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Summary - In a few previous papers, we discussed the fundamentals of the so-
called Bernoulli oscillators physics. The Bernoulli oscillators are classical entities
whose behavior is influenced by a ”hidden” degree of freedom, in its turn excited
by a quantum vacuum action. The investigation brought us - within assessed
approximations and limits (uni-dimensional motion) - to propose a Newtonian
motion background below the matter-wave behavior. In the present couple of
papers, we give a formal description of the Bernoulli oscillators classical degree
of freedom mechanics, by the means of both a classical (in paper 1) and a
quantum-like (in the present paper IT) Hamilton formalisms. The quantum
procedure operates on what we call the Bernoulli Hamiltonian functions. There
are many different sets of parameters bringing the quantum formalism to the
desired fits, so that the most interesting (at the present investigative stage) cases
are discussed. We provide finally an ”optimal” framework, operating on the
particle-vacuum primary interaction (a source context to us, called PHME), and
we show it able to take out the distant effects of the interaction. This procedure
describes our contexts with improved compactness and interpretability. Physical
interpretation matching the mentioned formalisms is provided step-by-step.

PACS 05.90. - Other topics in statistical physics and thermodynamics

1 Introduction

By our investigations [1 + 4], we promoted a peculiar model of the oscillators
physics which we named the Bernoulli oscillators physics. The model bases
on a classical-like description of the oscillator-vacuum interaction. It originates
various physical contexts, which we call PHME, SPND, DBOE (to be compared
with both the corresponding purely classical and quantum-mechanical orthodox
(OQMC) contexts). Details about these models and topics can be found in the



quoted references and are not to be repeated here. This paper is the second
one of a couple, analyzing both our proposed ”Bernoulli” Hamiltonians (with
correlated non-standard formalism) and our physical models when submitted to
the formalism. In paper I [5], classical-like procedures have been investigated
already. The present paper II is dedicated to quantum-like procedures.

2 Generalized quantum formalism

In this section, we introduce a quantization procedure applied to our ” Bernoulli
Hamiltonian” forms. We want to show that this non-standard formalism is able
to match the equations pertaining to each of the three cases relevant to us, which
we call SPND (see eqs. (47)/(48)), OQMC (see egs. (33)/(34)) and DBOE!!
(egs. (41)/(42)). These contexts will also be identified in this paper by an index
j, with values 0, 1 and 2 respectively for the three.

Let us take, as a starting point, the following (Bernoulli) expression for the
Hamilton function [5]:

1 . o(x
Hp(px) = 5=p° + O(x) +ip o

= E (1)

Equation (1) has already been discussed, from a classical point of view, in
paper 1. According to a definition given there, we assumed in the classical proce-
dure that the Hamiltonian (1), and the implicated momentum p, are ” canonical”
quantities. The term means to us that p is defined in such a way that Hp(p.x) is
equal to the energy expression for the physical context which we called PHME
in previous papers (see equations (14)+(22) in [5]):

m, ;v (x)+P(x) (2)
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Hp(px) =

The PHME context is also taken as a reference for the quantization procedures
to be described in this paper. This means that when we will take a h— 0
limit in the procedure, the quantum momentum pW,, (x) (see (4)) will attain an
appropriate ” canonical” expression.

The quantity o is dimensionally a momentum, and is generally a complex
function :

o(x) = 01(x) +ioa(x) (3)

Appropriate forms for o(x) will be found in the sequel.
In order to set up a quantization procedure (1) based on the form (1), we
also introduce a quantum momentum operator

. . d
p= fzaha (4)

LQuantization in this paper only affects the space-dependence of the wavefunctions, and
not their time-dependence (assumed to be of stationary form).



Here a constant parameter o has been introduced. If « is set equal to 1, the
standard quantum-mechanical momentum operator is recovered; but, in our
extended formalism, we will also consider a-values different from 1. These last
will be determined by imposing congruence of the operational results with the
various equations to be matched at each time.

By equations (1) and (4) we now define the Hamilton operator

Hp(p, x, a) = ﬁ D2+ d(x) + mp”r(]:) +i(l-a) ”I(]:)

D (3)

The constant parameter a appearing in this equation is to introduce a linear
mixing of the quantities po(x) and o(x)p. This is for the sake of generality (p
and o(x) are non-commutating operators). In standard quantization procedures,
it is generally recommended to set the parameter a equal to 1/2 by the sake of
symmetry. In our framework, the values for a can, instead, be different from
1/2 and range - in principle - all over the field of real numbers (we even have
a — oc in some cases). The a values in the sequel will be determined, they too,
by a sake of congruence with the appropriate contexts.
We now introduce a H p-eigenfunction ¥, (x), solution of the equation

I:IB (137 X, a)‘lln(X> - En\I]n(X) (6)
This equation can be written

{L B2+ B (x) + mfa”(X) +i(l-a) ”(X>p} U (x) = EnTn(x)  (7)

2m m m

As anticipated, amongst our purposes here there is demonstrating that equation
(7) is able to result into the quoted equations sets in the paper: (47)/(48)
holding for the j=0 (SPND) case, (33)/(34) describing the j=1 (OQMC) case,
and (41)/(42) for the j=2 (so called DBOE!!) case.

To our end, specific determinations for the quantities «, a, o(x) according
to each of the cases at hand will be assumed. Note that the case o = 1, o(x)=0
trivially identifies the standard quantization of the purely classical Hamiltonian,
resulting in the OQMC case indeed; yet we are specifically including this case
into our analysis, both for the sake of comparison and because we want to show
that it is also possible to obtain the standard wave-equation by a non-standard
procedure with o(x)# 0.

We have also to remark that in equation (7) the energy E, will take the
role of an Hy-” eigenvalue” (in the standard mathematical sense, meaning that
it can be determined by solving the equation) in the cases j=1 and j=2 only.
This is a very well known property in the (OQMC) j=1 case, but here we want
to stress specifically that it also holds in the (DBOE) j=2 case. In this specific
respect, indeed, this last can be made mathematically equivalent to the OQMC,
as discussed in [4, 5], in a region of space (called Region IT) where the quantity
v‘,l7 turns out proportional to the quantum density.



In the j=0 case, instead, we face a situation where we cannot consider E,, as
determined by the equation itself (at our present investigation stage at least).
In our model by now, it has to be taken equal to the appropriate quantum-
mechanical energy eigenvalue by assumption.

Another most important remark, mirroring the one given in [5] (?) already,
is as follows. A comprehensive description (throughout all the definition space)
of our DBOE case by a quantum formalism with a wavefunction of the form (8)
(*) has proved too much involved analytically, because the coefficient e defined
in equation (12) turns then out into a function of x, and inextricable second-
order non-linear differential equations arise. Qur treatment is plainly analytical
with € taking constant values. Fortunately, in our physical model - as shown in
previous quoted references - the wavefunction definition space can be divided
into two Regions, I and II (Region I is the internal” one, while Region II is
defined as the extreme external boundary attainable by the particle). In both
regions, typical (asymptotic) behaviors of € in the DBOE case are constants: it
is found € = —1 in Region I, and € = 1/4 in Region II, so that the € variation
vs x is actually limited to the transition zone between the two domains. For
this reason, we chose in this paper to investigate the DBOE case only in the
Region II (DBOE!), where is affected by € = 1/4; in the other region, the same
context with € ~ —1 would just be confluent into what we find for the SPND
case, for which e = —1 indeed. Keeping this in mind, we will have conceptually
to assume that a full description of the DBOE case asks for an interpolation of
results across the two Regions of space.

3 General solution

Equation (7) can be mathematically investigated for different values of param-
eters a, o, 0 we may choose. For the relevant cases to us, one finds that a
number of values sets demonstrate able to bring this equation to the desired
fits. Sometimes, these sets will appear rather exotic for physical interpretation
or adherence to known references, so that in a final section a reelaboration bring-
ing to more plane circumstances will be given (case C). By our investigations,
however, we have found that interesting cases are obtained both in the limit
o — 0 (case A) and o # 0 (cases B and C). We will discuss with mathematical
details all of them. On the interpretative level, a comparison between them will
also be performed. This is also demanded to the final section in the paper -
where the most important results will be conclusively discussed.

In order to solve equation (7) the following ansatzs and symbols will be used:

U, (x) = U(x) = +./p exp [iR(x) /(1] (8)

P - - . . .
“The circumstances expounded in the very following have indeed been exploited already

in that paper, where some details more can be found.
3i.e. matching the Copenhagen interpretation: the squared modulus is the density.



W) = plx) (9)

cmy(x)

=cVS " =c¢
p(x)

R'(x) = Z—R % =cS"(x) =2 (10)
X X

The variety of symbols and constants is due to our sake of synthetic analysis
of all the cases together: as a matter of fact, the mathematical procedures are
unified, but the physical meaning of analogous quantities is different and they
must be kept distinguished. In these and following equations, the index n in
principle affecting all the quantities is dropped off by simplicity. The index j
has been introduced instead in the formalism, so that this last becomes able
to account in a general way for each of the three cases we are interested in.
The cases will be however also analyzed one-by-one in the next sections. In
equation (10), ¢ is some appropriate constant to be determined for each case,
and the other quantities will be introduced step by step. In the same equation,
the factor 2 is due to the density definition. The density includes indeed the
two countermoving particles streams in the space domain V* available to the
oscillators (*) and is normalized to unity according to the following equation :

/V* plx)dx = %fp(x)dx =1 (11)

The volume-flow rate v(x) may assume a functional dependence on x or a con-
stant value vy # 0 in the different cases relevant to us. When the DBOE or
the SPND cases will be at hand, we will assign to the phase function deriva-
tive VR/( the role of classical-like momenta, see equations (42) and (48). We
recall that, physically, the velocity field v,, appearing in the DBOE case is the
statistical average velocity of an open group of particles in our model: it can
be expressed as a function of the density p(x)/2 and volume flow-rate v(x), in
agreement with the stationary continuity equation. In the SPND case, con-
versely, the velocity field v(x) corresponds to v = vy = const and represents the
single-particle time-law dx/dt.

To be defined, when we quote the OQMC operational frame we have instead
kept the description adherent to the orthodox interpretation of quantum me-
chanics, by which we should not be allowed to interpret the quantum action
derivative VS as a particle velocity field (*).

In the DBOE frame, a statistical-effective mass mff g s introduced (see equa-
tion (6) in paper I). This term generally displays a dependence on x. But in
Region II where our calculations are effective, m? ¥ has to be set equal to zero
in practice (this is for congruence with quantum mechanical wavefunctions with
constant phase S, the primary case of interest to us). Oun the other hand, even

1We recall that our physical context is a uni-dimensional one.

9But actually, many modern authors and ourselves in our models believe - following the
known Bohm [6 = 12] interpretation - that Newtonian velocity fields are instead implicated
into the quantum mechanical phase gradient V.S.



in Region I, by the quoted analogy with the SPND case and just at our present
investigations stage, we will take a constant value. By uniformity and simplicity
of physical insight, therefore, the effective masses in both frameworks will be
taken along, and processed, as constants throughout the paper.

In order to characterize the volume-flow rate v(x) we introduce the following
quantity

dinS*  V'(x)p(x)
€= =

g~ PR 12

As far as the DBOE!! case is concerned, we will consider the specific law

®) ,57"x) R 10

ORI G REY) (13)

_5/
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This law (e = 1/4, Region IT) has been found in reference [4].
The corresponding relationship for the v(x) = vg = const cases implies in-
stead a value e = —1:
S™x) _ R P

5700 B o o

This law characterizes both the SPND and OQMC cases (in this last case, the
flow vq is, orthodoxly, a quantum probability density flow).

For many of the cases to be treated in this paper, we will use the following
mathematical procedure.

We use equations (4), (8)=(10), (12) into equation (7), and the ansatz

o9(x) = AR/ (15)

After lenghty but simple calculations we obtain :

o1(x) = a—h{(lfl) -‘1-6(17(1’)/)} %) = a_hAp’(X) =

> 2 ) 2 o)
_oh (R" P\ fhoapt 5 7 (16)
2 \R p 2 R p R

Setting ¢ = 52/(a?(1 — 7)) we have also

vS2  o?h? \/p"

2m 2m \/ﬁ

o1 (x) + a%dl(x) = E, — d(x) (17)



The coefficient A (a comfortable auxiliary quantity) is just defined by the same
equation (16) while the coefficient « is given by the expression

28\
v=—

5 (18)

Here again, the variety of the coefficients is obliged to merge into different
analysis paths. Equations (16) and (17) can now be specified for different choices
of the coefficients o, a and of the function oa(x) (i.e., of A=values). The choices
will imply different determinations of v, A and o;(x) consequently. Expressions
for the coefficients we have used can be found in equations (24) <+ (30) (relevant
to the case A in the next subsection), and in another subsection (relevant to the
case B) moreover. Equation (17) can also be written

VS A2 (p'(x>>, ) E, — ®(x) (19)

om 2m° \p(x) )  2m p(x)?

motfioeted) ool @

7’]:042{%(1%+€(1a7>>+i}:a2{%§}zc2 (21)

This general result will be analyzed in the next sections where all our cases of
interest will be distinctly examined. As is clearly shown in the last equation,
for all the cases we (purposely) set the coeflicient 7 equal to ¢?, so that the
equation (19) takes the final general form appropriate to us

"

Vs w2 pi(x)

— =E,—® 22
2m 2m p¢(x) () (22)
Equation (16) now also reads
W 4) 4
pVS* = const x p~ 7= T = const x ptte (23)

Equations (16)-+(23) are conclusively the general result we have been able to ob-
tain by means of the quantization procedure expressed by equation (7), together
with the positions (8)=(15) and n = 2.

Since we affected with an index j our different contexts, we have to keep in
mind that for each of them the quantity € can be found all across the paper by
the heuristic equation e = —1 + 55(5 — 1)/8.

3.1 Solutions with ¢ =0 (case A)

In the present context we will take



A—-0 (25)

. . )
ad=(-1)(~2) 3 (26)
10 =25 1)+ g 3) + o (21)
- =i(2 ) (28)
R (29)
(=3 (30)

The parameter A has been evidenced into the momentum o9(x) definition so
that this quantity goes to zero with A. The quantity o4 (x) goes to zero as well.
Our equations will indeed provide the meaningful results in the limit A — 0. The
parameter ¢ is the coefficient defined in equation (20) but is simply correlated
(by our position) to the parameter « in the context of the present section.

The previous equations give the (most interesting!-by now (%)) relationships
we have found, linking the different parameters encountered in our analysis, in
order that the three cases of interest are described by our formalism. They
have to be considered as simple ansatzs we have found to provide an unified
formalism including all the relevant cases.

In order to make clear how to use the equations, we note first that in some
cases they describe asymptotic behaviors : f.i., equation (28) means that in case
j=0 the quantity a — oco. Consequently, equation (27) shows that v goes to
zero as 5/(8a?) while A goes to zero as 5/(8a) (equation (26)) etc. Then our
equations (24)+(30) are just displayed in such a way that, once a value of j
has been chosen, all the relevant parameters values (or behaviors) can be easily
found by the reader.

6 As remarked already, the parameters and their relationships, bringing to the desired fits
within the context of this paper, are not unique nor exhausted by our choices. At present
we are not able to give specifical physical meaning to all of the different quantities A, A,
a etc. Deeper analysis, if worthwhile, should be performed in order to precise a selection
of parameters sets on the basis of their possible physical relevance. However at the end
of paper, where a rather different but ”optimal”procedure is proposed, easier interpretative
circumstances will be found.



Note here - as a final remark about our positions - that the momentum o (x)
turns out to be a linear combination of the two characteristic momenta %o’ /2p
and R/ which can be identified into the ¥(x) expression (8) :

, hp'x) .
o(x) =01(x) +ioe(x) = aA=——= +iAVR (31)
2 p(x)
This circumstance is analogous to what we have found in a previous discussion
involving equation (78) in paper I of this work.
Now we discuss the three physical cases of interest to us.

3.1.1 The orthodox quantum mechanical case (OQMC, j =1)

We first want to show here that the OQMC, or the standard quantum mechanical
matter-wave equation, can be recovered using the previous formalism. Our
statement here may look redundant (when we set ¢ = 0 and o = 1 in equations
(4)=(5), we obviously recover the well known, standard quantization procedure
of the classical Hamiltonian). However, in this section we want briefly to provide
all the relevant correlations between our proposed framework and the standard
quoted case. By the means of the previous equations, taking the j= 1 index case
in equations (24)+(30), we find the following values for the relevant coefficients

a=20=2/n=2a=—€=1 (32)

Here we do not need to define the coefficients 8 and ¢, but we can set them
equal to unity by simplicity. Now we obtain from equations (16)=(23):

"

VS PV g ~ B(x) (33)

2m 2m 0(x)

p(x)VS = const = 2muyyq (34)

To write these equations we have also identified our wavefunction with a
standard quantum wavefunction so that the phase R/8 = S* has been set equal
to the quantum mechanical phase S:

U(x) = £y /pexp iR/ (Bh)] = +/pexp[iS/h] (35)

As already clear, with the values (32) and the position (35), the procedure comes
to coincidence with the known standard quantization: then the OQMC context
is recovered and the orthodox quantum-mechanical equations in the Madelung
form are obtained.



3.1.2 The drifting Bernoulli oscillators ensemble case (DBOE'/, j =
2)

Here we will use the following equations, obtained from (24)+(30) for j=2:

‘We use moreover

B [ Pens

The effective mass mfff is introduced in paper I of this work, equation (6).

We find

a— oo (38)
ya — 5 (39)
aA—0 (40)

and, from (16)+(23):

"

VS*Qih_Q\/ﬁ(X)”_l Y )7'h_2v?7(x)
2m 2m /p(x) gMess Vo) T o v2 (x)

= B, - ®(x) (41

- 2, /mmp; v(x) )
VS§* = ——VR =, /mmp v, (x) = —————— o\ /mm}; p(x)1

Meyf p(x)
(42)
To obtain these equations, here we have also assigned, by the position expressed
in the first three terms of equation (42) itself, to V.S* and VR the role of

classical-like momenta proportional to the drift velocity v, (x). With these
equations, the DBOE!! context is therefore found reproduced by the procedure.

3.1.3 The single-particle Newtonian case (SPND, j = 0)

In this case we find from (24)=(30) :

S SV B
1=5= g —€= 1 (43)
a2—>%—>oo (44)



aA — a’y — = (45)

‘We also use:

Then we find, using (15)=(23):

VS k2 p2x)" 1 ) 72 v2(x)"
om - %pr(X) == §meffV (X) - ﬁvQ_(X) = En - (I)(X) (47)

2,/mm,
VSt = = VR = /I 7v(x) = ZvIe/i%o (48)

Meyy P(X>

Here we have identified, by position, the phase gradient V.S* with the
classical-like momentum definition ,/Mm.;,;v(x). With these equations, the
SPND context is recovered by the procedure.

3.1.4 Remarks and discussion

For the sake of rigor, we have to make an important comment to the cases j=0
and j=2 here discussed. We cannot look at the procedure displayed for these
cases as to a quantization procedure applied to the classical-limit Hamiltonian.
In the present context, indeed, the meaningful equations are found in the limit
A — 0 and the function o itself turns out to be zero in this limit. Expression
(1) actually reduces to the purely classical Hamiltonian in the ¢ — 0 limit.
But, when developing the quantum procedure with the Hamiltonian (1)— (5),
we first started with ¢ # 0; we introduced the parameter a, then we took the
limit of our equations for ¢ — 0 and @ — oc. Then the procedure provides
a term ac}j # 0 in equation (17) which would not appear if we started, in
equation (1), with 0 = 0. Since however the effective value of o is zero, we are
in a situation where the procedure starts with ¢ # 0 while the corresponding
classical-limit Hamiltonian is a different expression, actually the purely classical
one. Moreover, the o expression (31) includes a dependence on the quantum
action h, so that the term ao’ itself cannot be considered as a classical-like
quantity.

A similar situation (the o expression including h) will also be found in the
next section, where a quantization procedure with o # 0 is proposed.

These circumstances prevent us here from stating what we would consider
an interesting property of the quantization: that the h-dependent effects of the
interaction are just taken out of the PHME Hamiltonian (2) - although our start-
ing point in the procedure is quite ”close” to that. The same circumstances,
however, are in agreement with the fact that a quantum mechanical context is

11



generally considered as the one describing the ”primary” physics - the classical
mechanics being only considered as a peculiar limit of the quantum one for h

— 0. But in this concern, an opposite point of view can also be taken, and in
some respects this is just the one we promote in our papers: that the OQMC
context can be recovered and interpreted on the basis of a classical motion
background below the matter-wave behavior. One might therefore appreciate

much more having available a procedure starting with a very definite classical-
like Hamiltonian, and able to take out h-dependent effects by the means of a
simple quantization prescription. This is actually what we will be able to do
in the section ”case C”. Yet we have to remark, at the same time, that in a
framework where quantum effects are reduced to classical ones, the quantum
procedure looses its ”absolute” character, and the Planck’s constant itself will
turn out embodied into a comprehensive classical-like description. The PHME
context itself, therefore, should in any way not be considered as the absolute
source of what we call "the distant effects” of the vacuum interaction: this last
simply constitutes of a comprehensive action with a few distinguished appear-
ances which we have identified, in the theoretical context, in order to provide a
detailed description.

Further discussion about these points will still be found in the conclusive
sections. As advanced, an ”optimized” formalism (case C) will be introduced,
able to improve our framework performances in different respects. But the
interest of the displayed quantization procedure with ¢ = 0 must be stressed
however. Indeed, this can be resumed by the observation that the quantization
of a purely classical Hamiltonian (¢ = 0) generally proceeds by choosing a =1/2
and results in the ordinary quantum mechanics. If @ — oc is chosen instead, in
the procedure for a Bernoulli-like Hamiltonian a limit value for ac # 0 can be
exploited, and we are able to result into the SPND or DBOE contexts.

3.2 Solutions with o # 0 (case B)

As remarked already, accomplishing our tasks can also be done using different
sets of parameters values. Here we investigate the case where o # 0 (case B).
We will take different paths for the j=2 case and the two other cases. The
different cases are separately discussed in the next sections.

3.2.1 The orthodox quantum mechanical case (j = 1)

In case B it does not turn out possible to match the OQMC equations set
(33)/(34) by the means of the ansatz (15), with AR’ # 0, and keeping the
value for o equal to 1. This requirement is necessary to preserve the quantum
momentum field definition {p¥,,(x)} /¥, (x) = V.S —ihp /2p as it is meaningful
in the OQMC context. However, it can be easily checked by the reader that his
last can be recovered using the previous equations (4)-+(10) and the position

o = const x U ? = const x p~'exp[~2iS/h] (49)

12



whatever the const value is. We are allowed to take here
a=2a=1 (50)

We do not need to define § and ¢, and we can set them equal to unity by
simplicity. The wavefunction W, still identifies with the standard quantum one,
so that the phase R/( is equal to the quantum mechanical phase S. With these
positions, from equations (49)+(50) used into (4)+(10), we find the Madelung
equations set (33)/(34) again.

The remarkable conclusion here is that the standard quantum-mechanical
Madelung equations can be obtained by a "nearly orthodox” (7) quantization

of the Bernoulli classical Hamiltonian (1), but with ¢ # 0, given by equation
(49).

3.2.2 The drifting Bernoulli ensemble case (j = 2)

It is not possible to find a solution of equation (7) governed by the same ansatz
(15) (with AR’ # 0), fitting the DBOE! case equations, while keeping a value
for a equal to 1/2. If we take some different values for a, instead, we can find
some solutions. We will not discuss them here. If we take o different from 1/2,
indeed, we are not able to set up a solution enclosing a term of the form (49).
This circumstance makes here the solutions with a # 1/2 not very interesting
to our main purpose of keeping, for useful comparison, the DBOE!! treatment
as near as possible to the OQMC case. However, this last requirement will
be neither satisfied in the following analyses. Then we switch on a somewhat
different frame now.

A couple (i,ii) of remarkable cases is the following:

i) we can start the procedure with the following Hamiltonian:

Hp(p,x) = % p? + ip% +i®Pg(x) + ®(x) = E, (51)
Dg(x) = %S*”(X) (52)

This Hamilton function and potential ®g have already been introduced in paper
I of this work. We have shown there that a classical-like treatment of the
Bernoulli function (51) - for the j=0 and j=2 cases - is more interesting, on a
mathematical symmetry and physical understanding points of view, than the
one based on the form (1). By operating the form (51) with the quantization
procedure (4)=(8); using o defined by the same equation (49), a =1, a = 1/2

and the position VS* = | /m/mfffVR = \/mmZ v, (x), we will find again our
reference set (41)/(42).

"We mean here that equations (8) and (50) at least are identical to what we have in a
standard quantization.
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ii) whenever we start from the form (1), we can find a solution taking o = 1,

a=1/2, VS*_,/m/meffVR—,/mmeffv x) and

o=const x U %+ og (53)

o5 = 5, ? / W28+ dy (54)

Here again, the const value is arbitrary and can be set equal to () by the sake
of simplicity.

The two cases so far expounded look formally different; yet we note that
they are strictly correlated to each other, because the expression (54) for the
supplemental function g is actually the one bringing to equivalence the form
(7) and (51) (after quantization).

3.2.3 The single-particle Newtonian case (j = 0)

In the SPND case, solutions to equation (7) governed by the ansatz (15) (with
A different from 0) exist but they require setting up involved expressions for
a and o, moreover implying some dependence on the m.yy parameter. In the
case at hand here, we consider not necessary to keep a = 1/2 or a = 1(¥),
because the SPND context is quite different from the OQMC case. Amongst
other possibilities, we give here e.g. the parameters corresponding to a solution
with

o9(x) = AR = y/ém/mv(x) (55)

om= m—m,yss is the HDF-induced mass defect in our physical theory.

Parameter values are given by the following equations (still referred to the
formalism deployed in equations (15)+(23), but remind a A—value different from
zero now holds):

_1 ¢

¢ vm_

s=l o (57)
byl 54y
‘T3 Vu T (58)

81In the following section, however, we will see that an ansatz different from equation (8)
will allow us to treat this case by the means of the standard vakues a =1/2 and o = 1.
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@ 14+~ —2avy (59)
Unfortunately, we have here a 5th order equation for ~:
e 301 67
(5 Ty +29%)? + =LL(-50 + 140y — =77 + 277 + 187" +99°) +
Mefr)? _ 163 o 11 3 327 4 o 5y _
+(m>(25 70y + 57 5 TR 99°) =0 (60)

Conclusively equations (47)/(48) can be recovered by the means of the previous
positions, from which we find also

mit) =5 -3 Voo 2

As remarked already, the previous expressions look quite involved, and make
physical interpretation of the different parameters very hard (although a plane
case is provided by m.;; = 0, implying v = 5/2 and a =1/2). Therefore, we are
brought to ask if assuming as a start Hamiltonian the one in (51), or searching
for some other function ¢ would not bring us to easier circumstances, just alike
we have found when operating the DBOE case. The answer to the question
is affirmative but, for easier mathematical handling, we found that the best is
giving up equation (8) and assuming a generalized form for our wavefunctions
W,,. The subject is discussed in the next section, where a final ”optimized”
formalism is introduced.

(61)

3.2.4 Remarks and discussion

A final remark concerning the present subsection, where o # 0 cases have been
considered, has however already been advanced: the o expressions we have
found are not "purely classical” ones because they include h-dependent terms.
The potential ®g(x) itself (52) we have introduced in the start Hamiltonian (51)
- is a quantum-like term. We can ask therefore whether it is possible to find
a formalism based on quite classical-like expressions, both for ¢ and Hp(p,x).
This point will again be met with in the sequel.

4 Optimized formalism (case C)

By the previous analyses, we have got results which we can reelaborate in such a
way to set up, in this section, a compact ” a priori” procedure able to describe the
SPND and DBOE!! cases. Some of the definitions having to be renormalized,
we will introduce the quantization procedure since the beginning again.

Before this, however, we have to discuss briefly the interpretative role we have
given - up to now - to ¥, (x), because some changes will apply in the following.
The wavefunction defined by equation (8) has a formal role very similar to the
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one drawn by the Copenhagen interpretation: the ¥, (x) squared-modulus is, all
across the previous sections, always equal to the statistical probability to find a
particle in some small region of space around the co-ordinate x. Yet the physical
sense of this statistics, in our SPND and DBOE frameworks, is a classical one:
in our papers ([1]+[4]) the basic interpretation is indeed that the densities are
just what classically comes out from statistical ensembles of Eulerian velocity
fields and not ” quantum probabilistic” densities.

Now however we will see that procedures in this section will be based on a
different definition of the ”wavefunction”.

We start with the following classical-like, Bernoulli Hamiltonian

Hi(px) = 57 + () +—p, o(x)] = (62)

Whenever p is chosen as a classical quantity, the commutator [p, o(x)] is 0
(then we might operate the function with the same techniques expounded in
[5]). What is however relevant to us here is ” quantizing” this Hamiltonian: this
we do by means of the (orthodox, a = 1) ansatz

N L d
p—p= fzha (63)

So the Hamilton operator and the energy theorem write

Hz(D, %, a) = % P2+ O(x) + % [po(x) — o(x)p] (64)

Hs(p, x, a)¥,, = E, T, (65)

We assume now the following (non-standard) form for the solution ¥,,(x):
U, (x) = U(x) = £p° exp <%S*> (66)

In this equation, the phase function S*/h is defined as follows:

VS* = w/mmgf)va(X) (67)

Here we have introduced the quantities m:ff) ; and ve(x) which clearly stand
for the sets: {mers and v(x)} when ¢ = —2, SPND case, and {m:ff and v, (x)}

when ¢ = 1/2, DBOE!! case (?). We define moreover the function o(x) by the
very simple position

= igVS* (68)

9We remind for physical insight that the velocity field vc(x) interpretates as the drift
velocity of a gaseous particle system in the DBOE case, and is a single particle velocity
instead in the SPND context.
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With the previous assumptions, it is easy to show, by simple calculations,
that equation (65) reduces to the following equations:

Lo« 2 h? vi(x) !
gMeypve(x) — Vi) E, — ®(x) (69)

pve(x) = const x p%+1 (70)

This last represents the continuity equation or the mass-flow law corresponding
to the two contexts at hand.

As anticipated, this procedure seems to us the most interesting among the
ones we have analyzed in this paper - with concern to both physical and math-
ematical compactness and interpretability. We give a conclusive discussion of
all our results, including those in reference [5], in the next section.

5 Discussion of the results

As remarked, the definition in equation (8) is congruent with the ”orthodox
Copenhagen interpretation” (\\I!n(x)\2 = p(x)), while equation (66) is now a
different definition. Using equation (70) in the ¥(x) expression (66) we find for
the modulus of ¥(x) the expression

[P(x)| = p° ox ve(x)” (71)

This equation identifies with the Copenhagen interpretation only in the
DBOE'! case - although just on a mathematical level, due to our expounded
classical-like interpretation. By the sake of an unified interpretation of the two
cases at hand here, we see by equation (71) that the present formalism brings
us to a different statement: the ¥(x) modulus defines, in both cases, the ki-
netic energy field v¢(x)?. It is interesting that, since however in the DBOE!!
case v, (x)* oc p, the Copenhagen information postulate on the density is not
completely lost if we assume this alternative definition. In any case, our "new”
wavefunction always encloses the density information via its absolute value p¢.

This circumstance calls for the following remark. We have seen in previous
sections that the Bernoulli oscillators physics can actually be described by the
quantum procedures, applied to a Bernoulli Hamiltonian, while resting on equa-
tion (8) which is indeed consistent with the Copenhagen interpretation. But the
mathematical path has revealed quite a stiff one, and the coefficients we have
met with along the procedure are of difficult physical interpretation (see f. i.
equations (43)+(46) and (55)+(61). Basing the procedure on the Hamiltonian
form (62) on the ansatz (66), instead, is a choice providing to the formalism
simplicity and compactness.

As an instance of it, we want to give evidence here to the fact that the
(”alternative”) quantum momentum field takes the expression

’

PUx) V() mel =
Ve —ih T mm, % v (x) fzhC? = Pn (72)
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This one is just the expression we have found in paper I - equation (78) - by the
classical-like procedure already.

The formalism here proposed also shows plane adherence to a property we
have invoked before: the momentum (68) being defined as a classical-like quan-
tity, the starting Hamiltonian (62) is a ”canonical”, purely classical one; by
quantization, we have therefore been able to take h-dependent effects out of the
original PHME context.

Note finally that the procedure also provides us with an interesting corre-
lation between the momentum (68) and the potential i®s we have met with
already in reference [5]. For physical insight, we remark that the coefficient 5/2
can be interpreted in terms of the quantities ¢ and €, because it can be written

(73)

in both the SPND and DBOE cases. As an interesting corollary, we see
that if the OQMC parameters set is instead considered (( = 1/2, e = —1), the
coefficient becomes zero, the Hamiltonian (62) reduces to the standard classical
one, and the quantization procedure goes back again to the standard quantum-
mechanical case.

This final setting in the procedure also seems able to make easier the exten-
sion when the assumption of constant effective masses mgf) f and other coeffi-
cients, done in these papers, will be dropped off (what will reinforce our physical
models). In this context, indeed, we will be brought to consider variable func-
tions ((z) and e(x) to express the continuity equation: but the coefficient (73)
just candidates to be kept invariant within this (next) generalized description.

6 Conclusion

We provided, in this paper, different quantum-like procedures able to fit the
physical contexts at hand. The procedures are certainly non-orthodox in a
number of details: they apply to peculiar (Bernoulli”) Hamiltonian functions,
and use non-standard positions (for the quantities a, a etc.) and interpreta-
tions for the wavefunction formalism. In a number of cases, we discussed the
properties and the consequences of these positions. In a few of them, we found
rather involved expressions for the relevant parameters. Then to have a more
plane procedure we turned, at the end of the paper, to a different expression
of the Hamiltonian function and to a different, non-orthodox definition of the
basic "wavefunction”. In this way we believe having provided a rather compact
and easy reference framework, both from the mathematical and physical points
of view. We displayed the advantages of our formalism, and enlightened some
properties more of our proposed physics of the Bernoulli oscillators.
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