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Preface 

Composite materials are ideal for structural application where high strength-to-weight 

and stiffness-to-weight ratio are needed. Most of modern technologies require material 

offering peculiar combinations of several properties that cannot be found in traditional 

materials as metals, ceramics and polymers.  

The study of composite material actually involves many topics, such as manufacturing 

processes, non linearity constitutive behavior, strength of materials and 

micromechanics. The progress in  technologies has allowed the development of 

analytical and numerical procedures that are nowadays essential to characterize the 

behavior of materials. This work addresses several finite element approaches that have 

been adopted to simulate the behavior of several composite structures. 

In particular, in the first chapter, the anisotropic constitutive behavior of 

ALCANTARA
®

 tissue is modeled introducing both linear anisotropic laws and non-

linear hyperelastic model, the latter by the definition of Helmholtz free energy and set 

up specific microstructure tensor.  

The modeling of non-linear constitutive behavior permits to simulate the 

characteristics of both manmade composite material, where the optimum mechanical 

performance are searched, and organized biological composite structures, where the 

optimization structural process is adopted. It is well now that, on account of the 

presence of solid and fluid constituents at micro-scale level, many biological soft 

tissues exhibit an overall macroscopic non linear elastic or poro-elastic mechanical 

behavior too. In this respect, in the second chapter, the biomechanics of corneal 

structure is modeled through a FE multiphysic approach (thermo-mechanical) in orde 

to simulate its viscoelastic behavior in the outcome of Conducted Keratoplastic 

surgery (Fraldi et al. 2010).  

A new multi-scale, three-dimensional finite element model of the cord rubber lamina, 

based on a hybrid analytical/numerical approach, has been developed in the third 

chapter. Unlike the aforementioned orthotropic approach that are commonly adopted 



 

in modeling unidirectional laminae, the capability of this model relies on the 

possibility of simulating the tension-twisting coupling of the cord and, in turn, of the 

overall composite, which determines a peculiar stress state in the interfacial zone and 

matrix. Cord behavior has been first modeled by using Costello's analytical model, 

which accounts for tension-twisting coupling and relates the cord constitutive 

behavior to the hierarchical structure of the cord itself. Finally, on the basis of this 

analytical model, a homogenized cylindrical cords model, embedded in a rubber 

matrix, have been implemented in the FEM code. 

In conclusion, in the light of the scientific and practical interest in the mechanical 

response of polymeric thin films utilized for food packaging, the mechanisms 

governing the delamination phenomena observed experimentally in multilayer films 

during HPP have been investigated in order to pave the way for optimal design of 

packaging structures. To make this, both analytical and Finite Element (FE) analyses 

of the process of HP treatment of pouches made of multilayer films and containing tap 

water have been performed. 
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INTRODUCTION TO COMPOSITE MATERIALS 

Characteristic and classification of composite materials [1] 

The word composite in the term composite material means that two or more material 

are combined on a macroscopic scale to form a useful third material. The key is the 

macroscopic examination of a material wherein the components can be identified by 

the naked eye. 

The definition of a composite material is flexible and can be augmented to fit specific 

requirements. A composite material is considered to be one that contains two or more 

distinct constituents with significantly different macroscopic behavior and a distinct 

interface between each constituent (on the microscopic level). This includes the 

continuous fiber laminated composites of primary concern herein, as well as a variety 

of composites not specifically addressed. 

The advantage of composite materials is that, if well designed, they usually exhibit the 

best qualities of their components or constituent and often some qualities that neither 

constituent possesses: 

 Strength 

 Stiffness 

 Corrosion resistance 

 Weight 

 Fatigue life 

 Temperature depend behavior 

 Thermal insulation thermal conductivity 

Naturally not all of this properties are improved at the same time nor is there usually 

any requirement to do so. In fact, of the properties are in conflict with one other, e.g., 

thermal conductivity with thermal insulation Composite materials have been in 

existence for many centuries. No record exists as to when people first started using 

composites. Some of the earliest records of their use date back to the Egyptians, who 

are credited with the introduction of plywood, and the use of straw in mud for 

strengthening bricks. 

Composite materials can be classified through their material coupled. Four commonly 

accepted types of composite materials are: 

1. Fibrous composite materials that consist of fibers in a matrix; 

2. Laminates composite materials that consist of layers of various materials; 

3. Particulate composite materials that are composed of particles in a matrix; 
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4. Combinations of some or all of the first three types. 

These types of composite materials are described briefly below. 

Fibrous Composite Materials 

Long fibers in various forms are inherently much stiffer and stronger than the same 

material in bulk form. For example, ordinary plate glass fractures at stresses of only a 

few MPa (20 MPa), yet glass fibers have strenghts of 2800 to 4800 MPa, in 

commercial available forms and about 7000 MPa in laboratory-prepared forms. 

Obviously , then, the geometry and physical makeup of a fiber are somehow crucial 

application. More properly, the paradox of a fiber having different properties from the 

bulk form is due to the more perfect structure of a fiber. In fiber, the crystal defect are 

aligned along the fiber axis. Moreover, there are fewer internal defectsin fibers than in 

buolk material. For example, in materials that have dislocations, the fibers form has 

dislocation than the bulk form. 

Laminated Composite materials 

Laminated composite materials consist of layers of at least two different materials that 

are bonded together. Lamination is used to combine the best aspects of the constituent 

layers and bonding material in order to achieve a more useful material. The properties 

that can be emphatized by lamination are strength, stiffness, low weight, corrosion 

resistance, wear resistence, thermal insulation, etc. Such claims are best represented 

bimetals, clad metals, laminate glass, plastic-based laminates and laminates composite 

materials. 

Particulate Composite Materials 

Particulate composite materials consist of one or more material suspended in a matrix 

of another material. The particles can be either metallic or non metallic as can the 

matrix. There are different combinations as nonmetallic particles in nonmetallic 

matrix composite material and nonmetallic particles in metallic matrix composite 

material. 

Combination of Composite Materials 

Numerous multiphase composite materials exhibit more than one characteristic of the 

various classes, fibrous, laminated, or particulate composite materials, just discussed. 

For example, reinforced concrete is both particulate and fibrous. Also, laminated 

fiber-rinforced composite materials are obviously both laminated and fibrous 

composite materials. Thus, any classification system is arbitrary and imperfect. 

Nevertheless, the system should serve to acquaint the reader with the broad 

possibilities of composite materials. Laminated fiber-reinforced material are a hybrid 
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class of composite materials involving both fibrous composite materials and 

lamination techniques. Here, layers of a fiber-reinforced materials are bounded 

together with the fiber directions of each layer typically oriented in different direction 

to give different strengths and stiffnesses of the laminate in various directions. Thus, 

the strengths and stiffnesses of the laminated fiber rinforced composite materials 

include rocket motor cases, boat hull, aircraft wing panels and body section, tennis 

rackets, etc. 

Fundamental Composite Material Terminology [2] 

Some of the more prominent terms used with composite materials are defined below:  

Lamina. A lamina is a flat (or sometimes curved) arrangement of unidirectional (or 

woven) fibers suspended in a matrix material. A lamina is generally assumed to be 

orthotropic, and its thickness depends on the material from which it is made. For 

example, a graphite/epoxy (graphite fibers suspended in an epoxy matrix) lamina may 

be on the order of 0.127 mm thick. For the purpose of analysis, a lamina is typically 

modeled as having one layer of fibers through the thickness. This is only a model and 

not a true representation of fiber arrangement. Both unidirectional and woven lamina 

are schematically shown in figure 1.1 

 
Fig 1.1. Schematic representation of unidirectional and woven composite lamina 

Reinforcements. Reinforcements are used to make the composite structure or 

component stronger. The most commonly used reinforcements are boron, glass, 

graphite (often referred to as simply carbon), and Kevlar, but there are other types of 

reinforcements such as alumina, aluminum, silicon carbide, silicon nitride, and 

titanium. 

Fibers. Fibers are a special case of reinforcements. They are generally continuous and 

have diameters ranging from 3-200 µm. Fibers are typically linear elastic or elastic-

perfectly plastic and are generally stronger and stiffer than the same material in bulk 

form. The most commonly used fibers are boron, glass, carbon, and Kevlar. 
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Matrix. The matrix is the binder material that supports, separates, and protects the 

fibers. It provides a path by which load is both transferred to the fibers and 

redistributed among the fibers in the event of fiber breakage. The matrix typically has 

a lower density, stiffness, and strength than the fibers. Matrices can be brittle, ductile, 

elastic, or plastic. They can have either linear or nonlinear stress-strain behavior. In 

addition, the matrix material must be capable of being forced around the 

reinforcement during some stage in the manufacture of the composite. Fibers must 

often be chemically treated to ensure proper adhesion to the matrix. The most 

commonly used matrices are carbon, ceramic, glass, metal, and polymeric. Each has 

special appeal and usefulness, as well as limitations. A typical classification present in 

literature of matrix is shown below: 

1. Carbon Matrix. A carbon matrix has a high heat capacity per unit weight. They 

have been used as rocket nozzles, ablative shields for reentry vehicles, and clutch 

and brake pads for aircraft. 

2. Ceramic Matrix. A ceramic matrix is usually brittle. Carbon, ceramic, metal, and 

glass fibers are typically used with ceramic matrices in areas where extreme 

environments (high temperatures, etc.) are anticipated. 

3. Glass Matrix. Glass and glass-ceramic composites usually have an elastic modulus 

much lower than that of the reinforcement. Carbon and metal oxide fibers are the 

most common reinforcements with glass matrix composites. The best 

characteristics of glass or ceramic matrix composites is their strength at high 

service temperatures. The primary applications of glass matrix composites are for 

heat-resistant parts in engines, exhaust systems, and electrical components. 

4. Metal Matrix. A metal matrix is especially good for high-temperature use in 

oxidizing environments. The most commonly used metals are iron, nickel, 

tungsten, titanium, magnesium, and aluminum. There are three classes of metal 

matrix composites: 

Class I. The reinforcement and matrix are insoluble (there is little chance that 

degradation will affect service life of the part).  

Class II. The reinforcemend/matrix exhibit some solubility (generally over a period of 

time and during processing) and the interaction will alter the physical properties of the 

composite.  

Class III. The most critical situations in terms of matrix and reinforcement are in this 

class. The problems encountered here are generally of a manufacturing  

5. Polymer Matrix. Polymeric matrices are the most common and least expensive. 

They are found in nature as amber, pitch, and resin. Some of the earliest 

composites were layers of fiber, cloth, and pitch. Polymers are easy to process, 
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offer good mechanical properties, generally wet reinforcements well, and provide 

good adhesion. They are a low-density material. Because of low processing 

temperatures, many organic reinforcements can be used. A typical polymeric 

matrix is either viscoelastic or viscoplastic, meaning it is affected by time, 

temperature, and moisture. The terms thermoset and themplastic are often used to 

identify a special property of many polymeric matrices. 

Laminate. A laminate is a stack of lamina, as illustrated in Fig 2.1, oriented in a 

specific manner to achieve a desired result. Individual lamina are bonded together by a 

curing procedure that depends on the material system used. The mechanical response 

of a laminate is different from that of the individual lamina that form it. The 

laminate‟s response depends on the properties of each lamina, as well as the order in 

which the lamina are stacked. 

 
Fig. 2. schematic of laminated composite. 

Mechanical behavior of composite materials [1] 

Composite materials have many mechanical behavior characteristic that are different 

from those of more conventional engineering materials. Some characteristics are 

merely modifications of conventional behavior; others are totally new require new 

analytical end experimental procedures. 

Most commonly engineering materials are both homogenous and isotropic: 

A homogenous body has uniform properties throughout, i.e., the properties are 

independent of position in the body; An isotropic body has material properties that are 

the same in every direction at a point in the body, i.e., the properties are independent 

of orientation at a point in the body. 

In contrast, composite materials are often both inhomogeneous and nonisotropic. 

An inhomogeneous body has nonuniform properties over the body, i.e., the properties 

depend on position in the body. An anisotropic body has materials properties that are 
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different in all direction at a point in the body. Thus, the properties depend on 

orientation at a point in the body. 

Some composite materials have very simple forms of inhomogeneity. Because of the 

inherently heterogeneous nature of composite materials, they are conveniently studied 

from two points of view: micromechanics and micromechanics. The first studies the 

composite materials behavior wherein the interaction of the constituent materials in 

examined on a microscopic scale to determine their effect on the properties of the 

composite material. Macromechanics is the study of composite material behavior 

wherein the material is presumed homogeneous and the effect of the constituent 

materials are detected only as averaged apparent macroscopic properties of the 

composite material. 

Use of the two concept of macromechanics and micromechanics allow the tailoring of 

a composite material to meet a particular structural requirement with little waste of 

material capability. The ability to tailor a composite material to its job is one of the 

most significant advantages of a composite material over an ordinary material. Perfect 

tayloring of a composite material yields only the stiffness and strength required in 

each direction, no more. In contrast, an isotropic material is, by definition, constrained 

to have excess strength and stiffness in any direction other than that of the largest 

required strength or stiffness. The inherent anisotropy (most often only orthotropy) of 

composite materials leads to mechanical behavior characteristic that are quite different 

from those of conventional isotropic materials. 
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CHAPTER I 

HYPERELASTIC MODELING OF ALCANTARA PANNEL® 

TISSUE 

Introduction 

ALCANTARA
®
 is an innovative material obtained from the combination of an 

advanced spinning process (low-denier, bi-component sea-island type fiber) and other 

textile and chemical production processes (needling, grinding, impregnation, 

extraction, finishing, dyeing), it is carried out in accordance with absolutely unique 

procedures. It combines softness, elegance, and rich color with high resistance to wear 

and tear and incredible ease of maintenance. It is perfectly suited to innovative, 

prestigious applications in interior design, car upholstery, fashion, and clothing 

accessories. ALCANTARA
®
 is a no-woven composite material resulting from a 

complex chemical and textiles technological processes. Although it appears 

macroscopically as homogeneous, the observation of tissue under an electron 

microscope (Figure 1), detects a microstructure of fibers distribution and their 

orientation that the material retains from the several processes of tissue manufacture. 

The mechanical test conducted on Pannel
® 

highlight a markedly anisotropic behavior 

of structures, where it exhibits a non linear stress-strain behavior in high level of 

deformation, thermoelastic properties and stress relaxation viscoelastic phenomena. 
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Figure 1.1: Microstructure of fibers distribution observed in electron microscope tissue image 

In this chapter, with reference to experimental tests results and using continuum 

theory, will be explain the formulation of a linear orthotropic model of Pannel
®
, 

describing individual component of the tensor of elasticity and then validating the 

theoretical results by comparison with laboratory tests. Successively this mechanical 

model will be generalized into the non-linear hyperelastic model by the definition of 

Helmholtz free energy and introducing specific microstructure tensors. On the base of 

discussion will be neglects both the effect of temperature on the mechanical properties 

of the medium that the contribution of the viscoelastic material. 

The Modeling hypothesis and experimental confirmations 

The hypothesis of the linear modeling are: 

1. The Linearity of stress-strain relations 

2. The Orthotropic behavior of the tissue 

The Linearity of stress-strain relations 

The uniaxial experimental tests conducted under quasi static load and large 

deformation (0%-65%), have showed a typical non linear response of  the hyperelastic 

materials. Tensile properties may vary with specimen preparation and with speed and 

environment of testing. In fact to characterize the anisotropic behavior of the tissue, 

the samples were carved with different direction: The test were conducted in 

longitudinal (0°), diagonal (45°) and transversal (90°) directions, where longitudinal 
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direction was considered as conduct roll direction. The experimental were performed 

according to the ASTM D-638 test method, that it covers the determination of the 

tensile properties of unreinforced and reinforced plastics in the form of standard 

dumbbell-shaped test specimens when tested under defined conditions of 

pretreatment, temperature, humidity, and testing machine speed. In picture below 

(Figure 2) have shown the experimental tensile test results for each direction: 

 
Figure 1.2: experimental tensile test results 

As showing in the picture, the non linear tensile response of tissue has different 

behavior at the initial deformation 0% 10% and the large deformation ( 50% ). 

In the first case the non linearity is due to several factors, primarily to the starting of 

the tensile test than to the reorganization of the micro-structures. The composite 

materials exhibit this behavior at initial deformation, which is called the toe-region. 

The large deformation behavior is a typical response showed by the material brought 

at break. In this parts of chapter we want to consider the response of the tissue in large 

deformation range 10% 50%  which is representative of the operating conditions of 

the material. in this range the response of the tissue can be approximated by linear 

response as showed in the picture (Figure 3). 



 

10 

 

 
Figure 1.3: linear approximation of the tissue in large deformation 

For the purposes of modeling the elastic behavior of the Pannel
®
 in the range of 

deformation of interest 10% 50% , the assumption of linearity of the stress-strain 

response can thus be considered realistic and supported by experimental evidence. 

Orthotropic behavior of the Pannel
®
 

Taking into consideration the influence of the micro-structure of the tissue on the its 

tensile response, the mechanical behavior of the Pannel
®
 can be modeled as 

anisotropic. In fact the off axis tests allowed us to build the different stress-strain 

curves showed in the picture above and in this case the homogeneous micro-structural 

organization of the reinforcing fibers suggest to model the behavior of the Pannel
®
 as 

orthotropic. The principal directions of the material will therefore be represented by a 

cartesian coordinate system with the three axes parallel to the longitudinal direction 

respectively, L (the direction of development roll), T (orthogonal to L and belongs to 

the median of the sample) and, parallel to the thickness tissue specimen and 

orthogonal to the mean plane of the same. 

The stiffness tensor definition for Orthotropic materials 

Generalized Hooke's law 

The most general linear relationship between the independent components of the 

stress, and the dual components of deformation, is called the generalized Hooke's law 

and is written as follows: 

ij ijkl klE
 

(1.1) 

Where 
ijklE  is the stiffness tensor and the relative Voigt notation contains 6 6 36  

coefficients. 
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The additional requirement of elasticity is ensured by the existence of a strain 

potential . It assume the physical means of strain energy density function hence the 

reversibility of load-unload cycles and it is unconnected from the strain history (Sadd, 

M.H, 2005). With these assumptions can be wrote the following relation: 
2

ij

ij ijkl kl ijkl

ij ij kl kl

E E

 

(1.2) 

The Schwartz's theorem involves the symmetry of stiffness tensor 
2 2

klij ijkl

ij kl kl ij

E E

 

(1.3)
 

and the reduction of elastic constants to 21 (monoclinic or triclinic materials). 

The existence of various combinations of the different symmetry forms implies a 

corresponding classification of the anisotropy classes of the materials. In particular, 

two extreme cases of anisotropic elastic materials are the triclinic materials and the 

isotropic ones. The first material possesses no rotational symmetry or a plane of 

reflection symmetry, while the second material possesses infinitely many rotational 

symmetries and planes of reflection symmetry. 

If the anisotropic plane reduces to three orthogonal plane the material is called 

orthotropic. The number of the independent elastic constants is 9 and the stiffness 

matrix assumes the following form: 

11 1111331111 1122

22 221122 2222 2233

33 331133 2233 3333

12 121212

131313 13

232323 23

0 00

0 00

0 00

0 00 0 0

000 0 0

0 00 0 0

EE E

E E E

E E E

E

E

E
 

(1.4)

 

In the in the state of plane stress 33 13 23 0 , as shown in Figure 4, the 

system equation above can be reduced to: 

1 111 12

2 212 22

333 3

0

0 ,

0 0

E E

E E

E
 

(1.5) 
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Figure 14: Unidirectionally reinforced lamina 

Where 

1 11 2 22 3 12 1 11 1 11 3 12

1111 11 2222 22 1122 12 1133 13 2233 23 1212 33

, , , , , 2

, , , , ,E E E E E E E E E E E E  

(1.6) 

Considering that the tensor  is defined positive, it is possible to obtain the relations 

below  

1 111 12

2 212 22

333 3

0

0 ,

0 0

S S

S S

S
 

(1.7) 

Where the operator 
ijhkS  is called compliance tensor. The relation between elastic 

tensor and compliance tensor are defined by 

22 11 12
11 22 12 132 2 2

11 22 12 11 22 12 11 22 12 33

1
, , ,

S S S
E E E E

S S S S S S S S S S
 

Stress-Strain relations between technical moduli and components of elastic tensor. 

In the plane stress condition, from the experimental tests results, it's possible calculate 

four elastic coefficients, called technical moduli. They are the Young's moduli in the 

longitudinal and transversal directions, LE  and TE  respectively, the Poisson 

coefficient LT  (or 1

TL LT T LE E ), and shear modulus in the stress plane; where this 

last one it's coincident with Lamè modulus. This technical modules can be obtained 

from three typical experimental test: two monoaxial tests and one biaxial or pure 

shear test. For the uniaxial longitudinal test, we have that: 

11 12 12 22,L L T T L TE E E E
 

(1.8) 

Or, in the deformation case: 
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22 12

2 2

11 22 12 11 22 12

,L L T L

E E

E E E E E E
 

(1.9)

 

From the definitions of Young's modulus and Poisson's ratio, we can determine the 

technical moduli: 

2

11 22 12 12

22 22

,L T
L LT

L L

E E E E
E

E E  

(1.10)

 

whereas in the transversal direction we obtain 

2

11 22 12 12

11 11

,T L
T TL

T T

E E E E
E

E E  

(1.11)

 

From the pure shear test we can write the relation below: 

33 332
2

LT
LT LT LT

LT

E G E

 

(1.12) 

In this condition we rewrite the tensors 

1
0 0

1 1

1
0 , 0

1 1

0 0 1
0 0

L LT T LT

LT TL LT TL L L

LT L T LT

LT TL LT TL L T

LT

LT

E E

E E

E E

E E

G

G
 

(1.13) 

Where the symmetry condition has been considered: 

LT L

TL T

E

E
 

(1.14) 

At last, considering the isotropic case relations, the Lamè's modulus can be obtained 

from the relations above: 

'

'2 1

T

TT

TT

E
G

 

(1.15) 
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Stress-Strain relations for a lamina of arbitrary orientation 

In the previous section, the stress and strain were defined in the principal material 

coordinates for an orthotropic material. The principal direction of orthotropy often do 

not coincide with coordinate direction that are geometrically natural to the solution of 

the problem. For example a laminated plates with different laminae at different 

orientation (Jones RM, 1999). Thus, a relation is needed between the stresses and 

strain in the principal material coordinates and those in the body coordinates. Then, a 

method of trasforming stress.-strain relation from one system to another is also 

needed. At this point, we recall from elementary mechanics of materials the 

transformation equation for expressing stresses in an x-y coordinate system in terms of 

stresses in a 1-2 coordinate system, 

2 2

1 1

2 2

2 2

2 2

12 12

cos sin 2sin cos

[ ] sin cos 2sin cos

sin cos sin cos cos sin

x

y

xy

Q  (1.16) 

Where  is the angle from the x-axis to the 1-axis Figure 5. Note especially that the 

transformation has nothing to do with the material properties but is merely a rotation 

of stress direction. Also, the direction of rotation is crucial. 

Similarly, the strain-transformation equation are 

2 2

1 1

2 2

2 2

2 2

12 12

cos sin 2sin cos

[ ] sin cos 2sin cos

sin cos sin cos cos sin

2 22

x

y

xy

Q

 

(1.17) 

 
Figure 1.5: Positive rotation of principal material axes from x-y Axes 

where we observe that strains do trasform with the same transformation as stresses if 

the tensor defintion of shear strain is used (which is equivalent to dividing the 

engineering shear strain by two). A so-colled specially orthotropic lamina is as 
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orthotropic lamina whose principal material axes are aligned with the natural body 

axes: 

1 11 12 1

2 12 22 2

12 13 12

0

0

0 0

x

y

xy

E E

E E

E

(2.2.107) 

These stress-strain relation were introduced in the previous section and apply when 

the principal material direction of an orthotropic lamina are used as coordinates. The 

stiffness tensor and compliance tensor in the rotate coordinate system can be written 

through the relations 

1 1,Q Q Q Q (2.2.108) 

The analytical expressions of E  are reported below: 

4 4 2 2

11 11 22 12 33

4 4 2 2

22 11 22 12 33

2 2 4 4

33 11 22 12 33 33

2 2 4 4

12 11 22 33 12

3

13 11 12 33

cos sin 2 2 sin cos

sin cos 2 2 sin cos

2 2 sin cos sin cos

4 sin cos sin cos

2 sin cos

E E E E E

E E E E E

E E E E E E

E E E E E

E E E E 3

22 12 33

3 3

23 11 12 33 22 12 33

2 sin cos

2 sin cos 2 cos sin

E E E

E E E E E E E

 (1.18) 

Similarly can be calculated the expressions for compliance tensor. 

Thermodynamic approach for Poisson ratio in orthotropic materials 

It's important to note that if one assumes an orthotropic material, unlike the isotropic 

case, the forms of transverse contraction (Poisson modules), while retaining the same 

physical and geometric meaning, they must obey the classic case of easier isotropy. 

Mathematical restriction impose that the range of value for Poisson ratio is imposed 

by the positive elastic tensor, this last connected with the positive stain energy 

function, where we have that: 

1
{ 0, : 0} [ ]

2
ij ijhk ij hk ijhkE E def positive  

which is equivalent to imposing that the determinant of the all minors of the elastic 

tensor operator (stiffness  or compliance ) are strictly positive. In the plane case 

and considering the symmetry condition LT T TL LE E  we obtain the following 

limitations 
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0, 0, 0, L L
L T LT LT

T T

E E
E E G

E E
 

then 
1 1{ , ]0,1[ } ( , ) ] 1,1[L T L LTE E E  

This confirm that, for the plane case and for orthotropic material, the usual range 

] 1,1[  of Poisson modules - that in the three-dimensional and isotropy case is further 

confined to the range ] 1,1 2[ - can be violated in general, making it eligible, both 

theoretically and experimentally, the values of the transverse contraction modules less 

1 and/or greater the unit value. 

Elastic moduli of orthotropic Pannel
®
 tissue 

Determination of Young's moduli: linear-elastic case 

In the previous chapter it has discussed the legality of the orthotropic and linear 

elasticity response of the Pannel
®

 tissue. This hypothesis have been confirmed by the 

linear fitting of the stress-strain curve in the picture above figure N° in the range of 

large deformations. Starting by the mathematical expression of linear regression 

curves, obtained by the fitting procedure, we can calculate the young's elastic moduli 

for each test type, obtaining the following values for longitudinal, L, diagonal, D 

45  and transversal, T, directions respectively: 

(10% 50%), { 19.58 , 14.31 , 11.80 }L D TE MPa E MPa E MPa  

Experimental result of the Poisson moduli  

Through the uniaxial experimental test, made on the Pannel tissue, it was possible to 

draw the evolution of Poisson ratio at several strain values, for longitudinal and 

transversal case 
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Figure 1.6: dependence of deformation value on Poisson ratio 

The graphs on figure 6 highlight how the Poisson ratio values depend on deformation 

values, along longitudinal and transversal direction. In particular it's important to note 

that the Poisson ratio is both non linear and non monotonic while the deformation is 

constant. Furthermore, the values of the moduli vary on the range between 0.25 and 

about 2.25. This interval is not compatible with those established for the linear case by 

equation (22), in fact, substituting the numerical values of the technical moduli 

determined by relations (24) we have 

1 1{ 1.29 1.29} sup 2.25L T LT L T LTE E E E  

We can state that orthotropic linear elastic model it cannot be used to model 

comprehensively the overall response of the material considered. In particular to 

model the rearrangement of micro-structure of the Pannel tissue, during the 

deformation, need more accurate micro-mechanical models and particular 

homogenization algorithms to model the overall macro-mechanical response of the 

structure. However in the sequel of chapter we consider only isochoric deformations 

then the Poisson modulus is fixed at 0.5LT .  
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Moreover, although the effect of the values close to the end points of the mechanical 

compatibility of the Poisson modulus influence the components of stiffness tensor, the 

fixed value 0.5LT  don't affect the Young's modulus value evaluated respect to . 

Shear modulus calculation and stiffness matrix of Pannel 

In this section will be presented the  

 The calculus of shear modulus LTG  through the diagonal Young modulus DE ; 

 The stiffness matrix and compliance matrix of the orthotropic model of Pannel 

presented above. 

To evaluate the shear modulus LTG  we refers to diagonal modulus DE  obtained 

through the uniaxial tensile test and the equations (18) and (20). With simple 

mathematical manipulation can be obtain the equation below: 

1

11

1

{[ ] } 8

{ [3(1 ) 2 4(1 )cos 2 (1 2 )cos 4 ] (1 cos 4 )}

L LT

LT LT LT L

E E G

G E
 

where 1

T LE E . 

In particular the value of E  when 4  for DE E  is given by: 

4 4 (1 2 )

D L
D LT

L D LT

E E
E E G

E E
 

(1.19) 

Replacing the latter equation in equation (26) we obtain the Young's modulus as 

function of , which is numerically not sensitive to variation of the Poisson modulus. 

In the pictures below (Figure 7) are shown the trend of shear modulus in the polar 

coordinate system and the trend of shear modulus versus Poisson ratio (Figure 8), in 

which the elastic moduli have the value of (24), respectively. 

 
Figure 1.7: the trend of shear modulus in the polar coordinate system 
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Figure 1.8: trend of shear modulus versus Poisson ratio 

At last, is important to note that although the influence of LT on the E  is negligible, 

the Poisson ratio values close to the end points of the mechanical compatibility, may 

enhance the profiles and intensity of the components of the stiffness tensor, E  see 

(Figure 9). 

Regarding the second goal of this section, once determined the expressions of the all 

elastic moduli, the construction of the stiffness and deformability matrices of the 

Pannel can be obtained through the relations in (18) and using the equation in (20). 

Whit equation (14) and through mathematical manipulation , can be wrote the 

expression of the tensors  and  in the principal symmetry coordinate system of the 

material. 

1

23.05 6.95 0 0.0511 0.0255 0

[ ] 6.95 13.89 0 , [ ] 0.0255 0.0847 0

0 0 5.13 0 0 0.1948

Pannel PannelMPa MPa

 

(1.20) 

In the table below (Table A) are reported the expression of technical elastic moduli. 
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Figure 1.9: the influence of LT  on the E  

 

Technical elastic moduli of Pannel
®

 

(Ortotropic linear elastic model) 

LE  

[MPa] 

TE  

[MPa] 

DE  

[MPa] 

LTG  

[MPa] 

LT  
1

TL LT T LE E  

19.58 11.80 14.31 5.13 0.5 0.3 

Table A: Technical elastic moduli of Pannel
®
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Uniaxial tests simulation by Finite Elements analysis under linear orthotropic 

elasticity and high strains. 

The results obtained from the FEM modeling of a Pannel® ALCANTARA sample 

under uniaxial load condition are going to be showed in this paragraph. The loads are 

separately applied in the three testing directions (longitudinal, crosswise and 45° 

diagonal respectively), assuming to be valid for the material the linear orthotropic 

elastic relationship formerly obtained, and making the analysis under static load and 

high strain conditions. 

The geometric model has been designed in ANSYS®, following the ASTM D 638 02a 

(Standard Test Method for Tensile Properties of Plastics) standard test method (ASTM 

International, 2003), generally used for characterizing the plastic reinforced materials‟ 

reaction to traction. Then the sample‟s shape is of the “dog-bone” type and the 

particular dimensional specifications are quoted in Figure 10-a (left side). 

  
Figure 1.10 Specimen's geometry 

According to the experimental results, It has been proved in the previous sections that 

Pannel® ALCANTARA shows a mostly linear behavior in a 10-50% strain range, 

thus a linear orthotropic stress-strain reaction is expected in the above mentioned 

strain range. Evidently, as it‟s going to be explained hereafter, this linear description 

will atone a sort of pre-stress, due to strain storage during the initial stage, associated 

to the high reaction‟s non-linearity in the early firs stage. The FEM model‟s 

discretization has been realized by utilizing 8 nodes plane elements (PLANE182) and 

quadratic form functions on the sides; it is able to calculate either plane stress and 

plane-strain (ANSYS
®

). In addition, the finite element PLANE182 allows to 

implement an anisotropic relationship either linear and hyperelastic, and to analyze 

big displacement and big strains. Figure 11 shows the discretized model with 2922 

elements and 3124 nodes, in particular it shows the resulting mesh regularity, obtained 

to reduce energy errors associated to concentrated stress gradient.  
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About orthotropic elastic modules, they have been referred to the linear model 

formerly obtained in this Report. In particular, in the case of plane stress, this 

relationship is described from equation Eq.1.5. 

Whose explicit expression of the elasticity tensor, as the Cartesian reference system 

matches the material‟s principal reference system of symmetry, has already the 

explicit form in the first matrix on the left of Eq. 1.20. 

 
Figure 1.11: specimen FE model 

On the model, static analysis have been done to simulate uniaxial traction tests along 

the axis angled of 0°, 45° and 90° respectively than the sample‟s longitudinal direction 

(figure 10-b) and effectuated either under small and big displacements, in order to 

point out eventual differences in the implemented model‟s reaction.  

In order to retrace the procedure followed in the experimental tests effectuated upon 

ALCANTARA
®

 samples, the model has been constrained in one tip by a perfect joint, 

whilst in the opposite one, a uniform displacement has been forced, which is related to 

a maximum engineering displacement equal to 40%, thus measured as sample‟s 

elongation rate in the same direction as the load one. The output tensional condition 

(fig.10), because of the sample section‟s variation, naturally has got a spatially non-

uniform distribution and so, to calculate the overall sample‟s stress-strain reaction, it 

has been rated the normal tension L  average value, homogenized above n elements 

laying in the model‟s middle section. 
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Figure 1.12: Longitudinal stress distribution 

The homogenized tension values have been rated by the following formula 

1

1

1 n

L L i Lin
i

i

i

v

v

 

(1.21) 

Where iv   and Li   represent the i-ith element‟s volume and longitudinal tension, 

respectively. 

By this way, it‟s been possible to reproduce the stress-strain curves in the considered 

strain range, in the three different imposed uniaxial load conditions. 

The following graphs shows the FEM analysis results, obtained by the activation of 

either geometrical non-linearity condition (big displacement, and strains – in red) and 

linear one (green), compared to the related experimental curves (blue.) In particular, 

the Figures 13, 14 and 15 show that results in the respective cases of uniaxial traction 

in the longitudinal, crosswise and 45° diagonal direction. 

It‟s possible to point out from this curves obtained from the numerical non-linear 

simulations and from the experimentally obtained ones that all of them show nearly 

constant stress-shift compared to the strain, due to the heavily non-linear behavior of 

the stress-strain profiles in the first strain range (0-10%). Indeed, that difference is 

completely recoverable if the same FEM simulations are made entering an input pre-

stress that atones material‟s micro-structural rearrangement.. By this way it‟s possible 

to find out a very good fitting of numerical results with experimental ones, as shown 

in the Figures 16, 17 and18 for the three different examined cases. 

Finally, it‟ important to put in evidence that –as it results from the green curves in the 

Figures 13–14 and 15, it‟s impossible to ignore the big displacement and strain‟s 

condition: the linearization of Green-Lagrange tensor implies a stress increase than the 
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nominal one experimentally measured and thus a tension overrate, increasing as the 

sample‟s strain does. 

 
Figure 1.13 

 
Figure 1.14 

 
Figure 1.15 
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Figure 1.16 

 
Figure 1.17 

 
Figure 1.18 
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Anisotropic models in finite elasticity: specialization in the Pannel
®
 case 

Stress-strain tests for hyperelastic materials 

Let‟s assume a reference configuration 0  of a continuum in stress-free conditions. 

The strain can be described by the following function: 

3

0 0: , ( )X x X  

Where X  is a general material point in the undeformed configuration of the solid, and 

x  represents the same material point in the deformed, or current, configuration, . 

The transformation is regulated by the strain gradient 

( ) , det ( ) 0JF X F X
X

(1.22) 

Using the Cauchy-Green right tensor 

T
C F F (1.23) 

It‟s possible to obtain the expression of the Green-Lagrange strain tensor as follows 

2 ( )E C I  (1.24) 

Where I  is the second order identity tensor. In the main reference system, it is also 

obtained that: 

22 1 , [ ] , [ ]ii ii i ij ij ij ijc e c eC E
 

(1.25) 

where i  are the main stretches, whose physical meaning allows to deduce the 

expression of the corresponding strain engineering components: 

1

01 1i i i il l
 

(1.26) 

il and 0il  being a material fiber‟s lengths, measured in the i-ith direction respectively 

in the deformed configuration and in the starting one. 

Once defined the continuum kinematics by the different strain measures (1.24), (1.25), 

(1.26), it is possible to obtain the stress S postulating the existence of a strains‟ 

potential, and then introducing Helmholtz free energy in the following form 
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1( , ) ( , ,..., ),n N nE M E M M
 

(1.27) 

where 

n n nM m m
 

(1.28) 

Represents a second order symmetric tensor and nm  is the general unit vector 

defining the n microstructure‟s orientation in charge of the eventual material‟s 

macroscopic anisotropy. By this way, the strain tensor –Piola-Kirchhoff second 

tensor– is univocally determined by the relationship: 

S
E  

(1.29) 

The equations (1.24), (1.27) and (1.29) define an hyperelastic material, and the 

relationship (36) defines the tensor variable‟s form that determines in turn the means‟ 

anisotropy. 

Explicit definition of Helmholtz’ free energy for orthotropic hyperelastic case 

Pannel
®
 tissue, as a consequence of several chemical-physical and production 

processes, shows a heavily anisotropic behavior, related to a substantial orthotropic, as 

shown by the uniaxial stress tests and, in particular, by the stress-strain curves 

experimentally obtained (Figure 2). 

Referring to the tensor nM  form (1.28) and assuming the presence of two micro-

structural fibers statically directed in order to be mutually orthogonal Figure 19 

 

Figure 1.19 

it‟s possible to reduce the tensor variables‟ number to just two, as follows: 
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1 2,M M a a M M b b
 

(1.30) 

Where 

[cos , sin , 0] , [cos , sin , 0] , 2T T
a b  

And α represents the general inclination that the firs fiber family angles with the 

longitudinal tissue axis (roll-unrolling direction), assumed equal to zero for the 

considered case. 

The independence on referring system required by the strain energy density Ψ, leads 

to narrow the functional form (1.27) to the isotropic function form of the string tensor 

E and of the two micro-structural tensor M  and M , thus considering variable the 

following usually invariant quantities 

2 2

1 2 1 2: , : , : , :I I I IC M C M C M C M
 

(1.31) 

Assuming polynomial a Helmholtz‟ free energy structure in the invariants (1.31) and 

limiting to quadratic and cubic terms (Gasser and Holzapfel, 2000; Holzapfel et al., 

2000) , it results: 

2

1 2 1 2 1 1 2 1 2

2

3 1 4 1 2 5 1 1

( , , , ) (1 ) (1 ) (1 )

                         (1 ) (1 ) (1 ) (1 ) (1 )

I I I I k I k I I

k I k I I k I I  

(1.32) 

Where ik  are parameters, of the same dimensions as tensions‟, experimentally 

determinable.  

Stress-strain engineering curves’ analytic determination for uniaxial stress tests in 

longitudinal and crosswise direction. 

In order to establish the value of ik  parameters in the (1.32) for Pannel
®
 tissue, it is 

necessary to refer to the stress-strain curves experimentally derived from uniaxial 

stress tests in longitudinal and crosswise direction, considering the whole considered 

(engineering) string range (Figure.2) 

In order to do it, referring to a Cartesian reference system 1 2 3{0, , , }x x x , matching 

either the main symmetry reference system and the stress-strain one, in plane stress 

case, reconstruct the stress state by utilizing the equation (1.29) and the free energy 

expression (1.32), remembering from (1.24) that ( ) 2E C I : 
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2

11 1 11 2 11 11 11 5 22

11

2

22 3 22 4 22 22 22 5 11

22

33

33

8 2 {4 (1 2 ) [1 (1 2 ) ]} 4

8 2 {4 (1 2 ) [1 (1 2 ) ]} 4

0

k e k e e e k e
e

k e k e e e k e
e

e
 

(1.33) 

Where [ ]ii iiS  are the main components of the stress tensor and the direction 3x  is 

assumed as orthogonal to the stress plane. In order to obtain the analytic relationship 

for the two uniaxial stress cases in longitudinal direction (along 1x  axis) and crosswise 

direction (along 2x  axis) related to the experimental tests, it‟s necessary to rate the 

relationship between the main strain components 11e  22e  that annul the 22  tension, in 

the case of uniaxial stress in 1x  direction, and complementarily the tension 11  in the 

case of uniaxial stress in 1x  direction. Which involves the following algebraic 

equations (derived from (1.33)) to be solved: 

2

3 4 3 4 4 5 11

22 22

4

2

1 2 1 2 2 5 22

11 11

2

( 2 ) ( 2 ) 6
0

6

( 2 ) ( 2 ) 6
0

6

k k k k k k e
e

k

k k k k k k e
e

k
 

(1.34) 

Substituting the first of (1.34) to the 11  stress expression in (1.33) and twice the 

second of (1.34) to 22  in (1.33), stress-strain relationships L L  and T T  are 

obtained respectively for the longitudinal and crosswise case as follows 

2 2

2 4 4 1 2 5 3 4 3 4 4 5

4

2 2

2 4 2 3 4 5 1 2 1 2 2 5

4

72 24 ( 2 ) 2 [ ( 2 ) ( 2 ) 6

3

72 24 ( 2 ) 2 [ ( 2 ) ( 2 ) 6

3

L L L

L

T T T

T

k k e k k k e k k k k k k k e

k

k k e k k k e k k k k k k k e

k
 

(1.35) 

Where, from (1.25) and (1.26), the Green-Lagrange strain components 

11 22( 0)Le e  and 22 11( 0)Te e  are linked to the related engineering strain 

components‟ expressions L  and T  by the relationships: 
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2 2(1 ) 1 (1 ) 1
,

2 2

L T
L Te e

 
(1.36) 

Calibration of Helmholtz hyperelastic model on the Pannel
®
 tissue 

The analytical form of stress-strain laws L L  and T T for hyperelastic 

materials can be obtained to replacing the equations (1.36) into the relations (1.35). 

The ik  parameters of Helmholtz's model can be calculated through a fitting procedure 

on the experimental results, obtaining the data reported in the table below: 

Hyperelastic parameters of analytical model  

(Orthotropic hyperelastic model) 

ik [MPa] 1k  2k  3k  4k  5k  

 3.895 -0.465 0.597 0.115 0.016 

  
In the figure 20 are shown both the analytical curves (solid line) and the output of 

experimental results (dots) of the uniaxial stress-strain test, along longitudinal and 

transversal directions respectively. It's possible to deduce the good agreement of 

theoretical predictions with the results of laboratory. 

 
Figure 1.20: analytical curves (solid line) and the output of experimental results (dots) 

Uniaxial tests simulation by Finite Elements analysis under anisotropic 

hyperelasticity and high strains. 

 

Conclusions 

The first part of this chapter focused on the construction of a linear elastic orthotropic 

model for the understanding of the mechanical behavior of tissue Pannel
®
. 
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The linear and orthotropic hypothesis have been discussed in the opening paragraphs 

and there were related to the experimental result into the range of deformation of 

practical interest that is the high deformation range 10% 50% .  

The numerical simulations are carried out by using a Finite Element code (ANSYS
®

), 

with which it was possible to validate the theoretical model and to quantify the affect 

of the non-linear material behavior, in the tensile uniaxial tests. The second part of 

chapter describe the definition of hyperelastic behavior to modeling the stress-strain 

response of Pannel
®
. This model is derived from the framework of the theory of 

nonlinear elasticity (Finite Hyperelasticity). In particular, starting with the free energy 

of Helmholtz, was found the formal structure of the strain energy density as a function 

of the invariants both of the Green-Lagrange tensor than the microstructural tensor. 

The latter deriving from a generalization of the Holzapfel-Gasser Ogden mode. 

The parameter calibration were made from the experimental stress-strain curves, 

showing a good approximation between experimental and analytical results. 
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CHAPTER II 

FEM MULTIPHYSIC APPROACHES ON THE 

BIOMECHANICS OF CORNEAL TISSUE 

Introduction 

Over the past decade, surgical techniques based on excimer lasers have been 

extensively used for treatment of refractive errors in human eyes. Several procedures 

(LASIK, PRK, LASEK, etc) have been developed to correct nearsightedness, 

farsightedness and astigmatism by removing thin layers of biologic tissue, thus 

modifying the surface curvature of the cornea. These techniques have advanced 

rapidly and laser in situ keratomileusis (LASIK) surgery has emerged as one of the 

most commonly performed procedures. In particular, with the aid of automated 

control by computers, the LASIK has become reliable and its outcome predictable. 

However, the disadvantages of these surgical procedures reside in the fact that 

intervention location is at the corneal centre and therefore the operation zone is on the 

visual axis. This may affect visual acuity with the possibility of night vision problems 

including halos, starbursts, and other undesirable phenomena. Moreover, if the surgery 

fails the laser ablation of corneal tissue may generate irreversible effects and it can be 

extremely difficult to compensate for the loss. 

Consequently, refractive treatments operating on peripheral cornea such as 

Conductive Keratoplasty (CK) and Intra-Corneal Ring (ICR) have gradually attracted 

much attention, in particular for the correction of farsightedness, which is far more 

problematic then nearsightedness because a steepening versus a flattening of corneal 

surface is required. From a technical standpoint, the Conductive Keratoplasty is based 

on the delivery of a precise amount of radiofrequency energy through a probe inserted 

into the stromal tissue. 

CK generates heat in the cornea because stromal tissue provides resistance to the flow 

of the current, which results in controlled heating and collagen coagulation. The 

process is self-limiting because resistance to the flow of the current increases with the 

increasing dehydration of collagen and the CK treatment spots, which may vary from 

eight to thirty-two according to the degree of correction required, reach a temperature 

consistent with optimal shrinkage. A cinching effect is thus obtained that increases the 

curvature of the central cornea, yielding the desired result. Although the procedure is 



 

33 

 

far less invasive and risky than ablative ones, the postoperative follow-up shows that 

the initial degree of refractive correction tends to decrease of 20% in 24 months‟ time 

(McDonald el al. 2005; Esquenazi et al. 2006)) so that the predictability of the 

outcome cannot be considered completely satisfactory. 

In order to shed some extra light on the reasons of this regression and to help to 

understand the still unclear mechanisms responsible of the phenomenon, the present 

study proposes a Finite Element Method (FEM) based numerical simulation of the 

mechanical response of the cornea to CK, with the aim of determining the role played 

by some key geometrical and mechanical factors. 

Simulations of surgical procedures by means of numerical approaches have been 

commonly adopted to understand the tissue response and to develop new surgical 

techniques to varying degrees of success. To this scope, the FEM has been employed 

to simulate the incisions for astigmatism correction and evaluate the depth, length and 

position of each incision (Lanchares et al. 2008). By following a similar approach, 

Pandolfi el al. (Pandolfi et al. 2006, 2009) simulated the surgical outcome on myopic 

and astigmatic eyes, evaluating the dioptric power in the postoperative. However, to 

the best of authors‟ knowledge, no previous FE models and analyses have been 

devoted to CK and to the influence on the refractive correction of both the viscoelastic 

properties of the cornea and of the induced stress status. Additionally, since surgical 

simulations must rely on a suitable representation of the mechanical response of soft 

tissues subject to surgical manipulations, to achieve a meaningful reproduction of the 

phenomena pertinent finite element models need to be employed. In fact, validating 

these models for specific tissues still remains a challenge and in the present work 

carefully conducted human cornea tests (Zeng et al. 2001) have been chosen to 

corroborate the elastic and the viscoelastic constitutive laws.  

The chapter is organised as follows: In the first part of chapter, a FE modelling of the 

cornea, accounting for its viscoelastic behaviour, is accurately set up according to the 

available experimental data in the current literature; then, by introducing suitable 

boundary conditions and prescribing heat sources at the intervention spots, a steady-

state thermo-mechanical simulation of the Conductive Keratoplastic intervention is 

carried out and the numerical results are validated with respect to the standard clinical 

nomograms; successively, the evolution of the obtained correction is evaluated over 

time with respect to the viscoelastic properties of the corneal tissue and a comparison 

between the resulting stress field and the one normally present on account of the Intra-

Ocular pressure (IOP) is performed. 
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In the second part, in order to simulate the thermal behavior of corneal tissue during 

the heating process, and subsequently viscoelastic mechanical response of structures, a 

coupled thermo-mechanical transient analysis has developed. 

In addition, with reference to the currently adopted surgical nomograms for refractive 

corrections ranging from 0.75 to 2.25 Diopters, a sensitivity analysis is performed 

with the aim of evaluating the capability of the computational model to predict the 

expected clinical results. Thus, interventions involving eight, sixteen or twentyfour 

spots are analysed.  

Material and Methods 

The biomechanics of the human cornea 

The human cornea is a highly porous soft tissue filled by biological fluids that protects 

the internal layers of eye, keeps its shape and conveys the light rays to the retina. Its 

thickness ranges from 1 to 0.8 mm from the cornea-sclera junction to the centre, 80% 

of its mass being constituted by water. From an anatomic-histological point of view 

the cornea is made of five layers: the epithelium, the Bowman‟s membrane, the 

stromal tissue, the Descement‟s membrane and the endothelium (Pinsky and Datye 

1991). The corneal stroma represents 90% of the whole cornea and has an average 

thickness of 600 μm (about 550 μm and 650 μm in correspondence of the apex and at 

the limbo, respectively). It is constituted of about 300-500 parallel lamellae, made of 

collagen fibrils soaked in a waterproteoglycans substance: the presence of these 

constituents and their percentages confer to the whole structure a marked viscoelastic 

behavior, while the different orientation of fibrils suggests a local anisotropy (Newton 

and Meek 1998; Nguyen et al. 2008). 

In the last years, many efforts have been made to understand the biomechanics of the 

corneal tissue and several experimental tests have been conducted both in the short 

and in the long-term ranges such as inflaction, tensile, creep and stress relaxation tests. 

A number of numerical simulations have also been carried out and several ad hoc 

equations have been used to describe the response of different corneal tissues (Fung 

1993; Zeng et al. 2001). Inflaction tests have been used to evaluate the change of 

stiffness with increasing intraocular pressure and the creep behavior, while a 

hyperelastic response has been related to the age of corneal tissue (Elsheikh 2008). In 

several cases animal corneas have been employed, given the difficulty in obtaining 

human corneas (Hoeltzel et al. 1992). For this reason, the differences in mechanical 

properties of human and porcine corneae have been analysed and similar stress-strain 

relationship has been found, albeit the long-term stress-relaxation behaviorcan be 

markedly different (Zeng et al. 2001). Specific inflaction tests have been performed on 
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corneal porcine specimens subject to internal pressure increases, highlighting a typical 

soft tissue nonlinear behaviour, that is a matrix-regulated phase followed by a 

collagen-regulated phase (Anderson et al. 2004). 

Many studies have been aimed to derive the mechanical behaviorof cornea directly 

from its stromal structure, each lamella being formed of collagen fibrils embedded 

within extracellular matrix rich in proteoglycans, glycoproteins and keratocytes 

(Boote et al. 2005). However, the hierarchical structure of the cornea at different 

scales, a fact common to many biological tissues, makes the development of reliable 

numerical models difficult and different approaches have been proposed in literature. 

In many cases corneal tissue has been assumed to behave as a nearly isotropic 

incompressible material with Poisson‟s ratio about ½. Some authors have attempted to 

describe the human eye as an exponentially stiffening membrane and made reference 

to a nonlinear elastic and isotropic material (Fernández et al. 2006; Xie et al. 2008). 

Hyperelastic constitutive laws, derived from inflaction tests on porcine cornea 

specimens, have been also adopted in some numerical models of cornea (Anderson et 

al. 2004) and others authors have considered an anisotropic corneal micro-structure on 

account of the lamellae of the stroma. In particular, Li et al. (2006) assumed the 

cornea as made of a composite material and invoked constitutive equations for 

laminated composite shells, with the lamellae presenting a random orientation with 

gaussian distribution. As a matter of fact, a wide-angle X-ray scattering study had 

reviously confirmed the anisotropic arrangement of the lamellae (Meek et al. 1987) 

and subsequent research works, again based on X-ray scatter have recently revealed 

that in central zone the fibrils are concentrated in the 45° sectors along the superior-

inferior and nasal-temporal directions (Boote et al. 2005; Meek et al. 2009). 

Additional investigations (Newton and Meek 1998) have established the presence of a 

circumferential annulus of collagen fibrils at the cornea-sclera interface and 

microstructural models exploiting these results have been subsequently implemented 

in FE analyses through the definition of two preferred material directions and by 

adopting energy approaches to model the collagen fibers-matrix composite 

behavior(Lanchares et al. 2008; Pandolfi et al. 2006; Pinsky et al. 2005; Nguyen et al. 

2008). Very recently, some authors (Grytz and Meschke 2009a) have proposed an 

innovative strategy to model the physiological network of collagen fibrils at the 

cornea-sclera junction and developed an algorithm to predict the re-orientation based 

remodeling of crimped collagen tissue. Their results have shown effective matching 

both with experimental data from uniaxial test on rat tail tendons (Grytz and Meschke 

2009b) and with experimental data from strip extensiometry on porcine cornea 

(Anderson et al. 2004). Having examined all these previous studies and given the 
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chief scope of the present investigation, i.e. the analysis of the long term stability of 

the obtained correction, in order to focus the attention on the key parameters in a 

suitable and not gratuitous complicated mechanical modelling, in the present work the 

corneal tissue has been assumed to behave as a nearly isotropic viscoelastic 

incompressible material. This choice has been validated with reference to carefully 

conducted tests on human corneae (Zeng et al. 2001) and with the comparison of the 

FE results to orbscan corneal topography images (McDonald et al 2002). 

From a geometrical point of view, the cornea has been modelled in several ways and 

approaches modelling the global eye ball (Crouch 2005), the sole cornea (Anderson et 

al. 2004; Xie 2008), assemblies of cornea, limbus and sclera (Lanchares et al. 2008) 

have all been pursued. Spherical, ellipsoidal or pseudospherical shapes, with different 

internal and external radii, have been proposed for cornea geometry (Fernández et al. 

2006; Pinsky el al. 1991; Bryant el al. 1996). In particular Anderson and al. (2004) 

modelled both the whole eye and the sole cornea to evaluate the effects of some 

parameters related to the IOP and these results have been successively used on a 

spherical corneal-only FE model, to assess the IOPG (Goldmann Intra-Ocular 

Pressure) measures. 

Pandolfi et al. (Pandolfi et al. 2009) modelled the cornea by introducing ellipsoidal 

curves in order to simulate the laser surgery outcome on myopic and astigmatic eyes. 

Fernández et al. (2006), employed a two-dimensional finite element, while 

threedimensional FE models of the front part of the human eye have been created to 

simulate astigmatism correction by corneal incision (Lanchares 2008), where cornea, 

limbus and sclera have been involved and the eye model has been generated by 

assuming, as done by several other authors, symmetry with respect to the optical axis. 

Viscoelastic characterization of the corneal tissue 

It is well-known that, on account of the presence of solid and fluid constituents at the 

micro-scale level, many biological soft tissues exhibit an overall macroscopic 

viscoelastic or poro-viscoelastic mechanical behavior(Fung 1993; Cowin and Doty 

2007). In living tissues, this material time-depending response can interfere with 

biological time-depending remodelling, growth and morphogenesis processes, which 

alter the tissue structure modifying its mechanical features over time (Cowin and Doty 

2007). The actual overlapping of material and biological responses depends on the 

ratio between the characteristic times by which the two phenomena evolve, say stress 

relaxation and tissue micro-structure changes. As a consequence, from the mechanical 

point of view, a preliminary evaluation is needed for assessing the possibility of 

separating these effects. With the aim of investigating the role of corneal 
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viscoelasticity on refractive correction after CK operations, it is possible to make 

reference to mechanical models (Nguyen et al. 2008) essentially based on the 

Maxwell and the Kelvin-Voigt elementary ones (Fig.2.1). 

 
Fig. 2.1 Basic constitutive models equation 

According to these models, any viscoelastic behavior of a given material results from 

a suitable combination of serial and parallel springs and dashpots, characterized by 

different Young moduli, E, and viscosities, , respectively. These models, along with 

the well-known corresponding equations, are shown in Fig.2.1 where  is the stress, 

 the strain and t the time. 

The most commonly adopted viscoelastic model is constituted by the so-called 

generalized Maxwell (or Maxwell-Wiechert) model (see Fig. 2.1), where the time 

dependent behavior of the material is accounted through a special mathematical 

expression, the Prony series, i.e.: 
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(2.1) 

where G represents the Lamè shear modulus (Chen 2000). 

As stated in the previous Section, in order to avoid unnecessary complications, within 

the scope of the present investigation the corneal tissue has been considered as 

viscoelastic and isotropic and obeying to the stress-relaxation curve derived from 

available experimental results (Zeng et al. 2001), as shown in Fig. 2.2. 
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Fig. 2.2 Typical stress-relaxation curve of human cornea from experimental data 

On the basis of these available experimental results, the time period of analysis has 

been extended to about 11 days after the surgery. The procedure followed to evaluate 

the Prony coefficients ,j jG  and ,j jK  for shear and bulk moduli is summarized 

in the flow-chart of Fig. 2.3. 

 
Fig.3 Set-up of data set for modelling the viscoelastic behavior in ANSYS

®
 

The numerical analyses have been performed with the aid of the Finite Element based 

commercial package ANSYS
®
 (ANSYS 2009), whose dataset for viscoelastic 

materials is built by entering the couples of Prony coefficients and Young modulus 

and Poisson ratio, in case of isotropy related to shear and bulk moduli by means of the 

classical formulae  
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with 0.499  to simulate a nearly uncompressible material. The couples of Prony 

coefficients have been derived by means of a least square technique, employed to fit 

the experimental curve. Table 1 collects the input values in the FE code. 

 
Table 1 Prony coefficients 

In order to validate the viscoleastic constitutive relationships prior to the analyses, the 

FE constitutive behaviorhas been checked against the experimental expression by 

Zeng (2001) by means of a specific procedure developed to simulate stress-relaxation 

tests on a benchmark cubic specimen under pure shear.  

The conductive keratoplasty 

As anticipated in the Introduction, the conductive keratoplasty is a non-ablative 

procedure based on the delivery of a precise amount of RF energy through a finely 

tipped stainless steel probe inserted into the peripheral cornea at premarked spots 

encircling the cornea outside the visual axis. The instrument tip pierces into about 

80% of the corneal depth (McDonald 2005; Hersh 2005) and produces a rather 

homogenous and uniform cylinder of scar tissue.  

More precisely, the analysis of the histology of a pig eye one week after CK treatment 

shows at each treatment spot a cylindrical footprint that extends to approximately 80% 

of the depth of midperipheral cornea (McDonald 2005). The treatment spots in the 

histopathological images of human corneae appear somewhat more homogenous and 

deeper (approximately 500 μm) than the cylindrical thermal footprint (Naoumidi et al. 

2005), but it can be nevertheless related to this shape. The new configuration is 

accompanied by contraction (shrinkage) of collagen that changes the mechanical 

behaviour of the tissue. The intervention produces a “cinching” effect that decreases 

the radius of curvature of the central region of the cornea, depending on the number of 
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spots treated, by the number of rings treated and by their diameter (McDonald et al. 

2002; Hersh 2005). This is shown in the scheme of Fig. 2.4, where D stands for 

dioptres. The consistency of the procedure relies upon several factors: the probe 

penetrates into the cornea and cannot pierce it, since an insulated Teflon-coated 

governor prevents a deeper treatment.  

 
Fig. 2.4 

Additionally, heat is not applied directly to the surface of the cornea but is generated 

within the tissue on account of the resistance of the stromal collagen fibres. The tissue 

is raised to a certain temperature and kept so for a preset time, which causes the 

collagen fibres to shrink without totally denaturing the protein. Finally, the process is 

self-limiting. In fact, collagen exists in a triple helical form in which the peptide 

chains are stabilized by hydrogen bonds (Cowin and Doty 2007). Heat-induced 

denaturation of collagen is an irreversible rate-process wherein the native helical 

structure is transformed into a more random, coiled structure. The corneal collagen 

denaturation kinetics is known to depend highly on the temperature/time history 

(Brinkmann et al. 2000) and the potential to achieve maximal collagen denaturation is 

dependent on the type of target tissue (based on collagen content, density, fibre 

orientation, etc.), on the temperature and on the time (duration of treatment). Once 

maximal collagen denaturation has been achieved at any given target temperature, 

increasing the treatment time does not result in further collagen denaturation (Wall et 

al. 1999), and in this sense the CK process is completely selflimiting. 
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FE modeling and analysis 

With the aim of analysing the post-operatory evolution of the CK surgery, a suitable 

FE model has been created. On account of the findings from the previously cited 

works regarding the human eye, in the present study it has been judged that the 

modelling of the sole cornea would have sufficed to the scopes of the analysis. The 

shape of the cornea was generated by means of a rotation about the optical axis z of a 

corneal profile with varying thickness, following the path by Fernández et al. (2006). 

To this purpose an ad hoc ANSYS
®

 procedure was developed and the solid model was 

successively meshed by means of 45,000 standard 8-nodes hexahedral elements and 

53,557 nodes (Fig. 2.5) within a kinematically linear framework.  

 
Fig. 2.5 

In order to reduce the computational effort, only one quarter of the cornea was taken 

into consideration, relying upon appropriate boundary symmetry conditions on the x-y 

and the y-z planes (Fig. 2.6). The cornea-limbus transition (Elsheikh et al. 2006) was 

simulated by edge rollers inclined of about 37° with respect to the limbus plane, a 

value found appropriate by Anderson et al. (Anderson et al. 2004). Essentially, this 

means constraining a radial degree of freedom and preventing a circumferential 

expansion of the limbus. In fact, limbus is a quite rigid tissue and a circumferential 

expansion is not to be allowed.  

In order to simulate accurately the CK surgical procedure and its subsequent effects, a 

geometry representing a pathological hyperopic condition of about 0.75 D, 

corresponding to an overall diopter power of about 50.27 D, was adopted (Lanchares 

et al. 2008). The reference configuration is the natural one, i.e. under IOP pressure. 

However, it must be pointed out that, despite its high flexural deformability, the 

membranal deformation of the cornea under IOP is not very significant, as shown both 
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by inflation tests (Elsheikh et al. 2008a) and FE models. In particular, Bryant and 

McDonnell (1996) evaluated different laws to describe the mechanical behaviour of 

corneal tissue by membrane inflation tests, increasing the IOP and varying its values 

in a fixed range and Pandolfi and Manganiello (2006) used their FE model to simulate 

the Bryant and McDonnell experiments, applying a uniform pressure to the internal 

surface of cornea, ranging from 0 to 30 mmHg. 

 
Fig.2.6 

The thermal shirking of collagen tissue has been replicated through an inelastic 

distortion applied to the elements at the intervention spots and kept constant. In this 

manner, an equivalent representation of the thermal lesions was achieved by means of 

an adequate setting of the distortions. 

According to the CK nomogram used in surgical techniques, in the present study an 

annulus with eight intervention spots, which is normally employed for the correction 

of a defect ranging from 0.75 to 0.875 D (see Fig. 2.4) was first taken into 

consideration. Figures 2.5 and 2.6 show the position of the annulus and the symmetry 

conditions assumed for the FE model. 

In order to pre-emptively estimate the magnitude of the displacements associated to 

the required steepening of central cornea, according to the number of points indicated 

in the nomogram, an analytical procedure along the line of reasoning of Wang et al. 

(2007) has been employed and the value of the fictitious thermal load has been 

established. 

With reference to Fig. 2.7, say iR  the radius in the initial configuration. The relative 

dioptric power can be calculated by means of the Munnerlyn expression (Munnerlyn 

et al. 1988), i.e. 
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where n is the corneal refractive index 1.377n . 

 
Fig.2.7 Pre- and Post-Operative corneal profiles 

By considering the corneal caps above the  plane passing through the spots annulus 

before and after deformation, it is assumed that both are spherical and that their area 

remains the same, so that  

pre postS S
 

(2.5) 

Where 2pre i iS R h  and 2post f fS R h  

It follows that  
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fh  being the height of the deformed spherical cup. In this expression fR  (radius of 

the deformed spherical cup) can be calculates by Eq. 2.4 by imposing 

0.875f iD D  where 0.875 D is the upper bound of the corrected dioptric power 

following an eight-spots CK treatment and  

2 2

i i i ih R R r
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The mean circumferential strain results 

2 ( )
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(2.8) 

where 
2 2

f f f fr R R h  

Since it can be set 8f iC C L , where  is the local strain at the elements 

representing the intervention spots, whose length is L, it follows 

2   

8

ir

L  
(2.9) 

So that the estimated value of the required thermal load, T , is 

T T
 

(2.10) 

where T  is the thermal expansion coefficient. 

According to the surgery, the footprint of the CK lesion in the modelled cornea has 

been extended to about 80% of its depth as shown in Fig. 2.8 where the stress field at 

a treatment spot in the FE model is compared to the image of the experimental 

readings in a pig corneal tissue. 

 
Fig.2.8 
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The changes in the cornea curvature and in the relative diopter power have been 

evaluated as follows. The displaced positions of the nodes in the visual zone (about 6 

mm diameter) have been interpolated at each time step, i , by means of a best fitting 

process through the symbolic code MATHEMATICA
®

 (Wolfram 2003), thus 

obtaining a profile function 
( ) ( )iP r . Successively, the local curvature 

( ) ( )iC r  and the 

mean curvature radius ( )iR  of the selected zone have been evaluated through the 

following formulae 
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where  is the span of the visual arc. 

Successively, the resulting diopter power has been calculated using the Munnerlyn 

expression, Eq. 4.  

Mechanical Results and discussion 

Discussion of analysis outcomes 

As stated before, the objective of the present study has been to investigate the post 

operative stability of the imposed dioptric correction and to this purpose first the 

effects of stress relaxation or creep phenomena around each intervention spot on 

account of the viscoelastic constitutive behaviorof corneal tissue have been analysed. 

Both von Mises equivalent stresses and strains have been evaluated, as shown in 

picture below (Fig. 9.) 
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Fig. 2.9 Numerical results. von Mises equivalent stresses [MPa] (left) and strains (right) 

For each time-step i of the non linear analyses, von Mises stresses and strains have 

been computed and their overall mean value has been then derived as follows 

( ) ( ) ( ) ( )
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where N is the total number of elements over which the average values are calculated, 

i is the generic time-step, jV  represent the j-th volume element and ( )i

j
 and ( )i

j
 are 

the von Mises stresses and strain related to the j-th element, respectively.  

In Fig. 2.10, top, a plot of the mean stress and strain intensity at 0.8 mm around the 

intervention spots versus time is shown, and a relaxation can be observed in the tissue, 

which confirms previous observations (Esquenazi et al. 2006). The evolution of Von 

Mises strains highlights first a swift decrease in value, followed by a slow increase 

given by the creep behaviour. These results suggest that the viscoelastic response of 

the cornea tissue, in conditions of stress relaxation, fades in a few days and does not 

contribute to the long term partial reversal of the imposed correction.  
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Fig. 2.10: Homogenized von Mises stresses and strains at the intervention spot versus time (top). 

Dioptric power versus  time (bottom) 

In Fig. 2.10, bottom, a plot of the dioptric power versus time is also shown and 

indicates that it tends to increase in the immediate post-operative period and 

successively stabilizes at a constant value. This finding reveals that in the long term 

the curvature of the visual zone is substantially unaffected by the relaxation of the 

corneal tissue and that in any case the initial trend due to the creep acts in the opposite 

way of the observed average decrement of 20% in 24 months‟ time. The result gives 

also reason from a mechanical standpoint for the immediate corneal steepening in 

rabbits corneae observed after CK by Esquenazi et al. (2006). 

The attention has then been focused on the amplification of the stress field induced by 

the stress gradients which are kindled about the treatment spots by the CK distortions. 

As shown in the Fig. 2.11, the zones surrounding the treatment spots show a 
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considerable stress increase with respect to the stress induced by the normal intra-

ocular pressure of 15-18 mmHg.  

 
Fig. 2.11 

This fact, that is a stress intensification which on average is more than twelvefold than 

the normal one, suggests that the wound-healing is very likely to play the major role in 

the commonly observed decrease of the initial degree of the refractive correction, on 

account of the replacement of myofibroblasts by normal keratocytes that do not have 

the capacity to resist tension (Esquenazi et al. 2006). It is worth noticing that the 

present study seems to be the first to provide a quantification of this stress 

amplification phenomenon on the basis of a straightforward and reliable modelling.  
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In fact, the accuracy of the FE analyses carried out is confirmed by comparison with 

experimental readings. Actually, as discussed by Mc Donald (2005): "[…] in the Slit-

Lamp photograph of cornea, at 1 hour after CK treatment, are visible as small surface 

of leukomas, with the lines of tension or striae connecting the treatment of spot. These 

lines of tension are responsible for the tightening of the peripheral cornea and the 

subsequent steepening of the central cornea". Fig. 2.12 shows how the adopted FE 

model successfully captures the cinching effect among the intervention spots. 

Additionally, a comparison between the FE radial displacements, which depict the 

steepening of the central part of the cornea, and an orbscan postoperative topography 

of a CK-treated eye, confirms an accurate modelling of the phenomenon (Fig. 2.13). 

 
Fig. 2.12 
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Fig. 2.13 

The sharp increase in both the value of the stress field and of the gradient is evident in 

Fig. 2.14, where a comparison of von Mises stress field and gradient between 

physiological status (IOP) and post-CK intervention at the intervention annulus is 

shown. 

 
Fig. 2.14 

Finally, Fig. 2.15 shows the results from the FE modelling of three different 

treatments, according to the nomogram of Fig. 2.4: an eight spots, a sixteen spots and 

a twenty-four spots intervention. In all these simulation the modelling of the lesion 

was kept the same. The amount of obtained correction is depicted in Fig. 2.16 and it is 
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evident that the results from the FE analyses are within the range of the clinical 

readings by McDonald et al. (2002).  

Interestingly, the intensity of the stress field surrounding the lesions results of the 

same order of magnitude in all three cases, thus suggesting that on the whole from a 

mechanical standpoint the wound-healing and the associated decrease of the initial 

degree of the refractive correction is liable to be a local phenomenon. In other words, 

the fact that the observed decrease in correction is proportional to the initial degree of 

hyperopia seems to depend on the wound-healing at a large number of spots and not 

on a noticeably different value of the stress field. 

 
Fig. 2.15 
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Fig. 2.16 

 

The influence of micro-structural anisotropy 

Notwithstanding the fact that anisotropy plays an importanta role in the 

characterisation of the corneal tissue, in order to show its scarce relevance with 

respect to the performed investigation, a comparison between the results of some 

analyses on a FE anisotropic model of cornea and the previous based on a FE isotropic 

model is shown. In particular, the way in which the anisotropic behavior of corneal 

tissue affects the FE analysis of an eigh-spots CK intervention has been analysed. 

As mentioned before, the corneal mechanical behaviour is to a certain extent affected 

by the organization of collagen fibrils into the corneal stroma.  

With the aim of evaluating the sensibility to the corneal anisotropy of the adopted FE 

model, CK analyses have been conducted accounting for the trasverse-orthotropic 

mechanical characteristics used in previous works by Gefen A. et al. (2009). 

Considering the elastic moduli in a spherical coordinate system, constant values 

4.5rrE MPa and 2E MPa have been assigned in the radial and meridian 

directions, respectively, while the longitudinal elastic moduli has been set as 2E

MPa at the center of the cornea with a gradual increase toward the periphery, until a 

value of 7 MPa in correspondence of the limbo-sclera junction. The values assigned to 

rrE , E , E  are listed in Table 2. The shear modulus is set as 0.2ijG  MPa (Gefen 

A. et al. 2009).  

 



 

53 

 

Mechanical Properties of corneal tissue 

Material 

zones 

Distance 

from the 

apex (mm) 

E  

[MPa] 

E  

[MPa] 

rrE  

[MPa] 

1 0 - 3 2 2 4,5 

2 3 - 4 2 3,5 4,5 

3 4 - 5 2 5 4,5 

4 5 - 6 2 7 4,5 

*The orthotropic material properties refer to Gefen A. et al (2009) 

 Table 2 Material properties at different corneal zones (Gefen et al. 2009) 

Fig. 2.17 shows the distribution of the elastic moduli in the FE model. 

 
Fig. 2.17 Allocation of zones characterised by different mechanical properties 

Following the same procedure of the isotropic case, the modification in the refractive 

power due to CK has been calculated in the elastic range. The comparison between the 

results from isotropic and orthotropic cases is reported in Table 3. preR  and postR  are 

the mean radii pre and post CK simulation treatment respectively, whereas preD  and 
postD  are the equivalents dioptric powers. D  is the corrected refractive power 

8 Spots Treatment 

 preR  postR  preD  postD  D  

Isotropic 7,52129 7,40107 50,1243 50,9385 0,8142 

Orthotropic 7,3731 7,256 51,1318 51,9570 0,8251 

Table 3 Results from FE 8-spots treatment: isotropic versus anisotropic modelling 
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The percent error in the dioptric correction, D  results 

 

1,3%

Iso Ani

D Iso

D D

D  
(2.14) 

where IsoD  and AniD  are the corrected dioptric powers, as shown in Table 3. 

Figures 2.18 and 2.19 show the radial displacement maps from the isotropic and 

anisotropic 8-spots models, and the equivalent stress intensity in the tissue around the 

CK intervention spots, respectively. 

 
Fig. 2.18 Radial displacements [mm] of the corneal surface from FE: isotropic versus anisotropic 

modelling 



 

55 

 

 
Fig. 2.19 von Mises equivalent stress fields [MPa] from FE: isotropic versus anisotropic modelling 

The similarity in the observed behavior is such to suggest that the anisotropic behavior 

does not affect significantly the response to the CK and the viscoelastic analyses  can 

be meaningfully conducted under the assumption of isotropy. 

Multiphysic characterization of Human Cornea  

State of art on the thermo-mechanical characterization of corneal tissue 

As mentioned above, from the FEM simulation of CK procedure on the human 

corneal tissue, it has been shown that the viscoelastic properties of the cornea do not 

contribute to decrease the correction at all and affect the results in the first ten days 

after surgery to a degree of less than 5%. Several studies presented in the literature 

highlighted how the soft biological tissues, under no-physiological heating, could be 

damaged. 

To comprise this issue in our model, a coupled thermo-mechanical analysis has been 

developed. 

The mechanical properties of collagenous tissue and its constituent materials are 

important to take into account at the same time the morphology, the mechanical and 

thermal behavior. In this respect many efforts have been spent to understand both 

mechanical and thermal properties, and their rules on the thermal treatment of 

collagenous tissues. 

Moreover the temperature influence on different properties of corneal tissue (thermal 

damage, hydration an tensile state levels) have been investigated. Berjano et al. 

(2005) assume that the temperature reached in the cornea during CK could overheat 

the tissue and could cause corneal necrosis leading to regression of the refractive 

effect achieved by the procedure. By means of FE simulation they studied the electro-

thermal behavior of the cornea, highlighting that the maximum temperature exceeds 
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100° C (temperature of carbonization and perforation injuries), opposite to what 

McDonald et al. (2002) claim during CK treatment, that is the tissue resistance to 

electrical current flow generates a localized heat smaller than denaturation 

temperature value. Previously by similar approach Berjano et al. (2002) have 

investigated the influence of several physical parameters on the temperature 

distribution in the corneal tissue, comparing the dimension/size of CK intervention 

spot lesion with in-vitro experimental results on rabbit eye.  

In this sense the simulation of CK thermal effect on corneal tissue, as shirking of 

collagenous structures, the temperature distribution or relative damaging, requires 

detailed features on previous models. As a matter of fact, the effects of the overheat 

on biological tissue cannot be easily summarized because the shrinking of structures, 

the thermal damaging and the phase change appear too. As well established by the 

scientific community, the high temperatures in biological tissues are closely related 

with tissue damages and then with their mechanical properties (Aksan and McGrath, 

2003). 

Many efforts have been made to understand the above mentioned characteristics: for 

instance, water vaporization, changes in the electrical and thermal conductivities of 

corneal tissue have been taken into account by Jo and Aksan, (2010). In their FE 

model, starting from temperature distribution during CK treatment, they evaluated the 

accumulation of thermal damage in corneal tissue surrounding the probe inserted into 

the corneal stroma, to define the success or the failure of the CK therapy. Fluid-

dynamical approaches are used to investigate how the presence of heat laminar flow, 

in the anterior chamber of eye, affect the temperature distribution in the corneal tissue, 

introducing the anisotropic corneal thermal conductivity (Karampatzakis and 

Samaras, 2010). 

Since numerous therapies exploit the heat-induced denaturation of collagen structures 

to modify the mechanical behavior of tissues, many authors are working to describe 

the thermo-mechanical behavior of soft tissues. Stylianopoulos et al. (2008),  

introducing in their analytical model both thermal and mechanical variables, have 

developed a methodology for studying the subtle kinematics of thermal denaturation 

of collagen tissue and to predict the thermo-mechanical response of homogeneous 

collagenous tissue. Baek S. et al (2005) report the results for biaxial stress relaxation 

of collagenous tissue, highlighting changes in the viscoelastic behavior due to heating. 

Many others studied the relations between the thermal damage accumulation and 

mechanical response of collagenous tissue (Aksan A ang McGrath JJ, 2003, Aksan A 

et al., 2005), but there are not specific FE modeling to describe the thermo-mechanical 

behavior of these tissues. 
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As mentioned above, in living tissues, this material time-depending response can 

interfere with biological time-depending remodelling, growth and morphogenesis 

processes, thus modifying the tissue structure and its mechanical features over time 

(Cowin and Doty 2007). The actual overlapping of material and biological responses 

depends on the ratio between the characteristic times by which the two phenomena 

evolve, namely stress relaxation and tissue micro-structure changes. Furthermore the 

temperature has a dramatic influence on rates of viscoelastic response of soft tissues 

too. 

The human body regulates its temperature within a narrow range about 37°C, for 

above and below this body temperature cells and proteins tend to lose their structure 

and hence function. For this reason, there has tended to be little motivation over the 

years to study thermomechanics of soft tissues. Most of innovative medical 

applications have been motivated by two simple observation: supra-physiologic 

temperatures can kill cells (e.g. malignant cells) and they denature proteins (e.g. 

collagen, which shrinks when heated). The effects of heating collagen structures are 

dependent on the temperature at which they are heated. In fact moderate heating can 

resulting in a local unfolding within the protein that is reversed upon the restoration of 

normal temperatures, whereas severe heating results in a time-dependent irreversible 

and rapid transformation of the native triple-helix structure, into a more random 

(coiled) structure (Cowin and Doty 2007). 

It has been shown that with exposure to thermal loading, the biomechanical 

characteristics of collagenous tissue are time-temperature and load dependent (Wall 

MS et al., 1999). Several works studied heat-induced shrinking both treated and 

normal corneal tissue whereas others investigated the influence of thermal history on 

the non-linear constitutive responses (Spoerl E et al 2004, Beak S et al. 2005). The 

viscoelastic behavior of collagenous tissues is independent of the temperature history 

around physiological temperature, but supra-physiological temperature triggers 

changes to quasi strain-rate independent behavior. (Brinkmann R et al. 2000; Beak S et 

al. 2005). As a consequence, from the thermo-mechanical point of view, a preliminary 

evaluation is needed for assessing the possibility of separating thermal with 

mechanical effects. With this aim in the next chapter is described a FE thermo-

mechanical approach to characterize the response of corneal tissue during the 

Conductive Keratoplastic surgery.  

FE Conductive Keratoplastic simulation: thermo-mechanical approach. 

Starting by the corneal model utilized in the previous analyses and described in the 

previous paragraphs, in the following a simple FE coupled thermo-mechanical 
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procedure is described. The key idea is to simulate both the thermal effects during the 

surgical procedure, developing a transient heating and cooling phases, due to the 

radiofrequency current flows McDonald et al. (2002), and also a thermal damage 

accumulation function which will influence the mechanical behavior of corneal 

structures in post-operative evolution. The hypothesis of our model is to consider an 

elastic constitutive behavior of soft tissue as function of thermal damage, and a linear 

viscoelastic properties not affected by the heating history in the post-operative period. 

In the following, starting from treatment on the thermal denaturation of collagenous 

tissues, a FE approach to simulate both the thermal damage accumulation and its 

effects on the mechanical properties and mechanical response of the corneal structure 

are described. 

Thermal denaturation of collagenous tissue. 

Collagen is the major component of collagenous tissue, which it provides the principal 

structural and mechanical support in the tissue. Under a thermal load, with the 

increase of temperature, the heat-labile intra-molecular cross-links in collagen are 

gradually broken, and the collagen undergoes a transition from a highly organized 

crystalline structure to a random, gel-like state. This process is known as „thermal 

denaturation‟, which appears accordingly as thermal shrinkage. With the thermal 

denaturation of collagen, there are not only structural changes, but also changes in 

collagen hydration which may involve release of water initially and, absorption of 

water later. Not surprisingly, thermal denaturation of a collagenous tissue can lead to 

remarkable changes in the mechanical, thermal, electrical, and optical properties. 

More studies have been published to describe the temperature dependent tissue 

denaturation, for example, cartilage and bone. The shrinkage of collagen due to macro 

scale thermal denaturation can be used as a convenient continuum metric of thermal 

damage. Diller & Pearce (1999) pointed out that the dimensionless indicator of 

damage  is the logarithm of the relative concentration of “reactants” (un-

denatured collagen) in the collagen denaturation process:  

(0)
( ) ln

( )

C
t

C t
 (2.15) 

where (0)C  is the initial concentration and ( )C t  is the concentration of un-denatured 

collagen remaining at time t. 

Then, the degree of thermal denaturation ( )Deg t , defined as the fraction of denatured 

collagen, can be calculated as: 
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(0) ( )
( ) 1 exp( ( ))

(0)

C C t
Deg t t

C
 (2.16) 

As for the calculation of thermal damage, the Arrhenius burn integration proposed by 

Henriques & Moritz (1947) is widely used. They proposed that skin damage could be 

represented as a chemical rate process, which could be calculated by using a first 

order Arrhenius rate equation, whereby damage is related to the rate of protein 

denaturation ( )k  and exposure time ( )t  at a given absolute temperature ( )T . The 

measure of thermal injury was introduced and its rate k was postulated to satisfy: 

( ) exp aEd
k T A

dt RT  

(2.17) 

Or, equivalently 

0

exp

t

aE
A dt

RT
 

(2.18) 

where t is the time after the starting of heating, A is a material parameter (frequency 

factor), aE  is the activation energy, and 8.314R  J/mol K is the universal gas 

constant. These parameters can be derived experimentally from DSC tests (Xu A et al., 

2008). 

FE modeling of corneal thermal damage accumulation 

The aim of this paragraph is to model the effects of heating and relative damaging 

during the Conductive Keratoplastic surgery. To this aim a coupled thermo-

mechanical analysis has been implemented in ANSYS
®
 finite element code. 

In this case, the sole cornea model used in the previous analysis, was meshed by 

means of 3D Thermal solid elements SOLID70 that allow to implement the coupled 

analysis: in fact the FE model used in thermo-mechanical analyses consists of about 

30,000 8-node hexahedral elements and 35,000 nodes (figure 20). 
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Fig. 2.20 FE model 

As mentioned, many efforts have been made to understand both thermal and 

mechanical properties of collagenous tissue, but few works are concerned the effect of 

CK heating on the corneal tissue.  

For example, Berjano et al. (2002) investigated the influences of certain physical 

parameters (such as the thermal conductivity of the cornea, the curvature of the 

cornea, and the insertion depth of the electrode into the cornea) on the maximum 

temperature reached in the tissue during RF heating with a non-penetrating probe. 

They also compared the size of the predicted thermal lesion in the cornea (assumed to 

correspond to the 100°C isotherm) to experimental measurements. Later on, their 

numerical model was used to predict the thermal damage in the cornea due to RF 

heating using a ring-shaped electrode (Berjano et al., 2002). More recently, Jo and 

Aksan (2010) have developing a 3-D FEM model that incorporates the cornea, the 

aqueous humor, and the RF electrodes to obtain the transient temperature distributions 

and the resultant thermal damage fields in the cornea during simulated CK procedures. 

The numerical model incorporated the effects of collagenous tissue denaturation, 

vaporization of water at 100°C, and the resultant changes in the electrical and thermal 

conductivities of the cornea tissue. The effects of clinical parameters (RF power 

setting and pulse duration) on the extent of thermal damage were investigated and the 

simulation predictions were compared to in vitro experimental results published 

previously by Li and Aksan (2010). 

Karampatzakis A and Samaras T. (2010) have developed a FE model of cornea, where 

they have considered the influence on the temperature distributions both of the blood 

perfusion and the metabolic heat generation rate. 

In our work we have simplified the model, neglecting some heat generating variables 

that are not significant during RF heating (Jo B and Aksan A, 2010). We have 

considered the mean body temperature for the corneal tissue (about 37°C) and several 
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convection parameters are imposed both on the cornea-aqueous humor junction than 

on the cornea-air interface (Aksan A, 2010). On the lateral surface of model a null 

thermal flux has considered 

 
Fig. 2.21 Thermal boundary conditions 

The thermal parameters used in FE analysis refer to work of Aksan A. el al (2010) and 

Kampmeier J. et al. (2000). 

As mentioned above, we consider a transient thermal load applied on the CK surgical 

intervention spots (Fig. 2.5) in according to the curve showed below 

 
Fig. 2.22 Transient thermal load history 
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During the analyses, for each time step, the thermal damage, function of temperature 

distribution ( )iT x  and time t , was calculated by the relation below: 

0 0

( ) ( ( ), ) exp      
i it t

a
i i

i

E
x f T x t dt A dt

RT
 (2.19)

 

By setting a stepped thermal load for each time step, the relation above can be 

rewritten: 

0

exp exp
it

a a
i i

i i

E E
A dt A t

RT RT
 (2.20)

 

The thermal damage accumulation at the end of CK treatment can be obtained by 

adding each i  through the formula: 

1 1

( ( ), )

i

n n

i i

i i t

f T x t dt . (2.21) 

The pictures below show the temperature distribution at 0.9 sect (point A in figure 

2.22) and the thermal damage accumulation post thermal load history ( 6 sect ): 

 
Fig. 2.23 

Coupled Mechanical response during CK surgery (Modelling of non linear 

mechanical response during thermal damaging) 

Respect to the mechanical analyses presented in the previous chapters regard the CK 

surgical intervention, in this paragraph the mechanical behavior of corneal structure 

coupled with the thermal analyses will be discussed. Starting from the thermal damage 

accumulation defined above, through an ad hoc ANSYS
®
 procedure, a linear 

viscoelastic response of structure over the surgical time has been modeled. 
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To implement the viscoelastic constitutive behavior in the solver it was necessary to 

set-up on the one hand, the local elastic behavior and on the other hand, the local 

viscoelastic parameters (see figure 2.3). 

For the viscoelastic properties we assume that it isn‟t temperature dependence, while 

the elastic response of tissue is strictly dependence on the heating or thermal damage. 

Accordingly by considering the thermo-mechanical experimental test performed on 

collagenous tissue by Aksan and McGrath (2002) it was possible to relate the Young 

modulus with the thermal damage accumulation. 

From their experimental results it can be established that "with exposure to thermal 

loading, the collagenous tissue experiences an initial increase of about 20–40% in its 

tensile modulus (E), followed by an exponential decrease" where "the thermal loading 

history is represented by an Arrhenius type damage integral"  as shown in the 

picture below: 

 
Fig. 2.24 Soft tissue tensile modulus versus damage accumulation  

These results allow us to implement the procedures to obtain the Young modulus 

distribution into the corneal structure ( ),iE x t , for each time step i-th.  

To perform the viscoelastic non linear analysis, we consider an elastic response 

dependent on temperature distribution (instantaneous shrinkage achieved via heating), 

by setting an instantaneous thermal expansion coefficient as Fraldi et al., (2010). In 

particular the corneal Young modulus distribution refers to maximum heating point, 

before the cooling phase 0.9sect . In the pictures below (figure 2.25) are reported 
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the Thermo-elastic distortion and the Young modulus distributions at same time step 

0.9sect . 

 
Fig. 2.25 

The viscoelastic parameters has been set by the experimental relaxation test of Zeng et 

al., (2001), see Table1. In order to reduce the computational effort, same boundary 

conditions, used in previous analyses, have been applied (Fraldi et al., 2010). 

The aim of this first coupled analysis, according to the CK nomograms used in 

surgical techniques, (figure 2.4) is to simulate only the correction defects ranging from 

0.75 to 0.875 D applying an annulus with eight intervention spots. The relative 

dioptric power will be calculated by means of Murrelyn expression (Murrelyn et al, 

1988), in the post-operative time ranging from cooled phase to 24 Months' time 

(McDonald, 2005). For each time step i-th, the expression can be written by 

1
( , )

( , )
i

i

n
D x t

R x t
 

(2.22) 
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Where n is the corneal refractive index (n=1.377) and the changes in the cornea 

curvature ( ) ( , )i

iC x t  and the relative radius ( ) ( , )i

iR x t  has been evaluated by means of 

the equations Eqq. 2.11-2.12. 

Thermo-Mechanical Results  

As stated before, the objective of this paragraph is to investigate if the thermo-

mechanical analysis was capable to reveal particular physical phenomena not 

highlighted with the previous simple  mechanical implementation. 

Respect to the previous results, mainly the latter thermo-mechanical results modify the 

point of view on the rules of viscoelasticity in the post surgical periods, in fact the 

stress relaxation phenomena not fades in a few day, but it is smeared over the time. 

In figure 2.26 a plot of the dioptric power correction () versus time is also shown and, 

contrarily with the previous statements (see figure 2.10 - bottom) , it indicates that it 

tends to increase in the immediate post-operative period and successively decay over 

the time.  
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Fig. 2.26: 

At the latter is associated an immediate corneal steepening, observed by Esquinazi et 

al. (2006) in the rabbits corneae, which however it changes in this case figure 2.25 

(bottom). 

The thermal effect due to the CK procedure and relative mechanical response of 

corneal structure, means that the stresses values into the cornea are on one hand, as 

previous analysis, greatly respect to the stress induced by the normal intraocular 

pressure of 15-18 mmHg, and on the other one are not localized in a neighborhood of 

the spots, but distributed in all corneal structure as shown in the figure 2.27. 
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12  
Fig. 2.27 

Finally figure 2.28 shows the results from the FE modeling of the amount of achieved 

correction in the case of eight intervention spots (similarly previous mechanical case 

Fig. 2.16), and it is evident that it is within the range of the clinical readings by 

McDonald et al. (2002). 
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Fig. 2.28: 

Conclusion 

In this chapter a numerical analyses of the conductive keratoplasty on hyperopic eyes 

has been carried out, through a simple mechanical and a thermo-mechanical 

approaches, with the aim of investigating the decrease in the initial degree of 

refractive correction commonly reported in the post-operative follow-up. First the 

attention has been focused on exploring a possible influence of the viscoelasticity of 

the corneal tissue and stress gradients induced by the CK intervention on the stability 

of the correction, by avoiding unnecessary complications which might obscure the 

essential behavior of the mode;, next the influence of thermal damaging of tissue has 

been simulated. The simulation has not been aimed to model the complex interactions 

among all the biological and mechanical factors involved in the phenomenon, but, as 

most models in physics, has intended to insulate the effect of viscoelastic behavior in 

both analysis types. Clinical and experimental findings confirm the qualitative 

behavior of the solution and the results suggest that the viscoelastic properties of the 

cornea are influenced by the heating tissue, and that it affects the surgical correction in 

the long term. In both simulations, the stress amplification in the zones surrounding 

the CK hints that the wound-healing is likely to play an important role in the 

commonly observed decrease in the initial degree of the refractive correction, too The 

study aims to contribute to some thermo-mechanical roots for the predictability of the 

outcome of an increasingly popular technique that, notwithstanding several 
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advantages with respect to ablative interventions, at present cannot be considered 

completely predictable and satisfactory.  
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CHAPTER III 

MODELLING CORD-RUBBER COMPOSITES FOR TIRE 

APPLICATION 

Introduction 

Most of modern technologies require materials offering peculiar combinations of 

several properties that cannot be found in traditional materials – at the same time – 

such as metals, ceramics and polymers. The idea of coupling different materials 

obtaining a combination with better properties than each component is very ancient: 

e.g., mixing straw and mud, our forebears got a very good material for building. In 

„composite materials‟, the final combination reaches chemical-physics properties 

which cannot be found in the separated components; hence their versatility has made 

their use very frequent in several fields (aerospace, building, ship, automobile, 

biomedical, etc). 

With the expression „flexible composites‟ we identify composites based upon an 

elastomeric matrix, whose possible range of deformation is much larger than those of 

the conventional thermosetting or thermoplastic polymer-based composites. Then, 

their ability to sustain large deformation, with high load carrying capacity and fatigue 

strength, make flexible composites very used in pneumatic tire construction. Cord-

rubber composites are complex elastomeric composites composed of: 

a. the low modulus rubber matrix, characterized by high extensibility; 

b. a twisted reinforcement (the „cord‟) with much higher modulus and lower 

extensibility than the matrix; 

c. an adhesive film (named „dip‟)  which bonds the reinforcement to the matrix. 

Such a combination is really effective when the structure needs a high stiffness in 

reinforcement direction and also flexibility in the plane perpendicular to cords. These 

properties are requested in tires, that need strength in the cord direction for holding air 

pressure, but also need to be flexible in order to provide a comfortable ride and cut 

down on fatigue from bumpy roads. 

The performance features of pneumatic tires are mainly controlled by the anisotropic 

properties of the cord rubber composite: the low-modulus, high-elongation rubber 
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contains the air and provides abrasion resistance and road grip; the high-modulus, 

low-elongation cords carry most of the loads applied to the tire in service.  

These materials have been studied since „50s: experimental characterization has been 

widely performed and models (both analytical and finite elements models) have been 

developed in order to get necessary information about the overall behavior of this 

material.  However, this theoretical investigation has often been performed by using 

the classical lamination theory, used for orthotropic materials in the hypothesis of 

linear elastic behavior and for small deformations. This means that important features, 

such as viscoelasticity and the particular tension-twisting coupling of the cords, are 

very often neglected.  

The aforementioned assumptions represent a limit to the design of tire structures, that 

requires the acknowledge of the overall behavior of this material. In particular, the 

main complexity in studying cord-rubber composites is due to non-linearity derived 

from:  

1) materials nature (elastomeric matrix and polymeric cords, both showing non-

linear viscoelasticity or non-linear elasticity); 

2) cord geometry (it is not a continuum but a hierarchical structure, whose profile 

reorganizes in function of applied loads);  

3) cord rearrangement (orientation) in each kind of tensional state, also in 

monoaxial tension. 

Hence we are proposed to study the non-linear elastic behavior of cord-rubber 

composites. Phenomenological investigation needs to be supported by theoretical 

modeling, able to predict the overall behavior of the composite. Such a model, 

actually, is a powerful tool for the optimization of composite material and of the 

whole designed structure (in this case, tire and its components). In fact, since this 

model, we can easily predict composite (and, consequently, tire) response as a 

function of geometrical parameters (e.g. lamina geometry, cord spacing, cord and 

matrix content) and cord and matrix features (e.g. cord construction), without using 

time-consuming „trial-and-error‟ strategies. 

Concerning modeling activities, both analytical and Finite Elements Method (FEM) 

have been used to predict mechanical behavior of cord-rubber composites. Several 

approaches have been adopted for modeling the constitutive behavior of matrix and 

cord. In particular, our attention is focused on two main aspects: hyperelasticity of 

matrix compound and peculiar tension-twisting coupling of the reinforcement, 

modeled by using a customized, hybrid analytical-FEM methodology. 
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An Overview of tire technology and components 

Cord-rubber composites represent a typical example of flexible composites, with an 

elastomeric matrix and a continuous, unidirectional and corded reinforcement. The 

development of this kind of materials has its own origins in car industry, since they 

are the main elements of plies, giving tire necessary stiffness for carrying the complex 

load system. 

 
Fig 3.1: Components of a Radial tire 

 

Tire performing features can be modulated by varying the orientation of plies. 

Bias-ply tires have body ply cords that are laid at angles substantially less than 90º to 

the tread centerline, extending from bead to bead.  

 Advantage: Simple construction and ease of manufacture; 

 Disadvantage: As the tire deflects, shear occurs between body plies which 

generates heat. Tread motion also results in poor wear characteristics. 

Radial tire have body ply cords that are laid radially from bead to bead, nominally at 

90º to the centerline of the tread. Two or more belts are laid diagonally in the tread 

region to add strength and stability. Variations of this tire construction are used in 

modern passenger vehicle tire (see Figure 3.2). 

 Advantages: Radial body cords deflect more easily under load, thus they generate 

less heat, give lower rolling resistance and better high-speed performance. 

Increased tread stiffness from the belt significantly improves wear and handling. 

 Disadvantages: Complex construction increases material and manufacturing costs. 
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Fig. 3.2: Bias-ply tire vs. radial tire 

In addition to these two types exists the Belted bias tires, as name implies, are bias tire 

with belts (also known as breaker plies) added in the tread region. Belts restrict 

expansion of the body carcass in the circumferential direction, strengthening and 

stabilizing the tread region. 

 Advantages: Improved wear and handling due to added stiffness in the tread area. 

 Disadvantages: Body ply shear during deflection generates heat; higher material 

and manufacturing cost. 

Industry standards: size and dimensions 

USA tire manufacturers participate voluntarily in an organization known as TRA, The 

Tire and Rim Association. It establishes and promulgates engineering standards for 

tires, rims, and allied parts (tubes, valves, etc.) 

Participation and adherence to these standards assures interchangeability of 

component parts among different tire manufacturers. “P-metric” sizing was introduced 

as radial tire usage began to expand in North America in the early 1970s. Size 

nomenclature can be described as follows (see Figure 3.3). For a P185/60R14 tire, the 

“P” indicates that it is for a “passenger” car (“T”, temporary; “LT”, light truck). 

(Note: European tire sizes typically do not utilize the P, T or LT symbols). The “185” 

is the nominal section width of the inflated, unloaded tire in millimeters. The “60” is 

the aspect ratio, or “series”. It gives the tire section height as a percentage of the 

section width. Lower aspect ratio tires, e.g., 45, 50, 55 series tires, are primarily used 
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in high performance applications but are becoming more popular in conjunction with 

large rim diameters for styling enhancements in larger vehicles. “R” identifies radial 

construction (“D” for diagonal or bias tires, “B” for belted bias construction). “14” is 

the rim diameter in inches. 

 
Fig. 3.3 Size Nomenclature 

Rubber compound 

Beyond the visible tread and sidewall compounds, there are more than a dozen 

specially formulated compounds that are used in the interior of the tire. They non will 

be discussed in this framework. 

Basic ingredients. Polymers are the backbone of rubber compounds. They consist of 

natural or synthetic rubber: 

Fillers reinforce rubber compounds. The most common filler is carbon black although 

other materials, such as silica, are used to give the compound unique properties. 

Softeners: Petroleum oils, pine tar, resins and waxes are all softeners that are used in 

compounds principally as processing aids and to improve tack or stickiness of 

unvulcanized compounds. 

Antidegradents: Waxes, antioxidants, and antiozonants are added to rubber 

compounds to help protect tires against deterioration by ozone, oxygen and heat . 
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Curatives: During vulcanization or curing, the polymer chains become linked, 

transforming the viscous compounds into strong, elastic materials. Sulfur along with 

accelerators and activators help achieve the desired properties 

Material design property balance. Considering the many polymers, carbon blacks, 

silicas, oils, waxes and curatives, plus specialty materials such as colorants, adhesion 

promoters, and hardeners, the variety of compounds available seems endless. A 

typical car tire uses about 60 raw materials. However, the tire compounder quickly 

learns that adjusting one of the properties often affects other performance areas. The 

best tread compound for dry traction and handling might be lacking in wet/snow 

traction, chip/tear resistance, or fuel economy. Thus, compounds must be 

“engineered” or “balanced” to meet performance criteria for both the original 

equipment (OE) vehicle manufacturer and the aftermarket customer. . Adding to the 

complexity, the chosen compound must be cost-competitive and processable in 

manufacturing plants. 

Reinforcement materials 

A tire‟s reinforcing materials - tire cord and bead wire - are the predominant load 

carrying members of the cord-rubber composite. They provide strength and stability to 

the sidewall and tread as well as contain the air pressure. The type and common usage 

are: 

Nylon type 6 and 6.6 tire cords are synthetic long chain polymers produced by 

continuous polymerization/spinning or melt spinning. The most common usage in 

radial passenger tires is as cap, or overlay ply, or belt edge cap strip material, with 

some limited applications as body plies. 

Advantages: Good heat resistance and strength; less sensitive to moisture. 

Disadvantages: Heat set occurs during cooling (flatspotting); long term service 

growth. 

Polyester tire cords are also synthetic, long chain polymers produced by continuous 

polymerization/spinning or melt spinning (Ashish KS, 2008). The most common usage 

is in radial body plies with some limited applications as belt plies. 

Advantages: High strength with low shrinkage and low service growth; low heat set; 

low cost. 

Disadvantages: Not as heat resistant as nylon or rayon. 

Rayon is a body ply cord or belt reinforcement made from cellulose produced by 

wet spinning. It is often used in Europe and in some run-flat tires as body ply material. 

Advantages: Stable dimensions; heat resistant; good handling characteristics. 
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Disadvantages: Expensive; more sensitive to moisture; environmental manufacturing 

issues. 

Aramid is a synthetic, high tenacity organic fiber produced by solvent spinning. It is 

2 to 3 times stronger than polyester and nylon. It can be used for belt or stabilizer ply 

material as a light weight alternative to steel cord. 

Advantages: Very high strength and stiffness; heat resistant. 

Disadvantages: Cost; processing constraints (difficult to cut). 

Steel cord is carbon steel wire coated with brass that has been drawn, plated, twisted 

and wound into multiple-filament bundles. It is the principal belt ply material used in 

radial passenger tires. 

Advantages: High belt strength and belt stiffness improves wear and handling. 

Disadvantages: Requires special processing (see figure 1.16); more sensitive to 

moisture. 

Bead wire is carbon steel wire coated with bronze that has been produced by 

drawing and plating. Filaments are wound into two hoops, one on each side of the tire, 

in various configurations that serve to anchor the inflated tire to the rim (Beach D and 

Schroeder J, 2000) 

Cord-Rubber Composite Modeling 

The aim of this paragraph is to examine, through a finite element analysis, the 

behavior of cord-rubber composite specimen under uniaxial tensile test. For this 

reason the next paragraphs not include an extensive discussion on the mechanical 

properties of rubber. In fact only few words will be spent to the implementation of 

mechanical behavior, of the uncompressible and isotropic rubber into the simulator. 

Whereas attempts have been made to study the behavior of cord rubber composites by 

finite element methods as a complement to the experimental and analytical methods. 

In effect the prediction of the micromechanical properties and interface stresses is 

important for the general understanding of composites and can be very useful in the 

design and selection of a composite for a particular application. Since the 

micromechanical properties of these composites depend on the features of the 

constituent materials, for example, rubber elasticity and the twisted nature of the 

reinforcement, it is essential to include their behavior in the analysis models. The 

effects of orthotropic behavior of cords, cord reorientation, bimodular behavior and 

the large deformation of the rubber material were considered in the above FEM 

formulation. The approach we adopted for modeling cord rubber lamina finds a new 

collocation in the literature survey of analytical and FEM models, thanks to the 

introduction of a new hybrid analytical-FEM model. 
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Matrix modeling: Non-linear elasticity 

Rubber is a fascinating material, with unique properties that make it an essential 

component of a pneumatic tire: it is soft, elastic, resistant to cutting and scraping, with 

a high coefficient of friction and low permeability to gases. We consider here what 

molecular features give rise to this remarkable combination of properties and how 

they affect tire performance. 

All rubbery materials consist of long chain-like polymer molecules. The original 

elastomeric material (raw rubber) is basically a highly-viscous liquid but it can show 

elasticity because the long molecules are held together, at least temporarily, by being 

intertwined and entangled. The basic reaction in rubber processing is the joining of 

long molecules together by a few chemical bonds (crosslinks) to form a loose three-

dimensional permanent molecular network. The shape becomes fixed and the material 

is transformed from a high-viscosity liquid into an elastic solid. This joining reaction 

is often termed “curing”, because the material is no longer a viscous sticky liquid, or 

“vulcanization” because it is usually carried out with reagents that introduce sulfur 

crosslinks between the molecules. 

Rubber can often be treated as virtually incompressible in bulk because the modulus 

of bulk compression is quite high, about 2 GPa, comparable to that of liquids such as 

water, and much higher than the tensile modulus E, typically about 2 to 5 MPa. 

Consequently, the elastic shear modulus G is approximately equal to E/3, and 

Poisson‟s ratio is close to one-half, about 0.499. Because rubber is highly extensible, 

small-strain elasticity theory using moduli E and G is inadequate to describe the 

response to large strains. Instead, a useful measure of response is the mechanical 

energy W stored in unit volume by a deformation. 

However, even if the rubber compounds currently used in tires are seriously inelastic 

and attempting to describe their elastic properties with great precision is probably 

unwarranted, in our approach an hyperelastic constitutive behavior has been adopted. 

Hyperelastic constitutive relations, expressed by definition through strain energy 

functions, are appropriate to model this incompressible material under quasi-static 

loading where deformations are not infinitesimal. Rivlin obtained a generic strain-

energy-based model for incompressible hyperelasticity, commonly referred to (namely 

in ANSYS
®
) as the polynomial model, which takes the following form: 

, 1 2

,

( 3) ( 3)i j

i j

i j

W C I I

 

(3.1) 

The Neo-Hookean model, discussed by Treloar, can in fact be obtained from Rivlin‟s 

general formulation with 

1,0 1( 3)W C I
 

(3.2) 
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taking 10 0.5C nKT , where k is the Boltzmann constant, N is the number of chains of 

molecules per unit volume and T is the absolute temperature. 

Mooney‟s earlier work can also be expressed in terms of the previous equation, 

resulting in what is generally accepted today as the Mooney-Rivlin model. Finally, 

some outstanding contributions should also be mentioned, namely by Ogden, Arruda 

and Boyce as well as Gent who have each proposed hyperelastic models known by 

their respective names. 

ANSYS
®
 provides curve fitting tools to obtain material constants for hyperelastic 

models from the experimental data. The data can be fed to the FEA (Finite Element 

Analysis) software in the form of tab delimited stress-strain text files of the 

manipulated characterization data for uniaxial tension. Comparison between 

experimental data and a Mooney-Rivlin fitting (9 parameters) is shown in Figure. 3.4. 

 

 
Fig 3.4: Stress-strain curve for rubber: comparison between experimental data (black) and 

Mooney-Rivlin model (light blue) 

Corded reinforcement: textile ‘cord’ 

The main features of a pneumatic tire, such as the high specific mechanical properties, 

flexibility, dimensional and shape stabilities, are due to the typical reinforcement used 

in body plies. In fact, these are generally reinforced with steel or textile (polymeric) 

cords.  

Textile corded reinforcement are complex structures made of hundreds filaments 

twisted and organized into substructures. Filaments are first twisted together in 
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bundles (yarn); yarns are then cabled together in helicoidally structures (on several 

levels) called cords (cfr. Fig.3.5). 

 
Fig. 3.5 Textile corded structures 

The hierarchical twisted, corded structure exhibits high specific properties (e.g. axial 

stiffness and tensile strength) combined with a low flexural stiffness. This is achieved 

thanks to the high number of continuous filaments that cooperate in the overall 

structure. Furthermore, the main mechanical feature is the tension-twisting coupling 

that means that when such a structure undergoes an axial load, filaments are both 

stretched and rotated transversally to cord axis. Several pieces of literature (i.e. 

Costello) deal with the mechanical behavior of corded structures, in order to define a 

constitutive equation providing for this coupling as a function of filament material and 

structure construction (twist level, twist angle, cord, yarn and filament radii). 

In the following, the cord modeling based on Costello's theory will be discussed. 
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Effects of intrinsic trigonality and helicoidal interface in twisted cord-rubber 

composites: a multi scale homogenization approach  

Micro scale level: Costello’s model 

By the meanings of Costello strand approach, we preliminarily observe, composite at 

micro scale level to understand filament behaviour within the single yarn. A generic 

strand wire arrangement is shown in Figure 3.6. A global coordinate system is defined 
3

1 2 3, ,e e e R , where 3e  axis lays on strand axis. Moreover, according to Love 

(Love, A E.H., 1944), another orthonormal local frame system 
3

1 2 3, ,x x x R  called 

principal torsion-flexure axes has to be defined for every cross section of the wire.  

 
Fig. 3.6: Generic strand wire arrangement, global coordinate system 

and local frame system   are also highlighted 

These frames are defined by means of the tangent unit vector of the centreline of the 

wire 3x  and by means of two additional unit vectors, 1x  and 2x ,that, together, with 
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the former unit tangent vector, constitute the orthonormal frame of the principal 

torsion and flexure axes. Specifically unit vector 2x  is chosen to be normal to the 

bending plane of the helical wire centerline. In the current chapter a simple straight 

strand made up of 6+1 wires is adopted to introduce our methods Figure 3.7. The 

strand consists of six round section wires, radius wR , wrapped helically around a core, 

radius cR . External wires have same geometry and show same helical configuration. 

The helix angle is  with respect to the strand cross section, and the lay angle is 

/ 2  with respect to strand axis, wire centerline helices have radius 

h c wr R R . Such configuration represents the simplest wires arrangement in a strand, 

multiple layers through double or even multiple helix patterns often occur. Strand 

length is assumed long enough to avoid end sides influence. Radial contact condition 

is initially considered, it means that layer wires do not touch each other and are in 

contact only with the core. Friction between wires and core, and eventually between 

wire and wire, is assumed to be high enough to prevent any relative slip. Interlayer 

pressure effect and contact deformations are also neglected. According to rod theory, 

generic load generates in wires traction as well as bending and twisting. Only small 

deformations are allowed, therefore equilibrium equations are written in the 

undeformed state. Wire material is isotropic and linearly elastic defined, it is described 

by Young modulus E  and Poisson‟s ratio . 

 
Fig.3.7: Cross section and front of a 6+1 straight strand 

Constitutive Assumption 

Method introduced by Costello found on helical rod models approach, that ensures a 

detailed evaluation of strand sensitivity to geometrical and wire material parameters, 

in terms of linear elastic response; such method is chosen because of low complexity 

of adopted structure in a way to get a reliable model for strand design. Loads on 

structure, with regard to tensile load F , torque tM and bending bM , are, thus, 

associated to strand deformations, in terms of elongation , torsion and curvature

. Relation is based on definition of wires helix angle , their cross sectional 
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dimension wR , core dimension cR  and isotropic wire material elastic constants. 

Survey focuses on elastic strand response, this is the reason for neglecting any non 

conservative phenomenon, such as friction, wire flattening and plasticity. However, 

Utting and Jones (Utting and Jones, 1987) set specific attention on interwire friction 

and wire contact deformations in case of small deformation in a strand, they verified 

low influence of such effects on the global strand behaviour. Moreover, Nawrocki and 

Labrosse (Nawrocki and Labrosse, 2000) performed a research about inter-wire 

contacts based on finite element model; results demonstrated that rolling and sliding 

have no influence on overall mechanical response. In addition it is shown that pivoting 

between external wires and core leads axial strand displacement; moreover 

comparison with experimental data suggests to consider pivoting as free. Such 

remarks permit to describe strand kinematics through the degrees of freedom of the 

core. Is then possible to describe global deformation by three measures: strand axial 

deformation 

0

0

L L

L
, (3.3) 

strand torsion defined as twist angle per  strand unit length, 

0L
, (3.4) 

and strand bending 

1
,  (3.5) 

where 
0L and L refer respectively to strand length in initial and stressed configuration,

is the relative torsion between two strand cross sections at L distance around 

centreline, and  is the centreline curvature. 

Costello wire rope‟s theory (Costello, G., 1990) specifically computes Poisson‟s ratio 

effect, it leads to draw completely strand geometry deformed configuration. In this 

frame work, such procedure reveals to be the most reliable  to deal with linear steps 

modelling. In the next section hypothesis of large deformation is introduced, and a 

non linear numerical procedure able to generate an equivalent homogenized solid 

cylinder starting from generic straight strand constitutive parameters is proposed. 
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Single wire kinematics 

Axial and torsional load on strand cause deformations in external wires leading from 

previous to a new helical configuration. By constitutive remarks, is possible to link 

strand deformations to effective deformations in the wires in terms of curvature, twist 

increment and strand axis elongation. Let s  be the arc length along centreline of a 

generic external wire, it is considered, in the follow, helix arc length 

2k / coshs r  in the position along the centreline where bending moment on 

strand is coincident with 1x  axis of the principal torsion-flexure local frame, see 

Figure 1. Thus, according to the general thin theory of Love (Love, A E.H., 1944), the 

kinematics of a rod and, hence for this particular case of a generic wire, are fully 

defined by four parameters:  

tan
w

 

(3.6) 

that is the wire deformation along its axis; 

2

2sin cos
cos

2 cos
w

w h

s
r

 

(3.7) 

that is the component of curvature variation in the wire related to 1x  direction in the 

local wire coordinate system, where w  is Poisson‟s ratio of the wire, it is set 0w  

for undeformed configuration;  

2

2

2sin cos cos 2sin cos
' sin sin

2 cos

c c w w w
w

h h h w h

R R
s

r r r r  

(3.8) 

i.e. the component of curvature variation in the wire related to 2x  direction in the local 

wire coordinate system, where c  is Poisson‟s ratio of the core; 

2

2

1 2sin sin cos 2sin cos
cos sin

2 cos

c c w w w
w

h h h w h

R R
s

r r r r

  (3.9) 

that represents torsional variation in the wire along wire axis. Helix angle increment 

 and axis wire elongation w  are related to global strand deformation,  and , 

through position:  
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tan tan

w c c w w w

h

R R

r
 

(3.10) 

which is the relation that accounts coupling effect between torsion and elongation on 

strand axis, (Costello, G., 1990). 

In three of the five equations that describe wire kinematics, (3.7) - (3.9), terms appear 

that are directly related to strand curvature . Such terms are periodic on strand 

pitch, through arc length measure s . They derive from a treatise on pure bending of a 

simple straight strand performed by Costello, that is based, again, on rod‟s mechanics 

theory. Specifically, deformations on helical wires generates by strand curvature , 

are obtained through a linearization of the equilibrium equations permitted by position 

0f . However such simplification seems to generate results with good 

approximation for every Poisson‟s ratio values, Costello (Costello, G., 1990). Small 

deformations, are imposed, in terms of 1 , where  is the helix angle, in 

radiant. Starting from wire deformations, for both core and external wires, beam 

theory allows to evaluate wire response.  

Constitutive equation 

By projecting wires reactions on strand axis, external strand loads can be computed. 

Hence, globally, for a simple straight strand, loads - axial force F , torque tM  and 

bending moment bM  - are related to strand deformations - axial strain , twist angle 

per strand unit length , and curvature . It results in axial-twisting coupling and can 

be represented, in matrix form, trough position: 

0

0

0 0

t t t

bb

F F F

M M M

MM
 

(3.11) 

Is worth to observe that, in such frame theory, symmetry in the axial-twisting coupling 

matrix is not preserved. By a global point of view axial-twisting coupling is intended 

as an helical arranged material property, in a way that: considering a tensile load 

applied on a structure pivoting on its helix axis, it reacts with elongation plus torsion, 

this is the case, for example, of a weight hanging from a rope, while in case rotation is 

denied structure is subject to elongation and torque, e.g. lift cables, among others; if 

an elongation is imposed on pivoting helix axis it reacts through a tensile force and 

torsion, whereas tensile force and torque are generated if rotation is not allow, e.g. 
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platform mooring cables; same relations are involved for boundaries condition 

involving torque applied or rotation imposed on strand axis.  

Sensitivity parameters 

Notable aspects of kinematics of the single helical wire are shown in the next by 

meanings of proposed model. The most decisive geometrical parameter in a simple 

straight strand design is by far the wire twisting angle . It defines in which part axis 

loads have to be split among intrinsic wound wire reactions, in terms of local tensile 

force, torque and bending moment. Indeed, ratio between core radius and external 

wire radius also largely influences mechanical behaviour, nevertheless the reason can 

be yet readdressed to  parameter as helix pitch definition highlights: 

2 tanc wp R R
 

(3.12) 

In Figure 3.8, colored curves depict effect of helix angle in a single wire wound 

counter clockwise around a cylinder, subject to load on its axis. In a generic strand, 

core participates in system mechanical behaviour. As first analysis, in a way to 

enhance weight of twisting on wire response, core is modelled as a solid cylinder and 

its influence is not computed, in this sense the core represents a geometrical constrain. 

With reference to a generic wire employed in simple straight strand cables, material is 

supposed isotropic, homogeneous and linearly elastic. Such initial strand 

configuration, say it 0B , is supposed stress free. Helical wire kinematics can be 

completely described in the principal torsion-flexure local system, trough axial wire 

elongation w , helix curvature variations w , 'w  and wire torsional variation 

w . Is worth to note that in case no bending is applied on strand, curvature w  in 

direction of local axis 1x  remains null in every section.  
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Fig. 3.8:  

In many applications strand cables are employed as reinforcing fibres or rope systems, 

the related model boundary conditions prescribes no rotation on strand axis and torque 

reaction that acts on every strand cross section; however strand wire kinematics is 

investigated also in case of free strand rotation, i.e. no torque in every cross section. In  

3.8 are highlighted results related to a defined case, specifications are in the caption. A 

small elongation  is applied to the strand, continuous lines refer to completely fixed 

end condition , 0 , while dashed ones to free rotation condition 

, 0tM .  Curves span in the range of helix angle value 0, / 2 . 

Although effective low limit is arctan / 0w c wR R R , it is possible to 

interpret model response for 0 , that means to consider the wire wrapped on a flat 

circle path. In such condition, axial load on strand works exclusively on wire torsion, 

such torsion is positive for counter clockwise helix wire deformation. Whereas, on the 

other range end, / 2 , wire tends to acts as a straight rod, it means that the 

imposed load is totally projected on wire axis. For other configurations, helix 

curvature variation ' f  is also involved. Load on strand axis can cause positive or 

negative wire torsion variation. Let helix angle 0  define strand configuration in 

which strand axial load is characterized by no torsion on wire axis, its value depends 
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on relation between Poisson‟s ratio in the core and wire materials. For this specific 

single wire analysis it results 0 / 2 . Thus, in case of 0 , wire helical 

path shows low pitch-radius ratio, therefore torsion contributes to strand elongation 

through coils spreading. On the other hand, for stretched wires path, i.e. 0 , an 

opposite torsion in sign, negative in counter clockwise helical wire, works to unwind 

the helix tending to straight the wire configuration. Strand elongation enhances wire 

elongation, despite other wire deformations, as much as  value increases. Such 

effect is higher in axial traction applied test, and enhances for higher /w cR R  ratio 

values. 

Non-linear Costello’s model 

Linear relation (3.11) furnishes a useful method to comprehend wire properties in a 

strand. Indeed following Costello approach, by prescribing small helix angle variation, 

it is possible to correlate strand deformation and small loads. To predict simple 

straight strand performances under large loads, a nonlinear quasi-static numerical 

approach has followed. It develops through linear load steps, each load increment is 

applied on undeformed configuration since strand geometry is updated before next 

step will execute. By computing for each linear step the Poisson ratio effect, which is 

at the base of Costello’s mechanics of strand, the load effects on strand geometry are 

considered, even in terms of wire transverse contraction. Equilibrium equations are 

thus written for the deformed state.  

Numerical Procedure 

Procedure divides loads in a number of steps small enough to satisfy 1 

condition for helix angle variation. Take in account the previously presented strand 

wire analytical model, let 0B  its starting geometrical initial configuration; when it is 

subjected to small loads, rod‟s theory provides to calculate axial wire elongation 0w , 

helix curvature variation 0w  and wire torsional variation 0w , is thus possible to 

define a new deformed strand wire geometry 1B , where helical pitch 

1 0 01w w wp p , curvature variation 1 0 0w w w  and torsion 1 0 0w w w . 

By following same linear approach, one more admissible load step will produce on 

geometry 1B  another deformed configuration, say it 2B , where a further load step is 

allowed. Strand wire in generic iB  configuration reacts under thi  load step, although it 

is directly related to iB  initial condition it brings the effects of the sum of all previous 
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steps. Step by step strand traction loads on wire can computed as sum of related loads 

in each previous single step, while axial and torsional deformation results in 

1 0

i
j

i j

j

p

p
 and 

1 0

i
j

i j

j

L

L
. Procedure keeps on until prescribed total load is 

achieved. 

Helical wire non-linear behavior 

In the follow, numerical process is implemented to draw non linear behaviour of a 

single wire wrapped around a core under large elongation along the strand axis. 

Material and filament arrangement used in pervious analysis, i.e. 
0B  initial 

configuration, are used; the influence of initial helix angle 
0 0,

2
is investigated. 

 
Fig. 3.9a 

Figure 3.9a shows, for each thi  load step, force wF  on wire in 3e strand axis direction, 

versus strand 3e  axis strain . Values are normalized respect axial stiffness in straight 

wire configuration, 2

0 2 wE A E R . Investigations are made under axial displacement 

load, avoiding strand rotation; reacting torsional moment tM , therefore, occurs, 

Figure 3.9b.  

0 00 0

0 20 2

0.5 1.0 1.5 2.0 2.5 3.0
z

0.5

1.0

1.5

2.0

2.5

3.0

F

E A0



 

94 

 

 

 
Fig. 3.9b 
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Helix angle sensitivity highlights a wire behaviour closer and closer to straight wire 

configuration, as much as 
0 / 2 . While for 

0 0  helical arrangement provides 

lower 3e  axis stiffness and a typical toe region appears for low values of the axial 

deformation . In any case, while deformation rises, global axial stiffness increases 

and tends to the value of the local axial stiffness of the straight wire; moreover curves 

tends to become parallel, it happens because of large elongations mean higher helix 

angles, fact that leads to straight wire response. 

Meso scale level: Equivalent trigonal cylindrical model 

Numerical procedure exposed before, allows to describe the non linear elastic 

behaviour of each wire in a strand starting both from geometrical strand configuration 

and isotropic material properties of its components. Substantially is possible to predict 

overall strand mechanical performance in the whole elastic region, throughout simple 

measuring of few parameters. For a simple straight strand, which consists of one 

straight core and a single external layer of surrounding helical wires made of same 

isotropic material, only five parameters are needed: they are defined by measuring 

core radius, external wire radius, helix angle or pitch and two isotropic material 

constants. Thus it is possible to rise to an higher scale level, both form geometric and 

constitutive point of view. We are able, indeed, to model complex heterogeneous 

strand arrangement as a solid cylinder, which is equivalent to the strand in terms of 

overall mechanical response, constitute of  homogeneous non linear elastic material.  

Trigonal Material Assumption 

In a way to count axial-twisting coupling effect, a material model with trigonal 

symmetry is chosen to define homogenized material. The classification of types of 

linear material symmetries by the number and orientation of the normals to the planes 

of material symmetry is fully equivalent to the crystallographic method using group 

theory. The trigonal crystal system has exactly one plane of reflective symmetry. For 

an easier treatise we introduce now a cylindrical reference system 
3, ,r θ z R , with 

z  axis coincident to 3x  axis in the global coordinate system. Trigonal elastic 

symmetry retains, in its canonical symmetry system, cross-elastic constants 

connecting normal stresses (strains) to shear strains (stresses) and vice versa. In the 6 

by 6 matrix of elastic coefficients these cross-elastic constants appear in the lower left 

and upper right 3 by 3 submatrices. A representation for the elastic compliance matrix 

in the Voigt notation for a material with trigonal symmetry is 
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An interesting aspect of trigonal symmetry is the symmetry-breaking character of the 

cross-elastic constant 
14C . It is directly related to out of diagonal terms in axial-

coupling relation introduced before (3.11). They depends on helix wire angle ; when 

it tends to  / 2  system shows no coupling and the compliance matrix (3.13) becomes 

that for hexagonal or transversely isotropic symmetry, i.e. 
14 0C . Homogenized 

conservative linear elastic material behaviour prescribes symmetry of compliance 

matrix. Thus, to use results computed through relation (3.11) equality 
tF M  need 

to be satisfied. Numerical model based on Costello theory does not ensure such 

symmetry, therefore only symmetrical part of axial-twisting matrix coupling is used to 

perform strand monoclinic homogenization, basing on relation: 
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(3.14) 

Evaluation of neglecting antisymmetric part is computed on helix angle variation 

trough the evaluation of ratio: 

 t
s

t

F M

F M  

(3.15) 

For generic strand arrangement s  ratio tends to zero for external wires in the strand 

that get more and more straight, ratio between core and filament radii does not affect 

such behaviour, while ratio between core and filament Poisson ratios tends to improve 

negligibility of antisymmetric part, as much as it assumes lower values. However, in 

the common technological applications helix angles have values high enough to allow, 
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with good approximation, to neglect antisymmetric part of the strand constitutive 

matrix (3.11).  

Parametric compliance constants 

To completely describe conservative mechanical behaviour of monoclinic 

homogenized material, it is necessary to evaluate each single constant in the 

compliance matrix (3.13); numerical model introduced above is able to furnish such 

kind of information. Parametric expression of each constant is formulated in terms of 

strand parameters ( i.e. , , , , ,c w w cR R E ), by stress and strain measures based on 

following relations:  
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(3.17) 

where F  and tM  are axial force and torsional moment on strand and  and  are 

axial strand deformation and torsional angle on unit length, related through relation 

(3.11); ,c cR  and ,w wR  represent filament radius and Poisson ratio in the core and in 

the external filament respectively, 
tR  and r  are total and generic local strand radius. Is 

worth to observe that, because of non symmetry of Costello approach, relation 

14 41C C  occurs. Such terms are the only elastic constants that depend on radial 

position in the cross section of the homogenized cylindrical strand, indeed it is 

possible to write: 

14
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(3.18)  

and 

4

41 1/
2

zz t
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(3.19) 

The previous consideration of antisymmetric part of axial coupling matrix (3.14) leads 

to define 14C  constant in (3.13) as 14 41
14

2

s C C
C , in a way to preserve 
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conservativeness of homogenized material. In the follow, details of monoclinic 

compliance constants calculation are presented:  
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(3.20) 

where loads - axial force F , torque tM  and bending moment bM  - are related to 

strand deformations - axial strain , twist angle per  strand unit length ,  and 

curvature  by linear position (3.11). Homogenized non linear behaviour is derived 

by the load steps procedure exposed in the previous section.  

Macro scale level: cord-rubber structure 

We base present survey on mechanics of the simple straight strand; once properties for 

the trigonal equivalent cylinder are defined, (3.20), we are ready to implement its non 

linear elastic behaviour by meanings of Finite Element Method (FEM). 

Homogenization technique furnishes the overall response for the heterogeneous 

media; in such method local information is lost in a way to gain a more manageable 

model. Similarly, in a finite element approach, the trigonal equivalent cylinder gives 

the great advantage of using very few elements to realize strand models, even if it 

computes a large amount of wires disposed on multi scale arrangement (Multi Layered 

Strand). In the follow we present a FE model of a reinforcing fibre, it is made of two 

simple strands twisted together, non linear response is investigated as well as trigonal 

effects in a cord-rubber composite.  

Description of the procedure for building-up the cord 

In cord composites, trigonal effect takes place over different scales. We look now at 

the macro scale behaviour of a cord. Specifically a double simple strand is 

investigated. Such kind of reinforcing fibre consists of two 6+1 wires strands wrapped 

together with a lay angle f , Figure 3.10, strands are modeled by their equivalent 

cylinders, see previous section. System presents, thus, the intrinsic trigonality of each 

simple strand at micro scale level, and the trigonal effect due to double helical strand 

arrangement at meso scale level.  
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Fig. 3.10: 

A parameter based procedure has been developed to realize the model of twisted cord. 

Ansys
®
 batch mode allows to vary parametrically the geometries of the reinforcing 

fibre, i.e. single strand radius fR  and lay angle f , as well as load conditions and 

finite elements meshing size. Method starts with the automatic generation of the 

volume of the cord. In a way to avoid elements geometric degeneracy during the 

meshing process,  fillet lines are used to merge the elliptical cross section of the two 

strands; value of the fillet radius is mesh size depending. A cylindrical reference 

system 
3, ,r θ z R  is now considered, with z  axis coincident to cord axis. Merged 

area is then linearly extruded along θ  and z  axes by z  and  length values, 

providing that / Tan fz  and 2 , Figure 3.11; value of the length of 

extrusion is mesh size depending. The volume corresponds to two slices of cylinder of 

radius fR  with the axes tangent to the strand helical paths. Homogenized trigonal 

material properties for each one of the simple strands (3.13) are defined by 

considering a local frame cylindrical reference system 
3, ,s s sr θ z R , with sz  axis 

coincident to the axis of the extruded cylinder. Indeed the elastic constants for the 

equivalent cylinder are introduced referring to the local reference system. The same 

extrusion is realized starting from the double ellipses cross section of the cord at zz  

generated before. Material properties are defined again referring to local cylindrical 

system of the new created slices of cylinder. Extrusion and material properties 

assignment goes on until a cord volume geometry of length fp  is obtained, where fp

is the cord twisting pitch.  
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Fig.3.11: 

Numerical simulations of the mechanical response of twisted cord-rubber composite 

Preliminarily finite element analyse on cord model are performed, in a way to observe 

the effects of the  trigonality at the meso scale level, i.e. double homogenized strands 

twisted together. Using the Ansys
®
 software is realized an automatic procedure to 

mesh the model with three-dimensional, 8-node brick elements, Figure 3.12. A 

complete pitch length of the cord is realized and non linear elongation test are 

performed, both for fixed end condition and free rotation condition. Finite element 

non linear analyses perform by linear sub step; same procedure used for non linear 

Costello‟s approach is adopted. Axial deformation on the cord is applied in a number 

of steps high enough to ensure that condition on helix angle of the simple strands 

1 is preserved. At the end of each step cord reactions are evaluated and material 

properties and cord geometries, i.e. fR  and fp ,  are updated. In force of single step 

linearity is then possible to write:  

1

i

i j

j

F F

 

(3.21) 

1

i

ti tj

j

M M

 

(3.22) 



 

101 

 

where  is the number of the thi  load step, and iF  and tiM  are the relative cord reaction 

forces, in terms of axial force and torque. 

 
Fig. 3.12: 

 

FEM Simulation and results 

As stated before, twisted cords exhibit axial-torsion coupling due to its structural 

nature. This trigonal effect is due on one hand by the microstructural organization of 

internal filament and on the other by helical macroscale shaped. 

Several authors have investigated the aforementioned coupling effect in cord-rubber 

composites by analytical and numerical procedures. Kocak S. and Pidaparti RM.( 

2000) have developed a finite-element model, that integrates a solid rubber element 

and a twisted cord element, which takes into account coupling effects of various 

deformations. They investigate the influence of cord shape on the load-deformation 

characteristics. Similar approach was used to evaluate the effect on the cord-rubber 

interface stresses distribution (Pidaparti et al., 2001). 
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In this paragraph the influence of twisted cord microstructure, on the mechanical 

response of composite, will be investigated through as FE approach; whereas the role 

of helical shape of cord will be neglected. Twisted cord behavior is based on 

numerical result of monoclinic compliance constants for trigonal cord obtained from 

the procedure discussed in the latter section. In fact starting from non-linear Costello's 

model and assuming small helix angle variation 1 , the numerical method 

allows to obtain for each small i th the matrix constants i th

ijC  of anisotropic 

response.  

In order to validate the present approach a three-dimensional FE model, which 

consists in the trigonal "equivalent cylindrical" cord, reminiscent of trigonality, 

embedded in solid rubber matrix, has been developed. 

The efforts spent to develop the analytical procedure, allow to simplify the geometry 

of model and bring numerical difficulties down, avoiding the use of advanced features 

of 3D CAD modeling (Pidaparti et al., 2001).  

To perform the finite element analysis on the homogenized and simple cylindrical 

cord-rubber models, the FE models were developed using the ANSYS
®
 software. 

Finite element meshing of cord and rubber were done with three-dimensional, 8-node, 

brick element (SOLID185), that it also has mixed formulation capability for 

simulating deformations of nearly incompressible and fully incompressible 

hyperelastic materials. 

Next, the finite element models were assigned the material properties: Mooney Rivlin 

hyperelastic form has been used to characterize the constitutive behavior of rubber 

matrix in both models; isotropic elastic constants were used to characterize the simple 

cylindrical cord; while the anisotropic constants i th

ijC  for trigonal behavior have been 

invoked to setup the behavior of the homogenized cylindrical cord. 
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FE non linear analysis were performed under axial loading, considering for each load 

step the same axial displacement (taking into account that 1i th
) used for 

analytical procedure. 

As first consideration the affect of trigonality on the mechanical response was 

analyzed comparing the response of a composite models with a simple isotropic 

cylindrical cord. As shown in the picture, the anisotropic behavior of cord 

reinforcement affect the response of composite: an axial-torsion coupling is 

highlighted (cfr Figure 3.13 up). 

 
Fig. 3.13  Tensile-torsion coupling effect with the trigonal cord (up) and simple tensile behavior in 

isotropic case 
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Next step is to evaluate the amplitude of shear stress r , due to trigonal cord, at the 

cord-rubber interface, considering that in the case of isotropic cylindrical cord no 

shear stress arises at the interface, and the influence of its tensile-twisting behavior 

into the rubber matrix.  

The picture highlights the no-zero stress values in the cord reinforcement and on its 

external surface, where the trend emphasizes the tension that grows inside the rope. 

 
Fig. 3.14: Shear stress into the reinforcement and on the cord-rubber interface (black line) 

The interface shear stresses is transferred into the surrounding rubber matrix As we 

can see the distribution of tension isosurfaces gives an idea on how this behavior 

expands inside into the matrix (cfr. Figure 3.14) 
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Fig. 3.15 Tension isosurfaces distribution into the rubber matrix 

Title: A sensitivity analyses on fiber density 

As state before, the use of fiber reinforced composite materials has found in recent 

years continually increasingly interest in design process of structures and structural 

elements encountered in engineering practice. The full advantages of such materials 

are obtained when fibers are distributed and oriented optimally with respect to the 

assumed objective behavior measure in the optimization process under actual loading 

conditions of the structure (Dems K, 1996). Mostly, to fulfill the optimal behavior of a 

certain structure and its loads, can modify some parameters of structural material, such 

as fiber plies thickness, fiber density, shape and orientation, stacking sequence etc. 

In this paragraph a study conducted to evaluate the effect of fiber density on rubber 

compound stress field is discussed. The model showed is based on the cord-rubber 

composite presented in the latter paragraph, where an anisotropic cylindrical cord is 

embedded by hyperelastic rubber matrix. 
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The sensitivity analysis has conducted on a specimen size fixed, where the 

reinforcement change in number (from 2 to 4 fibers). The results showed below refer 

to similar tensile boundary conditions.  

The tensile-torsional coupling effect, due to anisotropical behavior of fibers, is 

highlighted by deformed shape of the three specimens taken into account (cfr figure 

3.16), 

 
Fig.3.16 : 

As already mentioned, the trigonal behavior of cord increases the stress field of rubber 

for the presence of transferred shear stress r . The first important result is represent 

in the picture below (cfr. Figure 3.17), where the distribution of cited stress, on the 



 

107 

 

mid plane of specimen, is plotted; and as we can see the stress gradients in the matrix 

increase with the increasing of fiber density. 

 
Fig. 3.17: 

From the point of view of material strenght the presence of high unexpected stresses 

value may lead to an increased risk of rubber fracture, particularly under cyclic 

loading. 
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To evaluate the affect of trigonal behavior of cords on the structure, the ratio between 

r  and z , where the last ones are due to the stretch in load direction, is evaluated in 

the inter-fiber matrix space. As showed below (cfr. Figure 3.18) the r

z

 increases; 

in particular in the second and third case the shear stress values are greater than z .  

 
Fig. 3.18: 

Conclusion 

In this chapter the behavior of non-linear elastic cord-rubber composites has been 

investigated. The modeling activities, both analytical and Finite Elements Method 

(FEM) have been used to simulate and predict the tensile-torsional behavior of twisted 

cord embedded in a rubber matrix. The efforts spent to developed the analytical model 
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for twisting cables, allow us to simplify the numerical model and relative analyses 

introducing an homogenized constitutive behavior of cord. In particular, our attention 

is focused on two main results: the tension-twisting response of composite, and 

influence of fiber density on unexpected stress distribution due to the microstructural 

anisotropic behavior of cord. The results confirm that this multi-scale approach can be 

a good basis to characterize the complex behavior of pneumatic tire. 
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CHAPTER IV 

MECHANICAL RESPONSE OF FOOD PACKAGING 

POLYMERIC BI-LAYER FILMS UNDER HIGH PRESSURE 

Introduction 

In the last years considerable efforts have been spent on the mechanical behaviour of 

materials constituted by the coupling of different thin layers, with particular attention 

focused on delamination phenomena, interfacial failure and overall stiffness and 

strength of multi-laye\r films. A technological application where these issues are 

notably relevant is that of Novel Processing (NP) treatments of packaged food, 

recently introduced to improve safety, quality and shelf-life of foodstuff. In this 

framework, mechanical performances and structural integrity of multi-layer flexible 

polymer films used to package food remain a main concern. Among NPs, High 

Pressure Processing (HPP) is steadily gaining as a food preservation method that also 

preserves natural sensory and nutritional attributes of food with minimal quality loss. 

Packaged foods, processed by using this technique, maintain most of their original 

texture and nutritional qualities, additionally exhibiting an extended shelf-life. HPP 

applies high pressure (typically in the range of   over a time frame of the order of 

minutes) to packaged foodstuff in order to significantly reduce the number of 

microorganisms as well as to deactivate enzymes by mechanically-induced 

mechanisms [1]. High pressure loads are exerted on packaged foodstuff by means of a 

pressurized confining fluid imprisoned in a vessel. The process consists of a 

preliminary heating of both confining fluid and packaging, followed by adiabatic 

pressurization. Typically high pressure pasteurization is performed at an initial 

temperature of   while sterilization is conducted at higher initial temperature  . Since 

the adiabatic pressurization process determines a monotonic increase of the initial 

temperature, the actual treatment temperature depends on the maximum attained 

pressure, with temperature rise. [2].  

A suitable choice of a multi-layer packaging for HPP has to be performed in such a 

way that the treatment process does not affect package integrity as well as its 

functional properties. As a consequence, the packaging material and design should 

prevent irreversible deformation phenomena induced by high pressure and severe 

stress regimes. [3]. 
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Literature experimental results highlight that several types of multilayer films are 

inappropriate for HPP due to the occurrence of delamination phenomena. In 

particular, bi-oriented PET/PP bilayer films as well as multilayer structures including 

aluminium foils or metalized layers show this type of failure mechanisms. [4]. These 

phenomena are expected to depend on the features of the materials employed to build 

up the multilayer structures and, in particular, on the thermo-mechanical properties of 

the coupled components forming the overall packaging structure.  

From the mechanical standpoint, HPP can indeed kindle interfacial stresses between 

the different elements of multilayer structures as a result of the high pressure loading 

exerted by the pressure transmitting fluid, thus inviting delamination and extensive 

detachment phenomena. The mechanical analysis of mulitlayer systems under severe 

pressures generally requires to consider large displacements, deformation-induced and 

intrinsic film anisotropy and non linear stress-strain relationships, as well as visco-

elastic and plastic responses. Also, special attention should be given to properly model 

bonding conditions at the layers interfaces taking into account cohesion and friction 

by means of ad hoc constitutive assumptions for the adhesives. Additional efforts are 

needed to overcome numerical difficulties arising from the strong difference between 

the characteristic (in-plane) size of the material – generally of the order of centimetres 

– and films thicknesses (of the order of tens of microns) that may lead to sometime 

insurmountable computational costs or very onerous in silico simulations aimed to 

determine interfacial stress and stress singularities between thin films [5]. 

Moreover, difficulties are also encountered when the mechanics of thin films is 

approached following an analytical way. In fact only a limited amount of scientific 

contributions furnish exact solutions to problems involving the mechanical response 

of these composite materials under specific load conditions. In this framework, Bufler 

[6] developed a rational method for the analysis of arbitrarily laminated elastic, 

isotropic or transversely isotropic hollow spheres under internal and/or external 

pressure, obtaining exact solutions and homogenized elastic moduli by using the 

Transfer Matrix Method. Ding and Chen [7,8], on the base of the three-dimensional 

Theory of Elasticity, investigated the non-axisymmetric free vibrations of isotropic 

spherical shells submerged in a compressible fluid medium, determining their natural 

frequencies, and Jiang et al. [9] studied the dynamic response of layered hollow 

spheres in closed form. Semi-analytical solutions constructed by invoking asymptotic 

methods are given by Lebon et al [10] for analysing some non-linear soft thin layers, 

while other literature efforts have been aimed to estimate indentation response of thin 

hard films on soft substrates [11], making reference to hypotheses of special (i.e. 

spherical) symmetry conditions. 
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Motivated by the scientific and practical interest in the mechanical response of 

polymeric thin films utilized for food packaging, this work intends to investigate on 

the mechanisms governing the delamination phenomena observed experimentally in 

multilayer films during HPP, in order to pave the way for optimal design of packaging 

structures. To make this, both analytical and Finite Element (FE) analyses of the 

process of HP treatment of pouches made of multilayer films and containing tap water 

have been performed. The results suggest that the development of inter-laminar 

normal and shear stresses as well as increase of stress fields within the constituents 

due to their differences in elasticity, i.e. Young moduli and Poisson ratios of the films, 

can be actually traced as responsible for localized delamination and failure 

phenomena. 

In particular, in the present work experimental results of laboratory tests performed to 

obtain the stress-strain and thermal dilation properties of some polymeric films (PP, 

PET, OPA and PA) involved in the realization of multilayer food packaging, are 

firstly described and discussed in details. 

Successively, in the framework of anisotropic linear elasticity, two preliminary ad hoc 

analytical solutions are constructed coherently with the experimental findings, making 

reference to simpler situations evoking the real case of the bi-layer food packaging 

under high pressure. Then, sensitivity analyses have been performed in order to 

analytically estimate inter-laminar shear stresses at the film interfaces and their 

magnitude with respect to specific geometrical and mechanical parameters, that is the 

ratios between elastic moduli and thicknesses of the coupled polymeric layers. In 

particular, a first analysis has been conducted under the hypothesis of plane-strain of 

the bi-layer film and a solution related to spatially varying load applied orthogonally 

to both the film sides has been found to simulate the effect of the high pressure on the 

compressive stress state developing inside the materials. As a result, the influence of 

pressure gradients, mechanical parameters and thicknesses of the coupled films on the 

inter-laminar shear stresses has been explored through sensitivity analyses, by 

demonstrating at the end that a best film coupling (measured as minimum ratio 

between inter-laminar shear and maximum stresses) can be obtained if is minimized 

the percentage difference between homogenized stiffness of the bi-layer material and 

the Young modulus of the basic film, PP in the specific case. The second exact 

solution is instead obtained for investigating the response of a multi-layer hollow 

cylinder filled by uncompressible water and subject to external pressures and to a 

“spurious” bending regime which perturbs the symmetry so kindling inter-laminar 

shear stresses. The attention has then been focused on the variation of inter-laminar 

shears with the radius of the object, in order to predict the effects of the curvature of 
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the bi-layer film due to deformation-induced wrinkling or geometrical shape on the 

stress regime. 

Both the above mentioned solutions have been used as a guidance for interpreting the 

results of the subsequently performed FE numerical simulations where both nonlinear 

behaviour of the materials and large displacements have been taken into account. 

Furthermore, a faithful modeling of the whole food package shape has been 

considered and the stresses within the polymeric layers are determined with respect to 

three different actual film couplings (PP/PET, PP/OPA and PP/PA), also 

experimentally investigated. In particular, the outcomes of two groups of FE-based 

analyses are presented. The first set of simulations has been focused on a sensitivity 

analysis aimed to determine the relation between stress fields and film elastic moduli 

ratios corresponding to differently coupled films. The second non-linear FE analysis 

has been conducted with respect to the sole PP/PET bi-layer, with the main interest in 

detecting possible wrinkling phenomena due to local strain gradients induced by 

severe pressures, ranging from 100 to 250 MPa. 

The comparison of experimental evidences (i.e. film deformation and interfacial 

failure phenomena found in food-packages tested under high pressures) with 

numerical results is finally shown, highlighting a very good agreement between FE-

based predictions and the actual response of the materials and also confirming the 

theoretical results which suggested to couple films with close mechanical properties to 

avoid failure. As a consequence, finally, on the basis of the mechanical analyses and 

the experimental findings, a rough heuristic measure of the “best coupling” in terms of 

lowest likelihood of interfacial failure is introduced and defined. 

Experimental findings and problem statement 

Capability of multilayer polymer films to withstand high pressure pasteurization and 

sterilization treatments was assessed by realizing pouches containing a food stimulant 

(tap water and small solid carrots) and submitting them to HP treatment similar to 

those performed on industrial scale. In particular, bilayer films were obtained by 

laminating commercial plastic films, i.e. cast polypropylene (PP), bioriented 

polyethyleneterephthalate (PET), bi-oriented polyamide (OPA) and cast polyamide 

(PA). Lamination was performed on industrial machines using several kinds of 

standard polyurethanic adhesives for food packaging applications. Three types of 

bilayer films were investigated, that is PET/PP, OPA/PP and PA/PP. In all cases the 

inner layer of the pouches (i.e. the one in contact with tap water) was PP, to guarantee 

the sealability of the package. Due to the production process, the four polymer films 

used to realize the bilayer structures are oriented, thus exhibiting a transversely 
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isotropic thermo-mechanical behavior. As a consequence, in the following, „machine 

direction‟ or „longitudinal direction‟ (L) and „transverse direction‟ (T) are respectively 

parallel and orthogonal to the main axis of the film reel (which, in turn, corresponds to 

the main axis of the production equipment). All the polymers used in this study are 

semicrystalline and present crystalline, well ordered, domains surrounded by 

amorphous regions.  

Pouches were obtained by sealing the three sides of a folded bi-layer film with a 

custom built heat sealing equipment. Heat sealing was performed by hot-bar welding, 

at a heat-seal bar temperature of 110-120°C, under an applied pressure of 4 atm (a 

force of 400N applied on a 150mmx10mm surface) exerted for 1-2s. Before sealing 

the fourth side of the pouches, they were filled with the selected food simulant and air 

was removed from the head space by vacuum pumping. The filled pouches were then 

subjected to high pressure treatments, performed in a pilot scale high pressure / high 

temperature unit at Wageningen UR (University and Research centre) - Food & 

Biobased Research, in Wageningen, The Netherlands. Typically, pressure can be built 

up to 700 MPa in 24 s.  

Two types of HP treatments have been performed on pouches: pasteurization and 

sterilization. Tap water has been used as pressurizing medium. Sterilization was 

performed at three different pressures: 200, 500 and 700 MPa. Pasteurization was 

instead performed with a similar procedure, but at room temperature.  

The performed tests indicate that all the three bilayer films are able to withstand the 

pasteurization treatment without displaying any evident mechanical failure. However, 

PET/PP pouches displayed evidence of localized delamination (see figures 4.1 a and 

b) after HP sterilization, with both food stimulants used, over the whole investigated 

pressures range. No delamination after HP sterilization was instead observed, even at 

700 MPa, in the case of PA/PP (see figure 4.1 c) and was barely present in the case of 

OPA/PP (see figure 4.1 d), for both food simulants. 
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Figure 4.1. a) picture of a PET/PP pouch after HP sterilization treatment @200MPa (food stimulant: 

tap water), arrows indicating regions of delamination; b) detail of a delaminated region in PET/PP 

pouch with arrows highlighting the delamination zones; c) picture of a PA/PP pouch after HP 

sterilization treatment @500MPa (food simulant: tap water); d) picture of a OPA/PP pouch after HP 

sterilization treatment @700MPa (food simulant: solid carrots). 

Since several phenomena occurring during sterilization treatment for PET/PP 

structures, due to difference in the thermal expansion coefficients of the two materials; 

differences in the mechanical behavior of the two films making up the multilayer 

structure (i.e. stiffnesses in the elastic regime) and in their dependence on temperature 

and pressure; several experimental tests on materials are been made to understand 

their affect.  

For example the linear dilatational behavior of the four types of single layer films was 

determined experimentally in the L, T and 45° directions in the temperature range 20 

÷ 120 °C of interest in HP treatments, to understand the effect of film thermal 
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properties. To evaluate the effect of mechanical behavior of the single films, 

experimental mechanical tests was performed at 25 and 100 °C at atmospheric 

pressure in the three main directions. Stress-strain curves were obtained for 

elongational deformation determining the values of Young modulus in the elastic 

regime. The measured values are summarized in tables 1a,b.  

It is evident from the tables that, at 25°C, the values of the moduli for PP are 

close to those of PA. Differences are, instead, significant when comparing PP with 

OPA to become even more relevant for the case of PET. When considering the values 

of the moduli at 100°C, the largest differences are still found for the PP/PET coupling, 

while both PA and OPA display values of moduli which are close to those of PP. 

Average values  for the Young moduli, E , of the bi-layer films, also reported 

in Tables 1a,b, have been calculated in each direction by assuming the rule of 

mixtures, according to the following equation: 

TOT

i

i

TOT

PP
PP

l

l
E

l

l
EE  

where PPE and PPl  indicate, respectively, modulus and thickness of PP film, iE  and il  

represent, respectively, modulus and thickness of the film coupled to PP to form the 

bi-layer film and TOTl  is the total thickness of the multi-layer structure (thickness of 

the adhesive layer being assumed negligible). It is worth noticing that, for processing 

reasons, films are always laminated by matching the machine direction of the two 

layers.  

Examination of results reported in tables 1a,b suggest that a possible cause for 

delamination might be related to differences in mechanical behavior. This conjecture 

will be deeply discussed and supported in following sections dealing with analytical 

and numerical simulations.  
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Table 1a. Young moduli at 25°C determined for the four films in the three main directions. Small sized 

ffonts refer to the modulus of the single film, while large sized fonts refer to the bi-layer structures. 

 
Table1b. Young moduli at 100°C determined for the four films in the three main directions. Small 

sized fonts refer to the modulus of the single film, while large sized fonts refer to the bi-layer structures. 

Evaluation of the effect of pressure on Tg is generally investigated by performing high 

pressure dilatometric experiments on molten polymers. Temperature is decreased at a 

controlled rate isobarically evaluating the change of specific volume. The molten state 

of the samples, insures that the state of stress in the material is a uniform, isotropic 

compression. Tg is marked by a change in slope of the specific volume vs T curve.  

Similar tests have been perfomed also on the polymers used in this study by means of 

a high pressure dilatometer (GNOMIX, Boulder CO, USA), in which a hydrostatic 

pressure is applied to the sample by means of a confining fluid (mercury, in this case), 

but the outcome of those results are not reported in this work.  

To evaluate the effect of mechanical strength of adhesive layer, several adhesives with 

different mechanical properties, where used to realize the three laminates, but it was 

observed that HP sterilization treatments resulted always in the delamination of only 

PET/PP structures, whatever was the adopted adhesive. 

In conclusion, the experimental findings and the physical interpretation of the possible 

causes of failure support the hypothesis that the difference in delamination behavior 
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among the three investigated bi-layer structures can be mainly ascribed to the 

mismatch between the mechanical moduli of the two laminated films. As a 

consequence, the following sections are aimed at demonstrating, by rigorous 

arguments, the role played by the mechanical properties of the polymer films in 

determining different level of interlaminar stresses which act as driving force for 

delamination failure. 

Sensitivity analyses and qualitative results based on exact solutions 

Based on the above illustrated findings and the corresponding physical interpretation, 

it can be inferred that the delamination phenomenon is mainly determined by 

differences in mechanical properties of coupled films. 

As a matter of fact, interfacial stresses responsible for delamination may result from 

the combination of both normal and shear stresses. Since high pressure applied on the 

bi-layer structure induces prevalent compressive normal stress fields at the interface, it 

is expected that delamination is determined only by shears. 

With the aim of performing a sensitivity analysis to detect the influence of mechanical 

and geometrical factors on the occurrence of interfacial shear stresses, two analytical 

solutions have been constructed in which the role played by film curvature, load 

distribution and differences in elastic moduli is investigated. 

In particular, the first analytical solution refers to the simple case of a rectangular bi-

layer film where self equilibrated and spatially varying pressures are applied at the top 

and bottom sides of the composite sheet. The closed-form elastic solution is here 

determined in order to highlight the influence of the spatial gradients of the pressure – 

which can locally appear – on the interfacial stresses, accounting for differences in 

thicknesses and elastic moduli of the coupled materials. 

The second exact solution treats instead the problem of a bi-layer hollow cylinder 

filled by an incompressible fluid, say water, under the combined action of external 

pressure and bending. This solution has the aim of simulating the ideal case of a food 

package filled by a fluid and loaded by high pressure, perturbed by a bent regime that 

kindles inter-laminar shear stresses across the films. The effects on the stress field of 

the radius of the ideal cylindrical package and of the bending deformation are 

analysed, to evoke the real case where local changes of curvature of the by-layer film 

are induced by wrinkling phenomena. As in the first solution, the role played by the 

different stiffness of the films on the interfacial shear stresses is examined. 

These analyses are of help in supplying a qualitative guidance to understand the effect 

of mismatch in geometrical and mechanical properties on the shear stress development 

in the actual situation of a food package under HP. The complex stress regime arising 
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in the case of real multi-layer packages can be indeed envisaged as a combination of 

the simpler ideal situations described through the exact solutions. However, large 

deformations, non-linear effects and real food package geometrical complexity will be 

considered in Section 4. of the present work, where Finite Element based numerical 

simulations and comparison with experimental results will be performed. 

Two-layer film with spatially varying pressure symmetrically applied on the top and 

bottom sides 

Let us assume a Cartesian coordinate system 1 2 3{0, , , }x x x  and consider a bi-layer 

film constituted by two rectangular thin sheets made of different linearly elastic 

orthotropic materials, perfectly bonded at the interface which lies on the 1 2x x  plane. 

Let w  and 2L  be the width and the length of the bi-layer film, measured along the 2x  

and 1x  directions, respectively, and denote with t  and t  the thicknesses of the 

constituent films placed at the top and bottom positions with respect to the plane 

3 0x .  

If self-equilibrated – and symmetrically distributed with respect to the 2 3x x  plane –  

pressures act on both top and bottom sides of the object as follows 

1

1 1 3, [0, ],
x

p x pe x L x t
 

(4.1) 

p  being the maximum pressure and  a parameter governing the spatial 

gradient of the load, the solution of the elastic problem can be searched in plane-strain 

in the form 

( )

55 ,11 33 ,33

1 1 3 2 3 1 3 ,13

13 55

2
, , 0, ,

2

iC C
u x x u u x x

C C
 

(4.2) 

where commas denote differentiation, 
1 3( , )x x  is an unknown displacement-

potential function and ijC  represent the elastic coefficients, in contracted Voigt 

notation, of the orthotropic films whose planes of material symmetry are assumed be 

coincident with the planes of the Cartesian reference frame. However, under the 

hypothesis of isotropy of both the materials and by invoking the geometrical 

compatibility conditions 

, ,2 ij i j j iu u
 

(4.3) 



 

122 

 

the nonzero strain components take the form 

( )

,111 ,331 ,113 ,333

11 33 ,331 13

2 2
, ,

2

i

 

(4.4) 

and the corresponding not vanishing stresses are 

11 11 11 33 22 11 33 33

33 11 33 13 13

2 ( ), ( ),

2 ( ), 2     
(4.5) 

with elastic coefficients in the eq (4.2) reduced to 

33 13 552 , , 2 , 2

/ (1 ), / [(1 )(1 2 )]

C C C

E E      
(4.6) 

in which E  and  represent the Young moduli and the Poisson ratios, respectively. 

In the absence of body forces, by virtue of the eqs. (4.2), (4.5) and (4.6), the 

equilibrium implies that the potential 
1 3( , )x x  must be bi-harmonic, i.e. 

4

, 1 30 , 0ij j x x
 

(4.7) 

Based on the form of the applied pressures (4.1), the solution can be then found by 

separating the variables, thus obtaining 

1

1 3 1 3 3 3 3 3, ( ) ( ) [( )cos ( )sin ]
x

x x x x e A B x x C D x x
 

(4.8) 

where the Eulero‟s formulas have been employed and { , , , }A B C D  represent 

eight coefficients to be determined by imposing the following interfacial and 

boundary conditions 

1

3 33 13

3 33 33 13 13 1 1 3 3

, 0

0 0, 0, 0, 0

xx t pe

x u u u u  

(4.9) 

The equations (4.9) constitute a linear algebraic system of eight equations in the eight 

unknowns { , , , }A B C D  and can be thus solved in closed form, as well as 

numerically. 

When these solutions are specialized to bi-layer films characterized by PA, PET and 

OPA all coupled with a PP sheet, it is possible to investigate how the stress fields 



 

123 

 

parametrically change with a measure, denoted with E , of the percentage differences 

in mechanical properties of the component layers defined as follows 

1

PP PPE E E E
 

(4.10) 

where E  is the standard Voigt homogenized Young modulus of the bi-layer film and 

PPE
 
 is the PP Young modulus. 
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Fig. 4.2a: normalized maximum shear stress versus E  

Figures 4.2a and 4.2b show the normalized maximum shear stress, 

1

1

13
[0, ]

max{ }
x L

p , versus E , evidencing how interlaminar shear stress 

monotonically increases with E . This trend is also confirmed for values of the 

pressure gradient greater than zero, at a prescribed value of Poisson ratios of the two 

coupled films (see Figure 4.2a) and for different ratios of the Poisson moduli, , 

at a vanishing average pressure gradient (see Figure 4.2b).  
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Fig. 4.2b 

It is worth to highlight that the lowest value of the interlaminar shear stress is always 

attained in the case of PP/PA coupling, in this way confirming the experimental 

findings anticipated in Section 2.  

Spurious bending in a bi-layer hollow cylinder filled with water and subject to 

external pressure 

In a cylindrical coordinate system 3{ , , }r x , let us consider an object constituted by 

two cylindrical homogeneous and isotropic perfectly bonded hollow phases with axis 

3x , filled by an uncompressible fluid and subjected to combined external uniform 

pressure and bending moment applied at the ends. The linearity of the problem allows 

to search the solution by invoking the superposition principle, that is writing the 

displacement as the sum of the axis-symmetrical solution – i.e. external pressure, p , 

acting on confined water – and that related to the sole bending moment, M . 

Coherently with the above introduced notations, the outer and the inner films of the 

bi-layer structure will be denoted with the apex “ ” and “ ”, respectively, and the 

displacement, strain, stress and elastic components referred to the cylindrical reference 

frame. The geometry of the problem is then completely described by the radius at the 

interface between the constituent layers, R , and by the outer and inner radii, 

R R t  and R R t , t  being the thicknesses of the external and internal 

layers, respectively. 
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External Pressure and uncompressible fluid filled the compound hollow cylinder 

In linear isotropic elasticity, it has been demonstarted  that axis-symmetrical solutions 

can be all derived by the Love‟s function [Love], also in case of multi-layer objects 

[Fraldi et al]. By invoking these results, the displacement field for a two-phase hollow 

cylinder subjected to uniform inner and outer pressures, the inner pressure being 

exerted by the uncompressible fluid, can be written for both the layers as 

1

3 3, 0,ru A r B r u u x
 

(4.11) 

where { , , }A B  are coefficients to be determined by means of the boundary 

conditions 

2

33 33
0

2 ,

0, 0

,

r rr

rr rr r r

R R

R R

r R u R r R p

r R u u

r dr r dr d F

  (4.12) 

where F  is the axial force resultant at the object bases and the first equation at the left 

side in (4.12) representing the incompressibility of the water, if second order and 

higher terms of deformation are neglected. Thus, by virtue of (4.11), compatibility 

equations (4.3) in cylindrical coordinates give 

2 1

,

2

33 3,3 3 3

,

    , , 0

rr r r r

r r

u A B r r u

A B r u  
(4.13) 

and, from (4.13), the constitutive equations for isotropic materials furnish the stresses 

2 , , { , , 3}ij ij ij tr i j r
 

(4.14) 

where 
ij

 is the Kronecker delta, 
33( )rrtr . It easy to verify that the 

stresses (4.14) automatically satisfy the equilibrium equations at the left in (4.7), 

written in cylindrical coordinates. Moreover, it is worth to notice that, independently 

from the differences in terms of elastic moduli between the two films,  eqs. (4.13) and 

(4.14) lead to find 

3 3 0r r  
(4.15) 
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and thus no inter-laminar shear stresses occur for the sole presence of pressures in the 

object. However, a little amount of imperfection of the cylinder geometry or of the 

loads might perturb the symmetry of the problem, thus kindling inter-laminar shear 

stresses. This event is taken into account below by analyzing the response of the bi-

layer cylinder under the action of a “spurious” bending. 

Bending moment acting on the object ends 

In the case of uniform bending moment the geometry of the object without -

boundaries implies the absence of free terms in  for displacements, stress and strain 

fields, which have to additionally be single-valued and continuous functions and 

hence exhibit periodicity on . Inspired by the St. Venant solutions and considering 

the symmetry condition due to the bending moment M  acting, without loss of 

generality, on the 2  plane, it is therefore natural to seek a general solution of 

the problem by assuming for each layer the displacements in the following form: 

3
2 3

3 0 1 3 2 3 3 3

0

3
2 3

3 0 1 3 2 3 3 3

0

3
2 3

3 3 0 1 3 2 3 3 3

0

( ) sin ( ) ( ) ( ) ( ) sin

( ) cos ( ) ( ) ( ) ( ) cos

( ) sin ( ) ( ) ( ) ( ) sin

k

r k

k

k

k

k

k

k

k

u f r x f r f r x f r x f r x

u g r x g r g r x g r x g r x

u h r x h r h r x h r x h r x

 

(4.16) 

where { ( ), ( ), ( )}k k kf r g r h r  represent twelve unknown functions. If 
3{ , , }ru u uu , 

 and  are the Lamé moduli, 
1 1

, , 3,3r r rdiv u r u r u uu  is the divergence 

of the displacement field and 2 2 1 2 2

3/r r r r x  represents the 

Laplace differential operator, the displacements (4.16) have to obey the Navier-

Cauchy equilibrium equations 

2 2 2

, ,

2 2 2 1

, ,

2

3 ,3

2 0

2 0

0

r r r

r

u r u r u div

u r u r u r div

u div

u

u

u
 

(4.17) 

This implies that the unknown functions { ( ), ( ), ( )}k k kf r g r h r  must satisfy a system 

of twelve  differential equations, whose solution – through some ordinary algebraic 
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passages – can be found in closed form and the displacements (4.16) rewritten more 

explicitly as follows 

2 2 2

0 1 2 3 4 3 5 3 6 7

2 2 2

0 1 2 3 4 3 5 3 8 6

3 4 5 3

log sin

log cos

2 sin

ru U r U r U U U x U x U U r

u U r U r U U U x U x U U r

u U U x r
 

(4.18) 

from which strains and stresses can be finally derived by using the eqs. (4.3) and 

(4.14), respectively, finding 
3 3 0r

. 
iU  are coefficients among which there are 

the relations 

3 0 8 7 6 5

3 5
, ,

2(3 ) 2( )
U U U U U U

 

(4.19) 

and to be determined by imposing the following boundary conditions on the 

cylindrical surfaces 

, { , ,3} ,

, { , } 0

i i ri ri

ri

r R i r u u

r R R t i r  

(4.20) 

and the integral ones at the object extremities 

2 2
2 2

3 3 3 3
0 0

2 2
2 2 2 2

33 33 33 33
0 0

0, sin 0

sin , cos 0

R R R R

i i
R R R R

R R R R

R R R R

r dr r dr d r dr r dr d

r dr r dr d r dr r dr dM
 

(4.21) 
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FE simulations of actual food package under high pressure and comparison with 

experimental evidences 

The analytical solutions presented in Section 3. supply information about possible 

interfacial shear stresses responsible of delamination failure arising in presence of 

high pressure applied on simple geometry and load cases, by assuming linear elasticity 

and infinitesimal strain regimes. Although this simplified approach is able to provide 

an insight on the material parameters governing the mechanical behaviour of bi-layer 

structures by exploiting sensitivity analyses, the actual behaviour is generally more 

complex because of large deformations and possible constitutive non-linearities. 
In particular, with the aim of determining the role played by both large deformation 

and non-linear elasticity, some Finite Element (FE)-based numerical simulations have 

been performed taking also into account the real shape of the food-package. The FE 

analyses have been all conducted by using the commercial code ANSYS
®
. 

Two sets of numerical simulations have been carried out. 

The first set examines three different cases, respectively constituted by the coupling of 

PP/PET, PP/OPA and PP/PA films involved in the food package. These three non 

linear FE analyses have been aimed to explore the sensitivity of the stress field in the 

polymeric layers to the increase of the external pressure under the hypothesis of 

incompressibility of the packaged water. 

The second simulation is a non linear FE analysis performed accounting for both large 

displacements and non linear stress-strain relationships and it has instead been focused 

on the sole PET/PP food package, with the scope of finding wrinkling phenomena in 

the polymeric films as a consequence of severe pressure regimes and bulk 

deformability of the water.  

These numerical results are finally compared with the experimental evidences. In 

particular the first group of analyses highlight a significant non-linear increase of 

interfacial shear stresses with the pressure in the case of PET/PP bi-layer film, in 

accordance with the test results which indicated that this type of coupling was the 

most prone to delamination failure. 

FE analyses of the PP/PET, PP/OPA and PP/PA food packages under increasing 

pressures 

A custom-made ANSYS
®
 environment macro has been developed to perform 

parametric analyses varying the thicknesses of the two coupled polymeric films, the 

characteristic sizes describing the overall package shape, the elastic moduli and the 

non linear stress-strain curves obtained from experiments for each layer. Also the sole 
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part of the model in the positive eighth has been considered caused by the symmetry 

of the geometry, boundary conditions and loads (see Figure 4.3, left). 

 
Fig. 4.3. FE computational model: the isometric view of the food package model (left) and a 

detail of the mesh adopted for the two coupled polymeric films (right). 

In this first group of analyses, achieved in large displacements and strains, the fluid 

inside the package has been assumed uncompressible and the polymeric films 

isotropic and elastic (see Table 1.). In addition, due to the high geometrical ratio 

between overall dimension of the object and film thicknesses, the mesh has been 

generated with a varying number of brick elements (SOLID185, non linear eight 

nodes element with three degrees of freedom at each node), ranging from 40,000 to 

about 100,000 elements as a function of the specific case studied. Also, special 

attention has been also given to the element size ratios and regularity, in order to 

expect a good result accuracy and avoid numerical errors in terms of energy due to the 

geometrical distortion of the elements (see Figure 4.3, right). The boundary conditions 

are established in terms of symmetry constraints applied along the model sides 

belonging to the three planes defined by the Cartesian reference frame and by means 

of applied external pressure [0, 250 ]p MPa . This three analyses (PP/PET, PP/OPA 

and PP/PA) have been conducted in large displacements, following the pressure 

increase by means of a step-by-step procedure. The results are collected in the Figures 

4.4, 4.5 and 4.6, where it is highlighted the membranal stress increases within each 

layer and the interfacial shears. 



 

130 

 

 
Fig. 4.4. FE analysis of the PP/PET film coupling: comparison between tensile (top) and compressive 

(bottom) stresses within PP (left) and PET (right) polymeric layers. 
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Fig. 4.5. FE analysis of the PP/OPA film coupling: comparison between tensile (top) and compressive 

(bottom) stresses within PP (left) and OPA (right) polymeric layers. 
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Fig. 4.6. FE analysis of the PP/PA film coupling: comparison between tensile (top) and compressive 

(bottom) stresses within PP (left) and PA (right) polymeric layers. 

 

The numerical results from the FE analyses confirm the experimental evidence on the 

base of which the PP/PA coupling seems to be the one that minimizes both the peaks 

of stresses within the films and the interfacial stresses for two different values of the 

applied pressure (50 and 100 MPa). This is summarized in the histograms reported in 

the figures 4.7, 4.8 and 4.9, where is clearly shown a significant increase of stress in 

all the films coupled with the PP layer, with maximum magnitudes in PET, 

intermediate in OPA and minimum in PA. 
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Fig. 4.8. Tensile stresses registered in the three cases analysed: it can be observed that, in the passage 

from pressures of 50 to 100 MPa, the maximum increase is registered within the PET layer. 
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Fig 4.9 Compressive stresses registered in the three cases analysed: it can be observed that, in the 

passage from pressures of 50 to 100 MPa, the maximum increase is also here registered within the PET 

layer. 



 

135 

 

 
Fig4.10. Tresca stress peaks in the three cases analysed: in the passage from pressures of 50 to 100 

MPa a very significant increase of the Tresca stress can be observed within the PET film in the case of 

PP/PET coupling. 

Wrinkling effects and strain gradients in PP/PET food packages under severe 

pressures 

In order to investigate the mechanical response under severe pressures of the food 

package constituted by PET-PP coupled films – this being the case in which the 

experiments have shown the most important delamination and interfacial failure 

phenomena – a specific non-linear FE analysis has been performed. The polymeric 

layers are modelled as non linearly elastic and the water filled the package is assumed 

to be compressible and obeying the Tait equation.  

A step-by-step procedure controlled by an ad hoc arch-length method has been 

utilized for following the kindle and the evolution of deformation gradients within the 

polymeric films as a consequence of the pressure increase; the analysis have been 

conducted in static regime, therefore without considering possible effects due to the 

time-dependent mechanical response of the materials and, finally, visco-elasticity of 

the polymeric films, velocity of the increasing pressure, as well as coupling of thermal 

and fluid-dynamic phenomena have been neglected in the present study. 
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The results show the stress and strain distribution in the package and highlight two 

main evidences. The first one is related to the stress concentration phenomena 

appearing at the boundary of the model, where the films of the opposite sides of the 

package match. There, it is possible to observe peaks of both shear and maximum 

tensile stresses and micro-bending deformations in proximity of the object boundary 

(see Figure 4.11).  

 
Fig. 4.11. Results of the Finite Element analysis in terms of maximum stresses on the external (left) and 

internal (right) layer surfaces. Note the peak of stresses (red regions) and the localized micro-bending 

phenomena in proximity of the object boundary. 

The other relevant aspect is exhibited at the interface between the two films, where – 

due  to the presence of significant shear stresses distributed along specific patterns – 

possible delamination phenomena could start up. Actually, strong deformation 

gradients seem to appear as localized effects around the welding zones, that is where 

the opposite sides of the package match (Figure 4.12). 
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Fig. 4.12 Parallel to the plane of symmetry (left) and total (right) displacements highlighting the 

deformation gradients around the welding zones. 

Conclusion 

In the present study, several ways have been followed to approach the problem of 

analysing the mechanical response of polymeric bi-layer food packages filled with 

water and subject to high pressures. 

Experiments have been made on each constituent film (i.e. PP, PET, OPA and PA) 

separately – to characterize the single stress-strain behaviours – and on the coupled 

films, when they have been utilized for building the food packages. 

Results from analytical solutions and numerical simulations have all suggested that 

interlaminar shear stresses grow if the difference in Poisson ratios among the coupled 

films is significant. In addition, sensitivity analyses have demonstrated that the 

coupling of PP with too much stiffer polymeric films (PET and OPA) produces an 

overloading of the material, kindling huge increases in terms of membrane stresses in 

PET and OPA. Moreover, a rough estimate of the goodness of the film coupling has 

been also proposed 

The above mentioned results – obtained by means of theoretical predictions and FE 

simulations – have substantially confirmed the experimental evidences that 

highlighted very limited damage phenomena for the PP/PA food packages tested. 

Finally, the last non linear FE-based analyses have been focused on the possibility to 

find – numerically – the strain gradients and wrinkling modes that experiments had 
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shown in case of PP/PET couplings. This has been actually obtained by means of the 

last numerical simulations, with surprising similarities in deformation shapes 

emerging from the comparison between the FE and the laboratory results. Figures 

4.13, 4.14 and 4.15 well illustrate this good agreement, showing how the obtained 

results well fit the appearing of delamination phenomena around the joint regions – 

that is where the opposite sites of the package match – as well as the regions where 

localized deformation gradients occur. 

 

 
Fig. 4.13: Comparison between experiment and FE analysis: the qualitative distribution of deformation 

patterns is evident. 
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Fig. 4.14. Comparison between experiment and FE analysis: similarity in terms of localized 

delamination phenomena. 

 

Fig. 4.15. Comparison between experiment and FE analysis: the region in blue (left) predicts high 

concentrations of interlaminar shear stresses, producing delamination (experiment, right). [Valutare se 

eliminare questa imagine trattandosi di alluminio…] 
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