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ABSTRACT 

Non-linear analysis is the most viable tool to get accurate predictions of the actual 

response of masonry structures under earthquake loading. Analytical methods based on 

the idealisation of masonry walls with openings as systems of macro-elements allow 

not only to capture the main failure modes observed after past earthquakes, but also to 

ensure a limited computational demand in engineering practice. 

The present thesis deals with non-linear incremental static (pushover) analysis on 

masonry buildings modelled through evolutionary spread plasticity macro-elements. 

In the first part of the work, fundamentals of structural analysis, seismic risk, and 

performance-based seismic design are reviewed along with non-linear static procedures 

and macro-element methods for seismic analysis of masonry buildings. 

The second part of the work deals with theoretical advances in non-linear seismic 

analysis of masonry buildings. In particular, an evolutionary spread plasticity macro-

element has been developed and static pushover procedures for individual masonry 

walls, as well as entire buildings, are presented and discussed in detail. 

The proposed macro-element has been defined as „evolutionary‟ because its inner 

reacting domain changes as the lateral drift demand increases. Such an evolution is 

caused by the spreading of cracking and yielding within the masonry. Namely, tensile 

cracking of masonry induces significant reductions in the effective width of cross-

sections, which then depends on the magnitude of the given lateral drift (geometrical 

non-linearity). Yielding of masonry develops near the extreme parts of the macro-

element, which are subjected to maximum bending moment. Mechanical non-linearity 

of masonry in compression is also taken into account through a deformation-based 

approach. In fact, the mechanical behaviour of the macro-element is characterised for 

different constitutive laws of masonry, by means of (1) two- and three-dimensional 

flexural strength domains (to be coupled with classical strength domains), (2) moment-

curvature relationships, and (3) force-displacement diagrams. 

Two-dimensional strength domains derived from strength degrading constitutive 

models allow to account for more real characteristics of masonry. The comparison 

between flexural strength domains corresponding to different constitutive models have 

shown that current simplified formulas lead to higher values of ultimate shear force 

and bending moment, if the given axial force is not significantly higher than one-half 

of the allowable axial force. The implementation of full non-linear stress-strain 

relationships (which have been obtained by recent uniaxial compression tests in the 

direction orthogonal to mortar bed joints of masonry) has been found to provide more 
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conservative estimations of ultimate shear force corresponding to flexural failure of 

macro-elements (i.e., toe crushing). Flexural strength domains have been defined at 

cracking, elastic, and ultimate limit states of masonry cross-sections and panels, in both 

cracked and uncracked conditions. The explicit consideration of strain ductility of 

masonry has allowed to assess the evolution in strength domains. In this regard, less 

significant variations in both ultimate shear force and bending moment have been 

detected for a given axial force lower than one-fourth of the allowable axial force. 

Finally, flexural strength of macro-elements has been also investigated for any 

boundary condition through the development of three-dimensional strength domains 

corresponding to elastic and ultimate limit states, in both cracked and uncracked 

conditions. 

Moment-curvature relationships have been defined for rectangular unreinforced 

masonry cross-sections by means of an incremental iterative procedure. Their 

development has allowed to assess key parameters of sectional behaviour, such as 

flexural overstrength, strength degradation due to strain softening of masonry, yielding 

and ultimate curvatures, and curvature ductility. Such parameters have been estimated 

for a number of constitutive laws and the relationship between curvature and strain 

ductilities has been also investigated. The implementation of empirical stress-strain 

relationships presented in the first appendix of this thesis has let to derive moment-

curvature relationships where both yielding and ultimate strains of masonry, as well as 

strain softening, are explicitly considered. It has been found that, if the applied axial 

force does not exceed one-half of the allowable axial force, the ratio between curvature 

ductility and strain ductility is greater than unity and does not depend on the magnitude 

of the applied axial force. 

In order to define force-displacement diagrams of macro-elements, a specific 

incremental iterative procedure has been developed; it is based on the monitoring of 

the maximum axial strain over the cross-section(s) subjected to the maximum bending 

moment. It has been shown that force-controlled procedures can lead to significant 

underestimations of displacement capacity of masonry panels and to underestimations 

of both lateral stiffness and maximum resisting shear force. 

Force-based pushover procedures in response control have been developed for 

individual walls with openings and entire masonry buildings, separately, in order to 

predict also their non-linear softened response. Such procedures have been 

implemented in a novel computer program named RAN CODE, which is specifically 

devoted to structural analysis of masonry buildings. Amongst several numerical 

applications aimed at validating the developed procedures, the outcomes of a series of 

global pushover analyses on a masonry building designed in compliance with 

Eurocode 8 and Italian building code are discussed. 
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The pushover procedure developed for single masonry walls with openings could be 

employed in the case of existing buildings (either single buildings or building units 

within aggregates), which have often flexible floor diaphragms and lacking, or poor, 

connections between diaphragms and walls, as well as between orthogonal walls. 

The procedure developed for global pushover analysis of masonry buildings accounts 

for torsional effects due to both inherent (i.e., structural) and accidental eccentricities 

between centres of mass and centres of stiffness. The use of spread plasticity macro-

elements which change with the given deformation state allows to relate the „local‟ 

response of masonry panels to the „global‟ response of the structure. 

Finally, three appendices include results and empirical models obtained through 

experimental programs aimed at supporting non-linear modelling and analysis of 

masonry buildings. 

Appendix A deals with mechanical characterisation of masonry under uniaxial 

compression along directions parallel and orthogonal to mortar bed joints. Such a 

characterisation is consisted in the definition of mechanical parameters and constitutive 

models able to simulate non-linear behaviour of masonry up to large inelastic strains. 

Appendix B deals with mechanical characterisation of masonry in sliding shear along 

mortar bed joints. Also in this case, both classical and advanced mechanical parameters 

have been defined and empirical models have been derived. Such models include shear 

stress versus shear strain relationships and a shear response surface, which allows to 

simulate non-linear shear behaviour of unit-mortar interfaces over the whole range of 

allowable strains (that is, from elastic to inelastic range). 

Appendix C summarises the main results of three quasi-static lateral loading tests on a 

full-scale masonry wall with a opening and no tensile-resistant elements (e.g., 

reinforced concrete bond beams, steel ties), which is the typical case of existing 

masonry buildings. Namely, the first monotonic test allowed to investigate non-linear 

behaviour of the wall up to the first significant damage to the spandrel panel above the 

opening. The second test was carried out on the pre-damaged wall under cyclic 

displacements, in order to assess residual properties and to reach some hints on seismic 

performance of masonry walls subjected to earthquake sequences. The last test was 

performed under cyclic displacements on the wall after repairing and upgrading of the 

spandrel panel with an inorganic matrix-grid composite system. The aim of that test 

was to assess the effectiveness of the strengthening system for seismic retrofit of 

masonry structures and rapid remedial works during seismic emergency scenarios. 

Data processing for all lateral loading tests has shown that the damage to the spandrel 

panel affected both load-carrying capacity and strength degradation of the wall, 

whereas rocking behaviour of piers produced large displacement capacity and low 

residual drifts (that is, high re-centring capacity). 
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Chapter 1 - INTRODUCTION 

1.1. Foreword 

In recent years the focus of research in the field of masonry constructions has grown 

significantly. The widespread presence of these constructions in the built heritage, 

particularly in high-seismicity countries such as Italy, has highlighted the need to 

extend the state of knowledge in theoretical, numerical, and experimental research, in 

order to assess and reduce the vulnerability of existing masonry buildings. Therefore, 

some issues of structural modelling and analysis, which have been addressed just for 

concrete and steel structures until a few years ago, are currently being analysed also for 

masonry structures. 

Non-linear seismic analysis and macro-element modelling of masonry buildings are, 

amongst others, key research topics of structural earthquake engineering. In this 

context, the challenge is (1) to better estimate the non-linear seismic response through 

incremental static analysis, and (2) to build up simplified structural models able to 

simulate the main failure modes observed after past seismic events with limited 

computational work. 

Non-linear static procedures applied within macro-element methods allow to combine 

two different needs, even though equally important: simplified assessment of 

performance and damage under increasing seismic intensity, according to the 

philosophy of performance-based earthquake engineering (PBEE); and validation and 

further processing of analytical predictions. 

Non-linear static procedures have been recognised as a viable alternative to complex, 

although more rigorous, nonlinear dynamic analyses. Second, macro-element methods 

capture the main features of non-linear seismic response of the so-called „standard‟ 

masonry buildings (namely, buildings with regular layout of openings), even if they are 

based on a simplified idealisation of walls as systems of panels. If local out-of-plane 

collapse mechanisms are prevented through proper measures (i.e., effective wall-to-

wall and wall-to-diaphragm connections by means of reinforced concrete ring beams, 

or steel ties), the masonry building shows a „box-type‟ response under earthquake 

loading. In such conditions, a global seismic analysis can be carried out to get realistic 

performance predictions. The floor diaphragms distribute horizontal actions among the 

walls which in turn provide earthquake resistance to the whole structure depending on 

the lateral strength and deformation capacities of their constituent macro-elements. 
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Macro-element methods allow to easily overcome high difficulties of finite-element 

(FE) and discrete-element (DE) methods, regarding both masonry modelling (in terms 

of geometry and mechanical properties) and the interpretation of results. Nevertheless, 

these numerical methods are still presently the unique available tools for structural 

assessment of highly-irregular and historical/monumental constructions. 

From a modelling standpoint, masonry can be analysed either in its real configuration 

within numerical methods (e.g., as an assemblage of stone units with or without mortar 

joints), or alternatively as equivalent homogeneous material within macro-element 

methods or FE macro-models. In the case of regular masonry assemblages, mechanical 

behaviour should be distinguished at least along the directions parallel and orthogonal 

to mortar bed joints. In this way, material orthotropy can be taken into account by 

assigning different values of mechanical properties along the aforementioned 

directions. Conversely, in the case of chaotic masonry assemblages, masonry can be 

modelled as isotropic material. Since tensile strength of masonry is significantly lower 

than compressive strength, the equivalent continuum material cannot be assumed to be 

isoresistant. To perform simplified calculations, masonry is typically modelled as no-

tensile-resistant (NTR) material to define flexural strength of macro-elements. 

Geometrical modelling of masonry walls within macro-element methods is quite 

simple and in compliance with analysis criteria of current building codes, because 

structural performance is assessed by comparing capacity to demand at both global and 

single-component levels. On the contrary, numerical methods are not directly 

consistent with that methodology because internal forces and displacements are to be 

derived through repeated averaging and integration operations over stress and strain 

fields. To assess the attainment of a specific limit state, the required computational 

work is thus too high for engineering practice. Due to all above considerations, 

research efforts in the field of masonry structures have been addressed toward the 

development of macro-element models and non-linear computational procedures. 

1.2. Research Objectives 

The recognition of a direct relationship between earthquake-induced deformations and 

attained damage, as well as the need for response-controlled procedures able to get 

reliable seismic behaviour predictions up to high levels of strength degradation, have 

emphasised that proper modelling and non-linear strategies are needed for masonry 

buildings. To this end, theoretical and experimental research presented in the present 

thesis was aimed at developing an evolutionary spread plasticity macro-element and 

incremental non-linear static (pushover) procedures for single masonry walls and entire 

masonry buildings. 

According to current criteria for multi-level seismic performance assessment, structural 
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modelling and analysis are here discussed for individual masonry components (i.e., 

panels) and buildings as a whole, starting from RAN macro-element method (Augenti, 

2004). 

A deformation-based mechanical approach is applied to build up a spread plasticity 

macro-element whose characteristics change with the given deformation state due to 

mechanical and geometrical non-linearities. Strength and displacement capacities are 

respectively defined through strain ductility-dependent strength domains and force-

displacement curves which depend on the dominant failure mode (toe crushing, bed-

joint or stair-stepped sliding, or diagonal tension cracking). Non-linear response of the 

macro-element is affected by shearing and flexural deformations. 

The flexural behaviour of the macro-element is defined from strain fields by using 

different stress-strain relationships and performing closed-form integrations over 

deformation-dependent domains. Amongst the stress-strain relationships used in this 

study, those obtained by compressive tests on tuff masonry panels along the directions 

orthogonal and parallel to mortar bed joints are also considered. A strain field 

monitoring over the macro-element and the choice of a suitable constitutive model 

allow to include the following features: effective cross-section evolution due to 

masonry cracking (geometrical non-linearity); masonry micro-cracking at small strains 

(mechanical non-linearity in the elastic range); and strength degradation at medium and 

large strains (mechanical non-linearity in the plastic range). To investigate interaction 

between axial (compressive) force, shear force and bending moment (or alternatively 

axial force eccentricity), three-dimensional strength domains are defined. For a given 

stress-strain relationship, these domains do not depend on boundary conditions at end 

sections of the masonry panel. Flexural deformations experienced by the panel are 

analysed also at sectional level by means of moment-curvature diagrams derived for 

different constitutive laws of masonry. Such a modus operandi gives some hints on the 

influence of strain ductility and axial force on curvature ductility of unreinforced 

masonry (URM) cross-sections. 

Non-linear shear behaviour is investigated through results and empirical models 

derived from direct shear tests on tuff masonry specimens. In particular, sliding shear 

along mortar bed joints of masonry is also analysed for future implementation in 

macro-element models. 

To assess seismic performance of a single masonry wall or a whole masonry building, 

two different pushover procedures are formulated looking to relate global response to 

local response of each panel. In the case of a building, non-linear torsional behaviour is 

considered in the analysis procedure via step-by-step updating of shear centre location 

based on actual distribution of secant lateral stiffnesses. The proposed pushover 

procedures are response-controlled in order to capture strength degradation. Both 
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constant and adaptive load profiles can be defined in pushover analysis. In the latter 

case, the lateral force pattern is assumed to be dependent on the actual acceleration 

demand (i.e., the so-called „spectral amplification‟) and the fundamental mode (single-

mode load profiles). Hence, multi-mode dynamic analysis at each analysis step is not 

needed and the lateral force pattern can be associated with normalised displacements 

resulting from the previous step. Adaptive pushover procedure is then a single-run 

analysis. 

Quasi-static lateral testing of a perforated masonry wall without tensile-resistant 

elements, such as tie-beams, has provided useful information for modelling and 

analysis of existing masonry buildings. Main results of this experimental program are 

presented and discussed in this thesis, in order to deepen the contribution of spandrels 

(i.e., the horizontal coupling elements) to non-linear seismic capacity. 

Some of the theoretical formulations and seismic analysis procedures presented herein 

have been implemented into a computer program named RAN CODE, which is devoted 

to structural analysis and safety verifications of masonry buildings under gravity loads 

and seismic actions. 

1.3. Thesis Outline 

The present thesis is aimed at presenting and discussing the main research 

developments on non-linear seismic analysis of masonry buildings attained during the 

Ph.D. programme. The first part of the work deals with general topics related to 

structural analysis (Chap. 2), seismic risk (Chap. 3), and seismic design of structures 

(Chap. 4). Non-linear static procedures and macro-element methods for seismic 

analysis of masonry buildings are then reviewed in Chapters 5 and 6, respectively. 

The second part of the work is completely devoted to the development of an 

evolutionary spread plasticity macro-element (Chap. 7), and pushover procedures for 

masonry walls with openings and buildings (Chap. 8). The macro-element behaviour is 

defined by means of two- and three-dimensional strength domains, moment-curvature 

curves, and force-displacement diagrams. The proposed pushover procedures are force-

based and response-controlled. 

A numerical application of the developed pushover procedures is presented in  

Chapter 9 to assess seismic performance of a masonry building designed in compliance 

with Eurocode 8 (EC8) (CEN, 2004) and Italian building code (IBC) (IMIT, 2008). 

Non-linear analyses were carried out by means of RAN CODE for different directions of 

seismic input. Structural performance is then discussed through pushover curves, polar 

plots of seismic demand and capacity, expected damage maps, and collapse maps. 

Chapter 10 summarises the main advances in the field of non-linear analysis in terms 

of macro-element modelling and global seismic assessment procedures. 
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This thesis concludes with three appendices on experimental testing carried out to 

support the development of modelling and non-linear analysis procedures. Appendix A 

deals with non-linear modelling of masonry under uniaxial compression along the 

directions orthogonal and parallel to mortar bed joints. Appendix B regards constitutive 

modelling in sliding shear with special emphasis not only to classical mechanical 

parameters of masonry structures, but also to those used within refined FE modelling. 

Finally, Appendix C summarises the outcomes of quasi-static lateral loading tests on a 

full-scale masonry wall with a opening, in order to get a preliminary evaluation of the 

role of spandrels within existing masonry buildings. 

 



 

 

Chapter 2 - STRUCTURAL ANALYSIS 

Structural analysis requires necessarily a modelling of the real construction. This stage 

consists in assumptions about mechanical behaviour of materials, geometry of 

structural components, boundary conditions, and applied actions (in terms of type, 

magnitude, direction, orientation, and their combination). In other words, the analyst 

has to carry out: (1) mechanical modelling, where constituent materials are 

characterised through strength and deformation parameters, stress-strain relationships, 

and strength models; (2) geometrical and contraints modelling, where dimensions of 

structural elements and their mutual and external constraints are defined; and (3) load 

modelling, where one has to distinguish environmental and man-made actions due to 

construction location and its use, respectively. 

Depending on the assumptions about material behaviour and loading conditions, 

structural analysis can be performed in linear or non-linear range, statically or 

dynamically. In this chapter, the main analysis types are critically and briefly discussed 

without any specific reference to earthquake engineering methods. 

2.1. Linear versus Non-Linear Analysis 

The methods of structural analysis can be classified on the basis of the relationship 

between static and kinematic parameters, namely stress-strain relations at material 

level and force-displacement relations at component/global structural level. These 

relationships can be linear or non-linear. The former describe a straight line or a planar 

surface, the latter describe a curved line or surface. 

The structural analysis type to be carried out, and hence the relevant modelling, 

depends on the target performance level chosen by the designer, that is the target value 

of a reference parameter or set of parameters to be controlled. 

If the analyst want to assess serviceability of the construction defined by the designer 

or stakeholder, then mechanical, geometrical and constraint non-linearities can be 

neglected. In fact, the structure is regarded in a condition where non-linearity sources 

are not typically significant. Conversely, if the structure is analysed under severe 

loading conditions to assess life safety or even collapse prevention limit states, 

different non-linearity sources should be included in the analysis to simulate the actual 

behaviour. Therefore, linear and non-linear analyses are complementary themselves, 

because the former allows to define the safety against pre-defined operational levels in 
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serviceability conditions, while the latter is aimed at identifying ultimate capacity of 

the structure. 

As well known, the main non-linearities (each of them removes some hypotheses of 

linear analysis) can be grouped in the following types: 

(1) Mechanical non-linearity. A non-linear constitutive law expressed in the form of 

 or  relationship is assumed for the structural material, so stresses are not 

proportional to the relevant strains. Young‟s or shear modulus of the material can 

increase or decrease under increasing strain. Material non-linearity may be also 

due to strain-rate sensitivity or time-dependent deformation increase due, for 

instance, to creep or shrinkage. 

(2) Geometrical non-linearity. Such a non-linearity can be induced by large strains or 

large displacements. In the former case the Taylor series expansion of strains 

cannot be truncated at the linear term, while in the large displacement theory the 

equilibrium equations are to be written considering the actual deformed shape of 

the structure through a second-order, linearised, or upper-order theory. First-order 

theory includes the deformed shape just to evaluate displacements, while upper-

order theories assume that stiffness changes with deformations according to non-

linear relationships. 

Geometrical non-linearity can affect the behaviour of structures composed by 

materials with tensile strength much lower than compressive strength. This is the 

case of masonry and concrete structures where NTR material models are used. In 

the case of masonry, tensile strength is neglected just for flexural resistance 

predictions, while it provides significant contribution to shear resistance. The 

assumption of zero tensile strength induces partially-resistant cross-sections, 

whose effective width depends on the magnitude of internal forces. As a result, a 

non-linear relationship between applied loads and displacements exists because 

load variations induce significant modifications in the effective cross-sections of 

the structural element. Its elastic behaviour can be regarded as the sum of a linear 

contribution related to uncracked cross-sections and a non-linear contribution 

related to cracked cross-sections. If the assumption of small strains does not apply 

for the material being considered, structural analysis should be necessarily carried 

out through non-linear methods since effects could not be superposed. 

(3) Constraint non-linearity. In the context of linear analysis one assumes two-way 

constrains, namely constrains able to react in both orientations of applied loads. 

Nevertheless, if single-way constraints are to be considered, the boundary 

conditions of the structure change depending on the loading pattern defined by the 

analyst. It is also underlined that mutual constraints between different structural 

elements can change as a result of cracking or yielding of constituent materials. 
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Such an interaction may be difficult to be taken into account. 

Although the presence of the aforementioned non-linearities is known, linear analysis 

is often preferred over its non-linear counterparts and non-linearity effects are 

considered after the analysis through different procedures or modification factors. For 

instance, mechanical non-linearity can be taken into account through the adoption of 

secant moduli, rather than those tangent. 

In linear analysis, only one solution of structural equilibrium exists according to the 

Kirchhoff‟s principle of uniqueness, and the principle of effects superposition applies 

since the current structural configuration does not depend on previous configurations. 

On the contrary, in full non-linear analysis the equilibrium solution may not exist or 

not be unique and the effects‟ superposition is not allowed because the current state of 

the structure has a memory of previous states. 

The inclusion of plastic hinges in structures made of quasi-brittle or ductile materials 

allows to avoid a full non-linear analysis because a linear behaviour can be assumed 

between the formation of two consecutive plastic hinges. Then, a sequence of linear 

analyses can be performed on the structure subjected to individual load increments, if 

constraints are updated at the locations of plastic hinges. Each linear analysis provides 

the structural response under the applied load increments and the actual response is 

determined as the sum of the single contributions. Plastic hinges lead to build up 

lumped plasticity models which do not consider special effects due, for instance, to 

pinching or bond slip of reinforcing bars in reinforced concrete (RC) structures. 

As discussed in Chapter 8, the RAN method proposed by Augenti (2004) for masonry 

buildings has been extended to perform full non-linear analysis by spread plasticity 

modelling associated with the idealisation of masonry walls with openings as systems 

of macro-elements. Therefore, the actual structural configuration under a given loading 

condition has memory of the previous states. 

2.2. Static versus Dynamic Analysis 

Structural analysis can be carried out not only in the linear or non-linear range, but also 

in static or dynamic conditions depending on the magnitude of accelerations and 

velocities induced by external loads to inertia masses. Static equilibrium equations are 

a special case of the equations of motion and apply when accelerations and velocities 

can be neglected in the structural analysis. As well known, when considering equations 

of motion one must define not only elastic and inelastic properties of the structure, but 

also inertia and dissipative properties
1
. 

                                                 
1
  In general, additional forces should be also considered when applying active control devices 

to the structure for seismic protection purposes. 
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Dead and occupancy-related live loads can be considered to be statically or quasi-

statically applied to the structure. This means that their maximum magnitude is 

assumed to be reached through an incremental process so slow as to be seen as infinite 

sequence of elementary processes related to consecutive time instants
2
. A dynamic 

analysis could then be even wrong since the structural behaviour is not significantly 

time-dependent. Static analysis of the structure consists in solving the following 

equilibrium equation: 

Kx F  (2.1) 

where K stands for the stiffness matrix of the system, x is the displacement vector, and 

F is the load vector. 

If a non-linear static analysis of the structure has to be performed, the stiffness is not 

known as it depends on the equilibrium solution, namely the structural response under 

the given loading condition. Eq. (2.1) specialises as follows: 

( ) K x x F  (2.2) 

and can be solved by means of classical or refined algorithms, such as Newton-

Raphson, constant stiffness method (or modified Newton-Raphson), secant stiffness 

method, and mixed stiffness method. 

During the nominal life of the structure one can expect the presence of variable loads 

(e.g., wind, earthquake, cyclic loads, etc.) inducing dynamic excitation in inertia 

masses. In these conditions, static analysis could provide unrealistic predictions of the 

actual behaviour of the structure owing to dynamic amplification effects generated by 

velocities and accelerations, which are not considered into Eqs. (2.1) and (2.2). The 

structural response should be then analysed in the time domain through the methods of 

structural dynamics: static equivalent analysis and dynamic analysis (Clough and 

Penzien, 1994). The former is based on the solving of the equilibrium equation 

accouting for dynamic amplification effects via proper factors. In this way, even 

though structural response is not analysed in the time domain, one can estimate effects 

due to the actual dynamic loads by solving the following equilibrium equation: 

with 1a a Kx F  (2.3) 

where the scalar a > 1 is said to be dynamic amplification factor and is provided by 

codes and standards on the basis of past dynamic analyses. 

Dynamic analysis of the structure consists in solving the equation of motion: 

       t t t t  Mx Cx Kx F  (2.4) 

which describes the equilibrium between applied loads and inertia, damping, and 

elastic forces during time. Eq. (2.4) is an ordinary, second-order, inhomogeneous 

                                                 
2
  The average of load increments applied to the structure is equal to their temporal average in a 

given reference period. In such a case, the incremental process is said to be ergodic. 
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differential equation including not only static parameters (namely, K, x and F), but 

also: the time variable t; the mass matrix M; the damping matrix C; the relative 

acceleration vector x ; and the velocity vector x . Opposed to static analysis, both first 

and second derivative of displacement vector are not zero and the load vector is strictly 

dependent on time. 

The coefficients in Eq. (2.4) are typically constant with time (time-invariant systems), 

but they can change or not with the structural configuration resulting in non-linear or 

linear response of the dynamic system. A physical interpretation of the equation of 

motion is that the applied loads F are equilibrated by inertia forces Md
2
x(t)/dt

2
, 

damping forces Cdx(t)/dt, and elastic forces Kx(t) at each time instant. 

Associating input energy with external loads, the equation of motion can be rewritten 

in terms of energy. The structure is then assumed as a system that oscillates around the 

initial position exchanging several energy types with the environment (namely, the 

surrounding soil-fluid system) during time. Potential energy turns into kinetic energy, 

elastically stored energy, damping energy, and hysteretic energy in the case of non-

linear behaviour. Hysteretic energy is associated with plastic deformations which 

increase with time under cyclic loading. When the external actions vanish, structural 

motion decreases with time up to the attainment of the resting condition. The energy 

stored in the structure is equal to that dissipated by hysteresis and corresponds to a 

permanent damage. 

As stated above, dynamic analysis can be carried out in linear or non-linear range. The 

main solving strategies are the direct integration of the equation of motion and the 

spectral analysis. The former is performed in the time domain and applies to any 

structural type, the latter is performed in the frequency domain and applies to linear 

systems without particular complexity. 

 

2.2.1. Time-Domain Analysis 

Linear dynamic analysis in the time domain consists in a step-by-step integration of the 

equation of motion and is based on the assumption that matrices C and K are constant 

with time under varying structural response. In such conditions, the system is said to be 

linear and time-invariant, so the solution of the equation of motion is relatively simple 

to be determined. 

A closed-form integration of Eq. (2.4) can be carried out only if external actions are 

described by mathematical functions. In this case, the integral solution of differential 

equations corresponding to degrees of freedom (DOFs) of the structure
3
 can be 

                                                 
3
  Free lagrangian coordinates, namely linearly independent and non-zero displacements 

associated with inertia masses of the structure. 
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represented as the sum of the complimentary (integral) function related to the initial 

system conditions
4
 and the particular integral related to the actions which modify the 

natural motion. The complimentary function describes the transient response of the 

system, which vanishes with time due to damping, while the particular integral 

describes the steady-state response whose frequency is equal to that of external actions. 

The steady-state response is characterised by a displacement vector which can be set 

equal to the product of the static term by a dynamic amplification factor. 

Generally, external actions are represented by a random time-variant distribution so 

Eq. (2.4) can be solved only through numerical methods (e.g., using the Newmark 

method) based on the integration of an acceleration, velocity, or displacement record of 

a past event. Considering a set of significant records for the site where the structure is 

located, a statistical significance can be assigned to the structural analyses aiming at a 

response prediction under potential future events. 

In some particular cases like as, for instance, those of structures sensitive to interaction 

with environmental actions, the system is to be considered as time-variant. Solving of 

the equation of motion is then very complex and advanced numerical strategies are 

needed. 

The evolutionary behaviour of highly non-linear structures can be assessed in two 

different modes. The former consists in solving the equation of motion by considering 

a linear elastic system with constant coefficients, but characterised by: a secant 

stiffness matrix Keq corresponding to the ultimate displacement of an idealised bilinear 

force-displacement diagram; and an equivalent viscous damping matrix Ceq whose 

coefficients are evaluated on the basis of both viscous and hysteretic dampings.  

Eq. (2.4) is then modified as follows: 

       eq eqt t t t  Mx C x K x F  (2.5) 

The second alternative procedure is to solve directly the equation of motion in the non-

linear range: 

         t t t t t    Mx Cx K x x F  (2.6) 

where the coefficients are constant with time and depend on the actual deformed 

configuration of the structure. In such a case, dynamic analysis reaches the maximum 

level of complexity and requires special care in both mechanical and input modelling. 

It is emphasised that a correct choice of numerical solving method along with its 

parameters are needed to ensure stability and accuracy of mathematical solution. 

Once the configuration of the structural system is known at each time instant, internal 

forces on each structural component can be estimated and the safety level assessed. 

                                                 
4
  The Cauchy problem is solved, for instance, by assuming: ( 0) 0; ( 0) 0t t   x x . 
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2.2.2. Frequency-Domain Analysis 

The analysis of a dynamic system in the frequency domain allows to drastically reduce 

the computational work of the time-domain analysis, even though it is rather simple 

just in the linear range. The first stage of this analysis method is the transformation of 

the time response x(t) in the spectral response X( f ) defined in the frequency domain. 

The frequency domain representation of the original (actual) function is derived via 

Fourier transform, which is the integral form of the Fourier series expansion (related to 

discrete problems) and is defined also for non-periodic functions
5
. 

The original response function of the structural system is then regarded as 

superposition of an infinite number of harmonic functions which in turn, in discrete 

problems, are ordered according to the relation fn = n f1 (where f1 is the fundamental 

frequency and fn is the natural frequency associated with the n-th mode). 

The bijection between the functions x(t) and X( f ) is symbolically indicated as follows: 

   t fx X  (2.7) 

The amplitude of the complex function is said to be Fourier spectrum and is defined 

as: 

     
2 2

f R f I f X  (2.8) 

being R( f ) the real part and I( f ) the imaginary part of the function. The parameter: 

 
 

 
θ arctan

I f
f

R f

 
  

  

 (2.9) 

is called phase (or initial angle) since in the complex plane it represents the angle 

between the amplitude vector |X( f )| and the axis of real numbers. 

Once the amplitudes of the transfer function H( f ) and the load vector F( f ) in the 

frequency domain have been defined, the amplitude of the time response X( f ) can be 

derived through the following equation: 

     f f f X Η F  (2.10) 

This relation describes the system response as output signal of a filter with gain H( f ) 

subjected to the input signal F( f ). 

For each harmonic function, one can derive the amplitude and the phase, and hence the 

amplitude and phase spectra which represent the frequency content of the time 

response function. 

Finally, the frequency domain response X( f ) is retransformed in the time domain 

response x(t) by means of the inverse Fourier transform. Generally, dynamic analysis 

of structures under seismic input focuses on the amplitude of response parameters (i.e., 

                                                 
5
  The non-periodic function x(t) can be considered as a periodic function with period T → ∞. 
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displacements, velocities, and accelerations), rather than the phase, so only amplitude 

spectra are typically defined. 

If the system is linear and time-invariant, the matrix equation of motion can be 

converted in a system of uncoupled linear differential equations, through modal 

decomposition. From a physical viewpoint, if one assume a finite number of vibration 

modes for the structure being analysed, zero damping and the possibility of defining a 

set of generalised coordinates, modal decomposition consists in the transformation of 

the actual linear dynamic system with n DOFs in n different linear single-degree-of-

freedom (SDOF) systems, each having a specific frequency. Therefore, the 

evolutionary response of the actual multi-degree-of-freedom (MDOF) system is 

analysed as a proper combination of a number of SDOF systems. In other terms, the 

displacement vector x(t) is represented as linear combination of n vectors, each related 

to a single mode of vibration of the structure. Fourier analysis allows to solve dynamic 

equilibrium of linear systems by means of the superposition of elementary responses of 

n load vectors. 

Once the structural configuration is known at each time instant, the maximum values of 

internal forces and displacements can be determined for each structural component, so 

safety verifications can be performed for the limit states of interest. 

The dynamic analysis of a structural system in the frequency domain can highlight the 

key role of damping. The amplitude spectrum allows the identification of the natural 

frequencies of a MDOF system. When the input has a dominant frequency equal to a 

natural frequency of the system, the structural response increases indefinitely denoting 

the resonance phenomenon. This is the reason why the natural frequencies are also 

called resonance frequencies. Nevertheless, in real structures with limited resistance, a 

magnification of motion occurs instead of resonance, vanishing at the attainment of 

structural collapse. Although structural damping is quite low especially in the elastic 

range, it allows to avoid magnification of motion and thus the collapse. 

The problem of the motion‟s magnification exists, for instance, in the case of lattice 

towers and long-span bridges. The latter may suffer aeroelastic instability phenomena 

due to high-intensity wind actions. Due to this potential problem, the wind-structure 

interaction is analysed in detail and simulated through scaled models in wind galleries. 

If the coefficients of the equation of motion change with time, the spectral analysis 

becomes more complex and a higher computational work is needed to perform 

advanced analyses. A typical problem is the seismic soil-structure interaction for which 

the damping matrix C cannot be expressed as a linear combination of the matrices M 

and K. In this case, the Rayleigh hypothesis does not apply and the structural system is 

called non-classically damped, as opposed to typical classically damped systems. 

 



 

 

Chapter 3 - SEISMIC RISK 

One of the main objectives of earthquake engineering is the mitigation of seismic risk, 

that is the minimisation of human, social, and economic losses and the maintainance of 

full operational level for infrastructures and strategic facilities (e.g., hospitals and civil 

protection offices) under seismic events. Direct losses are, for instance, damage and 

collapse of structural and non-structural elements; indirect losses are service 

interruptions. 

The great importance of earthquake engineering research is confirmed by the high 

perception of both seismic hazard and vulnerability by the population (Faccioli and 

Paolucci, 2005). This remark has been properly demonstrated by a recent investigation 

aimed at updating the seismic risk maps for the Italian territory with new data on the 

real estate by the 2001 census of the Italian Institute of Statistics (Bramerini and Di 

Pasquale, 2008). By dividing the real estate in different vulnerability classes
6
, it has 

been found that: 

- 18.1% of buildings located in Italy are highly vulnerable; 

- the real estate consists essentially of masonry buildings (61.5%) and RC buildings 

(24.7%); 

- most of buildings has a number of storeys lower than 4 (two-storey masonry and 

RC buildings are 45.7% of the real estate); 

- 72% of residential buildings has not been designed with a-seismic rules; and 

- 45% of buildings is over 40 years old. 

Given the high seismic risk in Italy, a satisfactory understanding of key concepts 

underlying research advances until now is needed. 

Seismic risk (denoted as R) is the total amount of losses at a site or region during an 

earthquake with a given probability of exceedance in a given reference period
7
. In the 

probabilistic sense, seismic risk is the probability that a pre-defined level of losses due 

to earthquakes (denoted as L) is exceeded within a given reference period in a specific 

territorial area of interest. Based on this definition, risk is cumulative because it 

includes fatalities and injuries, as well as social-economic losses, which are caused by 

                                                 
6
  The Italian Department of Civil Protection divided the real estate in three vulnerability 

classes: high (A); medium (B); low (C). 
7
  This period is the time interval in which earthquakes are observed. From a design standpoint, 

it is related to the nominal life of the construction, its expected occupancy level, and its 

importance for civil protection purposes. 
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different seismic events and are evaluated, for instance, in a one year period. 

The risk level can be estimated at different territorial scales, from regional to specific 

site, so its evaluation involves different scientific fields: seismology; geophysics; 

geology; geotechnics; structural engineering; regional and urban planning; insurance 

engineering; and estimo. Formally, seismic risk is defined by the following functional 

product: 

R H V E    (3.1) 

where H is seismic hazard, V is seismic vulnerability, and E is exposure. 

3.1. Seismic Hazard 

Seismic hazard is the totality of physical effects, both direct and indirect, induced by 

the earthquake and able to produce losses in human activities. 

The intensity of the seismic ground motion in a specific territorial area depends mainly 

on the following parameters: the input energy released by the seismic source
8
 (which is 

a function of the source dimensions and fracture mechanism); directivity effects (which 

depend, inter alia, by the location of the site with respect to the source); and source-to-

site distance. These factors affect the characteristics of seismic motion at the bedrock, 

namely the so-called shakebility or regional seismic hazard (denoted as HB), which is 

evaluated in ideal conditions of horizontal topographic surface and free field (i.e., the 

absence of soil-structure interaction effects). 

From a mathematical point of view, the seismic ground motion recorded by 

seismometers, velocimeters, and accelerometers, is respectively described by the 

displacement field u(x,t), velocity field du(x,t)/dt, and acceleration field d
2
u(x,t)/dt

2
, 

associated with the location vector x of the measurement device. Therefore, the 

empirical description of the seismic motion depends not only on the characteristics of 

the source and propagation medium, but also on the response of the measurement 

device. This means that, for instance, seismic motion recorded by a seismometer is the 

convolution
9
 of three functions: S(,t) which describes the seismic motion over the 

fracture surface, namely the slip u produced by the fracture process; the Green 

                                                 
8
  Seismic source is a slip process over a fracture surface (which is typically called fault) 

representing the discontinuity surface (geometrically assumed to be planar in seismology) 

induced in the Earth‟s crust by high tectonic forces. During the fracture process, several types 

of seismic waves are radiated by the source. The waves undergo geometrical attenuation due 

to crustal discontinuities and inelastic attenuation due to mechanical non-linearities of rocks 

and soils, along their path from the source to the surface. Thus, Earth behaves as a filter for 

seismic waves produced by the source. For severe earthquakes producing strong motion 

records, the fracture can propagate up to the surface. 
9
  Convolution between functions is implicitly carried out also when the effects superposition is 

applied to linear systems. 
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function G(x,,t) which describes the propagation of seismic waves from the source to 

the location of the receiver, namely the ground displacement field at the points x 

produced by the slip in the points over the fracture surface; and the function I(x,t) 

which describes the modification of the actual ground motion due to the response of 

the measurement device (that is, the seismometer in this case). 

The displacement recorded at the surface in the time domain is expressed as follows: 

       , , , , ,t t t t  u x S ξ G x ξ I x  (3.2) 

where the symbol  represents the convolution integral. Such an equation can be 

rewritten in the frequency domain in the following form: 

       ,ω ,ω , ,ω ,ω  u x S ξ G x ξ I x  (3.3) 

through the convolution theorem. Once the instrument response is known, one can get 

the actual seismogram in the time domain: 

     , , , ,t t t U x S ξ G x ξ  (3.4) 

and its frequency domain form: 

     ,ω ,ω , ,ω U x S ξ G x ξ  (3.5) 

so the seismic motion at the source can be evaluated through the following equation: 

 
 

 

,ω
,ω

, ,ω


U x
S ξ

G x ξ
 (3.6) 

It follows that seismic hazard assessment at the bedrock requires a deconvolution of the 

instrument response. If the focus of the study is the seismic motion at the source, the 

Green function has to be deconvolved removing, thus, geometrical and inelastic 

attenuations throughout the rocks along the source-to-site path of seismic waves. These 

operations need for the use of inversion methods that allow to estimate the seismic 

motion at the source based on that measured at the ground surface. Non-linear 

regression analyses are then carried out on data measured at different surface locations. 

Effects on community, built heritage, and physical environment are significantly 

affected also by local seismic response of soil deposits at the site. It is then needed the 

assessment of local seismic hazard (HL) which accounts for the change in the seismic 

motion from the bedrock to the surface, due to the dynamic response and topography 

of soil deposits (Lanzo and Silvestri, 1999; Vinale, 2008). In fact, site conditions can 

influence the amplitude, frequency content, and duration of seismic ground motion. 

The functional dependence of seismic hazard on the characteristics of the source and 

propagation medium (rocks), source-to-site distance, and properties of local soil 

deposits, can be briefly expressed as follows: 

B LH H H   (3.7) 
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Figure 3.1 shows the main physical phenomena affecting seismic hazard at a site. It is 

emphasised that the effects on the environment observed in the near source are 

different from those observed in the far field
10

. Near source effects include, inter alia, 

forward directivity which can be identified as velocity pulses in recorded ground 

motion time-histories. The observation of the source radiation pattern allows the 

identification of major radiation along a specific direction, rather than others. In fact, 

the faulting mechanism cannot be considered as a spherical source, nor a point surface. 

The investigation of directivity effects on both physical and built environments is thus 

one of the most attractive topics in engineering seismology and structural earthquake 

engineering. 

 

 
Figure 3.1  Seismic hazard at a site (adapted from Lanzo and Silvestri, 1999) 

 

 

                                                 
10

  Typically, we talk about near fault (or near source) for the area surrounding an active 

source. The contour of this area is typically defined as the closed line at a distance from the 

source‟s surface projection equal to the linear dimensions of the source. In the near source, 

both the shape and type of seismic waves are considerably affected by the source 

characteristics, and hence by the faulting mechanism. Sites located at greater distances from 

the seismic source belong to the far field and seismic ground motion measured at their 

locations is mainly influenced by inelastic attenuation. Such a deamplification of seismic 

motion along the source-to-site path is take into account in seismic hazard assessment by 

means of specific attenuation laws. The latter establish a non-linear dependence of an 

intensity measure with magnitude, distance, and other parameters. 
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Hazard can be assessed through deterministic methods based on seismic scenarios, 

probabilistic methods (considering esplicitly both dimensions and location of the 

source or the source zone model, as well as the annual rate of occurrence), or stochastic 

methods (Kramer, 1996). 

In the probabilistic sense, seismic hazard is the probability that a pre-defined value of 

an intensity measure (IM) is exceeded at a site or region within a given reference 

period. The probabilistic method proposed by Cornell (1968), which is based on the 

definition of seismic source models with a homogeneous occurrence rate, allows to 

estimate the probability of exceeding a pre-defined level of seismic intensity in a given 

time interval or, alternatively, the seismic intensity level corresponding to a given 

probability of exceedance in the reference period. A return period of the design 

earthquake can also be defined as a function of the probability of exceedance in the 

reference period. Assuming the occurrence of seismic events as a homogeneous 

stochastic process, the Poisson‟s relationship can be used to estimate the return period. 

For instance, one can estimate the IM-value corresponding to a probability of 

exceedance equal to 10% in 50 years or, alternatively, to a return period of 475 years. 

The ouput of seismic hazard analysis is the hazard curve at a specific site, namely the 

graphic representation of the probability of exceedance in a given reference period 

versus an IM, or else the hazard map of a region, namely the IM spatial distribution 

corresponding to a unique probability of exceedance in a reference period. 

Therefore, seismic hazard analysis consists in the following steps: seismic source 

modelling; application of an attenuation law; and site response analysis. The first two 

steps lead to the seismic macro-zonation of a region, while the last step allows to 

obtain a seismic micro-zonation. 

Probabilistic seismic hazard analyses (PSHAs) by research groups of national 

programs S1-S6, funded by the Italian National Institute of Geophysics and 

Volcanology (INGV), and Seismic Risk Office of the Italian Department of Civil 

Protection, allowed to build up both static and interactive maps of seismic hazard. 

These maps are related to different IMs, probabilities of exceedance in 50 years, and 

percentiles, and are overlapped on a reference grid with 5 km node spacing and 10751 

nodes (Meletti and Montaldo, 2007). To that end, IBC (IMIT, 2008) establishes a 

probability of exceedance for each limit state. Once the return period of the design 

earthquake has been chosen, seismic hazard parameters at a site can be derived from 

those related to the reference nodes which, in turn, are listed in tables reported in 

Annex B of IBC. In this way, seismic design of structures is carried out for a uniform 

hazard, thanks to a site-dependent approach, rather than that zone-dependent. 

The IM considered by IBC is the horizontal peak ground acceleration (PGA) which is 

defined as reference peak horizontal acceleration on soil type A (i.e., rock, or the 
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bedrock for other soil types) ag multiplied by a soil factor S due to site amplification 

effects: 

g g S TPGA a S a S S   (3.8) 

being SS the stratigraphic amplification factor and ST the topographic amplification 

factor. 

3.2. Exposure 

Exposure is said to be the totality of elements (e.g., people, structures and their content, 

transportation systems, utility networks) regarding potential losses during seismic 

events. 

Depending on the scope of the risk assessment, exposure may include a single building 

with its occupants and content or, alternatively, a portfolio of buildings, infrastructures 

and inhabitants of a whole region. Clearly, a reliable estimation of seismic risk requires 

databases regarding population, structures, infrastructures and other facilities, which 

are to be adequately classified in terms of type, function and occupancy level. 

The optimization of exposure is a task for urban and territorial planners. Sites subjected 

to higher seismic hazard should not be characterised by high occupancy level in order 

to ensure effectiveness of emergency plans provided by civil protection. 

At global scale, a significant exposure growth has been observed especially within 

emerging and developing countries. Conversely, seismic vulnerability of the built 

environment does not reduce, apart from industrialised countries where advanced 

building codes have been already passed. Seismic vulnerability of the physical 

environment is even increasing due to continuous speculative acts. 

3.3. Seismic Vulnerability 

Seismic vulnerability of an individual soil-foundation-structure system, or the built and 

physical heritages, represents conceptually the exposure sensitivity to a certain seismic 

intensity level, namely the totality of the expected losses expressed as a fraction of 

those exposed at risk. 

At regional level and for a high number of elements such as buildings, vulnerability 

can be defined in terms of potential damage of a class of structures with similar 

characteristics and subjected to a given seismic hazard level. In such a case, 

vulnerability can be regarded as the product of three components: built environment 

vulnerability; physical environment vulnerability; and territorial vulnerability. The 

former is the proneness of facilities to suffer damage under the expected design 

earthquake; the second vulnerability factor is associated with physical phenomena 

(e.g., liquefaction, subsidence, slope instability, tsunami, surface fracture processes) 
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which can be generated by an earthquake; and the last second vulnerability factor 

(which is assessed at provincial or municipal scales) is the proneness to damage to 

infrastructures and utility networks. 

With reference to the built heritage, the output of vulnerability analysis is represented 

by several damage levels of one or more structures under varying IM aimed at the 

characterisation of seismic motion. As shown in Section 4.1, the structures should 

comply with different performance levels, each corresponding to a specific damage 

state. In the case of non-linear static analysis, the vulnerability analysis of a building 

can be deterministically interpreted assuming the expected displacement as 

engineering demand parameter (EDP) and the PGA or spectral acceleration related to 

the resisting base shear as IM. 

In the case of probabilistic analysis, fragility curves are developed to assess the 

relationship between the probability of a given damage level and an EDP conditional 

on the seismic intensity. Such curves allow to account for uncertainty associated with 

seismic demand and capacity. 

3.4. Mitigation of Seismic Risk 

As mentioned above, „mitigation‟ of seismic risk means „minimisation‟ of human, 

economic, social, and cultural losses. The main objective is clearly the minimisation of 

fatalities and injuries, even though it is worth noting that earthquakes are not the major 

cause of death at global scale. Indeed, in the United States of America, even eight 

seismic events with magnitude not lower than 6 have occurred between 1970 and 1995, 

causing 85 deaths. In the same time period, deaths due to human or accidental errors in 

the medical field have been equal to 9000. 

The mitigation of seismic risk requires: 

- the development of an effective civil protection system in the pre-event time 

through knowledge dissemination and the realisation of specific earthquake early 

warning systems (Gasparini et al., 2007), as well as in the post-event time by means 

of emergency management according to pre-defined procedures reported within 

emergency plans; 

- the design and realisation of facilities in compliance with a-seismic criteria; 

- the reduction of vulnerability of both existing structures and infrastructures; 

- the control of the exposure level; 

- the continuous updating of seismic codes according to research advances; and 

- the definition of insurance policies, as occurred in Turkey after the 17 August 1999 

Kocaeli (or Izmit) earthquake. 

In the framework of scientific research, the attainment of the aforementioned 

objectives needs for: 
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- the accurate definition of seismic hazard because its overestimation would lead to 

build up overconservative and highly expensive structures, while its 

underestimation would induce heavy damage and a lot of fatalities; 

- a quantitative damage analysis by means of a reliable mechanical modelling and 

indices specifically defined for each structural type (this topic has not yet been fully 

analysed in the case of masonry constructions); and 

- the development of systems able to assess seismic alert conditions through a 

decision-making process and reliable technologies. 

In the last years, a satisfactory collaboration between Italian seismologists and 

engineers has led to a considerable improvement in the code-based seismic hazard 

assessment in Italy, allowing seismic design of structures through elastic response 

spectra very close to uniform hazard response spectra derived from PSHAs. 

Preliminary studies have shown that these new tools could lead to 30% mean savings 

on both newly-constructed and retrofitted structures. In fact, according to the multi-

level performance-based approach of IBC, the peak horizontal acceleration at a site 

(ag) is no longer approximated to the upper limit of the interval reported in the previous 

seismic zonation, but it is estimated as a function of the specific site location with 

respect to the closest reference nodes. For instance, a peak horizontal acceleration 

equal to 0.17g would be approximated as 0.25g. IBC is also based on the modification 

of both the characteristic periods and the maximum spectral acceleration of elastic 

response spectra, depending on two further seismic hazard parameters. From such a 

standpoint, EC8 (CEN, 2004) is much more approximate than IBC, being it based just 

on two spectral shapes. A shape is related to earthquake with magnitude lower than 

5.5, and the other is related to earthquakes with magnitude greater than 5.5. 

 

 



 

 

Chapter 4 - SEISMIC DESIGN OF STRUCTURES 

Since the 90s of the last century, first in USA and New Zealand and then in Europe and 

Japan, seismic design of structures has considerably changed owing to significant 

advances in non-linear structural behaviour prediction. The need for minimisation of 

catastrophic effects due to earthquakes has given strong pulse to the development of 

design criteria and innovative methods of analysis. New-generation seismic codes have 

been also passed in earthquake-prone regions, allowing safety verifications based on 

PBEE concepts. In this chapter, some fundamentals of seismic design are deal with 

special emphasis to masonry constructions. 

4.1. Performance-Based Design 

Seismic motion at the base of a structure induces random patterns of cyclic actions 

along the height. Strength and displacement demands are generated throught the 

structure by acceleration, velocity, and displacement time-histories at both local and 

global levels. The magnitude of such demands depends obviously on seismic intensity 

and hence increases with the return period of the earthquake. 

Until a few years ago, the seismic design of a structure was carried out in a way to 

provide sufficient lateral resistance against the base shear induced by the design 

earthquake. The estimation of the base shear was based on the use of inelastic 

horizontal acceleration spectra. The only scope of the designer was then to prevent 

collapse under severe seismic events. Actually, even at this key performance level, it 

has been recongnised that the ability of dissipative structures with medium/high 

fundamental period to suffer earthquakes depends on satisfactory displacement 

capacity and supply ductility at both local and global levels, rather than high resistance. 

If one provide not only strength but also ductility and displacement capacity to the 

structure, the design process and verification methods allow to control damage and 

collapse mechanisms. Namely, except for low-period structures for wich lateral 

resistance is often the key capacity parameter, several performance parameters should 

be checked to get a satisfactory seismic response. These parameters are related not so 

much to the linear elastic range, as to that non-linear (see Sects. 4.3.1 and 4.5). 

In earthquake-prone countries the occurance rate of seismic events is high so it is 

extremely important to meet not only the no-collapse requirement (as done until a few 

years ago), but also the operational performance under low-intensity earthquakes. The 
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effects of these earthquakes can be indeed significant in terms of economic losses due 

to use interruption and non-structural damage. Like structural damage and collapse, 

also these effects should be avoided within acceptable risk intervals to get an effective 

seismic design. 

A novel design philosophy has been proposed to ensure different performance levels, 

each associated with specific design requirements to be satisfied by means of iterative 

optimisation procedures. This multi-level performance approach is then the basis of 

performance-based design (PBD)
11

 and is the natural extension of limit state design to 

the new-generation earthquake engineering. In fact, it is underlined that a „limit state‟ 

is a condition after which the structure no longer meets performance levels for which it 

has been designed. Whilst structural safety verifications in the classical limit state 

design (LSD) consisted in comparing a design force Sd to a design strength Rd, PBD 

makes a comparison between demand D and capacity C. In other words, we check not 

only that: 

Sd ≤ Rd (4.1) 

according to LSD, but also that demand is lower than capacity as follows: 

D ≤ C (4.2) 

Demand is the effect of the design earthquake, while capacity is a measure of resources 

available in the structure to resist against the design earthquake. The logic step from 

LSD to PBD is then a generalisation. 

The implementation of PBD requires a reliable estimation of seismic demand through 

proper tools of engineering seismology, as well as a realistic estimation of seismic 

capacity through analysis methods of earthquake structural engineering (In the case of 

inelastic systems, demand and capacity are related each other.). Such operations should 

be carried out accounting for uncertainty in seismic hazard, site response, structural 

materials, and capacity models. PBD is intended to make an „estimation‟ (not a 

„determinination‟) based on quantitative concepts and reliable standards. 

 

4.1.1. Brief History of Performance-Based Standards 

In 1992, Federal Emergency Management Agency (FEMA) funded the ATC-33 project 

to develop guidelines on seismic retrofit of buildings. This initiative was the first step 

toward the codification of PBD and, particularly, the quantitative assessment of 

seismic response of structures. This task is presently carried out by definining multiple 

                                                 
11

  PBD falls within the so-called performance-based engineering (PBE) which is aimed at 

matching „quantitative‟ requirements (e.g., structural, plant, and economic) corresponding to 

„qualitative‟ performance levels assigned by the construction customer. The undertaken 

technical assessment should allow the implementation of a decision-making process in 

uncertain conditions. 
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performance levels, each expressed through specific parameters within pre-defined 

uncertainty limits. Being predictions, seismic assessment is performed (either directly 

or indirectly) within a framework no longer deterministic, but probabilistic. 

The main features of PBD for seismic design of new buildings were organically dealt 

with in SEAOC Vision 2000 (OES, 1995) for the first time. Two years later,  

FEMA 273 (ATC, 1997a) and its commentary in FEMA 274 (ATC, 1997b) falling 

within the American National Earthquake Hazard Reduction Program (NEHRP), 

extended this new approach for seismic rehabilitation of existing buildings. Such three 

documents were the first-generation PBD codes. 

The current multi-level seismic design falls in the second-generation design codes and 

was originated by FEMA 343 (BSSC, 1999), which includes some application 

examples, and FEMA 356 (ASCE, 2000), which provided a significant improvement in 

both seismic analysis procedures and verification criteria reported in FEMA 273. These 

further updatings of American regulations have allowed to deepen the key PBD 

concepts and have been included in the most advanced seismic codes, at both national 

and international levels, such as EC8 and IBC. Nevertheless, both research and 

professional community have highlighted the following limitations in the last 

performance-based codes: 

- the accuracy level of the seismic assessment procedures is still unable to predict the 

actual seismic response of buildings with low uncertainty; 

- the verification criteria are sometimes too conservative or absolutely not 

conservative; 

- design solutions provided by PBD methods are not yet reliable and advantageous 

from an economic point of view; and 

- specific parameters and procedures should be defined to communicate pros and 

cons of different design solutions to customers, stakeholders, and decision-makers. 

In order to reduce seismic risk through PBD, the next-generation codes should include: 

- performance levels defined with continuity by means of proper measures like repair 

costs, deaths, and downtime, which are able to provide useful information to 

decision-makers being it possible to convert any individual design solution into 

monetary losses; 

- estimation procedures of potential repair costs, deaths, and downtime, for both new 

and existing buildings; 

- seismic verification criteria for non-structural components, whose damage induces 

significant economic losses; 

- comprehensive methodologies able to communicate the accuracy level associated 

with the seismic response prediction, as well as the uncertainty level of the seismic 

hazard assessment; 



Chapter 4 - Seismic Design of Structures 
______________________________________________________________________________________________________________________________ 

 

 25 

- refined analytical methods for seismic response prediction; and 

- reliable verification criteria for both local and global performance through different 

parameters. 

The above-mentioned innovative features are considered into FEMA 445 (ATC, 2006), 

which deals with basic principles of PBD and the development of new seismic analysis 

methods and design procedures. 

 

4.1.2. Fundamentals of Performance-Based Design 

Performance-based design is an iterative process which begins with selection of 

performance objectives by customer
12

, followed by the development of a complete 

project which is updated until safety verifications are satisfied in compliance with the 

pre-defined objectives. An acceptable risk level with specific allowable damage states 

is then identified for the structure under a given seismic intensity level, leading to 

direct and indirect losses (see Chap. 3). 

To define design objectives, performance levels are first established. To that end, 

Vision 2000 introduced the following damage states for constructions: 

- Fully Operational (FO): no damage and full usability. 

- Operational (O): moderate damage only to non-structural components, as well as 

slight damage to structural components and repairability; usability during a seismic 

event not ensured, but quick restoration allowed. 

- Life Safety (LS): significant damage to both structural and non-structural 

components. 

- Near Collapse (NC): safety of occupants not ensured, while allowing residual load-

bearing capacity against gravity loads. 

Both limit and damage states of the structure correspond to each performance level and 

are to be checked accordingly. In analogy to what American regulations establish and 

according to Eurocodes, IBC defines the following serviceability limit states (SLSs): 

- Fully operational, which is to be assessed under frequent (i.e., low-intensity) 

seismic events in the case of both strategic and critical structures; 

- Limited damage (LD), which is to be assessed under occasional (i.e., medium-

intensity) seismic events in the case of ordinary structures; 

                                                 
12

  It is emphasised that such a modus operandi should not be in compliance with „prescriptive‟ 

codes which do not provide different solutions to both designers and customers, nor proper 

safety levels, opposed to their performance-based counterparts. The uncertainty level about 

seismic demand and capacity estimation cannot be assessed as well. In fact, absolute safety 

can never be obtained since a non-zero failure probability can be estimated in any case. 

Neglecting this aspect can produce hazardous design solutions because one think about 

unlimited safety, although it cannot be actually reached. 
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and the following ultimate limit states (ULSs): 

- Life safety, which is to be assessed under rare (i.e., high-intensity) seismic events in 

the case of ordinary structures; 

- Near collapse, which is to be assessed under highly-rare seismic events (i.e., the 

maximum credible earthquake, MCE) in the case of both strategic and critical 

structures. 

The following damage states correspond to the aforementioned limit states: 

- slight damage (losses up to 5% of the replacement cost); 

- moderate damage to non-structural components and repairable damage to structural 

components (losses up to 15% of the replacement cost); 

- moderate damage to structural components (losses up to 30% of the replacement 

cost) and potential injuries; structure able to suffer a high number of plastic cycles 

(and hence to dissipate a high amount of input energy) with no considerable 

strength degradation, allowing residual resistance against gravity loads; and 

- severe damage to structural components (losses higher then 30% of the replacement 

cost) and inability to ensure safety for successive seismic events, and hence 

potential need for construction demolition. 

Given the importance of non-structural damage for economic losses, researchears have 

recognised the need for the seismic demand and capacity estimation of such 

components, in order to assess them under earthquake loading. Presently, we assess 

seismic demand in terms of acceleration and drift for non-structural elements, but their 

capacity is under investigation through fragility curves. 

With reference to global capacity assessment of a structure, pushover analyses are 

currently used and non-linear response under a given load pattern is represented 

through a base shear versus lateral displacement diagram named „pushover curve‟. 

Figure 4.1 shows clearly different damage states attained by a building structure 

subjected to earthquake excitation. The coupling of a specific seismic intensity level 

with a performance level of the structure is the design performance objective, 

according to the performance matrix reported in Vision 2000 (Fig. 4.2). Such a matrix 

relates four earthquake performance levels with design earthquake levels expressed in 

terms of return period or, equivalently, in terms of probability of exceedance in a 50-

years reference period). 

From a quantitative standpoint, the design performance objective is identified at the 

end of the seismic analysis in a point expressed in terms of IM and EDP. As discussed 

below, the use of capacity curves and demand spectra in non-linear static procedures 

allows to identify a performance point PP which represents the equilibrium condition 

of the structure at a given displacement demand, assumed to be an EDP (see Chap. 5). 
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Figure 4.1  Damage levels under increasing seismic intensity (adapted from Hamburger) 

 

 
Figure 4.2  Performance matrix in Vision 2000 

 

In the framework of the capacity spectrum method (ATC, 1996; Fajfar, 1999; ATC, 

2005), which was also included in the N2 method (Fajfar e Gašpersič, 1996; Fajfar, 

2001; Freeman, 1998) reported in EC8 and IBC, the performance point is obtained as 

the intersection between the „capacity spectrum‟ and the „demand spectrum‟ 

corresponding to the limit state under consideration (i.e., a pre-defined seismic hazard 

level). These spectra are respectively defined as the transformations of pushover curve 

and design spectrum in a spectral displacement versus spectral acceleration format
13

. 

                                                 
13

  The design spectrum is obtained by reducing the ordinates of the elastic response through a 

ductility- or damping-related strength reduction (or behaviour) factor. In this way, the design 

spectrum is respectively obtained on the basis of a ductility factor or an equivalent viscous 

damping factor. In the latter case, both elastic and hysteretic damping are taken into account 

according to ATC 40 (ATC, 1996). Therefore, overdamped spectra can be defined instead of 

constant ductility inelastic spectra. 
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4.1.3. Intensity, Demand, and Damage Measures 

From an engineering viewpoint, seismic demand can be expressed by means of 

parameters derived from seismic ground motion records or can be derived by assessing 

linear or non-linear response of the structure. To estimate the most probable damage 

level suffered by the structure under a seismic event, one has to employ demand 

indices representing the destructive potential of the earthquake. Regarding this topic, 

PGA is the most used IM even though not appropriate in some cases, so one can 

consider alternatively: 

- the peak ground velocity (PGV), which gives interesting information on the 

earthquake destructiveness being related to hysteretic energy demand
14

; 

- the peak ground displacement (PGD); 

- the ratio PGA/PGV, which provides important information on the earthquake 

frequency content, damage potential (which increases as this ratio reduces), and 

hysteretic energy demand; 

- the Arias intensity IA (Arias, 1970), which is a significant demand index having 

multiple advantages with respect to other parameters, such as Housner spectral 

intensity IH; 

- the Cosenza & Manfredi index Id (Cosenza and Manfredi, 1997), which is directly 

related to the energy content of the earthquake. 

The first three indices are peak IMs, while the others are integral IMs. They are seismic 

ground motion parameters which allow to predict the earthquake destructiveness just 

on the basis of seismic records. Both structural and non-structural damages can also be 

assessed through the following EDPs based on a linear response of a SDOF system: 

- the pseudo-acceleration Sa(T,), which is directly associated with the strength 

demand (expressed in terms of base shear) and is rather correct to be used in the 

case of low-period structures; 

- the pseudo-velocity Sv(T,), which is a measure of both the earthquake kinetic 

energy and hysteretic energy demand, especially in the case of medium-period 

structures; 

- the spectral displacement Sd(T,), which is a direct measure of both structural and 

non-structural damages due to the attainment of limit values of interstorey drift 

ratio (IDR or ); the latter is defined as the ratio between the lateral interstorey drift 

and the interstorey height and is considered to be a key design parameter in 

displacement-based design/assessment procedures, so seismic safety is checked by 

comparing the displacement demand on the structure to displacement capacity; 

                                                 
14

  Hysteretic energy, along with elastic strain energy, is a fraction of the energy absorbed by a 

structural system to resist against the input energy of the earthquake. 
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- the Housner spectral intensity IH (Housner, 1952), which is a measure of hysteretic 

energy demand derived from direct integration over a specific period interval. 

Some EDPs related to non-linear SDOF response are: 

- the inelastic pseudo-acceleration Sai (T,); 

- the inelastic spectral displacement Sdi (T,); 

- the kinematic (or monotonic) displacement ductility mon; 

- the cyclic displacement ductility cyc; 

- the hysteretic displacement ductility hyst; and 

- the hysteretic energy demand EH ; 

where T and represent the fundamental period and the equivalent viscous damping 

factor, respectively. The importance of residual IDRs has been also recently 

investigated as a measure of seismic performance, and hence as further EDP, by 

Pampanin et al. (2002) and Pettinga et al. (2007). 

The above-mentioned three types of ductility are presently some of the most used 

inelastic parameters (Cosenza et al., 1989): mon can also be estimated through 

pushover analysis, while the others can be derived from non-linear dynamic analysis, 

as in the case of hysteretic energy demand. Actually, the parameters cyc,hyst and EH 

are yet too complex to be determined in the case of masonry structures, given that non-

linear dynamic analysis has not yet been fully validated for these structural types. 

Once the seismic demand on a structure is known, the damage can be quantitatively 

defined via damage measures (DMs), namely structural parameters which allow 

controlling the evolutionary state of the structure up to collapse. 

At global structural level, damage is typically expressed in terms of roof drift, or IDR, 

in the case of dissipative structures, and in terms of base shear, spectral acceleration, or 

PGA in the case of non-dissipative structures. Conversely, at single-component level, 

damage can be effectively quantified in terms of chord rotations. For non-structural 

components like those belonging to plants or strategic structures, whose repair or 

replacement costs can be much greater than those of structural components (for 

instance in the case of hospitals and industrial buildings), peak floor accelerations 

should be also assessed. 

 

4.1.4. Decision-making in Performance-Based Design 

The implementation of a specific EDP, or set of EDPs, able to provide a quantitative 

description of seismic performance allows thinking in both economic and time terms, 

which are key measures in seismic risk assessment at both single-structure and regional 

levels. 

According to FEMA 445, the seismic design of a structure is to be necessarily followed 
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by a cost-benefit analysis because total losses can be estimated for each expected 

damage level. This modus operandi allows to identify the most effective economical-

technical design solution. Given a set of design solutions, the designer should be able 

at demonstrating to the decision-maker the economic viability of a specific solution 

with respect to others by means of one or more decision variables (DVs). 

One can use, for instance, the life cycle cost, which is defined as the sum of initial, 

maintenance, and repair costs during the whole nominal life of the structure. In this 

way, given that economic losses due to an earthquake can be significant, the attainment 

of the design performance objectives is not sufficient in the absence of an accurate 

estimation of both construction and repair costs associated with damages expected for 

each design solution. While the construction cost is certain, repair costs are affected by 

a high uncertainty level almost equal to the earthquake occurrence probability. As a 

result, the expected global cost for a given design solution can be estimated as the sum 

of the construction cost and the repair cost multiplied by the aforementioned 

probability. The most advantageous solution for the decision-maker can then be 

assumed to be that associated with the lowest globale cost. 

Among the losses expected for a design earthquake with a given return period, one 

should consider also downtime, which is the expected time for retrofit interventions on 

the damaged structure, as well as potential deaths and injuries. Given the presence of 

several variables, multi-criteria decision-making procedures can provide valuable 

support to the selection of the design solutions for both new and existing buildings. 

Clearly, measures associated with different variables should be properly normalised 

and weighed. 

In the probabilistic framework, Aslani and Miranda (2005) proposed a seismic loss 

assessment procedure which is a generalisation of traditional seismic analysis methods 

and consists of the following steps: 

(1) seismic hazard assessment aimed at estimating a given IM; 

(2) seismic response prediction of the structure, which is devoted to associate an EDP 

to the chosen IM; 

(3) quantitative damage analysis of the structure aimed at assessing a DM, or else a 

damage index (DI), which should be properly defined for the specific structural 

type at which the structure belongs; 

(4) seismic loss assessment, which consists in the transformation of damage to loss, 

the latter expressed through a DV such as the cost, downtime, injuries, or deaths. 

Such a methodology is much more exhaustive of the classical discrete PBD approach, 

since it addresses the seismic performance assessment for continuous design variables. 

In closing, it is emphasised the need for loss assessment to select retrofit solutions in 

the case of historical and monumental constructions including also non-structural 
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losses under frequent low-intensity earthquakes. Monetary losses related to 

architectural and artistic elements (e.g., paintings, sculptures, and other artworks) can 

be much greater than those induced by structural damage. 

4.2. Structural Modelling 

4.2.1. General Remarks 

The elasto-plastic behaviour of materials and structures is highly complex to be 

analysed due to a high number of parameters which should be used in its 

characterisation. Therefore, a simplified theoretical modelling is often performed to get 

a realistic simulation of the actual behaviour and the need for limited computational 

work. 

In the classical continuum mechanics where monotonic loading is considered, material 

non-linearity can be included in a simplified mode by assuming, for instance, some of 

the constitutive relationships: 

- rigid-plastic, which is acceptable in the case of elastic strains negligible with 

respect to those inelastic; 

-  elastic-perfectly plastic (EPP) with limited or unlimited strain ductility; 

- elasto-plastic with hardening/softening. 

These are non-evolutionary models and the following hypotheses are considered for 

them: 

- homogeneous and isotropic material; 

- monotonic loading; 

- small strains and displacements; 

- no creep, shrinkage, and relaxation; and 

- presence of non-zero supply (monotonic) strain ductility ,alw, either limited or 

unlimited, expressed as the ratio between the ultimate strain ductility and the 

yielding strain ductility. 

The latter parameter is opposed to demand strain ductility ,dem induced by applied 

loads and defined as the demand inelastic strain divided by the yielding strain. 

In structural earthquake engineering, non-linear material behaviour is rather difficult to 

be modelled due to cyclic and random nature of seismic loading. Specific material 

models should be implemented not only to simulate the evolutionary cyclic response 

and the ability to resist against further loading, but also to define specific failure 

criteria based on parameters which can be characterised through proper experimental 

tests. To that end, a number of evolutionary models, either degrading or not, can be 

defined, depending on the material type (Cosenza and Manfredi, 2000). Tomaževič and 

Lutman (1996) proposed a hysteretic model for reinforced masonry (RM) walls. Over 
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fourty hysteretic models are available, for instance, in RUAUMOKO code. The 

implementation of the above-mentioned models and criteria is needed to perform non-

linear time-history analysis. 

In the context of multi-level PBD, different intermediate damage levels should be also 

defined; their quantitative definition is even more complex than that of the collapse 

state. In the case of masonry structures, since dynamic analysis methods has not yet 

been validated, static seismic actions are considered in both linear and non-linear 

ranges. Mechanical modelling is then carried out in the framework of classical 

mechanics where monotonic constitutive laws, as well as strength/deformation 

parameters, can be considered. As specified in Section 4.3.1, monotonic ductility rather 

than cyclic or hysteretic ductility should be defined for masonry constructions. 

Namely, damage accumulation under cyclic loading is not included even though it 

should be taken into account especially for seismic response prediction under 

earthquake sequences, like as the 1997-1998 Umbria & Marche and the 2009 L‟Aquila 

sequences which have both occurred in Italy. In fact, cyclic damage accumulation can 

significantly affect the seismic response of masonry structures as well. 

Material non-linearity can be considered by means of two different approaches: lumped 

plasticity modelling and spread (or distributed) plasticity modelling. The former can 

deal with macroscopic damage of structures only, the latter is able to simulate inelastic 

response of structures in detail by means of refined analytical methods. 

Non-linear modelling of structures begins at material level, going through sectional and 

single-component levels, and ending at global structural level. A ductility factor can be 

defined at each structural level and, typically, it decreases from material to global level 

(see Sect. 4.3.1). 

 

4.2.2. Lumped Plasticity Modelling 

In lumped plasticity models, inelastic behaviour of materials is concentrated in limited 

parts of structural elements. This approach is currently employed in the analysis of 

both framed and frame-equivalent structural models. Framed structures are typically 

systems made of RC, steel, or wooden one-dimensional elements. Conversely, frame-

equivalent models are derived from an idealisation of structural systems composed by 

two-dimensional elements, such as masonry walls with openings. In the latter, pier 

panels (i.e., the vertical structural components) and spandrel panels (i.e., the horizontal 

structural components) are assumed to be like columns and beams, respectively, while 

joint (or cross) panels (i.e., the structural components that link spandrel and pier panels 

together) represent the beam-column joints of the frame-equivalent model. Both frame 

models are typically intended to be composed by elements with an elastic central 

beam-column element and the end ductile parts named plastic hinges. 
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The computational work associated with lumped plasticity modelling is considerably 

lower than that required by spread plasticity modelling, which is discussed below. 

Nevertheless, a number of advanced computer programs (e.g., SEISMOSTRUCT, 

OPENSEES) are based on the latter modelling strategy and produce reliable predictions 

in the case of both steel and RC structures. Distributed plasticity modelling does not 

need for particular care, opposed to that required when defining locations of plastic 

hinges throughout the structure. It is just needed the knowledge of the element 

dimensions and stress-strain relationships. 

The concept of plastic hinge has been traditionally applied to structures where demand-

to-capacity ratios in flexure are much higher than those related to shear behaviour. 

Nonetheless, interaction between internal forces is to be considered by means of proper 

limit domains. 

Incremental non-linear static analysis of structural systems composed by one-

dimensional elements can be performed once the analyst has defined the location and 

moment-rotation diagram of plastic hinges. Since the location of plastic hinges depends 

not only on the geometry of the structure, but also on the loading condition, the 

application of limit analysis theorems should be iterative. As well known, this analysis 

method is able to provide only ultimate response predictions. 

In the framework of multi-level PBD where different performance states are assessed 

under varying seismic intensity levels, a step-by-step analysis is needed. In this way, 

plastic hinge locations are an analysis output rather than an input. Non-linear analysis 

is then regarded as a sequence of linear analyses, each performed on a structural model 

updated at the previous load step (force-controlled analysis) or displacement step 

(displacement- or response-controlled analysis). Presently, incremental seismic 

analysis can be carried out under both static and dynamic loads and is one of the most 

advanced and investigated topics in earthquake engineering. With reference to 

incremental static analysis, it is emphasised that force-controlled analysis consists in 

the application of a lateral force pattern and the estimation of the corresponding lateral 

displacements. Conversely, displacement-controlled analysis consists in the 

application of lateral displacements and the estimation of the resulting lateral forces. 

Alternatively, response-controlled analysis means that displacements are iteratively 

derived under increasing lateral displacement at a control point and invariant lateral 

force pattern. Response- and displacement-controlled analyses allow to simulate 

structural strength degradation due to gradual collapse of individual components. 

Classical methods of pushover analysis are based on the assumption of an invariant 

lateral force pattern, so seismic analysis is carried out controlling the lateral forces and, 

if any, the lateral displacement at the control point. Response-controlled analysis is 

more computationally demanding since at each displacement step the lateral 
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displacements are believed to be correct if the resulting lateral force pattern matches 

that assumed before the analysis is run. As shown in Chapter 8, response-controlled 

force-based pushover procedures have been developed for masonry buildings modelled 

in compliance with the macro-element approach of the RAN method (Augenti, 2004). 

 

4.2.3. Spread Plasticity Modelling 

Distributed plasticity models include mechanical non-linearity over the whole length of 

structural elements; different mesh techhiques can be used. For instance, in the case of 

masonry buildings each wall with openings can be idealised as a system of macro-

elements. The evolutionary behaviour of macro-elements is affected by cracking and 

yielding. In the RAN method proposed by Augenti (2004), the lateral response of pier 

panels is represented through V diagrams, being V the lateral force on the masonry 

panel and  the relevant displacement. Those diagrams are the graph of functions 

describing the lateral behaviour from linear to non-linear range. The functions (V) 

were obtained through closed-form integration of bending curvatures  and shear 

strains  over the inner domain in which masonry is loaded in compression. That 

domain is assumed to be non-prismatic to include the effect of masonry cracking under 

increasing lateral force and constant axial (compressive) force (Fig. 4.3). 
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Figure 4.3  Definition of spread plasticity macro-elements within masonry walls 

 

Such a phenomenon induces geometrical non-linearity because the effective width of 

cross-sections depends on the magnitude of the applied lateral load. Macro-element 

modelling is then particularly suitable in the case of wall structures. 

Spread plasticity can also be considered through refined elasto-plastic FE models (see 

Chap. 6), e.g., micro- or macro-modelling based on the formulations proposed by 

Lourenço (1996). FE analysis can be performed by means of DIANA code. In complete 
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micro-modelling, masonry units, mortar joints, and their interfaces are separately 

modelled assuming different failure models and constitutive laws. Simplified micro-

modelling consists in the separate modelling of masonry units without mortar jonts 

which are replaced by unit-mortar interfaces. Finally, FE macro-modelling is based on 

the masonry homogeneisation through computational techniques. 

Refined FE modelling allows to simulate structural behaviour composed by two- or 

three-dimensional components, but it is affected by high difficulties in the definition of 

mechanical parameters for finite elements and manipulation of analytical results. In 

addition, numerical analyses have shown that analysis duration depends significantly 

on the model dimensions and analytical results can be highly mesh-sensitive. 

Fibre modelling also accounts for distributed plasticity throughout steel and RC 

structures. In such a case, inelasticity is considered within the whole structural element 

(e.g., beam, wall) by meshing through a number of one-dimensional finite elements. 

Figure 4.4 shows, for instance, fibre modelling of a RC beam. 

 

 
Figure 4.4  Fibre modelling of a reinforced concrete beam (Manfredi et al., 2007) 

 

The structural element is divided in three types of fibres: some fibres are used for 

modelling of longitudinal steel reinforcing bars; other fibres are defined for confined 

concrete within the cross-section core; and further fibres are considered for unconfined 

concrete included in the concrete cover. In this regard, many experimental data have 

shown that both ultimate strain and compressive strength of confined concrete increase 

within the core due to triaxial stress state. 

For each fibre, the stress/strain field is assessed in the non-linear range by using  

constitutive laws defined for constituent materials (as shown in Fig. 4.4). Both 
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internal forces and displacements are derived at each cross-section through integration 

over fibres. Thus, the greater is the number of fibres under consideration, the higher is 

the accuracy level in the estimation of yielding within the structural component, and 

hence in the prediction of its non-linear behaviour. For each cross-section, the 

stress/strain field is derived from numerical integration of non-linear uniaxial response 

of each fibre. Longitudinal stresses and strains of the whole element are obtained 

through a further integration in proper control cross-section called „Gauss sections‟, as 

in FE analysis. In other words, the behaviour of the structural element is assessed via 

double integration over both Gauss sections and the element length. Such a modelling 

strategy is then more suitable in the case of structural systems composed by one-

dimensional elements. 

4.3. Seismic Design Criteria and Detailing Rules 

Seismic design is considerably different from that performed under gravity loads. 

Stiffness and strength are provided to structures subjected to dead and live loads, in 

order to minimise damage under frequent variable loads and ensure safety against 

ULS. Additional properties are to be provided to structures subjected also to 

earthquake loading, aiming at obtaining the best global response. 

The issue of damage has different features depending on the particular design strategy 

being adopted (e.g., inelastic response control, base isolation, passive energy 

dissipation) and the design earthquake expected for the limit state being assessed. In 

any case and for any design strategy, an earthquake-resistant structure should meet the 

following general requirements: 

- structural simplicity, in order to provide evident and direct paths for seismic force 

transmission, reaching much reliable seismic response predictions; 

- uniformity and symmetry, in order to get sufficiently balanced distributions of 

inertia masses, stiffnesses, and strengths, both in plan and along the height of the 

structure, allowing (1) a uniform global response on the basis of no significant 

eccentricities between stiffness and mass centres, (2) concentrations of internal 

forces, and (3) high ductility demands; 

- redundancy, in order to ensure progressive redistribution of internal forces as 

yielding develop throughout the structure; 

- structural systems able to ensure rather equal stiffness and resistance against both 

horizontal components of design earthquake actions, and hence the ability to resist 

against horizontal actions acting in any direction of the building plan; 

- adequate torsional stiffness and resistance, in order to avoid non-uniform 

distributions of strength, ductility, and displacement demands due to torsional 

effects; 
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- rigid and sufficiently-resistant horizontal diaphragms, in order to ensure horizontal 

actions transfer between different lateral load-resisting elements (i.e., frames, walls, 

cores) proportionally to their stiffness in the case of elastic response of all 

components, and to their strength in the case of inelastic response of all 

components; and 

- foundation systems with high flexural and axial stiffness, in order to avoid 

unfavourable effects due to spatial variation of seismic ground motion (e.g., relative 

horizontal displacements between different masonry piers or columns). 

In general, earthquake-resistant structures can be designed in a way to show dissipative 

or non-dissipative response under high-intensity earthquakes. In the case of ordinary 

structures, seismic design should address the attainment of dissipative response in 

order to control damage. In such a case, a fraction of the input energy is stored within 

dissipative elements or critical zones due to repeated plastic cycles. To obtain a 

global collapse mechanism of the structure, and thus the maximum energy 

dissipation capacity, Capacity Design is currently suggested by the most 

advanced seismic codes. This design method assigns major strength to non-

dissipative elements in order to ensure elastic response under internal forces 

transmitted by dissipative elements and zones. To this aim, the following 

procedure is suggested: 

- overstrength is assigned to „brittle‟ elements/mechanisms, opposed to „ductile‟ 

elements/mechanisms; and 

- diaphragms are designed under increased horizontal forces in order to ensure force 

transfer between lateral load-resisting elements up to collapse. 

To ensure a satisfactory global seismic response of the structure, construction details in 

critical zones and connections should be carefully designed and specified within 

project documents. To this aim, the most advanced seismic codes establish detailing 

rules for each structural type. 

Hierarchy of strengths and capacity design, which are respectively included in IBC and 

EC8, have different meanings even though complimentary themselves. The scope of 

seismic design is to produce a hierarchy in the failure and collapse modes, where 

ductile mechanisms should be followed brittle failure modes. Therefore, brittle 

elements/mechanisms are designed against internal forces greater than capacity of 

ductile elements/mechanisms. In this way, seismic design is controlled by capacity of 

dissipative elements/mechanisms, rather than seismic strength demands. The ability to 

suffer large displacements under a given strength demand is then ensured to structures 

with no base isolation systems or supplemental energy dissipation devices. 

As discussed in Chapter 6, the RAN method assumes that spandrel panels are brittle 

elements with respect to pier panels, so safety verifications are performed in terms of 
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strength for spandrel panels without considering any dependence on deformations. 

Nevertheless, it is underlined that the energy dissipation capacity of spandrel panels is 

still under investigation in the case of URM buildings, so capacity design does not 

apply to control ductility and hierarchy of collapse modes under severe earthquakes. 

If structural response is non-dissipative, seismic design is aimed at providing elastic 

resistance also for high-intensity earthquakes. Both national and international seismic 

codes still allow to perform linear static and dynamic analyses, but non-linear 

structural response is to be indirectly considered. To that end, EC8 (CEN, 2004) and 

IBC (IMIT, 2008) provide a behaviour factor for each structural type, based on the 

expected supply ductility, overstrength, and regularity. This factor allows to design 

structures under strength demand lower than that associated with elastic response. As 

well known, displacement ductility demand reduces as the lateral strength capacity 

increases and, vice versa, strength demand reduces under increasing supply ductility 

(Fig. 4.5). Thus, strength and ductility change as sand in the vials of an hourglass. 
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Figure 4.5  Displacement ductility demand versus lateral strength capacity 

 

In the case of dissipative systems, behaviour factor is higher than unity and is 

employed to reduce elastic spectral accelerations, namely the strength demand on the 

structure. Inelastic acceleration response spectra reported in EC8 and IBC are defined 

in ductility control, as they are numerically obtained by solving the equation of motion 

at a pre-defined supply ductility level. It is then believed that energy dissipation 

capacity depends mainly on supply ductility. The most critical point of linear seismic 

analyses is thus the assumption of a strength reduction factor before analysis is run. In 

the last decades, many relationships have been proposed to define the strength 

reduction factor as a function of supply ductility, fundamental period of vibration, site 

conditions, forward directivity effects, and so on. Nevertheless, it is emphasised that 

the theoretical relationship between behaviour factor and ductility is presently assessed 

just for SDOF systems, while it is still an open issue in the case of MDOF systems. 
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Since behaviour factor depends mainly on supply ductility and fundamental period of 

the structure, it is clear that a simplified assessment can be carried out by identifying 

first the period interval in which the fundamental period T1 falls. In 1982 Newmark and 

Hall assumed the presence of a period of separation TC between constant-acceleration 

and constant-velocity branches demonstrating, through a series of numerical analyses, 

that an „equal displacement rule‟ can be applied to medium- and high-period structures 

with T1 > TC , while an „equal energy rule‟ can be applied to low-period structures with 

T1 < TC. The latter structures are, for instance, masonry buildings. The equal 

displacement rule assumes that the inelastic displacement is equal to that elastic, while 

the equal energy rule assumes that the stored energy of the actual inelastic system is 

equal to the elastic strain energy of the ideal elastic system. Figure 4.6 shows 

displacement ductility  versus the inverse of strength reduction factor R diagrams 

derived by non-linear regression analyses on different elasto-plastic SDOF systems in 

both cases of equal displacement rule and equal energy rule (Park and Paulay, 1975). 

 

 
Figure 4.6  Ductility versus strength reduction factor (adapted from Park and Paulay, 1975) 

 

It can be shown that equal displacement rule leads to a strength reduction factor equal 

to ductility, while equal energy rule provides a strength reduction factor lower than 

ductility. In the case of non-dissipative systems, the strength reduction factor is 

assumed equal to unity, so seismic design is based on the use of elastic response 

spectra. This is the case of SLS verifications, systems with limited ductility at both 

local and global levels, and structural systems with passive control of vibrations (i.e., 

base isolation and energy dissipation). 
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4.3.1. Key Design Parameters 

In the PBD framework, an earthquake-resistant structure should have: 

- sufficient lateral stiffness to ensure serviceability and limited damage to non-

structural elements under frequent and occasional seismic events; 

- sufficient lateral resistance to minimise both structural and non-structural damage 

under occasional and rare seismic events; and 

- sufficient displacement capacity and supply ductility, so that structural components 

are able to suffer large deformations without significant strength degradation under 

rare and MCE. 

The first requirement ensures small displacements under a given magnitude of lateral 

actions. The second requirement allows to mitigate damage associated with inelastic 

structural response. The last requirement ensures the maximum exploitation of inelastic 

structural capacity under severe earthquakes. In particular, ductility can be defined at 

different structural levels: 

- Material level. The ratio between inelastic strain i (or i) and yielding strain e (or 

e) is said to be strain ductility () and can be identified on stress-strain diagrams 

(e.g.,  in tension/compression and in shear/torsion). 

- Sectional level. The ratio between inelastic bending curvature i and yielding 

bending curvaturee is said to be curvature ductility () and can be identified on 

moment-curvature diagrams (i.e., ). 

- Single-component level. The ratio between inelastic displacement i and yielding 

displacement e is said to be displacement ductility () and can be identified on 

force-displacement diagrams (V). Alternatively, rotational ductility () can be 

defined, for instance, in the case of plastic hinges. 

- Global level. The ratio between inelastic roof displacement i and yielding roof 

displacement e of the structure is said to be global displacement ductility () and 

can be identified on pushover curves, namely base shear versus lateral displacement 

(Vbc) diagrams. Alternatively, the roof displacement can be replaced by the 

lateral displacement at any other control point of the structure. 

This means that global ductility of a whole structural system depends on those of 

individual components which, in turn, are functions of sectional and material 

ductilities. In the case of masonry buildings, the evolutionary spread plasticity macro-

element presented in Chapter 7, as well as the pushover procedures presented in 

Chapter 8, allow to get a direct relationship between global displacement ductility and 

local ductility of both individual macro-elements and their constituent materials. This 

is a key feature in design/assessment of masonry buildings subjected to earthquake 

loading. Equilibrium and compatibility equations allow passing from local material 
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level to global structural level. Therefore, seismic design of dissipative earthquake-

resistant structures under severe seismic events should be carried out by assessing that 

ductility demands do not exceed ductility capacities. A similar comparison should be 

also performed in terms of displacements. 

In the case of masonry structures, another damage type can also be identified even in 

the elastic range, that is, the flexural cracking due to tensile stresses higher than tensile 

strength of masonry. While hysteretic damage affects especially structural systems 

made of ductile materials (like as steel and RC), cracking damage affects typically 

masonry structures. Since their response depends considerably on spread cracking, it 

follows that: 

- mechanical non-linearity due to micro-cracking of masonry in compression should 

be considered even in the elastic range of seismic response; 

- displacement ductility does not fully quantify energy absorption/dissipation 

capacity of masonry structures; and 

- a suitable damage index for masonry constructions should be defined not only in 

terms of kinematic ductility (and, if any, a form of low-cycle plastic fatigue), but 

also in terms of cracking amplitude and reversibility in the elastic range. 

Reversibility is the ability of the masonry structure to close flexural and/or shear 

cracks under load reversals. For instance, flexural cracks due to tension in rocking 

walls are a typical example of reversible cracking which induces limited permanent 

damage allowing large displacement capacity as well as re-centring response. 

Conversely, toe crushing in bending does not provide reversibility in the lateral 

response resulting, inter alia, in effective height reduction of masonry piers. 

Figure 4.7 shows toe crushing in a masonry pier of a building damaged by the  

Mw 7.2 Haiti earthquake which occurred on 12 January 2010 at 21:53:10 UTC. The 

pier failed first in flexure and after in tension shear. 

 

 
Figure 4.7  Flexural and shear damage of a pier panel 
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Supply ductility and displacement capacity are key parameters in seismic design of 

structures since they allow: 

- life safety and collapse prevention, because further strength demand is balanced 

with higher ability to suffer plastic cycles, avoiding brittle mechanisms and hence 

sudden and catastrophic collapses; 

- limitation of seismic accelerations and displacements throughout the structure, and 

thus minimisation of damage to non-structural components, thanks to higher energy 

dissipation capacity; 

- optimization of element dimensions and hence of construction costs, given that the 

structure should not remain in the elastic range under severe earthquakes, suffering 

significant damage; and 

- elongation of the fundamental period of the structure, which is put away from the 

earthquake dominant period to avoid magnification of vibrations. 

Therefore, seismic design of the structure based on the control of inelastic response 

consists in: 

(1) the attainment of displacement capacity not lower than demand, in order to 

provide earthquake resistance for a pre-defined acceptable damage level; and 

(2) the verification of supply ductility of individual structural elements not lower than 

ductility demand corresponding to displacement demand on the structure. 

It is underlined that thinking in supply ductility does not means thinking in terms of 

displacement capacity. In fact, the definition of displacement ductility for a given 

structural element leds to assume that the allowable inelastic displacement is 

proportional to the yielding displacement. As a result, the accuracy in displacement 

capacity estimation is affected by approximations in the elastic response prediction. On 

the contrary, when defining displacement capacity, the inelastic response prediction 

does not depend on that related to elastic response. 

 

4.3.2. Structural Regularity 

Past earthquakes have shown a key role of structural regularity in seismic design of 

buildings, because it ensures a rather uniform distribution of both strength and ductility 

demands on individual structural elements. Regularity is just apparently qualitative 

since any unfavourable concentration of internal forces and deformations within a few 

elements is effectively avoided, resulting in quite uniform damage distribution 

throughout the structure. It is indeed underlined that global ductility demand increases 

as the lateral strength of the structure reduces, while local ductility demands increases 

with irregularity in seismic response. The lack of structural regularity leads to a 

dramatic reduction in the energy dissipation capacity of the whole structure owing to: 

(1) torsionally-induced displacements in the presence of rigid floor diaphragms;  
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(2) soft storeys; and (3) incomplete load paths due, for instance, to misaligned walls, 

columns, or floor diaphragms (the latter at the same floor level). 

Structural regularity includes general requirements discussed at the beginning of 

Section 4.3 and should be checked both in plan and elevation, paying care to the 

following issues: shape; stiffness and strength distribution; and mass distribution. 

 

 Structural regularity in plan 

From a morphologic viewpoint, the requirement of regularity in plan is first believed to 

be met if the area of floor diaphragms is not too high. Conversely, in the case of larger 

floor areas, non-linear seismic response can be affected by: (1) the generation of higher 

inertia forces; (2) significant damage due to torsionally-induced displacements of 

lateral load-resisting elements, which are high even at small torsional rotations of floor 

diaphragms; (3) non-negligible spatial variation of seismic ground motion (so 

coherency between seismic inputs at the base of lateral load-resisting elements should 

be checked); and (4) flexible floor diaphragms with respect to lateral load-resisting 

elements. 

To get a satisfactory plan regularity, the shape of the building plan should be 

symmetric and simple. Regarding the concept of symmetry, earthquake-resistant 

structures are typically classified on the basis of the presence of two or more symmetry 

axes, one symmetry axis, or no symmetry axis. Regarding simplicity, convex plans are 

distinguished from concave plans, the lower is the maximum ratio between setbacks 

and transverse dimensions of the building plan, the simpler is the building plan itself. 

Lack of symmetry induces major problems mainly due to the following reasons: 

- structural eccentricity between the centre of stiffness and the centre of mass at each 

floor level in the elastic range, and between the centre of strength and the centre of 

mass in the plastic range (assuming all yielded elements)
15

, induces storey torques 

and hence non-uniform distributions of strength and displacement demands 

especially on peripherical elements; and 

- the absence of pre-defined principal stiffness/strength directions leads to the need 

for their analytical assessment or, alternatively, for investigation on the maximum 

demands under varying incidence angle of seismic input. 

It is emphasised that eccentric cores at the locations of staircases and elevators induce 

high torques, resulting in damage concentrations and dramatic reduction in the energy 

dissipation capacity of the whole structure. In addition, the presence of setbacks leads 

to higher sensitivity of the construction to potential ruptures of floor slabs due to 

                                                 
15

  The centre of strength should be taken into account in order to assess the distribution of 

shear forces at ULS, given that the consideration of the centre of initial stiffness leads to a 

lack of conceptual consistency with safety verifications at ULS. 
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localization of deformations. Therefore, if a complex plan shape cannot be avoided, at 

least one of the following measures should be made: the separation of the whole 

structure in a number of sub-systems through proper joints; the stiffening of building 

corners; the modification of right angles in obtuse angles; and a suitable distribution of 

lateral load-resisting elements aimed at reaching a uniform distribution of both strength 

and ductility demands. 

With reference to the mass distribution in plan, the presence of heavy equipments, 

large water tanks or pools, archives, or libraries, leads to significant variations in the 

distribution of inertia forces over the floor diaphragm. 

 

 Structural regularity in elevation 

The above-mentioned concepts can be almost fully extended to the requirement of 

structural regularity in elevation. Also in this case, structural shape, symmetry, and 

uniformity in the distribution of stiffness, strength, and inertia mass, should be 

considered. As the height and slenderness of the building increase, both base shear and 

overturning moment increase as well, because the increase in both the global inertia 

mass and the location of the centre of mass along the height is more rapid than the 

reduction in spectral acceleration due to period elongation. This variation occurs as a 

result of the increase in the number of storeys and the effective height of the equivalent 

SDOF system. 

The building floor area may be constant, decreasing, or increasing along the height. 

The best shape is obviously that associated with a floor area which decreases from the 

base to the top of the building. In fact, in such conditions the centre of mass is located 

at lower floor levels resulting in a lower overturning moment. At the same time, 

sufficient lateral stiffness is ensured at each floor level. It is underlined that regularity 

in elevation is met if the building façades are symmetric and the floor areas are rather 

equal. Indeed, large setbacks induce dangerous concentrations of both strength and 

deformation demands, resulting in unfavourable local collapse modes and lower energy 

dissipation capacity of the structure. If façades with large setbacks cannot be avoided, 

proper vertical seismic joints running along the whole height of the building are 

needed. The joint dimensions are to be accurately designed in a way to avoid pounding 

of adjacent buildings. 

Significant stiffeness/strength variations along the height of the building should be 

avoided to allow uniform distribution of internal forces under earthquake loading. 

Weaker elements or soft storeys induce damage concentrations resulting in a higher 

failure probability of the structure. It is also emphasised that such a problem is much 

more important close to the base of the building, as the storey shear tends to the base 

shear. 
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The presence of soft storeys is typically due to the following circumstances:  

(1) masonry pier panels or columns significantly taller than those located at the other 

floor levels; (2) the lack of continuity of lateral load-resisting elements along the whole 

building height; and (3) the presence of masonry infills only at some floor levels. The 

first two circumstances may occur, for instance, in the presence of storeys with special 

use, like those containing garages, department stores, cinemas, theatres, conference 

halls, and gyms. Weaker elements are generally less vulnerable than soft storeys, as 

shown by past seismic events such as the 1994 Northridge earthquake. In the case of 

masonry buildings, large irregularities due to non-prismatic piers can produce heavy 

damage, since the failure of some piers can induce premature collapse of the building. 

In most cases, masonry buildings are characterised by irregular mass distributions due 

to the presence of live loads with different magnitude at the different floor levels. The 

presence of libraries, archives, heavy concentrated masses (e.g., equipments), and high 

occupancy, induces less uniformity in the distribution of the expected inertia forces, 

resulting in significant variations of storey shear and overturning moment along the 

height. Also these circumstances produce heavy damage to structural components. 

 

 Structural regularity according to Italian building code and EC8 

The new Italian building code (IBC) passed by the Italian Ministry of Infrastructures 

and Transportation (IMIT, 2008) provides simplified rules to assess structural 

regularity before seismic analysis is run. Such rules are in compliance with EC8. To 

that end, IBC suggests first the maximisation of structural redundancy and, if needed, 

seismic joints able to transform the whole structure in uncoupled sub-systems. 

Regarding buildings, a construction can be assumed to be regular in plan if the 

following requirements are met: 

(a)  the plan shape is compact and rather symmetric with respect to, at least, two 

orthogonal directions in terms of inertia masses and stiffnesses; 

(b)  the building plan can be included in a rectangle having a lengthening ratio lower 

than 4; 

(c)  any setback does not exceed 25% of the total dimension of the building plan in the 

same direction; and 

(d)  the floor diaphragms can be considered as sufficiently resistant and rigid in their 

own plane with respect to lateral load-resisting elements. 

A structure can be assumed to be regular in elevation if it meets the following 

requirements: 

(e)  all lateral load-resisting elements (e.g., frames and shear walls) run along the 

whole height of the building; 

(f)  inertia mass and lateral stiffness are constant or change gradually without 
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significant variations, from the base to the top of the building (mass variations 

from a floor level to another do not exceed 25%; the lateral stiffness does not have 

a reduction higher than 30% and an increase higher than 10% from a floor level to 

the overlaying floor level); buildings are considered to be regular in elevation in 

terms of stiffness, in the presence of shear walls, RC cores, prismatic masonry 

walls and cores, or braced steel frames, providing at least 50% of the earthquake 

resistance; and 

(h) gradual setbacks do not exceed 30% of the dimension of the former floor 

diaphragm, nor 20% the dimension of the underlying floor diaphragm; no 

limitations are given for the top floor level in the case of constructions with more 

than four storeys. 

The requirement (g) is not mentioned here being it related only to frame building 

structures. 

4.4. Force-Based versus Displacement-Based Design 

Traditionally, the design spectral acceleration at the fundamental period has been 

always assumed as a good seismic demand parameter in the engineering practice. 

Seismic design of structures is then based on the estimation of the base shear as the 

product of the global inertia mass by the pseudo-acceleration at the fundamental 

period. In fact, in the presence of low equivalent viscous damping and period of 

vibration lower than 4, the inertia force can be assumed to be equal to the equivalent 

static force (i.e., the lateral stiffnes multiplied by the maximum expected 

displacement). Then, the base shear is regarded as a lateral strength demand on the 

structure. The distribution of strength demands along the height of the building 

depends on the assumed response displacement profile, while the horizontal 

distribution at each floor level depends on the in-plane flexibility of diaphragms. 

Therefore, linear equivalent static analysis falls within a force-based design (FBD) 

approach (namely, a design by verification), which is affected by weak assumptions on 

both elastic and inelastic response of the structure (e.g., stiffness distribution and 

strength reduction factor). Lateral displacements are not explicitly taken into account in 

the safety verifications and their estimation is based on the assumption of displacement 

ductility and equal energy/displacement rule. 

Opposed to this approach, seismic design of structures can also be carried out in terms 

of displacements or energies, namely it can be a displacement-based design (DBD) or 

an energy-based design (EBD). DBD was proposed and carefully assessed by several 

researchers like as Priestley, Calvi, and Kowalsky (2007). It is particularly interesting 

because global collapse of the structure is assumed to occur when displacement 

demand reaches capacity at the performance state of interest. The earthquake capacity 
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of structures is then expressed in terms of displacements, rather than forces, since they 

are directly correlated with both structural and non-structural damage. 

A classical example is based on the response assessement of EPP structural systems. 

Under high-intensity earthquakes, the yielding point is significantly exceeded so the 

demand-to-capacity ratio in terms of lateral strength is almost equal to unity. The 

collapse is thus reached as the lateral displacement attains a limit value. 

This evidence leads to the need for the interpretation of seismic actions on structures as 

displacement demands, rather than (only) strength demands. FBD leads to high 

underestimations of earthquake resistance. Similarly, if the seismic assessment is based 

on linear equivalent static analysis, it tends to „hide‟ the seismic overstrength due to 

redistribution of internal forces occurring after the failure of the weakest structural 

element, in the case of masonry structures. Based on the above considerations, the most 

advanced seismic codes allow to apply DBD in seismic design of structures or, at least, 

to perform a displacement-based assessment of existing structures (e.g., by means of 

static pushover analysis). It is clear that seismic demand on structures is then to be 

estimated through design displacement response spectra which, in turn, are to be 

derived by scaling the elastic response spectra through a displacement amplification 

factor AD. Such a factor is used also in seismic assessment at ULS based on linear 

equivalent static analysis and is denoted as d by IBC. This factor is defined as a 

function of the adopted strength reduction factor and the fundamental period of 

vibration. 

Since an accurate estimation of seismic demand is needed, DBD procedures 

highlighted some open issues in engineering seismology related to the definition of 

seismic input in terms of displacements by means of specific design displacement 

spectra. Based on a high number of digital records of past earthquakes occurred in 

Japan and Europe, Faccioli et al. (2004) derived interesting results on the 

characteristics of these spectra, allowing to employ direct displacement-based design 

(DDBD) procedures (Priestley et al., 2007) as a viable alternative to FBD. DDBD 

procedures seem to be rather simple for engineering practice, and able to ensure design 

performance objectives in compliance with PBD framework. This is the reason why 

DDBD was included in some seismic codes of earthquake-prone contries, like as New 

Zealand (NZSEE, 1996). 

Also DDBD is based on the definition of an equivalent elasto-plastic SDOF system, 

but the latter is characterised by means of effective stiffness at the maximum 

displacement demand and equivalent viscous damping factor. Such a factor is 

expressed as the sum of the elastic viscous damping, which is quite low (even if always 

present in the structure), and the hysteretic viscous damping, which is rather high (but 

present just in the plastic range). Displacement demand is related to the performance 
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level under consideration, while effective damping depends on the hysteretic energy of 

the equivalent SDOF system. Design displacement spectra are defined by amplifying 

the equivalent viscous damping (eq) to be used in the equations of the elastic response 

spectra. Thus, overdamped spectra are used instead of constant-ductility inelastic 

spectra. The base shear is then estimated as the product of the effective stiffness by the 

displacement demand, and its distribution along the height is defined by considering 

the actual profile of inelastic displacements. 

Hysteretic energy demand is a another key parameter which is well correlated with 

damage in the presence of repeated plastic cycles induced by seismic ground motion. 

In such a case, the supply ductility reduces due to low-cycle plastic fatigue and damage 

accumulation, resulting in potential premature collapse with respect to its monotonic 

counterpart. Damage accumulation can play a key role also in the case of masonry 

structures subjected to earthquake sequences. Given that only a few experimental data 

on hysteretic energy are available at present for masonry walls, EBD methods do not 

still apply to masonry buildings. Estimating hysteretic energy could allow to perform 

damage analysis through non-linear static procedures by using the Park & Ang damage 

index (IP&A), which is a linear combination of demand-to-capacity ratios expressed in 

terms of displacements and hysteretic energy (Fajfar and Gašpersič, 1996). Therefore, 

seismic safety could be assessed by checking that IP&A ≤ 1. 

 



 

 

Chapter 5 - NON-LINEAR STATIC PROCEDURES 

In the last decade, research community has recognised non-linear static procedures 

(NSPs) as effective tools for seismic performance predictions at different earthquake 

intensity levels. Static structural analyses allow to avoid complex, even if rigorous, 

non-linear time-history analyses. Such an advantage is much more evident by high 

difficulties related to (1) selection and scaling of seismic input, (2) definition of 

evolutionary hysteretic models, and (3) interpretation of analysis results, which are 

open issues in earthquake engineering especially in the case of masonry constructions. 

Seismic performance assessment requires the estimation of capacity and demand. In 

the case of inelastic systems, there is a relationship between capacity and demand 

because seismic response changes as cracking and yielding develop. 

In the present chapter, the main methods currently available in the literature for the 

estimation of seismic capacity and demand are reviewed and discussed. For the sake of 

clarity, such methods are grouped in separate sections. 

5.1. Estimation of Seismic Capacity 

5.1.1. General Remarks 

Non-linear incremental static (pushover) analysis is the application of the classical 

incremental iterative method of plastic structural analysis. Static pushover (SPO) 

analysis  was employed for the first time in earthquake engineering by Gulkan and 

Sozen (1977), and Saiidi and Sozen (1981), as displacement-based seismic assessment 

method. Krawinkler (1995) proposed its use also in seismic design. The scope of 

pushover analysis is to get the best estimation of the evolutionary dynamic response of 

structures subjected to acceleration/displacement time-histories compatible with both 

site-specific seismic hazard and design spectra provided by codes. In other terms, such 

an analysis is aimed at obtaining a simplified estimation of response predictions which 

could be derived by incremental dynamic analysis (IDA) (Vamvatsikos and Cornell, 

2002), also called dynamic pushover analysis. The latter consists of multiple non-linear 

dynamic analyses under spectrum-compatible accelerograms which are suitably 

selected and scaled on the basis of a proper IM supposed to be well-correlated with 

structural and/or non-structural damage. The accuracy of SPO predictions can be 

assessed by comparing the pushover curve to the median IDA curve. 

Static pushover analysis (simply called „pushover analysis‟ in this thesis) consists in 
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the application of a pattern (adaptive or not) of monotonically-increasing lateral loads 

(forces or displacements) on a non-linear structural model subjected to gravity loads. 

The structure is then laterally pushed up to collapse in a way to estimate its 

evolutionary seismic response. An analysis step corresponds to each lateral load 

increment/variation and the structural equilibrium in the non-linear range is 

numerically assessed through a series of iterations ending at the attainment of 

numerical convergence. The structural analysis is stopped in one of the following 

cases: 

(1) attainment of a pre-defined limit state; 

(2) attainment of global collapse; or 

(3) loss of numerical stability. 

Structural response at each analysis step is represented on a Cartesian plane having 

horizontal displacement at the control point c
16

 on the abscisse axis and base shear Vb 

on the ordinates axis. A pushover curve, namely the output of the analysis, is the 

graphic representation of the relationship between the earthquake resistance and the 

gloal displacement of the structure. Pushover analysis is based on the assumption that 

the seismic response of a MDOF system is directly related to that of an equivalent 

SDOF system with appropriate mass, stiffness, strength, and ductility. The actual 

structure is then transformed in a SDOF system through the substitute-structure 

approach proposed by Shibata and Sozen (1976). To this aim, the dynamic response of 

the MDOF system is assumed to be time-invariant, namely conditional only on a single 

mode of vibration characterised by a shape vector constant with time at any 

deformation level. 

Figure 5.1 shows the main stages of pushover analysis, highlighting the transformation 

of the actual structure in an equivalent SDOF system. 

 

 
Figure 5.1  Non-linear incremental static (pushover) analysis 

                                                 
16

 The control point is typically assumed as the centre of mass at the roof level. This 

assumption is not based on a specific theoretical rule and is likely derived from former 

applications of pushover analysis to bridge piers where the top lateral displacement was 

monitored. Such a displacement is not always a reliable parameter for building response 

predictions. 
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Using the label * to identify the characteristics of the equivalent elasto-plastic SDOF 

system, the lateral displacement is associated with the actual displacement at the 

control point of the structure as follows: 

cd c    (5.1) 

being c a response modification factor defined as: 

T T

T
e

c
m

 
Φ MΦ Φ MΦ

Φ M1
 (5.2) 

where 1 is the unit vector and em  the inertia mass of the equivalent SDOF system. It is 

clear that c can be computed only once the vector  has been defined. If the latter 

vector is related to a specific mode of vibration, then the factor c is equal to the inverse 

of the modal participation factor . The bilinear idealisation of the pushover curve of 

the actual structure allows to define the equivalent SDOF system characteristics as 

follows: 

T
,e c e u u u ed c V k V d       Φ V  (5.3) 

being c,e the yielding displacement and Vu the lateral force vector at the maximum 

base shear Vb,max. It has been shown that accurate response predictions can be obtained 

also if the response modification factor is assumed to be constant, in the case of small-

to-medium variations in the modal shape vector. This is true particularly if dynamic 

response is mainly governed by the fundamental mode (Krawinkler and Seneviratna, 

1998; Lawson et al., 1994; Fajfar and Gašpersič, 1996). 

In the last years, different strategies of incremental static analysis have been proposed, 

aiming at their wide application to structures affected by high strength/stiffness 

degradation, irregularities, sensitivity to higher modes of vibration, and P-Delta effects. 

Pushover analysis procedures can be classified in terms of: 

- applied lateral loads (i.e., force- versus displacement-based procedures); 

- control strategy (i.e., load- versus response-controlled procedures); 

- number of vibration modes under consideration (i.e., single- versus multi-mode 

procedures); and 

- load pattern (non-adaptive versus adaptive procedures). 

In general, pushover analysis allows to simply estimate (Krawinkler and Seneviratna, 

1998): 

- flexural and shear strength demands on potential brittle structural elements and their 

connections; 

- deformation demands in potential ductile elements, able to dissipate input energy; 

- effects of both strength degradation and failure of individual elements on the global 

seismic response of the structure; 
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- effects of stiffness and/or strength irregularities in plan and elevation, which can be 

identified through the graphic representation of seismic damage (potential 

concentrations are simple to be identified); 

- the sequence of failure modes and their influence on the pushover curve; 

- critical elements subjected to high inelastic ductility and deformation demands; 

- the accuracy of the assumed load profile; and 

- global overstrength and supply strength reduction factor related to displacement 

ductility. 

The last capacity parameters allow to assess the strength reduction factor employed in 

FBD through linear equivalent seismic analysis. 

Classical pushover procedures are affected by some limitations due to the impossibility 

of capturing directly dynamic response effects associated with higher modes and 

damage accumulation under cyclic loading (Kim and D‟Amore, 1999; Naeim and 

Lobo, 1999). Potential effects of seismic ground motion duration and kinetic energy 

cannot be also simulated through static pushover analysis. 

 

5.1.2. Force-Based versus Displacement-Based Procedures 

The classical pushover analysis is based on the application of two different patterns of 

lateral forces: a „modal‟ load pattern proportional to inertia masses multiplied by first-

mode displacements; and a „uniform‟ load pattern proportional to inertia masses. For 

each lateral load pattern, the structure is subjected to successive force increments 

through a load multiplier (namely, keeping constant the ratios between consecutive 

applied forces) up to the attainment of one of the conditions mentioned in  

Section 5.1.1. Displacements at different load steps represent the response of the 

structure and are consistent with equilibrium and compatibility under a given pattern of 

lateral forces. 

Once the lateral force profile F0 = (1…i…n)
T
 has been defined (i = mii/m1 and  

i = zi/H for modal pattern, and i = mi/m1 for uniform pattern), the lateral force vector  

F
(k)

 = (F1…Fi…Fn)
T
 at a given load step k is defined as follows: 

( ) ( )
0λk kF F  (5.4) 

where 
(k)

 is the load multiplier defined through a load/response control strategy (see 

Sect. 5.1.3). 

Given that response of inelastic systems depends on demand, the pushover curve 

related to a given force pattern is different from that related to the other pattern. In the 

case of regular structures, pushover curves corresponding to modal and uniform lateral 

force patterns form a region including IDA predictions. In fact, the modal force pattern 

allows capturing the elastic dynamic response of the structure, while the uniform force 
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pattern (corresponding to a constant distribution of horizontal accelerations along the 

height of the structure) allows capturing the inelastic dynamic response after heavy 

damage throughout the structure. Frequently, an inverse triangular force pattern is used 

instead of the modal pattern, assuming a linearised first-mode shape. The uniform 

pattern induces typically a higher earthquake resistance with respect to both modal and 

inverse triangular patterns, as a result of higher overturning moment
17

. This statement 

was demonstrated by Mwafy and Elnashai (2001) by comparing pushover curves 

corresponding to the above-mentioned lateral force patterns (Fig. 5.2). 

 

 
Figure 5.2  Pushover curves for different force patterns (Mwafy and Elnashai, 2001) 

 

The lateral forces simulate inertia forces induced at several floor levels by earthquake 

loading, and hence its direct application seems to be more appropriate to statically 

simulate the dynamic response of the structure. Nevertheless, since the attainment of 

limit deformations has been recognised to be the main cause of damage, especially in 

ductile structural systems, pushover procedures based on the application of lateral 

displacements, rather than forces, have been developed. In such a case, lateral forces 

applied along the height of the structure are derived from the given lateral 

displacements through structural analysis. It follows that in displacement-based 

procedures the relative importance of lateral forces remains the same with reference to 

both structural equilibrium and simulation of inertia forces estimated through IDA. 

In the case of displacement-based pushover analysis, the structure is subjected to a 

displacement vector 
(k)

 = (1… i…n)
T
 which is derived by incrementing the shape 

                                                 
17

  The centroid of the uniform force pattern is lower than those of both modal and inverse 

triangular patterns, so the overturning moment reaches its minimum value. 
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vector 0 = (1…i…n)
T
 at each step k, as follows: 

( ) ( )
0αk kΔ Δ  (5.5) 

where 
(k)

 is the load multiplier resulting from total or incremental updating. By 

solving the equilibrium equation F
(k)

 = K
(k)


(k)
 in compliance with kinematic 

compatibility, one can simulate the evolution in the resisting base shear Vb = 1
T

 F under 

varying displacement c. 

 

5.1.3. Control Strategies 

The computational strategy employed in classical pushover procedures is based on the 

load control, namely the control of the lateral forces acting on the structure. 

If the analysis procedure is based on the application of lateral force, then the load 

control means to monotonically increase the multiplier 
(k)

 in Eq. (5.4) and to estimate 

the corresponding displacement vector 
(k)

. The control strategy allows to predict only 

non-linear response of non-degrading structural systems. For them, the pushover curve 

has a rising branch and the collapse is associated with the attainment of the peak 

resisting base shear. 

Actually, structures may resist against displacement demands larger than those 

corresponding to the maximum earthquake resistance, even though a strength 

degradation takes place and is graphically represented by a post-peak falling branch on 

the pushover curve. This statement has highlighted the inadequacy of load-controlled 

pushover analyses (Antoniou and Pinho, 2004a). Therefore, a series of procedure able 

to change the force multiplier have been proposed, in order to simulate also the post-

peak softened response. Such procedures are mainly based on the response control. At 

each given step and up to the global collapse, or numerical instability, they consist of 

the following stages: (1) definition of a displacement increment at the control point;  

(2) estimation of the relevant resisting lateral forces, keeping constant the load profile; 

and (3) the estimation of lateral displacements (both translations and torsional 

rotations) at each floor level. This procedure is then aimed at estimating the structural 

response that meets a pre-defined load profile under varying lateral displacement at the 

control point. Namely, one has to check that the lateral displacement at the control 

point increases and a pre-defined load profile is met. To this end, the multiplier 
(k)

 is 

changed along with the vector 
(k)

 at each analysis step. It is underlined that: 

- structural degrading response could be assessed also through a mixed control 

strategy consisting in the load control in the pre-peak range and in the response 

control in the post-peak range; and 

- response control in force-based approaches does not consists in monitoring the 

whole displacement profile, so response-controlled pushover procedures should not 
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be confused with displacement-based procedures; in the latter, the load control is 

rather equal to the response control, because the load profile is the lateral 

displacement pattern. 

 

5.1.4. Single-Mode versus Multi-Mode Procedures 

The lateral forces or displacements imposed to the structure are typically defined 

considering the fundamental mode of vibration. In the case of tall buildings, highly-

irregular structures, or constructions with high response sensitivity to damage 

evolution (i.e., non-uniform distribution of cracking and yielding), higher modes of 

vibration should be also considered if they affect considerably the global seismic 

response. 

Paret et al. (1996), Sasaki et al. (1998), and Kunnath and Gupta (2000) were, amongst 

others, the first researchers which proposed non-linear static analysis methods able to 

include higher mode effects. In the case of tall buildings, in order to consider higher 

mode effects, FEMA 356 (ASCE, 2000) suggests to assume a lateral force vector  

F = M H
k
, being H the vector containing the normalised heights of the floor levels and 

k a factor which is a function of the fundamental period Te, as follows: 

 

1.0 for 0.5s

1.0+0.5 0.5 for 0.5s 2.5s

2.0 for 2.5s

e

e e

e

T

k T T

T




   
 

 (5.6) 

Therefore, one get the inverse triangular force pattern if Te ≤ 0.5 s, while k increases 

linearly in the interval ]1,2[ if 0.5 s < Te < 2.5 s. 

In multi-mode procedures, the load profile is derived from modal shapes through 

quadratic combination rules. In the Freeman formulation, the higher mode effects are 

included in the definition of lateral forces by means of the squared root of sum of 

squares (SRSS) modal combination rule. The number of vibration modes considered in 

the analysis is that corresponding to a participating mass not lower than 90% of the 

total inertia mass. The lateral forces depend also on spectral amplification, namely the 

acceleration demand associated to each mode of vibration. That modus operandi allows 

to consider the change in relative importance between different modes of vibration due 

to period elongations, as damage develops throughout the structure. The fundamental 

period increases generally more than the others, reaching also final values even equal 

to five times the initial value. The period elongation related to higher modes of 

vibration may induce a spectral amplification of the fundamental mode much lower 

than that associated, for instance, to the second mode of vibration, as shown in  

Figure 5.3. 
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Figure 5.3  Modification of spectral amplification for first and second modes (Antoniou, 2002) 

 

Valles et al. (1996) proposed to include the contribution of higher modes through the 

definition of an equivalent fundamental mode based on the SRSS modal combination 

rule. The force vector is then obtained through the equation: 

F = M eq (5.7) 

being: 

eq = (eq,1…eq,i…eq,n)
T
   con    

2

,

1

n

eq i j ij

j

     (5.8) 

Chopra and Goel (2002) developed the modal pushover analysis (MPA) which 

includes the contribution of all significant modes of vibration for seismic demand 

estimation. In such a procedure, pushover analysis is carried out for each individual 

mode. Pushover curves related to different modes of vibration of the structure are 

reduced and idealised with bilinear relationships in a way to define a series of 

equivalent SDOF systems. Displacement demand (i.e., the target displacement) is thus 

estimated through the design spectrum, and response parameters of the actual structure 
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are finally assessed. Maximum demand values associated with the modes of vibration 

under consideration are combined to estimate the total demand. Since the lateral forces 

corresponding to the first two or three modes are typically sufficient to characterise the 

dynamic response of the structure, MPA is not computationally too demanding if 

compared to other procedures. Nevertheless, MPA makes quite complex the estimation 

of displacement demand through the capacity spectrum method (see Sect. 5.2.1) due to 

potential displacement reversals induced by gradual yielding in pushover curves 

associated with higher modes of vibration (Hernández-Montes et al., 2004; ATC, 2005; 

Goel and Chopra, 2005). 

Chopra et al. (2004) proposed also a modified modal pushover analysis (MMPA) in 

which seismic demand associated with higher modes is estimated by assuming an 

elastic response of the structural system. The total demand related to more modes of 

vibration is obtained through a pushover analysis performed for the fundamental mode 

and a multi-mode dynamic analysis performed for the higher modes. 

 

5.1.5. Constant versus Adaptive Load Profiles 

Traditionally, non-linear static analysis has been carried out keeping constant the 

lateral load pattern (forces or displacements) through a single multiplier. Alternatively, 

an adaptive (or evolutionary) pushover analysis can be performed by updating the load 

profile at each analysis step, in order to follow the evolution in the structural response 

as the damage develops. The modification in the structural properties may involve not 

only the global lateral stiffness, but also the modes of vibration and spectral 

amplification. This information can be included in the adaptive analysis via multi-

mode dynamic analysis carried out at each step by assuming the actual secant stiffness. 

Bracci et al. (1997) proposed for the first time a pushover procedure based on fully 

adaptive load profiles. The analysis begins with the assumption of the initial load 

pattern, which is generally triangular, while successive load increments are determined 

from the base shear and storey shears related at the previous step. 

A different procedure was proposed by Gupta and Kunnath (2000): the applied load is 

constantly updated on the basis of current dynamic characteristics of the structure, 

taking into account a site-specific spectrum. To that end, at each step an eigenvalue 

analysis is carried out by assuming the tangent or secant stiffness associated with 

deformations of the previous load increment. The lateral forces related to the j-th mode 

of vibration and acting at the i-th floor level are obtained as follows: 

,ij j ij i a jF M S    (5.9) 

being: j the modal participation factor; ij the normalised modal displacement; Mi the 

inertia mass at the i-the floor level; and Sa,j the spectral amplification associated with 
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the period Tj. Mwafy and Elnashai (2001) found that the inclusion of spectral 

amplification of each mode into Eq. (5.9) allows to get a better consistency with IDA 

response predictions. 

Figure 5.4 shows the comparison carried out by Antoniou and Pinho (2004a) where 

spectral amplification was estimated through elastic response spectra. These 

researchers emphasised also the need for the estimation of effects due to different 

damping levels related to several modes on global response prediction. 

 

 
Figure 5.4  Effects of spectral amplification on pushover curve (Antoniou and Pinho, 2004a) 

 

Pushover analysis is performed for each mode and then the resulting lateral forces are 

combined through the SRSS rule as follows: 

2

1

n

i ij

j

F F


   (5.10) 

The lateral forces derived from modal combination are finally summed up to those 

obtained at the previous step. At the end of an analysis step, the lateral stiffness is 

computed to be employed in the eigenvalue analysis related to the subsequent step. 

Although the estimation of interstorey drifts and sequence of collapse modes is 

typically satisfactory, the use of the SRSS rule to combine response predictions 

provided by different pushover analyses (each performed on an individual mode) does 

not ensure equilibrium at the end of each analysis step. 

Elnashai (2001) proposed an adaptive pushover procedure able to include, in a single 

analysis run rather than combining results from more analyses, all features mentioned 

above. The force vector is updated by introducing a normalised force vector ( 1)k
F  into  
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Eq. (5.4), which thus specialises in the following equation of total updating: 

( ) ( ) ( 1)
0λk k kF F F  (5.11) 

It is underlined that, in the case of adaptive pushover, the shape vector F0 should be 

defined as uniform, in order to avoid any modification in the load vector corresponding 

to the modal characteristics which, in turn, are related to the stiffness computed at the 

previous step. 

Figure 5.5 shows the definition of the force vector at a given analysis step, while 

Figure 5.6 illustrates the variation in the lateral force pattern under increasing roof drift 

of a regular five-storey frame structure. 

 

 
Figure 5.5  Total updating of force pattern (Antoniou, 2002) 

 

 
Figure 5.6  Pushover curve from adaptive analysis and force pattern variation (Antoniou, 2002) 

 

Alternatively, the load can be modified through an incremental updating strategy  

(Fig. 5.7) where the load increment F
(k)

 is changed on the basis of the modal 

characteristics corresponding to the response prediction at the previous step. 
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Figure 5.7  Incremental updating of force pattern (Antoniou, 2002) 

 

The total force vector is then defined via the following equation: 

( ) ( 1) ( ) ( 1) ( ) ( 1)
0+ = +λk k k k k k  F F δF F F F  (5.12) 

The vector ( 1)k
F  changes the shape (not the magnitude) of the applied forces; each 

vector component is obtained through a normalisation to the base shear, namely as 

follows: 
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
 (5.13) 

If the modes of vibration cannot be assumed to be fully uncoupled, the complete 

quadratic combination (CQC) rule is to be used. Accordingly, the lateral force at the  

i-th level can be defined as follows: 

 
1 1

n n

i ij jk ik

j k

F F F
 

   (5.14) 

being jk the cross-correlation factor defined through the following equation: 
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 (5.15) 

The latter equation includes the equivalent viscous damping  (which, for the sake of 

simplicity, is assumed to be the same for all modes of vibration) and the natural 

angular frequencies j and k corresponding to the modes under consideration. 

In the case of RC frame structures, Antoniou and Pinho (2004a) demonstrated that 

pushover analysis based on adaptive force patterns do not generally provide significant 

improvements in seismic capacity estimation, even though they are better from a 

conceptual standpoint. As shown by Priestley (2003), quadratic combination rules of 

modal contributions for the definition of load increments at each analysis step lead 

inevitably to positive increments, and hence a monotonic increase in the load vector. It 
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is thus not possible any applied load reversal. Potential reversals should be necessarily 

considered if one intend to simulate irregular distributions of inertia forces in the 

plastic range. Therefore, the vector ( 1)k
F  should be defined as the weighed vectorial 

sum of several modal contributions. It was also observed that force-based adaptive 

pushover (FAP) analysis may provide wrong predictions at large inelastic 

deformations, since it tends to overestimate inelastic deformations in damaged zones 

(that is, an apparent damage localization) and to underestimate them elsewhere. Lateral 

stiffness of damaged structural elements reduces and modal shapes provided by 

eigenvalue analysis change, resulting in a concentration of force increments at the 

successive step. It follows a kind of vicious circle that leads to overestimate 

deformations of the first damaged elements. 

In the case of regular structures, adaptive pushover analysis provides a pushover curve 

which lies between those corresponding to constant load profiles. Conversely, in the 

case of highly-irregular structures, adaptive analysis follows IDA predictions providing 

a pushover curve which does not lie between those provided by non-adaptive pushover. 

In order to overcome the limitations of force-based non-adaptive pushover analysis 

(e.g., the inability to capture potential force reversals), Antoniou and Pinho (2004b) 

proposed a displacement-based adaptive pushover (DAP) analysis. In fact, 

displacement-based pushover with constant load profiles provide wrong predictions 

since the collapse mechanism is not the output of the analysis, but it is chosen before 

the analysis is run. As a result, displacement-based pushover analysis should be 

necessarily adaptive, in order to avoid any „constraint‟ in seismic response predictions 

due to a pre-defined collapse mode. Figure 5.8 shows that displacement-based non-

adaptive pushover analysis leads to wrong estimations of IDA results, opposed to 

force-based analysis. 

In the adaptive procedure proposed by Antoniou and Pinho (2004b), Eqs. (5.11) and 

(5.12) related to total and incremental updating of lateral forces, respectively, are 

rewritten in terms of displacements as follows: 

( ) ( ) ( 1)
0αk k kΔ Δ Δ  (5.16) 

( ) ( 1) ( ) ( 1) ( ) ( 1)
0+δ + αk k k k k k   Δ Δ Δ Δ Δ Δ  (5.17) 

Opposed to force-based pushover analysis, displacement-based pushover analyses on a 

series of RC structures demonstrated that total updating is not suitable. In fact, it tends 

to overestimate deformations in the first damaged elements (which is also a limitation 

of FAP) and to numerical instability problems. The latter are avoided by incremental 

updating of the displacement vector because its modification is carried out in a gradual 

mode. Figure 5.9 illustrates a comparison between pushover curves obtained with both 

types of displacement vector updating. 
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Figure 5.8  Comparison between conventional force-based analysis, non-adaptive 

displacement-based analysis, and IDA (Antoniou and Pinho, 2004b) 

 

 
Figure 5.9  Total versus incremental updating in DAP (Antoniou and Pinho, 2004b) 
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The vector ( 1)k
Δ changes the shape (not the magnitude) of the given lateral 

displacements and each component is defined through the following equation: 

 

( 1)
( 1)

( 1)

1...
max

k
k i

i k
i

i n









 


 (5.18) 

so the maximum displacement is proportional to the load multiplier 
(k)

, according to 

the load control strategy. 

The displacements i can be estimated in two different modes: (1) directly from 

eigenvalues through the SRSS or CQC combination rule (displacement-based scaling); 

or (2) from interstorey drifts i defined as the difference between eigenvalues related to 

two consecutive floor levels (interstorey drift-based scaling). In the former case, lateral 

displacements are computed as follows: 

 
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1 1
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i ij j ij
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        (5.19) 

while in the latter case, they are computed via the following equation: 
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The inclusion of interstorey drifts makes more clear the relationship between inelastic 

structural response and deformation demand. The spectral displacement amplification 

Sd,j can also be considered to weigh drifts. Thus, Eq. (5.20) specialises as follows: 

1

i

i k

k
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n n

i ij j i j i j d j
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S

 

       
    (5.21) 

Lateral forces are then derived through structural analysis and are not „constrained‟ at 

any pre-defined profile. This allows to simulate also potential force reversals, 

according to IDA predictions. 

 

5.1.6. Three-Dimensional Effects 

The inclusion of three-dimensional effects in pushover analysis is a key issue.  

In general, SPO is separately performed along orthogonal directions of the building 

plan. Nevertheless, several researchers proposed analysis methods (either simplified or 

more accurate) to include the influence of torsional response on seismic capacity of 

buildings or, alternatively, on seismic demand. The main issues deal with: (1) the 

application of lateral forces in one or both directions of the building plan; (2) the 

combination rule to be employed if both forces are applied on the building; (3) the 

points of application of lateral forces; (4) the implementation of strength, stiffness, and 

mass eccentricities; and (5) the ability to apply adaptive profiles on three-dimensional 
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models, as well as the strategy to be used for their step-by-step updating. 

Kilar and Fajfar (1996, 1997) proposed a pushover procedure for asymmetric buildings 

based on the definition of two-dimensional macro-elements (namely, lateral load-

resisting sub-systems like as frames, and single/coupled shear walls) aimed at a 

simplified non-linear modelling of three-dimensional structures. The behaviour of each 

macro-element is defined through a bilinear, or multi-linear, relationship between the 

base shear and the roof displacement. The global pushover curve is then obtained 

through a step-by-step analysis which allows monitoring the formation of plastic 

hinges within the structure. The procedure is able to assess torsional effects and their 

influence on the seismic capacity of the building. 

Moghadam and Tso (1996, 2000a) proposed a more accurate non-adaptive single-mode 

method by extending two-dimensional pushover analysis to three-dimensional 

structures. The seismic response of the MDOF system is related to that of a SDOF 

system assuming that the dynamic response of the building is governed by the 

fundamental mode of vibration. The main difference with two-dimensional pushover 

methods is that both translations along the x- and y-axes of the building plan, as well as 

torsional rotations of floor diaphragms, are considered within the modal shapes.  

The displacement vector is then defined as follows: 

( ) ( )

x

y c ct t



 
 

   
 
  

Φ

Δ Φ Φ

Φ

 (5.22) 

where c(t) is a generalised coordinate representing the displacement at the control 

point; and  is the displacement shape vector assumed for the building. Nevertheless, 

such a methodology provides good response predictions at the flexible end of the 

building, while it leads to highly underestimate the seismic response at the rigid end 

(Rutenberg and De Stefano, 1997). 

A variant of the method proposed by Moghadam and Tso was developed by Penelis 

and Kappos (2002). The load vector (including lateral forces and storey torques) is 

derived from translations and rotations resulting from multi-mode dynamic analysis 

with response spectrum. The transformation of the structure in a SDOF system is 

carried out once a „hybrid‟ SDOF system has been characterised. Such an oscillator has 

both translational and torsional modes. This approach is an extension of classical 

methods based on the SDOF system idealisation, but it does not consider higher mode 

effects, nor force redistribution due to gradual yielding of structural components. 

Faella and Kilar (1998) investigated the accuracy of three-dimensional pushover 

analysis by comparing its predictions to those obtained by dynamic analyses. The force 

vectors are applied along a single plan direction at the locations of the centres of mass. 

A parametric investigation was performed to assess the optimal location of the points 
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where lateral loads should be applied. It was concluded that acceptable response 

predictions in terms of displacements can be obtained on both rigid and flexible ends of 

the building, by changing the locations of the points of application of lateral forces. 

For a given structure, it is clearly that different optimal locations correspond to 

increasing damage levels. As a consequence, adaptive load profiles are needed because 

they change with the evolutionary distribution of lateral stiffnesses throughout the 

structure. 

Based on a similar investigation, Kilar and Fajfar (2001) suggested to carry out SPO 

separately along two directions and to combine their results through the SRSS rule. 

These researchers found that the accuracy of the method could be improved if the point 

of application of lateral forces is displaced within the limit eccentricities reported in 

EC8. The authors represented the torsional response of the buildings under 

investigation by means of the Base Shear  Torque (BST) surface proposed by  

De la Llera and Chopra (1995) to describe all possible terns (Vbx, Vby, T) corresponding 

to global collapse (Fig. 5.10). It was found that BST surfaces of multi-storey buildings 

can be derived by a series of incremental static analyses. Such surfaces allow to 

understand the seismic response of plan-irregular buildings, and hence to design and 

assess these structures in seismic zones. 

 

 
Figure 5.10  BST surface (De la Llera and Chopra, 1995) 

 

A preliminary investigation by Antoniou (2002) showed the good accuracy of FAP for 

seismic response prediction of three-dimensional structures, highlighting some 

problems related to the choice of the lateral displacement pattern. 

Meireles et al. (2006) assessed DAP by comparing its results with IDA predictions in 
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the case of the SPEAR asymmetric building. IDAs were carried out considering a 

bidirectional seismic input which was represented by seven different spectrum-

compatible acceleration time-histories. Interstorey drifts due to torsional response were 

found to be slightly underestimated. The comparison between pushover curves 

provided by DAP and by conventional non-adaptive pushover procedures (based on 

inverse triangular force pattern) showed that the latter lead to accurate predictions in 

the case of low-rise buildings which are regular in elevation. DAP consisted in the 

simultaneous application of lateral displacements along two orthogonal directions of 

the building plan. Response predictions were also modified concluding that a single 

analysis is sufficient if modal contributions are combined within each analysis step. 

The computational work of this procedure is thus much lower than that associated with 

MPA (Chopra and Goel, 2002). The latter consists indeed in the combination of more 

SPOs, each performed for a single mode of vibration. 

 

5.1.7. Non-Linear Static Analysis according to EC8, FEMA356 and 

Italian Building Code 

The identification of the advantages and limitations of the methods discussed above led 

to the definition of two groups of load profiles for pushover analysis within the most 

advanced seismic codes. Such an approach is aimed at providing conservative seismic 

response estimations as the envelope of results corresponding to two procedures 

selected from those belonging to two groups of load patterns (Kunnath, 2004). 

In particular, EC8 (CEN, 2004) considers two force patterns: „uniform‟ and „modal‟. 

FEMA 356 (ASCE, 2000) suggests to carry out SPO at least for load profiles selected 

from both groups of load patterns listed below. The first group includes force patterns 

proportional to: 

- lateral forces defined as F = M H
k
, being k the factor expressed by Eq. (5.6); 

- the first-mode elastic shape; 

- storey shears derived from linear analysis with response spectrum. 

The second group of lateral forces includes the following patterns: 

- mass-proportional; 

- adaptive. 

IBC (IMIT, 2008) suggests the same lateral force patterns with the exception of the 

first pattern belonging to the first group, which is assumed to be inverse triangular  

(k = 1), namely proportional to the product of masses by the heights of floor 

diaphragms. It is worth noting that EC8 recognises that SPO leads to underestimate 

displacements at the rigid end of the plan (namely, the end where lateral displacements 

are lower), in the case of both torsionally-flexible structures (i.e., those having a 
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torsional first mode of vibration) and buildings with a torsional second mode of 

vibration. This understimation occurs also if accidental eccentricities at the centres of 

mass are considered in pushover analysis. Therefore, lateral displacements at the rigid 

end can be amplified according to the output of multi-mode dynamic analysis 

performed on the three-dimensional elastic model. 

5.2. Estimation of Seismic Demand and Performance 

According to PBD, seismic demand should be estimated for each limit state of interest. 

This estimation should include non-linear response of the structure to get accurate 

predictions of the actual seismic performance. To this aim, given the high difficulties 

related to IDA and interpretation of its results, one of the following procedures can be 

employed: the capacity spectrum method, which was suggested by ATC 40 (ATC, 

1996) for the first time; the displacement coefficient method, which is reported in 

FEMA 356 (ASCE, 2000) and FEMA 440 (ATC, 2005); and the N2 method, which is 

reported in EC8 (CEN, 2004) and IBC (IMIT, 2008). 

In the following sub-sections, the key features of such methods are discussed. They are 

called non-linear static procedures (NSPs) in the literature. The main scope is to assess 

seismic demand through a spectral representation of non-linear response, which is 

made possible by: (1) the idealisation of the actual MDOF structure as an equivalent 

elasto-plastic SDOF system; and (2) the transformation of the elastic demand in the 

inelastic demand by increasing structural damping or, alternatively, defining a global 

displacement ductility. 

 

5.2.1. The Capacity Spectrum Method 

The capacity spectrum method (CSM) was first proposed by Freeman et al. (1975) for 

rapid assessment of the seismic risk of building classes. Its outstanding ability to give a 

graphic representation of the seismic performance of a given structure has been widely 

recognised for seismic design/assessment of buildings (Freeman, 1998). In fact, any 

damage level can be directly correlated with an earthquake intensity level. Seismic 

capacity is then compared to demand over the same Cartesian plane having the spectral 

displacement on the abscisse axis and the spectral acceleration on the ordinates axis 

(acceleration-displacement, AD, format). The periods of vibration correspond to rays 

outgoing from the coordinate system origin. The procedure consists in the following 

stages: 

(1) Definition of the pushover curve Vbc by means of pushover analysis or less 

sophisticated methods; 
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(2) Assessment of the dynamic properties of the structure (i.e., period of vibration, 

modal shapes, modal participation factors, and participating mass); 

(3) Transformation of the pushover curve in the capacity spectrum, namely in the 

spectral acceleration (Sa) versus spectral displacement (Sd) curve, as follows: 

1 ,11

b c
a d

c

V
S S
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 
 (5.23) 

where 1 is the participation factor of the fundamental mode: 
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M  is the relevant participating mass: 
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The relationship between spectral acceleration and spectral displacement is: 
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so the slope of the ray outgoing from the axes origin reduces as the period of 

vibration increases. 

(4) Bilinear or multi-linear idealisation of the capacity spectrum by defining, for 

instance: the elastic stiffness as the secant stiffness at a base shear equal to 0.6-0.7 

times the maximum resisting force; the ultimate displacement as the lateral 

displacement corresponding to a base shear reduction not higher than 15-20%; and 

finally the ultimate force through the equal energy rule. 

(5) Conversion of the 5%-damping elastic response spectrum in a demand spectrum 

which is defined in the AD format via the following equation: 

2
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 (5.27) 

The elastic demand is then to be reduced in order to account for damping increase 

associated with the hysteretic response of the structure. Considering a given 

number of increasing damping ratios, one can get a set of inelastic demand 

spectra. In the classical version of CSM, seismic demand was defined through 

overdamped spectra, rather than constant-ductility inelastic spectra. 

(6) Quantification of the seismic performance of the structure in terms of maximum 

acceleration and displacement for the SDOF system. A performance point (PP) 

can be identified as the intersection of the capacity and demand spectra, the latter 

corresponding to a suitable damping level. If the capacity spectrum has no 
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intersection with the demand spectrum, then the structure does not resist against 

the design earthquake. 

From an analytical standpoint, an iterative procedure is needed to identify PP; it 

goes on until the effective damping of the equivalent SDOF system is computed. 

Such an iterative procedure is required because, in the case of inelastic systems, 

seismic capacity depends on seismic demand. In fact, when the structure suffers 

damage due to large drifts induced by seismic ground motion, its lateral stiffness 

reduces and the fundamental period of vibration elongates. Therefore, given that 

the spectral acceleration depends on the period, also the seismic demand changes 

with the dynamic properties of the structure. It is also underlined that yielding 

induces energy dissipation by hysteresis (whose magnitude depends on the 

amplitude and stability of plastic cycles). Given that hysteretic energy is not 

released by the structure, damping produces a drop in the displacement. 

Figure 5.11 illustrates the main stages of CSM. As the displacement demand increases 

the lateral stiffness of the system (which is estimated on the capacity spectrum) 

reduces, the period of vibration increases, and the pseudo-acceleration reduces as well. 

If the fundamental period of the system is higher than the lower bound period of the 

constant-velocity branch of the demand spectrum, the elasto-plastic SDOF system is 

subjected to a displacement demand equal to that associated with a linear elastic 

response (equal displacement rule). Conversely, in the case of masonry structures, the 

fundamental period falls within the interval associated with the constant-acceleration 

branch of the response spectrum, so the displacement demand is higher than that 

associated with a linear elastic response (equal energy rule). 

CSM has two main limitations. First, no physical evidence gives a justification of a 

stable relationship between hysteretic energy and equivalent viscous damping, 

especially in the case of highly-inelastic systems. Second, the period associated with 

the intersection of the capacity curve with the overdamped spectrum cannot be related 

to the actual dynamic response of the inelastic system. In the United States of America, 

such considerations have led to assume another method for the estimation of seismic 

demand, which is based on amplification factors for the elastic displacement demand 

(see Sect. 5.2.2). In fact, while ATC 40 (ATC, 1996) referred explicitly to the 

procedure by Freeman, both FEMA 273 (ATC, 1997a) and the successive American 

standards have focused on the displacement coefficient method (DCM). 

The classical version of CSM was modified by Fajfar (1999), which proposed the use 

of constant-ductility inelastic spectra, rather than overdamped spectra. In such a way, 

the influence of global ductility demand is also taken into account. This variant 

includes the N2 method (see Sect. 5.2.3). Two procedures based on constant-ductility 

spectra were also developed by Chopra and Goel (1999), as alternative tools to those 
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reported in ATC 40. In their investigation, three different RT  relationships were 

employed, namely those developed by Newmark and Hall (1982), Krawinkler and 

Nassar (1992), and Vidic et al. (1994). Finally, Albanesi et al. (2000) proposed a 

simplified variant of CSM which allows eliminating the need for iterations in the 

seismic demand estimation. That procedure is based on the use of variable damping 

response spectra, which are similar to conventional response spectra. 

 

 
Figure 5.11  Graphic representation of CSM (Mwafy, 2001) 



Chapter 5 - Non-Linear Static Procedures 
______________________________________________________________________________________________________________________________ 

 

 71 

5.2.2. The Displacement Coefficient Method 

Such a method was first reported into FEMA 273 and allows to estimate displacement 

demand (namely, the target displacement) through a numerical procedure which does 

not include the transformation of the pushover curve in the AD format. The original 

version applies only in the case of regular buildings and negligible torsional effects due 

to higher modes of vibration. 

The pushover curve is idealised as a bilinear force-displacement diagram. The effective 

period Te is estimated as a function of the initial period Ti associated with the elastic 

stiffness. Then, the target displacement is defined as the product of the elastic demand 

by a number of coefficients (Fig. 5.12). 

 

 
Figure 5.12  Graphic representation of DCM 

 

In particular, the effective period of the structure in the direction considered over the 

building plan can be estimated as follows: 

i
e i

e

K
T T

K
  (5.28) 

where: Ti and Ki are respectively the period and the lateral stiffness obtained through 

multi-mode dynamic analysis on the elastic structural model; and Ke is the effective 

stiffness at 0.6 times the maximum base shear. 

In the case of buildings with rigid floor diaphragms, the target displacement can be 

computed through the following equation: 
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where: 

- Sa(Te) is the spectral acceleration at the effective period; 

- C0 is a modification factor which allows to estimate the elastic roof displacement of 

the MDOF system as a function of the elastic displacement demand on the SDOF 

system; such a factor can be approximated as the participation factor of the 

fundamental mode; 

- C1 is a modification factor which allows to estimate the maximum displacement on 

an elastic-perfectly plastic SDOF system as a function of that experienced by the 

same SDOF system with elastic linear behaviour; this factor is defined as follows: 
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where Tc is the lower bound period of the constant-velocity branch of the response 

spectrum, while R is the strength reduction factor; 

- C2 is a modification factor accounting for the influence of pinched hysteretic shape, 

stiffness degradation, and strength deterioration, on the displacement demand; and 

- C3 is an amplification factor accounting for dynamic P-Delta effects, which depends 

on the post-peak response of the SDOF model. 

The procedure for the estimation of the target displacement is summarised also into 

FEMA 356 (ASCE, 2000), while FEMA 440 (ATC, 2005) provides interesting 

formulations for more accurate estimations of the elastic displacement modification 

factors, including also characteristics of the seismic ground motion (be it near source or 

far field). FEMA 440 estiblishes that torsional effects should be considered only if 

floor diaphragms can be assumed to be rigid in their own plane. In such a case, an 

additional amplification factor, defined as the ratio between the maximum 

displacement at any point of the diaphragm and the average displacement, is take into 

account. On the contrary, in the case of flexible diaphragms, the target displacement 

should be amplified through a coefficient equal to the ratio between the maximum 

displacement at any point of the roof diaphragm and the displacement at centre of mass 

located at the same level. 

Akkar and Metin (2007) investigated the accuracy of procedures reported in  

FEMA 440 for the application of CSM and DCM. A great number of non-linear 

dynamic analyses were performed on SDOF and MDOF systems under both near 

source (ordinary and pulse-like) and far field ground motion records. It was found that 
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both NSPs can provide rather accurate predictions of deformation demand in terms of 

median values, also in the case of near source records. Statistical errors conditional on 

strength reduction factor R showed that DCM tends to provide conservative estimation 

under increasing R-values. 

Erduran and Kunnath (2010) carried out an interesting investigation aimed at 

improving DCM for degrading MDOF systems. Those researchers found that it is very 

difficult to get high R-values (i.e., not lower than 6) in the case of low-period structures 

(e.g., masonry constructions), so demand coefficients should be defined by considering 

the specific value of strength reduction factor. The simplified formulae which define 

the coefficient C2 lead to underestimate the displacement demand in the case of low-

period structures with stiffness degradation. A set of non-linear analyses were also 

performed to assess the influence of both strength degradation and P-Delta effects on 

the displacement demand in the case of systems subjected to both near source and far 

field seismic ground motions. Therefore, simplified formulas for the definition of a 

displacement amplification factor able to include not only the stiffness and strength 

degradations, but also P-Delta effects. 

 

5.2.3. The N2 Method 

Such a procedure was proposed by Fajfar and Fischinger (1989), and can be applied 

also to damage analysis (Fajfar and Gašpersič, 1996). It is a very effective NSP and is 

the reference method in both EC8 and IBC, being in compliance with multi-level PBD 

(Fajfar, 2000) and suitable for plan-irregular structures in the presence of accidental 

eccentricities (Fajfar, 2006; De Stefano and Pintucchi, 2008; Magliulo et al., 2008). 

The basic idea comes back from the Q-model by Saiidi and Sozen (1981), but its last 

variant was reformulated also in the AD format (Fajfar, 1999) to joint advantages of 

CSM, in terms of graphic representation, with the sound physical meaning of constant-

ductility inelastic demand spectra. 

In the N2 method, „N‟ stands for non-linear seismic analysis and „2‟ for two-

dimensional structural model. The original version of the method was indeed based on:  

- the development of two separate mathematical models of the structure; 

- the assessment of seismic capacity through SPO; and 

- the use of an inelastic response spectrum for the demand estimation and the global 

performance assessment. 

The capacity model should include the main non-linearities affecting the structure to be 

assessed. SPO allows then to characterise non-linear response and to identify 

displacement limits on the pushover curve. The idealisation of the MDOF system as an 

equivalent elasto-plastic SDOF system is carried out through a homothetic reduction of 

pushover curves. Such a reduction is performed by means of the modal participation 
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factor and the modal displacement at the control point. The elasto-plastic SDOF system 

is defined by bilinear idealisation of the reduced pushover curve, so the inelastic 

displacement demand is derived (without any iteration) as a function of both the elastic 

period of the SDOF system and the „demand‟ strength reduction factor, by means of 

RT relations like that proposed by Vidic et al. (1994). 

The use of an elasto-plastic model with hardening, rather than the EPP model, to 

idealise the reduced pushover curve leads to a reduction in the target displacement, 

namely the maximum displacement demand defined as the product of the elastic 

displacement demand by the kinematic ductility . 

The bilinear idealisation of the scaled pushover curve leads to estimate the yielding 

force e yV V  . Once the effective mass em  and the elastic stiffness ek   of the 

equivalent SDOF system have been computed (see Sect. 5.1.1), the elastic period can 

be defined as follows: 
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The ratio between the demand elastic resisting force and the yielding force of the 

SDOF system provides the „demand‟ strength reduction factor associated with 

displacement ductility: 
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The ductility demand  can be estimated through a RT relation, so that the 

inelastic displacement demand can be obtained from that related to the elastic system, 

namely Sd,e. 

In particular, the maximum inelastic displacement can be estimated through the 

following equations: 

 max,

max max, max,

max max, ,

1 1 for

for

e c
e e e c

e

e d e e c

d T
d R d d T T

R RT

d d S T T



   
 

 

  

  
      

 

  

 (5.33) 

If Eq. (5.32) gives a strength reduction factor not higher than unity, the structure 

behaves elastically so the maximum displacement is equal to the elastic demand. 

Seismic performance assessment of the structure is thus carried out by checking that 

the displacement demand derived from one of Eqs. (5.33) does not exceed the 

displacement capacity du. The latter is defined before the bilinear idealisation of the 

scaled pushover curve is performed. For instance, one can identify the ultimate 

displacement capacity of the structure at a given base shear drop. If the displacement 
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demand at the limit state of interest is not higher than the relevant displacement 

capacity, the distribution of inelastic demand throughout the actual structure can be 

assessed by amplifying the inelastic displacement demand on the equivalent SDOF 

system through the first-mode participation factor, as follows: 

max 1 maxd    (5.34) 

At this displacement, internal forces and deformations of the structure can be computed 

to assess local demands on individual structural components. The maximum 

displacement max is clearly the target displacement t considered in DCM. 

In the N2 method, hysteretic damage is not taken into account by increasing the 

equivalent viscous damping of the elastic SDOF system, but considering an equivalent 

elasto-plastic system. Thus, Eq. (5.27) cannot be applied and the demand spectrum in 

the AD format is to be defined through the following equations: 
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Such equations
18

 allow assessing the maximum strength reduction in compliance with 

supply displacement ductility. The latter is defined on the idealised force-displacement 

diagram as the ratio between the ultimate displacement (not the demand displacement) 

and the yielding displacement. In that case, the strength reduction factor is not 

associated with demand, but is a measure of seismic capacity. 

It is underlined that Eqs. (5.36) are an approximation of the following equations 

derived by Vidic et al. (1994): 
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 (5.37) 

where: T0 = 0.65 
0.3

 Tc ≤ Tc. 

Figure 5.13 shows a comparison between the RT relationships defined by  

Eqs. (5.37) and those obtained by assuming the period T0 equal to the characteristic 

period Tc of the seismic ground motion. The latter is typically defined to be the lower 

bound period of the constant-velocity branch of the response spectrum. 

                                                 
18

  The former is related to the equal energy rule, the latter to the equal displacement rule. 
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Figure 5.13  Definition of ductility-related strength reduction factor (Fajfar, 1999) 

 

The assumption T0 = Tc is conservative as it leads to a slight underestimation of the  

R-factor in the interval [0,Tc], and hence to an acceleration demand (i.e., a required 

strength) higher than that actual. Figures 5.14a and 5.14b show the graphic 

identification of PP for low-period structures (that is, with T  
*
 < Tc) and high-period 

structures (that is, with T  

*
 > Tc), respectively. PP is defined as as the intersection 

between the constant-ductility demand spectrum and the bilinear capacity spectrum. 

The latter is derived from the bilinear force-displacement diagram through Eqs. (5.23). 

One can see that the inelastic displacement demand on low-period structures is larger 

than the elastic demand (Fig. 5.14a), while they are the same in the case of high-period 

structures (Fig. 5.14b). 

 

 

 (a) (b) 

Figure 5.14  Displacement demand estimation for (a) low- and (b) high-period structures 

 

Typically, design acceleration is lower than yielding acceleration of the structure. In 

fact, overstrength makes possible a further strength reduction through an overstrength 

factor denoted as Rs. IBC defines the overstrength factor u/1 as the ratio between 0.9 

times the maximum resisting base shear and that corresponding to the failure of the 

weakest structural element. Therefore, the overall strength reduction factor (namely, 

the behaviour factor) is defined as R = R Rs. 
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 Some remarks on strength reduction factors 

A comprehensive review on strength reduction factors was presented by Miranda and 

Bertero (1994). Eight different RT relations were discussed and R was found to 

be, on average, rather constant and equal to  in the case of records on rock soil and 

medium-to-high periods of vibration. The same conclusion was found by Vidic et al. 

(1994) by investigating the influence of the hysteresis model, earthquake magnitude, 

and damping model, on the strength reduction factor. Assuming a bilinear force-

displacement SDOF model with 10% hardening ratio, R was found to be 20% higher 

than that obtained for a stiffness-degrading model with the same hardening ratio.  

R was also found to be higher in the case of 2% damping (rather than 5%) and mass-

proportional damping (rather than current stiffness-proportional damping). 

More recently, Gupta and Krawinkler (2000) and Miranda (2000) investigated the 

relationship between the inelastic and elastic displacements concluding that the mean 

ratio Sd,i/Sd,e at medium-high periods was equal to 1.0 and 0.85, respectively. A unitary 

ratio confirms then the validity of the equal displacement rule for flexible structures. 

Miranda found that the ratio Sd,i/Sd,e does not depend on the earthquake magnitude, nor 

on the peak ground acceleration and epicentral distance (near source records are an 

exception). The scatter in results was found to increase with the level of inelastic 

deformation and was characterised by typical coefficients of variation for earthquake 

engineering applications (that is, lower than 0.4 for  = 6 and lower than 0.3 for  = 3). 

Nevertheless, the equal displacement rule leads to large underestimations of inelastic 

displacement in the following cases: (1) near source records; (2) hysteresis cycles with 

significant pinching or, alternatively, stiffness and/or strength degradation (Rahnama 

and Krawinkler, 1993); and (3) systems with low resistance (e.g., ratio between 

yielding force and elastic strength demand lower than 0.2; Whittaker et al., 1998). The 

equal displacement rule was found to produce unsatisfactory predictions in the case of 

flexible soils (Miranda, 1993; Riddell, 1995) for which modified inelastic spectra, or 

correction factors for displacement demand, should be used. 

In the case of low-period structures, the inelastic displacement is larger than the elastic 

displacement; consequently, the strength reduction factor is lower than ductility. The 

period of vibration T0 (below which the inelastic displacement begins to be larger than 

the elastic displacement) depends on the frequency content of the record. If  is about 

0.4, T0 is rather equal to Tc. As increases or reduces, T0 increases and reduces as well, 

as shown by the equation by Vidic et al. (1994). If T < T0, the inelastic displacement is 

more sensitive to structural properties than in the case of medium-high periods, so less 

accurate estimates of displacement demand are obtained. Nonetheless, rigid structures 

are less vulnerable to displacements so that, in general, the latter do not govern the 

seismic design. 
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It is emphasised that RT relations can be applied only to design spectra, while 

both elastic and inelastic response spectra can be obtained by non-linear time-history 

analysis for a set of accelerograms. Such response spectra can then be transformed in 

demand spectra. Conversely, any RT relationship is not compatible with elastic 

spectra derived from specific records. 

Damage accumulation effects, which cannot be neglected in the case of existing 

buildings, can be taken into account by means of equivalent ductility, according to 

Fajfar (1992). Such ductility is lower than monotonic (or kinematic) ductility because 

it includes the damage accumulation due to hysteretic energy dissipation. Alternatively, 

Cosenza and Manfredi (1992) proposed to amplify the displacement demand. Cosenza 

et al. (2010) proposed several equations which allow to define both demand and 

capacity of elastic-perfectly plastic SDOF systems, including explicitly the effect of 

damage accumulation through several indices (i.e., Park & Ang index, hysteretic 

energy index, and low-cycle plastic fatigue index). Inelastic acceleration, displacement, 

or capacity spectra can be defined through a damage factor pdam which accounts for the 

earthquake damage potential. 

 

 Extension of N2 method to plan-irregular buildings 

As stated above, the N2 method was extended to plan-irregular structures by Fajfar 

(2006). The transformation of the MDOF system in an equivalent SDOF system can be 

carried out as in the case of a two-dimensional structural model, providing that 

torsional effects are considered as follows: 

- displacement amplification due to torsional rotations can be conservatively 

estimated through multi-mode dynamic analysis (important assumption in the 

inelastic range); and 

- potential unfavourable effects on the rigid end predicted by elastic analysis (e.g., 

displacements lower than those corresponding to the case of plan-symmetric 

building) can be neglected, since in general they reduce up to about zero in the 

inelastic range. 

In particular, the N2 method for plan-asymmetric buildings consists of the following 

stages: 

(1) Pushover analysis on a three-dimensional model. The lateral loads are applied at 

the centres of mass, separately along two directions of the building plan, and in 

both positive and negative orientations. For each direction, the displacement 

demand at the centre of mass of the roof level is computed and the maximum 

value between those related to both load orientations is considered. 
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(2) Multi-mode dynamic analysis of the three-dimensional model. The analysis is 

separately performed along the two above-mentioned directions and the relevant 

results are combined through the SRSS rule. 

(3) Correction of pushover analysis predictions. The effects of plan irregularities are 

taken into account through a correction factor derived from multi-mode dynamic 

analysis. This factor is defined as the ratio between the normalised displacement 

at a point of the roof diaphragm derived from elastic modal analysis and that 

predicted by pushover analysis. The former normalised displacement is that 

suffered by a given point of the roof diaphragms, divided by the displacement of 

the centre of mass at the same floor level. If the normalised displacement derived 

from elastic modal analysis is lower than unity, no modification factors apply 

(which means that potential torsionally-induced displacement deamplifications are 

not considered). The correction factor is separately defined for each plan direction 

and depends on the floor level under consideration. 

(4) Seismic demand estimation. The displacement demand at the centres of mass (both 

amplitude and distribution along the height of the building) is estimated through 

the classical version of the N2 method, which is based just on pushover analysis. 

Pushover predictions are then multiplied by correction factors. 

 

 



 

 

Chapter 6 - SEISMIC ANALYSIS OF MASONRY BUILDINGS 

A number of structural analysis methods based on models with increasing accuracy 

have been developed for masonry constructions. The method employed for structural 

analysis depends on the modelling strategy being adopted (see Chap. 2). In general, 

structural models can be classified as continuous and discontinuous. The former can be 

solved through direct methods, namely closed-form integration or series expansion of 

functions, or numerical methods based on a posteriori discretisation of solution, 

namely finite difference method or numerical integration
19

. Discountinuous models are 

instead structural systems composed by one- or two-dimensional elements, finite 

elements (FEs), boundary elements (DEs), or discrete elements. 

Macro-elements models are typically used for seismic analysis of masonry 

constructions (Augenti, 2004): each bearing wall with openings is regarded as an 

equivalent frame composed by one-dimensional elements with axial, flexural and shear 

flexibilities. Alternatively, numerical models based on FEs (Lourenço, 1996; 

Gambarotta and Lagomarsino, 1997a,b; Calderini and Lagomarsino, 2008; Luciano 

and Sacco, 1998) or DEs (Cundall, 1988; Hart et al., 1988; Lemos, 2006) can be 

employed, especially in the case of historical structures. 

In order to simulate seismic response of masonry constructions, the main failure modes 

observed after past earthquakes should be captured. Although numerical modelling 

allows to assess in accurate mode the structural behaviour of masonry constructions, its 

high computational work is not generally sustainable in engineering practice.  

Key issues in numerical methods are: (1) geometrical modelling of rubble and multi-

leaf masonry assemblages; (2) the assumption of reliable values of refined mechanical 

properties of both masonry and its constituent materials (i.e., masonry units and 

mortar), which require complex and expensive experimental investigations; and  

(3) the correlation between stress/strain fields in the continuum model and 

conventional limit states defined in terms of internal forces and drifts for individual 

structural components. The identification of FEs to be monitored for capturing the 

attainment of limit drifts is often ambiguous and needs for repeated operations of 

averaging, extrapolation, and integration. It is also underlined that sensitivity analyses 

                                                 
19

 A posteriori discretisation of solution leads to discontinuous solutions of a continuum model, 

because both stresses and strains are computed only in the nodes of a regular mesh 

overlapped to the model. 
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are needed for mesh calibration, since it can affect the analytical predictions. Due to 

such a problem, numerical methods are even more difficult to be applied to medium-

large structures. Nevertheless, FE and DE methods remain the unique available tools 

for structural assessment of highly-irregular and historical/monumental masonry 

structures. The latter are often characterised by vaults and domes. In such cases, FE 

micro-modelling (either simplified or detailed) or macro-modelling of masonry can be 

used, for instance, by applying numerical formulations developed by Lourenço (1996). 

Given that numerical methods are affected by several difficulties related to both 

masonry modelling and manipulation of results, in the last decades the macro-element 

methods have been recognised to be effective for capturing the main features of non-

linear seismic response of „standard‟ masonry buildings. The term „standard‟ means 

that the building is composed by „regular‟ masonry walls with openings (namely, walls 

with openings aligned in both horizontal and vertical directions) which are well 

connected at their intersections. The use of macro-element methods is perfectly 

consistent with, inter alia, the need for seismic assessment at different performance 

levels, according to the most advanced seismic codes (CEN, 2004; ATC, 2005; IMIT, 

2008). In fact, the evolutionary structural response can be simulated by direct 

monitoring of lateral drifts on several macro-elements; the attainment of limit states of 

interest for design/assessment can then be captured with a limited computational work. 

In the following sections, the main in-plane failure modes of URM walls, as well as the 

main features of some macro-element methods are briefly reviewed and discussed. 

Seismic demand and capacity on individual masonry walls/panels for safety 

verifications against out-of-plane failure modes are out of the scope of this thesis. 

6.1. In-Plane Failure Modes of URM Walls 

Global seismic analysis of masonry buildings captures typically failure mechanisms 

occurring in the longitudinal plane of individual walls. In general, in-plane failure 

modes can be classified as follows: 

- flexural toe crushing (Fig. 6.1a), which includes crushing cracks aligned with the 

axial force at the wall toes, as well as tensile cracks orthogonal to the axial force; 

- sliding shear cracking, which is characterised by relative sliding along a mortar bed 

joint (Fig. 6.1b), or stair-stepped diagonal cracking involving both mortar joints and 

masonry units (Fig. 6.1c); and 

- tension shear cracking (Fig. 6.1d), which consists of diagonal cracking; the fracture 

process begins at wall centroid and propagates along the diagonal toward the toes. 

For each failure mode, the allowable lateral force depends on the given axial force, 

boundary conditions, length-to-width ratio, and mechanical properties of masonry. 
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Figure 6.1  In-plane failure modes of URM panels 

6.2. The RAN Method 

6.2.1. Foreword 

The RAN method (which is the acronim of Raithel Aldo and Augenti Nicola) was 

developed by Raithel, Augenti and other researchers since 1981 and was presented for 

the first time at the 2
nd

 Italian National Conference ASS.I.R.C.CO. (Augenti et al., 

1984a-g). The same authors investigated also the force-displacement relationship and 

ultra-elastic deformations of masonry panels (Augenti et al., 1987a,b). A detailed 

discussion on the RAN method was made by Augenti (2004). A preliminary 

investigation on the seismic response of „irregular‟ walls with openings (Augenti, 

2006) and mixed masonry-RC buildings (Augenti e Parisi, 2008a-c, 2009a) has been 

also performed in recent years. 

 

6.2.2. Fundamental Assumptions 

The RAN method allows to perform linear static analysis of masonry buildings 

composed by walls with openings and horizontal floor diaphragms, and to estimate the 

lateral load-bearing capacity of individual walls. Extending the contour lines of the 

openings, one can identify spandrels and piers, namely the horizontal and vertical 

masonry strips between openings, respectively (Fig. 6.2). 

 

Joint panelPier or pier panel Spandrel or spandrel panel

 
Figure 6.2  Macro-element modelling of a masonry wall with openings 
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The spandrels transfer both horizontal and vertical loads to the piers, providing their 

coupling under lateral actions. The piers ensure load transfer to the foundation system. 

The intersection between spandrels and piers allows to identify also the following types 

of macro-elements: pier panels, which are the vertical structural components between 

two consecutive spandrels; spandrel panels, which are the horizontal structural 

components between two consecutive piers; and joint panels, which link spandrels and 

piers together. 

Spandrels affect seismic response of walls, but their non-linear strength/deformation 

capacity is quite complex to be defined (Augenti, 2007). On the contrary, the lateral 

behaviour of pier panels can be simply simulated on the basis of the large amount of 

available experimental data (see, for instance, Database Murature UNINA-DIST at the 

website of the Italian National Network of University Laboratories for Earthquake 

Engineering, ReLUIS; URL: http://www.reluis.it/dbuninadist). Assuming pier panels 

to be rigid and infinitely resistant in their own plane, the modelling of masonry walls 

consists in the modelling of spandrel and pier panels. 

The global seismic analysis is then performed under the following hypotheses: 

- masonry is a homogeneous NTR-EPP material in uniaxial compression; 

- masonry walls with openings have rigid spandrels and are orthogonal themselves 

and well connected to rigid diaphragms at each floor level; 

- doubly-fixed pier panels have axial, flexural, and shear flexibilities
20

, as well as 

zero Saint Venant torsional stiffness and zero out-of-plane lateral stiffness; 

- spandrel panels are rigid and brittle; 

- joint panels are rigid and infinitely resistant; 

- the lateral resistance of both pier and spandrel panels depends on the dominant 

failure mode (namely, toe crushing, tension cracking, or sliding shear); 

- limit states of individual panels defined through strength domains corresponding to 

different sectional stress distributions, based on the strength criteria adopted for the 

failure modes; 

- horizontal seismic actions are applied to the centres of mass at the floor levels; 

- the lateral response of pier panels is simulated by means of force-displacement 

curves; the latter are summed until the minimum inelastic displacement of a pier 

panel is reached, in order to define the force-displacement curve of a given storey; 

- the axial load on the pier panels is due to both gravity loads and horizontal actions; 

and 

- the collapse of the building occurs when the lateral resistance of the weakest pier 

panel is reached. 

                                                 
20

  The boundary conditions of masonry panels are assumed to be constant during the analysis. 

http://www.reluis.it/dbuninadist
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The masonry panels are assumed to be prismatic with rectangular cross-section. 

Actually, wall connections would induce the need for modelling masonry panels with 

L-, T-, or X-shaped cross-section. Nevertheless, the assumption of rectangular cross-

sections is generally conservative because it leads to overestimate strength demands. 

The RAN method allows to simulate the evolution in lateral stiffness of individual 

masonry panels, and hence its distribution throughout the structure, due to masonry 

cracking and yielding of masonry even at small elastic deformations. Therefore, the 

adopted procedure does not consider an equivalent „cracked‟ stiffness for individual 

walls, avoiding approximations due to some code suggestions. In fact, both EC8 (CEN, 

2004) and IBC (IMIT, 2008) allow to assume the effective lateral stiffness equal to 

one-half of the initial stiffness. 

It is underlined that both EC8 and IBC allow to include spandrel panels within the 

capacity model of the structure, provided that their safety level is checked and the 

following requirements are met: 

- in the case of new buildings, orthogonal walls are connected by RC ring beams and 

the lintels above the openings are well-anchored to adjoining piers; 

- in the case of existing buildings, spandrel panels are supported by a lintel, arch, or 

effective lintel (able to give support also after damage in the spandrel), and are 

effectively anchored to adjoining piers or, alternatively, are able to provide lateral 

resistance through a diagonal strut resisting mechanism. 

 

6.2.3. Open issues 

The current main limitation of the RAN method was its inability to be applied in 

pushover analysis; this thesis is then aimed at extending some features of the RAN 

method to the non-linear range. Nevertheless, apart from this main limitation, some 

issues can be identified in the classical RAN method. In fact, response predictions for 

building with highly-irregular walls (i.e., high misalignments of openings in the 

horizontal and/or vertical directions) are under validation. RM walls and flexible 

diaphragms (e.g., wooden or mixed steel-tile floor slabs, masonry vaults) are not 

considered in the structural analysis. 

The assumption of rigid spandrels is acceptable in the presence of both RC ring beams 

and lintels above the openings. Such tensile resistant elements provide high stiffness to 

the spandrel, allowing the assumption of doubly-fixed pier panels. In the case of 

existing masonry buildings with flexible floor diaphragms and without RC ring beams, 

the model adopted in the RAN method could lead to overestimate the global stiffness 

and load-bearing capacity and to underestimate displacement capacity of the structure. 

Nevertheless, as mentioned above, the role of spandrels on boundary conditions and 

coupling of pier panels, especially in the non-linear range, is still under investigation. 
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6.2.4. Analysis Steps 

The RAN method consists mainly of the following stages: 

(1) computation of axial forces on pier panels due to gravity loads; 

(2) estimation of base shear as a function of the approximated fundamental period and 

distribution along the height of the building (CEN, 2004; IMIT, 2008); 

(3) horizontal stiffness-proportional distribution of lateral actions at each floor level; 

(4) computation of lateral forces acting on individual walls with openings and 

evaluation of axial forces induced by them on pier panels; 

(5) computation of axial forces on pier panels as the sum of those related to gravity 

loads and seismic actions; 

(6) estimation of lateral resistance of pier panels at different limit states through shear 

force  axial force domains; 

(7) definition of force-displacement curves of both pier panels and their storeys under 

the axial forces estimated at the step (5); 

(8) assessment of each masonry wall by comparing, at each storey, the storey shear to 

the allowable storey shear at elastic limit state (ELS) or ULS; 

(9) computation of shear forces acting on individual pier panels and their relevant 

secant stiffnesses
21

, if safety verifications are met; 

(10) redistribution of storey forces in proportion to secant lateral stiffnesses and 

iteration of steps (4)(9) until current shear forces are equal to those computed at 

the previous step; 

(11) computation of internal forces on both joint and spandrel panels, at each storey; 

and 

(12) safety verification of spandrel panels against shear and flexural failure modes; 

three-dimensional limit strength domains are used to define flexural capacity at 

the ELS (Augenti, 2007). 

In the presence of irregular walls, axial force variations in pier panels due to seismic 

actions is estimated numerically because they depend on shear forces (Augenti, 2006). 

 

6.2.5. Geometrical Modelling and Boundary Conditions 

As stated in Section 6.2.2, the discretisation of each masonry wall with openings is 

carried out by identifying n horizontal strips
22

 and m vertical strips. Such strips are 

defined by extending the contour lines of openings (i.e, door and window openings). 

The position of masonry panels is defined by the indices i, j, k which refer to horizontal 

                                                 
21

 Lateral stiffness of masonry panels reduces significantly with cracking and yielding, 

resulting in variations in the horizontal distribution of storey forces. 
22

 The numebr of horizontal strips is two times the number of storeys; in fact, the latter are 

composed by a spandrel and a set of pier panels and openings. 
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strip, vertical strip, and wall, respectively. The indices i and j are assumed to increase 

from the top to the base of the wall, and from the left to the right in the positive 

orientation of the coordinate axis of the building plan, respectively. In this way, pier 

panels are identified by even i and odd j, joint panels are identified by odd i, j, and 

spandrel panels are identified by odd i and even j (Fig. 6.3). 
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(3.4.k)

(4.5.k)

(3.5.k)

(2.5.k)

(3.2.k)

 
Figure 6.3  Labelling of panels within the k-th wall of a masonry building 

 

Each masonry panel has length B, height H, and thickness s. The height of pier panels 

can be assumed to be not lower than that of the adjacent openings, in the case of 

regular walls. Conversely, the effective height of pier panels in the case of irregular 

walls can be assumed to be equal to that of the opening which follows it in the 

orientation of the seismic action. It is underlined that parapets do not necessarily 

induce structural irregularity of masonry walls, because they can have small thickness 

and lack of continuity with adjacent piers. 

 

6.2.6. Flexural Strength Domains of Pier Panels 

Denoting by N the axial force, V the shear force, and M the bending moment, the 

flexural strength of a pier panel can be defined through NV interaction domains. Once 

the axial force due to both gravity and seismic loads is known, the lateral strength at 

ELS or ULS can be computed. In the case of doubly-fixed pier panel, the lateral 

behaviour under a given force or displacement is emisymmetric. It follows that 

strength domains of end sections are the same and each symmetric with respect to the 

axial force axis. Given that the lateral strength depends on the resisting bending 

moment at the end sections, the NV interaction domain can be derived by scaling the 

bending moment M(N) values through a factor related to boundary conditions. Under 

eccentric compression, three different strength domains can be defined at: (1) linear 

elastic limit state (LELS); (2) non-linear elastic limit state (NELS); (3) cracked 



Chapter 6 - Seismic Analysis of Masonry Buildings 
______________________________________________________________________________________________________________________________ 

 

 87 

ultimate limit state (CULS); and (4) uncracked ultimate limit state (UULS). The limit 

lines of the strength domains are described by equations derived from a stress-based 

approach, namely through the definition of sectional normal stress diagrams for the 

limit states of interest. To this aim, it is assumed that: 

- LELS corresponds to a linear sectional diagram of normal stresses with minimum 

value equal to zero at an extreme fibre (cracking limit state, CLS) and maximum 

value equal to uniaxial compressive strength of masonry (denoted as k) at the 

extreme compressed fibre (Fig. 6.4a); 

- NELS corresponds to a linear sectional diagram of normal stresses with minimum 

value equal to zero at an inner fibre (cracked cross-section with effective width b 

lower than the gross width B) and maximum value equal to k (Fig. 6.4b); 

- CULS corresponds to a uniform sectional diagram of normal stresses equal to k, 

with b < B (Fig. 6.4c); and 

- UULS corresponds to a uniform sectional diagram of normal stresses equal to k, 

with b = B. 

 

B B

b
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B

b
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Figure 6.4  Limit states for eccentric compression 

 

Assuming an EPP  constitutive law for masonry under uniaxial compression, the 

assumption of the aforementioned limit states does not allow to include mechanical 

non-linearity in the elastic range, but only geometrical non-linearity due to cracking of 

cross-section. Axial strains cannot be controlled over cross-section resulting in the 

partial exploitation of the inelastic capacity of masonry, as well as the inability to 

simulate the strength evolution under increasing damage. Finally, elasto-plastic 

sectional states are represented by bilinear stress diagrams. 

In order to include the effect of strength degradation within masonry under increasing 

plastic strains (namely, strain softening), IBC suggest to consider a compressive 

strength reduction equal to 15%. This is equivalent to the application of a stress-block 

criterion, as typically made for design of RC cross-sections. The boundary of the 

flexural strength domain is then described by the following equation: 

 2

2ς
p

B
V N N

H
   (6.1) 
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where: pV = Vp/Nu is the ultimate flexural strength normalised to the ultimate axial 

force Nu = k B s; is a factor related to boundary conditions and is between 0.5 

(doubly-fixed panel) and 1 (cantilever panel); and N = N/Nu is the given axial force 

normalised to Nu. For a normalised axial force falling in the interval [0,0.5], LELS is 

equivalent to CLS and the flexural strength is estimated as follows: 

6ς
l

B
V N

H
  (6.2) 

As the lateral force increases under constant axial force, the cross-section reaches 

NELS at which corresponds a flexural strength equal to: 

24

2ς 3
e

B
V N N

H

 
  

 
 (6.3) 

For a normalised axial force falling in the interval [0.5,1], the cross-section reaches 

UELS (namely, ELS without cracking) and the relevant flexural strength is defined as 

follows: 

 1
6ς

e

B
V N

H
   (6.4) 

Figure 6.5 shows the flexural strength domains for the limit states being considered.  

It is underlined that the flexural strength does not drastically increase from ELS to 

ULS, for low axial forces. Conversely, a significant strength increase is predicted from 

CLS to ELS. 
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Figure 6.5  Flexural strength domains of a pier panel 
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6.2.7. Flexural Strength Domains of Spandrel Panels 

Whilst doubly-fixed and cantilever pier panels define the limit boundary conditions of 

the actual pier panels, the knowledge about spandrel panels is still lacking. In the last 

two years, specific experimental tests have been carried out, for instance, by Gattesco 

et al. (2009) and Augenti et al. (2010b), in order to investigate the inelastic capacity of 

spandrel panels and the influence of spandrels on non-linear response of masonry walls 

with openings. Theoretical analyses have been also performed to define flexural 

strength domains including, inter alia, tensile strength of masonry (Cattari and 

Lagomarsino, 2008) and actual strain ductility (see Sect. 7.1.2). 

Augenti (2007) proposed some equations to define three-dimensional flexural strength 

domains which do not depend on boundary conditions at the end sections since they 

include both translational and rotational equilibrium of the panel. The allowable shear 

force is different for the end sections, resulting in different flexural strength domains. 

The presence of flexural reinforcement induces a change in the strength domain shape 

providing flexural strength also for tensile axial forces. It is emphasised that, in the 

RAN method, spandrel panels are assumed to fail in flexure when ELS is reached. This 

assumption is consistent with that of rigid spandrels, and thus doubly-fixed pier panels. 

Figure 6.6 illustrates the N/NuV/Nue/H interaction domain for a given end section of 

a spandrel panel with dimensions 90×140×60 cm and subjected to zero external loads 

(It is noted that e is the eccentricity of the axial force with respect to the centroid of the 

panel.). The latter do not induce modifications on the lateral behaviour of the macro-

element, but only small translations of the strength domain along the coordinate axes of 

shear force and axial force. 
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Figure 6.6  Flexural strength domain of a spandrel panel 
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Interested readers can refer to Augenti (2004) and Section 7.3.1 of the present thesis 

for a detailed discussion of this subject. It is underlined that two-dimensional 

interaction domains in the planes VN, eV, and Ne, can be derived from the three-

dimensional domain at constant values of e, N, and V, respectively (Augenti, 2007). 

Such domains allow to check safety against flexural failure and to define three safety 

factors by keeping constant two parameters and increasing only the last parameter. 

 

6.2.8. Shear Strength Domains 

Shear strength of both pier and spandrel panels is defined by means of local strength 

criteria which do not include equilibrium. Namely, diagonal tension cracking is 

assumed to occur when the principal tensile stress at the centroid of the panel reaches 

tensile strength of masonry, according to Turnšek and Čačovič (1971). Sliding shear 

strength is predicted through the Mohr-Coulomb failure model, namely assuming that 

relative sliding occurs when the maximum shear stress at the mid cross-section of the 

panel reaches the sliding shear strength. Also in this case, shearing deformations are 

not controlled. 

The lateral strength corresponding to diagonal tension cracking is defined as follows: 

β 1
β

t

N
V

p
   (6.5) 

where:  is the ratio between diagonal tensile strength at zero confining stress (k) and 

uniaxial compressive strength of masonry (k); and p is a shear stress distribution 

factor defined as the ratio between the maximum and the average shear stresses (max 

and n = V/Bs, respectively). The factor p is typically set to: 1 in the case of panels with 

aspect length-to-width ratio H/B not greater than 1 (i.e., squat panels); 1.5 in the case 

of panels with H/B not lower than 1.5 (i.e., slender panels); and H/B itself in the case of 

panels with H/B falling in the interval ]1,1.5[. 

The lateral strength corresponding to sliding shear is defined as follows: 

 
1

γ μa aV N
p

   (6.6) 

where: is the ratio between sliding shear strength at zero confining stress (c) and 

uniaxial compressive strength of masonry (k); and a is the friction coefficient. 

In the case of bed-joint sliding, both cohesive and frictional strengths have „local‟ 

meaning, being they related to shear response of mortar bed joints. The friction 

coefficient reduces as the average normal (confining) stress increases, as follows: 

 
23

0.17
μ

ζ ζ
a

n k

  (6.7) 
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In the case of stair-stepped diagonal sliding, both masonry units and mortar joints are 

involved so the friction coefficient is regarded as a property of the whole masonry. For 

this failure mode, past experimental tests have shown that friction coefficient falls in 

the range [0.3,0.8]. Both EC6 (CEN, 2005a) and IBC (IMIT, 2008) provide a = 0.4. 

Since shear failure criteria do not ensure the equilibrium of the masonry panel, their 

limit strength domains are to be overlapped to those corresponding to flexural limit 

states. It follows that the final limit strength domain of a masonry panel is the 

minimum envelope of those corresponding to different failure modes. Figures 6.7a and 

6.7b show respectively the limit strength domains related to a squat panel with  

H/B = 1 and to a slender panel with H/B = 1.5, in the case of  =  = 0.03. 
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Figure 6.7  Strength domains for (a) squat panel and (b) slender panel 
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6.2.9. Force-Displacement Diagrams 

Spandrels affect significantly the earthquake resistance of masonry walls with openings 

since they provide lateral coupling among piers. Therefore, the structural model should 

be solved including both equilibrium and displacement compability. Lateral strength 

should be related to displacement capacity in order to include compatibility between 

lateral displacements of pier panels within structural analysis. 

It is underlined that displacement compatibility should be considered also in the case of 

cracked or highly-flexible spandrels, if rigid floor diaphragms well connected to load-

bearing walls (e.g., through RC ring beams) are present. In such a case, pier panels 

cannot be considered to be doubly-fixed so their lateral stiffness reduces toward that 

associated with cantilever panels. In the absence of effective connections among piers, 

no lateral displacement compatibility should be taken into account and the limit 

strength domains presented in Sections 6.2.66.28 are sufficient to assess the lateral 

resistance of the wall. The vulnerability of the latter depends directly on the lateral 

strength of piers which are expected to fail in flexure, because of their cantilever-type 

boundary conditions and high slenderness. 

In the RAN method, force-displacement (V) diagrams are first defined for single pier 

panels and then for each storey of single walls with openings. Both the lateral strength 

and stiffness are estimated under varying lateral displacement between end sections of 

pier panels at the same storey of a given wall. Since the lateral strength depends also 

on the given axial forces on pier panels, the force-displacement curve of each macro-

element is built up for a given axial force. The shape of the curve depends on the 

failure mode which, in turn, is associated with the minimum ultimate lateral strength 

among those corresponding to flexural and shear mechanisms. As the relative lateral 

displacement increases, the resisting force increases while the lateral stiffness reduces. 

The force-displacement diagram of a single pier panel is defined in force control, 

namely the lateral displacement is computed under monotonically-increasing shear 

force. On the contrary, given that displacement compatibility has to be met, the force-

displacement curve of an entire wall storey is defined in displacement control, namely 

through numerical evaluation of resisting shear forces corresponding to each given 

displacement and their summation aimed at computing the resisting storey shear. 

 

 Force-displacement diagrams of pier panels 

Given an axial force Ni,j,k = Ri,j,k + Si,j,k on the pier panel (i, j, k) (being Ri,j,k and Si,j,k its 

fractions due to gravity loads and horizontal seismic actions, respectively), the resiting 

shear forces corresponding to shear failure modes (Vt,Va) and flexural limit states 

(Vl,Ve,Vp) can be estimated through the relevant NV interaction domains. The force-

displacement curve in force control is the plot of a monotonically-increasing function  
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 = (V); such a function is defined in the displacement interval [0,u], being u the 

lateral displacement corresponding to the ultimate lateral strength of the panel. 

The displacement function has different mathematical expressions depending on 

whether the pier panel has linear elastic, non-linear elastic, or plastic lateral response. 

In the linear elastic range, the panel is fully resistant; in the non-linear elastic range, the 

panel is partially resistant due to gradual cracking of masonry, and hence reduced 

effective width of some cross-sections along the height; in the plastic range, the lateral 

response of the panel is also affected by gradual yielding of masonry. Cracking of 

cross-sections induces geometrical non-linearity because the effective cross-sections 

depend on the magnitude of the applied load. 

The relative lateral displacement between the end sections of the panel is regarded as 

the sum of the lateral displacements due to shearing deformation (V) and flexural 

deformation (M). The general equation used for the definition of the lateral 

displacement as a function of the applied shear force is: 

3

δ δ δ χ δ δ
ρ

V M V M

V H V H

G A E I
     (6.8) 

where: , A, and I are respectively the shear factor (equal to 1.2 in the case of 

rectangular cross-sections), the gross area, and the moment of inertia of the cross-

section; E and G are the Young‟s and shear moduli of masonry, respectively;  is a 

factor related to the boundary conditions and varies between 3 (case of cantilever 

panels) and 12 (case of doubly-fixed panels); and, finally, V and M are corrective 

functions equal to unity in the linear elastic range, and greater than unity in both the 

non-linear elastic and plastic ranges. The analytical expressions of these corrective 

functions are reported in (Augenti, 2004). 

Defining Vs = min(Vt,Va), if Vp ≤ Vs the pier panel fails in flexure and the force-

displacement curve is composed by: a linear elastic branch for a shear force falling in 

the interval [0,Vl]; a non-linear elastic branch for a shear force falling in the interval 

[Vl,Ve]; and a plastic branch with hardening for a shear force falling in the interval 

[Ve,Vp] (Fig. 6.8a). 
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Figure 6.8  Types of force-displacement diagrams for pier panels 
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If Vs ≤ Vp or Vs ≤ Ve or Vs ≤ Vl , the panel fails in shear and the force-displacement is 

assumed to be characterised by a plastic plateau by distinguishing the following cases: 

(1) Vs ≤ Vp:  the force-displacement curve is composed by a linear elastic branch for a 

shear force falling in the interval [0,Vl], a non-linear elastic branch for a 

shear force falling in the interval [Vl,Vs], a plastic branch with hardening 

for a shear force falling in the interval [Ve,Vs], and a plateau (Fig. 6.8b). 

In such a case, the displacement ductility of the panel is the product of 

the flexural displacement ductility d,M associated with the interval 

[Ve,Vs] by a pre-defined shear displacement ductility d,V set to 1.52. 

(2) Vs ≤ Ve: the force-displacement curve is composed by a linear elastic branch for a 

shear force falling in the interval [0,Vl], a non-linear elastic branch for a 

shear force falling in the interval [Vl,Vs], and a plateau with displacement 

ductility d = d,V (Fig. 6.8c). 

(3) Vs ≤ Vl: the force-displacement curve is composed by a linear elastic branch 

followed by a plateau with displacement ductilityd = d,V (Fig. 6.8d). 

Eq. (6.8) allows to estimate the lateral displacements corresponding to the shear forces 

Vl, Ve, and Vu = min(Vp,Vt,Va). 

If the panel fails in shear (that is, Vu = Vs ≤ Vp), Eq. (6.8) allows to plot the rising 

branches of the force-displacement curve, while the plateau is defined by amplifying 

the lateral displacement s = (Vs) by displacement ductility d. 

In general, it can be stated that, as the given axial force increases, the lateral strength 

increases too, while both displacement capacity and supply displacement ductility 

reduce. 

 

 Force-displacement diagrams of wall storeys 

Once the force-displacement curves of pier panels belonging to the same storey of a 

wall with openings have been defined, the force-displacement diagram of the entire 

wall storey can be characterised. The lateral load-bearing capacity of the storey, 

namely the maximum resisting storey shear, is the sum of the individual lateral 

strengths of pier panels, even though it is assumed to be limited to the minimum 

displacement capacity of the most rigid pier panel at ULS. In order to characterise the 

force-displacement curve, the following limit displacements are defined for the wall 

storey: 

- the displacement capacity at LELS, l,(i,k) = min{l,(i,j,k)}j =1…n; 

- the displacement capacity at NELS, e,(i,k) = min{e,(i,j,k)}j =1…n; and 

- the displacement capacity at ULS, u,(i,k) = min{u,(i,j,k)}j =1…n. 

Such limit displacements identify the extreme points of the branches of the force-

displacement curve. The graphic construction is carried out by numerical computation 
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of the shear force V that produces a lateral displacement  equal to the target 

displacement 

; the latter is monotonically increased within the interval [0,u,(i,k)]. In 

other terms, the following equation is numerically solved: 

 , ,δ δ 0i j kV    (6.9) 

by meeting the following convergence criterion: 

 ( )
, ,

δ*

δ δ
tol

δ

k
i j kV 

  (6.10) 

and assuming, for instance, a numerical tollerance tol = 10
-5

. Eq. (6.9) can be solved 

through numerical procedures, such as Newton-Raphson and secant stiffness methods. 

The Newton-Rahpson method can be applied by defining the residual function: 

   ( ) ( )
, , , ,δ δk k

i j k i j kR V V    (6.11) 

and neglecting the terms of higher order in its Taylor series expansion, the convergence 

is reached when the following equation is satisfied: 

    ( ) ( ) ( 1) ( )
, , , , , , , , 0k k k k

i j k i j k i j k i j kR V R V V V    (6.12) 

with: 

 
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( )
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k
i j k

k
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V

dR
R V

dV
   

The recursive formula of the Newton-Raphson method can then be expressed as: 

 
 
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

 (6.13) 

If the secant stiffness method is used, the derivative of the residual function is 

approximated as its incremental ratio; from a geometrical standpoint, this means that 

the tangent line is approximated as the secant line through two points of the plane V. 

Therefore, assuming: 

 
   ( ) ( 1)

, , , ,( )
, , ( ) ( 1)

, , , ,

δ δk k
i j k i j kk

i j k k k
i j k i j k

V V
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




 


 (6.14) 

one can get the following recursive equation: 

 
   
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




 


 (6.15) 

where V
 (0)

 = 0 and V
 (1)

 = Vu can be assumed as initial values of shear force. 

Once Eq. (6.9) has been solved for each pier panel, the shear forces corresponding to a 

lateral displacement i,j,k = 

 (j = 1…m) are known. The maximum storey shear 
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resisted by the i-th storey of the k-th wall is then obtained by summing up shear forces 

computed for the individual pier panels, namely as follows: 

, , ,

1

(δ )
m

i k i j k

j

V V 



  (6.16) 

The force-displacement curve of the wall storey is a tool that can be particularly useful 

to assess structural regularity in elevation in terms of lateral stiffness. For each wall k, 

the distribution of secant lateral stiffnesses of each storey i can be assessed. Therefore, 

defining the secant lateral stiffness of the wall storey as: 

,

,

,δ

i k

i k

i k

V
k   

the requirement of structural regularity in elevation in terms of lateral stiffness is met if 

the following condition is satisfied: 

,

2,

0.7 1.1
i k

i k

k

k 

   

according to EC8 and IBC. 

 

6.2.10. Global Analysis and Estimation of Strength Demands 

By defining both strength and displacement capacities of pier panels (and hence those 

of load-bearing walls) through interaction domains and force-displacement curves, the 

seismic response of the building can be assessed through linear static analysis under a 

given design base shear. 

In FBD, once the initial fundamental period has been defined, the base shear can be 

estimated and distributed along the height of the building in proportion to both inertia 

masses and height of floor diaphragms. The horizontal seismic action Fi at the i-th 

floor level is assumed to be applied at the location of the centre of mass, separately 

along mutually orthogonal directions x, y of the building plan. Assuming first that pier 

panels are doubly-fixed and fully resistant
23

, the horizontal force can be distributed in 

proportion to lateral stiffnesses of pier panels considering also both structural and 

accidental eccentricities between the centre of mass and the centre of stiffness. The 

horizontal distribution of lateral forces at each floor level is then carried out by 

assuming warping torsion (Benjamin, 1959): This modus operandi is acceptable only if 

the floor diaphragm is rigid in its own plane and well connected to load-bearing walls. 

Conversely, in the case of highly-flexible floor diaphragms, each wall tends to be 

subjected to seismic actions which are proportional to their relevant inertia masses. In 

the absence of floor connections (e.g., ring beams, steel ties), the walls are also 

                                                 
23

 Only in such conditions the lateral stiffness is known before the analysis is run. 



Chapter 6 - Seismic Analysis of Masonry Buildings 
______________________________________________________________________________________________________________________________ 

 

 97 

subjected to out-of-plane seismic actions that increase significantly the probability of 

local failure modes. 

In the case of rigid floor diaphragm, the seismic force acting on a given pier panel can 

be estimated by assuming zero out-of-plane lateral stiffness and considering the 

combination of effects due to seismic actions applied along two plan directions. 

Therefore, if one assume the seismic forces in the x- and y-directions as „primary‟ and 

„secondary‟ actions, respectively (that is, the combination Ex + Ey)
24

, the pier panel u 

parallel to the x-direction is loaded by: 

     , ,1
α

G a y C u C G a x C u C

ux x ux y ux

x C C

y e y y y x e x y y
F F k F k

k I I

      
    
 
 

 (6.17) 

while the panel v parallel to the y-direction is subjected to: 

     , ,1
α

G a y C v C G a x C v C

vy x vy y vy

C y C

y e y x y x e x x x
F F k F k

I k I

      
    
  

 (6.18) 

Such equations include: the storey forces Fx and Fy (which have the same magnitude if 

fundamental periods are assumed to be equal along both directions of the plan); the 

lateral stiffness of the pier panel parallel to the plan direction under consideration (kux 

and kvy); the coordinate of the centroid of the pier panel in the direction orthogonal to 

that of the seismic force (yu and xv); the coordinates (xG, yG) of the centre of mass G; 

the coordinates (xC, yC) of the centre of stiffness C; the components (ea,x, ea,y) of the 

accidental eccentricity e, according to EC8 and IBC; and the polar moment of inertia of 

lateral stiffnesses IC, namely the torsional rigidity of the storey. The latter is defined as 

follows: 

   
2 2

1 1

m n

C ux u C vy v C

u v

I k y y k x x
 

      (6.19) 

Once the seismic forces on the pier panels have been estimated, one can compute the 

horizontal force acting at the i-th floor level of the k-the wall: 

, , ,

1

m

i k i j k

j

F F


  (6.20) 

as well as the storey shear: 

, ,

1

i

i k r k

r

V F


  (6.21) 

                                                 
24

 EC8 and IBC provide  = 0.3, even if some researchers have suggested to assume  = 1, 

especially in the near field. 
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which is clearly the sum of the horizontal forces acting at the floor level under 

consideration and at the underlying floor levels. 

The horizontal forces acting on a given masonry wall induce an overturning moment at 

each floor level, and hence variations Si,j,k in axial forces on the pier panels (Augenti, 

2004). In fact, as anticipated in Section 6.2.9, the total axial force acting on a given 

pier panel is assumed to be Ni,j,k = Ri,j,k + Si,j,k. Depending on its magnitude, one can 

estimate lateral strengths of individual pier panels and storeys, as well as their 

relationship with lateral displacement, through limit strength domains and force-

displacement curves. The sign of the axial force variation depends on the orientation of 

lateral forces and the location of the panel with respect to the centre of axial stiffness of 

the storey. Therefore, seismic forces induce some pier panels to be undercompressed 

and others to be overcompressed. Given that overturning moment increases along the 

height, from the top to the base, and that axial forces due to gravity loads are lower at 

the upper storeys, the most vulnerable pier panels to seismically-induced axial force 

variations are those located at the upper and lower storeys. The axial force variation 

Si,j,k can drastically influence the failure mode and, sometimes, can be equal and 

opposite to the resulting force Ri,j,k, inducing tensile failure. 

If the safety verification is satisfied (i.e., the storey shear is not higher than the lateral 

strength at each wall storey), one can compute both the actual shear forces on the pier 

panels and the relevant secant lateral stiffnesses. The horizontal distribution of storey 

forces can then be repeated for the updated distribution of lateral stiffnesses and the 

procedure can be iterated until the actual the distribution of shear forces on individual 

pier panels is estimated with minor numerical error. 

The bending moment at the end sections of a given pier panel can be defined as  

Mi,j,k = Vi,j,k Hi,j,k/2, so internal forces in both joint and spandrel panels can be computed 

through equilibrium conditions. The safety verification of the building includes also 

that of spandrel panels at ELS. 

 

6.2.11. Assessment of Lateral Load-Bearing Capacity 

Especially if seismic safety requirements are not met, the assessment of lateral load-

bearing capacity can be very useful as intermediate analysis between linear and 

pushover analyses, in order to design strengthening/upgrading interventions aimed at 

reducing seismic vulnerability. In the RAN method this objective is reached through a 

force-controlled incremental static procedure performed on each individual wall. The 

lateral forces are monotonically increased through a load multiplier  by assuming the 

lateral force pattern of linear static analysis. Since the lateral resistance of each wall 

with openings depends also on the magnitudes of axial force variations, and hence on 

the magnitude of lateral forces, an iterative procedure is run to compute the load 
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multiplier corresponding to the attainment of the allowable storey shear at a given 

storey of the wall under consideration or, alternatively, the tensile strength within a 

pier panel. Therefore, this procedure allows to estimate the load multiplier of an ideal 

SPO analysis, since it is stopped at the failure of the weakest pier panel. A conservative 

estimation of seismic vulnearability of the masonry building is then carried out, by 

determining the allowable PGA at ULS. 

6.3. The SAM method 

6.3.1. Foreword 

The SAM method (where SAM is the acronym of Seismic Analysis of Masonry walls) 

is based on a frame-equivalent idealisation of masonry walls with openings and was 

proposed by Magenes and Calvi (1996) accounting for interesting experimental results 

on a masonry wall and a whole building (Calvi and Magenes, 1994; Magenes et al., 

1995). More recently, Magenes and Della Fontana (1998) proposed the SAM II variant 

of the method, which was implemented into a computer program named ANDILWALL 

by using, inter alia, the computer solver ANSR-I (Mondkar and Powell, 1975). The 

SAM II method allows to perform multi-mode dynamic analysis and SPO analysis of 

masonry buildings with rigid floor diaphragms. Over an actual masonry wall with 

openings one can identify: pier elements and spandrel elements, which are modelled as 

one-dimensional elements with both flexural and shear flexibilities; and joint elements, 

which are modelled as rigid end offsets (Fig. 6.9). 

 

 
Figure 6.9  Frame-equivalent idealisation of a masonry wall with openings 

 

6.3.2. The Pier Element 

Such a masonry element is assumed to be made of a flexible part with effective height 

Heff according to Dolce (1991), and two rigid end offsets (Fig. 6.7). The lateral 
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behaviour of the element is supposed to be linear elastic up to the attainment of 

flexural or shear strength, and then perfectly plastic until the ultimate chord rotation is 

reached. The inelasticity is lumped within plastic hinges. 

 

 
Figure 6.10  Pier element and effective height 

 

The ultimate bending moment of the plastic hinge is defined as follows: 

ζ
1

2 0.85

n
u

d

N B
M

f

 
  

 
 (6.22) 

which can be rewritten as: 
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B N
V N

H

 
  

 
 (6.23) 

where H0 is the distance of the cross-section corresponding to zero bending moment 

from the base of the panel. Eq. (6.22) includes the average normale stress and the 

uniaxial compressive strength of masonry. 

The lateral strength corresponding to diagonal tension cracking is computed as follows: 

max0.9 0.9ηu uV V Bs   (6.24) 

where shear strength of masonry is defined as: 

 η min η ,ηu ws b  (6.25) 

being: 

μζ
η

1 α

n
ws

V

c 



 (6.26) 

the shear strength corresponding to stair-stepped sliding along mortar bed joints, and: 
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 
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 (6.27) 

the shear strength corresponding to stair-stepped sliding involving both mortar joints 

and masonry units. The term c into Eq. (6.26) represents the sliding shear strength at 

zero confining stress, namely cohesion, while V is a shear factor defined as  

V = M/(N B). Eq. (6.27) includes tensile strength of masonry units, denoted as fbt. 

Lateral deformation is measured in terms of chord rotation , which is regarded as the 

sum of a flexural contribution and a shearing contribution . Magenes and Calvi 

(1997) found that masonry panels with different aspect ratios failed in shear at rather 

similar drift levels, under combined compression and shear. Conversely, a higher 

scatter was found for allowable displacement ductility. Based on this outcome, 

displacement capacity of masonry panels was directly defined in terms of ultimate 

drift, rather than yielding displacement times displacement ductility. In the case of 

doubly-fixed panels, chord rotation can be defined as i = s =  = /H. 

Bed-joint sliding is assumed to occur at the end sections of the flexible part of the 

panel and the relevant lateral strength can be estimated through the following equation: 

ζ 1.5 μ
β μ

αβ
1 3
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n n
d
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c
V B s c B s

c

  
   

  


 (6.28) 

where  is the ratio between the effective width b and the gross width B, as follows: 

01 1
β 3 α 3
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b B B B
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  
      

   
 (6.29) 

Such an equation corresponds to a linear sectional diagram of normal stresses. An EPP 

response is assumed also for this failure mode. Assuming the tensile strength of 

masonry to be zero in bending, pier elements are considered as fully resistant under 

compressive axial force, accounting for axial force variations induced by seismic 

forces. 

 

6.3.3. The Spandrel Element 

Non-linear modelling of this element does not differ from that related to the pier 

element. Indeed, an effective length is defined and both flexural and shear failure 

modes are considered. In particular, a plastic hinge is introduced at the attainment of 

the ultimate bending moment for flexural failure, while the ultimate lateral strength for 

shear mechanisms is only due by cohesion, as follows: 

uV c Bs  (6.30) 

provided that mortar bed joints are parallel to the longitudinal axis of the element and 
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compression orthogonal to them can be assumed equal to zero. 

Two limit values are defined for the average chord rotation: 1, which corresponds to 

the beginning of the residual strength branch; and 2, which identifies the collapse of 

the panel. The residual strength is defined as Vu (Fig. 6.11). The parameters , 1 and 

2 should be characterised through proper experimental tests and allow to reproduce 

both brittle and ductile responses, for instance assuming 1 at yielding and  = 1, 

respectively. 

In the SAM method, steel ties and RC ring beams can also be modelled. Ties are 

modelled as EPP tensile-resistant rods at which pre-tensioning forces can be assigned. 

RC bond beams are modelled as one-dimensional elements with potential for plastic 

hinges in the inelastic range. 

 

 
 (a) (b) 

Figure 6.11  Types of lateral behaviour of the spandrel element (Magenes et al., 2001) 

 

 

6.3.4. Modelling and Analysis of the Building 

Three-dimensional frame-equivalent modelling allows to consider also out-of-plane 

stiffness/strength of pier panels, as in the case of the RAN method. To this aim, force-

displacement diagrams similar to those related to in-plane lateral behaviour can be 

defined, and different effective heights can be assumed to account for different 

boundary conditions. The effective height of pier panels for out-of-plane response is 

typically assumed to be the interstorey height. 

At wall intersections, rectangular corss-sections are considered and compatibility 

between vertical displacements is imposed through rigid end offsets which, in turn, are 

mutually connected by means of a spherical hinge. Such a modelling allows to simulate 

transverse connections among masonry walls. 

The former version of the SAM method was aimed at performing incremental static 

analysis „by hand‟, similarly to the RAN method. Given an initial magnitude of lateral 
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forces, the horizontal distribution between pier elements at each floor level was first 

assumed to be proportional to initial lateral stiffnesses. Assuming the notation of the 

RAN method, bending moment at the end sections of a given panel (i, j) were 

computed as: 

0
, ,

0
, ,

s s
i j i j

i i
i j i j

M V H

M V H




 (6.31) 

with H 
0s

 = H 
0i
 = H/2. 

For each increment of lateral forces, the bending moments at the end sections of 

spandrel elements were computed through the following equations: 
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 (6.32) 

which include the following distribution coefficients defined in the VEM method by 

Fusier and Vignoli (1993a): 
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  for inner pier elements. 

Therefore, the shear forces were evaluated as follows: 
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 (6.33) 

and were compared to the lateral strengths for shear and flexural mechanisms. If the 

safety verification was not satisfied, the exceeding shear force was first multiplied for 

the distance between cross-sections corresponding to zero and maximum bending 

moments (initially assumed to be one-half of the panel length), and then was 

distributed among elements converging in the node. Such a redistribution induced a 

variation in the point of zero bending moment within pier elements. Once the axial 

force due to both gravity and seismic loads was known, pier elements were assessed.  

If also this verification was not satisfied, the exceeding shear force were distributed 

among elements which were still resistant at the same storey, proportionally to their 

relevant initial elastic stiffness. This procedure were repeated for successive 

increments of lateral forces up to the attainment of ultimate displacement at least in the 

weakest pier element of a given wall. Such a displacement was defined as yielding 

displacement times displacement ductility. 
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As discussed above, the SAM II method is based on the direct definition of 

displacement capacity for both pier and spandrel elements through the assumption of a 

limit drift ratios. 

Internal forces are redistributed until lateral strength of spandrel elements is reached; at 

this state, plastic hinges are introduced at the end sections and boundary conditions of 

pier elements are modified. The updating of boundary conditions for pier elements 

during incremental analysis produces force-displacement curves which changes as the 

lateral stiffness reduces. Since the lateral stiffness of pier elements is assumed to be 

constant and equal to the cracked stiffness in the elastic range, non-linear response is 

mainly due to varying constraints. 

For each boundary condition, the force-displacement curve is idealised as bilinear. The 

pushover curve is then plotted up to global building collapse or loss of numerical 

stability (see Sect. 5.1). 

6.4. The Tremuri computer program 

6.4.1. Foreword 

The method implemented in the computer program TREMURI is based on the definition 

of a masonry macro-element with axial, flexural, and shear flexibilities (Brencich and 

Lagomarsino, 1998), and modelling of masonry buildings consisting in the assemblage 

of frame-equivalent wall models with rigid offsets at the end sections of macro-

elements (Brencich et al., 1998). 

The analysis method was assessed through experimental tests carried out on a brick 

masonry building by Magenes et al. (1995) at the University of Pavia, Italy. Both the 

macro-element and analysis procedure were improved by Penna (2002) and Cattari et 

al. (2004). More recently, Cattari and Lagomarsino (2007) extended the analysis 

procedure to mixed masonry-RC buildings, while Galasco et al. (2006) proposed an 

adaptive variant of the method. 

Opposed to SAM II, the matrix analysis procedure implemented within TREMURI 

allows to include also in-plane flexibility of floor diaphragms in the capacity model, 

and hence to analyse existing buildings with wooden, metallic, or vaulted diaphragms. 

In the case of mixed masonry-RC structures, one can separately define: macro-

elements for both RC shear walls and masonry panels; membrane elements for floor 

diaphragms; and rod elements for ties, RC ring beams, columns, and beams. Internal 

variables
25

 are included in the macro-element to simulate not only flexural mechanisms 

including toe crushing effects, but also shear mechanisms and their evolution in terms 

of both strength and stiffness degradation. 

                                                 
25

  These parameters simulate plastic evolution in the strength domain. 
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6.4.2. The Masonry Macro-element 

The former version of the method was based on a macro-element composed by a 

central rigid part and two extreme parts with bending flexibility. Six kinematic DOFs 

were associated with the macro-element, three for each flexible part. Each tern of 

DOFs included two translations and a rotation. The inelasticity was assumed to be 

lumped in the flexible parts resulting in a lumped plasticity model. 

In recent years, two further DOFs were attributed to the centroid of the panel, in order 

to account for shear mechanisms and rocking; as a result, eight DOFs are now 

associated with the macro-element. Shear failure modes are captured by controlling 

average response parameters able to simulate stress/strain fields within the overall 

masonry panel. Therefore, shear failure modes are not associated with local conditions 

over individual discontinuity surfaces. 

Figure 6.12 shows the above kinematic parameters of the macro-element and their 

relevant static parameters. In particular, the following kinematic variables are defined: 

two terns (u,,w) simulating axial and flexural response of the panel; and a couple 

(,) related to axial and shear response. Bending flexibility is considered at the ends 

(1) and (3) of the macro-element (having dimensions b×a×s); shear flexibility is 

assigned only to the central part (2) (having dimensions b×h×s); and axial flexibility is 

assigned to all parts of the macro-element. Both kinematic and static models have been 

also reformulated by Penna (2002). 

 

 
Figure 6.12  Kinematic and static parameters of the macro-element 

 

The macro-element is defined as one-dimensional element with two nodes (i, j) and its 

kinematics is described by the following displacement vector: 

 t
i i i j j ju w u w    a  (6.34) 

assuming that length of the estreme flexible parts tends to zero (a → 0). Static 

parameters are used to define the following vector of internal forces associated with the 
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nodes (i, j) and to the centroid of the central part: 

 t
i i i j j jn t m n t m v mq  (6.35) 

The following external actions are also considered: weight for unit area, denoted as 

gs (Fig. 6.12); and tangential forces tr and tl acting along the lateral surfaces and 

potentially due to adjacent panels. Based on translational and rotational equilibrium of 

the central part of the macro-element, one can derive the following equations: 

 
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i j j r l

v n n t t h G

m m m t h t t bh
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     
 (6.36) 

where G = gsbh is the weight of the panel. 

Non-linear constitutive equations of the macro-element are based on the following 

hypotheses: zero tensile strength in the extreme parts; and sliding shear with damage in 

the central part. In this way, axial and flexural responses was uncoupled from shear 

response, as well as their relevant inelastic and damage mechanisms. 

For the extreme parts of the macro-element, the constitutive equations establish a 

relationship between the kinematic parameters wi,i [wj,j] and their corresponding 

static parameters ni,mi [nj,mj]. Such equations are uncoupled if it results |m/n|≤b/6, 

namely until the cross-section of the panel is fully compressed. In this case, the cross-

section is fully resistant because the axial force is applied to a point falling in the 

central core of inertia. Therefore, denoting by k = 2E/h the axial stiffness for unit area, 

one can get: 

3
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N k b s w

k
M sb


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 (6.37) 

and hence: 

3 3
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k ksb sb bM b
e

N k b s w k b s w w

  
      (6.38) 

From a kinematic point of view, being w < 0 according to the assumption of NTR 

masonry in bending, the latter equation can be expressed as: 

2w

b
    (6.39) 

This means that, under a given axial force (and hence the translation w) the rotation 

increases linearly with the bending moment until the above-mentioned static and 

kinematic conditions are satisfied. Otherwise, the cross-section becomes cracked; the 

assumption of small displacements allows to estimate inelastic contributions of internal 

forces due to eccentric compression, as well as the following equations: 



Chapter 6 - Seismic Analysis of Masonry Buildings 
______________________________________________________________________________________________________________________________ 

 

 107 

 

 
 

2

23

2
8

2
12 24

k s
N k b s w b w

b wk k s
M sb b w

   


  
    

 

 (6.40) 

In the case of cracked cross-section, the axial force and the bending moment are 

coupled and the relationship between w and  can be written as: 

2

2

b N
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k s

  
   (6.41) 

In addition to geometrical non-linearity induced by sectional cracking, the macro-

element behaviour is also affected by compressive damage which is described by 

means of two parameters. 

At a given non-linear state of the panel, the translation w exceeds the limit value  

wR = R /k in a part of the cross-section identified by the ratio  = p/b, which is one of 

the aforementioned damage parameters. The ratio  = wmax/wR is the second damage 

parameter which measures the ductility demand on the extreme fibre, and hence the 

resulting stiffness degradation. Figure 6.18 illustrates the elasto-plastic stress and 

displacement states of an uncracked cross-section under eccentric compression. 

If wmax < wR when the macro-element is unloaded, the stress state depends on the load 

history through the parameters and : yielded fibres are then characterised by a 

degraded stiffness k
*
 which is a function of ductility according to the following 

equation: 
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The diagram of normal stresses is then linear in the elastic part of the cross-section, and 

non-linear in the remaining yielded part, as described by the following equations: 
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 (6.43) 

Nevertheless, the degraded branch of the diagram of normal stresses can be 

approximated as linear without significant error, so a simple non-linear corrective 

procedure for internal forces can be defined by assuming an EPP constitutive law in 

compression and zero tensile strength in bending. 

Due to the different distribution of normal stresses in the elastic and plastic ranges, the 
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axial force can be estimated by assuming: 

elN N N    (6.44) 

where N
 el

 is the axial force in the elastic range and N
 *
is expressed as: 

max max
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Similarly, the non-linear correction of the bending moment can be obtained as follows: 

elM M M    (6.46) 

where M
 el

 is the bending moment in the elastic range and M
*
is expressed as: 
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Such corrections can be made either if normal stresses reduce owing to stiffness 

degradation, or if masonry strength is exceeded once again. 

Regarding the macro-element part (1), the constitutive equations which describe the 

cyclic behaviour under eccentric compression can be expressed also as: 
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 (6.48) 

being H(•) the Heaviside function
26

. 

The shear response of the masonry panels is analysed by assuming a uniform diagram 

of shear stress  within the central part (2), namely: 
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
     (6.49) 

so the constitutive equations are expressed as the sum of a linear elastic contribution 

and an inelastic contribution it
 , which are defined as: 
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 (6.50) 

The inelastic contribution depends on: a frictional action f, which is opposed to shear 

stress; a damage variable , which increases with the shear strain ; and a parameter c, 

                                                 
26

 As well known, it is the unit step function and is a discontinuous function whose value is 

zero for negative argument and one for positive argument. The Heaviside function is the 

integral of the Dirac delta function and is assumed to be 1/2 at zero argument in current 

numerical applications, according to the „half maximum rule‟. 
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which controls the magnitude of plastic strain up to the attainment of strength. The 

laws of variation of f and  were defined in an incremental form on the basis of two 

different yielding conditions and the relevant plastic flow criteria. The sliding shear 

yielding condition and the shear strain criterion are respectively written as follows: 

0s f n     (6.51) 

f

f

    (6.52) 

where:  is the friction coefficient;   is the inelastic strain rate; and   is the plastic 

multiplier. The damage of the macro-element due to cracking within the central part is 

quantified through the damage variable  1,  , whose evolution is limited by the 

following condition: 

    0d Y R    s  (6.53) 

being: 

-   
2

1

2
Y

c





s  the energy dissipated by damage; 

-   R   the toughness, which describes strength degradation with 

damage; and 

-   
t

t n ms  the vector of internal forces. 

Assuming that toughness increases until the damage variable reaches the value c = 1 

and decreases at higher damage levels, the formulation reviewed above allows to 

simulate stiffness degradation, peak load, and strength degradation, in a simplified 

mode. 

The global constitutive model of the macro-element can be written in the following 

form: 

0 *
q ka + q + q  (6.54) 

where: 
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t

i i i j j jn t m n t m v m        q  includes non-linear components of internal 

forces which are computed through evolutionary equations as functions of the 

damage variable  and the frictional action f ; 

-  0 0 00 0 0 0 0 0
t

v mq  includes the external actions  0
l rv G t t h    and 

 0 / 2l rm t t bh   ; 

- k is the elastic stiffness matrix defined as 
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In closing, the behaviour of the macro-element is described through not only 

geometrical parameters, but also the following parameters: the stiffnesses G and k 

related to elastic response in shear and eccentric compression, respectively; the shear 

strength at zero confining stress fv0; a flexibility coefficient c governing inelastic 

shearing deformation; the global friction coefficient ; a factor  associated with 

toughness R, which allows to account for softening. 

Figure 6.13 shows the sensitivity of the normalised force-displacement curve to the 

parameter  falling in the interval [0,1]. Typically, this parameter is not greater than 

0.8. 

 

 
Figure 6.13  Elasto-plastic lateral behaviour of a masonry panel 
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6.4.3. Modelling and Analysis of the Building 

Frame-equivalent modelling of each masonry wall with openings allows to perform 

matrix structural analysis through modified Newton-Raphson incremental iterative 

method. In such a procedure, the expected elastic displacements at a given load step are 

repeatedly updated through non-linear increments due to residual nodal forces. The 

internal variables (k, fk) of each element k are updated by integrating non-linear 

constitutive equations within the given load step. 

Cattari et al. (2004) validated and calibrated TREMURI through quasi-static lateral 

loading tests performed on a masonry building model in displacement control. The 

experimental tests were carried out at the University of Pavia, Italy (Magenes et al., 

1995). Numerical analyses were run to make experimental-analytical comparisons, by 

assuming: G = 300 MPa; E = 2000 MPa; r = 0.15 MPa; c = 1.20;  = 0.20; and  

 = 0.50. 

It is underlined that yield criterion adopted for sliding shear is the Mohr-Coulomb 

strength model with friction coefficient of 0.4 in the case of cracked cross-section, and 

0.1-0.2 in the case of uncracked cross-section. In the former case the sliding shear 

strength at zero confining stress is assumed to be equal to the tension cracking shear 

strength, while in the latter case it is assumed equal to fv0. 

In addition, the shear flexibility parameter Gc is to be defined; it allows to include the 

non-linear behaviour of the masonry panel and is not lower than unity. According to 

EC8 and IBC, two different drift limits are defined for flexural and shear failure 

modes. Modelling of the whole building as an assemblage of plane equivalent frames 

leads to define two types of nodes: a two-dimensional node with three DOFs, 

belonging to a single plane frame; and a three-dimensional node with five DOFs (three 

translations and two rotations in two orthogonal planes), belonging to orthogonal 

frames. 

The five displacement components of a three-dimensional node in a local coordinate 

system are related each other through the following compatibility equations: 

cos sin

sin cos

x y

z

x y

u u u

w u

   



     

 (6.55) 

which describe the displacement components of a two-dimensional node belonging to a 

masonry wall forming an angle  with the global abscisse axis. Similar equations apply 

to nodal forces. Internal forces in the macro-elements belonging to individual walls, 

which are transferred to fictitious two-dimensional nodes, are defined in the global 

coordinate system via the following equations: 



Chapter 6 - Seismic Analysis of Masonry Buildings 
______________________________________________________________________________________________________________________________ 

 

 112 

1 2
1 2

1 2
1 2

1 2

1 2
1 2

1 2
1 2

cos cos

sin sin

sin sin

cos cos

x h h

y h h

z v v

x

y

F F F

F F F

F F F

M M M

M M M

   

   

 

   

    

 (6.56) 

where the superscripts 1 and 2 are respectively related to virtual nodes belonging to the 

walls 1 and 2 at which belongs the three-dimensional node as well. 

In pushover analysis, the evolution in the internal forces acting on the spandrel 

elements is also taken into account; ultimate bending moment and shear force are 

defined according to formulas reported into IBC. 

Two limit drift ratios are assigned to pier elements; the drift ratio in shear is defined as: 

i j

V e

u u

h


     (6.57) 

while that associated with bending deformation is computed as: 

2

i j

M e

 
     (6.58) 

Each drift demand is then compared to the relevant capacity at each analysis step. If the 

drift ratio of a masonry panel reaches the limit value in shear or flexure, the lateral 

resistance of the panel is assumed to vanish. In such a condition, the computer program 

reduces the macro-element to a pendulum with residual axial stiffness and strength 

against gravity loads. 

IBC assumes the following allowable drift ratios for individual masonry panels:

V,u = 0.4%; M,u = 0.6% in the case of existing buildings; and M,u = 0.8% in the case of 

new buildings. Regarding the assessment of existing masonry buildings, EC8 (CEN, 

2005b) suggests to assume: 

- M,u = 0.008H0/B and V,u = 0.4% for „primary‟ walls, and M,u = 0.012H0/B and  

V,u = 0.6% for „secondary‟ walls (where is the distance between the point of zero 

bending moment and the section in which the failure is reached), at severe damage 

limit state; and 

- the above limit drift ratios multiplied by 4/3, at near collapse limit state. 

 



 

 

Chapter 7  -  THE EVOLUTIONARY SPREAD PLASTICITY 

MACRO-ELEMENT 

Visual inspections of masonry buildings damaged by past earthquakes have allowed to 

identify the main failure modes and to define strategies of simplified geometrical 

modelling based on the definition of several types of macro-elements (namely, 

masonry panels). In simplified methods of global seismic analysis, the simulation of 

non-linear response of masonry buildings requires first the definition of both geometry 

and mechanical behaviour of each macro-element. As widely discussed in previous 

chapters, such a behaviour can be defined at different levels of detail by using several 

mathematical formulations. 

In the present chapter, an evolutionary spread plasticity macro-element is presented; its 

strength and displacement capacities changes as cracking and yielding develop under 

increasing lateral drift demand. Such a model can be applied to both pier and spandrel 

panels, allowing to carry out pushover analysis by relating „global‟ response of a given 

wall with openings, or the whole masonry building, to the „local‟ response of 

individual macro-elements. Local demand on each masonry panel is controlled during 

the analysis in the form of (1) axial strain diagrams over the cross-section(s) subjected 

to the maximum bending moment, and (2) shear stresses over cross-sections likely to 

fail in shear. This modus operandi allows to assess seismic performance through a 

unitary approach in which several EDPs correlated with different types of damage are 

controlled, according to PBEE requirements. 

As emphasised by Magenes (2010), future research on masonry structures should 

involve displacement- and deformation-based approaches for their implementation in 

EC8 and other advanced seismic codes, as done for other types of structures.  

The formulations developed for the spread plasticity macro-element follow these 

research needs and were partially implemented in RAN CODE (Augenti et al., 2010a), 

which is a computer program devoted to both linear and non-linear analysis of masonry 

walls with openings and entire buildings, subjected to both gravity and seismic loads. 

7.1. Non-Linear Behaviour of the Macro-Element 

The non-linear behaviour of a masonry panel subjected to lateral actions is described 

and controlled through a mixed approach. In fact, the flexural contribution to the lateral 

strength and deformation is simulated through force-displacement curves defined in 
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deformation control, while the shearing contribution is simulated through force-

displacement curve defined in force control. The flexural failure is predicted by means 

of strength domains derived by a deformation-based approach, while the shear failure 

(diagonal tension cracking, bed-joint sliding shear, or stair-stepped sliding shear) is 

predicted via strength domains derived by the classical strength-based approach 

discussed in Chapter 6. 

The spread plasticity modelling used for the macro-element is based on a closed-form 

integration of strains compatible with the strength of masonry. Through an explicit 

consideration of the constitutive law, this modelling strategy allows to include also 

different mechanical behaviour under uniaxial compression along the directions 

parallel and orthogonal to mortar bed joints, which are the main compression directions 

in spandrel and pier panels, respectively, under seismic actions. Since different 

constitutive laws are needed to account for masonry orthotropy in a simplified mode, 

uniaxial compression tests were carried out on masonry prisms in the framework of 

ReLUIS-DPC 2005-2008 project, in order to simulate post-elastic behaviour of 

masonry also at large inelastic deformations (see Appendix A). Figure 7.1 shows a 

comparison between the stress-strain law defined for uniaxial compression orthogonal 

to mortar bed joints (red line) and other constitutive laws available in the literature. 

 

 
Figure 7.1  Comparison between constitutive laws of masonry under uniaxial compression 

 

The effects of different boundary conditions for masonry panels can be taken into 

account through a factor related to the ratio between bending moment and shear force. 

It is emphasised that, in lumped plasticity models, the lateral behaviour of macro-
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elements is described through multi-linear force-displacement diagrams which do not 

explicitly include mechanical behaviour of masonry. Although these diagrams are in 

compliance with building codes, the influence of masonry texture can be considered 

only by assuming different values for uniaxial compressive strength and elastic moduli. 

The macro-element presented in this chapter is affected by the following type of non-

linearity: (1) mechanical non-linearity in the elastic range due to micro-cracking of 

masonry, which is described by the rising branch of the stress-strain relationship;  

(2) mechanical non-linearity in the plastic range due to strength degradation of 

masonry under increasing inelastic strains; and (3) geometrical non-linearity due to 

gradual macro-cracking of the masonry panel under increasing lateral drift. The latter 

non-linearity consists in the dependence of the effective part of the macro-element 

(forming an ideal inner strut) on the applied lateral load, and is directly related to low 

tensile strength of masonry in bending. Tensile strains at small lateral drifts are not 

compatible with the those allowed by masonry, so the macro-element suffers cracking 

in a number of cross-sections. As a result, the effective sectional width reduces from 

the cross-section with maximum bending curvature (namely, the mid cross-section in 

the case of doubly-fixed panels) to the cross-section with zero bending curvature 

(namely, the extreme sections in the case of doubly-fixed panels). 

The lower is the given axial force on the masonry panel, the heavier is macro-cracking; 

the latter can influence both elastic and inelastic non-linear behaviour of the panel. 

Figure 7.2 gives a simplified interpretation of the geometrical evolution experienced by 

the macro-element in terms of ideal inner strut. In particular, Figure 7.2a shows the 

elastic behaviour in uncracked conditions, Figure 7.2b illustrates the elastic behaviour 

in cracked conditions, and Figure 7.2c shows the elasto-plastic behaviour in cracked 

conditions. 
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Figure 7.2  Evolution of the macro-element under varying deformation demand 
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For the sake of simplicity, the evolution of the macro-element is believed to be induced 

by bending deformation, neglecting shear effects and assuming masonry as NTR 

homogeneous material. 

If the cross-section subjected to the maximum bending moment does not suffer 

cracking under the lateral drift demand on the panel, the latter is fully resistant and the 

effective reacting domain  cover the whole nominal rectangular geometry of the 

panel (Fig. 7.2a). Assuming a doubly-fixed masonry panel, the flexural contribution to 

displacement capacity can be expressed as the product of the maximum axial strain on 

the end section by the mid-height of the panel (see Sect. 7.5). 

As the drift demand on the macro-element increases, a gradual cracking develops in 

some cross-sections due to tensile strains larger than those allowed by masonry. 

Consequently, the effective reacting domain  of the panel changes in a way to be 

considered as the union of two sub-regions 1 and 2 (Fig. 7.2b): the former has an 

elastic behaviour with mechanical non-linearity, the latter has an elastic behaviour with 

both mechanical and geometrical non-linearities (owing to the dependence of effective 

geometry on the given deformation state). In such conditions, both lateral strength and 

displacement increase, but the flexural contribution to the lateral displacement is more 

difficult to be estimated, opposed to the case of unacracked elastic conditions (see  

Sect. 7.5). 

If the cross-section subjected to the maximum bending moment reaches yielding, a 

further sub-region 3 can be identified within the masonry panel (Fig. 7.2c). This last 

sub-region corresponds to permanent damage, which causes unreversible modifications 

in mechanical properties. Therefore, both lateral strength and displacement still 

increase until the ultimate axial strain of masonry is reached in the cross-section 

subjected to the maximum bending moment. 

For each of the above-mentioned deformation states, displacement capacity of the 

panel is assumed to be the sum of three contributions. The former is related to flexural 

deformation and is predicted through a deformation-based approach where theoretical 

formulas were derived by closed-form double integration of strains over the domains 

shown in Figure 7.2. 

The second contribution to displacement capacity is related to shearing deformation; 

such a contribution is presently predicted through a force-based approach based on the 

one-dimensional integration of average shear strains along the height of the panel (see 

Sect. 6.2.9). In order to apply deformation-based approaches for the estimation of 

lateral displacement due to shearing deformation, direct shear tests were carried out. 

The output of such tests was the derivation of  constitutive laws able to simulate the 

non-linear behaviour in sliding shear (see Appendix B), but further research is needed 

to simulate compatibility between shearing and bending deformations. 
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The last contribution to displacement capacity is related to rocking, namely a rigid-

body rotation of the masonry panel around compressed toes. In such conditions, the 

mechanical approach is based on the removal of the Euler-Bernoulli hypothesis (i.e., 

plane cross-sections remain plane) and the equilibrium solving in the deformed state. 

Whilst theoretical analysis is carried out in the range of large displacements, the 

assumption of small strains can be still applied to masonry. The estimation of rocking-

induced lateral displacements for non-linear constitutive laws is presently under 

investigation and is uncoupled by flexural deformations. A simplified analytical model 

was proposed by Rai and Goel (2007) asuming masonry as a homogeneous NTR 

material with EPP behaviour in compression and rigid cantilever panels. 

7.2. Strength Domains 

Shear strengths corresponding to diagonal tension cracking and sliding can be 

predicted through classical yield criteria reviewed in Sect. 6.2.8. Vice versa, new 

formulations for the estimation of flexural strength are presented below and discussed 

in detail for both pier and spandrel panels. 

Flexural strength domains for several limit states of interest were obtained by assuming 

pre-defined linear diagrams of axial strains over cross-sections subjected to the 

maximum bending moment and solving equilibrium equations for the relevant 

diagrams of normal stresses. Sectional analysis was performed through a deformation-

based approach, which is believed to be an accurate mechanical approach, especially 

for non-linear analysis of existing masonry buildings. Nonetheless, classical stress-

based approaches could be yet useful for force-based seismic design of masonry 

buildings and seismic assessment through linear static analysis. 

The analytical formulation presented below is based on the following hypotheses: 

- plane cross-sections remain plane in bending; 

- masonry is a homogeneous NTR material with  constitutive law in compression 

having yielding strain k, peak strength k, and ultimate strain u; and 

- limit states can be associated with axial strain diagrams over the cross-section(s) 

subjected to the maximum bending moment. 

Depending on several mechanical and geometrical non-linearity sources, flexural 

strength domains are defined for the following limit states: 

- cracking limit state (CLS), which corresponds to an axial strain diagram covering 

the gross cross-section width B, and having the point of zero at an extreme fibre and 

maximum value k at the compressed extreme fibre (Fig. 7.3a); 

- cracked elastic limit state (CELS), which corresponds to an axial strain diagram 

with effective width b < B, minimum value equal to zero and maximum value equal 
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to k (Fig. 7.3b); 

- uncracked elastic limit state (UELS), which corresponds to an axial strain diagram 

covering the gross cross-section width B, and having minimum value falling in the 

interval ]0,k] and maximum value equal to k (Fig. 7.3c); 

- cracked ultimate limit state (CULS), which corresponds to an axial strain diagram 

with effective width b < B, minimum value equal to zero and maximum value equal 

to k (Fig. 7.3d); and 

- uncracked ultimate limit state (UULS), which corresponds to an axial strain 

diagram covering the gross cross-section width B, and having minimum value 

falling in the interval ]0,u] and maximum value equal to u. 
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Figure 7.3  Limit states for eccentric compression 

 

It is underlined that CLS is equal to the linear elastic limit state defined in the stress-

based approach (see Sect. 6.2.6). Conversely, in the deformation-based formulation 

presented below no linear branches can be defined within strength domains, because 

mechanical non-linearity affects masonry behaviour even in the elastic range. If the 

cross-section yields in cracked conditions, geometrical non-linearity takes place along 

with mechanical non-linearity. 

 

7.2.1. Pier Panels 

Flexural strength of masonry piers was investigated accounting for the direct influence 

of the constitutive model of masonry in compression (Augenti and Parisi, 2009b). 

Amongst  relationships available in the literature, the stress-strain relationships 

reported in EC6 (CEN, 2005a) and proposed by Turnšek and Čačovič (1971) were 



Chapter 7 - The Evolutionary Spread Plasticity Macro-Element 
______________________________________________________________________________________________________________________________ 

 

 119 

used. In particular, the Turnšek-Čačovič constitutive model is more accurate because it 

includes also strength degradation of masonry in the plastic range. In fact, it is shown 

below that the integration of such a stress-strain relationship leads to an equation  

V = V(N) which is rather equal to that developed by Fusier and Vignoli (1993b) 

through regression analyses on experimental data. 

In addition to the above-mentioned constitutive laws, the stress-strain relationship 

derived through uniaxial compression tests in the direction orthogonal to mortar bed 

joints (see Appendix A) was considered in the theoretical analysis. The main scope of 

this implementation was to assess mechanical behaviour of masonry panels at large 

inelastic deformations. 

It is also underlined that the self-weight of masonry was neglected in the estimation of 

the lateral strength of masonry panels, so the axial force is constant along the height of 

the macro-element (Augenti, 2004). 

 

 Strength domains for Turnšek-Čačovič constitutive model 

The flexural strength domains at ELS and ULS are here defined through equations 

derived by assuming the following constitutive law proposed by Turnšek and Čačovič 

(1971) (Fig. 7.4): 

1.17

ζ ε ε
f (ε) 6.4 5.4

ζ ε εk k k

 
    

 
 (7.1) 

 



k

k

u  
Figure 7.4  Turnšek-Čačovič constitutive law 

 

In current applications, one assume yielding strain of masonry as k = 0.002 and 

ultimate strain as u = 0.0035. It follows a supply strain ductility  = 1.75. 

Regarding the elastic limit state, one can assume the equilibrium of a cracked cross-

section under eccentric compression to be governed by the following unknowns:  

(1) the effective width b of the axial strain diagram over the end section subjected to 

the maximum bending moment; and (2) the yielding shear force Ve. The 

implementation of the stress-strain relationship in the following equation of 

translational equilibrium: 
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and the following assumption: 
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allows to get: 
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where z is the axial strain along the z-axis, which is orthogonal to the cross-section 

being considered and overlapped to the longitudinal axis of the masonry panel. 

If the applied axial force N normalised to the maximum axial force Nm corresponding 

to the peak strength of masonry k is defined as: 
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Eq. (7.4) can be written as follows: 
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Therefore, the effective width of the end section of the panel can be estimated through 

the following equation: 
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 (7.6) 

which specialises as follows: 

1.4
ζk

N
b

s
  (7.7) 

if z,max = k = 0.002. The effective width of the cross-section can be normalised to the 

gross width B, resulting in the following equation: 

/ 1.4b b B N   (7.8) 

The maximum normalised axial force corresponding to a cracked cross-section at ELS 

can be obtained through Eq. (7.8) assuming b/B = 1, so it turns out to be N/Nm = 0.71. 

In other terms, if one assume the Turnšek-Čačovič constitutive model, the cross-
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section of the panel is cracked for a normalised axial force falling in the interval 

[0,0.71]. The yielding shear force can be derived from the yielding bending moment of 

the end section which, in turn, can be computed as: 
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e k z
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M s x dx
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   (7.9) 

Assuming a factor  related to the boundary conditions of the panel, one can get the 

following relationship between bending moment and shear force at the end section: 
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where is between 0.5 (corresponding to doubly-fixed panels) and 1 (corresponding to 

cantilever panels). The resisting shear force of the uncracked masonry panel can be 

estimated through the following equation: 
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which specialises as follows: 
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considering the relationship between b and N (see Eq. (7.5)). At ELS, one can assume 

z,max = k = 0.002 so Eq. (7.12) turns out to be: 
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In the case of normalised axial force falling in the interval [0,0.5], it is underlined that 

Augenti (2004) proposed Eq. (6.3), that is: 
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which for a stress-block coefficient of 0.85 specialises to: 

 20.6
1.6

ς
e

B
V N N

H
   (7.14) 

As the normalised axial force increases in the interval [0,0.5], the ratio between  

Eqs. (6.3) and (7.14) changes from 0.85 to 1.7 reaching unity at N/Nm = 0.24. Thus,  
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Eq. (7.14) is less conservative for a normalised axial force falling in the interval 

[0,0.24]. If the normalised axial force exceeds the limit value defined through  

Eq. (7.5), the end section of the panel is fully resistant at ELS and its equilibrium 

condition can be defined if the minimum axial strain z,min (or the average strain z,N) 

and the yielding shear force Ve are known. It is also noted that one can get only 

relationships like Vez,min, or Vez,N, rather than a direct relationship VeN. In fact, 

since the axial force is not a monotonic function of the axial strain, inverse functions 

such as z,min(), or z,N (), cannot be defined. As a result, one can define the limit 

line of the NV interaction domain only through a numerical procedure. 

By defining the axial strains over the cross-section as: 
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ε ε
ε ε
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z z

z z

B
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B
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 
 (7.15) 

the following equation of translational equilibrium: 
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2
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specialises to: 
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so the axial force is clearly associated with the minimum axial strain which, in turn, 

falls within the interval [0,k]. From the following equation of rotational equilibrium: 

 
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ζ f ε

B

e k z
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M s x dx





   (7.18) 

and on the basis of Eq. (7.10), one can get: 
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The closed-form solution of the integral including Eqs. (7.1) and (7.15) is thus: 
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 (7.20) 
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For a normalised axial force falling in the interval [0,0.71], an intermediate limit state 

of the cross-section can be identified, that is CLS. The strength domain at CLS 

includes the points (N,V) corresponding to a fully resistant cross-section. At CLS, the 

minimum axial strain is zero while the maximum strain does not exceed yielding strain 

of masonry (which means z,max ≤ k). Eq. (7.15) becomes: 

  ,maxε
ε

2

z

z

B
x x

B

 
  

 
 (7.21) 

and the equilibrium condition is identified once the maximum axial strain and the 

cracking shear force Vl have been evaluated. The equation of translational equilibrium 

specialises as follows: 
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  (7.22) 

Under a given axial force, the latter equation can be numerically solved to get the 

maximum axial strain. The cracking shear force can be predicted through the equation: 
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  (7.23) 

Figure 7.5 shows flexural strength domains at CLS and ELS for a doubly-fixed panel. 
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Figure 7.5  Strength domains at CLS and ELS for Turnšek-Čačovič constitutive law 

 

At the ultimate limit state, the cracked cross-section has a normalised effective width 

equal to: 

1.23b N  (7.24) 
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assuming k = 0.002 and z,max = u = 0.0035 into Eq. (7.4). 

The maximum normalised axial force corresponding to a cracked cross-section at ULS 

is N/Nm = 0.81; thus, the masonry panel reaches ULS in cracked conditions under a 

given normalised axial force falling in the interval [0,0.81]. The ultimate bending 

moment can then be predicted by solving the equation: 

 
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2

ζ f ε

B

u k z

B
b

M s x dx



   (7.25) 

while the relevant ultimate shear force of the panel can be derived by defining 

boundary conditions. Eq. (7.21) can be used to predict the ultimate shear force by 

assuming z,max = u. For k = 0.002 and u = 0.0035, the latter equation specialises to: 

 21.08
2ς

u

B
V N N

H
   (7.26) 

Such an equation is very similar to that derived by Fusier and Vignoli (1993b) through 

regression analysis on experimental data. Indeed, for a masonry panel without pre-

defined boundary conditions, the equation proposed by Fusier and Vignoli can be 

expressed as follows: 

 21.10
2ς

u

B
V N N

H
   (7.27) 

where the coefficient 1.10 appears instead of 1.08. This function vanishes at  

N/Nu = 0.92, so it is defined in the interval [0,0.92]. It is underlined that Nu is the 

ultimate axial force corresponding to uniform diagram of axial strains equal to  

u = 0.0035, and is defined as Nu = 0.81Nm. It follows that the interaction domain 

should be truncated by a vertical straight line at Nu, unless a uniform diagram of axial 

strains equal to k = 0.002 is assumed in concentric compression. IBC (2008) allows to 

assume a uniform diagram of normal stresses equal to a 15%-reduced compressive 

strength of masonry. Figure 7.6 shows the comparison between flexural strength 

domains proposed by Fusier and Vignoli (1993b), Augenti (2004), IBC, and Turnšek 

and Čačovič (Augenti and Parisi, 2009b), in the case of doubly-fixed panel. It is 

emphasised that Eqs. (7.26) and (7.27) lead to rather equal predictions of ultimate shear 

force, especially for a normalised axial force falling in the interval [0,0.5]. For the 

latter interval, Eq. (6.1) and IBC lead to higher ultimate shear force values
27

, while 

conservative predictions are provided by IBC for N/Nu falling in the interval [0.5,1]. 

                                                 
27

  For a normalised axial force falling in the interval [0,0.5], the ultimate shear force predicted 

by Eq. (6.1) and IBC is up to 9% and 13% higher than that predicted by Eq. (7.26). For a 

normalised axial force falling in the range [0.5,1], the ultimate shear force predicted by IBC 

is up to 26% lower than the others. 



Chapter 7 - The Evolutionary Spread Plasticity Macro-Element 
______________________________________________________________________________________________________________________________ 

 

 125 

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1

N/Nm

V
u
∙H

/N
m

∙B

  Fusier & Vignoli (1993b)

  Augenti (2004)

  IBC (2008)

  Proposal for Turnsek-Cacovic model

 
Figure 7.6  Comparison between strength domains at ULS 

 

If the axial force exceeds the limit value defined by Eq. (7.4) assuming specific values 

for k and u, the cross-section reaches ULS in uncracked conditions and the equation 

of translational equilibrium specialises as: 
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For z,min = 0, k = 0.002, and u = 0.0035, this equation gives Nu/Nm = 0.81, so the 

section is fully resistant for N/Nm > 0.81. The ultimate moment can be estimated as: 
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so the ultimate shear force can be estimated as follows: 
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By implementating Eqs. (7.1) and (7.15), the normalised ultimate shear force can be 

expressed as a function of z,min, k and u, through the following equation: 
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 (7.31) 
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Finally, for k = 0.002 and u = 0.0035, such an equation specialises to: 
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being: 
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 

 

Under a given axial force on the masonry panel, one can predict first the minimum 

axial strain over the cross-section subjected to maximum bending moment, and then 

the ultimate shear force. 

 

 Strength domains for EC6 constitutive model 

The flexural strength domains at ELS and ULS are here defined through equations 

derived by assuming the following constitutive law proposed reported in EC6 (CEN, 

2005a) (Fig. 7.7): 
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 (7.33) 

 



k

k

u  
Figure 7.7  EC6 constitutive law 

 

Also in this case, the cross-section can be analysed in cracked and uncracked 

conditions, separately. In addition, the theoretical analysis is carried out first for ELS 

and CLS, and then for ULS. To this end, the stress-strain relationship reported in EC6 

was replaced by a polynomial approximation in order to simplify integration.  

The following constitutive equation was then used: 
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where: 
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This polynomial function is the best fit of the original stress-strain relationship and has 

a coefficient of determination R
2
 = 0.9998 (Fig. 7.8). 
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Figure 7.8  Polynomial approximation of EC6 constitutive law 

 

In this case, the maximum resisting axial force is equal to the ultimate axial force (that 

is, Nm = Nu), since the constitutive law does not include strain softening of masonry. 

For a cracked cross-section at the elastic limit state, the equation of translational 

equilibrium can be expressed as: 
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where: 
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Therefore, the effective width of the axial strain diagram can be estimated by inverting 

Eq. (7.35). For k = 0.002, it turns out to be: 
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1.5b N  (7.36) 

so the cross-section is cracked under a normalised axial force falling in the interval 

[0,0.67]. The shear force at ELS is then derived by the relevant bending moment and 

can be predicted through the following equation: 
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including the polynomials: 
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where: 
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For k = 0.002, Eq. (7.37) specialises to: 

 21.13
2ς

e

B
V N N

H
   (7.39) 

If the normalised axial force falls within the interval [0.67,1], the masonry panel is 

fully resistant. As stated in the case of Turnšek-Čačovič constitutive law, for an axial 

force corresponding to an uncracked cross-section, the limit line of the strength domain 

at ELS can be defined only numerically, since no direct relationships between the 

resisting shear force and the given axial force exist. By considering Eqs. (7.34) and 

(7.15), the equation of translational equilibrium can be written as: 
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if one assume z,max =  k = 0.002. It is underlined that the coefficient b0 is the 
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normalised axial force at z,min = 0. The normalised yielding shear force can be 

predicted through the following equation: 
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where, assuming k = 0.002, the coefficients are: 
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For yielding strains different from 0.002, the coefficients bi and di can be evaluated by 

means of the following equations: 
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For a normalised axial force falling in the interval [0,0.67], the masonry panel reaches 

first CLS when the minimum axial strain vanishes at the cross-section being 

monitored, and then ELS when the maximum axial strain reaches yielding strain of 

masonry. Before CLS is attained, the end section subjected to the maximum bending 

moment is fully resistant and the maximum axial strain does not exceed the yielding 

strain of masonry. As a consequence, the axial strain diagram is described by  

Eq. (7.21) and the translational equilibrium is governed by the following relation: 
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whose coefficients are equal to those of Eq. (7.35). Under a given axial force,  

Eq. (7.40) allows to numerically evaluate the maximum axial strain. Thus, the cracking 
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shear force can be predicted via the following equation: 
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having coefficients equal to those of the equation that defines b0 (h0 = 0). Figure 7.9 

shows the strength domains at CLS and ELS, in the case of doubly-fixed panel. 
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Figure 7.9  Strength domains at CLS and ELS for EC6 constitutive law 

 

For a cracked cross-section at the ultimate limit state, the relationship between the 

given axial force and the ultimate deformation is: 
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N b g


   (7.44) 

where coefficients are equal to those appearing into Eq. (7.35). The effective width of 

the axial strain diagram can thus be evaluated by inverting Eq. (7.43). For  

u = 0.0035, the normalised effective width of the end section can be defined as 

follows: 

1.24b N  (7.45) 

so the limit condition b/B = 1 is reached at N/Nu = 0.81. Therefore, if one assume the 

EC6 constitutive model for masonry, the macro-element reaches ULS in cracked 

conditions for a normalised axial force falling in the interval [0,0.81]. The ultimate 

shear force can be predicted by solving Eq. (7.25) and applying Eq. (7.10), so it turns 

out to be: 
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whose polynomials are defined as: 
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where: 

0 0
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For u = 0.0035, Eq. (7.46) specialises to: 

 21.03
2ς

u

B
V N N

H
   (7.48) 

and vanishes at N/Nu = 0.97, so it is defined for a normalised axial force falling in the 

interval [0,0.97]. Figure 7.10 shows a comparison between the strength domain derived 

for EC6 constitutive model (Augenti and Parisi, 2009b) and those proposed by Fusier 

and Vignoli (1993b), Augenti (2004), and IBC, in the case of doubly-fixed panel. 
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Figure 7.10  Comparison between strength domains at ULS 

 

For a normalised axial force falling in the interval [0.81,1], the end section is fully 

resistant at ULS. The strength domain can be derived only numerically since no 

functions Vu(N) can be defined. The normalised axial force is related to the minimum 

axial strain as follows: 
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5
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0

ε j
j z
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N b
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  (7.49) 

For u = 0.0035, the coefficients bj are: 

2
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where b0 is the normalised axial force at z,min = 0, as shown for ELS. The normalised 

ultimate shear force can then be predicted via the following equation: 

5

,min

0

ε
2ς

j
u j z

j

B
V d

H 

   (7.50) 

whose coefficients are: 
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for u = 0.0035. If ultimate strain of masonry is assumed to be different from 0.0035 

(for instance, in the presence of confinement with fibre-reinforced polymers), the 

coefficients bj and dj are defined by the equations reported above for bj and dj, 

respectively, where k is replaced by u. 

 

 Strength domains for Augenti-Parisi constitutive model related to 

compression orthogonal to mortar bed joints 

In this sub-section, strength domains at both ELS and ULS are derived for an empirical 

constitutive law proposed for masonry subjected to uniaxial compression in the 

direction orthogonal to mortar bed joints (Augenti and Parisi, 2010a; see Appendix A). 

The constitutive model is defined by the following stress-strain relationships  

(Fig. 7.11): 

3 2

3 2

ζ ε ε ε ε
f (ε) 0.7144 0.4549 1.2595 for 0 1.12

ζ ε ε ε ε

ζ ε ε ε ε
f (ε) 0.0107 0.1388 0.6487 1.545 for 1.12 5

ζ ε ε ε ε

k k k k k

k k k k k

     
           

     

     
            

     

 

 (7.51) 

The yielding axial strain k of masonry can be set to 0.002 and the supply strain 

ductility in compression can be assumed to be  = 5, resulting in an ultimate axial 

strain u = 0.01. 
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Figure 7.11  Augenti-Parisi constitutive laws (typical form for both directions) 

 

With reference to the elastic limit state, the equations of translational and rotational 

equilibrium of a given cross-section in cracked conditions can be respectively written 

as follows: 

0.6N b  (7.52) 

20.3 0.21eM
b b

B
  (7.53) 

Therefore, the limit line of the flexural strength domain related to a normalised axial 

force falling in the interval [0,0.6] can be described by means of the following 

equation: 

 21.16
2ς

e

B
V N N

H
   (7.54) 

The equilibrium conditions at CLS can be expressed as: 

2 3
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so the cracking shear force can be predicted through the equation: 
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   (7.57) 

For N/Nm > 0.6, the masonry panel reaches ELS in uncracked conditions and its 

equilibrium can be assessed through the following equations: 

2 3

,min ,min ,minε ε ε
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 (7.59) 



Chapter 7 - The Evolutionary Spread Plasticity Macro-Element 
______________________________________________________________________________________________________________________________ 

 

 134 

since no direct relationships between the resisting shear force and the given axial force 

can be defined. Figure 7.12 shows the strength domains at CLS and ELS, in the case of 

doubly-fixed panel. 
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Figure 7.12  Strength domains at CLS and ELS for Augenti-Parisi model (orthog. dir.) 

 

With reference to the ultimate limit state, the equations of translational and rotational 

equilibrium can be respectively expressed as follows: 

2 2
ε ε ε

ε

0.66
 1.54 0.32μ 0.05μ 0.003μ

μ
N b

 
     

 
 (7.60) 

2 2 3
ε ε ε2

εε

2 3
ε ε ε

ε

0.2 0.66
0.77 0.11μ 0.012μ 0.001μ

μμ

0.33
0.77 0.16μ 0.02μ 0.001μ

μ

uM
b

B

b

 
         

 

 
     

 

 (7.61) 

so the interaction between the ultimate shear force and the given axial force can be 

described through the following equation: 

 

 
1 ε 2

2 ε

μ

ς 2 μ
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pB N
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H p

 
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 (7.62) 

where: 
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 (7.63) 

Assuming b/B = 1 and  = 5 into Eq. (7.60), the maximum normalised axial force 

corresponding to a cracked masonry panel at ULS is N/Nm = 0.61. Thus, Eq. (7.62) 

applies for a normalised axial force falling in the interval [0,0.61]. For N/Nm > 0.61, the 

panel reaches ULS in uncracked conditions and the equations of translational and 
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rotational equilibrium can be respectively written as follows: 
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 (7.65) 

Figure 7.13 shows a comparison between the ultimate strength domain corresponding 

to Augenti-Parisi constitutive model and those related to previous formulations. 
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Figure 7.13  Comparison between strength domains at ULS 

 

 Comparisons between strength domains 

The flexural strength domains derived in previous sub-sections at both CLS and ELS 

are compared each other in Figure 7.14. 

With reference to CLS, the limit line of the strength domain proposed by Augenti 

(2004) is linear, since mechanical non-linearity in the elastic range is neglected. 

Conversely, the strength domains derived for Turnšek-Čačovič, EC6, and Augenti-
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Parisi constitutive models have non-linear boundaries even at CLS, since the relevant 

stress-strain relationships are non-linear in the elastic range. Flexural strength domains 

at CLS have different values of normalised axial force corresponding to the maximum 

cracking shear force. In fact, the latter is: Nc/Nm = 0.5 in the case of the strength 

domain proposed by Augenti (2004); Nc/Nm = 0.67 in the case of the strength domain 

corresponding to Turnšek-Čačovič constitutive model; Nc/Nm = 0.71 in the case of the 

strength domain corresponding to EC6 constitutive model; and Nc/Nm = 0.6 in the case 

of the strength domain corresponding to the constitutive law proposed by Augenti and 

Parisi (2010a) for uniaxial compression orthogonal to mortar bed joints. 
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Figure 7.14  Comparison between strength domains at CLS and ELS 

 

The comparison between ultimate strength domains reported in Figure 7.13 has been 

carried out by assuming a supply strain ductility  = 5 in Augenti-Parisi constitutive 

law. As a result, strength degradation of masonry at large inelastic strains has induced a 

significant contraction in the strength domain, and hence a considerable difference with 

other domains. 

If supply strain ductility of masonry is assumed to be  = 1.75 (that is, equal to the 

value considered for Turnšek-Čačovič and EC6 constitutive models), the contraction in 

the strength domain is less significant and the estimation of the ultimate shear force is 

more conservative than the others (Fig. 7.15). It is emphasised that this supply ductility 

value should be adopted for design purposes, while an accurate assessment of masonry 

structures requires the simulation of mechanical behaviour also at larger inelastic 

deformations. 
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Figure 7.15  Comparison between strength domains at ULS for strain ductility  = 1.75 

 

 

7.2.2. Spandrel Panels 

In this sub-section, the flexural strength of spandrel panels is investigated through the 

development of two-dimensional strength domains corresponding to several 

constitutive laws of masonry. In particular, the discussion deals with strength 

domains defined at both ELS and ULS (Augenti and Parisi, 2010b). The theoretical 

analysis was carried out for the following constitutive models: EPP; Turnšek-Čačovič; 

EC6; and Augenti-Parisi (2010a) related to uniaxial compression parallel to mortar bed 

joints. 

The strength domains presented below are related to a generic cross-section of a 

masonry panel, but they could be extended to the whole panel through a boundary-

dependent factor (see Sect. 7.2.1). Therefore, dimensionless NM interaction domains 

are presented and discussed by assuming: 

m

m

N
N

N

M N e
N e

H N H



 

 (7.66) 

being: Nm = k s H and H the nominal height of the masonry panel. 

The dimensionless representation of interaction domains allows to assess variations in 

resisting bending moment and other parameters without any dependence on the panel 

dimensions, nor on the masonry strength. Both the axial force and the bending moment 

are defined as functions of the neutral axis depth h normalised to the nominal height of 

the cross-section, as follows: 

h
h

H
  (7.67) 



Chapter 7 - The Evolutionary Spread Plasticity Macro-Element 
______________________________________________________________________________________________________________________________ 

 

 138 

 Strength domains for EPP constitutive model 

In the case of EPP stress-strain relationship, yielding and ultimate axial strains of 

masonry were assumed to be k = 0.001 and u = 0.0035, respectively, resulting in a 

supply compressive strain ductility  = 3.5. The above-mentioned ultimate strain 

value is suitable for design purposes, while larger values can be considered in the 

assessment of existing masonry buildings. 

With reference to the elastic limit state, the cross-section is cracked if the axial force is 

applied outside the central core of inertia
28

. Denoting by e the axial force eccentricity 

with respect to the centroid of the cross-section and e = e/H its normalised value, the 

cross-section is cracked for: 

1 1

6 2
e   

The cross-section attains ELS when the maximum axial strain reaches the yielding 

strain of masonry; this condition corresponds to a normalised axial force falling in the 

interval [0,0.5]. The equation of translational equilibrium can be written as: 

2

h
N   (7.68) 

while the equation of rotational equilibrium specialises to: 

2

4 6

eM h h

H
   (7.69) 

Consequently, for a normalised axial force falling in the interval [0,0.5], the limit line 

of the interaction domain can be described through the following equation: 

22

2 3

eM N
N

H
   (7.70) 

On the other hand, the cross-section reaches ELS in uncracked conditions for: 

1
0

6
e   

namely, if the normalised axial force falls within the interval [0.5,1]. For a balanced 

cross-section, the given axial force is related to the neutral axis depth as follows: 

1
1

2
N

h
   (7.71) 

while rotational equilibrium requires that it is: 

1

12

eM

H h
  (7.72) 

As a result, for a normalised axial force falling in the interval [0.5,1], the limit line of 

                                                 
28

  The centre of pressure must fall within the cross-section in order to ensure equilibrium. 
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the interaction domain can be described through the following equation: 

 
1

1
6

eM
N

H
   (7.73) 

With reference to the ultimate limit state, for a pre-defined linear diagram of axial 

strains with a given neutral axis depth, the equation of translational equilibrium can be 

written as: 

ε

1
1

2μ
N h

 
  

 
 (7.74) 

according to Brencich and De Francesco (2004). Such an equation allows to assess the 

neutral axis depth under a given axial force, once a supply strain ductility has been 

assigned to masonry in compression. The rotational equilibrium of the cross-section is 

governed by the following equation: 

 2
ε ε2
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1 3μ 3μ1
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 
 (7.75) 

so the limit line of the strength domain can be described as follows: 
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 
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 (7.76) 

The crossing condition from cracked to uncracked cross-section is associated with a 

neutral axis depth equal to the gross height of the cross-section. Assuming  = 3.5,  

Eq. (7.74) gives 0.86 so Eq. (7.76) can be applied for a normalised axial force falling in 

the interval [0,0.86]. 

Conversely, if N/Nm falls within the interval [0.86,1], the cross-section reaches ULS 

without cracking and its translational equilibrium is governed by the following 

equation: 

 
2

εε
ε

ε

μ 1μ
μ

2μ2

h
N

h


    (7.77) 

In such conditions, the equation of rotational equilibrium turns out to be: 

   
2

3 2 ε
ε ε2

εε

μ
μ 1 μ 1

4μ 126μ

uM h h

H h
      (7.78) 

Figure 7.16 shows the strength domains at ELS and ULS in which the parts of limit 

line corresponding to cracked cross-sections (solid lines) are distinguished from those 

corresponding to uncracked cross-sections (dashed lines). 
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Figure 7.16  Strength domains at ELS and ULS for EPP constitutive law 

 

 Strength domains for Turnšek-Čačovič constitutive model 

The stress-strain relationship proposed by Turnšek and Čačovič (1971) includes more 

real characteristics of mechanical behaviour of masonry under uniaxial compression, 

namely strength degradation due to strain softening. Yielding and ultimate strains of 

masonry were assumed to be k = 0.002 and u = 0.0035, resulting in a supply strain 

ductility equal to 1.75 (that is, one-half of that considered for EPP constitutive model). 

With reference to the elastic limit state, the behaviour of the cracked cross-section is 

governed by the following equations of translational and rotational equilibrium, 

respectively: 

0.71N h  (7.79) 

2 0.36 0.28eM
h h

H
   (7.80) 

For a normalised axial force falling in the interval [0,0.71], the limit line of the 

interaction domain at ELS can be described as follows: 

20.56
2

eM N
N

H
   (7.81) 

For a normalised axial force falling in the interval [0.71,1], the cross-section reaches 

ELS in uncracked conditions and the equations of translational and rotational 

equilibrium can be respectively written as: 

 2.173.2
6.4 2.49 1 ξN h

h
     (7.82) 

   1.17 1.17 2.17 2 1.17 2.170.53
1.7ξ 1.24 3.41ξ 1.24ξ 0.78 1.7ξ 2.49ξeM

h h
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 (7.83) 

being: 
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ε
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ξ μ 1
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 (7.84) 

a current strain-dependent parameter. At ELS, the strain ductility demand is equal to 

unity, so the latter parameter can be expressed as: 

1
ξ 1e

h
   (7.85) 

Eq. (7.83) is not invertible so a direct relationship between the yielding bending 

moment and the applied axial force cannot be defined. 

With reference to the ultimate limit state, the equilibrium equations of a cracked cross-

section against translation and rotation can be respectively written as follows: 
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so the limit line of the strength domain can be described through the following 

equation: 
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 (7.88) 

which allows to related the ultimate moment to the applied axial force. The latter 

equation can be applied for a normalised axial force falling in the interval [0,0.81]. 

Otherwise, the cross-section reaches ULS without cracking, but strength degradation 

due to strain softening induces an ultimate axial force lower than the maximum axial 

force. As a consequence, the upper limit of the axial force interval corresponding to an 

uncracked cross-section at ULS is to be defined. 

For a normalised axial force N/Nm > 0.81, the equations of translational and rotational 

equilibrium specialise respectively to: 

2.17
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 (7.90) 

and the limit line of the interaction domain can be defined just numerically. 

Strength domains corresponding to ELS and ULS are reported in Figure 7.17, where 

the parts of limit line corresponding to cracked cross-sections (solid lines) are 

distinguished from those corresponding to uncracked cross-sections (dashed lines). 
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Figure 7.17  Strength domains at ELS and ULS for Turnšek-Čačovič law 

 

 Strength domains for EC6 constitutive model 

Also in this case, yielding and ultimate strains of masonry were assumed to be  

k = 0.002 and u = 0.0035, resulting a supply strain ductility  = 1.75. 

With reference to the elastic limit state, if the normalised axial force falls within the 

interval [0,0.67], the cross-section is cracked and the equations of translational and 

rotational equilibrium can be respectively written as follows: 

2

3
N h  (7.91) 

2

3 4

eM h h

H
   (7.92) 

so the yielding moment can be predicted as: 

29

2 8

eM N
N

H
   (7.93) 

If the normalised axial force falls within the interval [0.67,1], the cross-section is fully 

resistant and its equilibrium against translation and rotation is governed by the 

following equations: 

2

1
1

3
N

h
   (7.94) 

2

1

12

eM

H h
  (7.95) 

so one can get: 

 
1

1
4

eM
N

H
   (7.96) 

With reference to the ultimate limit state, the equilibrium equations of a cracked cross-
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section against translation and rotation can be respectively written as follows: 

ε

1
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3μ
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 (7.97) 
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so the limit line of the strength domain can be described through the following 

equation: 
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Such an equation can be applied if the normalised axial force falls in the interval 

[0,0.81]. Otherwise, if N/Nm falls in the interval [0.81,1], the cross-section reaches ULS 

without cracking. Under a given axial force, the neutral axis depth can be evaluated by 

solving numerically the following equation: 

 
32 2
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ε

μ 1μ μ μ
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while the equation of rotational equilibrium can be written as: 
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  22
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6μ 612μ 12

uM h h

H h h


        (7.101) 

allowing to predict the ultimate moment. 

Strength domains corresponding to ELS and ULS are reported in Figure 7.18, where 

the parts of limit line corresponding to cracked cross-sections (solid lines) are 

distinguished from those corresponding to uncracked cross-sections (dashed lines). 
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Figure 7.18  Strength domains at ELS and ULS for EC6 constitutive law 
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 Strength domains for Augenti-Parisi constitutive model related to 

compression parallel to mortar bed joints 

The flexural strength domains presented below were derived through the 

implementation of the empirical stress-strain relationship developed for masonry under 

uniaxial compression parallel to mortar bed joints (Augenti and Parisi, 2010a). Such a 

constitutive model is defined by the following equations: 

3 2
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 (7.102) 

Yielding strain of masonry can be assumed as k = 0.002, while supply strain ductility 

was set to  = 6. 

With reference to the elastic limit state, if the normalised axial force falls in the 

interval  [0,0.64], the cross-section is cracked and its equilibrium against translation 

and rotation can be described through the following equations: 

0.64N h  (7.103) 

2 20.3 0.23eM
h h

H
  (7.104) 

In such conditions, the interaction between yielding moment and applied axial force 

can be expressed as follows: 

20.57
2

eM N
N

H
   (7.105) 

Conversely, if the normalised axial force falls in the interval  [0.64,1], the cross-section 

reaches ELS without cracking and its equilibrium against translation and rotation can 

be described via the following equations: 

2 3

0.45 0.09
1N

h h
    (7.106) 

2 3

0.11 0.03eM

H h h
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Regarding the ultimate limit state, the equations of translational and rotational 

equilibrium in the case of cracked cross-section can be respectively written as: 
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so the limit line of the strength domain at ELS can be described through the equation: 
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where: 
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Assuming a supply strain ductility  = 6, one can get that Eq. (7.110) can be applied 

for a normalised axial force falling in the interval [0,0.69]. It follows that the cross-

section reaches ULS without cracking if the normalised axial force is N/Nm > 0.69. The 

equations of translational and rotational equilibrium can be respectively expressed as 

follows: 
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 (7.113) 

Flexural strength domains corresponding to ELS and ULS are illustrated in  

Figure 7.19, where the parts of limit line corresponding to cracked cross-sections (solid 

lines) are distinguished from those corresponding to uncracked cross-sections (dashed 

lines). 

It is underlined that the cross-section cannot reach ULS in uncracked conditions at 

higher levels of strain ductility, namely masonry cracking cannot be avoided. 

Therefore, the ultimate strength domain shown in Figure 7.19 does not include a 

dashed line corresponding to the uncracked cross-section. 
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Figure 7.19  Strength domains at ELS and ULS for Augenti-Parisi constitutive law (paral. dir.) 

 

 Comparisons between strength domains 

Deformation-based sectional analysis have allowed to define flexural strength domains 

which depend on strain ductility of masonry. The equations presented above could be 

applied not only in the assessment of existing masonry buildings, but also in 

deformation-based design methods. When dealing with seismic assessment, flexural 

strength domains can be considered to change with strain ductility demand. 

Conversely, in seismic design of masonry buildings, flexural strength can be defined at 

different limit states, once supply strain ductility has been assigned to masonry. It is 

underlined that the concept of evolutionary strength domain has a meaning only when 

a strength degrading constitutive model (e.g., the stress-strain relationship proposed by 

Turnšek and Čačovič, 1971) is assumed for masonry. Figure 7.20 shows a comparison 

between yielding strength domains related to constitutive laws considered in previous 

sections. Except for EPP model, yielding moment predictions are about the same. 
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Figure 7.20  Comparison between strength domains at ELS 
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Figure 7.21 shows the comparison between ultimate strength domains corresponding to 

the strain ductilities assumed in previous sections. Different ultimate moment 

predictions are obtained for a normalised axial force falling in the interval [0.3,1], 

depending on the presence or absence of strength degradation within the constitutive 

law. Whilst EPP and EC6 models lead to rather equal values of ultimate moment, those 

proposed by Turnšek and Čačovič (1971) and Augenti and Parisi (2010a) provide 

significantly different predictions. Low ultimate moments corresponding to Augenti-

Parisi constitutive law are clearly due to the high strength degradation of masonry, 

given that supply strain ductility was supposed to be  = 6. Therefore, ultimate 

strength domains are also compared for  = 1.75, including also the domain 

corresponding to the equation provided by IBC (2008). The latter is plotted for a 15%-

reduced compressive strength of masonry. 
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Figure 7.21  Comparison between strength domains at ULS 
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Figure 7.22  Comparison between strength domains at ULS for strain ductility  = 1.75 

 



Chapter 7 - The Evolutionary Spread Plasticity Macro-Element 
______________________________________________________________________________________________________________________________ 

 

 148 

The strain softening effect reduces significantly, so the ultimate strength domain 

corresponding to Augenti-Parisi constitutive model is much closer to the others. 

Indeed, the strength domain contraction from that associated with ELS is much 

smaller. It is also underlined that the interaction formula provided by IBC leads to less 

conservative predictions of ultimate bending moment for normalised axial forces 

falling in the interval [0,0.5]. The opposite occurs for higher axial forces. 

The implementation of the EC6 constitutive model leads to ultimate moments higher 

than those corresponding to other models, even though negligible differences are 

detected for a normalised axial force falling in the interval [0,0.4]. 

Finally, the influence of simplified constitutive models on ultimate moment was 

investigated by Brencich et al. (2008), which outlined that: (1) the ultimate strength 

domain corresponding to elastic-brittle law provides the lower bound of ultimate 

bending moment; and (2) the assumption of EPP model with limited strain ductility 

leads to the upper bound of ultimate bending moment. If strain ductility of masonry is 

limited to  = 1.75 in the EPP model, the resulting strength domain is almost entirely 

superimposed to that corresponding to Augenti-Parisi model.  

 

 Evolution in ultimate bending moment 

Ultimate bending moment predictions are significantly affected by the value assumed 

for strain ductility and by the presence or absence of strain softening in the constitutive 

model. Indeed, the latter can be characterised by a post-peak falling branch which 

induces a dramatic reduction in the bending moment allowed by the cross-section. On 

the contrary, if the rising branch of the constitutive law is followed by a plastic plateau, 

the ultimate bending moment increases. Figure 7.23 shows the evolution in the flexural 

strength domain corresponding to the Turnšek-Čačovič constitutive law, as strain 

ductility changes from  = 1 (ELS) to  = 1.75 (ULS). 
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Figure 7.23  Strength domain evolution under increasing strain ductility (Turnšek-Čačovič law) 
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Whilst a strength domain growth is detected under strain ductility increasing from  

 = 1 (ELS) to  = 1.3, a strength domain contraction occurs as yielding develops 

throughout the cross-section. As a result, the yielding strength domain is intersected by 

inelastic strength domains corresponding to larger strain ductility values. 

For a given axial force, as strain ductility increases in the interval [1,1.75], ultimate 

moment follows a parabolic law of variation, reaching the maximum value at a strain 

ductility between 1.4 and 1.45 (Fig. 7.24). 

The curvature of the parabola reduces with the normalised axial force and vanishes for 

normalised axial forces lower than 0.25. Therefore, the variation in ultimate moment 

with strain ductility demand is more significant under higher values of applied axial 

force, as shown in Figure 7.23. 
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Figure 7.24  Ultimate bending moment versus strain ductility (Turnšek-Čačovič model) 

 

Such an otucome depends on the combination of two opposing effects. In fact, when 

the cross-section yields, it suffers increasing axial strains resulting in an ultimate 

moment increase. On the contrary, strength degradation induces a gradual reduction in 

the ultimate moment. The first effect, which is related to spreading of yielding over the 

cross-section, prevails on the second effect at small ductility levels, so the flexural 

strength increases for a strain ductility falling in the interval [1,1.45] in the case of 

Turnšek-Čačovič constitutive law. 

At larger ductility levels the strain softening effect becomes more important, inducing 

an ultimate moment reduction. The evolution in the flexural strength with strain 

ductility is clearly evidenced in Figure 7.25, which contains a three-dimensional view 

of the ductility-dependent interaction domain defined in the space N/NmM/(Nm·H). 
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Figure 7.25  N/NmM/(Nm·H) strength domain for Turnšek-Čačovič model 

 

The intersections between the three-dimensional interaction domain and the planes 

corresponding to different strain ductility values allow to identify two-dimensional 

strength domains N/NmM/(Nm·H). 

Figures 7.26 and 7.27 show some views of the surfaces N/Nm and M/(Nm·H), 

respectively. 

 

 
Figure 7.26  N/Nm surface for Turnšek-Čačovič model 
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Figure 7.27  M/(Nm·H) surface for Turnšek-Čačovič model 

 

Figure 7.28 illustrates the strength domain evolution corresponding to Augenti-Parisi 

constitutive model, under varying strain ductility. Figure 7.29 shows the ultimate 

bending moment of the cross-section versus strain ductility, at pre-defined normalised 

axia forces. The law of variation is not parabolic, but almost consta at a normalised 

axial force equal to 0.25 (as in the case of Turnšek- Čačovič constitutive model). 
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Figure 7.28  Strength domain evolution under varying strain ductility (Augenti-Parisi model) 
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Figure 7.29  Ultimate bending moment versus strain ductility (Augenti-Parisi model) 

 

This indicates that the ultimate moment is most affected by strength degradation of 

masonry. It is also emphasised that the ultimate moment vanishes at progressively 

lower values of strain ductility for normalised axial forces greater than 0.5. For  

N/Nm = 0.75, the ultimate moment vanishes at  = 4.3 (Fig. 7.29) and the inelastic 

capacity of masonry can be exploited up to a maximum axial strain i = 0.86%. Also in 

this case, Figure 7.30 shows a three-dimensional domain in the Cartesian space 

N/NmM/(Nm·H). 

 

 
Figure 7.30  N/NmM/(Nm·H) strength domain for Augenti-Parisi model 
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This graphic representation confirms the high influence of strain ductility and strength 

degradation in the Augenti-Parisi constitutive model. Figures 7.31 and 7.32 show some 

views of the surfaces N/Nm and M/(Nm·H), respectively. The latter is a 

continuum representation of the ultimate moment‟s law of variation in Figure 7.29. 

 

 
Figure 7.31  N/Nm surface for Augenti-Parisi model 

 

 
Figure 7.32  M/(Nm·H) surface for Augenti-Parisi model 
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7.3. Three-Dimensional Strength Domains 

Three-dimensional strength domains V/NmN/Nme/H including all actions applied to 

the panel can be used, as alternative to two-dimensional strength domains 

M/(Nm·H)N/Nm presented in previous section. The bending moment is taken into 

account by means of the axial force eccentricity. This representation was first proposed 

by Augenti (2007) in order to investigate the flexural strength of spandrel panels at 

ELS by using an EPP constitutive model for masonry. 

In this section, a number of formulations derived for constitutive laws considered in 

previous sections are presented and discussed with reference to both ELS and ULS. In 

order to get three-dimensional strength domains, equilibrium is analysed for the entire 

masonry macro-element, rather than a single cross-section. Therefore, the theoretical 

analysis was carried out with reference to the simplified scheme shown in Figure 7.33, 

where the spandrel panel is subjected to combined eccentric compression and shear at 

both extreme sections, as well as external forces F, P, and Q. 
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Figure 7.33  Internal and external forces acting on the masonry panel 

 

In particular, the following symbols are used below: 

- N
l
 and N

r
, which are the axial forces over the left and right estreme sections, 

respectively; 

- V
s
 and V

d
, which are the shear forces the left and right estreme sections, 

respectively; 

- e
l
 and e

r
, which are the eccentricities of axial forces N

l
 and N

r
, respectively, with 

respect to the centroid of the panel; 

- Q, which is the self-weight of the panel; 

- P, which is the resulting force of both dead and livel loads transmitted by the floor 

diaphragm to the panel; 

- F, which is the fraction of seismic force acting on the panel; and 

- f, which is the distance of the force line from the lower extreme of the panel. 
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Whilst internal forces and external actions are normalised to the maximum axial force 

Nm, eccentricities are normalised to the gross height H of the panel. The following sign 

convention was used in the theoretical analysis: 

- N > 0 for compressive forces; 

- M > 0 for clockwise bending moments; 

- V > 0 for shear forces inducing clockwise bending moments around the centroid of 

the panel; and 

- e > 0 for compressive forces inducing clockwise bending moments. 

Opposed to two-dimensional strength domains, although dimensionless formulas were 

derived also for three-dimensional strength domains, the latter can be graphically 

represented only if the geometry of the panel is defined. 

In order to allow comparisons between formulations presented herein to that proposed 

by Augenti (2007), the same dimensions are assumed for the masonry panel, namely 

90×140×60 cm. For each limit state of interest, the peak resisting shear force can be 

predicted by equations which were derived by imposing rotational equilibrium of the 

panel with respect to the point where the axial force over the cross-section under 

verification is applied. The relationship between the shear force V
r
 over the right 

section, the axial force N
r
 and the eccentricities e

l
, e

r
 is: 
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  
 (7.114) 

which can be divided by the maximum axial force and gross height of the section, 

reaching the dimensionless format: 

   
1

2 2

r r l r lH B
V N e e P Q F f e

B H

  
         

  
 (7.115) 

Similarly, for the left section it turns out to be: 

   
1

2 2

l l l r rB H
V N e e P Q F f e

B

  
         

  
 (7.116) 

   
1

2 2

l l l r rH B
V N e e P Q F f e

B H

  
         

  
 (7.117) 

The implementation of these equilibrium equations of the panel in those related to a 

single cross-section allowed to get three-dimensional flexural strength domains 

V/NmN/Nme/H for several stress-strain relationships of interest. Also in this case, the 

equations which define the limit surfaces of strength domains are different for cracked 

and uncracked cross-sections. Nevertheless, key differences between two- and three-

dimensional domains are that the latter are not generally the same for the extreme 

sections of the panel and depend on the sign of the axial force eccentricity. 
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7.3.1. Strength Domains for EPP Constitutive Model 

 Left section at ELS in cracked conditions 

As shown in Section 7.2.2, if the normalised axial force falls within the interval [0,0.5], 

the cross-section is cracked at ELS. If the equation of rotational equilibrium is divided 

by the equation of translational equilibrium of the cross-section, then one can get a 

function  N N e . The latter can be inverted in order to define the eccentricity as a 

function of the axial force. Based on algebraic operations, one can define the yielding 

shear force over the right section (namely, V
r
) which induces the attainment of ELS at 

the left section of the panel. In fact, for the EPP constitutive law one can get the 

following equations: 

     
21 2

1 for 0
2 3 2

r r r r l
e

H B
V N e N F F f P Q e

B H

  
           

  

 (7.118) 

   
21 2 3

for 0
2 3

r r r r l
e

H B
V N e N F F f P Q e

B H

  
          

  

 (7.119) 

which define the yielding shear force at the right cross-section as a function of the 

panel dimensions, the axial force over the same cross-section, and its eccentricity with 

respect to the centroid of the cross-section. 

 

 Left section at ELS in uncracked conditions 

If the normalised axial force falls in the interval [0.5,1], the cross-section is fully 

resistant (i.e., uncracked) at ELS. Based on operations similar to those described above 

in the case of cracked cross-section, one can get: 

 
1 1 1

for 0
6 6 3 2

r r r l
e

H B
V N e F f P Q e

B H

    
            

    

 (7.120) 

 
1 1 2

for 0
6 6 3 2

r r r l
e

H B
V N e F f P Q e

B H

    
             

    

 (7.121) 

The equations related to the right section of the masonry panel are presented below. 

 

 Right section at ELS in cracked conditions 

   
21 2

for 0
2 3 2

l l l l r
e

H B
V N e N F F f P Q e

B H
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          

  

 (7.122) 
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     
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 (7.123) 

 

 Right section at ELS in uncracked conditions 

 
1 1 2

for 0
6 6 3 2

l l l r
e

H B
V N e F f P Q e

B H

    
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 (7.124) 
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             

    

 (7.125) 

 

 Left section at ULS in cracked conditions 

If the normalised axial force falls in the interval [0,0.86], the cross-section is cracked at 

ULS and the limit surface of the flexural strength domain is defined as follows: 

     
2μ2κ1 3

1 for 0
2 3

r r r r l
u

H B
V N e N F F f P Q e

B H

  
           

  

 (7.126) 

   
2μ2κ1 3
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2 3

r r r r l
u

H B
V N e N F F f P Q e

B H

  
          

  

 (7.127) 

where the following strain ductility-dependent parameter is defined as: 

 

2
ε ε

μ 2

ε

1 3μ 3μ
κ

2μ 1

 



 

 

 Left section at ULS in uncracked conditions 

If the normalised axial force falls in the interval [0.86,1], the cross-section is fully 

resistant at ULS and the limit surface of the flexural strength domain is defined by the 

following equations: 

   
1

for 0
2 2

l
r r r l l

u

H M B
V N e h F f P Q e

B H H

  
         

  

 (7.128) 
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 (7.129) 
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being: 

     
2

3 2 ε
ε ε2

εε

μ
μ 1 μ 1

4μ6μ 12

l l l
l l l

l

M h h
h N e

H h
       

The equations related to the right section of the masonry panel are presented below. 

 

 Right section at ULS in cracked conditions 

   
2μ2κ1 3

for 0
2 3

l l l l r
u

H B
V N e N F F f P Q e

B H

  
          
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 (7.130) 
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 (7.131) 

 

 Right section at ULS in uncracked conditions 

   
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being: 

     
2

3 2 ε
ε ε2

εε

μ
μ 1 μ 1

4μ6μ 12

r r r
r r r

r

M h h
h N e

H h
       

 

 Graphic representations 

As emphasised by Augenti (2004, 2007), both volume and orientation of flexural 

strength domains V/NmN/Nme/H depend on the panel dimensions and the magnitude 

of the external actions acting on it. For a masonry panel with dimensions  

90×140×60 cm and subjected to zero external forces (that is: F = 0; P + Q = 0), one 

can plot the strength domains shown in Figures 7.34 and 7.35 for ELS and ULS, 

respectively. These domains have the same shape, but that related to ULS provides 

higher shear force values. In such a special case, these domains are the same for both 

right and left sections of the panel. It is also underlined that three-dimensional domains 

could be used also for pier panels within masonry walls with openings, by considering 

boundary conditions which change with damage to spandrels. 

 



Chapter 7 - The Evolutionary Spread Plasticity Macro-Element 
______________________________________________________________________________________________________________________________ 

 

 159 

 
Figure 7.34  Three-dimensional strength domain at ELS for EPP model 

 

 
Figure 7.35  Three-dimensional strength domain at ULS for EPP model 

 

In the former graphic representation by Augenti (2007), which is shown in Figure 6.6 

(see Sect. 6.2.7), the strength domain V/NmN/Nme/H was regarded as the union of 
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planes corresponding to a given normalised eccentricity e/H. In fact, interaction 

domains V/NmN/Nm associated with different values of normalised eccentricity can be 

derived, as shown in Figures 7.36a and 7.36b. 
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(b) 

Figure 7.36  V/NmN/Nm strength domains for EPP model: (a) ELS; (b) ULS  

 

Assuming e/H = 0, one can define a „basic domain‟ which is symmetric with respect to 

the abscisse axis. As the axial force eccentricity on the cross-section under verification 

increases, the strength domain experiences increasing rotation around the origin of the 

coordinate system. It follows that the domain is truncated at decreasing axial force 

values, since there is a relationship between axial force eccentricity and allowable axial 

force at ELS [ULS]. As the axial force eccentricity increases, an axial force greater 

than that allowable at ELS [ULS] leads the cross-section to reach yielding [loss of 

integrity]. 

The allowable shear force was derived thorugh sectional equilibrium and can be 

estimated as follows: 
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 max

3
1 2 for 0

4
N e e    (7.134) 

 max

3
2 1 for 0

4
N e e    (7.135) 

in the case of cracked cross-section at ELS, and: 

max

1
for 0

1 6
N e

e
 


 (7.136) 

max

1
for 0

1 6
N e

e
 


 (7.137) 

in the case of uncracked cross-section at ELS. Such equations demonstrate that, under 

varying normalised eccentricity, the strength domain rotates toward the negative 

[positive] shear force midspace if the axial force eccentricity is positive [negative].  

The allowable axial force at ULS can be estimated through the following equations: 

 max

μ

3
1 2 for 0

4κ
N e e    (7.138) 

 max

μ

3
2 1 for 0

4κ
N e e    (7.139) 

in the case of cracked cross-section. Conversely, no relationships between allowable 

axial force and eccentricity can be obtained in the case of uncracked cross-sections. 

The available equations are those related to sectional equilibrium against translation 

and rotation, and they can be expressed in terms of neutral axis depth normalised to the 

gross height of the panel, namely /h h H . Based on algebraic manipulation of 

equations, the normalised eccentricity can be defined as a function of h/H, as follows: 

   
 

2

ε ε ε ε

2 2 2 2 2 2
ε ε ε ε ε

μ μ 2 μ 2 μ
for 0

6μ 2 μ μ 2 μ μ

h h h h
e e

h h h h

     
  

   
 (7.140) 
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μ μ 2 μ 2 μ
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h h h h
e e

h h h h

     
 
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 (7.141) 

Therefore, one can first numerically compute the h  value corresponding to the given 

axial force eccentricity, and then h  can be replaced in the following equation: 

 
2

εε
max ε

ε

μ 1μ
μ

2μ2

h
N

h


    (7.142) 

It is underlined the shape of V/NmN/Nm strength domains corresponding to a constant 

e/H value is different from that corresponding to a constant M/(Nm·H) value. In the 
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latter case, the normalised eccentricity reduces as the compressive axial force 

increases. In terms of graph, the two-dimensional strength domain at a given M/(Nm·H) 

value can be obtained by sectioning the three-dimensional domain through a vertical 

plan which is not parallel to the set of planes corresponding to constant normalised 

eccentricities. The angle between the plane at a given M/(Nm·H) value and those at 

constant normalised eccentricity depends on the normalised bending moment 

M H N e . Since this angle can be defined as: 

α arctan
e

N

 
  

 
 

the higher is the bending moment, the higher is the slope of the vertical plane at 

constant moment with respect to the planes at constant eccentricities (Augenti, 2007). 

Two-dimensional V/Nme/H domains can also be derived from the three-dimensional 

domain, by sectioning the latter at given axial force values (Figs. 7.37a and 7.37b). 
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Figure 7.37  V/Nme/H strength domains for EPP model: (a) ELS; (b) ULS 
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As the axial force increases, the strength domain experiences increasing clockwise 

rotation around the origin of the coordinate system, and reduces up to degenerate in a 

point when the axial force reaches the allowable axial force associated with zero 

eccentricity. In fact, as the axial force eccentricity increases, the effective cross-section 

reduces so the resulting axial force decreases as well. 

 

7.3.2. Strength Domains for Turnšek-Čačovič Constitutive Model 

The assumption of the stress-strain relationship proposed by Turnšek and Čačovič 

(1971) implies that the cross-section reaches ELS in cracked conditions if the 

normalised axial force N/Nm falls in the interval [0,0.71] and ELS in uncracked 

conditions for N/Nm falling in the complimentary interval [0.71,1]. At ULS, the cross-

section is cracked for N/Nm falling in the interval [0,0.81] and uncracked for N/Nm 

greater than 0.81. Based on these considerations, the resisting shear forces of the 

extreme sections of the masonry panel at ELS and ULS (in both cracked and uncracked 

conditions) can be predicted through the equations presented below. 

 

 Left section at ELS in cracked conditions 

     
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 (7.144) 

 

 Left section at ELS in uncracked conditions 
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where: 
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e
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ξ 1
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 Right section at ELS in cracked conditions 
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 Right section at ELS in uncracked conditions 
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where the normalised bending moment can be computed as in the case of left section. 

 

 Left section at ULS in cracked conditions 
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being: 
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a strain ductility-dependent parameter. 
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 Left section at ULS in uncracked conditions 
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being: 
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 Right section at ULS in cracked conditions 
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 Right section at ULS in uncracked conditions 
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 Graphic representations 

Figures 7.38 and 7.39 show three-dimensional strength domains at ELS and ULS, 

respectively, while Figures 7.40a and 7.40b show V/NmN/Nm two-dimensional 

domains. The latter are truncated at axial force values defined as follows: 
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 max 0.9 1 2 for 0N e e    (7.159) 

 max 0.9 1 2 for 0N e e    (7.160) 

in the case of cracked section at ELS. 

 

 
Figure 7.38  Three-dimensional strength domain at ELS for Turnšek-Čačovič model 

 

 
Figure 7.39  Three-dimensional strength domain at ULS for Turnšek-Čačovič model 
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Figure 7.40  V/NmN/Nm strength domains for Turnšek-Čačovič model: (a) ELS; (b) ULS  

 

In the case of uncracked section, the normalised neutral axis depth (i.e., h/H) can be 

first computed by solving numerically the following equations: 

   
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 (7.161) 
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 (7.162) 
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so the allowable axial force can be determined as follows: 

 2.17
max e

3.2
6.4 2.49 1 ξN h

h
     (7.163) 

At ULS, the cracked section is characterised by a V/NmN/Nm domain truncated at the 

allowable axial force defined as: 
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In the case of uncracked section, the normalised neutral axis depth h/H is first to be 

computed by solving numerically the following equations: 
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 (7.167) 

so the allowable axial force can be evaluated as follows: 

 2.17
max e

3.2
6.4 2.49 1 ξN h

h
     (7.168) 
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Finally, Figures 7.41a and 7.41b show V/Nme/H domains for ELS and ULS, 

respectively. 
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Figure 7.41  V/Nme/H strength domains for Turnšek-Čačovič model: (a) ELS; (b) ULS 

 

 

7.3.3. Strength Domains for EC6 Constitutive Model 

The assumption of the stress-strain relationship reported in EC6 (CEN, 2005a) implies 

that the cross-section reaches ELS in cracked conditions if the normalised axial force 

N/Nm falls in the interval [0,0.67] and ELS in uncracked conditions for N/Nm falling in 

the complimentary interval [0.67,1]. At ULS, the cross-section is cracked for N/Nm 

falling in the interval [0,0.81] and uncracked for N/Nm falling in the interval [0.81,1]. 

Based on these considerations, the resisting shear forces of the extreme sections of the 

masonry panel at ELS and ULS (in both cracked and uncracked conditions) can be 

predicted through the equations presented below. 
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 Left section at ELS in cracked conditions 
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 Left section at ELS in uncracked conditions 
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 Right section at ELS in cracked conditions 
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 Right section at ELS in uncracked conditions 
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 Left section at ULS in cracked conditions 

     
2μ3κ1 3

1 for 0
2 4

r r r r l
u

H B
V N e N F F f P Q e

B H

  
           

  

 (7.177) 



Chapter 7 - The Evolutionary Spread Plasticity Macro-Element 
______________________________________________________________________________________________________________________________ 

 

 171 
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where: 
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 Left section at ULS in uncracked conditions 
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 Right section at ULS in cracked conditions 
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 Right section at ULS in uncracked conditions 
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 Graphic representations 

The three-dimensional strength domains corresponding to EC6 constitutive model are 

shown in Figures 7.42 and 7.43 for ELS and ULS, respectively. Figures 7.44a and 

7.44b show V/NmN/Nm strength domains at the same limit states; they are truncated at 

axial force values provided by the following equations: 
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in the case of cracked section at ELS, and: 

max

1
for 0

1 4
N e

e
 


 (7.187) 

max

1
for 0

1 4 s
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in the case of uncracked section at ELS. 

 

 
Figure 7.42  Three-dimensional strength domain at ELS for EC6 model 
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Figure 7.43  Three-dimensional strength domain at ULS for EC6 constitutive model 

 

The allowable axial force for a cracked section at ULS can be predicted as follows: 
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If the section is uncracked at ULS, the normalised neutral axis depth can be evaluated 

by solving numerically one of the following equations: 
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so the allowable axial force can be determined as follows: 
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(b) 

Figure 7.44  V/NmN/Nm strength domains for EC6 model: (a) ELS; (b) ULS 

 

Figures 7.45a and 7.45b show V/Nme/H strength domains corresponding to ELS and 

ULS, respectively. 
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(b) 

Figure 7.45  V/Nme/H strength domains for EC6 model: (a) ELS; (b) ULS 

 

 

7.3.4. Strength Domains for Augenti-Parisi Constitutive Model 

Related to Compression Orthogonal to Mortar Bed Joints 

Assuming the stress-strain relationship proposed by Augenti and Parisi (2010a) for 

compression orthogonal to mortar bed joints (case of pier panels), the cross-section at 

ELS is cracked if the normalised axial force N/Nm falls in the interval [0,0.6] and 

uncracked if N/Nm falls in the interval [0.6,1]. At ULS, the cross-section is cracked for 

N/Nm falling in the interval [0,0.61] and uncracked for N/Nm greater than 0.61. The 

resisting shear forces of the extreme sections at ELS and ULS (in both cracked and 

uncracked conditions) can be predicted via the equations presented below. 
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 Left section at ELS in uncracked conditions 
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 Right section at ELS in cracked conditions 
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 Right section at ELS in uncracked conditions 
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 Left section at ULS in cracked conditions 
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 Left section at ULS in uncracked conditions 
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 Right section at ULS in cracked conditions 
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 Right section at ULS in uncracked conditions 
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where the bending moment corresponding to the neutral axis depth can be computed as 

in the case of left section. 
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 Graphic representations 

Figures 7.46 and 7.47 show the three-dimensional strength domains corresponding to 

Augenti-Parisi constitutive model for compression orthogonal to mortar bed joints. 

 

 
Figure 7.46  Three-dimensional strength domain at ELS for Augenti-Parisi model (orthog. dir.) 

 

 
Figure 7.47  Three-dimensional strength domain at ULS for Augenti-Parisi model (orthog. dir.) 
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Figures 7.48a and 7.48b illustrate V/NmN/Nm domains at ELS and ULS, respectively; 

such domains are truncated at axial force values given by the following equations: 

 max 0.86 1 2 for 0N e e    (7.210) 

 max 0.86 1 2 for 0N e e    (7.211) 

in the case of cracked section at ELS. 
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(b) 

Figure 7.48  V/NmN/Nm domains for Augenti-Parisi model (orthog. dir.): (a) ELS; (b) ULS 

 

If the section is fully resistant at ULS, then the normalised neutral axis depth is to be 

determined first by solving numerically one of the following equations: 
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The allowable axial force can then be determined as: 

max 3 2

0.18 0.56 0.01
1N

hh h
     (7.214) 

This allowable force is instead provided by the following equation related to cracked 

section at ULS: 
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In the case of uncracked section at ULS, the normalised neutral axis depth can be 

numerically determined through one of the following equations: 
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where: 
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The allowable axial force is then defined as: 
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Figures 7.49a and 7.49b show V/Nme/H strength domains related to ELS and ULS, 

respectively. It is underlined that the assumption of Augenti-Parisi constitutive model 
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(orthog. dir.) implies that the strength domain cannot be defined also at N/Nm = 0.7. 

This depends on the fact that supply strain ductility assumed for masonry leads to a 

maximum normalised axial force N/Nm = 0.57. 
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(b) 

Figure 7.49  V/Nme/H domains for Augenti-Parisi model (orthog. dir.): (a) ELS; (b) ULS 

 

 

7.3.5. Strength Domains for Augenti-Parisi Constitutive Model 

Related to Compression Parallel to Mortar Bed Joints 

Assuming the stress-strain relationship proposed by Augenti and Parisi (2010a) for 

compression paralle to mortar bed joints (case of spandrel panels), the cross-section 

reaches ELS in cracked conditions if the normalised axial force N/Nm falls in the 

interval [0,0.64] and in uncracked conditions for N/Nm falling in the complimentary 

interval [0.64,1]. At ULS, the cross-section is cracked for N/Nm falling in the interval 

[0,0.69] and uncracked for N/Nm greater than 0.69. Based on these considerations, the 
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resisting shear forces of the extreme sections of the masonry panel at ELS and ULS (in 

both cracked and uncracked conditions) can be predicted through the equations 

presented below. 

 

 Left section at ELS in cracked conditions 
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 Left section at ELS in uncracked conditions 
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 Right section at ELS in cracked conditions 
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 Left section at ULS in cracked conditions 
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 Left section at ULS in uncracked conditions 
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 Right section at ULS in cracked conditions 
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 Right section at ULS in uncracked conditions 
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 (7.235) 

where the normalised bending moment can be computed as a function of the neutral 

axis depth by using the equation derived for the left section at ULS. 

 

 Graphic representations 

Different strength domains were obtained also in the case of the constitutive model 

proposed by Augenti and Parisi (2010a) for compression parallel to mortar bed joints. 

The three-dimensional strength domains corresponding to ELS and ULS are 

respectively shown in Figures 7.50 and 7.51. 

 

 
Figure 7.50  Three-dimensional strength domain at ELS for Augenti-Parisi model (paral. dir.) 
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Figure 7.51  Three-dimensional strength domain at ULS for Augenti-Parisi model (paral. dir.) 

 

Figures 7.52a and 7.52b show V/NmN/Nm strength domains at ELS and ULS, 

respectively, which are truncated at axial force values provided by the following 

equations: 

 max 0.87 1 2 for 0N e e    (7.236) 

 max 0.87 1 2 for 0N e e    (7.237) 

in the case of cracked section at ELS. 

Otherwise, for an uncracked section at ULS, the normalised neutral axis depth can be 

first determined through one of the following equations: 

 
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0.53

0.11 0.

0.2 7

4

0.

2

2 6

h

h h
e

h
e  





 
 (7.238) 
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h h
e

h
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
  
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 (7.239) 

so the allowable axial force can be computed as follows: 

max 3 2

0.09 0.45
1N

h h
    (7.240) 
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Figure 7.52  V/NmN/Nm domains for Augenti-Parisi model (paral. dir.): (a) ELS; (b) ULS  

 

For a cracked section at ULS the allowable axial force is given by: 

 max

μ

1
1 2 for 0

2κ
N e e    (7.241) 

 max

μ

1
1 2 for 0

2κ
N e e    (7.242) 

while, in the case of uncracked section at ULS, the normalised neutral axis depth can 

be first computed as: 
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where: 
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Therefore, the allowable axial force can be computed as: 

3 2 3
2 3 ε ε ε

max ε ε ε 3 2

2 3
ε ε ε

2 3 4 5
ε ε ε ε ε

ε

0.09μ 0.09μ 0.36μ
 1.64μ 0.28μ 0.36μ

0.82μ 0.28μ 0.54μ

0.27
0.7 0.48μ 0.07μ 0.12μ 0.003μ 0.0001μ

μ

N
h h

h

h


     

 
 

 
       

 

 (7.245) 

Figures 7.53a and 7.53b show V/Nme/H strength domains related to ELS and ULS, 

respectively. Opposed to the case of Augenti-Parisi constitutive model for compression 

orthogonal to mortar bed joints, a V/Nme/H strength domain can be defined also at 

N/Nm = 0.7. 
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Figure 7.53  V/Nme/H domains for Augenti-Parisi model (paral. dir.): (a) ELS; (b) ULS 

 

7.4. Moment-Curvature Diagrams 

The definition of moment-curvature relationships for cross-sections likely to suffer 

large strains with significant cracking and yielding can play a key role in non-linear 

analysis of masonry structures. Therefore, proper mechanical parameters should be 

defined also in lumped plasticity models based on frame-equivalent idealisation of 

masonry walls with openings. In fact, mechanical modelling of macro-elements 

includes not only the definition of both flexural and shear strengths through interaction 

domains, but also their flexibility, ductility, and deformation capacity. To that end, 

additional information can be provided by moment-curvature diagrams, as well as 

moment-rotation or force-displacement curves. 

In this section, moment-curvature diagrams derived for several constitutive models are 

presented and discussed (Parisi and Augenti, 2010). Moment-curvature analysis was 

carried out by assuming: 

- a rectangular cross-section with thickness s and gross height H; 

- masonry as a homogeneous material with zero tensile strength in bending; and 

- plane cross-sections after bending deformation (Euler-Bernoulli hypothesis). 

Since the effective cross-section changes with the applied axial force, moment-

curvature diagrams were derived through an incremental iterative procedure based on 

the application of an increasing maximum axial strain and the computation of the 

relevant neutral axis depth and resisting bending moment. 

Axial force and bending moment were obtained by means of the equations used to 

define flexural strength domains, but strain ductility was regarded as demand on 

masonry, rather than a capacity parameter. 
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For the sake of simplicity, the normalised neutral axis depth (denoted as /h h H ) 

was employed for both cracked and uncracked cross-sections. This approach allowed 

to define both axial force and bending moment as functions of h/H and the strain 

ductility demand ,d = max/k corresponding to the given maximum axial strain (max). 

The average bending curvature of the cross-section was then expressed as  = max/h.  

In order to get analytical results independent of both masonry strength and sectional 

dimensions, bending curvature was multiplied by the gross height H. Therefore, the 

diagrams presented herein are defined as normalised bending moment M/(Nm·H) versus 

normalised curvature H. 

The cracked and uncracked sectional conditions considered in the moment-curvature 

analysis are shown in Figures 7.54a and 7.54b. The cross-section is cracked under low 

compressive forces and large curvature demands, while it is uncracked under high 

compressive forces and small curvature demands. 
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Figure 7.54  Behaviour of URM cross-section under (a) low compression and large curvature 

and (b) high compression and small curvature 
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Moment-curvature diagrams were derived for the following axial force levels:  

N/Nm = 0.1; N/Nm = 0.25; N/Nm = 0.5; and N/Nm = 0.75. The normalised curvature was 

evaluated at both ELS and ULS, and was denoted as eH and uH, respectively.  

In order to ensure a better understanding of the sectional behaviour, the following 

parameters were assessed at each axial force level: 

- the ratio M = Mmax/Me between the maximum resisting moment and the yielding 

moment, which allowed to quantify sectional overstrength after yielding of 

masonry; 

- the ratio M = Mmax/Mu between the maximum resisting moment and the ultimate 

moment, which is a capacity index associated with hardening or softening in the 

plastic range; 

- the ratio M = Mu/Me, which is associated with the overall sectional behaviour after 

yielding; 

- the curvature ductility  = u/e; 

- the curvature capacity C = (u  e)/e =   1; and 

- the curvature ratios at ELS and ULS: 

 
 

 
 0.1 0.1

ρ ; ρ
e u

ue

e u

N N 


 
 

 

which describe the curvature variation as the normalised axial force increases from 

a reference value N/Nm = 0.1. These parameters allow monitoring of sectional 

deformation capacity under increasing compression level. 

Figure 7.55 shows the characteristic points of the moment-curvature diagram, namely 

those corresponding to yielding (ELS), peak resistance (Peak), and ultimate state 

(ULS). 
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Figure 7.55  Characteristic points of normalised moment-curvature diagram 
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7.4.1. Moment-Curvature Diagrams for EPP Constitutive Model 

If the compressive behaviour of masonry is modelled through the EPP constitutive 

model, as the normalised axial force increases in the interval [0,0.5], ultimate moment 

increases while ultimate curvature reduces. As N/Nm increases in the interval [0.5,1], 

both ultimate moment and ultimate curvature reduce. On the contrary, yielding 

curvature always increases with the applied axial force. Moment-curvature diagrams 

corresponding to the axial force levels considered in this study are plotted in  

Figure 7.56, while Figure 7.57 shows HN/Nm and N/Nm curves. 
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Figure 7.56  Moment-curvature diagrams for EPP model 
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Figure 7.57  Variation in curvatures and curvature ratios for EPP model 

 

The moment-curvature diagram corresponding to N/Nm = 0.75 is partially 

superimposed to that corresponding to N/Nm = 0.25. Nevertheless, both yielding and 
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ultimate curvatures at N/Nm = 0.75 are lower than the others. The sectional parameters 

were assessed at each characteristic point of moment-curvature diagrams (Tables 7.1 

and 7.2). As the normalised axial force is increased from 0.1 to 0.5, the resisting 

moments Me and Mu increases of about 49%; as N/Nm is increased from 0.5 to 0.75, 

such moments reduce of about 49% and 27%, respectively. 

 

Table 7.1  Resisting moments and other parameters for EPP model 

N  eM H  maxM H  uM H  αM  βM  γM  

0.10 0.043 0.045 0.045 1.04 1 1.04 

0.25 0.083 0.093 0.093 1.12 1 1.12 

0.50 0.083 0.124 0.124 1.49 1 1.49 

0.75 0.042 0.091 0.091 2.19 1 2.19 

 
Table 7.2  Curvatures and other parameters for EPP model 

N  e H  [%] u H  [%]  C e  N  u  N  

0.10 0.50 3.00 6.00 5.00 1.00 1.00 

0.25 0.20 1.20 6.00 5.00 0.40 0.40 

0.50 0.10 0.60 6.00 5.00 0.20 0.20 

0.75 0.05 0.40 8.00 7.00 0.10 0.13 

 

Sectional overstrength M  increases significantly with the given axial force. It is worth 

noting that EPP model leads to Mu = Mmax (and hence M = 1) and M = M. Curvature 

reduces rapidly under increasing normalised axial force. In fact, the curvature at  

N/Nm = 0.25 is about 60% lower than that associated with N/Nm = 0.1, reaching 20% of 

the initial value at N/Nm = 0.5. In the case of N/Nm = 0.75, both yielding and ultimate 

curvatures are 10% of those related to N/Nm = 0.1. 

For a strain ductility  = 3.75 for the EPP constitutive model, curvature ductility is  

 = 6 for N/Nm falling in the interval [0,0.5]. For N/Nm = 0.75, curvature ductility is 

equal to 8 since the cross-section is fully resistant at ELS and cracked at ULS. 

 

7.4.2. Moment-Curvature Diagrams for Turnšek-Čačovič 

Constitutive Model 

Moment-curvature diagrams corresponding to the Turnšek-Čačovič constitutive model 

are plotted in Figure 7.58, while both curves HN/Nm and N/Nm are plotted in 

Figure 7.59. 
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Figure 7.58  Moment-curvature diagrams for Turnšek-Čačovič model 
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Figure 7.59  Variation in curvatures and curvature ratios for Turnšek-Čačovič model 

 

For the maximum compression level considered in the analysis, the resisting moment 

increases linearly up to peak as the given curvature increases. A significant strength 

deterioration occurs under larger curvatures. Strain softening of masonry does not 

considerably affect the moment-curvature relationship corresponding to N/Nm = 0.1. 

Non-linear sectional parameters were also assessed and are listed in Tables 7.3 and 7.4. 

Sectional overstrength M is slightly higher than M since the resisting moment 

increases as yielding develops over the masonry cross-section. On the other hand, M is 

almost equal to M, because strength degradation is rather equal to hardening. Yielding 

curvature is larger than that corresponding to EPP and EC6 constitutive laws (see 

Sects. 7.4.1 and 7.4.3). Ultimate curvature reduces as the given axial force increases. 

Curvature ductility is lower and equal to about 2 at any compression level. 
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Table 7.3  Resisting moments and other parameters for Turnšek-Čačovič model 

N  eM H  maxM H  uM H  αM  βM  γM  

0.10 0.044 0.045 0.045 1.01 1.00 1.00 

0.25 0.090 0.092 0.091 1.02 1.01 1.01 

0.50 0.111 0.118 0.115 1.07 1.03 1.03 

0.75 0.063 0.079 0.070 1.24 1.12 1.11 

 

Table 7.4  Curvatures and other parameters for Turnšek-Čačovič model 

N  e H  [%] u H  [%]  C e  N  u  N  

0.10 1.42 2.84 1.99 0.99 1.00 1.00 

0.25 0.57 1.13 1.99 0.99 0.40 0.40 

0.50 0.28 0.57 1.99 0.99 0.20 0.20 

0.75 0.19 0.38 2.01 1.01 0.13 0.13 

 

 

7.4.3. Moment-Curvature Diagrams for EC6 Constitutive Model 

The moment-curvature diagrams derived for EC6 constitutive model are plotted in 

Figure 7.60. The curves HN/Nm and N/Nm are shown in Figure 7.61.  

The relationship between the bending moment and the given curvature is rather linear 

up to ULS in the case of normalised axial force N/Nm = 0.75. The variations in both 

yielding and ultimate curvatures are not considerably different from those observed in 

the case of EPP constitutive model. 
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Figure 7.60  Moment-curvature diagrams for EC6 model 
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Figure 7.61  Variation in curvatures and curvature ratios for EC6 model 

 

The presence of a plastic plateau in EC6 stress-strain relationship leads to Mu = Mmax 

(and hence M = 1) and M = M (Table 7.5). Such coefficients are lower than those 

related to the EPP constitutive model, showing a lower resisting moment increase in 

the post-elastic range. This depends on the fact that the assumption of EC6 model 

produces a yielding moment higher than that related to the EPP model. Sectional 

overstrength is about 63% and 75% those evaluated for N/Nm = 0.10.5 and  

N/Nm = 0.75, respectively, in the case of EPP model. Yielding curvature is 2.7 and 3.4 

times those corresponding to N/Nm = 0.10.5 and N/Nm = 0.75, respectively, in the case 

of EPP model (Table 7.6). On the contrary, ultimate curvature is about 95% that 

corresponding to the EPP constitutive model, resulting in lower curvature ductility. 

 

Table 7.5  Resisting moments and other parameters for EC6 model 

N  eM H  maxM H  uM H  αM  βM  γM  

0.10 0.044 0.045 0.045 1.01 1 1.01 

0.25 0.090 0.093 0.093 1.03 1 1.03 

0.50 0.109 0.121 0.121 1.11 1 1.11 

0.75 0.062 0.086 0.086 1.38 1 1.38 

 
Table 7.6  Curvatures and other parameters for EC6 model 

N  e H  [%] u H  [%]  C e  N  u  N  

0.10 1.33 2.83 2.12 1.12 1.00 1.00 

0.25 0.53 1.13 2.12 1.12 0.40 0.40 

0.50 0.27 0.57 2.12 1.12 0.20 0.20 

0.75 0.17 0.38 2.18 1.18 0.13 0.13 
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7.4.4. Moment-Curvature Diagrams for Augenti-Parisi Constitutive 

Model Related to Compression Orthogonal to Mortar Bed 

Joints 

The moment-curvature diagrams corresponding to Augenti-Parisi constitutive model 

for compression orthogonal to mortar bed joints are plotted in Figure 7.62. The curves 

HN/Nm and N/Nm are plotted in Figure 7.63. 
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Figure 7.62  Moment-curvature diagrams for Augenti-Parisi model (orthog. dir.) 
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Figure 7.63  Variation in curvatures and curvature ratios for Augenti-Parisi model (orthog. dir.) 

 

The resisting moments are not considerably different from those corresponding to other 

constitutive laws (Table 7.7), while the moment-curvature relationship is significantly 

affected by strain softening of masonry, except in the case of N/Nm = 0.1. In fact, the 

parameter M is very high in the case of N/Nm = 0.5. 
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For a strain ductility  = 5, curvature ductility is  = 5.09 for N/Nm = 0.10.5 and  

 = 3.22 for N/Nm = 0.75 (Table 7.8). Amongst the constitutive models considered in 

the analysis, the stress-strain relation proposed by Augenti and Parisi (2010a) for 

masonry subjected to compression orthogonal to mortar bed joints is the only one 

where curvature ductility is lower than strain ductility at N/Nm = 0.75. This depends on 

the fact that a ductility demand equal to 2.6 (i.e., a few higher than one-half of supply 

ductility) corresponds to ultimate curvature. 

 

Table 7.7  Resisting moments and other parameters for Augenti-Parisi model (orthog. dir.) 

N  eM H  maxM H  uM H  αM  βM  γM  

0.10 0.044 0.044 0.041 1.01 1.08 0.93 

0.25 0.088 0.091 0.070 1.02 1.29 0.79 

0.50 0.104 0.113 0.031 1.08 3.67 0.29 

0.75 0.058 0.068 0 1.17 ∞ 0 

 

Table 7.8  Curvatures and other parameters for Augenti-Parisi model (orthog. dir.) 

N  e H  [%] u H  [%]  C e  N  u  N  

0.10 1.21 6.13 5.09 4.09 1.00 1.00 

0.25 0.48 2.45 5.09 4.09 0.40 0.40 

0.50 0.24 1.23 5.09 4.09 0.20 0.20 

0.75 0.15 0.48 3.22 2.22 0.12 0.08 

 

 

7.4.5. Moment-Curvature Diagrams for Augenti-Parisi Constitutive 

Model Related to Compression Parallel to Mortar Bed Joints 

The moment-curvature diagrams corresponding to Augenti-Parisi constitutive model 

for compression orthogonal to mortar bed joints are plotted in Figure 7.64. The curves 

HN/Nm and N/Nm are plotted in Figure 7.65. 

Also in this case, the resisting moments are not considerably different from those 

corresponding to other constitutive laws (Table 7.9), while the moment-curvature 

relationship is significantly affected by strain softening of masonry. For a strain 

ductility  = 6, curvature ductility is  = 6.53 at any compression level (Table 7.10). 

Whilst yielding curvature is lower than those corresponding to EC6 and Turnšek-

Čačovič constitutive models, ultimate curvature is 2.9 and 3.4 higher for  

N/Nm = 0.10.5 and N/Nm = 0.75, respectively. Nonetheless, the law of variation of 

both curvatures versus axial force does not diverge from that corresponding to 

Turnšek-Čačovič model. 
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Figure 7.64  Moment-curvature diagrams for Augenti-Parisi model (paral. dir.) 
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Figure 7.65  Variation in curvatures and curvature ratios for Augenti-Parisi model (paral. dir.) 

 

 

Table 7.9  Resisting moments and other parameters for Augenti-Parisi model (paral. dir.) 

N  eM H  maxM H  uM H  αM  βM  γM  

0.10 0.044 0.045 0.042 1.01 1.06 0.95 

0.25 0.089 0.092 0.076 1.03 1.21 0.86 

0.50 0.107 0.119 0.056 1.11 2.13 0.52 

0.75 0.060 0.080 0 1.23 ∞ 0 
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Table 7.10  Curvatures and other parameters for Augenti-Parisi model (paral. dir.) 

N  e H  [%] u H  [%]  C e  N  u  N  

0.10 1.27 8.31 6.53 5.53 1.00 1.00 

0.25 0.51 3.33 6.53 5.53 0.40 0.40 

0.50 0.25 1.66 6.53 5.53 0.20 0.20 

0.75 0.20 1.29 6.53 5.53 0.15 0.15 

 

 

7.4.6. Remarks 

Comparisons between HN/Nm curves related to the stress-strain relations considered 

above were made for both yielding and ultimate curvatures (Figs. 7.66 and 7.67). 
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Figure 7.66  Yielding curvature versus axial force 
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Figure 7.67  Ultimate curvature versus axial force 
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It is clear that curvatures depend on their relevant strains at yielding and ultimate limit 

states of masonry. Moment-curvature diagrams corresponding to different constitutive 

laws for N/Nm = 0.1 are compared themselves in Figure 7.68 (ultimate curvatures are 

identified by vertical lines). Yielding curvature is almost the same for all constitutive 

models, except for the EPP model. Ultimate moments are almost equal, while ultimate 

curvatures are notably different. 

Curvature ductility is never less than 2 and always higher than strain ductility of 

masonry, except for N/Nm = 0.75 in the case of Augenti-Parisi model for compression 

orthogonal to mortar bed joints (Fig. 7.69). Only for this value of normalised axial 

force and for  = 3.5 (EPP model) and  = 5 (Augenti-Parisi model for compression 

orthogonal to mortar bed joints) the ratio / depends on the applied axial force. Vice 

versa, in all other cases, such a ratio is independent of the compression level. 
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Figure 7.68  Comparison between moment-curvature diagrams for N/Nm = 0.1 
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Figure 7.69  Curvature ductility versus strain ductility 
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7.5. Force-Displacement Diagrams 

The definition of force-displacement curves can be carried out not only for individual 

masonry panels, but also for single storeys of walls with openings. 

The force-displacement diagrams related to single panels allow to predict non-linear 

seismic response of masonry buildings accounting for equilibrium and displacement 

compatibility among several macro-elements. 

The force-displacement diagrams related to wall storeys could be used in the case of 

building aggregates in historical centres. For these structures, IBC (IMIT, 2008) allows 

to perform storey-by-storey seismic analysis without considering interaction effects 

due, for instance, to axial flexibility of piers. It is also underlined that the former 

version of the RAN method assumes doubly-fixed pier panels due to the presence of 

rigid spandrels. The latter are assumed to be able to provide coupling up to the collapse 

of piers. Although these hypotheses could have some limitations in the case of existing 

buildings without RC ring beams nor lintels above openings, global seismic analysis 

can be carried out on both entire buildings and single walls by using force-

displacement curves independent of boundary conditions on masonry panels. 

Nonetheless, matrix analysis of frame-equivalent models allows to account for actual 

constraints between pier and spandrel panels, as a function of their stiffness and 

strength characteristics associated with the global deformation state of the structure. 

 

7.5.1. Force-Displacement Diagrams of Macro-Elements 

The relative lateral displacement between extreme sections of a masonry panel is 

typically regarded as the sum of two contributions related to shearing and flexural 

deformations (see Sect. 6.2.9). Some researchers have proposed also some simplified 

formulations aimed at capturing rocking behaviour of masonry panels without complex 

integrations on bending curvatures or two-dimensional strain fields (see for instance: 

Rai and Goel, 2007). 

As well known, rocking consists in a rigid-body rotation of a cracked masonry panel 

around its compressed toes. Assuming that this kind of behaviour is not associated with 

deformations suffered by the panel, but is just a consequence of crack opening within 

the non-reacting part, rocking can be separated from contributions due to flexural and 

shearing deformations. Therefore, one can assume that: (1) the lateral strength of the 

macro-element is associated with flexural and shearing deformations; and (2) the 

lateral displacement is a consequence of flexural and shearing deformations, as well as 

a „pure‟ rigid-body rotation which is said to be „rocking‟. Under these hypotheses, the 

mechanics of the macro-element can be analysed in detail through deformation-based 

approaches. In this regard, this section focuses on lateral displacements due to flexural 

deformations (Augenti and Parisi, 2009c). In fact, lateral displacements due to shearing 
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deformation can be predicted by using the classical force-based approach discussed in 

Section 6.2.9, while rocking-induced displacements (in strictly speaking) are still under 

investigation. It is emphasised once again that current analytical models assume 

rocking as a unique phenomenon where flexural deformations are not analysed in 

detail. 

In the present section, the lateral displacement of a masonry panel is then assumed to 

be the sum of three contributions, as follows: 

δ δ δ δV M R    (7.246) 

where: V is the lateral displacement induced by shearing deformation; M is the lateral 

displacement induced by flexural deformation; and R is the lateral displacement 

induced by crack opening within the non-reacting part of the panel (which could also 

be called „pure rocking‟). 

Under a given axial force on the panel, the force-displacement curve can be defined by 

increasing monotonically the maximum axial strain z,max at the most stressed extreme 

section in bending (both extreme sections in the case of doubly-fixed panels). As a 

result, bending curvature increases up to ULS and produces a monotonically-increasing 

lateral displacement M. At each strain step, one can compute the lateral displacement 

and the resisting shear force, so the output of the analysis is a force-displacement curve 

VM related only to bending deformation. Since current models for the estimation of 

shearing and rocking contributions are based on force-based procedures, one can 

estimate V and R under varying shear force related to bending deformation. Hence, 

the overall force-displacement curve Vis obtained by adding shearing and rocking 

displacements to the flexural displacement, at each given shear force. 

The maximum axial strain at the most stressed extreme section in bending is increased 

until the ultimate strain of masonry (that is, u) is reached. Each point of the VM 

curve depends not only on the applied axial force, the macro-element dimensions, and 

the boundary conditions, but also on the constitutive model assumed for masonry in 

compression. 

Through a strain-controlled procedure, one can get relationships  = (z,max) and  

V = V(z,max), where z is the longitudinal axis of the macro-element. The latter is based 

on formulations presented in Section 7.2 for flexural strength domains. In this way, the 

V diagram can be numerically defined as a series of points (V,) associated with a 

given maximum axial strain z,max. In other terms, the force-displacement diagram is a 

parametric representation rather than the graph of a function V = V(). The strain 

control, as well as the definition of flexural displacements through double integration 

of curvatures over an evolutionary reacting domain including the constitutive model of 

masonry, allow assessing the lateral evolutionary behaviour of the macro-element 
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under increasing drift demand. The mechanical behaviour of the masonry panel 

depends on the occurrence and spreading of cracking and yielding within the masonry 

(see Sect. 7.1). Non-linear elasticity of masonry due to micro-cracking and strain 

ductility are not considered in classical stress-based approaches (where strength 

domains are derived through limit stress diagrams) and force-controlled procedures 

(where force-displacement curves are defined under increasing shear force or as 

simplified multi-linear diagrams). 

Assuming a plane strain field within the masonry panel and small strains, the 

maximum axial strain at the extreme section subjected to the maximum bending 

moment can be expressed as follows: 

,max ,maxε ε εN M
z z z   (7.247) 

where: ε N
z is the average axial strain corresponding to the applied axial force N; and 

,maxεM
z  is the maximum axial strain corresponding to the resisting bending moment M. 

The maximum axial strain z,max is assumed to fall within the interval [0,u], in order to 

ensure integrity of masonry. The average axial strain due to the given axial force can 

be copmuted through the equation of translational equilibrium over the extreme section 

being monitored. The maximum axial strain due to flexure is applied over the 

monitored section along with the entire strain field within the masonry panel. The 

plane strain field is defined as the union of one-dimensional strain diagrams along the 

axes x, z which are respectively assumed to be the transverse and longitudinal axes of 

the panel with origin in the centroid G (Fig. 7.70). 

The effective width b of cross-sections changes along the z-axis, resulting in a convex 

reacting domain within the masonry panel. Once the geometry of this domain (namely, 

a function b(z)) has been defined, the lateral displacement can be estimated by 

increasing monotonically the maximum axial strain z,max in the interval [0,u]. 

 

G x

z

z,max

b(z)
z

 
Figure 7.70  Axial strain field throughout the inner resistant domain of the macro-element 
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The axial strain field can be defined as: 

  z,max

z

2ε
ε , 1

2 ( ) ( )

B x
x z z

H b z b z

 
   

 
 (7.248) 

so the lateral displacement due to flexural deformation can be computed through the 

following double integration: 

z,max2ε 1
δ 2 1

2 ( ) ( )
p

M

A

B x
z dxdz

H b z b z x

  
    

  
  (7.249) 

where Ap is the midarea of the reacting domain of the masonry panel. The calculus of 

such an integral is the key step of the formulation presented herein, in order to define 

the force-displacement curve of a masonry panel through a deformation-based 

approach. A closed-form double integration was carried out for several integration 

domains with increasing level of complexity and accuracy (Augenti and Parisi, 2009c). 

The analytical solution presented below was obtained for an evolutionary reacting 

domain inside the panel which changes with the given deformation state, as discussed 

in Section 7.1. To simplify the double integration of the axial strain field, the Cartesian 

coordinate system was suitably defined in a way to get a reacting domain normal on R
2
 

with respect to the longitudinal axis. To that end, a transformation of variables was 

carried out, so the order of integration was reduced in a way to solve double integrals 

as series of integrals of one variable. 

The collapse criterion considered for the panel in this approach does not consist in 

assuming that the panel fails when the maximum shear force is attained. In fact, the 

collapse of the panel is assumed to occur in one of the following cases:  

(1) the maximum axial strain over the most stressed extreme section reaches the 

ultimate strain of masonry; or 

(2) the ultimate displacement for shear mechanisms is reached. 

The latter capacity parameter can be defined as: the displacement associated with the 

minimum shear strength (among those related to sliding shear and diagonal tension 

cracking) times a displacement ductility factor; or the displacement associated with the 

limit drift provided by seismic codes. 

 

 Double integration through reduction formulae 

Denoting by Vl, Ve, and Vp the resisting shear forces at CLS, ELS, and ULS for flexure, 

respectively, it is assumed herein that the masonry panel fails in flexure. In this case, it 

follows that Vu = Vp, where Vu is the lateral strength corresponding to the dominant 

failure mode (see Sect. 6.1). For the sake of simplicity, the masonry panel can be 

assumed to be doubly-fixed, but any other boundary condition could be considered. In 

such hypothesis, one can consider just a half of the panel, since its lateral behaviour is 
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emisymmetric. 

If the shear force falls in the interval [0,Vl], the macro-element is fully resistant so the 

lateral displacement due to flexure can be computed by double integration over the 

whole masonry panel (see Fig. 7.2a in Sect. 7.1). It follows that: 

z,maxε
δ

2
M

H
  (7.250) 

If the shear force falls in the interval [Vl,Ve], the macro-element behaves elastically but 

its effective part reduces due to cracking of masonry. In such conditions, the limit line 

of the reacting domain can be idealised as bilinear, so the reacting domain  can be 

assumed to be the union of two sub-regions 1 and 2 (see Fig. 7.2b in Sect. 7.1). The 

sub-region 1 corresponds to an elastic behaviour affected by mechanical non-linearity 

of masonry; thus, 1 is composed by uncracked cross-sections located at heights z 

falling in the interval [0,zn]. The latter sub-region 2 is affected by both mechanical 

and geometrical non-linearities and is composed by cracked cross-sections located at 

heights z falling in the interval [zn,H/2]. The above trapezoidal domain is normal with 

respect to the z-axis, so variables were suitably transformed in a way to apply reduction 

formulae to the double integral in Eq. (7.249). To that end, the effective width at ELS 

of the most stressed estreme section was denoted as be (It is underlined that this width 

depends also on the constitutive model assumed for masonry in compression.) and the 

dilogarithm function: 

1

log
dilog

1

z
t

z dt
t


  (7.251) 

was introduced, where z is a variable for which |z| < 1. Such a special function has the 

following series expansion: 

2
1

dilog
k

k

z
z

k





  (7.252) 

which was used to solve Eq. (7.249). Assuming be = B and zn = H, the lateral 

displacement of a cracked panel in the elastic range was found to be expressed as 

follows: 

 

 

3

2 1
z,max 2

1 2δ λ

δ 2ε δ
96 β 1

i

i
M H 

 
 

  
 
  


 (7.253) 

where: 

   1λ 24 2βδ 1 dilog 2β   

        
2 2 2

2λ ln 2β 1 6 2βδ 1 lnβ 12 2βδ 1 ln2 3[4β 2δ 1 12β 2δ 5]           
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    2 2 2

3λ 2 6β 10δ 3 2β δ π 42 27 24δ π 36        
 

 

The left and right terms in bracketed parentheses into Eq. (7.253) are respectively 

associated with the sub-regions 1 and 2. 

If the masonry panel is fully resistant in the plastic range (for instance, the shear force 

falls in the interval [Ve,Vp]), the analytical solution has a form similar to that associated 

with a shear force falling in the interval [Vl,Ve], provided that zl and be are considered 

instead of zn and bu, respectively. It follows that coefficients l and l should be 

considered instead of n and n, respectively. It is also emphasised that the heights zl 

and zn can be simply calculated by inverting equilibrium equations written at ELS and 

ULS. 

If the shear force falls in the interval [Ve,Vp], the reacting domain of the panel can be 

assumed to be composed by three sub-regions: 1, 2 and 3 (see Fig. 7.2c in  

Sect. 7.1). Such sub-regions are composed by cross-sections located at heights falling 

in the intervals [0,zn], [zn,ze] and [ze,H/2], respectively. As stated above, the first two 

sub-regions correspond to an elastic behaviour of the panel (in both cracked and 

uncracked conditions); on the other hand, 3 is associated with a plastic behaviour of 

masonry. The double integral was regarded as the sum of three integrals related to the 

aforementioned sub-regions, so the following relation was obtained for the 

computation of the lateral displacement due to flexure: 

 

 

 

 

4 8

2 1 5
z,max 2

δ δ 1 2δ

δ 2ε δ
24 β 32 β β

n e i e i

i i
M n

e e u

s s
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 
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 
 (7.254) 

where: 

2

1 1

2 β
24 dilog lneH

s B B
B

  
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   
2

2 13ln 2 β 4 lnes B H B B     

 3 6 lns B    

      2 2 2 2 2

4 2 δ π 36 12δ β 54δ δ 42 π 6 β 3δ 5δe n e e n e e ns B B H H          
   

 

   5 28 dilog 2β dilog 2βe us        

       
2 2
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        2
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1 δ β δe e nB H    

2 β 2β δe u e    

     2 2 2

14 ln 2 β 5δ δ 12 β δ 4 β δ δe e n e e e e nB H B B H H         

 

 Incremental iterative procedure 

Under a given axial force applied to the panel, the average axial strain can be evaluated 

by solving numerically the equation of translational equilibrium along the z-axis. For 

instance, if the Turnšek- Čačovič constitutive model is assumed for masonry and the 

extreme section is fully resistant (that is, b = B), the average axial strain can be 

computed through the following equation: 

0.17

ε ε1
32 27

5 ε ε

N N
z z

k k

N
  
    
   

 (7.255) 

Once ε N
z  has been computed, the maximum axial strain due to bending can be 

increased in the interval [0, ε εN
u z ]. As the axial force increases, the amplitude of this 

interval reduces so the ultimate curvature and the relevant displacement capacity 

reduce as well. 

The incremental iterative procedure employed to define the relationship VM can start 

by assigning an increment z to ε N
z  in a way to get the maximum axial strain. At the 

k-th strain step, one has to determine if the extreme section is cracked or uncracked 

under a given axial force and the imposed maximum axial strain. Therefore, the 

geometry of the extreme section can be assessed through a series of iterations, in order 

to compute the lateral displacement and the resisting shear force. If the extreme section 

is fully resistant, the axial strain diagram can be defined only once the minimum axial 

strain has been numerically computed through Eq. (7.28), where the current strain z,max 

is used instead of the ultimate strain of masonry u. If numerical convergence is 

reached, then the hypothesis of uncracked extreme section is met and the axial strain 

diagram is actually trapezoidal. The shear force can then be determined by Eq. (7.31), 

where z,max is used instead of u. Conversely, if the procedure for the evaluation of the 

minimum axial strain does not converge within the allowable number of iterations, the 

extreme section of the panel is cracked and its effective width can be derived by means 

of Eq. (7.6). In such a case, the resisting shear force is provided by Eq. (7.11). 

At the k-th increment of the maximum axial strain due to flexure, one can get the 

lateral displacement and the resisting shear force (Fig. 7.71). Each point of the force-

displacement diagram is not derived through a functional relationship between shear 

force and flexural displacement, but is the output of a numerical procedure at a given 
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maximum axial strain on the extreme section subjected to the maximum bending 

moment. The shearing deformation of the panel produces a lateral displacement which 

can be predicted as follows: 

δ χ δV V

V H

G A
  (7.256) 

under the shear force corresponding to the flexural deformation; the factor V can be 

defined according to Augenti (2004). 
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Figure 7.71  Building up VM curve in strain control 

 

The rocking-induced lateral displacement can also be summed to the lateral 

displacements due to shearing and flexural deformations, so the force-displacement 

curve can be derived by the VM curve. 

The numerical procedure described above allows to define the force-displacement 

curve of a macro-element failing in flexure. If the resisting shear force at a given strain 

step reaches the lateral strength corresponding to sliding shear or diagonal tension 

cracking, the procedure is stopped and the failure point on the force-displacement 

curve is assumed to be followed by a plastic plateau up to the ultimate displacement 

defined for shear mechanisms. 

A series of numerical analyses showed that the procedure presented above can be 

modified in a way to reduce numerical errors and to increase the rate of convergence. 

To that end, it was found that the extreme sections can first be assumed to be cracked 

at a given strain step, searching for the effective width b (Fig. 7.72). If Eq. (7.6) leads 

to the absurd of b > B, then the hypothesis of cracked section is not met and the 

minimum axial strain is to be determined. 
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Figure 7.72  Incremental iterative procedure for the force-displacement curve of a panel 
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Figure 7.73 shows the typical force-displacement curve of a URM panel failing in 

flexure, due to its length-to-width ratio, the mechanical properties of masonry, and the 

magnitude of the applied axial force. 
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Figure 7.73  Force-displacement curve of a URM panel failing in flexure 

 

The force-displacement curve is formed by four branches. The former is associated 

with the interval [0,l] and its non-linearity is due to mechanical non-linearity of 

masonry in the elastic range. The masonry panel is fully resistant and its lateral 

behaviour is reversible. 

The second branch of the curve simulates the effect of masonry tension cracking on the 

elastic behaviour of the masonry panel; such a cracking due to a limited tensile strength 

induces a reduction in the effective width of cross-sections, resulting in a reacting 

domain of the panel which depends on the lateral drift demand. 

The last branches of the curve are affected by yielding of the most stressed cross-

sections in bending and by strain softening of masonry. The peak of the force-

displacement curve is not typically associated with the attainment of ULS. In fact, 

especially at higher pre-compression levels, compressive strength degradation of 

masonry can significantly affect the lateral behaviour of the panel, „hiding‟ the 

hardening effect due to localization of inelastic strains. 

Figure 7.74 shows force-displacement diagrams of a doubly-fixed URM panel having 

the following characteristics: uniaxial compressive strength k = 3.00 MPa; shear 

strength at zero confining stress 0 = 0.30 MPa; height H = 300 cm; length B = 250 cm; 

and thickness s = 70 cm. It is outlined that: 

- For a normalised axial force equal to 0.04, force-controlled and deformation-

controlled procedures led to almost equal predictions of lateral stiffness and 

maximum resisting shear force, while displacement capacity predicted through a 

flexural deformation control was found to be more than two times higher. 

- For a normalised axial force equal to 0.4, the deformation-controlled procedure led 
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to slightly lower predictions of lateral stiffness and maximum resisting shear force, 

while displacement capacity was not more than two times higher. 

- The effect of strain softening of masonry increased with the magnitude of the axial 

force applied to the masonry panel. 
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Figure 7.74  Force- versus deformation-controlled force-displacement curves 

 

 

7.5.2. Force-Displacement Diagrams of Wall Storeys 

The force-displacement curve of a wall storey can be defined through a further 

incremental iterative procedure based on one of the following assumptions: rigid 

spandrel up to failure of piers; or piers connected by spandrel panels with limited 

resistance and flexibility. For a given lateral displacement one can compute shear 

forces on pier panels. The lateral resistance of the wall storey can be considered as the 

sum of the lateral strengths of individual pier panels. 

In order to estimate both strength and displacement capacities, one can remove the 

assumption that the global collapse occurs when a pier panel reaches its own lateral 

strength corresponding to shear or flexural failure. As a result, the force-displacement 

diagram of the wall storey is non-monotonic and fully non-linear. If the lateral strength 

of a masonry panel is reached, the lateral stiffness of the wall storey reduces; on the 

contrary, the attainment of the ultimate displacement of a pier panel causes a reduction 

in the lateral resistance of the wall storey. 

The displacement capacity of the wall storey cannot exceed the following value: 

  ,max ,
1,...,

δ max δ εu p u i j
j m

  (7.257) 

where m is the number of pier panels forming the wall storey. 
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For a given lateral displacement in the interval [0,u,max], the maximum axial strain due 

to flexure in each pier panel can be numerically computed until the following 

convergence criterion is met: 

( ) *

δ*

δ δ
tol

δ

k 
  (7.258) 

The lateral displacement 
(k)

 is estimated through Eq. (7.246) and the numerical 

tolerance can be set, for instance, to tol = 10
-5

. The resisting shear force of the wall 

storey can then be estimated as follows: 

 , , , ,max

1

ε
m

M
i k i j k z

j

V V


  (7.259) 

The shearing contribution to the lateral displacement of each pier panel can be 

predicted only if the resisting shear force corresponding to the maximum axial strain 

has been determined. It follows the need for an iterative procedure aimed at the 

computation of a lateral displacement equal to 

. To this end, the latter can be 

assumed to be caused only by flexural deformations. At the first analysis step each pier 

panel is fully resistant, so one can first assume that the maximum axial strain due to 

flexure at the extreme section is equal to: 

*
(1)

,max

2δ
εM

z
H

  (7.260) 

After the computation of the axial force acting on the pier panel, one can determine the 

resisting shear force V
 (1)

 through the formulas of interaction domains presented in 

previous sections for different constitutive laws of masonry. The lateral displacement 

due to shearing deformation can thus be evaluated as: 

(1)
(1) (1)δ χ δV V

V H

G A
  (7.261) 

while the lateral displacement due to flexure can be derived as follows: 

(1) * (1)δ δ δM V   (7.262) 

If the pier panel is fully resistant, the maximum axial strain can be updated to: 

(1)
(2)

,max

2δ
εM M

z
H

  (7.263) 

Consequently, for each pier panel in uncracked conditions and in the elastic range, the 

recursive formulas to be applied at the k-th analysis step are: 

( 1)
( )

,max

2δ
ε

k
M k M
z

H



  (7.264) 
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( )
( ) ( )δ χ ζ

k
k k

V V
V H

G A
=  (7.265) 

( 1) * ( )δ δ δk k
M V
+ = −  (7.266) 

and the iterative procedure can be stopped when the convergence criterion (7.258), or 
the following: 

( 1) ( )

δ( )
δ δ tol

δ

k k
M M

k
M

+ −
≤  (7.267) 

is met. Conversely, if pier panels are cracked and/or in the plastic range, the equations 
to be applied for the estimation of the maximum axial strain due to flexure are those 
presented in previous sections for different constitutive laws of masonry. Boundary 
conditions different from that of doubly-fixed panel can also be considered, by using 
proper values of the constraint factor included in the equations of interaction domains 
(see Sect. 7.2). It is underlined that the integral which defines the displacement 
capacity associated with flexural deformation of an URM panel is multiplied by a 
factor equal to 2 (see Eq. (7.249)). It is clear that the displacement capacity of 
cantilever panels is four times that corresponding to doubly-fixed panels. 
In Figure 7.75, the force-displacement curve defined in force control is compared to 
that defined in deformation control for a wall storey composed by three pier panels.  
It is clear that displacement capacity is highly underestimated by the force-controlled 
procedure, even if it is associated with a residual lateral strength which is about one-
half of the peak strength. 
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Figure 7.75  Force- versus deformation-controlled force-displacement curves for a wall storey 



 

 

Chapter 8 - NEW STATIC PUSHOVER PROCEDURES 

The use of linear elastic analysis (be it static or dynamic) has significant limitations in 

the case of masonry buildings, especially because of major difficulties in a reliable 

definition of strength reduction factors which affect the estimation of seismic demand. 

On the other hand, there are still key open issues in non-linear dynamic analyses on 

masonry buildings regarding the definition of seismic input (record selection and, in 

the case of incremental analysis, scaling), the hysteretic modelling of masonry walls, 

and the definition of proper collapse criteria. Such problems have led to pay major care 

in the development of non-linear static procedures. In most cases, pushover analysis 

allows to get realistic predictions of seismic capacity of masonry buildings, and hence 

of their seismic performance at different earthquake intensity levels, once the seismic 

demand has been estimated (see Chap. 5.2). 

Based on the N2 method (Fajfar, 2000) for the estimation of seismic performance and 

on the assessment of pushover methods available in the literature (see Chap. 5), 

different pushover procedures were separately developed for single masonry walls with 

openings and entire masonry buildings. To that aim, the RAN method (Augenti, 2004) 

was extended to the non-linear range through an evolutionary spread plasticity macro-

element modelling of walls (see Chap. 7) and force-based pushover procedures in 

response control (Antoniou, 2002; Antoniou and Pinho, 2004a). 

The pushover procedures presented and discussed in this chapter follow a „unitary‟ 

approach which allows to control both „global‟ performance of the whole masonry 

building and „local‟ performance of individual constituent macro-elements. In fact, the 

actual deformed shape of the structure is directly associated with the given increment 

of the response parameter (namely, the horizontal translation of the control point along 

the direction under constideration), resulting in the prediction of strength and 

displacement demands on single macro-elements. 

The definition of the flexural behaviour of each macro-element through a 

„deformation-based‟ approach allows also to predict deformation demands on masonry 

(that is, at material level) and strength evolution in the plastic range. Geometrical and 

mechanical non-linearities are considered in both seismic demand estimation for single 

components and capacity assessment. 
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8.1. Pushover Analysis of Masonry Walls with Openings 

Existing masonry buildings are often characterised by floor diaphragms with large in-

plane flexibility and lack, or ineffectiveness, of diaphragm-to-wall and wall-to-wall 

connections (that is, no flanges at building corners). In such cases, global assessment of 

non-linear seismic response of a masonry building may lead to unrealistic predictions, 

so one should perform pushover analysis on the constituent masonry walls subjected to 

their relevant gravity loads. On the other hand, global seismic response is significant 

only if safety verifications against potential out-of-plane mechanisms of walls are met. 

In the case of building aggregates, which are typically present in historical centres, 

global seismic assessment of single building units is purely conventional. Therefore, 

IBC (IMIT, 2008) allows to use simplified methods and, in the presence of flexible 

floor diaphragms, to perform seismic analysis of individual walls and coplanar wall 

systems. 

Non-linear analysis of a masonry wall with openings should be carried out for each 

lateral load pattern (e.g., proportional to inertia masses or to fundamental modal shape) 

and for each orientation of lateral actions, separately. It is underlined that a specific 

modelling of pier panels within masonry walls with irregular layout of openings should 

be based on the orientation of lateral forces (Augenti, 2006). 

The following symbols are used in this chapter: the subscripts i and j indicate 

respectively the horizontal strip (or level) and the vertical strip at which a masonry 

panel or opening belongs (see also Sect. 6.2.5); and the superscripts j and k in round 

parentheses to denote an iteration and a displacement step, respectively. Horizontal and 

vertical strips of the masonry wall are progressively numbered from the top to the base 

and from the left to the right, respectively, according to the RAN method (Augenti, 

2004). 

Figure 8.1 shows the flow-chart of the pushover procedure developed for a single 

masonry wall. The incremental iterative procedure begins with the computation of 

inertia masses mi and initial elastic stiffnesses ki,1 at each storey of the wall. A lateral 

force pattern is then defined to be kept constant during pushover analysis under 

increasing lateral displacement at the control point. According to what discussed in 

Sect. 5.1.2, a lateral force profile F0 = (1…i…n)
T
 is defined by assuming i = mii/m1 

and i = zi/H for „modal‟ load pattern, and i = mi/m1 for „uniform‟ load pattern.  

The coefficient i is referred to as „force distribution factor at the i-th floor level‟.  

The lateral force vector F
(k)

 = (F1…Fi…Fn)
T
 at the k-th analysis step is thus defined as 

follows: 

( ) ( )
0λk kF F  (8.1) 

where 
(k)

 is the load multiplier derived from total updating strategy (see Sect. 5.1.3). 
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Figure 8.1  Flow-chart of pushover procedure for the masonry wall with openings 
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Once the orientation of lateral forces has been chosen, the first analysis step (k = 1) 

consists in the application of a horizontal displacement at the control point of the wall: 

 ( )
, ,

1,...,
1

1
δ max δ

κ

n
k

c c u i j
j m

i




      (8.2) 

The factor  is suitably defined as a function of the target accuracy level. The 

deformed shape of the masonry wall is not known because it depends on the effective 

stiffness of storeys at each given lateral drift. Therefore, a numerical procedure is 

needed to computed lateral displacements at each floor level. At the first iteration  

( j = 1), the displacement profile (response) can be assumed equal to the force profile 

(load), namely: 

( , )
0 0

j k Δ F  (8.3) 

being  
T

( , ) ( , ) ( , )
0 1...ω ...ωj k j k j k

i nΔ . The lateral displacement vector at the i-th iteration 

within the k-the analysis step is then computed as: 

( , ) ( ) ( , )
0

j k k j k
c Δ Δ  (8.4) 

while the corresponding shear force on a pier panel can be obtained through the force-

displacement relationship of the wall storey: 

 ( , ) ( ) ( , )
, fj k k j k

i j i iV    (8.5) 

The latter equation applies once axial forces due to both gravity loads and seismic 

actions, as well as the lateral stiffness ki, have been computed. 

At the k-the analysis step, the horizontal force at the i-the floor level of the wall can be 

evaluated by means of the following equation: 

1
( , ) ( , ) ( , )

,

1 1

m i
j k j k j k

i i j r

j r

F V F


 

    (8.6) 

namely, as the difference between the storey shears related at the floor levels i and  

i – 1. If the resulting lateral forces meet the assigned lateral force pattern within a pre-

defined numerical tollerance (for instance, tol = 10
-3

) and the maximum allowable 

number of iterations (for instance, jmax = 200), that is: 

( , ) ( , )
1

β

max

β
tol

β

j k j k
i i

i

F F
i

j j


 



 (8.7) 

the base shear of the wall at the k-th analysis step can be computed as follows: 

( ) ( )

1

n
k k

b i

i

V F


  (8.8) 

Thus, a point ( ( ) ( ),k k
b cV  ) of the pushover curve can be plotted. 
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If the first of inequalities (8.7) is not met, then the assumed displacement profile is 

wrong and can be corrected through the following equation: 

( , ) ( 1, )

( 1, ) ( 1, )
1

β
ω ωj k j k i

i i j k j k
iF F



 
  (8.9) 

to be applied at each displacement distribution factor. It follows the need for iterating 

the procedure from Eq. (8.4) to the check on the lateral force pattern. It is underlined 

that the corrective factor which is multiplied by the distribution factor ( 1, )ω j k
i
  is 

assumed to be the ratio between the factor i (representing the „target‟ load pattern) and 

Fi
(j1,k)

/F1
(j1,k)

 (representing the „resulting‟ load pattern at the previous iteration j – 1). 

Such an interative procedure is stopped until the convergence criterion described by 

inequalities (8.7) is met. In this case, a load multiplier 
(k)

 corresponding to the analysis 

step under consideration can be defined. 

At the successive analysis step (k = k + 1), a larger horizontal displacement is applied 

to the control point and is defined as follows: 

( ) ( 1) δk k
c c c

      (8.10) 

Then, a new deformed shape of the wall can be predicted by checking that the assigned 

lateral force pattern is met by resulting forces. 

The whole static pushover procedure is stopped when the resisting base shear at a wall 

storey vanishes, that is: 

( ) 0k
iV   (8.11) 

This means that the collapse of the wall is assumed to occur when the lateral load-

bearing capacity at a storey reaches zero. It is emphasised that the location of the centre 

of axial stiffnesses is also updated at each displacement step and wall storey, in order 

to assess axial forces induced by current lateral forces. 

8.2. Pushover Analysis of Masonry Buildings 

The seismic response of masonry buildings without significant irregularities depends 

mainly on the fundamental mode of vibration; damage suffered by those structures 

does not typically induce a modification in spectral acceleration at the fundamental 

period. Therefore, several researchers recongnise the chance for the assumption of 

single-mode load profiles in a way to minimise computational work in pushover 

analysis. 

If the building is quite regular in plan, its elastic torsional response is generally more 

significant than the inelastic response, because the occurrence and propagation of 

damage throughout the structure induces a uniform redistribution of shear forces. At 

each floor level, the centre of shear moves from the location of centre of initial elastic 
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stiffness toward the centre of strength, resulting in the minimum eccentricity with 

respect to the centre of mass. 

Conversely, if the building is irregular in plan, non-linear redistribution of shear forces 

among walls at each floor level is not uniform, so the centre of shear at ULS can be 

considerably different from the centre of strength. 

Such features of non-linear torsional behaviour of the building are included in 

pushover procedures presented below, since torsional rotations of storeys are updated 

at each analysis step accounting for both structural and accidental eccentricities. The 

evolution in torsional response induces variations in the location of the centre of shear 

at each floor level, and hence in the distribution of both strength and displacement 

demands in plan. 

A numerical procedure is used to derive the deformed shape corresponding to a pre-

defined lateral force pattern, at each displacement increment assigned to the control 

point of the building. As in the case of a single masonry wall with openings, the 

magnitude (not the shape) of lateral forces is updated through a load multiplier derived 

from a total (rather than incremental) updating strategy. This technique allows to avoid 

any relationship between equilibrium solutions corresponding to successive 

displacement steps, and hence the propagation of numerical errors during the analysis 

is minimised. 

The spread plasticity modelling of masonry macro-elements, the deformation-based 

approach used for the definition of both strength and displacement capacities, and the 

response-controlled pushover procedure are perfectly consistent themselves.  

A mechanical approach allows to relate the „global‟ response of the masonry building 

to the „local‟ response of each macro-element. The mechanical behaviour of the macro-

element is not pre-defined, nor idealised as bilinear or multi-linear, but it depends on 

the displacement demand derived from the overall response of the building, according 

to equilibrium and displacement compatibility conditions. Geometrical and mechanical 

non-linearities are included in the analysis since they affect significantly performance 

of masonry structures, at both serviceability and ultimate limit states. In this way, the 

global seismic assessment (which is based on the comparison between displacement 

demand and capacity at the limit states of interest) include directly the control of 

strength and deformation demands on individual macro-elements. It is thus a „unitary‟ 

approach for the estimation of seismic building performance. 

In the following sub-sections, a non-adaptive pushover procedure based on the 

application of lateral forces in response control is first presented to be used for 

masonry buildings. Second, a potential adaptive variant is proposed, but it requires 

numerical/experimental validation to assess both reliability of response predictions and 

its computational work. 
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8.2.1. Non-Adaptive Pushover Analysis 

The pushover procedure implemented in RAN CODE (Augenti et al., 2010a) is based on 

the incremental application of a pre-defined lateral force profile (load) in a way to get 

monotonically-increasing displacements at a control point (response). Such a point, 

denoted as C below, is generally assumed to be the centre of mass at the roof of the 

building. 

As in the case of single masonry walls with openings, response control was preferred 

over load control in order to assess post-peak strength degradation of the structure. The 

analysis proceeds also if some masonry panels reach collapse and is stopped at the 

global collapse of a wall storey, or loss of numerical stability. 

The pushover procedure developed for masonry buildings is summarised in a flow-

chart reported in Figure 8.2. 

The first stage of the analysis consists in the definition of inertia masses mi, initial 

elastic stiffnesses ki, and location of their relevante centres at each floor level of the 

building. The initial stiffness of masonry piers can be initially assumed to be associated 

with doubly-fixed panels. According to IBC and EC8, an accidental eccentricity not 

lower than 5% is to be assigned at the centres of mass along the height of the building. 

Pushover analysis is carried out at least along mutually orthogonal directions of the 

building plan, so the pattern, direction and orientation of lateral forces are to be 

assigned and are kept constant during the analysis. To this end, a load shape vector F0 

is defined and is said to be „nominal load vector‟. In the case of non-adaptive pushover, 

this vector is kept constant to a uniform profile. 

The non-adaptive procedure begins with the definition of a horizontal displacement at 

the control point. At the first step of the analysis (k = 1), such a displacement is 

assumed as follows: 

 ( )
, ,

1,...,
1 1,...,

1
Δ δΔ max max δ

κ

n
k

c c u i j
j m

i k w


 

  
   

  
  (8.12) 

where  is a factor greater than unity which is defined as a function of the target 

accuracy level. The deformed shape of the building at the displacement given at the 

control point is not known and is estimated through an iterative procedure. 

At the first iteration ( j = 1), the displacement shape vector can be defined as: 

( , ) T
0 0

j k Δ F k  (8.13) 

being:  
T

1 11... ...i nk k k kk . 
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Define intertia masses and initial stiffnesses

Estimate locations of the centre of mass and

centre of stiffness at each floor level

Set an accidental eccentricity at all floor levels

Assign pattern, direction and orientation

of lateral forces

START INCREMENTAL PROCEDURE

Evaluate displacement distribution factors

Compute lateral displacements of pier panels

for zero-torsional rotations

Calculate shear forces on pier panels
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Compute torsional rigidity
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Calculate variations of

torsional rotations
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displacements of piers

Compute resulting lateral forces
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distribution of lateral
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Compute base shear

V    = 0i,k

(k)

NO
ITERATE

Assign a displacement at the control point

Increase lateral displacement
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Is rotational equilibrium
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that assigned ?

YES

YES

END

 
Figure 8.2  Flow-chart of pushover procedure for the masonry building 
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In other terms, the displacement distribution factor i at the i-th floor level is assumed 

to be the product of the lateral force distribution factor i by the ratio between the 

initial lateral stiffness of the top storey and that of the storey under consideration: 

( , ) 1ω βj k
i i

i

k

k
  (8.14) 

Numerical analyses showed that the assumption i = i produces a lower rate of 

convergence in the case of a whole building. 

The displacement vector of the centres of mass at the i-th iteration within the k-th 

analysis step is then computed through the following equation: 

( , ) ( ) ( , )
0

j k k j k
G C Δ Δ  (8.15) 

In the case of rigid floor diaphragms, the lateral displacement of a given wall k at the  

i-th floor level is computed by considering also the torsional rotation, as follows: 

 ( , , ) ( , ) ( , , )
, , , ,Δ Δi j k j k i j k

i k G i i i k G id d    (8.16) 

where di,k and dG,i are the distances of the wall axis and the centre of mass G, 

respectively, from the coordinate axis. 

In the case of existing masonry buildings, Eq. (8.16) does not typically apply because 

the in-plane flexibility of diaphragms affects the horizontal distribution of seismic 

actions among walls. To that end, some researchers proposed the modelling of floor 

diaphragms through orthotropic membrane elements (Galasco et al., 2006). This 

modelling can be rather effective especially in the presence of wooden or mixed steel-

tile diaphragms, having they a different behaviour in the directions parallel and 

orthogonal to the joists. 

A further superscript i (in round parentheses) appears into Eq. (8.16): it is related to a 

further iteration cycle which is needed to assess torsional rotations ( , , )i j k
i  at each floor 

level. At the first iteration (i = 1), torsional rotations can be assumed to be zero; this 

hypothesis is not met also in the case of symmetric-plan buildings, due to accidental 

eccentricities. The storey shear at the i-th floor level of the k-th wall can be computed 

through force-displacement diagrams, namely by the following symbolic relation: 

 ( , , ) ( ) ( , , )
, , ,f Δi j k k i j k

i k i k i kV   (8.17) 

If spandrel panels are modelled as inextensible elements, shear forces on pier panels 

belonging to the same wall storey can be computed assuming equal lateral 

displacements. On the other hand, if a shear-type behaviour cannot be assumed for 

masonry walls with openings under lateral actions, Eq. (8.17) sould include actual 

boundary conditions of pier panels which, in turn, depend on their interaction with 

spandrel panels. In this case, axial flexibility of spandrel panels should be included in 

the capacity model in order to get a better estimation of lateral displacements of 
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walls
29

. 

Once shear forces on pier panels have been determined, the storey shear at the i-th 

floor of the building can be clearly computed as: 

( , , ) ( , , )
,

1

w
i j k i j k

i i k

k

V V


  (8.18) 

A structural analysis of the building allows to estimate the secant lateral stiffness of 

pier panels, defined as the ratio between the resulting shear force and lateral 

displacement. The location of the centre of stiffness Si can then be estimated at each 

floor, in order to compute storey torques through the following equation:  

 ( , , ) ( , , ) ( , , )
, , , ,
i j k i j k i j k

T i i k i k S iM V d d   (8.19) 

If torsional rotations are zero at all floor levels, the torsional rigidity of the i-th floor is 

expressed as follows: 

 
2

( , , ) ( , , ) ( , , )
, , , ,

1

w
i j k i j k i j k

S i i k i k S i

k

I k d d


   (8.20) 

where ( , , )
,
i j k

i kk  is the secant lateral stiffness defined as the sum of stiffnesses ( , , )
, ,
i j k

i j kk  of 

individual pier panels. In such a case, torsional rotations at different floor levels can be 

set to the ratios between resulting storey torques and torsional rigidities. By using 

corrected torsional rotations into Eq. (8.16), the iterative procedure on torsional 

rotations goes on until one of the following convergence criteria is met: 

( , , ) ( , , ) ( , , )
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or else: 
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 (8.22) 

If no convergence criterion is met, then torsional rotations at different floors are 

corrected as follows: 

 
( , , )

( 1, , ) ( , , ) ( , , )
, ,( , , )

,

i j k
i j k i j k i j ki

i i G i S ii j k
T i

V
d d

M

     (8.23) 

and inputted into Eq. (8.16), in order to assess the rotational equilibrium at each floor, 

                                                 
29

  To this end, a preliminary assessment of the contribution of spandrels on non-linear 

behaviour of URM walls with openings is reported in Appendix C. The role of spandrel 

panels was estimated in terms of both strength and energy dissipation capacity. 
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through the convergence criterion (8.21) or (8.22). If numerical convergence is 

reached, lateral forces associated with horizontal translations and torsional rotations 

along the height of the building can be computed as follows: 

1
( , , ) ( , , ) ( , , )

1

i
i j k i j k i j k

i i r

r

F V V




   (8.24) 

The lateral force pattern derived from non-linear structural analysis under a given 

displacement at the control point is compared to that assumed at the beginning of 

pushover analysis. Namely, one has to check the the following convergence criterion: 

( , , ) ( , , )
1

β

max

β
tol

β

i j k i j k
i i

i

F F
i

j j


 
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 (8.25) 

If also this convergence criterion regarding lateral forces is met, the base shear can be 

computed and a point of the pushover curve can be defined. Otherwise, the 

displacement shape vector ( , )
0

j k
Δ  is corrected and a further iteration  j = j + 1 is needed 

to get resulting lateral forces matching the assigned force pattern. Such an operation is 

carried out by means of the Pegasus method (Dowell and Jarratt, 1972), which 

combines robustness of the Regula Falsi method with the higher rate of convergence of 

the Secant method. Another iteration cycle (on the superscript i) is then started in order 

to estimate torsional rotations, as well as their relevant distribution of horizontal 

translations and forces along the height of the building. 

When both convergence criteria related to rotational equilibrium and lateral force 

pattern matching are met, the actual load multiplier associated with the magnitude of 

resulting lateral forces can be computed. Also, the base shear at the k-th displacement 

step can be defined to plot a point of the pushover curve. 

Pushover analysis proceeds until all pier panels at the same wall storey reach their 

ultimate displacement and, consequently, the resisting storey shear vanishes. If this 

collapse condition is not attained, a further displacement increment is given at the 

control point of the building by means of Eq. (8.10). Then, a new step (k = k + 1) of the 

incremental analysis begins to get another point of the pushover curve. 

 

8.2.2. Adaptive Pushover Analysis 

The single-mode load profile used in pushover analysis can be assumed to be 

„adaptive‟ without inducing significant increase of computational work. In fact, other 

researchers (see for instance: Galasco et al., 2006) have recognised the chance for a 

step-by-step updating of the force vector, based on the current deformed shape of the 

masonry structure. Then, pushover analysis allows to predict the evolutionary non-
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linear response without multi-mode dynamic analysis. The updating of the lateral force 

pattern follows response variations in terms of stiffness, strength, and deformations, as 

damage develops throughout the masonry walls. In the case of both frame and frame-

wall structures, force-based adaptive pushover (FAP) was found to be inable to provide 

significant improvements in non-linear response prediction (see Antoniou and Pinho, 

2004a, for a discussion). Conversely, Galasco et al. (2006) showed that FAP can 

significantly improve the response prediction in the case of masonry buildings; 

furthermore, pushover results were found to be rather independent of the lateral force 

pattern assumed at the beginning of the analysis. Based on these considerations, the 

RAN method was also extended to an adaptive pushover procedure based on the 

application of lateral forces and the implementation of some features of procedures 

proposed by Antoniou and Pinho (2004a) for RC buildings and by Galasco et al. 

(2006) for masonry buildings. 

First of all, the so-called spectral amplification, namely the spectral acceleration Sa(T) 

at a given mode of vibration in force-based procedures (see Sect. 5.1.4), can be left 

equal to Sa(T1) during the analysis. Such a simplification is acceptable if the 

fundamental period of the masonry building falls within the constant-acceleration 

period interval of the elastic response spectrum and does not significantly change as 

damage develops within the structure. Otherwise, structural damage can produce a 

considerable period elongation, and hence a potential modification in spectral 

acceleration. In this case, spectral amplification should be updated at each significant 

change in the secant global stiffness of the building. 

Second, masonry buildings are typically low-rise structures, so higher mode effects can 

be neglected within pushover analysis. As stated above, this characteristic allows to 

avoid multi-mode dynamic analysis, ensuring a limited computational work. The 

effects of this simplification should be clearly assessed in the case of masonry 

buildings with large irregularities in plan or elevation. 

A single-mode FAP can then be performed to assess seismic capacity of the masonry 

building, by including also geometrical and mechanical non-linearities through a 

spread plasticity macro-element modelling of walls. 

The adaptive force vector F
(k)

 at a given analysis step is directly derived from the 

displacement vector 
(k–1)

 corresponding to the lateral displacement assigned at the 

control point in the previous step. Using a total updating strategy of the load vector, 

Eq. (8.1) specialises as follows: 

 ( ) ( ) ( 1)
1 1λk k k

aS T F MΔ  (8.26) 

where: M is the mass matrix of the building; and 1 is the participation factor of the 

fundamental mode. The displacement vector is considered to be able to define a 

damage-dependent load vector. At the first step of the analysis, a uniform nominal load 



Chapter 8 - New Static Pushover Procedures 
______________________________________________________________________________________________________________________________ 

 

 226 

vector F0 (see Sect. 5.1.5) is employed instead of the vector ( 1)k
Δ . For the sake of 

clarity, Eq. (8.26) includes also the modal participation factor even though it affects 

only the magnitude (not the shape) of lateral forces. Spectral amplification can also be 

computed during the analysis as a function of the current lateral stiffness of the 

structure. The latter can be defined as the secant stiffness corresponding to the lateral 

displacement assigned at the previous analysis step. 

The load multiplier is computed at each analysis step through a normalisation of the 

displacement vector corresponding to the previous step, as follows: 
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and assuming the vector F0 = (1…i…n)
T
 equal to ( 1)k

Δ . Since the load vector 

derived from Eq. (8.26) can produce unrealistic concentrations of shear forces in some 

walls, Galasco et al. (2006) suggested to „bind‟ the current force vector between those 

corresponding to uniform and modal force patterns. Such a criterion is acceptable for 

regular buildings, while it should be validated on a large number of irregular buildings. 

It is underlined that the iterative procedure still includes a convergence criterion on the 

resulting force pattern, since lateral forces are computed for each deformed state of the 

structure. Nevertheless, the computational work could be significantly reduced since 

the lateral force pattern is adaptive, and hence more consistent with the deformed shape 

of the structure. The resulting displacement profile should correspond to a lateral force 

pattern matching that defined by Eq. (8.26). 

It is also emphasised that FAP would halve the number of pushover analyses on the 

building, because it should be not carried out for two pre-defined lateral force patterns. 

Nonetheless, IBC provides that pushover analysis should be conservatively carried out 

for two lateral force patterns: one should belong to a Group 1 - primary patterns and 

the other to a Group 2 - secondary patterns. Group 1 includes: 

- the inverse triangular pattern (which can be applied only if the uniform pattern is 

assumed as secondary pattern); 

- the modal pattern; and 

- a force pattern proportional to storey shears provided by multi-mode dynamic 

analysis (which can be applied for structures with T1 > TC). 

Group 2 includes: 

- the uniform pattern (i.e., a mass-proportional force pattern corresponding to a 

uniform distribution of horizontal accelerations along the height); and 

- an adaptive pattern. 

It follows that FAP should be performed along with a primary modal pattern. 



 

 

Chapter 9 - APPLICATION ON A MASONRY BUILDING 

The pushover procedures developed for seismic assessment of single masonry walls 

with openings and entire buildings were implemented into RAN CODE (Augenti et al., 

2010a), a computer program devoted specifically to masonry buildings. RAN CODE 

allows: (1) to check structural safety under gravity loads at ULS; (2) to perform 

simplified safety verifications against potential out-of-plane mechanisms due to local 

seismic actions on individual masonry walls; and (3) to assess global seismic 

performance of masonry walls and buildings through both linear and non-linear static 

analyses. 

In the present chapter, the main results of pushover analyses on a three-storey URM 

school building are presented and discussed. The numerical application was aimed at 

assessing seismic performance of the building under varying incidence angle of 

seismic input. Damage maps are also discussed and proposed as effective tools for 

preliminary cost estimations of seismic repair, strengthening, and upgrading 

interventions on masonry buildings. In fact, damage maps could provide an effective 

support to decision-makers, since they allow to perform cost-benefit analysis in order 

to identify the optimal design solution among different technical chances. 

9.1. Description of the Structure 

The masonry building was supposed to be located in Gesualdo (Italy) [41.00° latitude, 

15.07° longitude], which is a town near the fault system that generated the Mw 6.9 

Irpinia, Italy, earthquake on 23 November 1980 (with maximum Mercalli-Cancani-

Sieberg intensity IMCS,max = 10). The building had a courtyard and the staircases located 

in the entrance hall (Fig. 9.1). 

The structure was designed in compliance with both EC8 and IBC. All walls were 

assumed to be well connected themselves and to rigid mixed RC-tile floor diaphragms 

through RC ring beams. The walls had a regular layout of openings at each floor level, 

except for the wall located on the front side of the building. The irregularity of this 

masonry wall was caused by the presence of a higher and larger opening. The masonry 

above the openings was also supported by lintels well anchored to adjoining piers, so 

spandrel panels were included in the capacity model of the structure. 

Figure 9.2 shows a global view of the macro-element structural model of the building. 

The walls were supposed to be made of yellow tuff masonry having the following 
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mechanical properties: unit weight  = 16 kN/m
3
; Young‟s modulus E = 3000 MPa; 

shear modulus G = 1200 MPa; mean uniaxial compressive strength fm = 4.3 MPa; shear 

strength at zero confining stress 0,m = 0.14 MPa; yielding strain k = 0.2%; and 

ultimate strain u = 0.35%. 
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Figure 9.1  Ground floor plan of the building 

 

 
Figure 9.2  Macro-element model of the building 
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Given that displacement ductility associated with flexural yielding of macro-elements 

is computed during the analysis, owing to the evolution of the inner effective domain, 

just displacement ductility for shear mechanisms (d,V) was defined before the analysis 

was run. Based on experimental data selected from Database Murature UNINA-DIST 

[URL: http://www.reluis.it/dbuninadist], such a ductility was set to d,V = 3 for yellow 

tuff masonry panels. 

9.2. Seismic Hazard Assessment 

9.2.1. Framework and Methodology 

The seismic hazard assessment procedure provided by IBC is rather different from 

those of previous Italian codes. Based on the seismic source zone model ZS9 

developed by Meletti et al. (2008) (Fig. 9.3a), the Italian National Institute of 

Geophysics and Vulcanology (INGV) estimated seismic hazard parameters at each 

node of a regular grid having 5 km spacing and covering the whole Italian territory 

with 10751 nodes. If the construction site is not located on a reference node of the grid, 

one should identify the elementary grid which includes the site. Hazard parameters at 

the site are estimated as weighed average of those related to reference nodes by the 

distances of the nodes from the site (see Annex A in: IMIT, 2008). The seismic hazard 

assessment approach is thus site-dependent, rather than zone-dependent. 

 

      
 (a) (b) 

Figure 9.3  (a) Seismic source model ZS9 and (b) ag map for probability of exceedance of 10% 

in 50 years (URL: http://zonesismiche.mi.ingv.it/) 

http://www.reluis.it/dbuninadist
http://zonesismiche.mi.ingv.it/
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Probabilisitc seismic hazard analysis (PSHA) by INGV allowed to estimate seismic 

hazard at each site of the reference grid. The computations resulted in hazard curves in 

terms of peak horizontal acceleration for soil type A (ag) and spectral acceleration 

(Sa(T)) for ten different periods of vibration from 0.1 to 2 s. Hazard curves were 

lumped in nine probabilities of exceedance in 50 years (from 2% to 81%), so both 

static and interactive maps (Fig. 9.3b) were obtained [URL: http://esse1-

gis.mi.ingv.it/s1_en.php]. For seismic design practice, the hazard parameters were 

listed in Annex B of IBC. 

The seismic hazard parameters provided by IBC are: the reference peak horizontal 

acceleration on soil type A (namely, the bedrock for any other soil type), ag; the 

maximum amplification factor of the horizontal acceleration response spectrum, Fo; 

and upper limit of the period of the constant spectral acceleration branch on type A 

ground, TC
*
. Such parameters are associated with a given return period TR of the design 

earthquake which, in turn, is defined as a function of a reference (temporal) period VR 

and the probability of exceeding the ag value in VR, denoted as 
RVP . Whilst VR is 

defined as the nominal life VN times the importance factor CU assigned to the building, 

the probability of exceedance changes with the limit state of interest. Therefore, once 

the return period of the design earthquake is computed for the building, the seismic 

hazard at a site is known and the peak ground acceleration (PGA) can be evaluated 

accounting for local soil conditions. Similarly to EC8, IBC provide a soil factor S as 

the product of a stratigraphic amplification factor SS by a topographic amplification 

factor ST. PGA is then obtained as Sag (see Sect. 3.1). 

Finally, the upper limit of the period of the constant spectral acceleration branch 

(denoted as TC) is evaluated as a factor related to soil type (denoted as CC) times the 

period TC
*
. The lower limit of the period of the constant spectral acceleration branch is 

then defined as TB = TC/3, while the lower limit of the period of the constant spectral 

displacement branch (also called „corner period‟) is defined as TD = 4ag/g + 1.6, being 

g the gravitational acceleration. 

 

9.2.2. Seismic Hazard at the Site of the Building 

Assuming a high occupancy for the school building, an importance coefficient CU = 1.5 

(corresponding to a building class III, according to IBC) was considered. Considering a 

soil type B (corresponding to a shear velocity Vs,30 within a 30 m-deep soil deposit 

which is between 360 m/s and 800 m/s) and a topographic class T1 (i.e., a ground 

surface with average slope between 0 and 15°), the stratigraphic amplification factor SS 

was greater than unity and limited to 1.2, while the topographic amplification factor ST 

was equal to unity. Also, it followed a period modification factor CC greater than unity.  

 

http://esse1-gis.mi.ingv.it/s1_en.php
http://esse1-gis.mi.ingv.it/s1_en.php
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The seismic hazard parameters corresponding to the four limit states provided by IBC 

are reported in Table 9.1; the values of SS, CC, the characteristic periods of elastic 

response spectra, and PGA demand (PGAdem) are listed in Table 9.2. 

 

Table 9.1  Seismic hazard parameters for Gesualdo (Italy) 

Limit state TR [years] ag [g] Fo
*

CT  [s] 

Operational 45 0.079 2.337 0.291 

Limited damage 75 0.104 2.317 0.320 

Life safety 712 0.319 2.285 0.393 

Near collapse 1462 0.424 2.326 0.417 

 

Table 9.2  SS and CC factors, spectrum characteristic periods and PGA demand 

Limit state SS CC [g] TB [s] TC [s] TD [s] PGAdem [g] 

Operational 1.200 1.408 0.137 0.410 1.914 0.095 

Limited damage 1.200 1.381 0.147 0.442 2.015 0.125 

Life safety 1.109 1.326 0.174 0.521 2.874 0.354 

Near collapse 1.005 1.310 0.182 0.547 3.298 0.426 

 

9.3. Non-Linear Analyses 

9.3.1. Methodology 

The building was analysed through the non-adaptive pushover procedure discussed in 

Section 8.2.1. According to IBC and EC8, the global seismic performance of the 

building was assessed through the N2 method by comparing capacity to demand. The 

latter was computed from an elastic response spectrum by assuming an equivalent 

viscous damping factor eq = 5% (corresponding to a spectrum modification factor  

 = 1) for the masonry building. 

It is underlined that the total height of the building was H = 14.5 m, so the formula  

T1 = 0.05H
3/4

 provided by IBC leads to an approximate fundamental period  

T1 = 0.371 s falling in the interval [TB,TC] which corresponds to the maximum 

amplification of horizontal acceleration. 

Pushover analyses were carried out by imposing a monotonically-increasing horizontal 

displacement dc at the control point of the building, which was assumed to be located 

at the centre of mass CM of the roof floor. In order to assess both demand and capacity 

parameters under varying seismic input direction, pushover analysis was performed 

separately for twelve incidence angles  with respect to the x-axis (Fig. 9.4). The 
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centre of initial stiffness was denoted as CS, while the centre of strength at the ultimate 

displacement related to life safety limit state was denoted as CR. 

 

x

y



dc

CM

CS

CR

 
Figure 9.4  Incidence angle of seismic input 

 

For each direction, pushover analysis was carried out for both modal and uniform 

patterns of lateral forces. A polar representation of seismic capacity allowed to obtain 

limit domains in terms of lateral strength and displacement, as well as demand 

domains. The superposition of these domains let to identify both satisfactory and 

unsatisfactory performance regions, which correspond to safety and substandard safety 

levels, respectively. It is underlined that Petti and Marino (2010) proposed a two-

dimensional representation of seismic demand through polar spectra. Nevertheless, the 

use of such spectra is presently quite limited because they were derived for single 

seismic events. 

 

9.3.2. Discussion of Results 

Figures 9.5a and 9.5b show the pushover curves corresponding to the modal and 

uniform patterns of lateral forces, respectively, under varying incidence angle  

(expressed in sexagesimal degrees). Half of pushover curves are plotted with solid 

lines (angles of incidence from 0 to 150°) and the other curves ar plotted with dashed 

lines (angle of incidence from 180° to 330°), by using the same color for corresponding 

couples which differ of 180° each other. 
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Figure 9.5  Pushover curves for different incidence angles: (a) modal force pattern; (b) uniform 

force pattern 

 

It is emphasised that the initial elastic response is not significantly affected by the 

loading direction, resulting in a rather equal displacement demand. Conversely, peak 

base shear Vb,max is very different from that corresponding to the ultimate displacement 

of the structure (Vb,u), due to the variation in the sequence of failure modes with the 

angle of incidence. Such a variation was mainly due to a non-uniform distribution of 

gravity loads, especially with reference to the shorter inner walls (only those located 

from the y side of the plan were loaded by floor slabs). Figure 9.6a shows the global 
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displacement demand-to-capacity ratio (denoted as ddem/dalw) versus the incidence 

angle. The exceedance of unity indicates clearly a substandard safety level of the 

structure. This occurs for the x-direction ( = 0) and incidence angles falling in the 

interval [150°,300°]. The maximum substandard level is associated with a modal force 

pattern having an incidence angle  = 270°. 

Figure 9.6b illustrates the variation of demand ductility index defined as  

IDD = PGAdem/PGAmax, where: PGAdem is the PGA demand at life safety limit state; and 

PGAmax is the PGA corresponding to the maximum base shear allowed by the building 

(that is, Vb,max). 
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Figure 9.6  (a) ddem/dalw and (b) IDD versus incidence angle 

 

It is emphasised that, on average, IDD is slightly above unity under varying force 

pattern and angle of incidence, showing some peaks especially when displacement 

demand exceeds the relevant capacity. In addition, IDD seems to be more stable than the 
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demand-to-capacity ratio. The latter is mainly affected by different displacement 

capacity of the building under varying incidence angle of seismic input and force 

pattern. 
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Figure 9.7  Capacity and demand parameters versus incidence angle for modal force pattern 

 

The substandard safety region where the displacement demand exceeds the capacity 

can then be identified. The law of variation of displacement capacity versus the 

incidence angle is quite consistent with the geometrical symmetry of the building plan 

with respect to the y-axis, but it seems to be affected by the orientation of seismic 

actions. 

The seismic performance is satisfactory for  = 90° (i.e., seismic action along the y-

direction) because the displacement demand is about one-half of the displacement 

capacity. The opposite condition occurs for  = 270° due to the occurrence of different 

failure modes under non-uniform distribution of gravity loads. 

A higher load-bearing capacity of the building for  = 90° with respect to that 

corresponding to  = 270° is highlighted in Figure 9.7b. Nevertheless, the latter shows 

lower PGAmax sensitivity to the angle of incidence. Figure 9.8a shows a poorer seismic 

performance of the building for uniform force pattern, while Figure 9.8b does not 

highlight significant variations compared to Figure 9.7b, showing major earthquake 

resistance of the building in the y-direction. 

Variations in both initial and effective stiffnesses were also investigated; the effective 

stiffness was defined as the secant stiffness at the displacement capacity related to life 

safety limit state. 
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Figure 9.8  Capacity and demand parameters versus incidence angle for uniform force pattern 

 

Figures 9.9a and 9.9b show for modal and uniform force patterns, respectively, 

that the effective stiffness is lower than one-half of the initial elastic stiffness, 

emphasising high non-linearity in the structural response. The stiffness 

reduction is higher in the case of modal force pattern, consistently with the fact 

that the supply displacement ductility d,max corresponding to this load profile is 

higher than that associated with the uniform force pattern (Fig. 9.10). 
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Figure 9.9  Lateral stiffnesses versus incidence angle: (a) modal and (b) uniform patterns 
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Figure 9.10  Supply displacement ductility versus incidence angle 

 

Figure 9.11a shows the ductility-related strength reduction factor R under varying 

incidence angle; R was estimated through the following equation (Vidic et al., 1994): 

 μ

0

1 μ 1
T

R
T



    (9.1) 

which applies to elasto-plastic SDOF systems with period lower than the dominant 

period of the earthquake, defined as T0 = 0.65
0.3

TC ≤ TC (see Sect. 5.2.3).  
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Figure 9.11  (a) R and (b) u/1 versus incidence angle 

 

Once the overstrength ratio u/1 was estimated for each loading direction and lateral 

force pattern (see Sect. 5.2.3 and Fig. 9.11b), the total strength reduction (or behaviour) 

factor was computed as follows: 
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μ

1

α

α

uq R  (9.2) 

to be compared with thoseprovided by IBC and EC8 for linear seismic analysis. In 

such a case, given that the building is irregular in elevation in terms of mass (variations 

greater than 25%), the behaviour factor for linear seismic analysis should be  

qNTC = 2.88 (Fig. 9.12) according to IBC, while EC8 provides a behaviour factor qEC8 

falling in the interval [1.5,2.5] for URM buildings designed for earthquake resistance. 
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Figure 9.12  Comparison between strength reduction (or behaviour) factors 

 

The average behaviour factors obtained for modal and uniform force patterns are equal 

to 7.55 and 7.16, respectively, even if they depend significantly on the incidence angle. 

The minimum behaviour factors are respectively equal to 2.25 and  2.77 for the above-

mentioned force patterns and are associated with an incidence angle  = 180°. In any 

case, it is underlined that behaviour factors provided by IBC and EC8 are conservative 

and ensure the ductility demand. 

9.4. Damage Maps 

Results of pushover analyses were processed to assess also the distribution of structural 

damage in plan. These computations allowed to plot expected damage maps at the 

displacement demand and collapse maps at the ultimate displacement, both related to 

the life safety limit state of the building (Figs. 9.13ad). 

The former type of maps could be used (1) to identify potential damage concentrations 

due to high ductility demands on some masonry panels, and (2) to preliminary estimate 

the total repair cost as the damaged area times the average cost per unit area. It is also 

emphasised the ability to identify the best technical-economical strengthening solution 

in the case of existing buildings, through cost-benefit analysis. 
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 (a) (b) 
 

    
 (c) (d) 

Figure 9.13  Expected and collapse damage maps related to ground floor plan: (a,c)  = 30°; 

(b,d)  = 150° 

 

The comparison between collapse and expected damage maps allows to identify 

potential conditions where the inelastic capacity of the structure is poorly exploited. In 

fact, in the case of the building under study, the percentage of collapsed piers does not 

increase from the displacement demand to the collapse state, for incidence angles equal 

to 240°, 270° and 300°. This result indicates clearly that the expected damage 

distribution is equal to that related to the collapse state for loading directions 

corresponding to displacement capacity lower than demand. This occurred for the 

above-mentioned angles, in the case of modal force pattern, and for incidence angles 

equal to 0, 90°, 150°, 180°, and 210°, in the case of uniform force pattern. 

Figures 9.13a and 9.13b show, for instance, the expected damage maps for incidence 

angles equal to 30° and 150°, respectively, in the case of modal force pattern (in red 

the collapsed piers and in blu the resisting piers). For these incidence angles, the 

comparison between the expected damage maps and the collapse maps reported in 
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Figures 9.13c and 9.13d highlights that the damage at the displacement demand is 

much lower than that corresponding to the collapse of the building. 

Figures 9.14a and 9.14b illustrate the global damage indices defined as the percentage 

area of collapsed piers at displacement demand and capacity, respectively. Finally, 

Figure 9.14c shows the variation of the ratio between the global damage indices related 

to demand and capacity: such a parameter indicates the percentage of masonry piers 

likely to collapse which would be damaged under the displacement demand. 
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Figure 9.14  Damage indices at (a) displacement demand and (b) collapse; (c) index ratios 

9.5. Concluding Remarks 

The pushover procedure presented in Chapter 8 was applied on a three-storey URM 

building designed in compliance with EC8 and IBC. Lateral actions were applied along 

twelve directions of the building plan in order to assess global performance under 

different incidence angles of seismic input. Variations in demand and capacity were 

assessed in terms of peak ground acceleration and lateral roof displacement. 

The influence of the loading direction could be deepened by performing pushover 

analysis on a large number of masonry buildings, especially if irregular in plan. The 

outcomes of the pushover analyses carried out on the building (which was regular in 

plan, according to seismic code criteria) have shown that the estimation of seismic 

vulnerability along two principal directions of the plan would have produced 

conservative results. In fact, the maximum demand-to-capacity ratio has been detected 

for one of these directions. Conversely, this statement could be not confirmed in the 

case of plan-irregular masonry buildings. 

In the case of the analysed building, both load-bearing and displacement capacities 

have been found to depend on the angle of incidence. In fact, the building experienced 

different non-linear response not only under varying direction of seismic input, but also 
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at opposite orientations corresponding to the same direction. This outcome depends on 

a non-uniform distribution of gravity loads, and hence different load-bearing and 

displacement capacities of walls. Indeed, the walls which supported directly the floor 

slabs had higher capacity compared to the others. 

From a methodological standpoint, it has been also shown that pushover predictions 

can be processed to obtain expected damage maps and collapse maps, which allow to 

assess the damage distribution throughout the structure and to identify potential 

damage concentrations. The estimation of global damage indices, defined for instance 

as percentage of damaged area, could lead to rapid preliminary cost estimations of 

repair, strengthening, and upgrading interventions on masonry buildings. Damage 

scenarios corresponding to different design solutions can be effective tools for cost-

benefit analysis aimed at identifying the optimal solution from both technical and 

economic viewpoints. 

 



 

 

Chapter 10 - CONCLUSIONS AND POTENTIAL FUTURE 

DEVELOPMENTS 

Non-linear seismic response of masonry buildings has been investigated through 

macro-element approaches. Individual masonry walls with openings have been 

assumed to be systems of two-dimensional elements whose lateral response depends on 

their loading condition and location within the wall. The following types of macro-

elements have been identified in each masonry wall: „pier panels‟, which are the 

vertical structural elements; „spandrel panels‟, which are the horizontal structural 

elements; and „joint panels‟, which are the elements that link pier and spandrel panels 

together. The RAN method, which was proposed by Augenti (2004) for linear static 

analysis of masonry buildings, was used as starting point for non-linear incremental 

static (pushover) analysis. 

10.1. Research Outcomes 

To assess non-linear seismic response of individual masonry walls and buildings, an 

evolutionary spread plasticity macro-element has been formulated. Its lateral response 

under varying drift demands is affected by both geometrical non-linearity due to 

sectional cracking and mechanical non-linearity. The latter is explicitly taken into 

account through specific stress-strain relationships. Non-linear behaviour has been 

analysed by means of strength domains, moment-curvature diagrams, and force-

displacement curves, for each stress-strain relation under consideration. 

A three-dimensional assemblage of walls modelled by macro-elements allows to build 

up the structural model of a whole masonry building and to assess its seismic 

behaviour. To this aim, the RAN method was extended to non-linear incremental static 

(pushover) analysis separately for single masonry walls with openings and masonry 

buildings. 

 

10.1.1. Flexural Strength Domains and their Evolution 

Flexural strength domains were developed in the following forms: bending moment 

versus axial force, in the case of spandrel panels; and shear force versus axial force, in 

the case of pier panels. 

Strength domains for spandrel panels refer to cross-sections and could be transformed 
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in shear force versus axial force domains by assuming a specific boundary factor 

affecting overall rotational equilibrium of the panel. 

Limit lines of strength domains were derived through deformation-based approaches, 

namely by the integration of pre-defined axial strain diagrams on both cracked and 

uncracked cross-sections. Such domains were defined for cracking, elastic, and 

ultimate limit states. 

Strength domains corresponding to strength degrading constitutive models allow to 

account for more real mechanical properties of masonry. Comparisons among ultimate 

strength domains have shown that formulas reported in IBC (IMIT, 2008) lead to 

higher ultimate shear forces and bending moments, if the given axial force is not much 

greater than one-half of the ultimate axial force (which corresponds to a normalised 

axial force equal to 0.5). Using a stress-strain relationship derived from uniaxial 

compression tests on masonry prisms in the direction orthogonal to mortar bed joints, 

more conservative predictions of ultimate shear force can be obtained. Mechanical 

non-linearity in the elastic range (namely, that described by the rising branch of the 

monotonic constitutive law) induces a non-linear relationship between the allowable 

shear force corresponding to flexural failure and the applied axial force, also at 

cracking limit state. Such a non-linearity does not appear within classical stress-based 

approaches, nor if an EPP constitutive model is assumed for masonry under 

compression in the deformation-based approach used in this work. 

The evolution in strength domains under varying strain ductility has been also 

investigated in the case of strength degrading constitutive laws. As strain ductility 

increases from unity (corresponding to elastic limit state) to the value associated with 

ultimate strain of masonry (corresponding to ultimate limit state), the flexural strength 

domain experiences first a growth and then a contraction. It follows that the 

assumption of different values of strain ductility in seismic design, or alternatively 

variations in strain ductility demand in non-linear seismic analysis, leads to different 

ultimate moment predictions at a given axial force. Such variations are less significant 

at normalised axial forces lower than 0.25. 

Three-dimensional strength domains have been proposed in the shear force  axial 

force  axial force eccentricity format, for left and right extreme sections of spandrel 

panels separately. Such domains are also affected by loads applied to the panel, being 

they not affected by pre-defined boundary conditions. Three-dimensional domains 

have been sectioned with planes corresponding to increasing values of axial force and 

its eccentricity, resulting in two-dimensional strength domains plotted respectively in 

the following formats: shear force versus eccentricity and shear force versus axial 

force. 
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10.1.2. Moment-Curvature Diagrams, Flexural Strength and 

Ductility of URM Cross-Sections 

Moment-curvature diagrams were developed through a specific incremental iterative 

procedure, in the case of unreinforced masonry (URM) rectangular cross-sections 

without reinforcing elements. Sectional parameters derived by moment-curvature 

analysis, such as overstrength, strength degradation, yielding and ultimate curvatures, 

and curvature ductility, have been discussed. These parameters were evaluated for 

different constitutive laws; furthermore, the relationship between curvature ductility 

and strain ductility of masonry has been investigated. For any given axial force, 

yielding curvature has been found to be rather the same for all constitutive laws, except 

for EPP constitutive model; the latter leads to lower curvatures. Assuming strength 

degrading constitutive laws derived from experimental testing, ultimate curvature 

predictions have been found to be higher than those corresponding to other constitutive 

laws. Rather equal predictions of ultimate bending moment have been obtained at a 

normalised axial force equal to 0.1; conversely, ultimate curvature predictions have 

been found to be significantly different each other, including those corresponding to 

empirical stress-strain relationships derived in the directions parallel and orthogonal to 

mortar bed joints. At normalised axial forces not greater than 0.5, the ratio between 

curvature ductility and strain ductility has been found to be greater than unity and 

independent of the given axial force. 

 

10.1.3. Force-Displacement Diagrams 

Force-displacement curves of individual URM panels have been formulated by 

considering the lateral displacement associated with the axial force as the sum of 

flexural, shear, and rocking contributions. Both shear and rocking contributions (the 

latter occurs after masonry cracking) are typically estimated through force-controlled 

procedures based on the assumption of a pre-defined displacement ductility for shear 

mechanisms. On the other hand, non-linear flexural behaviour of URM panels has been 

deeply investigated in the present thesis. To this aim, an incremental iterative 

procedure has been developed. Given an axial force on the panel, the maximum axial 

strain over end section(s) subjected to the maximum bending moment is monotonically 

increased until the ultimate strain of masonry is attained. Both the shear force and the 

lateral displacement are computed at each axial strain step in order to get the force-

displacement curve related only to bending deformation. The overall force-

displacement diagram is then obtained by summing both shear- and „pure‟ rocking-

induced lateral displacements to that associated with bending deformation, at each 

shear force level. If the lateral behaviour of the panel is shear-controlled, the force-
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displacement curve is truncated by a plateau with a pre-defined displacement ductility. 

The latter can be defined before analysis is run on the basis of experimental data 

available in the literature. To this end, a useful tool for rapid selection of experimental 

data on mechanical properties of the main masonry types is the electronic archive 

named Database Murature UNINA-DIST, which is available on the website of the 

Italian Network of University Laboratories for Earthquake Engineering (ReLUIS) 

[URL: http://www.reluis.it/dbuninadist] and was developed in the framework of 

ReLUIS-DPC 2005-2008 project. 

Comparisons between force-displacement curves plotted in force control and those 

derived by controlling the maximum axial strain have shown that the former can lead 

to underestimate the ultimate displacement of masonry panels. It follows that the 

significant contribution of strain ductility of masonry on displacement capacity of 

walls is not considered (at least explicitly) in classical approaches. As the given axial 

force increases, force-controlled procedures can lead to overestimate both lateral 

stiffness and strength, without considering potential strength degradation at larger 

displacements. 

 

10.1.4. Pushover Procedures for Masonry Walls and Buildings 

In order to assess seismic capacity and demand on masonry buildings, different force-

based pushover procedures in response control have been developed to be coupled with 

inelastic spectra in the framework of the N2 method (according to EC8 and IBC). 

Pushover procedures have been separately formulated for single masonry walls with 

openings and entire masonry buildings. 

The pushover procedure developed for single masonry walls could be used in the case 

of both individual buildings and building units within aggregates. Historical buildings 

are often characterised by the presence of flexible diaphragms, and lack or 

ineffectiveness of both diaphragm-to-wall and wall-to-wall connections. In such cases, 

global assessment of non-linear seismic response of a masonry building can lead to 

unrealistic predictions, so one should perform pushover analysis on the constituent 

masonry walls subjected to their relevant gravity loads. This modus operandi is 

specifically allowed by IBC. 

The pushover procedure developed for entire masonry buildings includes torsional 

effects due to both inherent (structural) and accidental eccentricities between centre of 

mass and centre of stiffness at each floor level. The proposed procedure applies in the 

case of rigid floor diaphragms and effective diaphragm-to-wall and wall-to-wall 

connections. Load-bearing walls not parallel to the loading direction participates to the 

non-linear response of the structure by warping torsion. The use of an evolutionary 

spread plasticity macro-element, whose lateral behaviour is also affected by 

http://www.reluis.it/dbuninadist
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deformation demand, allows to relate the „local‟ response of macro-elements to the 

„global‟ response of the building. In this way, seismic assessment is performed through 

a „unitary‟ approach. 

Both pushover procedures were implemented in a computer program devoted to 

structural analysis of masonry buildings and named RAN CODE (Augenti et al., 2010a). 

In addition, an adaptive force-based pushover procedure was developed to be applied 

in the seismic assessment of irregular buildings, but it requires numerical/experimental 

validation. 

Among numerical applications on different building models aimed at testing RAN 

CODE, an example of seismic assessment for a new masonry building designed in 

compliance with EC8 (CEN, 2004) and IBC has been discussed. Capacity and demand 

on the building were estimated for different incidence angles of seismic input.  

The occurrence of different failure modes and significant variations in demand-to-

capacity ratios under varying incidence angle have been detected. Expected damage 

maps and collapse maps corresponding to global demand and capacity, respectively, 

were developed. They could be attractive tools to assess the damage distribution within 

a masonry building and to identify potential damage concentrations. The estimation of 

global damage indices, defined for instance as percentage of damaged elements, could 

easily lead to preliminary estimations of repair costs (if damage scenarios are derived) 

and strengthening costs (if an existing building does not meet code safety 

requirements). Therefore, damage scenarios could be obtained for different design 

solutions and then cost-benefit analysis could be carried out in order to select the 

optimal solution from both technical and economic viewpoints. 

 

10.1.5. Experimental Outcomes Supporting Non-Linear Analysis 

An experimental program was carried out on masonry panels and walls in the 

framework of ReLUIS-DPC 2005-2008 project. Empirical constitutive models more 

accurate than those available in the literature were developed and are discussed in 

Appendices A and B of this thesis. The influence of spandrels on lateral resistance, 

stiffness, and energy dissipation/absorption capacity of masonry walls with openings, 

has been preliminary assessed. The main results about in-plane lateral loading tests on 

a full-scale masonry wall with a opening are presented in Appendix C. 

Uniaxial compression tests and direct shear tests were carried out to characterise the 

mechanical behaviour of masonry. Two series of uniaxial compression tests were 

performed on masonry panels, separately in the directions parallel and orthogonal to 

mortar bed joints, in order to define the mechanical behaviour of regular masonry 

assemblages in the cases of spandrel and pier panels, respectively. Non-linear 

regression analyses on experimental results allowed to derive constitutive models able 
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to simulate non-linear behaviour of masonry at both small elastic and large inelastic 

strains. Such empirical models consist of  constitutive equations and probabilistic 

stress-strain data sets representing characteristics, median, and maximum likelihood 

constitutive models. Probabilistic constitutive models could be used for seismic 

analysis of both new and existing buildings, considering explicitly the uncertainty level 

related to normal stresses conditional on axial strains. 

Three series of direct shear tests have been carried out on two-layer masonry 

specimens, in order to characterise not only classical shear strength parameters at both 

peak and residual stress states, but also mode II fracture energy, shearing dilatancy, and 

 constitutive laws at different confining stress levels. A multiple non-linear 

regression analysis allowed to derive a „shear response surface‟ including both 

constitutive law with softening and failure strength model. Such experimental results 

could be employed in both linear and non-linear structural models (be they simplified 

or numerical). In macro-element method of seismic analysis, bed-joint sliding shear 

could be simulated with higher accuracy. 

In-plane lateral loading tests on a full-scale masonry wall with a opening were 

performed in a quasi-static mode and displacement control in order to assess lateral 

response at different drift levels and to capture strength degradation. The tests 

highlighted some interesting features of non-linear behaviour of masonry walls with 

spandrel panels weaker than pier panels and without RC bond beams (that is the typical 

case of existing buildings). 

In particular, a first monotonic test was carried out to investigate lateral behaviour of 

the wall up to the first significant damage to the spandrel panel above the opening.  

A second test was carried out under cyclic displacements to assess residual properties 

of the pre-damaged masonry wall. Finally, a cyclic lateral loading test was carried out 

on the same wall after repairing and upgrading by external strengthening of the 

spandrel panel. The strengthening system was made of inorganic matrix-grid (IMG) 

composites. The effectiveness of the IMG system has been assessed not only for 

seismic strengthening/upgrading of masonry structures, but also for rapid remedial 

works in earthquake emergency scenarios. It has been shown that significant damage to 

the spandrel panel affected both peak lateral resistance and strength degradation of the 

wall, while rocking of piers produced large displacement capacity and small residual 

displacements. 

10.2. Potential Future Developments 

The research presented and discussed in the present thesis could be used as a basis for 

future developments in theoretical, numerical, and experimental fields. 

Regarding mechanical modelling of masonry, cyclic constitutive laws could be defined 
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for both uniaxial compression and bed-joint sliding shear, based on experimental data 

available in the literature or derived by proper laboratory tests. The development of 

such constitutive laws could lead to simulate evolutionary cyclic behaviour of macro-

elements through refined hysteretic force-displacement curves, especially with 

reference to spandrel panels. Historical masonry types could be also investigated for 

their constitutive modelling. 

The deformation-based approach employed for the analytical simulation of the in-plane 

flexural behaviour of macro-elements under lateral actions could be used also to 

investigate the contributions of both shearing deformation, especially to displacement 

capacity. In order to simulate the non-linear behaviour of spandrel panels, moment-

curvature diagrams could be derived in the presence of tensile-resistant elements, at 

upper and/or lower edges. Capacity models could be obtained in the presence of 

composite grids or sheets. 

Although force-based pushover procedures (either adaptive or not) comply with the 

most advanced seismic codes, at both national and international levels, displacement-

based adaptive procedures could be attractive tools to get better seismic performance 

predictions of masonry buildings. The direct application of lateral displacement 

patterns, rather than forces, could be appropriate especially in the case of buildings 

which are highly irregular in plan or elevation and for which damage affects 

significantly higher modes of vibration. 

Future developments for seismic assessment of existing masonry buildings could 

include also: (1) modelling and analysis of walls with irregular layout of openings;  

(2) modelling of flexible diaphragms; and (3) investigation on the effects of flexible 

diaphragms, and partially effective diaphragm-to-wall and wall-to-wall connections. 

Finally, a great contribution to modelling and analysis of masonry walls with openings 

could be given by further in-plane lateral loading tests on walls with: tensile-resistant 

elements (e.g., RC bond beams, ties, well-anchored lintels); other relative stiffnesses 

between spandrel and pier panels; and multi-leaf or chaotic masonries. 
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Appendix A -  EXPERIMENTAL TESTING FOR 

CONSTITUTIVE MODELLING IN 

COMPRESSION 

The definition of the mechanical properties of masonry is a complex engineering 

problem, since the interaction among the constituents (i.e., masonry units and mortar 

joints) induces multi-axial stress/strain fields which are difficult to be mathematically 

described. Besides this, several factors of uncertainty should be considered as a result 

of the following issues related to the employed construction technique: (1) geometrical 

layout of masonry units; (2) filling of joints; (3) ratios between joint thickness and 

masonry unit sizes; (4) workmanship accuracy; and (5) randomness in constituents‟ 

dimensions. Furthermore, the definition of masonry properties is often based on 

experimental data gathered by different types of tests on non-standard specimens. This 

needs for specific mechanical characterisation of the main masonry types. 

In the framework of ReLUIS-DPC 2005-2008 project, the author carried out an 

experimental program aimed at defining the mechanical behaviour of masonry under 

compression. The main output of this research was the development of constitutive 

models able to simulate compressive behaviour of masonry in both pre-peak (elastic) 

and post-peak (inelastic) ranges, including strength degradation due to strain softening. 

The effects of loading direction with respect to mortar bed joints in regular masonry 

assemblages were explicitly investigated, in order to allow different modelling of 

masonry within pier and spandrel panels of masonry walls with openings (see Chap. 7). 

To that end,  constitutive laws and mechanical parameters were characterised 

through uniaxial compression tests on masonry prisms in the directions orthogonal and 

parallel to mortar bed joints. The masonry prisms were made of tuff masonry, because 

a few experimental data are available for this masonry type, opposed to clay brick 

masonry (Calvi and Magenes, 1991; Capozucca, 2004; Chuxian, 1984; Kaushik et al., 

2007; Sawko, 1982; Turnšek and Čačovič, 1971) and concrete masonry (Arya and 

Hegemeier, 1978; Priestley and Elder, 1983). 

In this appendix, the research objectives of this experimental program are first 

summarised and the mechanical behaviour of masonry in uniaxial compression is 

briefly described. Second, the main properties of constituent materials of masonry 

prisms and the experimental program (specimens geometry, test setup, and test 

procedure) are described. Finally, experimental data and empirical models derived in 

the form of both equations and probabilistic data are presented and discussed. 
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A.1. Research Objectives 

The constitutive modelling of masonry was carried out by means of: (1) the definition 

of the most significant strength, flexibility, and strain ductility properties, to be used 

into linear analyses on FE or macro-element models; (2) the derivation of probabilistic 

stress-strain data sets, to be implemented in FE models; and (3) the derivation of 

constitutive equations via nonlinear regression analysis, to be used in any structural 

model of a masonry construction. 

Therefore, the compression tests were aimed not only at evaluating compressive 

strength and secant moduli of masonry in the elastic range of behaviour, but also at 

computing significant parameters able to describe the inelastic behaviour. 

Secondly, stress-strain probabilistic data sets were obtained for each loading direction, 

in order to generalise the concept of characteristic and mean values of mechanical 

parameters, such as compressive strength and ultimate strain. This allows to consider 

the uncertainty about the behaviour of tuff masonry under uniaxial compression. 

Finally, stress-strain relationships were derived for each loading direction separately, in 

order to simulate the compressive behaviour of masonry in more accurate, but rather 

simple, mode up to large inelastic strains. 

A.2. Non-Linear Behaviour of Masonry in Compression 

In this study, masonry is regared a san equivalent homogeneous material from a 

mechanical point of view. Such an „ideal‟ material does not behave linearly under 

compressive loading even in the range of small deformations, due to the spreading of 

internal cracking (Fig. A.1). While masonry is quite stable at small stress levels, it 

becomes unstable close to the peak strength k, causing the first macroscopic cracks. 
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Figure A.1  Typical constitutive law of masonry under uniaxial compression 
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As the axial strain increases, macro-cracking develops in uncontrolled way due to 

damage localization, so the crack width increases rapidly. Owing to local equilibrium 

of the material, compressive strength reduces and strain softening affects significantly 

the post-elastic behaviour of masonry until the ultimate strain u is reached. The latter 

is associated with the residual strength of masonry r, so a strength degradation ratio 

can be defined as SDR = r/k. 

Supply strain ductility can be also evaluated as the ratio between the ultimate strain and 

the one associated with the peak strength (namely, as = u/k), which is said to be 

peak strain and denoted by k. This is true if it is assumed that masonry behaves 

elastically up to the peak point (k,k). Actually, yielding of masonry may occur at  

e < k, which corresponds to e < k. In such a case, strain ductility should be defined 

as = u/e. Nonetheless, the laboratory tests described below showed that e is 

almost equal to k. The presence of a post-peak falling branch in constitutive diagrams 

has led to define masonry as a „quasi-brittle‟ material. 

A.3. Materials Used for Experimental Testing 

The masonry prisms tested under uniaxial compression were made of yellow tuff 

stones coming from a pit near Naples (Italy) and a premixed hydraulic mortar with 

low-medium mechanical characteristics, adhesion, and consistency. This type of mortar 

was used in order to reproduce actual conditions of masonry within existing buildings. 

It is also underlined that tuff masonry constructions are a large part of the historical 

and monumental heritage in Europe, and are located in earthquake-prone regions like 

as Italy and Turkey. 

The masonry units had dimensions equal to 300×150×100 mm and unit weight of 

12.50 kN/m
3
. The mortar was based on natural sand and a special binder with 

pozzolana-like reactive aggregates; according to the supplier‟s instructions, the masons 

added 4 l of water per 0.25 kN of sand-binder mixture (i.e., a water/sand ratio by 

weight 1:6.25). 

Laboratory tests were first carried out on both mortar and stone specimens, according 

to European standards, in order to compute the main mechanical properties of the 

constituent materials in compression and tension, separately. Mean compressive 

strength of tuff stones was estimated in fbm = 4.13 MPa, while Young‟s and shear 

moduli were found to be Eb = 1540 MPa and Gb = 444 MPa, respectively. Mean 

compressive strength of the pozzolana-based mortar, which is a typical kind of mortar 

used in the Campania Region (Southern Italy), was estimated as fmm = 2.5 MPa. 

Detailed information about materials can be found in the work by Augenti and Parisi 

(2010a). 
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A.4. Experimental Program and Main Results 

The experimental program consisted of eight monotonic uniaxial compression tests 

along the direction orthogonal to the bed joints, and seven monotonic uniaxial 

compression tests along the direction parallel to the bed joints. Two series of six-layer 

tuff masonry prisms with 10 mm-thick mortar joints were manufactured by 

professional masons and tested. 

 

A.4.1. Experimental Setup and Test Protocol 

A universal testing machine was used for the experimental investigation; its actuator 

allows to perform displacement-controlled tests (with a total ram stroke of 150 mm) 

and load-controlled tests (with a maximum capacity of 3000 kN in compression and 

2400 kN in tension). Two inductive linear variable differential transformers (LVDTs) 

were placed on each side of the masonry specimens: one orthogonal to the loading 

direction, with a stroke of 20 mm; the other parallel to the loading direction, with a 

stroke of 50 mm. 

Each compression test consisted of three stages: (1) two initial cycles aimed at 

reaching contrast between the load machine and the specimen; (2) application of 

compression in load control in a way to produce the rising branch of the constitutive 

law up to one-half of the expected peak strength; and (3) application of compression in 

displacement control, in order to capture non-linear elastic behaviour up to the peak 

load, as well as strength degradation due to strain softening along the post-peak falling 

branch up to about one-fourth of the peak strength. The load was increased linearly 

with time during the second stage at a rate of 0.3 kN/s, while a constant displacement 

rate (i.e., actuator stroke rate) equal to 0.01 mm/s was imposed in the third stage, in 

order to monitor the development of macro-cracking and the occurrence of transverse 

splitting within the specimen. Details on instrumentation and test procedures are 

reported in the work by Augenti and Parisi (2010a). 

The main experimental results provided by the tests were: stress-strain data sets; secant 

Young‟s modulus E; secant Poisson‟s ratio ; secant shear modulus G; peak strength 

k; yielding strain k; residual strength r; ultimate strain u; and strain ductility . 

 

A.4.2. Compression Tests in the Direction Orthogonal to Bed Joints 

A first set of uniaxial tests were carried out on single-leaf masonry prisms having 

dimensions of 610×650×150 mm (Fig. A.2a). The fracture process was well captured 

by the instruments over the whole test duration (Fig. A.2b). Figure A.3 shows the 

experimental - curves derived by the tests. Normal compressive stresses were 

calculated as ratios between the applied load and the gross area of the cross-section. 
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 (a) (b) 

Figure A.2  Specimen (a) before and (b) after compression test in the direction orthogonal to 

mortar bed joints 

 

 
Figure A.3  Experimental stress-strain curves (orthog. dir.) 

 

Axial strains were computed by averaging the LVDT readings corresponding to the 

same value of applied load and, then, by dividing the average displacements by the 

gage length. Since stroke measurements are inevitably affected by the take-up of the 

testing setup and by the machine flexibility, LVDT measurements were expected to 

produce more reliable estimates of the masonry flexibility parameters than ram stroke 

records. Experimental data were processed to compute mean values of mechanical 

parameters, as well as their standard deviation s and coefficient of variation CoV. In 

order to get an unbiased estimation of mechanical properties, standard deviation was 

estimated by applying the Bessel correction as follows: 
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where: n is the number of tested specimens; xi is the realisation of the random variable 

X from the i-th test; and x  is the sample mean. 

The comparison between experimental results shows that the rising branch of the 

stress-strain curve is well defined and the scatter in the peak point is very low (Table 

A.1). Conversely, statistical characterisation of the post-peak behaviour was inevitably 

affected by potential setup imperfections and randomness in the fracture process, 

which induces a larger scatter in the (,) data sets. As a result, a higher uncertainty 

affects residual strength (defined along the falling branch as the normal stress 

corresponding to an inelastic strain i = 1.5%), ultimate strain, and strain ductility. 

Therefore, a reliable value of fracture energy should be quite complex to be defined. 

 

Table A.1  Strength, limit strains and strain ductility (orthog. dir.) 

 k [MPa] r [MPa] SDR [%] k [%] u [%]  

x  3.96 1.45 36.4 0.244 1.67 6.57 

s 0.50 0.34 5.90 0.022 1.22 4.60 

CoV [%] 12.5 23.4 16.2 9.06 73.1 70.0 

 

It is worth noting that the mean residual strength is quite large. Peak strength is 

associated with an axial strain of 0.24%, which confirms the typical value of 0.2% 

assumed as yielding strain by masonry standards and building codes. 

The European standard EN 1052-1 (CEN, 1999) refers to a secant modulus E1/3 

corresponding to a normal stress equal to one-third of the peak strength. Instead, 

ASTM E 11-04 (ASTM, 2004) refers to a secant modulus E1/2 corresponding to a 

normal stress equal to one-half of the peak strength. 

Table A.2 shows mean values, standard deviations, and CoVs of the following 

parameters: Young‟s moduli E1/3 and E1/2; Poisson‟s ratios 1/3 and 1/2; and their 

relevant shear moduli, G1/3 and G1/2. 

 

Table A.2  Secant elastic moduli and Poisson‟s ratios (orthog. dir.) 

 E1/3 [MPa] E1/2 [MPa] 1/3 1/2 G1/3 [MPa] G1/2 [MPa] 

x  2222 2159 0.22 0.27 917 854 

s 372 335 0.06 0.07 162 137 

CoV [%] 16.7 15.5 26.8 27.2 17.7 16.1 
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The latter were estimated through the Lamé formula G = E/2(1 + ). The computation 

of the secant moduli and Poisson‟s ratio at one-third of the peak strength may be more 

appropriate for design purposes, while the analyst should use E1/2, 1/2, and G1/2 in the 

assessment of existing structures. Indeed, the latter parameters give a better estimation 

of the material compliance given that masonry experiences a nonlinear behaviour even 

in the elastic strain range. 

 

A.4.3. Compression Tests in the Direction Parallel to Bed Joints 

A second set of laboratory tests were performed on masonry prisms having dimensions 

of 650×610×150 mm, by applying compressive loading along the direction parallel to 

the mortar bed joints. Figures A.4a shows the masonry specimens before the test, while 

its fractured condition can be observed in Figure A.4b. 

 

         
 (a) (b) 

Figure A.4  Specimen (a) before and (b) after compression test in the direction parallel to 

mortar bed joints 

 

The behaviour observed during these tests was strongly different from that detected 

along the other loading direction. Due to low tensile strength of the stone-mortar 

interface, the prisms suffered extensive cracking even at small deformations.  

The failure mechanism of the prisms started with vertical transverse splitting shortly 

before the maximum load was reached (Fig. A.5). This type of cracking was followed 

by lateral flaking of vertical courses and spalling off of faces, resulting in a wide 

crushing of the specimen and a rapid load reduction under small increments of ram 

stroke. 
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Figure A.6 shows experimental - curves obtained for the seven tested masonry 

prisms. Mean values of peak and residual strengths, peak and ultimate strains, and 

strain ductility are listed in Table A.3, along with their statistical indices. 

 

 
Figure A.5  Transverse splitting of a specimen 

 

Table A.3  Strength, limit strains and strain ductility (paral. dir.) 

 k [MPa] r [MPa] SDR [%] k [%] u [%]  

x  3.85 1.69 44.0 0.240 2.49 10.6 

s 0.21 0.41 10.5 0.055 1.10 4.33 

CoV [%] 5.56 24.0 23.8 22.7 44.2 40.7 

 

 
Figure A.6  Experimental stress-strain curves (paral. dir.) 
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By comparing values in Table A.3 with those listed in Table A.1, it can be noted that 

the peak strength is a bit less than that evaluated along the direction orthogonal to 

mortar bed joints, while residual strength is greater. The peak strain is equal to that 

evaluated along the direction orthogonal to mortar bed joints, even though it is affected 

by higher uncertainty, while both ultimate strain and strain ductility are larger. 

Table A.4 shows secant values of elastic moduli and Poisson‟s ratios. Whilst elastic 

moduli are lower than those computed in the direction orthogonal to mortar bed joints, 

Poisson‟s ratios are higher. 

 

Table A.4  Secant elastic moduli and Poisson‟s ratios (paral. dir.) 

 E1/3 [MPa] E1/2 [MPa] 1/3 1/2 G1/3 [MPa] G1/2 [MPa] 

x  2074 2016 0.24 0.35 857 777 

s 258 261 0.20 0.27 186 217 

CoV [%] 12.5 12.9 81.9 76.0 21.7 28.0 

 

A.5. Probabilistic Data Sets and Constitutive Equations 

Experimental data gathered through compression tests were processed in several modes 

to get different types of stress-strain data sets and laws. Since normal stresses were 

associated with different values of axial strain, the experimental data sets were suitably 

corrected to obtain a n-tuple {()} at each given axial strain. In particular, the range 

[0,u] was divided in a number of bins in a way first to approximate the axial strains 

falling in each bin with its central value, and then to associate each normal stress with 

the relevant central value of axial strain. 

 

A.5.1. Masonry Subjected to Compression in the Direction 

Orthogonal to Bed Joints 

Data processing allowed first to develop the following probabilistic  curves: mean 

and characteristic curves, namely series of (,) couples with normal stresses having 

non-exceeding probabilities of 5% and 50%, respectively, for each axial strain 
*
 

falling in the interval [0,u]; and maximum likelihood curves, namely series of (,) 

couples with normal stresses having the maximum probability of occurrence for each 

axial strain 
*
 falling in the interval [0,u]. Such curves are plotted in Figure A.7 along 

with experimental stress-strain data sets. 

The Gaussian probability density function (PDF), with different mean and standard 

deviation over the strain range under consideration, was assumed for each distribution 
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of normal stresses associated with a given axial strain. Due to this hypothesis, the mean 

stress-strain diagram matches the median one. Each set of normal stresses 

corresponding to a given axial strain was tested in order to assess whether it was well-

modelled by a normal PDF or not. This assumption allowed to simplify maximum 

likelihood estimation (Soong, 2004). 

 

 
Figure A.7  Probabilistic stress-strain curves (orthog. dir.) 

 

Such stress-strain data sets could be directly implemented in computer programs based 

on elasto-plastic FE models. In particular, median constitutive data sets could be used 

for non-linear seismic analysis of existing constructions (according to national and 

international codes); characteristic constitutive models scaled by a material safety 

factor could be employed in seismic design of new structures. Mean and characteristic 

values of mechanical parameters are reported in the work by Augenti and Parisi 

(2010a). 

The ratio between characteristic and mean compressive strengths was computed over 

the whole strain range considered for defining stress versus strain diagrams.  

The average ratio is equal to 0.81, while it is fk /fm = 0.91 at the peak state, being  

fk ≡ kk and fm ≡ km the characteristic and mean values of peak strength, respectively. 

Furthermore, mean Young‟s modulus at one-third of the peak strength can be related to 

the characteristic strength by the equation Em = 580 fk , while both EC6 (CEN, 2005a) 

and IBC (IMIT, 2008) suggest to assume Em = 1000 fk for design purposes. Vice versa, 

the ratio G/E is almost equal to 0.4, which is the value provided by EC6 and IBC. 

Non-linear regression analysis on experimental data sets was then carried out to 

develop empirical stress-strain relationships for non-linear seismic analysis of masonry 

constructions. In particular, such a regression analysis was performed on stress and 
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strains normalised to their relevant values at the peak state, namely /k and /k. The 

constitutive equations are reported in Section 7.2.1 [Eq. (7.51)] and were used to 

develop interactions domains, moment-curvature diagrams, and force-displacement 

curves (see Chap. 7). Figure A.8 demonstrates that the proposed constitutive model fits 

well the experimental behaviour of masonry, showing a coefficient of determination  

R
2
 = 0.93. A comparison between the proposed constitutive model (Augenti and Parisi, 

2010a) and those available in the literature is also shown in Figure A.9. 
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Figure A.8  Comparison between empirical and mean experimental curves (orthog. dir.) 
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Figure A.9  Comparison between proposed and existing constitutive models 
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In particular, the constitutive laws selected from the literature are related to clay brick 

masonry (Calvi and Magenes, 1991; Chuxian, 1984; Kaushik et al., 2007; Sawko, 

1982; Turnšek and Čačovič, 1971), clay block masonry (Capozucca, 2004), unconfined 

concrete masonry (Arya and Hegemeier, 1978), and conventional masonry reported in 

EC6 (CEN, 2005a). Stress-strain diagrams have similar rising branches, with exception 

of Chuxian (1984); conversely, falling branches are considerably different depending 

on the type and shape of masonry units. The constitutive laws proposed by Kaushik et 

al. (2007) and Calvi and Magenes (1991) include a linear falling branch, but the latter 

constitutive law has a lower strength degradation. The constitutive law derived from 

compression tests on tuff masonry prisms (Augenti and Parisi, 2010a) is fully non-

linear up to large inelastic strains. 

 

A.5.2. Masonry Subjected to Compression in the Direction Parallel 

to Bed Joints 

Data sets from compression tests in the direction parallel to mortar bed joints were also 

processed to get maximum likelihood, mean, and characteristic constitutive curves 

(Fig. A.10), as well as stress-strain relations reported in Section 7.2.2 [Eq. (7.102)] and 

having R
2
 = 0.99. 

The average ratio between characteristic and mean strengths is 0.75, while it is  

fk /fm = 0.86 at the peak state. Mean Young‟s modulus at one-third of the peak strength 

can be associated with the characteristic strength through the equation Em = 640 fk. 

Finally, the ratio G/E is still equal to 0.4. Figure A.11 shows a satisfactory agreement 

between the constitutive model and the mean experimental curve. 

 

 
Figure A.10  Probabilistic stress-strain curves (paral. dir.) 
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Figure A.11  Comparison between empirical and mean experimental curves (paral. dir.) 

 

 



 

 

Appendix B - EXPERIMENTAL TESTING FOR 

CONSTITUTIVE MODELLING IN SHEAR 

Shear failure of individual URM panels can consists in diagonal cracking or bed-joint 

sliding and is significantly governed by the unit-mortar interface. As well known, two 

basic failure modes can be identified for such an interface: tensile failure (mode I) and 

shear failure (mode II). The former is the separation of the interface normal to the 

joints, the latter may consist of a shear failure of the mortar joint or sliding mechanism 

of the masonry units, namely bricks, blocks, or stones (Lourenço, 1996). 

Both vertical and horizontal masonry joints act as planes of weakness causing a large 

variability of mechanical properties with the loading direction. The mechanical 

behaviour of masonry along these material discontinuities has been deeply investigated 

for a number of masonry classes by, amongst others, Atkinson et al. (1989), van der 

Pluijm (1993), Lourenço and Ramos (2004), and Binda et al. (1994). Such researchers 

have detected the potential for strain softening, in both dry and mortar joints with 

rough surfaces, as well as a dilatational behaviour under shearing deformation. In such 

conditions, dilatancy has been recognised to be an important phenomenon which 

affects drastically the inelastic response of the unit-mortar interface. Indeed, as the 

shearing deformation of the masonry joint increases, a transverse expansion develops 

resulting in a volume growth of mortar, and thus into a non-isochoric plasticity, as 

opposed to metals and plastics (van Zijl, 2004). If such a volume increase is prevented 

or resisted by confining boundary conditions, the normal uplift results in a pressure 

buildup. Consequently, shear strength of the unit-mortar interface may significantly 

increase with the normal compressive stress. Typically, shearing dilatancy is arrested at 

high pressure levels and at large shear strains, so that shear resistance does not 

enhance. 

Another aspect has to be kept in mind with reference to the effects of these phenomena 

on non-linear behaviour of laterally-loaded masonry elements. As highlighted by 

FEMA 356 (ASCE, 2000), shear modulus of masonry reduces substantially as sliding 

along bed joints develops or as diagonal tension cracks open. Hence, shear stiffness of 

post-cracked masonry should be taken as a fraction of the initial one and should be 

evaluated through proper experimental tests. This task along with that related to the 

basic criteria for defining strength and deformation capacity have never been examined 

for tuff masonry. In addition, experimental data are still not available for shear 

flexibility parameters and residual strength. 
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In order to characterise the non-linear behaviour of unit-mortar interface, shear direct 

tests were carried out on tuff masonry specimens with proper geometry and subjected 

to different pre-compression levels in the direction orthogonal to the interface (Augenti 

and Parisi, 2010c). Such tests were also performed in the framework of ReLUIS-DPC 

2005-2008 project. 

In this appendix, after the test setup and procedures are briefly described, the main 

experimental results and empirical models are presented and discussed in order to be 

implemented in refined methods of seismic analysis where non-linear sliding shear 

behaviour is explicitly taken into account. 

B.1. Research Objectives 

The experimental program and the relevant data processing were aimed at (1) the 

characterisation of classical strength parameters of the Mohr-Coulomb yield criterion, 

and (2) the definition of deformation and energy parameters proposed in the last 

decade for masonry structures. The strength parameters are compared to those 

available in the literature for other masonry assemblages. 

Similarly to the characterisation of compressive behaviour (see Appendix A), the 

experimental research was devoted not only to the estimation of parameters typically 

employed in linear analysis, but also to the estimation of parameters and the derivation 

of empirical models to be used in non-linear analysis based on FE, or macro-element, 

models. 

In this case, data processing was first addressed to the evaluation of shear modulus, 

shear strength at zero confining stress (i.e., cohesion), and friction coefficient in the 

range of small strains. Fracture energy and dilatancy angle were also estimated to be 

used in FE analyses. 

Second, the Mohr-Coulomb failure model was characterised at both peak and residual 

states. Such a model could be combined with a cap model in compression (Lourenço 

and Rots, 1997) and cut-off in tension (Binda et al., 1994). 

Finally, several regression analysis techniques were employed (1) to define  

constitutive laws at different pre-compression levels, and (2) to obtain a shear response 

surface (,) including both constitutive laws and Mohr-Coulomb failure model. 

B.2. Experimental Program 

The experimental research for the characterisation of unit-mortar interface in shear 

consisted of three series of monotonic direct shear tests in displacement control. 

This type of tests was preferred over couplet and triplet tests on stones and bricks, even 

though the latter are the European standard method (CEN, 2002). In fact, triplet tests 
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are more difficult to be controlled in the post-peak range since two joints are tested all 

together, while couplet tests are affected by parasite bending effects inducing a non-

uniform distribution of stresses at the unit-mortar interface. 

 

B.2.1. Materials and Tested Specimens 

The description of the materials employed also for such experimental program, as well 

as with their main mechanical characteristics, are reported in Section A.3. 

As shown in Figure B.1, each specimen consisted of a one-leaf, two-layer tuff masonry 

assemblage with a mortar bed joint. The gross dimensions of the specimen were 

852×210×150 mm, while both head and bed joints had a thickness of 10 mm. 

The layers were shifted to each other in order to apply and measure the horizontal 

forces via simple contact between devices and specimen. The geometry of the latter 

resulted in a smaller effective shear-resistant portion, whose dimensions were 

678×210×150 mm. 

Two linear variable differential transformers (LVDTs) were placed on each side of the 

specimen for measuring the relative horizontal and vertical displacements induced by 

the shearing deformation and dilatancy. The vertical and horizontal LVDTs had a 

stroke of 20 mm and 50 mm, respectively. The latter were fixed to both masonry 

layers. 
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Figure B.1  Specimen geometry (dimensions in mm) and arrangement of LVDTs 
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B.2.2. Experimental Setup and Test Protocol 

The experimental program consisted of three series of deformation-controlled tests 

performed at different pre-compression load levels. Each experimental test was 

performed by subjecting the masonry specimen to increasing shear deformation along 

the mortar bed joint. The test setup was slightly different from that used by Atkinson et 

al. (1989) for clay brick masonry, even if the ability to induce a rather uniform 

distribution of shear and normal stresses along the bed joint was preserved (Figs. B.2 

and B.3). 

 

hydraulic jack load cell reaction

frame

LVDT #1 LVDT #2

actuator

reaction

frame

 
Figure B.2  Experimental setup for direct shear tests 

 

 
Figure B.3  Front view of a specimen 

 

The masonry specimen was placed onto a L-shaped steel I-beam which was enabled to 

slip over the rigid base of a universal testing machine by means of two Teflon layers 

and two lateral unequal angles (Fig. B.4). A double-effect hydraulic jack with a 

maximum load capacity of 500 kN was positioned against the beam and a reaction 

frame. A further L-shaped I-beam was put on the specimen and was forced against a 
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load cell anchored to another reaction frame. The nominal load cell capacity was equal 

to 100 kN. Once two further Teflon layers were placed over the upper metallic beam, 

the hydraulic actuator of the universal testing machine, with a load capacity of  

3000 kN in compression, was pushed against the specimen. The loading plate of the 

universal machine was pinned to minimise any undesirable bending effect in the 

specimen. 

 

M18 bolts

two Teflon layers

HEA160

two Teflon layers

Unequal angles

 
Figure B.4  Cross-section of the experimental setup 

 

Three sets of direct shear tests were carried out at different pre-compression loads 

corresponding to about 5%, 10% and 15% of the ultimate axial force resisted by the 

effective (horizontal) cross-section of the specimen. Namely, three direct shear tests 

were carried out under a pre-compression load of 25 kN corresponding to a vertical 

confining stress  = 0.25 MPa (specimens C1 to C3). A second group of four tests 

were performed under a pre-compression load of 50 kN corresponding to  

 = 0.50 MPa (specimens C4 to C7). A third set of two tests were conducted under a 

pre-compression load of 75 kN corresponding to  = 0.75 MPa (specimens C8 and 

C9). 

The loading protocol of each direct shear test consisted of two phases. In the former, 

the vertical confining pressure was imposed to the specimen by means of the hydraulic 

actuator and was kept constant during the complete test duration. At this stage, the 

upper beam allowed to get a rather uniform distribution of the vertical pressure over 

the specimen.  

In the second stage of the test, a horizontal load was applied to the lower masonry layer 

and its magnitude was calibrated by a computer program in such a way to get a target 

increasing stroke of the hydraulic jack, namely an increasing shearing deformation of 

the bed joint, under a given normal pressure level. The shear load was applied at a 

displacement rate of 10 m/s, so that non-linear response of the bed joint was fully 

measured during the test until a target displacement (corresponding to a shear strain of 

about 10%) was reached. The horizontal force applied to the specimen was transmitted 
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to the lower masonry layer resulting in a relative movement with respect to the upper 

layer. The load cell at the opposite side with respect to the hydraulic jack enabled the 

estimation of the actual shear force resisted by the bed joint. 

The testing system was able to avoid uncontrolled actions potentially due to 

unbalanced forces; furthermore, no in-plane and out-of-plane rotations were detected. 

B.3. Processing of Experimental Data 

B.3.1. Experimental Constitutive Curves 

Force and displacement readings were carefully processed accounting for the effective 

shear force transferred by the unit-mortar interface, as well as the actual gage length of 

the bridged horizontal LVDT. The effective shear force resisted by the bed joint was 

not equal to that applied by the hydraulic jack, nor that measured by the load cell 

located on the reaction frame. Indeed, a rate of the applied shear force (measured by a 

further load cell placed between the hydraulic jack and the lower beam) was dissipated 

through the interface between the lower layer and the base of the universal machine 

and was absorbed as axial deformation of stone units and head joints. Conversely, the 

force measured by the opposite load cell was lower than the effective shear force 

resisted by the bed joint, since the former was affected by frictional dissipation along 

the upper beam-actuator interface. Therefore, the effective shear force Veff was 

computed as the sum of the load cell reading (right side in Fig. B.2) and the frictional 

force dissipated along the beam-actuator interface. This force was assumed as 

proportional to the ratio between the contact area of the actuator plate and the area of 

the lower masonry layer. The following relation was used: 

eff cell fV V V   (B.1) 

assuming: 

plate

f

layer

A
V V

A
   (B.2) 

and: 

cell jackV V V    (B.3) 

Such equations include: the force measured at the load cell, Vcell; the frictional force, 

Vf; the force applied at the jack, Vjack; the contact area of the actuator plate, Aplate; and 

the area of the lower masonry layer, Alayer. The friction coefficient of Teflon was 

assumed to be constant under varying applied normal stress. Actually, the latter had 

different values at the plate-upper beam interface and the interface between the lower 

beam and the base of the testing machine. 

To get the experimental shear stress-strain diagrams, the computed shear forces Veff 
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were divided by the effective bed-joint area and the relative horizontal displacement 

readings were divided by the LVDTs‟ gage length. These computations were limited to 

the strain range [0,0.1], which was divided into a number of bins in order to associate 

shear stresses falling in a given bin with its central shear strain. This manipulation of 

data was carried out similarly to the characterisation of compressive behaviour (see 

Appendix A). 

Figures B.5, B.6 and B.7 show the experimental and mean stress-strain curves derived 

for the three confining stress levels. A large shear strain ductility  was identified for 

all tests due to high frictional dissipation capacity of the bed joint. According to what 

has been reported in the literature (see for instance: Homand et al., 2001; Misra, 2002), 

rough fracture surfaces induced strength degradation under increasing inelastic 

displacement. As the shear strain increases, the joint roughness reduces ranging from 

the mobilization of the asperities in the pre-peak region to their gradual smoothening in 

the post-peak region. Conversely, no softening was recorded for masonry assemblages 

with dry joints (Vasconcelos and Lourenço, 2009). 
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Figure B.5  Experimental and mean stress-strain curves for (a)  = 0.25 MPa 
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Figure B.6  Experimental and mean stress-strain curves for  = 0.50 MPa 
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Figure B.7  Experimental and mean stress-strain curves for  = 0.75 MPa 

 

 

B.3.2. Strength and Deformation Parameters 

The mean values of peak shear strength p, residual shear strength r, strength 

degradation ratio SDR = r/p, and peak shear strain p, are listed in Table B.1. The 

peak and residual strengths, as well as peak strain, increase with the confining stress. 

 

Table B.1  Mean strength and strain parameters 

Test series  [MPa] p [MPa] r [MPa] SDR p [%] 

1 0.25 0.22 0.14 0.63 0.52 

2 0.50 0.29 0.23 0.80 1.1 

3 0.75 0.36 0.26 0.72 1.5 

 

It is worth noting that the scatter in the peak shear strength is very limited, being the 

coefficient of variation (CoV) equal to 2.11%, 4.95% and 5.72% for a pre-compression 

level of 0.25 MPa, 0.50 MPa and 0.75 MPa, respectively. The uncertainty in the 

residual strength estimation is higher, with a CoV ranging between 9.96% and 16.97%. 

Shear softening plays a relevant role, since SDR ranges from 20% (for  = 0.5 MPa) to 

37% (for  = 0.25 MPa). For triplets made of solid mud bricks and hydraulic lime 

mortar with joint thickness of 10 mm, Mirabella Roberti et al. (1997) found a SDR 

between 0.51 and 0.69 for confining stress ranging between 0.12 and 1.25 MPa. The 

shear strain at the peak stress increases with the confining normal stress. 

 

B.3.3. Shear Modulus, Fracture Energy and Dilatancy 

The variation of the mean secant shear modulus G versus shear strain  was 

investigated and plotted for the pre-compression levels imposed during the direct shear 
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tests (Fig. B.8). The secant shear modulus at one-third of the peak shear stress was 

found to be 93, 72 and 63 MPa for a pre-compression level of 0.25, 0.50 and 0.75 MPa, 

respectively. The uncertainty in shear modulus is quite limited, since CoV is not larger 

than 15%. 
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Figure B.8  Secant shear modulus versus shear strain for different pre-compression levels 

 

To simulate the shear response of masonry in the plastic range, strain softening has to 

be characterised for representing the progressive internal crack growth, due to the 

presence of micro-cracks and material heterogeneity. In the case of tuff masonry, 

softening behaviour is believed to be increased by the presence of some pumice 

inclusions within the stone units, which result in higher concentrations of cracking and 

acceleration of crack formation over non-porous masonry units (e.g., clay bricks). 

Shear softening of the unit-mortar interface may be conveniently described via the 

mode II fracture energy, defined as the integral of the shear stress versus relative 

horizontal displacement diagram. Figure B.9 shows that the fracture energy increment 

Gf
II
 reduces considerably as shear strain increases. 
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Figure B.9  Fracture energy increment versus horizontal relative displacement 
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This is consistent with stress-strain diagrams of a large number of masonry 

assemblages, as extensively discussed by Lourenço (1996). The mean mode II fracture 

energy Gf
II
 was numerically computed for each set of direct shear tests (Fig. B.10) and 

was found to be 0.12, 0.13 and 0.16 Nmm/mm
2
 for a pre-compression level of 0.25, 

0.50 and 0.75 MPa, respectively. 
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Figure B.10  Fracture energy versus confining stress 

 

A linear regression analysis allowed to estimate fracture energy at zero confining stress 

as 0.1 Nmm/mm
2
, showing a high dissipation capacity of the tuff stone-mortar joint 

interface under shear loading. This value is in agreement with that obtained by van der 

Pluijm (1993) for masonry specimens with solid clay or calcium-silicate units, for 

which shearing fracture energy was between 0.01 and 0.25 Nmm/mm
2
. Moreover, also 

van Zijl (2004) found that fracture energy increases linearly with normal stress. 

Dilatancy of tuff masonry was also investigated by means of normal versus shear 

displacement curves (i.e., vh diagrams). In the context of the Mohr-Coulomb failure 

criterion, one can assume that the effective friction angle of the bed joint is the sum of 

an inherent angle due to adhesion and a dilatancy angle defined as  = arctan(v/h).  

In Figures B.11a, B.11b and B.11c, the relative vertical displacement is plotted versus 

the relative horizontal displacement for different pre-compression levels. The 

dilatational behaviour under shearing deformation is in agreement with that observed 

by other researchers (e.g., Misra, 2002) and consists typically of three different trends. 

In the former, the normal displacements are negative (i.e., the masonry layers tend to 

approach). Afterwards, vertical displacements become positive and increase with the 

shear displacements. Finally, as the shearing deformation increases, the vertical 

displacements tend to a constant steady-state value. Figure B.12 shows that dilatancy 

coefficient depends considerably on the confining stress, since the uplift movement 

reduces as the confining pressure increases. However, a large scatter was detected in 

such a parameter, as demonstrated by the coefficient of determination R
2
 = 0.29. 
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Figure B.11  Dilatancy curves for (a)  = 0.25 MPa, (b) = 0.50 MPa, and (c)  = 0.75 MPa 
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Figure B.12  Dilatancy coefficient versus confining stress 

 

B.4. Characterisation of Mohr-Coulomb Strength Model 

The shear strength of the unit-mortar interface was characterised through linear 

regression analysis, assuming the Mohr-Coulomb failure criterion for predicting both 

peak and residual shear strengths. This strength criterion establishes a linear 

relationship between the shear stress  and the normal stress  as follows: 

η μζc   (B.4) 

where c and  are respectively the cohesion and the friction coefficient (i.e., the 

tangent of the friction angle ) of the contact surface, assumed to be strength 

parameters at peak and residual strength levels. It is noted that this strength criterion 

has a „local‟ meaning being related only to shear sliding mechanisms of masonry 

panels (see Sect. 6.2.8). Therefore, such parameters could be used to define lateral 

strength of URM panels corresponding to bed-joint sliding shear in macro-element 

methods of seismic analysis (see Eq. (6.6)). 

Figure B.13a shows the shear bond strength models derived for the peak and residual 

stress states, at which corresponds a friction angle of 16° and 15°, respectively. The 

proposed empirical model provides good predictions of peak shear strength, being the 

coefficient of determination R
2
 = 0.96, while it has a lower predictive power at the 

residual stress state (R
2
 = 0.77). 

Assuming the residual strength as an exponential function of the confining stress, one 

can get  = 0.34
0.63

 and R
2
 = 0.82, but this model would not be easy-to-use if coupled 

with a linear model at the peak stress state. 

It is also worth noting that the residual cohesion of the bed joint was not set to zero 

within regression analysis, because it is believed to be associated with a non-zero 

frictional resistance of the slip surface. This evidence was observed by van der Pluijm 
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(1993), while no residual cohesion was detected for dry masonry joints by Lourenço 

and Ramos (2004) through cyclic couplet tests. 

The cohesive bond strength and the friction coefficient reduced of 47% and 10%, 

respectively, from the peak to the residual state, whilst results of linear regression 

analysis by Binda et al. (1994) showed that cohesion and friction coefficient reduce, 

respectively, of 61% and 12% for sandstone masonry triplets, and of 43% and 26% for 

calcareous stone masonry. 

In Figure B.13b, the tangent of the friction angle of the unit-mortar interface is plotted 

versus confining stress, along with non-linear models derived for peak and residual 

states. Once more, the predictive power is lower at the residual state. 

In Table 1, peak cohesion and friction coefficient estimated by the authors for tuff 

masonry are compared to those derived for other masonry assemblages. 
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Figure B.13  (a) Characterisation of Mohr-Coulomb strength model and (b) friction angle 

versus confining stress 
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Table B.2  Peak cohesion and friction angle for different masonry types 

Reference Unit Mortar
*
 c [MPa] tan 

Amadio and Rajgelj (1991) Solid brick Cement mortar 0.65 0.723 

  
Lime-cement 

mortar 
  

Atkinson et al. (1989) Old clay brick 1:2:9 (13 mm) 0.127 0.695 

 Old clay brick 1:2:9 (7 mm) 0.213 0.640 

 New clay brick 1:1.5:4.5 (7 mm) 0.811 0.745 

Binda et al. (1994) 

 

Sandstone 

 

Hydraulic lime 

mortar 

0.33 

 

0.74 

 

 
Calcareous stone 

 

Hydraulic lime 

mortar 

0.58 

 

0.58 

 

Drysdale et al. (1979) Clay brick 1:0.5:4 0.57 0.90 
 

Hegemeier et al. (1978) 
 

Concrete block 
 

Type S 

 

0.25 
 

0.89 

Lourenço et al. (2004) Hollow brick Micro-concrete 1.39 1.03 

Magenes (1992) 

 

Solid brick 

 

Hydraulic lime 

mortar 

0.206 

 

0.813 

 

  Lime mortar 0.081 0.652 

Mirabella Roberti et al. (1997) 

 

Solid mud brick 

 

Hydraulic lime 

mortar 

0.23 

 

0.57 

 

Stöckl and Hofmann (1986) Clay brick 1:0.68:15 0.95 0.7 

  1:0:9.7 1.45 0.56 

Vasconcelos and Lourenço (2009) Granitic brick Lime mortar 0.359 0.630 

This study Tuff stone Pozzolana-based 0.146 0.287 

* Mortar composition as cement:lime:sand ratio by volume and joint thickness in round 

parentheses. 

 

B.5. Development of a Shear Response Surface 

Based on the experimental data gathered from the laboratory tests, a non-linear stress-

strain model was first fitted to the experimental data associated with each pre-

compression level (Fig. B.14a) and then it was suitably regularised for further 

processing (Fig. B.14b). The aim of these computations was to obtain a dimensionless 

shear response surface of the unit-mortar interface by merging the constitutive laws 

and the Mohr-Coulomb failure criterion together. This response surface is to be 

distinguished from the classical failure surface (which does not include the constitutive 

law) and was defined to get a unique function    describing the shear stress under 
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varying shear strain and confining stress. The symbol   denotes the shear stress  

normalised to the peak strength p,   represents the given confining stress  

normalised to a reference normal stress ref, and   stands for the given shear strain  

normalised to the shear strain p corresponding to the peak strength. It is underlined 

that this strain was identified for each experimental stress-strain curve and that the 

symbol p does not represents the maximum shear strain reached during the tests. It 

was employed just to emphasise the relationship between the shear strain and the peak 

strength. 
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Figure B.14  (a) Empirical and mean experimental stress-strain curves; (b)regularised curves 

 

Non-linear regression analysis on stress-strain data was carried out for two strain 

ranges, separately, in order to simulate the softening behaviour. Therefore, for each 

given confining stress level, the authors identified a „crossing‟ shear strain c  

corresponding to the counterflexure point of the constitutive model, so as to get the 

best fit on experimental data and to attain the continuity of the constitutive function 
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and its first derivative. The stress-strain diagrams at  = 0 and  = 1.00 MPa were 

derived by extrapolating those directly associated with experimental data. Both 

cohesive and frictional terms were assumed to be dependent on the shear strain, in 

order to define the shear stress at the interface as a linear function of the confining 

stress, as follows: 

     η ζ, γ γ μ γ ζc   (B.5) 

where ζ  represents the confining stress  normalised to a reference normal stress ref 

assumed to be 0.18 times the uniaxial compressive strength of masonry. The adoption 

of a linear relationship between the shear stress and the normal stress allowed to split 

the multiple regression analysis in two simple non-linear regression analyses carried 

out on the shear strain. To describe the variation of the crossing shear strain versus the 

normal stress, the authors derived the following equation: 

γ 1 0.275ζc    (B.6) 

As shown in Figure B.15, was obtained to divide the    plane in two different 

regions (denoted by 1 and 2) and, thus, to split the response surface for simulating 

shear softening. Given a normal stress i , one can estimate the shear strain c,i  at 

which corresponds the counterflexure point of the stress-strain diagram. 

 

 
Figure B.15  Partition of    plane and construction of shear response surface 
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Figure B.16 shows the shear response surface for the unit-mortar interface (R
2
 = 0.96), 

where the cohesive and frictional contributions are response functions defined as: 

2 3 4(γ) 2.719 γ 4.644 γ 2.289 γ 0.6 γc      (B.7) 

2 3 4μ(γ) 0.082 γ 1.695γ 1.54 γ 0.371γ     (B.8) 

for γ [0,(1 0.275ζ)]   and: 

2 3 3 4 4(γ) 0.464 0.146 γ 0.034 γ 3.8 10 γ 1.5 10 γc          (B.9) 

2 4 3 5 4μ(γ) 0.64 0.002 γ 0.001γ 1.5 10 γ 4.474 10 γ         (B.10) 

for γ [(1 0.275ζ),5]  . 

 

 
Figure B.16  Shear response surface 

 

It is underlined that the shear response surface defines the shearing behaviour of the 

unit-mortar interface from the elastic range to the inelastic range, including strength 

degradation due to strain softening. The response parameters c( γ ) and ( γ ) should 

not be confused with the classical strength parameters of the Mohr-Coulomb failure 

criterion (denoted c as and  in this study), because they depend on the shear strain and 

are used to characterise the shear response over the whole range of allowable shear 

strains. Therefore, cohesion c and friction coefficient  could be used in linear 

equivalent models, while the shear response surface could be employed within non-

linear models. Finally, it is also emphasised that the empirical model represented by 

the shear response surface allows to define the  constitutive law at any confining 

stress level compatible with strength of masonry. 



 

 

Appendix C - EXPERIMENTAL TESTING FOR 

NON-LINEAR SEISMIC ANALYSIS 

On site inspections after severe earthquakes have shown that URM buildings suffer 

frequently most part of damage within spandrel panels; the latter play a key role in the 

absorption and dissipation of seismic input energy. Although non-linear behaviour of 

masonry walls with openings is significantly affected by such structural elements, 

knowledge about their modelling within macro-element methods is still lacking and 

current seismic codes do not provide specific rules for design and assessment.  

On the other hand, preliminary theoretical investigations (e.g., Cattari and 

Lagomarsino, 2008) have shown that masonry interlocking at the interface between 

spandrel panel and adjoining pier provide a significant contribution to flexural strength 

of spandrel panels, even in the absence of tensile-resistant elements (typical case of 

existing buildings). The non-linear behaviour is also affected by spandrel-pier 

interaction, which depends on their own length-to-width ratios, flexural and shear 

strength/stiffness, and the magnitude of gravity loads. Such an interaction can change 

in the presence of retrofit systems on spandrels and/or piers, resulting in potential 

modifications in failure modes. 

A negative effect of retrofit was observed, for instance, by Benedetti et al. (1998, 2001) 

after shaking-table tests on brick masonry building models before and after 

strengthening of spandrels with RC bands. The absorbed and dissipated energy was 

high in the case of as-built specimens and low in the case of repaired specimens.  

As-built specimens suffered significant damage to spandrels, while repaired specimens 

experienced a premature collapse due to damage localization in piers. Based on those 

results, Benedetti et al. (2001) suggested to design devices able to absorb and dissipate 

energy through heavy damage, while controlling it. In this context, the use of 

composite materials can be very promising for seismic retrofit of URM structures. 

Namely, the application of mortar-based matrices allows to overcome the well-known 

limitations of fibre-reinforced polymers, especially in terms of bond to highly-porous 

existing masonry substrates, such as tuff masonry. 

In order to investigate non-linear response of masonry walls with openings, a series of 

quasi-static lateral loading tests were carried out on a full-scale URM wall with a 

opening (Augenti et al., 2010b). The specimen had a lintel with limited anchorage 

length and no tensile-resistant elements (e.g., RC bond beams, steel ties), to simulate 

actual conditions of a large part of existing masonry buildings in seismic regions. 
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C.1. Research Objectives 

The tested wall was supposed to be taken out from a typical multi-storey wall with 

vertically-aligned openings. The geometry of the specimen and the vertical forces 

applied on piers to simulate the effects of gravity loads were designed in a way to 

avoid any pre-defined boundary condition for the spandrel panel and to develop most 

part of damage within it. 

The first lateral loading test was carried out on the as-built wall in order to investigate 

non-linear response up to the attainment of first significant (i.e., permanent) damage to 

the spandrel panel. 

The second tests was performed on the pre-damaged wall in order to preliminary assess 

residual properties of URM buildings subjected to earthquake sequences. 

The third and last test was conducted on the repaired and upgraded wall up to a near-

collapse state. Repair involved both piers and the spandrel panel, while upgrade 

consisted in the application of an inorganic matrix-grid (IMG) composite system on the 

spandrel. The main scope of this test was to assess the effectiveness of the IMG system 

for retrofit and upgrading of URM structures, as well as rapid remedial works in 

seismic emergency scenarios. The effectiveness of the IMG system was intended as the 

ability to provide energy dissipation capacity to spandrels, according to suggestions by 

Benedetti et al. (2001). At the same time, the IMG system was selected to meet 

principles of minimum intervention and reversibility, which are mandatory for 

historical constructions. 

C.2. Experimental Program 

Mechanical properties of constituent materials of tuff masonry and the IMG system 

were characterised through specific laboratory tests (see also Appendix A for tuff 

masonry materials). Afterwards, an URM masonry wall was built up and three quasi-

static lateral loading tests were carried out in displacement control in order to capture 

non-linear degrading response. The first test was monotonic, the others were cyclic. 

 

C.2.1. Design of the Tested Wall 

The tested wall and the test setup were designed through the pushover procedure 

presented in Section 8.1. The design was based on a trial-and-error procedure aimed at 

predicting most part of damage in the spandrel panel, ensuring the absence of sliding 

shear mechanisms at the bases of piers. 

The analytical prediction was then based on a macro-element idealisation of the wall, 

by assuming different compressive strengths and elastic moduli for the masonry of the 

spandrel panel and the piers (see Table C.1 in Sect. C.2.2). Joint panels were assumed 
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to be rigid and infinitely resistant up to wall collapse. The unit weight of tuff masonry 

was assumed to be 16 kN/m
3
, while the following limit values of shear strength at zero 

confining stress were considered:0,min = 0.05 MPa and 0,max = 0.10 MPa. Such an 

assumption was motivated by the absence of characterisation tests about diagonal 

tensile shear strength. Pushover analysis provided a lateral resistance of the wall equal 

to 185.45 kN for the minimum shear strength value and 189.97 kN for the maximum 

shear strength value. 

 

C.2.2. Geometry of the As-Built Wall and Material Properties 

The wall subjected to the first and second tests was made of single-leaf tuff masonry 

and consisted of two piers connected by a spandrel panel with a wooden lintel. The 

latter had an anchorage length equal to 15 cm at both sides (Fig. C.1). 

The gross dimensions of the wall (with and without IMG system) were: length equal to 

510 cm; height equal to 362 cm; and thickness equal to 31 cm. In order to apply 

vertical forces ensuring structural continuity with an ideal upper storey, three masonry 

layers were realised above the piers. The length of both piers and spandrel panel was 

170 cm, while the height of the spandrel panel was 100 cm. Vertical joints were 

alternated and had a thickness equal to 10 mm. Therefore, in the context of a macro-

element modelling of the masonry wall, the pier and spandrel panels had an aspect 

length-to-width ratio equal to 1.35 and 1.70, respectively. The joint panels defined as 

intersections between spandrel and piers had dimensions 170×100×31 cm. 
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Figure C.1  Geometry of as-built specimen (dimensions in cm) 

 

Composition and characteristics of tuff masonry are described in Appendix A, while 

mechanical properties of both masonry and its constituent materials are listed in  
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Table C.1. The latter includes the following properties: tensile strength ft; compressive 

strength fc; Young‟s modulus E; and shear modulus G. Tuff stones were characterised 

by means of uniaxial compression tests on specimens with edge 70 mm, while mortar 

was characterised through similar tests on specimens with dimensions 40×40×160 mm. 

Mechanical parameters of masonry are distinguished for directions parallel and 

orthogonal to mortar bed joints to allow different modelling of spandrel and piers, 

respectively. It is underlined that the employed mortar is classified as M2.5 by IBC 

(IMIT, 2008), while compressive strength of tuff masonry exceeded the referential 

interval [1.4 MPa, 2.4 MPa] suggested by IBC for existing masonry buildings in the 

absence of specific experimental characterisation. 

 

Table C.1  Mechanical properties of constituent materials 

 ft [MPa] fc [MPa] E [GPa] G [GPa] 

Tuff stones 0.23 4.13 1.54 0.44 

Pozzolana-like mortar 1.43 2.50 1.52 0.66 

Tuff masonry 

(compression || to bed joints) 

- 

 

3.85 

 

2.07 

 

0.86 

 

Tuff masonry 

(compression  to bed joints) 

- 

 

3.96 

 

2.22 

 

0.92 

 

IMG system matrix 6.00 16.0 8.00 - 

IMG system grid 1276 - 72.0 - 

 

 

C.2.3. Geometry of the Repaired Wall and Material Properties 

The fibre-reinforced composite material used for external reinforcement of the 

masonry wall was composed by a special two-component matrix and a glass fibre grid. 

The matrix was made of hydraulic lime and sand (ratio by weight 1:3) added with glass 

fibers (ratio by total weight 1:10) and mixed with latex and water (ratio by weight 2:1). 

The glass fibre-reinforced matrix ensured higher ductility and tensile strength, resulting 

in a high-performance composite. The grid was a bidirectional alkali-resistant glass 

coated net with texture 25×25 mm, unit weight of 225 g/m
2
, and ultimate strain lower 

than 2%. Also mechanical properties of the IMG composite are listed in Table C.1. 

The IMG system was applied on both sides of the spandrel (Fig. C.2). Cracks induced 

by the previous tests within the spandrel panel were filled with mortar (Figs. C.3a and 

C.3b). The masonry was suitably prewetted and the mortar was troweled onto both 

sides of the specimen with a 5 mm-thick layer. The fabric sheet was firmly hand-

pressed into the wet binder with the fibers aligned to the mortar bed joints of the wall 

(Fig. C.3c). The overlapping length of grids was 100 mm. Finally, a second layer of 
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pozzolana-like mortar was applied to the specimen by troweling a further 5 mm-thick 

layer (Fig. C.3d). The nominal thickness of the IMG system was then equal to about  

10 mm. The strengthening system involved the first stone layer below the spandrel to 

ensure anchorage. 
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Figure C.2  Geometry of IMG-repaired specimen (dimensions in cm) 

 

 
 (a) (b) 

 
 (c) (d) 

Figure C.3  (a,b) Filling of cracks with mortar injections; (c,d) application of IMG system 
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C.2.4. Experimental Setup and Instrumentation 

Figure C.4a and C.4b show the experimental setup for lateral loading tests. Horizontal 

steel bars were placed at both sides of the wall during cyclic tests, in order to ensure 

the application of load reversals. 
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Figure C.4  Experimental setup: (a) front view and (b) lateral view 
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To rigidly connect the specimen with the laboratory strong floor, RC beams with 

dimensions 1700×310×200 mm were realised below the piers and were cast to  

Ω-shaped steel plates. The latter were in turn bolted to squared holes of the laboratory 

floor slab. Two different reaction systems were installed to apply vertical and 

horizontal loads to the masonry wall. The former consisted of two transverse steel 

frames located at the centerlines of the masonry piers and allowed to apply vertical 

forces simulating gravity loads on the specimen. Bidirectional hydraulic jacks with 

maximum capacity of 500 kN were placed over rigid steel beams and were put in 

contrast with the cap beams of the transverse frames. The rigid steel beams placed over 

the piers of the specimen were employed to get rather uniform distribution of normal 

stresses throughout cross-sections of the piers. Two Teflon layers were placed between 

the jacks and the rigid steel beams in order to avoid any frictional resisting force at 

their interface. 

The lateral loading was applied through a horizontal servo-controlled hydraulic 

actuator (maximum capacity of 500 kN and stroke of ±250 mm) bolted to a non-

prismatic reaction wall having a lateral load-carrying capacity of 250 kN and a 

corresponding horizontal displacement equal to 0.77 mm. A suspension system was 

installed to provide further support to the actuator. The reaction wall had a rigid base 

fixed to the laboratory slab through four steel bars, each pretensioned at 400 kN. The 

other end of the horizontal actuator was pinned at a perforated steel plate which in turn, 

for cyclic tests only, allowed to employ six steel bars (18 mm in diameter) aimed at 

applying force at the opposite end of the specimen. These bars ran along the wall 

spandrel at both sides of the wall. Finally, three steel beams were bolted to the columns 

of the transverse frames at both sides of the masonry wall to prevent potential out-of-

plane failure modes. Such mechanisms were not detected during the tests due to zero 

eccentricity of the lateral load at the actuator plate. Since the columns were loaded in 

tension owing to the pushing forces at the jacks, the transverse reaction system was in a 

stable condition. 

A load cell with capacity of 200 kN was positioned between the central part of the 

horizontal actuator and its rigid end plate. This cell was employed to get real-time 

measurements of the actual horizontal force applied to the specimen. Linear variable 

differential transformers (LVDTs) and string potentiometers were installed. LVDTs 

were placed at the end sections of the spandrel and pier panels to obtain information 

about flexural deformations. Potentiometers were mounted along the diagonals of the 

pier and spandrel panels to capture shearing deformations. The joint panels were not 

instrumented as their behaviour was expected to be rigid owing to the wall geometry. 

This assumption was confirmed by the tests. 
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Figures C.5a and C.5b show the arrangement of the displacement transducers on the 

front and back side of the specimen, respectively. Lateral displacements were 

measured at the opposite side of the wall through a potentiometer transducer tagged as 

PT#1. The displacement readings at this horizontal potentiometer were associated with 

the lateral force readings at the load cell, to plot the force-displacement curve for each 

test. Indeed, the aforementioned readings were considered to be more accurate than 

load and stroke readings at the horizontal actuator. 
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Figure C.5  Arrangement of displacement transducers on the wall: (a) front; (b) back 
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C.2.5. Loading Protocols 

The quasi-static tests on the masonry wall consisted of two stages: in the former, 

vertical forces of 200 kN were applied to the piers by the hydraulic jacks to simulate 

gravity loads; in the latter, the wall was subjected to in-plane lateral loading through 

the horizontal actuator, while the vertical forces on the piers were kept constant. The 

tests were performed in displacement control to capture strength degradation and 

cumulative damage in the post-peak softening range. The lateral force was modulated 

by the computer program of the data acquisition system in a way to obtain the target 

displacement time-history. All measurements were recorded at a sampling rate of 5 Hz. 

The first lateral loading test was carried out on the plain masonry wall under 

monotonically-increasing displacements. Two initial displacement cycles between 0.15 

and 0.25 mm were applied on the specimen to reach good contrast between it and the 

actuator. The lateral force at the actuator was then applied so as to increase 

displacements at a constant rate of 10 m/s up to a displacement reading at the actuator 

of 28 mm (corresponding to an interstorey drift ratio  of about 1%). 

The second test was performed under cyclic displacements up to a moderate damage 

level, which was defined as cracking involving not only the spandrel panel, but also a 

limited part of the piers. The horizontal actuator was driven at a displacement rate of 

35 m/s in a way to attain increasing amplitudes in seven different blocks and repeated 

three times at each amplitude peak. The increment was set to 5.6 mm, so the target 

maximum displacement was 39.2 mm (corresponding to  equal to about 1.2%). 

Finally, the specimen repaired with the IMG system was tested under fifteen cyclic 

displacement blocks up to a lateral displacement of 84 mm (corresponding to  equal 

to about 2.8%). The displacement rate was set to 35 m/s in the first seven blocks and 

to 70 m/s in the last eight blocks. In Figure C.6, the time-histories programmed in the 

computer (input) are compared to those measured (response). 
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Figure C.6  Input versus response time-histories 
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C.3. Damage Patterns 

Lateral loading on the wall caused mainly damage to the spandrel panel without 

involving joint panels. Figure C.7a shows the damage pattern observed after the 

monotonic test on the as-built wall. Vertical cracks due to flexure at the extreme 

sections of the spandrel panel and diagonal cracking of such a panel due to shear were 

first observed. Macroscopic cracking was then detected at the bases of the piers; this 

cracking induced rocking behaviour of larger displacements. 

 

 
(a) 

 
(b) 

 
(c) 

Figure C.7  Damage patterns: (a) as-built wall; (b) pre-damaged wall; (c) repaired wall 
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Figure C.7b demonstrates that load reversals induced horizontal cracks at the base of 

the piers due to rocking response, as well as extensive tensile shear failure along the 

other diagonal of the spandrel panel. The latter suffered shear sliding failure along the 

first mortar bed joint. Slight masonry crushing occurred at the compressed toes of the 

piers at larger displacements. The cyclic lateral loading test on the repaired wall 

demonstrated the effectiveness of the external reinforcement with IMG composites on 

both sides of weak spandrels. While rocking failure of the piers was still detected also 

at small displacement levels, fracture propagation in the spandrel panel diverged from 

the pattern observed during the previous tests resulting in spread horizontal cracking 

(Fig. C.7c). Extensive horizontal cracking and masonry crushing due to rocking of the 

piers were identified when the wall was subjected to larger displacements. At the near-

collapse state, transverse splitting of the masonry was also detected in the spandrel 

panel. Such a failure mode consisted of vertical cracking and involved the masonry 

from the top to the second layer above the wooden lintel. 

In all tests, the wooden lintel played a key role because it supported the masonry above 

and constrained the spandrel panel in transmitting the applied load between the piers. 

This resulted in damage accumulation in the spandrel panel also at large displacements. 

Damage to the spandrel panel after each test is shown in Figures C.8a, C.8b and C.8c. 

 

 
 (a) (b) 

 
 (c) (d) 

Figure C.8  Damage to the spandrel panel: (a) as-built wall; (b) pre-damaged wall; (c,d) 

repaired wall 
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Figure C.8d illustrates a detail of the transverse splitting which occurred at the near-

collapse state of the wall. This failure mechanism has never been observed in the past 

for wall with openings and is currently under study. 

Increasing damage to piers from the monotonic test to the second cyclic test is shown 

in Figures C.9ad. Figure C.9a demonstrates a small horizontal crack at the base of the 

right pier (front side of the wall) due to its rocking response. Figure C.9b shows early 

crushing after cyclic test on the pre-damaged wall, while Figures C.9c and C.9d give a 

good explanation of large rocking-induced cracking with early splitting and extensive 

masonry crushing in the left pier (front side of the wall), respectively. Crack width at 

the pier base exceeded 25 mm. 

An interesting view of the repaired wall at the near-collapse state is illustrated in 

Figure C.10a, where piers‟ rocking and the corresponding drift demands on the 

spandrel panel are particularly evident. Finally, Figure C.10b gives a better idea of the 

heavy damage suffered by the spandrel panel and its deformed shape at the maximum 

drift attained in the test. 

 

 
 (a) (b) 

 
 (c) (d) 

Figure C.9  Damage to the pier panels: (a) as-built wall; (b) pre-damaged wall; (c,d) repaired 

wall 
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 (a) (b) 

Figure C.10  (a) Near-collapse state of the repaired wall; (b) damage to the spandrel panel 

C.4. Analysis of Experimental Force-Displacement Curves 

Quasi-static testing allowed to obtain global response parameters of the masonry wall 

in as-built, pre-damaged, and IMG-repaired conditions. In all tests, the relationship 

between the resisting force and the given lateral displacement was rather linear before 

the occurrence of flexural cracking in the piers and the spandrel panel. As the drift 

demand increased, the resisting force changed in different modes depending on 

specimen characteristics. The cracking point in the experimental force-displacement 

diagrams (the envelopes for cyclic tests) was defined at a lateral stiffness reduction of 

10%. The latter was captured by monitoring the ratio between the secant stiffness K 

(i.e., the ratio between the measured resisting force H and the given displacement d) 

and the simple moving average at each force step (Fig. C.11)
30

. 
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Figure C.11  Monitoring of lateral stiffness under increasing resisting force 

                                                 
30

  This running average (denoted as SMA) is typically employed in time series analysis and is 

defined as the unweighted average of data associated with a given subset of the entire data 

set. Other moving averages (e.g., cumulative moving average, weighted moving average, 

exponential moving average) should be employed to assign different weights to data. 
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In this way, significant variations in stiffness were identified and the secant lateral 

stiffness at cracking was defined as the ratio between the estimated cracking force Hcr 

and the relevant displacement dcr. 

Figure C.12 shows the experimental force-displacement diagram for the monotonic 

test. The lateral stiffness of the as-built wall changed significantly when flexural cracks 

formed at the base of the piers. This rocking-type damage could be approximately 

associated with the cracking force and interstorey drift ratio listed in Table C.2, whose 

relevant elastic stiffness is 50.76 kN/mm. As the lateral displacement increased, the 

stiffness of the as-built wall was rather constant up to the attainment of the maximum 

resisting force Hmax = 184 kN at a displacement of 19.74 mm (i.e., Hmax equal to 

0.65%). The experimental lateral resistance confirmed the value predicted through a 

simplified macro-element analysis of the as-built wall (namely about 185 kN) for the 

minimum shear strength of masonry. At this performance state of the wall, the 

occurrence of diagonal cracking in the spandrel panel induced an instantaneous 

resistance drop of about 15%. 

 

Table C.2  Experimental response parameters of the specimens 

Specimen Hcr [kN] cr [%] Hmax [kN] Hmax [%] Hmax [kN] max [%] 

As-built 98.91 0.06 184.31 0.65 171.56 0.89 

 (0.5Hmax)      

Pre-damaged 97.44 0.07 154.95 0.57 146.53 1.10 

 (0.6Hmax)      

Repaired 90.55 0.07 188.72 1.11 159.42 2.46 

 (0.5Hmax)      
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Figure C.12  Experimental force-displacement curve for  monotonic test on as-built wall 
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At larger displacements, lateral resistance began to rise again up to a resisting force 

Hmax = 172 kN at a displacement of 27.18 mm (i.e., max equal to 0.89%). Strength 

degradation factor SDR, defined as the ratio between Hmax and Hmax according to 

Tomaževič (2000), was found to be about 0.93. It is noted that actual drifts in the post-

elastic range were lower than those associated with the horizontal displacements 

imposed at the actuator, due to some deformability sources in the test setup (Fig. C.6). 

Hysteretic force-displacement diagrams in Figures C.13 and C.14 demonstrate that 

global in-plane response of the wall was essentially governed by rocking motion of the 

piers. While this type of mechanical behaviour allowed large displacements, low 

residual displacements and wall re-centring, diagonal shear failure in the spandrel 

panel affected the maximum resistance of the wall. Indeed, no considerable differences 

in the global response were detected up to cracking of piers (Table C.2). 
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Figure C.13  Experimental force-displacement curve for cyclic test on pre-damaged wall 
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Figure C.14  Experimental force-displacement curve for cyclic test on repaired wall 
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The elastic stiffness was estimated in 47.89 and 44.36 kN/mm for the pre-damaged and 

repaired wall systems, respectively. Conversely, the maximum resistance of the pre-

damaged wall was rather different from those of the as-built and repaired specimens. 

This outcome is clearly shown in Figure C.15, where the experimental force-

displacement curve for monotonic test is compared to the envelopes of the cyclic tests. 
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Figure C.15  Envelopes of experimental force-displacement curves 

 

It is noteworthy that the maximum resisting force computed for the pre-damaged wall 

was rather equal to that computed for the as-built wall at the occurrence of diagonal 

cracking in the spandrel panel (that is, 157 kN). As displacement increased during the 

cyclic test on the pre-damaged wall, the resisting force reduced to 146 kN at a 

maximum displacement of 33.51 mm (i.e., max equal to 1.10%). For the pre-damaged 

wall, SDR was then found to be 0.95 and strength degradation was caused by cyclic 

damage accumulation. In fact, load reversals induced diagonal shear cracking also 

along the other diagonal of the spandrel panel resulting in a significant loss of integrity 

to withstand deformations in the opposite loading orientation. 

Data processing for the cyclic test on the repaired wall demonstrated that the external 

reinforcement with IMG composites at both sides of the spandrel allowed not only to 

restore the load-bearing capacity of the as-built wall, but also to shift strength 

degradation at larger displacement levels. Actually, SDR was estimated in 0.85 but it 

was associated with a maximum displacement of 75.06 mm (corresponding to max of 

2.46%), that is, more than two times the maximum drift imposed to the pre-damaged 

wall. In all tests, SDR was higher than the typical coded value of 0.8, which is assumed 

to define displacement capacity and to compute displacement demand of building 

structures at the life safety limit state (CEN, 2004; IMIT, 2008). The dramatic 

improvement in the lateral response of the pre-damaged wall can be preliminary 
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explained as follows: (1) the IMG system was able to bridge existing cracks of the pre-

damaged wall and to ensure the lack of debonding failure at the matrix-substrate 

interface; (2) the failure mode of the spandrel panel changed from brittle diagonal 

shear cracking to ductile horizontal uniform cracking; (3) the cyclic behaviour of the 

composite system was quite stable; and (4) the IMG system did not induced any 

modification in the stiffness of the spandrel panel, and hence in the spandrel-piers 

interaction, so the rocking response of the piers led to large displacement capacity, 

allowing re-centring behaviour of the wall. 

C.5. Idealisation of Experimental Force-Displacement Curves 

The experimental force-displacement curves were idealised as bilinear to characterise 

the response of an equivalent SDOF system. The bilinear idealisation has been used by 

several researchers as a simplified method to assess seismic response of masonry walls 

in their own plane, especially under cyclic loading (Shing et al., 1989; Magenes and 

Calvi, 1997; Vasconcelos and Lourenço, 2009). In this study, two linearisation 

procedures were used to estimate ultimate force Hu, yielding interstorey drift e 

(corresponding to de), elastic stiffness Ke, displacement ductility , overstrength ratio 

, ductility-related strength reduction factor R, and total strength reduction factor R 

(Table C.3). 

 

Table C.3  Parameters of idealised SDOF system, overstrength and strength reduction factor 

Specimen Hu [kN] e [%] Ke [kN/mm]   R 

As-built 162.15 0.10 50.76 8.51 1.64 6.56 

 (0.88Hmax)     [R = 4.00] 

 170.86 0.19 29.45 4.68 1.73 5.00 

 (0.93Hmax)     [R = 2.89] 

Pre-damaged 146.73 0.10 47.89 10.94 1.51 6.88 

 (0.95Hmax)     [R = 4.57] 

 147.99 0.12 41.04 9.29 1.52 6.37 

 (0.96Hmax)     [R = 4.19] 

Repaired 176.89 0.13 44.36 10.99 1.95 8.95 

 (0.94Hmax)     [R = 4.58] 

 188.37 0.30 20.74 4.82 2.08 6.12 

 (Hmax)     [R = 2.94] 

Note: For each specimen, the first and second lines refer to linearisation procedures by 

Tomaževič (2000) and by EC8 (CEN, 2004) and IBC (IMIT, 2008). 
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To compute displacement ductility as  = du/de, the ultimate displacement du was 

defined as the experimental value corresponding to the minimum strength degradation 

observed during the tests and hence to a resisting force reduction of 5%. This 

assumption derived from the fact that strength degradation was lower than that 

typically considered in seismic codes (that is, 20%) and different values of SDR were 

computed for the tested specimens. It is also underlined that the bilinear idealisation for 

the as-built and pre-damaged walls was aimed at reaching some hints on displacement 

ductility and strength reduction factors, being they related to moderate damage levels. 

The computation of these seismic capacity parameters was useful especially to 

compare the global performances of the tested models and to discuss current coded 

values. 

The first linearisation procedure was based on the assumption of elastic stiffness equal 

to the experimental secant stiffness at cracking. The latter was equal to 0.5Hmax for the 

as-built and repaired walls, and 0.6Hmax for the pre-damaged wall. Yielding 

displacement was computed by imposing equal areas below the actual and idealised 

curves (Tomaževič, 2000). The ultimate force of the idealised system was derived as 

the product of the assumed elastic stiffness for the computed yielding displacement.  

In this way, the ultimate resistance of the idealised envelope was evaluated by 

assuming equal energy dissipation capacity of the actual and idealised wall systems. 

The second bilinear idealisation procedure used in this study is reported in IBC (IMIT, 

2008) and EC8 (CEN, 2004). These building codes suggest to assume cracking at 

0.7Hmax. The elastic stiffness is then computed as the ratio between the idealised 

cracking force and the corresponding displacement identified on the actual force-

displacement curve. The yielding displacement is derived by assuming equal areas 

below the actual and idealised force-displacement diagrams. The idealised force-

displacement diagrams derived for the tested specimens are shown in Figures C.16, 

C.17, and C.18. 
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Figure C.16  Bilinear idealisation of experimental curves for monotonic test on as-built wall 
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Figure C.17  Bilinear idealisation of experimental curves for cyclic test on pre-damaged wall 
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Figure C.18  Bilinear idealisation of experimental curves for cyclic test on repaired wall 

 

The ratio between the ultimate and maximum resisting forces (values in round 

parentheses in Table C.3) was found to be 0.88-0.93 for the as-built wall, 0.95-0.96 for 

the pre-damaged wall, and 0.94-1.00 for the repaired wall. 

The first interval related to the as-built wall is consistent with past experimental results 

on URM walls by, among others, Sheppard and Lutman (1988), which found a mean 

value equal to 0.9. Different predictions of ultimate force, interstorey drift ratio at 

yielding, and displacement ductility were obtained for the as-built and repaired walls 

through the bilinear idealisation procedures (Table C.3). Conversely, their values were 

quite similar for the pre-damaged wall. For the as-built and repaired walls, secant 

stiffness at 0.7Hmax was about one-half of its counterpart used in the first bilinear 

idealisation procedure (i.e., the estimate of the experimental stiffness at cracking). This 

was not the case of the pre-damaged wall, since the elastic stiffnesses used in the two 

bilinear idealisation procedures were very similar due to the presence of a post-

cracking branch with high stiffness. As a result, the elastic stiffness predicted through 

IBC for the pre-damaged wall was found to be apparently higher than the relevant 
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values computed for the other specimens. The latter were characterised by lower post-

cracking stiffness. The clear presence of a post-cracking branch led to different, even if 

rather high, values of displacement ductility for the as-built and repaired walls. It is 

emphasised that Tomaževič (2000) proposed a trilinear idealisation of experimental 

force-displacement curves to improve consistency between the SDOF system 

representation and the actual structure response. 

The overstrength factor of the wall system, denoted as  in Table C.3, was defined as 

the ratio between the ultimate and cracking forces. Its average values were 1.7, 1.5, and 

2.0 for the as-built, pre-damaged, and repaired walls, respectively. It is noted that IBC 

provides a value of 1.4 for single-storey URM buildings and 1.3 for single-storey RM 

buildings. 

Strength reduction factor was computed for each tested specimen. According to IBC 

and Uang (1991), the total strength reduction factor R to be used in linear seismic 

analysis was defined as ductility-related strength reduction factor R (bracketed values 

in Table C.3) multiplied by . The former factor was evaluated as: 

μ 2μ 1R    (C.1) 

according to the „equal energy rule‟ typically assumed for low-period structures like 

masonry buildings (Uang, 1991). Although the as-built and pre-damaged walls were 

subjected to medium displacement demands, their ductility-related strength reduction 

factors were quite high. It is worth noting that the average values of R for the as-built 

and damaged walls were 3.4 and 4.4 respectively, while an average value equal to 3.8 

was found for the repaired wall. Conversely, IBC provides R-values of 2.0 for URM 

buildings and 2.5-3.0 for RM buildings. Instead, EC8 provides a strength reduction 

factor equal to 1.5-2.5 for earthquake-resistant URM buildings, 1.5 for URM buildings 

not designed for seismic actions, and 2.5-3.0 for RM buildings. In this context, it is 

emphasised that the bilinear idealisation procedure by Tomaževič (2000) was found to 

be more appropriate to capture the main features of the global nonlinear response of the 

walls, especially for the pre-damaged wall. 

Although both displacement ductility and strength reduction factor estimated for the 

as-built and pre-damaged walls are not to be considered as actual „supply‟ parameters, 

all linearisation procedures used in this study led to strength reduction factors higher 

than those provided by EC8 and IBC. Regardless of the particular linearisation method 

used in this study, the benefits of the IMG strengthening system were clear not only in 

terms of high supply displacement ductility, but also in terms of providing high 

strength reduction factors. The estimation of these capacity parameters was affected by 

the truncation of the experimental force-displacement curve at a lateral displacement 

significantly lower than the maximum displacement attained during the test. The 
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effectiveness of the IMG system can be fully expressed by considering the entire post-

peak degrading branch (i.e., a force reduction of about 15%). In this case, the 

linearisation procedure by Tomaževič (2000) led to  = 19.16, R = 6.11,  = 1.92, and 

R = 11.73, while the procedure provided by EC8 and IBC led to  = 8.67,  

R = 4.04,  = 1.98, and R = 8.02. These values are significantly higher than those 

presented in Table C.3 for the same force reduction percentage (i.e., 5%). 
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