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Summary - In a few previous papers, we discussed the fundamentals of the so-
called Bernoulli oscillators physics. The Bernoulli oscillators are classical entities
whose behavior is influenced by a "hidden” degree of freedom (HDF), in its turn
excited by a quantum vacuum action. Within assessed approximations and
limits (uni-dimensional motion), we assumed a classical-like interpretation of
quantum effects, and displayed the Newtonian motion background subtending -
by our proposal - the matter wave physics. In a couple of papers, we give a formal
description of the Bernoulli oscillators classical degree of freedom mechanics, by
the means of Hamilton-like formalisms. These are, however, different in their
conception from the standard known ones: we introduce indeed an extended
form for the Hamilton function, called the Bernoulli Hamiltonian, and non-
standard forms for the Hamilton equations or procedures. Due to the flexibility
of our forms, both a classical framework and a quantum-like one will be shown
able to provide a full description of all the cases relevant to us. In the present
paper I, the classical framework is discussed. Physical interpretation matching
the mentioned formal procedures is provided step-by-step.

PACS 05.90. - Other topics in statistical physics and thermodynamics

1 Introduction

In a few previous papers [1+4], we introduced a classical-like, theoretical frame-
work describing the behavior of the so-called Bernoulli oscillators. These ones
are classical oscillators perturbed by the action of the quantum ”vacuum”. The
vacuum is able to drive distinguished parts of the oscillators space and momen-
tum co-ordinates, which we comprehensively call the hidden degree of freedom
(HDF). This last perturbs, in turn, the oscillation center time-law x(t) (x =
classical degree of freedom space-co-ordinate), and causes deviations from the

oscillators classical behavior. The particle-vacuum interaction is dependent on



the time and on a parametric function named £(x), a sort of generalized de-
Broglie wavelength describing the radius of the interaction. This last is sub-
mitted to Heisenberg’s indetermination principle as to a parametric constraint
effective on the HDF oscillation amplitude and frequency. In our framework,
the Heisenberg principle takes a (proposed) classical-like interpretation, so that
the HDF behavior itself is described as a classical parametric oscillation [2]. The
oscillator classical degree of freedom (CDF) is then found submitted to a New-
tonian motion equation, whose energy theorem has the form of a (generalized)
Kapitza theorem (see equation (4)). This equation sets a bridge between classi-
cal and quantum mechanics. It is able indeed to give a classical-like description
of tunnelling phenomena and, by the effect of non-local initial conditions of mo-
tion, determines a CDF behavior looking to us consistent with a matter-wave
one. In our framework, the Schrédinger equation is indeed interpreted as the
statistical appearance of a initial conditions manifold set - statistics being in-
herent to the distribution of £(x) parameters, in turn determined by the motion
initial conditions [4].

To resume, within the proposed framework, we developed various contexts.

The first one (which we call PHME) is relevant to the description of a partial,
but primary effect we identified as the core of the particle-vacuum interaction:
this is a locally induced mass effect, interpreted as the vacuum local reaction to
the Eulerian velocity field of the particle in motion.

The second one (which we call SPND) takes into account the comprehensive
interaction resulting from ”space distributed” vacuum reaction points. It in-
cludes a complete interaction scheme, thus describing our proposed Newtonian
dynamics of the single particle. This is represented by the equation that we
consider to be the physical background below the matter-wave appearance.

A third context (here referred to as DBOE) is constituted by a framework
where, basing on the SPND equation, we describe both the density and drift
velocity field pertaining to a flowing ensemble of particles (always classically
modelled). By the means of a double-solution assumption in the SPND equation,
we advanced indeed in previous papers the hypothesis that it also includes the
information about the average velocity field relevant to a particles ensemble.

The SPND and DBOE contexts must therefore be submitted to extensive
comparative analysis with the orthodox quantum mechanical context (called
OQMC). Amongst other, some investigation can be carried out within the frame
of Hamilton formalisms. These last are indeed especially appropriate to give
evidence to both physical properties and mathematical symmetries.

In this paper, we want therefore to show that the Hamilton formalisms - both
classical and quantum-like - are able to describe all the physical contexts of our
interest. To this end, however, we introduce and investigate the performances of
some peculiar Hamilton functions which we call the ” Bernoulli” Hamiltonians.
They will be shown flexible enough to provide the desired complete descrip-
tions. The tasks will be accomplished through different steps introduced in the
following sections.

In the present paper I we resume the various contexts equations first, and
investigate classical-like procedures. In the following paper II the quantum-like



procedures will be discussed.

2 Theoretical Background

2.1 The primary HDF-effect (PHME)

The SPND equation (shown in equation (4)) can also be derived by a model
where a peculiar ”space distributed” vacuum reaction to the Eulerian velocity
field of the particle in motion is assumed [4]. By that model, we draw a distinc-
tion between what we call ”primary HDF effect” (a local one, evaluated at zero
value of the parameter £(x)), and the effect of the distribution of the vacuumn
distant reaction source-points in space (the ”distant effects” of the interaction).

In reference [4], equation (51), is shown indeed that the primary particle-
vacuum interaction (stationary part) has the form

Pypr(x) = f%&an (x) (1)

As anticipated, this is a (negative) mass effect, expressed by the coefficient —m.
The energy theorem expression corresponding to the mentioned action is

SV ) BO)FPrpr (x) = 3 Mg (x) £ () = F @)

M = m—6m (3)

In these equations, v(x) is the particle (CDF) Eulerian velocity field (x-componen
t), ®(x) is the potential energy corresponding to the classical force field imposed
to the particle and m.yy is the effective mass resulting from the vacuum-+HDF
action. We will refer, in the following, to equation (2) as the primary HDF-
affected energy theorem form for the single-particle dynamics, and the corre-
sponding physical context will be recalled by the acronym PHME (primary
HDF-induced mass effect).

In reference [4] we made the hypothesis that the effective mass can assume
values included between the classical mass value m and zero. The same assump-
tion subtends our present papers where m.r; (and its statistical counterpart
mff f) will however play a simple parametric role and will be processed as con-
stants by simplicity.

2.2 The single-particle energy theorem for Bernoulli os-
cillators (SPND case)

The single-particle energy theorem expression accounting for the ”full” (i.e.,
including the ”distant effects” of the interaction) HDF effect has been found in



reference [4] - equation (36), to have the form:
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§meffv —‘rq)(X)*%V—Q—i—C(V ) :En (4)

It is a relevant matter to add here the corresponding continuity equation (1):

pe(x)v(x) = 2vg (5)

In these equations, ”

is the second derivative with respect to the space co-
ordinate x, h is the reduced Planck’s constant, E,, is the quantum mechanical
energy eigenvalue for the particle in the potential ®(x), and C(v?) is a weak
function of v2. In this paper, we will generally assume C(v2) = 0 for the sake
of simplicity (). In the present section, the volume-flow vq is a constant and
p.(x) is clearly defined as a classical-like statistical density. Major discussion of
equations (4) and (5) is in the quoted reference. We will refer in the following to
equation (4) as the energy theorem form holding for the ”fully” HDF-affected
single-particle dynamics, and will recall the corresponding equations and phys-
ical context by the means of a comprehensive acronym SPND (single particle
Newtonian dynamics).

Equation (4) holds for a single particle but also takes a peculiar statistical-
ensemble average form, able to describe a drifting particle ensemble behavior [4].
We have to introduce this case with a few details. This is in the next section.

2.3 The drifting Bernoulli oscillators ensemble (DBOE
case)

The mentioned form is (see equation (56) in ref. [4]):

1 9 h? v’
5 MoV, +2(x) — ﬁé =En (6)

Here m); , is an equivalent statistical mass (*) and v, (x) is the drift velocity
field (x-component) of a particles ensemble. The correlation between v, (x) and
the density p(x) is

POV, (x) = 20(x) (7)

IThe quantities v(x) and v, (x) afterwards are originally defined as x-components of the

” "

respective vector fields. By conciseness, they missed their index ”x” so that in some circum-

stances (as in equations (5), (7) and similar ones) the same symbols will just be used for their

corresponding absolute values.

2In the contrary case, all the treatments here should be renormalized by embodying C(V2)
into an effective kinetic term, i.e. by defining a new effective mass; due to the function
weakness, a constant assumption for this effective mass still looks appropriate for a first
glance as in these papers.

3Here again, the function C(v%) is taken negligible or may be thought embodied into

Illfff.



The function v(x) is the ensemble volume-flow rate. An expression for it is given
in [4]. In the present context, the density p(x) is, from a mathematical point of
view, coincident with a quantum statistical density (*). Indeed, the context itself
is intended for a close comparison with a standard (deep) quantum-mechanical
framework (for comparison with the quasi-classical case the continuity equation
associated to this context should turn out back to the form (5)).

In the following, we will rarely specify again whether an assumed density p
is a classical or a quantum one. That will be easily understood by the context:
in practice, the density is a classical one (continuity equation (5)) in the PHME,
SPND cases and in the h— 0 limit of the DBOE case. It is instead a quantum-
like one in the DBOE (deep quantum context) and OQMC (continuity equation
(7) or (9) respectively) cases.

Equations (6)/(7) are conclusively the energy theorem form holding for the
case of a drifting ensemble of Bernoulli oscillators. These equations, as well as
the corresponding physical context, will be recalled all across this paper by the
use of the quoted acronym DBOE.

2.4 The orthodox quantum mechanical (OQMC) case

This is represented by the known hydrodynamic equations [5]:

v§? h? /p"
o +d(x) — om 7 E, (8)
pVS = const 9)

The particle wave-function corresponding to this formulation takes the form

U, (x) = U(x) = £/p exp(iS(x)/h) (10)

where the quantity S(x) is the relevant quantum phase function.

2.5 Remarks

In order to give a unified expression to various cases at investigation in our
papers, we will use an auxiliary quantity VS*. Depending on the cases, V.S*

may be set equal to \/mm,yyv or  /mm?; v, (in the SPND and DBOE cases)

or just to the quantum-mechanical quantity V.S when the orthodox quantum
mechanical context OQMC is at hand instead.

4Yet on the interpretational side the physical sense of the density, both in the SPND and
DBOE cases, is a classical one: it classically comes out from statistical ensembles of Eulerian

velocity fields and is not a ”quantum probabilistic” one.



In the present paper, we want to show that all the energy theorem forms
(2), (4)/(5), (6)/(7) and (8)/(9) can be obtained by the means of (generalized)
Hamilton formalisms. The task will be accomplished in a number of steps. We
will first show that the primary form (2) can be obtained by means of a classical-
like formalism. Then we will show that the expressions (4)+(7) (with C=0
or ”embodied”), and the orthodox quantum-mechanical Madelung formulation
(8)/(9) as well, can - all of them - be described by an analogous, generalized
formalism. These tasks are demanded to the present paper I. Quantum-like
procedures will instead be introduced in paper II, and we will show that they
are equally able to describe all of the relevant cases to us.

What we will call an ”optimized” (in some respects, to be discussed) quan-
tum formalism will also be conclusively introduced at the end of paper II.

2.6 Classical Hamilton formalism

The classical orthodox Hamilton equations [6] for the particle dynamics base on
the definition of the canonical momentum p=mv so that we have (Pupr(x)=0
now):

H(px) = Q(px) +8(x) = —m p*+ B(x) =E (11)

2m

As is well known, the Hamiltonian H(p,x) turns out to be a motion constant
over the {p,x} - domain relevant to the particle classical dynamics when the
following (Hamilton) equations are satisfied:

OH(p,x) _p _dx _
B =L@ V(X) (12)
OH(px) _dp  dv _ d%
T T Vo(x) = T =W =m—s (13)

Now we want to set up an extended formalism able to account for our described
PHME framework first. This is done in the next section.

3 The Bernoulli-Hamilton formalism

In this section, what we call the Bernoulli Hamiltonian form will be introduced.
It consists of a simple mathematical extension of the classical orthodox form.
As it will be discussed more in the following, the Bernoulli Hamiltonians can
be operated with both classical, standard Hamilton equations or non-standard
ones. These last will be introduced in the sequel. Although the application
domain of the Bernoulli Hamiltonians and non-standard formalisms appears to
be a very broad one, we will discuss their properties essentially by working out
our physics of the Bernoulli oscillators.



3.1 Hamilton formalism for the Bernoulli oscillator with
HDF-induced mass effect (PHME case)

In this case, we could accomplish our task by simply replacing the mass m in
the orthodox formalism with the effective mass m.¢s, and we could then exploit
the classical method; but we have another interesting procedure to propose. To
this end, let us consider the following function and positions:

Hp(px) = % p?+®(x) + i%ﬂ(X) = % P +P(x) — \/%pV(X) =
_ i 2 - P(p)
=g P +( >+pC(X) (14)
o(x) = ivmémv(x) = z%fg (15)
o 21/0
vl = pe(x) 19

P(p) = \/%QVOP (17)

The Hamiltonian Hp(p,x) (14) differs from the orthodox classical form by the
addition of a linear term in the momentum p. This last is defined different from
the orthodox one, see equation (19). The proposed form is originated by analogy
with the standard expression of the Bernoulli theorem in classical hydrodynam-
ics. By equation (15) we see that the momentum o(x) is defined proportional
to the classical momentum mv(x). By equations (14)=(17), now, we also see
that if the Eulerian velocity field v(x) is written as a function of the volume-flow
2vg and of the corresponding classical statistical density p.(x), then the addi-
tional term in the Hamiltonian expression looks as a (uni-dimensional) pressure
divided by the density p,.(x) - i.e. is a hydrodynamic-like term. Therefore we
will call the Hp(p,x) function and similar generalized expressions the Bernoulli
Hamiltonians.

Equations (14)+(17) therefore provide us with a specific example of a Bernoul
li Hamiltonian. Some other examples will be found in the following. The general
Bernoulli Hamiltonian form includes complex functions p and o, and can also be
worked out by the means of (so-called here, to be expounded next) non-standard
Hamilton equations. Here the simple protoype case (14) still rests on standard,
classical forms for the Hamilton equations. The form (15) for the function o is
specific for the case at hand here (the PHME case).

Using the standard, classical Hamilton equations (12) and (13) in (14) we
find

OHp(p,x) D dm dx

o = 5 — EV(X) = _t = V(X) (18)



p = (1 + \/%) mv(x) (19)

OHp(px) dp [ém dv
- ox Codt ~Vo(g + m de (20)
Then we also find
2
~V&(x) = (m — 6m) Vj—l = me,ffl% (21)
1 2
Hp(px) = 3 Meffv + ®(x) = E = const (22)

These equations represent our PHME context.

By the same equations it is clear that, in our proposed formalism, we have
taken into account the potential ®ypr(x) (1) by inserting it into the expression
of the quadratic momentum function Qp(p,x) defined as follows:

2 2 | smv? _ p?
= QP; +ipy/ =/ -5 = 2= +iL\/2mppr (x) (23)
m m m

This equation enlightens the correlation between the momentum o(x) (15) and
the potential ®ppr(x). It is clear, however, that this correlation holds as such,
in the proposed example, because the Bernoulli Hamiltonian has been operated
with standard, classical Hamilton equations. This is not always the case, as will
be seen in the next sectiomn.

Conclusively, we have shown by the means of equations (14)=(22) that the
energy theorem form (22) can be obtained via the standard, classical Hamilton
equations applied to the Bernoulli Hamiltonian function Hg(p,x) (14).

As a last remark we note here that a simple Bernoulli Hamiltonian form

1
Hp(px) = 5—p° + i% md(x) = E (24)
with associated standard, classical Hamilton equations is able to reproduce the
orthodox classical particle mechanics. If we write indeed

= % + é 2m®(x) = d—)t( = v(x) (25)

OHp(p,x)
Op



= = 26
O 2md(x)  dt (2)
then we find
dv
—Vo(x) = m— (27)
1 2
3 mv-+®(x) = E = const (28)

3.2 An invariance property

The previous considerations also enlighten an interesting property of the Bernoulli
Hamiltonians: once the function o is written in the form v/o2 | is very easy to
show that the following forms

Hi(px) = 5= b’ +i2Vo7 + 0 = F (29)
Hp(px) = % p’ + Z’%VUQ +2mO(x) + &(x) - O(x) =E (30)

are equivalent to each other, whatever the potential ©(x) is, if the Hamilton
equations are assumed. This invariance property will also hold in the case of
the non-standard formalism introduced in the next section, and will be used in
the following.

Up to this section, we have introduced a formalism where the Hamilton
function includes a non-standard linear term in p but the Hamilton equations
still are the standard, classical ones. We will now introduce what we call in this
paper a non-standard formalism. This last will rest on different definitions for
the Hamilton equations.

3.3 Non-standard Bernoulli-Hamilton formalism

In order to introduce a generalized form for Hamilton equations we start con-
sidering the equation

H(p,x) = E = const {x eV} (31)

Here H(p,x) is a Hamilton function defined in a x-space domain of extension
V. Taking the derivatives of the previous equation we can also write it in the
form

OH(p,x) OH(p,x)
ap P o

dx =0 (32)



We introduce now a generalized expression for the first Hamilton equation set-
ting

OH(px) _ pns

op m

Here p,s is a non-standard momentum, i.e. it can be defined different from the

orthodox quantity mv. As a consequence of equation (32), the second Hamilton
equation will be written

(33)

OH(p,x ns d d
_OH(x) _ pusdp _ dp (34)
Ox m dx dr
In this equation, we introduce a ”force” F and a time-like variable 7 whose
definitions are clear from the equation itself. More specifically, we have

T:m/ dx (35)

F =

an

The variables F and 7 have auxiliary roles in our formalism. They can be
identified with the ordinary force and time variables only in the limit when
Pns — mv, i.e. when the orthodox case is recovered.

The physical interpretation we give to the formalism introduced in this sec-
tion is that the Hamiltonian function H(p(x),x) represents an invariant of the
co-ordinates p(x), x all over the relevant x-space domain - independently of the
existence of the time-space relationship x=x(t) characterizing the standard case
in classical mechanics. Once an expression for p,s is assigned, indeed, we can
find the expression for the ”time” 7 - this last has merely the role of a dependent
variable here. Given a function H(p(x),x), whenever a definition for p,, (or p) is
assumed to characterize some relevant momentum within the physical context
to be described, the first Hamilton equation will provide us with the correspon-
dent definition of p (or pys). Within this framework, both the quantities p and
Pns are actually "non standard” ones. Indeed, the momentum p itself is not
generally coincident with the standard classical momentum. Conclusively, the
quantities p and p,,s define the physics of the system and, in turn, the function
H(p(x),x) itself.

As a first example of use of the proposed formalism, we will show in the next
section that - by the means of an appropriate momentum definition - it will be
found able to provide us with the orthodox hydrodynamic formulation of the
quantum mechanical wave-equation.

Before showing this, however, we want to introduce here a general case of
interest. This is characterized by the following H(p(x),x) function and py,s
definitions:

Hp(px) = % p? 4+ O(x) + ip% —E (36)
Pns = \/mrneffv2 (x) — 02(x) (37)

10



Using for this case the first Hamilton equation (33) we find :

OHp(x) _p .0 _Pns _ 1 2 2
o> —m i m T m *m\/mmeffv (x) —0*(x) (38)

so that

2

o (x) = 11rneffv2(:><:) +o(x)=E (39)

1
Hp(px) = 5P, + (x) + 7=~ = 5

2m

With the assumed definition for p,s, whatever the function o(x) is, the pre-
scribed Bernoulli Hamilton function results into the primary energy theorem
form (2) (PHME) relevant to us in this paper. This property will be used in
the sequel. When the quoted definition (37) for p,s is assumed, we will call
the momentum p,,; itself a ”central” momentum. Correspondingly, we will also
call - always for the purposes of this paper - ”canonical” the corresponding mo-
mentum p, Hamilton function Hg(p,x) and momentum function Qp(p,x). With
these definitions, the classical quantities themselves: p, H(p,x) and Q(p,x) ap-
pearing in equations (11)=(13) are canonical and the momentum moH(p,x)/dp
=mv in equation (12) is central (¢ is taken zero and m.;; =m in the stan-
dard classical case). It is easy to show that the momentum p and Hamiltonian
Hp(p,x) given in equation (14) in the previous section are also canonical and

the momentum mdH 5 (p,x)/dp = mv(x) is central (With o =1V mémv(x)).

3.4 The Bernoulli Hamiltonian and the quantum mechan-
ical wave equation

In this section, we introduce first some useful definitions of quantities - to-
gether with some discussion - with the final purpose to show that the quantum-
mechanical wave-equation (hydrodynamic formulation, OQMC case) can be ob-
tained by the means of our non-standard, classical Hamilton formalism.

In a previous paper (reference [3], equations (73) and (74)) we showed that
the Bohm potential Ug(x) in the hydrodynamic formulation of the Schrédinger
equation is equivalent to the indicated work expression corresponding to the
"full” (thermalization constant x = 1) action of the quantum pressure P. The
relevant equations are as follows :

P P h2 o\’
T2 )

(pressure definition), and




(indicated work expression). Therefore we can write again the equations (8)
and (9) as follows:

V52 dPy
om + @(X) + T = E, (42)

pVS = const (43)

These equations are coincident with the hydrodynamic formulation of the
matter wave equation but they make clear our interpretation (°) that, for a
many-particles ” thermalized” (x = 1) system, the Bohm potential is represented
by the indicated work term [ dPy/p.

We have now to recall the expression of the momentum field pg,, in quantum
mechanics:

ho(p R T
Pgm = VS — ZE ; = Pgm + Pgm (44)

The quantities pfm and pém are the real and imaginary parts of the complex
quantity pg,, respectively.

Using the pg., and pressure definitions in equations (44), (40) we can also
write

2 AN 2 7\ 2
@:E,/pldlth_ AN (45)
P P P 4m \ p 8m \ p

2 /N 2 12
/Pldl — b7 (p_) _ Pam (46)

p  8m\p 2m
This last equation allows us to interpret the quantum momentum field imaginary
part pém as the momentum a particle would assume if (hypothetically) all the
expansion work was transferred into its kinetic degree of freedom. We might
call the term pém a ”virtual” quantity, because the energy transfer mechanisms
within equation (42) anyway include energy balancing with other degrees of
freedom. Since the full pressure-dependent potential also includes the thrust
term P/p, we are brought by analogy to define a similar momentum field term
Py, accounting for the virtual energy transfer from this potential to the kinetic

degree of freedom. We write

,&:@:ﬁ p,’:,i I’ (47)
P 2m  4m 2m am

p

Conclusively, the momenta pém and py,, are representative of the motion quan-
tities the thrust potential and the expansion work would transfer to the particle

% Also found in other authors: see f.i. [7 <+ 8].
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when no other mechanism is influent. The momentum pj,, is given by the ex-

ression i, /hp! . Note that this expression lends itself to be easily generalized,
p Pim p v g ;

bringing us to consider the extended form 1/2'7"qu’m - in which the VS contri-
bution to p,,, has been included. The usefulness of this extension will be soon
understood.

The momenta pgm and py,, being defined on the basis of independent (since

they are virtual) effects, we can assign them a quadrature relationship, and first
define a comprehensive complex momentum p, as a function of ipém, as follows:

D(iPhm) = P + 1D = 14/ PPL 4 Do, (48)

It is interesting to go even further and we define the generalized momentum p,

function of pgyy, :
P(Pgm) = /1Py + Pam (49)

The momentum p can be considered as the comprehensive quantity representing
the motion quantity virtually equivalent to the action of the indicated work
term (45), while the momentum p is a correspondent, generalized expression
importing the term VS into equation (48). Now we consider the following
complex momentum function Q%" (p,x) and Bernoulli Hamiltonian:

m 1 D gm _ 1 L P
Q%" (px) = %PQ + 25‘7?3 = %PQ*M/ —ihPg, (50)

ot = —, [ —ihpy,, (51)

m 1 [ P
HE" (0x) = 5= PP+ ®(x) — iy /bl — (52)

If we set HS"(p,x) = const = E,, and take the expression (49) for p it is easy
to show that the Madelung equations set

VvS§? h? /o’
o T d(x) —%—\/ﬁ = E, (53)
pV.S = const (54)

is recovered. Conversely, it is now clear that equations (53), (54) can be obtained
starting from the proposed Hamiltonian form H%"(p,x)=E, (52) if we assume
as a first Hamilton equation the following :

8Hq7n 3 ) m ns
B (P,X) p 7 . DPq b (55)
a Iqm
P m m m m

13




In this formalism, we have replaced the standard first Hamilton equation, which
normally defines the classical momentum mv(x), with an equation introducing
instead the quantum momentum py,, as the relevant non-standard momentum
Pns. 1o complete our set of Hamilton equations, we now write

oH%" (p,X) . P d . Pgm dp dp
7387}( =F = —VCI)(X) + 15&\/ 7hlp:1m =—E—=— (56)

m dx _dr

mdx mdx
T = Do :/{VS% (%,)} (57)

According to a previous amnalysis, in the second Hamilton equation we have
introduced the complex, time-like variable 7 which might be called ”the quantum
time”. We want to remark here again that it has only a parametric, auxiliary
role in the framework and by no means can be interpreted as the ordinary
time-variable (unless we take a classical (h — 0) limit) in the present context.

Using equations (52) and (55)/(56) we find

m 1 2
n? /5" (VS)? i ,
VP s . .
s OO g g (pVS) = F (59)
so that
(oVS) =0 (60)

These equations representing the hydrodynamic formulation of the wave equa-
tion, we conclude that our Hamilton formalism is able to replace the standard
quantization procedure. The formalism is based on the use of the complex form
Q%" (p.x) (50) and is enlightened by the physical interpretation we have given
to the variables p and pgm-

Both the physical and mathematical congruence of the procedure here dis-
played interestingly reinforce the interpretation, expressed in equation (41) and
quoted papers, of the Bohm potential as an indicated work.

The procedure we have shown in this section lends itself to some reelabora-
tion, allowing us to display the possibility to follow an interesting ”classical ”
path to set up the quantum-mechanical wave equation itself. This path consists
in just some logical and mathematical reasoning, and will be shown able to at-
tain the right functional dependence of the Bohm potential on the density (41) -
although it is unable to provide the value of the physical constant (the Planck’s
constant, a quantity which can only be determined by the experiments) there
involved. However, our purpose is just to show the procedure, worthy to be
discussed here. We have formally to start with the equations (42), (43), here

14



reported again (in order to stress that the starting point has a classical charac-
ter, let the energy E be not yet identified with a quantum value for now). Let
us call simply P the pressure and we have:

vs? dP
o 200+ [ = E (61)

pV S = const (62)

These equations have just the formal appearance of the classical flow-of-mass
theorem. We do not mind here a lot about the physical meaning to be attributed
to VS. Following some - previously introduced - considerations about the virtual
momenta correlated to an indicated work potential, we can first define the non-
standard momentum (let us call it pgy, already):

Pam = VS — iy [2m / Pd% (63)

to be used with a Bernoulli Hamilton formalism:

1
Hp(p,x) = — p>4+®(x) + io2 — B = const (64)

2m m

aHB (p,X) Pgm

== 65
o - (65)
From the last two equations (%), we obtain
His(pox) = m b2+ +0(x) —E (66)
B\P:X) = om pqvn om X) =

Still we need an appropriate definition for o; by now, we are brought, by sym-
metry considerations, to assume that

o? 2 2 . 1
o= = 1(Vs) + ] (z,/?m / Pd;> (67)

This equation means that the energy carried by the momentum o is taken as the
(symmetrical) addition of the same functional effects (described by an operator

f) we attribute to the two independent momenta we have got available within

6By the sake of brevity, henceforth in this paper we will always omit the second Hamilton
equation and rest on the equivalent condition H g (p,x)=E= const as done already in equation

(64).

15



the context, VS and —iy/2m [ Pd (1/p). Looking at equations (61) and (45), it

is now reasonable to characterize the operator f as follows:

] 1\ P
f<z 2m/Pd;>p (68)

Equation (66) can then be written indeed

VSQ W /Pd +— +f(v5>+ o(x) = E (69)

so that,by comparison with equation (61), we find:

5 VS 1
flvs) —ix2 zm/Pd— —0 (70)
m p
This last equation must be compared to the continuity equation (62), which
can be written in the form (S’ = VS):
o
S"+=8 =0 (71)
0
By the comparison, the easiest inference is that

F(VS) = s— s" (72)

/
i Qm/Pd1 = s (73)
P p

Here s is an unknown constant to which we have reserved the physical di-
mension of an action. Now the three equations (68), (70), (72) in the unknown

quantities P, f can easily be solved by the following position:

so that

so that we have finally
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9 11
%P - 25—% (76)
m
or
2 2 /]
VS ) 2tV

2m

~— = E=E,
" (77)
By comparison with the wave-equation (53), then we recognize that the ex-
pounded procedure attains the right functional dependence for the Bohm po-
tential although - as advanced - it does not allow us to know the value of the
constant s. It is clear that we will determine it as h/2 but to this end we shall
have ”recourse to the experimental evidence”.

Conclusively, the positions (63), (64) and (67) + a "requirement of conti-
nuity” (71) are able to bring us to the Madelung equations, circumventing the
ordinary quantization postulates.

3.5 Classical Hamilton formalism for the Bernoulli oscil-
lator Newtonian dynamics (SPND and DBOE cases)

In order to obtain equations (4), (5) and (6), (7) - i.e. in order to describe
the SPND and DBOE cases, we can set up a formalism analogous to that ex-
pounded in the previous section. Once established the basic equations we will
switch on a slightly different version, lending itself to a more practical, physical
interpretation.

We define the following (ad hoc) non-standard momentum p,,, momentum
function @ p(p,x) and Hamilton function Hg(p,x) :

pn = V8" —iCh (%) (78)

1 .p
Qp(px) = 5 p’+ L o8B (79)

ou(x) = — | —ih [%s ich (%)] (80)

In these equations, ¢ and € have to be assigned according to the case at hand
and ¢ is defined as

—1 (81)
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We also write

Hp(px) = %pg—&-@(x) — iy —ih l%sw —ich (%) ] % —E, (82)

€

As first Hamilton equation we will take

OHp(px) _p 1 | [%s*" —iCh (p—> ] —bn (83)
8p m m € P

Using the previous equations, we obtain by simple calculations

1 gge )"

5V oy = Be 00 (84)
dlnS*
~ dlnp (85)

From these equations, it is now easily shown that the mentioned equations set
(4), (5), SPND case) can be recovered first.
This is provided by a choice of coefficients ( = —2, ¢ = —1; and by setting

V" = /A7 v(x) (56)

It is now interesting to note that the same general equations (78)+(85) are
also able to provide the Madelung quantum mechanical equations set (OQMC)
(8) and (9) when the choice for the coefficients is { = 1/2, e = —1, and VS* is
set equal to V.S, In this case, indeed, the momentum p,, will be found coincident
with pgm (44) and the momentum op equal to the corresponding momentum
%™ (51). The framework expounded in the previous section is then completely
recovered.

Concerning the DBOE case, we have to premise a brief discussion to show
the formalism effectiveness. This is as follows.

On a general point of view, both the quantities ( and € introduced in our
previous equations should in principle have been considered functions of x, just
to account for the DBOE physical occurrences. But in practice, our formalism
can plainly be worked out with constant values, in all cases. Indeed in our
physical model - as shown in [4] - the space is divided into two Regions, I and IT
(Region I is the ”internal” one, while Region 1T is defined as the extreme external
boundary attainable by the particle). In a brute but practical approximation
for the present papers, we might say that in both regions typical asymptotic
behaviors of ¢ in the DBOE case are constants: we find ¢ ~ —1 in Region I,
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and € = 1/4 in Region 11 (7). Now the e variation vs x is actually limited to
the transition zone between the two domains. Therefore, the DBOE case is
characterized by the values ¢ = 1/2, ¢ = 1/4 in Region II (then in this region,
where we find v% x /p and we also take mgf = 0, it looks just confluent into
the OQMC wave-equation (77)); and ( = —2, € & —1 in Region I (in this region
it will be confluent into the SPND case). From a physical point of view, this
means that the statistical ensemble of trajectories has a small spread in Region
I, and a more important one in Region II.

In the present couple of papers, we chose therefore to investigate the DBOE
case only in the Region II (DBOE!!), where is affected by € = 1/4; in the other
region, the same context with € & —1 would just be confluent into what we find
for the SPND case, for which ¢ = —1 indeed. Keeping this in mind, we will
have conceptually to assume that a full description of the DBOE case asks for
an interpolation of results across the two Regions of space (%).

Equations (78)+(85) with ¢ = 1/2, ¢ = 1/4 will therefore provide us with the
DBOE equations (6)=(7), although only in their quoted, specific determinations
for Region II.

Within the expounded circumstances, it has however still to be noted that
both in the SPND and DBOE!! cases the momenta p and o5 given in equations
(83) and (80) respectively are not of a plane physical interpretation. The only
plane case in the formalism is the quoted OQMC case where the quantity —2¢ /e
is equal to 1, and p (49) and op (51) are easily correlated to p, (which last
identifies in this case with pgm).

As it has also been advanced at the beginning of the section, we want there-
fore to renormalize our formalism according to the following considerations.

Using a property introduced in equations (29) and (30) we can write again
equation (82) as follows :

m 1 5, . — in (2 )
HqB (p,X) = % pQ*Z 7th,’n% + 5= (?C + 1) S N+(I)(X) = En (87)

2m

This Hamiltonian form is equivalent to that expressed in equation (82). Tt
displays the new function o} equal to

Ay
o = | —ih | S — ik (-)
p

and an extra potential energy term i [2(/e + 1] S*/2m - which we will call i®g

== /=i, (88)

"In Region I the volume flow v(x) appearing in equation (63) of reference [4] has a small
derivative, while in Region IT it is shown to have a dependence on the 5/4 power of the density.
81t is clear that in more complex calculations functions ¢(z) and €(z) could be drawn,
able to bring the procedure to the desired task. Indeed, if we assume negligeable derivatives
for ¢(z) and e(z), the DBOE context can practically be recovered by the same equations
(78)+(85) replacing ¢ with {(z) (-2 < ¢((z) < 1/2), taking—1 < €(z) < 1/4, and setting

Vs* = \/111 mfff"D (x).

19



- into the x-dependent part of the Hamiltonian. By the first Hamilton equation,
the momentum p will now be found equal to

P = Pn + i/ —ihp), (89)

The renormalized version here introduced of the formalism is equivalent to the
previous one as regards the final results, but looks to us more interesting because
the momenta p (89) and o7 (88) can be interpreted physically in a way analogous
to what has been done for the OQMC correspondents in equations (46), (47).
We recall indeed, from reference [4], that the HDF potential has an expression
where the term —h?v?” /2mv? is relevant. If we first consider here the SPND

case with ( = —2, this term can be written :
h2 V2// h2 p72//
Trpr (x€(x)) = 5 -5 = 5 T */ko(/?:l)dg(ﬂ:l) =
— —o(pDelp ) + [ slp1)dko(e1) (90)
h2 p72” A2 o / o 2 A , pl 2
LY o ) Y (1 I/ (- T L A ./ 1
2m p—2 2m <p> + <p> m’n 2m (91)
pl 2
T = — 1)dk 1 92
e (92
—oph = k(o )a(p,) (93)
Qmpn = Kolp,1)g\p,

These equations show - in a way similar (but dual, due to a sign difference) to
what expressed by equations (46) and (47) - that the momenta ipZ and \/—hp? '
have physical meaning as constitutive of the kinetic energy virtual equivalents
of the work and thrust potentials fgdko and kg associated to the variables kg
and g (for the definition of these quantities, see references [1 = 4]: they are the
HDF elastic function kg o p* and its correspondent pressure g. Consider also
that in the present context a classical-like density p(x) = 2vq/v(x) is assumed).

On the other hand, since the DBOE case is practically confluent into the
SPND (Region I) and OQMC (Region II), a plane physical interpretation of the
momentum fields there involved is still insured.

As a conclusion, we note that the quantity 2(/e = 4 in both regions for
both cases. Then we are able to state finally that both the DBOE and SPND
contexts can be described by the equations set

. 1 . 50 .,
HE" (px) = %pgfz fzhp;l% + ;—mS "+®(x) =E, (94)
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e e (%) (95)

with appropriate ¢ values for both contexts and relevant Regions. Here, in all the
cases of interest to us, the momenta p, p,, and ¢}, = —/—ihp/,can be regarded
as quite simple physical representatives of the HDF potential. This renormalized
formalism looks to us more appropriate for the sake of direct physical insight.
Conversely, we have to remark that now giving a simple interpretation to the po-
tential g = 5h5*”/(2m) might be considered the challenging task (demanded
to further investigation; but see also Part II of this work).

4 Conclusion

In this paper, the physical and mathematical contexts corresponding to the
acronym cases PHME, SPND, DBOE and OQMC have been fitted into Hamilton-
like formalisms. The Hamilton functions we introduced are named Bernoulli
forms and include a linear term in their expressions. By a sake of congruence,
we made the requirement that the appropriate coefficient (see equation (94)) is
proportional to the square-root of p!,, where p,, is the momentum defined in the
first Hamilton equation (95). The requirement caused the potential i®g to pop
out of the quadratic function Qg (79).

In our opinion, this circumstance is likely due to the fact that the physical
information brought by the potential i®g is quite different and independent of
the one expressed by p and p,, characterizing our formalism. It must be directly
correlated to some microscopic effect with a very definite phenomenological base.

Further re-normalization of the momenta p and p,, definitions, able to bring
back the potential i®g into the quadratic form Qg - and saving congruence,
is however conceptually possible. But it is easy to show that, to pursue this
task, we should be able to solve a Riccati-like equation in the complex plane. If
even we could, the resulting momenta expressions would certainly be found too
much involved to be usefully interpreted within such a framework as we have
introduced.

The potential i®g, however, is zero in the OQMC case and different from
zero in the two other cases, SPND and DBOE. These two last are just the con-
texts we want to promote, within our investigations, as the classical equivalents
(or competitors) of the OQMC - the orthodox quantum-mechanical case. Then
whenever the physical interpretation we give to the quadratic Bernoulli forms
Qp as the energy associated to the momentum p is accepted, investigating the
physical meaning of the excerpted term ¢®g or correlated quantities should dis-
play a potential for deeper understanding and comparison amongst the various
cases.
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