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Abstract 

Weight reduction has always represented an important factor in the design of aerospace structures and 

actually this tendency is increasing.  

New materials, as composite materials, and new structural solutions have been proposed in recent 

years in order to reduce weights and improve the performances.   

Lightweight structures and large wingspans induce an increment of deformations because of a 

detriment in the structural stiffness. 

In this thesis the impact of structural flexibility on guidance, navigation and control disciplines will be 

discussed and some innovative solutions will be proposed in order to overcome limits of traditional 

rigid-body dynamic models.  

The main effect of structural flexibility is an aircraft shape change in presence of maneuvers or gust. 

Concerning shape changes estimation, in this work two innovative solutions are presented:  

o extension of integrated navigation algorithms to flexible aircraft taking into account the flexible 

motions (shape changes); 

o an algorithm for estimation of the shape changes alone, to be used, for example, in a load 

alleviation system.  

A specific sensor setup has been associated to each one of these two proposals. In the case of 

integrated navigation, GPS and inertial sensors are used to estimate the rigid and flexible states (the 

word “rigid state” denotes at least position, speed and attitude, the word “flexible state” denotes some 

variables used to describe elastic motions), while for the determination of the shape changes alone, 

inertial sensors are associated with a video-based system.  

This last point also represents an innovative solution. 

The need for estimation of shape changes, independently by the rigid state, is justified by the 

consideration that for some classes of aircrafts, structural flexibility has not a big effect on navigation 

(estimation of navigation parameters is not strongly affected by the flexible state, essentially because 

of navigation sensors accuracy which is lower than the magnitude of elastic motions). The knowledge 

of shape changes is however required in load or gust alleviation techniques or for other applications, 

as for example the correction of the output provided by particular sensors installed onboard the 

aircraft.  

In this work a simulation model of an aircraft, including elastic dynamic, will be presented, discussing 

the hypotheses on which it is based. This simulation model will be used to verify the performances of 

the proposed systems, but, above all, to analyze the main factors influencing the algorithms for shape 

changes estimation within gust or load control systems. 
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Introduction 

The weight reduction has always represented an important factor in the design of aerospace 

structures and actually this tendency is increasing.  

New materials, as composite materials, and new structural solutions have been proposed in 

recent years in order to reduce weight and improve the performances.   

Lightweight structures and large wingspans induce an increment of deformations because of a 

detriment in the structure stiffness. 

In the aeronautical field, this issue is particularly relevant for the category of HALE vehicles 

(High Attitude Long Endurance Vehicle), which have lightweight structures and large 

wingspans [1].  

An important example of high flexure wings was the NASA HELIOS aircraft, which during 

its last flight showed wing tip displacements of about 15 feet. 

In general for HALE aircrafts, the ratio between wingtip displacements and semi wing span, 

assumes values comprised in the range 0.15 to 0.30 [2][3]. Considering that, for this class of 

aircrafts, semi-wings may typically reach an extension of 100 feet or more, wingtip 

displacements could reach the order of magnitude of several dozens of feet. 

The potential missions of HALE vehicles are environmental/military observations and, more 

in general, communications (the aircrafts are used as relay stations).  

HALE UAVs are mainly employed to provide near real time, high resolution intelligence, 

surveillance and reconnaissance imagery (ISR), to do that, these vehicles are equipped with 

dedicated sensors and instrumentations.  

The great advantage offered by these vehicles, respect to satellites, is the possibility to make 

operations of maintenance, moreover they offer greater resolution due to their position nearer 

to the Earth surface. 

They are generally electrically powered, thus they can continuously fly for months. 

The program PRO.RA HAPD realized by the CIRA had the aim to analyze the potentialities 

and the design constraints of HALE aircrafts. 

 



Methods and Systems for Estimation of Shape-Changes Applicable to Navigation and Control of 
Flexible Aerospace Vehicles 
 

10 
 

 
 

Figure I NASA Helios Aircraft 
 

The problem of structural elasticity is not limited to HALE aircrafts, but concerns also new 

commercial aircrafts. 

 
Figure II Boeing 787 wing deformation in several load conditions. 

 

For modern wide-body commercial aircrafts, as for example the B787, the value of maximum 

wing flexure reported in literature is about 20 feet at the ultimate load, and 10 feet during 

normal flight operations [4]. 

In the next years, the concept of weight reduction will be more and more important, because it 

is associated to a more general concept of environmental friendly aircraft, which shall have 

limited noise emissions and fuel consumption.  

The results of several studies, most of them realized by European aircraft manufacturers in 

collaboration with the research centers, on new configurations have shown that blended wing-
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body tailless configuration is the better one [5] if associated with techniques of active control 

and load alleviation.  

Some programs of the NASA also concern techniques and methods for current shape 

estimation in the field of structural monitoring and active control.  

Both these modern control techniques benefit of the knowledge of the aircraft actual shape. 

 
Figure III ACFA 2020 blended wing-body aircraft design 

 
In the spatial environment, motions due to structural flexibility assume great importance due 

to the absence of air which can act as damper. The knowledge of the actual shape, essentially 

for control purposes, is important for systems requiring fine precision pointing as 

telecommunications satellites, which present large structural bending modes because of 

flexible arrays and fuel slosh [6].  

The knowledge of the true structural shape is also required for applications in which two or 

more systems interact between them (spatial docking or in-flight refueling). 

There are also some interesting scientific publications realized by MTI and JAXA scientists 

concerning shape change estimation for large space structures based on measurements 

provided by image or range sensors installed on robots, external to the space structure, and 

some accelerometers placed, instead, on it.  

These solutions are justified by the assumption that, in next future, maintenance of space 

structures will be assigned to robots, which require exact knowledge of structure shape in 

order to interact with it [7][8]. 

For missiles and launchers, the problem of structural flexibility is directly connected with the 

design of the control system.   
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Using feedback signals provided by suitable sensors, a control system elaborates commands 

for the actuators of the control devices. The output of these sensors depends mainly by rigid 

motions but it is influenced also from the flexible ones (this is generally true for all types of 

flexible structures not only missiles or launchers).  

The actuators of the control devices apply forces to the structure, feeding energy at different 

frequencies including the resonant ones.  

Because of very low structural damping in missiles and launchers structures, it could happen 

that more energy is fed than dissipated [9]. 

This phenomenon is increased by aerodynamic forces because structural deflections increase 

aerodynamic loads, which cause new deflections. This is obviously an unstable mechanism, if 

not controlled.  

In conclusion, for flexible structures, knowledge of shape changes is required essentially for 

four reasons:  

1. health monitoring of the structure,  

2. navigation and control purposes (Active Control Technologies), 

3. determination of exact position and attitude of onboard sensors to increase the 

accuracy of their measurements, 

4. flow control techniques. These techniques are becoming more integrated with flight 

control. They involve unsteady flow and flexible wings [6].  

This thesis has been organized as follows. In the next chapter, the innovative contributions of 

this work will be briefly described. Further details will be presented in the other chapters. 

In Chapter 1 an analysis of issues related to navigation of flexible aircrafts is provided. This 

chapter includes an overview of the state of the art navigation methods and systems for 

flexible, and “not-flexible”, aircrafts, with an analysis of advantages and limitations of the 

proposed approaches. A method for estimation of navigation parameters and shape change is 

proposed, providing its detailed mathematical description and its fundamental equations. In 

Chapter 2 the problem of estimation of shape change is individually treated. In this case a 

specific solution is also proposed. In Chapter 3 a load alleviation system based on the setup 

and estimation algorithm presented in Chapter 2 is proposed. Finally in Chapter 4 some 

numerical and experimental results, related to systems proposed in previous chapters, will be 

analyzed. 

 



Methods and Systems for Estimation of Shape-Changes Applicable to Navigation and Control of 
Flexible Aerospace Vehicles 
 

13 
 

 

Introduction to Innovative Aspects  

The activities of this doctorate have concerned the analysis of the effects of structural 

flexibility on aircrafts Guidance, Navigation and Control. 

The main consequence of flexibility is inapplicability of a rigid body model for flight 

mechanics analyses and for the design of navigation and control algorithms, because the 

typical 6 dof model is not more appropriate to describe the motion of flexible vehicles (above 

all for large vehicles). 

The main difference between a flexible body model and rigid body one is the description of 

the elastic deflections of the structure, including more state variables.  

In flexible structures, rigid and elastic motions could be frequencially coupled present, with 

the consequence that they cannot be considered separately within the analyses of flight 

dynamic and mechanic. 

From the perspective of sensors (for example inertial sensors and GPS), a designer of a 

GN&C system shall take in account the influence of flexible motions on measurements, if 

their frequency content is included in the sensors band. 

Furthermore, if inertial sensors and GPS antenna are separated by a certain distance, it could 

be not fixed but time variable, because of distortions due to flexibility. In the case of exact co-

installation of both GPS antenna and inertial a lever arm could be generated because of the 

vehicle elastic behavior. 

The exact knowledge of the distances between the sensors assumes great importance for 

systems like ADGPS based on several antennas and on carrier phase measurements or Gyro-

free INS. 

Concerning navigation algorithms, the most widely used system is generally composed by an 

IMU and a GPS, whose measurements are elaborated using a Kalman Filter. 

In this field, State of the Art solutions generally neglect effects of shape changes on 

measurements and equations used in navigation algorithms. 

A little number of proposals for navigation of flexible aircrafts has been proposed in recent 

years. These solutions handle anyway simplified models, considering: one-dimensional or 

two-dimensional flexible motions, rigid motions decoupled from the flexible ones, simple 

structural elements whose modal decomposition is analytically known. 

A new approach to navigation algorithms for flexible aircrafts will be presented in this thesis. 

It includes estimation of both: vehicle rigid state (position, velocity and attitude) and elastic 



Methods and Systems for Estimation of Shape-Changes Applicable to Navigation and Control of 
Flexible Aerospace Vehicles 
 

14 
 

state (specifically, modal decomposition will be used to describe shape changes), so that it can 

be used for flexible vehicles. 

With this approach, the following innovative aspects respect to the current state of the art 

techniques will be proposed: 

 a complete modeling of flexible motions into navigation algorithms; 

 coupling between rigid motions and elastic ones; 

 mode shapes derived by FEM analysis; 

 3-D modeling of elastic motions; 

In particular, two formulations, with the relative sensors setup, will be proposed. 

One formulation is focused on shape change estimation within a navigation system, while the 

other one is more focused only on shape changes estimation. 

Estimation of shape changes in a three dimensional space, allows to use the proposed 

algorithm not only for navigation of aircrafts but also for other vehicles.  

Within integrated navigation system, GPS is proposed to detect flexible deflections. 

A video-based system has been proposed for estimation of shape changes. This choice is 

justified by the accuracy of GPS, which is suitable for estimation of shape changes only if 

used with differential corrections or for very high magnitude deflections.  

This is another innovative aspect because videometry has been proposed and applied with 

success only for determination of deflections in civil structures. In the aerospace field, 

videometry is applied only for wind tunnel tests or for in-flight tests but using a post flight 

analysis of data.  

The application of a video system provides great accuracy in estimation of shape changes and, 

moreover, it represents a more compact system respect to strain gauges and optical fibers, 

which have also a more complicated maintenance.  

Unlike actual videometry techniques requiring complex patterns, the use of LEDs as markers 

makes easier the image processing, allowing the real-time application of this system. 

These aspects will be treated in more details in chapters 1 and 2. 

Regarding control applications, Active Control Systems benefit from knowledge of certain 

parameters related to flexibility.  

As already affirmed, this class of control systems includes load alleviation and gust 

alleviation techniques. These techniques are nowadays applied mainly for the following 

purposes: i) improving the handling and flying quality, ii) reducing the risk of structural 

failure and iii) increasing the operational life of an aerospace vehicle [6]. 
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Active control techniques are actually based on the feedback of acceleration measurements or 

of other parameters related to rigid motion, as the attitude. These parameters represent a 

synthetic information but limited to a certain area or a certain point of the aircraft. 

In this work, a control algorithm have been designed and coupled with the proposed shape 

changes estimation algorithm, in order to evaluate its performances but, above all, to evaluate 

the design parameters of the estimation algorithm which mainly influence these performances. 

These algorithms are generally based on the application, as feedback, of measurements which 

refer to rigid motion too (as for example the attitude). 

Some authors have proposed to use, as feedback, some parameters related to aircraft flexible 

state, but they don’t suggest how these parameters can be really calculated. 

The application of some parameters describing the shape changes as feedback should allow to 

act directly on the mode shapes more excited by the solicitations, improving the overall 

performances of the control law. 
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1 Navigation Issues for Flexible Aircrafts 

In this chapter the main issues related to navigation of flexible aircrafts will be described. 

State of the art solutions for navigation of flexible aircrafts will be examined, analyzing their 

advantages and limitations.  

In order to overcome some of the actual limitations, a new algorithm for navigation of flexible 

aircrafts will be proposed.  

Its mathematical formulation (in terms of non-linear and linearized equations) will be 

provided together with some reminds, wherever needed, concerning the theoretical 

background.  

Moreover, some unconventional navigation systems will be discussed. This overview has 

essentially two purposes, the first one is to highlight the sensitivity of some navigation 

systems to structural flexibility, because of their particular configurations; the second one is to 

provide some ideas for future activities.  

1.1 State of the Art and Description of the Proposed Method 

The works realized by the group of Prof. J.Wagner represent the State of the Art solutions for 

estimation of aircraft shape changes within an integrated navigation system. 

In [11] and [12] advanced sensor fusion strategies are proposed, including detection of elastic 

motions for navigation purposes.  

The peculiar aspects of these works are: 

1) modal decomposition used to describe flexible motions; 

2) the wing modelled as a beam: this structural element has analytical closed form 

solution for mode shapes and generalized coordinates.  

The positioning of accelerometers or gyros, used to detect flexible structural 

deflections, is presented as a natural consequence of mode shapes knowledge. 

Knowing the interesting mode shapes (with a model reduction method) it is possible to 

place the sensors in points having greater predisposition to sense elastic motions; 

3) the sensor setup is composed by an IMU, several accelerometers or gyros, two radar 

units and several extensometers. The measurements of these systems are used within 

an Extended Kalman Filter. Some simplifications are considered. The main IMU 

(located at the aircraft centre of gravity, in the fuselage, and used only for navigation 

purposes) is not influenced by elastic structural motions (rigid and elastic motions are 
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decoupled). Another interpretation of this assumption is that the IMU is placed in a 

nodal point. This is another critical point because positions of nodal points are known 

with a certain degree of approximation and generally nodal points for different mode 

shapes could not correspond.  

4) as additional degrees of freedom, consequence of structure flexibility, this papers 

consider only motions along one axis and rotations around an axis orthogonal to the 

plane containing this axis and the longitudinal axis. 

Neglecting the presence of elastic motions at aircraft center of gravity is particularly critic for 

two reasons: i) fuselage could not be considerable as a rigid body, especially when they 

present high length to diameter ratio, ii) IMU accelerometers and gyros, having great 

accuracy, can sense elastic accelerations and angular speeds (also because elastic motions 

could have a frequency content in the bandwidth of IMU sensors).  

In [13] only motions along Z axis (Body Reference frame) are considered, even if it is clearly 

indicated that this is a simplification, because as affirmed in the paper “an array on a flexible 

aircraft wing can move in two directions: fore and aft, up and down, and rotation around 

pitch axis”. Moreover, in [13] the deformations of the structure are considered known from 

off-line calculations, so a method, for the on-line estimation of actual aircraft shape, is not 

proposed.  

Concerning the modelling of the wing, for more complex design solution (for example joined 

wing configuration) the model of beam could not be used, thus mode shapes could not have 

an analytic formulation. The structural design and verification of these structural 

configurations are nowadays realised using FEM (Finite Element Method), which together 

with flight tests provides information about mode shapes. 

In the light of the previous considerations, the purpose of the doctorate activities has been the 

development of a more general modelling of flexible phenomena for shape changes 

determination alone or within integrated navigation systems.  

Concerning this last point, the proposed solution includes the following innovative aspects: 

1) coupling of elastic motions with the rigid ones. 

In the real world elastic motions have a frequencial content in the same band of the rigid 

ones. Under this assumption the entire aircraft structure can be consider as a flexible body, 

including also the fuselage. The placement of main navigation sensors, as the IMU, is not 

limited to nodal points, but extended to the entire structure of the aircraft, providing more 

flexibility. 
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2) flexible motions include deflections along three orthogonal axes and rotations along 

them. 

This choice generalizes the navigation equations and allows extension of this method to 

more complex structures and aircrafts. 

3) Application of mode shapes derived from FEM analysis 

This allows the application of this method also to complex structures, for which an 

analytic description of modal decomposition is not available.  

4) GPS used to detect flexible deflections 

This choice reduces the number of sensors to be installed onboard the aircraft. The 

accuracy of the GPS (determined by the operative mode) influences the magnitude of 

flexible motions which can be estimated.  

Another solution for detect flexible deflections, based on videometry, will be proposed in 

chapter 2. 

Some aspects of current state of the art techniques are considered still valid. 

In particular the modal decomposition will be still used to describe flexible motions and some 

accelerometers distributed along the aircrafts will be considered in association with GPS or 

videometry in order to detect flexible motions. 

The application of modal decomposition is also justified by the application of EKF procedure 

which works on linearized systems. 

1.2 Survey on Navigation Sensors Architectures 

The navigation systems and their corresponding algorithms, mainly influenced by the effects 

of structural flexibility, are discussed in this paragraph. 

Concerning this subject, the accuracy of the navigation systems involving several sensors 

installed on the aircraft is strongly influenced by structural flexibility, because the relative 

distances between the different sensors of the system have to be known with great accuracy. 

Examples of such a kind of navigation systems are: i) the gyro-free INS, ii) ADGPS and, iii) 

more in general, multiple IMUs. 

These systems will be briefly described inside this paragraph, highlighting the aspects for 

which the exact knowledge of the real shape (and consequently of the distances between the 

sensors) is essential to ensure the desired accuracy. 

As it will be explained in the followings, longer distances among the various sensors provide 

greater accuracy in the measurements, but longer distances imply a greater influence of 
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flexibility. This aspect is particularly critic for ADGPS associated with an algorithm using 

carrier phase differences. 

1.2.1 Attitude Derived GPS 

The estimation of attitude based on GPS measurements (or observables) involves essentially 

two different procedures:  

 

i) direct attitude estimation, using directly GPS observables; 

ii) integration of GPS measurements with INS measurements (using a suitable sensor 

fusion algorithm) to improve the overall accuracy. 

 

Concerning direct attitude estimation, several architectures have been proposed, based on 

single or multiple GPS antennas. In this first case estimation of attitude uses velocity 

measurements and it is based on some restrictive assumptions [14] and it has several 

limitations [15]. 

For configurations with multiple antennas, several algorithms have ben proposed in the 

specialized literature. They essentially differ for the applications of the different GPS 

observables or measurements. 

The term “GPS observables” denotes all the information computed from basic receiver 

channels measurements, for example: pseudo-time, code pseudo-range and phase observables 

[16]. 

In order to achieve an accurate attitude estimation from relatively short baselines on a moving 

platform, the C/A code carrier phase measurements have to be used among the GPS 

observables, because they are the most accurate measurements [17]. 

GPS carrier phase measurements are affected by integer carrier phase ambiguity. Carrier 

phase ambiguity represents the unknown number of whole wavelengths of the carrier signal 

contained in an unbroken set of measurements from a single satellite at a single receiver. 

Determination of position or attitude (in a multiple GPS-Antenna configuration) using these 

measurements cannot disregard the correct determination of integer ambiguity, in fact the 

kernel of the most part of the proposed technique for GPS-derived attitude is the resolution of 

integer ambiguity problem.  

Carrier phase measurements are generally not directly used for attitude determination, but the 

single or double differences between them (differential observations). 
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An accurate, but at the same time simple, description of differential observations is provided 

in [18]. In this work it is provided a quantitative indication of the global error present 

respectively in carrier phase measurements, in single differences and finally in double 

differences: considering also the effect of synchronization between different GPS receivers.   

The double differences technique allows reducing the orbital and atmospheric errors, satellite 

and receiver clock errors but, on the other hand, increases the influence of receiver noises. 

This technique derives from DGPS, where double differences are computed from 

measurements between two different receivers, one of them located at a ground station and 

representing the reference or master receiver (differential base) and another one installed 

onboard (differential rover or slave receiver).  

In a configuration with multiple GPS antennas used for attitude derivation, both the master 

and slave receivers are installed onboard the moving platform. If a single receiver is used to 

decode signals from all the distributed antennas, master and slave receivers are coincident.  

Various techniques have been proposed to solve integer ambiguity problem, in [17] a short 

review of these techniques is presented. Even if this paper dates at the end of nineties, the 

basic principles for resolution of integer ambiguity are still valid.  

The application of aiding sensors as magnetometer or other inertial sensors speeds up the 

process of correct integer ambiguity determination. The solution time, which is an important 

parameter in real-time applications, depends essentially on the type of algorithm, which is 

applied. In “fixed baseline” algorithms, in which the known baselines lengths between master 

and slave antennas are used as constraints to reduce integer ambiguity search space, the 

process is faster than the iterative ones (essentially recursive least-square), and depends on 

baselines lengths (it increases with longer baselines). As will be shown later, longer baselines 

provide more accurate attitude estimation, thus a trade-off analysis is required. Structural 

flexibility is in fact another limiting factor in the length of the baseline, because of baseline 

length variations which introduce uncertainty in integer ambiguity estimation. 

More recent techniques propose to solve simultaneously the attitude and carrier phase integer 

ambiguity resolution. 

Several algorithms have been developed for estimating vehicle’s attitude using a multi-

Antenna GPS as measurement system and their positions as GPS measurements.  

Some of them are based on the knowledge of antenna positions in the body reference frame, 

while other ones don’t use this information.  
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The first type of method provides a solution which is less affected by multipath on a single 

antenna, because the attitude is calculated with a best fit over all antennas positions.  

In order to achieve high accuracy positioning, carrier phase measurements have to be used, 

solving integer carrier phase ambiguities. 

In [19] some experimental results, obtained using a system composed by four GPS antennas 

(an antenna is used for redundancy) and a least square method with carrier phase 

measurements, are reported. The distances between the antennas range from 7 to 10 meters 

and the receivers have an output rate of 10 Hz. The GPS based attitude is compared with the 

attitude estimated integrating Ring Laser Gyro measurements (offering a level of accuracy of 

0.02° for pitch and roll, and 0.08° for yaw). The main conclusion of this paper is that attitude 

can estimated with an accuracy of about 0.05° to 0.11° (after removal of wing elastic 

motions), if the positions of GPS Antennas are known with an accuracy of 1 cm.  

Other papers, concerning experimental results of GPS attitude estimation, report an accuracy 

on attitude up to one tenths of degree [20].  

The second configuration, presented in this paragraph, concerns the integration of a multiple 

GPS antennas system with an IMU using a sensor fusion algorithm. The main purpose of this 

technique is to guarantee the observability of attitude error, independently from the aircraft’s 

motion and the configuration of sensors. 

Standard single GPS/IMU integration algorithms show some defeats in attitude determination. 

These algorithms are typically based on a sensor architecture, in which GPS and IMU are 

placed close together (in order to eliminate any lever arm effect). This assumption leads to a 

reduction of algorithm complexity, but on the other hand, this configuration does not 

guarantee the observability of the attitude error.  

Observability of the Attitude error is provided by GPS measurements only if a lever arm is 

present between GPS and IMU. Moreover, even if IMU and GPS are installed with a distance 

between them, the observability of attitude error depends also by the maneuver of the aircraft; 

consequently it could not be guaranteed during all flight phases. To increase or provide 

attitude error observability, in standard single GPS/IMU integration algorithms, a 

magnetometer can be introduced. 

Two kinds of integration algorithms between systems with multiple GPS antennas and IMU 

are treated in literature. The substantial difference between them, is in the application of 

different GPS observables as aiding measurements. Some authors propose the direct use of 
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GPS derived attitude, while other ones propose the use of pseudo-ranges with their derivatives 

or directly positions/speeds. 

In [21] it is proposed a navigation system suitable for a bomb. The proposed architecture is 

composed by four GPS antennas (placed according to the scheme of Figure IV) and a tactical-

grade IMU. As aiding measurements the author proposes the GPS pseudo-ranges/pseudo-

ranges rates and the GPS derived attitude. The sensor fusion algorithm consists in a Kalman 

Filter, whose prediction step works at 10 Hz, while the update step works at 1 Hz. Some 

numerical results from several MonteCarlo simulations are presented; the values of rms and 

standard deviation related to attitude estimation error are reported in Table 1. In this paper the 

baselines length is 0.7 m, while GPS derived attitude have an accuracy of 0.5°.  

 
 

 RMS Standard 
deviation 

Pitch (°) 1.3 0.6 
Roll (°) 1.2 0.5 
Heading (°) 1.0 0.5 

Table 1 Attitude Error in Sang’s paper (2004) 
 
In [22] it is presented a comparison between four different GPS antennas configurations, 

using as parameter the accuracy of attitude estimation. This work concerns performances 

evaluation of different GPS Antennas configurations using a Kalman Filter sensor fusion 

algorithm. GPS pseudo-ranges and their derivatives are directly used as aiding measurements 

(there is not a calculation of GPS derived attitude). 

The four configurations are in the order:  

1.) a single antenna with a one meter lever arm; 

2.) three antennas with one meter lever arm each one;  

3.) a single antenna with a lever arm of 25 meters;  

4.) three antennas with lever arms of 25 meters each one.  

Figure IV GPS Antennas Configuration 
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The indicated distances are referred to the IMU. With a single antenna, an increment of the 

lever arm length does not correspond to a greater accuracy in attitude estimation. The second 

configuration does not lead to a drastic change of the regular system performances because 

the lever arm has the same order of magnitude of GPS measurements error (about 1 meter). 

The last configuration leads to a notable accuracy improvement of the attitude estimation.  

In [23] it is proposed to combine in a Kalman Filter the measurements provided by a triple 

GPS antenna system (with short baselines) with the output of a three single-axis gyroscopes 

(automotive grade), mounted in an orthogonal configuration. The purpose of this application 

is the realization of a low-cost AHRS for general aviation aircrafts. The high frequency 

gyroscopes measurements are used to provide attitude for navigation or control purposes, 

while GPS attitude, which has a lower data rate, is used for on-line calibration of gyroscopes. 

Experimental results have shown that the final accuracy of the algorithm is better than 0.2° for 

yaw, pitch and roll during normal operations, while the error reached, during GPS outages 

lasting 2 minutes, is less than 6°.  

The important conclusion of this paper is that, using automotive gyroscopes (with a random 

walk factor of 180°/hr) it is possible to reach an accuracy comparable to tactical grade 

gyroscopes (random walk factor of 10°/hr), thanks to off-line and on-line calibration achieved 

with a multiple antenna GPS system. Moreover this application is based on an ultra-short 

baseline configuration, in which the three antennas are disposed in the vertices of an isosceles 

triangle, which sides have a length of 0.36 and 0.50 meters respectively. This configuration is 

suitable for reduction of wiring and flexural effects on GPS derived attitude measurements. 

1.2.2 Multiple IMU 

Using several IMUs arranged in a suitable configuration, it is also possible to obtain a better 

estimation of direct IMU measurements (i.e. angular speeds and linear accelerations), or of 

the derived navigation states variables (position and speed) as well as a more realistic 

statistical characterization of their noises. 

In order to improve the accuracy of the measurements, inertial sensors shall be arranged in the 

same geometries proposed in [24] for FDI purposes. Specifically, skewed geometries are the 

better ones. 

Skewed redundant IMUs are not so common in commerce, thus laboratories, interested in 

their application, generally assembly (starting from single IMUs) their devices in-house. 

In literature several examples of systems for the reduction of sensor noise, based on 

redundancy of inertial sensors, have been reported. A combination of several inertial sensors 
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not only decreases measurement noise, but also offers a method to estimate their level during 

the processing [25]. This assumption is based on the consideration that we can obtain a better 

estimation of a certain quantity from n independent measurements, each one with variance σi
2 

and weighting factor wi. The standard deviation of this better estimation is given in Eq. (1). 

n
w x

n

i
iix

  
1

22
ˆ

 
(1) 

In [25] this theoretical noise reduction is experimentally verified for gyroscopes, integrating 

the measurements of four MEMS-IMUs gyros, each one with an estimated standard deviation 

of 0.0194 rad/sec. Standard deviation of the calculated angular speed is approximately 

reduced of 48% (0.0101 rad/sec) respect to the theoretical reduction of 50%. 

In [26] it is investigated the integration of two independent IMUs, in order to increase 

measurements accuracy. The two single IMUs are arranged in a skewed configuration. 

Their measurements can be combined according two approaches. The first one, defined 

“approach in observation space”, consists in the generation of synthetic IMU measurements, 

i.e. starting from single IMUs outputs, generation of the measurements provided by an 

imaginary IMU placed at the center of a suitable reference frame (for example body reference 

frame for typical aeronautical applications), whose axes are aligned with the axes of the 

reference frame. The relative orientation between the two single IMUs must be known with 

high accuracy. 

 
 
 z =Cx + n    

(2) 
In the previous equation the column-vector z contains the measurements of n gyroscopes and 

m accelerometers (its length is (n + m) x 1), C is a rectangular matrix transforming the 

measurements from body axes to actual sensor axes, x is a column vector containing angular 

speed and linear acceleration measured in the body reference frame (its length is 6 x 1) and 

finally n is an error term (noise, bias, etc..) with variance σn
2. 

 
Figure V Synthetic IMU Mechanization approach for Navigation Solution  



Methods and Systems for Estimation of Shape-Changes Applicable to Navigation and Control of 
Flexible Aerospace Vehicles 
 

25 
 

Because of measurements redundancy, we can obtain an estimation x̂ of vector x, containing 

synthetic measurements (as previously defined) using a least-squares approach.  

zCx ~ˆ *  
(3) 

Where 

  1111*   CCCC T

 
nzz ~  

(4) 

In Eq. (3) and Eq.(4) C* represents the pseudo-inverse of C matrix weighted with the 

covariance matrix Σ of IMU sensors, while z~  is a column-vector containing raw 

measurements without error terms (these terms could be estimated through a calibration of the 

instruments). 

The same approach is named in [25] “Synthetic Mechanization Approach”. 

Generally, sensors installed inside the single IMUs are similar each other, thus the inclusion 

of sensors covariance matrix in the estimation process does not introduce any further 

information, which could improve the quality of the estimation process.  

The covariance of x̂  , )ˆ(xCov , could be calculated as reported in Eq. (5), while the standard 

deviation σx as reported in Eq. (6). 

  12)ˆ(


 CCxCov T
n  

(5) 
GDOPnx    

(6) 
Where  

  1
 CCtraceGDOP T

 
(7) 

The GDOP is an amplification factor of sensors noise, which depends on the number of 

sensors and their reciprocal arrangement. In [24] several systems, obtained varying the 

number and configuration of sensors, are analyzed and an indication of the relative GDOP is 

provided. 

With this technique it is possible to obtain a realistic estimation of sensors noises and the 

covariance matrix for the synthetic IMU. 

The second approach proposed in [25] and [26] is the “geometrically-constrained 

mechanization” or “state-space approach”, according to the definition given in the first or in 

the second cited work. 
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This technique is based on the idea that direct estimation of navigation parameters can be 

accomplished using redundant measurements. To accomplish this task, we need to associate 

some mathematical expressions, representing geometrical constraints, to classical INS 

mechanization equations. 

 

 

These further equations take in account that the relative orientation C1
2and the relative 

distance r1
2 between the two single IMUs are fixed.  

02
1 C  

(8) 
02

1 r  
(9) 

1.2.3 Gyro-free INS 

The technology of MEMS accelerometers has reached high levels of miniaturization and 

accuracy, with extremely low costs; while the design and production of MEMS gyroscopes 

have not negligible costs. MEMS gyroscopes have, moreover, an accuracy significantly lower 

than RLG Gyroscope [27]. Accelerometers are more robust to work in environments with 

high accelerations, as for example the boost phase of gun-launched systems [28]. 

In the light of the previous considerations, some authors have proposed inertial navigation 

systems based only on accelerometers. Estimation algorithms for these systems have been 

also proposed. Generally these systems are named: Gyro-Free IMU/INS. In this paragraph, it 

will be provided a description of the physical concepts, on which these systems are based 

(essentially the measurement of angular speed and acceleration from linear accelerations). 

Some mechanization algorithms and an integration algorithm between GPS with Gyro-free 

INS will be also presented.  

A generic ith single-axis accelerometer positioned in a point at a distance λi from the vehicle’s 

center of gravity (in the following, the position of a generic accelerometer in the inertial 

 
Figure VI. Geometrically-Constrained Mechanization  
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reference frame will be indicated with the symbol RI ) is subject to different forms of 

acceleration. Under the assumption of rigid body; the total acceleration is sum of several 

contributions: inertial ( IR ), tangential and centripetal acceleration [Eq.(10)].  

  gRf ii
I

i  

 (10) 

Where   and ω represent respectively the angular acceleration and the angular speed of the 

body r.f. respect to the inertial r.f.. 

Placing several accelerometers in a suitable configuration and summating their outputs, it is 

possible to obtain a direct relation between angular acceleration   and measured linear 

accelerations fi.  

For a 6 d.o.f rigid body at least six single-axis accelerometers are necessary to solve the 

problem of angular and translational acceleration estimation, because we have six unknown 

quantities: the three angular speed and the three linear accelerations of body center of gravity 

respect to an inertial reference frame. 

The application of this technique is based on the implicit assumption that accelerometers are 

able to sense tangential accelerations (  ).  

MEMS accelerometers have typically a noise density of 
Hz

mg
05.0  [29], which corresponds 

to a standard deviation of about mg25.0 (with a 30 Hz bandwidth). Considering a lever arm 

length of 10 cm, in order to guarantee the compactness of the solution, the order of magnitude 

of the measurable angular acceleration is 
2sec

018.0
rad

, this value is compatible with typical 

UAV maneuvers. As it is clear from the previous description, a longer lever-arm improves the 

quality of the measurement because it causes an improvement of the signal to noise ratio 

(considering a constant angular acceleration, the tangential acceleration increases with the 

lever-arm), however longer lever-arms introduce flexural motions, which have to be taken in 

account in the model. 

In [30] the six single-axis accelerometers are placed on a cube face centers (whose sides have 

a generic length equal to 2 x l ) with the sensing direction along faces’ diagonals.  

The relation between angular acceleration   , c.g. linear acceleration IR  and linear 

accelerations measured by the six accelerometers if is reported in Eq. (11). 
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(11) 

In Eq. (11) gravitational acceleration is neglected, anyway it is a simple further contribution 

to sum. Considering that this contribution consists in the components of gravitational 

acceleration along accelerometers sensing directions, pitch and roll angles appear explicitly in 

Eq. (11) .    

For the proposed configuration, matrices S and T assume the values indicated in Eq. (12) and 

Eq. (13). In general the condition number of matrix    T

TSl 1 influences the quality of the 

solution and it could determine or strongly influence the accelerometers’ configuration. 
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Figure VII. Chen’s Accelerometers Configuration 

 

To obtain angular speed through integration of angular acceleration, it is necessary to have an 

initial value for the angular speed ω(0). Initialization of Gyro-free INS is particularly critic for 

initial angular speed determination: there is a sign–indetermination problem. Using the 

accelerometers it is possible to estimate only angular acceleration (which will be null in a 



Methods and Systems for Estimation of Shape-Changes Applicable to Navigation and Control of 
Flexible Aerospace Vehicles 
 

29 
 

static initial situation) or quadratic combinations of angular speeds (centripetal acceleration 

terms). 

As we will see later, the sign-indetermination problem is also present in algorithms which 

directly estimate angular speed. 

Linear and angular accelerations, calculated according to Eq. (11), represent the input 

variables for perturbed navigation equations to estimate position, speed and attitude. 

The great problem of this configuration is its error growth. Considering a white noise error on 

angular accelerations, the corresponding errors on angular speed and angular position grow up 

proportionally to the time (for the angular speed) and proportionally to the square of the time 

(for the angular position), causing a divergence of position and speed estimation according to 

the following laws: t4 and t3.  

These errors are extremely higher than typical medium-accuracy gyro based systems, thus it is 

necessary to integrate a Gyro-free IMU with an aiding measurement device as for example 

GPS.  

In [33] the problem of accelerometers’ configuration is treated with more details. The 

condition number of matrix    T

TSlH  1 influences the quality of the solution and so it 

could determine or strongly influence the accelerometers’ configuration. In particular, 

symmetric arrangements provide better performances according to an optimality criterion. 

Several terms are considered as indices to quantify the optimality of the configuration [Eq. 

(14)].  

     
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(14) 

An optimal configuration for all three axes, is achievable using Platonic solids, which are 

obtained joining together regular polygons. 

Platonic solids, interesting for this application, are the tetrahedron, the octahedron, the 

icosahedrons, the cube and finally the dodecahedron. Considering that Platonic solids can be 

inscribed into spheres, the Gyro-free IMU is also named Inertial Reference Sphere (ISR) [33]. 

The orientation of accelerometers could be defined in order to form a Hamiltonian path from 

graph theory.  



Methods and Systems for Estimation of Shape-Changes Applicable to Navigation and Control of 
Flexible Aerospace Vehicles 
 

30 
 

Several configurations have been analyzed in terms of the optimality indices [Eq. (14)], 

concluding that configurations built according to Hamiltonian path are not suitable or have 

lower performances than Chen’s configuration [30], reproduced in Figure VII. Several 

configurations with nine accelerometers have been also considered.  

The introduction of a tri-axial accelerometer at the center of a cubic configuration leads to an 

improvement of estimation performances of linear accelerations but there are no advantages 

in terms of angular acceleration estimation because of the absence of lever-arm for this further 

tri-axial accelerometer. Eq. (11) can be also interpreted in terms of the theory of dynamical 

systems [34]. It represents a dynamical system in which the state variable is the angular rate 

ω, the output variable is the linear acceleration R and obviously the input is represented by 

accelerometers measurements f. Furthermore estimation of angular acceleration is decoupled 

from the estimation of linear acceleration 

),(

),(
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(15) 

The first expression in Eq. (15) g is a differential (generally non-linear) equation, while the 

second one h is an algebraic equation. For the particular configuration reproduced in Figure 

VII, the differential equation for   is linear because the geometry of the sensing directions 

cancels the symmetric part of the angular motion (centripetal acceleration). 

Configurations with nine single-axis accelerometers have been also presented [37].  

The configuration with six accelerometers is highly dependent on correct location and 

orientation of sensors in order to remove centripetal accelerations (caused by angular speed) 

from accelerometers measurements, in fact angular acceleration expression is an algebraic 

expression. Configurations with nine accelerometers offer a greater degree of accuracy. 
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Integration algorithms between Gyro-free INS and GPS measurements have been also 

presented [38]. Both Linear and Non-Linear perturbated mechanization equations are 

analyzed. Linear equations can be used during very short flight phases or between two GPS 

measurements updates. Non-Linear error model shall be used in presence of GPS blockage 

and consequently in absence of corrections, because of very rapid divergence of estimation 

error. The linear analysis of the different error terms shows that the influence of 

accelerometers noise is inversely proportional to cube edges length, while the effect of 

configuration error depends on the dynamic of maneuver. The estimation of configuration 

errors depends also on the dynamic of motion: in some flight phases their observability could 

not be guaranteed. Location errors are insensitive to cube size, while orientation error depends 

on the inverse of cube edge length. The simulations, in which the linear model has been 

tested, show that the error of position estimation (north, east and height) is bounded and 

inferior to ±0.15 m.  

Some other works, concerning modelling and simulation of a Gyro-free INS, have been 

realized by Edwan [35][36]. The proposed system is composed by several single IMUs 

arranged in a redundant configuration. The use of single IMUs represents an enormous 

advantage. The systems based on Gyro-free INS composed by single-axis accelerometers 

arranged in suitable configuration, have to be realized entirely by users. Edwan’s system 

allows using commercial MEMS IMUs arranged in a suitable configuration. The 

disadvantages of this proposal consist in the influence of uncertainties in sensors placement in 

each IMU (which have to be treated as a statistic data, provided in IMU datasheet, but that 

cannot be controlled or eliminated) on final Gyro-free INS performances and the obviously 

 
Figure VIII. Qin’s Accelerometers Configuration 
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increase in weight and size of the final product. Two innovative aspects are covered in [36]: 

the resolution of the initial angular speed estimation problem and the formalization of an 

algorithm (under simplified assumptions on sensor error modelization) for direct estimation of 

angular speed. This second aspect is a key point, because, as shown previously, a great 

limitation of Gyro-free INS is the rapid divergence of the estimation error due to integration 

of angular acceleration in order to obtain the angular speed. The proposed system is composed 

by four accelerometers triads, arranged according to the scheme in Figure IX and a low-cost 

Gyroscope triad, used as aiding measurement in a Kalman filter sensor fusion algorithm. 

The application of a Gyroscope triad does not make superfluous the installation of several 

IMUs, because the angular speed is directly provided by gyroscopes. The integration of 

multiple IMUs arranged in a proper configuration with gyroscopes (even if low quality ones) 

improves the quality of angular speed estimation, in terms of noise reduction and quicker 

response to rapid manoeuvres thanks to estimation of angular acceleration. Furthermore, the 

four IMUs, composing this system, contain each one a triad of gyroscopes; offer a triple 

redundancy of gyroscopes measurements.  

Using a Gyroscope triad the sign-indetermination on angular speed is solved and a quicker 

convergence to correct solution is shown by the proposed sensor fusion algorithm. 

  
Figure IX. Edwan IMU Configuration 

 
The assumptions, on which the proposed sensor fusion algorithm is based, are: 1.) distributed 

IMUs perfectly aligned with reference axes; 2.) perfect calibration of sensors (the proposed 

algorithm does not estimate sensor error parameters). 
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The state vector directly includes rotation changes along three orthogonal axes, while the 

input vector consists in the discrete angular speed change, obtained multiplying angular 

accelerations (estimated with linear accelerometers) for the sample time. 

The aiding measurement vector is composed by directly measured angular change (obtained 

multiplying gyroscope angular speed for sample time) and angular speed quadratic terms 

(obtained from linear accelerometers measurements) multiplied for the square of the sample 

time. 

To take into account that aiding measurements noises and input measurements noises are 

correlated, because angular accelerations and quadratic angular speeds are estimated both 

from accelerometers’ outputs, a cross-covariance term is introduced in the calculation of the 

Kalman gain. 

The results of simulations effectively show a shorter transient than simple Gyro-free INS and 

a lower noise respect to simple gyroscope measurements.  

As previously stated, in this model only a white noise term is considered as error source on 

accelerometer and gyroscope measurements (biases are not included), thus it is not possible to 

evaluate the advantage in direct estimation of angular speed using angular speed quadratic 

terms and gyroscope measurements. 

In [35] a dynamic model for estimation of angular motion is presented. A sensor 

configuration composed by four IMUs is analyzed; unlike the previous work a tri-axial 

gyroscope is not included. An Extended Kalman Filter is implemented to estimate angular 

motion, but in this case the state vector is composed by angular acceleration, angular speed 

and biases of angular acceleration and angular speed quadratic terms (twelve scalar 

components), while the measurement vector is composed by twelve outputs: angular 

accelerations and angular speed quadratic terms estimated from accelerometer measurements. 

To model the angular acceleration evolution a Wiener process is applied, while the biases are 

modeled as random processes driven by white noises. 

The peculiarity of this work is that there is a direct estimation of biases on tangential 

acceleration (proportional to angular acceleration) and on centripetal acceleration 

(proportional to square of angular speed). Obviously these biases are fictitious, because they 

do not correspond to a direct measured quantity, but this model allows a reduction of the 

number of unknown quantities. In fact for a system of twelve accelerometers, the number of 

biases, to be estimated, should be equal to twelve, while with this model technique this 

number reduces to nine. 
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1.3 Mathematical Formulation of Navigation equations for Flexible Aircrafts 

1.3.1 The Extended Kalman Filter  

The purpose of this paragraph is to provide a short description of the basic Kalman Filter 

theory.  

For a more detailed description the reader can consult the specialized literature [39].  

A generic non-linear dynamic system can be expressed as: 








)(

),(

xhy

uxfx
 

(16) 

The Kalman Filter is an extremely effective and versatile procedure for combining noisy 

outputs from several sensors, in order to estimate the state of a system with uncertain 

dynamics.  

Two quantities assume great importance within the Kalman filter procedure:  

 Estimated State Vector: which includes the variables of interest (i.e. speed and 

position), error model variables with no intrinsic interest but need to the estimation 

process (i.e. sensors biases). 

 Covariance Matrix: a measure of estimation uncertainty. The covariance matrix is 

time propagated using the Riccati Equation. 

The Kalman Filter theory can be applied to linear systems. For a non-linear system [Eq.(16)]  

a modified algorithm exists, which is applicable to the relative linearized system. This 

algorithm is named Extended Kalman Filter.  

In the EKF, the linearization point (also defined as equilibrium point) is on-line estimated; 

this consideration differentiates the EKF from a Linearized Kalman Filter, in which an off-

line calculated equilibrium point (trajectory) is used. 

The kernel of the EKF is the Kalman Gain K, which is a weighting matrix for combining 

sensor measurements y data with a prior estimates of both the output  ŷ  and the state vector 

 x̂  to obtain a new estimate of the state vector  x̂ . 

     yyKxx ˆˆˆ   

(17) 

Starting from an initial estimate of the state vector  0x̂  (initial condition) with a certain 

initial covariance matrix  0P , the EKF (and also the KF) algorithm can be divided into two 

phases: Prediction and Correction. These two phases could have different cycle times, 
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because aiding measurements y could be provided at a different data rate, generally lower, 

than the cycle time of the prediction phase. 

The operations included in the Prediction phase are described by Eq.(18) and Eq.(19): 

     dttxfxx
k

k

t

t

kk 


 

1

,ˆˆ 1

 
(18) 

    11   k

T

kkkk QPP  
 

(19) 

In the prediction phase, the filter propagates the state vector and the covariance matrix. 

In (19) k represents the discrete form of the linearized dynamic matrix.  

The steps included in the Correction phase are reported and Eq. (20), (21) and (22): 

     1
 k

T
kkk

T
kkk RHPHHPK  

(20) 

      1ˆˆˆ  kkkkk yyKxx  

(21) 

      kkkkk PHKPP  

(22) 

Within the correction phase, the filter calculates the Kalman gain and updates the state vector 

and the covariance matrix with the corrections obtained using the new measurement and the 

Kalman gain. 

1.3.2 The Modal Decomposition 

Within this dissertation, the analysis and modeling of structural deflections are based 

principally on the assumption of the modal decomposition validity.  

Within modal decomposition theory, elastic deflections can be expressed in terms of linear 

combination of products between space functions ),,( zyxi  (mode shapes) and time functions 

)(ti (generalized coordinates). With this assumption a generic elastic displacement de can be 

expressed, as in Eq. (23) and more compactly as in (24), assuming that a n-order model is 

required to describe the structural dynamics. 
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(23) 

ed  

(24) 

Similarly, it is possible to define elastic rotations as product between a space dependent 

function ),,( zyxH  and the same time function )(ti  Eq.  

(25): 
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(25) 

 He   

(26) 

The instantaneous distance between a generic point and a certain reference point (in our 

analysis, the aircraft’s center of gravity) is considered as a sum of a rigid fixed distance dr and 

an elastic term de (which is time variable) Eq. (27). 

 rdr
 

(27) 

The first and second derivatives of Eq. (27) represent respectively the velocity [Eq. (28)] and 

the acceleration [Eq. (29)] of a generic point, and depend only by elastic motions. 

 r
 

(28) 

 r
 

(29) 

1.3.3 Algorithm Implementation: State Variables and Dynamic Equations  

The intent of this paragraph is to define the key equations used in the proposed navigation 

algorithm. These equations will be used to derive the final perturbation form used within the 

EKF. 

The state vector is composed by the following variables: 

 t
cgr → Position of aircraft’s center of gravity in North-East-Down reference frame 

(NED or Tangent r.f. indicated with a t as superscript or subscript).  
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 t
cgr → Speed of aircraft’s center of gravity in NED r.f.  

  → Generalized Coordinates  

  → Generalized Coordinates Derivatives 

 b
tC → Rotation Matrix from Ned r.f to Body r.f.  

 sensb → Accelerometers and Gyroscopes Biases  

We need to derive some expressions for the following variables: 

 linear acceleration t

cg
r of aircraft’s center of gravity in the NED r.f.,  

 second derivative  of the generalized coordinates, 

 the derivative b

t
C of rotation matrix, 

Furthermore, we need a dynamic model for the time variation of sensors biases.  

In the following equations, the superscript will indicate the reference frame in which the 

vector is expressed: 

 e indicates the ECEF reference frame (blue in Figure X), 

 t indicates the tangent (NED) reference frame (red in Figure X), 

 i indicates the ECI reference frame (brown in Figure X), 

 b indicates the Body reference frame (brown in Figure X), 

 s indicates the Sensor reference frame (light blue in Figure X). 

When notation with multiple subscripts is used, their meaning is the following: the first 

subscript from the right indicates the reference frame the specific measurement belongs to, the 

second one represents the reference frame respect to which this measurement is evaluated. 

For example: 

e
ie

  is the angular speed of the ECEF reference frame (e is the first subscript index from the 

right) with respect to ECI reference frame (i is the second subscript index from the right)  

expressed in the ECEF reference frame (e is the superscript). 

To obtain the equations describing the dynamic of the state variables, we start considering the 

expression of the linear acceleration, respect to the ECI reference frame, sensed by a generic 

point j on the aircraft structure including effects of flexibility. 
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Figure X Reference Frames 
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(30) 

Eq. (30) has been derived under the hypotheses of negligible Earth’s angular acceleration and 

constant Earth’s radius.  

An accelerometer installed at a generic point j provides a measure of the linear acceleration 

i
j

R  summed with contribution of the gravitational force: 

s
j

fi
sj

CiGi
j

R 
 

(31) 

In Eq. (31) fj
s represents the output of the jth accelerometer expressed in the Sensor reference 

frame, while Csj
i represents the rotation matrix between jth Sensor reference frame (subscript) 

and ECI reference frame (superscript). The rotation matrix can also be expressed as 

combination of rotation matrices, each one representing a single rotation between two specific 

reference frames.  

b
sj

t
b

i
t

i
sj CCCC   

(32) 
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Csj
b represents the rotation matrix between the jth sensor reference frame and the Body 

reference frame. It can be expressed as combination of the generalized coordinates. 

We consider Csj
b as a little perturbation of the initial rotation matrix Rsj

b due to the mounting 

angles. This perturbation is determined only by elastic angles θe , defined in Eq. (33). 
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(33) 
In Eq. (34) all the contributions to the gravitational term Gt will be expressed, we can identify 

a true gravitational acceleration and other centripetal accelerations due to Earth’s rotation 

around the ECI reference frame.   
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Considering that: 
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(36) 
Substituting Eq. (30) in Eq. (31), holding Eq. (27), (28) and (29) we have an expression for 

the linear acceleration of the aircraft center of gravity. 
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Eq.(37) has been derived starting from the measurements of an accelerometer installed at a 

generic jth point along the aircraft structure. The linear acceleration of the aircraft center of 

gravity can be equally estimated considering the measurements provided by the main IMU 

used for navigation purposes.  

Measurements and any other physical quantity referring to main IMU are indicated with 

superscript “*” and the rigid lever arm with the symbol λ*b.  

Accelerometer 
Measurement 

Rigid Lever Arm Effect 
(Centripetal and Angular 

Accelerations) 
Flexible Lever Arm 

Contribution 
Coriolis  

Acceleration 
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 (38) 
We will express cross product as a matrix multiplication. 

baba   
(39) 

In the special case of a cross product between the angular speed and another generic vector, 

we use the following symbol .  

Considering the IMU accelerometer as a reference measurement, one can subtract Eq. (38) 

from Eq.(37), in this way the unknown t
cgr disappears and one could be able to evaluate 

generalized coordinates second derivatives. 
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(40) 
Installing m triaxial distributed accelerometers, in principle we should be able to estimate up 

to  3xm generalized coordinates, however, as it will be explained later, the number of 

generalized coordinates which can be estimated depends on the position of the accelerometers 

(distributed and main IMU) and on the desired accuracy of the estimation.  

We can do a further arrangement of Eq. (40) using properties of dot and cross products.  
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(41) 
 
Solving Eq. (41) respect to   : 
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(42) 
Defining the following matrices it is possible to write Eq.(42), considered for all m spatially 

distributed accelerometers in a matrix form. 

 

 

  1131

2

1

.

xm

s
m

s

s

s

f

f

f

f

 



















   

   13131

1

00

0..0

00




















mxm

b
sm

b
s

b
s

C

C

C     

  113

*
*

*
*

*
*

*

..

xm

sb
s

sb
s

sb
s

s

fC

fC

fC

F























  113

*

*

*

*

..

xm

b

b

b

sD




























 

 

  )1(313

*

*

*

*

.




























mxm

 

 
 

   1313
33

*

33
*

*

00

0..0

00
























mxm
x

b
is

x

b
is

b
is  

 
            

 

      
      

   131333

33

00

0..0

00
























mxmx

Tb
tb

b
tb

Tb
tb

b
tb

x

Tb
tb

b
tb

Tb
tb

b
tb

b
tb

Tr

Tr




  

              
   
                                              (43) 

In the previous matrices it has been considered that   Tb
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b
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Definitively we have.  
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(44) 

Eq. (44) is in a non linear form: it includes products between the state variables and input 

variables (acceleration measurements (m vectorial quantities) and body angular speed 

measured by a set of three single axis gyroscopes). 
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Now we need an expression for t
cgr , in which   doesn’t compare; this is possible substituting 

Eq. (44) in Eq. (38). 

 

   
   

 
   
   

 

 t
cg

t
it

b
ib

b
tb

bbb
tb

bsb
s

b
ib

b
tb

b
tb

bb
tb

b
tb

t
b

ttt
cg r

Dd

FfCCgfr 





 














































































2

2

2

*

*

*

1**

*1**

***

*  

(45) 
We can develop some terms which appear in Eq. (45). 
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(46) 
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We can do further simplifications to obtain the final desired expression. 
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(48) 

To verify that we have written correctly Eq.(48), it is useful to perform a dimensional control: 

t
cgr is 3x1 vector, so terms to the right of the equal symbol must have the same dimension. 

If we consider the term:      *1**
~


 b

tb
b
tb

 , it has the following 

dimension: 1333333333 xmxmxmxmxmxmxmxmx , the final dimension of this 

term is equal to 3x1. 

It is useful to underline the physical meaning of terms in square brackets, they represent 

centripetal and Coriolis acceleration of the centre of gravity and they are evaluated as a 

weighted mean of the centripetal and Coriolis accelerations sensed by all the accelerometers: 

the weights are a quantity proportional to mode shapes. 

The analysis developed till now, has regarded a general situation in which all accelerometers 

(IMU and spatially distributed) are tri-axial.  

In this application we’ll consider mono-axial accelerometers for the spatially distributed ones 

and just one tri-axial (IMU accelerometer). 

To close our system we have other two equations, the first one expresses the evolution of 

position of c.g. in the tangent frame, the second one expresses the evolution of the rotation 

matrix between tangent frame and body frame. 
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In conclusion the state vector will be composed by the following state variables: 
 
 

  Table 2 State Vector for the Navigation Equations 
 
                    
         
 
 

Table 3 Input Vector for the Navigation Equations 
 

The state equations are non linear so it is necessary a linearization around an initial position, 

that will be coincident with the estimated state vector. 

        

 State Vector Components 
Symbol Definition Dimensions 

t
cgr  The position of vehicle’s centre of gravity in the tangent frame  (3x1 vector) 

t
cgr  The speed of vehicle’s centre of gravity in the tangent frame     (3x1 vector) 

  Generalized Coordinates     (n x1 vector) 
  Derivative  of the Generalized Coordinates  (n x1 vector) 

t
bC  Rotation matrix from body reference frame to tangent frame (3x3 matrix) 

Input  Vector 
Symbol Definition Dimensions 

s
jf  Acceleration sensed by spatially distributed  accelerometers (3(m-1)x1 vector)

s
sf *  Acceleration sensed by IMU  accelerometers set (3x1 vector) 
s
is*  Angular Speed sensed by IMU  gyro set (3x1 vector) 
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1.3.4 Pertubation Form of the State Equations 

1.3.4.1 Introduction 
Extended Kalman Filter can be applied to linearized dynamic systems, our dynamic equations 

are non linear thus we need to linearize them around an equilibrium state.  

The state space form, obtained from linearization, is also known as Perturbation Form 

[Eq.(53)].   

 

 
(53) 

The error is defined as the difference between the true (effective) value and the estimated 

value of a generic variable. 

For the generic state variable g, one has: 

ggg ˆ  
 (54) 

A measured physical quantity can be expressed as a sum of a true value and an error 

(essentially due to instrument imperfections).  

mmm ~  
(55) 

m~  represents the measured value of the physical quantity, m  the true value and m the 

instrument errors. 

It is similarly possible to define an estimation of a physical quantity, measurable with a 

suitable sensor. 

mmm ˆ~ˆ   
(56) 

In Eq. (56) m̂  represents the estimated value of the physical quantity, m~  the measured value 

and m̂  the estimation of the instrumentation errors. 

Substituting the expression of m~  [Eq.(55)] in Eq. (56) we have the final expression for the 

estimated value of a physical quantity. 

mmm ˆ  
(57) 

in which mmm ˆ  

In this way we have derived a direct relation between the estimation and the true value of a 

measurable physical quantity with the error relatives to instrument imperfections. 

It is possible to specify Eq.(57) for accelerations and angular speeds, which are the most 

important physical quantities measured by an IMU. 
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mBgFg


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It is useful to point out that the measurement of these quantities are given in the sensor 

reference frame. 

For inertial acceleration: 

s
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s
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s
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(60) 
 

(61) 
 

For angular speed: 

A gyroscope measures the angular speed of the sensor with respect to an inertial reference 

frame, choosing ECI frame as inertial reference frame, one has: 

s
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The measured value of angular speed will contain some errors, included in the term s

ib . 
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(63) 
Considering that terms s

ie  and s
sb  are littler than the angular speed of the body reference 

speed respect to tangent frame, it is possible to include them in the error term. 
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Therefore we can consider gyros measuring the angular speed of body reference frame respect 

the tangent reference frame with the addition of an error term s
tb :   
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For the estimated values one has an analogous expression: 
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(68) 
The final expression for the estimated value of body angular speed respect tangent frame is: 
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(69) 
We need a measurement of body angular acceleration respect to tangent frame (it is useful to 

remember that
tbis

   because ie 0); but we haven’t any suitable sensor to measure it, so 

we obtain its estimation, through numerical derivative of the angular speed. 
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(70) 
The error term is equal to angular speed error term (because angular acceleration and speed 

are measured by the same sensors). 

 
(71) 

Finally:  
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s
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(72) 
Moreover one will consider that bs could be neglected.  

The expressions for instrument error terms will be pointed out in the state augmentation 

section. 

It is useful o remark that knowledge of angular acceleration is not strictly required, but if it is 

included in the navigation equations performances are improved only in transients. 

At the end of this paragraph, it is useful to develop an expression for the estimated value of 

the generic rotation matrix C. Considering that error term is generally littler than the actual 

value, one can use the small angle approximation.  

  CPIC ˆ  

(73) 
P matrix represents a small angle rotation matrix (   1cos  ;    sin )between the two 

reference frames  
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The error between the actual and estimated value for a rotation matrix is expressed as: 

  PCCPICCC  ˆ  
(75) 
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1.3.4.2 Pertubation form of the Body to Tangent rotation matrix dynamic 
equation  

The dynamic equation for the true rotation matrix between the body reference frame and the 

tangent reference frame is:  

b
tb

t
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t
b CC   

(76) 
We are interested in obtaining an expression for the vector t

b , which represents the error 

between t
bC  and  t

bĈ . 

Considering the definitions presented in the paragraph 1.3.4.1, it is possible to obtain an 

expression for t
b  in terms of the estimated value of the rotation matrix and of the 

instrumental error of gyroscopes. 
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Considering that 
b
tb

b
tb    [Eq.(57)] 
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Considering that Eq. (76) and Eq. (78) represent the same quantity, we have: 
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Considering that   b
tb

t
b

b
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t
b

t
b CCP  ˆˆ   we have the desired final expression 
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(84) 
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1.3.4.3 Pertubation form of the generalized coordinates first derivative 
dynamic equation  

In this paragraph we’ll get the pertubation equation for the generalized coordinates first 

derivative. 

We consider the case with a single distributed triaxial accelerometer, the extension to the 

more general case with a number m of distributed accelerometers is straightforward using 

matrix formulation. 

The expression for the true value of the generalized coordinates vector is: 
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(85) 
 
Instead Eq. (85) applied to estimated value of generalized coordinates vector, is: 
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(86) 
We can derive an expression for   , substituting in Eq. (86) the definitions of the estimated 

terms provided previously in the paragraph  and finally subtracting Eq. (85). 

We will neglect products between perturbation terms.   

In this paragraph it will be provided directly the final result of the linearization process. 
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(87) 
In conclusion the expression for the linearized error equation relative to generalized 

coordinates   (with one triaxial delocalized accelerometer), expressed in a compact form, 

is: 

            



 

 ***1*
**

s
IMUf

s
j

j

f

jjs
tb

j
j fFfFFFF s

IMU
s
j

s
tb


 

  

(88) 
If multiple delocalized accelerometers are installed it is possible to write a matricial 

expression for    
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(89) 

1.3.4.4 Pertubation form of the center of gravity velocity dynamic equation  
In this paragraph we will get the pertubation equation for the velocity of the aircraft center of 

gravity. To accomplish this purpose we have used the simplest expression for t
cgr , because at 

this stage we are not interested in expressing the term depending on   as a function of state 

variables. 
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The estimated value of t

cgr is: 
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t

cgr is evaluable with the following expression : 
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Defining the following intermediate derivatives: 
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These derivatives represent t

cgr complete derivatives if   or 
  t

cgr
L were null. 
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In the general case in which   s not null, we have also a derivative 
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Complete derivatives are:  
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The final expression for t

cgr  expressed in compact form is: 
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1.3.4.5 Pertubation form of the dynamic equations: Summary  
 

In this paragraph we will recap all the dynamic equations in their perturbated form. The 

perturbated state vector is composed by the following variables: t
cgr , t

cgr ,  ,   , t
b , 

while the perturbated input vector is composed by the following variables   *s
IMUf , *s

tb ,  s
jf . 

For recapitulation purposes we will summarize the meaning of each element composing 

perturbated state vector and perturbated input vector. 
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 Perturbated Input Vector  

 

o   *s
IMUf represents the inertial acceleration error associated to the measurements 

of IMU accelerometers. 

o  s
jf  represents the inertial acceleration error associated to the measurements 

of each one of spatially distributed accelerometers. 

o *s
tb  represents the angular speed error. 

 Perturbated State Vector  
 

o t
cgr    represents body c.g. position (in tangent frame) error 

o t
cgr    represents body c.g. velocity (in tangent frame) error 

o       represents generalized coordinates vector error 

o        represents derivative of generalized coordinates vector error 

o t
b      represents the error between true and estimated value of rotation matrix 

from body r.f to tangent frame. 

 
The mathematical representation of the perturbated state equation is:  

mBgFg    
(110) 

The state space representation Eq. (110) specialized for our application is reported 

synthetically in Eq.(111). 
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(111) 
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1.3.4.6 State Augmentation 
It is possible to include in the state vector, the sensor error terms having a stochastic 

behaviour. In this formulation their values are estimated together with the other state variable. 

This formulation of the perturbated state equations is also known as “Augmented”. 

 It is possible to represent sensor error term in the following way: 

  mmxm xFm
m

    

(112) 
Where vectors mx and m represent respectively some parameters necessary to calibrate the 

sensor and a measurement error that we will represent as a White and Gaussian noise. 

The estimated value of sensor calibration factors is indicated with mx̂ . 

   mxm xFm
m

ˆˆ
   

(113) 

  mmxm xFmmm
m

   
ˆ  

(114) 
Sensors calibration factors, that we will consider, are Scale Factor and Bias, therefore we use 

the following error model for inertial sensors. 

  mm bmSFIm ~  

(115) 
  mmmm bmSFmbmSFmmmm ~  

(116) 
The estimated value of the term including instrument calibration factors, is  

mm bmFSm ˆˆˆ   

(117) 

mm bmSFm    

(118) 











m

m
m b

SF
x




  

(119) 
It is necessary to define an evolution model for calibration factors. 

mmasm xFx    

(120) 
We’ll consider that mSF is a constant and determinate a priori, while for mb one considers a 

first order Gauss-Markov process. 

mbmmm bkb _   

(121) 
0mFS  

(122) 
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The previous equations will be now specialized for accelerometer and gyroscope error model. 

 
 
 Gyroscope Error  Modelling 

A gyroscope measures angular speed between the sensor and inertial reference frame, 

measured in the sensor reference frame *
_

~ s
imui . 

It is possible to distinguish several contributions to the angular speed measured by a 

gyroscope *
_

~ s
imui : a first term *s

ie represents the angular speed of the Earth respect to the 

inertial r.f., a second term *s
tb  represents the angular speed of the body r.f. respect to the 

tangent r.f., a third term *
_

s
imub which represents the angular speed of the sensor respect to the 

body r.f., an error term *
_

s
imui  and finally a white noise  . 

  *
_

*
_

***
_

~ s
imui

s
imub

s
tb

s
ie

s
imui  

(123) 
Considering that terms s

ie , *
_

s
imub (in this application we are considering MEMS gyros, thus 

these terms could be not even sensed by the sensor itself) are considerably littler than s
tb , they 

can be considered as a sort of error and included in   [Eq. (124)]. 

  *
_

*
_

** s
imui

s
imub

s
ie

s
tb  

(124) 
This assumption is equivalent to consider a gyro measuring the angular speed between body 

r.f. and tangent r.f. with a certain amount of error. 

**** ~~ s
tb

s
tb

s
tb

s
is    

(125) 

The estimated value s
tb̂  is 

*
_

*
_

** ˆˆˆˆ s
imui

s
imub

s
ie

s
tb    

(126) 
          *

_
*
_

***
_

*
_

*** ˆˆˆˆ s
imui

s
imui

s
ie

s
ie

s
imub

s
imub

s
tb

s
tb

s
tb  

(127) 
We need an expression for each one of the terms appearing in Eq.(127). 

  t
ie

b
t

b
t

s
b

s
ie

t
ie

b
t

s
b

s
ie CPICCC   ˆˆ  

(128) 
The rotation matrix between sensor r.f. and  body r.f. is expressed as a function of generalized 

coordinates, analogously the angular speed between these two reference frames. 
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 ˆˆ
j

sj
bj

sj
b HICHIC   

(129) 
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t
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t
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s
b

s
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(131) 
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b
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s
ie

s
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(132) 

 ˆˆ  j
sj

bsj
sj
sjb HH

j
  

(133) 
 **

_
*
_ ˆ Hs

imub
s

imub   

(134) 

 bSF s
imui

s
imui  *

_
*
_  

(135) 

 bFS s
imui

s
imui

ˆˆˆ *
_

*
_   

(136) 
    bbFSSF s

imui
s

imui
s

imui
ˆˆˆ *

_
*
_

*
_   

(137) 
Considering that we have considered the scale factor perfectly known, the desired expression 

for  s
tb  is 

     *** HHCCb t
ie

b
t

b
t

t
ie

b
t

s
tb  

(138) 
It is useful to remark that, unlike traditional sensor error modelling, in this formulation 

[Eq.(138)], sensor error depends also on state variables not associate with the sensor itself (for 

example  ), this circumstance is due to the initial choice to include s
ie , s

sb  in a  term. 

 
We are interested in   t

b
s
tb

F
 * which is equal to   b

t
s
tb

F
 * ,because b

t
t
b    

In conclusion: 

     *** HHCCb t
ie

b
t

t
b

t
ie

b
t

s
tb  

(139) 
According to (121) and (122), state equations for gyro biases are: 

  _bbkb   

(140) 
 Accelerometer Error  Modelling 

We consider an accelerometers error model composed only by a Scale Factor and Bias.  
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  fjf
s

sjf
s

sj bfSFIf 
~

 

(141) 
The general expression for an accelerometer measurement is Eq.(142)  

s
sj

s
sj

s
sj fff 

~
. 

(142) 
Substituting Eq.(141) in Eq.(142) it is possible to determine the value of s

sjf  

  fjf
s

sjf
s

sjff
s

sjf
s

sj
s

sj
s

sj bfSFfbfSFIfff  
~

 

(143) 

fjf
s

sjf
s

sj bfSFf   

(144) 
Considering the estimated value of s

sjf  

f
s

sjf
s

sj bfFSf ˆˆˆ   

(145) 
Finally the desired expression for s

sjf  

fjf
s

sjf
s

sj bfSFf    

(146) 
As for the gyroscopes, also for accelerometers we will consider a constant and a-priori known 

scale factor [ 0fSF ]. 

fjf
s

sj bf    

(147) 
For IMU accelerometer set: 

imujIMUf
s

IMU bf __
*    

(148) 
State equation for accelerometer bias is: 

fjbfjfjfj bkb _   

(149) 

imufbimufimufimuf bkb _____    

(150) 
 
The final expression for the state equations in the augmented state formulation is synthetically 

reported in Eq.(151) . 
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(151) 
The generic coefficient sa

baF  represents the derivative of a function relative to b variable in 

state augmented representation. 

In Table 4 each one of these derivatives will be expressed, as much as possible,  as a function 

of  the correspondent derivative in the not augmented perturbated state equation. 

Eq. (151) represents the dynamic equation of our system, now we need some output 
equations. 
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Table 4 Derivatives in Augmented State Representation 
 
 

1.3.5 Output Equations 

As aiding measurements we’ll consider position and speed measurements provided by two 

couple of GPS Antenna/Receivers, with their antennas positioned respectively at a distance 

λb
GPS1 and λb

GPS2 from the IMU.  

The installation points have mode shape matrices indicate respectively with the symbols Φ#1 

and Φ#2. 
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The first two aiding equations refer to the position and speed measured by one of the GPS 

receivers/antenna, other two equations refer to the difference between positions/speeds 

provided by the two GPS receivers/antennas. 

The GPS system provides measurements of position in a ECEF (Earth Centered Earth Fixed) 

or LLH (Latitude, Longitude and Height) reference frame, speed is indeed measured in NED 

r. f.  

In this analysis we consider the position in the ECEF r.f. re
ant [Eq. (152)].  
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(152) 
Where: 

 
 ECEF

NEDr represents the origin of the NED r.f. expressed in the ECEF r.f. 

 Ct
e represents the rotation matrix from the NED r.f. to the ECEF r.f.. 

The speed measured at GPS antenna t
antr expressed in the NED r.f. is expressed in Eq.(153): 
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The other  two aiding equations are respectively Eq. (154) and Eq.(155). 
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(155) 
The last output equation considers the relation between the tangent of the heading angle and 

the measurements of magnetometers in the body reference frame.  
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t M

M
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(156) 
In Eq. (156) h

yM  and h
xM represent the component of Earth magnetic field in the plane North-

East (Horizontal plane). 

The estimated value of the heading tangent is: 
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In Eq.(157) vector bM
~

represents the components of Earth magnetic field measured in the 

body r.f. We have considered being able to correct magnetic sensors errors with a suitable 

external algorithm or with off-line calibration. 

1.3.6 Pertubation Form of the Output Equations 

The perturbations equation for GPS antenna position and speed are Eq.(158) and Eq. (159) :  
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Perturbations equations of GPS antennas relative positions and speeds are Eq. (160) and 

Eq.(161). 
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The error term 

ttt  ˆ is only a function of b
t . 

b
tt b

tt
H 




 

(162) 
In Eq.(163) output equations are summarized in a matrix form. The H terms represent the 

derivatives indicated in equations (158), (159), (160), (161) and (162). 
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2 On‐Line Shape Changes Estimation for Flexible Aircrafts 

2.1 Problem Overview 

A new approach to estimate both navigation states and generalized coordinates has been 

proposed in the previous chapter.  

As already affirmed, the generalized coordinates, associated with the knowledge of the mode 

shapes, can be used to describe the elastic displacements showed by the aircraft’s structure.  

A new vision on the problem of elastic displacements estimation will be provided in this 

chapter. As it will be shown, it is a simplified approach, because it neglects influence of the 

rigid state error on flexible state error and vice versa. 

It is useful to highlight that this approach is more flexible from the point of view of 

navigation, because it is possible to consider or neglect shape changes in navigation algorithm 

depending on the specific application (for typical aircrafts using GPS, in the standalone 

operative mode, the influence of flexible deflections on GPS measurements can be neglected; 

otherwise it cannot be neglected if some differential corrections or carrier phase 

measurements are used).  

The difference from the approach of chapter 1 is in the presence of two different estimation 

algorithms, the first one dedicated only to shape changes determination (based on the same 

modeling of chapter 1, this algorithm is dedicated to determination of generalized coordinates 

and their first derivatives) and the second one dedicated to the estimation of state variables 

associated to the rigid body dynamics. 

Such a kind of approach is to prefer, whenever possible, because it is computationally less 

burdensome.  
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Figure XI Schematic representation of connection between shape changes estimation algorithm and other 

functionalities considering influences of flexibility on navigation parameters. 
 

 
Figure XII Schematic representation of connection between shape changes estimation algorithm and other 

functionalities without considering influences of flexibility on navigation parameters. 
 

From a mathematical point of view, the previous architecture represents the association of two 

parts: 

a) an algorithm for the estimation of the flexible state variables η and ή (integration of 

the non-linear equation (164)) together with the corresponding algorithm for 

propagation of the correction [Eq. (165)] (for example an EKF);  
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b) an algorithm for the estimation of the navigation parameters r,  ŕ and ρb
t (integration of 

non-linear equations) together with the corresponding algorithm for propagation of the 

correction [Eq.(168)] (for example an EKF).  

In the navigation equations, flexible variables can be included or neglected according to the 

architecture of Figure XI or Figure XII (respectively Eq.(166) or Eq.(167)). 
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With reference to Eq. (165), in this chapter the output equations used within an EKF for 

generation of corrections, will be described. 

 

2.2 State of the Art 

In order to measure structural displacements, several systems have been proposed in the 

specialized literature.  

The use of GPS, standalone or in general without application of carrier phase differences 

technique, limits the capability to estimate only structural displacements of extremely flexible 

aircrafts, showing displacements with an order of magnitude of several meters (as for example 

NASA HELIOS aircraft [40]), because in standalone operative mode the GPS shows low 

accuracy.  

In [41] it is proposed a control system for spatial flexible structures based on differential 

carrier phase measurements obtained using an array of GPS antennas. The differential carrier 

phase measurements are used to assess deformations.  
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Furthermore differential techniques as RTK (Real Time Kinematic) or carrier phase 

differences present some disadvantages that will be identified in the following.   

Concerning civil engineering, the Structural Health Monitoring is the main field in which the 

knowledge of the structural shape is required. Some techniques applied in this field could be 

applied also to aerospace structures. 

Some works propose integration of GPS with accelerometers in order to estimate 

displacements of civil structures, taking advantage of their complementary dynamic properties 

and using accelerometers measurements to recover GPS false or missing data. In [42] the 

results, of some experimental tests conducted on a test rig simulating the typical dynamics of 

a bridge, are reported. In [43] and [44] a sensor setup, composed by GPS and an 

accelerometer, is applied to monitor a 108 meters high steel tower during typhoons and 

earthquakes. In [45] Fiber Bragg Grating (FBGs) optical sensors are included in the 

measurement system, together with GPS and accelerometers. In [46] an array of several GPS 

antennas is installed on the Pacoima Dam (California) in order to measure its deformations. 

The measurements obtained in three years have been analyzed and the final result is that a 

mean displacement, between the reference points on the dam, and the actual positions of the 

same points has an order of magnitude of some tenths of millimeters. This analysis has been 

performed offline, averaging GPS measurements (batch processing); this allows reaching a 

millimetric accuracy in GPS measurements. In [47] another example of integration between 

GPS and accelerometers measurements for bridge monitoring is provided. 

Obviously the batch approach cannot be used in real time application, as for example for the 

aircraft active control and moreover the accuracy of GPS standalone in real time is 

considerably worst than the one available with a post-processing of measurements. RTK 

technique (which allows obtaining an accuracy of some centimeters) is not always suitable to 

be used in dynamical environments and moreover the maximum distance between the rover 

and the base station is limited to 10 km [48]. Furthermore a GPS device, enabled to receive 

RTK corrections, is more expensive than a simple GPS receiver standalone (the price depends 

on the corrections update rate and can reach some thousands of US dollars). Concerning 

carrier phase measurements, the resolution of initial integer ambiguity is required. Moreover 

GPS signals could be lost during some maneuvers and consequently compromise the control 

or monitoring action. 

To overcome limitations due essentially to GPS and previously presented, integration of a 

vision-based system with accelerometers and/or GPS has been widely examined and applied 

above all in civil engineering, specifically for monitoring of bridges and tall buildings.  
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A vision-based system, alone or coupled with accelerometers, provides compactness and 

affordable price. 

Like GPS, a vision-based system allows obtaining a direct measurement of displacement but 

with a higher accuracy. Furthermore videometry offers the same level of accuracy of contact 

devices as optical fibers, but at the same time, it is more flexible in usage [49]. 

In [50] and [51] it is analyzed the application of a vision based sensor system for direct 

determination of displacement time histories at selected locations on a bridge undergoing to 

ambient oscillations. The sensor architecture includes a video-camera coupled with targets 

(two high resolution low-power light emitting diodes (LEDs)) spaced with a known distance. 

These two targets are installed under the bridge deck near the mid span, while the camera is 

placed on one column of the bridge. Measuring the relative motions between the two targets is 

possible to determine the bridge displacements. The results of a test, performed on Vincent 

Thomas Bridge in Los Angeles, are reported. Specifically, a displacement time history is 

reproduced and the frequencies, correspondent to the first two modes, are identified. 

According to the authors, the measurements obtained with the vision based system are 

coherent with the same information obtained using the accelerometer array already installed 

on the bridge. In order to detect modifications in structural properties (specifically dynamic 

features of a structure) for SHM purposes, in [52] it is presented another application of a 

vision-based system composed only by a camera. No optical targets are mounted on the 

bridge, because the applied image processing technique requires the selection of some 

reference points in the first frame (their coordinates must be provided to the algorithm with a 

sub-pixel accuracy) and consequently it follows their displacements in the following video 

frames. 

In the aerospace field there are few examples of videometry applications to detect structural 

displacement. 

An application of a vision-based system for identification of structural modes of vibration in 

the aeronautical field is presented in [53]. In this paper two techniques are examined: 

specifically an online technique based on a multi sensor vision system and an offline 

technique based on a single camera. Offline measurements based on batches of data are 

suitable to obtain higher accuracy. The online technique is more suitable to be used in 

dynamic environments but the different cameras need to be synchronized and the HW is more 

complex.  

Both the approaches presented in [53] are addressed to the experimental identification of wing 

structural modes through laboratories tests not true flights.  
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In the aeronautical field, videometry is also extensively used for wind tunnel tests, to evaluate 

both aerodynamic and structural properties.  

In [54] an application of range imaging sensors is proposed in order to estimate elastic 

displacements of spatial structures; the proposed system is based on a vision based system 

installed on robots orbiting around the space structure. Such a kind of system is not suitable 

for aeronautical applications in which the video-based system has to be necessarily installed 

on the aircraft. 

In [55] an application of a stereo-vision system for deformation determination of a large 

flexible satellite is presented. In case of satellite, the solar arrays or large phased array radars 

are the parts more sensitive to deformations.  

The application of accelerometers, as only means to determine shape variations, is not suitable 

due to bias integration and high sensibility to disturbances present in the spatial environment, 

thus a system which can directly determine displacements could be more robust to these 

problems and, moreover, a video system is nonintrusive (in the sense that the cameras could 

be installed on the body of the satellite and not directly on the deformable structure) except 

for the presence of LED on the structure. A multi-view vision system is composed at least by 

a pair of cameras opportunely arranged or more cameras depending on the structure 

dimensions and cameras field of view. Obviously a multi-view vision system induces a 

greater increment to the overall mass of the system than a single camera.  

2.3 Vision Based System Architecture  

The vision-based system consists of an emitter-receiver pair operating at visible or infrared 

wavelength.  

In the proposed setup the receiver is a digital camera, the emitter is a Light-Emitting-Diode 

(LED). The system output consists of the LED image coordinates in the Camera acquired 

frames.  

Both Camera and LED follow linear and rotational deformations of the mounting points.  

The Camera Field of View (FOV) is selected to keep the LED image within the frame in the 

case of maximum deformation.  

The operative condition is assumed fine weather and good visibility. Perturbative phenomena 

of weather conditions able to create refractions or occlusions, as fog or precipitation of 

various kinds, are neglected.  

The model of vision system includes the image projection model and the measurement error 

model.  
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In the first one, the equations of projective geometry define the transformation of the LED 

position from the three dimensional space to its projection in the bidimensional frame. 

Let be the origin of the Camera reference frame in the optical centre of the camera system, the 

x-axis (left-right direction) and y-axis (down-up direction) parallel to the sensor surface, the z-

axis orthogonal to the sensor surface and with back-front direction with respect to the image 

plane. The orientation of such reference frame follows the elastic rotation of the Camera 

mounting point.  

Named xc, yc, zc the LED coordinates in the Camera Reference Frame, the LED coordinates u, 

v respect to the 2D video frame (with origin in the top left corner and positive indices for 

rows and columns), measured in pixels, may be written as in eq. (169) and (170): 
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where u0, v0 are constant off-sets and fu, fv  are the positive values, measured in pixel, of the 

focal length normalized respectively with respect to the vertical and the horizontal size of a 

generic photosensitive element of the camera sensor.  

The LED coordinates xc, yc, zc are related to mode shapes and generalized coordinates through 

Eq. (24). 

 
Figure XIII Image Reference Frame 

 
In the system model two sources of error have been considered. 

The first one is the truncation error due to the pixel quantization in the digital acquisition.  
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The second one is the approximation error on the 3D position of the LED: Pc≡ (xc, yc, zc), 

ideally coincident with the centre of the brightest part of the light spot, that could be not 

clearly distinguishable in the image. In fact many pixels around the projection (u, v) of Pc can 

have very similar values. Usually the projection of the light spot centre, under a small error, 

can be estimated with the barycentre of the pixels with the highest response. Under the 

previous hypothesis it can be supposed that the coordinates founded by the image processing 

algorithms are the projection of an immaterial 3D point belonging to an uncorrelated Gaussian 

distribution centred in Pc and with a standard deviation comparable to the physical 

dimensions of the LED, identical for every component. 

Because the wing range of deformation is known (by experimental evidence or by mechanical 

considerations), the optical zoom of the camera can be tuned with aim to minimize the field of 

view.  

Special filters can be mounted on the optic in order to increase the sensitivity to the 

wavelengths emitted by the LED and decrease the sensitivity to other undesired wavelengths. 

The area, in which the LED is installed, has to be painted with a low refraction index varnish 

at the selected wavelengths. 

Under the previous setup conditions, the light spot is easily distinguishable due to its high 

contrast with the background. On the base of projective geometry considerations, the shape 

and the dimensions in pixels of the light spot projection are approximately known so that it is 

easy to design a bidimensional digital filter able to detect the LED in the image [56]. Because 

the aspect of the image patch around the light spot projection, at sufficiently high frame rates, 

varies slowly with its location in the image, a simple patch comparison strategy based on 

block matching algorithms [57] can be implemented. A rectangular patch representing the 

projection of the light spot in the image is taken as reference template. At the beginning, 

during the initialization phase, when the wing is still undeformed, the 3D LED position is 

exactly known, therefore the reference patch can be easily localized around its 2D projection. 

During the operation phase, at the end of every update step, the previously used template can 

be replaced with an updated version, that is obtained by the cut of the current image around 

the predicted 2D location of the LED projection. These coordinates can be obtained projecting 

the last 3D position of the LED estimated by the sensor fusion algorithm presented in the 

paper or otherwise using an independent visual tracking algorithm that estimates the apparent 

2D motion of the visual objects in the scene (optical flow) [58]. The reference patch is then 

compared with small, overlapped, portions of the image that have exactly the same 

dimensions of the template patch and that belong to a limited search window around the 
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predicted 2D LED coordinates; the search window, thanks to the use of tracking, is usually 

smaller than the whole image so that the computational burden can be strongly reduced. The 

minimum admissible dimensions of the search window depend on the projected area of the 

spot and on the prediction uncertainty. The best match in terms of the reference metric, for 

example the mean square error, is used to determine the current 2D location of the spot.  

The same type of algorithms, described above, is also used in video coding [59].  

They are currently able to work at 30-60 Hz on Central Processing Units (CPUs) or Digital 

Signal Processors (DSPs) for consumer electronics applications.  

 

 

 

 

 

 

 



Methods and Systems for Estimation of Shape-Changes Applicable to Navigation and Control of 
Flexible Aerospace Vehicles 
 

73 
 

 

3 Load Alleviation Methods and Systems 

3.1 Introduction 

In this chapter it will presented a method to control elastic motions of a flexible aircraft 

(control of elastic motions is included in Load Alleviation and Gust Control techniques) using 

a suitable control law associated with the algorithm for estimation of generalized coordinates 

and their first derivatives, presented in the previous chapter. 

As it will be shown later, the conventional control surfaces will be used to contrast elastic 

motions. 

The analysis of the system will be preceded by a short description of the most important state 

of the art applications in this field.  

3.2 State of The Art 

In [60] a large-degree-of-freedom, transonic, inviscid computational fluid dynamics/finite 

element model of a fighter aircraft is coupled with a flight control system for aeroelastic 

oscillation reduction. A Reduced-Order Model, several orders of magnitude smaller and able 

to capture the dynamic characteristics of the full system, is then derived for system analysis 

and control design. A modal decomposition is used to describe the structural deformation. In 

the general formulation, a certain number of structural node displacements, velocities or 

accelerations is assumed to be available for the control law.  

In [61] an analytical and experimental investigation, into the use of active lifting surfaces with 

distributed strain actuators for dynamic aeroelastic control, is described. In the test 

configuration, laser sensors measure the tip displacement at the leading edge, midchord and 

trailing edge of the tested wing. It is although observed that actual lifting surfaces are not able 

to take advantage of such displacement measurements, whereas they have ample space for 

accelerometers, the output of which can be integrated to yield measurements equivalent to the 

displacement measurements. 

In [62] experimental and analytical results of gust response of a scaled transport type wing, 

with a gust load alleviation system, are presented. Several output feedback control laws are 

compared using accelerometers, strain gage or both. A simultaneous use of the accelerations 

and strains measurements is demonstrated to be more effective, because when only the signals 

from the accelerometers are used the effect of the control is quite deteriorate, mainly because 

signals from accelerometers represent not only the wing motion ,but also the gravity 

component with the opposite directional effect. 
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In [63] an analytical design technique, for an active flutter-suppression and gust-alleviation 

control system, is presented. The focus is mainly on optimization of a predetermined partial 

feedback control law, over a wide range of aerodynamic parameters. 

In [63] the problem of obtaining the required measurements is not covered. It is only stated 

that the optimized control laws are physically realizable because measurements concern actual 

structural motion. 

The applicability of Active Control, and thus the capability of obtaining measurements 

required by control laws are not limited to aerospace engineering.  

In [64] the authors investigate the optimal deployment of one type of trailing-edge device, the 

micro-tabs, in conjunction with collective and individual pitch control to provide effective 

load alleviation for wind Turbines. The microtab control system consists of a Proportional-

Derivative feedback design that requires tip deflection as the feedback signal. All these works 

and many others demonstrate the need for a proper estimation of the structural motions.  

In [65] it is proposed an algorithm able to elaborate onboard sensor measurements for real 

time estimation of structural motion of a flexible aircraft and more in general to include the 

influence of elastic motion in the navigation equations.  

In [65] and [66] the modal decomposition it is used to describe the structural displacements, 

thus an Extended Kalman Filter based on measurements of a suitable sensor setup, is used to 

estimate generalized coordinates and their first derivatives. 

The innovative proposal presented in this paper is the coupling of such a kind of algorithm 

with an active control function, which is based on an optimal state feedback control law for 

Gust Alleviation.  

In the field of Gust Alleviation, the knowledge of generalized coordinates allows the direct 

control of the structural loads by means of an optimal state feedback control technique. The 

overall structure represents an LQG (Linear-Quadratic Gaussian) control technique applied to 

the structural Load Alleviation. 

The effectiveness and features of the proposed approach are verified through numerical 

simulations, performed using a complete aeroelastic model of a flexible UAV, and a realistic 

modeling of sensors included in the proposed setup. The proposed sensor setup, which 

integrates inertial measurements of accelerometers and gyros with the output of a vision based 

system with a target LED positioned in a suitable point of the aircraft, represents another 

aspect of innovation in the field of Load Allevation techniques. 

The advantadges, provided by this sensor setup, are: compactness, high accuracy and low 

cost. 
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3.3 System Description 

The proposed active control system uses the conventional control surfaces to alleviate the 

wing loads and reduces the structural deformation during maneuvers or gust occurrences. 

The logical scheme of the load alleviation system is depicted in Figure XIV. The vehicle, 

modeled simply by the Bare Aircraft, the Actuators and Sensors modules, is subject to the 

control signals u. These signals represent the sum of the attitude control contribute, uac, and 

the term due to the Load Alleviation control, ula. 

Control Laws 
y Elastic Motion 

Estimator 
x* ula 

uac u 
Bare Aircaft Actuators Sensors 

 
Figure XIV The logical scheme of the Load Alleviation System 

 

Since the attitude control is not the focus of this paper, only the Load Alleviation contribute is 

here considered. This term is provided by the Control Laws, that process the estimated elastic 

state, x*, which is provided by the Elastic Motion Estimator, combining the raw sensors 

measurements, y, which include both inertial measurements and displacements provided by a 

vision-based system. 

In the following section the Control Laws for the load alleviation are fully discussed, while 

the Elastic Motion Estimator has been described in detail in the previous chapter. The control 

is a classic LQ state feedback control, thus forming a LQG control structure. 

As already mentioned, the control laws are based on the classic Linear Quadratic optimal 

control technique with state feedback [67]. Even though, LQ control is a well known 

technique, some recalls are given below for the sake of completeness along with the 

implementation details. 

The mathematical description of the generic elastic structure of the aircraft is given in Eq. 

(171), where ηi represent the i-th generalized coordinate, while Mi, ςi, ωi and Qi represent, 

respectively, the corresponding generalized mass, the damping factor, the resonance angular 

frequency, and the generalized aerodynamic force. 
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Note that each Qi depends on the rigid body state variables and the control surfaces 

deflections. 

Now, given a certain equilibrium flight condition, Eq. (171) can be easily linearized to obtain 

equation (172), where δηi with i = 1,…,n represent the displacements of the generalized 

coordinates around their equilibrium values and, similarly, δuj with j = 1,…,m are the 

perturbations of each control surfaces with respect to the equilibrium deflections. 
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(172) 
Thanks to the Elastic Motion estimator, the measurements of the generalized coordinates are 

available, moreover the observability of the system is ensured. Being (172)  provided also of 

the controllability property, it is allowed to apply a classic LQ state feedback control to obtain 

a proper load alleviation control system. 

For the sake of simplicity, an infinite-horizon cost function is chosen (see Eq.(173)), to ensure 

asymptotical stability and the desired performances to the closed-loop system.  

 



0

dtRuuQxxJ TT
 

(173) 
As known, Q and R, respectively semi-positive definite and positive definite, are the 

weighting matrices of the state and the control effort. The minimization of the cost function in 

(173) can be obtained considering the typical proportional control with state feedback 

reported in Eq.(174), 

xKula   

(174) 
where the gain matrix K has the form as in Eq.(175) 

PBRK T1  
(175) 

and the matrix P is the solution of the algebraic Ricatti equation, reported in Eq. (176). 

01   QPBPBRPAPA TT
 

(176) 
While designing the load alleviation control system, it has been neglected the interactions 

between the rigid body dynamics and the elastic structure, assuming that the attitude control 

system, not described in this paper, would have taken care of the rigid body state variables, 

with its specific aims. In the numerical tests, given the aforementioned assumption, the 

attitude control system it is not considered at all. 
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4 Numerical Results 

4.1 Simulation Model of a Flexible Aircraft 

4.1.1 Introduction 

The analyses of flight mechanic, the evaluation of performances, as well as the design of the 

GN&C system, are generally performed using a suitable aircraft’s model whose validity is 

generally limited to the hypothesis of rigid body, while the effects of flexibility are generally 

considered within the aeroelasticity analyses.  

The assumption of rigid body considers constant relative positions of masses composing the 

aircraft (excluding possible rotating parts). 

As known, aeroelasticity studies the interaction between aerodynamic and inertial forces with 

the structural stiffness of the aircraft. Aeroelastic problems include structural instabilities as 

flutter, structural loads caused by maneuvers or atmospheric turbulence.  

For flexible bodies, stability and controllability analyses shall take into account the effects of 

flexibility, as well as the interaction between structural dynamics and control system ones.  

These issues are generally treated within aeroservoelasticity studies. Specifically, the 

aerodynamic features, the stability and controllability properties can be strongly affected by 

the elastic deformations shown by the structure due to external loads.  

An uncorrect modelling of these effects leads to a wrong design of some subsystems, as for 

example the flight control system. Aeroservoelasticity is generally considered a part from the 

flight mechanic, because of a frequency separation between the structural phenomena and 

rigid body dynamics. This separation is not valid for some configuration such as for HALE 

configurations and consequently for HAPD aircraft. For this category of aircrafts, the first 

structural modes have a frequencial content in the same band of flight mechanic. In this 

condition is essential to consider in the aircraft modelling, the coupling between rigid body 

dynamic and stuctural deformation [68].  

4.1.2 Model Architecture 

Within this thesis, the model of flexible aircraft has been considered as an extension of the 

model generally used for rigid aircraft (Figure XV), thus the same functional blocks included 

in the model of a rigid aircraft are included in this new model., but each block introduces in 

the model or processes a part of information which derives from the instantaneous 

deformation of the aircraft and takes in account its effects on measurements and actuation 
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system. The format and the number of variables synthetizing, in discrete values, the 

distributed information on deformation and its dynamic depends on the specific methodology 

applied.  

 
Figure XV  High level architecture for the model of elastic aircraft for flight mechanic analyses 

 

The description of blocks is provided in the followings: 

1. EoM: it includes the equation of flexible aircraft. Under the considered hypotheses, 

(described later) this block joins a part implementing the rigid body equations (6 DoF) 

with another one implementing the equations of deformation dynamic (n DoF). The 

output of this block includes the evolution of rigid body and the instantaneous 

deformation of the aircraft in a discrete way. The input includes the resultant of the 

external forces and moments, and some variables synthetizing dynamic effects of 

force distribution on the aircraft deformation. 

2. Gravity Forces: they provide resultant forces and moments generated by gravitational 

forces. Furthermore, it also evaluates the effects on deformation of these forces. 

3. ADB: it is an aerodynamic database including flexible effects. As input, it receives the 

variables describing the aircraft rigid motion and the instantaneous deformation and 

speed of deformation of the aircraft. It provides as output the effects of this 
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deformation on resultant aerodynamic forces and moments with the consequent 

aerodynamic effects. 

Several issues are related to the development of a database able to describe the 

complex interactions between deformations and aerodynamic effects. The 

implemented aerodynamic model derives from some simplifying hypotheses 

particularly strong. Considering the modularity of the proposed architecture, in future, 

a more detailed aerodynamic model could be included. 

This database has been realized integrating a rigid aerodynamic database, obtained 

with typical CFD applications, with an aeroelastic database obtained with traditional 

methods used in linear aeroelastic analyses. 

4. Engines Model: it calculates forces and moments generated by the propelling system 

and the effects of engine’s thrust on deformations. As for the aerodynamics forces, 

also for propelling ones. 

An evaluation of the effects of deformations on engine forces is required. In the model 

these effects are essentially represented by a modification of both: the application 

point and the direction of thrust. 

5. Airframe sensor: it includes all the sensors considered in the examined configuration. 

In this block sensor dynamics and delay are considered. Unlike a rigid aircraft model, 

deformations could influence sensor measurements, with for example a lever arm 

variation. 

6. Surfaces Actuator: it implements the dynamics of the actuation systems moving the 

control surfaces. 

7. Outside World: it provides the environmental information of the external world. This 

information includes wind, turbulence and atmospheric properties. This information is 

elaborated in the block Air Data which elaborates the variables used in the remaining 

blocks. 

At a high level, the system receives as input the commands to the control surfaces and to the 

engines and provides as output the extended state of the aircraft, including variables which 

describe the deformation. It also provides as output measurements of the considered sensors. 

 

4.1.3 Hypotheses and Validity of the model 

In this paragraph, the main hypotheses, at the basis of the proposed model, will be briefly 

discussed.  
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Some of these hypotheses derive from the need to limit the field of applicability to the 

examined aircraft, avoiding useless complications. Specifically, the validity of the model is 

limited to an aircraft whose deformations are sufficiently limited so that the theory of linear 

elasticity could be applied.  

Other hypotheses derive from the need to use some assessed methods without using a 

completely original theory. This concept is valid, for example, for the aerodatabase. 

These hypotheses don’t limit the field of applicability, but remove the need of method 

validation, required for new theories. 

The aerodinamic theory chosen for this model is limited to a low subsonic regime, in 

agreement with the demands of HAPD project. 

The proposed model can be used for flight mechanic performances evaluation as well as for 

the design and the analisys of a GN&C system for an aircraft whose structural stiffness can 

guarantee the validity of the linear elastic theory and which flies at a low subsonic speed. 

The followig hypotheses have been considered in the formulation of equations describing the 

motion of a flexible aircraft: 

Hp 1 The inertial matrix has been considered variable respect to elastic deformations. 

Hp 2 The linear elastic theory has been considered valid  

The equations are written in a general formulation valid for bodies with a variable inertial 

matrix. The hypothesis Hp 2 is related to the small value assumed by the deformations and 

can be considered valid because of the value considered for structural stiffness. 

This hypothesis allows to use the principle of superposition for deformations and 

consequently to apply a modal decomposition to describe the aircraft deformation. 

The modal decomposition is the method used to describe a spatial phenomenon, as the 

deformation of a solid body, with an infinite (in principle) number of variable. For 

implementation issues this number is considered finite. The accuracy of solution is guaranteed 

by the choice of a suitable number of variables. 

The following hypotheses have also been considered in formulation of the aerodynamic 

model 

Hp 3 It is supposed to be valid the linear superimposition between stationary aerodynamic 

due to rigid body and the aerodynamic depending on vibrational modes. 

Hp 4 The aerodynamic due to vibrational modes is supposed to be quasi-stationary. 

Hp 5 Inertial effects due to control surfaces movements are neglected. 

Hp 3 is justified by the need to employ assessed computational techniques. It implies that the 

aerodynamic forces depend linearly on the elastic deformations. The constant coefficients 
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expressing this linear dependence are determined using a linear model realized for other 

purposes (as for example flutter analysis). 

Hp 4 derives from the analysis of coefficients related to instationary effects, which can be 

considered negligible. 

Within the validity of Hp 5, the movement of control surfaces has effect only on the 

aerodynamic forces. 

The aerodynamic model, built on the basis of Hp 3, is the integration of two different 

database: a first one based on the hypothesis of rigid body, which is non linear; and a second 

one whih is elastic and linear. Both these database are realized using computational 

techniques. 

The following  hypotheses have been considered respectively for engines, sensors and 

actuators. 

Hp 6 The thrust generated by each engine is considered as a force concentrated in a point. 

Sensor and actuator Hypotheses  

Hp 7 Sensors are modeled as a first order linear system. 

Hp 8 Actuators are modeled as a second order linear system. 
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4.1.4 Dynamic Equations for the flexible aircraft 

 
Figure XVI  EoM block Architecure 

 
The EoM block includes the equations of the flexible aircraft. These equations are formulated 

starting from the Hp2. Aircraft motion is represented by a rigid motion of a non inertial 

reference frame chosen with the constraint that elastic deformations could be considered “of 

limited entity”. The position of an elementary particle is represented by Eq.(177) (Figure 

XVII). 
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(177) 

 
Figure XVII  Particle’s position in Tangent Reference frame 

 
Equations of flexible vehicle are derived using a modal decomposition of elastic 

displacements. (Eq.(178)) . 
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The space depending functions фi are defined “mode shapes”, while the time depending 

functions ηi are defined “generalized coordinates”. The sum in Eq. (178) ends at a predefined 

value n 

Mode shape functions are derived from structural analysis performed for the unconstrained 

aircraft, excluding rigid motions. Under this hypothesis, deformations are referred to a 

particular reference frame, defined “mean axes”, which guarantees the maximum inertial 

decoupling between the equation set describing rigid motion and the set of equations 

describing deformation. 

The general expression for a variable inertia matrix is reported in Eq. (179). 
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Considering that for the specified aircraft HAPD, the variation of inertia matrix due the 

deformation is neglectable, J coefficients are equal to zero. 

In Eq.(180) one has summarized the equations of motions in the aircraft reference frame as 

implemented in the EoM block. 
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(180) 

In addition to these equations, equations of attitude kinematic have to be also considered 

(Eq.(181)). 

 



Methods and Systems for Estimation of Shape-Changes Applicable to Navigation and Control of 
Flexible Aerospace Vehicles 
 

85 
 














r

q

p












cos

cossincos

cossinsin

      

(181) 
In the previous equations, moments of inertia derivatives have to be calculated according to 

Eq. (179). 

The first six equations in Eq. (180) are coincident with the standard equations describing the 

motion of a rigid body, in which the coupling (represented by the moments of inertia 

derivatives) with elastic deformations has been included. 

In the remaining n equations, which are second order linear differential equations, some 

structural parameters appear. They are: the generalized masses Mi ; frequencies of vibration 

ωi; structural damping ζi and other remaining terms which represent the coupling with the 

rigid body dynamic (these last terms are null if the inertia matrix is considered constant, they 

are anyway neglectable with respect to angular speed). All these terms depend on masses 

distribution and on mode shape functions.  

The n-DOF block is parametrically implemented, according to the technique of the “residual 

stiffness”. This technique considers more important the dynamics of vibrational modes with a 

lower frequency, while it considers instantaneously the higher frequency modes. Thus the 

evolution of the first ndyn modes is described with a second order dynamic, while for the 

remaining nstat=n-ndyn are evaluated from a simple algebraic system, in which generalized 

coordinates are evaluating as linear functions of the generalized forces by inversion of 

stiffness matrix conveniently residualized. 
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(182) 
The number of modes to be taken into account in the dynamic of the aircraft is to be defined 

during the inizialization of the model. 

The final state of the implementated model is reportes in Eq.(182). 

 ndynndyncgcgcg rqpwvuzyxx   11 ,  

(183) 
The output includes the state associated with the statically evaluated modal coordinates.  

Other interesting variables are calculated within the block 6-DoF, as for example the DCM 

between the body reference frame and the inertial one (allthe variables calculated in this block 

are reported in Table 5). 
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Inputs are the resultant forces and moments, which appear in the first six equations; and the 

generalized forces. These latter are defined as the virtual work done by external applied forces 

with respect to displacements defined by each mode shape. Generalized and resultant forces 

and moments are calculated in the module relative to the system which has generated them 

(Engine, ADB). 

Input Total Forces, Total Momement 

States rqpwvuzyx cgcgcg ,,,,,,,,,,,  , dyn , dyn  

Output  ,,,,,,,,,,,,, groundcgcgcg Vrqpwvuzyx ,track,climb_rate, 

Mrqpaaa ZcgYcgXcg ,,,,,,  ,DCM,  statdyn  ,  

Parameters iiiMM  ,,, ,I,J(i),J(m,n) 

Table 5 Main Features of EoM block 
 

4.1.5 AeroDatabase 

 
Figure XVIII  Architecture of the ADB block 

 

The aerodynamic laws considered within the model of flexible aircraft are based on a 

simplified methodology which allows using data already available and obtained using 

assessed aerodynamic tools. Specifically, results provided by CFD analysis for determining 

the aerodatabase of the rigid aircraft are integrated with the results obtained from the linear 

aeroelastic analysis.  
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The aerodatabase has the following structure: 
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 (184) 
The nonlinear terms are described by suitable look-up table included in the non-linear 

database derived under the hypothesis of rigid configuration. The constant coefficient of the 

linear terms are derived, short of a reference frame transformation, from the linear aeroelastic 

model. 

These coefficients are derived, within the aeroelastic analysis, for a specific flight condition. 

In principle their validity is limited to a little variations of this flight condition. To extend 

their applicability, it is required a sort of interpolation between their values at different flight 

condition. 

The database is implemented in four distinct blocks, as shown in Figure XVIII. The block 

labelled Rigid-ADDN includes the nonlinear part of the aerodynamic model depending on the 

rigid body variables (α,β,p,q,r). 

The other three blocks are totally linear and they include the constant parameters derived from 

a linearized model of the deformed body aerodynamic. The block labelled Rigid-Elastic ADB 

includes the coefficients, which describe the effect of elastic modes on the resultant forces and 

moments. The block labelled Elastic-ADB includes the coefficients describing the mutual 

aerodynamic effect among elastic modes.  The last one, labelled Elastic-Rigid ADB 

represents the effect of rigid state variables on elastic modes. The effect of control surfaces on 

elastic modes has been included in the block Elastic-ADB. 
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Table 6 Main Features of ADB block 
 

4.1.6 Propelling System 

 
Figure XIX  Architecture of the Propelling System block 

Figure XIX represents the architecture of the model of a single engine. The kernel of the 

propelling system model is the block Engine Model which describes the dynamic of the 

engine coupled with the propeller. 

The other blocks “Thrust Vector”, “Engine Position” and “Engine Modal Displacement” 

receive as input the modal coordinates which represent a synthetic description of the 

instantaneous deformation. These coordinates are used to determine the actual direction of the 

thrust and consequently the thrust vector generated by each engine; the momentum generated 
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by this vector with respect to the aircraft center of gravity and the contribution provided by 

each engine to the generalized forces for each one of the vibrational mode. 

The generalized forces are defined as in Eq.(185)  

 
S

Si

V

i dSdV FFQ Vi   

(185) 

Where Qi is the generalized force, фi is the ith mode shape and Fs and Fv are respectively the 

distribution of volume forces and superficial forces. The thrust contribution, supposed to be 

concentrated in a point, to the ith generalized force is expressed in Eq. (186). 

iiT )~( ii rTQ   

(186) 

Where  is the nominal position of the thrust application point in the body reference frame. 

In addition to the generalized coordinates, these blocks need, as input, also some information 

about the local deformation of the engine position, that depends on the value of mode shape 

functions in the thrust application point and on the rotation of this point (Jacobian of mode 

shape functions calculated in the application point of thrust). This information is transmitted 

to the blocks as parameters, as highlighted in the related tables. 

In Figure XX we have represented with greater detail the block Engine Model.  

 
Figure XX  Architecture of the Engine Model block 

 
The block Electric Motor implements the power curve as a function of engine command δT 

and the number of revolutions n, from which the torque: can be derived: 

),( Tmm nCC    

(187) 
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The block propeller includes the information of the propeller aerodynamic. This information, 

represented by thrust and power coefficients, is included in look-up tables as function of the 

advance ratio
nD

V
J  . 

In the last block Rotation Dynamic, the axis’ equilibrium equation is implemented and it 

determines dynamically the revolution number using the following Eq. (188) 

rmr CCnbnI    

(188) 

This block requires the knowledge of the rotational inertia of the group engine-propeller and 

the friction coefficient. 

Input Thrust Cmnd, Air Speed, Air Density 

Output Thrust, n 

Parameter 

bI

JCJC

r

pT

,

)(),(
 

Table 7 Main Features of Engine Model block 
 

Input n ,,1   

Output Versore della spinta  

Parameter )~(,),~(1 rr n   

Table 8 Main Features of Thrust Vector block 
 

Input n ,,1   

Output Posizione del punto di applicazione della spinta ( r~ ) 

Parameter )~(,),~(1 rr n   

Table 9 Main Features of Engine Position 
 

Output 
iQT  

Parameter )~(,),~(1 rr n   

Table 10 Main Features of Engine Modal Displacement block 
 
 
 
 
 
 
 
 
 



Methods and Systems for Estimation of Shape-Changes Applicable to Navigation and Control of 
Flexible Aerospace Vehicles 
 

91 
 

4.1.7 Gravitational Forces block 

This block calculates the gravitational force in the body reference frame. It receives as input 

the Euler’s angle. 

Input  ,,  

Output Gravity force  

Parameter g, Mass 

Table 11 Main Features of Gravity Forces block 

4.1.8 AirData block 

It receives as input the model of the atmosphere, wind, turbulence, sound speed in body 

reference frame and DCM. As output it provides true Airspeed, angles of attack and sideslip, 

Mach number, dynamic pressure, total pressure and calibrated airspeed.  

4.1.9 Outside World 

This block calculates components of wind speed, turbulence and physical properties of air 

such as static temperature and pressure; total pressure etc. This information will be provided 

to the AirData block. The realized model allows calculation of wind speed in the body 

reference frame as a function of altitude. This calculation is performed through statistical 

analyses. The input variables are: aircraft altitude h included in aircraft state vector and the 

aircraft speed (including the wind but excluding the turbulence). The output variables are 

wind speed components in North, East and Up direction; the components of perturbations in 

turbulence; static pressure, air density, static temperature and speed of sound.
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4.2 Experimental Tests for determination of Inertial Sensors Parameters 

4.2.1 Introduction 

An inertial measurement unit is typically composed by three different sensors:  

 accelerometers, 

  gyroscopes, 

  magnetometers. 

MEMS technology has lead to realization of sensors with very reduced weight, size and cost. 

These features are extremely important because they allow to use MEMS sensors in aerospace 

applications, especially in the field of unmanned air vehicles, where the main requirement is 

the reduction of costs, weights and sizes of the onboard equipments, even if they have lower 

performances than traditional ones (i.e FOG/Laser gyros). 

MEMS sensors are subject to different sources of error, which can be classified according to 

their deterministic or stochastic nature (Table 12). 

 
Deterministic Sources Stochastic 

Sources 
Calibration Thermal / 

Mechanical Noise 
Temperature Electronic Noise 

Acceleration (Gyros)  
Magnetic/Electric 

sources (Magnetometers) 
Table 12 Sources of Error for Inertial Sensors 

 
The output of a MEMS sensors can be expressed as a sum of different terms: 
 

  )()()(1~
10 tbtbTbbySFy T

t
  

 (189) 

ỹ : measured quantity 
yt : true quantity 
SF : Calibration Scale Factor 
bo : Calibration Bias 
bT : Temperature dependent Bias 

b1: Stochastic Bias 

bµ : Noise 

 
 
Laboratory tests and mathematical theories are useful to characterize and quantify these 

sources of error. 
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By knowledge of the different sources of error it is possible to characterize the overall 

accuracy of the sensor and thus to choice the best sensor for the desired application. Moreover 

error characterization is required to realize a simulation model which reproduces, as much as 

possible, the real behavior  of the sensor. 

The purposes of tests, treated in this chapter, are the realization of a faithful simulation model 

of an IMU to include in the aircraft global simulation environment and the determination of 

the dynamical model parameters to use in navigation Kalman filter. 

The following lines give basic explanations about the method to identify all components of 

the sensor error model. 

 
 The b0 component can be obtained by taking long term data when the sensor is 

subjected to a zero input. The average of this long term data will be b0. This value is 

sometimes indicated on datasheets for the inertial sensors. However, this value isn’t 

often constant, that’s why the value can be verified by performing a laboratory test. 

Nevertheless, it isn’t sure that the signal input is really to zero, in other words, it’s 

important to take in account the Earth’s rotation and the Earth’s gravity which can 

modify the measurement. The first one can have an impact on the angular rate 

measurements and the second one on the acceleration measurements. Regarding the 

rotation of the Earth, we can assume that is insignificant. Regarding the Earth’s 

gravity, in the event that the z-axis of the unit isn’t along the Earth’s gravity axis (and 

in consequence the x and y-axes not orthogonal with the Earth’s gravity axis) some 

components will be measured by the accelerometer and will corrupt the bias 

estimation. That’s why a specific algorithm can be used in order to perform the 

estimation of the b0 bias and the scale factor (SF) by taking into account the 

measurement of the Earth’s gravity.  

 The b1(t) component is difficult to estimate, because of its stochastic character. It’s 

possible to identify a mathematical form of this bias component, but the difficulty is, 

and what’s most important, to find the specific numerical coefficients which are part 

of the mathematical model. Several techniques are used in order to estimate the model 

as the identification tools which can be ARX, ARMA, etc. However, these tools can 

result in mathematical models which are of high orders. Consequently, not suitable for 

an implementation in an estimator running in real time. That’s why, an other method 

can be used, named “Allan Variance Analysis” [69] ,which can characterize the 
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stochastic component of b1(t). The explanations of this last method are explained in 

the next chapters. 

 
 The  b2(T)   component depends on the temperature value of the sensor. It’s possible to 

estimate this bias by taking data when the sensor is subjected to a zero input and a 

temperature gradient. The plot of the measurement according to the temperature will 

give the equation of the bias evolution with the temperature. Explanations are 

provided in the next paragraphs. 

 
It’s important to note that this kind of test depends on the time, so b0(t) and b1(t)  components 

too. More, the temperature in which the temperature bias is zero isn’t the 0°C but generally 

25°C (check with the appropriate sensor datasheet). Consequently, this part of this bias isn’t 

the easier to estimate. 

 
 The bw(t)   term is sometimes called “output noise” and can be modelled as band-

limited white noise. The band-limit for the bw(t) is very high relating to the frequency 

content of b1(t). Thus, a numerical value for bw(t) can be obtained by looking at the 

standard deviation of the sensor output when it is subjected to a zero input and 

sampled at a rate much higher than the maximum frequency content of b1(t).   

   
In this thesis, experimental tests for determination of the temperature depending bias and 

stochastic terms will be described. 

All the test have been performed used the Crossbow Micronav Unit, which includes inertial 

sensors based on the MEMS technology. 

4.2.2 Temperature Tests 

In general, all sensors are sensitive to a temperature gradient, that is to say, a bias appears in 

the signal and its amplitude changes with the temperature. That’s why a correction must be 

performed in order to make null the bias evolution with the change of temperature. 

In these temperature tests, the IMU has been put in a fixed position and the temperature has 

been changed. 

Unfortunately, the available equipment has allowed us to test the item in a limited range of 

temperature, but the results are very relevant. 

The MNAV100CA unit was put inside an airtight box in order to increase the temperature 

(thanks to the electronic components). When the stabilized temperature was reached, the 

airtight box was removed in order to allow the temperature to decrease to the balanced 
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temperature (between the unit and the ambient air). The unit was subjected to a zero input in 

order to not disturb the acquisition. Then, it has been possible to determine the model of the 

temperature bias by plotting the data in accordance with the measured temperature. 

In the next figures, the analysis of acceleration evolution according to the temperature 

provides the equation allowing to perform the compensation (an interpolation technique can 

be used for the equation estimation).  

a) For the X-axis measurement 

 

 
Figure XXI  X-axis acceleration variation vs. temperature 

 
In bleu is shown the evolution of the X-axis bias when the temperature is increased and in red 

when the temperature is decreased. A linear interpolation of these values has been performed 

(shown in green). It’s important to note that the zero bias isn’t at the temperature of 0°C but at 

25°C for this sort of sensor. That’s why the corrective term to perform to the measurement 

will be: Correction=-0.0026 x (T[°]-25) 

 

 

 

 

 

 

 
a) For the Y-axis measurement 
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Figure XXII  Y-axis acceleration variation vs. temperature 

 
The corrective term becomes: Correction=-0.004 x (T[°]-25) 
 

b) For the Z-axis measurement 

 

 
Figure XXIII  Z-axis acceleration variation vs. temperature 

 
The corrective term becomes: Correction=-0.0021 x (T[°]-25) 
 
There are three sensors mounted on the MNAV100CA for the angular rate measurement. 

The ADXRS150 from ANALOG DEVICES Company is a 1-axis sensor which is used to 

measure the angular rate along one MNAV100CA axis. 
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Figure XXIV: ADXRS150 illustration 

 
a) For the X-axis measurement 

 

 
Figure XXV: X-axis angular rate variation vs. temperature 

 
In bleu is shown the evolution of the X-axis bias when the temperature is increased and in red 

when the temperature is decreased. An interpolation was performed, shown in green. It’s 

important to note that the zero bias isn’t at the temperature of 0°C but at 25°C for this kind of 

sensor. That’s why the corrective term to perform to the measurement will be:  

Correction=-0.0724 x (T[°]-25) 
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b) For the Y-axis measurement 

 
Figure XXVI: Y-axis angular rate variation vs. temperature 

 
The corrective term becomes: Correction=-0.0494 x (T[°]-25) 

 

 
Figure XXVII: Z-axis angular rate variation vs. temperature 

 
The corrective term becomes: Correction=0.0032 x (T[°]-25) 
 
Gyroscopes are less sensitive to a temperature variation than accelerometers. 

There are two different sensors mounted on the MNAV100CA for the magnetic field 

measurement. 
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The first one is the HMC1051ZL from Honeywell Company. It’s a 1-axis sensor which is 

used to measure the magnetic field along the MNAV100CA Z-axis. 

 

 
Figure XXVIII: HMC1051ZL illustration 

 
The second and last one is the HMC1052 from Honeywell Company. It’s a 2-axis sensor 

which is used to measure the magnetic field along the MNAV100CA X and Y-axes. 

 

 
Figure XXIX: HMC1052 illustration 

 
a) For the X-axis measurement 

 
Figure XXX: X-axis magnetic field variation vs. temperature 

 
In bleu is shown the evolution of the X-axis bias when the temperature is increased and in red 

when the temperature is decreased. An interpolation was performed, shown in green. It’s 

important to note that the zero bias isn’t at the temperature of 0°C but at 25°C for this sort of 

sensor. That’s why the corrective term to perform to the measurement will be:  

Correction=-0.0025 x (T[°]-25) 
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b) For the Y-axis measurement 

 
Figure XXXI: Y-axis magnetic field variation vs. temperature 

 
The corrective term becomes: Correction=-0.002 x (T[°]-25) 
 

c) For the Z-axis measurement 

 
Figure XXXII: Z-axis magnetic field variation vs. temperature 

 
The corrective term becomes: Correction=-0.0025 x (T[°]-25) 
 
The obtained results are compatible with the information included in the datasheet of each 

sensor. 
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4.2.3 Tests for determination of Allan variance 

The Allan variance can be viewed as the time domain equivalent of the power spectrum. 

Instead of power as a function of frequency it gives power as a function of averaging time. 

In order to use this method, let us assume that the time history is a record of inertial sensor 

outputs (in volts, deg/s, deg/h, g), as a function of time. Let us say that the data was sampled 

at the rate of Fs Hertz and recorded for T seconds. The total number of recorded data points 

is, therefore, N=Fs*T. The signal must comes from sensor when this one is subjected to a zero 

input, and when there isn’t temperature evolution (i.e. constant temperature or compensated 

temperature). 

In this test the time history has a length of 4 hours with a sample frequency of 100 Hz. 

The formula which gives the Allan variance is the following: 

 

]))()([(
2

1
)( 2

1
2 MME kkav    

(190) 

 
with : 

- k , the average of the data for the kth cluster. 



M

i
iMkk M

M
1

)1(

1
)(   

- M, the number of sampling in one cluster 

- av , the averaging time (
Fs

M
av  ) 

- Fs, the sampling frequency 

- []E , the ensemble average 
 

Then it’s possible to plot the Allan variance according to the various averaging time windows 

τav. Following the appearance of the plot, it will be possible to determinate the stochastic 

components included inside the b1(t) bias. The following table shows the result of the Allan 

variance chart from several kinds of error mechanism signals: 
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Error Mechanism Allan Variance Slope [70] 
 

Quantization Noise -1 

Random Walk (or White Noise) -1/2 

Flicker Noise (or Random Bias) 0 
Rate Random Walk +1/2 

Exponentially Correlated Noise 
(First Order Gauss-Markov 

Process) 
+1/2 

Linear Rate Ramp +1 
Sinusoidal Sine curve 

Table 13: Allan variance slope analysis 
 

Thanks to this table, it will be possible to characterize the kind of stochastic error which is 

included inside the b1(t) bias. 

In the next graphs, the term random walk refers to the Angle Random Walk model for 

gyroscopes and to the Velocity Random Walk for the accelerometers.  

 
Figure XXXIII  X-axis accelerometer Allan standard deviation  
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Figure XXXIV  Y-axis accelerometer Allan standard deviation  

 

 
Figure XXXV  Z-axis accelerometer Allan standard deviation  

 
The analysis of accelerometers’ plots shows two different contributions to Allan deviation: an 

angle random walk and a bias instability. 
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Figure XXXVI  X-axis gyroscope Allan standard deviation  

 
Figure XXXVII  Y-axis gyroscope Allan standard deviation  

Sinusoidal 

Sinusoidal 
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Figure XXXVIII  Z-axis gyroscope Allan standard deviation  

 
The analysis of plots for gyroscopes shows that at short averaging times. The Allan variance 

is dominated by noise. At higher averaging times, the sinusoidal noise appears.  

 
Figure XXXIX  X-axis magnetometer Allan standard deviation  

 

Sinusoidal 
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Figure XL  Y-axis magnetometer Allan standard deviation  

 
Figure XLI  Z-axis magnetometer Allan standard deviation  

 
The magnetometers also show two type of noise: angle random walk and bias instability. In 

the time span of our interest the main contribution to noise is represented by the white noise. 

In Table 14, for all the sensors we have summarized the Allan factors related to angle random 

walk and we have compared them with the datasheet value. 
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ALLAN ANALISYS RESULTS Datasheet Values 
[71] 

 N (ARW) 
[deg/ 

sqrt(sec)] 

B 
[deg/sec] 

Variance 
(deg/sec)^2 

Bias 
Instability 

(deg/sec) 

N (ARW) 
[deg/ 

sqrt(sec)] 
Gyro X 0.0594 N/A 0.2528 N/A 0.05 
Gyro Y 0.0499 N/A 0.1773 N/A 0.05 
Gyro Z 0.0553 N/A 0.227 N/A 0.05 

 N(VRW) 
 [g/sqrt(Hz)] 

B 
[g] 

Variance 
[g^2] 

Bias 
Instability 

(m/sec2) 

N (VRW) 
 [g/sqrt(Hz)] 

Acc X 0.0004 0.002 4.5e-6 1.5 0.0005 
Acc Y 0.0017 N/A 1.3e-5 1.8 0.0005 
Acc Z 0.0004 0.002 3.2e-6 1.1 0.0005 

 N 
[Gauss/sqr(Hz)] 

B 
[Gauss] 

Variance 
[Gauss^2] 

Bias 
Instability 

(Gauss) 

N  
[Gauss/sqrt(Hz)] 

Magn X 0.0003 0.0003 4e-6 2e-4 0.0005 
Magn Y 0.0003 N/A 4.8e-6 1.5e-4 0.0005 
Magn Z 0.0003 0.0003 2.8e-6 2e-4 0.0005 

Table 14 Allan analysis final values 
All the values obtained through the experimental tests confirm the datasheet information. 

Concerning Bias Instability the values obtained through Allan analysis are compatible with 

the class of sensors that we have analyzed. 

These results, specifically the Angle Random Walk and the Velocity Random Walk factors, 

will be used to realize the error models for the inertial sensors and for the tuning of the 

Kalman filter. 
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4.3 Navigation 

To prove the effectiveness of the navigation algorithm [Par 1.3], including its ability to 

estimate flexible motions, some simulations have been carried out in Matlab Simulink® 

environment using the aircraft simulation model presented in paragraph 4.1. Considering that 

flexible displacements, shown by the modeled aircraft, have a magnitude of few tens of 

centimeters, the accuracy of GPS receiver has been chosen equal to 1 cm, corresponding to a 

high accuracy GPS, operating in RTK differential mode. GPS measurements are updated with 

a frequency of 10 Hz, consequently the correction step of EKF works at the same frequency. 

The IMU sensors and four distributed accelerometers have been modeled with a typical 

MEMS sensors error model. Their data rate has been fixed to 100 Hz and consequently the 

prediction step of EKF works at this frequency.  

The mode shapes matrices for a certain number of points, are provided by the FEM structural 

analysis. As stated in the previous paragraph the placement of distributed accelerometers is 

fundamental for an accurate estimation of the generalized coordinates, thus before performing 

any simulation, the selection of the best position for the four triaxial distributed 

accelerometers has been performed on the basis of the combination of the number and 

typology of estimable mode shapes. In Figure XLII is shown the condition number of  matrix 

for different combination of number and typology of estimable mode shapes. The positions of 

triaxial distributed accelerometers are the same for all combinations. This condition number is 

a sort of measure of the accuracy that can be achieved in estimation of generalized 

coordinates. The best condition number (1.25) is obtained considering only the first two 

symmetric modes (the first generalized coordinates).  

The observability of   state variable depends on the difference between mode shapes 

matrices relative to GPS antennas mounting points. To underline the importance of this 

consideration and to show how it heavily influences the quality of results, GPS antenna are 

positioned in points which can guarantee greater observability of the first generalized 

coordinate error term. In particular the matrix  2#1#   assumes the following value 

[Eq.(191)]:  

  m




















11.022.1

09.016.0

23.047.0
2#1#  

(191) 
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m




















19.099.0

09.016.0

32.035.0
1#  

(192) 

m















 


07.023.0

00

088.011.0
2#  

(193) 

The terms in the first column of matrix in Eq.(191), which is relative to the first generalized 

coordinate, have a greater magnitude respect to terms of the second one, which is relative to 

the second generalized coordinate (in the third row, which represents the influence of vertical 

relative displacement error term zr e
ant _  on the generalized coordinates error term, the two 

terms have values which differ for an order of magnitude). After the choice of sensors 

locations, the maneuver to be simulated had to be decided. To excite structural elastic 

motions, two abrupt elevators deflections have been simulated: in particular a first pulse (with 

a positive one degree magnitude and a 6 sec width) starting at time instant 2 sec and a second 

one pulse (with a minus one degree magnitude and a 10 sec width) starting at time instant 50 

sec. In Figure XLIII and Figure XLIV the generalized coordinates, estimated with the 

proposed Kalman Filter (blue lines), are presented together with the true values and with 

values obtained with a simple double integration of Eq.(44). As expected the first generalized 

coordinate is estimated with a greater accuracy than the second one. In Figure XLV and 

Figure XLVI estimations of wing tip displacements are also reported. Estimated values of 

displacements along X direction in the Body reference frame have a lower accuracy than the 

Z direction, because of the greater influence of the second generalized coordinate on the 

elastic motions along this direction (this dependence can be easily verified comparing value of 

1#  mode shape matrix [Eq. (192)]. Considering the results obtained along the Z-direction as 

representative of the proposed algorithm potentialities, the accuracy in the elastic motion 

estimate, using a couple of GPS antennas with differential RTK, is less than 1 cm. In general 

the accuracy of the proposed algorithm will be dependent only by the level of accuracy that 

the chosen GPS system can provide. 
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Figure XLII  Condition Number for different choices of mode shapes. 

 
 

 
Figure XLIII  Estimation of first generalized coordinate 

 



Methods and Systems for Estimation of Shape-Changes Applicable to Navigation and Control of 
Flexible Aerospace Vehicles 
 

111 
 

 
Figure XLIV  Estimation of second generalized coordinate 

 

 
Figure XLV  Estimation of Wing Tip deflection X coordinate 
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Figure XLVI  Estimation of Wing Tip deflection Z coordinate 

In these last figures a comparison between aircraft center of gravity position estimated using 

the proposed navigation algorithm and a standard EKF based on rigid body modeling has 

been reported.  

For the modeled aircraft, flexible motions have very low magnitude, thus there is not an 

extremely evident improvement in results. 

The improvement has a magnitude of few centimeters. This result is coherent with the 

magnitude of flexible motions showed in previous figures. 
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Figure XLVII  Comparison between Position estimation with and without flexible aircraft model. 

 

 
Figure XLVIII  Comparison between Speed estimation with and without flexible aircraft model. 
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4.4 Flexible Displacements Estimation 

As stated in paragraphs 2.1 and 2.3, the simulated sensor setup includes a camera with the 

related LED, four triaxial accelerometers and an IMU. It is useful to remark that the optimal 

arrangement depends on the model order which you have to estimate; consequently before 

executing any simulation, the selection of the best arrangement for the four triaxial distributed 

accelerometers and for the video-based system has been performed. Concerning 

accelerometers, the same positions indicated in the previous chapter have been chosen.  

The LED is placed on the wing tip, while the Camera is placed on the tail empennage to 

centre the LED in the undeformed condition. 

In Figure XLIX a schematic view of the sensors arrangement on the modeled aircraft has been 

reported. 

 
Figure XLIX  Schematic view of the Sensor Setup. 

 

In Table 15, the principal parameters describing the features and the error of the simulated 

sensors have been reported. The error model of inertial sensors, used in simulations, is typical 

of Micro Electro-Mechanical Systems (MEMS) sensors. 

Sensors Parameters 
Camera Field of View 5° 

Camera Resolution 1024 x 768 
pixel 

LED Radius 0.01 m 
Focal Length/ photosensitive 
element dimension Ratio  

11727 

Frame Rate  10 Hz 
Accelerometers Bias  2 mg 
Accelerometers Noise @ 30 Hz  
(Standard Deviation) 

0.0012 g 

Gyroscopes Bias  0.5 deg/sec 
Gyroscopes Noise @ 40 Hz 
(Standard Deviation) 

0.32 deg/sec 

Table 15 Sensors Parameters 
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Also in these simulations the elastic dynamic of the aircraft has been represented with the first 

two symmetric generalized coordinates [η1,η2] and an elevator deflection is imposed in order 

to excite structural motions (Figure L).  
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Figure L  Elevator Deflection 

In Figure LI and Figure LII it is reported the result of the generalized coordinates estimation. 
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Figure LI First Generalized Coordinate Estimation 
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Figure LII Second Generalized Coordinate Estimation 

In Figure LIII it is reported the variance (the diagonal elements of the variance matrix 

estimated by the Kalman Filter) for both the estimated generalized coordinates and their first 

derivatives. The variance is a means to assess the accuracy of estimation performed by the 

filter. A regime the variance for the first and the second generalized coordinate is respectively 

equal to 0.00042 rad2 and 0.0023 rad2; while for the relative derivatives is equal to 0.0012 

(rad/sec)2 and 0.0078 (rad/sec)2. The first generalized coordinate is estimated with greater 

accuracy, this is due essentially to its greater observability.   
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Figure LIII Covariance Analysis 

Some simulations, in conditions of failure of the video-based system, have been also carried 

out. Specifically, Figure LIV and Figure LV illustrate the results of numerical tests in which a 
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failure of the video system has been simulated (starting from time instant 20 sec up to time 

instant 30 sec). In absence of observations, the estimation of generalized coordinates is 

performed using only the prediction step of the EKF. As it is clearly shown in Figure LIV and 

Figure LV, the estimation diverges because of inaccuracies (noise and bias) of the inertial 

measurements. After the disappearance of the system failure (at time instant 30 sec) the 

estimation rapidly converges again towards the true value.  
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Figure LIV First Generalized Coordinate Estimation with a limited duration failure in the video system 
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Figure LV Second Generalized Coordinate Estimation with a limited duration failure in the video system 

In Figure LVI, Figure LVII and Figure LVIII we have reported the results of LED 

displacements estimation. This estimation has been performed applying Eq. (27) and 

substituting the generalized coordinates with their estimation. A video-based system 

composed by one camera, used standalone, cannot provide any information about three 

dimensional displacements of a generic point, because the number of equations 

(bidimensional displacements in the image plane) is less than the problem unknowns. 

Using only a video-based system, in order to estimate three dimensional displacements, at 

least two cameras (stereo-vision) have to be included in the setup, with an increase in costs 

and weights. 

     Video Off 

Video Off 
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Figure LVI Led Motion Xbody direction 
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Figure LVII Led Motion Ybody direction 
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Figure LVIII Led Motion Zbody direction 

Applying the technique proposed in [72], we have evaluated the degree of observability of the 

proposed state variables. Considering that the number of state variables is equal to four, 

eigenvalues are comprised in the range [0 ÷ 4].  



Methods and Systems for Estimation of Shape-Changes Applicable to Navigation and Control of 
Flexible Aerospace Vehicles 
 

119 
 

The smaller eigenvalues is equal to 0.0154, the corresponding eigenvector represents the 

direction of higher observability, its components are [-0.9207; -0.3523; 0.1610; 0.048]. This 

eigenvector is direct predominantly along the first state variable, consequently the first 

generalized coordinate has the greatest observability. This result was expected because of the 

particular choice of the camera and led installation points, in fact motions of these points are 

predominantly influenced by the first mode shape. In Figure LIX the eigenvalues of the 

normalized covariance matrix have been reported, in order to show their rapid convergence. 
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Figure LIX Eigenvalues of the Norm. Covariance Matrix 
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4.5 Load Alleviation  

In this section the numerical validation of the load alleviation system is reported.  

To validate the effectiveness of the load alleviation system, it has been simulated the scaled 

High Altitude Long Endurance UAV in a specific leveled-wing flight condition (true airspeed 

of 25 m/s and an altitude of 500 m) and affected, after 5 seconds of undisturbed flight, by a 

wind shear, whose formula and parameters are reported in Eq.(194) and Table 16. 

  0cos1 ttAwwind    

(194) 
 

 

WIND SHEAR PARAMETERS 

Parameter Description Value 

A Semi-amplitude of wind disturbance 2.5 (m/s) 

ω Angular frequency of disturbance π (rad/s) 

t0 Time duration of disturbance 5 (s) 

 

Table 16 Wind Shear Parameters 
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Figure LX The considered wind gust 

The LQ regulator has been applied by considering only the first bending mode of the elastic 

structure, thus considering a simple linearized model of the system as reported in Eq.(195). 

lau
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
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0000000000
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By choosing the state weighting and control weighting matrices, of the cost function in (173), 

as two diagonal matrices, whose diagonal values are reported in Eq.(196). The first element of 

diag_Q is relative to η1, while the second is referred to its derivative. With reference to 

diag_R, the early six elements are the weights of the six elevators and the remaining four 

elements are used to weight the ailerons. 

 

 ;2222111111
30

1
_

;001.02.0_





Rdiag

Qdiag
 

(196) 

it has been obtained a control gain matrix as in Eq. (196). 

T

K 











7.07.057.057.0006.0006.01.01.02.02.0

5.35.38.28.203.003.07.07.02.12.1
1.0  

 
(197) 

The control system obtained has been tested in the aforementioned flight condition and three 

configurations have been compared. The first configuration is the open loop system, that is to 

say the vehicle flying without a load alleviation system. The second configuration is the 

vehicle provided with the load alleviation control based on the LQ technique but exploiting an 

ideal feedback signal set, that is to say the “simulated” generalized coordinate, η1, and its 

derivative, dη1/dt, of the first bending mode. The third configuration considers the full load 

alleviation system with the LQ-based control and using the “estimated” data by means of the 

elastic motion estimator. 

In Figure LXI the time histories of the first bending mode are reported. They have been  

simulated by means of the three configurations above described. It is evident the significant 

reduction of the peaks of the oscillation, obtained by adopting the load alleviation system. It 

is, anyway, present a certain oscillation with quite low amplitude while adopting the load 

alleviation system, this can be referred to the interactions between the control system and the 

non-linearities of the actuators, but particularly to the equivalent delay represented by the 

proper dynamics of the Kalman filter, present in the estimator. The last remark is proven by 

comparing the results of the control with ideal feedback and those of the control with 

estimated data. 
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Figure LXI Time history of first bending mode. Comparison between the open loop system,  the closed 

loop with ideal feedback signals and the load alleviation system described in the paper. 

 
For the sake of completeness in Figure LXII are shown the time histories of two surface 

deflections, where it is evident the effect of the death-zone of the actuators.  

The performances of the overall system may be improved by using sensors with better 

properties in terms of both: accuracy and data rate. Furthermore, a deeper analysis of sensors 

placement may also lead to an improvement of performances, while estimating the 

generalized coordinates. This aspect is particularly critic for both the LED and the distributed 

accelerometers. 

To prove the assertion about the sensor properties, it is enough to change the only camera 

frame rate parameter adjusting it up to 50 Hz instead of 25 Hz. 
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Figure LXII Deflections of the middle right elevator (up) and the outer right aileron (down). Comparison 
between the open loop system (dotted line), the closed loop with ideal feedback signals (dashed line) and 

the load alleviation system described in the paper (solid line). 

 

In Figure LXIII comparison is made between the results provided by the overall system 

considering two different frame rates: 25 Hz and 50 Hz. The slight improvement is due to the 

reduction of the delay, while estimating the generalized coordinates. Trivially, a reduced 

delay corresponds to  better performances in damping the oscillations of the structure. 

 

 
 

Figure LXIII Time history of first bending mode. Comparison between the open loop system, the closed 
loop system with a camera frame rate of 25 Hz and the closed loop system with a camera frame rate of 

50 Hz. 

 

In the light of the previous consideration, it is possible to design again the control system, to 

exploit the better estimation. The parameters adopted in the cost function to design the new 
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control system are reported in Eq. (198) and the corresponding results, in terms of control 

matrix values are shown Eq. (199). 

 
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1.0  

(199) 

In Figure LXIV, the variation of the first bending mode obtained using the new control 

system is reported and compared with previous result. As expected, a better damping of 

oscillations is obtained, both when the gust is acting and when it is no longer present. 
 

 

 
Figure LXIV Comparison between the old control system and the new control system. 
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5 Conclusions and Future Works 

The main results of the research activities conducted during PhD studies, have been 

summarized in this work.  

These activities have concerned the analysis of the influence of flexibility in GN&C area of 

interest.  

Motivation for this work has been principally provided by the PRO.RA program HAPD 

realized by CIRA with the aim to realize a demonstrator of an HALE aircraft.  

Structural flexibility has a great impact on aircrafts having high aspect ratio wings and/or a 

slender fuselage, such for example HALE aircrafts. Structural deflections are also present on 

launchers, missiles and other large space structures.  

Modern design philosophies are leading towards lighter and lighter structures to the detriment 

of structural stiffness, consequently also commercial aircrafts suffer of problems related to 

flexibility.  

A fundamental aspect to take into account analyzing structural flexibility is that deflections 

have a frequencial content in the same band of rigid motions and obviously in the band of 

sensors used for GN&C purposes.  

These “spurious” measurements could lead to instability of the control loop. 

In the field of GN&C sensors, a correct modeling of structural displacement is required for 

navigation systems presenting lever arms between the different components, such as ADGPS, 

Gyro free INS or Multiple INS.  

The navigation system more influenced by this phenomenon is, beyond doubt, the ADGPS 

based on carrier-phase measurements, which requires a precise knowledge of baselines length. 

Moreover, modern aircrafts used as ISR flying platforms, in particular configurations, have 

sensors completely integrated in their structure. For these applications, the position and/or the 

exact shape of the sensor (as for example a radar antenna) shall be known with great accuracy 

because they influence the performances of the sensor. 

In the light of the previous considerations, estimation of the aircraft actual shape assumes 

great importance.  

In this thesis, estimation of the aircraft actual shape is based on modal decomposition and on 

the application of different sets of sensors, whose measurements are combined in an Extended 

Kalman Filter. 

Modal decomposition technique is based on the principle of linear superimposition and 

consequently its validity is limited to a “little” ratio between structural displacements and a 
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representative length. The semi wingspan or fuselage length can be considered as 

representative length, a practical threshold for the proposed ratio is 0.15. A literature review 

have confirmed that for the most part of actual aircrafts, the ratio between structural 

deflections and a representative length have a magnitude similar to the proposed threshold, 

thus modal decomposition can be applied.  

Moreover the application of an EKF is based on the application of a linearized system, thus 

there in not any direct advantage in using a non-linear modeling of flexible phenomena. 

The proposed sensor set includes an IMU and several accelerometers positioned along the 

aircraft (depending on the number and type of generalized coordinates we have to estimate) 

and, this is an innovative aspect, GPS antennas or a video system composed by a camera and 

a LED.  

The GPS, in standalone operative mode, has a very low accuracy which limits its applicability 

only to very large motions. GPS can be used for determination of the actual aircraft shape 

only if used with differential corrections or using carrier phase measurements (this last 

possibility will be described with greater details later). 

The video-system offers greater accuracy which allows estimation of typical structural 

deflections. 

Estimation of aircraft actual shape has been associated with estimation of parameters related 

to rigid motion (position, velocity and attitude).  

This method allows eliminating the influences of flexibility from the estimation of rigid 

motion parameters. Unfortunately for the examined HAPD aircraft, this influence is not 

particular evident. 

Problems related to load alleviation techniques have been also examined. Specifically, the 

advantages obtained using an estimation of the shape changes as feedback in a control loop, 

have been examined.  

The proposed system, based on the association of the EKF for actual shape estimation with a 

proper control law, has highlighted the importance of a correct tuning of the EKF.  

A different tuning could be required for the estimation of structural deflections caused by 

maneuvers or by gusts, because of the different frequency content of the solicitations. The 

dynamic behavior of the filter has a great influence on the performances of the control law.  

The analyzed thematic has great possibility for future developments for both aeronautical and 

spatial structures but also for civil engineering structures (knowledge of shape changes is 

required, for example, to control the attitude of blades in wind turbines in order to improve 

the overall efficiency).  
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Analyzing the aeronautical field, the next step of this research activity might be the modeling 

of flexibility phenomena in ADGPS based on carrier phase measurements.  

ADGPS already includes several antennas distributed along the aircraft for attitude 

determination.  

Specifically, carrier phase measurements offer great accuracy, allowing application of GPS 

for estimation of both structural deflections and attitude (beyond position and speed). The 

possibility to use only GPS measurements or to include additional sensors shall be 

investigated. 

There are some works in literature which concern ADGPS including a modeling of structural 

flexibility effects, but shape changes are just treated as a source of error to remove within the 

attitude estimation algorithm.  

Another possible improvement consists in the estimation of mode shapes within the 

estimation filter together with the generalized coordinates. 

In this research activity, mode shapes have been considered constant and exactly known. This 

improvement might provide greater accuracy and, above all, it would provide independency 

by the structural analyses. Such a kind of estimation algorithm could be used also for 

Structural Health monitoring, because it is possible to associate changes in mode shapes 

(which reflect changes in stiffness and mass distribution) with damages in the structure. 

In conclusion, the products of the doctorate activity are: 

1. an algorithm for estimation of shape-changes associated to estimation of navigation 

parameters, using navigation sensors; 

2. an algorithm for estimation of only the shape-changes using measurements provided 

by a video-based system. 

The innovative aspects covered in these two points are: 

 a complete modeling of flexible motions into navigation algorithms; 

 coupling between rigid motions and elastic ones; 

 mode shapes derived by FEM analysis; 

 3-D modeling of elastic motions; 

 GPS or a video-based setup for estimation of flexible motions for aerospace structures; 

 application of a video-based system for real time estimation of shape-changes in 

aerospace applications. 

Furthermore, the algorithm for estimation of shape-changes has been associated to a control 

law for Load Alleviation. This is also an innovative aspect, because these Load Alleviation 
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algorithms are generally based on the application of global measurements, which refer to rigid 

motions, as feedback. 

Other activities have concerned the experimental determination, through lab-tests, of the error 

model parameters characterizing inertial sensors and a review of some unconventional 

navigation systems whose performances are influenced by structural flexibility. 

Future developments of this research could include: i) the experimental validation of the 

proposed methods for mode-shapes estimation and  load alleviation, using a suitable test rig 

(in this case other sensors architectures could be also investigated)  and ii) the realization of a 

system able to estimate with great accuracy both the parameters related to rigid motions and 

to elastic ones for the guidance, navigation and control of aircrafts or spacecraft, as well as for 

Structural Health Monitoring. 
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