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Overview 

Photonic band-gap materials are artificially periodic engineered materials with 

which we can control and manipulate the electromagnetic radiation. The period 

photonic crystals are well known and have been  studied for the last two decades. 

Recently Photonic structures lacking long-range translational order but with 

orientational order and higher-order rotational symmetries which are not 

compatible with the spatial periodicity, called “photonic quasi-crystals”(PQCs) in 

analogy with solid-state physics, are gaining a growing attention in view of their 

unique characteristics. This PhD work is devoted to the design and fabrication of 

photonic quasicrystals working in microwave and optical frequencies.  

The first chapter of the thesis is aimed to give a general introduction to 

quasicrystal structures, their basic characteristics and properties. It provides a 

very general description of methods developed  to generate quasicrystal 

geometries which can be useful in photonic applications. Then some of the 

photonic applications are explained. The last section of the chapter gives a broad 

idea about the fabrication methods used for photonic quasicrystals. 

In the second chapter, the basic theoretical aspects on the band gap formation in 

photonic crystals and quasicrystals are discussed. It also describes few common 

computational methods used in the numerical studies of photonic structures. The 

Finite Difference Time domain (FDTD) is explained in  detail. The final part of 

the chapter is devoted to analyze the results obtained by FDTD simulations in 

some of the selected quasicrystals. The photonic band gap formation in 

quasicrystal geometries with 8-, 10- and 12-fold symmetries are numerically 

studied and compared. 

Microwave experiments carried out to study the band gap formation in low-index 

contrast aperiodically ordered structures are described in chapter 3. First the 

microwave measurement techniques used are introduced. It also gives a brief 

description of the instruments used in the measurements. Then the 

experimental results obtained for quasicrystals structures with 8-, 10- and 12-

fold symmetries are reported and compared with the results from a regular 



hexagonal photonic crystal structure. The study of thes isotropy preparation of 

the PQC band gap is also reported. 

Chapter 4 is entirely devoted to describe the versatile technique of Computer 

Generated Holography combined with Spatial Light Modulation (SLM-CGN) 

that is used to fabricate the photonic structures working in the optical regime. 

Various aspects of the technique are explained in details. The final part of the 

chapter contain some of the interesting results experimentally obtained using 

this technique. 
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Chapter 1 

Introduction to quasicrystals 

The advances in photonics especially in the last decade makes it 

necessary to have suitable ways for generating and managing 

electromagnetic energy for various applications such as optical 

communication. It is important to engineer the properties of the 

materials which can respond to light waves of the desired frequency to 

confine, filter or guide the electromagnetic radiation. When it comes to 

question of controlling the light propagation, the answer is photonic 

crystals. They are analogous to the electronic crystals where instead of 

atoms or molecules there are low-loss dielectric materials of differing 

dielectric constant. The periodic dielectric function replaces the periodic 

potential in this case. Yablonovitch [1] showed  that if the dielectric 

constants of the two materials are sufficiently different, the photonic 

crystals can also possess a photonic band-gap (PBG), so that a certain 

range of frequencies are not passed through the crystal, just like an 

electronic semi-conductor. Photonic crystals can be one-, two- or three 

dimensional depending on the properties of the dielectric function. A 

stack of alternating layers of two different dielectric materials (a Bragg 

mirror), represents a one-dimensional photonic crystal. The position 

and width of the photonics band-gap plays an important role in case of 

most of the applications of photonic crystals (PCs).  

When the frequency of the electromagnetic radiation falls within the 

photonic band-gap frequencies, a photonic crystal acts like a perfect 

“optical insulator” for the radiation. This property can be exploited to 

design and build ultra-compact mirrors, cavities and waveguides [2-3]. 

For other frequencies which fall in a photonic band, the photonic crystal 

acts like an “optical conductor” which finds applications in wavelength 

division multiplexing [4] and beam steering. Another interesting 
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property of PCs is the super prism effect which relates to the 

propagation of radiation through the photonic crystal [5] which then 

also revealed negative-index refraction in PCs.  

An important application of photonic crystals is in the localization of 

electromagnetic field. This is usually done by intentionally introducing 

some defect in the periodic structure. If radiation of frequency 

corresponding to the photonic band gap is then introduced to a point 

defect, the field will be trapped inside the defect since the propagation 

is prohibited inside the crystal. This effect can be exploited to design 

cavity resonators. The same effect can be used to create waveguides by 

introducing linear defects which can confine and guide the radiation 

without loss in the preferred path. 

Another important application of photonic crystals is their ability to 

have lasing close to the band-edge because of the anomalous reduction 

of group velocity near the band-edge which induces an enhanced 

spontaneous emission thereby reducing the threshold for lasing. There 

had been several investigations in this direction [6].  

Recently, along with the periodic photonic crystals, photonic band-gap 

materials with quasicrystal ordering are also been studied due to their 

peculiar properties. The following sections will discuss the important 

characteristics of quasiperiodic order and how they can be used for 

photonic applications. 

1. Quasiperiodic order 

The traditional division of structure of solids include crystals and amorphous 

materials (glassy). Crystals have their atoms arranged periodically with long-range 

translational symmetry. They also possess orientational order according to a 

particular crystallographic rotational symmetry. An amorphous material, on the 

contrary has the atoms densely packed, but randomly.  
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In 1984, D.Shechtman et al [7] experimentally observed a new class of 

„ordering‟ in solids, when they found metallic solid (Al-14-at. %-Mn) 

with long-range orientational order, with icosahedral point group 

symmetry, which is inconsistent with lattice translations. The 

diffraction spots were as sharp as that of a crystal, but could not be 

indexed to any Bravais lattice. Even before the experimental 

observation of existence such „quasi periodic‟ order in the microscopic 

level, similar quasiperiodic tilings were familiar from medieval times. 

Roger Penrose is a pioneer in the study of aperiodic tiling for planes, 

who proposed a set of two tiles (later referred to as Penrose tiling), that 

produced only non-periodic tilings of the plane.  

The basic properties of quasicrystal structures are: 

1. Quasiperiodic translational order: The density function is quasi 

periodic, which can be expressed as the sum of periodic function with at 

least some of the periods incommensurate. The rank of the Fourier 

module (the number of base vectors) exceeds the dimensionality of the 

structure. This makes the reciprocal space filled with diffraction peaks 

and the Fourier spectrum is singular continuous.  

2. Minimal separation between atoms: in each quasicrystal lattice, the 

separation between any two nearest-neighbour sites lies between two 

characteristic distances r and R (both greater than zero). This 

distinguishes the quasicrystal from a set of sites obtained by 

superimposing two periodic lattices with periods whose ratio is 

irrational. This property makes quasicrystals different from a set of 

randomly arranged points.  

3. Orientaional order: This is one of the key properties of a quasicrystal. 

The bond angles between neighbouring atoms or clusters have long 

range correlations and are oriented along a set of “star” axes that define 

the orientational order. Quasiperiodicity alone is not enough to 

characterize a quasicrystal since there are other physical systems like 
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incommensurate crystals are characterized by incommensurate 

periodicities.  Non crystallographic orientational order not only 

differentiates quasicrystal from periodic and incommensurate crystals, 

but also forces quasiperiodicity. The set of irrational numbers that 

characterizes quasiperiodicty is constrained by the orientational 

symmetry whenever the symmetry is no-crystallographic.   

The above mentioned properties make the quasicrystals different from 

amorphous or crystalline state of matter. The quasiperiodicty 

differenciates quasicrystals from periodic crystals where as the long-

range orientational order makes them different from the amorphous 

solids like glass. 

2. Generation of Quasicrystals 

There are several methods to obtain quasicrystal geometries which 

have the properties described above.  

2.1. Generalized dual-grid or multi-grid method 

This is the straightforward formal approach for obtaining quasicrystals 

with arbitrary orientational symmetry. A grid refers to a countable 

infinite set of infinite non –intersecting curves (in 2-dim) or surfaces (3-

dim). Inn two dimensions, N-grid is a set of N grids such that each 

curve in the ith
  grid intersects each curve in the jth curve at exactly one 

point for i≠ j. In three dimensions, N-grid is a set of N grids such that 

any triplets of surfaces in the ith, jth and kth grids, respectively (for i≠ 

j≠k) intersect at exactly one point. A quasi lattice is then formed by the 

set of points lying in the intersection of a special class of N-grid which 

satisfies the properties such as quasiperiodic translational symmetry, 

orientational symmetry and finite number of Voronoi cell shapes This 

method is a numerically simple method for generating quasilattices 

with arbitrary symmetry, and for any given symmetry it creates the 

widest class of unit cell packings. 
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2.2. Direct quasiperiodic space tiling procedures 

While considering the generation of quasicrystal, self-similarity is one 

of the interesting properties. When a structure is self-similar, the 

deflation/inflation operations can be used to transform the structure 

into itself within rescaling effects. One of the well-known examples for 

this procedure is the one-dimensional Fibonacci chain, which 

transforms into another Fibonacci chain with different tile sizes by 

using the substitution rule  and . Thus starting with the 

single line segment L and repeating the deflation, a Fibonacci chain 

containing an arbitrarily large number of points can be generated. The 

2-dimensional Penrose lattice can also be generated using inflation-

deflation procedures. 

Even though quasiperiodic structures are self-similar, self similarity 

does not ensure quasiperiodicity. So, a set of given tilings is not 

sufficient to generate a quasilattice. In order to force quasiperiodicity, 

one needs matching rules. The matching rules prescribe how 

neighbouring unit cells are allowed to match together in a quasilattice. 

 

2.3. Quasiperiodicity as generated by projection or cut from higher dimensional 

space 

The incompatible orientational symmetries associated with the 

quasiperiodic structures may be accepted by periodic tiling by 

increasing the dimensionality.  In the strip projection method, the 

vertices of a d-dimensional rhombohedral packing are obtained by 

projection of points from a higher dimensional hypercubic lattice called 

parent lattice onto a d-dimensional hyper plane. The dimension of the 

parent lattice should be ≥ N, where N is the order of orientational 

symmetry. This method is geometrically simple and useful in analyzing 

the diffraction properties of the generated quasilattice. 
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In the „cut projection method‟, the quasilattice is given by the 

intersection of a hyperplane (of dimension d) with the N-dimensional 

periodic (parent) lattice where N is the order of orientational symmetry. 

The vertices of the quasilattice are obtained from the intersections 

produced by “cutting” the hyper plane through the higher dimensional-

lattice at a specified orientation.  

2.4. Method of multiple beam interference 

The interference of N coherent electromagnetic beams will result in a 

pattern which has an orientational symmetry equal to N. This method 

can be used to generate patters with quasiperiodic order and desired 

orientational symmetry.  

In a typical experimental situation of N-beam interference [8], the 

irradiance profiles I(r) achievable according to the relation 

 

 

where Am, km, φm, are the amplitudes, the wave vectors and the initial 

phases of the interfering beams, respectively, give quasiperiodic spatial 

distributions of the intensity maxima. The wave vectors km of the 

beams, for m=(1, …, N), are oriented, according to the following 

relation, 

 

 

at angle θ with respect to the longitudinal direction along z-axis and 

are equally distributed along the transverse (x, y)-plane; n is the 

average refractive index of the medium and λ is the common 

wavelength of the beams. Usually, the beams are supposed having the 

same linear polarization. Their number N is related to the rotational 
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symmetry of the quasicrystal [8]. By changing the phase retardation 

between the beams, different patterns having the same symmetry can 

be realized [8]. 

3. Types of quasicrystals 

In this section, a few examples of quasicrystals geometries of different 

dimensionality are discussed. 

3.1. One-dimensional QCs 

One dimensional quasicrystals can be divided as follows: 

a) Fibonacci Sequence (FS) 

It is one of the most studied among the one dimensional quasicrystal 

structures and is determined by the substitution rule  

 ,  

Which can be written as  , where  represents the 

substitution operator. This can also be represented in the matrix form 

as follows: 

 

 with  is the substitution matrix. 

The eigen value equation corresponding to the above matrix is 

det , with I the unit matrix. The characteristic polynomial 

obtained by the evaluation of the above equation is  The 

roots of this gives the eigen values of the substitution matrix as, 

  and   
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These eigen values satisfy the necessary condition (Pisot-

Vijayaraghavan property) for having a Bragg component in the in the 

spectrum [4] because one of the eigen value is greater than 1, while the 

modulus of its conjugate is smaller than 1, i.e., . 

The Fourier module of Fibonacci Series is of rank 2 and its diffraction 

pattern is purel point spectrum. There were several theoretical and 

experimental investigations on the properties of Fibonacci quasicrystals 

[5]. It was demonstrated that real band gaps can be formed in non-

periodic structures [9].  

b) Non-Fibonacci aperiodic sequences 

Various aperiodic sequences can be generated by using different 

substitution matrix and initial conditions. One example is the well-

known Thue-Morse sequence which is based on a two-letter alphabet 

(L,S) and the substitution rule , which can be 

written as: 

 

The eigen value equation leads to characteristic polynomial  

which leads to the eigen values  and .  Although these 

numbers have Pisot-Vijayaraghavan property, the Fourier spectrum of 

the Thue-Morse is singular continuous without Bragg peaks. So, Thue-

Morse sequence is not quasiperiodic and does not have a Fourier 

module.  

Period-doubling sequence is another aperiodic sequence studied. It is 

also based on a two-letter alphabet (L, S) and the substitution 

rule . This can be expressed in the matrix form as 

the following: 
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The characteristic equation is  which gives the eigen 

values  and . These values do not have the Pisot-

Vijayaraghavan property and the Fourier module is of infinite rank. 

The Fourier spectrum is pure point and the sequence is almost periodic.  

Rudin-Shapiro sequence in an aperiodic sequence based on a four-letter 

alphabet (A, B, C, D) and the substitution rules 

. 

 

The corresponding eigen values are   , 

which do not show the Pisot-Vijayaraghavan property. The Fourier 

spectrum of this sequence is absolutely continuous and therefore does 

not have a Fourier module. Only a few studies have been done on these 

structures. 

3.2. Two-dimensional Quasicrystals 

When the quasiperiodic translational order is extended to two and 

three dimensions, orientational symmetry comes into play. Just as 

discussed before, the quasiperiodicity is forced by certain orientational 

symmetries. Just as in the case of periodic crystal, where the 

periodicity is allowed only for certain orientations, quasiperiodicity is 

also allowed only for certain orientational symmetries. When 

quasicrystals possess the crystallographic orientational symmetries, 

they are called incommensurate crystals. But in this case, the 

orientational symmetry does not force the quasiperiodicity and 

orientational symmetry and quasiperiodicity are totally decoupled. 

Quasiperiodic structures with non-crystal orientational symmetries are 

more interesting. In this section, some of the well-known quasicrystal 

structures are discussed. 
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a) 8-fold symmetry 

One of the most commonly used quasicrystal patterns is 8-fold 

symmetric pattern with Ammann-Beenker tiling.  Decorated Ammann-

Beenker tiles are two rhombi with acute angles 45° and a square, and 

lengths of their edges are the same. Two methods can be used to 

generate structures with this tiling. One is the substitution method 

which has two phases; the tiles are expanded and then the new tiles are 

replaced by patches of the original tiles. This can be repeated giving 

larger patches of tiling. The second method is to construct the tiling as 

a planar slice of a four dimensional lattice and then project this to the 

plane (cut and project method).  Figure 1 shows an example of 

Ammann-Beenker tiled 2-dimensional quasicrystal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) 10-fold symmetry 

Penrose tiling [10] is one of the most famous and well-studied among 

the 2-dimensional quasicrystals. There are different kinds of Penrose 

tilings all of which have 10-dimensional orientational symmetry of the 

Figure.1.1. 2-D Amman-Beenker tiling with 8-fold symmetry 
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diffraction images called the „decagonal phase‟ . The penrose tiling 

shown in figure (1.2) consists of rhombuses of two kinds with the acute 

angle to either  or . Any of the three following methods can be 

used to generate the Penrose tiling: 

i) Matching rules for the thick and thin rhombuses  

ii) The cut and project scheme from a periodic lattice in a five-   

     dimensional hyperspace  

iii) Dual grid techniques  

 

In the case of dual multi-grid technique, a regular star formed by the 

set of five basic vectors is constructed as the starting point. These 

vectors are defined as 

 

Where:    n= 0,...,4 

Then a grid is formed (as described in the earlier section) with five fold 

rotational symmetry whose dual transformation will give the desired 

Penrose lattice. Another method to produce a 10-fold symmetric 

structure is to use the optical interferometric method. An example for 

such a structure is shown in figure (1.2) 

 

 

 

 

 

 

 

Figure.1.2. 2-D 10-fold symmetric Penrose tiling 
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c) 12-fold symmetry 

The most widely known 12-fold symmetric quasicrystal is dodecagonal 

tiling. It is formed by Stampfli inflation rule which has four steps as 

follows [10]: 

1. Draw the parent regular dodecagon and decorate it with square-

triangle tiling (Figure) 

2. Scale the parent dodecagon by a factor of  to 

obtain the offspring-dodecagon of the type I. The type II 

dodecagon is obtained by rotation of dodecagon I by an angle π/6. 

3. Place the offspring dodecagons on each vertex of the parent one.  

4. Repeat the steps 2 and 3 for the structure obtained in step 3 as 

the new parent tiling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Several reports have been published about the generation 12-fold 

symmetric quasicrystals using various methods, including the method 

of optical interference [11] 

Figure.1.3. Formation of dodecagonal crystal by inflation rule: (a) the parent 

tiling (b) offspring dodecagons (c) and (d) resulting dodecagons after 

iteration (A.N. Poddubny et al) 

 



Chapter 1                                                                                  Introduction to quasicrystals 

 13 

Lately, there are investigations on quasicrystals of even higher 

symmetries like 17- and 23-fold [8] 

3.3 Three-dimensional quasicrystals 

The most studied 3-dimensional quasicrystal is the icosahedral 

quasicrystal, which was observed to be naturally occurring in the Al-

Mn alloy. The simplest set of unit cell shapes for the icosahedral 

quasicrystal consists of the oblate and prolate rhombohedra. The 

matching and deflation rules applied to the rhombohedra are much 

more complicated than the two-dimensional analogues. Two 

rhombohedra with the same shape can have different matching and 

deflation rules.  

4. Quasicrystals for photonic applications  

The discovery of quasicrystals led to the use of this new class of ordered 

structures also for photonic applications. Despite being aperiodic, 

quasicrystals can possess a photonic band gap just like a periodic 

photonic crystal [12]. But quasicrystals also have peculiar properties 

such as non-crystallographic, higher order orientational symmetry and 

defect-free localization [13].  

The first reports on the evidence of a photonic band-gap in aperiodic 

heterostructures based on one dimensional Fibonacci sequence were 

from Merlin et al [14]. The one dimensional quasicrystals are realized 

by stacking layers of two different dielectric materials according to the 

specific generation rule. Apart from having a photonic band-gap, the 

Fibonacci quasicrystals have also reported to have self-similar energy 

spectrum [15] and critically localized states. The luminescence 

properties of an active Fibonacci quasicrystal are studied by V.Passais 

et al [16]. The photoluminescence (PL) studies on these structures 

demonstrated faster radiative decay rate due to the large photon 

density of states available at the edge of the pseudo-bandgap due to the 
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presence of critically localized states. One dimensional photonic 

structures based on Thue-Morse sequence also have shown to have 

omnidirectional band gap for both TE (transverse electric) and TM 

(transverse magnetic) polarizations when the refractive index contrast 

is sufficiently high [17].  

Several two dimensional quasiperiodic geometries have been studied to 

understand the formation and properties of band gap, presence of 

localized states and their applications. Two dimensional quasicrystals 

can be realized by either placing dielectric cylinders or by having holes 

made in a dielectric material at the vertices of tiles corresponding to 

the desired geometry. The first studies on two-dimensional photonic 

quasicrystals were done by Chan et al [18]. They investigated the 

transmission properties of an 8-fold symmetric PQC and theoretically 

demonstrated the existence of a photonic band gap in it.  The 

dependence of the band gap on the filling fraction, the dielectric 

constant and angle of incidence octagonal quasicrystals also have been 

investigated [30]. Numerical studies by J. Romero-Vivas et al showed 

that the octagonal quasicrystal can possess a photonic band-gap for 

refractive index contrasts as low as 0.26 for the TM polarization [19]. 

They also studied the properties of optical microcavity and waveguides 

realized using the 8-fold symmetric PQC, which can be used to design 

an add-drop filter.  

A detailed analysis of the diffraction properties and band structure 

formation in Penrose-tiled 10-fold symmetric PQC is done by M.A. 

Kaliteevski et al [20]. A.Della Villa et al investigated the properties of 

resonant modes occurring in the transparency bands of finite-sized 

Penrose-type PQCs [21]. These defect-free localized states are shown to 

be the inherent property of quasicrystals. Y. Neve-Oz et al showed the 

possibility of achieving fast light in a metamaterial realized using the 

Penrose quasicrystal geometry [22]. They demonstrated the presence of 

the presence of the band gap edge states that are characterized by a 
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very small refractive index. Organic laser based on Penrose-tiled PQCs 

was also demonstrated [23].  

Dodecagonal quasicrystals are acquired attention because of their 

higher order of rotational symmetry and thus the possibility to possess 

more isotropic band gaps. Localization of cluster resonance is observed 

in 12-fold symmetric PQCs were first reported by Wang et al [24]. 

Formation of complete PBG in 12-fold symmetric dodecagonal PQC was 

numerically and experimentally studied by Zoorob et al [12]. 

Dodecagonal quasicrystals also reported to have focusing properties 

[25]. The evidence of directive low-sidelobe emission of radiation from 

embedded line source in finite-sized, defect-free 12-fold symmetric 

quasicrystals was given by the numerical analysis done by A.Micco et al 

[26].The photonic band-gap properties of 12-fold symmetric quasi-

crystal patterns formed by double-beam multiple exposure holography 

was studied theoretically by Gauthier et al [11]. 

 

5. Fabrication methods for photonic quasicrystals 

Fabrication of two- and three-dimensional quasicrystals is not a trivial 

task because of their structural peculiarities. It is difficult or almost 

impossible (especially for the 3-dimensionl PQCs) to use the usual 

methods used in the fabrication of periodic quasicrystals such as the 

self-assembly of colloidal microspheres, micro fabrication or 

semiconductor lithography for the fabrication of PQCs. Method of 

optical interference lithography (multi-beam hololithography or 

holographic lithography) is a versatile method and is found to be very 

useful for the fabrication of both PQCs and PCs [27].  This method can 

be used to realize quasicrystals in mesoscale PQCs in photosensitive 

media. 
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Holographic lithography is based on optical interference of two or more 

beams. The photosensitive material is exposed to the generated 

interference pattern. In most of the cases multiple exposures will be 

necessary [13]. The coherent laser beams are usually obtained by 

splitting the single laser beam using suitable gratings, prisms or 

dielectric beam splitters [28]. The photosensitive material having the 

structure of the interference pattern can be used as a mask or 

infiltration template after developing. The shape of the dielectric region 

and thus the filling fraction can vary depending on the exposure time. 

In principle, this method can be used to fabricate PQCs of very higher 

order of rotational symmetry since the order symmetry of an 

interference pattern depends on the number of interfering beams. But 

experimentally it becomes very difficult, if not impossible to control the 

phase and amplitude of a large number of coherent laser beams. An 

approach to overcome this difficulty is to use dual-beam multiple 

exposure holography [11]. Gauthier et al described the generation of 12-

fold symmetric PQC patterns using six equal-duration exposures of the 

photosensitive sample with the sample rotated in the film plane by 30° 

between exposures. Even this method can be really tedious since it 

requires precise mechanical control over the rotation. The best way to 

overcome these difficulties is to have a technique which uses minimum 

a number of laser beams and can write the pattern in a single step.  

A method for single-beams holographic lithography was demonstrated 

by Yang et al [29]. They fabricated PQCs of various higher-order 

rotational symmetries using a single beam by adjusting the phase 

relation of interference beams through an optical mask. Another 

simpler method is to combine computer generated holography with 

programmable spatial light modulators (SLM) [8]. Using this method 

two-dimensional or even three-dimensional spatial distribution of 

optical beams of almost any kind can be created. This also allows the 

fabrication of patterns such as Thue-Morse which cannot be generated 
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using the theory of multiple beam interference. This technique is explained 

in more detail in Chapter 4. Other methods for fabrication of quasicrystals 

include direct laser writing [30] and laser focused atomic deposition 

[31].  
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Chapter 2 

Background theory and FDTD 

simulations  

Photonic band-gap is the most interesting property of both photonic 

crystals and photonic quasicrystals. It is important to understand how 

photonic band gap is formed in these structures. If we know the 

parameters which determine the properties of photonic band-gap, it is 

easier to engineer the band gap for specific applications. The 

electromagnetic theory can be applied to these „meta-crystals‟ to 

understand how these materials respond to the electromagnetic 

radiation.  

1. Electromagnetism of photonic crystals 

In order to understand the formation of photonic band gap in photonic 

crystals, it is necessary to analyze the propagation of electromagnetic 

energy in a complex dielectric medium, which can be done by using the 

macroscopic Maxwell equations.  

The four macroscopic Maxwell equations in SI units are; 

 

 

Where E and H are the macroscopic electric and magnetic fields, D and 

B are the displacement and magnetic induction fields, ρ and J are the 

free charge and current densities respectively.  

If we consider that the electromagnetic field is propagated within a 

medium of mixed dielectric materials (the dielectric constant is a 

(2.1) 
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function of the position vector r), in which the structure is time-

invariant, we can take  since there are no free charges or 

currents.  

The electric field E can be related to the displacement D through 

 if the following assumptions are taken: 

1. The field strength is small enough so that the higher order 

susceptibilities are negligible. This implies that non-linear effects are 

not taken into account. 

2. The material is macroscopic and isotropic so that   

are related through  multiplied by a scalar dielectric function  

that is also called the relative permittivity.  

3. The material dispersion is ignored, which means the dielectric 

constant of the material does not have any explicit dependence on the 

frequency of the radiation. 

4. The materials are considered to be transparent to the 

electromagnetic radiation at the particular frequency range considered, 

such that the relative permittivity can be treated as purely real and 

positive.  

These assumptions also allow to have the relation  in 

the case of magnetic field, the vacuum permeability  

Henry/m. For most of the dielectric materials, the value of the relative 

permeability  is close to unity, which makes   . 

With all the above assumptions, the Maxwell equations can be written 

as: 

 
(2.2) 
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(2.4a) 

(2.6) 

(2.5a) 

 

Although E and H are complicated functions of both time and space, 

using the linearity of Maxwell equations we can separate the time 

dependence from the space dependence by expanding the fields into a 

set of harmonic modes. So we can express the fields as follows 

 

 

 

 

Substituting the above equations in (2.2) makes the divergence 

equations as follows: 

 

 

The physical interpretation of (2.4) is that there are no point sources or 

sinks of the induction field and displacement field within the medium. 

The curl equations in (2.2) become: 

 

 

These equations can be decoupled by eliminating the electric filed using 

the equation (2.5a) which results in an equation entirely in . 

 

The above equation can provide the complete information about  

together with (2.4 a). Once the spatial profile of the dielectric constant 

(2.3) 

(2.4b) 

 

(2.5b) 
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(2.7) 

(2.8) 

 (2.9) 

of the medium ( ) is known, (2.6) can be solved to get the harmonic 

modes  for a given frequency subject to the divergence condition 

with the known boundary conditions. Then the electric filed can be 

deduced by using (2.5b) 

 

This also makes sure that the electric field satisfies the transversality 

condition , since the divergence of a curl is always zero.  

Equation (2.6) is in the form of an eigen value equation which can be 

expressed as  

 

where is the Hermitian operator , are the eigen vectors and 

is the eigen value.  gives the spatial pattern of the harmonic 

modes and the eigen values  are proportional to the squared 

frequencies of those modes. In the case of a periodic photonic crystal, 

the dielectric constant can be expressed as , varying in 

the direction k. Using this relation one can obtain the band-structure of 

the photonic crystals.  

Evoking the analogy with quantum mechanics, equation (2.8) reveals 

several interesting and useful properties of Maxwell equations: 

1. Since the operator  is Hermitian, the corresponding eigen values 

are orthogonal.  

2. The field solutions to the time-dependent form of the equation (2.8) ; 

 



Chapter 2                                                            Background theory and FDTD simulations 

 22 

(2.10a) 

(2.10b) 

(2.10c) 

(2.11) 

(2.12) 

 

should have a spectral decomposition in terms of the eigen vectors of 

(2.8) with appropriate time-dependent exponential coefficients. 

3. The Hermitian nature of can be used to show that the eigen values 

of (2.8) are real as follows: 

 

 

 

 

 

Since  is Hermitian,   which implies that 

 ,  and since c is real number, it follows that 

 is real.  

 

Since ε(r) is positive everywhere, the eigen values must be non-negative 

indicating real . 

4. Another very important property of the Maxwell equation is its scale 

invariance, which means that the solution has the same form in all the 

length scales (assuming that the system is macroscopic). This property 

has an important technological role. Let us recall the master equation,  
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(2.13) 

(2.14) 

(2.15) 

In order to see what happens to the harmonics with a different length 

scale, let us consider , where the  length is scaled by a factor s. 

The equation according to the new length scale  is as follows: 

 

 is equivalent to , which makes the above equation as 

follows; 

 

This is the master equation itself with the new mode profile  and 

the frequency scaled to . This means that the new mode 

profile and the corresponding frequency can be determined by rescaling 

the old mode profile and frequency. Once we solve the master equation 

for a particular length scale, it can be used to obtain the mode profiles 

for all other length scales of importance. This especially useful while 

studying the photonic structures which are difficult or even impossible 

to be fabricated in particular length scales due to practical difficulties.  

2. Photonic band structures 

In the case of periodic photonic crystals, the analogy with crystals can 

be used to calculate the band structure. As in the case of electronic 

waves in a crystal, the electromagnetic waves propagating inside a 

photonic crystal obey Bloch theorem. The modes of a three dimensional 

periodic system are Block states that can be labelled by a Bloch wave 

vector  where k is in the Brillouin zone (BZ). Each 

value of k inside the Brillouin zone corresponds to an eigen state of  

with frequency  and eigen vector Hk  of the form 
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(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

where  is a periodic function on the lattice :   for 

all lattice vectors R. 

We can use the Bloch state in (2.15) in the master equation (2.10) 

which results in: 

 

 

 

 

 

 

 

 is the newly defined Hermitian operator which depends on k.  

 

 

The eigen value problem (2.19) can be solved to get the function u and 

the mode profiles by applying the periodicity condition  

and subject to the transversality condition  The periodic 

boundary condition helps to reduce the eigen value problem to a single 

unit cell of the photonic crystal. The solution of (2.19) leads to the 

description of modes supported by a photonic crystal. They are the 

family of continuous functions , indexed in the order of increasing 

frequency by the band number. This information obtained from this 
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band structure helps us to deeply understand the optical properties of 

the photonic crystals.  

Two different mechanisms contribute to the formation of band gap in 

photonic meta-crystals. First one is the Bragg-scattering mechanism 

which is better understood by taking the analogy with a nearly free 

electron system and resonance mechanism analogous to the tight 

binding approach. Bragg scattering happens when the wave vector of 

the incident radiation points to the boundary of a Brillouin zone. When 

this condition is satisfied, the waves are reflected by certain scatterers. 

The back scattered waves interact with the incident waves to generate 

standing waves which leads to the splitting of the dispersion relation. 

Another mechanism of band gap formation is Mie resonances. In this 

case the structure is considered as a tight-bound system of N single 

resonators. If they are all independent, the resonance frequency is the 

same for all of them ( ). In case of interaction, a state of N-fold 

degeneracy is formed around . This resonance frequency is 

structure independent and usually depends on the shape of the 

scatterers. In general, the band-gap in the photonic structure is a result 

of overlapping of these two regimes of scattering. The different 

computational techniques described in the following section also use 

either or both of these mechanisms while calculating the band gap 

properties of the systems.  

In the case of quasicrystalline structures, the description of Bragg 

scattering needs description of an „induced‟ periodicity. The photonic 

band gap of these structures also reflects their scaling symmetry and 

self-similarity [18]. Another important feature of the PQC band gap is 

that they can possess both extended- and critically-localized modes 

together [18].When it comes to quasicrystals, the lack of periodicity and 

of the unit cell makes it impossible to define a Brillouin zone. One 

approach is to introduce an artificial periodicity (super cell 
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approximation) whereas the second method is to consider the finite 

structure. 

Powerful computational techniques are required to calculate the 

transmission properties of both photonic crystals and quasicrystals. It 

is very important to have computer programs which can give quite 

accurate results so that we can predict the behaviour of the photonic 

crystals/quasicrystals before they are fabricated. In the following 

section some of the computational techniques are described. 

3. Common techniques in Computational photonics 

Depending on the approach used for calculation, computational 

methods can be broadly divided into three categories.  

 Frequency domain eigen problems: solves the Maxwell eigen 

problem for the given frequencies in a periodic system. The 

generalized form of the eigen value equation in the form of 

  where A and B are N N matrices and x is the eigen 

vector. A and B are Hermitian and B is positive definite (since 

the problem is Hermitian).  The eigen values and eigen vectors 

can be found out using linear algebra. 

 Frequency domain responses: this method is particularly useful 

to estimate the transmission and reflection through a finite 

structure from a given source at a given frequency. In this 

method, the field resulting by a given current distribution at a 

fixed frequency is estimated by expressing the problem as a 

finite matrix equation   and applying linear algebra 

techniques to solve it.  

 Time domain simulations: they present the most general 

approach by solving the time dependent Maxwell equations, 

propagating the fields in both time and space. Usually the solver 

simulate the fields E(x,t) and H(x,t) starting from a current 
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(2.21) 

source J(x,t). Since it also takes into account of the time 

variation of the fields, this method can also be used to simulate 

optically active or non-linear media. 

Now let us see some of the most common numerical methods used to 

study properties of photonic crystals and quasicrystals. 

3.1. Plane wave method 

In the plane wave expansion technique, the dispersion relation is 

calculated based on the expansion of wave field in terms of plane waves 

to find the eigen states of the Maxwell equations. This is done by taking 

into account of the Bloch theorem, which is applicable only for periodic 

crystals. In an infinite periodic photonic crystal, using Bloch theorem, a 

mode in a periodic structure can be expanded as a sum of infinite 

number of plane waves as follows: 

 

 

where λ=1, 2, is the wave vector of the plane wave,  is the reciprocal 

lattice vector, represents the two unit axis perpendicular to the 

propagation direction  + . 

Using this expression in the standard Maxwell equation, we obtain a 

Helmholtz equation that can be solved easily with linear algebra. This 

method is very powerful in obtaining the band diagram of the crystal 

concerned. But it also has some drawbacks.  

As mentioned above, this method is applicable only for periodic 

crystals. So this method is not directly applicable to aperiodic 

geometries such as quasicrystals. This method has been used to analyze 

the band-diagram of quasicrystals by using their periodic approximants 

[32]. Another issue is that the plane wave expansion in (2.21) is 
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applicable for infinite crystal. So, when it comes to the analysis of finite 

structures (which is the case for most of the experimentally realized 

structures), the calculations become cumbersome.  

3.2. Transfer Matrix Method (TMM)  

The basic formalism of TMM yields the amplitude of the 

electromagnetic field of monochromatic waves reflected by and 

transmitted through crystal structure. The solution is achieved through 

propagation of the fields in the homogeneous layers, and the continuity 

of the tangential components of the electric and magnetic fields at the 

interfaces. This method has different methods of implementation. The 

common factor in all of them is that a matrix, which relates the fields 

on one boundary to those on another, is somehow created. This method 

is particularly useful in solving the photonic crystal slab problems. 

Different methods are used to expand the fields in TMM such as finite 

differences or finite elements [33], plane waves [34-35], eigenvectors. 

This method readily gives the reflection and transmission coefficients of 

a system. The main disadvantage of using this technique is that 

sometimes it leads to numerical instabilities. 

3.3. Multiple scattering method 

The multiple scattering approach is based on preliminary calculation of 

the scattering behaviour of single scattering objects. It uses the 

analytically calculated scatter matrix of each element in the system 

and the recursive use of addition theorem of harmonics to calculate the 

scatter matrix corresponding to the whole system. If the individual 

scatterers are spherical or cylindrical, it is easy to obtain the scatter 

matrix analytically. Once the scatter matrices are known, further 

calculations are quite easy. The advantage of this technique is that it 

can be used for both 2-D and 3-D crystals, either finite or infinite. This 

method requires that all particles, irrespective of their shapes, be 
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enclosed in non-overlapping circles (2-D) or spheres (3-D). This makes it 

impossible to obtain the properties of a lattice of particles of shapes 

other than circles (or spheres). 

3.4. Finite difference time domain method (FDTD) 

As the name implies the FDTD method divides space and time into 

grids of discrete points and approximates the derivatives of the 

Maxwell equations by finite differences. The FDTD method is a 

rigorous solution to Maxwell equation and does not have any 

approximations or theoretical restrictions. The FDTD method solves 

Maxwell equations by first  discretizing the equation via central 

differences in time and space and then numerically solving the 

equations.  

The most common method used to solve the Maxwell equations is based 

on the Yee‟s mesh. Time is broken into discrete steps of . The electric 

field components are then calculated at times   and the magnetic 

displacement field (H) at t  , where n is represents the 

computational step. E and H fields are marched through time, having 

an offset of half of the time step  This method results in equations 

that can be used to compute the fields at a given mesh point by 

iteratively solving them in a leapfrog manner, alternating between 

computing the  E and H fields at subsequent  intervals. 

FDTD algorithms can be employed to compute various properties of the 

optical system. For example, the field pattern resulting from a localized 

source at a particular frequency can be easily calculated; which is given 

by the Green‟s function of the system. Another most common use of the 

FDTD method is to compute the transmission or reflection spectra of a 

given finite structure in response to some stimulus. Unlike the 

frequency domain solvers, the time domain methods can provide the 

response of the system for many different frequencies in a single 
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computation. This is done by taking the Fourier transform of the 

response obtained by applying a single short-time pulse. However, from 

a computational point of view this of cause requires a longer time. 

FDTD method can also be used to calculate the resonant or eigen modes 

of a given structure. Band structures can also be computed using this 

method by imposing the Bloch-periodic boundary condition.  The largest 

disadvantage of FDTD method is that it requires long-time simulations 

to obtain the required results.  

4. Results of simulations using FDTD method 

In this section, simulation results showing some interesting 

transmission properties of photonic quasicrystals are presented.  

Using FDTD simulations, the transmittance spectra of eight-, ten- and 

twelve-fold quasicrystal structures are calculated. Two different 

quasiperiodic spatial patterns of tiling are considered and compared for 

each fixed rotational symmetry. It is shown how different quasi-lattice 

tiles dramatically affect the photonic band-gap properties for low 

refractive index contrasts, demonstrating the importance of the tiling 

geometry in the arrangement of a quasicrystal structure. If wide PBGs 

are to be obtained at low index contrast, the particular tiling pattern is 

more important than symmetry and, hence, very accurate control of the 

fabrication parameters is mandatory in order to produce quasicrystals 

possessing the PBG properties needed for feasible and reliable photonic 

applications. 

4.1. Quasicrystal design and simulations 

As described in the first chapter, there are several quasicrystal 

geometries which are being studied. In this section, two different 

patterns each of non-periodic spatial tiling for two-dimensional (2D) 

symmetric quasi-lattices with octagonal (8-fold), decagonal (10-fold) and 

dodecagonal (12-fold) point group are studied.  
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Recently, holographic techniques based on interferential schemes have 

been widely employed to fabricate PQCs with high rotational 

symmetries [36-37]. The light distribution obtained from the 

interference of two or many coherent light beams is transferred to a 

photosensitive medium producing the desired   quasiperiodic dielectric 

modulation by single or multiple exposure process. The scattering 

centres (typically rods in a binary pattern) of the quasi-lattice 

correspond to the maxima positions of the light distribution resulting 

from the N-beam interference. The rotational symmetry is determined 

by the number of beams, while the particular tiling pattern of the 

structure depends on the light intensity, time exposure and on the 

delicate balance among direction, polarization, amplitude and phase of 

the beams. By controlling the relative phase retardation between the 

interfering beams, as instance, different geometries in the tiling of the 

dielectric medium are achievable [38]. By using direct writing 

techniques like the electron-beam lithography or single laser beam 

lithography [39] the spatial tiling of the quasi-lattice can be determined 

point-by-point. In these cases, usually, the quasiperiodic tiling is 

previously calculated by geometric rules or inflation algorithms. In the 

case of the octagonal Ammann-Beenker tiling [40] the unit cells consist 

of “squares” and “rhombuses” of equal side length. Analogously, the 

Penrose aperiodic tiling may be realized with several approaches. We 

consider not the original Penrose pentagonal tiling but the equivalent 

tiling of the plane generated with two “rhombuses” of different size. 

Both resulting quasicrystals have 5-fold rotational and mirror 

symmetry corresponding to a decagonal (10-fold) point group symmetry. 

Hence, we will refer to the Penrose “rhombus” pattern as decagonal. 

With regard to the PhQC of 12-fold rotational symmetry, we consider a 

dodecagonal tiling consisting of “squares” and “triangles” given by 

Stampfli inflation rule [41]. Although the rotational symmetry of the 

structure can remain unchanged, the quasiperiodic lattice can be 

completely different depending both on the particular tiling of the plane 
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used for the structure calculation and the particular experimental 

parameters adopted in the fabrication process as in the case of the 

multiple-beam holography. 

For each symmetry, the two structures were calculated a) using a 

geometric or inflation rule, and b) supposing a multiple-beam 

interference process. Let us call geometric pattern the first and indicate 

it by the letter (A), and interferential the latter, indicated by the letter 

(B). The two patterns are analyzed and compared to provide a 

comprehension of the behaviour of the photonic band-gap with respect 

to the building tile for increasing order of symmetry and as a function 

of the refractive index difference n, in order to investigate the 

relationship between theoretical tiling and experimental tiling 

resulting from holographic fabrication processes.  

The 8-fold geometric structure here studied was supposed made of 

dielectric rods (high index nH medium) in air (low index nL medium) 

located at the vertices of the Ammann-Beenker tiling of space, that is 

the positions of the cylinders of radius r are coincident with the vertices 

of “squares” and “45° rhombuses” with sides of equal length a. This 

structure is shown in Fig. 1-a. Recently, it was found theoretically that 

this quasiperiodic pattern presents a complete PBG with a very low 

threshold value for the refractive index difference, that is n = nH-

nL=0.26[19]. Moreover, the ratio m between the gap width  and 

the midgap wavelength m is close to 5% for n=0.45 with a typical 

attenuation of 20dB, suggesting the possibility to realize 

optoelectronics devices based on the octagonal(A) tiling pattern in silica 

or even in soft materials like polymer. Holographic lithography permits 

to record large-area photonic quasicrystals in many kinds of 

photosensitive hard and soft materials, hence it represents an 

important fabrication technique largely employed to realize high 

quality quasiperiodic structures. The writing pattern of light is usually 

obtained as multiple-beam interference and, consequently, the 
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     (2.22) 

resulting spatial pattern of the dielectric modulation is different from 

the quasicrystal patterns achievable from inflation tiling. Therefore, 

the performance of this kind of experimental PQCs might be largely in 

disagreement with the expected estimation. In a typical experimental 

situation of N-beam interference [36], the irradiance profiles I(r) 

achievable according to the relation 

 

 

where Am, km, φm, are the amplitudes, the wave vectors and the initial 

phases of the interfering beams, respectively, give quasiperiodic spatial 

distributions of the intensity maxima.  

 

 

 

 

Usually, the beams are supposed having the same linear polarization. 

Their number N is related to the rotational symmetry of the 

quasicrystal. By changing the phase retardation between the beams, 

Figure.2.1. (a)-(b) Octagonal quasiperiodic patterns of rods (top view) with geometric 

square-rhombus tiling (Ammann-Beenker) and interferential tiling, respectively; (c)-(d) 

decagonal patterns with geometric rhombic tiling (Penrose) and interferential tiling, 

respectively; (e)-(f) dodecagonal geometric triangle-square tiling (Stampfli inflation rule) 

and interferential tiling, respectively.  
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different patterns having the same symmetry can be realized. The 

filling factor, defined as the ratio between the area of nH regions and 

total area, depends on the threshold level of the photosensitive material 

and the exposure time and intensity. Typically, the maxima positions of 

the light pattern correspond to the high dielectric regions, that can be 

usually approximated with a structure of homogenous dielectric rods 

embedded in a host medium of different index. In Fig. 1-b, the 8-fold 

pattern is shown, calculated for N=8 from Eq. (2.22). The structure was 

obtained imposing a particular phase retardation between the beams, 

that is the phases were periodically shifted by so that 

φφφφφφ and φφThe pattern was obtained by 

positioning circular rods of radius r  (top view in Fig. 1) in the maxima 

of the continuous irradiance distribution I(r) resulting from Eq. (2.22) 

[42]. The quasicrystal lattice is therefore determined without 

calculating a particular tiling of the plane. Nevertheless, the spatial 

tiling can be easily derived from the generated structure. The patterns 

depicted in Fig. 1-a and 1-b are clearly different. Although they possess 

the same rotational symmetry, the tiling originating the pattern 

provides a different assembly of the dielectric elements. The particular 

interferential pattern of Fig. 1-b, say octagonal(B), was studied in a 

preliminary work [42] promising to provide interesting PBG properties.  

The patterns shown in Fig. 1-c and 1-d are 10-fold quasicrystals 

obtained from the geometric Penrose tiling with rhombic cells of equal 

side length and supposing 10-beam interference, respectively. Let us 

indicate the first as decagonal (A) and the latter as decagonal (B). The 

Penrose quasi-lattice represented in Fig. 1-c is an artificial PBG 

material that promises to find interesting application for optoelectronic 

and microwave devices [43]. In Fig. 1-e and 1-f, the dodecagonal(A) and 

dodecagonal(B) patterns obtained from inflation algorithm and 12-

beam interference, respectively, are shown. In particular, 

dodecagonal(A) is a 12-fold quasicrystal formed with triangle-square 



Chapter 2                                                            Background theory and FDTD simulations 

 35 

tiling by a recursive algorithm and scaled up by an inflation factor, that 

was found to induce a photonic bandgap even in host medium with low 

threshold index like glass (n=0.45) [4]. Both multiple-beam patterns of 

10-fold and 12-fold symmetry have been calculated from Eq. (1) and (2) 

supposing a typical holographic process of fabrication in which the 

beams have the same linear polarization and equal optical phase, that 

is φφ φ

The two-dimensional Finite Difference Time Domain (FDTD) method 

with uniaxial perfectly matched layer (PML) boundary conditions was 

used in all simulations. The FDTD technique was employed to obtain 

transmission information, through the (x, y)-plane, as a function of 

propagation direction and wavelength, for both polarization TE (electric 

field Ez perpendicular to the lattice plane) and TM (magnetic field Hz 

perpendicular to the lattice plane). In each numerical calculation a 

Gaussian time-pulse excitation was simulated outside the structure or 

inside it for comparison. Several detectors (time monitors) were placed 

in particular positions allowing to store the field components. Their 

positions were chosen to cover the angular range related to the 8-, 10- 

and 12-fold rotational symmetry with an angular separation from 5° to 

15° in relation to the structure studied. The Fourier Transform (FT) of 

the time-dependent signal collected by the detector provided the 

frequency response of the structure with high resolution. The 

corresponding transmission spectra had a wavelength range between 

0.1 and 6.0m with a resolution of =5.0×10-4m, whereas the 

discretization grid provided a minimum of 100 grid points per free 

space wavelength. The transmission coefficient was calculated as a 

function of the refractive index difference n, for both TE and TM 

polarizations, for each propagation direction of the time-pulse source 

corresponding to a particular detector position. Fig. 1 shows a detail of 

the patterns that were analyzed in which the number of dielectric 

elements was held fixed to 900. Due to the non-geometric building of 
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the patterns depicted in Fig. 1-b, 1-d and 1-f, we found useful to define 

a new parameter, that is the average distance a between neighbouring 

rods along the x-direction, as characteristic length of the patterns. The 

filling factor can be related to the filling fraction r/a, that is the ratio 

between the rod radius r and the average distance a. Such parameter 

was held fixed to r/a=0.18 in each simulation to permit the comparison 

between the structures analyzed here. 

4.2. Transmission properties of quasicrystal structures 

As aforementioned, two different tiling patterns, obtained from 

geometric tiling and interference-based method, respectively, were 

analyzed for octagonal, decagonal and dodecagonal symmetry. In Fig. 2, 

the transmittance spectra related to the octagonal(A) (left panel) and 

octagonal(B) (right panel) patterns, obtained for increasing values of 

the refractive index difference n, in particular 0.4 (a)-(b), 0.6 (c)-(d) 

and 0.8 (e)-(f), are shown as a function of normalized wavelength a, 

for both TE (black curve) and TM (red curve) polarizations. In the case 

of the octagonal (A) tiling, the bandgap starts to form even at n=0.4 

(see Fig. 2-a), but only for TE polarization. As the dielectric contrast 

increases, the attenuation of the transmission signal in the bandgap 

region enhances from 13dB to 30dB (see Fig. 2-a and 2-e) with an 

increase of the width to midgap ratio m from 2.4% at n=0.4 to 

14.4% at n =0.8. The attenuation was estimated by averaging the 

values obtained in correspondence of the spectral gap. The shift in the 

position of the bandgap, evident from the variation of the normalized 

midgap wavelength m /a  from 1.22 to 1.38, is reasonable because 

increasing values of n correspond to an increase in the average 

refractive index of the quasicrystal medium. In the case of the 

octagonal (B) tiling, the bandgap starts to appear at n =0.6, centered 

at m /a =1.79, only for TE polarization also for this pattern (Fig. 2-d). 

In Fig. 2-f, two bandgaps are instead visible corresponding to n =0.8. 
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One is centered at the normalized wavelength m /a =1.61 and the other 

one at m /a =1.93. The first bandgap has m5% and presents a 

substructure of peaks possibly due to the existence of localized states. 

 

 

 

Very interesting is the presence of strong transmittance attenuations, 

of the order of 50dB and 30dB, found in the gap regions at m /a 

=1.61 and m /a =1.93, respectively, both at n =0.8 as evident in Fig. 2-

f. From these first estimations, the differences arisen from the 

transmittance spectra clearly prove the importance of the tiling 

geometry in determining the photonic bandgap properties of the 

quasicrystal, independently from the dielectric contrast.  

The quasicrystalline structures decagonal (A) and decagonal (B) were 

derived, as above discussed, from the well-known Penrose “rhombus” 

tiling and by simulating a 10-beam interference process, respectively. 

Analogous to the transmittance information reported in Fig. 2 related 

to the octagonal patterns, the corresponding TE (black line) and TM 

Figure.2.2. Transmittance spectra calculated for 8-fold symmetric structures 

with geometric tiling, say octagonal(A) (left panel), and interferential tiling, say 

octagonal(B) (right panel), for TE (black curves) and TM (red curves) 

polarizations, for increasing values of the refractive index difference:n=0.4 (a)-

(b), n=0.6 (c)-(d), n=0.8 (e)-(f). 



Chapter 2                                                            Background theory and FDTD simulations 

 38 

(red line) transmittance spectra for both decagonal (A) (left panel) and 

decagonal(B) (right panel) patterns, obtained for n =0.4 (a)-(b), 0.6 (c)-

(d) and 0.8 (e)-(f), are shown as a function of normalized wavelength a 

in Fig. 3. For TE polarization, the decagonal (A) pattern shows a band 

gap at a refractive index difference n =0.4 with a 5dB attenuation 

(see Fig. 3-a), that enhances to 20dB as the index difference increases 

to n =0.6, with m =3.7% at m /a =1.45 (see Fig. 3-c). The signal 

attenuation further increases to 30dB with a normalized width m 

=9% at m /a=1.5 for refractive index difference n =0.8, as reported in 

Fig. 3-e. No clear PBG was found for TM polarization, at least for the 

values of dielectric contrast here examined. As evident from the right 

panel of Fig. 3, the decagonal(B) pattern, on the other hand, does not 

show any clear bandgap for TM polarization at n =0.4 and 0.6, 

presenting only a narrow PBG with a 10dB attenuation at n =0.8. 

Moreover, the dodecagonal (B) tiling does not produce any remarkable 

bandgap for refractive differences lower than 0.8 also for TE 

polarization (see Fig. 3-b and 3-d). As shown in Fig. 3-f, a 20dB 

attenuation is visible for TE polarization at n =0.8 in a narrow 

spectral range in which many further peaks, associable to defect states, 

are present. 
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The transmittance spectra associated to the 12-fold quasicrystals, say 

dodecagonal (A) and (B), were finally calculated and reported for 

comparison in the left and right panels, respectively, of Fig. 4, 

analogously to the other quasicrystalline structures previously 

analyzed. For the dodecagonal (A) tiling pattern, the band gap starts to 

open up at n =0.4 (Fig. 4-a), for TE polarization, becoming wider at n 

=0.6 with a normalized width m = 5.7% at m /a=1.24 and a 25dB 

of attenuation in the transmittance coefficient (see Fig. 4-c). The band 

gap is shifted to m /a=1.34 with an increased width of m = 10.3% 

and an attenuation of 30dB at n =0.8 (see Fig. 4-e). No remarkable 

photonic band gap is observed for TM polarization of the time-pulse 

excitation also in this case. The interferential pattern, or dodecagonal 

(B), shows only a very narrow band gap, for TE polarization, for an 

index difference as low as n =0.6 in correspondence of the normalized 

Figure.2.3. Transmittance spectra calculated for 10-fold symmetric structures with 

geometric tiling, say decagonal(A) (left panel), and interferential tiling, say 

decagonal(B) (right panel), for TE (black curves) and TM (red curves) 

polarizations, for increasing values of the refractive index difference:n=0.4 (a)-

(b), n=0.6 (c)-(d), n=0.8 (e)-(f). 
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mid-gap wavelength m /a=1.42. The band gap width increases to m 

=4.5%, slightly shifted to m /a=1.49, at n =0.6 and with an 

attenuation <20dB, although few localized states are visible within this 

spectral region, as reported in Fig. 4-f. Also for the 12-fold symmetry, 

the patterns achievable from a geometric algorithm and resulting from 

a multiple-beam holographic process provide remarkable differences 

not only with regard to the PBG properties but also in relation to the 

existence of the band gap. Therefore, it is worth noticing how the tiling 

geometry affects the transmittance information independently from the 

dielectric contrast and the rotational symmetry of the quasi-lattices 

mentioned above.    

 

 

 

 

The numerical simulations of the transmittance spectra, based on the 

finite difference method, prove that, although the structures have the 

same symmetry, the different tiling geometry affects dramatically the 

Figure.2.4. Transmittance spectra calculated for 12-fold symmetric structures 

with geometric tiling, say dodecagonal(A) (left panel), and interferential tiling, 

say dodecagonal(B) (right panel), for TE (black curves) and TM (red curves) 

polarizations, for increasing values of the refractive index difference:n=0.4 (a)-

(b), n=0.6 (c)-(d), n=0.8 (e)-(f). 
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existence and behaviour of the photonic band gap. The patterns that we 

examined were chosen to highlight the substantial and remarkable 

PBG differences that arise between a quasicrystalline geometric tiling 

and a similar quasicrystal achievable from holographic fabrication 

techniques. Holographic lithography represents, in fact, an efficient and 

feasible fabrication method able to provide large-area photonic 

quasicrystals of high quality both in soft and hard materials. If wide 

PBGs are to be obtained at low index contrast, hence, very accurate 

control of the fabrication parameters is mandatory. In this direction, we 

recently have developed a single-beam holographic technique able to 

provide the desired tiling patterns in order to realize high efficiency 

PBG structures for photonic applications. 
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Chapter 3 

Experiments in Microwave frequencies 

This chapter is dedicated to the measurements done in microwave 

frequencies. The realization of the quasicrystal geometries functioning 

in the microwave frequencies is easier when compared to the nano-

fabrication techniques required for optical quasicrystals. The 

experiments were carried out to study the band gap properties and field 

localization in photonics quasicrystals. Before going into the details of 

the experiments, the basic instruments and measurement techniques 

used in these experiments are briefly described. 

1. Microwave measurement instruments 

1.1. Vector Network analyzer (VNA) 

This is the instrument used to generate and receive the radiation at 

microwave frequencies. A VNA measures the incident, reflected and 

transmitted radiation that travel along the transmission lines. The 

basic architecture of a vector network analyzer include a generator, a 

test set which includes two ports, a control panel and RF cables to 

connect the device under test (DUT).  

 In order to understand how the microwave signals are modified as they 

travel along a microwave photonic two port, the scattering parameter 

(S-parameter) approach can be used as shown in the fig (3.1). The 

defining equations are: 
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The individual S-parameters are as the following: 

  

  

  

  

Here  and  represent the incident and reflected travelling power at 

port n. They are related to the incident and reflected current and 

voltages. 

 

 

where  and  are the incident and reflected voltages at port n,  

and  are the incident and reflected currents at port n, respectively. 

Matching of the impedances is achieved by using the terminating 

impedances equal to the characteristics impedance . In the case of 

microwave S-parameters, the characteristics impedance is 50Ω. The 

VNA measures these scattering parameters from which the reflectance 

or transmittance properties of the DUT can be obtained.  

 

  

 

Figure.3.1. Representative diagram of a two-port device 
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Before starting any measurements, it is necessary to calibrate the VNA 

in order to get accurate measurements. There are several procedures 

for calibrating a VNA. Depending on the measurement to be done, the 

method for calibration can be determined. Each network analyzer can 

be separated into an error network and an ideal network analyzer. 

After calibration, the analyzer computes the error terms using the 

values it measured during the calibration process along with the 

characteristic data of the standards. It is then possible to correct the 

raw measured values in later measurements and calculate S-

parameters for the device under test.  

1.2. Microwave Antennas 

Different kinds of antennas are used to radiate and receive the 

microwave radiation. The most important features of an antenna is the 

directivity and impedance match. An antenna should be able to couple 

or radiate the energy effectively into air. So an antenna should have an 

impedance matching with that of the air. It is necessary to maintain 

the impedance match between the system and the antennas throughout 

the measurements and for the frequency range used.  The directivity of 

the antenna refers to the narrowness of the radiation pattern of the 

antenna. The power gain of the antenna increases as the degree of 

directivity increases. In the experiments described in the following 

sections, two different antenna configurations are used depending on 

the measurement technique.  

In the case of free space measurement, horn antennas were used as 

transmitter and receiver. The shape of the radiation pattern of a horn 

antenna depends on the shape of the horn. The ratio of the horn length 

to the size of its mouth determines the beam angle and directivity. In 

general, the larger the mouth of the horn, the more directive is the field 

pattern. In the case of parallel-plate experiments, the coaxial line 

terminations were used as monopole radiators. 
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2. Experiments in the microwave frequencies 

2.1. Band gap properties of low-index contrast photonic quasicrystals 

As described in the chapter 1, photonic quasicrystals have several 

peculiar properties which make them suitable candidates for many 

photonic applications. In this section, some very interesting properties 

of the band gap formed by some of the quasiperiodic geometries are 

discussed. Special attention has been given to structures with lower 

refractive index contrasts taking into account of their usefulness in 

fabrication techniques using holographic lithography. A detailed 

numerical study on this kind of structures with low index contrasts was 

presented in the previous chapter.  

Another critical parameter that comes into play for the realization of 

devices such as light emitting diodes is the isotropy of the photonic 

band-gap.  The periodic structures with square or triangular lattices 

have anisotropic band-gap properties because of the anisotropy of 

Brillouin zone. Because of their non-conventional higher order 

rotational symmetry, PQCs may possess highly isotropic band-gaps 

instead. Experimental investigations in this direction was performed by 

Bayindir et al.22 in the microwave regime and by Hase et al.23 in the far 

infrared region, based on octagonal and Penrose quasicrystals. Both 

studies reported the appearance of a photonic band gap having almost 

isotropic properties in aperiodic lattices consisting of dielectric rods in 

air and for electric field parallel to the rods. 

The aim of this work is to have a detailed and systematic analysis of 

the band-gap isotropy of photonic crystal and quasi-crystal structures 

having low refractive index contrast and for both TE and TM field 

polarization. Different geometries are studied to have a comparative 

analysis. The geometries investigated are the following: periodic 

hexagonal pattern with 6-fold symmetry (Fig 1(a)), and quasicrystals 
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geometries with 12-fold symmetry (dodecagonal), 8-fold symmetry 

(octagonal) and 10-fold symmetry (Penrose decagonal) as shown in 

Figures1 (b), (c) and (d) respectively. The PBG properties are studied 

both numerically and experimentally for two different index-contrasts: 

0.60 and 0.44. The index contrast is defined here simply as the 

difference between the refractive index of the dielectric material and 

air. 

 

 

 

 

 

 

 

  

 

 

 

2.1.1. Computational and experimental methods 

 

The photonic crystals studied consist of dielectric cylindrical rods in air 

placed on the vertices of tiles in the corresponding geometry. The filling 

factor is set to be the same for all the structures under study, and is 

equal to 0.23. The geometries used are shown in Figure1. They are 

designed to have approximately 400 rods in an area of 40 cm x 14 cm. 

From the computational point of view, each quasicrystal structure 

Figure.3.2. The periodic and aperiodic geometries under study: (a) hexagonal, 

(b) dodecagonal, (c) octagonal, and (d) decagonal (Penrose). 
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presents a challenge in obtaining the information about the photonic 

band-gap since the Bloch theorem cannot be applied in the calculations 

because of the lack of translational symmetry. The Finite Difference 

Time Domain (FDTD) technique is useful in this respect. FDTD method 

with uniaxial perfectly matched layer (PML) boundary conditions is 

employed to obtain transmission characteristics as a function of 

frequency of the incident radiation, propagation direction and 

polarization. In each simulation, the source of excitation is placed 

outside the crystal structure and the field components after 

propagation through the crystal are collected using a detector placed on 

the other side of the crystal. The Fourier transform of this data gives 

the transmission properties as a function of wavelength. In order to 

understand the isotropic properties of the photonic band-gaps, the 

spectra are obtained by varying the angle of incidence for all the 

structures. Both TE and TM polarizations were analyzed in the 

simulations.  

The experiment was designed to be carried out in the microwave 

frequencies (8-20 GHz). Rexolite and Teflon having radius 0.64 cm and 

length 60 cm were used to build up the structures. These materials 

show a dielectric constant of 2.56 and 2.1 respectively in the frequency 

region of interest and a relatively low dissipation. Loss tangent values 

for Rexolite and Teflon are in the range of 10-4. In order to build up the 

structure, circular holes with the designed geometries have been drilled 

onto two support plates made of very low-refractive index material. 

Then, they are fixed 60 cm apart to be filled with the rods. In order to 

obtain the transmission characteristics of the crystals, two horn 

antennas acting as transmitter and receiver and connected to a two-

port vectorial network analyzer (VNA) HP 8720C have been used. 

Before each measurement, the horn antennas are positioned and 

adjusted in order to have maximum transmission and the VNA is 

calibrated. Then the transmission curve is obtained by introducing the 
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crystal in between the two horn antennas. In order to measure the 

transmission as a function of direction of propagation of the incident 

radiation, the crystal is rotated through 5°, 10°, 15°, 20°, 25° and 30° in 

respect to the normal direction while keeping the position of the 

antennas unchanged. Measurements were also carried out as a function 

of crystal thickness, for normal transmission only. To change the field 

polarization, both horn antennas are rotated by 90° before each set of 

measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2 Results and discussions 

1/ Refractive index contrast 0.60 

a) TE polarization 

In order to study the isotropic nature of the PBG, the transmission 

characteristics are obtained as a function of incidence angle for all 

geometries under study. Figure2 shows the experimental and 

calculated transmission spectra for the hexagonal photonic crystal with 

an index contrast of 0.60 for various angles of propagation as indicated 

 

Figure.3.3. Schematic diagram of the experimental set-up. Horn antennas are 

used to transmit and receive the microwave radiation.  Data are collected 

using a vectorial network analyzer computer-controlled. The size of each 

structure (periodic or aperiodic) is 40×14×60 cm3. 
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in the figure. The experimental results are presented in Fig.3.3(a) 

whereas Fig.3.3(b) shows the corresponding simulation data. From the 

graphs it is clearly observed that the transmission spectra change 

drastically as the angle of propagation is changed from 0° to 30°. In the 

case of normal signal incidence (0°), the region of low transmission 

(photonic band-gap) is centered at about 11 GHz and spans for ~ 2.6 

GHz, with almost no change for an angle 10°. However, as the angle is 

increased to 20°, changes are clearly visible. The center of the PBG is 

shifted to 12 GHz whereas its width becomes larger (~ 3.3 GHz). For an 

angle of 30°, the widening of the PBG is even stronger. 

The transmission characteristics of a dodecagonal PQC structure are 

shown in Figure3. The experimental (Fig.3.4 (a)) and simulation 

(Fig.3.4 (b)) results put in evidence in this case that the PBG is quite 

isotropic. The position and width of the PBG remains almost the same 

for all the angles considered. The numerical and experimental results 

for the case of the octagonal geometry are presented in Figures 3.5(a) 

and 3.5(b) respectively. Transmission spectra are only slightly affected 

by the change of the angle of propagation. The PBG is centered at 11.5 

GHz for angles from 0° to 10° whereas it is shifted to ~11.8 GHz for 

incidence at larger angles. There is also a small variation in the width 

of the PBG, from 1.4 GHz to ~2 GHz.   

 

 

 

 

 

 
 

Figure 3.4. (a) Experimental and (b) calculated transmission spectra of the hexagonal 

photonic crystal. Curves of different colours correspond to different angles of 

incidence as indicated in the graph. 
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The results obtained for the Penrose tiled quasicrystal are shown in 

figures 3.6 (a) and 3.6(b). The bandgap is not as deep and wide as in the 

other cases. However, its angular dependence If the transmission at 

normal incidence (0°) is considered, the hexagonal crystal shows the 

widest PBG compared to all other structures under study. The PBG for 

the periodic crystal is around 2.6 GHz. In the case of aperiodic 

structures, this value decreases from 2.2 GHz (octagonal) to 2 GHz 

(dodecagonal) down to 1.1 GHz (Penrose). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.3.5. (a) Experimental and (b) calculated transmission spectra of the 

dodecagonal photonic crystal. Curves of different colours correspond to different 

angles of incidence as indicated in the graph. 

 

 

Figure.3.6. (a) Experimental and (b) calculated transmission spectra of the 

octagonal photonic crystal. Curves of different colours correspond to different 

angles of incidence as indicated in the graph. 
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In order to better understand the directional variation of PBG, we 

measured the upper and lower PBG boundaries as a function of the 

propagation angle. The band gap edges are defined as the frequency 

values for which attenuation reaches 15 dB. The hexagonal geometry 

clearly shows a strong dependence of the upper and lower frequency 

edges as a function of angle, whereas the PBG width seems to be less 

affected, as shown in Figure 3.7(a). The results for the dodecagonal 

structure, instead, clearly indicate (see Figure 3.7(b)) that its response 

is highly isotropic, with very small variations of the PBG width and 

edges at different angles from 0° to 30°. The properties for the 

octagonal geometry lie somehow in between, since it shows less isotropy 

compared to the dodecagonal geometry and noticeable width 

dependence in respect with the hexagonal case as displayed in Figure 

3.7(c). Penrose geometry also seems to have quite isotropic, but 

narrower PBG (Figure 3.7 (d)). 

 

 

 

 

 

Figure.3.7. (a) Experimental and (b) calculated transmission spectra of the 

Penrose photonic crystal. Curves of different colours correspond to different 

angles of incidence as indicated in the graph. 
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b) TM polarization 

Simulation of the response to a TM polarized wave for all the 

geometries under study shows that for such low values  (0.60 and 0.44) 

of the refractive index contrast the transmission characteristics of the 

Penrose and octagonal structures are nearly featureless. The results 

obtained for the hexagonal and dodecagonal geometries are shown in 

Figure8. The hexagonal geometry (Figure 3.8(a)) shows a clear PBG ~ 

1.7 GHz wide and centered at about 11.7 GHz. The experimental (black 

curve) and calculated (red curve) results are in good agreement. The 

dodecagonal structure (Figure 3.8(b)) shows in the simulation spectra 

(red curve) two narrow dips in the transmission around 11.7 GHz and 

13 GHz, which are however not well reproduced by the experimental 

data (black curve). 

 

 

Figure.3.8. Variation of PBG as a function of angle for the different geometries: 

(a) hexagonal, (b) dodecagonal, (c) octagonal and (d) Penrose. In each graph, 

the black and the red curves indicate the lower and upper frequency edges of the 

band gap respectively. 
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2/ Refractive index contrast 0.44 

 

The results presented in this case are for TE polarization and the 

hexagonal and dodecagonal cases only. For TM polarization, no clear 

band-gap is formed in the geometries discussed as clearly observed 

from the simulations. The results are comparable with the case of the 

higher refractive index contrast presented above. The PBG is not as 

deep as in the case of Rexolite. In this case too, the hexagonal crystal 

shows a clear variation in the PBG properties as the angle of 

propagation is varied, as seen in the Figures 3.9(a) (experiment) and 

3.9(b) (simulation). Similar results for the dodecagonal crystal are 

presented in Figure 3.10(a) and (b). The PBG frequency shift is less in 

comparison with the hexagonal crystal but the PBG is much narrower. 

A graph showing the variation of the upper and lower band-edge 

frequencies as a function of angle is also plotted in this case and shown 

in Figure 3.11. 

 

 

 

 

 

Figure.3.9. The transmission curves for (a) hexagonal and (b) dodecagonal 

geometries for TM polarization. Both experimental and simulated results are 

shown in each graph. 

 

Figure.3.10. (a) Experimental and (b) calculated transmission spectra of the 

hexagonal photonic crystal with an index contrast of 0.44. Curves of different 

colours correspond to different angles of incidence as indicated in the graph. 
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Although complete photonic band gaps cannot exist in low-index-

contrast structures, it is shown that two-dimensional band gaps are 

possible for specifically polarized electromagnetic modes. Notably, gaps 

in quasicrystal geometries are more isotropic than those in crystals, 

due to their disallowed rotational symmetries.  Even at very low 

dielectric contrast, the sixfold crystalline structure yields the greater 

bandgap than the quasicrystalline ones. For specific applications, 

however, very isotropic PBGs may be desirable, even if the size of the 

full gap is slightly reduced.  

 

Figure.3.11. (a) Experimental and (b) calculated transmission spectra of the 

dodecagonal  photonic crystal with an index contrast of 0.44.  Curves of different 

colours correspond to different angles of incidence as indicated in the graph. 

 

Figure.3.12. Variation of PBG as a function of angle for (a) hexagonal and (b) 

dodecagonal geometries. In each graph, the black and the red curves indicate 

the lower and upper frequency edges of the band gap respectively. 

 



Chapter 3                                                                 Experiments in Microwave frequencies 

 

 55 

2.2. Observation of defect free localized state and waveguiding 

Photonic quasi crystals (PQCs), like their periodic counter parts exhibit 

interesting electromagnetic properties such as, confinement and 

localization [44] of radiation etc. The electromagnetic response of a 

PQC can strongly depend on the short-range order of the lattice. 

Because of their structural peculiarities such as higher order of 

rotational symmetries (>6, which are not allowed for periodic crystals) 

and presence of many non –equivalent sites they show interesting 

properties like defect-free localized states [13].If in a periodic photonic 

crystal, localized modes are generated by intentionally creating defects, 

many PQCs show localized modes even without disturbing the 

geometry. These localized states are also found to affect the 

transmission of radiation within the waveguide in the vicinity of 

localization [13].  

Some interesting transmission properties of a photonic quasicrystal 

made of cylindrical dielectric rods arranged in air according to a specific 

geometry with 8-fold rotational symmetry are presented in this section.  

The aim of this study is to analyze the possibility of manipulating the 

transmission properties of quasicrystals structures for possible 

photonic applications. We present the results to show some peculiar 

waveguiding properties of the particular geometry obtained from 

numerical full wave simulations and experimentally verified by 

measurements done in the microwave frequencies (7-11 GHz). 

The quasicrystal geometry used in this experiment is chosen from one 

among the structures numerically studied in chapter 2. It is obtained 

by simulating the interference pattern of 8 beams according to the 

following formula: 
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With N=8 and  Am, km,and φm are the amplitudes, the wavevectors and 

the initial phases of the interfering beams, respectively. The dielectric 

cylinders are placed in the regions of maximum intensity. The phase of 

the interefering beams were periodically shifted by  such that 

, .  The finite structure 

used in the studies is composed of cylindrical rods of alumina (dielectric 

constant ε=8.6) having radius of 0.3 cm and height 1cm (with a filling 

factor of 0.23). The rods are placed in air according to the 8-fold 

symmetrical pattern shown in figure (3.12).  

The numerical simulations were performed using MEEP (MIT 

Electromagnetic Equation Propagation) which uses the finite difference 

time domain (FDTD) methods to analyze the electromagnetic 

transmission properties of the given structure. The 2D code assumes 

the dielectric rods to be infinitely long.  All the analysis were done for 

the TE polarization of the electromagnetic waves. As a preliminary step 

we studied the transmission properties of the structure near the 

photonic band gap (PBG) region. This is done by illuminating the 

structure from outside using a pulsed source of electromagnetic 

radiation and collecting the transmitted radiation on the opposite side. 

As can be seen from fig (2.a), the photonic band-gap spans from around 

a/λ =0.25 to a/λ =0.35 GHz, which also includes a local high 

transmittance region around the normalized frequency (a/λ) 0.33. The 

field is localized within the defect-free structure when illuminated with 

radiation of normalized frequency 0.33 as shown in Fig (3.12).  
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Further analysis was done to study the wave guiding properties of the 

structure within the band-gap frequencies, especially near this 

localized state.  A linear waveguide was created within the structure by 

removing three columns of rods from the middle. The electric field 

vector in the linear waveguide was mapped for CW radiation of 

different frequencies within the band-gap region. It is found that when 

the normalized frequency of the radiation is around the frequency 

corresponding to the localized state, the radiation is not guided after 

the center of the structure as seen from Fig (3.13). For all other 

frequencies, the radiation is guided through the PQC like in any other 

photonic crystal waveguide.  To further understand the effect of the 

localized state in the transmission properties of the PQC, we studied 

the transmission of radiation within the waveguide when a dielectric 

pillar (with r=0.3cm and ε=8.6) is placed at the center of the structure. 

It is seen that EM radiation with frequencies corresponding to the the 

localized state are transmitted through the waveguide like all other 

frequencies as opposed to what happened in the waveguide without the 

central pillar  (Fig 3.14).  It is evident from Fig (3.15) that the presence 

 

Figure.3.13.  The 8-fold symmetric pattern showing the field 

confinement 
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of localized state within the PBG is the reason for the reduced 

transmission at those frequencies within the waveguide. When the 

dielectric pillar is placed in the center of the waveguide, the field is no 

more localized which permits the radiation to escape through the 

waveguide.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.3.14.  The transmission at normalized frequency 0.33 

(without the central pillar) 

 

Figure.3.15. The transmission at normalized frequency 0.33 

(with the central pillar)  

 



Chapter 3                                                                 Experiments in Microwave frequencies 

 

 59 

 

 

 

 

 

 

 

 

 

 

 

In order to experimentally verify the results, we designed an 

experiment to be performed in the microwave frequencies.  The 

geometry was realized by arranging alumina rods (h=1cm r=0.3cm 

ε=8.6) in air. An X-Y robot realized using stepper motor was used to 

arrange the rods in the exact position. The experiment was carried out 

in a parallel plate configuration. The transmission characteristics were 

measured using two monopole antennae connected to a vector network 

analyzer (VNA). Suitable absorbers were used in order to isolate the 

structure from any boundary effects. 

Transmission characteristics around the PBG region were measured for 

of the geometry for the following conditions: 

(1) The whole structure without any defect, 

(2) The structure with the linear waveguide and  

(3) For the structure with the pillar at the center of the linear 

waveguide.  

Figure.3.16. Numerically simulated transmission characteristics of the 

structure. The black curve indicates the full structure while red and green 

shows the transmission characteristics of the structure with linear wave guide 

in the absence and presence of the central pillar respectively.  
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The experimental results are in a very good agreement with the 

simulation results (Fig ). The mapping of the electric field within the 

waveguide is done for selected frequencies by moving one of the 

monopole antenna using the X-Y robot within the waveguide while the 

other antenna was kept fixed.  The results for 10.06GHz are shown in 

Fig (TBD) which shows the difference in transmission of the radiation 

with and without the central dielectric pillar in the waveguide. The 

presence of the central pillar clearly improves the transmission of 

radiation with frequency corresponding to a localized state. 

 

 

 

Figure.3.17. Experimental transmission characteristics of the structure. 

The black curve indicates the full structure while red and green shows the 

transmission characteristics of the structure with linear wave guide in the 

absence and presence of the central pillar respectively.  
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The effect of the properties of the central pillar to the localized state 

(and hence to the transmission of radiation) was also studied 

numerically. It is found that both the size (radius) and the dielectric 

constant of the central pillar within the waveguide will change the 

transmission properties. The numerical simulations shows that, as the 

dielectric constant of the pillar is increased, the localization of field is 

disturbed and shifted and almost completely disappears (Fig(3.18)). So 

the transmission characteristics can be tuned by changing the 

properties of the defect pillar. Almost similar tuning properties are 

shown by the change of radius of the central pillar by fixing the 

dielectric constant to ε=8.6 (Figure(3.19)).  

Figure.3.18. Mapped electric field in the waveguide (black curve 

corresponds to the waveguide with the central pillar and the red curve 

corresponds to the wave guide without the pillar.) 
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Figure.3.19.  Curves showing the dependence of the localized state on the 

dielectric constant of the central pillar 

Figure.3.20.  Curves showing the dependence of the localized state on 

the radiusof the central pillar. 
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To summarize, a photonic quasi crystal structure with very interesting 

transmission properties is presented.  The wave guiding within the 

structure is affected by a defect-free localized state within the photonic 

band gap. As shown numerically and verified experimentally, the 

structure acts like a filter for the localized frequencies. The presence of 

the central pillar which acts like a defect alters the transmission 

through the waveguide. It is also very interesting to see that by 

changing the properties of this defect, the transmission properties of 

the waveguide can be tuned. Since this peculiar effects are assisted b 

the presence of a localized stated, they are very short range in terms of 

frequency. The structure therefore acts more like a photonic notch filter 

with a pass band of ~ 10 MHz width. 
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Chapter 4 

Spatial light modulation based on 

Computer generated Holography for 

fabrication of photonic structures 

Various methods are used to fabricate photonic crystals and 

quasicrystals. A general introduction to this topic is given in Chapter 1.  

This chapter is dedicated to discuss computer generated holography 

technique combined with the spatial light modulation to generate 

complex photonic structures. Before going into the details of this 

technique, let us have a look to some of the other holographic recording 

techniques, which is helpful to understand the basic idea of holographic 

techniques. 

1. Multiple-beam Holography 

Holography refers to the imaging technique in which the image retains 

the phase information about the object being imaged. This is usually 

done with the help of interference of coherent beams. The intensity 

profile produced by the interference is determined by the phase, 

amplitude and polarization of the interfering beams.  

The electric field associated with the mth interfering beam can be 

expressed as: 

 

where   is the real amplitude, (x,y,z) is the position vector,  is the 

propagation vector and  is the absolute phase. This leads to the 

general expression of irradiance profile for N-beam interference as: 
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This expression can be used to generate 2-dimensional geometries of 

any order of rotational symmetry.  

Several holographic methods were employed to generate photonic 

structures. Sutherland et al used Switchable holographic polymer-

dispersed liquid crystals (H-PDLC) materials to realize holographic 

gratings [45]. P.Gorkhali et al used H-PDLC to fabricate switchable 

photonic quasicrystals [28]. In this case, the quasicrystal patterns were 

generated by the coherent interference of multiple laser beams as 

described above. The pattern is recorded using a homogenous mixture 

of photopolymer, liquid crystals (LC) and photo-initiator. Photo 

polymerization occurs in the bright region of the interference pattern, 

which results in a counter diffusion process in which the liquid crystal 

diffuses into the dark regions of the interference pattern. As a result, 

most of the LC is captured in the low-intensity regions of the 

interference pattern with the polymer residing in the bright regions of 

the interference pattern. This leads to the photo-induced phase 

separation of the liquid crystal and the polymer. The separation of the 

liquid crystal and polymer phases depends on the intensity modulation 

caused by the interference pattern. Since the polymer and the liquid 

crystal used are usually of different indices of refraction, the intensity 

modulation is translated into a refractive index modulation in the 

recording medium because of the phase separation. Figure (4.1) shows 

the calculated irradiance profile of quasicrystal patterns of 5-, 7- and 9-

fold rotational symmetry. 
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The resulting structure in the real space and hence the diffraction 

pattern are determined by the reciprocal lattice vectors. For odd N, 

there are 2N first-order reciprocal vectors formed considering both 

vectors pointing in the positive and negative directions. So the Penrose 

pattern, which is five-fold symmetric will have decagonal phase 

symmetry in the reciprocal plane. The Fourier transform of the 

resulting irradiance profile gives the diffraction pattern produced by 

the structure. The 2-dimensional discrete Fourier transform for an 

irradiance profile  is given by the following expression. 

 

Where; 

Fig (4.1): In-plane (top) and 3-D view (middle) of the intensity 

profiles for 5-, 7-, and 9-fold symmetry quasi structures generated by 

interfering p-polarized beam. 
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    and   . 

The diffraction peaks will have N-fold symmetry, which represent the 

primitive reciprocal lattice vectors. The total number of primitive 

reciprocal vectors is the number of ways in which N points can be 

connected. It is also possible to predict the parameters for the 

interfering beams if the required diffraction pattern is already known.  

The main disadvantage of this technique is that it uses multiple laser 

beams (equal to the order of symmetry of the crystal structure), usually 

obtained by dividing a single beam using beam splitters. So the 

experiment becomes tedious when it is needed to fabricate 

quasicrystals of higher order symmetry due to the difficulties in 

controlling the phase and coherence of a large number of beams. 

Yi Yang et al [29] presented a single beam holographic method for the 

fabrication of quasicrystals. They used an optical mask to adjust the 

phase relation of the interfering beams. In order to get an 8-fold 

symmetric pattern, in the usual multiple-beam holography, one has to 

use 8 beams. But instead, they used a top cut octagonal prism (TCOP), 

which plays the role of both splitting the plane wave into eight beams 

and then combining the beams again to encode an intensity pattern at 

the bottom of the TCOP. But this method also has limitations: it needs 

a different phase mask depending on the symmetry of the structure. In 

the next section, a versatile, yet simple single beam method for the 

fabrication of any complex photonic structures is introduced. 

2. Spatial light modulation by computer generated Holography (CGH-

SLM technique) 

The basic idea behind this technique is same as that of usual 

holography, to record the complete irradiance profile from an object 

including the phase information. But in the case of computer generated 
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holography, there is no need to have a real object. Instead, the 

irradiance profile that needs to be recorded is computed and is used to 

address a diffractive optical element (DOE) which spatially modulates a 

laser beam according to that irradiance profile. This spatially 

modulated beam is then used to record the pattern onto a 

photosensitive medium. Computer generated holography has been used 

for beam shaping and holographic optical tweezers to obtain the 

required beam profile.  

In this work, a programmable spatial light modulator is used as the 

diffractive optical element, which encodes the irradiance profile into a 

liquid crystal display, the principle being the same as that used in 

optical trapping technology. The advantages of this method are that it 

allows a real-time monitoring and reconfigurability of the pattern along 

with a high spatial resolution. This technique can generate almost any 

kind of 1-or 2-dimensional patterns. The experimental set-up is much 

simpler than that of usual multiple beam holography. The next sections 

will explain in detail the various aspects of this technique. 

2.1. Spatial Light modulator 

As the name indicates, the spatial light modulator (SLM) is a device 

that modulates the coherent light based on its control input. The SLM 

uses the information about the pattern from a computer and converts 

the light impinging on its surface according to the pattern. The 

following factors characterize an SLM.  

1. Method of addressing the SLM 

The writing of the input patterns onto an SLM can be done either 

electronically or optically. In the electronic method, each pixel on SLM 

is supplied with a voltage that represents the shade and intensity of the 

corresponding pixel in the input pattern. This is implemented by either 

having an electrode for each pixel that is scanned by an electron beam 
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or by having addressable electrodes to which the necessary voltage is 

applied. In the optical method, the input pattern is converted to an 

optical image and is cast on the SLM. 

2. Frequency of the input beam 

The SLM will be designed to operate for a particular range of 

frequencies.  

3. Modulation scheme 

The SLM modulates the basic characteristics of a beam of light, i.e., 

amplitude, phase and polarization. The SLMs differ also in the way 

they modulate these properties. 

Other important features of the SLMs are resolution, contrast, 

uniformity and number of gray levels. 

The liquid crystal-spatial light modulator employed in this work is the 

HoloEye Photonics LC-R 3000. The system is based on a high resolution 

WUXGA LCoS display of 1920 × 1200 pixels with twisted-nematic cells. 

This SLM permits modulation of the beams in visible frequencies (600-

400 nm). It can be used to modulate light spatially in amplitude and 

phase, where the modulation function can be addressed electrically by a 

computer with a frame rate of 120 Hz. The square pixel-cell size is 

9.5µm, whereas the filling factor of the display is 92%, on an imaged 

array of 19.01× 11.40 mm, and with a phase modulation ranging 

between 0 and 2π with 256 discrete levels. 

The LC molecules are nematic with a twisted alignment between the 

parallel ITO coated plates of the cell. The electrodes driven by a 

computer permit to apply discrete values of voltages Vm in a suitable 

range of 256 levels, so that m = {0,1,...,255}.The external electric field 

reorients the LC-molecules in each pixel-cell separately and with a 

fixed degree of reorientation depending of the voltage level applied. The 
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LC molecules are birefringent, which introduces a phase shift on the 

optical beam ∆Φ depending on the degree reorientation and optical 

path, which is 

 

where  is the extra-ordinary refractive index and  is the 

ordinary refractive index. 

 

 

 

 

The phase profile addressed to the SLM via the computer is thus 

translated to the phase retardation of the input laser beam. 

The phase profiles addressed to the SLM-display are intensity images 

with 256 grey levels (8-bit images), each of which corresponds to a 

certain voltage level resulting in a phase retardation added to optical 

Fig (4.2): Scheme of three nematic twisted pixel-cells in a liquid crystal spatial 

light modulator: a fixed voltage reorients the LC-molecules resulting in a 

optical phase retardation experienced by the laser beam traveling through the 

cell; larger is the applied voltage level, larger will be the amount of LC 

reorienting. 
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phase of the incident beam. As mentioned before, the hologram is 

previously designed by computer.  

2.2. Design of Holograms 

Two different experimental approaches are used to reconstruct the 

photonic structure. One is based on the Fourier holographic technique 

and the other one is direct writing of the pattern. Depending on the 

method used in experiment, the design of the hologram also varies. 

2.2.1. Principle of Fourier holography 

In this technique the phase/amplitude of the hologram is designed in 

such a way that after diffraction, the required intensity profile is 

formed at the Fourier plane of the reconstructing lens. The 

reconstructing lens can be a simple convex lens or a microscope 

objective. The photosensitive recording medium will be placed exactly 

in the Fourier plane in order to record the required pattern. 

The irradiance profile at the Fourier plane is determined by electric 

filed amplitude associated with the optical beam at the input plane of 

the reconstructing lens, Ein(r), and the focal length of the lens f. This 

can be derived using the scalar Fourier transform theory as follows: 

 

 

 

 

The inverse Fourier transform gives, 
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where A0 andΦ0 are the amplitude and the phase profile of the incident 

laser beam respectively.  is the phase profile of  the phase-only 

hologram (or CGH) added to the incident beam by means of the 

electrically addressed liquid crystal display. The irradiance profile at 

the Fourier plane is  , can be designed according to the 

required pattern by adding the phase profile  to the incident 

beam. Since the hologram is made of pixels, the discrete Fourier 

transform (DFT) can be used for the calculations which can be done 

using fast Fourier transform techniques. 

The calculation of , which is required to produce the right 

irradiance profile  is an important step in this technique. This is 

non-linear problem which can be solved numerically with suitable 

substitutions and iterations. The digital holographic profile is computed 

using an algorithm named Adaptive Additive algorithm (AA), in which 

each step of iteration needs a fast Fourier transform in two-dimension. 

If we consider that the holograms consist of N pixels on a regular array, 

according to the Whittaker-Shannon sampling theorem , the pixel size lf 

in the FT plane is related to the pixel size lin in the input plane by: 

 

 

The focal length f of the reconstructing lens should be chosen according 

to the magnification requirements. Then using a system of relay lenses, 

it is possible to control the size of the input pixel size, lin. This means 

that if we require to obtain a pattern with higher resolution than that 
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is permissible by the SLM configuration, these relay lenses can be of 

help. 

It is possible, as for instance, to create phase-only holograms encoding 

the amplitude information of the desired beam without the need for 

complex holograms as demonstrated by Davis et al [46]. It is possible to 

reconstruct near-perfect holograms that permit to control both the 

phase and amplitude of the beam by using a SLM, as discussed in [47]. 

By adding several holographic focusing lenses with different focal 

lengths in the design of a kinoform, 3-D projections are also achievable 

as demonstrated theoretically by Haist [48] and experimentally by 

Sinclair [49]. 

Experimental set-up 

A schematic diagram of the experimental set up involved in the Fourier 

holography is shown in Figure (4.3).The Gaussian input laser beam (at 

λ = 532nm) is spatially filtered with a microscope objective-pinhole 

system (not shown in Fig.) and expanded before it impinges on the 

spatial light modulator, so to utilize entirely its modulating surface and 

to ensuring the best efficiency. The digital discretized CGH was 

computed with the AA algorithm and then addressed as intensity 

image with 256 levels of grey to the SLM display. The desired 

irradiance profile is obtained at the back focal plane of the microscope 

objective. 

The phase only hologram, which is used to address the SLM, is 

transferred to the conjugate plane of the microscope objective using the 

relay lenses. Large focal length lenses can be used to minimize 

aberrations and coma. The real time monitoring of the writing process 

is done with the help of another microscope objective and a CCD 

camera. Matrix method in geometric optics can be used for the previous 

calculation of the experimental parameters such as various distances 
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involved in the experimental set-up and the required focal length of 

each lens involved. 

 

 

 

 

 

2.2.2. Direct Writing method 

In this method the holograms addressed to the SLM are not the Fourier 

transform of the required pattern but is the pattern itself. In the direct 

writing method the hologram is generated in order to produce the 

intensity profile in the image plane of the SLM-display. This means 

that the writing plane in which the photosensitive sample is placed 

coincides with the conjugate plane of the hologram. The imaging 

system is realized through relay lenses as shown in the figure (4.4).  As 

discussed by Davies et al [46], it is possible to encode the desired 

amplitude profile A(x,y) directly into a phase-only hologram Φ(x,y) with 

a direct method that avoids the need of the numerical iterations. The 

Figure (4.3): Experimental Scheme for Fourier Holography: Figures (a) and (b) 

show the phase-only holograms computed to design, respectively, the irradiance 

profile (c) and (d): a 1-D square pattern with different sizes of dark and bright 

fringes (c), and a quasiperiodic octagonal irradiance profile (d). 
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principle is that of modulating the diff raction efficiency of the phase-

only hologram along its profile by taking the product Φ(x,y)A(x,y). In 

this way, the amplitude profile represents the function modulating the 

efficiency of diffraction. 

If we want to encode a function of the form 

 

it is needed to generate the following phase only function: 

 

where the new hologram is obtained by multiplying the amplitude and 

phase information. 

A similar approach can be used in the CGH-SLM, by addressing the 

SLM only with the amplitude information neglecting the phase profile. 

Inset of the figure () shows the experimentally resulting pattern 

obtained for a grating. 

The experimental set up in figure (4.4) uses the laser source is a 

Coherent doubled-frequency Verdi operating at a wavelength of λ = 

532nm and impinging with an angle of  5◦ respect to the normal to the 

reflective SLM-display. The desired reduced irradiance profile is 

reconstructed by means of two relay lenses with focal lengths ranging 

between 63 and 500mm depending of the wanted lateral magnification. 

For example if a lateral magnification of 0.1-0.2 can give a resolution of 

1- 2µm since pixel size of the SLM display is 9.5 µm. The direct writing 

method has the same advantages of the Fourier holography scheme and 

solves the problem of the small cured areas of the FHS. The monitoring 

system is similar to the one used in the first case, consisting of a 

microscope objective and a CCD camera. Compared to the Fourier 

writing method, this technique gives a better spatial resolution. 
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The photosensitive mixture and optical curing 

The gratings are obtained by curing, at room temperature, a pre-

polymer/LC photosensitive mixture, aiming to realize H-PDLC-like 

dielectric arrangements. The solution that gave the best results in 

terms of phase separation and optical contrast, reported in Tab.3.1, was 

made of the monomer dipentaerythrol-hydroxyl-penta-acrylate 

(DPHPA) (60.0% w/w), the cross-linking stabilizer monomer N-

vinylpyrrolidinone (NVP) (9.2% w/w), the liquid crystal BL038 by 

Merck (30.0%w/w), and a mixture of the photoinitiator Rose Bengal 

(RB) (0.3% w/w) and thecoinitiator N-phenylglycine (NPG) (0.5% w/w).  

The approach here is similar to the H-PDLC technique described in the 

earlier section. 

The polymer has a refractive index np = 1.530, whereas the LC BL038 

has an ordinary refractive index no = 1.527 and an extraordinary 

refractive index ne = 1.799. the refractive index contrast achievable by 

Fig (4.4): Experimental scheme of the Direct Writing Method. 
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this mixture is  if the average refractive index of the liquid 

crystal is considered. The thickness of the sample cell varied from about 

5 to 30µm, whereas the cured area has a linear dimension ranging from 

∼ 4 to 20mm in the Direct Writing approach, depending on the 

magnification factor of the imaging system. The phase separation 

between the liquid crystal component and the polymer depends of the 

typical spacing of the structure and thus the curing parameters, which 

are the power of the light incident on the sample and the exposure 

time, must be chosen in relation to the particular experimental 

situation. The intensity of the writing pattern was usually in the range 

of 1 - 20mW/cm2 at the sample position, which is considering the 

attenuation and losses due to the optical elements, including the 

diff raction efficiency of the CGH addressed to the SLM. The exposure 

time was typically ranging between 30s and 300s depending on the 

writing power. 

The main advantage of using liquid crystals in the recording medium is 

that it makes the structure switchable by applying sufficient electric 

field. When a sufficient electric field is applied, the liquid crystal 

molecules undergo reorientation, thus by changing the direction of the 

molecular director. This leads to the change in refractive index of the 

liquid crystal from ordinary to extra-ordinary. This effect can be used to 

generate photonic structures with switchable properties. 

3. Experimental Results 

All the patterns described below are generated by the direct writing 

method. The patterns are 2-dimensional quasiperiodic patterns 

described in the earlier chapters. The octagonal quasiperiodic structure 

discussed in chapter 3, is realized experimentally. The photonic band 

gap properties of this structure have been already discussed in section 

(). The samples have been realized with a tile-size around 2.5-5 µm. 
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The figure (4.5a) shows the theoretically calculated irradiance profile 

which is used to irradiate the SLM. Figure (4.5b) is the calculated 

diffraction pattern of the same and figure (4.5c) shows the diffraction 

pattern shown by the experimentally realized structure using CGH-

SLM. The diffraction pattern is obtained by illuminating the structure 

with the radiation from a He-Ne laser at 632 nm, and it confirms the 

structure having the 8-fold rotational symmetry. The diffraction 

pattern also confirms the refractive index contrast formed between the 

liquid crystal and the polymer. 

 

 

 

 

 

Fig (4.5): Experimental results: (a) calculated irradiance profile, (b) calculated 

diffraction pattern (c) diffraction pattern of the structure obtained 

experimentally 
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As a next step, we also tried writing patterns with some linear defect 

introduced. Another 8-fold symmetric pattern as shown in the figure 

(4.6a) is used. The writing is done in such a way that the size of the 

structure is big enough to be viewed through a polarized microscope. 

The results are shown in the figure (4.6). The aspect ratio of the 

structure is changed by varying the size of the pillars. 

 

 

 

 

4. Limitations of CGH-SLM Technique 

The first restriction is imposed by the minimum resolution achievable 

by using the SLM. The minimum resolution achievable is around 1 µm. 

So, when it comes to the realization of structures working in infra-red 

or optical frequency, the fabrication limits the frequeny of operation. 

The solutions to this problem are to use SLMs which offers higher 

Fig (4.6): Experimental results: 8-fold(B) quasiperiodic structures: (a) 

schematic representation of the intensity pattern with perpendicular defect 

linear channels; (b) resulting structure realized in the sample; (c) the same 

structure taken under crossed polarizers; (d) same quasiperiodic sample 

with an increased aspectratio; (e)-(f) details of the defect 

channels; (g) detail of the tiling geometry of the polymer rods. 
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resolution or by using SLMs operated using higher frequencies. 

Another limitation is imposed by photosensitive mixture used for 

writing the patterns. The maximum refractive index attainable is very 

low (less than 0.2) which means it is difficult to observe any useful 

photonic band gap effect. One way to overcome this is to have 

geometries which possess band gaps with very low refractive contrasts. 

The studies I have done in this direction show that in most of the cases 

the band-gap is formed for refractive index contrasts greater than 0.3. 

 

 

 

 

 

 

 

 

 

 

 



Conclusions and perspectives 

The research activities during this PhD were aimed for a detailed study of properties 

and applications of photonic quasicrystals. As a first step, the band gap formation in 

various photonic crystals were studied using the FDTD numerical simulations. 

Photonic bandgap in 2D 8-, 10- and 12-fold symmetric quasicrystalline lattices of low 

refractive index contrast. In particular, two different quasiperiodic spatial patterns 

of tiling were considered and compared for each fixed order of symmetry. It was 

observed that although the structures have the same symmetry, the different tiling 

geometry affects dramatically the existence and behaviour of the photonic bandgap. 

This means the rotational symmetry alone is not anough to make a prediction of the 

band-gap properties of quasicrystals.  

To experimentally study the photonic band gap formation and the isotropy nature, 

an experiment is designed and conducted in the microwave regime. The 

experimental results matched well with the simulation results. Althoughcomplete 

photonic band gaps cannot exist in low-index-contrast structures, it is shown that 

two-dimensional band gaps are possible for specifically polarized electromagnetic 

modes. Notably, gaps in quasicrystal geometries are more isotropic than those in 

crystals, due to their disallowed rotational symmetries.   

Another interesting observation is the defect-free localized state in one of the 

structures studied. The 8-fold interferential quasicrystal pattern showed a localized 

state within the band-gap frequencies. The waveguiding properties of this structure 

near the frequency of localization are altered by changing the properties of a central 

pillar placed inside the waveguide. Since this effect is very short range in terms of 

frequency, this effect provides a possibility of realizing optical Notch filters. 

To realize the photonic quasicrystals operating in the higher frequencies, the 

method computer generated holography along with spatial light modulation is 

employed. The advantage of this CGH-SLM technique is that it is a simple, single-

beam technique which allows writing of mostly any 1-, 2-or 3-dimensional patterns. 

Using  other fabrication techniques like multiple beam holography, it is almost 

impossible to obtain quasicrystal patterns with higher order of rotational symmetry. 



But at the moment, CGH-SLM technique is limited by the maximum refractive 

index contrast that can be achieved (around0.2) and the limited resolution.  

Photonic quasicrystals possess interesting properties such as very high rotational 

symmetries. They can have photonic band gap similar to their periodic counter 

parts. The photonic band gaps of photonic quasicrystals can be more isotropic due to 

their higher rotational symmetries. Some PQC structures also show defect-free 

localization of electromagnetic energy due to their structural peculiarities. These 

properties can be very useful in making new devices. The isotropic band gaps are 

useful while fabricating light sources such as light emitting diodes (LEDs). Localized 

state assisted wave-guiding is also very useful in optical communication. 
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