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Abstract

In the present paper we found new analogies of Wendroff’s inequality for discon-
tinuous functions with finite jumps on some curves and non-Lipschitz’ type discon-
tinuities. New conditions of boundedness for solutions of the impulsive nonlinear
hyperbolic equations are obtained.
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1 Introduction

The strong evolution of the impulsive differential systems theory is based on
the fundamental results by Krylov and Bogolyubov [10], Bainov and Sime-
onov [1,14], Blaquiere [2], Borysenko [3-6], Deo and Pandit [7], Kaul [9], Ha-
lanay and Wexler [8], Hu [11], Lakshmikantham [9,11-14], Leela [9,11,12], Mil-
man and Myshkis [15], Mitropolskiy, Iovane and Borysenko [16], Myshkis [17],
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Samoilenko et al. [20-22], and others. In the last 30 years most of the investiga-
tions about impulsive systems connected with ordinary impulsive differential
equations gave very important results.

Some results in the impulsive systems theory are based on the application
of the integral inequalities method for discontinuous functions in qualitative
analysis of solutions: boundedness, stability, continuous dependence, existence,
etc. .. Let us point out the monographs by Bainov, Borysenko, Lakshmikan-
tham, Samoilenko, all appeared in the last 20 years.

The first generalization of Wendroft’s result for discontinuous functions was
obtained in [4]; later in [20] the more important results in the integral inequal-
ities theory for discontinuous functions with several variables were described
(see also [6]).

Our paper is devoted to generalization of the results [4], [6], [16] and it is based
on new analogies with Wendroft’s type inequality.

In Section 2 we state some theorems about solvability for nonlinear inequality
for functions with two independent variables with Holder’s type discontinu-
ities.

In Section 3 we obtain estimates for solutions of hyperbolic equations with
impulse perturbation and moreover the conditions for their boundedness.

2 Main results

Let us consider some set D* C %, where

D*=D\I', B=JB;, =TIy, T;={(z122) : pj(z122) =0, Vj € N}
J J

I';NTj0 =0 Vje N. Let us suppose that p;(z12) Vj € N are real valued
continuously differentiable functions such as grad ¢;(z122) > 0 Vj € N. Let
us consider the set B;

1. Bl d:ef{(xle) tx > O, Ty > 0, 901(33133’2) < ()}
pr(T1w2) <0, Vb >2, k€ N}

and define the set G/:

Gi={(y,2): (1122) €B;, 0<y<m, 0<z<xy VjEN}



Let us consider an inequality such as:

u(zy, z2) < (1,29 +//f o1,02)u’ (01, 09)dordoy +

+ Z / (21, o)u™ (21, T2)dpty, (2.1)

7=1r,nG,

where u(z1, x2) is a real valued non-negative discontinuous function in D*, with
finite jumps on the curves I';, ¢(z1,22) is a positive non-decreasing function
in 2, fp; is the Lebesgue-Stiltjes measure concentrated on the curves I'y. In
the papers [4], [21] inequality (2.1) was investigated in the case a > 0, m = 1.
We generalize the idea from [6,16] in the more general case of Holder’s type

nonlinearities for the discontinuous function (2.1) by using also the results [3],
[4], [18], [19], [21].

Theorem 2.1 Let us suppose that the function u(xy,xo) satisfies inequality
(2.1) with f >0, B; >0, a =1, m > 0. Then such estimates are valid:

o0

uaras) Selena) [[ |1+ [ " anwn)Bi(er, a)dn,
=1 TjNGjit
x1 T2
- exp [//f(al,@)daldagl , if 0<m <1; (2.2)
0 0
w(zy, 2) < (1, 29 H / gom_l(xl,xg)ﬁj(xl,xg)du%
=1 [jNGjt1
T To
- exp [m//f 01,09 d01d02] , if m>1. (2.3)
0

Proof. Because ¢ is a positive and non-decreasing function, we have:

(x17x2 <]_—|—//f 0-1’0-2 01,02)d01d0'2+

o(x1, T2) (21, 22)

+Z / Bj(ar, 22) ™ (w1, 22) [M]mduw.

i=1r.AG, p(x1, 72)



u(zy, o)

@(xb x2)
(2.1) assumes in B; the following form:

Denoting by W(xy,xs) = and considering domain By, inequality

Tl T2

W(zy,29) <1 +//f(Ul,O'Q)W(O'l,Ug)dCfldO'Q. (2.4)
0 0

Inequality (2.4) is the classical Wendroff’s type inequality for continuous func-
tion W in domain B;. Then it results in:

W(J)l,.fg) S exXp [//f(al,ag)dald@] y V(.I'l,l'z) € Bl- (25)
00
Now let us consider the domain B, and set Gy = G3 U G2, where G35 =

{(z1,22) : (x1,72) € DyNGy}. Then for every (x1,x2) € Dy we have inequal-
ities such as:

W(xy,22) < 1+//f(01,02)W(01,02)d01d02 +
G

+ / 51(56’1,xz)@mfl(ifl’xQ)Wm(SUl?172)d,u<p1+
' NGy

+ [ [ For,00W (o1, 02)dodo) <
3

01 02

<1+ /G/f(al,ag)exp L/O/f(u,v)dudv] doydoy +

T T2
-+ / 61(1’1,332)507”_1(1'1,332) exXp |:m//f(01,0'2)d0'1d02] du% +
rinGs 00

+//f(al,UQ)W(Ul,Ug)daldUQ.
P

We select on the curves I'yNGo (such as in [21]) some fixed points A; = (z}, y}),
t=0,...,n—1, with A; # A;, ¢ # 7 and we consider the inequality:

n—1 z1 T2 o1 02
W (1, xq) < Z (1 +//f(01,02)exp [//f(u,v)dudv] dodos+
=0 00 00

1,1
Ty Y;

Y

Bl gD (whyl) - exp {m [ ] f(or,02)do1der
0 0

A,ui,l +




—I—//f(01,02)W(01,02)d01dg2) _

z; y}
LUl
Z exp //f o1,09)dordos | + B(z),yh )™ al, y))-
=0 00
5‘:3 yzl T1 Y1
- exp //f 01, 02)doydoy AuZDl—I—//f(al,ag)W(al,ag)daldag )
00 %

So, we obtain the following relations

n—1
W(wy,22) <)
=1

\

331
exp { /f 01,09)doydoy
00

(L Buly, y)) o™ g, v A,

r1 Y1
—f-//f(O'l,O'Q)W(O'l,O'2>dO'1dO'Q, if m E]O, ].], (26)

1,1
i Y;

n—1
W(xy,22) < Z
=1

T i
m//f o1,09)doydos | -
0 0

(L4 B,y )™ xh yh) A,

r1 Y1
+//f(0'1,0'2)w<0'1,0'Q)dO'ldO'Q, if m > 1. (27)

1.1
i Yi

Here Ay; is the variation of the measure function ¢; on the part of curves
A;A;r1. When oduax | Apl, — 0, from inequalities (2.6) and (2.7) we have

the following 1nequaht1es.

Wy, 22) < (1 + / 51($1,$2)S0m1(9€1,$2)dﬂwl) :

I'NGa



- exp [//f 01,09 daldagl , if m €]0, 1J;

0

Wi(wy, ) < [ 1+ / Bi(z1, 22) ™ (21, T2)dpt,
I'NGe

x1 T2
- exp [m//f(al,ag)dald@] , if m>1. (2.8)
0 0

By using (2.8) and the equality W (xy,x2) = u(z1,22)/¢(x1,22) we obtain
that estimates (2.2), (2.3) hold in By for function u(xy,x2).

Let estimates (2.2), (2.3) be true for (zy,z9) € By (we use the induction

(2.
method procedure). Let us consider the domain By, 1; if (z1,22) € By, we
have

W(l’l,.fg <1+//f 0'1,0'2 (0'170'2)d0'1d0'2)+

k+l

+ / Bi(x10) ™ (w1, 22) W™ (21, 22) iy, +

NGy

+//f o1, 02)W (01, 02)dordoy, (2.9)
k+l

where G = Gy UGy, Gy = {(v1,22) @ (21,22) € By N Grya b,
Gii1 = Grs1\Ghyq. We select on the curves I'y N Gy some fixed points
Ar = (zF,yF),i=0,...,n— 1, with A # A3, i # j. As above, we denote by
Apf, the variation of measure on the piece A;Ajy, ;. Then it results in:

k
;Y

Wz, 22 SZ //f o1,02)W (01, 09)do1dos+
i=0

00
+5k(mi zk)‘Pm 1(% Y )W(% ' Yi )AM%
r1 Y1

/f(01702)W(01702)d01d02 )
o Y

from which we obtain:

of yy _
Wy, z9) < 1+//f 01,02 H / 5;’(371,xz)wmfl(ﬂfl,xz)duw‘
00 J=1 ﬂGj+1



g1 02

- l/ / f<u,v>dud”] d(”d%) Aty )
0 0

k—1
: I+ / @'(%;@)S@m_l(%,@)dﬂw :

J=1 FjﬂG]’+1
2y Yp
- exp //f(O'l,O'Q)dO'ldO'Q A/prk—i-
00
r1 Y1
—f-// 0'1,0'2 0'1,0'2)d0'1d0'2 s lme]O,l]
k Ic
and
n—1 ¥ yp o1 02 7
Wy, x9) < 1+//f(01,02)exp [//f(u,v)dudv
=0 00 00 i
k—1
H 1+ / @(:Ul,xz)c,pm’l(:cl,xz)duw doidoy +
J=1 F'ﬂGjJrl

+ Bl yl) ™ (@, yf) -

kl:[l (1 i / ﬁj(ml’@)@ml(%’x?)d“w) |

J=1 IinGj 41
Ik yk
exp m//f o102)dodoy A,usok +
00
1 Y1
+ /f(o-l,O'Q)W<01,0'2>d(71dO'2 , if m> 1.
2 Y;

Finally, when max dpu, — 0, we have these estimates:
0<i<n-—1 k n—o00

k
Wz, 22) < H ( 5j($1,$2)90m1($1,$2)du%) :

I ﬂGj+1

1 T2

exp [ / / f(al,UQ)dmdUz} :

00
if m €]0, 1], V (21, 22) € Biyi;



k
W(xy,z9) < H 1+ / Bj(x1, T9) ™ (1, To)dty,
i=1 [;NGjt1
xr1 T2
/f(Ul,O'Q)dO'ldO'Q
0 0
if m > 1, V(l'l, 1‘2) € Bk+1- (210)

-exp |m

Y

Taking into account (2.10) and equality u(xy,x2) = W(xy, xa)p(z1,x2) We
obtain (2.2),(2.3).

Remark 2.1 Theorem 2.1 generalizes the result [3, lemmal] in the case of
two independent variables functions and discontinuities on some curves. When
we have one-dimensional inequality for piecewise continuous functions, @ =

n—1

const., B; = const. and ratio Z Bi (@1, xo)u™ (21, T2)dpy, reduces itself
I=1r,nG,

mn Zﬁj ), for n. — 0 and {x;} the sequence of fixed points x; €

§R1 Dz < 1 < Ty... and lim x; = oo (points of discontinuities of u(x) :
oo

u(z; —0) = t_l)ixrin_ou(x), u(z) is left continuous at xy). If m = 1 the above

Theorem is similar to [21, Proposition 1, p.125], see also [6, Proposition 3.1,
p.60] and [16, Proposition 3.7, p.28]. For m # 0 in Theorem 2.1 we investigate
discontinuities more general than that ones in [6, Theorem 2.1, p.6].

The result in Theorem 2.1 is a new analogy with the Wendroff’s result for
discontinuous functions.

Next proposition may be proved in the same way of Theorem 2.1:

Theorem 2.2 Let us assume that function u(zl,z2) satisfies inequality (2.1)
with o = m > 0, m # 1 and that the conditions of the above Theorem are
valid. Then the following estimates hold:

o0
u(wy, xa) < @(xr,z) [ [ 1+ / 5j(9517332)90m_1(371»352)dﬂvj

Jj=1 T, ﬁGj+1
1 T2 1/1-m
1+ (1—m) //g@m_l(al, o9) f (o1, 02)d01d0'2] :
00
if 0 <m <1, (2.11)



u(wy, v2) < (21, 2) H I+m / »3j($1»$2)90m_1($1»$2)dﬂ<pj

I'iNGj4a
m—1
I—(m-=1 (] [1+m / Bj(w1, m2) ™ (w1, w2)dpuy,
=1 NGt
1 T2 1/1-m
/QOm1(0170'2)f<0-170-2>d0-1d0-2] ,
00
form >1, (2.12)
only if
1 X2 1
/SOm_l(UlaU2)f(01,02)d01d02 < —, m > 1,
m
00

) 1 1/1-m
H 1+m / ﬁj(xth)gOm—l(xl,fL’Q)d/L%. < (1 + m) (213)

=1 LiNGjt1

Remark 2.2 Theorem 2.2 generalizes the results in [3, Lemma 2, p.7], [6,
Proposition 3.7, p.68], [16, Proposition 3.3, p.24; Proposition 3.7, p.28] for two
independent variables discontinuous functions with Holder type discontinuities
on some Curves.

Remark 2.3 In the next applications we use simple versions of Theorem 2.1
and Theorem 2.2. If p(x1,x9) = M = const., from (2.1) we have the following
mequalities:

A) a=1, m < 1= u(xy,z) <

3

< M 1+ Mmil / ﬁj(xl, 1:2)d,u@j

1 NGy

<.
I

1 962
- exp [ f(o1, 09 d01d02] ,

B) =1, m > 1= u(xy, ) <

3

< M 14 Mmil / 6j(x1, Jlg)d,u@j

1 FjﬂG]'Jrl

T T2

m[ [

|—| <.
Il

o\

01,09 d01d02:| y



C) O<a=m<1=u(r),x) <

<M H 1+ Mmt / ﬁj(xlv@)dﬂw )
I'iNGj41

j=1
1 T2 1/1-m
1+ (1 — m)Mm_l//f(al, UQ)dO'ldO'g] s
0 0
D) a=m>1= u(r,x) <
<ML 1+mam [ g, aa)dpy, | -
7=l TiNGjt1
m—1
-1 = (m - 1)Mm71 H 1+ mMmfl ﬁj(xl,xg)du@j :
J=1 FjﬂGj+1
T1 T2 7%
/f(al, ag)dald@] ,
0 0
only if
1 T2
/f(glaUQ)dCTldUQ < mMm—1

00

M m—1 1 ﬁ

H 1+ mM 6]'(:1:17 $2)d,u@j (1 -+ 71) .

= FjﬂGj+1

3 Applications

By using [6], [16], [18], let us consider the hyperbolic differential equation with
impulse perturbations on some curves of the type:

2
% = F(z,u(x)), x=(x1,29) €T}
u(zy,0) = 1/)1(%)
(0 T3) = a(22)
¥1(0) = ¢2(0)
Atzer, = Bi (w)u™ (x)dpy, m > 0, (3.1)
;AGn

10



where Aul,er, characterizes the values of discontinuities of solution of (3.1)
when the solution of (3.1) meets curves I'; : u(z) N T; [6, p.70]. In (3.1) we
suppose that boundary conditions ;(z) are bounded, i.e.

|th(xq, 22)| < M = const. < 0o

and F'(x,u) satisfies the estimate:

|F (2, w)| < f1, ) |ular, 22)|* (3.2)

with f > 0, a = const. > 0.
In the case m = 1, the equation of problem (3.1) was investigated in [6], [16].

By using Theorem 2.1, Theorem 2.2 and estimates A)-D) we obtain the fol-
lowing statement:

Theorem 3.1 Let us suppose that for problem (3.1) the assumptions of Sec-
tion 2 about curves I';, domains By, G and functions g are valid. Moreover
let I satisfies inequality (3.2).

1. Then the following estimates take place:

A’) a=1, m < 1= |u(xy,x)| <

M {107t [ 18w, @a)ldn,

J=1 rnGj 11

- exp [77f(01,02)d01d02} :

00

B’) a=1, m > 1= |u(xy,x9)| <

J ;NG 41

1 T2

Y

<ML {1+mm [ 18, 22)ldn,
=1
[m

- exp //f(01,0'2>d0'1d0'2
00
C’) O<a=m<1= |u(r,x)| <

<ML {1+mm [ 18 (e, 22)ldn,

J=1 ;NG 41
1 T2 1/1—m
1+ (1 —m)Mml//f(al,ag)dald@] ,
0 0

11



D’) a=m>1= |u(xy,x)| <

o0

<M]J|1 +mM™ ! / |85 (21, 2) |dps,
J= FjﬁGj+1
m—1
= (=DM T e md™ [ 18 (),
J=1 FjﬂGjJrl
Tl T2 *ﬁ
//f 01,02 d01d02] )
0
only if
1 T2
dojdoy < ——— .
/f<01702> 010402 > mMm—1 (3.3)
0 0
o 1 L
IL|1emamt [ gl | < (14 )" (34)
J= FjﬁGj+1 m

II. Al solutions u(xy,x3) of (3.1) are bounded in the cases A’)-C’) only if

the values J] |1+ / 135 dpg,; |, //f(al,ag)daldag are bounded. Re-
J=1 rinGji1 00

ferring to the case D’), (3.2), (3.8) guarantee conditions of boundedness for

all solutions of (3.1).

Remark 3.1 Theorem 3.1 generalizes the results [6, Theorem 3.4, p.31] and
coincides with [6], [16] only if m = 1.
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