Inelastic transition probabilities by the energy
fluctuation model

G. Mastrocinque

Dipartimento di Scienze Fisiche dell’Universita di Napoli
”Federico I1” - Facolta di Ingegneria - P.le Tecchio - 80125 Napoli

Summary

The energy fluctuation model provides a typical expression for transition
probabilities in inelastic molecular collisions, based on the definition of both a
collision entropy and a density of energy states encountered in these processes.
By this model, advances have already been made to improve physical under-
standing and consistency between classical mechanics results and quantum ones.
In this work, we show practically that a semi-classically-calculated probability
can always be dealt with in such a way as to result in the corresponding quantum
expression. To this purpose, we assume (parametrically-evaluated) prototype
functions for the entropy and density of states, and show that their forms are
correlated to the energy time-law occurring in a single process. An ergodic-
like property of the model is enlightened, a numerical example is provided, and
general physical discussion is given step by step in the paper.

PACS. 05.90 - Other topics in statistical physics and thermodynamics

1 Introduction

Amongst the various new approaches by which - still in recent years - the field
of relations between classical and quantum mechanics has been addressed, the
so-called “energy fluctuation model” seems to have enlightened an alternative
view [1-2]. This model can be traced back to Einstein [3], Bohm and Vigier
[4] and to the famous theorem on fast oscillations by Kapitza [5-Ta]. One of
the model’s peculiarities is the increasing of the classical mechanics capability
to describe energy transfers in inelastic molecular collisions. This is achieved



using improved techniques to account for detailed balance in the semi-classical
transition probabilities expressions.

A semi-classical transition probability P, is generated by the time-dependent
matter-wave description of a coupling between states, with interaction Hamilto-
nian V;;(t) (¢ = initial state; f = final). If a first order perturbation technique
(FOPT) is used, we generally have [8]:
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The energies E;, Ey characterize the inelastic quantum collision channel.

To calculate expression (1), it is often assumed that the system vibro-
rotational motions can be “separated” from the translational one. As a typical
example, let us consider the case of a (co-linear, head-on) encounter hetween
an atom and a binary molecule. For the sake of simplicity, let no rotation be
involved. Then they are only submitted to a vibro-translational (V-T) energy
exchange, in a so-called uni-dimensional model. We can treat the molecule vi-
brational motion (assume it is harmonic with mass M, pulsation w;y, internal
co-ordinate r*) by quantum mechanics (1) The translational motion is instead
treated classically. If the internal motion has small amplitude we generally get

[9,10]:
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where | ¢ > and | f > are the involved vibrational states and F;;(t) is the
(classical-like) force time-law acting on the vibrating mass M, as determined by
the collision trajectory. This last is assumed to occur with energy E. Then we
have:
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Here we see that P, (E) is generally calculated by the product of two main
factors. The first one is a quantum matrix element coupling the internal states
of the system involved in the transition. The second one is a (squared-modulus)
Fourier integral representing the effective impulse exchanged with the transla-
tional degree of freedom during the collision. The Fourier integral is, classically,
a function of the collision energy E - a quantity affected by uncertainty because
of the inelasticity.

As is well known, the exact quantum mechanical results are instead obtained
by wavefunction superposition integrals coupling the corresponding stationary

For completeness, note that with the same physical assumptions taken here, the internal
molecular motion can also be treated by a purely classical procedure [10,7b]. Tt brings to the
same result (equation (3)) next quoted.



quantum states (as shown in equation (5)). The difference [9] that one finds
between the expression (3) and the exact result (5) is symbolic of a remarkable
part of the incongruence between classical and quantum mechanics. It still calls
for many investigations and debates.

The present work is specifically addressed to show that the fluctuation model
has a great capability to transform the result of the semi-classical expressions
(3) into the corresponding exact quantum results obtained by (5). However, we
will only do this using some practical calculation means; and mainly referring
to the rather simple models available in the field of co-linear (uni-dimensional)
collisions. This is indeed the case with the V-T energy transfer to which our
previous equations have already been referred.

The founding relations for procedures able to impose detailed balance to the
semi-classical transition probabilities were, historically, some (and somewhat
celebrated) heuristic findings [11-15]. They are generally referred to as “sym-
metrization techniques”. For instance, Zener [11,12] used the arithmetical mean
of the initial and final collision velocities into the semi-classical expression of a
molecular V-T transfer probability to improve the result. Alder et al. [13-15]
used the geometrical mean to symmetrize Sommerfeld factors while calculating
semiclassical Coulomb cross-sections in a nuclear domain, etc.[16].

It has been proposed [10] that a general interpretation of these findings
can be conceptually obtained by considering the analogy between the mechan-
ical transfer probabilities and the famous Einstein equation for the fluctuation
probabilities P, of a thermodynamical system out of equilibrium. According to
the Boltzmann principle, Einstein formed his equation using an entropy concept
[17]:

Pz'f = exp ASZf (4)

AS;y is the entropy difference between the initial and the final state of the
system. In the frame of the fluctuation model, the analogous interpretation
has been shown to support the field of semi-classical calculations for the energy
transfer probabilities. Tt generates improved techniques for detailed balancing
[18-20], and new concepts for model developments [1-2].

In the next section, we briefly review the mentioned topics with additional
important details. We shall give new developments afterwards.

2 Theoretical background

For an inelastic transfer, the quantum transition probability P, always re-
sults in a symmetric function of the energies E;, E; characterizing the inelastic
quantum collision channel (?):

Pym = Py (EiEy) = Pyn(Eyp Ei) =

2Following (9], in equation (5) we just give the FOPT quantum mechanical expression
corresponding to the semi-classical one of our interest, shown in (3).
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Here we named 9 the pertinent, translational wave-functions. The molec-
ular force field Fj;(x) is actually the physical precursor of the function Fjs(t)
appearing in (3); indeed this last function of time can be calculated starting
from F;¢(x), whenever a proper collision time-law x(t) is specified.

As seen in equation (5), the quantum expressions account for detailed bal-
ance or microreversibility by definition.

It is not the same for semi-classical-like expressions. Since they require the
calculation of the collision time-law, they can generally be expressed as functions
of the translation energy characterizing the direct or the reverse process:

PS(“ (E7> 7& PS(“ (Ef) (6)

Therefore they do not satisfy the microreversibility requirement. We have to use
classical mechanics to calculate the time law and the Fourier integral involved
into the expressions. But the classical calculations fail (also) in this respect,
unless - as said before - we force the expression (3) by means of superimposed,
“symmetrizing” corrections.

Historically many authors (e.g. Ter-Martyrosian, Zener, Sommerfeld, Heitler,
Gaunt, Elwert, Bloch, Shin, Alder, Winther; see quoted references and, more-
over, [21-29]) compared classical-like calculations to quantum ones in a variety
of cases, introducing corrections and refinements to the former. Amongst other,
one can infer from their works in a number of examples the following property.
Once a (well-refined) semi-classically-calculated probability P, (E) is available
for a given transfer, it seems generally possible to find, in the collision energy
interval, an effective value E.;y for which

P (Eeff> =Pgm (EitEf> (7)

This finding is very interesting although unable, as such, to suggest a meaningful
(classical-like) model of the quantum transition.

Our purpose in this paper is also to show that the fluctuation model is able to
give a sound physical interpretation to equation (7), bringing the semi-classical
calculations to the exact (quantum) results in quite general circumstances; and
providing us with more information about the effective time-law of the transfer.

3 The fluctuation model brings detailed balance
to the classical expressions of energy transfer
probabilities

A saddle-point (SP) technique can be used to evaluate both the Fourier integral
appearing in (3) and the quantum superposition integral (often with WKB



forms assumed for the wavefunctions) appearing in (5). Typical exponential
forms are then obtained for both P (E) and P} 7 (E; Ey) :

P2l (E) = Aexp[—2wi;7(E)] (8)

PV KBSP(E, Ey) = Aexp[-2Bw ik p(Ei Ey)] (9)

Here 7(F) is an appropriate classical time characterizing the collision, and
Bw kg a corresponding quantum-like exponent. The pre-exponential factor A
generally turns out to be the same constant in both expressions. In a variety of
practical examples shown in references [16] and [20], we could demonstrate that
one always finds
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This equation reads as a particularly successful symmetrization technique. It

also lends itself to the quoted analogy with equation (4): if indeed a “collisional”
entropy

AS.(E) =In [P (E)] (11)

is introduced, then the symmetrized semi-classical probability will appear as a
“fluctuation probability” of Einstein’s type

Ey
AS..(E)YdE
Ef-E; JEg, Sic(E)

exp =expAS;y = Piy(E;Ey) (12)

where AS;; is the integral mean of ASs.(E). The symmetrized P, (E) is thus
called a “fluctuation” probability P;;(E; E).

Equation (10) also shows us that the continuous spectrum of energy val-
ues included in the inelastic interval (E;E;) must be taken into account to
approach the quantum mechanical expressions when starting from the semi-
classical ones. Actually, it shows that performing the simple integral mean of
In [P, (E)] is quite effective when dealing with SP-approximated expressions.
But unfortunately, the same rule will not work as well when the SP approx-
imation is dropped off, and exact calculations of the integrals are performed.
In order to understand how to get a more general rule, we now consider the
following.

In the time-dependent wave-equation formalism for the coupling of quantum
states, a mixed state is formed, with time-dependent probability amplitude co-
efficients affecting both the initial and final states. During the time evolution
therefore, the energy of the system sweeps continuously across the interval from
E; to Ef. So in the corresponding statistical ensemble of states, a density of



states P(E) (number of energy states between E and E4+dE) available to the
system should enter equation (12). Indeed, the function P(E) can be identified
in the same equation just as the constant function 1/(E;-E;).

In the present paper we want to evolve towards a more general case; then for
improved calculations, the general rule given by the fluctuation model to apply
detailed balancing will be to calculate the symmetrized quantity

Ey
P, (EnEf) = exp[< ASo(E) >] = exp é [P (B)PE)E (13)

where a more suitable, general expression of P(E) must now be applied.

Indeed, we are going to introduce a very typical expression for this function,
showing that it is able in practice to make expression (13) always equal to the
corresponding quantum-mechanical one. In other words, under very practical
but rather general assumptions, for each given transfer process we are able to
find a function P(E) such that

Ey
P, (E,Ef) = exp/E In[P,.(E)| P(E)dE ~ P,,,,(E;,Ef) (14)

The achievement of this result is in principle made possible by the very
equation (7), which must be considered a fundamental assumption in this paper.
Yet we want to stress that finding the appropriate density expression P(E) is
not a trivial matter at all, because it must not only be submitted to condition
(14) in a mathematical sense; but it also has to behave consistently with the real
transfer physics. Indeed, the mathematical structure of equation (13) provides
us with some very peculiar information about the transfer time-law (see next
section), so that P(E) must be able to account for it. Complying with the
mentioned conditions will bring us, at least conceptually (3), to a complete
classical modelling of the quantum transfer in the present work.

Since it is not possible to perform general calculations of equation (13) for
any arbitrary function P, (E), we have to find help in a favorable, and possibly
general, position. For computational purposes therefore, we assume a parabolic
interpolation for InP__(E) in the (E; Ef) interval. This is mathematically ac-
ceptable for a great number of cases, unless the function InP,.(E) has a very
fast variation in the interval. We write

InP,.(E)~p+qE +rE? (15)

E, <E<E; (16)
The interpolation coefficients p, ¢, r are such that

InP,.(E;) =p+qE; +rE? (17)

3From a technical point of view, it is clear that corrections or refinements are always
admissible to our proposed expressions (20) to (23); to the distorted potentials in (36) and
(37), and to the ASsc(E) expression itself for improved description.



lnRSC(Ef):p+qu+TE? (18)

InP.(Eerr) =p+ qEess + 7 EZ; = InPyp(E; Ey) (19)

In this way, the mathematical expression of InP,(E) is simplified but its es-
sential behavior in the reference interval is preserved.
Now consider the (normalized to 1, singular in E.;¢) density:

E-E;
P(E) :ci(—) E; <E<Eq; (20
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This proposed function is quite a peculiar microcanonical-like energy distribu-
tion for the statistical ensemble. In this field, one generally finds more common
functions as Dirac deltas, rectangular, exponential etc., which are suitable for
simpler models in a general statistical physics domain. With equations (20)-(23)
we have given instead a more specific function, able to meet with all physical

(23)

and mathematical requirements of the present model; none of the quoted sim-
pler forms can be brought to the same performances as we are going to expound
in this paper.

If the quadratic interpolation (15) is also used in (13), one can easily show
that with the density (20)-(23) we obtain

Pip(EiEf) =explp+qEeps +7E2; ;] = Pom(Ei Ef) (24)

Therefore, a conceptual consistency of the classical-to-quantum probability
expressions can be considered already insured by assumption (7), also appearing
in (19); but here, we not only have good modelling from a mathematical point
of view, but also a sound physical model, able to describe the effective time-law
of the transfer (in the next section).

4 A “quasi-ergodic postulate” brings from P(E)
to the effective time-law

The structure of equation (13) reveals a bridge between the ensemble statistics
and the time evolution of a single process. It is a multiple joint probability to



step continuously from one energy state to the following, all across the interval
from E; to E¢ (here E; =E4, Ey =E,,,):

P, /(E;Ef) = expdS; expdSs...expdS,, =

=Py, (E1>P(E])dE] Pse (Em)P(E”MEm (25)
This suggests that when a single transfer occurs, a path is followed across the
interval from E; to E;, and the ensemble probability of each state E can be
linked to its effective time life dt by (what we call) a quasi-ergodic postulate:

dt

P(E)IE = (1)

(26)
Here 7 is the mean collision time. We called this postulate quasi-ergodic because,
if the function 7(t) could (for now hypothetically) be set equal to 1, then the
statistical average of every function g would be equal to its corresponding time-
average(*):

Ej /2
/ ammmwzl/ o(t)dt (27)

E; T J—7/2

However, this is not the case for the model which is being expounded here. We
therefore must explain the physical meaning of the function n(t), and we will do
it later in the paper. But once this point has been made clear, at last, we will
also see that a simple re-definition of our main quantities will bring us straight
to an ergodic model, with equation (27) always satisfied. The enlightening of
this final step is reserved to the section “ergodic model” at the end of the paper.

Equation (26) gives us a solution E(t) for the energy time-law followed by
a single transfer, whenever a function 7(t) is specified. This also means that
when we know the effective time-law for the energy in a transfer process (classi-
cally modelled), for each of them we can solve the classical trajectory equation
characterizing the collision (remember our model is uni-dimensional in the x-
co-ordinate space-domain):

1
§uv2 + U(x) = E(t) E, <E<Ey (28)

Therefore we will determine, in the next section, a suitable n(t) for good
modelling. But this will be just done by the reverse method, i.e. finding the
n(t) function consequent to a few very simple, but rational assumptions we can
take on the collision time-law in the space-time domain. We will obviously check
the plausibility of the result afterwards.

11f we set n(t) = 1 indeed, equation (26) actually reduces to the kuown “ergodic hypothesis”.
Please note that we used the attribute “quasi-ergodic” not just in the technical sense of the
known theorems, but simply as an ordinary language statement able to excite easy physical
understanding about the proposed model.



5 Distorted potentials technique

If we assume that the time variable t is given as a function of x via the inverse
time-law, we can define the distorted potential

Ueps(x) =U(x) = E[t(x)] + Eesy (29)

and equation (28) will read

1
SHV* + Uepr(x) = Beyy (30)

In order to deal with these equations we can proceed as follows. First we note
that the time-derivative of the function E(t) must be 0 in E.;; (consider that
in equation (26) P(E.ss) — 00). Then, if x¢ is the maximum approach distance
characterizing the trajectory, we have:

t(x0) = 0 (31)
vixg) =0 (32)
Uers(xo) = U(xo) = Ecyy (33)

Now the simplest but physically meaningful expression for E[t(x)] is

E[t(x)] = E: + (1 - EEH> U(x) (—oo<t<0) (34)
Eft(x)] =E; + (1 - EE;f> U(x) 0<t<oo)  (35)

These equations are indeed compliant with condition (33); and with E; <E <
Ey, if limj, oo U(x) =0 - as is generally the case.
Now equation (28) will read

1 E;
—pv? + Uix)=E; (—oc <t <0) (36)
2 Eeff
1 E
v+ —LU(x) = E; 0<t <o) (37)
2 Eeyy
We can also write
1 E.
=L L U(x) = oy (—00 <t <0) (38)

2" E;



1 E.
§ME—”V—2 +U(x) = Eeosy (0<t <o) (39)
f

These equations are essentially the ordinary energy theorem in which the ef-
fective masses pE.s;/E; and pE.;¢/Ey, in the two respectively quoted domains
of time, now appear. In the assumptions we have taken, the time-laws for clas-
sical trajectories subtending the inelastic transfer can therefore be obtained by
all the known results for standard potentials, whenever the effective masses are
inserted into their expressions.

Using equations (26), (38) (39) (34) (35) we can also write

PEE = 10 = n(t60) 7= = )y = (40)
— n(x)\/Qéi % @ (—oc <t <0) (41)

_ . _ByBery Jdx|
= n(x) o, B() _Buy; T (0 <t<oc) (42)

and by comparison with equations (20) to (23) we find the 7 function (now of

d
w6 = 5, | %2 U B<E<Eg  (43)
X
5, . ST\/Ei(Ef—Eeff)('? q—‘rSEf T—‘y—llEeff 1“) (44)
‘ v/ Su Eeff(Ef—Ei) [7q+(3Ef—|—8Eeff—|—3Ei) 1"]
dU
nx) = By || UK) Ef > E> Eefy (45)
STQ/Ef(Eeff—Ei)('? q+3E¢ 1”+11Eeff 1")
By (46)

~ VBJ Eeyf(Ef-E;) [Tqt(3E;48E,;;+3E;) 1]

6 Discussion and remarks

During an effective transfer, the system starts with a collision energy E; (the
collision partners are still at far distance from each other), reaches a “maximum

10



approach distance” where the energy is evaluated as E.yy in our model, and
goes again back to far relative distances where the final energy is Ef. So the
energy values E; and E; (and their next neighbors) play their proper role of
translational energies only at far distances, where the transfer effectiveness is
much lower than it is at the closest ones. Then a (relatively) smaller rate of
change of the energy should be taken into account at far distances, because in
our calculations the probability P, (E) is evaluated at “unperturbed energy”,
by a FOPT procedure. With no weight 7, the real lifetime dt of energy values
at far distances would be underestimated in equation (26); or alternatively, we
could also say that the entropy InP..(E) in the integrand of (14) would turn
out overestimated when E—E,; or E=E;. The physical meaning of the function
7 is therefore to smooth out the effect of the FOPT approximation, weighting
differently far and close distances. This should be done in agreement with a
proper space dependence of the interaction Hamiltonian. We therefore see that
our expressions (43) to (46) for n reveal an implicit assumption of our model
on the interaction: to the effect of calculating n, it appears as the gradient of
the (squared) diffusion potential. Conceptually, this may be considered a very
admissible function, if limited to the present simple and general description.
Indeed for small-amplitude molecular oscillations, the interaction Hamiltonian
is known to have (in principle) a general dependence on the first derivative of
the intermolecular potential (the function Fj;(x)). But from a practical point
of view, when some extent of negative interference between the coupled internal
states is considered, a stronger power should be taken to represent non-resonant
transfers in the present context. Then we conclude that the expression of 7,
given in equations (43) to (46), is appropriate to the present simple framework;
and has a great potential to evolve into more refined expressions when more
accurate distorted potentials than we have chosen in equations (36), (37) will
be used in future work.

7 Numerical example

Let us consider here the case of a (V-T) energy transfer between molecules.
Let it be governed by an exponential-repulsive intermolecular potential

U(x) = Dexp|[—ax] (47)

with intensity D and characteristic rate «, as investigated already by Zener
[11,12]. This author expressed the semi-classical FOPT transition probability
(co-linear head-on encounters, small velocities) as
_ 822w 1 1
- 2 /] 1 .

WM 4 ginh 21w /(a %E)]

(48)
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Here p is the reduced mass of the collisional system. M is the internal vibrating
mass, w the pulsation of the internal (harmonic) motion, and his the Planck’s
constant. For the same transfer, and actually with the same physical assump-
tions taken by Zemner already, Jackson and Mott [30] provided the quantum
mechanical result corresponding to equation (48):

2 2 sinh[27 e, /2E;/(ha) sinh[27p, /2B / (ha)]
Py (EiEy) = 8T ptw u b

Ty (49)
a*BM - (cosh[2mp %Ei/(ha)] — cosh[2mp %Ef/(ha)])2

For this case, we have solved numerically the equations (7) (17) (18) (19) in p,
g, 7, Ecss (given a predefined set of values for E; E¢) and show the results in nu-
merical tables (in Appendix; the energies are indicated with an additional index
n because they all have been normalized to the value h?a?/(872p)). Amongst
other, the tables show that E.;;, consistently, always lies between the values
E;,E¢. This gives sense to the coefficients p, ¢, » and to our model comprehen-
sively. Numerical values for the coefficients ¢;, ¢; appearing in equations (21)
and (23) for the probability deunsity are also given. They all come out positive
numbers as they must, for a consistent density definition. At last, we solved
the equations (38) and (39) for the case at hand and show here the resulting
distorted time-laws. As is clear by simple inspection, they give space vs time
relations for a couple of colliders starting in x; = oc at a time t = —oo with en-
ergy E;; joining the maximum approach distance xg = —(1/a)In[E. /D] when
t = 0 with an energy E.;;; and going back to far distances xy = oc at a time t
= oo with final energy now changed into E;:

2F; 1 E 2 2E;
x;(t) = Mltfaln[zl ngEln[Hexph/ ulatﬂ

(50)
(—oc <t <0)
xp(t) = \/?t - éln[ax%] + ZInf1 + exp|y | =L ot]]
(51)
(0<t<o0)
From equations (34), (35) we finally have the energy time-law
F(t) = By + 4—ett B exp[—a 2f t] (52)

[1+ exp[—a %’%P

12



(—oc <t <0)

E.;f — E [2E
E(t) =E; +4 I explay | —Lt] (53)
[1+ explo QETft]Q K

(0<t < o)

To the purposes of the next section, we also add here the expression of the
factor n for the case at hand here :

(E - E;)?

E) = 8.aF%,, —~—— % E; <E<E,
77( ) 6za eff (Eeff - EZ)Q = < £r
(54)
(E) = 8,aE? (B E,)” E;>E>E
= (8 _— e
i Tl By — Ey)2 e 1t
(55)

8 Ergodic model

By the remarks in previous sections, we now come to the following view. Assum-
ing - as we have said to be generally our case - that the semi-classically calculated
probability P, (E) evaluates at “unperturbed energy”, we have found that a
weight factor 7(t) is necessary in equation (26) for good modelling. If improved
definitions (or more accurate calculations as well) for P(E), AS . (E) and for
the transfer time-law E(t) could be used, we would expect this factor to be
gradually reduced to unity, so that the ergodic equation (27) is satisfied. Such
an outcome is expected because a quantum-mechanical probability is known to
apply even to a single collision. But a straight (although somewhat artificial)
way to achieve the result is simply as follows. We re-normalize our quantities
including the factor i both in the AS, . (E) and P(E) expressions (by the energy
time-law E(t), consider now 7 as a function of E):

AS,.(E) =InP . (E) — AS/-;( (E) =n(E)InP, (E) (56)
;) = 2
P(E) — P(E) = L (57

Then equations (13) and (26) write
By

Ey
P;;(E,Ef) = exp [ AS,(E)P(E)AE =exp [ AS'_(E)P'(E)E (58)
E; E;
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P'(E)E = — (59)

and the general equation (27) is satisfied by P/(E). This situation clearly features
what we have called the ergodic model.

In this way, it is better expounded now that a proper definition of the col-
lisional entropy must take into account the weight factor (so we can call 5 a
“local entropy factor”). This is necessary in order to cut off the assumed FOPT
expression InP, . (E) at far distances; then we also understand that the n(E)
definition is strictly correlated to the accuracy we can have in calculating the
function P, (E).

Amongst other, we see that equations (56) to (59) preserve the time-laws
(50) to (53) we have found in the previous section for the given example (°).

At last, therefore, we propose here that the entropy definition (56), including
factor 7, be introduced from now on into the semi-classical-like transfer calcula-
tions; and that the function P/(E) be correspondingly used. In such a way the
popular semi-classical-like, “unperturbed energy” approximations are improved;
and further refinements of our model simply have to point to greater accuracy
in the evaluation of AS’ (E)and P’(E) with correlated distorted potentials and
time-laws forms.

9 Conclusion

In this paper, we have taken a very practical point of view for our demonstra-
tions. They have been based on the “parametric” assumptions expressed by
equations (7) and (15) to (19); but from a conceptual point of view, we believe
having shown a great potentiality of the energy fluctuation model to obtain
the exact quantum mechanical results in the domain at hand. Certainly, re-
finements or corrections must be applied in future developments of the model;
as a matter of fact, many other specific examples should be analyzed in order
to insure that it will still be suitable in some more extreme cases than here
discussed (for instance, when a parabolic approximation for P (E) cannot be
accepted). Yet the framework given here seems to us a rather general one, and
useful to enlighten a subtended physical interpretation at a classical mechanics
level. Then it may hopefully provide a further reference to the many attempts
which still nowadays are diffusely carried out for a deeper understanding of the
relations between classical and quantum physics.

®These time-laws do not depend on the value of 7, introduced in (26): yet equation (59)
shows that normalizing to unity the density P/(E) for the assumed example requires 7 —
oo (this may look improper at a first glance but is not a model failure. It is instead a
mathematical paradox generated by the fact that the potential (47) is analytically defined in
the space domain (—oc <x< o0) of infinite extension). Simple approximations cutting off the
exponential tails in the energy time-law can easily eliminate this computative edge.
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11 Appendix

Energies are normalized to the value of h2a?/(872u):

812
E,=FE—-=F
= (60

Initial energies E,; values set : 0.01, 0.1, 1, 10; final energies F,,; values
set : 1.1 Eyy, 2F,;, 5FEy;, 10E,;, 100E,;.

The effective values of the coefficients p, ¢, r, ¢;, ¢f in the text can be
obtained as

p=p"+n[L] (61)
q=q¢ (62)
r=rre? (63)

¢ = c; & (64)
cp = 3 (65)

In normalized energies, equation (19) reads

. (Ens — Eni) _
4sinh®[(E,; — Epi)/(4y/Eneyy)]

(E,; — E,;) sinh[/E,;] sinh[\/E,.f|
(cosh[/E,;] — cosh[\/E,f])?

=p" 4+ " Epegs +7" Eopyy =In (66)

Numerical results in matrix form :
p*-matrix

Eni\En; 1.1E, 2F,; 5E,; 10E,;  100E,,
01 223596 0.202606 —0.857248 —1.49367 —5.36067
1 2.23591  0.198892 —0.902454 —1.69066 —14.1228
1 2.23542  0.160998  —1.34215 —3.37732 —46.7355
10 2.23018 —0.220697 —4.82182 —12.8193 —155.296

16



¢*-matrix

E,\E.;y 11E,; 2F,,; 5F,; 10F,,; 100E,,;
.01 190.729  142.859 94.4094 70.6733 41.8346
1 19.0733  14.3089  9.61277 7.5787 7.6821
1 1.90775 1.45499 1.12982 1.16651 1.84438
10 0.191263 0.172065 0.244696 0.328942 0.57032

r*-matrix

E i \Ens 1.1F,; 2F,.; 5F,; 10F,,; 100E,,;
.01 —4543.75 —2451.14 —901.781 —408.369 —35.098
1 —45.4386 —24.5566 —9.20462 —4.41324 —0.61502
1 —0.454505  —0.250487 —0.11055 —0.069621 —0.013804
10 —0.0045602 —0.0030882 —0.0025723 —0.0020053 —0.00042378

E,, ey j-matrix
E, \E.f 1.1FE,; 2F,,; 5E,; 10E,,; 100FE,,;
.01 0.0104881 0.0141442 0.0223938 0.0317899 0.118086
1 0.104883 0.141624  0.226769 0.33162 2.01687

1 1.04898 1.43014 2.44604 3.98171 29.2961
10 10.4937 14.5588 26.1582 43.2888 302.462
c;-matrix
E,\E.;y 11E,; 2F,.; 5FE,; 10E,,; 100F,,;
.01 35246.3  1546.28 337.819 158.298 17.4064

1 1113.55  48.4099 10.1826 4.42445 0.195919
1 34.9472  1.41835 0.240221  0.0807895  0.00279939
10 1.08381 0.0388011 0.00567654 0.00193994 0.0000823099

c?—matrix
E,\Eny 11E,; 2F,; 5F,; 10FE,,; 100F,,;
.01 31939.5  753.116 61.892 13.519 0.158741

1 1010.93  24.0281 2.03332 0.469957 0.0101988
1 32.2082 0.813318 0.0814118  0.0226249  0.000552783
10 1.03824 0.0293344 0.00327535 0.000883702 0.0000183646

Last scientific revision : 11.01.07
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