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Chapter 1

Introduction

The study of the spectroscopic properties of nuclei in terms of their nucleonic degrees of freedom
is one of the most challenging task in nuclear structure. In order to accomplish it, one needs
first a reliable nucleon-nucleon interaction, and then a many-body theory which allows to solve
the nuclear eigenvalue problem.

Several nucleon-nucleon potentials have been developed, exploiting results from phase-shift
analysis and mesonic theories. A large part of this potentials present a strong repulsive core.
More recently, effective field theories rooted into quantum chromodynamics, have derived the
so-called chiral potential, which reproduces the scattering data and the properties of deuteron
and other light nuclei, and has the virtue of being smooth even at short internucleonic distances.

In principle the Shell Model (SM) allows to solve exactly the nuclear eigenvalue problem
starting from the bare nucleon-nucleon potential. It provides, in fact, a precise recipe for
deriving an effective Hamiltonian within a restricted model space and, then, for solving the
eigenvalue equations in such a space.

In practice, the derivation of the effective Hamiltonian has to rely on several approxima-
tions, even if the accuracy of the methods for generating such a Hamiltonian have increased
considerably in recent years.

Also using a restricted model space, the solution of the eigenvalue problem requires the
diagonalization of the effective Hamiltonian in configuration space whose dimensions grow very
rapidly with the number of active nucleons.

Hence, the necessity of efficient diagonalization algorithms which allow to face larger and
larger spaces. Very successful and sophisticated diagonalization codes exist now, based on
the Lanczos (Arnoldi) algorithm, which allows to find extremal eigenvalues and eigenvectors
of a symmetric (Hermitean) matrix. In addition, stochastic and non-stochastic methods for
sampling the shell model basis states have been developed.

Here we present the implementation within the spin-uncoupled scheme of an iterative algo-
rithm formulated few years ago, together with its endowed sampling procedure for achieving an
effective cut of the space dimensions. We will study the performance of the method by investi-
gating the convergence of the iterative process, stating its limit of applicability. The algorithm,
dubbed APL, is then used to perform a comprehensive study of the low-energy spectroscopy in
medium-heavy nuclei. The method is then used to provide a comprehensive description of the
low-energy spectroscopy in heavy Xenon isotopes.

Due to the limitations in space dimensions, shell model calculations for medium-heavy nuclei
are not able to provide a complete picture of the low energy collective modes and high energy
resonances.

The microscopic description of this nuclear states has been attempted within the Tamm-
Dancoff Approximation (TDA), which describes the excitations in terms of 1-particle 1-hole,
or even 2-quasiparticle, configurations, and the Random Phase Approximation (RPA), which
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includes higher order correlation. Due to their microscopic nature, these approaches account
for some fragmentation of the modes and resonances. This fragmentation, however, is not
sufficient to reproduce experimental data. A more complete description has to include more
complex configuration.

Here we reformulate an equation of motion method for generating iteratively a basis of
multiphonon states, built out of TDA phonons. This basis is then used for solving the eigenvalue
problem without approximations.

We will describe this method in its spin-uncoupled and spin-coupled form as well as in its
particle-hole and quasiparticle formulations. The first (ph) is suited to closed shell nuclei, the
second to open-shell nuclear systems.

We will show how the method can be implemented and applied to the closed shell 16O and
to neutron rich oxygen isotopes. We will use realistic effective Hamiltonians in a space which
includes up to n = 3-phonon states. We will study the effect of these complex states mainly
on the giant dipole resonance (GDR) and on the so-called pygmy resonance in neutron rich
isotopes.

1.1 Organization of the material

This thesis is divided into two parts. The first part is composed of chapters 2 to 6 and deals
with the Nuclear Shell Model.

In chapter 2 we outline briefly the SM and its theoretical foundations. In particular, we
describe how the nuclear eigenvalue problem for A nucleons interacting trough the bare nucleon-
nucleon interaction can be turned into an equivalent eigenvalue problem, formulated in a re-
stricted space, for a number of valence nucleons interacting trough an effective interaction.

The chapter 3 reviews different currently adopted methods for diagonalizing the SM Hamil-
tonian matrix. We discuss first the Lanczos algorithm, which is the most widely adopted
method for Large Scale Shell Model calculations. We then present the stochastic Shell Model
Monte Carlo, which is well suited to study the property of the ground state and to compute the
strength functions. The chapter continues with an illustration of the Quantum Monte Carlo
Diagonalization (QMCD) method. The QMCD achieves a truncation of the SM space by sam-
pling the basis states, relevant to the Hamiltonian matrix diagonalization. Another method,
known as Density Matrix Renormalization Group, borrowed from Solid State Physics, is finally
outlined.

In chapter 4 the APL algorithm is presented. It is in particular shown that the algorithm
is naturally endowed with a sampling procedure which allows to truncate the space.

In chapter 5, we illustrate how the algorithm can be implemented in the uncoupled M-
scheme, and point out the simplifications which come out from using such a basis.

The first part ends with chapter 6, where some numerical applications to medium-heavy
nuclei are presented. The results of the calculations are discussed. Special attention is paid to
the low energy spectroscopic properties of heavy Xe isotopes.

The second part is composed of chapters 7 to 9 and deals with nuclear collective excitations.

In chapter 7, after a brief semiclassical description, we discuss Tamm-Dancoff (TDA) and
Random-Phase (RPA) approximations, which are the most traditional and simple microscopic
approaches to collective modes. These methods have basically an harmonic character. In order
to account for anharmonic effects, one has to go beyond the harmonic approximation. Among
the several extensions, we discuss the quasiparticle-phonon model (QPM).

Most of these extensions are still based on the so called quasi-boson approximation (QBA),
underlying the RPA. This was the motivation for the formulation of the present method, known
as Equations of Motion Phonon Method (EMPM). This approach is described in chapter 8.
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We present a particle-hole (ph) and a quasiparticle formulation of the method. The first one is
suited to closed shell nuclei. The second allows to study open-shell nuclei.

In chapter 9 we present the application of the method to oxygen isotopes, and study in
particular the nuclear response to electromagnetic probes.

Some final remarks, together with some appendices, conclude the thesis.
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The Nuclear Shell Model



Chapter 2

The Shell Model

2.1 The nuclear eigenvalue problem

The nuclear shell model originates from the independent particle model introduced by Mayer
(1) and Jensen (2). The assumption of this model is to absorb the effects of the nucleon-nucleon
interaction into an average potential. Under this assumption the nuclear Hamiltonian is just

H0 =
∑

i

hi , (2.1)

whit
h = t + U , (2.2)

where t is the kinetic energy and U the mean-field potential.
The average potentials can be determined empirically or by performing an Hartree-Fock

calculation B. The most widely adopted empirical potentials are the Woods-Saxon (WS) (3)
and the Nilsson (4; 5) potentials. The first is composed of a radial and a spin-orbit part

UWS = U(r) +
∂U(r)

∂r
l · s , (2.3)

where

U(r) = −
U0

1 + exp[(r − R)/a]
. (2.4)

The parameters U0, a and R are fixed by a best fit of the experimental data (6).
The eigenvalue equation with a WS Hamiltonian has to be solved numerically. A simpler al-

ternative, which allows an analytical solution, is represented by the Nilsson Modified Harmonic
Oscillator potential

UHO =
1

2
h̄ω0ρ

2 − κh̄ω0

[
2l · s + µ(l2 − 〈l2〉)

]
; ρ =

(
Mω0

h̄

)1/2

r , (2.5)

where the parameters ω0, κ and µ are fitted to the data.
The nuclear eigenstates are given by the Slater determinants

Φi =
1

(A!)1/2
A (ϕν1

(1)ϕν2
(2) · · ·ϕνA

(A))i , (2.6)

where
hiϕν (i) = (t + U) ϕν (i) = ǫνϕν (i) , (2.7)

are the eigensolution of the one body Hamiltonian, h, and i ≡ {ν1 · · · νi · · · νA} labels the
quantum numbers of each Slater determinant.
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The independent particle model explains such nuclear properties as ground state spins and
parities and the existence of “magic number”.

For a realistic description of nuclear structure one has to take into account the residual
interaction which is not absorbed by the mean field potential. In principle one has to solve the
eigenvalue problem

HΨα(1, 2, . . . , A) = EαΨα(1, 2, . . . , A) , (2.8)

in a infinite dimensional space spanned by the Slater determinants. This is clearly impossible.
On the other hand, one is interested in few eigenvalues and eigenstates. The modern Shell
Model provides the recipes for turning the eigenvalue problem in an infinite dimensional space
into an equivalent one formulated in a restricted model space.

2.2 Model space and effective operators

We start with decomposing the nuclear Hamiltonian as

H = H0 + V, (2.9)

where H0 is the unperturbed one-body Hamiltonian, given by Eq. 2.1, and V is the residual
two-body potential. In the basis of the eigenstates of H0, one obtains for the full Hamiltonian
the eigenvalue equations ∑

l

[ǫiδli + (Φi , V Φl)] c
l
α = Eαci

α. (2.10)

The solution of the above equations yields the eigenstates of H

Ψα =
∑

i

ci
αΦi . (2.11)

The eigenvalue problem defined by the equation above is formulated in a SM space of
infinite dimensions, and requires the solution of a system of infinite equations, namely the
diagonalization of an infinite dimension Hamiltonian matrix. On the other hand, according
to the Shell Model theory, we can formulate an equivalent eigenvalue problem in a drastically
truncated space. The truncation criterion is dictated by the fact that in general, in nuclear
spectroscopy, one is interested in low energy excitations, which are mostly promoted by the
valence nucleons.

In SM, one decomposes the full space into a d-dimensional model D plus an excluded Q
space

I = P + Q , (2.12)

P =
∑

i=1,d

|i〉〈i|, Q = I − P , (2.13)

where
|i〉 = |ν1, · · · νi, · · · νv〈 . (2.14)

Thus, the model space is confined to the subspace of the v valence nucleons only.
Let us consider the eigenvalue equation in the full space

HΨα = EαΨα. (2.15)

The goal is to transform the above eigenvalue equation into one formulated in the model space

HeffΨ
α
0 = EαΨα

0 , (2.16)
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under the request that the d eigenvalues of the model effective Hamiltonian Heff coincide with
the exact ones of H in the full space.

In order to derive Heff , one makes the further request that the model eigenfunctions are
obtained from the corresponding eigenstates of H in the full space by projection

Ψα
0 = PΨα . (2.17)

The further step is to define the wave operator Ω

Ψα = ΩΨα
0 , (2.18)

so as establish a a complete link between model and full space.
In virtue of the above definition, the eigenvalue equation (2.15) becomes

HΩΨα
0 = EαΩΨα

0 . (2.19)

Following now the procedure developed by Lee and Suzuki (8) and generalized by Andreozzi
(9), one may left multiply by the inverse of Ω obtaining

HΨα
0 = EαΨα

0 , (2.20)

where H is related to the full Hamiltonian H by the similarity transformation

H = Ω−1HΩ . (2.21)

The transformed Hamiltonian shares d eigenvalues with H, but still couples the model space
and its complement.

On the other hand, Eq. (2.18) does not completely define Ω. Thus, without loss of generality,
one can write the similarity transformation in the form

(
PΩP PΩQ
QΩP QΩQ

)
=

(
IP 0
ω IQ

)
. (2.22)

The eigenvalue equation in the complete space for the transformed Hamiltonian then reads

(
PHP PHQ
QHP QHQ

)(
Ψα

0

QΨα − ωΨα
0

)
= Eα

(
Ψα

0

QΨα − ωΨα
0

)
. (2.23)

The exact separation for the Hamiltonian of the model space from its orthogonal complement
is achieved by imposing the condition

QHP = QHP + QHQω − ωPHP − ωPHQω = 0 . (2.24)

Since H = H0 + V , this relation can be written as

QV P + QH0Qω + QV Qω − ωPH0P − ωPV P − ωPV Qω = 0 , (2.25)

where use has been made of the fact that QH0P and PH0Q are identically zero, and that
ωP = Qω = ω.

If the condition (2.24) is fulfilled, one can define the effective Hamiltonian as the transformed
Hamiltonian operating within the model space

Heff = PHP = PHP + PV Qω . (2.26)
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The task is then to solve the decoupling equation in order to derive an explicit expression
of the effective Hamiltonian. Assuming degeneracy in the P -space, one can use the following
simplifying relation

PH0P = ǫ0P , (2.27)

where ǫ0 is the degenerate space energy. The Eq. (2.25) then reads

(ǫ0 − QHQ) ω = QV P − ωVeff , (2.28)

where the effective interaction is defined as

Veff = PHP − PH0P = PV P + PV Qω . (2.29)

Eq. (2.28) can be solved iteratively. One obtains

ω =
∞∑

k=0

(−1)k 1

(ǫ0 − QHQ)k+1
QV P (Veff )

k . (2.30)

Upon insertion into Eq. (2.29), one obtains for the model effective potential the recursive
formula

Veff = Q̂(ǫ0) +
∞∑

k=1

Q̂k(ǫ0)(Veff )
k , (2.31)

where

Q̂(ǫ0) = PV P + PV Q
1

(ǫ0 − QHQ)
QV P , (2.32)

is a Q-box and Qk its k-derivative given by

Q̂k(ǫ0) =
1

k!

dk

dǫk
Q̂(ǫ)

∣∣∣∣
ǫ=ǫ0

= (−1)kPV Q
1

(ǫ0 − QHQ)k+1
QV P , (2.33)

It can be shown (10) that the terms contributing to the Q-box diagrammatic expansion are
only irreducible valence-linked diagrams, which can be divided into a one-body set, the so called
S-box, and two-body contributions.

As clearly shown by the above defining equations, the model effective potential is given by
an infinite series in the free nucleon-nucleon (NN) potential.In general, it is difficult to treat
this series perturbatively, mainly because of the strong repulsive character of the NN potential
at short distance. Thus, in order to evaluated Veff , one has to try to obtain an effective
convergence by summing subsets of an infinite number of properly selected terms of the series.
A notable and widely adopted summation consists in summing the so called ladder diagrams

Figure 2.1: Diagrammatic representation of the G matrix.
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(Fig. 2.1). This sum defines the well known Brueckner G matrix (11)

G(ω) = V + V
Q2p

ω − H0

G(ω) , (2.34)

where Q2p =
∑

p1p2
|p1p2 >< p1p2| projects into the the space of the two-particle states excluded

from the model space. The starting energy ω includes not only the excitation energy of the
two-particle state |p1p2 > but also the energy of other excited nucleons in the many-body
intermediate state. In practice, ω is a parameter.

The above defining equation can be written as

G(W ) =
V

1 − V Q
W−H0

=
1

1
V
− Q

W−H0

, (2.35)

which shows clearly that the G-matrix has a smooth behavior even if V becomes infinite.
Once rearranged and expressed in term of the G matrix, the series does not converge. It

still contains infinite terms describing the coupling of the valence particles with the excitations
of the core. The lowest order term of this kind is the bubble diagram introduced in the
pioneering work of Kuo and Brown (12) (Fig. 2.2) . Also the other higher order terms are
important and make the redefined series non convergent. In order to account for these terms,

Figure 2.2: The lowest order core polarization diagram.

other summation techniques have been developed. One is due to Krenciglowa and Kuo (13)
and consists in computing the most relevant perturbative terms of the Q-Box and then sum
these Q-Boxes to all orders. Another method is non perturbative and relies on the similarity
transformation of Andreozzi-Lee-Suzuki.

The calculation of the G matrix is cumbersome and based on approximations (the starting
energy, for instance) which are not under full control. Thus alternative methods have been
attempted.

A successful one is the so-called Vlow−k method (14; 15). This applies the theory of effective
interaction outlined above to the system of two nucleons in the vacuum. More specifically, it
defines a “model” space spanned by NN states of low relative momenta and a Q-space covered
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by high-momentum states. The effective interaction theory is adopted to define an effective
potential, dubbed Vlow−k, which accounts for the coupling with the excluded high-momentum
states. The Vlow−k depends on the cutoff in the momentum space which separates the model
from the Q space. Such a cutoff is basically a parameter. It has been shown in Ref. (15) that
a cutoff ∼ 2.1 fm−1 is a reasonable choice.

The Vlow−k represents a useful alternative to the G matrix. It is, in fact, free of singularity
and can be directly used as a potential in SM calculations after core polarization terms have
been included by one of the mentioned summation techniques, like for instance the Q-Box
method. In this form, it has been used with success for low-energy spectroscopic studies (16).

A crucial ingredient of the effective interaction is the NN potential. This is determined
either empirically from the NN scattering data or from mesonic theories or from combining
both procedures. We mention the Nijmegen I and II potentials (17), the AV18 (18) and the
charge-dependent CD-Bonn potentials (19). Recently, important advances have been made
with the derivation of NN potentials within effective field theories. The chiral Idaho-A and B
(20; 21) are notable examples. A version of the chiral potential, dubbed N3LOW, is smooth
even at short range and, therefore, has been used directly in SM calculations (22).
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Chapter 3

Hamiltonian diagonalization methods

Standard diagonalization methods cannot be adopted for large scale shell model calculations,
since they require O(N3) operations, N being the dimension of the matrix (23). The dimensions
of the shell model Hamiltonian matrix increase very rapidly with the number of valence nucleons
and shells. They become prohibitively large in medium nuclei with few valence neutrons and
protons, even if they are confined within a major shell.

On the other hand, one is often interested only in few low-lying nuclear states. Thus, in the
past decades, an intensive research activity was devoted to the search of methods and corre-
sponding implementation codes for determining few low-lying eigenvalues and eigenfunctions of
the nuclear Hamiltonian in large shell model spaces. These activities were strongly stimulated
by the increasing power of computer facilities.

Lanczos algorithm (23; 24; 25) is certainly the most important and most exploited method.
Indeed, it has been adopted with success in many branches of physics and in other disciplines,
and the most powerful nuclear shell model codes are based on the Lanczos algorithm (26).

Even these highly sophisticated codes are not able to face most of the medium-heavy nuclei
where the Hamiltonian matrices reach soon dimensions N ≫ 109. This limitation has stim-
ulated the search for alternative methods which circumvent the direct diagonalization of the
Hamiltonian matrix. A notable one is the Shell Model Monte Carlo (SMMC) (32; 33). This
stochastic method can handle spaces with larger dimensions. On the other hand, it can com-
pute only ground state quantities and strength functions. It is, therefore, unable to provide
detailed information on levels and transitions.

In this respect, a better use of the stochastic approach was made in the so called Quantum
Monte Carlo Diagonalization (QMCD) (35). This methods adopts the stochastic Monte Carlo
procedure to sample the nuclear basis states. In this reduced base the nuclear Hamiltonian is
then diagonalized. The QMCD has the virtue of providing a criterion for truncating the shell
model space and, therefore, opens the possibility of facing very large configuration spaces.

Another truncation method, based on the Density Matrix Renormalization Group (DMRG),
the use of which was first proposed in condensed matter physics, (37; 36), has been successfully
used in nuclear structure physics (38).

In this chapter, the different approaches mentioned above are briefly reviewed. Their pre-
sentation follows the order adopted in this introductory part.

3.1 Lanczos algorithm

The goal of Lanczos algorithm (24) is to construct a basis which brings the Hamiltonian matrix
H to tridiagonal form T . This is achieved through the similarity transformation

T = QT HQ −→ HQ = QT , (3.1)
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where Q is the orthogonal matrix representing the overlap between the old and the new basis
vectors.

This transformation is equivalent to the request that the new basis vectors, |i〉, fulfill the
condition

H|i〉 = βi−1|i − 1〉 + αi|i〉 + βi|i + 1〉 , (3.2)

where
βi = 〈i + 1|H|i〉 , αi = 〈i|H|i〉 , (3.3)

and
β0 = βn = 0 . (3.4)

The action of H on a starting (pivot) vector, |0〉, decomposes the space into two orthogonal
pieces,

H|0〉 = α0|0〉 + |w1〉 , (3.5)

where
α0 = 〈0|H|0〉 , (3.6)

and the vector |w1〉, orthogonal to |0〉, is unnormalized. We can then define the normalized
vector

|1〉 =
|w1〉

〈w1|w1〉1/2
, (3.7)

and obtain
β1 = 〈1|H|0〉 = 〈w1|w1〉

1/2 . (3.8)

The second state, |1〉, of the new basis, is thereby determined. The remaining N − 2 basis
vectors are found by iterating the procedure. One operates on the generic state, |k〉, obtaining
the orthogonal decomposition (3.2). The tridiagonal matrix so obtained is to be diagonalized
at each iterative step k until convergence to a selected sets of eigenvalues is reached.

The Lanczos procedure is a fast and efficient tool for determining the Hamiltonian eigen-
states in nuclear shell model calculations. Its numerical implementation, however, deserves
special care. The vectors |k〉 of the basis which yield a tridiagonal matrix are mathematically,
but not numerically, orthogonal, because of the limited precision of digital computers. Though
initially small, the errors so induced propagates rapidly with the number of iterations and may
yield spurious solutions.

Several codes which employ the Lanczos algorithm for diagonalizing the nuclear Shell Model
Hamiltonian are now available. They can be divide into two groups, depending on the calcu-
lation scheme used. One group is composed of the codes which use a j − j coupled basis, the
second of the codes which are based on the uncoupled m-scheme.

The j − j scheme is adopted by the codes Nathan (26; 27; 28) and Nushell (29). It has
the advantage of yielding SM Hamiltonian matrices of relatively small dimensions. On the
other hand, these matrices are very dense and, since of the complex algebraic structure, the
evaluation of their matrix elements is lengthy and cumbersome.

The m-scheme was first adopted in the pioneering Glasgow code (30), and fully exploited by
the Antoine code (26; 31). The uncoupled basis yield a SM Hamiltonian matrix of much larger
dimensions. However, it is sparse, and its matrix elements are much easier to be evaluated, due
to the simple structure of the scheme.

3.2 Shell Model Monte Carlo

The Shell Model Monte Carlo (SMMC) method (32; 33) is an alternative approach to the
solution of the Hamiltonian matrix eigenvalue problem. It is based on the imaginary-time
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evolution operator

U = e−βH , (3.9)

where β is a real number, for instance the inverse of the temperature β = 1/T . The action of
the imaginary time evolution operator (3.9) on a generic state many-body state |Φ〉 yields

e−βH |Φ〉 =
∑

σ

c
(0)
i e−βEi|Φi〉 , (3.10)

where Ei and |Φi〉 are the eigenvalues and eigenstates of the Hamiltonian H and c
(0)
i are the

expansion coefficients of |Φ〉 in terms of the eigenstates |Φi〉. We then have

limβ→∞e−βH |Φ〉 = c
(0)
0 |Ψ〉 , (3.11)

where |Ψ〉 is the ground state wave function. Thus, for large β, the evolution operator e−βH

acts as a ground state projection operator. The expectation value of an operator Ω on a the
generic state |Φ〉 is

〈Ω〉 =
〈Φ|e−

β
2
HΩe−

β
2
H |Φ〉

〈Φ|e−βH |Φ〉
=

Tre−βHΩ

Tre−βH
. (3.12)

In the limit of large β, one gets the ground state expectation value

lim
β→+∞

〈Ω〉 =
〈Ψ|Ω|Ψ〉

〈Ψ|Ψ〉
. (3.13)

Difficulties in calculating explicitly the expectation value of the above relation arise from the
two body part of the Hamiltonian. As a matter of fact, let us consider the following schematic
expression for H

H = ǫO +
1

2
V OO , (3.14)

where O is a one-body operator, V the two-body potential and ǫ the single-particle energy. If
there were only one operator O, the two-body part of the Hamiltonian would be quadratic, and
the time evolution would be simply linearized by mean of the Hubbard-Stratonovich transfor-
mation

e−βH = e−β(ǫO+ 1

2
V O2) =

√
β|V |

2π

∫ ∞

−∞

dσe−
1

2
β|V |σ2

e−βh , (3.15)

where σ is a c-number and h has the form

h = ǫO + sV σO , (3.16)

with s = 1 if V < 0, and s = i if V > 0.
Using this transformation, and defining Uσ ≡ e−βh, the expectation value of an operator

takes the form

〈Ω〉 =

∫
dσe−

β
2
|V |σ2

TrUσΩ
∫

dσe−
β
2
|V |σ2

TrUσ

, (3.17)

which is equivalent to

〈Ω〉 =

∫
dσWσΩσ∫
dσWσ

, (3.18)

where

Wσ = GσTrUσ ; Gσ = e−
β
2
|V |σ2

; Ωσ =
TrUσΩ

TrUσ

. (3.19)
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The problem has been then reduced to calculating two integrals, which can be evaluated with
the Monte Carlo procedure.

Unfortunately, a realistic nuclear Hamiltonian of the form (3.14) includes the sum over
several one-body operators,

H =
∑

α

(
ǫ∗αŌα + ǫαOα

)
+

1

2

∑

α

Vα{Oα , Ōα} , (3.20)

which in general do not commute. In this equation, Ōα is the time-reverse of Oα. In this way
the Hamiltonian is written in a time-reversal invariant form.

In order to linearize the time evolution, one have to split the interval β into Nt time slices
of length ∆β = β/Nt, so that the evolution operator can be written as

e−βH =
[
e−∆βH

]Nt
. (3.21)

In each of these slices one can perform the transformation (3.15), obtaining

e−∆βH ≈

∫ ∏

n

(
dσαndσ∗

αn∆β|Vα|

2π

)
e−∆β

P

α |Vα||σαn|2e−∆βhn , (3.22)

where
hn =

∑

α

(ǫ∗α + sαVασαn)Ōα + (ǫα + sαVασ∗
αn)Oα . (3.23)

The expectation value can then be written again as the ratio

〈Ω〉 =

∫
DσWσΩσ∫
DσWσ

, (3.24)

where
Wσ = GσTrU , Gσ = e−∆β

P

αn |Vα||σαn|2 , Ωσ = TrUΩ
TrU

,

Dσ ≡
∏

n

∏
α dσαn

(
∆β|Vα|

2π

)
,

. (3.25)

Here U is given by
U = UNt

· · ·U2U1 . (3.26)

For a high accuracy, the number of time slices Nt must be very large. Since there is a variable
for each operator at each time slice, the dimension D of these integrals is very large and might
exceed 105. With this method, one is also able to estimate the momenta of an operator in the
ground state.

The mean value (3.24) has the structure

< Ω >=

∫
DσPσΩσ, (3.27)

where

Pσ =
Wσ∫
DσWσ

(3.28)

can be considered a probability density, since Pσ ≥ 0 and
∫

DσPσ = 1. Thus, < Ω > comes
out to be the average of Ωσ weighted by Pσ. One may choose randomly a set S of configuration
σs with probability Pσ and approximate < Ω > with

< Ω >=

∫
DσPσΩσ ≈

1

S

∑

s=1,S

Os, (3.29)
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where Ωs is the value of Ωσ at the field configuration σs. The same < Ω >, depending on the
random choice of the field configurations, is a random variable. In virtue of the central limit
theorem, its average value is the required value with an uncertainty

σ2
<Ω> =

1

S

∫
DσPσ(Ωσ− < Ω >)2 ≈

1

S2

∑

s

(Ωσ− < O >)2. (3.30)

It remains now to use a method for generating the field configurations. Generally one adopts
the Metropolis, Rosenbluth, Rosenbluth, Teller and Teller algorithm (34).

The SMMC allows to compute strength functions. Given, in fact, the function

RΩ =
Tre−βHΩΩ

Tre−βH
, (3.31)

one obtains for large β

R∞
Ω =

∑

i

|〈Ψ|Ω|i〉|2

〈Ψ|Ψ〉
, (3.32)

where {|i〉} is a complete set of eigenvectors of the Hamiltonian. The function R∞
Ω is then the

sum of transition probabilities to the ground state, and its derivative are the operator momenta.
The problem which is encountered in following this approach is given by the need for Wσ to

be real and semi-positive definite (sign problem). This is always true for boson systems, but for
fermions this condition is fulfilled only by some schematic Hamiltonians. Moreover, while well
suited to the ground state, the method is not able to provide detailed information on nuclear
spectroscopy.

Even with this limitation, SMMC has proved to be a powerful and efficient tool for studying
ground-state and thermal properties of medium-mass nuclei as well as electroweak nuclear
properties such as Gamow-Teller strength distributions and the dipole giant resonance.

3.3 Truncation schemes

3.3.1 Quantum Monte Carlo Diagonalization

The Quantum Monte Carlo Diagonalization (QMCD) methods, (35), combines the stochastic
and the diagonalization approach. Unlike the SMMC, which evaluates expectation values and
strength functions, QMCD gives explicit eigenvectors, diagonalizing the Hamiltonian matrix.
The difference with the other diagonalization approaches is in that the basis states are generated
stochastically with a Monte Carlo run.

As with the SMMC, the QMCD exploits the fact the the imaginary-time evolution operator
behaves as a filter which yields only the ground state for β → ∞. The leading idea of QMCD
can be easily understood for a toy model using the schematic Hamiltonian

H =
1

2
V O2 . (3.33)

One can then find for the evolution operator the expression

e−βH = e−β 1

2
V O2

=

√
β|V |

2π

∫ ∞

−∞

dσe−
1

2
β|V |σ2

e−βh(σ) , (3.34)

where h(σ) = |V |σO. This can be integrated numerically by MC sampling the quantity

e−βH = e−β 1

2
V O2

∼

√
β|V |

2π

(MC)∑

σ

dσe−βh(σ) , (3.35)
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with the Gaussian probability weight

wσ ∝ e−
1

2
β|V |σ2

. (3.36)

The ground state, |Φg〉, can then be written as

|Φg〉 ∼

(MC)∑

σ

e−βh(σ)|Φ0〉 , (3.37)

The above wave function can be used to compute the ground state energy as in the previous
section

〈H〉 =
〈Φg|H|Φg〉

〈Φg|Φg〉
∼

〈Φ0|H
∑(MC)

σ e−βh(σ)|Φ0〉

〈Φ0|
∑(MC)

σ e−βh(σ)|Φ0〉
. (3.38)

The main idea of QMCD is that |Φσ〉 can be interpreted as a basis vector. Different values of
σ generate different state vectors. One can therefore diagonalize the Hamiltonian in a space
spanned by those states.

Suppose now that a set of state vectors is available. Then a new vector |Φσ〉 is generated
stochastically and added to the set. We diagonalize the Hamiltonian in this enlarged space. If
the energy of the ground state is lowered appreciably, the vector is included in the basis. It is
discarded otherwise. The iteration proceeds until the energy eigenvalue converges reasonably
well.

For more than one eigenstate, one first determines the basis vectors for the lowest eigenstate.
Once a reasonable convergence is attained, one can switch to the second lowest eigenstate.
Keeping the basis vectors for the lowest eigenstate, one generates other candidates according to
their contributions to the second lowest eigenvalue. In diagonalizing the Hamiltonian matrix,
one merges the basis vectors for the lowest and those for the second lowest eigenstates, but uses
the second eigenvalue for selecting the basis vectors for the second eigenstate. The selection
proceeds until a reasonable convergence is reached for the second eigenvalue. By repeating this
process, we can obtain higher eigenstates as well.

All the above considerations hold also for a more general Hamiltonian. In this case the
ground state is

|Φg〉 =
∑

~σ

|Φ~σ〉 , (3.39)

where

|Φ(~σ〉 ∝
Nt∏

n=1

e−∆βh( ~σn)|Φ0〉 , (3.40)

and

~σ = { ~σ1, ~σ2, . . . , ~σNt
} , (3.41)

are a set of random numbers defining the auxiliary fields.

QMCD is basically an importance sampling method which selects stochastically the basis
states relevant to the diagonalization of the Hamiltonian. The random sampling selects only
important basis vectors obtaining a drastic truncation of the SM space.

On the other hand, the basis states so generated are not orthogonal and form in general
a redundant set. Moreover, they do not have the spin as good quantum number. Specific
procedures have been developed to obviate at these shortcomings.
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3.3.2 Density-Matrix Renormalization Group

The Density Matrix Renormalization Group (DMRG) was originally introduced by White (36)
in the attempt to overcome the limitations of Wilson’s renormalization group (RG) (37) in
describing one-dimensional quantum lattice models. The new method was soon shown to be
extremely powerful, producing extremely accurate results for the ground state energy of the
Heisenberg S=1 chain.

The idea of RG theories in the context of quantum lattices is to start with a set of lattice
sites and then to iteratively add to it subsequent sites until all have been treated. At each
iteration, the dimension of the enlarged space increases as the product of the dimension of the
initial subspace and that of the added site. The renormalization group procedure consists of
reducing the enlarged space to the same dimension as the initial subspace and then transforming
all operators to this new truncated basis (renormalization).

The DMRG differs from Wilson RG in the criterion adopted to implement the trunca-
tion. While the Wilson RG retains the lowest Hamiltonian eigenstates of the enlarged space,
the DMRG uses a very different strategy, consisting in selecting those states with the largest
eigenvalues of the reduced density matrix for the enlarged space in the presence of a medium.

The DMRG was recently extended to nuclei and proposed as a tool to large scale shell model
calculations (38). Within this approach, one considers a block of m states, for instance a set
of single particle and single hole states around the Fermi surface. Few other s states, like the
nearby shells, are added forming an enlarge block B. The entire system - enlarged block +
medium - is referred to as the superblock.

The Hamiltonian is diagonalized in the superblock, yielding the ground state wave function

|Ψ〉 =
∑

i=1,m×s

∑

j=1,t

Ψij|i〉B|i〉M . (3.42)

where B denotes the states in the enlarged block, M the states in the medium and t the number
of states in the medium.

One is now able to construct the reduced density matrix for the enlarged block in the ground
state

ρ
(B)
ij =

∑

k=1,t

Ψ∗
ikΨjk , (3.43)

with i and j running between 1 and m × s. The density matrix is brought to diagonal form

ρ(B)|uα >B= ω(B)
α |uα >B . (3.44)

Those eigenstates |uα >B with the largest eigenvalues ω
(B)
α are the most important states of

the enlarged block in the ground state of the superblock, i.e. of the system. One thus consider
only the space spanned by the m states of the enlarged block with the largest density matrix
eigenvalues.

The basic idea then is to systematically grow the system block by adding more and more
shell to the updated blocks and then at each stage to truncate to the m most important states
obtained in this way.

The first SM calculations based on the DMRG adopted an uncoupled m-scheme. This has
the drawback that conserving angular momentum symmetry becomes difficult. To avoid this
problem the use of an angular-momentum-preserving variant of the DMRG was proposed and
applied to medium-mass nuclei with some success (39).
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Chapter 4

The APL algorithm

The Lanczos algorithm is widely adopted, and very efficient, in finding the extremal eigen-
values and eigenvectors of the Hamiltonian matrices in nuclear Shell Model calculations. Its
implementation, however, has to be treated with particular care, in order to avoid the arising
of spurious solutions.

This chapter presents an iterative extremal algorithm, alternative to Lanczos, proposed few
years ago (40). The method is stable, and easy to implement. It is also endowed with an
importance sampling procedure, which allows an effective truncation of the SM space (41).
The algorithm is as general as Lanczos, and can be proficiently used in other fields.

Section 4.1 presents the procedure for generating the lowest eigenstate. The convergence
properties of the method are also discussed. Section 4.2 shows how the algorithm can be
generalized so as to yield an arbitrary number of eigensolutions. Section 4.3 illustrates the
importance sampling which can be coupled with the algorithm.

4.1 One-dimensional eigenspace

Let Â be a self-adjoint operator. This is represented by a Hermitian matrix A = {aij} in an
orthonormal basis {| 1〉, | 2〉, . . . , |j〉, . . . , |N〉}. We assume, for simplicity, that the matrix is
symmetric. We first outline the procedure for generating the lowest eigenstate of such a matrix.

4.1.1 The iterative process

The algorithm consists of several iteration loops. The first loop goes through the following
steps :

1a) Start with the first two basis vectors and construct and diagonalize the 2 × 2 matrix

A
(1)
2 ≡

(
λ

(1)
1 a12

a12 a22

)
, (4.1)

having put A
(1)
1 ≡ λ

(1)
1 = a11.

1b) Extract the lowest eigenvalue λ
(1)
2 and the corresponding eigenvector

| λ
(1)
2 〉 = C

(1)
2,1 | 1〉 + C

(1)
2,2 | 2〉, (4.2)

for j = 3, . . . , N ,
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1c) select the two vectors {|λ(1)
j−1〉, |j〉}, construct and diagonalize the 2 × 2 matrix

A
(1)
j ≡

(
λ

(1)
j−1 b

(1)
j

b
(1)
j ajj

)
, (4.3)

where

b
(1)
j = 〈λ(1)

j−1 | Â | j〉. (4.4)

1d) Extract the lowest eigenvalue λ
(1)
j and the corresponding eigenvector

| λ
(1)
j 〉 = C

(1)
j,(j−1) | λ

(1)
j−1〉 + C

(1)
j,j | j〉, (4.5)

end j.

The first loop just outlined yields an approximate eigenvalue and eigenvector

E(1) ≡ λ
(1)
N

| ψ(1)〉 ≡ |λ(1)
N 〉 = C

(1)
N,N−1 | λ

(1)
N−1〉 + C

(1)
N,N |N〉

=
∑N

i=1 C
(1)
i | i〉

.

We now put

λ
(2)
0 = λ

(1)
N , | λ

(2)
0 〉 =| λ

(1)
N 〉 , (4.6)

and use the new linear dependent basis

{|λ(2)
0 〉, |1〉, . . . |j〉, . . . |N〉} , (4.7)

to start a new iterative procedure. This goes through the following refinement loops:

for n = 2, 3, . . . till convergence

for j = 1, 2, . . . , N

2a) Compute b
(n)
j = 〈λ(n)

j−1 | Â | j〉.

2b) Solve the eigenvalue problem in the generalized form

det

{ (
λ

(n)
j−1 b

(n)
j

b
(n)
j ajj

)
− λ

(
1 C

(n)
j−1,j

C
(n)
j−1,j 1

) }
= 0 .

The appearance of the metric matrix is to be noticed. It comes from the non
orthogonality of the re-defined basis {|λn

j−1〉, |j〉}.

2c) Select the eigenvalue λ
(n)
j and the corresponding eigenvector

| λ
(n)
j 〉 = p

(n)
j | λ

(n)
j−1〉 + q

(n)
j | j〉 , (4.8)

with the appropriate normalization condition

〈λ(n)
j |λ(n)

j 〉 = [p
(n)
j ]2 + [q

(n)
j ]2 + 2 p

(n)
j q

(n)
j C

(n)
j−1,j = 1 , (4.9)

end j

end n.

The n-th loop yields an approximate eigenvalue and eigenvector

λ
(n)
N ≡ E(n) ≡ λ

(n+1)
0

|λ(n)
N 〉 ≡ | ψ(n)〉 ≡ |λ(n+1)

0 〉
.
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4.1.2 Convergence properties

The iterative method just outlined converges to the extremal eigenvalue and the corresponding
eigenvector of the matrix A.

In fact, the eigenvector obtained at the j-th step of the n-th iteration can be expressed in
the form

|Φ(n)
j 〉 = p

(n)
j |Φ(n)

j−1〉 + q
(n)
j |j〉 , (4.10)

where p
(n)
j and q

(n)
j fulfill the normalization condition

[p
(n)
j ]2 + [q

(n)
j ]2 + 2p

(n)
j q

(n)
j C

(n)
j−1,j = 1 . (4.11)

The explicit form of the factors p
(n)
j e q

(n)
j is

q
(n)
j =

|B(n)
j |

[
(ajjC

(n)
j−1,j − b

(n)
j )2 + 2C

(n)
j−1,j(ajjK

(n)
j−1,j − b

(n)
j )B

(n)
j + (B

(n)
j )2

]1/2
, (4.12)

p
(n)
j = (ajjC

(n)
j−1,j − b

(n)
j )

q
(n)
j

B
(n)
j

, (4.13)

where

B
(n)
j = (λ

(n)
j−1 − λ

(n)
j ) − C

(n)
j−1,j

[
(ajj − λ

(n)
j )(λ

(n)
j−1 − λ

(n)
j )

]1/2

. (4.14)

It is apparent from these relations that, if

| λ
(n)
j−1 − λ

(n)
j | → 0, ∀j, (4.15)

the sequence | ψ(n)〉 has a limit | ψ〉, which is an eigenvector of the matrix A.
In fact, defining the residual vectors

| r(n)〉 = (Â − E(n)) | ψ(n)〉, (4.16)

a direct computation gives for their components

r
(n)
l = p

(n)
N

[
(all − λ

(n)
l )(λ

(n)
l−1 − λ

(n)
l )

] 1

2

+ q
(n)
N

{
alN − λ

(n)
N δlN

}

− p
(n)
N

{(
λ

(n)
l−1 − λ

(n)
l

)
K

(n)
l,l−1 +

(
λ

(n)
N−1 − λ

(n)
N

)
K

(n)
l,N−1

}
. (4.17)

In virtue of (4.15), the norm of the n-th residual vector converges to zero, namely || r(n) ||→ 0.
Equation (4.15) gives therefore a necessary condition for the convergence of | ψ(n)〉 to an
eigenvector | ψ〉 of A, with a corresponding eigenvalue E = lim E(n).

Equation (4.15) is not only a necessary but also a sufficient condition for the convergence

to the lowest or the highest eigenvalue of A. In fact, the sequence λ
(n)
j is monotonic (decreasing

or increasing, respectively), bounded from below or from above by the trace and therefore
convergent.

The algorithm turns out to have a variational foundation. As one can easily verify by direct
substitution, the derivative with respect to α

(n)
j (= q

(n)
j /p

(n)
j ) of the Rayleigh coefficient

ρ(Φ
(n)
j ) =

〈Φ(n)
j |Â|Φ(n)

j 〉

〈Φ(n)
j |Φ(n)

j 〉
, (4.18)

vanishes in correspondence of the the values 4.12 and 4.13 of p
(n)
j and q

(n)
j . The algorithm is

therefore equivalent to the optimal relaxation method (42). Being however formulated in terms
of matrices, it can be generalized so as to produce a number of eigensolutions larger than one.
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4.2 General method

4.2.1 Multi-dimensional eigenspace

We proceed just as in the one-dimensional case. Indeed, the first loop goes through the following
steps:

1a) Start with m(≥ v) basis vectors, construct and diagonalize the m-dimensional principal
submatrix

A
(1)
1 =





a11 a12 · · · a1m
...

... · · ·
...

...
... · · ·

...
am1 am2 · · · amm




, (4.19)

1b) select the v lowest eigenvalues and corresponding eigenvectors

Λ
(1)
1 ≡ {λ(1)

1 (1), λ
(1)
1 (2), . . . , λ

(1)
1 (v)}

| Λ
(1)
1 〉 ≡ {| λ

(1)
1 (1)〉, | λ

(1)
1 (2)〉, . . . , | λ

(1)
1 (v)〉}

,

for k = 2, 3, . . . , kN , where kN are the steps necessary to exhaust the whole N -dimensional
matrix,

1c) construct and diagonalize the matrix

A
(1)
k =

(
Λ

(1)
k−1 B

(1)
k

B
(1)
k (T ) A

(1)
k (C)

)
, (4.20)

where Λ
(1)
k is a v-dimensional diagonal matrix

Λ
(1)
k−1 =





λ
(1)
k−1(1) 0 . . . 0

0 λ
(1)
k−1(2) . . . 0

0 . . . . . . 0

0 . . . 0 λ
(1)
k−1(v)




, (4.21)

and
A

(1)
k (C) = {aij} (i, j = (k − 1)p + 1, . . . , kp) , (4.22)

is a p-dimensional submatrix. The two submatrices are coupled by B
(1)
k and its

transpose, whose matrix elements are

b
(k)
ij = 〈λ(1)

(k−1)(i) | Â | j〉 , (4.23)

where i = 1, . . . , v; j = (k − 1)p + 1, . . . , kp,

1d) select the v lowest eigenvalues and corresponding eigenvectors

Λ
(1)
k ≡ {λ(1)

k (1), λ
(1)
k (2), . . . , λ

(1)
k (v)}

| Λ
(1)
k 〉 ≡ {| λ

(1)
k (1)〉, | λ

(1)
k (2)〉, . . . , | λ

(1)
k (v)〉}

,

end k
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The first loop yields the v approximate eigenvalues and eigenvectors

Λ
(1)
kN

≡ Λ
(2)
0 ≡ {λ(1)

kN
(1), λ

(1)
kN

(2), . . . , λ
(1)
kN

(v)}

| Λ
(1)
kN
〉 ≡ | Λ

(2)
0 〉 ≡ {| λ

(1)
kN

(1)〉, | λ
(1)
kN

(2)〉, . . . , | λ
(1)
kN

(v)〉}
.

Now the linearly dependent basis states | {Λ(2)
0 〉, |1〉, . . . |N〉} are the new entries for a new

iteration loop.
This goes through the same steps as in the one-dimensional eigenspace with one essential

modification. Each loop, in fact, can be viewed as the solution of the eigenproblem for the
restriction Â|S of the operator Â to a subspace defined by the span of the set of vectors | ip〉 ≡

{|λ(i)
k (1)〉, . . . , |λ(i)

k (v)〉, | (k−1)p+1〉, . . . , | kp〉}. Since this basis is no longer orthonormal, just
as in the one-dimensional eigenspace, and may be even redundant, we have to solve an eigenvalue
problem of general form. This is done most effectively through a Cholesky decomposition of
the overlap matrix 〈ip | i′p〉.

With this modifications, the iteration loops proceed as the first one, generating a sequence
of v vectors ψ

(i)
1 , . . . , ψ

(i)
v . The restriction of the operator Â to these sets defines a sequence

of diagonal matrices, whose non zero elements are the current eigenvalues λ
(i)
1 , . . . , λ

(i)
v . This

monotonic sequence is certainly bounded from below and therefore convergent.
As proved and illustrated through typical numerical tests (40), the algorithm is robust,

being numerically stable and converging always to the extremal eigenvalues. It yields ghost-
free solutions and is also of easy implementation.

The efficiency and the convergence rate of the iterative procedure have been tested applying
the methods to a five-point finite difference matrix arising from the two-dimensional Laplace
equation (40), in terms of the norm of the residual vector at the n-th iteration, ||r(n)||. As
shown in figure 4.1, the iterative procedure converges much faster in the multidimensional case.
In fact, the convergence rate increases with the number ν of generated eigenvalues. In terms of
number of iteration to reach the convergence, the algorithm is faster than Lanczos.

The speed of each iteration has now to be evaluated. This aspect is illustrated with more
details in the next chapter. It is shown that the leading term, when dealing with the number
of operations needed for each iteration, is the computation of the matrix element

b
(n−1)
kj = 〈λ(n−1)

k | Â | j〉 (k = 1, v) ,

which reduces to a row-by-column product, exactly as in the Lanczos method. In general, this
procedure goes like O( N2), but reduces to O(N) when handling sparse matrices.

The actual speed of a SM code, however, arises from the interaction of several factors. The
machine, the implementation and the matrix elements computation are some of the critical
points of the calculation. The algorithm proposed here is theoretically very fast, but there
are still several improvements to do, in order to pass beyond the performances of the codes
available nowadays .

4.3 Importance sampling

The importance sampling is naturally suggested by the structure of the algorithm. It goes
through the following steps:

1a) Turn the m-dimensional principal submatrix {aij} into diagonal and select the lowest ν
eigenvalues λ1, λ2, . . . , λv.

for j = m + 1, . . . , N
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Figure 4.1: Convergence rate, in terms of the norm of the residual vector at the n-th iteration, of
the algorithm applied to a finite difference matrix deduced from Laplace equation, for different
numbers ν of generated eigenvalues (taken from (40)).

1b) diagonalize the v + 1-dimensional matrix

A =

(
Λv

~bj

~bT
j ajj

)
, (4.24)

where ~bj = {b1j, b2j, ·, bvj}.

1c) Select the lowest v eigenvalues λ′
i, (i = 1, v) and accept the new state only if
∑

i=1,v

| λ′
i − λi |> ǫ , (4.25)

where ǫ is a positive number which can be chosen arbitrarily small. If the above
condition is not fulfilled, the state is discarded and one restart from point 1b) with
a new j.

end j

An equivalent, less time consuming sampling procedure is based on the method developed
for deriving an exact non perturbative shell model Hamiltonian (9). The starting point is the
similarity transformation

A′ = Ω−1AΩ , (4.26)

where

Ω =

(
Iv 0
~ω IQ

)
. (4.27)

Here, Iv is the v-dimensional unit matrix and ω a v-dimensional vector. The transformed
matrix has the following structure

A′ =

(
Λv +~bj ⊗ ~ω ~bj

~b′j ajj − ~ω ·~bj

)
, (4.28)
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where
~b′j = −(~ω ·~bj)~ω − ~ωΛv + ajj~ω +~bT

j . (4.29)

One now imposes the decoupling condition

~b′j = −(~ω ·~bj)~ω − ~ωΛv + ajj~ω +~bT
j = 0 . (4.30)

Once the solution ω is obtained, the matrix element ajj − ~ω ·~bj becomes an eigenvalue of the

matrix A′ and, therefore, of matrix A. Right multiplying Eq. (4.30) by ~bj, one obtains the
dispersion relation

~ω ·~bj = −
∑

i=1,v

b2
ij

ajj − λi − ~ω ·~bj

. (4.31)

This admits v + 1 solutions, corresponding to the v + 1 eigenvalues of A. In correspondence of
the lowest solution (~ω ·~bj)min, we get the maximum eigenvalue

λ′
max = ajj − (~ω ·~bj)min . (4.32)

The eigenvalues λi , i = 1, . . . , v separate at least in a weak sense the new eigenvalues
λ′

i , i = 1, . . . , v + 1, namely

λ′
1 ≤ λ1 ≤ λ′

2 ≤ λ2 ≤ . . . ≤ λ′
v ≤ λv ≤ λ′

max . (4.33)

Since ∑

i=1,v+1

λ′
i =

∑

i=1,v

λ′
i + ajj − (~ω ·~bj)min = ajj +

∑

i=1,v

λi , (4.34)

one has ∑

i=1,v

(λ′
i − λi) = (~ω ·~bj)min . (4.35)

The condition (4.25) is therefore equivalent to

(~ω ·~bj)min > ǫ . (4.36)

The just outlined sampling procedure requires only the solution of the dispersion equation
(4.31), which is of the type

f(z) = z , (4.37)

and fulfills the condition
1 − df(z)/dz > 0 . (4.38)

One can therefore easily solve it by using the Newton method of derivative. This alternative
sampling procedure is not only rigorous but also more economical. It avoids, in fact, the
(N − v)−fold iterated diagonalization of v + 1 dimensional matrices.

An even simpler sampling is obtained by the perturbative criterion

∆λi = |λ′
i − λi| =

b2
j

ajj − λi

. (4.39)

This last relation is of great relevance to the implementation of the importance sampling algo-
rithm in the uncoupled m-scheme.
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Chapter 5

Implementation of the algorithm in the
m-scheme

As pointed out in Chapter 3, in going from the j−j coupling to the unprojected m-scheme, the
dimensions of the SM Hamiltonian matrix become soon very large. Thus, the implementation
of the algorithm in such an uncoupled basis requires special care.

Let us consider a nucleus having nπ and nν valence protons and neutrons, respectively. The
basis states are the eigenstates of the unperturbed Hamiltonian, H0, and are denoted by

|i〉 = |α1π
, . . . αiπ , . . . , αnπ

〉|α1ν
, . . . αiν , . . . , αnν

〉 , (5.1)

where αi = aimi and ai = {niliji} are the quantum numbers of a particle in a shell . In the
m-scheme, these states are classified according to their total magnetic quantum number

M = Mπ + Mν , (5.2)

where Mτ = m1τ
+ . . . miτ + . . . mnτ

.
In order to obtain an effective projection of the total angular momentum, it is convenient

to adopt the modified Hamiltonian

HJ = H + c
[
J2 − J(J + 1)

]2
, (5.3)

where J is the total spin operator, J a given integer (or half-integer), and c a positive constant.
The structure of the Hamiltonian suggests to decompose the full space into several subspaces

H = H0 ⊕H1 · · · ⊕ Hk · · · ⊕ HF . (5.4)

Each subspace Hk is composed of a set of partitions {ni}k = {an1

1 , . . . , ani

i , . . . }k , where∑
i ni = p. It is clearly invariant with respect to the total angular momentum operator, J. The

partitions in Hk differ from those in Hk−1 by at most two single particle shells ai. Given this
particular structure, we can apply the APL algorithm in the following simplified manner.

We first diagonalize the Hamiltonian HJ in H0 obtaining v lowest eigenvalues E
(0)
1 , . . . , E

(0)
v

and eigenvectors ψ
(0)
1 , . . . , ψ

(0)
v spanning a subspace Λ0. These eigensolutions are exact in

this subspace and have all the same spin J if the constant c is chosen so as to push the states
with J ′ 6= J up in energy.

Because of its two-body nature, the Hamiltonian couples the subspace Λ0 to H1 only. It
is, therefore, sufficient to diagonalize HJ in the subspace Λ0 ⊕ H1 to generate new updated
eigenvalues E

(1)
1 , . . . , E

(1)
v and eigenvectors ψ

(1)
1 , . . . , ψ

(1)
v , defining the subspace Λ1 .

We proceed iteratively. Once the updated eigensolutions defining the subspace Λk are
obtained, we diagonalize the Hamiltonian in the upgraded subspace Λk ⊕ Hk+1 . We cover
eventually the full space obtaining the exact v eigensolutions {Ei , ψi}.

A possible sketch of the iterative procedure is

H0 ⇒ Λ0 → Λ0 ⊕H1 ⇒ Λ1 → . . . Λk−1 ⊕Hk ⇒ Λk → . . . ΛF−1 ⊕HF ⇒ ΛF (5.5)
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5.1 Numerical procedure

In order to be able to face the diagonalization of very large matrices as required in large scale
shell model calculation, it is necessary to optimize the iterative process by reducing maximally
the number of operations required at each iteration.

To this purpose, we observe that, at each k step, we need to construct and diagonalize a
matrix

A =

(
Λk Bk

BT
k Ak

)
, (5.6)

where Λk is a diagonal matrix, bearing on its diagonal the eigenvalues λ
(k−1)
i of the previous

step, Bk is a rectangular ν × p block, whose matrix elements are given by bij = 〈Φ(k−1)
i |Â|j〉,

and Ak a square p × p matrix aij = 〈i|Â|j〉.
There are, therefore, three time-consuming operations : calculating the block B, and diag-

onalizing the matrix and updating the eigenvectors,

|Ψ(k)
i 〉 =

ν∑

j=1

C
(k)
ij |Ψ(k−1)

j 〉 +

p∑

m=1

D
(k)
im |m〉 . (5.7)

This can be written in the compact matrix form

Ψ̂(k) = Ĉ(k)Ψ̂(k−1) + D̂(k)m . (5.8)

The best known algorithm for finding all the eigenvalues and eigenvectors of an Hermitian
matrix is due to Francis , (43) and (44), and is based on the QR decomposition, as discussed
in appendix A. The number of operations required by the Francis’s algorithm for a complete
diagonalization increases as N3. If p is the length of the iteration step, the matrix to diagonalize
is p + ν dimensional, and the number of operations required for each iteration increases as
O((p + ν)3) · (N/p). In order to have a linear dependence with N the length of the iteration
step is to be chosen small. If it is taken of the order of hundreds, one gets approximately
O((p + ν)3) · (N/p) ≃ O(p2N). The time needed to compute 5, 20, or even 30 extremal
eigenvalues, is then comparable. This feature is particularly interesting for applications in
low-energy nuclear spectroscopy.

On the other hand, in reducing the length of the iteration step, and then the time used
for diagonalizing the corresponding matrix, the number of operations needed to update the
eigenvectors increases. In fact, since at each step the cost for updating the eigenstate goes like
(N +p) for each vector, the total number is (N +p) · (N/p), which would be linear with N only
diagonalizing the whole matrix (p = N) at once.

The issue can be solved by implementing the following procedure. In the one dimensional
case, let us write

Ψ(k) = C(k)Ψ(k−1) +

p∑

m=1

D(k)
m |m〉 =

(
k∏

l=1

C(l)

) (
Ψ(0) +

p∑

m=1

D
(k)
m∏k

l=1 C(l)
|m〉

)
. (5.9)

We can then retain the structure of the eigenvector, by storing separately the components C(k)

of the previous vectors, Ψ(0), on the whole base, and the components of the new vectors, Ψ(k),
on the p basis states normalized to C(k). The number of operations is then reduced to 2p + 1
for each step, that is to N · (2p + 1)/p ≃ 2N in total.

This procedure can be straightforward extended to the general case. Recalling (5.7), the
eigenvectors structure can be preserved by defining the ν × ν matrix K̂(k) = Ĉ(k)K̂(k−1), and
writing

Ψ̂(k) = K̂(k)
(
Ψ̂(0) + [K̂(k)]−1D̂(k)m

)
. (5.10)
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The matrix defined above is non-singular because it is linked to the convergence. In fact, as
the |Ψi〉 vectors approach the matrix eigenvectors, K̂(k) goes to the identity. The updating of
the eigenvectors in the form (5.10) requires a smaller computation time.

We need, therefore, ν3 operations for the matrix multiplication K̂(k)D̂(k−1), O(ν3) for the
inversion of D̂(k), and p · ν2 for the product [D̂(k)]−1Ĉ(k). We have also to perform p · ν sums.
This means that the total number of operations is linear in N .

The last term to evaluate is the computation of the matrix elements bij of the non diagonal
block B. This is in fact a matrix-by-vector product, for each of the ν solutions, and requires
O(N2) operations. Dealing with sparse matrices, as in m-scheme SM, the number of operations
scales to b ·N , where b is the sparsity of the matrix. This is again the dominant term, allowing
the method to produce a very large number of eigensolutions without significant variation in
the computation time.

Once the number of operations needed for one iteration of the algorithm has been estimated,
one can try a first direct comparison with other extremal diagonalization methods. The Lanczos
algorithm, and eventually its Arnoldi’s generalization to Hermitian matrices, is considered a
benchmark in the field .

A complete comparison would require not only an evaluation of the convergence properties.
This kind of study is much more complicated from a mathematical point of view, and is still at
a preliminary stage. A comparison of this kind has been attempted in the original work (40).
The results seems to put the two methods on equal footing.

Strictly speaking, in terms of operation number our approach should be equivalent to that
named after Lanczos. Of course, implementation plays a key role at this point, and the experi-
ence in the field has consequently its own weight. Another aspect is the parallelization of the
related code, which has still to be attempted.

5.2 Importance sampling

The following step consists in searching for a reliable way of cutting the basis. This can be
done by adapting the sampling procedure to the m-scheme. Let us fix a sequence of positive
small numbers of decreasing values ǫ1 > · · · > ǫk > · · · > ǫF . Having generated the lowest ν
eigenvectors Ψ1 , . . . , Ψν in H0 , we proceed as in the exact case, using the same scheme of
5.5 with one constraint. In going from Hk−1 to Hk , we pick up only the basis states |j〉 that
fulfill the condition

|〈j|HJ |ψ
k−1
i 〉|2

ajj − Ek−1
i

> ǫk . (5.11)

More specifically, in the first step (k = 1), the above condition selects a set of states {|j〉}
forming a subspace H1(ǫ1) ∈ H1 . The eigenvalue problem is thus solved in Λ0⊕H1(ǫ1) yielding

ν new eigensolutions {E(1)
k (ǫ1) , ψ

(1)
k (ǫ1)} defining the subspace Λ1(ǫ1) . We now explore the

full subspace complementary to H0⊕H1(ǫ1) and select all the states |j〉 that fulfill the condition
5.11 with ǫ2 replacing ǫ1. The states so selected span a subspace H2(ǫ2) ∈ H1 ⊕H2. The above
procedure is iterated with updated eigensolutions and decreasing sampling values ǫk until the
full space is covered.

A sketch of the sampling procedure is provided by the following sequence

H0 ⇒ Λ0
ǫ1→ Λ0 ⊕H1(ǫ1) ⇒ Λ1(ǫ1)

ǫ2→ . . .

. . .
ǫF→ ΛF−1(ǫF−1) ⊕HF (ǫF ) ⇒ ΛF (ǫF )

. (5.12)

In the limit ǫF → 0, the exact solution is recovered, namely limǫF→0 ΛF (ǫF ) = ΛF , or, more
explicitly,

lim
ǫF→0

{Ei(ǫF ) , ψi(ǫF )} = {Ei , ψi} , (5.13)
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where {Ei , ψi} indicates the exact eigenvalues and eigenvectors. The sampling procedure is
as stable as the algorithm. It yields, indeed, orthonormal eigenfunctions. These are obtained,
at each step, by the diagonalization of a symmetric submatrix. The subspaces selected by the
sampling are not strictly invariant with respect to J . The invariance, however, is restored as
the sampling value ǫ becomes sufficiently small. In fact, all sampled eigenstates reach soon a
good J .

The just outlined sampling process reminds of the Density Matrix Renormalization Group.
As in the DMRG, our sampling goes through enlarging, immersing and truncating. On the other
hand, it is more straightforward and is based on updating both energies and wavefunctions.
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Chapter 6

Numerical applications: Large scale
SM calculations

We will show in this chapter how the method can be applied for large scale SM calculations in
medium-heavy nuclei. We will consider semimagic as well as neutron-proton open shell nuclei.

More specifically we will perform full shell model calculations for the semimagic 116Sn and
for a set of heavy Xe isotopes in the vicinity of the N = 132 shell closure. In both cases, we will
adopt a model space defined by the valence nucleons within the N = 4 major shell, without
the g9/2 shell and with the intruder state h11/2, and use a G matrix with core polarization
derived from the CD-Bonn NN potential (19).

116Sn, having Nν = 16 valence neutrons, is certainly the most challenging among the stable
semimagic nuclei.

Concerning the Xe isotopes we will start with 134Xe and end up with 130Xe (45; 46). This
nucleus is close to the borderlines of the possibilities of the available codes. In fact, to our
knowledge, ours is the first large scale SM calculation in nuclei, like 132Xe and 130Xe, which
depart from N = 132 shell closure.

We will test the convergence rate of the iterative sampling process by investigating both
energy eigenvalues and E2 transitions. We will then present the spectra of all mentioned nuclei.
It will be clear from a glance at these spectra that the method can produce a large number of
levels for each angular momentum.

We will investigate also the E2 and M1 transitions and use them as a tool for determining
the symmetry of the low-lying states in Xe isotopes with respect to the exchange of protons
with neutrons, with special attention at the so called mixed symmetry (MS) states predicted
in the interacting boson model (IBM) and discovered only a decade ago.

6.1 SM study of 116Sn

In Sn isotopes, only valence neutrons come into play. They are confined within the valence
space, made up of the N = 4 major shell, without the g9/2 state and with the intruder level
h11/2. Since we are dealing with identical particles, the number of configurations to take into
account is relatively small even though the sparsity of the Hamiltonian matrix is modest. In
fact, in the most general case in which the overall magnetic quantum number of the SM basis
states is M = 0, the largest configuration space in 116Sn is composed of n ≃ 1.6 · 107 Slater
determinants.

We used the single particle energies shown in table 6.1 and borrowed from Ref.(47). As
already mentioned, a G matrix derived from the CD-Bonn potential and renormalized by the
coupling with the core excitations was used as effective potential. The E2 transition strengths
were computed using the proton and neutron effective charges ep = 1.5 and en = 1.

35



0 0.1 0.2 0.3 0.4 0.5
n/N

-14

-12

-10

-8

E
 (

M
eV

)

Sn
116

J = 0
π +

Figure 6.1: Energy behavior of the lowest J = 0+ states in 116Sn, plotted against the percentage
of sampled states, n/N .

(nlj)ν 1d5/2 0g7/2 2s1/2 1d3/2 0h11/2
ǫ 0.00 0.08 2.45 2.55 3.20

Table 6.1: Neutron single particle energies (in MeV)

The preliminary step of the iterative process consists in choosing a possibly small subspace
in order generate the first set of eigensolutions. An initial subspace H0 of dimensions n0 ≃ 50
was sufficient to generate ten lowest eigenstates with good J . Once chosen H0, the iterative
sampling procedure is applied using a sequence of decreasing ǫ values. The lowest J = 0+ and
J = 2+ energy eigenvalues are plotted versus the fraction n/N of the basis states in Figs 6.1
and 6.2, respectively. It is seen that all the eigenvalues approach closely the exact values for
less than 10% of the basis states.

Fig.6.3 shows that a rapid convergence is achieved also for the reduced probabilities of the
E2 transitions between the lowest Jπ = 2+ and Jπ = 0+ states. The behavior of the B(E2)’s
suggest a smooth behavior and a rapid convergence of the wave function, consistently with
what was proved in Ref. (41).

The smooth convergence of both energies and strengths versus n/N makes highly reliable an
extrapolation of the sequence of the physical observables produced by the iterative procedure to
their exact values, even when the Hamiltonian matrix its too large and is beyond the capabilities
of the method.

The calculated versus the experimental low-energy spectra of 116Sn are shown in Fig.6.4.
The agreement between SM and experimental levels is good, even if no effort was spent to
reproduce the experimental data, apart from a proper choice of the single particle energies.
In particular, there was no need of monopole corrections to the single particle energies, as
commonly done in other approaches for several lighter nuclei (48).

The calculated spectrum is seen to be as rich as the experimental one. This result has
been achieved without any special computational effort. Indeed, the algorithm would allow to
generate many more states for each Jπ.
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Figure 6.2: Energy behavior of the lowest J = 2+ states in 116Sn.

6.2 Study of Heavy Xenon isotopes

More challenging is the application of the method to proton-neutron open shell nuclei. In fact,
if both valence protons and neutrons are to be taken into account, not only the implementing
procedure becomes more involved but the dimensions of the Hamiltonian matrix grow rapidly
with the number of nucleons.

Heavy Xe isotopes are taken here as ground test. We will see that the good convergence
of the iterative procedure is confirmed also in this general case (45). Moreover, the spectra
and electromagnetic strengths produced are in good agreement with experiments. Such a
consistency allows us to investigate the microscopic structure of the low-lying states, especially
in relation to their proton-neutron symmetry (46).

In fact, the reason why we focus our attention on Xe isotopes was dictated by the extensive
experimental investigations carried out on these isotopes (49; 50; 51). Those studies focused
mainly on the evolution with the number of valence neutrons of the so called mixed-symmetry
(MS) states, whose existence was predicted within the IBM (52; 53; 54).

6.2.1 Symmetric and mixed symmetry states in the IBM

In the IBM, the low-energy properties are ascribed uniquely to correlations among proton and
neutron pairs coupled to L = 0 and L = 2. These pairs are described as s and d bosons
respectively. In the original formulation, the one dubbed IBM, no distinction is made between
protons and neutrons. The states are therefore fully symmetric with respect to exchange of the
boson operators.

In the IBM-2 proton and neutron bosons are distinct. New states therefore emerge. We
can have, in fact, completely symmetric as well as mixed symmetry states with respect to the
exchange of proton with neutron pairs.

For a quantitative description it is useful to introduce the F -spin quantum number, which
is the boson counterpart of isospin. Proton and neutron bosons form a F -spin doublet with
F3 = 1/2 for protons and F3 = −1/2 for neutrons. States with maximum F -spin, F = Fmax,
are completely symmetric with respect to proton-neutron exchange. The other states with
F < Fmax have mixed symmetry (MS). Only MS states with F = Fmax − 1 have been observed
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Figure 6.3: Reduced transition probabilities between the lowest J = 2+ and J = 0+ states in
116Sn.

so far.
A clear picture of the structure of the IBM-2 states is gained in the so called Q-phonon

scheme. We can define the one-boson symmetric and MS states as

|2+
S 〉 ∝ QS|0

+
1 〉

|2+
m〉 ∝ Qm|0

+
1 〉

, (6.1)

where |0+
1 〉 is a correlated ground state and

QS = Qπ + Qν

Qm = Qπ − Qν
, (6.2)

are respectively the proton-neutron symmetric (F -scalar) and antisymmetric (F -vector) com-
ponents of the boson quadrupole operator. Out of these operators we can construct two-boson
symmetric and MS states

|J+
S 〉 ∝ [QS × QS]J |0+

1 〉

|J+
m〉 ∝ [Qm × QS]J |0+

1 〉
, (6.3)

The IBM E2 operator is composed of a sum of F -scalar and F -vector components

T (E2) = eπQπ + eνQν = eSQS + emQm , (6.4)

where QS and Qm are given by 6.2 and the charges are eS = (eπ + eν)/2 and em = (eπ − eν)/2.
The M1 operator has a similar structure

T (M1) = gπLπ + gνLν = gSLS + gmLm , (6.5)

where
LS = Lπ + Lν

Lm = Lπ − Lν
, (6.6)

and gS = (gπ + gν)/2 and gm = (gπ − gν)/2.
Strong F -scalar E2 transitions occur between states of the same proton-neutron symmetry

and differing by one d bosons. The F -vector E2 operator couples weakly mixed symmetry to
symmetric states differing by one d boson.
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Figure 6.4: Shell Model (SM) and experimental low-energy spectra for 116Sn.

The F -scalar M1 operator, being proportional to the total angular momentum does not
promote any transition. The F -vector component, instead, connects mixed symmetry with
symmetric states, both having the same number of d bosons. Its main action, in fact, is to
transform an F -scalar into an F -vector quadrupole boson

Lm|2
+
S 〉 = (Lπ − Lν)QS|0

+
1 〉 = (Lπ − Lν)(Qπ + Qν)|0

+
1 〉

= (LπQπ − LνQν)|0
+
1 〉 ∝ (Qπ − Qν)|0

+
1 〉

. (6.7)

The above formula suggests that the MS states are the analogue of the scissors mode (55; 56),
observed in most deformed nuclei and studied theoretically in many approaches, (57)(58).

How the measurement of the E2 and M1 transition strengths provides the fingerprints of
F -spin symmetry is illustrated in Fig. 6.5.

Identifications of MS states in spherical or nearly spherical nuclei were reported in the 1980s
(59; 60). They were observed unambiguously and copiously only in 1999 through an experiment
on Mo isotopes (61). Since then, they were systematically identified and studied in several other
nuclei in the vicinity of the shell closures N = 50 and N = 82. A review may be found in
(62; 63). The reviews report also the theoretical investigations carried out within a restricted
shell model scheme (64) and, more thoroughly, in the microscopic quasiparticle-phonon model
(QPM) (65; 66).

Specific theoretical investigations of MS states in the vicinity of N=82 have been performed
recently within the QPM (67; 68) and a large scale shell model approach (69). Because of the
large amount of experimental data available, Xe isotopes offer the opportunity of studying the
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Figure 6.5: Signatures of proton-neutron symmetric and MS states.
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evolution of the MS states along a path which goes from pure vibrational to transitional and,
eventually, deformed nuclei.

6.2.2 SM study of heavy Xe isotopes

We apply the sampling algorithm to the chain of even isotopes 134−130Xe. We first analyze the
convergence properties of the iterative process and, then, perform a detailed investigation of the
computed spectra and transition strengths in relation to the experimental data. We considered
a scheme in which the protons are particles external to the Z = 50 core, while the neutrons are
holes referred to the N = 82 core. We used the levels of 135Xe as neutron single-hole energies.
For the protons, we took the single particle energies adopted in Ref. (40) to study the spectra
of 108Sn and 133Xe. Their values are given in Table 6.2.2.

Once again, a G-matrix derived from the CD-Bonn potential was taken as a two-body
interaction. The G-matrix includes the core polarization contributions appropriate for the
model space under consideration. We used the proton and neutron effective charges ep = 1.6
and en = 0.7, respectively, for the E(2) strengths and a spin gyromagnetic quenching factor
gs = 0.5 for the M(1) transition probabilities.

(nlj)π 2d5/2 1g7/2 3s1/2 2d3/2 1h11/2
ǫp 0.00 0.2 2.2 2.3 2.9

(nlj)−1
ν (2d3/2)−1 (3s1/2)−1 (1h11/2)−1 (1g7/2)−1 (2d5/2)−1

ǫh 0.00 0.2885 0.5266 1.1315 1.2604

Table 6.2: Single proton-particle and neutron-hole energies (in MeV)
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132Xe
Jπ

i = 0+
1 Jπ

i = 2+
1

(n/N)k Jπ
samp Ek (n/N)k Jπ

samp Ek

0.107 0.024 -2.628 0.082 2.007 -1.848
0.154 0.014 -2.682 0.119 2.004 -1.933
0.214 0.008 -2.712 0.166 2.002 -1.980
0.288 0.004 -2.729 0.224 2.001 -2.007
0.377 0.003 -2.738 0.296 2.0004 -2.022
0.479 0.001 -2.744 0.383 2.0005 -2.032
0.590 0.0006 -2.747 0.485 2.0002 -2.038

130Xe
Jπ

i = 0+
1 Jπ

i = 2+
1

(n/N)k Jπ
samp Ek (n/N)k Jπ

samp Ek

0.012 0.131 -1.371 0.016 2.027 -0.710
0.020 0.099 -1.678 0.028 2.021 -1.099
0.033 0.071 -1.930 0.046 2.017 -1.442
0.052 0.052 -2.130 0.073 2.010 -1.705
0.079 0.036 -2.281 0.107 2.004 -1.816

Table 6.3: Convergence rate of the energies (in MeV) in 130Xe and 132Xe.

Convergence of the sampling process and results

For the study of the convergence of the sampling procedure we consider some selected levels and
transitions of 132Xe and 130Xe. The dimensions of their Hamiltonian matrices are N ≃ 3.7×107

for 132Xe and N ≃ 0.8 × 109 for 130Xe.

Preliminary to the iterative procedure is the choice of the initial subspace H0 (see Eq.5.12).
Its dimensions n0 increase with the number of eigenstates of good J we intend to generate. To
yield up to ten eigenstates, the space dimensions required are of the order n0 ∼ 100.

Having chosen H0 , we could start the iterative sampling procedure 5.12 with decreasing
values of ǫk. Each ǫk determines uniquely the dimension nk of the Hamiltonian matrix to be
diagonalized.

In the case of 132Xe, the iterative procedure can be easily pursued until the full space is
covered. We stopped, however, the sampling at ∼ 70% of the basis states.

For 130Xe, we were forced to stop the sampling at ∼ 10%. Proceeding further is possible
but too time consuming on a desktop. Thus, the sampling will produce reliable results only in
case of fast convergence.

As shown in Fig. 6.6 for 132Xe, about 10% of the basis states are enough to lead the Jπ = 0+

and Jπ = 2+ eigenvalues to convergence. Indeed, the Jπ = 0+ absolute energies Ek decrease
by 65 keV in going from n/N ∼ 0.115 to n/N ∼ 0.59 ( Table 6.3 ).

The spectrum converges much faster. Indeed, the energy difference E(0+
2 )−E(0+

2 ) changes
by ∼ 10 keV when we move from n/N ∼ 0.08 to n/N ∼ 0.46.

The same convergence rate is found for the levels of 130Xe (Figs. 6.7 and Table 6.3 ).
Indeed, the fraction of states considered (∼ 10%) is enough to bring the energy eigenvalues to
the plateau. On the ground of the analysis made for 132Xe, the energies obtained here may
differ from the asymptotic values (n/N = 1) by at most 100 keV or by 10 ÷ 20 keV, when
referred to the ground state.

All the corresponding eigenstates have good J . As shown in Table 6.3, even with about
10% of the basis states, the J values coincide with the exact ones up to the second or third
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Figure 6.6: Convergence rate of the lowest Jπ = 0+ and Jπ = 2+ eigenvalues in 132Xe.
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decimal digit.
Thus, although the subspaces selected according to the sampling criterion 5.11 are not

strictly J-invariant, the invariance is eventually restored by a relatively small fraction of basis
states.

As shown in Fig. 6.8, we obtain a good convergence of the strengths of the E(2) transitions
to the ground state. In 132Xe , the E(2) strengths reach their saturated values for n/N ∼ 0.1.
In going from n/N ∼ 0.11 to n/N ∼ 0.59, the strengths increases from B(E2) ∼ 22.23 W.u.
to B(E2) ∼ 22.8 W.u., a ∼ 2% increment.

The same convergence rate is obtained for the B(E2) values in 130Xe. The values obtained
for n/N ∼ 0.11 may be smaller than the asymptotic one by ∼ 2% - 3%.

The convergence properties, however, deteriorate when we consider the transitions between
excited states. In 132Xe, the 2+

2 → 2+
1 E2 transition strength reaches the plateau with a

relatively small fraction of states (Fig. 6.9). The convergence is, instead, poor for the 2+
3 → 2+

1

M1 transition. Analogous convergence properties are found for the other transitions.
The above results suggest that ∼ 10% of the sampled states are not sufficient to produce

for 130Xe converging strengths. Explicit calculations have, indeed, confirmed that the E2
and, especially, the M1 transition strengths do not reach convergence. We have, therefore, to
conclude that, in 130Xe, the sampling yields reliable values only for the SM spectrum and the
2+

1 → 0+
1 E2 transition strength.

Analysis of the results

The convergence analysis states clearly the domain of applicability of the algorithm. In our
specific case, we must confine our analysis to 132,134Xe and to the energy levels of 130Xe. Ex-
perimental versus theoretical spectra are shown in Figs. 6.10 and 6.11.

In all isotopes, the theoretical spectrum is in fairly good agreement with experiments, es-
pecially in the low-energy sector. The upper sector is in general more compressed than the
experimental one. This includes some levels with uncertain spin assignment (70).

Of comparable quality are the results on the E2 and M1 transitions in 132,134Xe. As shown
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Table 6.4: Experimental and SM B(E2) (W.u.) in 132−134Xe. The isoscalar BIS(E2) and
isovector BIV (E2) strengths are also given.

AXe Ji → Jf B(E2) BIS(E2) BIV (E2)
EXP SM

134Xe 2+
1 → 0+

1 15.3(11) 15.0 9.97 0.29
2+

2 → 0+
1 0.74(5) 0.51 0.14 0.41

2+
3 → 0+

1 0.72(7) 0.31 0.04 3.14
2+

4 → 0+
1 0.63(6)) 0.09 0.07 0.0

2+
5 → 0+

1 0.02 0.01 0.23
2+

2 → 2+
1 20(2) 14.8 9.39 0.50

2+
3 → 2+

1 0.56(4) 1.83 1.65 0.08
2+

4 → 2+
1 0.14(1) 0.11 0.01 0.24

2+
5 → 2+

1 0.57 0.41 0.00
2+

6 → 2+
1 5.04 2.41 1.05

4+
1 → 2+

1 11.6(8) 15.4
132Xe 2+

1 → 0+
1 23.0(15) 22.8 17.70 0.02

2+
2 → 0+

1 0.056(7) 0.072 0.00 0.21
2+

3 → 0+
1 0.67(18) 0.16 0.01 1.32

2+
4 → 0+

1 0.20(3) 0.03 0.07 1.06
2+

5 → 0+
1 0.003 0.18 1.50

2+
2 → 2+

1 29.4(46) 28.8 22.37 0.02
2+

3 → 2+
1 1.14(73) 2.68 2.17 0.02

2+
4 → 2+

1 ≤3.1(9) 1.71 2.18 0.75
2+

4 → 2+
2 ≤32(12) 0.04 0.32 0.02

2+
5 → 2+

1 0.51 0.12 0.10
4+

1 → 2+
1 29.5(45) 30.55

4+
2 → 2+

1 1.89
4+

2 → 2+
2 6.74

Table 6.5: Experimental and theoretical B(M1) (µ2
n) in 132−134Xe. The orbital strengths are

also shown .

AXe Ji → Jf B(M1) Borb (M1)
EXP SM

134Xe 2+
2 → 2+

1 0.015(1) 0.024 0.0
2+

3 → 2+
1 0.30(2) 0.20 0.28

2+
4 → 2+

1 0.041(3) 0.008 0.00
2+

5 → 2+
1 0.097 0.00∑

i Bi(M1, 2+
i → 2+

1 ) = 0.36 0.33 0.28
132Xe 2+

2 → 2+
1 0 0 0.00

2+
3 → 2+

1 0.22(6) 0.07 0.08
2+

4 → 2+
1 0 0.04 0.05

2+
5 → 2+

1 0.14 0.13
2+

6 → 2+
1 0 0.10 0.01∑

i Bi(M1, 2+
i → 2+

1 ) = 0.22(6) 0.35 0.27
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Figure 6.7: Convergence rate of the lowest Jπ = 0+ and Jπ = 2+ eigenvalues in 130Xe.
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in Figs. 6.12 and Table 6.4, the E2 transitions are consistent with the experiments. The SM
2+

i → 0+
1 peaks are close to the experimental ones. Good is also the agreement between SM and

experimental strengths of the 2+
i → 2+

1 transitions in 132Xe. Small discrepancies are observed
in 134Xe, where the SM 2+

i → 0+
1 transition strength is slightly more fragmented than the

experimental one.

The SM 2+
1 collects by far the largest strength of the E2 transitions to the ground state.

Table 6.4 shows that this transition is isoscalar indicating that the SM 2+
1 corresponds to

the IBM symmetric one-boson 2+ or, in microscopic terms, to the QPM isoscalar one-phonon
quadrupole vibrational mode.

The residual 2+
i → 0+

1 E2 strength is collected by the 2+
3 state in 134Xe (Table 6.4). The

isovector nature of the 2+
3 → 0+

1 qualifies the SM 2+
3 as the counterpart of the IBM MS one-

boson 2+ or the isovector one-phonon quadrupole mode.

In 132Xe, the isovector strength is shared by at least three 2+ states. Thus, the correspon-
dence with the IBM MS one-boson 2+ cannot be established unambiguously.

The other SM 2+ states are coupled very weakly to the ground state. They, therefore, de-
scribe two-boson (or two-phonon in QPM) excitations. In all nuclei, only the 2+

2 is strongly col-
lective and corresponds to a proton-neutron symmetric two-boson state. It is, in fact, strongly
coupled to the 2+

1 by the isoscalar E2 operator (Table 6.4). The others states have apprecia-
ble two-phonon components. They are weakly collective so that it is not easy to guess their
symmetry.

On the other hand, it is not mandatory to state a correspondence with all IBM states. In
fact, not all the SM states are collective. Moreover, given the microscopic nature of SM, it is
natural to expect that the E2 strength, collected by a single IBM MS state, gets fragmented
and shared by several SM states. It is also worth to point out that the F -spin is not a good
quantum number in SM. The correspondence is made more problematic by the fact that, in
SM, the transitions occur between T 6= 0 states, so that two states with the same T may be
coupled by both isoscalar and isovector components.

The results on the M1 response are more controversial. As shown in Figs. 6.13 and Table
6.5, the measured M1 strength is concentrated mostly, if not solely, on a single 2+ state, while
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Figure 6.8: Convergence properties of B(E2, 2+1 → 0+
1 ) in 130Xe and 132Xe.
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Figure 6.9: Convergence properties of B(E2, 2+
2 → 2+

1 ) and B(M1, 2+
3 → 2+

1 ) in 132Xe.
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Figure 6.10: Experimental versus calculated 134Xe and 132Xe spectra.
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Figure 6.11: Experimental versus calculated 130Xe spectra.
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Figure 6.12: Experimental and calculated E2 strength distribution in 132−134Xe.

the SM strength is fragmented to some extent, especially in 132Xe. It is, in fact, distributed
among few 2+ states, all clustered around a pronounced peak, lying close to the experimental
one.

It is interesting to notice that, in 134Xe, the orbital strength is entirely concentrated on the
2+

3 and coincides practically with the measured one. In 132Xe , all transitions are almost purely
orbital except for the one involving the 2+

6 and promoted by the spin component. If we exclude
this transition, the total SM strength is within the errors of the experimental value.

It is not easy to identify the origin of such a fragmentation. Both M1 and isovector E2
transitions probe small pieces of the wave function. Moreover, the M1 transition strengths are
the outcome of the competitive action between spin and orbital components. The occurrence
of a spin transition in the range of interest suggests that a better insight would be gained if
the SM space could be enlarged so as to include the spin-orbit partners of the g7/2 proton and
h11/2 neutron single particle states. Unfortunately, the dimensions of such an enlarged SM
space would become prohibitive.

6.3 Concluding remarks

In summary, the implementation of the importance sampling algorithm in the m-scheme offers
significant advantages with respect to the old formulation in the j − j coupled scheme. In fact,
it makes straightforward the calculation of the Hamiltonian matrix, a great advantage since
the algorithm requires to update the Hamiltonian matrix at each step of the iterative process.
It exploits the sparsity of the Hamiltonian matrix which leads to an effective truncation of the
shell model space.

Unfortunately, although both the number of operations and execution time grow linearly
with the dimensions N of the Hamiltonian matrix, the importance sampling procedure becomes
too time consuming, at least on a desktop, as the dimensions of the Hamiltonian matrix ap-
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Figure 6.13: Experimental and calculated M1 strength distribution in 130−134Xe.

proach N ∼ 109. It follows that, in nuclei like 130Xe, the method is able to sample up to 10%
of the basis states. This fraction of states is sufficient to bring to convergence the energy levels
but not the strengths of the E2 and, especially, the M1 transitions among excited states.

Thus, the implementation of the algorithm is very far from reaching the performances of
codes like Antoine. We have two possible complementary routes for trying to enlarge its domain
of applicability. A possible way is to try to find out a sampling criterion which exploits more
efficiently the sparsity of the Hamiltonian matrix. A more meaningful progress may be obtained
by elaborating a parallel version of the code, if feasible. Such a parallelization should, hopefully,
reduce drastically the execution time.

For the nuclei at reach, the method yields at once an arbitrary number of orthogonal eigen-
states with a given J . It offers therefore a rather broad picture of their spectroscopic properties
and a useful key for disclosing the nature of the low-lying states in these nuclei.

An illustrative example is offered here by the 132−134Xe isotopes. The results obtained are
in fairly good agreement with the data. This is quite remarkable, since we use a unique set
of single particle energies for all isotopes and an unmodified realistic two-body potential. The
spectra as well as the E2 and M1 transitions are generally consistent with the experiments.
Their analysis allows to determine the collectivity and the proton-neutron symmetry of the
low-lying states. Some discrepancies concerning mainly the M1 transitions remain. Curing
them is a quite challenging task, since the M1 transitions probe very small pieces of the wave
function. Taking them into account might require an enlargement of the shell model space
which is far from being feasible in our SM scheme.
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PART TWO

Collective Models



52



Chapter 7

From semiclassical to microscopic
approaches to collective excitations

The Tamm-Dancoff (TDA) and its generalization, the Random Phase Approximation (RPA)
offer an elegant, physically transparent, microscopic description of collective excitations in nuclei
(71; 72). They describes not only the global properties of the giant resonances but explain in
part their fine structure by accounting for the decay of the collective mode to single-particle
levels (Landau damping) (73). The two approaches, however, cannot account for anharmonic
features such as the collisional damping, responsible for the so called spreading width, and are
unable to describe multiphonon excitations.

Multiphonon collective modes in nuclei were predicted already within the Bohr-Mottelson
model (74). Their evidence, however, has grown considerably in the last two decades. At
low energy, fluorescence scattering experiments have detected low-lying double-quadrupole,
double-octupole and mixed quadrupole-octupole multiplets in nearly spherical heavy nuclei
(75; 76; 77). At high energy, a number of different reactions have established the existence of
a double giant dipole resonance (78; 79).

Multiphonon excitations and their inherent anharmonicities were widely studied within
the interacting Boson model (IBM) of Arima and Iachello (52; 53; 54) in its proton-neutron
version (IBM2). The (IBM2) (53) came out to be a precious tool for systematics analysis of
the low-energy spectra throughout the whole periodic table. It is able to classify the states
according to their symmetry and to show how the gross properties of nuclei evolve as one
moves from spherical to transitional and, eventually, well deformed regions. Because of its
phenomenological nature, however, the IBM2 cannot unveil the fine structure of collective
modes. These need to be studied in approaches that consider explicitly the nucleonic degrees
of freedom.

To this purpose, Boson expansion techniques have been implemented under some Fermion-B-
oson mapping prescription (80; 81; 82). These expansion yield RPA to lowest order (72).
IBM itself can be viewed as a phenomenological realization of a Fermion-Boson mapping (83).
Unfortunately, all Boson series converge poorly and, therefore, have been of limited applicability.
Nonetheless, the Fermion-Boson mapping idea inspires most of the microscopic approaches in
use.

The nuclear field theory (74; 84) and the QPM (85) are two well known examples. The first
has been especially suitable for characterizing the anharmonicities of the vibrational spectra
and the spreading widths of the giant resonances, while the QPM has been extensively adopted
for the study of the fine structure of multiphonon excitations (65; 66; 86; 87).

Much less exploited are other microscopic multiphonon approaches based on the iterative
solution of equations of motion (88; 89).

Moving along the lines of these latter approaches, a new equation of motion method (90) has
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been developed, which generates iteratively a basis of multiphonon states, built out of phonons
constructed in the Tamm-Dancoff approximation. The basis so obtained is highly correlated
and makes much easier the task of diagonalizing the nuclear Hamiltonian.

Here, we first outline the RPA as well as the Tamm-Dancoff (TDA) approximation pointing
out their harmonic character. We, then, give a very brief account of the QPM, analyzing its
virtues and limitations.

7.1 Semiclassical approach to collective modes

In macroscopic models one first singles out a collective coordinate αλ, of multipolarity λ, de-
scribing for instance a proton-neutron relative displacement (λ = 1) or a quadrupole (λ = 2)
or octupole (λ = 3) shape vibrations (74) .

One, then, defines a conjugate momentum πλ, and writes an harmonic oscillator (HO)
Hamiltonian in terms of these coordinates

H =
1

2Bλ

Πλ +
1

2
Cλαλ . (7.1)

It is more conveniently to express the collective coordinates in term of the phonon creation,
O†

λ, and annihilation, Oλ, operators obtaining

H = ωλO
†
λOλ , (7.2)

where ωλ =
√

Cλ/Bλ is the energy of the mode. In such a form, it is immediate to derive the
eigenvalue equation

[H,O†
λ] = h̄ωλO

†
λ . (7.3)

The HO vacuum |0〉 defines the nuclear ground state. The collective mode is described by a
single state, the first excited HO state |λ〉 = O†

λ|0〉, of energy ωλ, which collects the whole
strength of the collective coordinate αλ.

This purely harmonic model can only account qualitatively for the gross features of nuclear
collective excitations. Indeed, the collective HO Hamiltonian is not immediately related to
the nuclear Hamiltonian H. Nonetheless, collective and microscopic approaches are intimately
correlated (74).

7.2 Particle-hole formalism

It is useful to write the nuclear Hamiltonian

H = H0 + V̂ , (7.4)

in the second quantized form. We get

H0 =
∑

i

ǫia
†
iai , (7.5)

where ǫi are the single-particle energies and

V̂ =
1

4

∑

ijkl

Vijkla
†
ia

†
jalak , (7.6)

where Vijkl =< klV̂ |ij are the antisymmetrized matrix elements of the nucleon-nucleon two-body

potential. The a†
i (ai)are the creation (annihilation) particle operators with respect to the phys-

ical vacuum.
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We now assume that the single-particle energies have been obtained self-consistently in the
Hartree-Fock (HF) approximation. Let us consider the lowest unperturbed eigenstates |〉

H0|〉 = E
(0)
0 |〉 , (7.7)

of energy E
(0)
0 =

∑F
h=1 ǫh. Thus the HF state |〉 correspond to the filling of the lowest single

particle shells up to the Fermi energy ǫF .
The action on |〉 yields

ap|〉 = 0 , ǫp > ǫF ,

bh|〉 = a†

h̄
|〉 = 0 , ǫh < ǫF .

(7.8)

The above relations define the HF state |〉 as the particle-hole (ph) vacuum. In fact, we can
define particle (|p〉) and hole (|h−1〉) states with respect to HF reference state through the
relations

|p〉 = a†
p|〉 ,

|h−1〉 = b†|〉 = ah̄|〉 .
(7.9)

They are both eigenstates of H0, with energies ǫp and −ǫh with respect to the HF ground energy

E
(0)
0 .

7.3 Tamm-Dancoff approximation

The TDA consists, basically, in solving the nuclear SM eigenvalue problem

H|λ〉 = (H0 + V )|λ〉 = Eλ|λ〉 , (7.10)

in a restricted space spanned by ph states

|p(h)−1〉 = a†
pah̄|〉 . (7.11)

By projecting Eq. (7.10) into the ph subspace, one obtains the eigenvalue equation

∑

p′h′

A(ph ; p′h′) cλ(p′h′) = ωλc
λ(ph) , (7.12)

where

ωλ = Eλ − E
(0)
0 , (7.13)

is the energy of the TDA eigenstate λ with respect to the HF unperturbed energy E
(0)
0 .

The matrix A has the simple expression

A(ph ; p′h′) = δpp′δhh′(ǫp − ǫh̄) + Vp′h̄h̄′p , (7.14)

where

Vp′h̄h̄′p = 〈p′(h′)−1|V̂ |p(h)−1〉 = 〈p′h̄|V |h̄′p〉 , (7.15)

are the matrix elements of the two-body potential V̂ , in its second quantized form (7.6), and
the |p(h)−1〉 states are given by Eq. (7.11). It can be represented graphically by the vertices
shown in Fig. 7.1. TDA amounts to the sum of an infinite number of diagrams, as illustrated
in Fig. 7.2.
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Figure 7.1: TDA vertices.

TDA

Figure 7.2: TDA series.

The transition amplitudes predicted within this approximation are easily derived. For a
one-body operator

Ŵ =
∑

rs

Wrsa
†
ras , (7.16)

where Wrs = 〈s|W |r〉, one obtains

〈λ|Ŵ |〉 =
∑

ph

cλ
phWph . (7.17)

It is easy to verify that the non energy weighted sum rule is fulfilled

∑

λ

|〈λ|Ŵ |〉|2 =
∑

ph

|Wph|
2 . (7.18)

For open shell nuclei, the quasiparticle formalism has to be used. In such a scheme the ph
basis states are replaced by the quasiparticle states

|rs〉 = α†
rα

†
s|0〉 , (7.19)
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where α†
r creates a quasiparticle with quantum numbers r out of the BCS vacuum |0〉. By

simple algebraic manipulations one obtains the TDA eigenvalue equations

∑

r<s

[
δrqδst(Er + Es) + 〈qt|V|rs〉

]
c
(λ)
qt = h̄ωc(λ)

rs , (7.20)

where
〈qt|V|rs〉 = Vrsqt (urusuqut + vrvsvqvt)

−Vrq̄s̄t (vquturvs + vtuqusvr)
+Vrt̄s̄q (vtuqurvs + vtuqusvr)

. (7.21)

The TDA eigenstates are then given by

|λ〉 =
∑

r<s

c(λ)
rs |rs〉 =

∑

r<s

c(λ)
rs α†

rα
†
s , (7.22)

and the transition amplitudes for a one-body operator W (7.16) become

〈λ|Ŵ |〉 =
∑

rs

cλ
rsWrs(urvs + τusvr) , (7.23)

where τ = +(−) for time-even(odd) operators.

7.4 The Random Phase Approximation

The RPA is a generalization of TDA. This method was originally introduced by Bohm and
Pines (91) for studying the plasma oscillations of the electron gas. The term Random Phase
Approximation referred to the neglect of the coupling between plasma vibrations of different
momenta.

The RPA generalization appears straightforward if we consider the TDA eigenvalue equa-
tions 7.10 as a result of a projection into the ph subspace of the harmonic oscillator (HO)-like
equation

[H,O†
λ]|〉 = ωλO

†
λ|〉 , (7.24)

where |〉 is the HF vacuum, and

O†
λ =

∑

ph

X
(λ)
ph (λ)a†

pah̄ , (7.25)

is the TDA phonon operator.
This (HO)-like form of the eigenvalue equation can be generalized by replacing the unper-

turbed ph vacuum |〉 with the lowest true eigenstate of the full Hamiltonian H, namely the
nuclear ground state |0〉. The phonon operators Oλ and O†

λ have to satisfy the new conditions

Oλ|0〉 = 0 , |λ〉 = O†
λ|0〉. (7.26)

Under the above constraints, the phonon operators Oλ and O†
λ satisfy the following HO-like

equations

[
H,O†

λ

]
|0〉 = ωλO

†
λ|0〉 = (Eλ − E0)O

†
λ|0〉 . (7.27)

The RPA eigenvalue problem, as in the case of TDA, is formulated in a space spanned by
ph states. These, however, can be generated either by creating or destroying a ph pair from
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T D A                                                     R P A

Figure 7.3: Excitation mechanism in TDA and RPA.

the ground state, where n(ph) states in addition to the HF ph vacuum are present. This is
illustrated in Fig. 7.3. Thus, the phonon operators have the general form

O†
λ =

∑

ph

[
Y

(λ)
ph a†

pah̄ − Z
(λ)
ph a†

h̄
ap

]
. (7.28)

The explicit eigenvalue equations are obtained by expanding the commutator in Eq.(7.27) and
linearizing the resulting expression. It is necessary, at this stage, to make the so called quasi-
Boson-approximation (QBA). This is the basic approximation of RPA and consists in using the
Hartree-Fock vacuum, |〉, instead of the correlated one |0〉, to actually compute the quantities

〈0|a†
pap′|0〉 ∼ 〈|a†

pap′|〉 = 0,

〈0|a†
hah′ |0〉 ∼ 〈|a†

hah′|〉 = δhh′

. (7.29)

Under this approximation, one obtains

(
A B
B∗ A∗

)(
Y
Z

)
= h̄ω

(
I 0
0 −I

)(
Y
Z

)
, (7.30)

where A is nothing but the TDA matrix (7.14) and B takes into account the correlations of
the ground state

Bph,p′h′ = 〈ph−1p′h′−1|V |0〉 ≃ 〈ph−1p′h′−1|V |〉 = Vpp′h̄h̄′ . (7.31)

This is represented by the diagram in Fig. 7.4. Thus, RPA implicitly sums an infinite number
of perturbative terms. A typical one is represented diagrammatically in Fig. 7.5.

The RPA states |λ〉 = O†
λ|0〉 are orthonormalized according to

〈λ|λ′〉 = 〈0|OλO
†
λ′|0〉 = 〈0|[Oλ, O†

λ′ ]|0〉 ∼= 〈|[Oλ, O
†
λ′ ]|〉 = δλλ′ , (7.32)

yielding

∑

ph

[Y ∗
λ′(ph)Yλ(ph) − Z∗

λ(ph)Zλ(ph)] = δλλ′ . (7.33)

In the above equations, use has been made of the QBA .
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Figure 7.4: Diagrammatic representation of 7.31.

Figure 7.5: Diagrams contributing to a RPA phonon.

The same approximation is used to compute the transition amplitudes for a generic one-body
operator W obtaining

〈λ|W |0〉 = 〈0|[Oλ, W ]|0〉 ∼= 〈|[Oλ, W ]|〉 =
∑

ph

(Y
(λ)∗
ph Wph + Z

(λ)∗
ph Whp) . (7.34)

It can be proved (92) that the energy weighted sum rule is fulfilled

∑

λ

ωλ|〈λ|W |0〉| =
1

2
〈|[W, [H, W ]]|〉 =

∑

ph

(ǫp − ǫh)|Wph|
2. (7.35)

Notice that, in the left-hand side, the true ground state appears, while, in the right-hand side,
the true ground state is replaced by the HF state |〉.

For open shell nuclei, the RPA has to be formulated in the quasiparticle formalism. In this
quasiparticle random-phase approximation (QRPA), the phonon operators, defined in 7.28, are
expressed in term of quasiparticle creation and annihilation operators

O†
λ =

∑

r<s

[
Yλ(rs)α

†
rα

†
s − Zλ(rs)αsαr

]
, (7.36)

Oλ =
∑

r<s

[
Y ∗

λ (rs)αsαr − Z∗
λ(rs)α†

rα
†
s

]
. (7.37)

A procedure analogous to the one adopted in the ph case yields an eigenvalue equation identical
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to 7.30, but with

Ars, qt = Vrsqt (urusuqut + vrvsvqvt)
−Vrt̄s̄t (vquturvs + vtuqusvr)
+Vrt̄s̄q (vtuqurvs + vqutusvr)

, (7.38)

Brs,qt = −Vrsq̄t̄ (urusvqvt + vrvsuqut)
+Vrqs̄t̄ (urvsuqvt + vrusvqut)
−Vrts̄q̄ (urvsvqut + vrusuqvt)

. (7.39)

RPA has many nice features. It fulfills, for instance, the energy weighted sum rule for
one-body operators and accounts, to some extent, for the correlations of the ground state.
This, however, is accomplished in the quasi-boson approximation. Thus RPA can be considered
reliable only when the ground state correlations are small as is the case of collective excitations
in spherical nuclei in proximity of shell closure or in well deformed nuclei. It breaks down in
nuclei which are soft toward deformation. In those nuclei, the RPA equations become singular
yielding vanishing or complex eigenvalues.

A prescription for avoiding the QBA is given in the so called renormalized RPA (93) and
consists in computing the particle and hole occupation numbers using a correlated ground state
rather than the HF ph vacuum. Due to this prescription, the eigenvalue equations are free of
singularities.

TDA does not account for ground state correlations and fulfills the non energy weighted
sum rule but not the energy-weighted sum. It is, on the other hand, exact and yields always
stable eigenvalue equations, free of singularities.

In any case, neither TDA or RPA, even in its renormalized version, are suited for describing
multiphonon spectra and their anharmonic features. They are anchored in the ph space and,
therefore, do not allow many-particle-many-hole excitations, responsible for the fragmentation
of the giant resonances and for multiphonon excitations.

7.5 Beyond TDA and RPA

In order to study these complex excitations, it is necessary to enlarge the space so as to include
at least two-particle two-hole (2ph) states. This extension has been achieved in the small
amplitude vibrational limit and is known as second RPA (SRPA). The SRPA equations were
derived first by Sawicki (94) and later by Yannouleas et al. (95; 96) using the equation of
motion method of Rowe (97). Their solution in finite nuclei is quite problematic and therefore
approximations have to be made.

The most drastic approximation is to neglect the mutual coupling among two-particle two-
hole states (2p2h) (98; 99). This is also done in a recent calculation using a potential derived
by the Unitary Correlation Method (UCOM) (100) and applied to 16O 40Ca and 90Zr.

A more refined approximation consists in replacing one ph pair with a correlated state (RPA
phonon) thereby obtaining a particle-phonon coupling (74; 101; 102; 103; 104).

Based on this approximation is a relativistic extension of Migdal’s theory, which exploits the
Green function techniques to enlarge the configuration space beyond the ph space underlying
RPA (105; 106; 107). This enlarged space covers two-quasiparticle configurations plus states
obtained by coupling the two-quasiparticle configurations with low-lying QRPA phonons. This
relativistic quasiparticle random-phase approximation (RQRPA) plus phonon coupling (PC)
was applied successfully to the giant dipole resonance (GDR) and the pygmy giant resonance
in spherical open shell nuclei (108; 109; 110).

A further progress has been made in recent SRPA calculation using a Skyrme force (111),
where the interaction between 2p2h states is partly taken into account.
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All the above approaches include up to 2ph or 2qp configurations and, therefore, are suited
to describe the fragmentation of collective modes rather than the multiphonon excitations. This
is accomplished only in the quasiparticle phonon model (QPM) (85).

The QPM adopts a two-body Hamiltonian which is a sum of several separable multipole-
multipole potentials. Due to this simplifying assumption, the QPM is able to cover a very large
configuration space and to include up to three phonon basis states.

The intrinsic Hamiltonian has the form

H = Hsp + Vpair + V ph
M + V ph

SM + V pp
M , (7.40)

where Hsp is a one-body Hamiltonian, Vpair the monopole pairing, V ph
M and V ph

SM are respectively
sums of separable multipole and spin-multipole interactions acting in the particle-hole channel,
and VM is the sum of particle-particle multipole pairing potentials.

The QPM procedure goes through several steps. One starts with performing a quasiparticle
RPA calculation 7.36 using a Hamiltonian composed of a sum of separable multipole pieces.
Once the QRPA phonons are generated, it is possible to express the Hamiltonian into the
phonon form

HQPM =
∑

iµ

ωiλO
†
iλµOiλµ + Hνq , (7.41)

where the first term is the unperturbed phonon Hamiltonian and Hνq is a phonon-coupling
piece. The phonon Hamiltonian is diagonalized in a space spanned by states composed of one,
two, and three QRPA phonons, so that the eigenfunction have the structure

Ψν =
∑

i CiO
†
ν(i)|0〉 +

∑
λ1

λ2

Cν
λ1λ2

[
O†

λ1
× O†

λ2

]

ν
|0〉

+
∑

(λ1λ2)µλ3
Cν

(λ1λ2)µλ3

[(
O†

λ1
× O†

λ2

)

µ
× O†

λ3

]

ν
|0〉

. (7.42)

Because of its flexibility and handiness, the QPM is the multiphonon approach most widely
adopted for microscopic systematic studies of low and high energy spectroscopic properties.

One of the problems to be faced in the QPM is the determination of the Hamiltonian
parameters. Systematic analysis have determined different sets of parameters in different mass
regions.

Another problem is connected with the fact that, like the SRPA, the QPM relies on the
quasiboson approximation and, therefore, is valid in the small amplitude limit.

In summary, the QPM is a precious tool for investigating the fine structure of collective
modes, but has a phenomenological character and is valid in the vicinity of shell closures or in
well deformed nuclei.
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Chapter 8

Equation of Motion Phonon Model

Recently, a new method has been proposed (90), which is known as the Equation of Motion

Phonon Model (EPMP). The method generates iteratively a multiphonon basis in which the
nuclear eigenvalue problem is solved for a Hamiltonian of general form.

The method does not rely on any approximation and, therefore, has the same accuracy of
the shell model. With respect to SM, it is well suited to the investigation of collective modes
at low and high excitation energy.

8.1 Equations of Motion Phonon Model in the particle-

hole scheme

We start considering a two-body Hamiltonian in the second quantized form

H =
∑

i

ǫia
†
iai +

1

4

∑

ijkl

Vijkl a
†
ia

†
jalak , (8.1)

where ǫi are the single-particle energies, Vijkl the antisymmetrized matrix elements of the

nucleon-nucleon interaction, and a†
i (ai) the creation (annihilation) particle operators with

respect to the physical vacuum, |0〉. We want to solve the eigenvalue problem

H|Ψν〉 = Eν |Ψν〉 , (8.2)

for the nuclear Hamiltonian, within a Hilbert space, which is the direct sum of n-phonon
subspace

H =
∑

n=0,N

⊕Hn . (8.3)

We intend to construct n-phonon states |n ; α〉 fulfilling the following orthogonality conditions

〈n′ ; β|n ; α〉 = δnn′δαβ

〈n′ ; β|a†
pah|n ; α〉 = δn′(n+1)〈n + 1 ; β|a†

pah|n ; α〉
〈n′ ; β|a†

p1
ap2

|n ; α〉 = δn′n〈n ; β|a†
p1

ap2
|n ; α〉

〈n′ ; β|a†
h1

ah2
|n ; α〉 = δn′n〈n ; β|a†

h1
ah2

|n ; α〉

. (8.4)

The above relations yield the identity decomposition

I =
∑

n

Pn , (8.5)

where
Pn =

∑

α

|n ; α〉〈n ; α| . (8.6)
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Let us now assume that the states |n ; α〉 in the (n − 1)-phonon subspace are known. This
assumption is certainly fulfilled since we know the 1-phonon TDA states |λ〉. Our goal is to
find the vectors belonging to the n-phonon subspace Hn, in term of the (n − 1)-phonon states

|n ; β〉 =
∑

λα

Cβ
λα(n)O†

λ|n − 1 ; α〉, (8.7)

where
O†

λ =
∑

ph

cλ
pha

†
pah̄ , (8.8)

are the TDA phonon operators. We now require that the n-phonon states bring the Hamiltonian
to diagonal form within the n-phonon subspace

〈n ; β|H|n ; α〉 = δαβE(n)
α . (8.9)

In order to achieve this result, we start from the equations of motion

〈n ; β|
[
H,O†

λ

]
|n − 1 ; α〉 =

(
E

(n)
β − E(n−1)

α

)
Xβ

λα(n) , (8.10)

where
Xβ

λα(n) = 〈n ; β|O†
λ|n − 1 ; α〉 =

∑

ph

cλ
ph〈n ; β|a†

pah|n − 1 ; α〉 . (8.11)

These are the equations to be solved. The commutator in the left-hand side can be expanded
as

〈n ; β|
[
H,O†

λ

]
|n − 1 ; α〉 =

∑
ph cλ

ph

[
(ǫp − ǫh)〈n ; β|a†

pah|n − 1 ; α〉

+ 1
2

∑
ijk Vijpk〈n ; β|a†

ia
†
jakah|n − 1 ; α〉

+ 1
2

∑
ijk Vihkj〈n ; β|a†

pa
†
iajak|n − 1 ; α〉

] . (8.12)

Rearranging the creation and annihilation operators, the terms in the sum are either linear in
〈n ; β|a†

pah|n − 1 ; α〉, or of the form 〈n ; β|a†
paha

†
iaj|n − 1 ; α〉.

The terms of the latter form are linearized by making use of the identity decomposition
(8.5) and (8.6). We get

〈n ; β|a†
paha

†
iaj|n − 1 ; α〉 =

∑
n′〈n ; β|a†

pahPn′a†
iaj|n − 1 ; α〉

= 〈n ; β|a†
pahPn−1a

†
iaj|n − 1 ; α〉

=
∑

γ〈n ; β|a†
pah|n − 1 ; γ〉〈n − 1 ; γ|a†

iaj|n − 1 ; α〉

=
∑

γ〈n ; β|a†
pah|n − 1 ; γ〉ρ(n−1)

αγ (ij)

, (8.13)

where
ρ(n−1)

αγ (ij) = 〈n − 1 ; γ|a†
iaj|n − 1 ; α〉 , (8.14)

are the matrix elements of the particle (i = p, j = p′) and hole (i = h, j = h′) density operators
between (n − 1)-phonon states.

By inverting Eq. (8.8) we get

〈n ; β|a†
pah|n − 1 ; α〉 =

∑

λ

cλ
phX

β
λα(n). (8.15)

The equations of motion (8.10) become now the eigenvalue equations

∑

γλ′

A(n)(λα ; λ′γ) Xβ
λ′γ(n) = E

(n)
β Xβ

λα(n) , (8.16)
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in the unknown amplitudes Xβ
λα (Eq. (8.11)).

The matrix A has the physically transparent phonon structure

A(n)(λα ; λ′γ) =
(
Eλ + Eα

)
δαγδλλ′ + Vλα ; λ′γ , (8.17)

where Eλ and Eα are the energies of the TDA phonon, |λ〉, and of the (n − 1)-phonon states,
|(n − 1), α〉, and the term V takes into account the interaction between them.

One may notice the formal analogy with the ph TDA eigenvalue Eqs.(7.12, 7.14). This
analogy is even closer for n = 2 as illustrated in Figs. 8.1 and 8.2. Indeed, in this case,
one goes from the TDA to the EMPM equation by replacing the ph energies ǫp − ǫh with
the two phonon energies Eλ + Eλ′ (Fig. 8.1) and the ph two-body potential Vph′hp′ with the
phonon-phonon potential Vλα ; λ′γ (Fig. 8.2). The matrix elements of this phonon-phonon

=> = + + ...

Figure 8.1: From particle-hole to (TDA) phonons

=>

Figure 8.2: From ph to phonon-phonon vertices

potential are given by

Vλα ; λ′γ =
∑

rs

Vλλ′(rs)ρ(n−1)
αγ (rs) , (8.18)

where the label r and s are either particle (r = p1, s = p2) or hole (r = h1, s = h2) states. The
potential appearing in the above equation is given by

Vλλ′(p1p2) =
1

2

∑

pp′

ρλλ′(p′p)Vp′p1pp2
+

∑

hh′

ρλλ′(hh′)Vhp1h′p2
, (8.19)

Vλλ′(h1h2) =
∑

pp′

ρλλ′(p′p)Vp′h1ph2
+

1

2

∑

hh′

ρλλ′(hh′) Vhh1h′h2
, (8.20)
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where

ρλλ′(pp′) = 〈λ′|a†
pap′|λ〉 =

∑

h

cλ
p′hc

λ′

ph , (8.21)

ρλλ′(hh′) = 〈λ′|a†
hah′ |λ〉 = −

∑

p

cλ
phc

λ′

ph′ , (8.22)

are the 1-phonon (TDA) density matrices.
The eigenvalue equations 8.16 contain only quantities defined within the (n − 1)-phonon

subspace. They can, therefore, be solved iteratively starting from the Tamm-Dancoff n = 1
phonon space. These equations, however, would yield redundant solution due to the impos-
sibility of enforcing the Pauli principle between the TDA O†

λ and the (n − 1)-phonon states.
In order to eliminate this redundancy, a general eigenvalues problem has to be formulated,
starting from 8.16.

To this purpose, we insert the expression (8.7) of the state |n ; β〉 in the formula (8.11),
giving the amplitude Xβ

λα(n), obtaining

Xβ
λα(n) = 〈n ; β|O†

λ|n − 1 ; α〉 =
∑

λ′γ

Cβ
λ′γ(n)D(n)(λα ; λ′γ) , (8.23)

where
D(λα ; λ′γ) = 〈n − 1 ; γ|Oλ′O†

λ|n − 1 ; α〉 , (8.24)

is the overlap or metric matrix. Inserting this new formulas of the amplitudes Xβ
λα(n) into the

equations of motion (8.16), we get the eigenvalue problem in a general form

∑

λ′γλ”γ′

A(λα, λ′γ)Dβ(λ′γ, λ”γ′)Cβ
λ”γ′ = Eβ

∑

λ′γ

Dβ(λα, λ′γ)Cβ
λ′γ , (8.25)

or, in short
HC = (AD)C = EDC . (8.26)

The metric matrix D is given by

Dαβ(λ; λ′) = δλλ′δαβ +
∑

γ

X
(α)
λ′γ (n − 1)X

(β)
λγ (n − 1) −

∑

rs

ρλλ′(rs)ρ
(n−1)
αβ (rs) , (8.27)

where the density matrices are given by Eqs. (8.21) for n = 1, and by the following relation

ρ
(n)
αβ (rs) =

∑

γδλλ′

C
(α)
λγ (n)X

(β)
λ′δ (n)

[
δγδρλλ′(rs) + δλλ′ρ

(n−1)
γδ (rs)

]
, (8.28)

in the n-phonon case. These recursive formulas allow us to compute all the quantities appearing
in the n-phonon eigenvalue equations in terms of those determined in the (n − 1)-phonon
subspace.

Now, we are able to design a procedure for extracting a set of linear independent states
from the original Nr redundant vectors. Rather than using the traditional method based on
the diagonalization of (112), we resort to the Cholesky decomposition, described in the appendix
A. The latter has been preferred, since scales faster with the dimensions of D.

This method selects a basis of linear independent states {O†
λ |n−1; α〉} spanning the physical

subspace of the correct dimensions Nn < Nr and, thus, enables us to construct a Nn ×Nn non
singular matrix Dn. By left multiplication in the Nn-dimensional subspace we get from Eq.
(8.26) [

D(−1)
n (AD)n

]
C = EC . (8.29)
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This equation determines only the coefficients C
(β)
λα of the Nn-dimensional physical subspace.

The remaining redundant Nr − Nn coefficients are undetermined and, therefore, can be safely
put equal to zero. The eigenvalue problem is thereby solved exactly.

We can now generate iteratively, with no approximations, a basis of n-phonon states, with
n = 1, 2, · · · . In such a basis, the Hamiltonian assumes the simple form given by Fig. 8.3.
We have n = 1, 2, · · · diagonal blocks, each block corresponding to a subspace with a given
number n of phonons. We have now to compute the terms which couple subspaces with different
numbers of phonons, having in mind that only subspaces differing by at most two phonons are
coupled by a two-body Hamiltonian.

Figure 8.3: Hamiltonian matrix in the multiphonon basis.

The matrix elements between n and (n − 1)-phonon states are given by

Hαn−1βn
= 〈n; β|H |n − 1; α〉 =

∑

λγ

Vαγ(λ)Xβ
λγ(n) , (8.30)

where

Vαγ(λ) =
1

2

∑

rs

Vrs(λ)ρ(n−1)
αγ (rs) , (8.31)

and

Vrs(λ) =
∑

ph

Vprhsc
λ
ph . (8.32)

On the other hand, for the coupling between n and (n − 2)-phonons, one finds

Hαn−2βn
= 〈n; β |H |n − 2; α〉 =

1

4

∑

λλ′γ

V(λλ′) Xβ
λγ(n) Xγ

λ′α(n − 1) , (8.33)
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whit

V(λλ′) =
∑

php1h1

Vpp1hh1
cλ
phc

λ′

p1h1
. (8.34)

The two coupling terms may be represented by the vertices of Figs. 8.4. Thus, the EMPM
accounts explicitly, and not virtually as in RPA, for the ground state correlations (Fig. 8.5).

Figure 8.4: Phonon coupling vertices.

= + +

+ ...

Figure 8.5: Ground state correlations in lowest order in the phonon-phonon interaction

The Hamiltonian can be diagonalized in the full space, yielding the eigenvectors

|Ψν〉 =
∑

nα

Cν
α|n ; α〉, (8.35)

where the basis states |n ; α〉 are given by Eq. (8.7). Using these wave functions, we can
compute the transition amplitudes of the one-body operator

M(λ) =
∑

kl

Mkl(λ)a†
kal , (8.36)

obtaining

M(λ, i → f) = 〈Ψνf
| M(λ) | Ψνi

〉 =
∑

niαinf βf

C(νi)
niαi

C
(νf )

nf βf
(8.37)

×
[∑

kλ

Mkλ
(λ)

(
δni,(nf−1)X

(βf )

λαi
(nf ) + δni,(nf+1)X

(αi)
λβf

(ni)
)

+ δni,nf

∑

rs

Mrs(λ)ρ
(ni)
αiβf

(rs)
]

,

where

Mkλ
(λ) = 〈ψkλλ | M(λ) | 0〉 =

∑

ph

ckλλ(ph)Mph(λ) , (8.38)

are the TDA transition amplitudes and Mrs(λ) = 〈s|M|s〉 is the particle-particle or hole-hole
transition matrix elements.
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8.2 EMPM in the quasi-particle formalism

In order to extend the method to open shell nuclei, we move from the the particle-hole (ph)
to the quasiparticle (qp) formalism by making use of the Bogoliubov transformation. The
transformed Hamiltonian becomes

H = H0 + H11 + H22 + H31 + H40 + H13 + H04 , (8.39)

where

H11 =
∑

k

Ekα
†
kαk ,

H22 =
∑

k1k2k3k4

H22
k1k2k3k4

α†
k1

α†
k2

αk4
αk3

,

H31 =
∑

k1k2k3k4

H31
k1k2k3k4

α†
k1

α†
k2

α†
k4

αk3
,

H40 =
∑

k1k2k3k4

H40
k1k2k3k4

α†
k1

α†
k2

αk4
α†

k3
. (8.40)

The remaining terms H13 and H04 are Hermitian conjugates of H31 and H40, respectively. The
first term is the quasiparticle one-body operator with energies Ek. The other pieces are given
by (k1 < k2, k3 < k4)

H22
k1k2k3k4

= Vk1k2k3k4

[
uk1

uk2
uk3

uk4
+ vk1

vk2
vk3

vk4

]
− Vk1k̄3k̄2k4

[
uk1

vk2
vk3

uk4
+ uk2

vk1
uk3

vk4

]

−Vk1k̄4k̄2k3

[
uk1

vk2
uk3

vk4
+ uk2

vk1
vk3

uk4

]
,

H31
k1k2k3k4

= Vk1k2k3k̄4
uk1

uk2
uk3

vk4
−

1

2

[
Vk1k̄3k̄2k̄4

uk1
vk2

vk3
vk4

− Vk2k̄3k̄1k̄4
uk2

vk1
vk3

vk4

]
,

H40
k1k2k3k4

= Vk1k2k̄3k̄4
uk1

uk2
vk3

vk4
. (8.41)

As in the ph formalism, we start from the equations of motions

〈n ; β|
[
H,O†

λ

]
|n − 1 ; α〉 =

(
E

(n)
β − E(n−1)

α

)
Xβ

λα(n) , (8.42)

where the TDA phonon operators are now

O†
λ =

∑

r<s

cλ
rsα

†
rα

†
r . (8.43)

By following a procedure analogous to the one adopted for the ph case, we get the eigenvalue
equations

∑

λ′γλ”γ′

A(λα, λ′γ)Dβ(λ′γ, λ”γ′)Cβ
λ”γ′ = Eβ

∑

λ′γ

Dβ(λα, λ′γ)Cβ
λ′γ , (8.44)

where

A(λα, λ′γ) = (Eλ + Eα)δλλ′δαγ +
∑

rs

Vλλ′(rs)ρ(n−1)
αγ (rs) . (8.45)

The phonon-phonon two-body potential has the expression

Vλλ′(rs) =
∑

i<j,l<m

cλ(ij)cλ′(lm)ρλλ′(rs)
[
δrjV(lmsi) − δriV22(lmsj)

]
, (8.46)
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where

V(lmij) = Vlmij

[
uiujulum + vivjvlvm

]

−Vl̄im̄j

[
viujulvm + vjuiumvl

]
+ Vlj̄m̄i

[
vjuiulvm + viujumvl

]
. (8.47)

The above eigenvalue equations are solved iteratively to generate the n-phonon (n = 1, 2, · · · )
basis states. These are used to compute the phonon-phonon coupling terms.

In this case, the matrix elements between n and (n − 1)-phonon states are given by

Hαn−1βn
= 〈n; β|H |n − 1; α〉 = 〈n; β|H31 |n − 1; α〉 =

=
∑

λγ

Hαγ(λ)X
(n)
γβ (λ), (8.48)

where

Hαγ(λ) =
∑

r<sqt

H
(31)
rsqtcλ(rs)ρ

(n−1)
αγ (tq) , (8.49)

and

H
(31)
rsqt = Vrsqt̄urusuqvt −

1

2

[
Vrq̄s̄t̄urvsvqvt − Vsq̄r̄t̄usvrvqvt

]
. (8.50)

The matrix elements between n and (n − 2)-phonon states have instead the simple form

Hαn−2βn
= 〈n; β |H |n − 2; α〉 = 〈n; β |H40 |n − 2; α〉 =

=
∑

λλ′γ

V(λλ′) X
(n)
γβ (λ) X(n−1)

αγ (λ′) , (8.51)

where

V(λλ′) = −
∑

r<sq<t

H40
rsqtcλ(rs)cλ′(qt) , (8.52)

and

H40
rsqt = Vrsq̄t̄urusvqvt . (8.53)

Now, the full Hamiltonian can be diagonalized yielding eigenstates of the form (8.35). These
wavefunctions can be used to compute the transition amplitudes

M(λ, i → f) = 〈Ψνf
| M(λ) | Ψνi

〉

=
∑

ninf αiβf

C(νi)
niαi

C
(νf )

nf βf
〈nfβf |Mλ|niαi〉 , (8.54)

of the one-body operator

M(λ) =
∑

kl

Mkl(λ)a†
kal . (8.55)

This operator, expressed in terms of qp operators, becomes

M(λ) =
∑

kl

Mkl(λ)
(
ukvlα

†
kα

†

l̄
+ vkulαk̄αl

)

+
∑

kl

Mkl(λ)
(
ukulα

†
kαl + vkvlαk̄α

†

l̄

)
. (8.56)
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After some algebraic manipulations, analogous to the ones made in the ph scheme, we obtain

M(λ, i → f) =
∑

aniαiβf

C(νi)
niαi

[
M0a(λ)C

(νf )

ni+1βf
X

(ni+1)
αiβf

(λ) −Ma0(λ)C
(νf )

ni−1βf
X

(ni)
βf αi

(λ)
]

+
∑

niαiβf

C(νi)
niαi

C
(νf )

niβf

∑

rs

Mrs(λ)
(
urus − τvrvs

)
ρ

(ni)
αiβf

(rs) . (8.57)

The structure is quite similar to the transition amplitudes 8.38 derived for the ph phonons.

8.3 EMPM in the coupled scheme

The eigenvalue equations keep a simple form even when we move to the coupled j − j scheme.
In such a scheme we have

H = H0 + V , (8.58)

where

H0 =
∑

r

[r]1/2ǫr

(
a†

r × br

)0

, (8.59)

V = −
1

4

∑

ijklΓ

[Γ]1/2V Γ
rsqt

[(
a†

r × a†
s

)Γ

×
(
bq × bt

)Γ]0

, (8.60)

where [Γ] = 2Γ + 1 = (2JΓ + 1) and

V Γ
rsqt = 〈qt, Γ|V |rs, Γ〉 − (−)r+s−Γ〈qtΓ|V |sr, Γ〉 . (8.61)

It is useful to write the two-body potential in the recoupled form

V =
∑

r<sq<tσ

[σ]1/2F σ
rsqt

[(
a†

r × bs

)σ

×
(
a†

q × bt

)σ]0

, (8.62)

where

F σ
rsqt =

∑

Γ

[Γ](−)r+t−σ−ΓW (rsqt; σΓ)V Γ
rqst , (8.63)

and W (rsqt; σΓ) are Racah coefficients.
We discuss only the method in the quasiparticle formalism, which contains the particle-hole

scheme as a particular case. We, then, start with the equations of motion

〈n, β |

{[
H,O†

λ

]
× | n − 1, α〉

}β

=
(
E

(n)
β − E(n−1)

α

)
〈n, β |

{
O†

λ× | n − 1, α〉

}β

. (8.64)

The qp phonon operator is now

O†
λµ =

∑

rs

cλ
rsζrs(α

†
r × α†

s)
λ
µ, (8.65)

where ζrs = [1 + δrs]
1/2. Using the Wigner Eckart theorem, we get

〈n, β ‖ [H,O†
λ] ‖ n − 1, α〉 =

(
E

(n)
β − E(n−1)

α

)
〈n, β ‖ O†

λ ‖ n − 1, α〉. (8.66)
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The procedure to be followed is similar to the uncoupled case. It is, however, more involved
since one has to make a massive use of the Racah algebra. The final result is the eigenvalue
equation

∑

λ′γλ”γ′

A(λα, λ′γ)Dβ(λ′γ, λ”γ′)Cβ
λ”γ′ = Eβ

∑

λ′γ

Dβ(λα, λ′γ)Cβ
λ′γ , (8.67)

where

A(λα, λ′γ) = (Eλ + Eα)δλλ′δαγ +
∑

σ

W (βλ′ασ; γλ)Vσ
λα,λ′γ . (8.68)

The phonon-phonon potential is given by

Vσ
λα,λ′γ =

(π)∑

at

Vσ
λλ′(at)ραγ([a × t]σ)) , (8.69)

where

Vσ
λλ′(at) = −[λλ′σ]1/2(−)λ+λ′+σ

∑

abrs

W (λ′bσa; tλ)ζabζrsc
λ
abc

λ′

rsV
λ′

rstb , (8.70)

and

Vλ′

rstb = V λ′

rstb

(
urusutub + vrvsvtvb

)

+ F λ′

rstb

(
urvsvtub + vrusutvb

)
− (−)t+b−λ′

F λ′

rsbt

(
urvsutvb + vrusvtub

)
, (8.71)

and the metric matrix is given by

D(β)(αλ; α′λ′) =
[
〈n − 1, α′ | ×Oλ′

]

(α′λ′)β

[
O†

λ× | n − 1′α〉
]

(αλ)β

= δλλ′δαα′ +
∑

γ

W (α′λλ′α; γβ)Xα
γλ′(n − 1)Xα′

γλ(n − 1)

− (−)α+β+λ
∑

σ

W (λ′λα′α; σβ)
∑

rs

ρ
(τ)
λλ′

(
[r × s]σ

)
ρ

(τ)
α′α

(
[r × s]σ

)
(n−1)

,

(8.72)

The n-phonon density matrices (n > 1) in this formalism take the form

ρ
(n)
αα′

(
[r × s]σ

)
= 〈n; α′ ‖

[
α†

r × βs

]

σ
‖ n; α〉

= [α]1/2
∑

λλ′γ

ρλλ′

(
[r × s]σ

)
W (α′σγλ; αλ′)C

(α)
λγ (n) X

(α′)
λ′γ (n)

+[α]1/2
∑

γγ′λ

(−)α−α′+γ−γ′

W (α′σλγ; αγ′)C
(α)
λγ (n) X

(α′)
λγ′ (n)ρ

(n−1)
γγ′

(
[r × s]σ

)
. (8.73)

In case of n = 1, we clearly have the simplified expression

ρλλ′([r × s]σ) = 〈λ′ ‖
(
α†

r × βs

)σ

‖ λ〉

= [λλ′σ]1/2
∑

t

ζ−1
ts cλ

tsζ
−1
tr cλ′

trW (λ′tσs; rλ). (8.74)
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We have now all the ingredients to solve the eigenvalue equations (8.67) for the n-phonon
subspace and, therefore, to generate the multiphonon basis in the qp j − j coupled scheme.

In order to complete the program of solving the eigenvalue problem in the full multiphonon
space, we have to compute the matrix elements between phonon states with different numbers
of phonon. For the (n − 1)-n coupling we have

Hαn−1βn
= 〈n; β|H |n − 1; α〉 =

= [β]−1
∑

σγ

(−)β+γ+σVσ
αγX

(β)
σγ (n) , (8.75)

where

Vσ
αγ =

∑

tq

Vσ
tq(π)ρ(n−1)

αγ ([t × q]σ) , (8.76)

and

Vσ
tq(π) =

(π)∑

rs

cσ
rs(π)ζrsV

σ
rstq

(
urusvtuq − vrvsutvq

)
. (8.77)

The (n − 2)-n coupling term is given also in this case by a simpler formula

〈n, β|H|n − 2, α〉 = [β]−1
∑

iσkσσγ

(−)β+γ+σXβ
(iσσ)γ(n)Xγ

(kσσ)α(n − 1)Vσ(iσkσ) , (8.78)

where

Vσ(iσkσ) =
π∑

rstq

ζrsζtqV
σ
rstqc

iσ
rsc

kσ
tq urusvtvq . (8.79)

Now, the full Hamiltonian matrix can be constructed and brought to diagonal form. The
eigenstates have the same form as in the m−scheme, namely

|Ψν〉 =
∑

nα

Cν
α|n ; α〉, (8.80)

to be used for the calculation of the transition amplitudes.
In the coupled scheme the one-body operator has the form

M(λµ) =
1

[λ]1/2

∑

rs

〈r ‖ Fλ ‖ s〉
[
a†

r × bs

]

λµ
, (8.81)

which, in terms of qp, becomes

M(λµ) = −
1

[λ]1/2

∑

r≤s

〈r ‖ Fλ ‖ s〉(urvs + τusvr)ζ
2
rs

[
α†

r × α†
s

]

λµ

+
1

[λ]1/2

∑

r≤s

〈r ‖ Fλ ‖ s〉(vrus + τurvs)ζ
2
rs

[
βr × βs

]

λµ

+
1

[λ]1/2

∑

rs

〈r ‖ Fλ ‖ s〉(urus − τvrvs)
[
α†

r × βs

]

λµ
.

(8.82)

73



Making use of the expression (8.80) of the total wavefunction, we obtain the transition ampli-
tudes

〈fJf ‖ M(λ) ‖ iJi〉 =
∑

niβinf βf

C
(f)
Jf

(nfβf )C
(i)
Ji

(niβi)〈nf ; βfJf ‖ M(λ) ‖ ni; βiJi〉 , (8.83)

where

〈nf ; βfJf ‖| M(λ) ‖ ni; βiJi〉 = [λ]−1/2

×
[
δnf ni

∑

rs

〈r ‖ M(λ) ‖ s〉(urus − τvrvs)ρ
(ni)
βiβf

([r × s]λ)

+
∑

k

M(kλ)

(
δnf (ni+1)X

(nf )

βiβf
(kλ) + δnf (ni−1)(−)Jf−Ji+λX

(ni)
βf βi

(kλ)
)]

, (8.84)

and

M(kλ) = 〈kλ ‖ M(λ) ‖ 0〉 =

=
∑

r≤s

c
(βf λ)
rs 〈r ‖ Fλ ‖ s〉ζrs(urvs + τusvr) , (8.85)

are the TDA transition amplitudes.
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Chapter 9

Numerical implementation

In this chapter, the practical implementation of the Equation of Motion Phonon Model method
is presented. We will work in the j − j coupled scheme, and will refer to the formulas in the
quasiparticle formalism. In fact, the ph expressions can be seen as a particular case of qp ones.

The calculation goes through several steps. First, one has to perform the following prelim-
inary operations :

i. Solve the TDA eigenvalue equations (7.20) ( n = 1) and obtain the eigenvalues Eλ and the
eigenstates | λ〉 in terms of the expansion coefficients cλ(ph).

ii. Compute the density matrix ρλλ′(kl) using Eq. (8.74).

iii. Compute the matrix elements of the renormalized interaction Vλλ′ given by Eqs. (8.70).

The quantities Eλ, ρλλ′(kl) and Vλλ′ are the input for the iterative procedure.

for n = 2, 3, · · ·

i. Using ρ(n−1) and X(n − 1), compute the metric matrix D of Eq. (8.72).

ii. Perform the Cholesky decomposition of D, to extract the linear independent O†
λ|(n − 1), α〉

states, and the corresponding reduced metric matrix, Dn.

iii. Using Eλ, ρ(n−1) and V , compute the matrix A (8.68).

iv. Construct the inverse matrix D−1
n and perform the matrix multiplication D−1

n (AD)n.

v. Solve the generalized eigenvalue problem (8.29) for the n-phonon subspace.

vi. Compute the density matrix ρ(n) through Eq. (8.73).

end n

It must be stressed that no approximations have been made in generating such a multi-
phonon basis. On the other hand, the number of redundant states increases very rapidly with
the number of phonons. Though eliminated at the end of the process, they enter in the recur-
sive formulas defining the different quantities contained in the matrices A and D. This has the
effect of slowing down considerably the procedure if we keep all the basis states. One possibility
for a future development of the method is to investigate whether only the most collective TDA
phonons | λ〉 contribute, in order to truncate severely the dimension of the other n-phonon
subspaces.

Once generated, the multiphonon basis can be used to complete the construction of the
Hamiltonian by computing the non diagonal matrix elements (8.75) and (8.78). The full Hamil-
tonian eigenvalue problem can then be solved, yielding the eigenvectors of Eq. (8.80)
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9.1 Spurious states

As in any microscopic approach, we have to face the problem of the occurrence of spurious
admixtures in the multiphonon basis induced by the center of mass (CM) motion. Moreover,
since we adopt the BCS quasiparticle formalism, we have to remove additional spuriosity due
the non conservation of the particle number.

9.1.1 Elimination of the center of mass motion

A longstanding and not entirely solved problem, appearing systematically in microscopic cal-
culations, is the removal of the center of mass (CM) motion. This problem was first studied by
Elliot and Skyrme in (113) and is caused by the SM mean field potential which breaks the trans-
lational invariance of the nuclear Hamiltonian. Thus the eigenstates of the SM Hamiltonian
contain in general spurious components of CM excitation.

Elliot and Skyrme have shown that the problem is solvable exactly if, in a SM calculation,
the unperturbed Hamiltonian H0 is a purely harmonic oscillator Hamiltonian (113). In such a
case one can easily decompose H0 into an intrinsic and a CM pieces

H0 = Hintr + HCM , (9.1)

where

Hintr =
∑

ij

[
1

2mA
(~pi − ~pj)

2] +
1

2
mAω2

∑

ij

(~ri − ~rj)
2 ,

HCM =
~P 2

2Am
+

1

2
mAω2 ~R2 . (9.2)

Thus, the eigenfunctions factorize as follow

Ψ(~q, ~R) = φintr.
µ (~q)φCM

N (~R) , (9.3)

where ~q stands for all the intrinsic coordinates. The physical states are the ones in which the
CM is kept in the ground state φCM

N (~R).
When we include the two-body part V of the nuclear Hamiltonian, we need to tag the CM

excited states. To this purpose, one considers the Hamiltonian

Hg = H + H(CM)
g , (9.4)

where
H = Hintr + V ,

H
(CM)
g = gH(CM) ,

(9.5)

and g is a positive number. The eigenvalue equation, for such an Hamiltonian, is

HΨνN =
[
H + H(CM)

g

]
ΨνN = EνNΨνN , (9.6)

with eigenvalues

EνN = Eν +
g

A
h̄ω

(
N +

3

2

)
, (9.7)

and eigenfunctions

ΨνN = ψνΦN . (9.8)
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For a sufficiently large value of g, the CM excited states are well separated in energy from those
corresponding to intrinsic excitations only. We can therefore keep only the states in which the
CM is in the ground state

Ψν0 = ψνΦ0 . (9.9)

This prescription was proposed by Palumbo (114) and applied by Glockner and Lawson (115)
to the Shell Model. The procedure, however, works only approximately when the spin-orbit
and l2 terms are added to the harmonic oscillator Hamiltonian.

Moreover, referring the SM basis states to a fixed frame, in order to get the factorization of
the wavefunction in the form given by Eq. (9.8) it is necessary to use a complete set of basis
states up to a given major shell N . If, for instance, we consider unperturbed excitations up
to 3-h̄ω, all SM states up to N = 3 must be included. Only the use of such a complete set of
states guaranties the factorization of the eigenstates into an intrinsic and a CM components.

This constraint is overcome in the EMPM, where the CM spurious mode can be disposed
of in the preliminary stage of TDA.

In TDA, in fact, the separation of the CM from the intrinsic motion is achieved, exactly in
light and approximately in heavy nuclei, no matter how large is the ph space. Let us, in fact,
express H

(CM)
g in terms of nucleon coordinates

H(CM)
g =

∑

i

h
(c.m.)
i +

∑

i<j

v
(c.m.)
ij , (9.10)

where

h
(c.m.)
i =

1

2mc.m.

p2
i +

1

2
mc.m.ω

2
c.m.r

2
i , (9.11)

v
(c.m.)
ij =

1

mc.m.

pi · pj + mc.m.ω
2
c.m.ri · rj , (9.12)

having defined

mc.m. =
A

g
m , ωc.m. =

g

A
ω . (9.13)

The first piece (9.11) is a one-body term which renormalizes the single-particle energies and can
be ignored. The second one (9.12) is a separable dipole-dipole potential. The corresponding
TDA matrix is then

A(ph; p′h′) = [ǫp − ǫh] δhh′δpp′ + Vp′h̄h̄′p + V
(g)

p′h̄h̄′p
,

(9.14)

where

V
(g)

p′h̄h̄′p
= 2

g − 1

A
mω2

∑

µ

[
〈p | xµ | h̄〉〈h̄′ | xµ̄ | p′〉 − 〈p | xµ | p̄′〉〈h̄′ | xµ̄ | h̄〉

]
. (9.15)

The above formula shows that the dipole operator can couple only 1-h̄ω ph states in the direct
channel. The exchange term contributes only in the presence of spin-orbit intruders. Thus, in
light nuclei, the ph states of energy higher than 1-h̄ω are not affected by the CM Hamiltonian.

In heavy nuclei, few ph states can be coupled by the exchange terms. Thus, in these nuclei,
the removal of the CM motion, according to the prescription outlined above, can be achieved
only approximately.

On the other hand, at the level of Tamm-Dancoff, one can resort to a simpler method, which
is valid in general. Let us observe, in fact, that in TDA the center of mass wavefunction has
the structure

Φ1 = N ~R|0〉 , (9.16)
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where N is a normalization factor. We can therefore construct a ph basis orthogonal to the
spurious component, Φ1, with the Gram-Schmidt procedure. Passing to this base, we obtain
TDA phonons not contaminated by the CM motion. This states will be used in building the
multiphonon states of the EMPM, which thereby result free of CM spuriosity.

The extent of CM contaminations can be quantified computing the strength

B(R) = | < λ|Φ1 > |2 = N 2| < λ|~R|0 > |2 . (9.17)

This quantity is plotted in Figs. 9.1, for TDA calculation in 20O. When the CM motion is
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Figure 9.1: Center of mass translational strength in a TDA calculation for 20O.

not removed, one gets a huge peak corresponding to the excitation of the CM and other small
peaks whose height gives an indication of the CM contamination in each TDA state. These
spurious peaks disappear when the CM is removed by one of the mentioned prescriptions.

The CM motion can be removed also in RPA, if a HF basis is adopted (72). In such a
case, in fact, the CM mode fall at zero energy and, therefore, can be removed. It is to be said,
however, that the CM energy goes to zero only if a huge ph space is adopted (116), which is
not the case in most calculations. It is then safer to resort to the mentioned methods even in
RPA.

9.1.2 Removal of the number operator spuriosity

The Gram-Schmidt orthogonalization procedure has been also adopted to eliminate the spu-
rious admixtures originated from the breaking of the number of particle symmetry. The BCS
quasiparticle vacuum is not an eigenstate of the particle number operator n̂ =

∑
i a

†
iai. It

follows that n̂ couples the TDA two-quasiparticle basis states to the BCS vacuum. In order to
eliminate this contamination we construct the normalized spurious state

|Φ0〉 =
1

N0

n̂|0〉 =
1

N0

∑

a

CaA
†(aa0)|0〉 =

1

N0

∑

a

Ca|a
20〉 , (9.18)

where

|a20〉 =
1

(2)1/2

(
α†

a × α†
a

)J=0
|0〉 , (9.19)

are the two-quasiparticle states coupled to J = 0, N0 is the normalization constant and

Ca = (2(2a + 1))1/2 uava . (9.20)
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We use a Schmidt orthogonalization to generate n− 1 {|Φi〉} states, orthogonal to the spurious
component, |Φ0〉

|Φ0〉 = 1
N0(1)

∑n
i=1 Ci|a

2
i 0〉 ,

|Φ1〉 = 1
N0(1)N0(2)

[N2
0 (2)|a2

10〉 −
∑n

i=2 C1Ci|a
2
i 0〉] ,

|Φ2〉 = 1
N0(2)N0(3)

[N2
0 (3)|a2

20〉 −
∑n

i=3 C2Ci|a
2
i 0〉] ,

· · · = · · · ,

|Φn−1〉 = 1
N0(n−1)N0(n)

[
N2

0 (n)|a2
n−10〉 − Cn−1Cn|a

2
n0〉

]
,

(9.21)

with

N0(k) =

(
n∑

i=k

C2
i

)1/2

. (9.22)

As for the CM case, the states belonging to this base are free of spuriosity and allows the
construction of multiphonon states which are not contaminated. Even here, a quantitative
estimate of the qp spurious admixtures is provided by the strength

B(N) = | < λ|n̂|0 > |2 , (9.23)

which has several peaks corresponding to the TDA basis states, if the spuriosity is not removed.

9.2 Nuclear response to external fields

The properties of collective modes can be investigated through the nuclear response to external
probes. To this purpose it is useful to compute the strength functions

S(Eλ, ω) =
∑

ν

Bν(Eλ) δ(ω − ων)

≈
∑

ν

Bν(Eλ) ρ∆(ω − ων), (9.24)

where ω is the energy variable, ων the energy of the transition of multipolarity Eλ from the
ground to the νth excited state Ψ

(ν)
λ of spin J = λ, and

ρ∆(ω − ων) =
∆

2π

1

(ω − ων)2 + (∆
2
)2

, (9.25)

is a Lorentzian of width ∆, which replaces the δ function as a weight of the reduced transition
probability

Bν(Eλ) =
∑

µ

|〈Ψνλµ|M(Eλµ)|Ψ0〉|
2 . (9.26)

For all the Eλ transitions, we adopt the standard multipole operator

M(Eλµ) =
e

2

A∑

i=1

(1 − τ i
3)r

λ
i Yλµ(r̂i) , (9.27)

where τ3 = 1 for neutrons and τ3 = −1 for protons.
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It may be also useful in some cases to compute the running sums

Σ
(N)
0 (Eλ) =

N∑

i=1

Bνi
(Eλ),

Σ
(N)
1 (Eλ) =

N∑

i=1

(Ei − E0)Bνi
(Eλ). (9.28)

In the limit N → ∞, the two sums define the m0(Eλ) and m1(Eλ) momenta. They are just
the non-energy and energy-weighted sums of the Eλ operator.

For a Hamiltonian which does not contain momentum dependent and exchange potentials,
the following standard formula (72; 74) holds

SEW (Eλ) =
1

2

∑

µ

〈[M†(Eλµ, τ), [H,M(Eλµ, τ)]]〉

=
λ(2λ + 1)2

16π

h̄2

2m
A〈r2λ−2〉 . (9.29)

For the dipole operator, the above formula yields

SEW (E1) =
9

16π

h̄2

2m
A , (9.30)

which is the well known Thomas-Reiche-Kuhn sum rule for N=Z nuclei. For a generic multipole,
if constant density and sharp surface are assumed, we get

〈rn〉 =
3

3 + n
Rn , (9.31)

with R = 1.2A1/3. Thus, the EWSR is practically insensitive to ground state correlations.
Because of this property, it is often consider a benchmark for many theoretical and experimental
investigations.

9.3 Application of the EMPM to nuclear collective ex-

citations

Our calculations will focus mainly on the study of the giant dipole resonance (GDR). This is
the most famous and most studied nuclear resonance observed in all nuclei. It appears as a
large hump of width ∼ 5 MeV around a main peak (117; 118; 119). Its centroid lies at an
energy

E
(GR)

1− ∼ 79A−1/3. (9.32)

It has clearly an isovector character. In fact, Eq. (9.27) shows that the isoscalar component
of the dipole operator is just proportional to the CM coordinates. In the classical context
(120; 121), indeed, it originates from a translational oscillation of proton versus neutron fluids
(Fig. 9.2).

The GDR cross section is given by

σint =

∫ E1

E0

σ(ω)dω =
16π3e2

9h̄c

∫ E1

E0

ωS(E1, ω)dω , (9.33)
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Figure 9.2: GDR vibration : Schematic picture of the GDR in the Goldhaber and Teller model,
(120).

where ων are the E1 excitation energies. When integrated from E0 = 0 to E1 = ∞, σint may
be compared with the Thomas-Reiche-Khun (TRK) sum rule

σTRK = 60
NZ

A
(MeV mb) . (9.34)

The GDR exhausts more than 100 % of the TRK sum rule. The contribution in excess comes
from velocity dependent and exchange terms of the two-body nuclear potential.

In nuclei with neutron excess, a weaker resonance should appear around the neutron thresh-
old. This is called Pygmy dipole resonance (PDR) and is supposed to originate from a trans-
lational oscillation of the neutron skin against the core. The motion is illustrated in Fig. 9.3.

Figure 9.3: PDR interpretation as a translational oscillation of neutron skin against the core.

This is the picture proposed by the many theoretical investigations performed in recent
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years (see (122) for a review). Experiments on radioactive neutron-rich nuclei seem to support
this assumption and experimental investigations (123)-(129).

The interest of studying this excitation mechanism goes beyond the field of theoretical
nuclear structure physics. In fact, it has been pointed out that a systematic appearance of
low-lying dipole strength in neutron-rich nuclei may affect the estimate of element abundances
in the r-process of the nucleosynthesis (130).

The EMPM is an ideal tool for testing the proposed interpretation of the phenomenon. It
can ascertain if the mode comes from the ph dipole channel only or gets contribution also from
more complex excitations.

We will use the EMPM in the ph formalism to study the GDR in the double-magic 16O.
We will then adopt the same method in its quasiparticle version to study both the GDR and
the PDR in the neutron rich nuclei 18−22O.

9.3.1 GDR in 16O

16O was already studied within the EMPM in its old version (131). Here it is used as a testing
ground for the new formulation of the method.

In spite of being double magic, in fact, this nucleus has a very complex structure and rep-
resents an ideal benchmark for testing nuclear models. Shell model and mean-field calculations
describing its properties were performed already in the sixties (132; 133). It was shown that
treating the low-lying parity states as 4p − 4h deformed configurations qualitatively explains
the observed energy spectrum.

Useful information on the phonon structure of the states in 16O was provided by Feshbach
and Iachello in a schematic approach based on the interacting Boson model (134; 135).

The first large scale SM calculation was performed by Haxton and Johnson (136) in a SM
space including excitations up to 4h̄ω. They pointed out the crucial role of 2p−2h and 4p−4h
configurations in the low lying spectrum and the extreme importance of the coupling between
the vacuum and the 2p − 2h configurations as well as between 2p − 2h and 4p − 4h subspaces.
The importance of neglecting the monopole self-energy terms was stressed by Warburton and
Brown (137).

Recently, the SM space was enlarged so as to include 6p − 6h states in a no core SM
calculation of the ground state only(138).

The importance role played by 3p − 3h on the low-lying negative parity levels in 16O was
stressed by a calculation carried out within the old version of the EMPM (90; 131).

Here, our EMPM calculations will focus on the study of the giant dipole resonance (GDR).
This has been studied recently in the second RPA (139) using a density dependent Skyrme
potential.

We will investigate the effect of the coupling of this mode to complex configurations de-
scribed by multiphonon states. The crucial importance of taking explicitly into account the
ground state correlations will be pointed out. We will also show how our results compare with
the experiments.

We will use realistic two-body potentials, like a Brueckner G-matrix derived from the
CD-Bonn NN potential, or a Vlowk

derived from several NN interactions. We threat the Hamil-
tonian in both Nilsson and HF bases. The configuration space used includes up to the (p, f)
shells. The number of states increases very rapidly as we increase the number of phonons.
Thus, while keeping all two-phonon states, we were forced to truncate the n = 3-phonon space
by keeping all the states up some maximum energy value.

When the Nilsson basis is adopted, the TDA strength is peaked around ∼ 22 MeV, in
agreement with experiments. The strength distribution does not change in going from the
TDA to the multiphonon spaces(Fig. 9.4). The strength, however, is pushed up in energy
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by ∼ 16 MeV if the two-phonon space is added. It is shifted again downward when we include
the n = 3-phonon states. The downward shift increases as we bring the energy-cut threshold
from 25 to 30 MeV. In order to determine the complete shift we should go further and include
all n = 3-phonon states. This, however, would require too long computing time.

If we shift downward the energy of the peaks by hands, we get a cross section in good
agreement with experiments (Fig. 9.5).
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Figure 9.4: E1 strength function calculated using a Nilsson basis in 16O. The calculations for
the 3-phonon space have been done with two different energy treshold. The observed energy
shift is discussed in the text.

If a HF basis is adopted, the E1 response gets considerably more fragmented already at the
TDA level, as shown in Fig. 9.6. The peak, however, is several MeV above the experimental
one. The phonon coupling is much weaker than in the Nilsson basis. In fact, the n = 2-phonon
space pushes further up the peaks by ∼ 5.5 MeV only, while n = 3-phonon states bring the
strength back to the TDA energies. The net result is that the GDR remains centered around
∼ 30 MeV, well above the experimental peak.

The mechanism responsible for this energy shifts can be understood if we have in mind that
the coupling between the spaces differing by two phonons is much stronger than the one between
spaces differing by one-phonon. This implies that the ph vacuum |0〉 is strongly coupled to the
|n = 2, α〉 two-phonon states, the one-phonon states |λ〉 couple strongly to the three-phonon
states |n = 3, α〉 and so on.

It follows that, if the space includes up to two-phonon states, only the ground state is
pushed down in energy while the one-phonon states are little affected. The one-phonon states
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are pushed down once the three-phonon states are included.

This hierarchy in the phonon coupling is also reflected in the phonon composition of the
total wavefunctions. As shown in Fig. 9.7, the ground state is dominantly composed of the
ph vacuum with a large two-phonon component (∼ 25%). The amplitudes of the n = 1 and
n = 3-phonon components are negligible.

If we consider the other two 0+
2 states, we observe that both of them have a dominant two-

phonon component. This couples strongly to the four-phonon states. Thus, in order to push
down the energy of the excited 0+ states toward the experimental energies we need to include
up to the n = 4-phonon subspace, at least. This is consistent with the results obtained in the
large scale shell model calculations by Haxton and Johnson (136).

Let us now look at the 1− excitation. From Fig. 9.8 one can see that the first two 1−

states, including the one corresponding to the strongest peak, have a dominant one-phonon
structure. This explains why the strength distribution is little affected by the multiphonon
states. Only the third one has a large three-phonon component suggesting a strong coupling
to the n = 5-phonon space.

9.3.2 E1 response in neutron rich O isotopes

The oxygen isotopic chain has been object of several investigations aiming at establishing the
neutron drip-line in this light region. In spite of theoretical calculations (140; 141), which
predicted the stability of 26O and 28O, the neutron drip line was shown to be located at A = 24
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Figure 9.6: E1 strength function calculated using a HF basis in 16O.

(142; 143).

Among the studies focused on the oxygen isotopes, few of them were devoted to the E1
response. Their goal was to investigate how the energy distribution of the E1 strength evolves
as the number of valence neutrons increases. Special effort was paid to the search of low-energy
peaks around the neutron threshold and to their characterization.

An experiment was performed in Ref. (144), where the dipole response of the 18−22O up
to an excitation energy of 30 MeV was investigated. It was found that, in all neutron-rich
oxygen isotopes investigated, the dipole strength appears to be strongly fragmented with a
considerable fraction observed at energies lower than ∼ 15 MeV, therefore well below the giant
dipole resonance. This is in contrast to the dipole response of stable nuclei, where the giant
dipole resonance is localized at excitation energies of 20÷30 MeV. This low-lying strength was
found to exhaust a sizable fraction of the classical sum rule, up to 12%, and was associated to
the pygmy resonance.

Theoretical calculations were carried within the shell model framework by Sagawa and
Suzuki (145), and in a QRPA plus phonon coupling by Coló and Bortignon (146). In both
approaches, the configurations excluded by the QRPA space were found to enhance strongly
the fragmentation of the E1 strength. It was also shown that several low-energy peaks appear
and should correspond to the pygmy resonance.

There are valid theoretical reasons why, in nuclei with neutron excess, configurations ex-
cluded by the 1p−1h space should enhance the fragmentation of the GDR and affect the pygmy
resonance. In these nuclei, in fact, the positive parity phonons, like the quadrupole mode, fall
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Figure 9.7: Phonon composition for the ground state and two excited 0+ states.

at very low energy. They arise from 0h̄ω two quasiparticle excitations, in contrast to 16O,
where the positive parity phonons are promoted by 2h̄ω 1p− 1h excitations. These low-energy
mode couple to the 1h̄ω negative parity phonons generating two-phonon 1− states of energy
comparable to the the energy of the GDR peaks. In particular, the coupling between octupole
and quadrupole phonons may generate two-phonon states which fall in the same energy region
of pygmy resonance.

It is, therefore, of great interest to apply our EMPM to the neutron-rich oxygen isotopes,
(147) . Dealing with open shell nuclei we have to use the qp formulation of the method, where
the TDA phonons are composed of two-quasiparticle states. The TDA phonons were generated
in a configuration space which includes the (0p, 1s, 0d) shells. The negative parity phonons
generated in this space are built of 1h̄ω 1p − 1h excitations, while the main components of
the positive parity phonons are the 0h̄ω neutron two-quasiparticle states. These are the main
ingredients which should be sufficient to provide a realistic characterization of the E1 response.
We have checked, indeed, that the TDA E1 response is insensitive to the dimensions of the
configuration space.

Figs. 9.9 shows for 18O the E1 reduced strengths computed in TDA and in EMPM. One
may notice the extremely strong quenching and fragmentation of the strength once the n = 2-
phonon space is added. The impact of the n = 3-phonon space is milder, though not negligible.
Analogous results are obtained for 20O (Figs. 9.10)and 22O(Figs. 9.11).

From inspecting the above figures, one may notice that the giant resonance gets more spread
as we move from 18O to 22O. In particular, low-lying peaks appear and become more pronounced
in the most rich neutron isotopes.

Figs. 9.12-9.14 show the evolution of the E1 cross section with the number of phonons and
the number of neutrons. Once again, we observe that the spreading of the resonance increases
very much as the n = 2-phonon space is added to the TDA phonons, while the three-phonons
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Figure 9.8: Phonon composition for three excited 1− states.

have a considerably less important role. The situation is completely reversed as compared to
the case of 16O. Let us investigate the reason of such a strongly contrasting behavior. In 16O, the
negative parity n = 3-phonon states are built of three 1h̄ω negative parity TDA phonons, while
the n = 2-phonon states of the same negative parity are composed of 1h̄ω negative parity plus
a 2h̄ω positive parity phonons. Thus both n = 2 and n = 3-phonon states have approximately
the same ∼ 3h̄ω energy. On the other hand, the n = 3-phonon phase space is much larger and
couples much more strongly to the n = 1-phonon space. This explains the strong impact of the
three-phonon states on the E1 response in 16O.

In neutron rich oxygen isotopes, instead, the dominant positive parity phonons are composed
of the ∼ 0h̄ω neutron two-quasiparticle states and, therefore fall at very low energy. When
coupled to the lowest negative parity phonons composed of ∼ 1h̄ω 1p−1h states, a two-phonon
negative parity phonon of about the same ∼ 1h̄ω 1p−1h energy is formed. They get, therefore,
easily admixed with the negative parity 1− phonons. The three phonon states, so important in
16O, are at much higher energy ∼ 3h̄ω and, therefore are much less effective.

As already mentioned, as the excess of neutrons increases, low-lying peaks appear and get
more pronounced. They are candidates for being pygmy resonance. To identify the nature of
the peaks, we have computed the transition densities. Figs.9.15 and 9.16 show these transition
densities for a high GDR peak and a low energy peak.

As shown in Figs.9.15, the proton and neutron transition densities are in opposition of phase
in all isotopes for a high energy peak. This clearly is part of the GDR.

For the low energy peaks in all Oxygen isotopes considered here, we notice from Figs.9.16
a neutron excess with respect to protons. This is an indication that these peaks describe a
pygmy resonance. The neutron excess is less pronounced in 22O. This is due to the neutron
sub-shell closure which inhibits the neutron diffuseness.
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Figure 9.9: TDA versus EMPM E1 reduced transition probabilities in 18O.
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Figure 9.10: TDA versus EMPM E1 reduced transition probabilities in 20O.
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Figure 9.11: TDA versus EMPM E1 reduced transition probabilities in 22O.
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Figure 9.12: TDA versus EMPM E1 cross section in 18O.
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Figure 9.13: TDA versus EMPM E1 cross section in 20O.
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Figure 9.14: TDA versus EMPM E1 cross section in 22O.
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Figure 9.15: E1 transition densities inducing a typical DGR peak.
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Figure 9.16: E1 transition densities inducing a typical PDR peak.
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Chapter 10

Conclusions

The two methods described in the present work, namely the SM algorithm and the EMPM,
are in many ways complementary. The SM algorithm applies to low-energy spectroscopy, the
EMPM is more suited to collective modes and, in particular, to giant resonances.

We have accomplished the first implementation of the SM algorithm in the uncoupled m-
scheme and proposed a new sampling for reducing effectively the dimensions of the shell model
space.

We have seen that the method allows to safely diagonalize Hamiltonian matrices of dimen-
sions of the order of N ∼ 108. Within these limits, the method yields an almost arbitrary
number of eigenvalues and eigenvectors. It can therefore be fruitfully applied to medium-heavy
nuclei not too far from the proton or the neutron shell closures.

An exampled was offered by 132Xe. We have provided a rather complete description of the
low lying spectroscopic properties of this nucleus. We have, in particular, tested the symmetry
of the low-lying states with respect to the exchange of protons versus neutrons through the
analysis of the E2 and M1 transitions.

We have also seen that the sampling procedure yields sequences of energy levels converging
rapidly to their asymptotic values even for Hamiltonian matrices of dimensions N ∼ 109. This
fast convergence has enabled us to generate a complete low-lying spectrum for 130Xe.

The convergence, however, deteriorates for the transition strengths, especially the M1 tran-
sitions, which are quite sensitive to small components of the wavefunctions. Because of this
poor convergence, we were not able to make reliable estimates of the electromagnetic transition
strengths for 130Xe. This establishes the limits of applicability of the algorithm in its present
formulation. There is, nonetheless, room for improvement.

One possible advance may come from a more rational and efficient exploitation of the
sparsity of the Hamiltonian matrix, which should reduce drastically the number of operations.
A procedure for achieving this improvement is under investigation.

A major step forward may be made by elaborating a parallel version of the implementation
code. This, however, requires a longer effort.

Concerning the other method, we have presented an upgraded formulation of the EMPM
which expresses all quantities only in terms of TDA phonons.

The outcome of the method is a set of eigenvalue equations which can be solved iteratively
to generate a basis of multiphonon states to be used for a final diagonalization of the residual
nuclear Hamiltonian.

As stressed previously, the method is free of approximations and includes explicitly correla-
tions in the ground state. It represents, therefore, a meaningful progress with respect to RPA
and its extensions, based on the quasiboson approximation.

We implemented the method in the particle-hole and the quasiparticle formalism, the first
suited to double magic nuclei, the second to open shell nuclei.
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In both cases, we solved the multiphonon eigenvalue problem in spaces that include all
states spanning up to the n = 3-phonon subspace. This is the first calculation, using a re-
alistic Hamiltonian, in which three-phonon states come into play. Previous approaches were
confined to two-phonon states only and, moreover, had to resort to more or less restricting
approximations.

The application of the method to the double magic 16O has unveiled the importance of
including the multiphonon states and of taking into full account the coupling between spaces
with different numbers of phonons. We have seen that such a coupling is especially effective
between spaces differing by two phonons.

Thus, for instance, the ground state gets strongly depressed due to the coupling to the
two-phonon space. This space does not affect the other levels, including the peaks of the DGR,
which, therefore, are pushed at too high energy with respect to the ground state. In order to
bring back the dipole peaks, it is necessary to include the three-phonon space.

The role of multiphonon states has emerged also from the quasiparticle EMPM applied to
neutron rich oxygen isotopes. A largely visible effect is the strong fragmentation of the dipole
resonance induced by the phonon coupling. We have also pointed out the appearance of low
energy peaks which have the properties typical of the pygmy resonance.

The EMPM study was confined to light nuclei. It can be easily extended to heavy nuclei if
the space is confined to one- plus two-phonons.

If, on the other hand, we intend to enclose more phonons into the scheme, we need to find a
reliable method for selecting the multiphonon states which contribute to energies and transitions
of interest. In other words, we need a reliable sampling for achieving a severe truncation of the
multiphonon space. This is the route we intend to follow in the immediate future.
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Appendix A

Matrix decomposition

Two classical matrix decomposition methods, namely the QR and Cholesky algorithm, are
briefly discussed in this appendix. The main reference for what is treated here is the book by
Wilkinson, (23).

The QR decomposition is used for solving the full eigenvalue problem of an Hermitean ma-
trix. The so-called QR diagonalization can be shown to be, between the methods for finding all
the eigenvalues and eigenvectors, the fastest. It has been used in the complete diagonalizations
needed from both the SM algorithm and the EMPM.

The Cholesky decomposition splits a real and symmetric matrix into a product of a lower
(upper) triangular matrix with its transpose, allowing a fast calculation of the matrix rank and
determinant. Its role is fundamental for extracting a linear independent set out of the EMPM
basis states.

A.1 QR decomposition

Consider a (n × n) matrix A. The QR methods writes A as the product of an orthogonal
matrix, Q, and an upper triangular matrix, R

A = QR . (A.1)

There are several known implementation of the QR decomposition. Here we discuss the pro-
cedure due to Householder, which is one of the most used in practical application. In this
approach, one considers the Householder reflection

P = I − 2wwT , (A.2)

where w is a real vector with euclidean norm ||w||2 = 1. The transformation implemented by
P is unitary and orthogonal, since

P2 = (I − 2wwT )(I − 2wwT )

= I − 4wwT + 4w(wTw)wT

= I , (A.3)

from which P = P−1, and because it is easily verified the relation P = PT .
The matrix P can be expressed as a function of a real vector u, not normalized

P = I −
uuT

H
, (A.4)

whit H defined by

H =
1

2
||u||2 . (A.5)
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The vector u can be chosen in such a way to have the product of a generic vector x by P giving
a result proportional to a vector of the natural basis, ei

Px = αei . (A.6)

In order to make u fulfilling the above relation, one has to impose the condition

αei = Px =

(
I − 2

uuT

uTu

)
x = x − u

2uTx

uTu
, (A.7)

that is

u = x − αei . (A.8)

Moreover, one can ask the transformation to preserve the norm, imposing to the coefficients
the condition α = ±||x||2, which means

u = x ∓ |x|ei . (A.9)

If x if a column of A, the multiplication by P nullifies all the elements but the i-th. It can
be demonstrated that with successive applications of the Householder reflectors the matrix A
converges to the form of A.1

The QR algorithm is an iterative direct diagonalization algorithm, due to Francis (43; 44),
which solves the full eigenproblem of a given matrix A, starting from its QR decomposition.
At the k-th step, the matrix is decomposed as a

A(k) = Q(k)R(k) . (A.10)

The next-step matrix, A(k+1), is then formed as

A(k+1) = R(k)Q(k) , (A.11)

which is equivalent to

A(k+1) = Q(k)TQ(k)R(k)Q(k) = Q(k)TA(k)Q(k) , (A.12)

given the orthogonality of Q(k).

It can be shown that the matrix elements under the main diagonal go to zero as

an
ij =

(λi

λj

)n

, (A.13)

where λi < λj. If one eigenvalue λi is next to λj, the convergence can be increased using the
split technique. This means that the algorithm is applied to the matrix A − kI, for which the
convergence goes like the ratio

λi − kn

λj − kn

. (A.14)

Moreover, one can demonstrate that the number of operations needed for the implementation
of the algorithm increases as O(n3).
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A.2 Cholesky decomposition

If a square matrix A is symmetric and positive definite, it can be decomposed more efficiently
using the Cholesky algorithm. This method decomposes the matrix as a product of a lower
triangular matrix, L, and its transpose, LT

A = LLT . (A.15)

Writing this equality in components, one finds that the diagonal elements of L have the structure

Lii =

(
aii −

i−1∑

k=0

L2
ik

)1/2

. (A.16)

Moreover, the off-diagonal elements can be calculated as

Lji =
1

Lii

(
aij −

i−1∑

k=0

LikLjk

)
. (A.17)

This decomposition is extremely stable from a numerical point of view.
Cholesky decomposition is often used for finding the matrix rank and determinant. In fact,

once the symmetric and positive definite matrix, A, has been decomposed, its determinant is
given by

det(A) = det(L) × det(LT ) , (A.18)

that is, from the product of the square of the diagonal term of L, (
∏

i Lii)
2.

The determinant can then be calculated on-line while doing the decomposition. If at the
(j +1)-th step of the decomposition the determinant is nullified, one has determined the matrix
rank r = j < n.
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Appendix B

Hartree-Fock

This appendix describes the mean field approach for the determination of the nuclear ground
state wave function.

The first section is devoted to discuss the Hartree-Fock (HF) theory. Borrowed from atomic
physics, this self-consistent field method is the basis for every mean-field based approach.

The second section introduces the quasi-particle formalism, and the generalization of the
method through the unitary Bogolyubov transformation.

B.1 Hartree-Fock theory

The Hartree-Fock procedure aims to find the best form for the mean-field potential, U , in which
the nucleons move as independent particle. This is achieved imposing on the energy expectation
to be stationary

δ〈φ|H|φ〉 = 〈δφ|H|φ〉 = 0 . (B.1)

The above equation can be written explicitly using the second quantized form of the Hamil-
tonian

H =
∑

ij

tijc
†
icj +

1

4

∑

ijkl

Vijklc
†
ic

†
jclck , (B.2)

where c†i (ci) are creation (annihilation) operators with respect to the nucleon vacuum, obeying
the anticommutation relations

{ci , cj} = 0 , {c†i , cj} = δij , (B.3)

tij are the single particle matrix elements of the kinetic operator, and Vijkl the antisymmetrized
matrix elements of the two-body potential

Vijkl = 〈ij|V |kl〉 − 〈ij|V |lk〉 , (B.4)

which fulfill the symmetry conditions

Vijkl = −Vjikl = −Vijlk = Vjilk . (B.5)

The following step is to define a new set of creation and annihilation operators by the
unitary transformation

a†
i =

∑

j

Dijc
†
j ,

∑

k

D∗
kiDkj = δij . (B.6)

Enforcing the variation with respect to the coefficient Dij, one obtains the HF eigenvalue
equations

tij +
∑

h

Vihjh = ǫiδij . (B.7)
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The iterative solution of the above equations yields the HF single particle energies (ǫi) and
eigenvectors. The generic Hartree-Fock Slater determinant φi can be written as

|φi〉 = |ν1, ν2 , . . . , νA〉 = a†
ν1
· · · a†

νA
|0〉 . (B.8)

For closed shell nuclei, the lowest eigenvalue of H0 is non degenerate and the corresponding HF
Slater determinant describes a configuration corresponding to the complete filling of the lowest
shells up to the Fermi surface. It is therefore convenient to define this state, denote by |〉, as
the particle-hole vacuum

ap|〉 = 0 ,

bh|〉 = a†
h|〉 = 0 , (B.9)

where p and h denote single particle states above and below the Fermi surface. Particle and
hole states are defined respectively as

|p〉 = a†
p|〉 ,

|h−1〉 = b†h|〉 = ah̄|〉 , (B.10)

where
aν̄ = (−1)jν+mνajν ,−mν

. (B.11)

The phase is required for the hole operator to transform as an irreducible spherical tensor (7).
In this self consistent HF basis, the Hamiltonian B.2 takes the form

H =
A∑

i

ǫia
†
iai −

1

2

A∑

ij

Vijij +
1

4

A∑

ijkl

Vijkl : a†
ia

†
jalak : , (B.12)

where the residual two-body interaction is written in normal order with respect to HF ground
state, |〉. The ground state energy is then given by the expectation value

E0 = 〈|H|〉 =
A∑

i

ǫi −
1

2

A∑

ij

Vijij . (B.13)

B.2 Quasi-particle and Hartree-Bogoliubov theory

The HF description is often not completely satisfactory, especially if one deals with open-shell
nuclei. The Hartree-Bogolyubov theory aims to go beyond the HF method, including explicitly
the correlations introduced by the residual interaction, while retaining the simplicity of the
independent particle model.

HB method introduces the generalized fermion creation (annihilation) operators, α†
ν (αν),

also called quasi-particle operators, defined by the unitary Bogoliubov transformations

αν = uνaν − vνa
†
ν̄ aν = uναν + vνα

†
ν̄

α†
ν = uνa

†
ν − vνaν̄ a†

ν = uνα
†
ν + vναν̄

αν̄ = uνaν̄ + vνa
†
ν aν̄ = uναν̄ − vνα

†
ν

α†
ν̄ = uνa

†
ν̄ + vνaν a†

ν̄ = uνα
†
ν̄ − vναν

, (B.14)

in which a barred suffix refers to the single-particle state

φjm̄ = (−1)j+mφj−m , (B.15)
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and the u and v factors are required to satisfy the normalization condition

u2
ν + v2

ν = 1 . (B.16)

Assuming |0〉 to be the bare-particle vacuum, the state

|0〉qp =
∏

ν>0

(
uν + vνa

†
νa

†
ν̄

)
|0〉 , (B.17)

can be proved to be the quasi-particle vacuum,

(uµaµ − vµa
†
ν̄)

∏

ν>0

(
uν + vνa

†
νa

†
ν̄

)
|0〉 = 0 . (B.18)

The HB method seeks a ground state wave function with the form B.17. The numerical value of
the parameters and the single particle wave functions are then determined in a self-consistent
way.

The state defined in B.17 is not made up of a defined number of particle. There is then, in
general, the need to introduce a redefined Hamiltonian H ′

H ′ = H − λn , (B.19)

where λ is a Lagrange multiplier chosen to ensure the correct value for the mean particle number

〈0|n|0〉qp = N0 . (B.20)

The λ parameter is a function of the number of particles, N0, and its value is given by the
variational condition

∂

∂N0

〈0|H ′|0〉qp = 0 , (B.21)

or

λ =
∂

∂N0

〈0|H|0〉qp , (B.22)

which identifies λ with the chemical potential.
Making use of the second quantized form of the Hamiltonian, Eq. (B.2), H ′ takes the form

H ′ =
∑

νν′

(tνν′ − λδνν′) α†
ναν′ +

1

4

∑

µνµ′ν′

Vµνµ′ν′α†
µα

†
ναν′αµ′ . (B.23)

Substituting Eq. (B.14) into the above equation, one obtains four terms for the transformed
Hamiltonian

H ′ = U + H11 + H20 + Vres , (B.24)

where U is constant, and

H11 ∼ α†α
H20 ∼ α†α† + αα
Vres ∼ α†α†α†α† + α†α†α†α + · · · + αααα

. (B.25)

The minimization of the energy expectation of the quasi-particle vacuum, 〈0|H ′|0〉qp , with a
direct calculation can be shown to be equivalent to require the term H20 to vanish. Generally
one also requires the term H11 to be diagonal, from which one finds

tνν′ +
∑

µ

Vµνµν′v2
µ = ǫνδνν′ , (B.26)
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a relation which is equivalent to the HF condition B.7. With this additional condition, the
expression for H20 becomes

H20 =
∑

ν

[
(ǫν − λ)uνvν −

1

2
∆ν(u

2
ν − v2

ν)

]
(α†

να
†
ν̄ + αν̄αν) , (B.27)

where delta, the gap parameter, is defined as

∆ν = −
1

2

∑

µ

Vµ̄µν̄νuµvµ . (B.28)

Imposing the H20 term to vanish

(ǫν − λ)2uνvν − ∆ν(u
2
ν − v2

ν) = 0 , (B.29)

together with the normalization and number conservation conditions, one finds the following
expressions for u and v

u2
ν =

1

2

(
1 +

ǫν − λ√
(ǫν − λ)2 − ∆ν

)
, v2

ν =
1

2

(
1 −

ǫν − λ√
(ǫν − λ)2 − ∆ν

)
, (B.30)

and consequently the equations for ∆

∆ν = −
1

4

∑

ν′

Vν̄νν̄′ν′

√
(ǫν′ − λ)2 − ∆ν′

∆ν′ , (B.31)

and λ
1

2

∑

ν

(
1 −

ǫν − λ√
(ǫν − λ)2 − ∆ν

)
= N0 . (B.32)

The HB equations, in general, have several solutions, some of which are trivial, correspond-
ing to the HF solutions. As in HF method, the HB approach does not necessary preserve the
symmetries of the wave function,. There can be solutions with the right symmetry properties,
but they are not necessary the lowest in energy.

The ground energy is given by the constant term in the H ′ Hamiltonian

U =
∑

ν

[
(ǫν − λ) −

1

2

∑

µ

Vµνµνv
2
µ

]
v2

ν −
1

2

∑

ν

∆νuνvν . (B.33)

The single particle energies, given by the expectation value of the H11 term

H11 =
∑

ν

Eνα
†
ναν , (B.34)

include now all the contribution, from both extra-core and core particles, which are no longer
distinguished, as in the HF case

Eν = (ǫν − λ)(u2
ν − v2

ν) + 2∆νuνvν =
√

(ǫν − λ)2 + ∆2
ν . (B.35)
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