).



Chapter 2. Information Fusion in Biometrics 26

Figure 2.5: Fusing face and fingerprint biometric systems at hybrid rank-score level.

So, the information presented by multiple traits may be consolidated at various levels

of recognition process. At feature extraction level, a new feature set is produced by fusing

the features sets of multiple modalities, and this new feature set is used in the matching

module. At match score level, the scores produced by multiple matchers are integrated,

while at decision level the decisions made by the individual systems are combined. The

integration at feature extraction level is expected to perform better, but the feature space

of different biometric traits may not be compatible and most commercial systems do not

provide access to information at this level. So, researchers found at score level a good

compromise between the ease in realizing the fusion and the information content.



Chapter 2. Information Fusion in Biometrics 27

2.3 Post-matching Fusion Approaches

2.3.1 Fusion Approaches at match score-level

Fusion at match score level concerns combining the match scores generated by multiple

classifiers in order to make a decision about the identity of the subject. In literature, the

fusion at score level is performed by employing different approaches [46] based on different

models [63].

1. Classifier-based schemes. The model is a classifier which is trained using a feature

vector composed by the scores output by the matchers to be fused [37]. This is ac-

curate to correctly discriminate between genuine and impostor classes, regardless of

the non-homogeneity of the score, but it typically requires a large training set. In

particular, the case when the scores output by different matchers are conflicting, in

absence of sufficient training samples may be not well represented in the training data,

resulting in incorrect decision. Wang et al. used Fisher’s discriminant analysis and

a neural network classifier with radial basis function employing a two-dimensional

feature vector composed by iris and face scores [77]. Ross and Jain used linear dis-

criminant classifiers and Decision Tree to combine fingerprint, face and hand-geometry

scores [61]. A Support Vector Machine was used to combine face and speech scores

by Sanderson [65].

2. Transformation-based schemes. In situations where it is not possible to acquire a

large number of labeled multibiometric data in an operational environment, it may

be convenient to directly combine the match scores without interpreting them in
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a probabilistic framework [62]. The match scores provided by different matchers

are firstly transformed into a common domain (score normalization), then they are

combined using a simple fusion rule. This approach is quite complex since it implicates

a wide experimental analysis to choose the best normalization scheme and combination

weights for the specific dataset of interest. The model is based on a normalization

function. The operators which are commonly used in the literature are min, max,

median,weighted sum and weighted product, defined by (2.6), (2.7), (2.8), (2.9) and

(2.10).

smin = min
k

sk (2.6)

smax = max
k

sk (2.7)

smedian = medianksk (2.8)

ssum =
K∑
k=1

wksk (2.9)

sprod =
K∏
k=1

swk
k (2.10)

where wk are parameters that need to be estimated. The simple sum operator (or

mean) is a special case of weighted sum with w = 1
N , while the product operator is

a special case of weighted product with w = 1. The operators which do not contain

parameters to be tuned, are known as fixed combiners [53]. Based on experimental

results, researchers agree that fixed rules usually perform well for ensemble of classi-

fiers having similar performance, while trained rules handle better matchers having

different accuracy. Thus, when fusing different modalities, individual matchers often
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exhibit different performance, then for this problem trained rules should perform bet-

ter than fixed rules [58]. It has been shown that, the simple sum rule gives very good

accuracy in combining multiple biometric systems [58].

3. Density-based schemes. The model is built by estimating density functions for the

genuine and impostor score distributions [74]. The match scores are considered as

random variables, whose class conditional densities are not a priori known [13]. So,

this approach requires an explicit estimation of density functions from the training

data [63]. A recent method belonging to this category is the score fusion framework

based on the Likelihood Ratio test, proposed by Nandakumar et al. in [46]. It models

the scores of a biometric matcher by a mixture of Gaussians and perform a statistical

test to discriminate between genuine and impostor classes. This framework produces

high recognition rates at a chosen operating point (in terms of False Acceptance Rate),

without the need of parameter tuning by the system designer once the method for score

density estimation has been defined. Optimal performance, in fact, can be achieved

when it is possible to perform accurate estimations of the genuine and impostor score

densities. The Gaussian Mixture Model (GMM) lets to obtain reliable estimations of

the distributions, even if the amount of data needed for it increases as the number of

considered biometrics increases.

Let s = [s1, s2, ..., sK ] denote the scores emitted by multiple matchers, with sk rep-

resenting the match score of the kth matcher, k = 1, ...,K. Adopting the Bayesian

decision rule, the probability of error can be minimized.
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Assign s to genuine if P (genuine|s) is greater or equal to P (impostor|s). The a

posterior probability P (genuine|s) can be derived from the class-conditional density

functions P (s|genuine) using the Bayes formula [62]:

P (genuine|s) = P (s|genuine)P (genuine)/P (s)

Moreover, as noted by the authors in [46], the performance of their method can be

improved by using a suitable quality measure together with each score. Most of

the available biometric systems, however, do not provides such measures. The main

drawback of a likelihood ratio fusion rule is that performance can be affected by

inaccurate estimations of the density functions.

Due to the diversity of scenarios encountered in the datasets, training and using a

single fusion rule on the entire dataset may not be appropriate. Recently [74], the idea of

dynamically selecting biometric fusion algorithms has been adopted.

2.3.2 Fusion Approaches at Rank-Level

For systems operating in identification mode, rank level fusion is a viable option. It provides

a richer information into the decision-making process compared to the decision level, without

requiring a normalization phase before combining [1]. Let K be the number of matchers to

be fused and N the number of enrolled users. Let rij be the rank assigned to the jth user

enrolled in the database by the ith matcher, i = 1 . . .K, and i = 1 . . . N , then Rij .

Highest rank scheme. For each subject, the combined rank is given by the lowest rank

(2.11). This rank fusion technique presents the advantage of utilizing the strength of each
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matcher.

Ri =
K
min
k=1

rik, i = 1, 2, ...N (2.11)

Borda Count scheme. For each subject, the combined rank is given by the sum of the

ranks assigned by the individual matchers (2.12). Such a rule presents the advantage of

taking into account the variability of the single matcher outputs. Its drawbacks lie in the

assumptions that, the matchers are statistically independent and they perform equally well.

This makes the Borda Count method highly vulnerable to the effect of weak classifiers.

Ri =

K∑
k=1

rik, i = 1, 2, ...N (2.12)

Logistic regression scheme. The fused rank is a weighted sum of the individual ranks.

Ri =

K∑
k=1

wkrik, i = 1, 2, ...N (2.13)

The weight wk, i = 1 . . .K, (see equation (2.13)), is determined through a training phase

by logistic regression. This method is useful when the different biometric matchers have

significant differences in their accuracies [63].

There is increasing interest in impact of the matcher reliability estimation in the context

of fusion in biometrics. However, incorporating reliability information in rank level fusion

represents a topic whose the discussion in the literature is at present still limited. The idea

is to use reliability in a multibiometric system for reducing the weight of potential incorrect

unimodal decisions.
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2.3.3 Fusion Approaches at Hybrid Rank-Score Level

An interesting technique for the integration of multiple classifiers at an hybrid rank-score

level is introduced using a HybridBF network. In [6] Falavigna and Brunelli showed that,

a system based on the integration of a visual and an acoustic subsystems achieves superior

performance compared to that of its components. The proposed approach reconstructs a

mapping from the set of scores and the corresponding ranks into a set 0,1. The matching

of the probe against each gallery identity is mapped to 1, if it corresponds to the correct

label, to 0 otherwise. The reconstruction of the mapping is formulated as a learning task

problem, where the training set is composed by non-matched and matched inputs and the

system will appropriately classify unseen data. This method has some drawbacks. Firstly,

a network-based framework requires a large amount of training examples to tune the free

parameters involved. Secondly, it requires the availability of all classifiers. Finally, when a

new user is added, the network has to be trained again.

Recently, Nandakumar et al. [49] proposed a scheme that utilizes both ranks and scores

to perform fusion in identification systems. They defined a hybrid rank-score fusion rule

based on a combination of score and rank statistics, defined as indicated in the equation

(2.14).

Assign query to identity In if

Rn ≥ Ri, i = 1, 2, ...N (2.14)

where the combined score and rank statistic is defined by equation (2.15).

Ri(S,R) = P (Ii|S)ri, i = 1, 2, ...N (2.15)
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in which P (Ii|S) is the posterior probability that Ii is the true identity given the score

matrix S, and ri is given by the equation (2.16) under the assumption that the matchers

are independent.

ri =

K∏
k=1

Pkrik i = 1, 2, ...N (2.16)

This approach, however, requires an explicit estimation of the genuine and impostor

distributions, and a large dataset is required to accurately estimate the score distributions.

Summary

Multibiometric systems consolidate the evidence provided by multiple sources of biometric

information, and subsequently, they are able to improve recognition performance compared

to its unimodal components. In order to maximize the benefits of multimodal biometric

systems, an effective fusion scheme is needed to consolidate the information provided by

different modalities. Among the possible integration levels, fusion at match score level is

the most commonly used, since scores are easy to access and to combine. However, they

are not homogeneous, then an efficient normalization phase is required before fusion. In

this chapter, we reported various normalization and integration schemes which have been

proposed in the biometric literature for multimodal biometric systems designing.
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Chapter 3

Multibiometric Verification
Scenario

The goal of a multi-modal systems is to alleviate limitations of mono-modal systems, in

particular to reduce decision errors. Among the existing approaches for combining several

biometric traits, the fusion of match scores has been widely adopted. Recently, a scheme

using the Likelihood Ratio (LR) Test has been proposed. In such approach, the distributions

of genuine and impostor scores are modeled as a finite mixture of gaussians that can be

accurately estimated only in presence of a huge training set.

In this chapter, we proposed a solution to reduce some limitations of the existing density-

based approaches; in particular, we presented two novel score fusion strategies based on the

Likelihood Ratio test. We propose both a sequential test and a voting strategy. By using

them, on one hand we tried to implicitly use the quality information embedded into the

scores. On the other hand, we obtained a system that demonstrated to be more robust than

the original one with respect to the lack of data for training [40]. Our case study concerns

the combination of face and fingerprint recognition systems at score level, as shown in

34
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Fig.3.1.

Figure 3.1: Combination of face and fingerprint modalities.

3.1 The Likelihood Ratio Test

Nandakumar and Chen [46] formulate the problem of Identity Verification in terms of hy-

pothesis testing: let Ψ denote a statistical test for deciding if the hypothesis H:{the score

vector s belongs to the Genuine class} has been correctly formulated. The choice is based

on the value of the observed match score and it lies between only two decisions: accepting

H or rejecting it. As it is known [18], different tests should be compared with respect to

the concepts of size and power, that are respectively the probability of accepting H when

it is false (also called False Accept Rate - FAR) and the probability of accepting H when it

is true (also called Genuine Accept Rate - GAR) [18]. In the context of prudential decision

making [36], the NP lemma [18] recognizes that, in choosing between a hypothesis H and

an alternative, the test based on the Likelihood Ratio is the best because it maximizes the



Chapter 3. Multibiometric Verification Scenario 36

power for a fixed size [18]. Let

LR(s) =
fgen(s)

fimp(s)
(3.1)

be the Likelihood Ratio (LR), that is the probability of the observed outcome under H

divided by the probability of assuming its alternative. As stated by the Neyman and

Pearson theorem [18], the framework proposed by Nandakumar and Jain ensures that the

most powerful test is the one, say Ψ(s), that satisfies the equations (1) for some η

Ψ(s) =


1, when LR(s) ≥ η

0, when LR(s) < η
(3.2)

where s = [s1, s2, ...sK ] is an observed set of K match scores that is assigned to the genuine

class if LR(s) is greater than a fixed threshold η, with η ≥ 0.

3.1.1 The Estimation of Match Score Densities

As it is known in biometric literature [63], it is hard to choose a specific parametric form

for approximating the density of genuine and impostor match scores, because the match

distributions have a large tail, discrete components and not only one mode.

Given a training set, density estimation can be done by employing parametric or non-

parametric techniques [4]. The non-parametric techniques do not assume any form of the

density function and are completely data-driven; on the contrary, parametric techniques

assume that the form of the density function is known (e.g., Gaussian) and estimate its

parameters from the training data. The power of this scheme resides in its generality

[14]: exactly the same procedure can be used also if the known functions are a mixture of

Gaussians. In [46] the authors have proved the effectiveness of the GMM for modeling score
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distributions and of the likelihood ratio fusion test in achieving high recognition rates when

densities estimations are based on GMM [46].

Let s = [s1, s2, ...sK ] denote the score vector of K different biometric matchers, where

sj is the random variable representing the match score provided by the jth matcher, with

j = 1, 2, ...,K. Let fgen(textitbfs) and fimp(s) denote the conditional joint density of the

score vector s given respectively the genuine and impostor class. The estimates of fgen(s)

and fimp(s) are obtained as a mixture of Gaussians:

f̂gen(s) =

Mgen∑
j=1

pgen,jΦ
K(s;µgen,j ,Σgen,j) (3.3)

f̂imp(s) =

Mimp∑
j=1

pimp,jΦ
K(s;µimp,j ,Σimp,j) (3.4)

where ΦK(s;µ; Σ) = (2π)−K/2|Σ|−1/2exp(−1
2(s − µ)TΣ−1(s − µ)) denotes the Gaussian

density with mean µ and covariance matrix Σ, and Mgen (Mimp) represents the number of

mixture components. Mixture parameters can be approximated by employing the fitting

procedure of Figuereido and Jain [15], that uses EM algorithm and Minimum Message

Length (MML) criterion. It also estimates the optimal number of Gaussians and is able to

treat discrete values by modeling them as a mixture with a very small variance represented

as a regularization factor added to the diagonal of the covariance matrix.

Fusion based on GMM estimations achieves high performance [46], but there is an

important drawback. In practice, one has to determine reliable models for estimations of
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genuine and impostor match score densities from the available score to be used for training.

In absence of a large database, it is hard to obtain an accurate model, and this limitation

is particularly true for multibiometric systems, as the number of considered biometrics

increases.

3.2 The Proposed Approach

As said in the introduction, the quality of the acquired biometric data affects the efficiency

of a matching process [47]. When the samples presented to a matcher are of poor quality,

it cannot reliably distinguish between genuine and impostor users. For example, some true

minutiae may not be detected in noisy fingerprint images, and missing minutiae may lead to

errors. Moreover, as stated in the previous Section, when several biometrics are available,

a not huge dataset could be not sufficient for having a proper density estimate by means of

the GMM. So, we propose two approaches for improving the performance of the standard

LR test.

3.2.1 LR-based Majority Voting

An analysis of how the exclusion of some biometric modalities affects the GMM estimate:

this approach (hereinafter denoted as voting LR) can be associated to the attempt of implic-

itly individuating degraded quality samples, when the quality measures are not available.

In practice, given a K-dimensional score vector, we estimate the K conditional class joint

densities of K-1 scores, by using a GMM technique. Then, we fixed for each of the K

estimates a threshold η on the training set that gives rise to a FAR equal to 0%. When we

have to judge a new sample, K, LR tests are made on the K densities and if at least one of
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the LR tests recognizes the sample as genuine it is declared as genuine by the system. The

ratio of this procedure lies in the fact that we want to detect if a particular score, say si,

coming from a genuine sample, could be affected by a low quality. In this case, it can be

expected that all the score vectors including si it will result in a low LR value, giving rise to

a false rejection. Only the K-1 dimensional score vector that do not include si could have

a LR value able to overcome the threshold. So, if at least one test is passed, the sample

with a single modality affected by low quality can be correctly recognized. The choice of

fixing η on the training set so as to obtain a FAR equal to 0%, is motivated by the need of

having a system characterized by a FAR as low as possible. Since this approach uses only

K-1 dimensional score vectors, it should be also more robust to the lack of training data.

See Fig.3.2.

Figure 3.2: The input (biometric, claimed Id) is classified as genuine if at least one of the
k LR test outputs genuine.

3.2.2 LR-based Sequential Approach

A sequential likelihood ratio test (hereinafter denoted as Sequential LR) that introduces

the option of suspending the judgment if the hypothesis is accepted or rejected with a not

sufficient degree of confidence. This is a sort of sequential probability test (as stated in [76]
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by Wald) that use additional data for taking the final decision, when it is not possible to

make a decision with a sufficient reliability by only using the initial observation. In this

case LR(s) is first compared with two different thresholds, say Ak and Bk:

in equation (4.2)

Ψ(s) =


1, when LR(s) > Ak

Suspension when Bk ≤ LR(s) ≤ Ak

0, when LR(s) < Bk

(3.5)

The thresholds Ak and Bk should be chosen so as to draw an uncertainty region around

the value of the threshold η given by the standard LR test. In practice, a fraction ν of this

threshold can be chosen, so as Bk = (1 − ν) · η and Ak = (1 + ν) · η. If LR(s) > Ak, to

turn the decision to advantage the genuine class, while if LR(s) < Bk, to turn the decision

to advantage the impostor class. In the case of suspension, i.e., when Bk ≤ LR(s) ≤ Ak,

the test procedure does not make any decision but activates a further step. The suspension

of the judgment is motivated by the fact that samples that are quite near to the threshold

could be misclassified due to the presence of one biometric trait acquired with a low quality.

So, as a second step we propose to adopt the same approach presented in the previous case.

In other words, K tests are made on score vectors of K-1 dimensions and the hypothesis is

refused only if it is refused by all the K voting components. See Fig.3.3.

3.2.3 Experiments

A brief description of the two modalities used in our experiments id given below.
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Figure 3.3: The samples classified with low confidence by the LR Standard-based rule are
classified a second time by an additional LR voting-based stage.

Fingerprint Verification

A fingerprint is a pattern of ridges and valleys located on the tip of a finger. Digital images

of these patterns are provided by compact sensors (see Fig.3.4). Typically, the features

extracted from a fingerprint image are the so called minutiae points, which correspond to

the position and orientation of ridges endings and bifurcations (see Fig.3.5). The match

score is obtained after comparing the set of minutiae extracted from the user’s print with

those composing the template [61].

Figure 3.4: The optical scanner Fx2000 Biometrika.
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Figure 3.5: Minutiae points extracted from a fingerprint image. They correspond to the
position and orientation of ridge endings or bifurcations [61].

Face Verification

Given a face image, the problem is to verify one or more persons in the scene. This involves a

matching between the feature set extracted from a face image and the template stored in the

database. A face detection process usually locates the face before the feature extraction. In a

controlled environment, enrolled and query images are taken in an uniform background with

identical poses and lighting conditions. In uncontrolled environments, factors as different

poses, scales, orientations and illuminance conditions, make this process difficult. Moreover,

occlusions, facial expressions or emotions, presence of components (e.g., glasses), represent

the most challenging problems in face recognition (see Fig.3.6).

Figure 3.6: Two face images taken from the Banca database. On the left the acquisition
of the subject has been performed under controlled conditions, while on the right under
uncontrolled conditions.
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Datasets

The performances of our approaches are evaluated on two databases. The first one is a public

domain database, namely, NIST-BSSR1 (Biometric Scores Set - Release 1). The BSSR1

is a true multimodal database i.e., the face and the fingerprint images coming from the

same person at the same time. We performed experiments by employing the first partition

made up of face and fingerprint scores belonging to a set of 517 people. For each individual,

it is available a score coming from the comparison of two right index fingerprint, a score

obtained by comparing impressions of two left index fingerprint, and two scores (from two

different matchers, say C and G) that are the outputs of the matching between two frontal

faces. So, in this case the match score for each modality indicates a distance. Then, our

first dataset consists in an unbalanced population composed by 517 genuine and 266,772

(517*516) impostor users.

The second database is a subset of the BioSecure multimodal database. This database

contains 51 subjects in the Development Set (training) and 156 different subjects in the

Evaluation Set (testing). For each subject, four biometric samples are available over two

sessions: session 1 and session 2. The first sample of the first session was used to compose

the gallery database while the second sample of the first session and the two samples of the

second session were used as probes (P1, P2, P3). For the purpose of this study, we used

the face and three fingerprint modalities, denoted as fnf, fo1, fo2 and fo3 [54]. The details

about the number of match scores per person are reported in Tables 4.2 and 4.3.
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Table 3.1: The Biosecure DS2 database: Development Set

Biometric Subjects Samples Scores

Face 51 4 per subject Gen 204× 3
Imp 51× 50× 16

Fingerprint 51 4 per subject Gen (204× 3)× 3
Imp (51× 50× 16)× 3

Table 3.2: The Biosecure DS2 database: Evaluation Set

Biometric Subjects Samples Scores

Face 156 4 per subject Gen 624× 3
Imp 156× 155× 16

Fingerprint 156 4 per subject Gen (624× 3)× 3
Imp (156× 155× 16)× 3

Evaluation Procedure

We have performed a first experiment in which the training set is composed by half of the

genuine and half of the impostor randomly selected from the dataset. The rest of the data

are used as test set. The second experiment was directed to analyze how the reduction of the

available scores for training affects the accuracy of the densities model. So, we performed

another test in which the training set is halved with respect to the previous case, while the

size of the test set remains unchanged. Both of these training-test partitioning have been

randomly repeated 10 times and we report the average performance over the 10 runs.

The current test procedure gives a specific rule for making one of the following decisions:

(1)accept the hypothesis to being tested, (2) to reject it, (3) to continue the experiment

by making an additional observation by performing an appropriate voting combination on

the score On the basis of the pure likelihood ratio test, one of the three decisions above is
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made. If the third decision is made, we accept the hypothesis if is accepted by at least one

of the voting

Experimental Results

Figure 3.7: Fitting a gaussian mixture: the solid ellipses are level-curves of each component
estimate (Biosecure database).

Tables 1 and 2 report the result of the two proposed approaches compared with the

standard LR test. Moreover, we also report the K-1 dimensional score vector that allowed

us to obtain the best results when used alone (in particular this score vector was composed

by the outputs of the two fingerprint matchers and of the Face G matcher). Three values

of ν have been considered, namely 0.2, 0.25 and 0.30.

Our system was designed for reducing to zero the number of accepted impostors. So, in

order to have a fair comparison, the chosen operating point for each run of the standard LR

test was obtained by fixing the FAR equal to 0% on the test set. The obtained threshold η
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Table 3.3: Test set results with a training set of equal size (on Nist database)

LR LR on (LfInd, Voting Serial LR Serial LR Serial LR
RxInd,FaceG) LR ν = 0.2 ν = 0.25 ν = 0.30

FAR 0.0% 0.0% 0.0% 0.0% 0.0% 0.000003%

GAR 95.60% 93.26% 97.77% 98.22% 98.22% 98.30%

Table 3.4: Test set results with a training set of halved size (on Nist database)

LR LR on (LfInd, Voting Serial LR Serial LR Serial LR
RxInd,FaceG) LR ν = 0.2 ν = 0.25 ν = 0.30

FAR 0.0% 0.0003% 0.0% 0.000009% 0.000011% 0.000011%

GAR 81.24% 95.35% 98.30% 88.09% 88.09% 88.01%

is also used in the first step of the sequential LR approach.

From the previous tables it is evident that the sequential LR always improves the GAR

obtainable with a standard LR, since its second stage is able to reduce misclassification of

genuine samples with respect to the pure likelihood ratio, for those samples classified with

a low degree of confidence.

Another interesting results is that the voting LR approach seems to be more robust with

respect to the lack of training data. When only 25% of the data are used for training, in fact,

it is able to significantly improve the GAR with respect to the standard LR approach. In

Table 3.5: Average number of suspended patterns on Nist database

Training set Serial LR Serial LR Serial LR
ν = 0.2 ν = 0.25 ν = 0.30

50% 2.8 3.6 4.2

25% 2.2 2.2 2.4
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this case, sequential LR is instead only able to slightly improve the LR performance in terms

of GAR, but it also introduces few false accepted samples. On the contrary, when sufficient

data for densities estimation are available, sequential LR achieves the best performance.

All summarizing, it is worth noting that in both experiments the proposed approaches

outperformed the standard LR test when a system at FAR=0% have to be realized.

Finally, is is interesting to consider the score distributions reported in Figures 1 and 2,

where the joint distributions of Left Index, Face C and Face G and of Face C and Face G

only are respectively shown. As it is evident (see also the considerations made by [72] on this

problem), the use of only two modalities significantly reduces the possibility of distinguish

between genuine users and impostors. This is why we did not propose to further iterate the

sequential test by considering, for example, also the joint densities of all the possible score

pairs.

As the Table 1 shows, at fixed FAR=0%, on the partitioning is 50%-50%, the GAR of

the pure likelihood ratio is 95.6%, while the GAR of the Sequential test is 98.2%. Moreover,

we observe that the implicit use of the quality measures in the fusion scheme improves the

accuracy, also when is not available a large data for training, this results in saving of about

50% in the number of observations. In fact, by using the 50% of the data for the training,

the GAR of the voting strategy alone is 97.8%, by using the 25% of the data for the training

its GAR is 95.6%, then the system is robust to the lack of scores. Finally, the likelihood

ratio where the density function is estimated by excluding the Face C modality, the GAR

is 96.6% on the partitioning 50%-50%, 95.4% on the partitioning 25%-50%.
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Table 3.6: Test set results with a training set of equal size on Biosecure dataset. (fnf1:
face modality; fo2, fo3: fingerprint modalities).

LR LR on (fnf1, Voting Serial LR Serial LR Serial LR
fo2,fo3) LR ν = 0.2 ν = 0.25 ν = 0.30

FAR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

GAR 88.29% 95.71% 97.33% 88.48% 88.55% 88.57%

Table 3.7: Test set results with a training set of halved size on Biosecure dataset. (fnf1:
face modality; fo2, fo3: fingerprint modalities).

LR LR on (fnf1, Voting Serial LR Serial LR Serial LR
fo2, fo3) LR ν = 0.2 ν = 0.25 ν = 0.30

FAR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

GAR 88.01% 96.58% 98.29% 88.14% 88.14% 88.29%

Table 3.8: Average number of suspended patterns (Biosecure database)

Training set Serial LR

50% 1.5

25% 1.5
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Figure 3.8: Score distribution of Left Index, Face C and Face G from NIST-BSSR1

Summary

In this chapter, we have proposed two Likelihood Ratio (LR)-based approaches for combin-

ing K biometric modality matchers, in order to minimize the number of false accepted users.

We demonstrated that, when the density functions of the standard LR can not be accurately

estimated, a voting strategy, involving K density estimations of K-1 modalities, is able to

effectively improve the performance of the multimodal system. We demonstrated also that,

when the density functions of the standard LR can be accurately estimated, an additional

stage, based on the previous voting strategy, can reduce the number of misclassified samples

belonging to an uncertainty region, resulting in very good GAR.
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Figure 3.9: Score distribution of Face C and Face G from NIST-BSSR1

Figure 3.10: Score distribution of fnf1 (face), fo1 and fo3 (fingerprints) from Biosecure
database. The red points represent impostor scores while the blue points represent the
genuine scores.



Chapter 3. Multibiometric Verification Scenario 51

Figure 3.11: Score distribution of fnf1 (face), fo1 (fingerprint) from Biosecure database.



Scientists are no better than anyone
else at forecasting the future. In fact,
their predictions are usually wildly
inaccurate.

Robert Wiston

Chapter 4

Multibiometric Identification
Scenario

The goal of a biometric identification system is to determine the identity of the input

biometric data. In such a system, the input probe (e.g., a face image) is compared against

a labeled gallery data (e.g., face images in a watch-list) resulting in a set of ranked scores

pertaining to the different identities in the gallery database. The identity corresponding to

the best score is then typically associated with that of the probe, see Fig.4.1.

In adverse environmental conditions (i.e. illumination changes in a face image) the

performance of the unimodal systems may be not efficient [34]. Moreover, in large-scale

identification systems, the feature space of the identities in the gallery may significantly

overlap resulting in the degradation of identification accuracy. Further, in real scenarios

the input data is often noisy, and the similarity between the probe and the associated gallery

data is substantially reduced thereby impacting overall recognition accuracy.

This chapter concerns itself with the possibility of automatically determining if the

decision rendered by a biometric identification system is correct or not. Our aim is to

52
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Figure 4.1: The vector of features extracted from the probe image is compared against all
the templates stored in the database. A set of scores is generated and sorted. The one rank
value is assigned to the high similarity match score and the corresponding identity is chosen
as output of the system. The face images have been taken from the BANCA database.

predict identification errors and improve the recognition accuracy of the biometric system.

Our method utilizes the rank and score information generated by the identification operation

in order to validate the output. Further, we demonstrate that the proposed predictor can

be effectively applied in multimodal scenarios. Experiments performed on two multimodal

databases show the effectiveness of our framework in improving identification performance

of biometric systems. Finally, we investigate the question of whether it is possible to improve

the performance of the identification system by using the non-matched scores, referred to

as neighbors of the rank one identity. Our case study concerns the combination of face and

fingerprint recognition systems at hybrid rank-score level, as shown in Fig.4.2.

4.1 Predicting Identification Errors

This section focuses on reducing identification errors of multibiometric systems by involving

in the fusion scheme only outputs which are not degraded [30]. In real applications it is
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Figure 4.2: Combination of face and fingerprint modalities.

necessary that the unimodal system produces an estimate of decision reliability. This infor-

mation corresponds to the conditional probability that the decision made by the unimodal

system, given the available evidence E, is correct [33]. Estimating the level of trust in the

correctness of the decision can offer a feedback which may aid to appropriately weight uni-

modal results in a fusion scheme. An instance of error, corresponding to a False Rejection,

occurs when a legitimate user is not able to achieve a good enough similarity score to match

its entry in the gallery. A more dangerous error, corresponding to a False Acceptance, occurs

when an impostor has achieved a match within the gallery [68].

In the recent literature, quality and non-quality based approaches for biometric sys-

tem failure prediction have been proposed. Based on the correlation between quality and

recognition performance, quality was considered a good indicator in many studies in which

quality was promoted as a predictor of failure. Traditional biometric evaluation relied on a
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notion of quality associated to the raw image quality to determine the performance of the

system [67]. A failure condition corresponds to the presence of a low quality image input.

This notion of failure prediction is limiting since in presence of a low quality image the

system has to acquire another image sample. Such a scheme cannot be applied without a

real-time indication about the quality of the data, as it usually happens with multimodal

biometrics. Moreover, this notion of quality assessment was confuted in [68] by showing

cases in which, given a subject, poor quality images produce better matching scores than

high quality images.

An interesting alternative to quality analysis was presented by Scheirer and Boult in

[67], in which they proposed the idea of post-recognition failure predictor. Such a failure

predictor is able to learn when a system fails and when it succeeds, and to predict which

input is more likely to fail. Based on the decisions made from a classification system, they

defined two types of error, i.e. a Failure Prediction False Accept Rate (FPFAR) and a a

Failure Prediction False Reject Rate (FPFRR) and the Failure Prediction Receiver Operator

Characteristic (FPROC). This prediction analysis has been shown to be effective for single

modalities and able to enhance the overall performance when exploited in fusion schemes

[68].

They introduced failure prediction features derived from similarity scores and designed

to capture distributional information that is not represented from just a raw score. They

extracted the differences between scores and the DCT coefficients after transforming the top

n scores. The failure prediction analysis of their system predicts individual modality failures

and drives the fusion weighting them. In the work, the authors have presented a multi-modal
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recognition system integrating fusion-based failure prediction. The proposed multi-stage

architecture presents the fusion module at the highest level to integrate the results of failure

prediction across modalities. Four different fusion techniques were proposed to improve

failure prediction, three of them are able to improve failure prediction, and subsequently, the

recognition system performance. The described approach consists of a fusion via prediction.

According to the proposed multi-modal failure prediction, if one modality has failed, it is

possible to fuse information from another one that has succeeded; this lets to achieve good

recognition performance. They firstly evaluated the performance of four fusion techniques

for failure prediction, then they evaluated the failure prediction fusion-based recognition

system. The usage of DCT transform made quite complex the feature extraction, and

subsequently, the time needed for training the system expensive. Our approach simplifies

this aspect by exploiting rank and score information for predicting errors and, subsequently,

improving the performance of the biometric system. In the proposed methodology, the

probability that the output decision is reliable is estimated by a pattern classifier referred

to as a predictor. Its role is to detect potentially erroneous decisions. Further, we propose

three fusion mechanisms based on the trained predictor that can extend the benefits of

the proposed scheme into a multimodal scenario. In particular, a predictor-based voting

strategy, a predictor-based serial fusion scheme and a predictor-based Borda Count method

are presented and compared against other common approaches to rank-level fusion.

The idea of marginalizing potentially incorrect decisions in a pattern recognition system

was used by Chow [8] to define an optimum rejection rule. In the pattern recognition and

machine learning literature, several techniques have been proposed to predict the reliability
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of a classification decision rendered by a pattern recognition system (e.g., [10]). However,

such methods have been sparingly used in the biometric literature until recently. Kryszczuk

et al. [34] presented a method in which classifier decisions and the corresponding reliability

information are combined to predict and correct verification decisions. Kryszczuk et al. [33]

later proposed a framework for probabilistic error rectification based on credence estimation

which was used to eliminate unreliable verification decisions.

4.1.1 Analysis Ratio-based

As stated earlier, a generic identification system compares the input biometric data to all

the known identities stored in the database and outputs a set of similarity scores. The

scores are then sorted in decreasing order to form a ranking list in which the lowest rank is

assigned to the highest similarity [1]. Let G = [G1, G2, ...GN ] be the gallery set, composed

by N biometric samples belonging to N different subjects. Let P = [P1, P2, ...PM ] be the

probe set, composed by M unknown samples belonging to subjects that are presumed to be

in the gallery. Given a single probe image, N comparisons of that probe against the gallery

are performed and N similarity scores are generated [5].

The present study is based on computing the ratio of scores corresponding to rank 1

and the other ranks. The vector of these ratios is treated like a feature vector and used

for training a pattern classifier. Such a classifier is used to learn the relationship between

the ratios and the posterior probabilities of the correct and error classes. Here, the term

“correct class” is used to indicate that the rank-1 identity is indeed the correct identity

of the probe; the term “error class” is used to indicate that the rank-1 identity does not
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correspond to the correct identity of the probe. Thus, the classifier (predictor) is used to

learn the decision boundary between the correct identification region and the erroneous one

[39].

For a given input probe, let ρj denote the ratio of the rank-1 score to that of the rank-j

score. Thus, the vector (ρ2, ρ3, . . . ρd+1)
t, d ∈ {1 . . . N −1}, is used as input to the classifier.

Typically, the rank-1 similarity score is expected to be significantly higher than the other

scores (for a genuine match at rank-1). However, there are situations when the rank-1 score

may be comparable to that of other scores associated with the nearby ranks thus suggesting

the possibility of an error. In this work, we confirm this notion and, further, exploit it to

improve recognition accuracy.

Algorithm for training the unimodal predictor using ratios
Let G = [G1, G2, ...GN ] be the gallery set.
Let P = [P1, P2, ...PM ] be the probe set.

1. For each probe, generate N similarity match scores si, i = 1 . . . N by comparing that
probe against the gallery.

2. Sort the match scores in decreasing order.

3. Based on the previous sorted match scores, assign a rank Ri to each enrolled identity.

4. Compute the ratio ρj between the score corresponding to rank-1 and the score corre-
sponding to rank-j.

5. Label the ratio score vector as correct if rank 1 is assigned to the correct identity by
the unimodal matcher; otherwise label it as an error.

6. Use the labeled ratio score vectors as feature vectors to train a supervised classifier.

Fig. 4.3 shows the architecture of the proposed approach.
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Figure 4.3: Error Prediction in a unimodal identification system. Here, ski and rki denote the
score and rank, respectively, assigned to the ith identity in the gallery by the kth matcher;
Pk denotes the classifier used to predict if the rank-1 identification is correct (C) or not (E)
based on the vector of score ratios (ratiok). The output of the matcher, Idk, is accepted or
rejected based on the predictor.

4.1.2 Differences-based Analysis

The present study is based on computing the difference of scores corresponding to rank 1

and the other ranks. The vector of these differences is treated like a feature vector and used

for training a pattern classifier. Such a classifier is used to learn the relationship between

the ratios and the posterior probabilities of the correct and error classes. Here, the term

“correct class” is used to indicate that the rank-1 identity is indeed the correct identity

of the probe; the term “error class” is used to indicate that the rank-1 identity does not

correspond to the correct identity of the probe. Thus, the classifier ( predictor) is used

to learn the decision boundary between the correct identification region and the erroneous

one.

For a given input probe, let δij denote the difference of the rank-i score to that of the
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rank-j score. Thus, the vector (δ2, δ3, . . . δd+1)
t, d ∈ {1 . . . N − 1}, is used as input to the

classifier. The distribution of the differences between scores in terms of ranks gives the

information about the direction of the largest variance for each modality. Typically, the

rank-1 similarity score is expected to be significantly higher than the other scores (for a

genuine match at rank-1). However, there are situations when the rank-1 score may be

comparable to that of other scores associated with the nearby ranks thus suggesting the

possibility of an error. In this work, we confirm this notion and, further, exploit it to

improve recognition accuracy. The difference which presents the highest variability can be

projected in the space of two modalities to analyze the separation between the classes error

and correct.

Algorithm for training the unimodal predictor using differences
Let G = [G1, G2, ...GN ] be the gallery set.
Let P = [P1, P2, ...PM ] be the probe set.

1. For each probe, generate N similarity match scores si, i = 1 . . . N by comparing that
probe against the gallery.

2. Sort the match scores in decreasing order.

3. Based on the previous sorted match scores, assign a rank Ri to each enrolled identity.

4. Compute the differences δij between the score corresponding to rank-i and the score
corresponding to rank-j.

5. Label the difference score vector as correct if rank 1 is assigned to the correct identity
by the unimodal matcher; otherwise label it as an error.

6. Use the labeled difference score vectors as feature vectors to train a supervised clas-
sifier.
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4.2 A Predictor-based Framework

In a multibiometric identification system, the output of K different biometric modality

matchers C1, C2, ...CK have to be consolidated. The information observed at the score level

can be represented as a N ×K matrix S = [skn], where s
k
n represents the match score output

when the probe image is compared against the nth gallery image, using the kth classifier,

k = 1, ...,K; n = 1, ..., N . This score matrix can be converted to a rank matrix R = [rkn]

where rkn represents the rank of the nth gallery image with respect to the probe as assessed

by the kth modality matcher.

4.2.1 Predictor-based Majority Voting

In the majority voting scheme, the outputs of the K classifiers are examined and the most

commonly occurring output is selected as the final output. Thus, for a given probe, K

unimodal matchers are employed and the winner is the identity to which the majority of

matchers have assigned a rank value equal to one. The majority vote will result in an

ensemble decision [35]:

arg max
i=1...N

K∑
k=1

dik · vk (4.1)

where the binary variable dik is 1 if the kth matcher outputs identity i in rank-1, and the

binary variable vk is 1 if the identification is deemed to be correct by the kth predictor. Fig.

4.4 presents this scheme. The majority vote scheme will assign an identity to the probe only

if the output of at least ⌊12Σ
K
k=1vk⌋ + 1 unimodal systems correspond to the same identity

and are deemed to be correct by vk. For example, suppose there are 5 unimodal systems.

Assume that for the identity corresponding to the true user (say, ‘Bob’), 3 out of 5 systems
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output the identity ‘Alice’, while the other two output ‘Bob’. Suppose that 2 out of the

3 predictors state that the output ‘Alice’ is in error, while the others indicate that their

respective outputs were correct, then the final output of the predictor-based multimodal

system will be ‘Bob’. If a majority is not possible, then the proposed mechanism attempts

to use the rank-1 accuracy of individual classifiers to make the decision. According to this

design, when the unimodal outputs are K different identities, the output from the overall

system will correspond to the identity output from the unimodal system with the highest

accuracy (as assessed using training data before deployment of individual matchers). Those

contributions considered as errors by the predictor module are excluded from the final

decision.

Figure 4.4: Predictor-based Majority Voting.
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4.2.2 Predictor-based Serial Scheme

In the serial scheme, the decisional process is split into two successive stages [43]. The

subject to be authenticated submits the first biometric modality to the system which is

processed and matched against all the templates present in the gallery. If the resulting

identity is labeled to be correct by the predictor module, the input biometric trait is associ-

ated to the current identity, otherwise the system suspends the decision and an additional

processing stage is performed. In the second stage, K-1 additional biometric modalities are

automatically requested and a voting strategy involving K-1 unimodal matchers is adopted

in the second stage. The described predictor-based serial combination framework is shown

in the Fig. 4.5. It can be formulated as follows:

Idm =


Idu, if vu = 1

argmaxi=1...N
∑K−1

k=1 dik · vk if vu = 0
(4.2)

where Idm is the output of the multimodal system and Idu is the output of the unimodal

system at the first stage.

4.2.3 Predictor-based Borda Count

In the Borda Count model, the rank for each identity in the database is calculated as the

weighted sum of the individual ranks assigned by the K modality matchers:

Ri =

K∑
k=1

wk rik, i = 1, 2, ...N (4.3)

This method assigns a higher weight to the ranks provided by the more accurate matcher.

Therefore, it is useful when different biometric matchers exhibit significant differences in
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Figure 4.5: Predictor-based Serial Fusion: the first stage is based on the unimodal system
and the error predictor for this modality while the second stage consists of a predictor-based
majority voting scheme which uses K-1 modalities.

their accuracies. A training phase has to be performed to determine the weights. In the

proposed predictor-based fusion scheme, the unimodal outputs labeled as errors by the

predictor have to be excluded from the sum in the equation above which determines the

fused rank for each identity. This can be achieved by computing the weight wk as the

ratio between the number of correct identifications detected by the predictor and the total

number of test probes. follows:

wk =
vik∑K
k=1 vik

i = 1, 2, ...N (4.4)

The weight factor based on the predictor reduces the effect of inaccurate decisions provided

by potentially incorrect matchers. As an example, consider the fusion of 5 modality match-

ers. Assume that for the identity corresponding to the true identity (say, i = 1), 4 out of the
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Table 4.1: WVU Multimodal Biometric Database

Biometric Subjects Samples Scores

Face 240 5 per subject Gen 1200× 4
Imp 240× 239× 25

Fingerprint 240 5 per finger Gen (1200× 4)× 4
Imp (240× 239× 25)× 4

5 matchers result in rank 1, while the 5th results in rank 5. If the outputs of the predictors

are 1 for the first 4 modalities and 0 for the last one, the final rank will be 4.

4.2.4 Performance Evaluation

Datasets

In the present thesis, we have considered a multimodal identification system that integrates

fingerprint and face experts. The performance of the proposed strategy was evaluated on

two databases. The first is the West Virginia University (WVU) multimodal biometric

database. A subset of this database pertaining to the fingerprint (left thumb [FL1], right

thumb [FR1], left index [FL2], right index [FR2]) and face modalities of 240 subjects was

used in our experiments. Five samples per subject for each modality were available. Table

4.1 provides the details of the database. For the face modality, frontal images were collected

in a controlled scenario. For the fingerprint modality, images were collected using an optical

biometric scanner, without explicitly controlling the quality [11]. The entire dataset was

divided into five sets: the first sample of each identity was used to compose the gallery

and the remaining four samples of each identity were used as probes (P1, P2, P3, P4). The

VeriFinger software was used for generating the fingerprint scores and the VeriLook software

was used for generating the face scores.
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Table 4.2: The Biosecure database: Development Set

Biometric Subjects Samples Scores

Face 51 4 per subject Gen 204× 3
Imp 51× 50× 16

Fingerprint 51 4 per subject Gen (204× 3)× 3
Imp (51× 50× 16)× 3

Table 4.3: The Biosecure database: Evaluation Set

Biometric Subjects Samples Scores

Face 156 4 per subject Gen 624× 3
Imp 156× 155× 16

Fingerprint 156 4 per subject Gen (624× 3)× 3
Imp (156× 155× 16)× 3

The second database is a subset of the BioSecure multimodal database. This database

contains 51 subjects in the Development Set (training) and 156 different subjects in the

Evaluation Set (testing). For each subject, four biometric samples are available over two

sessions: session 1 and session 2. The first sample of each subject in the first session was

used to compose the gallery database while the second sample of the first session and the

two samples of the second session were used as probes (P1, P2, P3). For the purpose of this

study, we used the face and three fingerprint modalities, denoted as fnf, fo1, fo2 and fo3,

respectively [54]. The details about the number of match scores per person are reported in

Tables 4.2 and 4.3.

Evaluation Procedure

First, we performed a preliminary analysis to understand the distribution of the ratios

between scores as a function of the ranks (i.e., the ρk’s) for the correct and error classes.
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This was used to determine the dimension of the vector of ratios (i.e., d) that is suitable for

error prediction. The number d was empirically derived for each modality in the individual

databases considered in this work. Next, the proposed algorithm was evaluated on the two

databases. Since the number of identification errors made by some of the biometric matchers

is low, the negative class cannot be efficiently represented. This affects the training of the

predictor. In order to maximize the amount of available data, the training and testing was

performed by adopting the leave-one-out strategy. The classifier was trained by using the

samples provided by all but one of the identities in the gallery and its performance was

tested on the excluded identity [6].

Results

As Fig. 4.6 and Fig. 4.7 show, in the space of ratios, the distributions of the misclassified

identities are reasonably separated from those that were correctly recognized.

Fig. 4.11 and Fig. 4.10 show that, for both modalities face and fingerprint, the difference

between the rank-1 score and rank-2 score, here referred to r1r2, presents the highest

variance.

We have also plotted the difference r1r2 in the space of face and fingerprint modalities,

as shown in Fig. 4.12, and the correct identifications are well separated from the errors, as

assessed by the modality matchers.

The classification was accomplished using three different classifiers: a Support Vector

Machine (SVM), a Decision Tree and a Bayesian classifier. Since the SVM classifier gave

the best results on both databases, only its performance is being reported in this chapter.
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Figure 4.6: The distribution of the ratios between scores in terms of ranks of all the users
in the WVU database for the face modality, where the gallery set is composed by the first
sample of each subject and the probe set by the fifth sample. Red points represent rank-1
misclassifications.

Figure 4.7: The distribution of the ratios between scores in terms of ranks of all the users
of the Development Set in the Biosecure database for the face modality, where the gallery
set is composed by the first sample of each subject and the probe set by the second sample.
Red points represent rank-1 misclassifications.
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Figure 4.8: Performance of the prediction scheme using a Support Vector Machine trained
on the WVU data.

Figure 4.9: Performance of the prediction scheme using a Support Vector Machine trained
on the Biosecure data.
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Figure 4.10: The distribution of the differences between scores in terms of ranks of all the
users in the WVU database for the face modality, where the gallery set is composed by the
first sample of each subject and the probe set by the fifth sample. Red points represent
rank-1 misclassifications.

Further, the classification performance was observed as a function of d, i.e., the number

of ratios used to construct the feature vector. The face modality in the WVU database

required d = 5; the FL1, FR1 and FR2 modalities required d = 7 and the fingerprint FL2

modality required d = 10 (see Figure 4.8). For the Biosecure dataset, all the 3 fingerprint

modalities required d = 3 while the face required d = 5 (see Figure 4.9).

Tables 4.4, 4.5, 4.7 and 4.8 compare the results of the proposed scheme against other

schemes. We compared the performance of our methods against the Highest Rank and Borda

Count approaches [63] as well as the pure Majority Voting Scheme in which the predictor for

each modality was not used (ties were broken randomly). From these tables it is evident that

the predictor-based majority voting which uses the predictor for each modality, outperformed
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Figure 4.11: The distribution of the differences between scores in terms of ranks of all the
users in the WVU database for the fingerprint modality, where the gallery set is composed
by the first sample of each subject and the probe set by the third sample. Red points
represent rank-1 misclassifications.

Figure 4.12: The distribution of the differences between scores in terms of ranks of all
the users in the WVU database for the face and fingerprint modalities, where blue points
represent a correct identification as assessed by both modalities, while green and red points
represent cases in which the unimodal labels about a potential error are contrasting.
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Table 4.4: Performance of the traditional fusion schemes on the four probe sets in the WVU
database.

Probe Highest Borda Pure Majority
Rank Count Voting

P1 91.67% 97.22% 100.00%

P2 88.33% 95.56% 99.44%

P3 90.56% 96.11% 97.78%

P4 93.33% 96.67% 99.44%

Avg 90.97% 96.39% 99.17%

Table 4.5: Performance of the predictor-based fusion schemes on the four probe sets in the
WVU database, where the predictor was training using ratio score vectors

Probe Predictor-based Predictor-based Predictor-based
Majority Voting Serial Borda Count

P1 100.00% 100.00% 97.22%

P2 100.00% 99.44% 96.11%

P3 100.00% 99.44% 96.11%

P4 100.00% 98.89% 97.22%

Avg 100.00% 99.44% 96.67%

the other traditional approaches. Moreover, the serial scheme also improved the correct

identification rate since, in the second stage, it is able to handle those cases that are classified

as errors in the first stage. We also observed that the improvement in performance was

especially significant in the case of the BioSecure Database where traditional rank-level

fusion schemes did not perform very well.

Table 4.6 reports results of two predictor-based fusion scheme, where the predictor has

been trained by using the difference score vectors. From these tables it is evident that the

predictor-based majority voting which uses the predictor for each modality, outperformed

the other traditional approaches. Moreover, the serial scheme also improved the correct
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Table 4.6: Performance of the predictor-based fusion schemes on the four probe sets in the
WVU database, where the predictor was training by using difference score vector

Probe Predictor-based Predictor-based
Majority Voting Serial

P1 100.00% 100.00%

P2 100.00% 99.58%

P3 100.00% 100.00%

P4 100.00% 99.58%

Avg 100.00% 99.79%

Table 4.7: Performance of the traditional fusion schemes on the three probe sets in the
Biosecure database

Probe Highest Borda Pure Majority
Rank Count Voting

P1 87.18% 96.15% 89.74%

P2 78.85% 88.46% 83.97%

P3 74.36% 92.31% 84.62%

Avg 80.13% 92.31% 86.11%

identification rate since, in the second stage, it is able to handle those cases that are classified

as errors in the first stage.

4.2.5 Cross-Validation Evaluation

The training and testing of the error prediction scheme was also performed by adopting

the cross validation strategy to maximize the amount of available data during the training

phase. The classifier was trained over 5 iterations by using the samples provided by the 25%

of the identities in the gallery and its performance was tested on the excluded identities [6].

The classification was accomplished using three different classifiers: a Support Vector

Machine (SVM), a Decision Tree and a Bayesian classifier. Since the Decision Tree classifier
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Table 4.8: Performance of the predictor-based fusion schemes on the three probe sets in the
Biosecure database, where the predictor was training using ratio score vectors

Probe Predictor-based Predictor-based Predictor-based
Majority Voting Borda Count Serial

P1 100.00% 96.15% 100.00%
P2 94.23% 89.10% 94.87%
P3 97.44% 92.31% 94.87%
Avg 97.22% 92.52% 96.58%

Figure 4.13: Performance of the prediction scheme using a Decision Tree trained on the
WVU data, where the predictor was training using ratio score vectors.
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Figure 4.14: Performance of the prediction scheme using a Support Vector Machine trained
on the Biosecure data, where the predictor was training using ratio score vectors.

gave the best results on WVU database and the SVM classifier gave the best results on

Biosecure database, only their performances are being reported in this chapter. Further,

the classification performance was also observed as a function of d, i.e., the number of ratios

used to compose the feature vector. In fact, an instance of error may occur at prediction

level too, since an error can be made by the predictor itself. The face modality in the

WVU database required d = 5; the FL1, FR1 and FR2 modalities required d = 7 and the

fingerprint FL2 modality required d = 10 (see Figure 4.13). For the Biosecure dataset, all

the 3 fingerprint modalities required d = 3 while the face required d = 5 (see Figure 4.14).

Tables 4.9, 4.10, 4.11 and 4.12 compare the results of the proposed scheme against other

schemes. We compared the performance of our methods against the Highest Rank and

Borda Count approaches [63] as well as the pure Majority Voting Scheme in which the



Chapter 4. Multibiometric Identification Scenario 76

Table 4.9: Performance of traditional fusion schemes on the four probe sets in the WVU
database. The accuracy has been evaluated by 5-fold cross validation and the classification
rates have been averaged.

Probe Highest Borda Pure Majority
Rank Count Voting

P1 93.89% 92.89% 99.33%

P2 91.78% 91.67% 98.89%

P3 91.67% 90.78% 98.11%

P4 91.67% 90.78% 98.11%

Avg 92.25% 91.53% 98.61%

Table 4.10: Performance of the predictor-based fusion schemes on the four probe sets in
the WVU database. The accuracy has been evaluated by 5-fold cross validation and the
classification rates have been averaged.

Probe Highest Borda Pure Majority
Rank Count Voting

P1 99.66% 96.56% 92.89%

P2 98.77% 93.67% 91.45%

P3 99.44% 92.22% 90.11%

P4 99.33% 93.67% 91.89%

Avg 99.30% 94.03% 91.59%

Table 4.11: Performance of the traditional fusion schemes on the three probe sets in the
Biosecure database

Probe Highest Borda Pure Majority
Rank Count Voting

P1 87.18% 96.15% 89.74%

P2 78.85% 88.46% 83.97%

P3 74.36% 92.31% 84.62%

Avg 80.13% 92.31% 86.11%
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Table 4.12: Performance of the predictor-based fusion schemes on the three probe sets in
the Biosecure database

Probe Predictor-based Predictor-based Predictor-based
Majority Voting Borda Count Sequential

P1 90.38% 90.38% 95.51%
P2 87.18% 87.18% 89.10%
P3 91.67% 91.67% 92.31%
Avg 89,74% 89,74% 92,32%

predictor for each modality was not used (ties were broken randomly). From these tables

it is evident that the weighted majority voting which uses the predictor for each modality,

outperformed the other traditional approaches. The training has been affected by a lack of

examples belonging to the negative class.

4.3 Graph-based Framework for Personal Identification Fu-
sion at Rank-Score Level

In this section, we investigate the question of whether it is possible to improve the per-

formance of the identification system by using the non-matched scores. The idea is to

incorporate the similarities of the query with that of its neighbors in order to have more

information to be fused. Biometric identification techniques typically base the decision only

on the match score representing the similarity between the identity query and the template

of each gallery identity stored in the database. Traditional fusion methods derive the com-

bined score by taking only the match scores related to a particular subject (the identity

query). The proposed framework attempts to use additional information when computing

the integrated score for each person. In particular, the combination functions at rank level
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usually consider only the rank one output from each biometric matcher to compute the

integrated rank of person i-th. This kind of fusion is called local. Conversely, the distri-

bution of the i-th query identity in a global method is modeled by considering the subset

of the enrolled persons similar to the query. The proposed approach belongs to this last

category and it uses a subset of non-matching templates in the database, referred as cohorts

[73]. When dealing with a large number of classes, as in the case with biometric person

identification systems, they tend to overlap. For most biometrics to find a good model for

representing a universal background class is an interesting challenge. The complement class

for the query identity is given by those models as impostors, which have good resemblance

with the model of the subject to which the system has assigned rank value one. In our

problem, good impostors are represented by the identities in top of the candidate list, in

fact they are expected to be more similar to the identity at rank one.

4.3.1 Cohort Analysis in Biometrics

The strategy of looking beyond the similarity of the query with only that of the claimed

identity was already proposed by Bolle et al. in [16] in the biometric verification scenario.

In their work, the matching scores of the other people are used into the decision making. In

identification mode, the cohort information is associated to the neighbors in the candidate

list of the genuine identity. This additional information can be exploited in a fusion scheme,

when computing the integrated rank for each person.
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4.3.2 Our approach

The proposed framework is based on the idea that the distances between the query and

its neighbors may help to reduce the error rate. A crucial step of the proposed strategy

consists in Cohort selection. For each enrolled template, we identify its cohorts based on a

ranking criterion. The proposed combination approach attempts to extend the traditional

methods by using the match scores corresponding to a subset of all people.

4.3.3 Graph Theory for Modeling

For most biometrics, to find a good model representing a universal background class is

an interesting challenge. In order to improve the recognition accuracy, the match scores

and the information about their relative ranking are treated as two different pieces of the

evidence [49]. This means that, we consider the output of each unimodal system as a list of

candidates with the confidence measure associated to each item. The top of such as list is

model through a graph. It is composed by two levels: a root node representing the genuine

identity and its neighbor nodes representing the impostors that are the most similar to the

identity having rank one [27], (see Fig.4.15).

Summary

In this chapter, we presented a methodology in which both ranks and scores have been used

to improve the identification accuracy of multimodal biometric systems. For each modality,

ranks and scores have been used to design a pattern classifier (predictor) which is able to

estimate the decision reliability of the corresponding modality matcher in order to detect

identification errors. This information has been introduced in novel fusion schemes. The
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Figure 4.15: The two-levels graph represents the top 10 of the candidate list.

proposed predictor-based techniques performed better than the commonly used rank-level

fusion mechanisms. In particular, the predictor-based majority voting resulted in the best

accuracy by achieving an average recognition rate of 100% on the WVU dataset and 97.22%

on the Biosecure dataset. The improvement in performance is especially significant in the

BioSecure database. Since the predictor is based on a training phase, it generalizes very

well across identities. Consequently, the predictor does not have to be retrained when

a new individual is added to the database. Experiments are underway to determine the

robustness of the scheme to variations in quality on the input data. It must be stated that

the simple sum of scores results in good identification performance on the database used

in our experiments; however, we can consider the methodology proposed in this chapter

as a promising approach for using both ranks and scores in a systematic way to predict

identification errors in biometric systems.



A genius is eternal patience.

Michelangelo

Chapter 5

Robustness to Spoof Attacks

A biological measurement can be qualified as a biometric and then used in a recognition

process, only if it satisfy basic requisite like universality, permanence, distinctiveness, cir-

cumvention. The last property concerns the possibility of a non-client being falsely accepted,

typically by spoofing the biometric trait [25]. Previous works have shown that it is possible

to spoof a variety of fingerprint technologies through relatively simple techniques. They use

molds of fingers made with materials as Silicon, Play-Doh, Clay and Gelatin (gummy fin-

ger). In 2002, Matsumoto et al. [70] conducted experimental spoofing research by creating

gummy fingers to attack fingerprint verification systems. They have reported a vulnerabil-

ity evaluation of 68%-100% for cooperative users and 67% for not-cooperative users (when

data were extracted from latent fingerprints).

The main focus of this chapter concerns the security risk in multimodal biometric sys-

tems due to spoof attacks. We have analyzed the performance of the most efficient multi-

biometric systems in presence of spoofing and our experiments show that the probability

of deceiving a multibiometric system is high even if only one modality is spoofed Then,
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we proposed a novel liveness detection algorithm for the fingerprint modality, which com-

bines static features based on the skin perspiration phenomenon and on the morphologic

properties of the fingerprint [69]. The experiments were carried out by adopting stan-

dard databases taken from the Liveness Detection Competition 2009 (LivDet09) in which

Biometrika, CrossMatch and Identix sensors were used [42]. Further, we presented a novel

study focused on how the performance of the liveness detection algorithms changes when

fake fingers are produced by employing materials that are different with respect to those

adopted for training. Finally, we tested this our algorithm in a fusion scheme.

5.1 Analysis of the Robustness of Multimodal Biometric Sys-
tems against Spoof Attacks

From a security perspective, a multimodal system appears more protected than its unimodal

components, since spoofing two or more modalities is harder than spoofing only one [63].

However, since a multimodal system involves different biometric traits, it offers a higher

number of vulnerable points that may be attacked and a hacker may fake only a subset

of them. There is indeed a trade-off between the number of fused biometric traits and

the offered security level. Recently, researchers investigated if a multimodal system can be

deceived by spoofing only a subset of the fused modalities [57]. Rodrigues et al. proposed a

method which considers as measure of security also the information pertaining the ease to

spoof each biometric in order to weight the contribution provided by the single modality to

the multimodal system. The idea is that, if a high quality sample gives a low match score,

the probability of success for a spoof attack is high. This work has been extended in [26],

82



by exploring the multimodal vulnerability and strategies for fusion in a scenario in which

partial spoofing has occurred. In this section, we also looked at the cases where some but

not all modalities are spoofed. The experiments were conducted by employing the scores

sum rule on two multimodal databases composed by face and fingerprint.

5.1.1 Experimental Analysis

Datasets

The performance of the considered strategy was evaluated on two multimodal databases.

The first is NIST-BSSR1 (Biometric Scores Set - Release 1). It is a true multimodal

database i.e., the face and the fingerprint images coming from the same person at the same

time. Our experiments were carried out by employing the first partition made up of face and

fingerprint scores belonging to a set of 517 people. For each individual, it is available a score

coming from the comparison of two right index fingerprints, a score obtained by comparing

impressions of two left index fingerprints, and two scores (from two different matchers, say

C and G) that are the outputs of the matching between two frontal faces. The match score

for each modality indicates a distance. Our dataset consists in an unbalanced population

composed by 517 genuine and 266,772 (517*516) impostor match scores.

The second database is a subset of the BioSecure multimodal database. This database

contains 51 subjects in the Development Set (training) and 156 different subjects in the

Evaluation Set (testing). For each subject, four biometric samples are available over two

sessions: session 1 and session 2. The first sample of each subject in the first session was

used to compose the gallery database while the second sample of the first session and the

two samples of the second session were used as probes (P1, P2, P3). For the purpose of
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this study, we have employed one face and three fingerprint modalities, denoted as fnf,

fo1, fo2 and fo3, respectively [54]. The scores used in our experiments are the output of

the matching between the first available sample and the second one for each subject. Our

second dataset consists in an unbalanced population composed by 516 genuine and 24,180

(156*155) impostor match scores.

Experimental Procedure

According to the assumption that live-spoof match scores would be similarly distributed

as live-live match scores, the simulation of an unimodal spoof attack has been realized

by substituting a genuine match score in place of an impostor match score. Given the

availability of four modalities, we have firstly analyzed a multi-biometric system which

exploits four modalities without spoofing simulation, then the cases where one, two, three

and all the modalities have been spoofed. Fusing the match scores from multiple sources,

such as from face and different instances of fingerprints, the resulting system should achieve

a higher recognition accuracy [26]. The current system has been designed by computing

the FRR and FAR/SFAR at different threshold levels and plotting them in a DET curve

on a log scale. As common practice, the operating point of the system corresponds to the

point where the FRR value is very close to the FAR (ERR Equal Error Rate) on the curve

representing the no spoofing simulation scenario. This sets a common threshold level at

which the additional curves representing scenarios where spoof attacks have been simulated

can be compared to that one where spoof attacks are absent. Fig. 5.1 and 5.2 show three

groups of DET curves based on SFAR, for one modality spoofed, two modalities spoofed
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and three modalities spoofed.

Figure 5.1: DET plot for a multi-modal system which exploits four modalities taken from
Biosecure database. The dark black line indicates the performance of the traditional fusion
scheme based on the sum rule with trade-off between FAR and FRR.

Further, a two modality system has been designed by using face and fingerprint scores.

The related DET curves are shown in Fig. 5.3 and 5.4.

Discussion

The results of Figure 1, concerning the Biosecure data, show an ERR (FAR/FRR) of 0.64%.

For this operating point, when one of three fingerprint modalities is spoofed, referred to

as fo1, fo2 and fo3, the average SFAR is respectively of 6.29%, 8.92% and 8.45%, with

an associated FRR of 0.64%. When the face modality is spoofed, the SFAR jumps up to

an average of 77.67%, since that modality presents the highest recognition accuracy in an
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Figure 5.2: DET plot for a multi-modal system which exploits four modalities taken from
Nist database.
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Figure 5.3: DET plot for a multi-modal system which exploits two modalities taken from
Biosecure database. The dark black line indicates the performance of the traditional fusion
scheme based on the sum rule with trade-off between FAR and FRR.
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Figure 5.4: DET plot for a multi-modal system which exploits two modalities taken from
Nist database.
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unimodal scenario. When two of four modalities are spoofed, SFAR achieves 91.89%, while

when three of four modalities are spoofed, SFAR jumps up to 98.66%.

The results of Figure 2, concerning the Nist data, show an ERR (FAR/FRR) of 0.58%.

For this operating point, when one of four modalities is spoofed, the average SFAR is 4.04%,

with an associated FRR of 0.58%. When two modalities are spoofed, SFAR jumps up to

81.40% and to 97.10% when three modalities are spoofed.

The two modality system presented analogous performance, as shown in Figures 3 and 4.

On Biosecure database, with an FRR of 1.93%, when one modality is spoofed SFAR becomes

74.74% averaged over the two modalities. On Nist database, with an FRR of 1.54%, when

one modality is spoofed SFAR becomes 63.26% averaged over the two modalities.

5.1.2 Likelihood Ratio Test

The Likelihood Ratio (LR) between the genuine and impostor distribution is known to

be the optimal fusion method which minimizes the probability of error. We obtained a

representative estimation of both distributions using training data taken from Biosecure

and Nist databases using a Gaussian mixture model. The training process was carried out

employing only non-spoofed impostor scores, while the testing scenario involved the case in

which only a subset of the fused biometric modality was spoofed (see Fig.5.5 and Fig.5.6).

5.1.3 Identification Scenario

It was interesting to simulate a spoof attack to a biometric identification system, where in

case of an identification error, the score at rank1 was substituted with the score correspond-

ing to the true identity of the considered matching (see Fig.5.7).
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Figure 5.5: Performance of the Likelihood Ratio Test based on joint density distributions
of two fingerprint modalities and two face modalities taken from the Biosecure database.

5.1.4 Discussion

In this section, we analyzed the security of the existing multibiometric systems a subset

of the fused modalities is successfully spoofed. The experiments showed a significant vul-

nerability of the existing fusion scheme in presence of attacks where not all modalities are

spoofed. Our idea is to detect spoof attack to the single component matcher before fusion.

This concerns the incorporation of a spoofing detection algorithm in a fusion scheme in

order to achieve an increase of the multimodal performance in the described real scenario.

Thus, we explored the topic concerning the detection of vitality in fingerprint images.
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Figure 5.6: Performance of the Likelihood Ratio Test based on joint density distributions
of two fingerprint modalities and two face modalities taken from the Nist database.

5.2 Combining Morphology- and Perspiration-based Features
for Liveness Detection in Fingerprint Scanners

Fingerprint scanners are the most widely adopted for personal identification. However,

the security of a fingerprint-based identification system is compromised in presence of fake

biometric data. In fact, it is possible to deceive automatic fingerprint identification systems

by presenting a well-duplicated synthetic finger. Artificial fingers created from fingerprints

of enrolled users used to attempt to gain unauthorized access are called spoofs[51]. This

kind of attack at sensor level can occur when people wish to disguise their own identity

or when a person wants to gain privileges of an authorized person. To minimize sensor

vulnerability, different approaches have been proposed. As an efficient mean to circumvent
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Figure 5.7: Performance of the score sum involving two fingerprint modalities and two face
modalities taken from the Biosecure database, in identification operation.

attacks that use spoof fingers, liveness detection has been suggested. In the context of

biometrics, liveness detection means the capability for the system to detect if the biometric

sample presented is really from a live finger tip or not. Liveness methods may belong to

two main categories, see Fig.5.8.

The first one exploits characteristics as the temperature of the finger, the electrical con-

ductivity of the skin and the pulse oximetry. They can be detected by using additional

hardware in conjunction with the biometric sensor. This makes costly the device. The sec-

ond category performs an extra process of the biometric sample in order to detect the vitality

information directly from the fingerprint images. In this chapter, we focus on this second
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Figure 5.8: An example of live and fake(gummy) fingerprint image.

category of approaches, known as software-based [69]. The existing software-based solutions

may include dynamic or static methods [7]. Static characteristics (as temperature, conduc-

tivity) and dynamic behaviors (skin deformation, perspiration) of live finger tips have been

extensively studied in fingerprint liveness detection research. In particular, morphology-

and perspiration-based characteristics have been typically exploited separately. Since both

features provide discriminant information about live and fake fingers, it is reasonable to

investigate also their joint contribution.

5.2.1 Dynamic approaches

Dynamic features derive from the analysis of multiple frames of the same finger. A typical

dynamic property of a live finger is the perspiration phenomenon that starts from the pores

and evolves in time across the ridges, see Figure 5.9. This distinctive spatial moisture pat-

tern can be detected by observing multiple fingerprint images acquired in two appropriate

different times. An interesting method based on perspiration changes in live fingers was
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presented in [3]. In this method, the changing perspiration pattern is isolated through a

wavelet analysis of the entire fingerprint image. For an image processing algorithm, to quan-

tify the sweating pattern is challenging. Since this pattern is a physiological phenomenon,

it is variable across subjects. Further, it presents a certain sensitivity to the environment,

the pressure of the finger, the time interval and the initial moisture content of the skin [56].

Its effectiveness requires an efficient extraction of the evolving pattern from images.

Figure 5.9: The image shows a macro photography of a live fingerprint.

5.2.2 Static approaches

Static features can be extracted from a single fingerprint impression or as difference be-

tween different impressions. Generally, static measurements may be altered by factors

as the pressure of the finger on the scanner surface. According to the taxonomy pro-

posed in [52], features extracted by different impressions can be skin deformation-based

or morphology-based, while features extracted by a single impression can be perspiration-

based or morphology-based. Morphology-based features give a general description of the

fingerprint pattern using its geometrical properties. Those based on the perspiration phe-

nomenon quantify perspiration patterns along ridges in live subjects. Elastic deformations
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due to the contact, the pressure and the rotation of the fingertip on the plane surface of

the sensor, are more evident in fake fingerprints made using artificial materials than in live

fingerprints. Deformation-based methods detect liveness by comparing these distortions

through static features [78]. The elastic behavior of live and fake fingers has been analyzed

by extracting a specific set of minutiae points, see Figure 5.10. The second type of static

features using multiple impressions relies on a morphologic investigation which exploits the

thickness of the ridges that is modified after producing the fingerprint replica.

Figure 5.10: The image shows the discontinuities that interrupt the flow of ridges which
are the basis for most fingerprint authentication methods. Minutiae are the points at which
a ridge stops, and bifurcations are the points at which one ridge divides into two. Many
types of minutiae exist, including dots (very small ridges), islands (ridges slightly longer
than dots, occupying a middle space between two temporarily divergent ridges), ponds or
lakes (empty spaces between two temporarily divergent ridges), spurs (a notch protruding
from a ridge), bridges (small ridges joining two longer adjacent ridges), and crossovers (two
ridges which cross each other).

Methods which exploit intrinsic properties of a single impression study the skin per-

spiration phenomenon. The vitality indication can be found by using Wavelet Transform

and Fast Fourier Transform [9]. Wavelet analysis is able to capture the non-regular shape

typical of the ridges in an image acquired from a live finger. Images taken from artificial
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fingers show a more regular shape. Fourier Transform is employed to study the regular

periodicity of pores on the ridges in live fingerprints. Such a regularity is not present in

signals corresponding to spoof fingerprints. Liveness detection methods which search for

morphological characteristics of fingerprint images, are significantly efficient when based on

the surface coarseness.

Below, we describe three static morphology-based methods which exploit a single finger-

print image for vitality information extraction and which have been used for comparison.

Each of them exploits a subset of the features we used in our algorithm.

Moon et al. [79] proposed a method based on analyzing the surface coarseness in high

resolution (1000dpi) fingertip images. It has been observed that the surface of a fake

finger is much coarser than the one of the human skin. The coarseness feature is measured

by computing the standard deviation of the residual noise of the fingerprint image. The

alternation of the ridges and valleys makes the fingertip surfaces intrinsically coarse because

the material used during the fabrication process is composed by molecules which tend to

agglomerate. Then, before feature extraction, the effect ridge/valley was minimized by using

a wavelet decomposition at different scales. In particular, the image is enhanced through

an histogram equalization and converted into a mono-dimensional signal representing the

gray level profile of the ridges. The decision is made by using a threshold value of 25. This

algorithm is fast and convenient but it works well only in presence of an high resolution

sensor (1000dpi, while the common commercial sensors present a resolution of about 500dpi)

[9].

An interesting texture-based approach using a single fingerprint image was proposed by

96



Nikam [50]. They analyzed liveness of a fingerprint image by using the gray level associated

to the fingerprint pixels. The gray level distribution in a fingerprint image changes when

the physical structure changes. This information is quantified by using several texture

features. Real and fake fingerprint images present different textural properties useful for

vitality detection. Due to the presence of sweat pores and the perspiration phenomenon,

authentic fingerprints exhibit non-uniformity of gray levels along ridges, while due to the

characteristics of artificial material surface, such as gelatin or silicon, spoof fingers show

high uniformity of gray levels along ridges. The gray level distribution of the single pixels is

modeled as first order statistics, while the joint gray level function between pair of pixels is

modeled as second order statistics. The authors proposed Gabor filter-based features, since

fingerprint exhibit oriented texture-like pattern and Gabor filters can optimally capture

local frequency and orientation information. The basic steps of the adopted procedure are

listed as follows:

� Step1 : Fingerprint image is filtered using a bank of 4 Gabor filters oriented in 4

directions 0°, 45°, 90°and 135°.

� Step2 : A gray level co-occurrence matrix method is applied to filtered images to

extract textural details.

� Step3 : Dimensionality of the features is reduced by Principal Component Analysis

(PCA).

Features are used to train three different classifiers: a Neural Network (NN), a Support

Vector Machine(SVM) and OneR. A Multilayer Perceptron (MLP) is used as NN and a
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Radial basis function (RBF) is used as the SVM kernel, with parameters C and γ as 1 and

2.3, respectively. The three classifiers are then fused using the ”Max Rule”. This approach

presents good performance when the core point is accurately located, (see Fig.5.10). How-

ever, existing core detection algorithms do not work well in presence of poor quality images

or with very dry or wet fingerprints, resulting in a noisy core.

An approach based on multiresolution texture analysis and the inter-ridge frequency

analysis of fingerprint images has been proposed by Abhyankar and Schuckers [2]. They

used different texture features to quantify how the gray level distribution in a fingerprint

image changes when the physical structure changes. First order statistics model the gray

level distribution of the single pixels by using histograms, while second order statistics refer

to the joint gray level function between pair of pixels. Two secondary features were used,

Cluster Shade and Cluster Prominence, based on the co-occurrence matrix. These features

derived from a multi-resolution texture analysis have been combined with features derived

from fingerprint local-ridge frequency analysis that was performed as well. The training

was performed separately for all the three scanners. Error rates have been computed after

processing the statistics and the local ridges frequencies features by using Fuzzy-C-means

classifier. This algorithm does not depend on the perspiration phenomenon and it is able

to overcome the dependence on more than one fingerprint image. However, it presents

limitations in real scenarios, since the computation of the local-ridge frequencies may be

affected by cold weather and different skin conditions, including dirty fingers and wet fingers.
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5.2.3 The proposed approach

Among the approaches proposed in the scientific literature, methods which exploit a single

impression are cheaper and faster. None of the developed approaches alone can perfectly

separate fake and live fingerprints. The static features previously described are able to

capture different aspect of vitality,in particular morphology-based and perspiration-based

. Then, it is reasonable that a combination of them is expected to achieve better per-

formance than any of the individual measures. In the current investigation, we combine

both perspiration- and morphology-based static features to improve the vitality detection

accuracy.

Below we describe the considered morphology-based features.

� Residual noise of the fingerprint image: indicates the difference between an original

and de-noised image, in which the noise components are due to the coarseness of

the fake finger surface [2]. Materials used to make fake fingers such as Silicon or

Gelatin consist of organic molecules which tend to agglomerate, thus the surface of

a live finger is generally smoother than an artificial one [79]. In the present work,

the coarseness of the image can be measured by computing the standard deviation of

the residual noise of an image, where the amount of residual noise was computed by

using a wavelet-based approach. According to the approach proposed by Moon [79],

we have treated the surface coarseness as a kind of Gaussian white noise added to the

image. Firstly, the image was de-noised with a Symlet by applying a soft-threshold

for wavelet shrinkage. The noise residue was achieved by calculating the difference
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between the two finger tip images before and after de-noising. The Noise Residue

Standard Deviation is a good indicator of texture coarseness since the pixel value

fluctuation in the noise residue of a coarser surface texture is generally stronger.

� First order statistics: measure the likelihood of observing a gray value at a randomly-

chosen location in the image. The gray level associated to each pixel is exploited to

determine a vitality degree of the fingerprint image. They can be computed from

the histogram of pixel intensities in the image. The goal is to quantify the variations

of the gray level distribution when the physical structure changes. The distinction

between a fake and a live finger is based on the difference of these statistics. If H(n)

indicates the normalized histogram and N the number of bin, the set of first order

statistical properties used in this work are as follows [2]:

– Energy:

e =

N−1∑
n=0

H(n)2 (5.1)

– Entropy:

s = −
N−1∑
n=0

H(n)logH(n) (5.2)

– Median:

M = argmin
a

∑
n

H(n)|n− a| (5.3)

– Variance:

σ2 =
N∑

n=0

(n− µ)2H(n) (5.4)
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– Skewness:

γ1 =
1

σ3

N−1∑
n=0

(n− µ)3H(n) (5.5)

– Kurtosis:

γ2 =
1

σ4

N−1∑
n=0

(n− µ)4H(n) (5.6)

– Coefficient of variation:

cv =
σ

µ
(5.7)

Below we describe the considered perspiration-based features.

� Individual pore spacing. Extensive research has shown that pore patterns are unique

to each individual [2]. A photo-micrograph of pores is shown in Figure 5.11. For

the purpose of the proposed approach, we focus on analyzing the occurrence of pores

that causes a gray value variability in the fingerprint image. This tendency can be

studied by using the Fast Fourier Transform (FFT), then the fingerprint image has to

be transformed into a ridge signal, representing the gray-level value along the ridge.

The discrimination between a live finger and a fake one is performed in the space

of the total energy of the ridge signal. In this method, according to the algorithm

proposed in [56], the 2-dimensional fingerprint image was mapped to 1-dimensional

signal which represents the gray-level values along the ridges. This technique lets to

quantify the perspiration phenomenon in a given image. The gray-level variations

in the signal correspond to variations in moisture due to the pores and the presence

of perspiration. By transforming the signal in the Fourier domain lets to measure

this static variability in gray-level along the ridges. In particular, the focus is on
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frequencies corresponding to the spacial frequencies of the pores. Firstly, by using a

median filter the image was processed to remove noise and device effects. Such as de-

noised image was converted into a binary one. Second, a thinning routine was applied

on the binary image and the fingerprint ridge paths, composed by only one pixel, were

determined. Connections were removed to have only individual curves. Finally, the

FFT was computed and the total energy associated to the spacial frequency of the

pores was obtained as static feature. The coefficients of interest are from 11 to 33,

since these values correspond to the spacial frequencies (0.4 - 1.2 mm) of pores. The

formula for this static measure SM is given from the following:

SM =
33∑

k=11

f(k)2 (5.8)

where f(k) is expressed by the following:

f(k) =

∑n
i=1 |

∑256
p=1 S

a
0i(p)e

−j2π(k−1)(p−1)/256|
n

(5.9)

Sa
0i = S0i −mean(S0i) (5.10)

where n is the total number of individual ridges and S0i is the ith ridge.

� Intensity-based. From the intensity distribution perspective, among the 256 different

possible intensities, the spoof and cadaver fingerprints images are distributed in the

dark (<150) [71]. The current study uses image histograms showing the number

of pixels at each different intensity values found in the image and it focuses on the

gray level values along the ridge, represented by the ridge signal. We have computed

two particular features: i) Gray Level 1 ratio, corresponding to the ratio between the
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number of pixels having a gray level belonging to the range (150, 253) and the number

of pixels having a gray level belonging to the range (1, 149); ii) Gray Level 2 ratio,

corresponding to the ratio between the number of pixels having a gray level belonging

to the range (246, 256) and the number of pixels having a gray level belonging to

the range (1, 245). Moreover, we have analyzed the uniformity of gray levels along

ridge lines and the contrast between valleys and ridges. As Figure 5.12 shows, real

fingerprints exhibit non-uniformity of gray levels and high ridge/valley contrast values.

Then, the general variation in gray-level values of in a spoof fingerprint is less than

a live one. To capture this information we have computed as additional feature the

Gradient of the gray-level matrix of the image.

Figure 5.11: The image on the left shows a photo-graphical example of pores. The image
on the right is output from a high resolution sensor (1000dpi) that captures the location of
pores in detail. Both are taken from [20].

The time to perform the recognition process is a fundamental parameter which affects

the performance of the proposed system. A feature selection phase reduces the number of

features to be extracted and subsequently the time needed for feature extraction. We have

selected the subset of features with highest discriminant power on the training set by using

a Sequential Forward Selection technique. The feature selection was performed for each
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Figure 5.12: Gray level uniformity analysis in fingerprint images: high level value for a real
fingerprint and low for a spoof. The image was taken from [50]

sensor.

Different classifiers have been trained, such as a Support Vector Machine, a Decision

Tree, a Multilayer Perceptron and a Bayesian classifier. For each sensor, we have chosen

the classifier with the highest accuracy on the training set.

5.2.4 Results and Discussion

Datasets

Our experimental phase was carried out by using three databases composed by live and spoof

fingerprint images. Each database refers to a different sensor (Biometrika, CrossMatch e

Identix ), see Table 3. They have been taken from the Liveness Detection Competition 2009

and each one of them is composed by two subsets, one for training and the other one for

testing the algorithm [42]. Biometrika training dataset is made up by 520 silicone images

and 520 live images (13 subjects x 20 acquisitions x 2 frames), with 2 time-series (0 sec and

5 sec). The corresponding test set is made up by 1440 silicone images and 1440 live images

(37 subjects x 20 acquisitions x 2 frames), with 2 time-series (0 sec and 5 sec). CrossMatch

training dataset is made up by 500 live images and 500 fake images produced by using
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Table 5.1: Datasets for training
Database Subjects Live Images Fake Images Frames

Biometrika 13 520 520 0 and 5 sec

Identix 35 375 375 0 and 2 sec

CrossMatch 63 500 500 0 and 2 sec

Table 5.2: Datasets for testing
Database Subjects Live Images Fake Images Frames

Biometrika 37 1440 1440 0 and 5 sec

Identix 125 1125 1125 0 and 2 sec

CrossMatch 191 1500 1500 0 and 2 sec

silicone, gelatin and Play-Doh, with 2 time-series (0 sec and 2 sec). The corresponding test

set is made up by 1500 live images and 1500 fake images produced by using Silicon, Gelatin

and Play-Doh, with 2 time-series (0 sec and 2 sec). Identix training dataset is made up

by 375 live images and 375 spoof images produced by using Silicon, Gelatin and Play-Doh,

with 2 time-series (0 sec and 2 sec). The corresponding test set is made up by 1125 live

images and 1125 spoof images produced by using Silicon, Gelatin and Play-Doh, with 2

time-series (0 sec and 2 sec). The details about the data collection are shown in the tables 1

and 2. In the three cases, the subjects using for training are different than those considered

for testing. Table 3 reports details about the sensors used for LivDet 2009 Competition.

Table 5.3: Fingerprint sensors used for LivDet 2009.
Sensors Model No. Resolution (dpi) Image size

Biometrika FX2000 569 (312x372)

Identix DFR2100 686 (720x720)

CrossMatch Verifier 300 LC 500 (480x640)
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Performance of the proposed method

Firstly, we analyzed the fingerprint images in the space of the selected features. The Figures

5.13, 5.14, 5.15 and 5.16 correspond to the entropy, the mean, the variance and the

coefficient of variation of the fingerprint image. These three first statistics present a good

separability between the classes live and fake.

Figure 5.13: Entropy for live(blue line) and fake(red line) fingerprint images taken from
Biometrika database.

The standard deviation of the residual noise also presents a good separability, as the

Figure 5.17 shows.

Finally, Figure 5.18 and Figure 5.19 report the two intensity-based features, the Gray

Level 2 and the gradient of the fingerprint image.

The classification performance evaluation was performed by adopting the same param-

eters used during the Liveness Detection Competition 2009, defined as follows:

� Ferrlive: rate of misclassified live fingerprints.
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Figure 5.14: Mean for live(blue line) and fake(red line) fingerprint images taken from
Biometrika database.

� Ferrfake: rate of misclassified fake fingerprints.

In particular, the indicator of performance is given from the value e averaged on the three

databases Biometrika, CrossMatch and Identix. The value e is computed as follows:

e =
Ferrlive+ Ferrfake

2
(5.11)

Table 4 reports the average time needed for extracting each of the 12 features which has

been exploited in our approach. Table 5 reports the features selected for each sensor by us-

ing a Sequential Forward Selection technique. We also observed that, when each feature was

individually used, its discriminant power changed by varying the resolution of the images

and the size of the dataset, while the joint usage of both perspiration- and morphology-

based features showed a high discriminant power on all the considered databases. Moreover,
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Figure 5.15: Variance for live(blue line) and fake(red line) fingerprint images taken from
Biometrika database.

a subset composed by mean, gradient, standard deviation of the residual noise and the co-

efficient of variations has been selected. The average error rate achieved by the proposed

method is of 12.47%, as reported in Table 6. On Biometrika and Identix datasets, the

higher percentage accuracy has been achieved by using a Multilayer Perceptron, while on

CrossMatch dataset, the Decision Tree classifier achieved the best performance. The per-

formance achieved by the best algorithm submitted to the LivDet09 Competition was of

14.67%, as reported in Table 7. Our approach reduced this average error with a low variance

on the three LivDet09 databases.

Performance of the existing methods

Table 8 reports the best performance of the method of Moon by varying the de-noising fil-

ter. The fingertip images have been first enhanced through a histogram equalization. Then

the de-noising was performed by adopting different filters. Median filter produces standard
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Table 5.4: Time required for extracting the proposed set of features on a Core Duo T8100
2,1 Ghz Intel Processor.

Feature Average Extraction Time

Energy 0.15 sec

Entropy 0.02 sec

Mean 0.02 sec

V ariance 0.02 sec

Skewness 0.06 sec

Kurtosis 0.06 sec

Coefficientofvariation 0.02 sec

NoiseResidueStd 0.59 sec

IndivPoreSpacing 1 sec

GrayLevel1 0.02 sec

GrayLevel2 0.02 sec

Gradient 0.06 sec

Table 5.5: Selected features for each database.
Feature Biometrika CrossMatch Identix

Morphology − based Energy x x

Morphology − based Entropy x x

Morphology − based Mean x x x

Morphology − based V ariance x x

Morphology − based Skewness x x

Morphology − based Kurtosis x x

Morphology − based CoefficientOfV ariation x x x

Morphology − based NoiseResidueStd x x x

Perspiration− based PoreSpacing x x

Perspiration− based GrayLevel1 x

Perspiration− based GrayLevel2 x x

Perspiration− based Gradient x x x

Table 5.6: Performance of the proposed algorithm.
Ferrlive Ferrfake e

Biometrika 12.20% 13.00% 12.60%

CrossMatch 17.40% 12.90% 15.20%

Identix 8.30% 11.0% 9.70%

Average 12.60% 12.30% 12.47%
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Figure 5.16: Coefficient of variation for live(blue line) and fake(red line) fingerprint images
taken from Biometrika database.

deviation values similar to the value 25 employed in the approach proposed by Moon et al.,

while the Wavelet-based procedure presents lower values of the considered feature. Accord-

ing to the procedure proposed in [79], the wavelet shrinkage was performed by applying a

soft-threshold. The threshold assumes the lower value on the database CrossMatch having

the lower resolution (500dpi) and composed by image with poor quality. In our experiments,

we also used wavelet packets that work using high frequencies at each filtering of the image.

They seem to be good for fingerprint images that present the most of the components at

high frequencies. The time frequency analysis is performed by repeating the filtering of the

signal. At each filter step, the frequency domain is cut in the middle and the high-frequency

components are kept [75]. Wavelet packets are able to improve the classification accuracy

only when the resolution is high enough, on Identix database it increases from 61.80% to

64.10% using a Symlet wavelet and from 62.00% to 66.80%, in both cases the threshold value
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Figure 5.17: Standard deviation of the residual noise for live(blue line) and fake(red line)
fingerprint images taken from Biometrika database.

Table 5.7: Performance of the best algorithm submitted to the Liveness Detection Compe-
tition 2009.

Ferrlive Ferrfake e

Biometrika 15.60% 20.70% 18.20%

CrossMatch 14.40% 15.90% 15.20%

Identix 9.80% 11.30% 10.60%

Average 13.20% 16.10% 14.67%

is close to 1. On fingerprint images taken Identix, Meyer wavelet packet worked better than

the standard wavelet, while on the other two databases the usage of wavelet packets made

a performances decrease.

Table 9 and 10 show the performance of the methods proposed by Nikam and Abhyankar-

Schuckers respectively, on the three LivDet09 databases. The first approach achieved the

lowest error rate, equal to 18.70%, on the CrossMatch having the lowest resolution, while the

second approach achieved the highest error rate, equal to 47.20%, on the Identix database

having the highest resolution [41].
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Table 5.8: Performance of the method of Moon on the three databases LivDet09 using a
Median filter for de-noising.

Threshold Ferrlive Ferrfake e

Biometrika 16.50 54.30% 24.80% 39.55%

CrossMatch 25.00 6.00% 70.00% 38.00%

Identix 16.50 31.20% 44.50% 37.85%

Avg 19.33 30.50% 46.43% 38.47%

Table 5.9: Performance of the method of Moon on the three databases LivDet09 using
Symlet wavelet for de-noising.

Threshold Ferrlive Ferrfake e

Biometrika 20.60 20.80% 25.00% 23.00%

CrossMatch 3.1−11 27.40% 19.60% 23.50%

Identix 10.50 74.70% 1.60% 38.20%

Avg 40.97% 15.40% 28.23%

Table 5.10: Performance of the method of Moon on the three databases LivDet09 using
Symlet wavelet packet for de-noising.

Threshold Ferrlive Ferrfake e

Biometrika 1.15 46.50% 8.80% 27.70%

CrossMatch 0.8 14.00% 52.60% 33.30%

Identix 1.1 30.10% 41.30% 35.90%

Table 5.11: Performance of the method of Moon on the three databases LivDet09 using
Meyer wavelet for de-noising.

Threshold Ferrlive Ferrfake e

Biometrika 20.9 20.80% 26.20% 23.50%

CrossMatch 0 45.00% 28.00% 36.50%

Identix 10.8 74.40% 1.30% 38.00%

Table 5.12: Performance of the method of Moon on the three databases LivDet09 using
Meyer wavelet packet for de-noising.

Threshold Ferrlive Ferrfake e

Biometrika 1.2 38.10% 15.00% 26.50%

CrossMatch 0.82 20.40% 38.80% 29.60%

Identix 1.1 43.20% 23.20% 33.20%
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Table 5.13: Accuracy of the method of Nikam on the three databases LivDet09.
MLP SVM OneR MaxRule

Biometrika 76.1% 73.6% 70.7% 76.46%

CrossMatch 70% 71.7% 67.5% 70.3%

Identix 76.4% 73.2% 64.8% 77.9%

Table 5.14: Performance of the method of Nikam (Max Rule) on the three databases
LivDet09.

Ferrlive Ferrfake e

Biometrika 14.30% 42.30% 28.30%

CrossMatch 19.00% 18.40% 18.70%

Identix 23.70% 37.00% 30.35%

Avg 19.00% 32.57% 25.78%

Table 5.15: Performance of the method of Abhyankar and Schuckers on the three databases
LivDet09.

Ferrlive Ferrfake e

Biometrika 24.20% 39.20% 31.70%

CrossMatch 39.75% 23.30% 31.53%

Identix 48.40% 46.00% 47.20%

Avg 37.45% 36.17% 36.81%
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Figure 5.18: Gray Level 2 for live(blue line) and fake(red line) fingerprint images taken
from Biometrika database.

5.3 Robustness of Liveness Detection Algorithms against New
Materials used for Spoofing

In our previous experiments, the classifier was trained by using features extracted from

fake samples made with all the materials available in each database. In particular, Gelatin,

Silicon and Play-Doh are the materials employed in both Identix and CrossMatch databases.

However, a good liveness detection algorithm is expected to be robust when the material

used to learn the fake class changes. This aspect is a challenging problem in fingerprint

liveness detection, since nowadays materials used for fraudulent spoof attacks are going

to become very sophisticated. In this section, we analyze the performance of the existing

liveness algorithms in scenarios reproducing the real conditions, where the material used to

attack the system is not a priori known.
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Figure 5.19: Gradient for live(blue line) and fake(red line) fingerprint images taken from
Biometrika database.

5.3.1 Existing methods employed for comparison

We compare our method to the most efficient approaches existing in the literature, which

are those proposed by Moon [79], Nikam [50], Shuckers and Abhyankar [2]. We also consid-

ered a perspiration-based method using the joint contribution of dynamic and static features

which was experimented by Tan and Schuckers [71]. They studied the perspiration phe-

nomenon from the intensity distribution perspective, by observing that live fingers present

a distinctive contrast between white (>250, ASCII gray level range 0:255) and dark (<20)

gray level, while spoof images have very small contrast difference. The decision rules to

perform liveness classification is generated after considering static and dynamic features.

The static features used in this work are based on the following parameters:

S1 =
sum(151 : 254)

sum(0 : 150)
(5.12)
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and

S2 = sum(151 : 254) (5.13)

The dynamic features are based on the difference in the histogram distribution between

zero and fifth second that is larger in live finger compared to spoof subjects. In the live

fingers, perspiration makes dry (white) regions between the pores moister (darker) in time.

This approach may present some limitations in cases of fingers too dry or too moist and

other perspiration disorders.

5.3.2 Experimental Results

In order to study the robustness of the existing liveness detection approaches with respect to

unknown materials used for producing fake fingers, we have carried out a further evaluation.

In our experiments, each system was trained by using spoof fingerprints realized with all

but one of the available materials, while the excluded material was used for testing. Table

4 reports the performance of the method proposed by our approach. In presence of high

resolution images, taken from the Identix database, the testing performed using Gelatin

and Silicon, when the training is performed by employing fake fingers made in Play-Doh,

gives rise to a good spoofing recognition rate. Table 5 shows that the method proposed by

Moon et al. wrongly classifies the majority of the fake fingerprints taken from CrossMatch

database, while for a higher resolution factor, such a method presents a better behavior in

presence of unknown materials using for spoofing. Table 6 and 7 show that the variation

in fake materials does not significantly affect the performance of both Nikam-Agarwal and

Abhyankar-Schuckers approaches, when the training set is only composed by samples made
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Table 5.16: Performance of the method proposed by Marasco and Sansone on CrossMatch
and Identix databases.

CrossMatch Identix

Gelatin P lay −Doh Silicon Gelatin P lay −Doh Silicon

Ferrlive 6.5% 5.7% 12.6% 3.8% 19.2% 9.7%

Ferrfake 25.9% 16.7% 10.0% 42.3% 5.5% 30.6%

e 16.2% 11.2% 11.3% 23.05% 12.35% 20.15%

Table 5.17: Performance of the method proposed by Moon et al. on CrossMatch and Identix
databases.

CrossMatch Identix

Gelatin P lay −Doh Silicon Gelatin P lay −Doh Silicon

Ferrlive 12.30% 15.00% 35.70% 45.20% 79.60% 40.80%

Ferrfake 63.10% 61.80% 47.30% 31.80% 4.20% 36.80%

e 37.70% 38.40% 41.50% 38.50% 41.90% 38.80%

with Gelatin. On the contrary, as reported in Table 8, the performance of the Tan-Schuckers

method seems quite dependent on the material as well as on the considered dataset.

As resumed in Table 9, when the material used to attack the system is not known during

the training, most of the algorithms decrease in performance. This confirms our claim that

the performance of liveness detection algorithms reported by the authors typically represents

an overestimate of that obtainable in real scenarios. Among the considered methods, the

one based on a single feature [79] is the most dependent on the use of unknown materials

for testing. Also the dynamic method proposed in [71] had a significant decrement in

performance when classifying fake fingerprints realized with materials different from those

present in the training set. The other methods are instead more robust, and the one

proposed by our approach, which is based on a combination of multiple features, exhibited

the best average error e when the material used for testing is unknown at training time.
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Table 5.18: Performance of the method proposed by Nikam and Agarwal on CrossMatch
and Identix databases.

CrossMatch Identix

Gelatin P lay −Doh Silicon Gelatin P lay −Doh Silicon

Ferrlive 27.20% 43.70% 24.20% 23.50% 29.30% 20.00%

Ferrfake 22.00% 32.90% 31.60% 16.00% 28.80% 31.50%

e 24.60% 38.30% 27.90% 19.75% 29.05% 25.75%

Table 5.19: Performance of the method proposed by Abhyankar and Schuckers on Cross-
Match and Identix databases.

CrossMatch Identix

Gelatin P lay −Doh Silicon Gelatin P lay −Doh Silicon

Ferrlive 45.80% 29.80% 58.60% 65.50% 61.60% 37.90%

Ferrfake 12.20% 24.40% 17.00% 2.40% 46.40% 27.70%

e 29.00% 27.10% 37.80% 33.45% 54.00% 32.80%

Table 5.20: Performance of the method proposed by Tan and Schuckers on CrossMatch and
Identix databases.

CrossMatch Identix

Gelatin P lay −Doh Silicon Gelatin P lay −Doh Silicon

Ferrlive 38.60% 24.40% 54.80% 64.10% 36.00% 38.80%

Ferrfake 32.20% 39.20% 43.00% 28.70% 42.40% 13.20%

e 35.40% 31.80% 48.90% 46.40% 39.20% 26.00%

Table 5.21: Performance of the analyzed approaches in terms of the average error e on
Identix and CrossMatch databases.

Marasco-Sansone Moon et al. Nikam-Agar. Abh.-Sch. Tan-Sch.

Gelatin 19.63% 38.10% 22.18% 31.23% 40.90%

Play-Doh 11.78% 40.15% 33.68% 40.55% 35.50%

Silicon 15.73% 40.15% 26.83% 35.30% 37.45%

Avg 15.71% 39.47% 27.53% 35.79% 37.45%

All materials 12.45% 30.85% 24.53% 39.37% 29.20%
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5.4 Evaluation of Fingerprint Liveness Detection Algorithms
in a Fusion Scheme

5.4.1 Verification Scenario

In this section, we investigated whether incorporating a fingerprint liveness detection in a

fusion scheme, under spoof attacks, may lead up to performance improvement. Our analysis

involves the simple score sum and the statistical Likelihood Ratio test.

Sum of scores

The experiments were carried out on the Nist, Biosecure and WVU databases, described

in the previous chapters 3 and 4. As said in Section 5.1, when considering a multimodal

biometric system working in presence of a spoof attack, the worst case is obtained by the

exact coincidence between the fake-live match score and the live-live match score. Then, it is

important to evaluate the system performance under the assumption that, live-spoof match

scores are similarly distributed as live-live match scores. Thus, we simulated each unimodal

spoof attack by substituting a genuine match score in place of an impostor match score.

We evaluated the performance of a multimodal system composed by face and fingerprint

traits under normal operation (i.e., without spoofing), when only the fingerprint trait is

spoofed and when only the face trait is spoofed. Further, we simulated the integration of

our liveness detection algorithm in the fusion scheme, based on Ferrlive and Ferrfake

percentages. The spoofed modalities, as assessed by the incorporated algorithm, do not

have to give any contribution to the final decision. Ferrfake indicates the percentage

of spoofed scores (impostor substituted by genuine) that have to be reset, while (100% -
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Ferrlive) indicates the percentage of genuine scores that have to be reset in the score sum

rule. When one modality is spoofed, the presence of the liveness detection algorithm helps a

SFAR reduction, since SFAR value of 10−3. This improvement is more significant when the

algorithm is applied to both fingerprint modalities. We performed 10 iterations by randomly

varying the set of fake samples detected by the algorithm. The average performance is

reported in Fig.5.20. This plot shows that the SFAR reduction can be achieved since very

low SFAR values 10−3. Finally, the procedure was experimented also for the sum among

four modalities (see Fig.?? and Fig.5.21). The EER point corresponds to 2.96% fixed on the

curve without spoofing, for this FRR value, when only one fingerprint modality is spoofed,

SFAR becomes equal to 87.75%. Incorporating our fingerprint liveness detection algorithm

in the fusion scheme, aids to significantly decrease SFAR to a value of 8.20%. When two

fingerprint modalities are spoofed, SFAR becomes equal to 96.91%. Here, incorporating our

fingerprint liveness detection algorithm for both spoofed modalities in the fusion scheme,

aids to achieve a SFAR value of 5.03%.

The same experiments were carried out on Biosecure database, where three fingerprint

modalities and one face were available (see Fig.5.23 and Fig.5.25); The EER point corre-

sponds to 0.19% fixed on the curve without spoofing, for this FRR value, when only one

fingerprint modality is spoofed, SFAR becomes equal to 71.69%. Incorporating our finger-

print liveness detection algorithm in the fusion scheme, aids to significantly decrease SFAR

to a value of 0.01%. When two fingerprint modalities are spoofed, SFAR becomes equal to

96.03%. Here, incorporating our fingerprint liveness detection algorithm for both spoofed

modalities in the fusion scheme, aids to achieve a SFAR value of 0.20%. and on WVU
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Figure 5.20: Average performance of the score sum between two fingerprint modalities
taken from the Nist database over 10 iterations, where the fingerprint modalities have been
spoofed.

database, where four fingerprint modalities and one face were available (see Fig.5.26 and

Fig.5.27). The EER point corresponds to 0.19% fixed on the curve without spoofing, for

this FRR value, when only one fingerprint modality is spoofed, SFAR becomes equal to

28.18%. Incorporating our fingerprint liveness detection algorithm in the fusion scheme,

aids to significantly decrease SFAR to a value of 0.62%. When two fingerprint modalities

are spoofed, SFAR becomes equal to 79.64%. Here, incorporating our fingerprint liveness

detection algorithm for both spoofed modalities in the fusion scheme, aids to achieve a

SFAR value of 0.004%.
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Figure 5.21: Average performance of the score sum between two fingerprint modalities and
two face modalities taken from the Nist database over 10 iterations, where the fingerprint
modalities have been spoofed.

Summary

In this chapter, we have investigated a multimodal system composed of face and fingerprint

modalities under different spoof attack scenarios. The experiments showed that, the mul-

timodal systems present a high probability to be deceived by spoofing only one or a subset

of its modalities. We have also proposed a novel fingerprint liveness detection algorithm

which combines morphology- and perspiration- based features. The proposed algorithm has

been tested on three different types of sensor technologies.

Our experiments demonstrated that, in presence of low resolution fingerprint images,

it overcomes the limitations of the existing approaches. The overall system will also be

faster, since the required information can be extracted from only one image without asking
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Figure 5.22: Performance of the score sum between three fingerprint modalities and one
face modality taken from Biosecure database.

the user to scan twice his finger. Moreover, since our method does not require additional

hardware, the cost of the fingerprint sensor does not increase.

Our experiments demonstrated also that, the performance of liveness detection ap-

proaches in which only one feature is exploited, decreases in presence of new materials

employed for spoofing. This weakness is reduced when multiple vitality features are ex-

tracted. In particular, the combination of morphology- and perspiration-based features

showed a high robustness in such a real scenario.

123



Figure 5.23: Performance of the score sum between three fingerprint modalities and one
face modality taken from Biosecure database, over 10 iterations.

Figure 5.24: Performance of the score sum between three fingerprint modalities and one
face modality taken from Biosecure database, where the three fingerprint modalities have
been spoofed.
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Figure 5.25: Performance of the score sum between three fingerprint modalities and one
face modality taken from Biosecure database, where the three fingerprint modalities have
been spoofed, over 10 iterations.

Figure 5.26: DET curve of the score sum involving one face and four fingerprint modalities
taken from WVU database.
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Figure 5.27: ROC curve of the score sum involving one face and four fingerprint modalities
taken from WVU database.
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