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Abstract 

In this thesis, we have focused our attention on the 

characterization of porous media through micro-tomographic 

image processing. 

A porous medium can be simply seen as a solid material 

with "holes" in it, which, connected or isolated, may or may not 

eventually allow the flow of one or more fluids. They have 

various applications in common practice and are widely used in 

many disciplines, both scientific and industrial. Porous media 

are strongly characterized by their internal microstructure, 

which needs to be accurately described in order to determine 

their performance and macroscopic properties. Despite recent 

technological advances and the introduction of imaging 

techniques such as X-ray micro-tomography, methods to 

characterize quantitatively the porous media internal structure 

are still few and related to some specific applications. 

To this regards, we propose new algorithms for the 

analysis of the 3D micro-architecture of porous media based on 

image processing and the mathematical morphology theory. In 

particular, the opening operator properties have been exploited 

in the "successive openings" algorithm which represents the 

starting point for the construction of three morphological 

synthetic indicators. They are the dimensional curves, Pore Size 

Distribution (PoSD) and Trabecular Size Distribution (TrSD), 

which provide information about the pores or solid phase 

structure, the connectivity curves, which allow to identify how 

the structural elements are interconnected, and the effective 

porosity, which represents the porous fraction concerned with 

the transport of fluids. Experimental results show that the 

proposed indicators together represent an effective tool for the 

porous media internal structure characterization. 
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Since noise is a primary cause of reduced image analysis 

capability in micro-CT, we have dedicated a part of our research 

to the reduction of the strong noise that corrupts tomographic 

images. After evaluating experimentally the characteristics of 

noise, we propose a filtering technique for correlate noise based 

on the Block-Matching 3D (BM3D) algorithm. Experimental 

results prove the proposed technique effectiveness and its 

potential to improve the performance of the algorithms proposed 

in the first part. 

Although micro-tomographic image processing presents 

considerable difficulties, both for the intrinsic characteristics of 

the images, and for the nature of analyzed objects, this thesis 

proves that reliable and useful indications about the structure of 

porous media can be obtained through the use of the 

mathematical morphology theory.  
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Introduction 

Following a popular definition “a porous medium is a material 

consisting of a solid matrix with an interconnected void” [1]. 

The skeletal portion of the material is often called the matrix or 

frame and undergoes small deformation. The interconnectedness 

of the void (the pores) typically allows the flow of one or more 

fluids through the material, but the requirement of flow is not 

mandatory for the definition. In the simplest situation (single-

phase flow) the void is saturated by a single fluid, while in two 

phase flow, a liquid and a gas share the void space. Therefore, in 

porous media, there can be two or more material constituent 

arranged in any disorderly fashion, but distinct interfaces should 

demarcate these constituents. 

Porous media are more common and important than one 

might think. Many natural substances such as zeolites, rocks and 

soil (e.g., aquifers, petroleum reservoirs), biological tissues (e.g. 

bones, wood, cork), and man made materials such as cements, 

bread and ceramics can be considered as porous media. Many of 

their important properties can only be understood by considering 

them to be porous media. Indeed, porous media are studied in 

many areas of applied science and engineering: filtration, 

mechanics (acoustics, geomechanics, soil and rock mechanics), 

engineering (petroleum, bio-remediation, construction), 

geosciences (hydrogeology, petroleum geology, geophysics), 

biology and biophysics, material science, etc. Also the fluids 

that flow through porous media are subjects of common interest 

and this has emerged in a separate field of study.  

A porous medium is most often characterized by its 

porosity and in particular by how its porosity is distributed. 

Other properties of the medium (e.g., permeability, tensile 

strength, electrical conductivity) can be connected to the 
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porosity or to the pore structure. For this reason, many efforts 

have been made in an attempt to characterize the internal 

structure of porous media and this is precisely the ultimate goal 

of our research. 

Aim of the research 

The solution of practical problems involving multiphase porous 

media or systems requires the knowledge of the porous matrix 

macroscopic properties. In fact, the geometric and 

morphological characterization of the porous media internal 

microstructure is essential for understanding their mechanical, 

acoustic, thermal or fluid-dynamic properties. 

For example, the natural porous media observation plays 

a key role in the actual environmental issues such as 

contaminated aquifers restoration, geothermal energy production 

or carbon dioxide storage into the ground, and also in the 

petroleum engineering related problems. In all these cases, the 

description from a morphological, topological and geometrical 

point of view of the complex pore space is essential for the 

understanding fluid and heat transport phenomena through the 

medium. 

Often in the past, specific analysis techniques have been 

applied to two-dimensional (2D) images obtained by optical 

methods, but they returned only partial information about the 

porous media structure. Increased computational power and 

progresses in imaging techniques are providing researchers with 

the tools and data to take a big leap ahead in understanding of 

media microstructure, but the extension from 2D analysis to 

three-dimensional (3D) case represents a non-trivial challenge, 

requiring both a large computing effort and new methodological 

approaches implementation. 

In fact, despite their potential, 3D imaging techniques are 

often used only for qualitative assessment by visualization while 
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objective methods would be needed to directly quantify the void 

structure. One of the crucial points is the difficulty in 

transforming the large set of digital data into synthetic indicators 

that integrate useful information. Typically, researchers have to 

process a huge amount of data and therefore, analyze them in a 

quantitative, physically and representative manner is really 

challenging. In many cases, they have to exercise a significant 

effort to invent approaches and tools that are often applicable 

only within narrow circumstances of data type or computer 

configuration.  

There is therefore a lack of methodology to study 3D 

structures, and there are very few software tools [2] [3] [4] [5], 

neither easily accessible nor generally purpose, that allow the 

extraction of quantitative information of interest. 

In this thesis, we introduce, describe and utilize 3D 

image analysis procedures for porous media in order to supply a 

quantitative characterization of their inner structure, intended to 

fill part of this gap. In particular, we suggest a new approach to 

porous media microstructure analysis, based on mathematical 

morphology theory [6], which provides a set of techniques to 

study structures (objects) as images, widely applied to 2D 

images. We also propose some indicators which are able to 

characterize the 3D microstructure in a quantitative manner. In 

this way, and also through the implementation of 3D image 

analysis algorithms applied to the micro-tomographic images, 

we have found a greater correlation between the morphometric 

parameters proposed and the structural properties of porous 

media.  

These procedures have been initially developed with the 

primary motivation of analyzing micro-tomographic images of 

soil samples, collected by the National Research Council (CNR) 

ISAFOM Institute of Ercolano. However, they are applicable 

generally to any three-dimensional data set containing 

identifiable discrete features; in fact we have also applied them 

to micro-tomographic data of bone. 

The ultimate goal of this work is to provide an 

instrument to researchers for: 



XII Introduction 

 

 

 analyze 3D samples in automatic way; 

 find the distribution of the pore or the solid space; 

 quantify porosity, volume, surface areas, 

connectivity and spatial distribution, and thus 

provide input for various formulae/estimates; 

 predict: permeability, formation factor, elastic 

proprieties, etc;  

 use pore and solid models for simulation. 

Typical workflow in image processing for 

porous systems 

To extract useful and reliable information, the image 

analysis algorithms proposed in this thesis need to address a 

broad spectrum of problems, typical of image processing and 

computer vision as well as specific of this field: enhancement, 

segmentation, statistical size distributions, connectivity analysis, 

correspondence between the features extracted from analyzed 

images and porous media characteristics. Although these steps 

represent a typical workflow in image processing for porous 

systems (see for example [7] [8] [9]), these procedures are far 

from being standardized, such as verified in [10], and all of 

these steps can be affected by artefacts or subjectivity.  

First of all, before measurements can be performed, 

specimens need to be sampled, possibly dried in some way and 

eventually solidified by impregnation with one of a number of 

available resins. For every scanners used to generate three-

dimensional data, the resolution of the scanning, and a number 

of settings related to attenuation and contrast, can differ, 

depending on who does the scanning. Finally, the resulting 3-D 

images are segmented into binary image, to which a wide range 

of analysis methods are then applied. All these steps involve 

operational decisions which may vary from one user to another. 
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From the above, it is clear that the comparison of 

proposed methods with other ones can sometimes be difficult or 

even meaningless, given the strong presence of the human 

factor, both in acquisition procedures, and in the processing and 

analysis. Despite this, some of the most common approaches to 

image analysis for porous media were considered in order to 

validate the contribution of the proposed techniques. 

Structure of the thesis and innovation 

Here, with reference to the appropriate chapters, we will briefly 

describe the innovative contribution of our work. 

First of all, in Chapter 1 we introduce the micro-

computed tomography, an imaging technique which produces 

images used in this thesis. Understanding the operating 

principles of this technique is important, because they determine 

the characteristics of images to be processed. Without this 

knowledge, we cannot deal correctly with the engineering 

challenges that this method present. 

In Chapter 2 we first introduce the concepts of 

mathematical morphology, proposed by Serra in 1982 [6]. This 

is a branch of image analysis that offers a unified and powerful 

approach to numerous image processing problems. It is often 

used as a tool for extracting image components that are useful in 

the representation and description of region shape. These 

concepts are used as building blocks for assembling 3D 

processing procedures. Indeed, we explain a morphological 

analysis algorithm, called "successive openings". The algorithm 

allows us to determine some important synthetic indicators: 

dimensional curves, Pore Size Distribution (PoSD) and 

Trabecular Size Distribution (TrSD), which provide information 

about the pores or solid phase structure, the connectivity curves, 

which identify if the medium structural elements are 

interconnected and in that manner, and the effective porosity, 
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which represents the porous fraction concerned with the fluids 

transport.  

Although the algorithm uses carefully and efficiently the 

potential of the developing environment MATLAB
®
, its 

computation time is quite large, given the large volumes of data 

involved. For this reason it an alternative version has been also 

developed, based on the distance transform, which provides 

results almost identical but much faster. At the end of the 

chapter two applications are illustrated: one in the geology, with 

the application of the algorithm to soil samples, and another one 

in biomedical field, with reference to samples of bones.  

In Chapter 3 we then deal with the reduction of the 

strong noise that corrupts tomographic images. After evaluating 

experimentally the characteristics of noise, we propose a 

filtering technique for correlate noise based on the Block-

Matching 3D (BM3D) algorithm, which can be considered the 

state of the art for AWGN image denoising. Experimental 

results on test images, corrupted by different types of colored 

noise, prove the proposed technique effectiveness and its 

potential to improve the performance of the algorithms proposed 

in the Chapter 2. 

In the conclusions, we comment results and discuss 

outstanding issues with a look at future research. 



 

 

Chapter 1  

Porous media imaging techniques  

Nowadays, the principal energy source used for imaging is the 

electromagnetic (EM) energy spectrum, but other important 

sources are used, such as acoustic, ultrasonic and electronic 

signals. 

Electromagnetic waves can be conceptualized as 

propagating, sinusoidal waves of varying wavelength (Figure 

1.1). One could consider all probes as beams with energy and 

wavelength that interact differently with matter. Obviously, the 

wavelength required to “see” an object must be of the same size 

or smaller than the object. 

 

Figure 1.1: Electromagnetic spectrum. 
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Although the techniques that utilize electromagnetic 

energy could be very different they share similar concepts. 

Every EM imaging relies on the ability to “illuminate” an 

object, and collect and analyze the radiation that it scatters or 

transmits. On the contrary, the opacity is a phenomenon not 

permitting the passage of electromagnetic radiation.  

Until a few years ago, the study of porous media by 

image analysis was limited to destructive methods such as thin-

sectioning, and the imaging techniques relying on those methods 

were inherently bi-dimensional (2D) [11]. Indeed, the three-

dimensional information of object structures was obtained by 

cutting the object into very thin slices, which were visualized in 

the light microscope, then the two-dimensional information was 

interpolated into a three- dimensional (3D) structure model. 

In most cases, however, an accurate analysis of the 

original three-dimensional object structure cannot be made on 

the base of two-dimensional information. In fact, this method is 

not only very cumbersome but also rather unreliable since the 

object structure itself can be altered by the preparation technique 

and the distance between the slices is usually too coarse to avoid 

loss of 3D information. Furthermore, due to the highly 

anisotropic organization of porous media, the evaluation of its 

3D architecture based on 2D measures could conduct to wrong 

conclusions. 

Thanks to the recent advances in technology it has been 

possible to switch to techniques that provide 3D images, such as 

Nuclear Magnetic Resonance (NMR), Focused Ion Beam-SEM 

(FIM), Trasmission Electron Microscopy (TEM), Neutron 

Tomography and Computed Tomography (CT); or to improve 

the 2D ones, like for example the Confocal Laser Scanning 

Microscopy (CLSM) which, even if used only on single grains 

and not on 3D porous media, returns high quality images.  

The passage from 2D to 3D brings many advantages. 

First of all, methods become non-destructive, allowing for 

measure repeatability. In addition, it is possible to directly 

observe the changes that take place inside a material, and hence 
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follow a process with no need of hypotheses on the media 

structure.  

In this thesis work, we consider images from Computed 

Micro Tomography (microCT), so we will focus on this 

technique in the following, but for the sake of completeness, we 

shortly describe here some other commonly used techniques, 

referring the reader to specific texts for in-depth examination.  

The Magnetic Resonance Imaging (MRI) techniques are 

based on the physics principle stating that hydrogen protons 

(from water molecules) align themselves with the main 

magnetic field. When a second magnetic field, orthogonal to the 

first, oscillates at radio frequencies, protons are pushed out of 

alignment and emit a detectable radio frequency signal as they 

return to align with the first field. Protons in different tissues 

(materials) realign at different speeds. This property is used to 

distinguish various materials that characterize the media. The 

MRI techniques are heavily used in medical imaging because 

they are non-destructive and because they utilize non-ionizing 

radio frequencies, but their resolution is limited and require long 

acquisition times [12]. 

FIB (Focused Ion Beam) is similar, in principle, to 

scanning electron microscope (SEM). However, instead of an 

electron beam, a finely focused ray of ions with a diameter 

down to approximately 5 nm is used here. Operating the primary 

ion beam at low currents allows the imaging of samples. At high 

currents, instead, significant material ablation is induced, 

enabling precise milling, cutting drilling and structuring at the 

nano-level [13].  

The TEM is based on the same fundamental principles 

used by the light microscope, but utilizes electrons instead of 

light. TEMs use electrons as “light source” and, thanks to their 

shorter wavelength, it is possible to get resolutions a thousand 

times better than with a light microscope. TEM allows one to 

see objects in the order of a few angstrom (10
-10 

m), reaching 

atomic levels [14]. 

Neutron Radiology and Tomography are non-destructive 

imaging techniques utilizing thermal neutrons (a nuclear reactor 
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is necessary). The working principle is similar to x-ray CT but 

neutrons have many advantages for imaging over visible light, 

x-rays or electrons. They include greater penetration depth into 

most materials, considerable variations in contrast between 

chemical elements and isotopes, and high sensitivity to 

hydrogen. Unlike x-ray, neutron based CT is not nearly as well 

developed and it requires long exposure times [15]. 

However, among all the techniques, those based on x-

rays are the most widespread since they are non destructive, fast 

and reach good resolutions (down to 1-5 µm). Moreover, they 

are highly developed and commercialized. 

1.1. Laboratory X-ray micro-CT 

X-ray computed tomography
1

 is an imaging method where 

individual projections (radiographs), recorded from different 

viewing directions, are used to reconstruct the internal structure 

of the object of interest. X-ray CT is quite familiar in its medical 

application, but it is not so commonly considered as an imaging 

modality for components or materials. Nevertheless, its ability 

to visualize the three-dimensional structure of objects, often 

without sample preparation or chemical fixation, makes it an 

ideal tool for the study of porous media. In particular, the micro-

computed tomography systems can be considered as high-

resolution version of the CT medical scanners. They are been 

developed at a slower rate than the latter, because they have not 

found immediate clinical application, but are used above all in 

research. The microCT systems began to grow in number in 

mid-to-late 1990s [16] when common practice became to study 

human disease carrying out experiments on animals, and 

therefore their cost has decreased a lot. 

                                                 

 
1
 The word tomography arises from the Greek tomos for “section or cut”, and 

graphein for “to write”. 



Laboratory X-ray micro-CT 5 
 

 

The division between conventional CT and microCT is, 

of course, an artificial distinction and is strictly linked to the 

resolution. It describes how well small details can be imaged 

and located with respect to some reference points, and it 

depends on the ability to focus or collimate the probe, generally 

limited to the wavelength. Typically, the spatial resolution of 

conventional medical CT-scanners is in the range of 1 – 2,5 mm, 

which corresponds to voxels (volume elements) of 1 –  10 cubic 

mm. MicroCT gives the possibility to improve this spatial 

resolution by seven to eight orders of magnitude in terms of 

volume, depending on the application. Indeed, the actual 

resolution needed relates to the type and shape of the micro-

structural features of interest. Therefore, the development of CT 

devices in the medical field has been conditioned by the several 

constraints due to their use on patients. First, the dose of x-rays 

received by the patient must be kept to a minimum, because its 

toxicity. Second, the acquisition time can last only few seconds, 

to prevent involuntary patient movements (e.g., breath, tremor, 

etc.) that could degrade the image quality. In general, these 

constraints do not apply for the imaging of inanimate objects, 

where the possibility of extending the exposure time, and then 

the dose, is used to improve the signal-to-noise ratio in the data.  

Nowadays, the micro-CT is widely used in many fields 

including: electronic, biology, geology, materials science, food 

industry, oil and semiconductor industry, archaeology and 

biomedical engineering. The application of microCT to 

biomedical and environmental science problems is the main 

topic of this thesis. 

1.1.1. Fundamentals 

The details of x-ray generation and interaction with matter are 

covered only briefly in this section because this is beyond the 

scope of this work. Further details can be found in specialized 

texts [17]. 
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1.1.1.1. X-rays generation 

 

Figure 1.2: Scheme of an x-ray tube. 

In a tomographic system, an X-ray source consists in an tube, in 

which the electrons emitted from a cathode, are first accelerated 

by an electric potential difference and then sharply braked 

during a collision with an heavy metal anode (generally a metal 

such as Cu, Mo, Ag, or W). 

Upon striking the target, the electrons are decelerated 

and produce a radiation consisting in a continuous component 

added to a discrete one (characteristic emission of the anode 

material), see Figure 1.3. Only a very small fraction of the 

energy of the electron beam is converted to x-radiation; most of 

the energy is instead released as heat. 

 

Figure 1.3: Schematic of x-ray tube spectrum. 
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1.1.1.2. Interaction with Matter 

Through a homogeneous object, an incident radiation of 

wavelength λ suffers an attenuation given by the Lambert-Beer‟s 

law: 

  (1) 

where Io is the intensity of the incident radiation, and I is the 

beam‟s intensity after it traverses a material of thickness x 

characterized by a linear attenuation coefficient µ (cm
-1

). If we 

rewrite (1) in terms of the mass attenuation coefficient µ/ρ (units 

cm
2
/g) and the density ρ (units g/cm

3
), it becomes evident that 

the main factor in the attenuation phenomenon is the number of 

atoms encountered by the x-ray beam: 

  
(2) 

Mass attenuation coefficient is a material property, 

independent of the physical state of the material, i.e. the number 

of atoms per unit volume. But it is a strong function of the 

effective material atomic number Z, as well as the photon energy 

E of the x-ray beam. In general, the mass attenuation coefficient 

can be described by the relationship µ/ρ ~ Z
m
E

-n
 , where m is 

equal to three or four and n is equal (approximately) to three.  

Ultimately, the absorption mechanism results from the 

interaction between two effects: photoelectric absorption and the 

Compton scattering. For low x-ray energies, photoelectric 

absorption is predominant, instead for higher energies, the 

Compton scattering is more prevalent. 

In strict terms, equations (1) and (2) are not enough for a 

complete description of the attenuation process, even if they are 

considered sufficient to model many situations.  
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1.1.2. Reconstruction from projections 

Understanding the principles of tomographic reconstruction is 

essential to understand what CT and microCT can or cannot do, 

and the causes of some artifacts. Here we limit our analysis to 

the convolution back-projection method, which is adopted by 

the desktop x-ray microtomograph “SKYSCAN 1172” used for 

most of the experimental analysis. 

1.1.2.1. Basic concepts 

Equations (1) and (2) describe what can be observed after the 

attenuation is complete. By writing the differential form of these 

equations, it is possible to shift the focus on what occurs within 

each small thickness element dx: 

  (3) 

 

Figure 1.4: Contribution of each voxel to the total x-ray absorption along rays. 
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If dx represent the minimum physically realistic 

thickness element, then (μ/ρ)ρ is regarded as a constant and is 

written simply as μ. Let s be a path along an object (Figure 1.4), 

each voxel with attenuation coefficient μi contributes to the total 

absorption. Considering the contributions of all voxels along the 

propagation direction, the more general form is obtained: 

  (4) 

where μ(s) is the linear absorption coefficient at the position s 

along the ray. We can rewrite the equation as 

  (5) 

where θ is the orientation of the parallel x-rays. The central 

problem of computed tomography is to assign the correct value 

of μ to each position in the material based only on the 

knowledge of the line integrals for the various orientations and 

positions. 

As a matter of fact, locating and defining the different 

contributions to attenuation requires measuring I/Io for many 

different ray directions θ, and many different positions for a 

given θ. The sum of attenuation values at each position along the 

profile at θ angle, is called Radon Transform or projection, 

Pθ(s). The set of projections, collected at enough well-chosen 

directions θ, is called a sinogram.  

1.1.2.2. Back-Projection 

In this section, for simplicity, we describe the filtered 

back-projection method in parallel beam geometry. Even if most 

tube-based microCT systems collect data in a fan-beam or cone-

beam geometry, at the limit we can describe cone beam as a 

parallel X-ray illumination.  
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As the name suggests, the filtered backprojection 

algorithm consists of two distinct phases: filtration, and back-

projection. Let us now examine the individual "blocks" of this 

algorithm. To facilitate understanding, it is convenient to start 

from the back projection step. 

Consider a rectangular object, as shown in Figure 1.5, 

and suppose we have performed two projections, at 0° and 90°. 

Each projection is a one-dimensional profile, corresponding to a 

row in the sinogram. Now, suppose to back projected them onto 

the plane. For each profile "intermediate image" (light stripes in 

Figure 1.5) is obtained. Superimposing the intermediate images 

by each profile, we obtain an approximate object reconstruction. 

The accuracy of the reconstruction increases with the number of 

back-projected angular views. 

 

Figure 1.5: Back projection example for a square object. 

Now consider the object shown in Figure 1.6, consists of 

two non-concentric circles at different attenuation coefficients. 

By performing the back projection of a growing number of 

angular views, an image ever more similar to the original object 

is obtained. 

Projection Back-projection 
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Figure 1.6: Tomographic reconstruction using backprojection. 

However, the image is noticeably "blurred" because the 

absence of the sinogram filtration phase rather than an 

insufficient number of angular views. 

Figure 2.6 shows another example of reconstruction, but 

in this case the sinogram has been filtered before the back 

projection. Now, the reconstructed image is better and the blur 

of Figure 2.5 is disappeared. 

Original object Sinogram  

4 views 10 views 45 views 
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Figure 1.7: Tomographic reconstruction using filtered backprojection. 

Mathematically, filtered projections are produced by convolving 

the filter impulse response with the projections. Although the 

choice of the filter function is extremely important in microCT, 

we will not further discuss it, here, focusing instead on a more 

general (brief) description of filtered back-projection. 

Generally, reconstruction is carried out in polar 

coordinates, considering x’ in a coordinate system rotated by 

angle θ from x (left-hand side of Figure 1.8). To understand the 

reconstruction it is necessary to remember that the Fourier 

transform of a 1D projection of the an image is equal to the 

radial section (slice or profile) of the 2D Fourier transform of 

the image at the same angle of the projection (left-hand side of 

Figure 1.8). 

sinogram filter Filtered sinogram 

10 views 45 views 90 views 
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Figure 1.8: Relationship between the profile measured in the spatial domain and 

the corresponding representation in the frequency domain. 

One obtains the map of μ(x,y), through the following 

steps: 

1 Computing the Fourier transform Fθ(u,v) of 

measured projection Pθ for each angle θ;  

2 Multiplying Fθ(u,v) by the weighting function (the 

transform of the filter) to obtain F’θ(u,v); 

3 Computing the inverse Fourier transform of F’θ(u,v) 

and summing over the image plane (direct space or 

spatial domain), which is the back-projection 

process. 

 

The raw data obtained in this way by the reconstruction 

algorithm do not correspond yet to an image but rather to a 

matrix holding the absorption values in the reconstructed cross 

sections. After reconstruction, the raw data cross sections are 

converted into a grey scale image. In brief, the tomographic 

output is a 3D array of attenuation values converted into a stack 

of 2D grey-scale images. 
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1.2. Issues in CT imaging  

In practice, real microCT systems are characterized by various 

non-idealities with respect to the process previously described, 

which greatly affect the quality of the reconstructed images. 

First of all, in the application of Equations (1) and (2) it 

is implicit that the radiation is monochromatic; that is, the x-ray 

photons have a single energy level, but x-rays are polychromatic 

before any treatment of the beam is performed. As indicated 

above, attenuation coefficients depend strongly on x-ray energy 

(wavelength), and the presence of more than one wavelength 

complicates the reconstruction process as we have illustrated.  

Most X-ray sources are unable to generate parallel 

beams, but a point source is used to produces a cone X-ray beam 

in the object area (Figure 1.9). In a cone beam geometry the 

reconstructed slices could present some distortions away from 

the optical axis. In order to solve these errors, a 3D cone beam 

reconstruction algorithm (such as Feldkamp [18]) is used to take 

into account the thickness of the object. 

 

Figure 1.9: Cone beam geometry. 

Then, in addition to the transmission and attenuation 

mechanisms, the photon scatter should be considered, which has 

Object 

X-ray source 

Stage 
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an unpredictable pattern since it is related to wavelength and 

angle of incidence. 

All the previously mentioned non-idealities, as well as 

others, can complicate the reconstruction process and lead to 

errors (artifacts). Therefore, the quality of reconstruction 

depends on many factors, from how finely the object is sampled 

(i.e., the number of viewing directions and the spatial 

frequencies resolved in the profiles Pθ(s)[16]), to how accurately 

individual measurements of ln(Io/I) are made despite the 

presence of noise and systematic errors.  

In the next section we will first introduce briefly the 

problem of noise, treated in more detail in Chapter 3 and then 

will treat the effects of reconstruction artifacts. 

1.2.1. Noise 

The noise present in the reconstructed images depends largely 

on the noise present in projections. Indeed, as for many imaging 

devices, in microCT images noise contaminates the useful data 

during image acquisition. Then, the primary contributor to the 

total noise is the quantum noise, due to the fluctuation in x-ray 

detection. It leads to a random variation in the attenuation 

coefficients for voxels belonging to the same substance. In 

practice, it is possible that two voxels of the same material have 

different CT values.  

The model commonly used to explain the origin noise in 

projections considers a mono-energetic x-ray source that 

generates quanta which are attenuated by the scanned object, 

and detectors that count the number of surviving quanta, with 

observed signal governed by Poisson statistics [19]. This model 

explains general observed trends of signals and noise with 

exposure and object attenuation.  

The modern scanners, however, work in a quite different 

way compared with the situation we have described. An x-ray 

CT tube generates quanta having a continuously variable 
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energies spectrum, they are transmitted through objects 

undergoing random interactions in a manner that is strongly 

energy-dependent, and then the x rays interact with detectors, 

transforming their deposited energy into secondary optical 

photons. These are converted to a continuous electrical signal 

and integrated over time and ultimately digitally sampled. 

Furthermore, the measured data are often subjected to additional 

constraints in order to obtain artifact-free images with linear 

reconstruction algorithms (such as filtered back projection). In 

particular, some filtering are implemented, to counter the non-

linearity of the acquisition process.  

As can be clearly seen starting from these considerations, 

noise in reconstructed images poses a difficult problem, which 

we try to explain in more detail later. 

1.2.2. Reconstruction artifacts 

Artifacts might be viewed as a form of noise since they interfere 

with the interpretation of the CT image, but their presence is 

often indicated by a readily identifiable pattern. This certainly 

applies to the ring and the streak artifacts. The former appear as 

one or many "rings" within an image. This is usually due to a 

detector fault: detector pixels are never exactly equal in 

sensitivity, linearity or in spectral response, so one bad pixel 

will trace out a circular arc in the reconstruction (Figure 1.10).  
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Figure 1.10: Schematic view of ring artifact. 

Unfortunately they do not merely impair the appearance 

of an image, they also can interfere with accurate segmentation 

and quantification of the amount of phases present and their 

geometrical properties. For ring reduction, sinogram correction 

algorithms can be utilized, but no software method is truly 

effective, while shifting the camera from side to side averages 

out the effects. 

Streak artifacts appear as bright lines which radiate away 

from high-absorption objects (characterized by high atomic 

numbers and high density) within a lower attenuation matrix. It 

is possible that the radiation beam is completely stopped along 

these radiation directions. The so-called "beam stopping" is 

interpreted, by the reconstruction algorithm, as the presence of 

objects with "infinite" attenuation coefficient. This situation is 

physically impossible, and the result is the appearance of the 

artifact in the images. 

The use of polychromatic radiation produces an effect 

called beam hardening: when the radiation beam pass through an 

object, the low-energy component (soft component) is 

attenuated more than the high-energy component (hard 

component or more penetrating). As a result, the outgoing beam 

has an average energy greater than the incoming beam. Thus, 

equations (3) through (5) are no longer strictly valid as written. 

The hardening entity depends by the radiation line, since each 



18 Chapter 1 Porous media imaging techniques 

 

 

line corresponds to a different thickness traversed. As a result, 

the surface of the reconstructed objects appears lighter, while its 

interior is dark. Metal filters placed in front of the camera allow 

to cut the soft radiation and use only the high-energy part, which 

works in a more uniform way in the surface and inside the 

objects. However, by cutting out part of the X-ray radiation the 

number of detected photons will be reduced, which should be 

compensated by longer exposure time and correspondingly 

longer acquisition cycle. 

Each pixel in a CT image represents the attenuation 

proprieties of a specific material volume; if that volume is 

comprised of a number of different substances, then the 

resulting CT value represents some average of their properties. 

This is named, the partial volume effect. Furthermore, because 

of the inherent resolution limitation of x-ray CT, all material 

boundaries are blurred to some extent, and thus the material in 

any one voxel can affect CT values of surrounding voxels. 

In current generations of microCT systems the only 

required specimen motion is rotation and accurate reconstruction 

requires that the center of rotation has to be defined very 

precisely. Poor centering causes arc artifacts. An automated 

centering procedure gives a sinogram which is better centered 

on the rotation axis by determining the center-of-gravity of each 

row in the sinogram. The sinogram is then shifted left or right so 

that the rotation axis is exactly on the center column of the 

sinogram array. 

Due to the many error sources, it is best to collect the 

highest quality data possible, even if software can ameliorate the 

effects of instrumental non idealities and from less-than-

optimum sampling dictated by experimental requirements. 



  

 

 

Chapter 2  

Morphology approach on image 

analysis for porous media 

The X-ray computed micro-tomography allows non-destructive 

three-dimensional analysis of the porous media interior. The 

analyzed sample acts as a filter that attenuates the X-ray energy 

in proportion to the density and the atomic number of the 

material. The set of reconstructed images is a three-dimensional 

sample density map and therefore provides valuable information 

on the composition of the object under examination. 

While micro-CT datasets can be used directly for 

imaging and qualitative analyses of porous media, a continuing 

challenge is the development of quantitative tools/algorithms 

able to characterize the porous media internal structure. 

Commercial image-analysis packages contain a number of 

computational tools that provide good starting points. However, 

for the quantitative analysis of the porous media internal 

architecture, most suitable and specific tools are required than 

those available from standard commercial software. In this 

chapter, we propose 3D image analysis procedures in order to 

supply a quantitative characterization of the porous media inner 

structure. In particular, we present a new approach to the 

analysis of 3D porous media microstructure based on 

mathematical morphology theory. 

Mathematical Morphology (MM) is a form of nonlinear 

image processing and analysis, initially developed by Serra [6] 
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and Matheron [20], used for studying the geometric structure of 

images. The MM consists into a powerful and flexible set of 

methods for extracting different sorts of information, and its 

scope is as wide as image processing itself. The basic concept, 

derived from stereology, is to compare an image with a 

reference object, called structuring element (SE), and to quantify 

the way in which the SE is contained or not into the image. Of 

course, this result depends on SE size and shape, and therefore 

on the user selection. 

Nowadays morphological image processing is a standard 

part of the imaging scientist‟s toolbox and is applied daily to a 

wide range of industrial applications, such as biomedical 

imaging, document processing, pattern recognition, remote 

sensing, microscopy, robot vision and others. Because the MM 

theory can be considered as a universal language for image 

processing, regardless of the application, its only limitations are 

given by the ability to design effective algorithms and efficient 

computational implementation. 

In this chapter, we present only a few fundamental 

notions from mathematical morphology, which we will use to 

formulate our proposal. We refer the interested reader to the 

textbooks of Serra [6] and Matheron [20] which provide a 

comprehensive introductions to mathematical morphology. We 

skip over the non-trivial steps of filtering (see Chapter 3) and 

segmenting (see for example [21]) a 3D image, assuming as a 

starting point a high-quality binary
2
 data set for the material of 

interest. 

                                                 

 
2
 The binary value denotes whether a voxel belong to the void or solid phase. 
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2.1. Porous media image analysis objectives 

Initially, we have defined a porous medium as a solid structure 

with interconnected voids. Indeed, porous media contain regions 

of void, which form the pore space. But more generally, both the 

voids and solid can be considered as different phases which 

compose a porous medium.  

The spatial distribution and relative amounts of different 

phases are responsible to a great extent of the macroscopic 

properties of the material. Therefore, to understand the role, 

distribution, connectivity, and in general, the morphology of 

each phases is crucial for many applicative fields interested to 

porous media. This is certainly true for the two specific 

applications, geo-science and biomedical, considered in the 

following of this Chapter.  

2.1.1. Geo-Sciences applications 

The soil is called the “Earth‟s thin skin” [22] because it works 

like a delicate interface between different systems: hydrosphere, 

biosphere, atmosphere and lithosphere. It is a dynamic system in 

which complex processes occur. Furthermore, soil provides 

diversified services, including water supply and food 

production, valued over 33T$ [23]. 

Nearly all functions of soil depend to some extent on its 

complex structure as a porous medium. Indeed, soil structure 

determines the ecosystem functionality by regulating the 

distribution of water, oxygen and nutrients. Therefore, by 

controlling water transfers, morphology and connectivity of 

porous structures affect also physical, chemical and biological 

processes which rely on the availability of water and gases 

flowing through soil pores. 



22 Chapter 2 Morphology approach on image analysis 

for porous media 

 

 

Although the importance of soil structure is universally 

recognized, carrying out a quantitative analysis of its properties 

is not a trivial problem. First of all, the soil is an opaque 

medium, therefore, it can be analyzed by means of simple but 

invasive methods or else by resorting to advanced technologies 

which return non-invasive measurements. Soil structure can be 

analyzed at different scales, from the pores between individual 

particles, up to large macropores that embrace the whole soil 

profile. Regardless of the stairs, they have a wide variety of 

complex shapes, so simple indicators do not return relevant 

information. X-ray computed tomography, though, allows to 

investigate the three dimensional structure of materials at a fine 

resolutions, and this offer the possibility to explain and predict 

soil characteristics. 

2.1.1.1. State of art for feature extraction 

With the development of digital image processing there has been 

an expansion in the quantitative analysis of soil structure, 

starting with two-dimensional images of thin sections or 

polished surfaces of soil blocks, which can be obtained from 

undisturbed samples impregnated with resin [11] [24] [25]. 

Today there are various tomographic techniques (see Chapter 1) 

available for a three-dimensional non-invasive visualization of 

structural properties. These include MRI and X-ray tomography 

using polychromatic X-rays (as in medical applications) but also 

monochromatic synchrotron radiation, to gain spatial resolution 

down to microns. Starting from images generated by these 

techniques, the structural features of interest are extracted, such 

as porosity, pore diameter, perimeter and area, equivalent 

cylindrical diameter, tortuosity
3

, hydraulic radius in three-

dimensions (pore volume/wall area), numerical density of 

                                                 

 
3
 The path tortuosity is defined as the shortest path between two volume 

extremes, divided by the Euclidean distance between the two points 
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networks and connectivity. The next logical goal is the 

quantitative characterization of the pore space in order to link 

structural properties to soil functions, including water flow and 

solute transport processes. In addition, by connecting the soil 

structure to its physical properties, one can understand the 

impact of the structure formation processes, useful in soil 

management, soil mechanics and soil hydrology. 

Typically a statistical description of structural features is 

used, by which the structural complexity is reduced to a limited 

but meaningful set of numbers that ideally can be related to 

physical properties. Among the main methods proposed in the 

literature [26] [27] [28], the most widely used to derive soil 

properties is the pore-throats analysis, mainly because the theory 

behind this approach has been in a source code, the 3DMA-

Rock Primer [2], available to all interested researchers.  

PORE-THROATS ANALYSIS 

The procedure consists of two steps: the medial axis 

construction and the throats extraction. 

Once the stack of images are segmented, the medial axis 

is constructed by using a burning algorithm developed by Lee et 

al. [29] and modified by Lindquist et al. [28]. The medial axis 

(ma) of an object is the skeleton of the void space of an image 

and it runs along the voids geometrical middle [28] [30]. The 

burning algorithm is applied as follows (Figure 2.1): each voxel 

in the solid phase is labeled with integer 0, and voxels in the 

void space are initially unlabeled. 
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Figure 2.1: Two-dimensional illustration of medial axis determination 

The algorithm begins with n=0 and labeling with n=n+1 

all the voxels adjacent
4
 to those belonging to the solid phase. At 

this point the algorithm restarts from voxels not labeled and 

continues at a rate of one layer per iteration until all voxels in 

the pore space are labeled. Then, the medial axis is determined 

by the voxels where different solid-pore boundaries intersect.  

The result of this burning algorithm is a set of medial 

axis voxels, each with a unique burn number k, identified by a 

colour code in Figure 2.1, depending on its distance from the 

surface. Pores are then identified as the volumes around voxels 

that have local maximum distance from the surface, and 

similarly, the throats are defined by voxels having local 

minimum distance measure. 

At this point, once the pores have been identified by the 

throats, they can be used to calculate the bulk porosity of the 

sample. Moreover, the medial axis stores some information such 

as spatial location and the burn number of each voxel. They  can 

be used to learn the pores spatial position in the sample and their 

geometrical features, such as specific surface area
5
 and pore 

distributions of disconnected volumes 

                                                 

 
4
 There are several methods to define the 3D neighborhood of a voxel, see 

§2.3.2 for further details. 
5
 Specific surface area (SSA) represents a measure of the interstitial surface 

area of the void-solid phase per bulk volume, and it is calculated by summing 
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The major shortcoming of this approach is the problem 

of extracting a pore–throat network that is both geometrically 

consistent and intuitively correct. Not always in fact, the pore 

definition, proposed by this approach, coincides with what one 

subjectively might think. For example, analyzing the structure 

represented in Figure 2.2, in all three cases, (a), (b) and (c), the 

a-b segment corresponds to the throat definition and all three 

examples would be considered as showing two pores. However, 

it could be also argued that (a) represents the case of a single 

pore while (c) represents two pores. 

 

Figure 2.2: An illustration of the difficulty in determining single pore bodies. 

Indeed, this automatic procedure of medial axis 

construction could produce some incorrect results. If throat 

construction procedure fails in some conditions, pore objects can 

be identified in unexpected ways, leading to wrong results. 

Indeed, pore-throat analysis, for extraction of pore networks, has 

too many subjectivity problems, such as of type related to Figure 

2.2, that lead to inconsistencies in the resulting pore network. 

2.1.2. Biomedical applications 

Bone is a specialized form of connective tissue and the main 

component of our skeletal system [31]. 

                                                                                                         

 
the areas of all void-solid material voxel faces, and dividing this area by the 

total image volume. 
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Despite its robustness, the bone is light, thanks its 

structural organization. It is characterized by the presence of 

compact bone tissue, usually localized in the outer part of bones, 

consisting in a solid material, and spongy bone, located inside 

and composed by a multitude of support fiber like boards, called 

trabeculae. These delimit the boundaries of the cavity that host 

the bone marrow, see Figure 2.3. This extraordinary internal 

organization gives the maximum strength properties associated 

with low weight, and it is one of the most important attributes of 

the bone tissue, which makes it suitable to support the body and 

for the protection of the viscera, but also to the movement. 

 

Figure 2.3: Illustration of a long bone showing the diaphysis, epiphyses, 

medullary cavity, cortical and trabecular bone. 

The bone is not static but is a living tissue, constantly 

renovated and remodeled in order to perform its mechanical 

functions and for calcium concentration regulation process in 

plasma. 

In recent years, many studies [32] [33] [34] on tissue 

morphology characterization and on cancellous (or trabecular) 

bone architecture have been conducted, particularly to learn the 
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important relation between morphometric parameters and 

mechanical performance. Interest in these issues comes from the 

wide spread of diseases, such as osteoporosis, which are 

associated with alterations in bone tissue structure and 

composition, with concomitant changes in skeleton functionality 

and mechanical characteristics (brittle bones, high fractures 

risk). 

Wolff [35] established the hypothesis that “Every change 

in the form and function of bones, or of their function alone, is 

followed by certain definite changes in their internal architecture 

and equally definite secondary alteration in their external 

conformation, in accordance with mathematical laws”. Although 

the relationship with possible mathematical laws has been 

questioned, it is not doubted that mechanical charges affect the 

internal organization of bone. For diagnostic purposes, it is 

therefore of great interest the development of methodologies for 

accurate assessments of the bone tissue histo-morphometric 

parameters. 

For years, stereology applied to histological sections has 

been the "gold standard" for the evaluation of bone tissue 

microarchitecture and, in particular, of the trabeculae structural 

organization. It consists of extracting bone samples and analyze 

histological sections (two dimensional) using conventional 

histomorphometry. Thanks to the progress achieved by high-

resolution imaging systems, it is now possible to assess directly 

the three-dimensional microarchitecture of the bone samples in 

vitro. 

2.1.2.1. State of art for feature extraction 

Morphological parameters reflect trabecular size and spacing, as 

well as porosity. The earliest parameters were proposed by 

Parfitt [36] and were originally designed for calculation from 2-

D images acquired after the processing of bone tissue samples.  

Many variables used for conventional histomorphometry can be 

used with high resolution images, and they have been discussed 
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in detail in two reviews published in Joint Bone Spine [37] [38]. 

Here we only summarized some of them: 

 Bone Volume (Bone Volume/ Tissue Volume [BV/TV]): 

This 3-D parameter relates bone volume to total tissue 

volume. The number of voxels with bone is then divided 

by the total number of voxels. 

 Bone Surface (Bone Surface/Bone Volume [BS/BV]). 

This 3-D parameter relates the bone surface to total bone 

volume. It increases with a decrease in the number of 

trabeculae.  

 Number of trabeculae ([Tb.N]). This 2-D parameter can 

be calculated by using the Mean Intercept Length (MIL) 

method developed by Whitehouse [39]. A grid of parallel 

lines is superimposed on the image. A ratio is obtained 

between the intersection points of the lines and the bone-

marrow interface of the trabeculae, in relation to the total 

length of the grid-lines. This method can also be used to 

obtain trabecular separation (Tb.Sp) and trabecular 

thickness (Tb.Th) parameters, but it is not valid for 3-D 

assessment. 

 

Figure 2.4: Mean intercept length. The number of bone-marrow interfaces is 

counted along the parallel lines through the specimen for different angles θ. 

 Index of the structure of the model (Structure Model 

Index [SMI]). This variable indicates the prevalence of 
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the rod-like or plate-like structures of the trabecular 

structure. It is quantified from level 0 (plate-like 

structure) to level 3 (rod- like structure) [40]. 

Osteoporosis is characterized by results that range from 

plate-like to rod-like structures of trabeculae.  

 Degree of Anisotropy (DA). The concept of isotropy 

refers to the completely regular or irregular spatial 

orientation of a structure. Thus, bone that usually 

presents completely disoriented structures (trabeculae) 

combined with oriented structures (depending on the 

load) is considered anisotropic material [41]. The DA 

can be obtained from a 3-D image, as the ratio of the 

maximum to minimum radius of an ellipsoid created by 

the MIL method using a grid on all dimensions of the 

volume of interest. The DA increases with a decrease in 

the biomechanical resistance of bone and is reduced by 

the trabecular orientation caused by loads (isotropic 

orientation). It can also be obtained using the Volume 

Orientation (VO) method described by Odgaard [41]. 

 Number of Havers Canals/Cortical Bone Area 

(N.Ca/Ar). This variable is used to assess the porosity of 

cortical bone alone. A resolution of at least 20 µm is 

required for its assessment. 

2.2. The morphological approach 

In this thesis, we propose a new approach to the analysis of 

porous media microstructure, based on the methods of 

mathematical morphology. Although mathematical morphology 

theory is well established by now, and widely known, we 

introduce here some basic concepts that are needed as 

foundations for the remaining sections of this chapter. 
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2.2.1. Some basic concepts 

The language of Mathematical Morphology is set theory. Sets 

represent objects in an binary image
6
. The discrete binary image, 

A, is defined as a finite subset of Euclidean 2-D or 3D space, 

that can have the values 0 and 1. Morphological transformations 

are visualized as working with two images, namely the image 

being processed, A, and the structuring element, B, that 

possesses certain characteristic information such as shape, size, 

orientation, and origin. The structuring element (SE) is usually 

represented as an array. For easy viewing, we use the 

convention to set the background values to 1 and foreground 

values to 0. The Figure 2.5 shows some examples of commonly 

used 2D structuring elements. 

 

Figure 2.5: Some 2D structuring elements, a) square, b) cross, c) circle, d) line 

The image A can be decomposed by probing it with 

various structuring elements to unravel certain complex features 

of its topological nature.  

A morphological operation transforms A to a new image 

by a structuring element B. The four basic morphological 

operators are erosion, dilation, opening and closing, that are 

defined with respect to the structuring element B. 

                                                 

 
6
 Although the definitions are very general, for ease of exposition, the 

examples refer mainly to two-dimensional black-and-white images. However, 

the concepts are readily extended to 3D and gray-scale images. 
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2.2.1.1. Erosion 

The operation of erosion represents the probing of an image to 

see where some primitive shape fits inside the image, and all of 

mathematical morphology depends on this notation. It is defined 

as follows: 

  (6) 

where A is the image to be processed, B is the SE and Bx is the 

traslation of B with respect to a vector x. In other words, the 

result of the erosion of image A by structuring element B is the 

set of points x such that Bx is completely contained in A. In 

Figure 2.6 we show a 2D example of erosion operator with a 

2x1 structuring element, while Figure 2.7 shows an example of 

erosion with a circular structuring element. 

 

Figure 2.6: Erosion of A by structuring element B. 
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Figure 2.7: Erosion of A by circular structuring element B. 

2.2.1.2. Dilation 

Dilation is the dual operator of erosion and is defined as 

follows:  

  (7) 

where A is the image to be processed, B is the SE and B
r
 means 

the reflection of B. In Figure 2.8 we show a 2D example of 

dilation operator with a 2x1 line structuring element. 
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Figure 2.8: Dilation of A by rectangular structuring element B. 

The dilation of the image A, using the structuring 

element B, can also be seen as the locus of points covered by B 

when the center of B moves on A; or otherwise exploiting the 

duality of the erosion and dilation operators, the result 

equivalent to applying the erosion operator to the complement 

of the image A (see Figure 2.9). 

 

Figure 2.9: Dilation of A by circular structuring element B. 

Besides the two primary operators of erosion and 

dilation, there are two secondary operations that play key roles 

in morphological image processing, opening and closing. We 
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focus mostly on opening, because is the key operator of our 

algorithms. 

2.2.1.3. Opening 

The operation of opening is the application of an erosion 

followed by dilation and is defined as follows: 

  (8) 

Although opening is defined in terms of erosion and 

dilation, it possesses a more geometric formulation in terms of 

structuring element fits, which is the foundation for its 

relevance. In fact, the opening operator removes regions that are 

unable to fully contain the structuring element, while those that 

contain it remain unchanged (see Figure 2.10).  

 

Figure 2.10: Opening of A by circular structuring element B. 
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2.2.2. The “Successive Openings” algorithm 

The "Successive Opening" morphological algorithm, used here 

to characterize porous media, consists in the repeated 

application of the opening operator using spherical structuring 

elements of increasing diameter. By applying the opening 

operator to the original digital representation of the considered 

phase space we remove those parts of the structure which are 

“smaller” than the structuring element. In the following we will 

call these parts as size classes.  

After the first iteration, object features whose smallest 

dimension is less than the SE, i.e. that could fit within the 

volume of the SE, are eliminated. The structuring template size 

increases from iteration to iteration, and after every step the part 

of the structure characterized by a dimension less or equal to the 

SE diameter is intercepted and removed. After n iterations, only 

object features larger than the n-th SE‟s diameter remain. 

Therefore, Successive Openings with spheres of increasing 

radius gradually eliminate larger and larger objects. 

The Figure 2.11 shows the algorithm flowchart, where 

we call On the result of opening operator to a binary image with 

a spherical SE of radius n. 
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Figure 2.11: Algorithm flowchart 

As an example, we show the algorithm effect on a 2D 

test image, using an incomplete subset of 2D spherical SEs 

family, characterized by increasing diameters. Figure 2.12 

shows SEs for different value of radius r (in pixels). The color 

code is used only for didactic scope. 
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Figure 2.12: Incomplete SE subset with increasing diameters. 

Figure 2.13 shows (on the right) the effect of opening 

with circular SE of radius r=3, and (on the left) the intercepted 

portion of the object, shown in red. 

 

Figure 2.13: Effect of Opening with circular SE of radius r=3. 

By increasing the SE radius to 5, the orange size class is 

eliminated and we obtain the result depicted in Figure 2.14. 
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Figure 2.14: Effect of Opening with circular SE of radius r=5. 

With increasing SE diameter, larger and larger portions 

of the objects are intercepted and, at the same time, the 

foreground is reduced gradually, assuming a peculiar shape. The 

resulting effect is that of a series of circles (spheres) of 

increasing diameter, which run inside the whole image and fill 

the objects having size minor or equal to the current diameter. 

Then, in this case, after having intercepted the size 

classes in red (Figure 2.13) and orange (Figure 2.14), the 

opening operator, with SE of radius 15, 25 and 35, eliminates 

respectively, classes in yellow, green and cyan (Figure 2.15, 

Figure 2.16 and Figure 2.17). When the SE radius reaches the 

maximum size of the objects represented, all size classes are 

intercepted and eliminated. 
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Figure 2.15: Effect of Opening with circular SE of radius r=15. 

 

Figure 2.16: Effect of Opening with circular SE of radius r=25. 
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Figure 2.17: Effect of Opening with circular SE of radius r=35. 

2.2.2.1. Shape of structuring element 

The results obtained from mathematical morphological filtering 

depend strongly on the SE‟s shape.  

In the study of porous media, given the very high 

anisotropy of the objects in question, the best choice is to use a 

spherical shape SE. In fact, the objects of interest are 

characterized by a very irregular structure, so that it is already 

difficult to define the section diameter, which varies within the 

same object and depending on the position. To overcome this 

ambiguity, it is worth considering as a reference dimensional 

parameter, the minimum distance between the object walls. So it 

is clear why the sphere is used as SE, since it intercepts points 

equidistant from its center and therefore it is best suited to the 

identification of the minimum distance between the walls, no 

matter their orientation. It is therefore necessary a SE that works 

independently of the particular orientation considered.The aim is 

to perform an isotropic filtering and the only solution is to use a 

(approximating) spherical SE. In particular a spherical SE is 



The morphological approach 41 
 

 

calculated according to the Euclidean distance of voxels from 

the centre of the SE.  

Unfortunately, using this kind of SEs, morphological 

filters have the great disadvantage of requiring long computing 

times and large computer memory since, as SEs grow bigger, 

the number of voxels to check against each voxel in an image 

increases proportionally to the third power of the radius [42]. In 

next section we propose an alternative version to “successive 

openings” algorithm, that is able to obtain very close results, but 

in much lower times. 

2.2.3. A fast implementation 

Although particularly suited to shape and size measurements in 

3D, quite surprisingly mathematical morphology has not been 

much used in studies using X-ray micro-CT to unravel the three-

dimensional complexity of porous media, probably for the 

computer memory requirements associated with handling 

increasingly large approximated spheres. 

It is worth underlining that two-dimensional versions of 

morphological filters have already been used in soil science by 

Horgan (1998) [43], he replaces a radius-n opening operator 

with n cycles of opening with unitary radius. Unfortunately, the 

two operations are not equivalent, unless certain conditions are 

met. 

2.2.3.1. Simplified opening 

An interesting feature of the erosion and dilation operator is that 

they can be broken down. In other words, if transformations 

with large structuring elements are required, which would be 

computationally demanding to implement directly, one one can 

divide this transform in several transformations with smaller 

structuring elements. For example, an erosion with a sphere of 



42 Chapter 2 Morphology approach on image analysis 

for porous media 

 

 

radius r, repeated n times, is equivalent to an erosion with a 

sphere of radius nr. 

On the contrary, this property does not apply for opening 

and closing operators because of their idempotence propriety: 

  (9) 

Then assuming that B1 is a unit-radius structuring 

element and Bk is a spherical structuring element of radius k: 

 (10) 

For this reason, the opening task is often broken up in its 

components, erosion and dilation and a simplified version is 

implemented: 

 

(11) 

Furthermore, a property of erosion operator is that: 

  (12) 

Which implies: 

 

(13) 

where the sign of equality holds only assuming that: 
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  (14) 

A SE as kΒ  is called homothetic convex structuring 

element. 

Unfortunately the Euclidean sphere does not satisfy the 

property (14) in the discrete grid, so the equivalency in (13) is 

only approximate. 

Nevertheless, one could decide to use a SEs family that 

satisfies the condition (14), such as octagons. So, an opening of 

size n is the result of n elementary erosion and n elementary 

dilation, with SE of radius r=1. In this case, the computing time 

depends on the number of cycles, but not on the SE radius. 

Unlike spheres, however, octagons are not isotropic and this 

means that increasing cycle numbers, the “successive openings” 

algorithm result is far from the original one. 

2.2.3.2. Our proposal 

Spherical SE corresponds closely to the idea of the hydraulic 

pore diameter, according to the capillary rise equation, and we 

do not want to renounce this feature. Regrettably, as we have 

seen, the algorithms that use opening operator require 

processing time quite high and big computer memory.  

To overcome this limitation we propose an alternative 

algorithm to “successive openings”. Starting from what is 

suggested by Meyer [42] about MM in three dimensions, we 

define a method that, using the distance transform, guarantees 

the same effects of “successive openings” algorithm, but with 

greater execution speed. The basic idea is to use the properties 

of the distance transform and exploit the built-in nature of 

dilation operator. 

The opening is a derivate operator using basic functions 

like erosion and dilation which are implemented more 
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efficiently. Using only the built-in operators, we are able to 

significantly reduce processing time. 

DISTANCE TRANSFORM 

For a given set A, we define the distance function or distance 

transform DT(A) in the following manner: for any point x in A, 

  (15) 

That is, the distance from x to the complement of A. The 

concepts of distance transform and erosion are related, in fact, if 

we define a sphere of radius r as a set of points within r of the 

origin: 

  (16) 

The distance transform of A stores the erosions of A by a 

family of spheres: the pixels that are at a distance below or equal 

to r from the background are the pixels removed by the erosion 

of A by the sphere of radius r. This property is useful for 

geometric interpretation of the distance transform and the 

erosion by spheres; but it is also useful in the design of efficient 

algorithms, both for erosion by spheres, or to compute the 

distance transform [44]. Specifically: 

  (17) 

where  is the threshold set of f at level k. 

Indeed, through distance transform algorithms optimized, one 

can get the distances map efficiently. 
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THE “SUCCESSIVE OPENING” ALTERNATIVE ALGORITHM 

The distance transform is a powerful and elegant algorithm, 

which somehow integrates the information we need. At this 

point, one only needs to find a way to extract them. 

Reminding once again that the opening is defined by an 

erosion followed by dilation, the first step is to consider that the 

erosion part of the opening operator is contained in the distance 

map, so it remains to define the dilation phase.  

The ultimate goal is to get the opened
7
 On image of order 

n, for all n. On is an image in which there are only objects with a 

size greater than n, the size classes of a lower order are therefore 

eliminated. We can, however, revise this result as the presence 

of last M-n size classes, rather than the absence of the first n 

classes, if M is the maximum objects size in the image A. In 

other words, the basic idea is to get the opened image of order n, 

by adding size classes at greater distance, instead of eliminating 

lower distance size classes. This is achieved by dilating points, 

at a distance greater than n, identified with the distance 

transform.We formalize this idea into an algorithm in two steps: 

1. calculate the distance function DT(A); 

2. for i=1 to M, define Gi as a particular function of 

DT(A) where only the voxels with a value equal to i 

are dilated by a spherical SE of radius r=i. 

The opened image of order n is obtained adding Gi sets, 

with decreasing i from M to n+1. Figure 2.11 shows the 

“successive openings” alternative algorithm flowchart. 

                                                 

 
7
 We call opened image the result of opening operator . 
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Figure 2.18: Alternative algorithm flowchart. 
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In Figure 2.19, we show a 2D example of the result 

obtained with the proposed algorithm. On the left, we report the 

opened image of order 11, O11, obtained by the “successive 

openings” algorithm with a circular SE. Figure 2.19 (b), instead, 

is got by adding all the Gi (shadowed) functions, for every i>11. 

 

Figure 2.19: (a) O11 image; (b) sum of Gi functions. 

2.3. Quantification of features 

Once defined the methodology and then the analysis algorithm, 

we use it to propose several indicators. Remember that the 

ultimate goal is to provide, to the final user, some statistic data 

that are easy to understand, but at the same time, that are 

strongly correlated with the characteristics and structure of 

porous media considered. For this purpose, we define the 

following indicators:  

 Dimensional curves, that explain how the object size 

is distributed in the volume of interest (VOI) as a 

function of the SE diameter. For application on 

(a) (b) 
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porous phase, we call this curve Pore Size 

Distribution (PoSD); for applications to the solid 

phase, instead, we call this curve Trabecular Size 

Distribution (TrSD). 

 The percolation curve; we investigate the existence 

of paths and connections between any two extremes 

of the volume, and evaluate the characteristics of 

these connections. 

 Effective porosity; we extract from the whole porous 

phase volume, the fraction that is really interested by 

fluid passage.  

These indicators, which we describe next, allow together 

to quantitatively characterize the internal structure of a porous 

medium. 

2.3.1. Dimensional curve 

The dimensional curve concept is not entirely new in the study 

of porous media. Traditionally, to study the solid phase of a 

porous medium, the granulometry [20] is employed, which 

seeks to capture the result of a sieve analysis for granular media. 

If an image is considered as a collection of grains, then whether 

an individual grain will pass through a sieve depends on its size 

and shape, relative to the mesh of the sieve. By increasing the 

mesh size, while keeping the basic shape, more and more of the 

image will pass through, the eventual result being that no more 

grains remain. The number of grains (or their volume) that pass 

through each one of the mesh size considered, represents a point 

on the granulometry curve. 

Similarly, let us consider the class of operator defined 

by: 



Quantification of features 49 
 

 

  (18) 

with A a binary image and  spherical SE of radius i>0. If  

is the volume removed by opening by , then 

  (19) 

where v denotes volume,  and  is an increasing 

function of i. Under the assumption that A has finite extent 

(which is certainly reasonable for image processing), 

 for sufficiently large i.  is called a discrete size 

distribution.  

A normalized size distribution is defined by 

  (20) 

 increases from 0 to 1 and can be seen as the 

cumulative distribution function of a discrete random variable. 

Thus, its discrete derivative 

  (21) 

can be seen as the corresponding probability distribution 

function (probability mass function). 

Plotting dΦ(i)
8
 for i going from 1 to M, the maximum 

object dimension, we obtain the dimensional curve which gives 

the fraction of the phase, in this case as percentage, 

corresponding to each value of the SE radius. As an example, in 

                                                 

 
8
 In granulometry,  is known as the pattern spectrum of the image. 
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Figure 2.20 we show the dimensional curve for the 2D binary 

image used in §2.2.2.  

 

Figure 2.20: A binary image, on the left, and its dimensional curve, on the right. 

In Figure 2.21 a dimensional curve is shown for only six 

macro-classes, in which all others are grouped. In particular, the 

red class groups objects intercepted by a spherical SE of radius 

 pixels, while the orange, yellow, green, and cyan 

correspond, respectively, to radius ranges [4-5], [6-15], [16-25], 

[26-35] and finally, the blue class groups objects intercepted by 

spherical SEs with radius  pixels. 

 

Figure 2.21: A 2D image and its dimensional curve for only six macro-classes. 

In this way and thanks to “successive openings” 

algorithm (or its alternative version) we can identify all size 
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classes of the objects represented. In other words, we have 

partitioned the entire space according to the SE diameter. 

2.3.2. Connectivity curve 

Despite the rich information content, the size distribution does 

not take into account the manner in which objects are inter-

connected and the specification of “structure” requires also 

topological descriptors to characterize the connectivity, as well 

as the shape of the spatial configurations. The connectivity of a 

geometric body, with a net-like structure such as porous media, 

is characterized by its geometrical topology and requires 

necessary 3-dimensional analysis. 

Given an images volume, we propose to measure objects 

connectivity by propagation methods [45] applied on foreground 

network after each step of opening, and with reference to 

couples of opposite edges of the VOI. In practice, the proposed 

connectivity algorithm includes three distinct phases: 

1) identification of the connected components that link 

pairs of VOI opposite sides;  

2) calculation of the residual volume; 

3) application of opening to remove size classes less or 

equal to the spherical SE diameter.  

These steps are repeated for each increasing value of the SE 

diameter, until all size classes are extinct. 

Therefore, the evaluation of connectivity consists 

primarily in the individuation of any free paths that connect two 

opposite face of the cube that represents the volume of interest, 

see Figure 2.22. 

The process of connected components identification is 

based on the labeling concept. It consists in assigning a label to 

each voxel in the image so that all voxels belonging to the same 

object are characterized by the same label. 
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Figure 2.22: Representation of VOI in 3D. 

It should be noted that the labeling result depends 

heavily on the discrete metric choice. In particular, in 3D case, 

for each point p, three different neighborhoods exist: N6(p), if 

one consider only voxels adjacent to the p six face, N18(p), if in 

addition to the six faces, the twelve edges are also considered, or 

N26(p), if one consider the six faces, the twelve edges and the 

eight corners. In practice each of these neighborhoods 

determines a different "proximity configuration", so if one 

choose N6(p) neighborhoods, then two voxels belong to the 

same object only if they have a face in common, but if one 

prefer N26(p) neighborhoods, they could share just a corner or an 

edge. In Figure 2.23 (a), (b) and (c) N6, N18 and N26 proximity 

configurations are represented respectively. 
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Figure 2.23: Proximity configuration: (a) N6, (b) N18, (c) N26. 

Since porous media present very irregular structures we 

prefer the N26(p) neighbourhood by which it is possible to 

identify even very asymmetrical objects. 

After labeling, only the connected components, along the 

propagation direction, are stored and this residual volume is 

computed. At this point, the first dimensional class is eliminated 

through the opening operator and the cycle restarts with the 

connected components analysis, that we call propagation. If any 

objects are still connected, this new volume fraction is computed 

and an opening of larger radius is implemented. The algorithm 

goes on until no connected components are identified or no size 

classes remain. In Figure 2.24 we illustrate the connectivity 

analysis algorithm flowchart. 

(a) (b) (c) 
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Figure 2.24: Connectivity algorithm flowchart. 



Quantification of features 55 
 

 

These operations allow to draw one or more curves, one 

for each direction, called connectivity curves (or percolation 

curves), which indicate the percentage of the connected objects, 

at a given diameter, along two opposite sides of a VOI. For 

example, if we consider the two dimensional image shown in 

Figure 2.25 (a), it displays 4 objects that are partitioned, by 

“successive openings” algorithm, in 4 macro-size classes 

explicated in a color code. If we choose the vertical axis as 

connectivity direction, the propagation analysis confirms that 

only two object are connected from top to bottom, see Figure 

2.25 (b). At this point, the connected objects area represents 

only the 27% of the total objects area, as reported on the curve 

shown in Figure 2.27. 

 

Figure 2.25: (a) Original image; (b) connected components from top to bottom 

Suppose to filter the connected objects image, by 

opening operator with a spherical SE of radius r=5 pixels. The 

yellow size class is then intercepted and only one object is now 

connected from top to bottom, see Figure 2.26 (a).  

(a) (b) 
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Figure 2.26: (a) Image of connected objects after opening with r=5; (b) image of 

connected objects after opening with r=10. 

The area of this connected objects represents only the 

22,5% with respect to the total objects area in the original 

image. If we choose a bigger SE, with a radius of r=10 pixels, 

the opening operator removes the green size class, breaking off 

definitively the connectivity, Figure 2.26 (b). 

 

Figure 2.27: Percolation curve of a 2D example image. 

(a) (b) 
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As we have shown through a 2D example, once chosen a 

propagation direction, we have constructed the percolation curve 

by valuating the connected objects volume percentage with 

respect to SE diameter. We note that by connectivity analysis, 

the throat threshold values for the network is also identified. It is 

a critical diameter above which no connectivity and, then, no 

fluid passage is allowed anymore for the porous medium under 

analysis. 

2.3.3. Effective porosity identification 

The last operator explained, before going on to the experimental 

results, is the effective porosity, that is the porosity fraction 

really interested in passage of fluids. This problem is 

characteristic of some application areas particularly interested in 

the fluid dynamic phenomena that occur within the porous 

media. 

In a porous system affected by passage of fluids, some 

preferential pathways are developed, based on the distribution of 

voids, i.e. the porosity. In practice, the fluids flow along certain 

directions rather than others, depending on the pores and throats 

size. In fact, only part of the pore phase in a porous medium 

participates in fluid dynamic processes. In particular, the closed 

pores located after a throat, even connected, do not participate 

actively in these processes and it is preferable to exclude them 

from the analysis. In this case, our goal is to develop an 

automatic procedure for identifying and removing this type of 

porosity, rather than manually locate these areas. 

For this purpose, we use some morphological transform 

for binary images: “hit o miss transform” and “watershed 

transform”. In the following we briefly describe these 

morphological transforms in order to provide the basis to fully 

understand the proposed effective porosity identification 

technique. 
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2.3.3.1. Hit o miss transform 

The “Hit or Miss” transform is used to identify specific patterns 

within an image and it is the basis of many other operators 

derivable from it. It is defined by: 

  (22) 

A point is in the hit-or-miss output if and only if B1 

translated to the point fits inside A and B2 translated to the point 

fits outside A. It is assumed B1 and B2 are disjoint, for otherwise 

it would be impossible for both fits to occur simultaneously 

[46]. 

Rather than define two SEs, it is frequent practice to 

write a single template and to mark as foreground (0) pixels in 

the template used for the hit structuring element B1, mark with 

background (1) those used for the miss structuring element B2, 

and simply not mark those pixels used for neither. We call these 

“don't care" pixels (see Figure 2.28). 

 

Figure 2.28: Hit or Miss template B=(B1,B2). 

Various morphological algorithms depend on the hit-or-

miss transform, such as the thinning operator.  

It is a morphological operation usually used to remove 

some foreground pixels from the binary image, or for reducing 
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the objects thickness. It is commonly used for the object 

skeleton extraction. 

These procedures (skeletonization) can be further 

improved using a variant of thinning operator, called pruning. 

Algorithms based on thinning, in fact, may provide an 

inaccurate result, for example, in some cases (see Figure 2.29, 

on the left), the presence of small "fuzz", or "dead arm" is noted. 

The pruning algorithm is able to identify and then remove these 

“fuzz” (see Figure 2.29, on the right).  

 

Figure 2.29: Thinning (left); pruning (right). 

2.3.3.2. Watershed transform  

The watershed transform is often used as key building block for 

morphological segmentation. In particular, a segmentation 

methodology for gray-scale images results from applying the 

watershed transform to the morphological gradient of an image. 

For this reason, watershed [47] [48] has become highly 

developed to deal with numerous real-world contingencies. 

Perhaps the most intuitive formulation of the watershed 

transform is the one based on a flooding simulation. Consider 

the input gray-scale image as a topographic surface, Figure 2.30 

(a). The problem is to produce the watershed lines on this 

surface. Suppose that every local minimum is perforated and the 

entire topography is filled from below, leaving the water go 

back through the holes uniformly, Figure 2.30 (b). When the 



60 Chapter 2 Morphology approach on image analysis 

for porous media 

 

 

water risks to spill over from the different basins, a dam is built 

to prevent the merging, Figure 2.30 (c). Water can reach levels 

where only the tops of these dams are visible, Figure 2.30 (d). 

These dams correspond to the contours of the watershed lines. 

 

Figure 2.30: (a) Input signal, (b) initial flooding, (c) a dam is created when water 

from different minima is ready to merge, (d) final flooding. 

2.3.3.3. The effective porosity identification algorithm 

The proposed algorithm for the effective porosity identification 

is based on the operators just described, skeletonization and 

watershed. 

Starting from the original volume, the z-connected 

volume is extracted, that is a volume with only the objects 

connected along z direction. In fact, for the effective porosity 

identification it is implicit to consider fluid passage, and only 

connected objects are interested from this process. The skeleton 

of the z-connected volume is then computed. It is an alternative 

representation of the interested volume, but more compact and 

easy to handle. Furthermore, if followed by pruning, the image 

skeleton is a very useful illustration of the original image. In 

Figure 2.31 as example, a z-connected volume and its 

corresponding pruned skeleton are shown. 

We note that only the principal paths are represented, 

while the secondary paths are pruned. At this point, the problem 

is to reconstruct the effective porosity volume, because the 

skeletonization is not invertible. 

(c) (a) (b) (d) 
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Figure 2.31: (a) Z-connected volume, (b) skeleton. 

The ultimate goal of this procedure is to delete the 

porosity fraction that is not involved into flow dynamic 

processes, and, in particular, porosity which rises after throats. 

For this reason, we use the watershed algorithm to construct 

watershed lines. They pass through every throats present in the 

volume, included those we are interested in. Figure 2.32 (a), 

depicts the z-connected volume segmented by watershed lines. 

Now, intersecting these two types of information, the skeleton 

and the watershed lines, we are able to reconstruct the effective 

porosity volume, see Figure 2.32 (b). This dataset is very similar 

to the z-connected one, but we note that in this case, the porosity 

clusters after throats are effectively erased. 

(a) (b) 
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Figure 2.32: (a) Z-connected volume segmented by watershed lines, (b) effective 

porosity volume. 

 

2.4. Advances in geo-sciences 

Pore geometry imaging and its quantitative description is a key 

factor for applications to the study of physical, chemical and 

biological soil processes. For many years photos from flattened 

surfaces of undisturbed soil samples impregnated with 

fluorescent resin and from soil thin sections under microscope 

have been the only tools available for exploring pore 

architecture at different scales. Earlier 3D representations of the 

internal structure of the soil based on not destructive methods 

(a) (b) 
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have been obtained using medical tomographic systems (NMR 

and X-ray CT). However, images provided using such 

equipments show strong limitations in terms of spatial 

resolution. In the last decade very good results have then been 

obtained using imaging from very expensive systems based on 

synchrotron radiation. More recently, X-ray Micro-Tomography 

has resulted the most widely applied technique showing the best 

compromise between costs, resolution and size of the images 

[49]; and actually enhancing the potential to address soil 

processes related to real applicative problems. Thanks to a 

desktop X-ray micro-tomograph available at CNR ISAFOM in 

Ercolano (Italy), many soil samples have been scanned and 

analyzed for this thesis work. In the following, we report some 

experimental results obtained for such samples. 

2.4.1. Experimental results 

Established collaborations with other research centers have 

stimulated a diversified study of soil samples, looking each time 

at one of its multiple aspects. Below we describe only some of 

these. 

2.4.1.1. In agricultural practices 

One of the aims of many researchers is to investigate the link 

between soil pore geometry and agricultural practices. In this 

section we focus on the changes of soil surface structure due to 

three different irrigation practices under study in a vineyard area 

in the basin of the Mendoza river (Argentina).  

Undisturbed soil samples were collected at the 

experimental farm of the Instituto National de Tecnologìa 

Agropecuaria located in Chacras de Coria, department of Luján 

de Cuyo, Mendoza, Argentina (32º 59‟ S, 68º 52‟ W, 920.82m 

a.s.l.). It is an alluvial area in the basin of the Mendoza river 

where furrow irrigation is largely used in vineyards. Soil shows 
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a silty-loamy texture, a very low organic matter content and is 

rich in potassium and phosphorus [50]. In the experimental 

vineyard three irrigation practices were used: furrow irrigation 

(LT=labranza traditional), drip irrigation with no tillage 

(LC=labranza cero) and irrigation by submersion with grass 

covered surface (CV=cobertura vegetal). In this study three 

subsurface sample volumes (about 30 cm
3
) are examined. Solid 

and pore phase of the three soil samples are shown in Figure 

2.33.  

 

Figure 2.33: Visualisation of the solid and pore phase of the three samples at 10 

micron image resolution. Volumes are cubes with side of 3.5mm. 

Cubic regions of interests (ROIs) having side of 3.5 mm 

have been visualised and analysed. The results of the pore size 

distribution and connectivity are shown in Figure 2.34 and 

Figure 2.35, respectively. 
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Figure 2.34: Pore size distribution of the three samples computed by “successive 

opening”. Porosity under one voxel has not been taken into account. 

 

Figure 2.35: Horizontal and vertical pore connectivity (>10 microns) evaluated 

by the “percolation curve”. 

Differences in porosity values (see the box in Figure 

2.34) highlighted the compactness of the sample from the 

furrow irrigated plot (LT). This showed also a narrow pore size 

distribution around the modal value of 90 microns and a 

porosity peak around 550 microns due to presence of non-

continuous cracks (see Figure 2.33); no continuous paths (larger 

than the voxel resolution) resulted in the pore network (see LT 

line in Figure 2.35). The CV sample (water submersion with 

grass covered surface) showed a higher and slightly wider pore 

size distribution around the modal value of 110 microns; 

porosity peaks around 550 microns and in the range between 

1000 and 1300 micron are due to the presence of large tubular 
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pores left by the roots of the grass cover. In the LC case a multi-

modal pore size distribution resulted in the range 0-500 microns, 

indicating the highest heterogeneity of pores in this size range. 

Complexity of the pore space organization can be generally 

considered as a good indicator of soil physical quality due to, for 

example, the plurality of habitats available for microbiological 

activity and the better effectiveness of water and air flow for the 

functioning of the roots. 

Percolation curves (Figure 2.35) indicated that the pore 

network of both LC and CV samples were more connected in 

horizontal than vertical direction. In the LC case 35% and 20% 

of total porosity resulted to be connected in horizontal and 

vertical direction, respectively while percolation thresholds were 

of 190 and 110 microns, respectively. In the CV case 60% of 

porosity resulted to be connected in both vertical and horizontal 

direction, but the vertical percolation threshold showed a lower 

value of 50 microns. Therefore the CV sample, notwithstanding 

its highest porosity, exhibited narrower necks in vertical 

direction than in the case of the LC sample, allowing to presume 

a worse fluid flow in the pore network. 

Results shown in this study are part of a multi-approach 

more general investigation to evaluate convenience in changing 

the traditional irrigation practice in the area of the Mendoza 

river (Argentina), in order to enhance water use efficiency and 

crop quality. They overall demonstrate the useful contribution of 

the 3D pore image analysis in understanding the consequences 

of the three alternative practices under study on the subsurface 

soil pore architecture. 

PROCESSING TIME 

Before moving to the next experiment, we dedicate a few 

words to the processing time. In Figure 2.36, we report a curve 

related to opening time execution for the LC sample mentioned 

above. In gray we report the trend line, which shows that the 

execution time grows in a more than quadratic way. 
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Figure 2.36: Experimental (pink) and trend (gray) execution time for LC sample. 

Using simplified procedures explained in §§2.2.3.1, 

2.2.3.2, one could obtained the PoSD curves in reduced time. In 

Figure 2.37, processing time in log-axis is plotted for the three 

versions of “successive openings” algorithm implemented. It is 

clear that the opening simplified version, with an octagonal SE, 

is faster than the traditional version. By looking at the analysis 

results, however, one can appreciate that the alternative version, 

using distance transform and dilation operator, is not only the 

fastest, but also more accurate than the simplified one.  

As mentioned before, the simplified version of 

“successive openings” uses a non-isotropic SE, therefore the 

analysis, such as PoSD, leads to approximate results. In Figure 

2.38, in particular, we note that the simplified version 

overestimates the small pores, while larger ones are 

underestimated. The curve of the simplified version, in fact, 

initially climbs over the others, but as the number of cycles 

increases, is almost always below the other ones. 
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Figure 2.37: CPU time for the three versions of “successive openings”. 

Instead our fast version of "successive openings", gives 

very accurate results. Only during the first opening steps, the 

two curves differ slightly. Probably, because initially the object 

contours are still very jagged, and the differences in behavior 

between opening and dilation are more obvious. 

1

10

100

1000

10000

T
im

e 
(s

)

Pore size (μm)

CPU Time

Successive Opening Simplified Dist + Dil



Advances in geo-sciences 69 
 

 

 

Figure 2.38: PoSD curve of an LC sample obtained by three different algorithms. 

2.4.1.2. Soil physical processes 

Highly eroded environments can be stabilised using plant 

structures which often produce crusted soil layers. In the 

steppified desert region of Shapotou (China) a vegetated 

protection system was progressively established since the 1950s 

up to 2004 [51]. Initially, a sand barrier was built with woven 

willow branches or bamboos to reduce wind erosion. Behind the 

sand barrier, straw chequerboards (wheat or rice straw) were 

installed, usually with sections of 1 m
2
 area. The fixed sand 

surface led to the formation of very different microbial soil 

crusts although applied on the same soil according to the age of 

the straw structures.  

Soil crust samples, named T_2004, T_1989, T_1964, 

have been collected from three sites in which the protection 

system from erosion date back to 2004, 1986 and 1958 

respectively. Portions of about 1,5 cm in diameter have been 

scanned with the Skyscan 1172 x-ray micro-tomograph. A 

smaller portion of not stabilized natural sand material has also 
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been reconstructed at a resolution of 3,5 µm in order to have a 

reference result (T_ref) on the initial conditions of the soil crust 

formation process.  

 

Figure 2.39: Soil crust samples, T1, T2 and T3. 

In Figure 2.39 are pictures of the soil aggregates scanned 

at the three stages of surface microbial crust colonization. 

T_2004 shows many surface inflorescences with very thin roots, 

which disappear in T_1989 and T_1964 samples. These latter 

are more compact than T_2004. T_1989 is the thinnest and 

shows a “wave” shaped surface while T_1964 looks 

significantly thicker than the others. In Figure 2.40 the 3D 

reconstructions are also visualized. T_ref is clearly a loose 

homogeneous sand not showing any aggregate structure. 

 

Figure 2.40: Soils reconstructions. 

Pore Size Distribution, Figure 2.41, confirms what is 

observed above about compactness thickness and shape of soil 

crust. T_ref dimensional curve is strongly unimodal with a very 

short range of pore sizes. Comparison shows that a progressive 

decrease of smaller pores has resulted at increasing age of the 

T_ref T_2004 T_1989 T_1964 

T_ref T_2004 T_1989 T_1964 
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soil crusts. Presence of larger pores is also evident in crusted 

samples.  

3D PoSDs are also represented in Figure 2.42 

Differences in total porosity are only partially due to 

different resolution between the 3D images of the samples. 

 

Figure 2.41: PoSD comparison. 

 

Figure 2.42: 3D PoSD comparison. 

The skeleton of the pore network (Figure 2.43) has also 

been obtained according to procedure of the Pore-throat 

Analysis proposed by [28]. All paths of the medial axis 

connecting opposite faces of the four volumes have been 

identified. 

T_ref T_2004 T_1989 T_1964 

PoSD 
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Figure 2.43: Pore network skeleton. 

For each path the tortuosity value is calculated according 

to the definition (see note 3). 

 

Figure 2.44:Tortuosity comparison. 

Crust aggregates show a general increase of average pore 

network tortuosity, see Figure 2.44, reaching the maximum 

value in the T_1989 case. T_1989 and T_1964 exhibit also a 

significant anisotropy of the tortuosity. In such cases the pore 

network has resulted more tortuous in vertical direction. 

In conclusion we can say that X-ray micro-CT imaging 

coupled with 3D image analysis based on specific procedures 

for porous media have provided a very accurate quantification of 
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the internal structure of microbial soil crusts due to stabilized 

sand dune of different age.  

2.5. Advances in biology 

Osteoporosis is the most common metabolic bone disease 

worldwide. It is mainly a result of decreased estrogen levels, and 

the disease is associated with a markedly increased risk of 

skeletal fractures. Current diagnostics of osteoporosis are largely 

based on the measurements of areal bone mineral density (BMD 

[g/cm2]), using dual energy X-ray absorptiometry (DXA) of the 

proximal femur or the lumbar spine. However, BMD is only a 

moderate predictor of fracture risk. In general, a fracture occurs 

when the strength of the bone is exceeded. A variety of factors 

determine the strength of bone, including BMD and the 

microstructure of the trabecular bone. Quantification of these 

features using high-resolution micro-CT imaging has become an 

important research topic.  

Osteoporotic bone is typically characterized by a lower 

bone volume fraction and trabecular number, as well as higher 

trabecular separation compared to the healthy bone. 

In order to verify the sensitivity of the proposed 

indicators to the pathological states of bone, in the following we 

present a morphometric study on two bones samples. 

2.5.1. Experimental results 

Two bone samples, one taken from a healthy donor, hereinafter 

called 'sample A' and the other, 'sample B', from a donor 

suffering from a metabolic bone disease, are analyzed.  

At a preliminary visual inspection, the two samples have 

different characteristics: the structure of the first sample, 'sample 

A', appears homogeneous and compact, with similar trabeculae 
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in size, they vary only slightly along different spatial directions. 

The 'sample B' seems rather heterogeneous, with trabeculae very 

thin or on the contrary quite thick. Furthermore, the elements 

arrangement is messy and does not show any spatial isotropy 

property. 

Beyond physical condition of the donor, the reason for 

this structural difference may well depend even on the original 

site from they are levied, but at the analysis time this 

information is not known. For this reason the results are 

discussed assuming that the samples are taken from comparable 

sites, if not the conclusions should be revised, adding the 

missing information. 

2.5.1.1. Trabecular Size Distribution (TrSD) 

In Figure 2.45, the two dimensional curves of samples 

are plotted. 

 

Figure 2.45: TrSD comparison. 

The first sample TrSD is completely consistent with the 

comments made after simple visual inspection. The trabeculae 

diameter variability is rather limited: the distance between solid 



Advances in biology 75 
 

 

walls, in fact, varies only between 88 μm and 616 μm. This is 

consistent with the sample homogeneity. Furthermore, most of 

the trabeculae, almost 27%, is characterized by a diameter of 

about 264 μm, which can be considered a characteristic value of 

the sample analyzed. In other words, the sample mechanical and 

resistance properties are then assigned to this size class. 

Instead, „sample B‟ TrSD looks very different from the 

first one. It is easy to note that trabeculae are characterized by 

very different diameter values. In fact, the variability ranges 

from just 78 μm to about 1150 μm. Moreover, no one value is 

characteristic, because the curve is not strictly unimodal, and 

just over 8% of the total solid volume reaches its maximum. 

In „Sample B‟, trabeculae have diameters also quite high, 

that are not present in the „Sample A‟ (healthy donor). They are 

generally more robust in the second sample, but there are only 

few specimens for each size class. In this way the mechanical 

and resistance properties are concentrated in a few points and 

not uniformly distributed within the bone volume. 

2.5.1.2. Connectivity analysis 

The connectivity curve is calculated to evaluate the presence and 

the characteristics of potential paths between two VOI sides. It 

is better to clarify that at the analysis time, however, the original 

samples orientation directions and angles were not known, for 

this reason the names assigned to directions are only indicative. 

Probably more precise indications about the samples structural 

properties could be assess from the knowledge of this 

information. 
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Figure 2.46: „Sample A‟ connectivity curve. 

The first sample connectivity curves show that the 

trabeculae are strongly connected in all three directions 

considered (Figure 2.46). This implies that, if a disease 

eliminate trabeculae with a small diameter, for each orientation, 

links between the opposite faces of VOI are still present. By 

increasing the removed diameter, however, the connectivity 

decreases more and more. In particular, the diameter of about 

205 μm, it can be considered a measure limit, in fact, taken this 

class size, there is a lowering of about 60% for the connectivity. 

Therefore, the critical diameter is equal to 264 μm so, delete this 

class, in VOI is not present any form of connectivity. This result 

is fully consistent with the comments on TrSD: trabeculae 

characterized by a diameter of 264 μm are more than 25% 

respect to the total solidity, and they are also responsible for the 

sample connectivity properties. Trabeculae with a diameter 

greater than this, do not actively participate in load resistance 

processes. 

By examining the second sample connectivity curves 

(Figure 2.47), we can express some interesting considerations. 
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Figure 2.47: 'Sample B' connectivity curve. 

First, the structural behavior is slightly anisotropic, just 

as in fact pointed out earlier. In particular, along direction called 

z axis, connectivity depends from large trabeculae diameter 

values. Although the volume seems very connected, in this case, 

its connectivity rapidly decreases. Given the wide size classes 

variety, with the trabeculae diameters of 1150 μm, surprisingly 

in directions named y and x, connectivity vanishes already for a 

diameter of approximately 473 and 518 μm, respectively. So 

although there are fairly robust structure, connectivity analysis 

shows that, in practice, the carriers trabeculae diameter is 

considerably lower.  

2.5.1.3. Conclusion 

Although suffering from the useful information lack, the 

presented analysis proves that the proposed indicators reflect the 

physiological or pathological nature of bone tissue samples. 

In particular, the dimensional curves return the trabecular 

size classes composition. A unimodal pattern is associated with 

a homogeneous structure ('Sample A'), while the presence of a 

large number of size classes is consistent with the bone sample 

affected by osteoporosis ('Sample B'). 



78 Chapter 2 Morphology approach on image analysis 

for porous media 

 

 

The connectivity curves show also that, in the healthy 

sample, the critical diameter above which there is not 

connectivity is also a characteristic VOI parameter. On the 

contrary, for the sample with osteoporosis, the connectivity is 

assigned to size classes smaller and less frequent than the 

varieties present in the volume. 

 



  

 

 

Chapter 3  

Image denoising 

The noise is an unpredictable perturbation which disturbs a 

signal causing random fluctuations of the observed variables. 

Generally speaking, it is an issue of considerable importance in 

any acquiring and processing data system, especially imaging 

techniques. The scientific literature offers a plethora of 

denoising functions often included in commercial software as 

tools to support and simplify the extraction of significant 

information from noisy images.  

In fact, image denoising has been the object of intense 

research from the very beginning of the digital era and an 

enormous variety of procedures for image denoising have been 

offered, most of which have been or can be adapted to deal with 

CT and microCT images. For the correct application of the any 

denoising filter method, however, the knowledge of noise 

characteristics is an essential precondition. 

In this chapter we will initially focus on CT
9
 noise, 

because it poses a difficult problem to the traditional image 

denoising techniques. Then a denoising method for colored 

noise is proposed. 

                                                 

 
9
 The literature concerning micro-CT images is not very large given its recent 

introduction, so below, with some exceptions, we will refer to CT imaging 

system, which have been the object of more extensive studies. 
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3.1. CT noise 

A CT or micro-CT image is the ultimate result of a complex 

measuring chain in which each step is also a noise source. Thus, 

in a generic CT image it is possible to consider the noise as the 

sum of different contributions, one for each different stages of 

image generation process. Indeed, the following main noise 

components are identified in tomographic images: quantum 

noise due to the fluctuation in x-ray detection; electronic noise 

caused by electronic devices (even if that can be considered 

negligible with respect to quantum noise), and structured noise 

arising from the reconstruction process. 

The quantum noise is considered the major component of 

tomographic noise and it is caused by X-ray energy transmission 

in discrete units, the photons. Indeed, the X-ray sensor response 

is actually the result of the detection of a finite number of 

photons that can change from one measurement to another, not 

because of device inadequacy, but for the statistical fluctuations 

arising from the counting process. The main cause of the 

quantum noise is thus identified in the discrete nature of X 

radiation. This clearly represents a fundamental limitation of the 

X-ray based imaging technologies, because it is necessary to 

increase the number of quantum detected, i.e. the radiation 

energy (the dose), to obtain a noise reduction. 

In fact, we recall that the probability for a photon to be 

deviated from the original beam, by absorption or scatter (due to 

Compton effect) is a function of the photon energy and actually, 

the x-ray tube used in micro-tomography generates quanta 

having a spectrum of continuously variable energies. Unless one 

makes some simplifying assumptions, the problem of modeling 

the noise in projections is not trivial, since many aspects must be 

taken into account such as the energy-integrating detection 

processes, the non-uniform flux profiles and the data-

conditioning processes. Despite various efforts [52] [53] [54], 

no model has been developed for the probability density 

functions (pdf‟s) of polyenergetic measurements and, usually, a 
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Gaussian distribution is assumed [55], based only on the central 

limit theorem for high-flux levels.  

If for projections the noise models are really poor, for 

reconstructed images the situation is even less clear. In fact, due 

to reconstruction process, typically filtered backprojection 

method (see §1.1.2.2), and to other operations used to obtain the 

final image, the noise distribution is further modified. In 

particular, although noise at the detector can be assumed to be 

white, the reconstruction algorithm introduces some correlation. 

Additionally, noise in the CT image depends on the (unknown) 

signal to be reconstructed, which makes the analysis even more 

difficult.  

Nonetheless, given the practical significance of this 

problem, many studies have been proposed in the literature 

under certain simplifying assumptions. In particular, the 

tomographic system noise characteristics have principally been 

considered for two aspects: the statistical uncertainty per pixel 

([56], [57], [58], [59]), that assesses only the magnitude of local 

statistical fluctuations; and the noise power spectrum ([60], [61], 

[62], [63], [64], [65]) which describes the variance distribution 

as a function of spatial frequency.  

From our point of view, we are interested to implement a 

technique for micro-CT image denoising, and for this reason we 

have experimentally analyzed the noise property of micro-CT 

data. In next sections, we discuss methodologies and obtained 

results. 

3.1.1. Noise experimental characterization 

With the collaboration of the CNR “ISAFOM” centre of 

Ercolano (Naples, Italy), an experimental protocol has been 

outlined for the micro-CT noise characterization.  

First of all, to provide images containing the noise to be 

analyzed, we have produced and scanned a test object. In a 

cylindrical container of polypropylene (PP, with low absorption 
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coefficient) we have placed a homogeneous material of epoxy 

resin, typically used in thin section impregnation. Before 

scanning the sample, alignment procedures between object stage 

and source or detectors, are necessarily performed, to minimize 

the presence of artifacts. Moreover, to reduce other noise 

contributions, a prior acquisition of the background is 

completed, and later subtracted from the image obtained when 

the sample is placed. This acquisition is made with the same 

parameter settings used during sample acquisition.  

In this study, we have chosen to work with a resolution 

of about 34,5 μm, that is relatively low for the system under 

investigation. Moreover, to reduce the beam hardening (§1.2.2) 

effect, we have used a aluminum filter of about 0.5 mm to block 

the soft component radiation, thereby only the hard one can 

pass. Finally, we have mediated the projections used in the 

reconstruction process on 12 realizations.  

We have repeatedly acquired projection measurements of 

this test object, from an unchanged angle, for 16 times by a 

Skyscan 1172 desktop micro-CT scanner. For each acquisition, 

50 images are reconstructed, of 1000x1000 pixels; they are 

represented on 8 bits, i.e. 256 gray levels, with no post-filtering, 

but for ring artifact correction. One of these images is displayed 

in Figure 3.1. 
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Figure 3.1: Test object recostructed image. 

To measure image noise, we have selected a square ROI 

of 512x512 pixels, entirely included in the homogeneous area, 

see Figure 3.2. 

 

Figure 3.2: Selected square ROI. 

Every image obtained in this way, is a noisy image, in 

other words, both signal and noise are contained, but we are 

interested only on noise. Considering that the homogeneous 

material is characterized by a single attenuation coefficient and 

ROI 
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then by a single gray level value, the noise is obtained by 

subtracting the signal level from the noisy image.  

To estimate the signal, we have averaged the central 

sections
10

 of all acquisitions, and we have estimated. In Figure 

3.3, we report the gray level distribution of the mean image. 

 

Figure 3.3: The gray level distribution of the mean image. 

With reference to the experimental parameters chosen, 

the noise has an appearance like that shown in Figure 3.4 (a). 

The relative frequencies distribution of the pixels gray levels is 

shown in Figure 3.4 (b) (in blue) with comparison to 

corresponding Gaussian pmf (in red) generated from the same 

mean and standard deviation. The Kolmogorov-Smirnov test 

[66] confirms that the noise distribution of the reconstructed 

image has is approximately Gaussian, as some authors [67] [68] 

have already proposed for pixel image generated by CT 

scanners. 

                                                 

 
10

 Because no thickness information has to be used to reconstruct the central 

section, in this case, possible geometrical distortion are avoided. 

Gray levels 
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Figure 3.4: (a) Image of noise, (b) relative frequencies distribution of the pixels 

gray levels, in blue, and normal pmf, in red. 

Finally, we assess the effects of correlation, induced by 

the reconstruction process, estimating the correlation coefficient 

variation along the rows and along the columns, see Figure 3.5. 

 

Figure 3.5: Correlation coefficient variation along the rows and columns. 

The experiments show clearly that micro-CT noise is 

colored, as expected, and provide the correlation form. A 

denoising technique for correlated noise is then required. 
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3.1.2. CT image denoising: state of art 

Given the issue relevance, especially for medical application, for 

years many denoising techniques have been proposed or adapted 

for CT noise suppressing. We will start with a short overview. 

A first approach is to work on sinograms, before the 

image is reconstructed. By working in this domain, one can take 

advantage of the existing statistical models of the noise, deriving 

from the deep understanding of its physical origin and supported 

by statistical studies [69]. On the other hand, any action taken on 

the sinogram has consequences on the reconstructed image that 

cannot be easily predicted, such as the suppression of 

diagnostically relevant features. In most of the sinogram based 

methods, filters are adapted spatially in order to reduce the noise 

in regions of highest attenuation. Thus, the main achievement of 

these methods is the reduction of directed noise and streak 

artifacts. However, when the noise variance is nearly constant 

over all of the projections, these filters either do not remove any 

noise, or cause a noticeable loss of image resolution. In general, 

a moderate denoising of the sinogram can be useful, but a 

stronger action is not advisable, especially for low signal-to-

noise ratios, in order not to put at risk important structures in the 

reconstructed image.  

After CT-reconstruction, the situation is reversed: image 

structures are now visible, and their regularity can be exploited 

to guide the denoising process. On the other hand, the 

experimental studies show that the noise is object-dependent and 

non-white; with these premises, it is clear that denoising 

techniques developed under classical AWGN (additive white 

Gaussian noise) hypotheses should be considered with great care 

and that can easily fail or provide unconvincing results on CT 

data [70]. 

Most of the conventional denoising algorithms are based 

on linear smoothing filters, that is, low-pass filtering in the 

Fourier domain, but they not work very well with cone beam CT 

imaging. They may reduce significantly the power of noise, but 
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this is obtained by suppressing both high and medium 

frequencies (where most of the noise power is concentrated 

[71]) thereby affecting the sharpness of edges, rich in high 

frequency content, and possibly erasing altogether some thin 

structures. Some improvements may be obtained by resorting to 

adaptive filters, which try to locate and preserve edges, but these 

are quite complex and only partially effective; or to non-linear 

filters, like the median, which does a better job near the edges 

but works well only for impulsive noise, not the case of 

microCT images.  

Significant improvements have been obtained in recent 

years by resorting to wavelet transforms, thanks to their many 

desirable properties, such as locality, sparsity and 

multiresolution. In 1994, Donoho and Johnstone [72] opened the 

way to wavelet shrinkage techniques. The main idea is to exploit 

the excellent energy-concentration property of wavelet 

transforms. Indeed, with typical images, generally smooth but 

for some localized edges, the transform concentrates most of the 

energy in a small number of large coefficients, while all other 

coefficients are almost negligible (that is the transform is 

sparse). White noise, instead, is evenly distributed by the 

transform on all coefficients, which remain all relatively small. 

A noisy image, therefore, presents in the wavelet domain a small 

number of large (signal dominated) coefficients, while all the 

rest (noise dominated) are quite small. By zeroing-out these 

latter coefficients, through a suitable thresholding, one removes 

most of the noise and can recover a remarkably clean image 

through the inverse transform.  

Starting from this basic technique, referred to as hard 

thresholding, a number of improvements have been proposed, 

including soft thresholding [73] and more elaborate shrinkage 

schemes, the use of subband adaptive thresholds, and context-

based techniques where dependencies between in-band and 

across-band coefficients are also taken into account [74].  

In the last few years, a new approach has been gaining 

ground in image denoising field, known as nonlocal filtering, 

first formalized in the non-local means (NLM) algorithm 
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proposed by Buades, Coll and Morel [75]. The major 

breakthrough of NLM consists in selecting in a very sensible 

way the set of pixels used to estimate the true value of a target 

pixel, that is, not the pixels closest to the target, but those 

deemed to be the most similar to it. In practice, for each target 

pixel z
T
 of the noisy image z(n), the surrounding patch P

T
 is 

extracted and compared with all patches Pi in a given 

neighborhood of the target. The patches that are more similar to 

the target patch, according to a suitable “distance” measure, are 

associated with the most relevant predictor pixels, that is: 

  (23) 

where the weight wi is a decreasing function of the 

distance di=d(P
T
,Pi).  

The nonlocal approach turns out to be especially 

effective in the presence of edges and textures, when patches are 

well characterized and bring valuable information on the pixel 

context, providing a significant performance improvement w.r.t. 

conventional techniques both in the spatial and transform 

domain. 

Following the success of NLM many variations have 

been proposed, among which the block-matching 3D (BM3D) 

algorithm [76], which appears to be the current state of the art in 

image denoising and restoration in general. 

Although a thorough description of BM3D is out of our 

scope, we need to recall here its basic steps. The first action 

taken by BM3D, just like in NLM, is to locate similar patches 

by means of block-matching. Unlike in NLM, however, all such 

patches are then collected in a 3D structure which undergoes a 

decorrelating transform (typically wavelet) so as to exploit both 

spatial and contextual dependencies. Once a sparse 

representation is obtained, some form of shrinkage is used to 

remove noise components, before going back in the image 

domain. Since filtered patches can overlap, several estimates of 
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the same pixel are typically obtained, which are weighted to 

compute a “basic estimate”  of the denoised image.  

At this point, the noisy image z(n) undergoes the 

denoising process anew, with the difference that block-matching 

takes place on the basic estimate  of the clean image so as 

to obtain more reliable matches, and wavelet shrinkage is 

replaced by empirical Wiener filtering, with statistics computed 

again on . 

Both NLM and BM3D have been proposed in the context 

of AWGN image denoising and, therefore, work poorly in all 

situations where the noise cannot be considered Gaussian nor 

white. Nonetheless, the nonlocal approach keeps making full 

sense, and hence there is much interest in adapting the basic 

algorithms to such new conditions (see also [77] [78] [79]). 

3.2. State of the art of non-AWGN 

denoising techniques 

The problem of nonlocal image denoising in the presence of 

colored noise has been already addressed as well.  

A version of NLM for colored noise (NLM-C) is 

proposed by Goossens et al. [80] where the noise is assumed to 

come from the linear filtering of white Gaussian noise. Given 

the impulse-response of the filter, and hence all noise statistics, 

the Authors replace the Euclidean distance, used originally to 

compute the similarity among patches, with the Mahalanobis 

distance which takes the noise covariance matrix into account. 

Alternatively, to reduce the computational load, they apply a 

prewhitening linear filter to the noisy image and use the 

resulting image to compute the weights by the Euclidean 

distance. Next, this prewhitened image is only used to compute 

the weights based on the Euclidean distance. Numerical 

experiments show NLM-C to provide significant improvements, 

both visually and in terms of PSNR, not only over basic NLM 
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(called NLM-W in this context) but also w.r.t. to some recent 

wavelet-based denoising techniques for colored: BLS-GSM [81] 

and MP-GSM [82]. 

Also BM3D has been already adapted [83], to the case of 

correlated noise. The Authors observe that when using the 2D 

and 1D transforms (T2D and T1D) to cross into a transformed 

domain, if they are orthonormal and the noise in the input image 

is i.i.d. Gaussian, then the noise in the T3D-transform domain is 

also i.i.d. Gaussian with the same constant variance; but, if the 

noise is colored, then the variances of T2D-transform coefficients 

are in general non constant. For this reason they computed the 

coefficients variances of a T2D-transform (applied to an arbitrary 

image block) 2D
2
(i) i=1,…,N1

2
 where N1 is the block 

dimension. This fact is taken into account in various phases of 

the algorithm: by using a weighted block distance computed in 

the transform domain; by using a different shrinkage threshold 

for each coefficient; and by aggregating filtered blocks based on 

their expected noise level.  

When determining the block-distance, to reduce the 

influence of noisier transform coefficients, the block-distance is 

computed as the l
2
-norm of the difference between the two T2D-

transformed blocks scaled by the corresponding standard 

deviations of the T2D-transform coefficients. 

After the best-matching, blocks are found and grouped 

together in a 3D array and collaborative hard-thresholding is 

applied. It consists of applying the 3D transform T3D on the 3D 

group, hard-thresholding its spectrum, and then inverting the 

T3D. To attenuate the colored noise, the hard-threshold is made 

dependent on the variance of each T3D-transform coefficient as 

computed before (actually along the third dimension of a group 

the variance is the same). 

After all reference blocks are processed, the filtered 

blocks are aggregated by a weighted averaging. The weight for 

all filterd blocks in an arbitrary 3D group is the inverse of the 

sum of the variances of the non-zero transform coefficients after 

hard-thresholding. 
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During the second step, the only modifications from the 

original BM3D filter concerns the use of T3D-transform 

coefficients variances in the empirical Wiener filtering, and for 

the aggregation weight. Since the grouping by block-matching is 

performed on the estimate and not on the noisy image, there is 

no need to modify the distance calculation. 

Based on the above ideas, we propose a new version of 

BM3D for correlated noise. We use the basic strategy of the 

original BM3D algorithm because of its strong rationale, but 

modify it in several steps to keep into account the actual noise 

statistics. In particular, we improve the block matching by 

resorting to image prewhitening, and the shrinkage (hard 

thresholding in the first step, and Wiener filtering in the second 

step) by taking into account the different noise variances of 

coefficients and improving their estimate. 

3.3. The modified BM3D algorithm 

Since the proposed algorithm is a modification of BM3D, we 

describe and discuss here only the differences w.r.t. the original 

algorithm [76].  

The first and probably most important improvement 

concerns the block matching, based on straight Euclidean 

distance in the original algorithm. The ultimate goal of block 

matching is to find out the signal patches that most resemble the 

signal target patch. However, since the clean image is not 

available, at least in the first step, one can only work on 

signal+noise patches. Therefore, it can happen that some 

patches happen to be close to the target not because of an actual 

similarity of signal but as the effect of the random patterns of 

noise. This event, relatively uncommon in the AWGN case, can 

become a serious problem in the presence of strong correlated 

noise, when independent noise samples are reduced. If the noise 

is very structured and comparable in intensity with the signal it 

can dominate the block matching phase, leading to the selection 
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of patches loosely related (in terms of signal) with one another 

and, eventually, to a poor performance. Therefore, in nonlocal 

approaches it is very important to counter this problem. To this 

end, we carry out a prewhitening of the noisy image.  

Let z be the observed noisy image, related to the noise-

free image y by 

  (24) 

where u(n) is stationary white noise independent of y(n), and 

h(n) is a linear filter. The prewhitened image zpw(n) is then 

computed as the inverse transform of 

  (25) 

where X  indicated discrete Fourier transform of x(n), and ε is 

a small positive constant added to ensure stability. The 

prewhitened image is then used to locate the best matching 

patches, while all other processing steps take place on the 

original image.  

It is worth underlining that this approach is quite 

different from that of Dabov et al. [83], let us call it BM3D-C, 

where no prewhitening is carried out but block similarity is 

computed in the transform domain with a weighted Euclidean 

distance, with smaller weights associated to noisier coefficients 

to reduce their detrimental effects.  

On the contrary, for our second modification, concerning 

coefficient shrinkage, we follow closely the approach proposed 

by Dabov et al.. In particular, focusing on the first step of 

BM3D, we carry out hard-thresholding using a different 

threshold for each coefficient, proportional to the expected 

variance of noise. In formulas: 
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  (26) 

where i and j are indexes associated with the 2D spatial and 1D 

transforms, respectively, and  is a constant. By so doing, we 

increase our chances to suppress large coefficients originated 

exclusively by noise and, at the same time, to keep small 

coefficients with significant signal contribution. As for the 

variances, following the model in (24), they can be computed as: 

  (27) 

where  is the i-th basis element of T2D, F{·} indicates the 

discrete Fourier transform operator,  is the overall noise 

variance and N1 is the block dimension. 

Our last improvement concerns the empirical Wiener 

filtering in the second step which, just like hard thresholding in 

the first step, can be adapted to take into account the actual noise 

variances of coefficients according to  

  
(28) 

where  is the energy of the 3D transform 

coefficients of the basic estimate group where patches more 

similar to the target one P
T
 of z

T
 are collected. Here, we propose 

to estimate the variances  starting from the basic estimate 

of the clean image, , provided by the first step. As a matter 

of facts, BM3D exploits the knowledge of  in the second 

step to accomplish several tasks:  is used to carry out the 

block matching process, which is why prewhitening is not 

required anymore, and also to obtain reliable estimates of signal 

statistics for the Wiener filtering. In the same manner, assuming 
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that  at is a reliable estimate of the clean image y, the 

difference between the noisy image and the denoised one:  

  (29) 

can be assumed to be a good estimate of the actual correlated 

noise. Therefore, by working on this noise image we can 

actually measure the coefficient noise variances, in each single 

group of blocks, rather than estimating them according to (27). 

3.4. Results 

In this section we describe the results of a limited set of 

experiments chosen to allow a comparison with reference 

techniques and highlight the major phenomena of interest. 

In particular, we have simulated four type of colored 

noise: a bandpass noise with σ=30 on “House” image (Figure 

3.6), and a line pattern noise like that found on analogue video 

with σ=40 on “Flinstones” image (Figure 3.7), exactly as they 

appear in the work of Goossens et al. [80]. In addiction, we 

simulated two other type of colored noise, a bandpass noise with 

σ=35 on “House” image and a double line pattern noise with 

σ=30 on “House” image, as a further test of the efficacy of the 

proposed method.  

Focusing on numerical results for House reported in 

Table 1, we note first of all that both NLM and BM3D degrade 

their performance as the noise becomes more structured, very 

likely because of the detrimental effects of noise on block 

matching.  
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TABLE 1: PSNR RESULTS FOR TEST IMAGES WITH FOUR TYPE OF 

SIMULATED CORRELATED NOISE. 

 

House (σ=35)  House (σ=30)  Flinstone (σ=40)  

band pass  band pass  stripes  stripes  

Noisy image 17,25  18,59  18,59  16,09  

NLM 26,68  28,51  26,67  22,51  

BM3D 28,35  30,94  28,91  22,01  

NLM-C 28,11  30,74  32,01  25,44  

BM3D-C 28,77  31,44  30,78  23,63  

Proposed 28,77  31,62  32,24  25,54  

 

In all cases, BM3D keeps a 2dB edge w.r.t. NLM. 

Obviously, the colored-noise versions of the algorithms, NLM-C 

and BM3D-C, provide a significant gain w.r.t. the basic 

versions, especially for the case of more structured noise. It is 

worth underlining that the gain of NLM-C over NLM is much 

stronger than that of BM3D-C over BM3D, especially for 

structured noise. This backs up our conjecture that strong 

structured noise very much impairs block matching, and that the 

solution proposed by Dabov et al. [83] for BM3D-C does not 

really solve the problem.  

Our proposed version of BM3D, which includes also 

improvements in the shrinkage phase and in the variance 

estimation, turns out to work well on very different types of 

noise, from one with granular aspects to streaked noise; unlike 

the other investigated methods appear to be effective only on 

particular type of correlated noise.  

For example, the NLM-C performances are good on 

streaked noise, instead on band pass noise are even lower than 

BM3D-W developed in AWGN hypotheses. The reason for this 

behavior is probably due to noise spectral characteristics. The 

whitening operation before filtering is probably more “invasive” 
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for band pass noise than to others, altering the underlying signal 

characteristics, thereby reducing the denoising effectiveness. 

On the contrary, BM3D-C returns better results for the 

band pass noise and only modest results for streaked noise. 

Despite the estimate transform coefficients variances are used in 

the block-matching to reduce the influence of noisier transform 

coefficients, probably the particular and repetitive pattern of 

streaked noise strongly influences the blocks distance measure. 

If the block matching is compromised, the remaining filtering 

part is ineffective. 

Similar results are obtained for the Flinstone image with 

structured noise. The visual inspection of the filtered images of 

Figure 3.6 and Figure 3.7 further reinforces the positive 

judgement on the proposed algorithm, which removes most of 

the noise, like the other colored-noise algorithms, but presents a 

smaller number of ghost artifacts and of generally lower 

intensity. 
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(d) NLM-C 

(a) Original (b) Noisy 

(f) Proposed 

(c) NLM 

(e) BM3D-C 

Figure 3.6: Visual results for a crop-outs of House. 
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(a) Original 

(c) NLM 

(e) BM3D-C 

(b) Noisy 

(d) NLM-C 

(f) Proposed 

Figure 3.7: Visual results for a crop-outs of Flinstone. 



  

 

 

Conclusion 

In this thesis, we propose 3D algorithms for micro-

architecture analysis based on the mathematical morphology 

theory. In particular, the opening operator properties have been 

exploited in the "successive openings" algorithm. It represents 

the starting point for the construction of three morphological 

synthetic indicators: the dimensional curves, the connectivity 

analysis, the effective porosity determination. 

The dimensional curves return information about the 

pore or solid size distribution in a porous media. Applied to 

natural porous media, such as soils, this indicator allows to 

know their structural properties, and then to have some 

indications, for example, about the use of a soil in agriculture or 

about the physical and biological processes that determine its 

structure. A multi-modal pore size distribution, for example, 

indicates a highest heterogeneity of pores, that can be generally 

considered as a good indicator of soil physical quality, which 

can be related to, for instance, the plurality of habitats available 

for microbiological activity and to better effectiveness of water 

and air flow for the roots working. On the other hand, the 

trabecular size distributions of bone solid phase are powerful 

tools for diagnostic use. In particular, a unimodal pattern is 

associated with an homogeneous structure, while the presence of 

a large number of size classes is consistent with the bone sample 

affected by osteoporosis. This proves that the indicator we have 

proposed reflects the physiological or pathological nature of 

bone tissue samples. The connectivity curves, instead, allow to 

identify how the structural elements are interconnected. We 

have demonstrated that by connectivity analysis, it is also 

possible to identify the throat threshold value for the network. It 

is a critical diameter above which no connectivity and, then, no 

fluid passage is allowed anymore for the porous medium under 
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analysis. In particular, in biological application, this indicator 

shows that, for osteoporotic bone sample tissue, the connectivity 

is assigned to size classes smaller and less frequent than the 

varieties present in the volume. Finally, we have defined the 

effective porosity as the porosity fraction really interested in 

passage of fluids and we have implemented an efficient 

procedure for the automatic extraction of this component from 

to the total porosity. These results show that the proposed 

indicators together represent an effective tool for the porous 

media internal structure characterization. 

Although “successive openings” is highly demanding in 

terms of CPU time, its fast version, based on the distance 

transform, provides still accurate results and is extremely fast.  

The last part of our research is dedicated to reducing the 

strong noise that corrupts tomographic images. After evaluating 

experimentally the characteristics of noise, we propose a 

filtering technique for correlate noise based on the Block-

Matching 3D (BM3D) algorithm. Experimental results on test 

images, corrupted by different types of colored noise, prove the 

effectiveness of the proposed technique. 

Despite the micro-tomographic image processing 

presents considerable difficulties, both for the images intrinsic 

characteristics, and for the objects analyzed nature, in this thesis 

we have laid the foundations for a systematic study of the 

porous media structure, through the mathematical morphology 

theory. Certainly further investigations deserve issues such as 

micro-tomographic denoising and segmentation, which are only 

partially addressed in this work. They represent critical points in 

the micro-tomographic image processing, but present difficulties 

that require a great caution in deal with, altogether with a great 

research improvement. 
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