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ABSTRACT 
 

About one third of the carbon dioxide released mainly from burning of fossil fuels is 

absorbed into the oceans where it reacts to form carbonic acid. As a result the pH of the 

ocean and the amount of carbonate ions decrease in a process called ocean acidification. 

Detrimental effects on calcifying organisms, which use carbonate minerals to build their 

protective shells and skeletons, have been documented in the laboratory and in the field. 

However, due to the spatio-temporal limits of experiments and field observations, the long-

term impact on marine ecosystems and the adaptation potential of marine species are best 

investigated by looking at the geological record of past episodes of ocean acidification. 

Episodes of short-term massive injection of CO2 in the atmosphere-ocean system are 

witnessed by negative carbon isotope events (CIE) recorded by marine carbonates and by 

marine and continental organic matter. Paroxysmal volcanism and/or clathrates 

dissociation are generally invoked as the source of isotopically depleted excess CO2. High 

pCO2 is also held responsible for the dramatic increase of atmospheric and seawater 

temperature. During the Mesozoic  some of these events record also the deposition of large 

amounts of organic carbon in epicontinental and oceanic basins, witnessing widespread 

marine anoxia. For this reason they are commonly referred to as Oceanic Anoxic Events 

(OAEs). The early Toarcian (Posidonienschiefer event, T-OAE, 183 Ma) and early Aptian 

events (Selli event, OAE1a, 120 Ma) represent two of the most severe and best 

documented episodes of sudden perturbation of the global carbon cycle and therefore have 

been chosen as subject of this thesis. There is overwhelming evidence for both the events 

that geologically rapid injection of CO2 into the ocean-atmosphere system caused abrupt 

global warming. Ocean acidification has also been proposed for both the events.  

Most of what we know about the record of the early Toarcian and early Aptian 

events has been revealed by the study of relatively deep-water marine sediments, deposited 

in epicontinental basins and shelves and in oceanic basins. Comparatively much less is 

known on the response of shallow water carbonate platforms, which represent the other 

―half‖ of the ocean, in terms of carbonate production and accumulation. 

The Apenninic Carbonate Platform (ACP) grew isolated from major continental 

landmasses at least since the Early Jurassic. It accumulated more than 4500 m of shallow 

water carbonates from the Late Triassic to the Late Cretaceous and was able to survive all 

the Mesozoic OAEs. Its sedimentary archive offer the unique opportunity of investigating 

the response to CO2-induced perturbations without the obvious drawback of habitat loss 

due to drowning.  

 

In order to study the response of the ACP to the Late Pliensbachian-Early Toarcian 

environmental changes, two classical outcrops of platform carbonates of the southern 

Apennines have been logged and sampled: Mercato San Severino, about 30 km northwest 

of Salerno, and Monte Sorgenza, about 7 Km east of Formia. Both sections consist of 

bioclastic limestones of the "Lithiotis member" of the "Palaeodasycladus Limestones 

Formation" overlain by oolitic limestones of the "Oolitic-oncolitic Limestones Formation".  

Paired records of 
13

Ccarb and 
13

Corg, total phosphorus content (P) and clay-mineral 

assemblages have been investigated and integrated with detailed microfacies analysis for 

both the studied sections. The most prominent features shown by the isotopic records are 

two sharp negative excursions with an intervening positive excursion. The first negative 

CIE occurs in the upper part of the ―Lithiotis member‖ and is recorded only by the 
13

Corg 

curves with a shift of about 3-4‰. The second negative CIE starts in the last beds of the 

―Lithiotis member‖ and reaches the lowest values at the boundary with the oolitic 

limestones. This excursion is recorded by both curves but is distinctly larger in the 
13

Corg 
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(4-5‰) than in the 
13

Ccarb curve (2-2.5‰). Chemostratigraphic correlation with the 

reference section of Peniche allows unprecedented high-resolution dating of the Early 

Jurassic platform carbonates of the southern Apennines. This correlation is used to explore 

the response of a resilient carbonate platform to the early Toarcian oceanic anoxic event. 

The first CIE has been associated to the Pliensbachian-Toarcian boundary event, while the 

second one to the early Toarcian OAE. In the ACP, the Lithiotis/Palaeodasycladus 

carbonate factory, so typical of all the Tethyan tropical carbonate platforms during the 

Pliensbachian, was wiped out at the onset of early Toarcian negative carbon isotope 

excursion, seemingly marking the definitive extinction of these massive biocalcifiers.  

Clay-minerals and P content of the ACP records increased weathering across the 

Pliensbachian-Toarcian boundary. Many carbonate platforms of the Peri-Tethyan domain 

responded to the shift of nutrient levels, associated with increased weathering and runoff, 

by either drowning or shifting to heterotrophic carbonate production. The ACP continued 

growing in shallow water with no significant shift in the composition of the carbonate 

factory. This is probably due to the fact that the ACP grew isolated from major continental 

blocks and seemingly distant from the Early Jurassic upwelling zones. For these reasons 

nutrient levels seemingly did not cross the threshold of ecological tolerance of the main 

carbonate producing biota. Moreover, the ACP was situated further from the Jurassic 

rifting axis than other carbonate platforms, which were progressively drowned during the 

Early Jurassic. Lower subsidence rate was most probably a significant factor explaining the 

resilience of the ACP to Early Toarcian palaeoenvironmental perturbations.  

The extinction of carbonate platform biocalcifiers is coeval with a biocalcification 

crisis of calcareous nannoplankton. The coincidence with the negative CIE, interpreted as 

the result of the massive injection of CO2 into the atmosphere-ocean system, is consistent 

with a scenario of ocean acidification at the onset of the T-OAE, which likely led to the 

demise of the Lithiotis/Palaeodasycladus carbonate factory. Clay-minerals and P content 

show no evidence of enhanced weathering in the ACP across the early Toarcian OAE. 

Therefore, enhanced nutrient levels were probably not the cause of the demise of the 

Lithiotis/Palaeodasycladus carbonate factory. This would further support the scenario of 

ocean acidification. 

 In the ACP, and in other resilient platforms of the Tethyan ocean, the disappearance 

of the most prolific biocalcifiers coincide with a shift to chemical precipitation in the form 

of massive oolitic limestones. Similar to what observed for the Permian-Triassic boundary 

crisis, chemical precipitation took over on carbonate platforms as soon as ocean alkalinity 

recovered. The evolution recorded by the ACP across the T-OAE conforms to the 

expectations of a biogeochemical model for the marine geological signature of ocean 

acidification. Very prolific biocalcification by massive bivalves and calcareous algae in the 

―Lithiotis member‖ represents the pre-event steady state of the model. The abrupt demise 

of Lithiotis bivalves and Palaeodasycladus at the onset of the CIE corresponds to the 

―dissolution interval‖. The oolitic limestones represent the ―CaCO3 preservation 

overshoot‖, marking the recovery of carbonate supersaturation driven by enhanced 

weathering. 

The Early Toarcian record of the southern Apennines could be relevant for research 

on present and future ocean acidification. The message is that the threat posed by rapid 

increasing pCO2 could be well beyond the potential of acclimation and evolutionary 

adaptation of marine biocalcifiers. 

 

For the early Aptian OAE, two Berramian-Aptian sections, cropping out at Monte 

Raggeto (about 7 km northwest of Caserta) and Monte Tobenna (about 8 km northeast of 

Salerno) have been logged and sampled. Detailed microfacies analysis and high-resolution 

carbon isotope analysis have been performed for both the sections. The integration of this 
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study with the carbon isotope stratigraphy of three Barremian-Aptian successions studied 

in a previous thesis project, has allowed the proposal of a bio-chemostratigraphic model for 

the Late Barremian-Aptian interval.  

The correlation with the most complete Monte Raggeto section reveals previously 

undisclosed gaps in the other sections. This highlights the difficulties of applying carbon 

isotope stratigraphy to inherently incomplete carbonate platform sections. The most 

significant result of this study is the proposal of chemostratigraphically constrained 

biostratigraphic criteria for the individuation of the time-equivalent of the Selli event in 

central and southern Tethyan carbonate platforms. Moreover this study proposes a 

chemostratigraphically constrained chronostratigraphic calibration of some important 

biostratigraphic events that are widely used in the Barremian–Aptian biozonations of 

central and southern Tethyan carbonate platforms. 

The interval of decreasing 
13

C values preceding the C3 negative peak, which marks 

the onset of the Selli event, starts just above the LO of V. murgensis. The C4-C6 segments, 

which correspond in deep-water sections to the interval of black shales deposition, ends 

just below the first acme of S. dinarica. The latter roughly corresponds to the C7 segment 

of peak 
13

C values. The "Orbitolina level" marks the return the pre-excursion values at the 

end of the broad positive CIE associated with the OAE1a. 

Another valuable result is the definition of a biostratigraphic criterion to spike the 

Barremian-Aptian boundary. According to the present calibration, the boundary is very 

closely approximated by the first occurrence of V. murgensis and D. hahounerensis. 

In all the biostratigraphic schemes published so far for the ACP, and other central 

Tethyan platforms, the chronostratigraphic calibration was anchored to the ages established 

for selected taxa of orbitolinid foraminifera in the carbonate platform of the northern 

Tethyan margin. This study proposes the first chronostratigraphic calibration constrained 

by carbon and strontium isotope stratigraphy. Chemostratigraphy is being successfully 

applied to Cretaceous carbonate platforms. Its integration with biostratigraphy hold the 

promise of producing standard biozonations, based on larger foraminifera and calcareous 

algae, perfectly tied to the chronostratigraphic scale. This would open the possibility of 

fully exploiting the valuable archive of palaeoenvironmental changes preserved by 

Cretaceous carbonate platforms. 
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RIASSUNTO 
 

Negli ultimi 250 anni i livelli di CO2 in atmosfera sono aumentati di circa il 40%, dai 

livelli pre-industriali di 280 ppm ai 384 del 2007. Il riscaldamento globale causato 

dall‘aumento della pCO2 nell‘atmosfera non è l‘unico problema legato all‘aumento di 

questo gas serra. Durante l'ultima decade è emersa una nuova preoccupazione per gli effetti 

sulla chimica dell'oceano causati dall'assorbimento di CO2. Circa un terzo del carbonio di 

origine antropica immesso nell'atmosfera viene assorbito dall'oceano, dove causa un 

aumento del contenuto totale di carbonio inorganico disciolto ed una diminuzione del pH, 

della concentrazione dello ione carbonato e della saturazione in CaCO3. Questi 

cambiamenti vengono generalmente indicati come "acidificazione dell'oceano" ed i loro 

effetti sugli organismi marini e sugli ecosistemi oceanici sono così preoccupanti che 

l'acidificazione dell'oceano viene indicata come "l‘altro problema della CO2". Influenzando 

direttamente lo stato di saturazione del carbonato di calcio e quindi la capacità da parte 

degli organismi marini (plancton, coralli, alghe coralline e molti altri invertebrati) di 

biocalcificare, l'acidificazione dell'oceano porterà ad una diminuzione della diversità ed 

abbondanza degli organismi calcificatori ed a cambiamenti profondi nella struttura degli 

ecosistemi marini. 

La preoccupazione per il riscaldamento globale e l‘acidificazione dell‘oceano ha 

stimolato l‘attenzione dei ricercatori verso il record geologico che potrebbe fornire la 

risposta ad alcune domande fondamentali sugli effetti biotici di una massiccia immissione 

di CO2 nell'atmosfera e nell'oceano. Il record geologico offre infatti la possibilità di 

studiare intervalli di tempo in cui l'atmosfera e l'oceano hanno sperimentato livelli di CO2 

comparabili o persino superiori a quelli previsti per il futuro. Il principale testimone di 

perturbazioni del ciclo globale del carbonio è la composizione isotopica del carbonio nel 

record sedimentario marino e continentale, registrata dai minerali carbonatici precipitati 

dall‘acqua di mare e dalla materia organica. Tale record ha evidenziato la presenza di 

brusche variazioni dei valori del δ
13

C che coincidono con perturbazioni ambientali a 

grande scala (a volte globale, a volte regionale), come per esempio rapide variazioni 

climatiche, variazioni della distribuzione dei nutrienti negli oceani ed episodi di estinzione 

di massa sia sui continenti che negli oceani. L‘interpretazione più comunemente accettata é 

che episodi di rapido riscaldamento globale furono causati da brusche emissioni di CO2 

nell'atmosfera a causa di attività vulcanica e/o dissociazione di idrati gassosi di metano. Il 

rapido riscaldamento globale innescò una cascata di perturbazioni paleoambientali che 

culminarono in episodi di deposizione su scala globale di sedimenti ricchi di materia 

organica. Tali episodi sono noti come eventi anossici oceanici (OAEs, Oceanic Anoxic 

Events). Due degli episodi maggiori sono quelli riconosciuti nel Toarciano inferiore (T-

OAE, 183 Ma) e nell'Aptiano inferiore (OAE1a, 120 Ma). Essi sono anche l‘oggetto di 

questa tesi di dottorato. 

  

La maggior parte di quello che sappiamo sulla risposta del Sistema Terra e 

dell‘ecosistema oceanico alle perturbazioni del ciclo del carbonio e sugli episodi di 

acidificazione degli oceani durante il Mesozoico deriva da studi effettuati su sedimenti 

marini di successioni pelagiche o emipelagiche. Molto meno sappiamo invece dei 

carbonati di piattaforma, nonostante essi rappresentino l‘altra metà del record oceanico, 

quello di mare basso, dal punto di vista della produzione e dell‘accumulo di carbonato. 

Questa ―carenza‖ di informazioni risulta essere una della maggiori limitazioni quando si 

vuole investigare il comportamento del nostro pianeta durante queste improvvise 

perturbazioni ambientali, sia perché i carbonati di piattaforma, in quanto strettamente 

connessi all‘attività biologica, sono particolarmente sensibili alle variazioni ambientali, sia 
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perché l‘accumulo di carbonati nelle scogliere e nelle piattaforme carbonatiche rappresenta 

una parte importante del ciclo del carbonio. 

L‘evento dell‘Aptiano inferiore è certamente l‘evento anossico meglio documentato 

nelle successioni di piattaforma carbonatica. Dai diversi studi sull‘argomento, è stato 

evidenziato che la crisi e l'annegamento delle prolifiche Piattaforme Urgoniane al margine 

Nord della Tetide sono state causate probabilmente dalle perturbazioni paleoambientali 

legate all'aumento brusco di CO2 (aumento dell'input di nutrienti, aumento della 

temperatura, riduzione della saturazione in CaCO3). Più recentemente l'attenzione si è 

rivolta alla presenza, a scala da regionale a supraregionale, di facies particolari quali marne 

ad orbitolinidi appiattiti e/o calcari microbialitici (bindstones a Lithocodium/Bacinella e 

facies associate). Entrambe queste facies sono state interpretate generalmente come la 

risposta ad un aumento nell'input di nutrienti, con l'alta temperatura e l'alta alcalinità come 

fattori che concorrevano a favorire l'esplosione di calcificatori microbici. La distribuzione 

di tali facies nella Piattaforma Carbonatica Appenninica e la loro relazione con l‘evento 

OAE1a sono state oggetto di una precedente tesi di dottorato. Attraverso lo shift di facies e 

della carbonate factory, le piattaforme carbonatiche del margine meridionale della Tetide 

furono generalmente in grado di evitare l‘annegamento. 

Molto meno investigata è invece la risposta delle piattaforme carbonatiche all‘evento 

del Toarciano inferiore, soprattutto perché episodi di annegamento a grande scala associati 

alle perturbazioni paleoambientali del Toarciano inferiore, hanno interessato gran parte del 

dominio giurassico della Tetide. Comunque, ci sono ampie evidenze che molte piattaforme 

carbonatiche annegarono ben prima dell‘inizio del T-OAE o persino prima del limite 

Pliensbachiano-Toarciano. Una combinazione di diversi fattori (tettonica, eustatismo e 

deterioramento delle condizioni ambientali) è stata generalmente indicata come causa degli 

eventi di annegamento o degli shift della carbonate factory. 

 

La Piattaforma Carbonatica Appenninica (ACP, Apenninic Carbonate Platform) si 

sviluppò dal Triassico superiore al Cretacico superiore, accumulando più di 4500 metri di 

carbonati di mare basso. A partire dal Giurassico inferiore, crebbe isolata dalle masse 

continentali. Essa ―sopravvisse‖ a tutti gli eventi anossici del Mesozoico. Il suo archivio 

sedimentario offre la preziosa opportunità di studiare la risposta dell‘ambiente di 

piattaforma carbonatica alle perturbazioni indotte dall‘aumento di CO2, senza 

l‘inconveniente rappresentato dalla perdita dell‘habitat a causa dell‘annegamento.  

La mancanza di black shales, la bassa risoluzione stratigrafica della biostratigrafia di 

mare basso e l'assenza di una precisa calibrazione cronostratigrafica e di precise 

correlazioni con successione coeve di mare profondo sono generalmente i maggiori 

problemi legati allo studio degli OAEs in piattaforma carbonatica. Questi problemi 

possono essere affrontati attraverso l‘integrazione di chemostratigrafia e biostratigrafia, un 

approccio che è stato già utilizzato con successo per l‘evento al limite Cenomaniano-

Turoniano (OAE2) nella Piattaforma Carbonatica Appenninica. 

Lo scopo principale di questa tesi di dottorato è quello di studiare la risposta della 

ACP agli eventi anossici oceanici del Toarciano inferiore (T-OAE) e dell‘Aptiano inferiore 

(OAE1a). 

 

Al fine di studiare la risposta della ACP ai cambiamenti ambientali che hanno 

caratterizzato l‘intervallo di tempo Pliensbachiano superiore-Toarciano inferiore, sono 

state campionate e descritte in dettaglio due classiche successioni del Giurassico inferiore 

dell‘Appennino meridionale: Mercato San Severino (circa 30 km a nordovest di Salerno) e 

Monte Sorgenza (circa 7 km a est di Formia). Entrambe le successioni sono costituite dai 

calcari bioclastici appartenenti al Membro a Lithiotis della Formazione dei Calcari a 

Palaeodasycladus, su cui poggiano i calcari oolitici della Formazione dei Carcari oolitici e 
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oncolitici. Inoltre, la parte inferiore della successione affiorante a Monte Sorgenza, appena 

sotto al Membro a Lithiotis, è costituito dai calcari della subzona a Orbitopsella. Lo studio 

sedimentologico e biostratigrafico attraverso l‘analisi al microscopio ottico di peels e 

sezioni sottili, è stato integrato con analisi chimiche e mineralogiche. Per entrambe le 

successioni è stata analizzata la composizione isotopica del carbonio della componente 

carbonatica (δ
13

Ccarb) e della materia organica (δ
13

Corg), al fine di individuare gli intervalli 

stratigrafici corrispondenti all‘evento associato al limite Pliensbachiano-Toarciano e 

all‘evento anossico oceanico del Toarciano inferiore. La concentrazione totale di fosforo 

(P) e l‘associazione dei minerali argillosi sono stati utilizzati per discriminare il ruolo 

relativo dell‘acidificazione rispetto all‘aumento del flusso di nutrienti sulla carbonate 

factory e per confrontare la risposta della ACP con quella delle altre piattaforme 

carbonatiche tetidee, per le quali l‘aumento del flusso dei nutrienti è stato indicato come 

causa principale della crisi o dell' annegamento. 

La caratteristica più evidente delle curve isotopiche del carbonio è rappresentata 

dalla presenza di due brusche escursioni negative (CIE, carbon isotope excursion), 

separate da un escursione positiva. La prima CIE negativa è in corrispondenza della parte 

alta del Membro a Lithiotis ed è registrata solamente dalle curve del δ
13

Corg, con uno shift 

di circa 3-4‰. La seconda CIE negativa inizia in corrispondenza degli ultimi strati del 

Membro a Lithiotis  e raggiunge i valori più bassi al passaggio con i calcari oolitici. Questa 

escursione è registrata da entrambe le curve, ma è più grande nel δ
13

Corg (4-5‰) che nel 

δ
13

Ccarb (2-2.5‰). La correlazione chemostratigrafica con la successione di riferimento di 

Peniche (Bacino Lusitanico, Portogallo), candidata come stratotipo del limite 

Pliensbachiano-Toarciano, ha permesso una datazione cronostratigrafica con una 

risoluzione senza precedenti dei carbonati del Giurassico inferiore dell‘Apennino 

meridionale. La prima CIE è stata correlata all‘evento del limite Pliensbachiano-Toarciano, 

mentre la seconda all‘evento del Toarciano inferiore.  

Nella Piattaforma Carbonatica Appenninica, la carbonate factory costituita dai 

Lithiotis e da Palaeodasycladus mediterraneus, tipica di tutte le piattaforme carbonatiche 

tetidee durante il Pliensbachiano, è stata spazzata via all‘onset della CIE del Toarciano 

inferiore, che segna l‘estinzione definitiva dei questi biocalcificatori massivi. 

I minerali argillosi e la concentrazione totale di fosforo nella ACP registrano un 

incremento del weathering continentale attraverso il limite Pliensbachiano-Toarciano. 

Molte piattaforme carbonatiche del dominio tetideo reagirono all'aumento di nutrienti, 

associato all‘incremento del weathering e del runoff, o annegando o attraverso lo shift della 

carbonate factory verso una produzione di tipo eterotrofico. Invece la Piattaforma 

Carbonatica Appenninica continuò a crescere in ambiente di mare basso senza nessuna 

significante variazione della composizione della carbonate factory. Questo è 

probabilmente dovuto al fatto che la ACP si sviluppò isolata dalle maggiori masse 

continentali e presumibilmente lontano da zone di upwelling. Per queste ragione il livello 

dei nutrienti non raggiunse mai la soglia di tolleranza ecologica dei principali biota 

produttori di carbonato. In più, la ACP era situata in aree più lontane dagli assi di rift 

giurassici, rispetto ad altre piattaforme, le quali annegarono progressivamente durante il 

Giurassico. Il minor tasso di subsidenza fu probabilmente il principale fattore che può 

spiegare la resistenza o la capacità di recupero che la ACP mostrò verso le perturbazione 

paleoambientali del Giurassico inferiore. 

L‘estinzione dei principali biocalcificatori della piattaforma carbonatica è coeva con 

una crisi di biocalcificazione del nannoplancton calcareo. La coincidenza con la CIE 

negativa, interpretata come immissione massiva e rapida di CO2 nel sistema oceano-

atmosfera., è consistente con uno scenario di acidificazione dell‘oceano all‘onset del T-

OAE, che probabilmente portò alla fine della carbonate factory costituita da Lithiotis e 

Palaeodasycladus. I records dei minerali argillosi e del fosforo non mostrano evidenze di 
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aumento del weathering durante il T-OAE. Perciò, l‘incremento del flusso di nutrienti 

probabilmente non fu un fattore significativo di perturbazione ambientale, almeno per la 

ACP. Questo supporterebbe ulteriormente l‘ipotesi che l'estinzione dei biocalcificatori fu 

causata da un episodio di acidificazione dell‘oceano. 

Nella ACP, così come nelle altre piattaforme carbonatiche "resistenti", la scomparsa 

dei biocalcificatori più prolifici coincide con uno shift verso una precipitazione di tipo 

chimico, sotto forma di calcari oolitici massivi. Similmente a quanto osservato per la crisi 

al limite Permiano-Triassico, la precipitazione chimica fu stimolata dalla sovrassaturazione 

immediatamente successiva all' evento di acidificazione dell‘oceano. La precipitazione 

chimica rappresentata dalle ooliti, in assenza di grossi biocalcificatori, potrebbe essere 

stato l‘unico sistema efficace per tamponare l‘alta concentrazione degli ioni calcio e 

bicarbonato nelle acque superficiali, dovuta all‘intensificarsi del weathering delle masse 

continentali e/o alla dissoluzione dei carbonati di mare profondo. 

L‘evoluzione registrata dalla ACP durante l‘evento del Toarciano inferiore 

corrisponde a ciò che è stato previsto da un modello biogeochimico per la firma lasciata 

nel record marino geologico da un episodio di acidificazione dell‘oceano. La prolifica 

biocalcificazione dovuta ai grossi bivalvi e alle alghe calcaree nel Membro a Lithiotis 

rappresenta lo steady state pre-evento del modello. La brusca fine dei Lithiotis e di 

Palaeodasycladus all‘onset della CIE corrisponde al dissolution interval. Mentre i calcari 

oolitici rappresentano il ―CaCO3 preservation overshoot‖, marcando il recovery della 

soprassaturazione in carbonato di calcio, guidato dall‘aumento del weathering 

continentale. 

I risultati di questa parte di tesi, evidenziano che il record del Toarciano inferiore 

dell‘Appennino meridionale potrebbe avere una certa rilevanza per la ricerca 

sull‘acidificazione dell‘oceano presente o futura. Il messaggio è che la minaccia 

rappresentata dal rapido incremento della pCO2 potrebbe ben oltre il potenziale di 

adattamento evolutivo dei biocalcificatori marini. 

 

Per lo studio dell‘evento dell‘Aptiano inferiore nella ACP sono state campionate e 

descritte in dettaglio due classiche successioni del Cretacico inferiore dell‘Appennino 

meridionale: Monte Raggeto (circa 7 km a nordovest di Caserta) e Monte Tobenna (circa 8 

a nordest di Salerno). Entrambe le successioni, costituite interamente da calcari 

appartenenti alla Formazione dei Carcari con Gasteropodi e Requienie, sono state ben 

studiate nel passato. In particolare a Monte Tobenna affiora il ―Livello a Orbitolina‖, che è 

considerato un marker bio-litostratigrafico dell‘Appennino meridionale. Per entrambi le 

sezioni la chemostratigrafia di alta risoluzione degli isotopi del carbonio (δ
13

C) e dello 

stronzio (
87

Sr/
86

Sr) è stata integrata con un dettagliato studio di analisi di facies. Lo studio 

di queste due sezioni è stato integrato con la reinterpretazione della chemostratigrafia di tre 

successioni di età Barremiano-Aptiano, studiate in un precedente lavoro di tesi (Monte 

Croce, Monte Motola e Monte Coccovello). Lo studio integrato di queste cinque sezioni, 

distribuite lungo l‘asse appenninico dal Lazio meridionale, attraverso la Campania, fino 

alla Basilicata, ha permesso di proporre uno schema bio-chemostratigrafico per l‘intervallo 

Barremiano superiore-Aptiano per le successioni carbonatiche di mare basso 

dell‘Appennino meridionale. 

La correlazione con la più completa sezione affiorante a Monte Raggeto ha 

evidenziato importanti gap sedimentari presenti nelle altre sezioni, che nella precedente 

tesi di dottorato non era stato possibile svelare. Questo mette in evidenza le difficoltà 

nell‘applicare la stratigrafia degli isotopi del carbonio a successioni di mare basso che sono 

caratterizzate, per loro natura, da un record sedimentario incompleto. Il risultato più 

rilevante di questo studio è la proposta di criteri biostratigrafici, vincolati da una 

chemostratigrafia di alta risoluzione, per l‘individuazione di intervalli stratigrafici 



13 
 

equivalenti al ―Livello Selli‖ nella piattaforme carbonatiche tetidee centrali e meridionali. 

In più, questo studio propone una calibrazione cronostratigrafica, vincolata 

chemostratigraficamente, di alcuni importanti eventi biostratigrafici, first occurrence (FO) 

e last occurrence (LO) di alcune specie, che sono ampiamente usati nelle biozonazioni del 

Barremiano-Aptiano delle successioni di piattaforma carbonatica. 

L‘intervallo stratigrafico corrispondente alla caduta dei valori del δ
13

C precedenti al 

picco negativo C3, che marca l‘onset dell‘evento Selli, inizia appena sopra la LO di V. 

murgensis. Il segmento C4-C6, che nelle sezioni pelagiche corrisponde all‘intervallo di 

deposizione delle black shales, finisce appena sotto il primo acme di S. dinarica. 

Quest‘ultimo corrisponde approssimativamente al segmento C7 del picco dei valori del 

δ
13

C. Il ―Livello a Orbitolina‖ segna il ritorno a valori pre-escursione, alla fine dell‘ampia 

CIE positiva associata all‘OAE1a. Un altro importante risultato è la definizione di un 

criterio biostratigrafico, supportato anche dagli isotopi dello stronzio, per il riconoscimento 

del limite Barremiano-Aptiano, Secondo questa calibrazione, il limite è molto vicino alla 

FO di V. murgensis e D. hahounerensis. 

In tutti gli schemi biostratigrafici pubblicati prima di questo lavoro per la Piattaforma 

Carbonatica Appenninica e per altre piattaforme della Tetide centrale, la calibrazione 

cronostratigrafica è stata ancorata a età ottenute per orbitolinidi nelle successioni di 

piattaforma carbonatica del margine settentrionale della Tetide. Invece questo studio 

propone la prima calibrazione cronostratigrafica vincolata dalla stratigrafia degli isotopi 

del carbonio e dello stronzio. L‘integrazione di chemostratigrafia e cronostratigrafia 

permette di correlare perfettamente le biozonazioni standard, basate sui macroforaminiferi 

e sulle alghe calcaree, alla scala cronostratigrafica. Questo può consentire di possibilità di 

esplorare interamente il prezioso archivio di testimonianze di variazioni paleoambientali, 

che è preservato nei records sedimentari delle piattaforme carbonatiche del Cretacico. 
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Foreword 
 

The present dissertation is divided into 6 chapters. This organization is intended to 

facilitate future publication. Chapters 3, 4 and 5 will be submitted to peer-reviewed 

journals as independent papers. 

Chapter 1 is made up of an introduction with a synthesis of the state of the art on 

anthropogenically induced climate change and ocean acidification and on oceanic anoxic 

events as episode of CO2-induced perturbations in the geological record. The introduction 

ends with the motivation and goals of the PhD research project.  

Chapter 2 contains a short introduction to the geology of the Southern Apennines, 

followed by a synthesis on the stratigraphy of the Apenninic Carbonate Platform.  

Chapter 3 is made up by the first manuscript. We discuss the Late Pliensbachian-

Early Toarcian evolution of the Apenninic carbonate platform in the framework of global 

palaeoenvironmental perturbations recorded in reference sections of European basins. 

Carbon isotope stratigraphy is used for high resolution correlation. 

Chapter 4 presents a manuscript  based on the record of phosphorus and clay-

minerals across the Pliensbachian-Toarcian boundary and early Toarcian OAE, with a 

discussion on the role of enhanced nutrient levels and subsidence rates as key factors of 

platform drowning. 

Chapter 5 presents a manuscript on the Barremian-Aptian bio-chemostratigraphy of 

the Apenninic Carbonate Platform, based on two new sections and on a re-interpretation of 

previously studied sections. The main result is the definition of chemostratigraphically 

calibrated biostratigraphic criteria for the Barremian-Aptian boundary and for the OAE1a 

in central Tethyan carbonate platforms. 

Chapter 6 contains the summary of the main results of this thesis and some ideas for 

future work on the record of Mesozoic OAEs in Tethyan carbonate platforms. 
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CHAPTER 1 – INTRODUCTION 
 

1.1 Carbon-cycle perturbations: global warming and ocean acidification 
 

Since the beginning of the industrial revolution atmospheric CO2 level increased by 

nearly 40%, from preindustrial levels of approximately 280 ppmv to nearly 384 ppmv in 

2007 (Solomon et al. 2007). This rate of increase, driven mainly by human fossil fuel 

combustion and deforestation, is at least an order of magnitude faster than any change 

which has occurred during the last few million years (Doney and Schimel, 2007). 

 

 
Figure 1 - Projections for atmospheric CO2 and surface global mean pH difference from pre-industrial to 

2100 for different emission scenarios. Experimentally determined biological impacts on the left. On the right, 

marked above the pH-CO2 curves are the years at which the first localized seasonal occurrence of aragonite 

undersaturation have been projected to occur for the regions given (Turley et al., 2010). 

 

The current concentration is higher than experienced on Earth for at least the past 

800 kyr (Lüthi et al. 2008) and the projected concentration at the end of the century (fig. 1) 

will be unprecedented during the last 24 Myr (Pearson and Palmer, 2000; Solomon et al., 

2007). The oceans have taken up approximately a third of the CO2 produced from fossil 

fuel burning, cement manufacture and land use changes (Sabine et al., 2004; Sabine and 

Feely, 2007). Without this oceanic uptake, atmospheric CO2 would be approximately 450 

ppmv today, a level of CO2 that would have led to even greater climate change than 

witnessed today. However, as the ocean‘s CO2 uptake increases, so its capacity to act as a 

buffer to atmospheric CO2 levels decreases (Turley et al., 2006). Moreover, ocean CO2 

uptake is not completely benign, because the injection of CO2 into the ocean forms 

carbonic acid in seawater and lowers ambient surface ocean pH (Broecker and Peng, 

1982). pH reductions and alterations in fundamental chemical balances are together 

commonly referred to as ocean acidification. Ocean acidification may be better defined as 

the change in ocean chemistry driven by the oceanic uptake of chemical inputs to the 

atmosphere, including just not only carbon, but also nitrogen and sulfur compounds 

(Guinotte and Fabry, 2008). Because climate change and ocean acidification are both 

caused, mostly, by increasing atmospheric CO2, acidification is commonly referred to as 

the ―other CO2 problem‖ (Henderson, 2006; Turley, 2005; Doney et al., 2009).  

Being a direct consequence of the excessive addition of CO2 to seawater, ocean 

acidification is more predictable than temperature and precipitation changes due to rising 

atmospheric pCO2 (Turley et al., 2010). Since preindustrial times, the average ocean 



16 
 

surface water pH has fallen by approximately 0.1 units, from approximately 8.21 to 8.10 

(Royal Society, 2005), and is expected to decrease a further 0.3-0.4 pH units by the end of 

the century (Caldeira and Wickett, 2003; Orr et al., 2005; Solomon et al., 2007). The rate 

of this change is cause for serious concern, as many marine organism, particularly those 

that produce their skeleton by precipitating CaCO3 from seawater, may not be able to adapt 

quickly enough to survive these fast changes.  

A series of chemical reactions is initiated when CO2 is absorbed by seawater. Once 

dissolved in seawater, this gas reacts with water to form carbonic acid (H2CO3), which can 

then dissociate by losing hydrogen ions to form bicarbonate (HCO3
-
) and carbonate (CO3

2-
) 

ions. The seawater reactions are reversible and near equilibrium (Millero et al. 2002). 

 

CO2(atmos) ↔ CO2(aq) + H2O ↔ H2CO3 ↔ H
+
 + HCO

−
3 ↔ 2H

+
 + CO3

2−
 

 

Adding CO2 to seawater increases aqueous CO2, bicarbonate, and hydrogen ion 

concentrations; the latter lowers pH because pH = -log10[H
+
]. The increasing H

+
 

concentration causes a decline of carbonate ion concentration, which leads to a reduction in 

calcium carbonate saturation state (Ω). The latter may have significant impacts on 

calcification in a range of ecologically important organisms such as coralline algae, 

foraminifers, corals, echinoderms, mollusks, bryozoans, coccolithophores and pteropods 

(Guinotte and Fabry, 2008 and references therein; Rodolfo-Metalpa et al., 2010 and 

references therein). 

 Predicting the impacts of ocean acidification on marine calcifiers as a whole is 

difficult since the major groups calcify via different routes and mechanisms. In fact, as 

showed in figure 2, the response of the marine organisms to increasing CO2 concentrations 

has been shown to be variable and complex (Ries et al., 2009). 

 

 
Figure 2 - The impact of increasing CO2 concentrations on the marine organisms can be variable (Ries et al., 

2009).  
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Calcification is just one process in an organism, which may be impacted by 

acidification. Other important physiological processes may also adversely affected, such as 

metabolic processes, photosynthesis or nitrogen fixation (Turley et al., 2010 and references 

therein). 

Scaling up from experimental results and ―mesocosm‖ observations to ecological 

forecast is problematic because much of the available evidence is based on short-term 

single species experiments. When the experiments involved more than one species of a 

phylum, significant differences in sensitivities have been detected. When extrapolating 

responses to large scale processes such as primary productivity, nitrogen fixation and 

biodiversity loss, the complexity of the processes limits their predictability (Turley et al., 

2010). Moreover, the experiments designed to investigate the physiological reactions to 

ocean acidification are too short-lived (days to weeks) to take the long-term effects of 

adaption into account. 

In order to overcome these limitations, we have to look at the geological past, which 

can provide the key to work out what Earth is going towards and better forecast the 

possible future scenarios. In fact, the sedimentary archive bear witnesses of episodes of  

―rapid‖ injection of CO2 to the atmosphere-ocean system, as revealed by rapid carbon 

isotope excursions (CIEs) recorded by marine carbonates and marine and continental 

organic matter. Some of these extreme events of global carbon-cycle perturbations 

involved rapid climatic changes, sudden shifts in the hydrological cycle, changes in the 

pattern of nutrient distribution in the oceans and episodes of mass extinction on land and in 

the ocean (Jenkyns, 2003). In some cases there is evidence of a biocalcification crisis 

affecting calcareous nannoplankton, likely due to ocean acidification episodes (Erba 2004; 

Mattioli et al., 2009; Erba et al., 2010). Understanding how the Earth System responded to 

these global perturbations is therefore of particular relevance to the present-day issue of 

anthropogenically induced climate change and ocean acidification.  

The best-documented example of extreme short-lived global warming event from the 

geological past, is the Paleocene-Eocene Thermal Maximum (PETM), which occurred 55 

million years ago. It is thought to be due to a massive injection of isotopically light carbon 

into the atmosphere-ocean system, caused by the dissociation, release and oxidation of gas 

hydrates from continental-margin sediments (Jenkyns, 2003; Zachos et al., 2005; Dickens, 

2011; McInerney and Wing, 2011 and references therein). According to Röhl et al. (2007) 

the PETM event may have started in fewer than 1000 kyr with rapid emission of 

isotopically light carbon that caused severe global warming. As projected anthropogenic 

carbon inputs within just 300 years is thought to be much faster than the CO2 release 

during the PETM, the ocean acidification-induced impacts on surface ocean pH and biota 

will be more severe (Zachos et al., 2005). 

 

 

1.2 Oceanic Anoxic Events 
 

The Mesozoic Era is punctuated by a number of severe carbon-cycle perturbation 

events comparable to the PETM, some of which are characterized by widespread marine 

anoxia, witnessed by deposition of large amounts of organic carbon in epicontinental and 

oceanic basins. These events, known as Oceanic Anoxic Events, record also dramatic 

increases of atmospheric and seawater temperature (Jenkyns, 2003, 2010). Schlager and 

Jenkyns (1976) introduced the concept of OAE for specific time intervals of global anoxia 

during the middle Cretaceous, after recovery of black shales in the Pacific, Atlantic and 

Indian Oceans proved coeval with similar lithologies outcropping in the Tethyan domain. 

Although the number of OAEs recorded in Cretaceous strata has multiplied over time from 

those initially recognized, only one other definitive example is currently identified from 
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the rest of the Mesozoic Era, namely the Jurassic event of the early Toarcian (see Jenkyns, 

2010 for a recent review). The OAEs of the early Toarcian (Posidonienschiefer event, T-

OAE, 183 Ma), early Aptian (Selli event, OAE1a, 120 Ma) and the Cenomanian-Turonian 

(Bonarelli event, C/T OAE, OAE2, 93 Ma) represent three of the most severe and best 

documented episodes of sudden perturbation of the global carbon cycle. 

The subject of this thesis are the T-OAE and OAE1a, which show several similarities 

in terms of geochemical sedimentary and biotic records. In both cases the carbon isotope 

records of marine and continental sections document sharp carbon isotope excursions 

(CIEs) characterized by a sudden decrease of the δ
13

C of both carbonates and organic 

matter, followed by a more or less pronounced increase. 

The excess burial of organic matter, which preferentially removes 
12

C from the 

ocean-atmosphere system, causing an increase in the δ
13

C of the dissolved inorganic 

carbon (DIC) in the ocean reservoir, is credited as the cause of the positive carbon isotope 

shift (Scholle and Arthur 1980). Conversely, the release of 
12

C enriched carbon from 

volcanic degassing (Larson and Erba, 1999; Méhay et al, 2009; Tejada et al., 2009), 

thermal alteration of organic rich rocks (McElwain et al., 2005; Svensen et al., 2007) or the 

massive dissociation of methane clathrates (Hesselbo et al. 2000; Jahren et al., 2001; Kemp 

et al., 2005; McElwain et al. 2005; Gröcke et al., 2009) have been invoked to explain the 

sharp negative shift recorded at the beginning of the CIEs. 

The emplacement of the Ontong-Java large igneous province is thought to be the 

trigger for the early Aptian oceanic anoxic event (Méhay et al, 2009; Tejada et al., 2009). 

Large igneous provinces (LIPs) are the most spectacular manifestation of volcanism on 

Earth. They consist of huge individual basaltic lava flows, with volumes measured in 

thousands of cubic kilometres, stacked layer upon layer to form vast volcanic plateau. LIPs 

are consistently associated with mass extinction events and other events of severe 

perturbation of earth system (Wignall, 2001; Kerr, 2005).  The negative CIE associated 

with the onset of the early Aptian ―Selli event‖ would witness the intense emission of 

volcanogenic CO2 (δ
13

C = ca -7‰)  from the Ontong-Java LIP. 

The early Toarcian negative CIE is thought to be mostly due to the massive 

dissociation of methane clathrates (Hesselbo et al. 2000; Kemp et al., 2005), characterized 

by very low isotopic value (δ
13

C = ca -60‰). Methane forms within continental-margin 

sediments due to bacterial fermentation of organic matter and is stored as crystalline gas 

hydrates (clathrates) below the sea floor (Dickens, 2011; Kroeger et al., 2011). 

Dissociation of clathrates in the Early Toarcian, related either to warming of the bottom 

waters and/or tectonic disruption of the sedimentary pile, led to release of methane gas, 

much of which transited the water column to be oxidized in the shallow warm levels of the 

ocean and the atmosphere (Jenkyns, 2003). Furthermore, intrusion of sills from the Karoo-

Ferrar LIP either into Gondwana coal deposits or into organic-rich sedimentary rocks 

(McElwain et al. 2005; Svensen et al. 2007)  have been proposed for the early Toarcian 

event, although the hypothesis has been recently challenged (Gröcke et al., 2009). The 

global warming associated with CO2 degassing  during the emplacement of the Karro-

Ferrar LIP, dated as coincident with the T-OAE, may have acted as a trigger of chlatrate 

dissociation (Pálfy and Smith, 2000).  

The fact that a negative carbon isotope excursion (Hesselbo et al., 2007; Suan et al., 

2008a; Bodin et al., 2010; Littler et al., 2010) and palaeonvironmental perturbations 

comparable to the T-OAE occurred across the Pliensbachian-Toarcian boundary (Suan et 

al., 2008a) indicates that the early Toarcian oceanic anoxic event may be a part of a long-

term phase of environmental perturbation and may suggest different paroxysmal episodes 

of basaltic floods during the Karoo-Ferrar LIP emplacement (Suan et al., 2008b).  

Whatever the triggering mechanism, massive CO2 supply to the atmosphere-ocean 

system caused a cascade of environmental perturbations and geochemical responses, 
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schematically illustrated by the model proposed by Jenkyns (1999, 2003, 2010) and 

showed in figure 3. The first effect of the CO2 injection is a global temperature rise, 

leading to an accelerated hydrological cycle and an increased nutrient flux into the ocean. 

At the same time increased CO2 concentration in seawater causes ocean acidification: i.e 

lowering of seawater pH and carbonate saturation (―the other CO2 problem‖, see the 

previous paragraph). In case of a volcanogenic event, the global temperature rise may also 

be responsible of the dissociation of methane gas hydrates from continental-margins, 

causing a positive feedback loop with further increase of global temperature. Increased 

nutrient flux into the ocean cause enhanced plankton productivity which may lead to the 

development of anoxic conditions due to oxygen depletion by organic matter oxidation. At 

this point there is wide-scale deposition of black-shales, the hallmark of OAEs. CO2 

drawdown via increased continental weathering and excess accumulation of organic matter 

acts as a negative feedback which causes cooling slows down the hydrological cycle and 

terminates the event.  

 

 
Figure 3 - Model to illustrate the variety of geochemical processes characteristic of OAEs (Jenkyns, 2010, 

after Weissert, 2000). 

 

The direct effect of CO2 injection in the atmosphere is a temperature rise, as 

indicated by geochemical proxies for paleotemperature change, which allowed to associate 

the OAEs to thermal maxima (Jenkyns, 2010). For example, high resolution oxygen 

isotope data, TEX86 proxy and palynological data suggest a pulse of rapid warming up to 8 

°C in the run-up to the early Aptian OAE1a, followed by a cooling trend with fluctuating 

temperatures during deposition of black shales, which led to CO2 drawdown (Heimhofer et 

al., 2004; Dumitrescu et al., 2006; Ando et al., 2008).  

Oxygen isotope and Mg/Ca ratio of belemnite guards indicate that the T-OAE is 

coeval with a 6-7 °C warming of seawater (McArthur et al., 2000; Bailey et al., 2003; 

Rosales et al., 2004; van de Schootbrugge et al., 2005; Gómez et al., 2008). This warming 

is also observed in fish teeth (Dera et al., 2009b) and brachiopods (Suan et al., 2008a), the 



20 
 

latter indicating also an almost identical warming associated to the Pliensbachian-Toarcian 

boundary CIE. 

Accelerate hydrological cycle and global increase in weathering rates are generally a 

consequence of temperature rise. As kaolinite forms under intense chemical weathering, 

indicating high superficial drainage and complete hydrolysis of the source rocks (Chamley, 

1989), its abundance through the Mesozoic sediments is used as a proxy of global warming 

and intensified runoff (Hallam, 1984; Ruffel et al., 2002; Dera et al., 2009a).  

A global increase of continental weathering and runoff should also be recorded by 

the marine isotopic record of 
87

Sr/
86

Sr and 
187

Os/
188

Os, which are considerably enriched in 

crustal rocks with respect to the mantle reservoir  tapped by hydrothermal fluxes at mid-

oceanic ridges (Ravizza and Zachos, 2003). The marine Sr isotope curve, based on the 

biotic calcite of well preserved belemnites, records a phase of accelerated continental 

weathering during the T-OAE (Jones et al., 1994; McArthur et al., 2000; Jones and 

Jenkyns, 2001; Jenkyns et al., 2002, Waltham and Gröcke, 2006). The osmium isotope 

ratios of Toarcian black shales have been used to infer a dramatic rise of global weathering 

rates (Cohen et al., 2004), although the signal might be significantly biased by local 

processes (see discussion in Jenkyns, 2010). 

Figure 4 shows that during the early Aptian OAE1a, the general trend of the Sr 

isotope implies that hydrothermal or other mantle-derived sources of strontium were 

becoming increasingly important in governing seawater chemistry. In fact, the onset the 

negative CIE corresponds to a decline in 
87

Sr/
86

Sr values (Jones and Jenkins, 2001). 

However, detailed 
187

Os/
188

Os profiles through the Livello Selli in Italy clearly indicate a 

pulse of radiogenic osmium to the oceans, suggesting accelerated continental weathering 

and runoff, interrupting a trend to lower values due to submarine volcanism (Tejada et al., 

2009). Increased weathering during the Selli event is also recorded by Ca isotopes of 

marine carbonates (Blättler et al., 2011) Therefore, isotopic evidence points to increased 

continental weathering for both the early Toarcian and the early Aptian OAEs. However, 

for the Selli event the long-term seawater signature was dominated by hydrothermal fluxes 

associated with submarine volcanism. 

 
Figure 4 - Carbon, strontium and osmium profile through early Aptian OAE. Declining 

87
Sr/

86
Sr values at 

the onset of the OAE1a suggest increasing relative importance of hydrothermal activity. However, detailed 
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187
Os/

188
Os profiles through the Livello Selli in Italy clearly indicate a pulse of radiogenic osmium to the 

oceans, suggesting accelerated continental weathering and runoff (Jenkyns, 2010). 

 

Phosphorus, an essential nutrient for living organism, has been successfully 

investigated to constrain trophic levels in past oceans (Föllmi, 1995, 1996; van de 

Shootbrugge et al., 2003; Bodin et al., 2006, 2010; Mort et al., 2007; Godet et al., 2010). 

Increased nutrient levels are an essential ingredient for OAEs. Two end-member models 

have been proposed to explain widespread black shale deposition during the Mesozoic 

OAEs (Pedersen and Calvert, 1990). The stagnant ocean model (STO model) attributes 

OAEs to depletion of bottom water oxygen as a result of dense vertical ocean stratification; 

in this case increased preservation of organic matter plays a key role organic-rich 

sediments accumulation. The expanded oxygen-minimum zone model (OMZ model) 

proposes the increase of surface ocean productivity as the cause of expansion of the 

oxygen-minimum layer in the water column. In this model bottom-water anoxia and 

enhanced preservation of organic matter are not the cause but a positive feedback to 

enhanced surface productivity.  

Besides triggering global warming and enhanced weathering,  the massive addition 

of CO2 to seawater at the onset of OAEs may have caused also ocean acidification. A 

dramatic drop of pelagic carbonate production by nannoplankton has been recorded both 

for the Early Toarcian and the early Aptian event (Erba, 2004; Mattioli et al., 2009; Erba et 

al., 2010).  

The hypothesis that high pCO2 was responsible for the nannoplankton 

biocalcification crisis during the T-OAE has been proposed by Erba (2004), Mattioli et al. 

(2004) and Tremolada et al. (2005). However, more recently Mattioli et al. (2009) 

suggested that the combined effects of enhanced runoff and fresh water discharge in the 

epicontinental basins of the western Tethys was more effective than ocean acidification in 

producing hostile conditions for calcareous nannoplankton (fig. 5). 

 

 
Figure 5 - Dramatic drop of pelagic carbonate production by nannoplankton during the Early Toarcian 

(Mattioli et al., 2009). 

 

A biocalcification crisis, the so-called nannoconid crisis, is recorded also at the onset 

of the early Aptian CIE (Erba, 2004). It has been considered as the response of calcareous 

nannoplankton to ocean acidification (Erba et al., 2010). However, the hypothesis of ocean 

acidification is so far not supported by any robust evidence of carbonate dissolution in the 

deep-sea and of shoaling of the CCD, neither for  the Selli event (Gibbs et al., 2011), nor 

for the T-OAE. 
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While the Early Aptian event is associated only with a phase of accelerated biotic 

turnover in the marine plankton (Leckie et al., 2002), a mass extinction event is associated 

to the T-OAE (Little and Benton, 1995; Harries and Little, 1999; Cecca and Macchioni, 

2004;; Wignall et al., 2005; Wignall and Bond, 2008; Dera et al., 2010). Even though the 

terrestrial biotic record is yet relatively poorly documented, it seems that terrestrial species 

were also affected (Philipe and Thévenard, 1996).  

 

 

1.3 Motivations and goals 
 

There is overwhelming evidence for both the T-OAE and the early Aptian OAE1a 

that geologically rapid injection of CO2 into the ocean-atmosphere system caused abrupt 

global warming. Ocean acidification has also been proposed for both events. Rates of CO2 

injection might have been comparable to current anthropogenic emissions, at least for the 

T-OAE. Therefore, these two episodes can be used to learn how the earth system and its 

ecosystems react to a global perturbation of the carbon cycle caused by a CO2  increase.  

Most of what we know about the record of the early Toarcian and early Aptian 

events has been revealed by the study of relatively deep-water marine sediments, deposited 

in epicontinental basins and shelves and in oceanic basins. Comparatively much less is 

known on the response of shallow water carbonate platforms, which represent the other 

―half‖ of the ocean, in terms of carbonate production and accumulation. This represents a 

major limitation, not only because carbonate platforms are an important part of the global 

carbon cycle (Weissert and Erba, 2004) but also because shallow water carbonate 

sedimentary systems and biota are particularly sensitive to environmental changes 

(Hallock, 2001) and could therefore tell a complimentary part of the story revealed by their 

deepwater counterparts. 

 

 
Figure 6 - Chemostratigraphic correlation of shallow water carbonate successions from the Atlantic, Tethys 

and Pacific realm (Burla et al. 2008). 
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The evidence on the response of carbonate platforms to the early Aptian OAE1a has 

been recently summarized by Burla et al. (2008), who concluded that a supraregional 

contemporaneous platform ―crisis‖ was probably caused by a combination of surface water 

acidification and changes in patterns of nutrient inputs to coastal areas, with global 

warming and rising sea level as additional factors. Regional palaeoenvironmental 

conditions modulated the type of response and the severity of the platform crisis (fig. 6): 

while many platforms at the northern margin of the Tethyan ocean were not able to recover 

and ultimately drowned (Wissler et al., 2003; Föllmi et al., 2006; Huck et al., 2011), 

southern Tethyan platforms were generally able to escape drowning and reacted with facies 

and carbonate factory shifts (Immenhauser et al., 2005; Huck et al., 2010). 

A widespread episode of carbonate platform drowning is commonly associated with 

the Early Toarcian paleoenvironmental perturbations (Bassoullet and Baudin, 1994) but 

there is ample evidence that many Tethyan carbonate platforms drowned well before the 

onset of T-OAE, either in the Pliensbachian (Marino and Santantonio, 2010; Santantonio 

and Carminati, 2011 and reference therein) or at the Pliensbachian-Toarcian boundary 

(Blomeier and Reijmer, 1999; Wilmsen and Neuweiler, 2008; Merino-Tomé et al., 2011). 

A combination of tectonics, sea-level changes and environmental deterioration is generally 

invoked as the cause of platform drowning (Cobianchi and Picotti, 2001; Wilmsen and 

Neuweiler, 2008; Bodin et al., 2010; Merino-Tomé et al., 2011; Léonide et al., 2011) or of 

a significant carbonate factory shifts (Cobianchi and Picotti, 2001; Woodfine et al., 2008). 

Woodfine et al. (2008) demonstrated that the Toarcian CIE is preserved in the carbonate 

isotope records of two resilient Tethyan carbonate platforms, the Trento Carbonate 

Platform (TCP) and the Apenninic Carbonate Platform (ACP), which reacted to 

paleoenvironmental perturbations with a shift to more clay-rich facies more or less 

coinciding with the CIE. 

The Apenninic Carbonate Platform grew isolated from major continental landmasses 

at least since the Early Jurassic (D‘Argenio, 1974). It accumulated more than 4500 m of 

shallow water carbonates from the Late Triassic to the Late Cretaceous and was able to 

survive all the Mesozoic OAEs. Its sedimentary archive offer the unique opportunity of 

investigating the response to CO2 induced perturbations without the obvious drawback of 

habitat loss due to drowning.  

Low stratigraphic resolution attained by biostratigraphy (De Castro, 1991; 

Chiocchini et al., 1994, 2008) and lack of precise correlation with coeval deep-water 

sequences is generally a major problem in the study of OAEs in carbonate platform 

sequences. Integration of chemostratigraphy and biostratigraphy has already been used to 

develop a high-resolution chronostratigraphic framework for the record of the 

Cenomanian-Turonian boundary OAE2 in the ACP (Parente et al., 2007, 2008). 

 

The main goals of this PhD project are: 

1) to study the response of the ACP to the Early Toarcian global perturbations, 

through the study of two Pliensbachian-Toarcian sequences. Paired carbonate 

and organic carbon isotope records will be used to pinpoint the stage 

boundary and the T-OAE. Phosphorus content and clay-minerals will be used  

to discriminate the relative role of ocean acidification vs enhanced nutrient 

flux on the carbonate factory, and to compare the response of the ACP with 

that of other carbonate platforms for which increased nutrient levels have 

been implied as the main cause of crisis or drowning;  

2) to study the response of the ACP to the early Aptian OAE, through the 

integration of the bio-chemostratigraphic work of Di Lucia (PhD thesis, 

2009) with the study of two new Barremian-Aptian sections.  
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CHAPTER 2 – The Southern Apennines and the sedimentary succession 

of the Apenninic Carbonate Platform 
 

2.1 The Southern Apennines fold-and-thrust belt 
   

The Southern Apennines are a NE verging fold-and-thrust belt (Butler et al., 2004; 

Mazzoli et al., 2008) that developed during the Neogene at the expense of the Afro-

Adriatic continental margin and evolved within the framework of convergent motion 

between the Afro-Adriatic and European plates since Late Cretaceous times (Dewey et al., 

1989; Mazzoli and Helman, 1994; Rosenbaum et al., 2002). The extremely complex 

geology of the southern Apenninic belt is the product of a polyphasic tectonics, consisting  

of a collision from the Miocene through the Pliocene, associated in the late stage with 

transcurrent and extensional faulting (Cello et al., 1982, 2000; Cinque et al., 1993; Oldow 

et al., 1993). 

 

 
Figure 1 - Simplified geological scheme of Southern Apennines (Ciarcia et al., 2009). 

 

Except for the remnants of the ophiolite-bearing Liguride Units that occur on top of 

the thrust pile, outcropping units consist of Mesozoic and Cenozoic rocks derived from the 

sedimentary cover of the foreland plate. This plate is overlain by an allochthon consisting 

of both Mesozoic-Palaeogene units, initially deposited on the Adriatic passive margin, and 

of Miocene flysch units, deposited within the evolving thrust belt. The allochthon includes 

both the shallow marine carbonates of the Apenninic platform and the deepwater, mixed 

clastic cherty carbonates of the Lagonegro basin (fig. 1). 

Regional criteria indicate that the allochthon has been thrust for a minimum of some 

57 km over the buried Apulian platform with the detachment between these two structural 

units marked by a ‗mèlange zone‘ generally several hundreds of metres thick and locally 

exceeding 1 km (Butler et al., 2004). This mèlange zone dominantly consists of intensely 
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deformed and overpressured deepwater mudstones and siltstones of Miocene to Early 

Pliocene age. This unit is interpreted to represent a mixture of Mio-Pliocene foredeep 

deposits incorporated within the basal decollement zone as the advancing fold and thrust 

belt overrode its foreland basin. 

The interpretation of the subsurface geometry of the fold-and-thrust belt is still not 

univocal. According to the classical thin-skinned model proposed by Mostardini and 

Merlini (1986) the basement was not involved in the Apulian compressional structures, 

which were formed in the hanging walls of low-angle thrusts . A development of this 

simple thin-skinned interpretation was shown by Casero et al. (1988, 1991), who 

considered an efficient deep detachment between the Apulian platform and basement 

within the Burano anhydrites, and assumed that the ―mèlange zone‖ formed a shallow 

detachment between the Apulian platform and the allochthon. On the other hand, Menardi 

Noguera and Rea (2000) have shown a mixture of thick- and thin-skinned tectonic styles. 

In their hypothesis, thrusts on the western end of the line are interpreted as thin-skinned, 

detaching at the basement sediment cover interface. In contrast, the easternmost 

compressional structures are related to a transpressive shear zone with a sinistral 

component that is interpreted to cut the entire crust within the study area and to detach on 

the Adriatic Moho. Recently,  the integration of a large amount of surface geological 

information with subsurface data gave a big contribution to demonstrate a large-scale 

complex thin-skinned/thick-skinned thrusting in the shallow part of the Southern 

Apennines (Shiner et al., 2004; Mazzoli et al., 2001, 2008). 

The burial history of the Southern Apennines is constrained by recent studies based 

on thermal and thermochronological data (Aldega et al., 2003a, 2003b; Corrado et al., 

2005; Mazzoli et al., 2006, 2008). These studies highlight that a significant part of the 

sedimentary rocks exposed in the Southern Apennines experienced substantial tectonic 

burial (locally in excess of 5 km). This is not true for the Apenninic platform domain 

whose burial never exceed 2 km. 

 

 

2.2 The Apenninic Carbonate Platform (ACP) 
 

The shallow water carbonates that are widely exposed in the southern Apennines are 

the relics of carbonate banks that developed during the Mesozoic on the passive margin of 

Adria, a promontory of the African Plate (Bosellini, 2002). The different tectonic 

interpretations of the fold and thrust belt determine different reconstructions of the pre-

orogenic paleogeography of the area. The classical restorations of Triassic to Paleogene 

palaeogeography of the southern Apennines shows that the African (Apulian) passive 

margin was characterized by carbonate platforms alternating with deep-sea basins 

(D‘Argenio et al., 1975b; Sgrosso, 1988). More simple models suggest the presence of a 

single Meso-Cenozoic pelagic basin, the Lagonegro Basin, between two carbonate 

platforms, the Apenninic and Apulian platforms (Mostardini and Merlini, 1986), in 

accordance with a previous model proposed by Ogniben (1969). Among the several more 

or less complex reconstructions proposed for the pre-orogenic Meso–Cenozoic 

paleogeography, the latter is the most widely accepted one, grounded also in subsurface 

data (Menardi Noguera and Rea, 2000). 

The oldest neritic carbonates cropping out in the southern Apennines are Middle 

Triassic in age and there is ample evidence that shallow water carbonate sedimentation was 

established over wide areas during the Late Triassic (D‘Argenio and Sgrosso, 1974). At 

least since the Early Jurassic the Apenninic Carbonate Platform grew isolated from major 

contiental landmasses (D‘Argenio, 1974). In the ACP shallow water sedimentation 

persisted almost to the end of the Cretaceous, when the area underwent a generalized 
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emersion. It was locally re-established during the Palaeogene (Trentinara Formation; Selli 

1962) and the Early Miocene (Roccadaspide–Cerchiara and Cusano Formation; Selli 

1957), to be eventually terminated by drowning and siliciclastic sedimentation in the 

Middle-Late Miocene. The Upper Triassic to Lower Cretaceous carbonates of the ACP are 

generally referred to flat-topped, tropical carbonate platforms dominated by chloralgal or 

chlorozoan associations (D‘Argenio et al., 1975a) whereas the depositional system of 

Senonian rudist limestones of the southern Apennines has been interpreted as a ramp-like 

open shelf dominated by foramol-type assemblages (Carannante et al., 1997). 

 

 
Figure 2 - Toarcian palaeogeography of the peri-Tethyan domains (redrawn from Bassoullet et al., 1993). 

 

The Apenninic Carbonate Platform (ACP) succession is made of a  > 4.5 km-thick pile of 

shallow water carbonates. The following scheme of the stratigraphic succession of the 

ACP refers to the recent lithostratigraphic nomenclature adopted by the Servizio Geologico 

d’Italia (Italian geological Survey) for the geological mapping project at scale 1:50.000 

(Progetto CARG). The Upper Triassic is represented by the "Dolomia massiva di base" 

(lower massive dolomite),  followed by the "Marne con Avicula e Myophoria" (marls with 

Avicula and Myophoria) and the "Dolomia Superiore" (Upper Dolomite). The Lower 

Jurassic is represented by the "Calcari a Palaeodasycladus" (Palaeodasycladus 

limestones), while in the Middle and Upper Jurassic there are the "Calcari oolitici ed 

oncolitici" (Oolitic-oncolitic limestone) and the "Calcari con Cladocoropsis e Clypeina" 

(Cladocoropsis and Clypeina limestones). The "Calcari con requienie e gasteropodi" 

(Requienid and gastropod limestones) span from the base of the Lower Cretaceous to the 

uppermost Cenomanian. The last Mesozoic unit is made by the Upper Cretaceous "Calcari 

a radiolitidi" (Radiolitid limestones). The stratigraphic succession of the ACP in 
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terminated by the Formazione di Trentinara (Trentinara Formation, Eocene) and the 

Formazione di Cerchiara (Cerchiara Formation, Miocene). The siliciclastic deposits of 

Formazione di Bifurto (Bifurto Formation, Miocene) mark the platform drowning. 

 

 

2.3 Location and stratigraphy of the studied sections 
 

For the study of the early Toarcian OAE two classical outcrops have been selected: 

Mercato San Severino, about 30 km northwest of Salerno, and Monte Sorgenza, about 7 

km northeast of Formia (fig. 3). They have been extensively studied during the second half 

of the last century (Sartoni and Crescenti, 1962; De Castro, 1962; Chiocchini and 

Mancinelli, 1977) and have become a reference for the stratigraphy of the Lower Jurassic 

platform carbonates of the southern Apennines 

The Lower Jurassic carbonates of the ACP show a remarkable uniformity of facies 

all over the southern Apennines. They are included into a single lithostratigraphic unit, 

defined since the sixties of the last century as the ―Calcari a Palaeodasycladus‖ 

(―Palaeodasycladus Limestones‖). A thickness of about 300 m has been calculated for the 

―Palaeodasycladus Limestones" in the Lattari Mts and in the Mercato San Severino area 

(De Castro, 1962). In the classical section of Monte Monaco di Gioia the thickness is about  

200 m (Catenacci et al., 1963). The most distinctive fossil is the calcareous alga 

Palaeodasycladus mediterraneus (Barattolo et al., 1994), which often occurs in rock-

forming abundance. In the upper part of the ―Palaeodasycladus limestones‖, which has 

been described as the ―Membro a Lithiotis‖ (―Lithiotis member‖), large thick-shelled 

―Lithiotis‖ bivalves (Fraser et al., 2004) make spectacular biostromes. Lituolid larger 

foraminifera (Orbitopsella and related taxa; Hottinger, 1967; Septfontaine et al., 1991; 

Fugagnoli, 2004), are the other typical component of the ―Palaeodasycladus limestones‖. 

The richest and most diverse larger foraminiferal assemblages, dominated by Orbitopsella, 

occur just below the ―Lithiotis member‖. 

The ―Palaeodasycladus Limestones‖ Formation is overlain by the ―Calcari oolitici ed 

oncolitici‖ (Oolitic-oncolitic limestones) Formation, which is up to 400 m thick and is 

made in the first part of about 40 m of massive unfossiliferous oolitic limestones. 

Typically, the change is very sharp and is marked by the disappearance of the ―Lithiotis‖ 

bivalves and of Palaeodasycladus mediterraneus. This biostratigraphic event has been 

traditionally equated with the Lower-Middle Jurassic boundary but there is evidence that it 

occurs close to the Pliensbachian-Toarcian boundary (Barattolo and Romano, 2005). 

In order to study the early Aptian OAE two well known succession have been 

chosen: Monte Tobenna, about 8 km northeast of Salerno, and Monte Raggeto, about 7 km 

northwest of Caserta (fig. 3). Both these sections have been extensively investigated in the 

past decades for cyclostratigraphic and chemostratigraphic studies (Ferreri et al., 1997; 

Raspini, 1998; Amodio et al., 2003; D‘Argenio et al., 1999, 2004; Wissler et al., 2004). 

They are made up of limestones belonging to the ―Calcari con requienie e gasteropodi‖ 

Formation (Requienid and gastropod limestones Fm).  

This formation is made up mainly by well-bedded grey limestones with frequent 

layers crowded by gastropods and requienids. Subordinately, dark thin-bedded limestone, 

dolomitic limestones and massive to laminated dolostones are present. In the Sala 

Consilina zone the total thickness of the formation ranges between 400 and 600 m; with 

similar thickness (500 m) the formation crops out at Monte Terminio. In the lower part of 

the succession, oolitic and oncolitic limestones are frequent. In the central part dasyclad 

limestones are alternated with stromatolitic and loferitic limestones and gastropods and 

requienids limestones. In the upper part, laminated dolostone beds are interbedded to 

bioclastic limestones with alveolinids. 
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Monte Tobenna is a classical locality for the ―Orbitolina Level‖ of the southern 

Apennines (De Castro, 1963; Cherchi et al., 1978). At Monte Tobenna it is composed by 

two beds. The lower bed is a 150 cm-thick bioturbated marly limestone crowded with flat 

conical orbitolinids (Mesorbitolina parva and Mesorbitolina texana). The argillaceous 

component decreases upward. The upper bed, which is just 15 cm thick, consists of a 

packstone crowded with flat conical orbitolinids (Mesorbitolina parva and Mesorbitolina 

texana) and codiacean algae (Boueina hochstetteri moncharmontiae). A middle Gargasian 

age has been proposed for the ―Orbitolina Level‖ (Cherchi et al., 1978). 

At Monte Raggeto the ―Orbitolina Level‖ is not present. In the Seventies, Monte 

Tobenna and Monte Raggeto sections were thought to be originally situated in two 

different carbonate platforms separated by a wide basin (D‘Argenio et al., 1975a; 

Laubscher and Bernoulli, 1977; Channell et al., 1979). The occurrence or the lack of the 

―Orbitolina Level‖ was one of the feature used to distinguish ―inner‖ and ―outer‖ carbonate 

platform successions. According to the recent interpretations (see previous paragraph), 

both the section belonged to the single and wide carbonate platform domain. 

 

 
Figure 3 - Schematic geological map of the central-southern Apennines, with location of the studied sections 

(modified from Bonardi et al., 1988). 
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CHAPTER 3 – Carbonate platform evidence of ocean acidification at the 

onset of the early Toarcian oceanic anoxic event 
 

3.1 Introduction 
  

About one third of the carbon dioxide released mainly from burning of fossil fuels is 

absorbed into the oceans where it reacts to form carbonic acid. As a result the pH of the 

ocean and the amount of carbonate ions decrease in a process called ocean acidification 

(Doney et al., 2009)  

Detrimental effects on calcifying organisms, which use carbonate minerals to build 

their protective shells and skeletons, have been documented in the laboratory (Fabry et al., 

2008) and in the field (Halls-Spencer et al., 2008). However, due to the spatio-temporal 

limits of experiments and field observations, the long-term impact on marine ecosystems 

and the adaptation potential of marine species are best investigated by looking at the 

geological record of past episodes of ocean acidification  (IPCC workshop, 2011). 

Episodes of short-term massive injection of CO2 in the atmosphere-ocean system are 

witnessed by negative carbon isotope events (CIE) recorded by marine carbonates and by 

marine and continental organic matter (Jenkyns, 2010). Paroxysmal volcanism and/or 

clathrates dissociation are generally invoked as the source of isotopically depleted excess 

CO2. Several episodes have been investigated; the one which occurred about 55 Ma, 

known as the Paleocene-Eocene thermal maximum (PETM), is certainly the best studied. 

Ocean acidification during the PETM is witnessed by carbonate dissolution in deep-water 

sections, implying shallowing of the CCD (Zachos et al., 2005). No evidence has been 

documented of severe reduction of CaCO3 saturation in the shallow ocean. Carbonate 

platforms were able to continue growing (Robinson, 2010), but a change from coral-

dominated to larger foraminifera-dominated platforms has been documented (Scheibner 

and Speijer, 2008). In the open ocean no major extinction nor a major bias in extinction or 

diversification towards less calcifying planktic species have been documented (Gibbs et 

al., 2006).  

Another episode of severe perturbation of the ocean-atmosphere system, which bears 

some analogies with the PETM (Cohen et al., 2007) occurred in the early Toarcian (Early 

Jurassic, about 183 Ma). The geological record of this event is characterized by abrupt 

global warming, widespread coeval deposition of organic-rich sediments and a major 

extinction in marine invertebrates (Jenkyns and Clayton, 1986; Jenkyns, 2003, 2010; 

Wignall et al., 2005; Cohen et al., 2007; Suan et al., 2008a). The early Toarcian CIE is 

possibly the largest in the whole Phanerozoic (Hesselbo and , 2011) and is 

associated with a biocalcification crisis of calcareous nannoplankton (Erba, 2004; Mattioli 

et al., 2009). The global nature of the CIE has been questioned on the basis of its absence 

in the record of well preserved belemnites (van de Schootbrugge et al., 2005; McArthur et 

al., 2008) but its presence in the record of marine sediments and marine and continental 

organic matter across a variety of facies and palaeogeographic settings indicates that the 

event was really a global perturbation of the carbon cycle (Hesselbo et al., 2007; Suan et 

al., 2008a; Al-Suwaidi et al., 2010; Hesselbo and , 2011). Several candidates 

have been discussed as the source of rapid CO2 injection into the atmosphere-ocean 

system, which triggered the cascade of palaeoenvironmental changes recorded during the 

T-OAE. The most cited ones are dissociation of methane hydrates and thermogenic 

methane release from coal associated with intrusions of the Karoo-Ferrar large igneous 

province (Hesselbo et al., 2000; McElwain et al., 2005; Beerling and Bretnall, 2007; 

Svensen et al., 2007; Suan et al., 2008b; Gröcke et al., 2009). 
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Very little is known of the response of carbonate platforms and shallow benthic 

calcifiers to the early Toarcian event. Many Tethyan platforms drowned during the 

Pliensbachian as the result of extensional tectonics linked to the opening of the western 

Tethyan ocean (Bernoulli and Jenkyns, 1974; Manatschal and Bernoulli, 1999; Santantonio 

and Carminati, 2011). For those platforms that continued growing, the terminal drowning 

is seen as the combined effect of tectonics, accelerated sea-level rise and 

palaeoenvironmental deterioration close to Pliensbachian-Toarcian boundary (Bassoulet 

and Baudin, 1994; Blomeier and Reijmer, 1999; Wilmsen and Neuweiler, 2008; Léonide et 

al., 2011; Merino-Tomé et al., 2011).  

But drowning was not the fate of all Tethyan platforms. Some resilient platforms 

continued growing in shallow water across the Pliensbachian-Toarcian boundary and the 

T-OAE (Trento Platform, Cobianchi and Picotti, 2001; Woodfine et al., 2008; Apenninic 

Platform, Woodfine et al., 2008; Adriatic-Dinaric Platform, Vlahović et al., 2005; 

Pelagonian platform, Scherreiks et al., 2009). The Apenninic Carbonate Platform (ACP) of 

southern Italy, which grew at tropical latitudes in the central Tethys, preserves a 

continuous record of shallow water carbonate sedimentation across the early Toarcian 

event (Woodfine et al., 2008). It offers the unique possibility of studying the response of 

shallow water carbonate platforms and benthic calcifiers to an episode of massive release 

of CO2 into the ocean-atmosphere system.  

In this paper we present evidence of a dramatic shift of carbonate production mode 

from massive biocalcification to chemical precipitation across the early Toarcian event in 

the ACP. We discuss the local vs supraregional significance of this shift and propose a 

scenario envisaging  abrupt decline of carbonate saturation forced by CO2 release during 

the negative wing of the early Toarcian CIE, followed by a calcification overshoot driven 

by the recovery of ocean alkalinity. 

 

 

3.2 Geological setting 

  

The ACP is made of a 5 km-thick pile of shallow water carbonates that were 

deposited during the Mesozoic at the southern margin of the Tethyan Ocean (Bosellini, 

2004). With the Neogene deformation of the passive continental margin of the Adria 

promontory, the ACP was incorporated into the southern Apenninic thrust and fold belt. 

The oldest neritic carbonates cropping out in the southern Apennines are Middle Triassic 

in age. Shallow water carbonate sedimentation was established over wide areas during the 

Late Triassic and persisted almost to the end of the Cretaceous. Since the Early Jurassic the 

ACP developed as an epi-oceanic platform bordered by deep basins (fig. 1). Upper Triassic 

to Lower Cretaceous formations have been referred to a flat-topped tropical platform 

dominated by chloralgal and chlorozoan associations (D‘Argenio et al., 1975), whereas the 

depositional system of the Upper Cretaceous rudist limestones has been interpreted as a 

ramp-like open shelf dominated by foramol-type assemblages (Carannante et al., 1997). 

The Lower Jurassic carbonates of the ACP show a remarkable uniformity of facies 

all over the southern Apennines. They are included into a single lithostratigraphic unit, 

defined since the sixties of the last century as the ―Calcari a Palaeodasycladus‖ 

(―Palaeodasycladus Limestones‖). In the classical section of Monte Monaco di Gioia the 

―Palaeodasycladus limestones  are about 200 m thick and consists mainly of well bedded 

peritidal carbonates. The most distinctive fossil is the calcareous alga Palaeodasycladus 

mediterraneus (Barattolo et al., 1994), which often occurs in rock-forming abundance. In 

the upper part of the ―Palaeodasycladus limestones‖, which has been described as the 

―Membro a Lithiotis‖ (―Lithiotis member‖) large thick-shelled ―Lithiotis‖ bivalves (Fraser 

et al., 2004) make spectacular biostromes. Lituolid larger foraminifera (Orbitopsella and 
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related taxa; Hottinger, 1967; Septfontaine et al., 1991; Fugagnoli, 2004), are the other 

typical component of the ―Palaeodasycladus limestones‖. The richest and most diverse 

larger foraminiferal assemblages, dominated by Orbitopsella, occur just below the 

―Lithiotis member‖. 

 

 
Figure 1 - Toarcian palaeogeography of the peri-Tethyan domains (redrawn from Bassoullet et al., 1993) 

with position of key areas cited in the text. 

 

The ―Palaeodasycladus Limestones‖ Formation is overlain by the ―Calcari oolitici ed 

oncolitici‖ (Oolitic-oncolitic limestones) Formation, which is up to 400 m thick and is 

made in the first part of about 40 m of massive unfossiliferous oolitic limestones. 

Typically, the change is very sharp and is marked by the disappearance of the ―Lithiotis‖ 

bivalves and of Palaeodasycladus mediterraneus. This biostratigraphic event has been 

traditionally equated with the Lower-Middle Jurassic boundary but there is evidence that it 

occurs close to the Pliensbachian-Toarcian boundary (Barattolo and Romano, 2005). 

For this study we selected two classical outcrops which have been extensively 

studied during the second half of the last century (Sartoni and Crescenti, 1962; De Castro, 

1962; Chiocchini and Mancinelli, 1977) and have become a reference for the stratigraphy 

of Lower Jurassic platform carbonates of the southern Apennines: Mercato San Severino, 

about 30 km northwest of Salerno, and Monte Sorgenza, about 7 Km northeast of Formia.  
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Figure 2 - Schematic geological map of the southern Apennines (redrawn from Bonardi et al., 

1988) with location of the studied sections  

 

 

3.3 Materials and methods 
 

3.3.1 Sedimentology and biostratigraphy 

Two shallow water carbonate successions have been selected for this study: Mercato 

San Severino (north of Salerno, Campania) and Monte Sorgenza (east of Formia, Lazio). 

The studied sections have been logged in the field at decimetre to meter scale, 

depending on the outcrop quality, and sampled with an average resolution of about one 

sample per meter. A higher resolution was adopted for the transition inteval between the 

"Palaeodasycladus limestones" and the "Oolitic limestones". The preliminary field 

description of textural components, sedimentary structures and fossil content was 

subsequently integrated with the sedimentological and micropalaeontological study of 100 

thin sections and 293 acetate peels under the optical microscope. 

 

3.3.2 Carbon isotopes 

 

Carbonate component 

Two hundreds and ninety-three samples were analysed for the carbon isotope ratio of 

the carbonate component (
13

Ccarb).  We used mudstones as a first choice and the micritic 

matrix of wackestones and floatstones as a second choice.  About 2 mg of powder was 

obtained from each sample by micro-drilling a polished slab under a binocular microscope 

with a 0.5 mm or 0.8 mm Tungsten bit. The analyses were performed at the Isotopen-labor 

of the Institut für Geologie, Mineralogie und Geophysik at the Ruhr University (Bochum, 

Germany). Approximately 0.5 mg of sample powder was heated for 18 hrs at 105 °C. 
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Samples were reacted online by individual acidic (H3PO4) addition with a Finnigan Gas 

Bench II. Stable isotope ratios were measured with a Finnigan Delta S mass spectrometer. 

The results are reported in ‰ in the conventional δ notation with reference to the Vienna 

Pee Dee Belemnite (VPDB) standard. The precision (1σ) monitored by repeated analyses 

of international and laboratory standards, is ±0.09‰ for carbon and ±0.13‰ for oxygen 

isotopes. Replicate measurements show reproducibility in the range of ±0.1‰ for δ
13

C and 

±0.2‰ for δ
18

O.  

 

Organic matter component  

Ninety-four samples were analysed for the carbon isotope ratio of the bulk organic 

matter (
13

Corg). 

Samples were crushed in a mortar and subsequently de-carbonated by HCl 10% (1.25 

N) leaching during 20 min. Dissolution of the samples was promoted by ultrasonic 

disaggregation (3 minutes per sample). The insoluble residue was washed and centrifuged 

until a neutral suspension was obtained (pH 7–8). After drying in a oven at temperature 

lower than 80°C, the de-carbonated residue was collected for δ
13

C analysis of the organic 

matter component. The carbon isotope composition was determined at the Stable Isotopes 

Laboratory of the University of Lausanne (UNIL) by flash combustion on a Carlo Erba 

1108 elemental analyzer (EA) connected to a Thermo Fisher Scientific Delta V (Bremen, 

Germany) isotope ratio mass spectrometer (IRMS) that was operated in the continuous 

helium flow mode via a Conflo III split interface (EA-IRMS). An aliquot of the sample 

was wrapped in a tin capsule and combustion was done in an O2 atmosphere in a quartz 

reactor at 1020°C packed with Cr2O3 and (Co3O4)Ag to form CO2, N2, NOx and H2O. The 

gases were then passed through a reduction reactor containing elemental copper and copper 

oxide at 640°C to remove excess of O2 and to reduce the non-stoichiometric nitrous 

products (NOx) to N2. Water was subsequently removed by anhydrous Mg(ClO4)2. N2 and 

CO2 were then separated in a gas chromatograph fitted with a packed column (Pora-PLOT 

Q, 5 m length, 1/4 inch i.d.) at 70°C, and analyzed for their isotopic composition on the 

IRMS. Pure CO2 gases were inserted in the He carrier flow as pulses of standard gases. 

The results are reported in ‰ in the conventional δ notation with reference to the Vienna 

Pee Dee Belemnite (VPDB) standard. The calibration and assessment of the reproducibility 

and accuracy of the isotopic analysis based on replicate analyses of laboratory standard 

materials (glycine, urea and pyridine) were better than 0.1‰ (1σ). The accuracy of the 

analyses was checked periodically by analyses of the international reference materials 

USGS-24 graphite, IAEA-PEF1 polyethylene foil and NBS-22 oil.  

 

 

3.4. Results 
 

3.4.1 Facies and stratigraphy 
 

Mercato San Severino  

The studied succession is beautifully exposed in a quarry west of Mercato San 

Severino (40°46‘53‖N, 14°43‘45‖E). It includes the ―Lithiotis member‖ of the 

―Palaeodasycladus Limestones‖  (0–126.1 m) and the lower part of the ―Oolitic-oncolitic 

Limestones‖ (126.1–164 m) (fig. 3).  

The ―Lithiotis member‖ consists mainly of meter-thick ―Lithiotis‖ biostromes, 

alternating with coarse peloidal-intraclastic grainstones and rudstones with abundant 

remains of Palaeodasycladus mediterraneus. Other lithofacies occurring in this interval are 

fine-grained peloidal packstones-grainstones with gastropods and small benthic 
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foraminifers (mainly valvulinids) and mudstone-wackestone with rare Palaeodasycladus, 

small thin-shelled gastropods and ostracods. 

 

 
Figure 3 - Lithology and carbon isotope stratigraphy of the Mercato San Severino section. 

 

Millimetre- to cm-thick discontinuous green marls cap some beds and permeates 

downward, filling a complex network of irregular cavities. The thickest marly levels 

contain nodules of mudstones with ostracods and thin-shelled gastropods. These marly 

caps, which mark periods of ephemeral platform emersion,  are not distributed evenly in 

the section. A first cluster of thicker and  more closely spaced nodular marly levels occurs 

at 79–88 m. A second cluster occurs between 116 and 120 m. In this uppermost part of the 

Lithiotis member, the Lithiotis biostromes become thinner, more discontinuous and less 

frequent. Moreover, grain-supported lithofacies are replaced by mud-rich facies consisting 

of mudstones with ostracods and thin-shelled gastropods and mudstones-wackestones with 

benthic foraminifers and Palaeodasycladus mediterraneus. The first bed of oolitic 

grainstone is at 126.1 m. It is followed by a 15 cm-thick Lithiotis floatstone with dull 
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whitish to pink subangular stout fragments of bivalve shells. At the top of this bed the 

Lithiotis shells are truncated by a sharp surface overlain by a massive 130 cm-thick bed of 

oolitic grainstone. The next bed is made of oolitic limestone with a few pinkish abraded 

fragments of bivalve shells with a thin oolitic coating. From there to the top, the section is 

made exclusively of massive unfossiliferous oolitic grainstones. 

 

 
Figure 4 - a: peloidal/foraminiferal grainstone with Orbitopsella (Monte Sorgenza); b: peloidal/bioclastic 

grainstone with small benthic foraminifers and shell fragments (Monte Sorgenza); c: algal/oncoidal rudstone 

with Palaeodasycladus (Mercato San Severino); d: mudstone with ostracods and thin-shelled gastropods 

(Mercato San Severino); e: peloidal/bioclastic grainstone with shell fragments and surficial ooids (Monte 

Sorgenza); f: oolitic grainstone (Mercato San Severino). 
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Figure 5 - a: The Maiellaro quarry at Mercato San Severino; b: Monte Sorgenza, view from Castellonorato 

(south); c: m-thick Lithiotis biostromes (Mercato San Severino); d: Lithiotis bivalves preserved in life 

position (Mercato San Severino); e: Palaeodasycladus rudstone; f: dm-thick marly level with nodules of 

limestone (Mercato San Severino); g: marls and nodular limestones (Monte Sorgenza); h: transition interval 

between the Lithiotis member and the massive oolitic limestones (Monte Sorgenza). 
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Monte Sorgenza 

This 164 m-thick section (fig. 6), has been logged on the southern slope of Monte 

Sorgenza (41°17‘39‖N, 13°40‘57‖E) and coincides with the first part of the section studied 

by Woodfine et al. (2008). Stratigraphy and facies are basically the same as in the Mercato 

San Severino quarry but the base of the Monte Sorgenza section is slightly older, as it 

includes in the lower part the ―Orbitopsella limestones‖ (0–39 m). The latter consist mainly 

of oncoidal-peloidal grainstones to rudstones with abundant Palaeodasycladus and lituolid 

larger foraminifers, alternating with wackestones with Orbitopsella and other lituolids. 

 

 
Figure 6 - Lithology and carbon isotope stratigraphy of the Monte Sorgenza section. The first part of the 

13
Ccarb curve is taken from Woodfine et al. (2008).    



46 
 

The first Lithiotis biostrome is at about 54 m from the base of the section. Compared with 

its equivalent in the Mercato San Severino quarry, the Lithiotis member at Monte Sorgenza 

is characterized by a reduced frequency and thickness of Lithiotis biostromes. The most 

recurrent facies are wackestone-packstones with P. mediterraneus and coarse peloidal-

intraclastic packstones-grainstones with P. mediterraneous, gastropods, and benthic 

foraminifers. As in the other section, subaerial exposure surfaces are marked by mm- to 

cm- thick nodular marly caps. A first cluster of thicker (up to 20 cm) and closely spaced 

marls occurs between 60 and 70 m. Between 115 and 130 m there is a poorly exposed 

interval which corresponds to the gentler and more densely vegetated segment of the slope. 

This interval seemingly corresponds to a second cluster of marly levels. A third cluster of 

nodular marls occurs between 138 and 143 m. As at Mercato San Severino, the uppermost 

part of the Lithiotis member is marked by the decreased frequency and thickness of the 

Lithiotis biostromes and by a shift to more muddy facies. The oolitic limestones starts at 

154 m. Their lower part is very massive and makes a steep cliff about 10 m high. The 

uppermost part of the section is disturbed by a small normal fault (see also fig.5 of 

Woodfine et al., 2008). 

 

3.4.2 Carbon isotope stratigraphy 
 

Mercato San Severino 

From 0 to 106.7 m 
13

Ccarb values oscillate wildly between +1 and +3‰, with a few 

outliers below 1‰. The moving average curve shows a slight decreasing trend 

superimposed on the high-frequency fluctuations, which are defined only by a single or a 

few data points. From 106.7 m 
13

Ccarb values start to climb and reach a peak  of +4.22‰ 

at 118.6 m from the base of the section, in the uppermost part of the Lithiotis member. 

Then, there is a decreasing trend that becomes very steep from 125.2 m, just below the 

base of the ―Oolitic Limestones‖,  and leads  to a minimum value of +1.57‰ at 128 m. In 

the last part of the curve, 
13

Ccarb values rise again, reaching a maximum of about 3.7‰ at 

140 m, and then declines gradually toward values <3‰ at the end of the section. 

The carbon isotopic ratio of total organic carbon (
13

Corg) is available only between 

44.1 and 144.7 m. Between 44.1 and 106.7 m 
13

Corg values fluctuates between -25.85 and 

-23.54‰ (-25.74 ± 1.28‰). Then there is a very sharp negative excursion, reaching a 

minimum of -27.1‰ at 110 m and recovering at pre-excursion values of -23.5‰ at 115.9 

m. After a small plateau, defined by values fluctuating between -25.1 and -24.2‰, there is 

a second very sharp negative shift (about 4‰) starting at 125.2 m and reaching a minimum 

of -28.2‰ at 131.2 m from the base of the section. As for 
13

Ccarb, the last part of the 
13

Corg curve is occupied by a positive excursion, with a peak of -24.8‰ at 140 m followed 

by a decrease to values around -27‰.  

 

Monte Sorgenza 

In figure 6 we have plotted the 
13

Ccarb data of Woodfine et al. (2008) plus our new 
13

Ccarb and 
13

Corg data for the upper part of the section. 

In the Orbitopsella limestones 
13

Ccarb values oscillates mainly between +1.3 and 

+2.4‰, with a few outliers to more negative values. A positive trend starts at the base of 

the Lithiotis member leading to a positive peak of about +3‰ at 64.4 m from the base of 

the section. From there to about 93 m 
13

Ccarb values fluctuate around +2‰. Then there is a 

shift to about +3‰, followed by a decreasing trend ending with a minimum of about 

+0.5‰ at 130 m from the base of the section.  

Between 130 and 151 m, in the uppermost part of the Lithiotis member, our data 

show a regular positive trend,  leading from values of about +1‰ to values > +3‰. This 
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positive trend is truncated by a sharp negative excursion, of about 3‰. The minimum 

value of +0.3‰ is reached at 153 m. In the first beds of the oolitic limestones 
13

Ccarb 

values are still low at about +1‰, then they start rising, reaching a relative maximum of 

+2.7‰ at 161.2 m. Beyond this level the section is disturbed by a small fault.  

The carbon isotopic ratio of total organic carbon (
13

Corg) is available only starting 

from 120 m from the  base of the section. Up to 130 m 
13

Corg values fluctuates mainly 

between -24 and -25‰. Then there is a sharp negative shift, reaching a minimum of -

27.3‰ at 136.8 m, followed by a rising trend leading to a peak of -23.9‰ at 153 m from 

the base of the section, in the last beds of the Lithiotis member. Then there is second sharp 

negative shift, reaching a minimum of -29.1‰ in the first beds of the ―Oolitic 

Limestones‖. Then values start rising again, reaching a -25.3‰ at 161.2 m from the base, 

where the section is interrupted by the fault. 

 

 

3.5 Discussion 
  

3.5.1 The inadequacy of carbonate platform biostratigraphy 

The Early Jurassic evolution of the Apenninic carbonate platform, as recorded in the 

two studied sections, can be roughly divided into four phases. During phase 1, recorded 

only in the lowermost part of the Monte Sorgenza section (0–39 m), the carbonate factory 

is dominated by calcareous green algae (P. mediterraneus) and lituolid larger foraminifers 

(Orbitopsella assemblage). In phase 2 (39–138 m at Monte Sorgenza; 0–116 m at Mercato 

San Severino) the most prolific carbonate producers are P. mediterraneus and the thick-

shelled bivalves of the Lithiotis group. Orbitopsella disappears at the base of this interval 

but some smaller and less complex lituolids (i.e Amijella amiji and Lituosepta compressa) 

are still present, albeit never dominant. In the third phase (138–154.7 m at Monte 

Sorgenza; 116–126.2 m at Mercato San Severino) Lithiotis bivalves and P. mediterraneus 

are still present but they are not dominant any more. At the same time there is a shift from 

grainy bioclastic to muddy facies and a significant increase in the thickness and frequency 

of marly interlayers. The fourth phase is marked by the disappearance of Lithiotis bivalves 

and calcareous algae as the carbonate factory shifts to chemical precipitation with massive 

oolitic limestones.  

What is the relation between this evolution and the phases of rapid climate change 

and perturbations of the global carbon cycle recorded by the reference sections of 

epicontinental European basins (Jenkyns and Clayton, 1986; Hesselbo et al., 2000; Kemp 

et al., 2005; Hesselbo et al., 2007; Suan et al., 2008a, 2010; Hermoso et al., 2009; Littler et 

al., 2010)? Unfortunately biostratigraphic resolution and chronostratigraphic calibration in 

the Apenninic Carbonate Platform are not adequate to address this question. 

The disappearance of P. mediterraneus and of the Lithiotis bivalves in the Apenninic 

carbonate platform has been traditionally equated with the Lower-Middle Jurassic 

boundary (De Castro, 1991; Chiocchini et al., 1994). However, there is evidence that both 

these events occurred close to the Pliensbachian-Toarcian boundary (Bassoulet et al., 1997; 

Fraser et al., 2004). The Upper Triassic-Lower Jurassic biostratigraphy of central and 

southern Tethyan carbonate platforms has been recently reviewed by Barattolo and 

Romano (2005). Also this paper equates the disappearance of P. mediterraneus with the 

Pliensbachian-Toarcian boundary, but supporting evidence is unclear, since no ammonite 

has been found in close relation to this bioevent. In conclusion, at the present state of 

knowledge, in the southern Apenninic carbonate platform it is not possible to constrain by 

biostratigraphy neither the position of the Pliensbachian-Toarcian boundary nor of the 

interval corresponding to the early Toarcian OAE. Since both these time-intervals are 

known to be characterized by prominent CIEs (Hesselbo et al., 2007; Suan et al., 2008a; 
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Littler et al., 2010), carbon isotope stratigraphy  seems to be the most adequate dating and 

correlation tool.  

 

3.5.2 Reliability of the carbonate isotope record of ancient platform carbonates 

During the last twenty years many papers have documented that the prominent CIEs 

recorded by the oceanic 
13

C record of deep-sea sediments during the Mesozoic OAEs and 

other episodes of global perturbation of the carbon cycle can be faithfully recorded also in 

platform carbonates (Ferreri et al., 1997; Grötsch et al., 1998; Wissler et al., 2004; 

Immenhauser et al., 2005; Parente et al., 2007, 2008; Woodfine et al., 2008; Huck et al., 

2010, 2011).  On the other hand, it is widely known that the 
13

C records of carbonate 

platforms can depart significantly from the open ocean record for several reasons. True 

open ocean conditions may not have been present at these locations, a phenomenon often 

referred to as seawater ageing on platform top (Immenhauser et al., 2008, and references 

therein). Vital or mineralogical effects may produce carbonate components with different 
13

C values. It has been shown that in modern carbonate platforms the range of 
13

C  

values shown by different grains is larger than the amplitude of most CIEs recorded by 

ancient deep-sea carbonates (Swart et al., 2009). 

After deposition the carbon isotope record of platform carbonates can be 

considerably altered by diagenesis, especially by interaction with meteoric fluids (Allan 

and Matthews, 1982; Lohmann, 1988).  

Any of the potential biases listed above can make very problematic the interpretation 

of the carbon isotope record of platform carbonates. Therefore, for this study we relied on 

paired records of 
13

Ccarb and 
13

Corg. It is generally accepted that CIEs that are recorded 

by both the carbonate and the organic component in a sedimentary sequence indicate a real 

change in the carbon isotope ratio of the dissolved inorganic carbon pool (DIC) of the 

environment (Margaritz et al., 1986; Gale, 1993; Underwood et al., 1997; Jarvis et al., 

2006).  

The most prominent features shown by our records are two sharp negative excursions 

with an intervening positive excursion. The first negative CIE occurs in the upper part of 

the Lithiotis member and is recorded only by the 
13

Corg curves with a shift of about 3-4‰. 

The second negative CIE starts in the last beds of the ―Lithiotis member‖ and reaches the 

lowest values at the boundary with the ―Oolitic limestones‖. This excursion is recorded by 

both curves but is distinctly larger in the 
13

Corg (4-5‰) than in the 
13

Ccarb curve (2-

2.5‰). 

The covariation of 
13

Ccarb and 
13

Corg makes a strong argument in favour of the 

primary origin of the second negative CIE. The main argument backing this assumption is 

that the potential biases acting on the inorganic and organic component of marine 

carbonate sediments are different and not expected to act synchronously. In particular the 

carbon isotope ratio of organic matter is considered to be much more resilient to early 

diagenetic modification by meteoric fluids, the most common bias plaguing the 
13

Ccarb 

record of platform carbonates. On the other hand, changes in the composition of organic 

matter, the greatest potential source of bias for the 
13

C record of bulk organic matter 

(Hayes et al., 1990; Hayes, 1993), are not expected to affect also the inorganic component 

of sediments. 

The view that covariation of the isotopic signal recorded by inorganic and organic 

components of marine sediments implies a primary ―oceanic‖ signal has been recently 

challenged by Oehlert et al. (2011). According to their data, the 
13

Corg of recent sediments 

of the Great Bahama Bank (GBB) is substantially heavier than that of organic matter 

produced in pelagic environments, especially on the shallow interior of the bank. Towards 

the platform margins the 
13

Corg values become more depleted. This spatial pattern 
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correlates with grain-size distribution. On the other hand, the carbon isotope ratio of the 

inorganic component of bank top sediments is relatively homogeneous for all the facies. As 

a result, there is no significant correlation between the 
13

Corg and 
13

Ccarb values with the 

exception of mud-dominated facies (fig. 7), where there is a positive correlation between 

the two fractions. 

 
 Figure 7 - Crossplots of the 

13
C of the organic and carbonate component. 
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Figure 8 (previous page) - Chemostratigraphic correlation of the platform carbonate sections of the southern 

Apennines with the reference section of Peniche (Lusitanian basin, Portugal, Hesselbo et al., 2007) and with 

the Valdorbia section (Umbria-Marche Basin; Sabatino et al., 2009). The strontium isotope stratigraphy of 

Monte Sorgenza is from Woodfine et al. (2008).  

 

Our dataset is not comparable to the GBB one, inasmuch as it is not made of samples 

of exactly the same age: i.e. it incorporates the effects of secular changes of the carbonate 

platform DIC isotopic composition. Anyway, what we found is that correlation between 
13

Corg and 
13

Ccarb is very low if we pool all the samples. When we consider the single 

lithofacies, correlation is high for oolitic limestones, moderate for mudstone-wackestone, 

poor for packstone-grainstone and Lithiotis-rich facies.  

The close association of the second negative CIE with the prominent change from 

mud-rich facies to oolitic grainstones also merits evaluation. Actually, the excursion 

straddles this facies boundary. Very low values are reached already in the last beds of the 

mud-rich interval of the Lithiotis member and persist in the first beds of the oolitic 

limestones. Then, there is a recovery to higher values, comparable to pre-excursion ones, 

within the oolitic limestones. Therefore, there is no strict relation between facies and 

carbon isotope ratios, which could call for a control by local sedimentary processes. This 

further supports the hypothesis that the negative CIE at the boundary between the Lithiotis 

member and the oolitic limestones, records a change in the isotopic composition of the 

oceanic DIC.   

The interpretation of the first negative CIE is more problematic, because it is 

recorded only by 
13

Corg. Assuming that it represents a real feature, its absence in the 

carbon isotope record of carbonate could be due to diagenetic overprint. It is worth 

noticing that the interval where the negative CIE is measured in 
13

Corg, is largely made of 

grainy facies (packstone-grainstone with P. mediterraneus) and Lithiotis-rich limestones. 

In both sections these lithofacies are characterized by the lowest correlation between 
13

Corg and 
13

Ccarb, which could be an indication that their 
13

Ccarb is largely controlled by 

carbonate diagenesis.  

The alternative explanation is that this negative CIE is not recorded by the carbonate 

component because it is due to a change in the composition of the organic matter and not 

to a change in the isotopic composition of the oceanic DIC. 

 

3.5.3 Correlation with reference 
13

C curves 

In figure 8 we propose a correlation between the carbon isotope curves of the ACP 

and the reference section of Peniche (Lusitanian Basin, Hesselbo et al., 2007; Suan et al, 

2008a), a GSSP candidate for the basal Toarcian. We added also the Valdorbia section 

(Umbria-Marche Basin, Sabatino et al., 2009), which refers to a basin that was only a few 

tens of km north of the ACP  in the Early Jurassic (fig. 1).  

We tentatively correlate the first negative CIE of our curves with the Pliensbachian-

Toarcian boundary excursion and the second negative CIE with the T-OAE excursion. This 

correlation is compatible with the low resolution biostratigraphy of the APC if an age close 

to the Pliensbachian-Toarcian boundary is accepted for the extinction of P. mediterraneus 

(Bassoulet, 1997; Barattolo and Romano, 2005) and for the demise of Lithiotis bivalves 

(Fraser et al., 2004). The correlation is also supported by the strontium isotope stratigraphy 

of Woodfine et al. (2008), showing that the lowest Sr isotope values, seemingly 

corresponding to the Pliensbachian-Toarcian boundary (McArthur et al., 2000), occurs at 

the level of the first CIE. 

From fig. 6 it is evident that the second negative CIE of our Monte Sorgenza carbon 

isotope profile is not the -6‰ excursion within the oolitic limestones that Woodfine et al. 

(2008) interpreted as the T-OAE excursion. The latter occurs very close to a fault zone and 
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its very depleted 
13

Ccarb values (down to -3‰) are probably associated with diagenetic 

calcite precipitated by fluids circulating in the fault damage zone. This is supported by 

three arguments: 1) this excursion is much attenuated in our samples that were taken along 

the same sampling path but at a slightly larger distance from the fault surface; 2) very 

negative 
18

O and very positive 
87

Sr/
86

Sr values (see fig. 5 in Woodfine et al., 2008) across 

this segment of the curve suggest the influx of diagenetic fluids; 3) the Woodfine et al. 

(2008) 
13

Ccarb  negative excursion corresponds in our 
13

Corg record to a minor shift (about 

1.5‰); this would be at odds with all the other records of the T-OAE showing a much 

larger excursion in 
13

Corg than in 
13

Ccarb (Cohen et al., 2007). 

From fig. 8 it is evident that the second negative CIE of our Monte Sorgenza carbon 

isotope profile is not the -6‰ excursion within the oolitic limestones that Woodfine et al. 

(2008) interpreted as the T-OAE excursion. The latter occurs very close to a fault zone and 

its very depleted 
13

Ccarb values (down to -3‰) are probably associated with diagenetic 

calcite precipitated by fluids circulating in the fault damage zone. This is supported by 

three arguments: 1) this excursion is much attenuated in our samples that were taken along 

the same sampling path but at a slightly larger distance from the fault surface; 2) very 

negative 
18

O and very positive 
87

Sr/
86

Sr values (see fig. 5 in Woodfine et al., 2008) across 

this segment of the curve suggest the influx of diagenetic fluids; 3) the Woodfine et al. 

(2008) 
13

Ccarb  negative excursion corresponds in our 
13

Corg record to a minor shift (about 

1.5‰); this would be at odds with all the other records of the T-OAE showing a much 

larger excursion in 
13

Corg than in 
13

Ccarb (Cohen et al., 2007). 

Our interpretation of carbon isotope stratigraphy of the ACP produces a better 

correlation with the Trento platform by equating the base of the ―Oolitic limestones‖ of 

southern Appennines with the base of the upper Tenno Formation, which marks the 

appearance of oolitic limestones on wide sectors of the Trento platform, close to the 

boundary between the tenuicostatum and the serpentinum ammonite zones (Cobianchi and 

Picotti, 2001). 

The T-OAE 
13

Corg excursion is distinctly smaller in the ACP than at Hawsker 

Bottoms (Kemp et al., 2005) and Valdorbia (Sabatino et al., 2009) (-5‰ vs -7‰ and -

6.5‰, respectively). This could be due to the presence of a gap in the carbonate platform 

sections, corresponding to the time interval when the lowest values were reached in deep-

water sections. The presence of a gap is also supported by the very sharp profile of the 

excursion in the ACP, lacking the distinct steps, which are a very significant feature of this 

isotopic event (Hesselbo and , 2011). Moreover the plateau of depleted isotopic 

values, observed for instance at Peniche and Valdorbia (fig. 8), is very reduced in our 

sections. Two alternative estimates, both based on cyclostratigraphy, have been proposed 

for the duration of the Early Toarcian CIE. According to the precession-based astronomical 

time scale of Kemp et al. (2005), the interval of more negative values takes 120 kyr. 

According to the eccentricity-based time scale of Suan et al. (2008b) and Sabatino et al. 

(2009), the same interval takes about 400 kyr. Since at least part of this interval is 

represented in our sections, the two alternative time-scales constrain the maximum 

duration of the gap in the Apenninic Carbonate Platform to < 120 kyr or to < 400 kyr.  

 

3.5.4 The late Pliensbachian-early Toarcian evolution of the Apenninic Carbonate 

Platform in the time-frame set by the carbon-isotope correlation 

Chemostratigraphic correlation with the well-dated reference section of Peniche sets 

the stage for discussing the evolution of the ACP in the framework of Late Pliensbachian-

Early Toarcian palaeoenvironmental perturbations.  

During the Pliensbachian the ACP was a very healthy carbonate platform in the 

supersaturated shallow waters of the tropical Tethys. Like many carbonate platforms in 
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that latitudinal belt, it was dominated by very productive aragonitic biocalcifiers: the 

massive bivalves of the Lithiotis group (Fraser et al., 2004) and the calcareous alga 

Palaeodasycladus mediterraneus (Flügel, 1991; Barattolo, 1991; Barattolo et al., 1993).  

In the earliest Toarcian (i.e. between the first and second negative CIEs) the 

contribution of Lithiotis bivalves and Palaeodasycladus to the carbonate factory decreases. 

Lithiotis biostromes become thinner and less recurrent, and there is a shift to mud-

dominated facies. The occurrence of multiple subaerial exposure surfaces, marked by 

marls with nodules of restricted marine to paralic mudstones-wackestones, indicates that in 

both sections a sequence boundary zone (sensu Strasser et al., 2000) is present at this 

stratigraphic level. The Pliensbachian-Toarcian boundary interval is known as a time of 

severe palaeoenvironmental perturbations and rapid climatic changes (Suan et al., 2010) 

and is also associated with the onset of the Toarcian mass-extinction event (Wignall et al., 

2005). This is also the time of carbonate platform crisis and drowning on both sides of the 

Tethyan Ocean (Bassoulet and Baudin, 1994; Cobianchi and Picotti, 2001; Léonide et al., 

2011). Climate-forced increased delivery of nutrients to coastal areas, coupled to rapid sea-

level changes, is envisaged as the main cause of platform crisis (Cobianchi and Picotti, 

2001; Wilmsen and Neuweiller, 2008; Bodin et al., 2010; Merino-Tomé et al., 2011).  

The thick marly interlayers close to the Pliensbachian-Toarcian boundary in the ACP 

record increased weathering under a warm-humid climate (see also Woodfine et al., 2008). 

However, the ACP continued growing in shallow water, with Lithiotis bivalves and 

Palaeodasycladus still making a significant contribution when fully marine facies are 

present. Therefore, in this resilient carbonate platform there is no significant biotic change 

at the Pliensbachian-Toarcian boundary. 

A drastic change occurs, indeed, in the Early Toarcian, at the level of the T-OAE 

isotopic excursion. Lithiotis bivalves and the green alga P. mediterraneus, the most 

productive biocalcifiers of Pliensbachian tropical carbonate platforms, disappear and the 

carbonate factory switches from a biogenic to a chemical mode with the massive 

occurrence of unfossiliferous oolitic limestones. 

 

 
Figure 9 - Close-up of the boundary between the ―Lithiotis member‖ and the ―Oolitic Limestones‖ in the 

Mercato San Severino section. 
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A close-up of the boundary between the ―Lithiotis member‖ and the ―Oolitic 

Limestones‖ in the Mercato San Severino section (fig. 9) shows that a first bed of oolitic 

grainstones records a -2‰ shift of 
13

Corg values. This is followed by a thin bed of Lithiotis 

floatstone truncated by an erosional surface. The next bed marks the definitive switch to 

massive oolitic limestones and records a further -1.8 shift in 
13

Corg. As explained above, 

the shape of the 
13

Corg curve suggests the occurrence of a gap whose maximum duration is 

estimated to between less than 120 kyr and less than 400 kyr (see above). The best 

candidate for a gap is the erosional surface truncating the last bed of Lithiotis floatstone 

and overlain by oolitic grainstone (fig. 9).  As there is no evidence of emersion or meteoric 

diagenesis, we interpret it as a submarine hardground. Of course, a polyphase history 

would be expected for this surface, especially if the long estimate of the gap duration is 

accepted.  

 

3.5.5 Disentangling local from global factors 

The late Pliensbachian-early Toarcian evolution described above for the ACP is not a 

local pattern.  

The large bivalves of the Lithiotis group were the most prolific carbonate producers 

of many Tethyan carbonate platforms during the Pliensbachian (Broglio-Loriga and Neri, 

1976; Fraser et al., 2004). The green alga P. mediterraneus is also a very typical 

component, often in rock-forming abundance, in Early Jurassic shallow water limestones 

(Flügel, 1991; Barattolo, 1991).  

In many Tethyan carbonate platforms the demise of the Lithiotis/Palaeodasycladus 

carbonate factory coincides with platform drowning, in some cases heralded by the 

backstepping of platform margin facies on inner lagoonal facies. Diachronous drowning 

across the Tethyan realm was controlled by synsedimentary block-faulting related to the 

opening of the Jurassic Tethys (Bernoulli and Jenkyns, 1974; Manatschal and Bernoulli, 

1999; Santantonio and Carminati, 2011). A widespread platform drowning event occurred 

in the middle Carixian ibex zone in the Western Tethys (Marino and Santantonio, 2010). 

Among the few platforms that survived this drowning event, the carbonate banks of the 

High Atlas (Morocco) were terminated by diachronous drowning close to Pliensbachian-

Toarcian boundary. The terminal drowning was seemingly caused by a combination of 

tectonically enhanced rapid sea-level rise and paleoenvironmental disturbance associated 

with increased nutrient levels (Wilmsen and Neuweiler, 2008; Merino-Tomé et al., 2011).  

If we look at the resilient platforms that survived even this drowning event at the 

Pliensbachian-Toarcian boundary, it seems that the shift from a biotic carbonate factory, 

dominated by Lithiotis bivalves and P. mediterraneus, to a chemical carbonate factory, 

dominated by oolites, is a common pattern. In the Trento Carbonate Platform, the 

Lithiotis/Palaeodasycladus carbonate factory is well developed in the Rotzo member of the 

Calcari Grigi Formation. In the western sector of the platform, the Rotzo member is 

overlain by platform margin oolitic grainstones already in the latest Pliensbachian (close to 

the margaritatus-spinatum boundary, Cobianchi and Picotti, 2001). But more to the east, in 

the Altopiano di Folgaria, the Lithiotis/Paleodasycladus limestones of the Rotzo member 

continue in the early Toarcian, when they are sharply overlain by the oolitic limestones of 

the San Vigilio Oolite Formation, which at this time covers the whole platform (Masetti et 

al., 1998). The base of the San Vigilio Oolite is poorly dated but in the adjacent 

Lombardian basin the ooids of the San Vigilio Oolite appear in the late Early Toarcian 

serpentinum zone (Picotti and Cobianchi, 1996).  

Also in the Pelagonian Carbonate Platform (NE Evvoia, Greece) Lithiotis limestones 

are abruptly overlain by oolitic limestones (Scherreiks et al., 2009) at a level that, within 

the uncertainty of poor biostratigraphic dating, could be coeval with the shift observed in 

the ACP. 
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In the Adriatic Carbonate Platform, Lithiotis limestones are very common in inner 

platform sectors during the Pliensbachian. In the Early Toarcian dark heavily bioturbated 

limestones (―spotty limestones‖), were deposited in the NW part of the platform (Slovenia, 

central and W Croatia and W Bosnia), while the rest of the platform was characterised by 

oolitic limestones (Vlahović et al., 2005; Ĉadjenović et al., 2008).  

The record of all these resilient platforms confirms that, on a supraregional to global 

scale, the final demise of the Lithiotis/Palaeodasycladus carbonate factory occurred close 

to the Pliensbachian-Toarcian boundary and most probably in the early Toarcian. An early 

Toarcian extinction of Lithiotis bivalves is also documented out of the western Tethys, in 

south America and Oman (Fraser et al., 2004) and in Tibet (Newton et al., 2011). Within 

the limits of biostratigraphic dating, this is fully compatible with our hypothesis, supported 

in the ACP by carbon isotope stratigraphy, that the final demise is coeval with the onset of 

the early Toarcian CIE. Also the pattern of a sharp change from a biotic carbonate factory, 

dominated by bivalves and calcareous algae, to a chemical carbonate factory, with 

widespread deposition of oolitic limestones, seems to be a common feature of Tethyan 

platforms.  

 

3.5.6 What caused the demise of the Lithiotis/Palaeodasycladus carbonate factory? 

A dramatic decrease in pelagic carbonate production by nannoplankton and a 

reduction in the size of some species have been documented across the T-OAE (Erba, 

2004; Mattioli et al., 2004, 2008, 2009; Tremolada et al., 2005). Acidification of surface 

waters, driven by a rapid increase of pCO2, has been invoked to explain this 

biocalcification crisis (Mattioli et al., 2004; Erba, 2004; Tremolada et al., 2005). However, 

according to Mattioli et al. (2009), other causes played a major role in the nannoplankton 

crisis, like enhanced runoff and freshwater discharge with ensuing increase in nutrient 

levels and decrease of salinity in surface waters of western Tethys epicontinental basins.  

A decrease in carbonate saturation of surface waters would have been detrimental 

also for the prolific biocalcifiers of carbonate platform environments. Recent research on 

ocean acidification, based mainly on single species laboratory manipulations and on 

mesocosm experiments, demonstrates that calcifying organisms can be threatened by the 

decrease of pH and surface water carbonate saturation forced by the rapid increase of pCO2 

(Royal Society, 2005; Fabry et al., 2008; Doney et al., 2009).  

Lithiotis bivalves, the most typical carbonate producing biota of Pliensbachian 

carbonate platforms, were aberrant pterioid bivalves which constructed bioherms in 

nearshore tropical environments (Fraser et al., 2004). They are actually a group of five 

genera that shared the same shell microstructure, an outer layer of calcitic prisms with 

middle and inner nacreous layers (Accorsi Benini and Broglio Loriga, 1982; Broglio 

Loriga and Posenato, 1996), but had different morphologies and habitats. In particular two 

genera, Lithiotis and Cochlearites, have been interpreted as possible mixotrophs, building 

bioherms in oligotrophic environments, while Lithioperna seemingly inhabited a niche 

similar to that of modern oyster reefs (Fraser et al., 2004).  

Under the assumption that Jurassic Lithiotis bivalves shared the same physiology and 

calcification mechanisms of extant bivalves, the data on gregarious bivalves like mussels 

and oysters are particularly relevant to evaluate the possible response of Lithiotis to ocean 

acidification.  Laboratory manipulations have shown that the calcification rates of the 

edible mussel (Mytilus edulis) and of the Pacific oyster (Crassostrea gigas) decline linearly 

with increasing pCO2 (Gazeau et al., 2007). Early developmental stages of these bivalves 

are particularly affected. The growth of the planktonic larvae of Mytilus edulis is 

significantly affected by a decrease of pH (Gazeau et al., 2010) and increased sea-water 

pCO2 has detrimental effects on the early development of Crassostrea gigas  (Kurihara et 

al., 2008, Gazeau et al., 2011). The combined effect of decreasing hatching rates and 
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reduced shell growth could lead to a significant decline of the settlement success of 

mussels and other shellfishes (Gazeau et al., 2010; Talmage and Gobler, 2010).  

Along with Lithiotis bivalves, the other prolific biocalcifier of the Pliensbachian 

tropical carbonate factory was the dasycladalean alga Palaeodasycladus mediterraneus 

(Barattolo et al, 1993). Dasycladalean algae are a major group of benthic marine 

chlorophytes with a rich and diverse fossil record. Maximum diversity was attained during 

the Permian–Mid Triassic, Late Jurassic–Early Cretaceous, and Paleocene–Eocene 

(Aguirre and Riding, 2005). Dasyclad species diversity has declined since the Paleocene, 

and currently is at its lowest level since the Jurassic with only 38 species in 10 genera 

(Berger and Kaever, 1992; Berger, 2006). In modern carbonate platforms the role of 

Dasycladales as prolific carbonate producers has been taken by Bryopsidales like 

Halimeda (Hillis, 2001; Granier, in press). All extant dasycladaleans are aragonitic, and, 

with a few exceptions (Simmons et al., 1991), this was the mineralogy of the group 

throughout its history (Berger and Kaever, 1992). Calcification in extant Dasycladales is 

mainly extracellular. In particular, aragonite crystals precipitate in the mucilage within the 

intercellular space (Flajs, 1977). There are no specific studies on the effects of ocean 

acidification on dasyclads. However, many data exist on Halimeda. These data are 

particularly relevant because Halimeda is characterized by the same type of extracellular 

calcification as extant dasycladales (Borowitzka and Larkum, 1976a). It has been recently 

demonstrated that calcification of H. discoidea is directly coupled to the local pH, thus it is 

to be expected that acidification of seawater will decrease the calcification (De Beer and 

Larkum, 2001). The detrimental effect of a pH decrease on Halimeda calcification, already 

reported by Borowitzka and Larkum (1976b), has been recently confirmed by Sinutok et 

al. (2011). Direct manipulation of pCO2 produced a net calcification increase in H. 

incrassata relative to the control under intermediate pCO2 levels (605 and 903 ppm), 

followed by a decline at the highest pCO2 level (2856 ppm) (Ries et al., 2009). A decrease 

in diversity, abundance, percentage cover and reproductive capacity has also been 

documented for Halimeda, and other calcareous algae, in natural environments exposed to 

elevated CO2 levels (Porzio et al., 2011).  

Assuming that the mechanism and energetic cost of calcification was the same as in 

their modern counterparts (i.e. shellfishes and Halimeda), Lithiotis bivalves and the 

dasycladalean alga P. mediterraneus were seemingly vulnerable to ocean acidification. 

Their abrupt disappearance at the onset of the negative CIE associated with the T-OAE 

suggests a common causal link. The massive injection of isotopically depleted CO2, which 

is generally invoked to explain the negative CIE (Hesselbo et al, 2000; McElwain et al., 

2005; Kemp et al., 2005; Beerling and Bretnall, 2007; Cohen et al., 2007), could have 

caused also a decrease in surface water carbonate saturation. Even if for the T-OAE there 

is no positive proof of a significant shoaling of the CCD, like that documented for the 

PETM, the crisis of calcareous nannoplankton has been taken as evidence of ocean 

acidification (Erba, 2004; Mattioli et al., 2004; Tremolada et al., 2005). On this basis we 

put forward the hypothesis that the demise of the Lithiotis/Palaeodasycladus carbonate 

factory of Pliensbachian tropical carbonate platforms was caused by a short-term drop in 

carbonate saturation. The rapid sea-water temperature rise at the onset of the T-OAE 

(McArthur et al. 2000; Bailey et al. 2003; Rosales et al. 2004; van de Schootbrugge et al. 

2005; Suan et al., 2008a) may have played an additional role. To this regard it is worth 

mentioning that synergistic detrimental effects of elevated temperature and CO2 

concentration on calcification have been documented both for shellfishes (Lannig et al., 

2010) and Halimeda (Sinutok et al., 2011). As to increased nutrient input, another feature 

of the T-OAE (Cohen et al., 2004; Suan et al., 2008; Dera et al., 2009), it is difficult to 

envisage how it could have acted on isolated carbonate platforms, like the ACP (fig. 1). 

Even at a time of increased weathering driven by global warming, palaeogeographic and 
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palaeoceanographic conditions would have probably assured the existence of ―oligotrophic 

refugia‖. Moreover, even if there is no consensus about the trophic requirements of 

Lithiotis bivalves, at least some of them were probably adapted to mesotrophic conditions 

(Fraser et al., 2004).  

The hypothesis of demise of the Lithiotis/Paleodasycladus carbonate factory by 

ocean acidification is not at odds with the hypothesis that Lithiotis bivalves were adapted 

to high pCO2 (Fraser et al., 2004). High CO2 concentration and long-term increase of pCO2 

do not promote acidification because the ocean is buffered on time scales longer than 10s 

of kyr (Kump et al., 2009). On these time-scales carbonate saturation can be maintained 

high and decoupled from pH as long as a balance is kept between sources (weathering) and 

sinks of alkalinity (CaCO3 burial in shallow and deep-water). Only events of geologically 

`rapid' (<10 kyr) CO2 release will overwhelm the alkalinity buffer and produce a coupled 

decline in both pH and carbonate saturation (Kump et al., 2009; Ridgwell and Schmidt, 

2010).  

Estimates of the duration of the first two stages of the early Toarcian CIE, i.e. the 

negative shift and the interval of persistent low isotopic values (C1 and C2 intervals of 

Suan et al., 2008b), ranges from ca 200 kyr to ca 600 kyr, based on cyclostratigraphy 

(Kemp et al., 2005; Suan et al., 2008b; Sabatino et al., 2009). Alternative estimates imply 

very different rates of CO2 release, which are the most significant constrain on the possible 

cause of the isotopic excursion, together with estimates of the size of the light carbon 

reservoir. Under the hypothesis that the whole CIE lasted ca. 200 kyr, each of the three 

abrupt 
13

Corg  steps making the negative wing of the excursion would take ca. 2 kyr 

(Kemp et al., 2005) or even less (Cohen et al., 2007). Given the magnitude of the 

excursion, this timescale implies a rate of CO2 release that would be rapid enough to 

overwhelm the buffering capacity of ocean alkalinity and cause a significant drop of 

seawater carbonate saturation also in the shallow tropics. In the alternative estimate of 

Suan et al. (2008b), the whole negative shift takes ca. 150 kyr but each of the abrupt steps 

may have lasted less than 20 kyr. Considering that the buffering capacity of the Early 

Jurassic ocean could have been less efficient than that of the modern ocean, owing to a 

different partition of carbonates between shallow and deep water (Zeebe and Westbroek, 

2003; Ridgwell, 2005; Ridgwell and Zeebe, 2005), also with this longer timescale the rate 

of CO2 release could be rapid enough for a scenario of ocean acidification.  

Caldeira and Wickett (2003) calculated that oxidation of 5000 Gt carbon over time 

scales of <100 kyr would produce a decrease in surface ocean pH by >0.7 units and deep-

ocean pH by 0.4 units, corresponding to a fivefold reduction in carbonate ion 

concentration. Estimates of the mass of light carbon necessary to produce the magnitude of 

the δ
13

C excursion observed at the T-OAE range from >6000 to >9000 Gt of biogenic CH4 

(Beerling and Bretnall, 2007). Therefore, both the estimated rate and mass of carbon 

release during the T-OAE are adequate for a scenario of ocean acidification.  

 

3.5.7 Oolitic limestones as the carbonate overshoot following ocean acidification 

The studied sections record a shift from biogenic carbonate production 

(Lithiotis/Palaedasycladus limestones) to chemical carbonate precipitation (―Oolitic 

Limestones‖), coinciding with the onset of the early Toarcian CIE. This shift appears very 

abrupt (fig. 5), but we cannot exclude that a more gradual change occurred over the time 

interval that in our sections seemingly correspond to a gap. In any case the widespread 

occurrence of oolitic limestones following the demise of the Lithiotis/Palaedodasycladus 

carbonate factory is a common feature in many resilient platforms of the Tethyan ocean. 

Ooids are a common component of tropical shallow water carbonate sediments.  

They are the result of direct physico-chemical carbonate precipitation. Conditions 

necessary for the occurrence of ooids are: (1) water supersaturated with respect to 
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aragonite or high Mg-calcite; (2) a source of nuclei; and (3) a means of agitation. Modern 

distribution of oolitic sands, and notably their abundance in the Bahamas and rarity in the 

Pacific atolls, indicates that elevated carbonate supersaturation, favored by high pH and 

high alkalinity, is the essential factor limiting the global distribution of oolitic sands today 

(Rankey and Reeder, 2009). The same factors may have ruled the uneven distribution of 

ooids in the Phanerozoic record (Sandberg, 1985; Opdyke and Wilkinson, 1990). Seawater 

supersaturation might also have been a controlling factor for the short-term ―exclusive‖ 

occurrence of oolites after biocalcification crisis. A case in point is the Permian-Triassic 

crisis, which records the abrupt transition from skeletal to microbial and oolitic facies in 

carbonate platforms across the global tropics, coeval with a biotic crisis and a large carbon 

cycle perturbation (Payne et al., 2007, 2010). 

A biogeochemical model has been recently proposed for the marine geological 

signature of an ocean acidification event caused by rapid injection of large amounts of CO2 

into the ocean/atmosphere system (Kump et al., 2009). According to this model, on short 

time scales (kyr to 10s of kyr), the effects of ocean acidification should dominate the 

record, with dissolution of seafloor carbonates and a biocalcification crisis in surface 

waters. On longer timescales (>10s kyr) the global warming resulting form enhanced pCO2 

promotes enhanced rock weathering and neutralization of the CO2 and hence enhanced 

burial of CaCO3. In figure 10 we try to apply this model to the record of shallow water 

carbonate sedimentation during the T-OAE witnessed by the ACP.  

 

 
Figure 10 - A comparison between the Late Pliensbachian-Early Toarcian evolution of the Apenninic 

Carbonate Platform and the expectations of a biogeochemical model of ocean acidification (Kump et al., 

2009). 

 

In the first interval of our sections, large bivalves of the Lithiotis group and the green 

alga P. mediterraneus proliferated under very favourable environmental conditions. This 

―healthy‖ carbonate factory would correspond to the pre-event steady-state of the model. 

The demise of the Lithiotis/Palaeodasycladus carbonate factory coincides with the 

onset of the negative CIE associated with the T-OAE event. The adverse effects of 

decreasing pH and carbonate saturation have been proved in the lab and in the field for 

modern bivalves and calcareous green algae (see discussion above). Moreover, at the same 
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time a biocalcification crisis is documented by calcareous nannoplankton in the pelagic 

domain (Erba, 2004; Mattioli et al., 2009). On these grounds we surmise that the demise of 

shallow water biocalcifiers at the onset of the T-OAE records an episode of ocean 

acidification, corresponding to the ―dissolution interval‖ of the Kump et al. (2009) model.  

The widespread occurrence of oolitic limestones after the demise of the Lithiotis 

bivalves and P. mediterraneus seems to represent more than a ―normal‖ facies shift. In the 

absence of massive biocalcifiers, chemical precipitation, assisted or not by microbial 

activity, could have been the only effective way to buffer the increasing alkalinity of the 

shallow water ocean, forced by enhanced continental weathering and/or dissolution of 

deep-water carbonates. Deposition on a wide scale of oolitic limestones would represent 

the ―overshoot‖ in the CaCO3 preservation of the Kump et al. (2009) model. The fact that 

oolitic limestones are so frequent and dominant for the whole Toarcian-Aalenian interval, 

suggests that a new steady state at higher saturation levels was reached and that chemical 

precipitation prevailed until a new stock of massive tropical biocalcifiers evolved, some 

million years after the early Toarcian mass extinction event.  

 

 

3.6 Conclusions  
 

Chemostratigraphic correlation with the reference section of Peniche (Hesselbo et al., 

2007; Suan et al., 2008b) allows unprecedented high-resolution dating of the Early Jurassic 

platform carbonates of the southern Apennines. This correlation is used to explore the 

response of a resilient carbonate platform to the early Toarcian oceanic anoxic event. 

In the Apenninic Carbonate Platform, the Lithiotis/Palaeodasycladus carbonate 

factory, so typical of all the Tethyan tropical carbonate platforms during the Pliensbachian, 

was wiped out at the onset of early Toarcian negative carbon isotope excursion, seemingly 

marking the definitive extinction of these massive biocalcifiers. Drowning of other 

Tethyan platforms during the Pliensbachian or at the Pliensbachian-Toarcian boundary, 

was a local to regional process, controlled by the interplay of tectonic subsidence, sea level 

changes and palaeoenvironmental disturbance (Merino-Tomé et al., 2011). In the ACP, and 

in other resilient platforms, the disappearance of biocalcifiers coincide with a shift to 

chemical precipitation in the form of massive oolitic limestones. 

The extinction of carbonate platform biocalcifiers is coeval with a biocalcification 

crisis of calcareous nannoplankton (Erba, 2004). The coincidence with the negative CIE, 

interpreted as the result of the massive injection of CO2 into the atmosphere-ocean system, 

is consistent with a scenario of ocean acidification at the onset of the T-OAE. Laboratory 

manipulations and observations on naturally perturbed ecosystems suggest that shellfishes 

(a possible analogue of Lithiotis bivalves) and the green calcareous alga Halimeda (sharing 

the same mineralogy and probably also the same calcification mechanism of the Early 

Jurassic dasyclad Palaeodasycladus mediterraneus) are adversely affected by decreasing 

pH and carbonate saturation. 

We surmise that the demise of the Lithiotis/Palaeodasycladus carbonate factory was 

caused by  ocean acidification at the onset of the early Toarcian anoxic event. 

Massive oolitic limestones occur on top of the Lithiotis/Palaeodasycladus limestones 

in the Apenninic Carbonate Platform of southern Italy and in other resilient platforms of 

the Tethyan ocean. Similar to what observed for the Permian-Triassic boundary crisis, 

chemical precipitation took over on carbonate platforms as soon as ocean alkalinity 

recovered.  

The evolution recorded by the Apenninic Carbonate Platform across the T-OAE 

conforms to the expectations of a biogeochemical model for the marine geological 

signature of ocean acidification (Kump et al., 2009). 
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Very prolific biocalcification by massive bivalves and calcareous algae in the 

Lithiotis member represents the pre-event steady state of the model. The abrupt demise of 

Lithiotis bivalves and Palaeodasycladus at the onset of the CIE corresponds to the 

―dissolution interval‖. The oolitic limestones represent the ―CaCO3 preservation 

overshoot‖, marking the recovery of carbonate supersaturation driven by enhanced 

weathering. 

The Early Toarcian record of the southern Apennines could be relevant for research 

on present and future ocean acidification. The message is that the threat posed by rapid 

increasing pCO2 could be well beyond the potential of acclimation and evolutionary 

adaptation of marine biocalcifiers. 
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CHAPTER 4 – Clay-mineral assemblages and phosphorus content in 

upper Pliensbachian to lower Toarcian sediments of the Apenninic 

Carbonate Platform: isolated carbonate platforms are not threatened by 

increased continental weathering? 
 

4.1 Introduction 
 

The Late Pliensbachian-Early Toarcian was a time of important climatic changes  

with a long term rise in seawater temperature punctuated by cold and hot snaps (Dera et al., 

2009b; Suan et al., 2008a, 2010; Dera et al., 2011). Across the same time interval, the 

sedimentary archive contains evidence of two severe perturbations of the global carbon 

cycle, witnessed by prominent carbon isotope excursions (CIE) in marine carbonates and 

continental and marine organic matter. The first one occurred at the Pliensbachian-

Toarcian boundary (Hesselbo et al., 2007; Suan et al., 2008a; Littler et al., 2010). The 

second one starts at the end of the tenuicostatum ammonite zone and continues into the 

exaratum subzone (Jenkins and Clayton, 1997; Hesselbo et al., 2000, 2007; Röhl et al., 

2001; van Breugel et al., 2006). 

The latter CIE is associated with an episode of widespread deposition of organic-rich 

sediments known as the early Toarcian oceanic anoxic event (T-OAE; 183 Ma; Jenkyns, 

1988), one of the most important global events in the Mesozoic Era. The global nature of 

the Early Toarcian event has been challenged because the corresponding CIE is not 

recorded by the biotic calcite of belemnite guards from England, Germany and Spain (van 

de Schootbrugge et al., 2005; McArthur et al., 2008; Gomez et al., 2008). This prompted 

the revival of models explaining the CIE by local (intrabasinal) paleoceanographic 

processes (the so-called Küspert effect; Küspert, 1982). However, these models are not 

able to explain why the perturbation involved also the atmospheric reservoir, as 

demonstrated by the record of fossil wood (Hesselbo et al., 2000, 2007). Moreover, the 

discovery of the CIE in deep-water successions of Argentina and Japan confirms the truly 

global nature of the T-OAE carbon cycle perturbation (Al-Suwaidi et al., 2010; Gröcke et 

al., 2011).  

The early Toarcian CIE is thought to be due to massive input of isotopically light 

carbon, sourced either from the massive dissociation of methane hydrates (Hesselbo et al., 

2000; Kemp et al., 2005) or from the generation of thermogenic methane associated with 

the Karoo-Ferrar large igneous province (LIP) (McElwain et al., 2005; Svensen et al., 

2007).  

Geochemical and isotopic data from belemnite guards, brachiopods and fish teeth 

indicate that the T-OAE was coeval with a 6-7 °C very rapid warming of seawater 

(McArthur et al., 2000; Bailey et al., 2003; Rosales et al., 2004; van de Schootbrugge et al., 

2005; Gomez et al., 2008; Suan et al., 2008a; Dera et al., 2009b). This hot snap would have 

forced a global enhanced continental weathering, for which there is isotopic evidence from 

the record of 
187

Os/
188

Os and 
87

Sr/
86

Sr (Cohen et al., 2004) and mineralogical and 

geochemical evidence from clay-minerals and phosphorus (P) content of marine sediments 

(Dera et al., 2009a; Bodin et al., 2010). Fuelling of primary productivity by increased 

delivery of nutrients to coastal areas was the main cause of black shale deposition for the 

T-OAE, as for the other Mesozoic OAEs (Jenkyns, 2003).  

The T-OAE is also associated with a mass extinction event, resulting in a dramatic 

decline of biotic diversity in marine ecosystems (Little and Benton, 1995; Harries and 

Little, 1999; Cecca and Macchioni, 2004; Wignall et al., 2005; Wignall and Bond, 2008; 

Dera et al., 2010). Even though the terrestrial biotic record is yet relatively poorly 
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documented, it seems that terrestrial species were also affected (Philipe and Thévenard, 

1996).  

The Pliensbachian-Toarcian boundary interval has received comparatively less 

attention than the T-OAE, but there is overwhelming evidence that it was a time of 

important climatic change and faunal turnover. Actually, the Early Toarcian mass-

extinction event started at the Pliensbachian-Toarcian boundary (Little and Benton, 1995; 

Harries and Little, 1999; Wignall et al., 2005; Wignall and Bond, 2008) and oxygen 

isotope data from brachiopods indicate that a marked warming, comparable to the one 

reported for the T-OAE, occurred also across the Pliensbachian-Toarcian boundary (Suan 

et al., 2008a, 2010). That dramatic palaeoenvironmental perturbations started well before 

the onset of the T-OAE is also confirmed by the occurrence of a prominent CIE, first 

recorded at Peniche (Portugal, Hesselbo et al., 2007; Suan et al., 2008a) and subsequently 

also in Yorkshire (UK, Littler et al., 2010) and in the High Atlas (Morocco, Bodin et al., 

2010). As suggested by Bodin et al. (2010), the absence of the negative shift at the 

Pliensbachian-Toarcian boundary in some Northern European successions could be due to 

a hiatus or to strong condensation (Morard et al., 2003; Wignall and Bond, 2008; Mailliot 

et al., 2009).  

Even if black shales are not so widespread as for the T-OAE, the Pliensbachian-

Toarcian boundary in the British Isles is marked by the occurrence of a pyrite-rich, black 

shale interval (Wignall and Bond, 2008), indicating that anoxic conditions developed at 

least locally.  

A widespread episode of carbonate platform drowning is commonly associated with 

the Early Toarcian paleoenvironmental perturbations (Bassoullet and Baudin, 1994) but 

there is ample evidence that many Tethyan carbonate platforms drowned well before the 

onset of T-OAE, either in the Pliensbachian (Marino and Santantonio, 2010; Santantonio 

and Carminati, 2011 and references therein) or at the Pliensbachian-Toarcian boundary 

(Blomeier and Reijmer, 1999; Wilmsen and Neuweiler, 2008; Merino-Tomé et al., 2011). 

A combination of tectonics, eustatic sea-level changes and environmental deterioration is 

generally invoked as the cause of platform drowning (Wilmsen and Neuweiler, 2008; 

Bodin et al., 2010; Merino-Tomé et al., 2011; Léonide et al., 2011) or of platform crisis 

and significant carbonate factory shifts (Cobianchi and Picotti, 2001; Woodfine et al., 

2008).  

The Trento Carbonate Platform of northeastern Italy (Cobianchi and Picotti, 2001; 

Woodfine et al., 2008) and the Apenninic Carbonate Platform (ACP) of southern Italy 

continued growing in shallow water during the Toarcian. According to Woodfine et al. 

(2008), at Monte Sorgenza, a classical section for the Jurassic platform carbonates of the 

ACP (Chiocchini et al., 1994), clay-rich facies, indicative of reduced platform growth, 

occur close to the Pliensbachian-Toarcian boundary. During the T-OAE shallow water 

oolitic sediments were deposited: no significant facies change is recorded at the level of the 

negative CIE. The reconstruction of Woodfine et al. (2008) has been recently challenged 

(chapter 3). Their carbon isotope stratigraphy of two sections of the ACP (including Monte 

Sorgenza) shows two subsequent negative CIEs. The first one is recorded in the upper part 

of the Lithiotis member and closely precedes an interval with frequent cm to dm-thick 

marly interlayers, seemingly corresponding to the clay-rich interval of Woodfine et al. 

(2008). This excursion is interpreted as the expression in the ACP of the Pliensbachian-

Toarcian boundary CIE (chapter 3). The second, more prominent negative CIE, interpreted 

as the early Toarcian negative CIE, occurs at the top of the Lithiotis member, while the 

massive Oolitic limestones record a recover to more positive δ
13

C values. The very 

prominent negative excursion of Woodfine et al. (2008), occurring within the oolitic 

limestones at Monte Sorgenza, is seemingly caused by circulation of diagenetic fluids 

along a fault (chapter 3). These data indicate that in the ACP the demise of the most 
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prolific biocalcifiers of early Jurassic Tethyan carbonate platforms, i.e. the Lithiotis 

bivalves and the calcareous alga Palaeodasycladus mediterraneus, coincided with the T-

OAE negative CIE, while the ―clay-rich‖ interval is associated with a cluster of subaerial 

exposure surfaces in a sequence boundary zone (chapter 3). 

The main aim of this paper is to further investigate the response of the ACP to Late 

Pliensbachian–Early Toarcian paleoenvironmental perturbations. We produce the first 

record of P content and of clay-mineral assemblages for a late Pliensbachian-Early 

Toarcian carbonate platform. Phosphorus is the main biolimiting nutrient on geologic time 

scales (Tyrrell, 1999), and clay-minerals are a useful proxy of climate-induced changes in 

weathering intensity (Singer, 1984; Chamley, 1989). We use this original dataset, in 

conjunction with the carbon isotope stratigraphy of chapter 3, to compare the evolution of 

the ACP with that of other carbonate platforms for which increased nutrient levels have 

been implied as the main cause of crisis or drowning.  

 

 

4.2 Geological setting 
 

 
Figure 1 - Schematic geological map of the southern Apennines (redrawn from Bonardi et al., 1988) with 

location of the studied sections.  

 

The southern Apennine chain is a NE verging fold-and-thrust belt (Butler et al., 

2004; Mazzoli et al., 2008) that developed during the Neogene at the expense of the Afro-

Adriatic continental margin and evolved within the framework of convergent motion 

between the Afro-Adriatic and European plates since Late Cretaceous times (Dewey et al., 

1989; Mazzoli and Helman, 1994; Rosenbaum et al., 2002). Except for the remnants of the 

ophiolite-bearing Liguride Units that occur on top of the thrust pile, outcropping units 

consist of Mesozoic and Cenozoic rocks derived from the sedimentary cover of the 
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foreland plate. These include carbonate platform and pelagic basin successions, locally 

covered by Neogene foredeep and/or thrust-top basin sediments. The Apulian promontory 

represents the orogenic foreland (Mazzoli et al., 2008). 

Among the several more or less complex reconstructions proposed for the pre-

orogenic Meso–Cenozoic paleogeography of the southern Apennines, the most widely 

accepted one, grounded also in subsurface data, envisages two carbonate platforms, the 

Apenninic Carbonate Platform (ACP) and the Apulian Carbonate Platform, separated  by a 

deep basin, the Lagonegro Basin (Menardi Noguera and Rea, 2000 and references therein). 

The oldest neritic carbonates cropping out in the southern Apennines are Middle Triassic 

in age and there is ample evidence that shallow water carbonate sedimentation was 

established over wide areas during the Late Triassic (D‘Argenio and Sgrosso, 1974). In the 

ACP shallow water sedimentation persisted almost to the end of the Cretaceous, when the 

area underwent a generalized emersion. It was locally re-established during the Palaeogene 

(Trentinara Formation; Selli, 1962) and the Early Miocene (Roccadaspide–Cerchiara and 

Cusano Formation; Selli, 1957), to be eventually terminated by drowning and siliciclastic 

sedimentation in the Middle-Late Miocene.  

The Upper Triassic to Lower Cretaceous carbonates of the ACP are generally 

referred to flat-topped, tropical carbonate platforms dominated by chloralgal or chlorozoan 

associations (D‘Argenio et al., 1975) whereas the depositional system of Senonian rudist 

limestones of the southern Apennines has been interpreted as a ramp-like open shelf 

dominated by foramol-type assemblages (Carannante et al., 1997). 

 

 

4.3 Materials and methods 
 

All the analyses were carried out at the Institute of Geology and Paleontology of the 

University of Lausanne, Switzerland. The composition of clay-mineral assemblages of  70 

samples, 63 limestones and 7 calcareous marls, of the Mercato San Severino section and 25 

samples of limestones of the Monte Sorgenza was analysed with X-ray diffraction (Scintag 

XRD 2000 Diffractometer; Thermo-ARL, Ecublens, Switzerland), based on methods 

developed by Kübler (1987) and Adatte et al. (1996). Samples were crushed in a mortar 

and subsequently de-carbonated by HCl 10% (1.25 N) leaching during 20 min. Dissolution 

of the samples was promoted by ultrasonic disaggregation (3 minutes per sample). The 

insoluble residue was washed and centrifuged until a neutral suspension was obtained (pH 

7-8). Two granulometric fractions (<2 μm and 2–16 μm) were separated using the Stokes 

law. The selected fraction was pipetted and deposited on a glass plate. A first analysis was 

performed after air-drying at temperature room and a second one after saturation of the 

sample with ethylen-glycol, in order to identify swelling minerals. The intensity of the 

peaks of the identified minerals was measured for a semi-quantitative estimate of the 

proportion of clay-minerals, which is therefore given in relative percent without correction 

factors, because of the small error margin (<5%). 

 Total phosphorus analyses were performed on 115 limestone samples, 72 from 

Mercato San Severino and 43 from Monte Sorgenza. After crushing in a mortar, about 100 

mg of powder per sample were  mixed with 1 ml of MgNO3 and left to dry in an oven at 45 

°C for 2 h. The samples were then heated in a furnace at 550 °C for 2 h. After cooling, 10 

ml of 1 N HCl was added and the solution was subjected to constant shaking for 14 h. The 

solutions were filtered through a 63 μm filter, diluted ten times and analysed using the 

ascorbic acid method of Eaton et al. (1995). For this process, the solution was mixed with 

ammonium molybdate and potassium antimonyl tartrate, which in an acid medium react 

with orthophosphate to form phosphomolybdic acid. This acid was reduced with ascorbic 

acid to give an intense blue colour to the solution. The intensity of the blue colour, 
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determined with a photospectrometer (Perkin Elmer UV/Vis Photospectrometer Lambda 

10; Perkin Elmer, Waltham, MA, USA) gives the concentration of PO4 in mg/l by 

calibration with standard solutions of known concentration. Individual samples were 

measured three times and precision was better than 5%. Replicate analyses of samples have 

a precision better than 10%. 

 

 

4.4 Results 
 

4.4.1 Lithology and Stratigraphy 

The Mercato San Severino section is exposed in a quarry near the village of Mercato 

San Severino, 30 km northwest of Salerno (40°46‘53‖N, 14°43‘45‖E) (fig. 1). For this 

study we have analyzed a 99.8m thick succession including the upper part of the ―Lithiotis 

member‖ of the ―Palaeodasycladus Limestones‖ (0–82.1 m) and the lower part of the 

―Oolitic-oncolitic Limestones‖ (82.1–100 m) (fig. 2).  

The ―Lithiotis member‖ consists mainly of meter-thick ―Lithiotis‖ biostromes, 

alternating with coarse peloidal-intraclastic grainstones and rudstones with abundant 

remains of Palaeodasycladus mediterraneus. Other lithofacies occurring in this interval are 

fine-grained peloidal packstones-grainstones with gastropods and small benthic 

foraminifers (mainly valvulinids) and mudstone-wackestone with rare Palaeodasycladus, 

small thin-shelled gastropods and ostracods. Millimetre- to cm-thick discontinuous green 

marls cap some beds and permeates downward, filling a complex network of irregular 

cavities. The thickest marly levels contain nodules of mudstones with ostracods and thin-

shelled gastropods. These marly caps, which mark periods of ephemeral platform 

emersion, are not distributed evenly in the section. A first cluster of thicker and  more 

closely spaced nodular marly levels occurs at 37–46 m. A second cluster occurs between 

74 and 78 m. In this uppermost part of the Lithiotis member, the Lithiotis biostromes 

become thinner, more discontinuous and less frequent. Moreover, grain-supported 

lithofacies are replaced by mud-rich facies consisting of mudstones with ostracods and 

thin-shelled gastropods and mudstones-wackestones with benthic foraminifers and P. 

mediterraneus. The first bed of oolitic grainstone is at 82.1m from the base of the section. 

It is followed by a 15 cm-thick Lithiotis floatstone with dull whitish to pink subangular 

stout fragments of bivalve shells. At the top of this bed the Lithiotis shells are truncated by 

a sharp surface overlain by oolitic grainstone. The next bed is made of oolitic limestone 

with a few pinkish abraded fragments of bivalve shells with a thin oolitic coating. From 

there to the top, the section is made exclusively of massive unfossiliferous oolitic 

grainstones. 

The Monte Sorgenza section has been logged on the southern slope of Monte 

Sorgenza, about 7 km northeast of Formia (41°17‘39‖N, 13°40‘57‖E) (fig. 1). Stratigraphy 

and facies are basically the same as in the Mercato San Severino quarry but the Lithiotis 

member at Mt Sorgenza is characterized by a reduced frequency and thickness of Lithiotis 

biostromes (fig. 2). The most recurrent facies are wackestone-packstones with P. 

mediterraneus and coarse peloidal-intraclastic packstones-grainstones with gastropods, P. 

mediterraneous and benthic foraminifers. As in the other section, subaerial exposure 

surfaces are marked by mm- to cm- thick nodular marly caps. Between 24 and 39 m there 

is a poorly exposed interval which corresponds to the gentler and more densely vegetated 

segment of the slope. This interval seemingly corresponds to a cluster of marly levels. A 

second cluster of nodular marls occurs between 47 and 52 m. As at Mercato San Severino, 

the uppermost part of the Lithiotis member is marked by the decreased frequency and 

thickness of the Lithiotis biostromes and by a shift to more muddy facies. The oolitic 
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limestones start at 63.5 m. Their lower part is very massive and makes a steep cliff about 

10 m high. The top of the section is truncated by a small normal fault. 

The last occurrence of P. mediterraneus at top of the Lithiotis member is the most 

significant biostratigraphic event to constrain the age of these sections. In the 

biostratigraphic schemes of the southern Apennines it has been traditionally equated with 

the Lower-Middle Jurassic boundary (De Castro, 1991, Chiocchini et al., 1994), but there 

is evidence that it occurs close to the Pliensbachian-Toarcian boundary (Bassoulet, 1997; 

Barattolo and Romano, 2005).  

The carbon isotope stratigraphy of the Mercato San Severino and Monte Sorgenza  

sections has been recently presented (chapter 3). Two subsequent negative shifts have been 

recognized in the δ
13

Corg curves. The first shift, of about -4‰, occurs in the upper part of 

the Lithiotis member. The second shift, of about -5‰, coincides with the boundary 

between the ―Lithiotis member‖ and the ―Oolitic limestones‖. The first negative shift has 

been equated with the Pliensbachian-Toarcian boundary CIE and the second has been 

correlated with the negative wing of the T-OAE CIE (chapter 3). Based on 

chemostratigraphic correlation with the well-dated reference section of Peniche, a 

chronostratigraphic calibration has been developed for the two studied sections.  

 

 
Figure 2 - Stratigraphy, lithology, clay-mineral assemblages and P content of the Mercato San Severino and 

Monte Sorgenza sections. 

 

4.4.2 Composition of clay-mineral assemblages 

The clay-mineral assemblages of the Mercato San Severino section are relatively 

homogeneous and consist of kaolinite, chlorite, mica (illite) and illite-smectite mixed 

layers (I/S). Mica is the most abundant clay-mineral along the whole section (36–89%, 

average = 59±13%). Chlorite shows the lowest abundance (0–23%, average = 11±6%), 

with no significant trend. I/S and kaolinite show similar relative proportions  (3–40%, 

average = 16±9% and 0–39% average = 13±10%,  respectively), but opposite trends (fig. 

2). 
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In the lower part of the Lithiotis member (0-66.4 m), I/S is generally more abundant 

than  kaolinite, whose relative abundance stays below 19%. This pattern is reversed in the 

uppermost part of the Lithiotis member (66.4-81.1 m) where kaolinite becomes more 

abundant than I/S, reaching a maximum of 39% at 75.3 m from the base of the section. 

Kaolinite proportions return low (<9%) at the top of the Lithiotis member. In the Oolitic 

Limestones I/S is generally more abundant than kaolinite but there are two minor peaks of 

kaolinite abundance at 87.3 m (21%) and 97.4 m (16%).  

The Monte Sorgenza section is very similar to the Mercato San Severino section in 

terms of composition of the clay-mineral assemblages (fig. 2). The only remarkable 

difference is the distinctly higher abundance of kaolinite (0–55%, average = 27±18%) 

which substitutes illite/mica as the most abundant clay-mineral in the interval between 44.5 

and 60.6 m. Apart from this short interval, illite is the dominant clay-mineral (27–74%, 

average = 48±14%). As at Mercato San Severino, Chlorite shows the lowest abundance (0–

19%, average = 12±5%), while I/S shows a slightly lower proportion  (2–26%, average = 

14±7%). Relative trends of abundance between I/S and kaolinite are broadly comparable to 

those observed at Mercato San Severino. In the first part of the section (0–32 m) I/S is 

generally more abundant than kaolinite. The relative increase in kaolinite starts earlier at 

Monte Sorgenza, where, according to our chemostratigraphic correlation, kaolinite 

becomes more abundant than I/S already in the upper part of the spinatum ammonite zone 

(fig. 2). A broad plateau of kaolinite enrichment, with percentages fluctuating between 34 

and 55%, coincides with the uppermost part of the Lithiotis member (44.5–60.6 m). Then 

the proportion of kaolinite decreases sharply in the last beds of the Lithiotis member, 

reaching minimum values at the base of the Oolitic limestones. In the uppermost part of the 

section the kaolinite percentage rises again but it remains less abundant than I/S. 

 

4.4.3 Total Phosphorus content 

Total phosphorus (P) concentrations are very low across the whole Mercato San 

Severino section section, ranging from 6 to 50 ppm (average = 18±9 ppm). The P-curve 

can be divided into three segments (fig. 2). In the first segment (0–53.4 m) values fluctuate 

between 12 and 27 ppm (average 21±6 ppm). The smoothed curve shows a slightly 

decreasing trend. The second segment (53.4–82.1 m), corresponding to the uppermost part 

of the Lithiotis member, is occupied by a broad positive excursion, with superimposed 

high frequency fluctuations. A positive peak of 50 ppm is reached at 72 m and then the 

values decrease to a minimum of 10 ppm. The last segment of the curve (82.1–99.8 m), 

corresponding to the Oolitic limestones, after a kick to 28 ppm, shows very low P 

concentrations (6–12 ppm, average = 10±5 ppm), with a single positive kick to 18 ppm. A 

slight rising trend is highlighted by the smoothed curve. 

Phosphorus data are available only for the upper part of the Monte Sorgenza section. 

Total P concentrations are very low (8–34 ppm, average = 25±6 ppm). The P-curve can be 

divided into two segments (fig. 2). In the lower segment (30.1–63.5 m), corresponding to 

the upper part of the Lithiotis member, values fluctuate between  22 and 34 ppm (average 

= 28±3 ppm). The second segment (63.5-70.3 m) corresponds to the Oolitic Limestones. 

At its base there is a sharp decrease in P concentration, down to 8 ppm, followed by a 

gradual recovery toward slightly higher values at the top of the section (16 ppm). 
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4.5 Discussion 
 

4.5.1 Diagenetic and authigenic biases with regards to the palaeoclimatic 

interpretation of clay-mineral assemblages 

Clay-minerals in ancient marine sediments can be a useful indicator of 

palaeoclimatic conditions, provided that their composition is inherited from continental 

landmasses and has not been significantly altered by sediment reworking, authigenesis and 

diagenesis (Thiry, 2000). Therefore, the role of any of these potential biases must be 

carefully evaluated before inferring a palaeoclimatic signal from the clay-mineral 

assemblages data of the studied sections.  

Illite is the most abundant clay-mineral in both studied sections. This clay-mineral is 

formed during the initial stage of continental weathering (Weaver, 1989) and a crystallinity 

index is usually intepreted as due to minimum hydrolysation under either cold or dry 

conditions (Singer, 1988). However, illite and I/S mixed layers also derive from illitization, 

the progressive conversion of smectite to illite during burial diagenesis (Hower et al., 

1976; Weaver, 1989).  

Burial depth and Tmax values are usually suitable indices of the intensity of the 

illitization process, assuming that significant illitization of smectite starts when burial 

depth reaches about 2000 m and/or when Tmax reaches 430/440 °C (Burtner and Warner, 

1986; Chamley, 1989). Burial data from independent thermal indicators for the Miocene 

terrigenous sediments resting unconformably on the top of ACP successions suggest 

minimal influence by tectonic loading (Corrado et al., 2005) as the thickness of the tectonic 

loading did not exceed 1-1.5 km (Aldega et al., 2003). A minimum non-decompacted, 

thickness of about 1-1.5 km carbonate strata separates the Lower Jurassic sediments from 

the top of the whole ACP succession. Tmax data for the Cretaceous of the ACP range 

between 429 and 448 °C (Frijia et al., 2005). On the basis of these considerations, the 

complete lack of a pure smectitic phase in the studied sections is not unexpected.  

Apart from burial diagenesis, there is evidence that early illitization at low 

temperatures can occur in shallow marine alkaline environments submitted to wetting and 

drying cycles, under a hot and seasonally humid climate (Deconinck et al., 1998), or by K-

enriched brines formed by evaporation in marginal marine environments (Sandler et al., 

2006).  

Therefore, the illite and I/S contained in the clay-mineral assemblages of the studied 

sections could be at least partly due to illitization of former smectite, whose formation in 

continental environments is controlled by the weathering of soil under warm, semi-arid 

climates, with seasonal wet and dry regimes (Singer, 1984; Chamley, 1989). 

Chlorite, as illite, forms during the initial stage of continental weathering (Weaver, 

1989) and under cold and dry climate conditions. However, the occurrence of chlorite can 

be also related to burial diagenesis and particularly to the reactions between dioctaedral 

clay-mineral (kaolinite and mica) and carbonates (Hutcheon et al., 1980; Hillier, 1993). 

Therefore, most, if not all, of the chlorite in our sections could be due to diagenetic 

transformation, at the expense of the other clay phases. 

Kaolinite is the result of intense chemical weathering under humid subtropical and 

tropical climates and indicates intense hydrolysis of the source rocks in areas with a high 

superficial drainage (Hallam, 1984; Chamley, 1989). During burial diagenesis kaolinite 

can be transformed into illite and/or chlorite (Hurst and Irwin, 1982; Larson et al., 1996). 

Significant burial diagenetic overprint in our successions is implied by data on the burial 

history of the ACP (Aldega et al., 2003; Corrado et al., 2005; Mazzoli et al., 2008). 

However, kaolinite is relatively more resistant to illitization than smectite (Lanson et al., 

2002). Moreover, while burial diagenesis can produce a progressive decrease of kaolinite 
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abundance with depth (e.g. Hurst and Irwin, 1982; Lanson et al., 1996), it cannot produce 

reversible trends as those observed in the two studied sections (fig. 2).  

On the other hand, meteoric water circulation during early diagenesis may remove 

alkali elements in solution, leading to the development of authigenic kaolinite (Dera et al., 

2009a). In heterogeneous successions, zones of authigenic kaolinite enrichment should 

coincide with more porous and permeable lithologies, favouring diagenetic fluid 

circulation. The opposite pattern is observed in the studied sections, where the maximum 

abundance of kaolinite is found in the upper part of the Lithiotis member, which is 

dominated by mud-rich facies, by comparison with both overlying and underlying 

intervals, which are dominated by grain-supported facies. In conclusion, we assume that 

absolute proportions of kaolinite might have been slightly enhanced by authigenesis or 

diminished by burial diagenesis, but the initial signal of kaolinite variations through time 

has not been significantly distorted. The primary nature of the kaolinite signal is also 

supported also by the parallel trends observed in both sections and by the consistency of 

the total P signal (fig. 2). The slightly lower kaolinite abundance at Monte Sorgenza could 

be explained by a lower abundance in the source area or by a greater distance from the 

source.  Because of their larger size, kaolinite particles are deposited generally closer to the 

landmass, unlikely smectite particles, which are deposited further from the source (Gibbs, 

1977). Moreover, kaolinite has a high capacity to flocculate (Ruffell et al., 2002). A pattern 

of selective enrichment of kaolinite in more proximal areas has been observed in 

Valanginian-Hauterivian carbonate platform successions in the Swiss Jura (Adatte and 

Rumley, 1989), for the middle Jurassic succession of the Western Swiss Jura (Bolle et al., 

1996) and for platform-to-basin transects in the Lower Cretaceous of the northern Tethyan 

margin between France and Switzerland (Godet et al., 2008) and in the Upper Cretaceous 

of the Basque-Cantabrian Basin (Jiménez-Berrocoso et al., 2008). 

 

4.5.2 The source of detrital clay-minerals in the platform carbonates of the ACP 

While the Cretaceous carbonate platforms of the northern Tethyan margin were 

attached to the European continetal block, the ACP grew as an isolated platform, separated 

by relatively deep basins from all the landmasses, at least since the Early Jurassic 

(D‘Argenio, 1974) (fig. 3). This rules out any direct riverine supply from continental areas 

as the source of the terrigenous material in the carbonate sediments. The high potential of 

the eolian transport as a source of terrigenous material to shallow water carbonate banks 

far away from landmasses is hardly questionable, as demonstrated for instance by evidence 

of present-day long-range transport of African mineral dust to soils of western Atlantic 

islands (e.g. Prospero et al., 2001; Muhs et al., 2007). 

The open debate on the origin of the ―terra rossa‖, kaolinite-rich red clays associated 

with karst carbonates (see Merino and Banerjee, 2008, for a recent review), can provide 

significant ideas for the interpretation of  the source of the clay-minerals in our 

successions. After comparing the insoluble residue left by dissolving limestones of the 

Apulian Carbonate Platform to the ―terra rossa‖ occurring above the limestones, Moresi 

and Mongelli (1988) proposed a residual origin for Apulian ―terra rossa‖. More recent 

studies (Durn et al., 1999; Durn, 2003) suggest that the main component of ―terra rossa‖ is 

detrital, from eolian dust, while the residual component is subordinate. In order to produce 

a significant amount of terrigenous residue from carbonate platform dissolution, relative 

long-time or frequent emersion phases are clearly required. For the latest Pliensbachian-

Early Toarcian there are indeed geological evidences that reveal the existence of small 

emergent areas in the Lazio-Abruzzo sector (central Italy) of the ACP (Colacicchi, 1967; 

1987). This is also confirmed by the occurrence of levels with fossil plants in the 

―Palaeodasycladus limestones‖ of  Abruzzo (Praturlon, 1968), probably coeval to the more 

famous Venetian flora of the Rotzo Member of the Calcari Grigi Formation (e.g. De Zigno, 
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1868; Wesley, 1956, 1958). On the basis of geochemical and mineralogical data, Ortega-

Huertas et al. (1993) proposed that paleosols, developed by karstification and pedogenetic 

processes on emerged islands in the Lazio-Abruzzo sector of the ACP, were the source of 

terrigenous input into the Umbria-Marche basinal sediments.  

We surmise that paleosols, developed on emerged sectors of the ACP, were the main 

source also of the clay-minerals in the carbonate sediments of the studied sections. The 

lower content of kaolinite in the Early Toarcian Umbria-Marche basinal sections (generally 

<8%, with a peak of 17%; Ortega-Huertas et al., 1993),  compared with the platform 

carbonates of the ACP (maximum percentages of 34-55%), conforms to the pattern of 

selective enrichment of kaolinite in more proximal areas  along a platform-to-basin transect 

(Godet et al., 2008). 

 

 
Figure 3 - Toarcian palaeogeography of the peri-Tethyan domains (redrawn from Bassoullet et al., 1993) 

with position of key localities cited in the text. 

 

4.5.3 Clay-minerals in the Early Jurassic of the Peritethyan seas 

The distribution of clay-minerals in the Early Jurassic Peryitethyan seas has been 

recently reviewed by Dera et al. (2009a), who focused particularly on changes trough time 

of kaolinite abundance. According to these authors there were two major phases of 

kaolinite enrichments in marine sediments of northern Tethys: during the Pliensbachian 

davoei zone and during the Early and Middle Toarcian. Peaks of kaolinite abundance 

coincide with short term (1 Myr) periods of warming, as evidenced by the δ
18

O and Mg/Ca 
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proxies in belemnites, and with high gradient rising segments of the marine 
87

Sr/
86

Sr curve, 

used a proxy of continental weathering. According to the Dera et al. (2009a) database, the 

kaolinite signal is limited to Northern Tethyan basins, at latitudes between 30° and 45°N, 

implying wet conditions similar to those observed at present in tropical regions. By 

contrast the stable low abundance of kaolinite between 25° and 20°N, in the eastern and 

western Mediterranean domains, is taken as evidence of a drier climatic belt. 

The evolution of kaolinite abundance in the Apenninic Carbonate Platform seems to 

be partly in contrast with the conclusions drawn by Dera et al. (2009a). The clay-mineral 

assemblages of the studied sections are characterized by a general predominance of illite 

(up to 89%), pointing to a semi-arid to seasonally contrasted climate for most of the Late 

Pliensbachian-Early Toarcian, in agreement with the latitudinal distribution of clay-

minerals summarized by Dera et al. (2009a). However, both our sections record a distinct 

increase in kaolinite abundance in the Early Toarcian polymorphum zone (corresponding to 

the boreal tenuicostatum zone), suggesting a shift to more humid and warm climate (fig. 

4). This phase of kaolinite enrichment, starting at the Pliensbachian-Toarcian boundary in 

the Mercato San Severino section and in the latest Pliensbachian at Monte Sorgenza, ends 

in the uppermost part of the polymorphum zone, in correspondence of the onset of the early 

Toarcian negative CIE. Therefore kaolinite enrichment in southern Apennines would 

closely correspond to the global warming phase associated with the Pliensbachian-

Toarcian boundary event (Suan et al., 2008a) (fig. 4). The dataset of Dera et al. (2009a) 

shows no evidence of kaolinite enrichment at the transition from the Late Pliensbachian 

spinatum to the Early Toarcian polymorphum zone in the central Mediterranean domains. 

However, the only entries in the database are from early Toarcian sediments  of the 

Umbria-Marche basin (Ortega-Huertas et al., 1993; Monaco et al., 1994) and Lombardian 

basin (Deconinck and Bernoulli, 1991). There are no data for the late Pliensbachian. 

Therefore the apparent mismatch could be actually due to undersampling of the central 

mediterranean area in the Dera et al. (2009a) database. 

An overprint of sea-level fluctuations on the climatic signal recorded by the ACP 

cannot be ruled out. For instance, Ortega-Huertas et al. (1993) interpret the increase of 

kaolinite abundance towards the top of their sections as due to a regressive trend from the 

Early Toarcian to the Middle and Late Toarcian, making the studied sites more proximal to 

the source area. Similarly the kaolinite abundance in ACP sections could be also bear a 

eustatic signal. In fact, the enrichment phase occurs in correspondence of a sea-level fall 

reported just above the Pliensbachian-Toarcian boundary stage, while the following trend 

of decreasing abundance could parallel the Early Toarcian transgression (Hallam, 2001) 

(fig. 4). 

 

4.5.4 Phosphorus concentration as a proxy of  nutrient levels  

Phosphorus represents an essential nutrient for living organisms and is the main biolimiting 

factor on a geological time scale (Tyrrell, 1999). The flux of dissolved and particulate P 

into the ocean is mainly controlled by the rate of continental weathering, erosion, runoff 

and atmospheric transport (Föllmi, 1996; Compton et al., 2000). P is transferred into the 

sediments via accumulation of organic matter, absorption of P on clay-minerals and Fe- 

and Mn- hydroxides, direct precipitation of dissolved inorganic P, possibly due to 

microbial activity. The efficiency of P storage in the sedimentary reservoir depends on 

redox conditions. P accumulation is favoured under oxic conditions while P recycling is 

favoured in oxygen-depleted bottom waters (Ingall and Jahnke, 1994; van Cappellen and 

Ingall, 1996; Colman and Holland, 2000; Emeis et al., 2000). This process may result in a 

positive feedback mechanism between water-column anoxia, enhanced benthic P 

regeneration and increased marine productivity (Ingall and Jahnke, 1994, 1997; van 

Cappellen and Ingall, 1996; Colman and Holland, 2000).  
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Figure 4 (previous page) - A comparison of clay-minerals and phosphorus changes in the Apenninic 

carbonate platform with the record of P content in the Amellago section (High-Atlas, Morocco; Bodin et al., 

2010) and of kaolinite abundance in the Peritethyan seas (Dera et al., 2009a). The sealevel curve  is from Haq 

et al. (1987) seawater temperature is from Suan et al. (2008a; 2010).   

 

The amount of P in the sediments is therefore mainly controlled by three factors: the 

rate of delivery from the continents, the degree of bottom-water oxygenation, and the 

sediment accumulation rate. By knowing the sediment accumulation rate it is possible to 

estimate the P accumulation rate (PAR). Changes through time of PAR in ancient marine 

sediments have been successfully used to constrain nutrient levels in past oceans (Föllmi, 

1995, 1996; van de Schootbrugge et al., 2003; Bodin et al., 2006, 2010; Mort et al., 2007; 

Godet et al., 2010) and to investigate palaeoclimatic and palaeoceanographic processes 

regulating the P cycle.  

 

4.5.5 Phosphorus concentration in the Late Pliensbachian-Early Toarcian of the 

Apenninic Carbonate Platform 

In order to convert the values of P concentration measured in our sections into 

meaningful P accumulation rates, a high-resolution age-model is requested. A 

chronostratigraphic calibration of our sections has been obtained through carbon isotope 

stratigraphy by chemostratigraphic correlation to the well-dated reference section of 

Peniche (chapter 3). We used four tie points of this correlation (namely the negative peak 

of the Pliensbachian-Toarcian CIE, the onset of the  T-OAE negative CIE, the onset and 

the end of its positive wing), the cyclostratigraphic framework of Suan et al. (2008b) and 

the assumption of constant accumulation rate for each lithological interval, to estimate the 

PAR at Mercato San Severino (see additional material for further details). We obtained a 

range of values of 0.05-0.33 mg/cm
2
/kyr (0.13 ± 0.05). The same procedure cannot be 

applied at Monte Sorgenza where the positive wing of the T-OAE CIE is truncated by a 

fault. No major differences are observed between the shape and trends of the PAR and P 

concentration curves (fig. 2). Therefore, also because of the overlying simplistic 

assumption of constant sediment accumulation rate, we decided to use the P concentration 

curves to discuss nutrient level changes in the ACP. 

Total P concentration exhibits very low values in both studied sections. As riverine P 

from the continents, in particulate and dissolved forms, is rapidly consumed by primary 

producers in coastal areas and transferred to deep water or to the sedimentary record, P 

concentrations are near zero in most surface waters (Filippelli, 2008). Therefore is not 

surprising to find such low values in the sedimentary record of the ACP, which grew 

isolated from large continental blocks at least since the Early Jurassic (D‘Argenio, 1974). 

Moreover, although we are aware that a comparison should be done between PAR values, 

we remark that similar low P concentrations have been recently reported for the healthy 

photozoan carbonate factory of the Late Barremian Lower Schrattenkalk member (around 

8 ppm) and the Early Aptian Upper Schrattenkalk member (15 ppm) in the Helvetic Alps 

(Stein et al., 2011). 

Total P concentration curves show broadly comparable trends in the two studied 

sections (fig. 2). The most significant features are the positive excursion in the uppermost 

part of the Lithiotis member (corresponding to the polymorphum ammonite zone) and the 

very low P concentrations measured in the last beds of the Lithiotis member and especially 

in the lowermost part of the ―Oolitic limestones‖.  The positive excursion has a sharp peak 

of 50 ppm at 72 m from the base in the Mercato San Severino section while it is flatter at 

Monte Sorgenza, where the maximum value is 34 ppm. Moreover, at Monte Sorgenza 

there is a sharp decrease in P concentrations (from 29 to 8 ppm), coinciding exactly with 

the T-OAE δ
13

C negative shift, while at Mercato San Severino there is a more gradual 

decrease.  
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An increase in phosphorus concentrations, such as the one occurring in the 

uppermost part of the Lithiotis member, could be the result of reduced sedimentation rate. 

However, there is no sedimentological evidence of condensation in our sections and the 

positive excursion is present also in the PAR curves (fig. 2). Therefore, we can exclude 

that it is an artifact of changing sediment accumulation rates. Since there is no evidence of 

a change from dysoxic to oxic conditions, which would favor P accumulation, we conclude 

that the rise of concentration in the uppermost part of the Lithiotis member is due to 

enhanced delivery of P from adjacent emerged areas. The parallel increase in kaolinite 

abundance (fig. 2) suggests that both proxies are recording the same process, i.e. a phase of 

increased continental weathering in the polymorphum zone. This interpretation is further 

supported by the record of the Amellago section in the High Atlas (Morocco) (fig. 4), 

roughly at the same latitude of the southern Apennines (fig. 3), which shows a rapid 

increase in P content associated with the Pliensbachian-Toarcian boundary event (Bodin et 

al., 2010). The second marked increase in the P content which at Amellago is associated 

with the T-OAE δ
13

C negative shift (Bodin et al., 2010) is not observed in the southern 

Apennines, which exhibits in the same time interval a more or less sharp decrease in P 

concentration. One possible explanation is that local processes bias this specific interval of 

the P curve in the ACP sections. For instance, the very low P concentration in the ―Oolitic 

Limestones‖ could be controlled by the removal of fine-grained matrix, seemingly bearing 

most of the P, under high energy. However there are at least three elements that falsify this 

hypothesis: 1) our dataset show no systematic co-variation between texture and P content 

(table 1) at Mercato San Severino a gradual decrease in P concentration starts already in 

the Lithiotis member, where some samples have P concentrations as low as those measured 

at the base of the ―Oolitic limestones‖ (fig. 2; 3) a significant increase of P concentration is 

observed within the ―Oolitic Limestones‖, in the uppermost part of the studied sections 

(fig. 2).  

 
Mercato S.S. n Range (ppm) Average (ppm) st. dev.(ppm) 

m/w 25 8–50 23 9 
p/g 10 12–26 19 5 
Lithiotis f/r/b 15 8–37 23 6 
Oolitic g 22 6–28 10 4 
     
Mt Sorgenza     

m/w 18 22–34 29 4 
p/g 15 8–31 25 5 
Lithiotis f/r/b 2 28–28   
Oolitic g 8 11–25 16 4 

   Table 1 - Phosphorus content. 

 

Another possibility is that most, if not all, of the T-OAE positive excursion of total P 

concentration recorded at Amellago (Bodin et al., 2010) is lost in a gap at the boundary 

between the Lithiotis member and the ―Oolitic limestones‖, whose presence in our sections 

is supported by the lack of the distinctive steps in the negative wing of the CIE and by a 

less extended plateau of depleted δ
13

C  values (chapter 3). 

 

4.5.6 Climate, sea-level, nutrients and carbonate platform evolution  

According to Suan et al. (2008a, 2010) the main cause of Early Toarcian 

palaeoenvironmental perturbations was a twofold increase in nutrient levels associated 

with two pulses of temperature rise, seemingly triggered by volcanogenic CO2. The first 

phase is associated with the Pliensbachian-Toarcian boundary CIE. Increased nutrient 
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levels have been first invoked on the basis of a decrease in the abundance and size of 

Schizosphaerella in hemipelagic successions of Portugal, Italy and Switzerland (Picotti and 

Cobianchi, 1996; Erba, 2004; Suan et al., 2008a). Increased continental weathering and 

runoff, forced by a change from semiarid to humid climate, are documented in the High 

Atlas by a rapid increase of P content in hemipelagic successions (Bodin et al., 2010) and 

by an increased input of terrigenous material in proximal areas (Wilmsen and Neuweiler, 

2008). Increased nutrient levels have been invoked as the main cause of carbonate platform 

drowning close to the Pliensbachian-Toarcian boundary in the High Atlas (Blomeier and 

Reijmer, 1999; Wilmsen and Neuweiler, 2008; Bodin et al., 2010), with regional tectonics 

and sea-level changes playing perhaps an equally important role (Lachkar et al., 2009; 

Merino-Tomé et al., 2011). This phase of carbonate platform drowning has been recorded 

also in other Tethyan localities (Bassoullet and Baudin, 1994, Cobianchi and Picotti, 

2001). The increase in kaolinite abundance and P concentration, documented in this paper, 

witnesses that the signal of increased weathering and enhanced nutrient level is also 

recorded in the Apenninic Carbonate Platform of southern Italy. However, this platform 

was able to continue growing in shallow water.  

Carbonate platforms, and especially those dominated by photozoan carbonate 

factories, should be particularly vulnerable to increased nutrient levels, since they are 

adapted to oligotrophic conditions (Hallock and Schlager, 1986; Mutti and Hallock, 2003). 

Vecsei (2003) proposed a sea-water PO4
3-

 concentration of 30 ppm as a threshold for 

oligotrophic conditions in the present oceans. As the composition of the carbonate factory 

of the ACP, and seemingly its growth potential, were not significantly affected by the 

increase in nutrient levels, we suppose that the ―phosphorus threshold‖ was not reached. In 

fact, the large bivalves of the Lithiotis group and the green calcareous alga P. 

mediterraneus are still the dominant carbonate producers also in the interval characterized 

by the highest P concentration and by the highest relative abundance of kaolinite. 

The reduction in thickness and frequency of Lithiotis biostromes and the shift from 

grainy to mud-dominated facies, could be simply the result of a regressive trend (chapter 

3).  

A widespread episode of carbonate platform drowning is commonly associated with 

the Early Toarcian paleoenvironmental perturbations (Bassoullet and Baudin, 1994) but 

there is ample evidence that many Tethyan carbonate platforms drowned well before the 

onset of the T-OAE. Increased nutrient levels have been invoked as the main cause of 

carbonate platform drowning close to the Pliensbachian-Toarcian boundary in the High 

Atlas (Blomeier and Reijmer, 1999; Wilmsen and Neuweiler, 2008; Bodin et al., 2010). 

Regional tectonics and sea-level changes probably played an important role (Lachkar et al., 

2009; Merino-Tomé et al., 2011). Eodiagenetic ferroan calcite cements below hardground 

surfaces in carbonate platform successions from Southern Provence sub-Basin (France) 

have been recently interpreted as episodic eutrophication events at the Pliensbachian-

Toarcian transition (Léonide et al., 2011). Final drowning of the carbonate platform 

occurred before the onset of T-OAE, due to a combination of palaeonvironmental 

deterioration, sea-level change and block faulting (Léonide et al., 2007, 2011). 

Further evidences of enhanced nutrient levels come from the Trento Carbonate 

Platform (TCP) of the Southern Alps, which continued growing in shallow water during 

the Toarcian. The western sectors of the TCP (the Venetian carbonate platform of 

Cobianchi and Picotti, 2001), show a progressive shift from a photozoan to an heterozoan 

carbonate factory across the Pliensbachian-Toarcian boundary, followed by a shift to a 

prevalently non-skeletal carbonate factory in the Early Bajocian and eventually by 

drowning in the Aalenian. A gradual increase of trophic resources, forced by the interplay 

of climate and sea-level changes, is proposed as the main cause of these shifts (Cobianchi 

and Picotti, 2001). The appearance of spiculitic cherts close to the Pliensbachian-Toarcian 
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boundary has been interpreted as a sign of increased nutrient levels by Woodfine et al., 

(2008). A shift to clay-rich cherty facies, at the level of the T-OAE negative CIE, indicates 

a relative deepening under stressful eutrophic conditions, with rising seawater temperature 

possibly playing an additional role (Woodfine et al., 2008). In spite of this deepening 

event, the western sector of the TCP survived the T-OAE to be eventually drowned in the 

Aalenian. 

The Early Jurassic evolution of the Trento platform was clearly controlled by 

tectonics (Winterer and Bosellini, 1981; Santantonio and Carminati, 2011). Block faulting 

and consequent rapid subsidence have been generally assumed to be predominant factors in 

the disintegration and drowning episodes of Jurassic Tethyan carbonate platform 

(Bernoulli and Jenkyns, 1974). Woodfine et al. (2008) suggested that the lower subsidence 

rate (half of that estimated for the Trento Carbonate Platform), may have saved the ACP 

from drowning.  

The importance of the subsidence rate as a key variable, in addition to climatic and 

environmental changes, in controlling the fate of  carbonate platforms is more evident by 

comparing the evolution of the ACP to the other Italian carbonate platforms that grew 

during the Early Jurassic at about the same latitude (i.e. in the same climatic belt) and in 

the same palegeographic conditions (i.e. isolated from large continental blocks). The 

Panormide Carbonate Platform (Sicily, Italy), separated from the ACP by a deep basin, 

shows evidence of rapid subsidence from the Early to the Late Pliensbachian, drowning 

definitely well before the Pliensbachian-Toarcian boundary (Marino and Santantonio, 2010 

and references therein).  

The Calcare Massiccio Formation of central Italy shows that close to the Hettangian-

Sinemurian boundary continued extension fragmented this sector of the wide carbonate 

platform, leading to the formation of intrabasinal highs bounded by steep marine 

escarpments. In the early Pliensbachian (middle Carixian, ibex zone), benthic carbonate 

production ceased also on all intrabasinal highs (Santantonio and Carminati, 2011 and 

references therein).  

More to the south, in the Campanian-Lucanian sector of the ACP, shallow intra-

platform basins formed during the Late Triassic as a result of extensional tectonics and 

persisted during the Jurassic. However, all these small basins were eventually filled by the 

progradation of platform margin facies during the Middle Jurassic (Iannace and 

Zamparelli, 2002; Iannace et al., 2005). In agreement with Woodfine et al. (2008), we 

believe that the different fate of the southern Apennine sector of the ACP is more easily 

explained in terms of lower subsidence rates than of different palaeoenvironmental 

conditions. 

 

 

4.6 Conclusions 
 

Clay-minerals and P content of the Apenninic Carbonate Platform record increased 

weathering across the Pliensbachian-Toarcian boundary. Many carbonate platforms of the 

Peri-Tethyan domain responded to the shift of nutrient levels, associated with increased 

weathering and runoff, by either drowning or shifting to heterotrophic carbonate 

production. The ACP continued growing   in shallow water with no significant shift in the 

composition of the carbonate factory. This is probably due to the fact that the ACP grew 

isolated from major continental blocks and distant from the Early Jurassic upwelling zones. 

For these reasons nutrient levels did apparently not cross the threshold of ecological 

tolerance of the main carbonate producing biota.  

Moreover, the Apenninic Carbonate Platform was situated further from the Jurassic 

rifting axis than other carbonate platforms, which were progressively drowned during the 
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Early Jurassic. Lower subsidence rate was most probably a significant factor explaining the 

resilience of the ACP to Early Toarcian palaeoenvironmental perturbations.  

Across the early Toarcian OAE, clay-minerals and P content show no evidence of 

enhanced weathering in the ACP. Therefore, enhanced nutrient levels were probably not 

the cause of the demise of the Lithiotis/Palaeodasycladus carbonate factory. Massive 

biocalcifiers were wiped out by shallow water ocean acidification caused by the massive 

release of CO2 at the onset of the early Toarcian CIE, with the shift to the chemical 

carbonate factory of the ―Oolitic limestones‖ witnessing the ensuing overshoot of seawater 

carbonate saturation (chapter 3). 
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CHAPTER 5 - BIO-CHEMOSTRATIGRAPHY OF THE 

BARREMIAN−APTIAN SHALLOW WATER CARBONATES OF THE 

SOUTHERN APENNINES: PINPOINTING THE OAE1a IN A 

TETHYAN CARBONATE PLATFORM 
 

5.1 Introduction 
 

The Early Aptian oceanic anoxic event 1a (OAE1a), also known as the Selli event, 

was a time of severe perturbation of the global carbon cycle. The most popular scenario 

holds that intense volcanism, associated with the emplacement of the Ontong-Java large 

igneous province, forced the rapid increase of atmospheric pCO2 which triggered a cascade 

of palaeoenvironmental changes (Larson and Erba, 1999; Méhay et al. 2009; Tejada et al. 

2009). The deposition on a global scale of organic-rich marine sediments, the demise of the 

northern Tethyan carbonate platform and a biocalcification crisis recorded by calcareous 

nannoplankton, are among the most significant testimonies left in the geological record 

(Arthur et al., 1990; Wissler et al., 2003; Weissert and Erba, 2004; Erba et al., 2010).  

Most of what we known about the response of the Earth System to the perturbations 

associated with the Selli event comes from the vast amount of data recovered during the 

last decades from hemipelagic and pelagic sedimentary successions deposited in 

epicontinental and oceanic basins. Much less is known of the response of tropical 

carbonate platforms, which potentially contain a very valuable archive of environmental 

change (Hallock, 2001; Strasser et al., 2011).  

While the long-lived Urgonian platform was drowned shortly before the onset of the 

OAE1a (Wissler et al., 2003; Föllmi et al., 2006; Huck et al., 2011), some carbonate 

platforms in the central and southern Tethys were able to continue growing in shallow 

water. These resilient platforms preserve the record of palaeoecologic disturbance of 

tropical neritic ecosystems (Immenhauser et al., 2005; Huck et al., 2010). In order to 

unlock this archive, the first step is to bracketing the segments corresponding to OAEs, but 

this is not a trivial task in shallow water carbonate successions. Black shales are notably 

absent in carbonate platforms and also the occurrence of dysoxic facies can be misleading, 

because it is more often the result of locally restricted circulation than of global ocean 

anoxia (Davey and Jenkyns, 1999). Biostratigraphy may not always offer a complete 

solution either. The onset of the OAE1a has been dated to the lower part of the 

Deshayesites deshayesi ammonite zone (Föllmi et al., 2007). However, ammonites are very 

rarely found in shallow water carbonate platforms and there is at present no precise 

calibration of shallow water biostratigraphic schemes with the ammonite standard zonation 

and with the geological time scale. A recent review has highlighted how low 

biostratigraphic resolution and lack of precise chronostratigraphic calibration hinders a full 

appraisal of the response of carbonate platforms to climate and ocean chemistry changes 

during the Aptian (Skelton and Gili, 2011). 

Biozonations of central and southern Tethyan Early Cretaceous carbonate platforms 

are based on benthic foraminifers and calcareous algae (De Castro, 1991; Simmons, 1994; 

Husinec and Sokaĉ, 2006; Velić, 2007; Chiocchini et al, 2008).  Resolution is rather low (3 

biozones over 18 Myr, adopting the Geological Time Scale of Gradstein et al., 2004; 

hereinafter GTS2004) but can be considerably improved with orbitolinid foraminifers (fig. 

1).  

The chronostratigraphic scale tied to these shallow water biostratigraphic schemes 

conveys the impression that long-distance precise correlation between different carbonate 

platforms, as well as correlation with coeval deep-water facies, can be easily attained. 

However, a more in-depth appraisal of the papers on the biostratigraphy of Tethyan 
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carbonate platforms reveals that the chronostratigraphic calibration of the biozones is 

admittedly tentative (De Castro, 1991; Chiocchini et al., 2008) or entirely based on the age 

of orbitolinid foraminifera as established in the Urgonian Platforms of the Northern 

Tethyan margin (Bachmann and Hirsch, 2006; Velić, 2007). 

In the absence of black shales and of a reliable biostratigraphic criterion, the 

identification of segments corresponding to the Selli event in the resilient carbonate 

platforms of the central and southern Tethys is generally based on carbon isotope 

stratigraphy. However, the pristine carbon isotope signal of the open ocean can be 

modified by local palaeoceanographic processes and later overprinted to a considerable 

extent by diagenesis (see Immenhauser et al., 2008, for a recent review). As a result, many 

published carbon isotope profiles of Lower Cretaceous shallow water carbonate 

successions are markedly different from, and very difficult to correlate with, basinal 

reference curves (D‘Argenio et al., 2004; Huck et al., 2010; Tešović et al., 2011). Carbon 

isotope stratigraphy has been already applied to several Barremian–Aptian carbonate 

successions of the Apenninic Carbonate Platform (ACP) of Southern Italy (Ferreri et al., 

1997; D‘Argenio et al., 2004; Wissler et al., 2004; Di Lucia and Parente, 2008; Di Lucia, 

2009). 

The first attempt to use carbon isotope stratigraphy for correlation with well dated 

basinal sections and for bracketing the interval corresponding to the OAE1a, was made by 

Ferreri et al. (1997). A higher resolution δ
13

C curve for the same section investigated by 

Ferreri et al. (1997), Mt. Raggeto, was produced by Wissler et al. (2004). Both these 

papers incorporate a high resolution cyclostratigraphic framework, but provide very few 

biostratigraphic data. 

In this paper we present the re-interpretation of the carbon isotope stratigraphy of 

three Barremian–Aptian successions formerly studied by Di Lucia and Parente (2008) and 

Di Lucia (2009) and new biostratigraphic and chemostratigraphic data on two key sections 

formerly studied by Wissler et al. (2004) and D‘Argenio et al. (2004): Mt. Raggeto and Mt. 

Tobenna. In particular, the correlation with the most complete Mt. Raggeto section reveals 

previously undisclosed gaps in the other sections. This highlights the difficulties of 

applying carbon isotope stratigraphy to inherently incomplete carbonate platform sections.  

The most significant result of our study is the proposal of chemostratigraphically 

constrained biostratigraphic criteria for the individuation of the time-equivalent of the Selli 

event and of the Barremian–Aptian boundary in central and southern Tethyan carbonate 

platforms. Moreover we propose a chronostratigraphic calibration of some important 

biostratigraphic events that are widely used in the Barremian–Aptian biozonations of 

central and southern Tethyan carbonate platforms. 

 

 

5.2 Geological setting 
 

The shallow water carbonates that are widely exposed in southern Italy (fig. 2) are 

the relics of carbonate banks that developed during the Mesozoic on the passive margin of 

Adria, a promontory of the African Plate (Bosellini, 2002). Starting from the Middle 

Triassic, the continental rifting individuated two wide platforms, the Apenninic Carbonate 

Platform and the Apulian Carbonate Platform, separated by a deep basin (the Lagonegro 

Basin). Shallow water carbonate sedimentation persisted almost to the end of the 

Cretaceous, when the platforms emerged, and was locally re-established during the 

Palaeogene and the Early Miocene to be eventually terminated by drowning and 

siliciclastic deep-water deposits. The total thickness of the Mesozoic succession of the 

Apenninic Carbonate Platform can be estimated to about 4-5 Km with about 1-1.2 Km 

pertaining to the Cretaceous (Sartoni and Crescenti, 1962; D‘Argenio and Alvarez, 1980; 
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Frijia et al., 2005). The Upper Triassic to Lower Cretaceous limestones and dolomites are 

generally referred to flat-topped, Bahamian-type tropical carbonate platforms, dominated 

by chloralgal and chlorozoan associations (D‘Argenio et al., 1975) whereas the 

depositional system of the Upper Cretaceous rudist limestones has been interpreted as a 

ramp-like open shelf, dominated by foramol-type assemblages (Carannante et al., 1997). 

 

 
Figure 1 - Barremian-Aptian biostratigraphy of central-southern Tethyan carbonate platforms. These 

schemes suffer of low resolution and poorly constrained chronostratigraphic calibration.  

 

 

Figure 2 - Schematic geological map of the central-southern Apennines, with location of the studied sections 

(modified from Bonardi et al., 1988). 

 

 

5.3 Materials and Methods 
 

5.3.1 Sedimentology and biostratigraphy 

Five shallow water carbonate successions have been selected for this study: Mt. 

Croce (north of Formia, Lazio), Mt. Raggeto (northwest of Caserta, Campania), Mt. 

Tobenna (east of Salerno, Campania), Mt. Motola (south of Salerno, Campania) and Mt. 

Coccovello (north of Maratea, Basilicata) (fig. 2). The studied sections were logged in the 

field at decimetre to meter scale, depending on the outcrop quality, and sampled with an 

average resolution of about one sample per meter. The preliminary field description of 
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textural components, sedimentary structures and fossil content was subsequently integrated 

with the sedimentological and micropalaeontological study of about 520 double-polished 

thin sections.  

 

5.3.2 Carbon and oxygen isotopes 

Six hundred samples were analysed for the 
13

C/
12

C and 
18

O/
16

O ratios.  We used 

mudstones as a first choice and the micritic matrix of wackestones and floatstones as a 

second choice.  About 2 mg of powder was obtained from each sample by micro-drilling a 

polished slab under a binocular microscope with a 0.5 mm or 0.8 mm Tungsten bit. The 

analyses were performed at the Isotopen-labor of the Institut für Geologie, Mineralogie 

und Geophysik at the Ruhr University (Bochum, Germany). Approximately 0.5 mg of 

sample powder was heated for 18 hrs at 105 °C. Samples were reacted online by individual 

acidic (H3PO4) addition with a Finnigan Gas Bench II. Stable isotope ratios were measured 

with a Finnigan Delta S mass spectrometer. The results are reported in ‰ in the 

conventional δ notation with reference to the Vienna Pee Dee Belemnite (VPDB) standard. 

The precision (1σ) monitored by repeated analyses of international and laboratory 

standards, is ±0.09‰ for carbon and ±0.13‰ for oxygen isotopes. Replicate measurements 

show reproducibility in the range of ±0.1‰ for δ
13

C and ±0.2‰ for δ
18

O.  

A three-points moving average smoothing has been applied to the δ
13

C and δ
18

O 

profiles in order to filter out high frequency (meter scale) fluctuations and to facilitate 

visual correlation between the studied successions and the reference curves.  

 

5.3.3 Strontium isotopes 

Thirteen fragments of requienid shells from four different stratigraphic levels, plus 

the micritic matrix of the same levels were analysed for the 
87

Sr/
86

Sr isotope ratio. The best 

preserved shells were selected in the field using as first guidance colour preservation 

(yellowish to dark brown or dark grey) and preliminary analysis of shell microstructure 

with the hand lens. The samples were then passed through a complete procedure of 

diagenetic screening, involving standard petrography (optical microscopy, 

cathodoluminescence and SEM) and analysis of minor and trace element concentration 

(see Frijia and Parente, 2008, for a full description of the screening procedure and for 

analytical details). The numerical ages of the samples were derived from the look-up table 

of McArthur et al. (2001, version 4: 08/04), which is tied to the GTS2004. Minimum and 

maximum ages were obtained by combining the statistical uncertainty (2 s. e.) of the mean 

values of the Sr-isotope ratios of the samples with the uncertainty of the seawater curve. 

 

5.4 Results 
 

5.4.1 Lithostratigraphy, lithofacies associations and palaeoenvironmental 

interpretation 

From a lithostratigraphic point of view, the five studied sections belong entirely to 

the ―Calcari con Requienie e Gasteropodi‖ Formation (Requienid and Gastropod 

limestones Formation). Eight Lithofacies Associations (LA) (tab. 1) have been identified 

on the basis of texture, components (with special emphasis on fossil assemblages) and 

sedimentary structures. The main skeletal components are mollusks (gastropods, ostreids 

and requienid rudists), benthic foraminifers and green algae, with additional contribution 

from microbial nodules and crusts. Non-skeletal grains are mainly represented by peloids 

and intraclasts. The nomenclature of the LA conforms to that adopted by previous Authors 

for the Lower Cretaceous carbonates of the Apenninic Carbonate Platform and of other 

carbonate platforms of the central-southern Tethyan domain (Raspini, 2001; Pittet et al. 

2002; Hillgärtner et al. 2003; D´Argenio et al. 2004; Bachmann and Hirsch, 2006).  
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Table 1 - Lithofacies description and palaeoenvironmental interpretation  

Lithofacies 
associations (LA) 

Texture 
Skeletal and non-

skeletal components 
Sedimentary and 

diagenetic features 
Environmental 
interpretation 

Chara-Ostracodal 
limestones (LA 1) 

Mudstone/ 
Wackestone 

Thin shelled ostracods 
(a), characean oogonia 
(c) and stems (r), small 

and thin shelled 
gastropods (r). 

Dissolution cavities with 
vadose silt and/or sparry 

calcite infilling. 

Ephemeral 
supratidal ponds 

Fenestral and/or 
Microbialitic 

limestones (LA 2) 

Mudstone/ 
Wackestone 

Ostracods (c), small 
miliolids (c), thin-shelled 

gastropods (r), 
Thaumatoporella (r). 

Fenestrae, birdseyes, 
dissolution cavities (with 
vadose silt, sparry calcite 
or marly infilling), mud-

cracks and black pebbles. 

Tidal flat and/or 
very restricted 

lagoon 

Mili-Ostr-Algal 
limestones (LA 3) 

Mudstone/ 
Wackestone 

Ostracods (a), small 
miliolids (a), green algae 

(c), thin-shelled 
gastropods (r), 
textularids (c). 

Dissolution cavities with 
vadose silt and/or sparry 

calcite infilling. 

Intertidal to 
shallow subtidal 
protected lagoon 

S. dinarica limestones 
(LA 4) 

Wackestone/Packstone 

S. dinarica (va), 
cuneolinids (r), 
nezzazzatids (r), 

ostracods (r), peloids (r). 

S. dinarica sometimes 
crushed and isoriented 

parallel to bedding. 

Shallow subtidal 
protected lagoon 

Bio-Peloidal 
limestones (LA 5) 

Packstone/  Grainstone 

Benthic forams and 
green algae (a), 
molluskan shell 

fragments and ostracods 
(r). Peloids and 

intraclasts (a), ooids, 
oncoids and aggregate 

grains (r).  

Parallel lamination (r), 
gradation (r). 

Shallow subtidal 
sand bars 

For-Algal limestones 
(LA 6) 

Wackestone/Packstone 

Benthic forams (a), green 
algae (c), ostracods (r), 
molluskan and echinoid 

shell fragments (c), 
Lithocodium/Bacinella 

nodules (c to a) and 
faecal pellets (r). 

Bioturbation. 
Subtidal open 

lagoon 

Molluskan limestones 
(LA 7) 

Floatstone 

Requienid and/or 
gastropods (a). Matrix of 
bio-peloidal-intraclastic 
wackestone/packstone/ 
grainstone, with benthic 
forams (c), green algae 

(c), 
Lithocodium/Bacinella (r) 

and faecal pellets (r). 

Bioturbation, Bioerosion 
of molluskan shells. 

Subtidal open 
lagoon 

Palorbitolina 
limestones and 

Orbitolinid/codiaceans 
marls and limestones 

(LA 8) 

Mudstone/ 
Wackestone 

Orbitolinids (P. 
lenticularis) (c to a), 

miliolids and textularids 
(c), 

Lithocodium/Bacinella 
nodules (c), molluskan 

and echinoid shell 
fragments (c), sponge 
spicules (a), oncoids, 

intraclasts and peloids 
(r). 

Bioturbation, stylonodular 
structures. 

Deep open 
lagoon 

Packstone 

Orbitolinids (va) 
(Mesorbitolina. parva, 

M. texana) and 
codiaceans (va) (B. 

hochstetteri 
moncharmontiae), 
dasycladaceans (r), 
textularids (r) and 

echinoid shell fragments 
(c), micritic intraclasts 

(c). 

Bioturbation,micritization 
of orbitolinid shells, 

stylonodular structures. 

va = very abundant; a = abundant; c = common; r = rare   
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 The described lithofacies represent a full range of sub-environments, from supratidal 

marsh with ponds, to tidal flat to subtidal restricted to open lagoon (fig. 3). A synoptic 

description of LA is given in table 1.  All the studied successions can be generally referred 

to an inner platform setting. The Mt. Raggeto and the Mt. Croce sections show more open 

marine facies, organized mainly in subtidal and, subordinately, in peritidal metric cycles. 

More restricted environments occur at Mt. Tobenna, Mt. Motola and Mt. Coccovello, 

where peritidal cycles dominate the successions and subaerial exposure surfaces are more 

prominent and frequent.  

Greenish marly levels are a very typical feature of the Mt. Tobenna section (see also 

Raspini, 1998, 2011). They occur as mm-thick partings between calcareous beds or as cm 

to dm-thick laterally discontinuous levels. The thickest levels often contain nodules of 

mudstones-wackestones with charophytes and ostracods (LA1). These marly levels 

document phases of subaerial exposure of the platform top.  In all the other sections mm-

thick recessive marly partings are often observed while the thickest marly levels seemingly 

correspond to poorly exposed intervals covered by grass and shrubs.  

 

5.4.2 Biostratigraphy 

The following species of benthic foraminifers and calcareous algae have been used in 

this paper for the biostratigraphic subdivision and correlation of the studied successions 

(figs. 4, 5) 

 

 Praechrysalidina infracretacea LUPERTO SINNI, 1979  

 Salpingoporella dinarica RADOIĈIĆ, 1959 

 Palorbitolina lenticularis (BLUMENBACH, 1805) 

 Voloshinoides murgensis LUPERTO SINNI & MASSE, 1993  

 Debarina hahounerensis FOURCADE, RAOULT & VILA, 1972 

 Mesorbitolina parva (DOUGLASS, 1960) 

 Mesorbitolina texana (ROEMER, 1849) 

 Archaeoalveolina reicheli (DE CASTRO, 1966) 

 Cuneolina parva HENSON, 1948  

 

The first and last occurrences (FO and LO) of these species are the basis of the most 

widely used biostratigraphic schemes for the central and southern Tethyan domain and 

their homotaxial order has been documented from the Apenninic, to the Adriatic-Dinaric to 

the Gavrovo-Tripolitza to the north African and Middle East carbonate Platforms 

(Chiocchini et al. 1994, 2008; Simmons, 1994; Husinec and Sokaĉ, 2006; Velić, 2007; 

Tešovic et al. 2011). 

For the correlation of the studied successions we relied in particular on the following 

biostratigraphic markers that can be easily recognized also in the field:  

 

(1) The ―Archaeoalveolina reicheli level‖, represented by few meters of wackestone-

packstones with abundant A. reicheli.  

(2) The ―Orbitolina level‖, a 40 to 170 cm-thick composite bed consisting of marls 

and marly limestones full of flat low-conical orbitolinids (M. parva and M. texana). The 

top 15-20 cm are typically made of packstones/grainstones with orbitolinids and codiacean 

green algae (Boueina hochstetteri moncharmontiae DE CASTRO, 1978) (fig. 6, 7a). In the 

Mt. Coccovello section there are several cm-thick levels of marls with orbitolinids within a 

6 m-thick interval of poor exposure. This interval terminates with a 15 cm thick bed of 

packstones with orbitolinids and codiacean algae.  
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(3) The Salpingoporella dinarica acmes, represented by two distinct m-thick 

intervals of packstones crowded with S. dinarica, occurring respectively a few meters 

below and above the ―Orbitolina level‖ (fig. 7b). 

(4) The Palorbitolina limestones, represented by 10-20 m of wackestones with P. 

lenticularis, ostreids, Lithocodium/Bacinella nodules and sponge spicules. 

 

 
Figure 3 - Schematic depositional model with facies distribution.  
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Figure 4 (previous page) - a: Praechrysalidina infracretacea, axial section (Mt. Croce, sample CR 70.5); b: 

Praechrysalidina infracretacea, transversal section (Mt. Croce, CR 55.4); c: Voloshinoides murgensis, sub-

axial section (Mt. Coccovello, CO 1.8); d: Voloshinoides murgensis, sub-transversal section (Mt. Motola, 

MO 89.7); e: Cuneolina parva, axial section (Mt. Motola, MO 137.7); f: Debarina hahounerensis, equatorial 

section (Mt. Coccovello, CV 79.2a); g: Salpingoporella dinarica, transversal section (Mt. Motola, MO 

103.8); h: Salpingoporella dinarica, axial section (Mt. Motola, MO 103.8); i: Cuneolina parva, axial section 

(Mt. Motola, MO 137.7); j: Debarina hahounerensis, sub-axial section (Mt. Coccovello, CV 79.2a); k: 

Archaeoalveolina reicheli, sub-axial section (Mt. Coccovello, CO 30.2); l: Archaeoalveolina reicheli, 

equatorial section (Mt. Coccovello, CO 30.2); m: Archaeoalveolina reicheli, axial section (Mt. Coccovello, 

CO 30.2); n: Archaeoalveolina reicheli, tangential section (Mt. Coccovello, CO 30.2); o: Cuneolina parva, 

sub-transversal section (Mt. Motola, MO 137.7). Scale bar is 500 microns for all photographs. 

 

 
Figure 5 - a: Palorbitolina lenticularis, axial section through the embryonic apparatus (Mt. Coccovello, 

sample CV 71.7); b: Mesorbitolina texana, axial section through the embryonic apparatus; c-d: Palorbitolina 

lenticularis, axial section through the embryonic apparatus (Mt. Coccovello, CV 65.4a); e: Mesorbitolina 

texana, axial section through the embryonic apparatus (Mt. Coccovello, CV 77.9a); f: Mesorbitolina texana, 

subtransversal section of the embryonic apparatus, slightly oblique through the subembryonic zone (Mt. 

Coccovello, CV 77.9a); g: Mesorbitolina parva, axial section through the embryonic apparatus, with detail of 

the embryonic apparatus (Mt. Coccovello, CV 77.9a); h: Mesorbitolina parva, transversal section through the 

embryonic apparatus (Mt. Tobenna, TB 8.3); i: Mesorbitolina parva, subtransversal section of the embryonic 

apparatus, oblique through the subembryonic zone (Mt. Coccovello, CV 77.9a). 

 

5.4.3 Stratigraphy of the studied sections 

 

Mt. Croce  

This succession was logged on the southern side of Mt. Croce in the Aurunci 

Mountains, about 17 Km northwest of Formia (41°23'55"N, 13°31'45"E) (fig. 2). It is 

146.2 m thick and has been divided into four intervals (A-D) on the basis of major changes 

in LA at the decametre scale (fig. 8).  

Interval A (0–45 m) shows a regular alternation of fenestral, mili-ostr-algal and bio-

peloidal limestones arranged in metric shallowing-upward (SU) cycles. 
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Figure 6 - The ―Orbitolina level‖ at  Mt. Tobenna (a) is made by a nodular marly basal interval followed by a 

marly limestone crowded with flat low-conical orbitolinids (c). At the top there is a bed of orbitolinid-

codiacean packstone/grainstone (b). The underlying bed (d) is penetrated by a network of dissolution cavities 

filled by orbitolinid marly-packstone (see arrows); e: orbitolinid marly-packstone at Mt. Croce; f: orbitolinid 

marly-packstone at Mt. Coccovello. 

 

 
Figure 7 - a: orbitolinid marly-packstone at Mt. Tobenna, microfacies (sample TB 8.3); b: Salpingoporella 

dinarica acme at Mt. Motola, microfacies (sample MO 103.8).  
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In the first 20 m intertidal and supratidal facies prevail and subaerial exposure 

surfaces are well developed at the top of some SU cycles. The thickness of subtidal facies 

increases in the second half of this interval, marking the onset of a transgressive trend.  

The lower part of Interval B (45–60 m) consists mainly of ―Palorbitolina 

limestones‖, with a few levels of requienid-gastropod floatstone and of for-algal 

wackestone-packstone. Lithocodium/Bacinella bindstones occur as dm-thick intercalations 

from 53.6 to 59.0 m. The upper part (60−75 m) is mainly made of for-algal 

wackestones/packstones alternating with a few levels of bio-peloidal packstone-grainstone. 

Salpingoporella dinarica wackestones-packstone are present at the top. Interval B 

terminates with a very prominent surface of subaerial exposure marked by a lens of 

nodular marly limestones made of rounded micritic clasts in a yellowish to greenish marly 

matrix. 

 

 
Figure 8 - Mt. Croce section: lithological–sedimentological log, isotope stratigraphy and biostratigraphy. 

The thick curves represent the 3-point moving averages of O- (grey) and C-isotope ratios (black).  

 

Interval C (75−120 m) starts with the ―Orbitolina level‖, consisting of about 40 cm 

of marly limestones crowded with flat low-conical orbitolinids and codiaceans. The 

―Orbitolina level‖ is overlain by a few meters of fenestral mudstones and S. dinarica 

wackestones.  From 79 to 84 m the quality of the outcrop is very poor. A few cm-thick 

beds of green marls are discontinuously exposed under a dense vegetation cover. The first 

beds after this covered interval consist of dm-thick levels of S. dinarica packstones. From 

about 87 to 112 m there are m-thick amalgamated beds of bio-peloidal packstone-

grainstone, separated by thin levels of mili-ostr-algal mudstone-wackestone and for-algal 

wackestone. Interval C ends with dm-thick beds of bio-peloidal packstone-grainstone and 
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for-algal wackestone-packstone, overlain by microbial/fenestral mudstones and chara-

ostracodal mudstones-wackestones.   

Interval D (120−146.2 m) consists of a regular alternation of dm-thick beds of mili-

ostracodal mudstone-wackestone, for-algal wackestone and bio-peloidal packstone-

grainstone. A few beds of partially dolomitized fenestral mudstone occur at the top of the 

interval. 

The following biostratigraphic events have been recognized in the Mt. Croce section 

(fig. 8):   

 P. infracretacea occurs from the base to the top of the section.  

 The FO of S. dinarica is at 4.6 m; the first acme is found at 69.8−79.8 m; the 

second acme is at 86.8−87.8 m; the LO is at 95.4 m. 

 The range of P. lenticularis spans from 45.0 to 60.2 m.  

 The FO of V. murgensis is at 52.4 m; the LO at 65 m.  

 D. hahounerensis occurs from 59 to 118 m.  

 The ―Orbitolina level‖ is found at 75.9−76.3 m. The first 20 cm contain exclusively 

Mesorbitolina parva and M. texana. The upper part contains also B. hochstetteri 

moncharmontiae.  

 The FO of A. reicheli is at 112.3 m but the species becomes abundant from 117.9 to 

118.8 m (A. reicheli level), in concomitance with the FO of C. parva.  

 

Mt. Raggeto 

The Lower Cretaceous shallow water carbonates of Mt. Raggeto (7 km northwest of 

Caserta, 41°09'14"N, 14°14'51"E, fig. 2) have been extensively studied during the last 20 

years (D'Argenio et al., 1993, 1999a, 2004; Ferreri et al., 1997; Buonocunto, 1998; 

Amodio et al., 2003; Wissler et al., 2004). We logged a 97 m-thick section, starting about 

30 m below the thin bedded limestones identified by Wissler et al. (2004) as the equivalent 

of the Selli level. Based on lithofacies associations, we subdivided our section into three 

intervals (A-C) (fig. 9). 

Interval A (0–39.3 m) starts with a few meters of bio-peloidal packstones with 

nubecularids, followed by for-algal wackestones with Lithocodium/Bacinella nodules and 

bioturbated wackestones with Palorbitolina. Dolomite-filled Thalassinoides burrows make 

a tridimensional network that is well visible on weathered surfaces. After a 9 m thick 

interval of no exposure, the log continues in an abandoned quarry. At the base of the 

quarry wall there is a 7.5m-thick dolomitized interval, made of massive dolomites and 

thinly bedded dolomitized mudstones-wackestones. It corresponds roughly to the 

superbundle ―14‖ of Wissler et al. (2004) that, according to Amodio et al. (2003), consists 

mainly of Palorbitolina wackestone-packstones. Even if dolomitized limestones are not 

reported in the Wissler et al. (2004) log, their presence is confirmed by the abrupt shift of 

about 2‰ in the 
18

O at this level (see fig. 3 of Wissler et al., 2004). This dolomitized 

interval is followed by about 6 meters of well bedded bio-peloidal packstones with 

nubecularids and for-algal wackestones-packstones with Lithocodium/Bacinella nodules, 

alternating with floatstones with requienids and ostreids. 

The last part of the interval A is characterized by poorly exposed thin beds of bio-

peloidal packstone with nubecularids, alternating with ostracodal mudstones-wackestones.  

Interval B (39.3–75 m) is mainly made of algal wackestones-packstones rich of S. 

dinarica, with a few beds of requienid floatstones and of bio-peloidal packstones. 

Lithocodium/Bacinella nodules are particularly abundant between 45.5 and 53 m from the 

base of the section, associated with requienid floatstones. In the upper part of this interval, 

between 62 and 69 m from the base of the section, some beds of chara-ostracodal 

mudstones mark a regressive trend culminating with a cluster of nodular marly levels.  
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Interval C (75–97.3m) is mainly made of bio-peloidal packstones-grainstones. At the 

base they alternate with some beds of ostreid-requienid floatstones while in the uppermost 

part (from 87 to 97.3 m from the base of the section) there are some intercalations of mili-

ostracodal mudstone-wackestones.  The section ends with a few beds of foraminiferal 

wackestones with primitive forms of A. reicheli and nodules of Lithocodium/Bacinella.   

The following biostratigraphic events were recognized in the Mt. Raggeto section 

(fig. 9):   

 P. infracretacea is present from the base to the top of the section. 

 S. dinarica occurs from the base of the section to 82.5m; a first interval of 

maximum abundance occurs between 43 to 53 m from the base of the section; the second 

acme is between 70 and 73 m. 

 P. lenticularis has been found from 6 to 24 m from the base of the section.  

 D. hahounerensis occurs from 39.8 m to the top of the section. 

 The FO of A. reicheli and C. parva is at 76.3 m. 

 

Mt. Tobenna 

This section is 48.5 m thick (fig. 10) and was logged on the southern slope of Monte 

Tobenna in the Picentini Mountains, about 8 km northeast of Salerno(fig. 2). This is a 

classical locality for the Orbitolina level of southern Apennines (De Castro, 1963; Cherchi 

et al., 1978). The lower half of the section (from 0 to 24m) is exposed in an abandoned 

quarry(40°42.01"N, 14°51'43"E) and has been the object of many papers dealing mainly 

with cyclostratigraphy (Raspini, 1998, 2011; D‘Argenio et al., 1999b, 2004). Our section 

continues on the mountain slope above the edge of the quarry.  

On the basis of the LA trends, the section can be clearly divided into two intervals (A and 

B). In interval A (0–24 m), which has been logged in the quarry wall, the exceptional 

quality of the exposure permitted unusual high-resolution observation of the mm- to dm-

thick marly layers which are found at the top of many limestone beds. In the upper part of 

the section the thinnest marly levels are observed as mm-thick recessive partings between 

limestone beds while the thickest levels probably corresponds to poorly exposed and 

densely vegetated parts of the slope. The first part of interval A (0–7m) consists mainly of 

an alternation of chara-ostracodal mudstones-wackestones, bio-peloidal packstones-

grainstones with nubecularids and mili-ostracodal wackestones. Between 7 and 15 m from 

the base of the section the most frequent lithofacies consists of   algal wackestones-

packstones with S. dinarica, alternating with bio-peloidal packstone-grainstones. A 

prominent bed of requienid floatstone is present at 11 m from the base of the section. The 

"Orbitolina level" occurs at 15 m from the base of our section. It is composed by two beds. 

The lower bed is a 120cm thick bioturbated marly limestone crowded with flat low-conical 

orbitolinids. The argillaceous component decreases upward. The upper bed, which is just 

15 cm thick, is separated by the lower bed by a wavy erosional surface and consists of a 

packstone/grainstone crowded with flat low-conical orbitolinids and codiacean algae 

(Boueina hochstetteri moncharmontiae). Below the wavy base of the "Orbitolina level" the 

underlying bed is penetrated down to about 1m by a dense network of dissolution cavities 

filled by orbitolinid packstone (fig. 6). 

The "Orbitolina level" is overlain by 70 cm of bio-peloidal packstones-grainstones. 

The remaining part of interval A is dominated by chara-ostracodal mudstones-wackestones 

alternating with cm- to dm- thick levels of greenish marls. The thickest marly levels 

contain nodules of chara-ostracodal mudstones.  
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Figure 9 - Mt. Raggeto section: lithological–sedimentological log, isotope stratigraphy and biostratigraphy. 

The thick curves represent the 3-point moving averages of O- (grey) and C-isotope ratios (black). See fig. 8 

for a key to colours, patterns and symbols. 
 

 

Figure 10 - Mt. Tobenna section: lithological–sedimentological log, isotope stratigraphy and biostratigraphy. 

The thick curves represent the 3-point moving averages of O- (grey) and C-isotope ratios (black). See fig. 8 

for a key to colours, patterns and symbols. 

  

Interval B (24–48.5 m) was logged on the mountain slope immediately west of 

quarry edge. It is dominated by bio-peloidal packstones-grainstones with abundant benthic 

foraminifers, with a few beds of mili-ostracodal mudstones-wackestones. 

Lithocodium/Bacinella nodules are a frequent component between 26 and 36 m from the 

base of the section.  The section ends with a bed of foraminiferal packstone crowded with 

A. reicheli. 
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The following biostratigraphic events have been recognized in the Mt. Tobenna 

section (fig. 10): 

 P. infracretacea occurs from the base to the top of the section.  

 S. dinarica is found from the base of the section to 24 m; an interval of maximum 

abundance is observed between 9 and 14.6 m from the base of the section. 

 D. hahounerensis occurs from 3.3 m to the top of the section.  

 The ―Orbitolina level‖ is at 15.5−17.2 from the base of the section. It is crowded 

with the flat low-conical shells of M. parva and M. texana. The codiacean alga B. 

hochstetteri moncharmontiae is particularly abundant in the packstone/grainstone at the top 

of the level. 

 The FO of A. reicheli is at 41.1 m where primitive specimens are first observed. 

The A. reicheli level, containing a rich association of typical specimens of this species,  is  

found at 48.1 m from the base of the section 

 The FO of C. parva is at 46.2 m. 

 

Mt. Motola  

This section was logged on the southern slope of Mt. Motola (40°21'53"N, 

15°25'42"E), about 65 Km southeast of Salerno (fig. 2). It is 150.3 m thick and has been 

subdivided into four intervals (fig. 11). Interval A (0−75 m) consists mainly of bio-peloidal 

packstones-grainstones, mili-ostr-algal mudstones-wackestones and microbial/fenestral 

mudstones. Two levels of for-algal packstone and requienid-gastropod floatstone occur in 

the uppermost part.  The first 20 m are dominated by peritidal m-thick SU cycles. 

Subaerial exposure surfaces at the top of the cycles are marked by discontinuous levels of 

greenish/yellowish marls, infiltrating downwards into microkarstic cavities. Subtidal facies 

become predominant upwards, marking the onset of a deepening trend, but subaerial 

exposure surfaces are still present at the top of some cycles.  Interval B (75−98 m) is 

dominated by subtidal facies. It consists mainly of Palorbitolina wackestones with sponge 

spicules and echinoderm fragments, alternating with requienid-gastropod floatstones. Cm- 

to dm-thick beds of Lithocodium/Bacinella bindstone are present at the base of this 

interval. A m-thick bed of packstone crowded with nubecularid foraminifers occurs at the 

top. This interval terminates with a prominent subaerial exposure surface, marked by 

microkarstic cavities with greenish marly infilling. 

At the base of interval C (98−126 m) there are about three meters of very poorly 

exposed section. Centimetric discontinuous marly levels are hardly visible under a thick 

vegetation and soil cover. The following beds are made of S. dinarica packstones 

alternating with 10 to 50 cm-thick levels of chara-ostracod and mili-ostr-algal mudstone-

wackestone, capped by subaerial exposure surfaces. From 107 to 122 m, interval C consists 

mainly of very thick amalgamated beds (up to 6 m-thick) of bio-peloidal packstone-

grainstone, with a few decimetric intercalations of gastropod-requienid floatstone. The 

uppermost part of the interval (122−126 m) is made of dm to m-thick beds of bio-peloidal 

packstone-grainstone alternating with microbial/fenestral mudstones capped by thin seams 

of marls, which infiltrates downward into microkarstic cavities. Interval D (126−150.3 m) 

is mainly made of bio-peloidal packstones-grainstones and mili-ostracodal mudstones-

wackestones. Microbial/fenestral mudstones capped by subaerial exposure surfaces are 

present in the uppermost part of the section. 

   

The following biostratigraphic events have been documented in the Mt Motola 

section (fig. 11):   

 The FO of P. infracretacea is at 23 m; the range of this species extends beyond the 

top of this section. 
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 The FO of S. dinarica is at 27.6 m; the acme is at 103.5−104 m, the LO is at 109.6 

m. 

 The range of P. lenticularis spans from 79.2 to 89.7 m.  

 The FO and LO of V. murgensis are placed at 84 and 89.7 m respectively.  

 D. hahounerensis occurs from 85.4 to 137.3 m.  

 The range of A. reicheli spans from 123 to 126.4 m; the maximum abundance (―A. 

reicheli level‖) is observed at 125.1 to 126.4 m.  

 The FO of C. parva is at 137.3 m. 

The ―Orbitolina level‖ is missing in this section. Bio-lithostratigraphic correlation 

suggests that it is lost in the gap associated with the prominent subaerial exposure surface 

at the boundary between intervals B and C. 

 

 
Figure 11 - Mt. Motola section: lithological–sedimentological log, isotope stratigraphy and biostratigraphy. 

The thick curves represent the 3-point moving averages of O- (grey) and C-isotope ratios (black). See fig. 8 

for a key to colours, patterns and symbols. 

 

Mt. Coccovello  

This 135.2 m-thick composite section was logged on the southern slope of Mt. 

Coccovello (40°02'38"N, 15°42'32"E), about 3 Km north of Maratea (fig. 2). It has been 

subdivided into four intervals (A-D) based on the major changes of lithofacies associations 

and on the occurrence of some prominent subaerial exposure surfaces (fig. 12). Interval A 
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(0−67.2 m) is dominated by intertidal microbial/fenestral mudstones alternating with mili-

ostr-algal mudstones-wackestones and bio-peloidal packstones-grainstones. The latter 

become more frequent in the upper part of the interval, highlighting the onset of a 

deepening trend. Subaerial exposure surfaces are frequent at the base and from 22 to 42 m. 

 

 
Figure 12 - Mt. Coccovello section: lithological–sedimentological log, isotope stratigraphy and 

biostratigraphy. The thick curves represent the 3-point moving averages of O- (grey) and C-isotope ratios 

(black). See fig. 8 for a key to colours, patterns and symbols. 

 

The lower part of interval B, from 67.2 to 79.1 m, consists mainly of Palorbitolina 

wackestones. About 2 m of Lithocodium/Bacinella bindstone occur in the lowermost part 

of the interval (from 69 to 71 m). The upper part (from 80 to 85 m) is made of dm-thick 

beds of for-algal wackestone-packstone, crowded with nubecularid foraminifers, overlain 

by a bed of S. dinarica packstone. The interval terminates with a bed of microbial/fenestral 

mudstone, capped by a subaerial exposure surface. Interval C (85−120 m) starts with a thin 

marly level crowded with flat low-conical orbitolinids, followed by a distinctive requienid 

floatstone. The orbitolinid marls penetrate downwards into a network of microkarstic 

cavities. From 87 to 91 m the section is characterized by very poor exposure, with 

discontinuous cm-thick orbitolinid marls cropping out from a dense vegetation and soil 

cover. A bed of orbitolinid-codiacean packstone terminates this poorly exposed portion. 

The next segment (from 92 to 119 m) consists mainly of bio-peloidal packstones-

grainstones alternating with microbial/fenestral mudstones. The uppermost five meters of 

interval C are almost entirely made of chara-ostracod mudstones and fenestral mudstones, 
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capped by subaerial exposure surfaces. Interval D (119−135.2 m) is mainly made of an 

alternation of bio-peloidal packstones-grainstones and microbial/fenestral mudstones, with 

a few beds of mili-ostracodal mudstone-wackestone. A couple of prominent subaerial 

exposure surfaces occur in the upper part of this interval. 

The following biostratigraphic events were recognized in the Mt. Coccovello section 

(fig. 10):   

 P. infracretacea first occurs at 15.6 m and is present up to the top of the section. 

 The FO of S. dinarica is at 42.3 m; its first acme is at 84.3 m, the second acme is at 

94.5 m. 

 P. lenticularis is present from 70.8 to 79.1 m. 

 The FO and LO of V. murgensis are placed at 70.8 and 82.4 m respectively.  

 D. hahounerensis occurs from 78.7 to 87 m. 

 The base of the ―Orbitolina level‖ is a 5 to 10 cm-thick discontinuous marly layer 

which occurs at 85.0 m above a prominent subaerial exposure surface and infiltrates 

downward into microkarstic cavities. This level contains M. parva and M. texana. Other 

cm-thick discontinuous marly levels with the same microfauna occur across a 5 m thick 

interval of poor exposure. The typical packstone with Mesorbitolina and the codiacean 

alga B. hochstetteri moncharmontiae, which elsewhere represents the top of the 

―Orbitolina level‖, occurs at 91.2 m.  

 The A. reicheli level corresponds to a 20 cm-thick layer at 110.8 m.  

 

5.4.4 Carbon and strontium isotope stratigraphy 

 

Mt. Croce 

One hundred and fifty samples were analyzed for the Mt. Croce section (fig. 8). The 

δ
13

C values range between -1.43‰ and +4.18‰, with an average value of +1.68‰.The 

lower part of the δ
13

C curve shows a rising trend with superimposed higher frequency 

fluctuations. Carbon isotope ratios increase from slightly negative values at the base of the 

section to a maximum of +2.1‰ at 39.1 m, about 6 m below the base of the ―Palorbitolina 

limestones‖. After a 1‰ decrease, the δ
13

C curve makes a plateau at about +1‰, which 

corresponds almost entirely to the ―Palorbitolina limestones‖. This plateau is followed by a 

marked positive excursion which starts 4 m below the top of the ―Palorbitolina 

limestones‖, peaks at about + 3‰ and then decreases to pre-excursion values of +1‰ at 

76.5 m, just above the ―Orbitolina level‖. From there it starts a new very broad positive 

excursion that peaks at about +4‰ 10 m above the second acme of S. dinarica, and returns 

at pre-excursion values 1 m above the A. reicheli level. The last part of the δ
13

C curve is 

characterized by values fluctuating between +1 and +2‰. 

Three fragments of requienid shells from a floatstone at 57.4 m from the base of the 

section, 3 m below the top of the ―Palorbitolina limestones‖, have been analysed for SIS. 

Their 
87

Sr/
86

Sr mean value gives a numerical age of 124.1 Ma (tab. 2). 

 

Mt. Raggeto 

Ninety-two samples, among which five dolomites, were analyzed for the Mt. 

Raggeto section. The δ
13

C values range between -0.2‰ and +4.8‰, with an average value 

of +2.62‰ (fig. 9). In the first part of the curve (0–22m), corresponding to the 

"Palorbitolina limestones" and to the thick dolomitic interval, there is a plateau at about 

+1.6‰, with superimposed high- frequency fluctuations between +1 and +2‰. Then, there 

is a sharp positive excursion of about 1.5-2‰, which peaks at +3.41‰ at 25.9 m from the 

base of the section. This is followed by a very broad positive excursion, which occupies all 

the central part of the logged section, reaching peak values of nearly +5‰ at about 50 m 
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from the base of the section, at a level corresponding to the first interval of maximum 

abundance of S. dinarica. A stepped decline, with superimposed high-frequency 

fluctuations, leads to a minimum value of about 0‰ at 67 m from the base of the section, 

just below the second interval of maximum abundance of S. dinarica. The δ
13

C curve ends 

with another positive excursion showing two positive peaks at about +4‰, separated by a 

relative minimum of about +2‰ at 87m from the base of the section. The last few meters 

of the sections are marked by a steep decrease to values of about +1.6‰.   

 

Mt. Tobenna 

Sixty-five samples were analyzed for the Mt. Tobenna section. The δ
13

C values range 

between -2.4‰ and +4.4‰, with an average of +1.89‰ (fig. 10). The first 10m of the 

curve are characterized by wildly fluctuating values with two closely spaced positive 

excursions peaking at +3.5‰ and at +4.4‰. Then there is a prolonged decreasing trend, 

with superimposed high-frequency fluctuations, reaching a minimum value of -2.3‰ a few 

meters above the "Orbitolina level", in correspondence of a cluster of dm-thick greenish 

marly levels indicating prolonged subaerial exposure. From this minimum there is a very 

sharp rise to a value of +3.5‰ at 25.4 m from the base of the section, just above the last 

occurrence of S. dinarica. After a positive plateau, defined by δ
13

C values oscillating 

mainly between +3 and +4‰, there is a decreasing trend with superimposed high-

frequency fluctuations. Very depleted values of -2.4‰ are reached at the end of the 

section, in correspondence of the A. reicheli level.  

Three fragments of requienid shells from a floatstone occurring 5.8m below the base 

of the "Orbitolina level" have been analysed for SIS.  After discarding as altered one shell, 

because of its low Sr concentration (<550 ppm), the 
87

Sr/
86

Sr mean value of the two well 

preserved shells gives a numerical age of 119.86 Ma (tab. 2).   

 

Mt. Motola 

One hundred and thirty-seven samples were analyzed for the Mt. Motola section (fig. 

11). The δ
13

C values range between -0.48‰ and +2.98‰, with an average value of 

+1.17‰.The first part of the smoothed δ
13

C curve shows an overall rising trend, reaching a 

peak of about +2.2‰ at 62.6 m, about  16.6 m below the base of the ―Palorbitolina 

limestones‖. From this peak, δ
13

C values decrease and then make a plateau, roughly 

corresponding to the ―Palorbitolina limestones‖, defined by values fluctuating around 

+1‰. After a very sharp decrease to 0‰, there is a broad positive excursion, peaking at 

about +2.8‰ some 11 m above the acme of S. dinarica and returning at values of about 

+1‰ 4 m above the A. reicheli level. The δ
13

C curve terminates with a rising trend to a 

peak of about +1.6‰. 

Four fragments of requienid shells, contained in a floatstone occurring immediately 

below the acme of S. dinarica (at 101.9 m from the base of the section), have been 

analysed for SIS.  Their 
87

Sr/
86

Sr mean value gives a numerical age of 119.12 Ma (tab. 2). 

 

Mt. Coccovello 

One hundred and twenty-nine samples were analyzed for the Mt. Coccovello section 

(fig. 12). The δ
13

C values range between -3.12‰ and +3.71‰, with an average value of 

+0.27‰.The first part of the δ
13

C smoothed curve shows an overall decreasing trend, from 

+0.3‰ at the base to -1.3‰ at 44 m, with superimposed higher frequency fluctuations.  

Then there is a rising trend, peaking at about +1.8‰ 8 m below the base of the 

―Palorbitolina limestones‖. From this peak, δ
13

C values decrease to about +1‰ and stay 

around this value for most of the interval corresponding to the ―Palorbitolina limestones‖. 

Then there is a prominent positive excursion, peaking at +3.2‰ some 2 m above the top of 
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the ―Palorbitolina limestones‖ and declining to a minimum of +0.6‰ 0.5 m above the top 

of the ―Orbitolina level‖.  

After a sharp positive shift to about +2.1‰, there is a very marked decrease to a 

minimum of -1.9‰, roughly corresponding to the A. reicheli level. The δ
13

C curve 

terminates with a rebound to -1‰, followed by a new decrease to -2.2‰. 

Three fragments of requienid shells from a floatstone at 86.4 m from the base of the 

section, 1 m above the first level of marls with Mesorbitolina, have been analysed for SIS. 

Their 
87

Sr/
86

Sr mean value gives a numerical age of 122.87 Ma (tab. 2). 

 
Table 2 - Elemental concentration, Sr-isotope ratio and SIS age 

 

Section 
Sample 

no. 
Sr Mg Fe Mn 

87Sr/86Sr 
±2 s.e.  
(*10-6) 

Age [Ma] 

[ppm] Min Mean Max 

Motola MO 101.9A 1232 2351 19.1 6.3 0.707313     

 MO 101.9B 899 1053 26.6 1.4 0.707323     

 MO 101.9D 949 1007 28.9 1.6 0.707309     

 MO 101.9E 933 987 23.4 0.5 0.707308     

     average 0.707313 7 118.4 119.1 119.9 

           

Tobenna TB 2.5A* 544 2732 181 19.2 0.707335     

 TB 2.5B 832 1906 85.4 9.6 0.707327     

 TB 2.5C 956 2052 81.7 8.5 0.707319     

     average 0.707323 7 119.1 119.9 120.7 

           

Coccovello CO 5.8 A 1012 1172 <0.5 2.3 0.707375     

 CO 5.8 C 929 1036 32.7 3.2 0.707362     

 CO 5.8 B 848 1008 66.5 7.4 0.707382     

     average 0.707373 12 122.1 122.9 123.5 

           

Croce CR 57.4 A 1148 1920 94.4 2.4 0.707388     

 CR 57.4 B 1289 1702 4.0 0.8 0.707429     

 CR 57.4 C 1411 1967 110.5 0.0 0.707393     

     average 0.707403 26 122.9 124.1 125.2 

  Numerical age from McArthur et al. (2001, look-up table version 4: 08/04) calculated by combining the 
statistical uncertainty of the mean of the isotopic values with the uncertainty of the seawater curve. *: 
diagenetically altered sample. 

 

 

5.5 Discussion 
 

5.5.1 Reliability of the δ
13

C record 

During the last two decades C-isotope stratigraphy has been successfully applied to 

high resolution dating and correlation of Cretaceous carbonate platforms (Wagner, 1990; 

Jenkyns, 1995; Ferreri et al., 1997; Masse et al., 1999; D'Argenio et al., 2004; Wissler et 

al., 2004; Parente et al. 2007; Burla et al., 2008; Vahrenkamp, 2010; Huck et al., 2011; 

Millán et al., 2011). On the other hand, it is well known that, besides post-depositional 

diagenetic alteration (Dickson and Coleman, 1980; Allan and Matthews, 1982; Lohmann, 

1988; Marshall, 1992), biological fractionation and local palaeoceanographic conditions 

may cause the carbon isotope signal of platform carbonates to deviate from the open ocean 
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global signal (Weber and Woodhead, 1969; Patterson and Walter, 1994; see Immenhauser 

et al., 2008, for a recent review). A recent study concluded that, in Kimmeridgian shallow 

water carbonates of the Jura Mountains, the general trend of δ
13

C values faithfully record 

the long-term global variations of the open ocean while higher order fluctuations ―might 

result from variations in local environmental conditions on the shallow platform‖ 

(Colombié et al., 2011). 

Therefore, before attempting a correlation with the reference curves of pelagic and 

hemipelagic successions, we tried to assess if the stable isotope record of the studied 

successions is significantly biased by diagenesis and/or by local environmental conditions. 

Below subaerial exposure surfaces δ
13

C values are commonly depleted, implying the 

influence of soil-derived CO2, while δ
18

O values may be enriched because of the 

preferential removal of 
16

O in the pore waters through evaporation (Allan and Matthews, 

1982; Joachimski, 1994).  

Diagenesis in the vadose zone is generally characterized by depleted δ
18

O values and 

highly variable δ
13

C. Strong covariation between δ
13

C and δ
18

O is taken as proof of 

diagenetic alteration of the stable isotope signal under the influx of meteoric water in the 

mixing zone (Allan and Matthews, 1982), or as a trend of progressively decreasing 

alteration within the freshwater phreatic zone (Swart, 2011).  

The scatter plots of carbon and oxygen isotope ratios (fig. 13) show that the 

covariance between δ
13

C and δ
18

O values is very low to moderate for the five studied 

sections (r = 0.01–0.46). However, some lithofacies associations show higher correlation 

coefficients (tab. 3) that could be partly the result of mixing-zone diagenesis or of 

alteration within the freshwater phreatic zone.  Some very negative δ
13

C values, especially 

at Mt. Coccovello and Mt. Tobenna, are associated with subaerial exposure surfaces. 

Evaporation during exposure is probably also responsible for δ
18

O values >0‰ in the first 

part of the Mt. Tobenna section. Conversely, some very depleted δ
18

O values, especially at 

Mt. Motola and in the upper part of the Mt. Tobenna section, are seemingly due to vadose 

diagenesis. 

Summing up, the effects of diagenesis are certainly seen in our isotopic records. 

They are probably responsible for some high-frequency fluctuations, defined by one or a 

few data points, but they are not so pervasive as to distort completely the pristine marine 

signal. The scatter plots of carbon and oxygen isotope ratios show also that there is no 

clear separation between the data points of the different lithofacies associations (fig. 13). 

This suggests that variations in δ
13

C are not the result of facies changes. The bias of local 

palaeoenvironmental conditions could have been partly counteracted by the fact that we 

did not use bulk samples but strived to sample the micritic matrix also in the grainy facies. 

On the other hand, the lack of a strict relationship between facies type and δ
13

C has been 

observed also in the recent sediments of the Great Bahama Bank (Swart et al., 2009).  

With the exception of Mt. Coccovello, the δ
13

C and δ
18

O mean values of the studied 

sections fall within the range of Barremian–Aptian seawater (taken from the ―low-latitude‖ 

biotic calcite record of Prokoph et al., 2008) (fig. 14, tab. 4). Apart from Mt. Raggeto, 

whose samples plot almost entirely in the field of pristine Barremian-Aptian calcite, a tail 

of more depleted values is observed in all the other sections and especially for the Mt. 

Tobenna and Mt. Coccovello sections (fig. 13). This pattern conforms to the facies 

distribution, indicating that Mt. Raggeto is the most open marine among the studied 

sections, followed by Mt. Croce. The other sections show more restricted facies and were 

located in a more inner platform position.  A similar pattern of more negative values in the 

most restricted sections has been observed also in the Cenomanian–Turonian platform 

carbonates of the ACP (Parente et al., 2007). 
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Figure 13 - Cross-plots of δ

13
C vs. δ

18
O for the whole dataset (a) and for each studied section (b-f). The all-

lithofacies dataset (a) shows very low to moderate covariance (r = 0.01-0.46). Supratidal and intertidal 

lithofacies associations show higher covariance of stable isotope ratios (diagrams b–c; see also tab. 2. On the 

other hand, there is no clear relation between lithofacies and isotopic value. The shaded rectangle in diagram 

(a) indicates the range of well-preserved biotic calcite of shallow marine tropical-subtropical carbonates 

(from Prokoph et al., 2008). 

 

 
Figure 14 - Plot of the mean ± standard deviation of carbon and oxygen isotope ratios for each studied 

section. With the exception of Mt. Coccovello, the δ
13

C and δ
18

O mean values of the studied sections fall 
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within the range of Barremian–Aptian seawater, represented by the ―low-latitude‖ biotic calcite record of 

Prokoph et al. (2008). 

 

 
Table 3 - Statistical results for C and O isotopes covariation in the  studied sections 

Section LA n r a b 

Raggeto 

LA1 0 * * * 

LA2 2 * * * 

LA3 17 0.51 0.12 -1.66 

LA4 13 0.30 -0.04 -1.20 

LA5 40 0.57 0.26 -2.02 

LA6 7 0.93 0.56 -3.16 

LA7 6 0.15 0.02 -1.23 

LA8 2 * * * 

ALL 87 0.46 0.17 -1.80 

Tobenna 

LA1 7 0.19 -0.04 -1.29 

LA2 3 * * * 

LA3 9 0.24 0.07 -1.67 

LA4 8 0.65 -0.28 -0.54 

LA5 28 0.06 -0.05 -2.22 

LA6 7 0.01 0.00 -2.34 

LA7 1 * * * 

LA8 2 * * * 

ALL 65 0.19 -0.11 -1.66 

Croce 

LA1 2 * * * 

LA2 17 0.74 0.22 0.8 

LA3 14 0.78 0.41 -1.22 

LA4 2 * * * 

LA5 73 0.31 0.14 -0.83 

LA6 22 0.52 0.48 -1.97 

LA7 3 * * * 

LA8 17 0.21 0.22 -2.24 

ALL 150 0.30 0.18 -1.11 

Motola 

LA1 5 0.93 0.86 -2.07 

LA2 27 0.33 0.28 -2.36 

LA3 22 0.29 -0.26 -1.98 

LA4 2 * * * 

LA5 49 0.6 0.5 -3.11 

LA6 12 0.5 0.44 -3.07 

LA7 7 0.35 0.13 -2.1 

LA8 13 0.34 0.36 -2.93 

ALL 137 0.30 0.26 -2.6 

Coccovello 

LA1 7 0.59 -0.17 -2.27 

LA2 54 0.25 0.1 -2.15 

LA3 15 0.08 0.04 -2.28 

LA4 1 * * * 

LA5 38 0.43 0.11 -2.35 

LA6 3 * * * 

LA7 2 * * * 

LA8 9 0.05 0.03 -2.64 

ALL 129 0.01 0.03 -2.27 

LA = lithofacies association; n = number of observations; r = Pearson correlation coefficient; a = slope of the 
regression line; b = intercept of the regression line; * = not calculated when n<5. 

 

The smoothed δ
13

C curves of figures 8 to 12 show that, besides the higher order 

fluctuations at metric to sub-metric scale, defined by only one or a few points, there are 

some isotopic trends and excursions which are defined by many data points and extend 

across intervals that are tens of meters thick. These major features of the δ
13

C curves are 
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statistically significant because, at least in the Mt. Raggeto, Mt. Croce and Mt. Motola 

sections, they represent deviations from the mean value that are 2-3 times the standard 

deviation. Moreover, they persist across changes of lithofacies association, suggesting that 

they are not caused by local changes of palaeoenvironmental conditions. Finally, as 

discussed in the next paragraph, the major trends and excursions can be correlated between 

the five studied sections, suggesting that the forcing was, if not global, at least regional. 

 
Table 4 - Mean and Standard deviation for carbon and 
oxygen isotope ratios of the studied sections. 
 

Section 
MEAN ±STDEV 

δ
13

C ‰ δ
18

O ‰ 

   

Raggeto 2.67 ±1.25 -1.33 ±0.46 

Tobenna 1.89 ±1.63 -1.87 ±0.95 

Croce 1.67 ±1.13 -0.79 ±0.69 

Motola 1.17 ±0.74 -2.29 ±0.63 

Coccovello 0.27 ±1.47 -2.26 ±0.47 

 

5.5.2 The problem of gaps in the carbon isotope stratigraphy of carbonate 

platforms 

The stratigraphic archive has been described as containing more gaps than record 

(Ager, 1993). This is particularly true of shallow water carbonate platforms whose record 

is typically characterized by shallowing-upward cycles truncated by subaerial exposure 

surfaces. Shallowing-up sequences can be created by progradation or migration of 

sedimentary systems (e.g., Ginsburg, 1971; Pratt and James, 1986) but in many cases they 

are best interpreted as formed during one cycle of sea-level change (Strasser, 1991; 

Strasser et al., 1999). After emersion, a certain lag time elapses before prolific benthic 

carbonate production catches up (Tipper, 1997). As a result, shallowing upward cycles are 

expected to be asymmetric, with a thin transgressive deposit (including a lag) and a thicker 

highstand deposit (Strasser et al., 1999). High frequency cyclicity is generally 

superimposed on longer term cycles of sea-level changes. In simple "fully allocyclic" 

models, amplitude and duration of sea-level changes, together with subsidence rate, govern 

the thickness of elementary cycles, the duration of gaps and the distribution  of "missed 

beats" in the different parts of the longer term cycle (Sadler, 1994). Thinner cycles and 

longer gaps, corresponding to missing elementary cycles, are expected during large scale 

lowstands. Conversely, thickest beds and shortest gaps are expected during large scale 

maximum flooding (Strasser et al., 1999). More complex distribution of gaps is obtained if 

stochastic models of carbonate production, transport, and deposition are applied (Burgess 

and Wright, 2003).  

The presence of gaps can severely hamper the interpretation of the carbon isotope 

curves of carbonate platform sections. If elementary cycles represent precession cycles, 

any feature in the target 
13

C curve of the deep-water reference sections which lasts less 

than 20 kyr will have few, if any, chances of being recorded, due to the pervasive 

distribution of gaps at this timescale. Missed beats will conceal even longer traits of the 

target curve, especially during long term lowstands, expressed in the rock record as higher 

order sequence boundary zones (Strasser et al., 2000).  

A Milankovitch cyclicity has been inferred for the shallow water Barremian–Aptian 

carbonates of the ACP (D'Argenio et al., 2004 and references therein). A 20 kyr duration, 

corresponding to the precession cycle, has been inferred for the elementary cycles. Higher 

order cycles, expressed as bundles and superbundles of elementary cycles, have been 
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interpreted as controlled respectively by the 100  kyr and 400  kyr eccentricity cycle. Based 

on high resolution cyclostratigraphic correlation with the Serra Sbregavitelli section, 

showing the most open marine record, many missed  beats were identified in the other 

sections at the cycle, bundle and superbundle scale. The longest inferred gaps are of about 

500 kyr in the Mt. Raggeto section and up to 1 Myr in the Mt. Tobenna-Mt. Faito 

composite section (see figure 8 in D'Argenio et al., 2004). Such very long gaps may 

potentially hide also the major features of the reference 
13

C curve, considering that a 

duration of about 1.2 Myr has been estimated for the rising limb (stages C4–C6) of the 

positive CIE associated with the "Selli event" (Li et al., 2008; Malinverno et al., 2010). 

 

5.5.3 Platform-to-basin chemostratigraphic correlation  

Assuming that the carbon isotope record of the five studied sections was not shaped 

by local palaeoenvironmental changes and diagenetic overprint, we attempted a 

chemostratigraphic correlation with the reference carbon isotope curve of the Cismon 

Apticore in the southern Alps (Menegatti et al., 1998; Erba et al., 1999) and with the 

composite curve of Herrle et al. (2004) from the Vocontian Basin of south-eastern France. 

For the nomenclature of the isotopic segments we refer to Wissler et al. (2003) for the 

Barremian–Early Aptian interval (B3–B8/A1–A3) and to Menegatti et al. (1998) for the 

isotopic excursion of the Selli event (C3–C7) (fig. 15). 

A correlation between the carbon isotope curves of the studied sections is possible by 

using as tie points the last occurrence of P. lenticularis, the two acmes of S. dinarica, the 

"Orbitolina level" and the A. reicheli level. At Mt. Raggeto there are three positive 
13

C 

excursions at values > +3-4‰ between the "Palorbitolina limestones" and the FO of A. 

reicheli. The first excursion is rather short (it takes less than 10 m) and peaks a few meters 

above the last occurrence of P. lenticularis. A positive excursion of similar shape and 

amplitude, occurring in the same stratigraphic position, is observed also at Mt. Croce and 

at Mt. Coccovello. At Mt. Motola this positive excursion is seemingly truncated by a small 

gap, because there is only a minor positive peak at about +1‰, nearly corresponding with 

the LO of P. lenticularis. The Mt. Tobenna section starts above the LO of P. lenticularis 

and this first excursion is probably represented only by the small peak at +3‰ occurring at 

the base of the section.  

We correlate the first positive excursion of the Mt. Raggeto curve with the A1-A2 

segments of Wissler et al. (2003). This correlation is supported by the SIS numerical age of 

124.1±1.1 Ma, corresponding to the D. oglanlensis ammonite zone, of the requienid level 

occurring 3 m below the LO of P. lenticularis at Mt. Croce. This is in agreement with the 

correlation of the Mt. Raggeto curve of Wissler et al. (2004) and is further supported by 

their magnetostratigraphic data, placing the M0 within superbundle R14, which 

corresponds to the top of the "Palorbitolina limestones" (Amodio et al., 2003). 

Accordingly, the distinctive negative trend preceding this positive excursion in the Mt. 

Croce, Mt. Motola and Mt. Coccovello sections can be correlated to the B7–B8 segments 

of Wissler et al. (2003). Chemostratigraphic correlation becomes less compelling for the 

lower part of these sections, mainly because of the lack of independent tie-points and 

because of the small amplitude of isotopic excursions in the reference curves (< 1‰). 

Nevertheless, a tentative correlation is supplied in figure 15, which suggests that the 

lowermost part of the Mt. Motola and Mt. Coccovello sections might extend into the 

Lower Barremian.  

The second positive excursion of the Mt. Raggeto curve is much broader (nearly 30-

40 m). It starts some 10 m above the LO of P. lenticularis, peaks at  +4.9‰ at a level 

corresponding to the first acme of S. dinarica, and finishes with values close to 0‰ a few 

m below the second acme of S. dinarica. This second positive excursion is completely 

missing at Mt. Motola. In the other sections the rising limb and the peak interval 



112 
 

(corresponding to values above +4‰) are largely missing, while the decreasing limb is at 

least partly recorded in the Mt. Tobenna and Mt. Coccovello section, less in the Mt. Croce 

section. In these three sections the "Orbitolina level" occurs in what is left of the 

decreasing limb of this positive excursion. In agreement with Wissler et al. (2004; see also 

Ferreri et al., 1997) we correlate this second positive excursion with the positive CIE 

associated with the "Selli event".  This correlation is also supported by the SIS ages of 

119.9 Ma for a requienid bed 5.8 m below the "Orbitolina level" at Mt. Tobenna and of 

119.2 Ma for a level immediately below the second acme of S. dinarica at Mt. Motola (fig. 

15 and tab. 2). On the contrary, this correlation is at odds with the SIS age of 122.9 Ma 

obtained for a requienid level occurring 1 m above the first marls with Mesorbitolina at 

Mt. Coccovello (fig. 15 and tab. 2).  

The third positive excursion of the Mt. Raggeto curve starts a few meters below the 

second acme of S. dinarica, peaks at about 4.5‰ and decreases to values <0‰ at the top of 

the section, close to the  FO of A. reicheli. This positive excursion is well expressed in all 

the other sections but at Mt. Coccovello, where its rising limb and peak interval are 

truncated by a gap, whose occurrence is supported also by the truncated range of S. 

dinarica just above its second acme (fig. 15). The correlation of this excursion with the 

reference curve is more problematic. It could correspond to the broad positive excursion 

spanning the P. melchioris, N. nolani and the lower part of the H. jacobi ammonite zones 

in the composite 
13

C curve of the Vocontian basin (Herrle et al., 2004; Föllmi et al., 

2006). Alternatively, it could embrace also the positive excursion spanning the Aptian-

Albian boundary.  

The chemostratigraphic correlation proposed above differs from the one we proposed 

in previous works, when the more complete Mt. Raggeto section was not yet included in 

our database (Di Lucia and Parente, 2008; Di Lucia, 2009). In particular, since we missed 

the most prominent positive excursion, which is fully recorded only at Mt. Raggeto, we 

misidentified the next positive excursion (the one starting above the "Orbitolina level") as 

the Selli event excursion. Our mistake stemmed from the impossibility of estimating 

correctly the duration of gaps, which are below biostratigraphic resolution, without making 

reference to a more complete section and with very few independent points of 

chronostratigraphic calibration (like SIS data or well dated biostratigraphic markers). This 

highlights once more the difficulty of applying carbon isotope stratigraphy in inherently 

incomplete and poorly dated shallow water carbonate platform sections. 

 

5.5.4 Biostratigraphic criteria for the Selli event in central Tethyan carbonate 

platforms 

Chemostratigraphic correlation with the well dated carbon isotope curves of the Cismon 

core and of the Vocontian composite section allows individuating in the carbonate platform 

successions of the southern Apennines the segments corresponding to the OAE1a and to 

propose a set of biostratigraphic criteria to individuate the stratigraphic interval equivalent 

to the OAE1a in the carbonate platforms of the central and southern Tethys. These criteria 

will be particularly useful when carbon isotope stratigraphy is not available or when 

chemostratigraphic correlation is biased by low resolution or by the overprint of local 

palaeoceanographic processes and/or of early meteoric diagenesis. A survey of the recent 

literature shows that this is often the case in shallow water carbonate sections. For instance, 

some recently published carbon isotope curves from the Barremian–Aptian of the Adriatic-

Dinaric carbonate platform show no evidence of the broad positive excursion associated 

with the Selli event and of the preceding negative shift (Tešović et al., 2011). In another 

case study, the OAE1a positive CIE is not present in the carbon isotope record of 

bulk/micritic matrix samples, while it is faithfully reproduced by the biotic calcite of rudist 

shells (Huck et al., 2010).   
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Figure 15 (previous page) - Chemostratigraphic correlation of the five sections of the Apenninic Carbonate 

Platform with the reference section of the Cismon Apticore (Belluno Basin, northern Italy) (Erba et al., 1999) 

and with the composite hemipelagic curve of south-eastern France (Herrle e al., 2004; Föllmi et al., 2006). 

This correlation uses as independent tie-points a Gargasian age for the "Orbitolina level"(see text) and the 

numerical ages of three levels dated by strontium isotope stratigraphy (filled red stars). The nomenclature of 

chemostratigraphic segments is from Wissler et al. (2003; B3–B8/A1–A3) and from Menegatti et al. (1998; 

C3–C7). The ammonite and planktonic foraminiferal biozones and their calibration to the Geological Time 

Scale are from Gradstein et al. (2004). The red stars indicate the SIS samples; the white star at Mt. 

Coccovello corresponds to a SIS age that is at odds with carbon isotope stratigraphy (diagenetically altered 

sample). 

 

Based on the chemostratigraphic correlation of figure 15, the segment of decreasing 
13

C values leading to the C3 negative peak, which is taken as the onset of the Selli event, 

starts a few meters above the LO of P. lenticularis and V. murgensis. The C4-C6 segments, 

corresponding to the interval of enhanced accumulation of organic matter in deep-water 

sections, ends just below the first acme of S. dinarica, which roughly corresponds to the 

C7 segment of peak 
13

C values.  The whole CIE associated with the OAE1a is bracketed 

in the ACP between the LO of V. murgensis and the "Orbitolina level".  

These criteria are particularly useful because they are based on biostratigraphic 

events that are widely employed in the most popular biostratigraphic schemes of central 

and southern Tethyan carbonate platforms (Velić, 2007; Chiocchini et al., 2008). In 

particular, the acme of S. dinarica is easily picked in the field and is widely recognized in 

central Tethyan carbonate platforms (Carras et al., 2006 and references therein; Velić, 

2007). The ―Orbitolina level‖, containing M. parva and M. texana, has long been used as a 

bio-lithostratigraphic marker in the geological maps of southern Apennines.  
 

5.5.5 Chronostratigraphic calibration of carbonate platform biostratigraphy 

The biozonations of the Lower Cretaceous carbonate platforms of the central Tethys 

(Apenninic, Adriatic and Gavrovo-Tripolitza platforms) are mainly based on calcareous 

algae and larger benthic foraminifera. The chronostratigraphic calibration of these schemes 

has always posed serious problems because ammonites, and calcareous plankton and 

nannoplankton, which are the pillars of Cretaceous chronostratigraphy, are notably absent 

from carbonate platform successions.  

The problem of chronostratigraphic calibration has been explicitly acknowledged by 

some authors (De Castro, 1991; Chiocchini et al., 2008). Others (Bachmann and Hirsch, 

2006; Velić, 2007) have anchored their biostratigraphic schemes to the chronostratigraphic 

ages of orbitolinid larger foraminifera, which have been established mainly in Northern 

Tethyan carbonate platforms. 

We highlight several shortcomings in this indirect correlation: 

 

 The precise isochrony of FOs and LOs of orbitolinid species between the northern 

and central-southern carbonate platforms has been never tested against independent 

evidence.  

 Orbitolinids are generally found in discrete intervals and sometimes are totally 

lacking in inner platform facies. Namely, the flat low-conical species are generally found 

in marly or calcareous marly levels, which seemingly represent transgressive to maximum 

flooding intervals (Vilas et al., 1995; Immenhauser et al., 1999; Jones et al., 2004). The 

local range of these taxa could be related more to the occurrence of the appropriate facies, 

controlled by local to regional sea-level history, than to evolutionary processes of 

speciation and extinction. 

 The chronostratigraphic calibration of orbitolinid biostratigraphy is still the matter 

of intense scientific debate, even in the areas where it has been first proposed, like the 
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Urgonian Platform of the northern Tethyan margin (Arnaud et al., 1998; Clavel et al., 

2007; Föllmi, 2008; Conrad et al., 2011; Godét et al., 2011; Huck et al., 2011).  

 

For all these reasons, we advocate the supremacy of chemostratigraphic correlation, 

used in this paper, to establishing the chronostratigraphic calibration of carbonate platform 

biostratigraphy. 

The high-resolution chemostratigraphic correlation with the well-dated reference 

sections of the Cismon Apticore and of the Vocontian basin of south-eastern France is here 

used to establishing the chronostratigraphic age of the biostratigraphic events recognized in 

the carbonate platform successions of the southern Apennines (fig. 15). We refer to the 

lowest FO and to the highest LO, assuming that the small differences between the ranges 

observed in the three studied sections are the result of the lack of appropriate facies, of 

small gaps or of other sampling biases. 

 

 The FO of P. infracretacea correlates with the lowermost Upper Barremian (H. 

sartousi ammonite zone). This species persists until the top of the five studied sections. 

 The range of P. lenticularis spans from the uppermost Barremian (P. waagenoides 

zone) to the lowermost Aptian (upper part of the D. oglanlensis zone). In the studied 

sections the levels rich of P. lenticularis (LA8, ―Palorbitolina limestones‖) mark a 

transgressive interval corresponding to the B8-A1 segments of the carbon isotope curves. 

Therefore, chemostratigraphy supports a correlation of the ―Palorbitolina limestones‖ of 

southern Apennines with the ―Couches inférieures à Orbitolines‖ of the French Vercors 

and with the ―Lower Orbitolina Beds‖ of the northern Tethyan Helvetic platform (Arnaud 

et al., 1998; Clavel et al., 2002; Föllmi et al., 2007; Föllmi and Gainon, 2008). 

 The range of V. murgensis straddles the Barremian-Aptian boundary (FO in the 

upper part of the P. waagenoides zone, LO in the lower part of the D. weissi zone). 

 The FO of D. hahounerensis is close to the base of the Aptian (D. oglanlensis 

ammonite zone). The LO correlates with the Upper Aptian H. jacobi ammonite zone. 

 The first acme of S. dinarica begins in latest Early Aptian (D. furcata zone) and 

straddles the Bedoulian-Gargasian boundary, terminating in the lower part of the E. 

subnodosocostatum zone. The second acme is roughly correlated with the lowermost part 

of the P. melchioris zone. The LO can be correlated with the upper part of the N. nolani 

ammonite zone.  

 The ―Orbitolina level‖ of the southern Apennines, containing an association of M. 

parva and M. texana, correlates with the upper part of the E. subnodosocostatum zone, 

confirming the middle Gargasian age proposed by Cherchi et al. (1978). A Gargasian age 

for the FO of M. texana, has been recently restated by Schroeder et al. (2010), and remains 

one of the tie points for the calibration of the Aptian biostratigraphy of central and 

southern Tethyan carbonate platforms (Simmons, 1994; Witt and Gökdağ, 1994; 

Bachmann and Hirsch, 2006; Velić, 2007). However, it is worth noting that in the northern 

Tethyan Helvetic carbonate platform M. texana has been found in the upper Schrattenkalk 

Fm. (Schroeder in Schenk, 1992; Schroeder et al, 2007), which has been dated by carbon 

isotope stratigraphy and ammonites as middle Early Aptian, close to the boundary between 

the D. weissi and the D. deshayesi zones (Föllmi, 2008; Föllmi and Gainon, 2008). The 

―Orbitolina level‖ of the southern Apennines cannot be correlated with the ―Couches 

supérieures à orbitolines‖ of the French Vercors and the ―Upper Orbitolina Beds‖ of the 

Helvetic Alps (Linder et al., 2006; Föllmi and Gainon, 2008). Instead, a correlation with 

the ―Niveau Fallot‖ of the Vocontian Basin (Friedrich et al., 2003), recently proposed by 

Raspini (2011), is compatible with our chemostratigraphic data.  
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 The A. reicheli level, consisting of a bed rich of fully developed specimens of this 

alveolinid species, is correlated with the middle part of the H. jacobi zone (Upper Aptian). 

In the Mt. Motola, Mt. Tobenna and Mt. Croce section this level is preceded by some 

meters of limestones with a few small primitive specimens of A. reicheli.  

 The FO of C. parva is correlated with the middle part of the H. jacobi zone, in the 

Upper Aptian. 

 

 
Figure 16 - Chronostratigraphic calibration of the Apenninic Carbonate Platform biostratigraphy. The 

calibration is based on the chemostratigraphic correlation with well-dated basinal sections (see figure 15). 

The chronostratigraphic calibration of the same biostratigraphic events, proposed by previous works on the 

Apenninic and other central and southern Tethyan carbonate platforms, is given for comparison. The shaded 

field indicates the chronostratigraphic interval covered by the sections studied in this paper. 

 

In the scheme of figure 16, the chronostratigraphic ranges supported by our 

chemostratigraphic correlation are compared with the ranges given for the same species in 

other biostratigraphic schemes of central and southern Tethyan carbonate platforms 

(Bachmann and Hirsch, 2006; Husinec and Sokaĉ, 2006; Velić, 2007; Chiocchini et al., 

2008; Tešović et al., 2011).  

Some discrepancies emerge, which might be at least partly due to a slight diachrony 

of the biostratigraphic events between different carbonate platforms. However, it must be 

re-emphasized that the chronostratigraphic calibration proposed in this paper is the first 

direct calibration based on isotope stratigraphy. For all the other biostratigraphic schemes 

cited above, the chronostratigraphic calibration is largely based on the ages proposed for 

orbitolinids in the carbonate platforms of the Northern Tethyan margin. This indirect 

chronostratigraphic calibration might be biased for several reasons, as discussed above. 

 

 

5.6 Conclusions 
 

The geological archive of the resilient central and southern Tethyan carbonate 

platforms contains valuable information on the response of tropical and subtropical neritic 

ecosystems to the palaeoenvironmental perturbations associated with the massive injection 

of CO2 into the Atmosphere–Ocean system during the early Aptian OAE1a. The first step 

to unlock this archive is the precise chronostratigraphic dating and correlation of shallow 

water carbonate successions with deep-water successions, which represent the reference 

record of palaeoceanographic events. In this paper we fulfill this task by integrating high-

resolution carbon isotope stratigraphy and biostratigraphy, with additional support by 

strontium isotope stratigraphy on a limited set of samples. Chemostratigraphic correlation 

of five sections of the Apenninic Carbonate Platform of southern Italy with the Cismon 
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Apticore and the composite section of the Vocontian Basin permits the chronostratigraphic 

calibration of carbonate platform biostratigraphy across the Barremian–Aptian interval.  

The main result derived from this calibration is the definition of biostratigraphic 

criteria to individuate, in the carbonate platforms of the central and southern Tethys, the 

stratigraphic interval equivalent to the OAE1a. The interval of decreasing 
13

C values 

preceding the C3 negative peak, which marks the onset of the Selli event, starts a few 

meters above the LO of P. lenticularis and just above the LO of V. murgensis. The C4-C6 

segments, which correspond in deep-water sections to the interval of black shales 

deposition, ends just below the first acme of S. dinarica. The second acme of this species 

roughly corresponds to the C7 segment of peak 
13

C values. The "Orbitolina level" marks 

the return the pre-excursion values at the end of the broad positive CIE associated with the 

OAE1a. 

Another valuable result is the definition of a biostratigraphic criterion to spike the 

Barremian–Aptian boundary in central-southern Tethyan carbonate platforms. According 

to our calibration, the boundary is very closely approximated by the first occurrence of V. 

murgensis and D. hahounerensis. 

In all the biostratigraphic schemes published so far for the ACP and other central and 

southern Tethyan platforms, the chronostratigraphic calibration was anchored to the ages 

established for selected taxa of orbitolinid foraminifera in the carbonate platform of the 

Northern Tethyan margin. We propose the first chronostratigraphic calibration constrained 

by carbon and strontium isotope stratigraphy. Chemostratigraphy is being successfully 

applied to Cretaceous carbonate platforms. Its integration with biostratigraphy hold the 

promise of producing standard biozonations, based on larger foraminifera and calcareous 

algae, perfectly tied to the chronostratigraphic scale. This would open the possibility of 

fully exploiting the valuable archive of palaeoenvironmental changes preserved by 

Cretaceous carbonate platforms. 
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CHAPTER 6 – CONCLUSIONS AND PERSPECTIVES 
 

The main aim of the present doctoral thesis  was to investigate the response of the 

Apenninic Carbonate Platform to the early Toarcian (T-OAE) and the early Aptian 

(OAE1a) oceanic anoxic events. To fulfill this task, a detailed study of two Lower Jurassic 

and two Lower Cretaceus sections was carried out. In the absence of black shales and of a 

reliable biostratigraphic criterion, carbon isotope stratigraphy was used to identify the 

segments corresponding to the OAEs. As a by-product, this led to unprecedented high-

resolution dating of the studied sections with the first chemostratigraphically constrained 

calibration of their biostratigraphy.   

Concerning the T-OAE, phosphorus content and clay minerals of Mercato San 

Severino and Monte Sorgenza sections were successfully used to discriminate the relative 

role of ocean acidification vs enhanced nutrient flux on the carbonate factory, and to 

compare the response of the ACP with that of other carbonate platforms for which 

increased nutrient levels have been implied as the main cause of crisis or drowning.  

For the early Aptian OAE1a, the integration of the study of Monte Raggeto and 

Monte Tobenna sections with the data of a previous doctoral thesis (Di Lucia, 2009) 

allowed to define the biostratigraphic criteria to individuate, in the carbonate platforms of 

the central and southern Tethys, the stratigraphic interval equivalent to the OAE1a. 

 

The main results can be summarized as follows: 

 

early Toarcian OAE 

 In the ACP, the Lithiotis/Palaeodasycladus carbonate factory was wiped out at the 

onset of early Toarcian negative carbon isotope excursion, seemingly marking the 

definitive extinction of these massive biocalcifiers. The extinction of carbonate platform 

biocalcifiers is coeval with the biocalcification crisis of calcareous nannoplankton. The 

coincidence with the negative CIE, interpreted as the result of the massive injection of CO2 

into the atmosphere-ocean system, is consistent with a scenario of ocean acidification at 

the onset of the T-OAE. This suggests that the demise of the Lithiotis/Paleodasycladus 

carbonate factory was caused by  ocean acidification. Moreover, clay minerals and P 

content across the early Toarcian OAE show no evidence of enhanced weathering in the 

ACP, excluding any role of the enhanced nutrient levels on the demise of the massive 

biocalfiers. 

 In the ACP, and in other resilient platforms of the Tethyan ocean, the disappearance 

of biocalcifiers coincide with a shift to chemical precipitation in the form of massive 

oolitic limestones. Similar to what observed for the Permian-Triassic boundary crisis, 

chemical precipitation took over on carbonate platforms as soon as ocean alkalinity 

recovered. 

 Clay-minerals and P content of the Apenninic Carbonate Platform recorded  

increased weathering across the Pliensbachian-Toarcian boundary. Unlike many carbonate 

platforms of the Peri-Tethyan domain, which responded to the shift of nutrient levels by 

either drowning or shifting to heterotrophic carbonate production, the ACP continued 

growing in shallow water with no significant shift in the composition of the carbonate 

factory. 

 Lower subsidence rate, compared to other Peritethyan carbonate platforms, was 

most probably a significant factor explaining the resilience of the ACP to Early Toarcian 

palaeoenvironmental perturbations.  
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early Aptian OAE 

 The interval of decreasing 
13

C values values preceding the C3 negative peak, 

which marks the onset of the Selli event, starts just above the LO of V. murgensis. The C4-

C6 segments, which correspond in deep-water sections to the interval of black shales 

deposition, ends just below the first acme of S. dinarica. The latter roughly corresponds to 

the C7 segment of peak 
13

C values. The "Orbitolina level" marks the return the pre-

excursion values at the end of the broad positive CIE associated with the OAE1a. 

 The Barremian–Aptian boundary in central-southern Tethyan carbonate platforms 

is very closely approximated by the first occurrence of V. murgensis and D. hahounerensis. 

 

To better understand the response of the Apenninic Carbonate Platform to the global 

changes during the Early Toarcian, different integrative studies could be carried out. 

Information on the type and thermal maturity of the bulk organic matter can be 

obtained by Rock-Eval pyrolysis which provide TOC (Total Organic Carbon, wt%), HI 

(Hydrogen Index, mg HC/g TOC), OI (Oxygen Index, mg CO2/g TOC) and Tmax (°C). In 

particular, the crossplots of HI/OI values will give indication about the origin of the 

organic matter (continental vs marine). This could help explaining why the first prominent 

negative CIE, which in this thesis has been associated to the Pliensbachian-Toarcian stage 

boundary, is present in the 
13

Corg record but absent in the 
13

Ccarb one. In fact a variation 

in the relative contribution of continental vs marine organic matter across the boundary 

stage cannot be excluded. 

Calcium-isotope ratio (
40/44

Ca) analyses could better constrain the scenario of ocean 

acidification at the onset of the early Toarcian OAE. Calcium isotopes are useful in 

identifying and quantifying changes in geochemical cycles during OAEs and other severe 

carbon-cycle perturbation episodes, because the calcium-isotope ratio of seawater changes 

in response to large flux imbalances. Secular variation in the calcium isotope composition 

of marine sediments provide a tool for distinguishing among several extinction scenarios 

and thereby constraining the causes of mass extinction. This tool has been successfully 

used in the study of the end-Permian mass extinction (Payne et al., PNAS 2010) and for the 

early Aptian (OAE1) and the Cenomanian-Turonian boundary (OAE2) events (Blättler et 

al., EPSL 2011). 

 

For the early Aptian, the study of total P concentration and of clay mineral 

assemblages could help to investigate changes of continental weathering across the 

OAE1a. Moreover a more exaustive biostratigraphic study could further improve the bio-

chemostratigraphic scheme proposed for the Barremian-Aptian interval in this thesis. 
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Carbon and oxygen isotopes of Mercato San Severino section 
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17.4 -1.28 2.89 

  
49.2 -1.75 3.19 

 18.1 -1.11 2.89 
  

49.8 -1.73 2.20 
 18.9 -1.80 2.81 

  
50.3 -1.59 2.51 

 19.7 -1.55 2.38 
  

50.8 -1.72 1.52 
 20.4 -1.85 2.23 

  
51.1 -1.76 2.17 

 20.8 -2.78 1.53 
  

51.8 -1.75 2.27 
 21.5 -1.22 2.95 

  
52.5 -1.76 2.80 -25.18 

21.9 -1.20 2.90 
  

52.8 -1.87 2.33 
 22.6 -2.01 2.84 

  
53.6 -1.70 2.71 

 23 -1.44 2.93 
  

54 -1.25 2.62 
 23.7 -1.81 2.60 

  
55 -2.08 1.92 

 25.3 -2.36 1.71 
  

55.5 -1.72 2.39 
 25.9 -2.59 1.86 

  
56.3 -1.92 2.49 

 26.4 -1.76 2.57 
  

56.7 -1.60 3.09 -25.12 
27.3 -2.11 2.47 

  
57.1 -2.58 2.36 

 28 -1.80 2.13 
  

57.3 -1.34 1.84 
 28.5 -1.67 2.20 

  
58.4 -1.49 2.31 

 29.4 -1.40 2.37 
  

59.3 -2.16 2.24 
 29.8 -1.78 1.56 

  
60 -3.35 1.93 
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h 
 (m) 

18
Ocarb 

(‰) 

13
Ccarb 

(‰) 

13
Corg 

(‰) 

 

h 
(m) 

18
Ocarb 

(‰) 

13
Ccarb 

(‰) 

13
Corg 

(‰) 

60.3 -2.92 1.78 
  

87.5 -2.76 0.60 
 60.6 -2.76 2.13 

  
87.8 -1.59 1.88 

 61.4 -2.01 2.04 -25.49 
 

88.3 -2.20 1.86 -24.07 
62.5 -1.88 2.58 

  
89 -2.30 3.06 

 63 -1.51 1.20 
  

90 -2.03 3.22 
 63.5 -1.34 2.17 

  
91.3 -1.38 2.65 

 64.1 -2.29 2.35 
  

91.7 -1.27 2.45 
 64.7 -2.10 0.93 

  
92.3 -1.28 2.28 

 65.3 -2.36 1.20 -24.09 
 

93 -1.60 2.83 
 66 -1.83 2.83 

  
93.9 -1.64 2.65 

 66.9 -2.27 1.91 
  

94.8 -1.74 2.81 
 67.9 -1.86 2.43 

  
95.3 -1.73 1.79 

 68 -1.85 2.61 
  

96.2 -2.14 1.85 
 68.3 -2.69 1.26 

  
95.3 -1.73 1.79 

 69.1 -2.27 2.08 
  

96.2 -2.14 1.85 
 69.7 -1.72 2.40 

  
97.3 -2.10 2.70 

 70.3 -1.58 2.44 -25.20 
 

97.5 -2.37 2.12 -25.28 
70.9 -1.70 2.85 

  
98.3 -1.85 2.38 

 71.5 -2.18 2.58 
  

99.4 -1.48 2.60 
 72.3 -1.31 2.09 

  
100.4 -1.70 2.77 

 72.7 -2.67 2.79 
  

100.7 -1.70 2.53 
 73.4 -2.12 2.24 

  
101.3 -1.47 2.52 

 74.1 -2.27 2.31 
  

102.5 -1.84 1.64 
 74.3 -2.46 1.90 

  
103.6 -1.91 1.60 -25.28 

75 -1.93 2.18 -25.82 
 

103.8 -1.93 2.60 
 75.5 -2.53 1.86 

  
104.3 -2.03 1.44 

 76.7 -1.80 2.50 
  

104.9 -2.50 0.16 
 77 -2.77 2.32 

  
105.2 -2.72 3.37 

 78 -2.21 2.65 
  

105.8 -2.16 2.36 
 78.4 -1.76 2.60 

  
106.7 -1.61 1.32 -23.54 

78.6 -1.80 2.71 
  

107.1 -2.21 2.07 
 79.4 -1.76 2.63 -24.38 

 
107.5 -1.99 2.10 -26.71 

79.8 -2.24 2.17 
  

108.3 -2.27 2.07 
 80.5 -2.23 1.33 

  
109 -2.13 2.39 -26.58 

80.7 -1.86 2.14 
  

110 -2.19 2.59 -27.09 
81 -1.60 2.79 

  
110.5 -1.87 2.70 

 81.6 -1.52 2.48 
  

111.1 -1.97 2.72 
 82 -1.33 2.75 

  
111.9 -2.02 2.91 -25.69 

82.5 -1.85 2.79 
  

112.3 -1.39 2.84 
 83.1 -1.36 2.52 

  
112.7 -1.61 2.96 -25.40 

83.4 -1.39 2.78 -25.41 
 

113.3 -1.58 2.60 -25.65 
84 -1.78 2.50 

  
114 -2.15 2.95 

 84.8 -1.98 2.58 
  

114.6 -2.39 3.50 -24.79 
85.3 -1.87 1.98 

  
115.6 -1.93 2.38 

 85.8 -2.32 2.03 
  

115.9 -2.00 1.45 -23.53 
86.4 -1.64 2.34 

  
116.1 -1.97 1.50 

 87.5 -2.76 0.60 
  

116.4 -2.45 1.61 
 87.8 -1.59 1.88 

  
116.5 -2.03 3.14 -24.81 

  



128 
 

h 
 (m) 

18
Ocarb 

(‰) 

13
Ccarb 

(‰) 

13
Corg 

(‰) 

 

h 
(m) 

18
Ocarb 

(‰) 

13
Ccarb 

(‰) 

13
Corg 

(‰) 

117 -2.33 3.16 
  

144.7 -3.06 3.18 -26.98 
117.7 -2.23 3.73 -24.61 

 
145.4 -2.74 3.44 

 118.1 -2.22 3.54 
  

146.7 -3.44 2.84 
 118.6 -1.83 4.22 -24.94 

 
148.7 -2.49 2.64 

 119.6 -2.05 3.07 
  

150.3 -2.50 2.65 
 120.2 -1.90 3.44 -24.95 

 
152.1 -2.50 2.84 

 121.1 -1.78 3.56 -24.58 
 

154.5 -2.61 2.75 
 122.4 -2.01 3.35 

  
156.6 -2.46 2.63 

 122.5 -1.92 3.39 
  

158.9 -2.36 2.67 
 122.9 -1.55 3.07 -24.99 

 
160.4 -2.31 2.69 

 123.5 -1.68 3.33 -24.22 
 

162.1 -2.40 2.58 
 124.1 -1.84 3.16 -25.10 

 
163.7 -2.48 2.50 

 124.5 -1.87 2.89 
  

154.5 -2.61 2.75 
 125.2 -2.13 3.39 -24.41 

 
156.6 -2.46 2.63 

 125.6 -2.15 3.12 
  

158.9 -2.36 2.67 
 125.8 -2.07 2.38 

  
160.4 -2.31 2.69 

 126.1 -2.22 2.26 -26.50 
 

162.1 -2.40 2.58 
 126.2 -2.39 2.29 

  
163.7 -2.48 2.50 

 126.5 -2.64 2.41 
      126.6 -2.68 2.39 
      127.1 -2.81 1.61 -27.84 

     127.7 -2.51 1.58 
      128 -2.93 1.57 -28.12 

     128.6 -3.79 2.67 -27.55 
     128.7 -2.82 0.95 

      129.8 -3.06 2.64 
      130.5 -2.54 2.40 -27.99 

     131.2 -2.43 2.69 -28.24 
     132.1 -2.96 3.23 -27.41 
     132.8 -2.28 3.40 

      133.3 -2.33 2.55 -27.66 
     133.8 -2.46 2.71 

      134.3 -2.38 2.64 -26.47 
     134.8 -2.53 2.71 

      135.2 -2.48 2.87 -26.91 
     135.8 -2.47 3.07 

      136.3 -2.52 3.15 
      136.7 -2.95 3.63 
      137.4 -2.66 3.69 -25.73 

     138 -2.63 3.47 
      138.6 -2.49 3.42 -26.09 

     139.7 -2.57 3.48 
      139.9 -1.90 3.68 -24.80 

     140.7 -2.46 3.42 -26.64 
     141.5 -2.20 2.88 -26.80 
     142.5 -2.56 3.34 -26.98 
     143.9 -3.40 2.86 -26.79 
     144 -6.30 2.60 
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Carbon and oxygen isotopes of Monte Sorgenza section 
 

h 
 (m) 

18
Ocarb 

(‰) 

13
Ccarb 

(‰) 

13
Corg 

(‰) 

120.5 -1.92 1.39 -24.75 
121.5 -2.61 1.77 

 122.4 -1.92 1.04 -24.15 
123.7 -2.49 1.04 

 125 -2.21 1.28 -23.72 
126 -2.18 1.13 

 126.8 -2.80 -0.71 -25.20 
130 -1.70 0.69 -24.89 

131.4 -1.13 1.59 -22.75 
132.6 -1.62 1.14 -24.35 
133.7 -1.30 1.24 -23.90 
134.6 -1.39 1.59 

 134.9 -1.48 1.68 -25.58 
135.6 -1.21 1.92 -25.64 
136.8 -1.47 1.73 -27.23 
138.2 -1.51 2.01 -25.34 
139.4 -1.20 2.41 -25.11 
140.3 -1.84 1.96 

 141.1 -1.49 1.88 -25.29 
141.4 -1.62 1.47 

 141.8 -0.97 2.45 
 142.6 -1.05 2.52 -25.24 

143.1 -1.42 2.11 
 143.8 -2.00 2.51 -25.49 

144.9 -1.60 2.10 -24.46 
145.7 -1.00 2.83 -24.38 
146.5 -1.26 2.81 -24.15 
147.5 -1.34 2.86 -23.86 
148.2 -1.78 2.63 -24.60 
149.4 -1.59 3.27 -24.23 
149.9 -1.39 3.22 -23.61 
151 -1.77 2.82 -23.57 

151.4 -1.83 3.15 -24.37 
152.4 -2.16 2.02 -23.75 
153 -2.82 0.29 -23.92 

153.9 -2.23 2.29 -25.07 
154.6 -2.01 1.26 -29.15 
155.5 -2.54 1.04 -29.38 
156.5 -1.80 1.64 

 157.7 -1.55 2.17 
 158.5 -2.15 1.94 -28.03 

159.8 -2.07 2.41 -27.70 
160.7 -1.83 2.51 -27.15 
161.2 -1.17 2.74 -25.33 
163.1 -1.00 2.60 -25.46 
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P content and clay-mineral assemblages of Mercato San Severino 

section 
h 

 (m) 
P 

(ppm) 
mica 
(%) 

I/S 
(%) 

chlorite 
(%) 

kaolinite 
(%) 

0 14 71 14 9 6 
4.6 26 71 14 9 5 
8.4 27 78 13 5 4 

12.6 25 54 11 17 18 
17.3 14 75 15 4 6 
21.2 27 63 14 23 0 
26.2 13 67 25 5 2 
26.5 

 
63 14 23 0 

30.9 15 76 5 12 7 
35.3 26 51 28 13 7 
37.6 

 
69 21 10 0 

39.3 23 87 13 0 0 
42.6 

 
40 32 14 14 

44.2 19 72 14 7 6 
48.9 18 73 15 8 3 
52.3 

 
58 33 6 3 

53.4 12 67 13 8 11 
59.5 22 65 25 0 11 
60.8 20 53 17 20 10 
62.6 22 54 27 18 1 
62.7 

 
55 32 8 5 

63 35 58 15 16 11 
63.4 20 58 22 15 6 
64.2 25 56 25 11 9 
64.9 20 76 4 14 6 
65.9 18 66 6 16 12 
66.4 24 45 15 15 26 
67 18 44 19 16 21 

67.8 20 79 8 8 5 
68.2 28 37 18 15 29 
68.6 19 57 9 16 17 
69.2 19 51 17 13 19 
69.9 30 47 40 7 7 
70.5 20 64 3 16 17 
71.5 24 44 18 15 24 
71.8 34 37 19 18 25 
72 50 48 23 10 19 

72.1 
 

39 17 19 24 
72.2 

 
45 29 15 11 

72.3 38 51 13 16 19 
72.4 16 49 7 13 30 
72.9 37 40 20 15 26 
73.2 34 36 7 18 39 
73.6 26 43 24 11 22 
74 30 37 20 16 26 

74.5 18 47 5 12 35 
75.5 32 43 8 19 30 
76.1 14 51 13 13 23 
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h 
 (m) 

P 
(ppm) 

mica 
(%) 

I/S 
(%) 

chlorite 
(%) 

kaolinite 
(%) 

77 14 66 4 9 21 
78.3 22 58 6 13 24 
78.8 14 63 11 9 17 
79.4 20 65 10 9 16 
80 8 73 5 8 14 

80.4 15 74 6 11 9 
81.1 21 52 16 14 18 
81.7 12 

    82 10 61 13 18 8 
82.3 12 41 36 10 13 
83 28 

    83.6 10 
    83.9 8 66 22 5 7 

84.5 6 
    85.7 8 56 15 9 21 

86.4 6 70 6 8 15 
87.1 6 68 11 11 10 
88 6 

    88.7 6 63 23 5 9 
89.2 8 83 17 0 0 
90.2 8 

    91.1 8 76 24 0 0 
92.2 8 78 8 6 8 
93.3 8 89 11 0 0 
94.5 8 59 12 16 13 
95.8 18 53 9 22 16 
96.6 10 

    97.4 12 66 34 0 0 
98.4 12 

    99.8 10 70 30 0 0 
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P content and clay-mineral assemblages of Mercato San Severino 

section 
h 

 (m) 
P 

(ppm) 
mica 
(%) 

I/S 
(%) 

chlorite 
(%) 

kaolinite 
(%) 

0 
 

51 21 14 14 
3.4 

 
67 10 19 3 

7.8 
     11.9 
 

72 21 4 3 
15.8 

 
48 26 19 7 

19.7 
 

57 11 18 13 
23.8 

 
56 16 19 9 

30.1 26 
    31.1 23 
    32 29 70 9 12 9 

33.3 24 
    34.6 26 
    35.6 25 
    36.4 23 
    39.6 27 51 10 0 39 

41 29 
    42.2 31 64 4 12 20 

43.3 28 
    44.2 33 
    44.5 28 36 10 9 45 

45.2 22 
    46.4 25 32 14 15 39 

47.8 24 
    49 26 41 2 12 45 

49.9 33 
    50.7 34 27 6 12 55 

51 34 
    51.4 34 
    52.2 27 37 13 16 34 

52.7 27 
    53.4 28 35 3 11 51 

54.5 32 36 10 11 42 
55.3 25 29 9 17 44 
56.1 26 33 16 12 38 
57.1 25 30 15 11 44 
57.8 27 

    59 28 
    59.5 28 
    60.6 32 39 3 13 45 

61 23 
    62 30 50 19 7 24 

62.6 29 
    63.5 8 48 22 8 22 

64.2 11 
    65.1 14 74 26 0 0 
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h 
 (m) 

P 
(ppm) 

mica 
(%) 

I/S 
(%) 

chlorite 
(%) 

kaolinite 
(%) 

66.1 11 
    67.3 18 
    68.1 16 56 23 11 10 

69.4 16 
    70.3 16 52 22 16 10 
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Carbon and oxygen isotopes of Monte Raggeto section 

 

h 
 (m) 

18
O 

(‰) 

13
C 

(‰) 

 

h 
 (m) 

18
O 

(‰) 

13
C 

(‰) 

0.1 1.76 -1.58 
 

55.6 3.30 -0.83 
1.3 2.55 -2.58 

 
56.6 3.88 -0.91 

2.6 1.09 -2.13 
 

57.4 3.70 -0.83 
3.5 1.35 -2.59 

 
58.5 4.45 -0.69 

4.7 1.79 -2.20 
 

59.6 2.33 -1.18 
5.2 2.02 -2.07 

 
60.4 1.42 -1.33 

6.0 1.78 -1.99 
 

61.5 3.04 -0.96 
6.5 1.67 -1.95 

 
62.6 3.59 -0.51 

7.6 1.73 -2.12 
 

63.7 3.96 -0.74 
18.3 1.46 0.38 

 
64.2 2.44 -1.00 

19.5 1.56 0.40 
 

64.8 1.36 -1.18 
20.9 1.76 0.52 

 
65.8 0.83 -1.82 

22.6 2.05 0.71 
 

66.3 0.05 -1.29 
24.0 1.92 0.49 

 
67.4 0.02 -1.07 

24.4 2.77 -1.09 
 

68.6 0.27 -1.30 
24.9 3.14 -1.24 

 
69.8 1.49 -1.02 

25.9 3.41 -1.42 
 

71.0 1.03 -1.04 
27.0 3.11 -1.45 

 
72.0 1.20 -1.07 

28.1 3.20 -1.55 
 

73.0 1.20 -1.21 
28.7 2.67 -1.03 

 
73.9 1.25 -1.10 

29.5 2.34 -1.77 
 

74.9 2.06 -1.20 
30.2 2.25 -1.67 

 
75.9 -0.25 -1.65 

31.4 1.25 -1.52 
 

76.8 3.03 -0.74 
32.0 1.28 -1.36 

 
77.3 3.41 -0.91 

33.6 1.81 -2.22 
 

77.4 3.66 -0.38 
34.5 1.06 -1.68 

 
78.3 2.67 -1.03 

35.3 0.98 -2.12 
 

79.7 4.55 -0.46 
35.8 2.71 -1.68 

 
80.6 3.44 -1.50 

39.9 3.82 -1.33 
 

81.4 4.26 -1.23 
40.2 1.33 -1.49 

 
82.5 4.22 -0.63 

40.7 1.25 -1.47 
 

82.9 3.96 -1.36 
41.3 3.13 -1.39 

 
84.0 4.39 -1.09 

42.2 4.34 -1.26 
 

85.0 3.38 -1.12 
43.1 4.02 -1.53 

 
86.2 2.10 -0.70 

43.9 2.88 -1.37 
 

87.0 1.70 -1.37 
44.6 2.64 -1.82 

 
87.9 3.94 -0.71 

45.7 2.93 -1.58 
 

88.8 4.26 -0.72 
46.5 2.86 -1.74 

 
89.9 4.07 -0.78 

47.9 4.85 -1.25 
 

90.6 4.49 -1.23 
48.1 4.78 -0.85 

 
92.2 3.56 -0.80 

49.2 4.34 -1.10 
 

93.1 3.74 -1.32 
50.6 4.51 -1.03 

 
93.7 3.53 -1.26 

51.6 4.19 -1.23 
 

94.4 1.94 -1.27 
52.6 2.89 -1.27 

 
96.1 1.61 -1.88 

53.7 3.55 -1.36 
 

96.5 2.92 -2.06 
54.6 2.78 -1.52 

 
97.3 2.00 -1.79 
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Carbon and oxygen isotopes of Monte Tobenna section 

 

h 
 (m) 

18
O 

(‰) 

13
C 

(‰) 

 

h 
 (m) 

18
O 

(‰) 

13
C 

(‰) 

0.2 2.45 -2.64 
 

33.3 3.02 -3.86 
0.8 2.37 -1.46 

 
34.3 3.20 -3.16 

1.3 3.23 -1.06 
 

35.3 3.17 -2.67 
1.8 2.77 -1.18 

 
36.1 3.17 -1.41 

2.1 3.05 -1.69 
 

36.5 3.76 -1.88 
2.3 2.69 -1.61 

 
37.1 3.36 -4.47 

3.3 3.43 -1.77 
 

38.2 3.12 -0.88 
4.2 3.36 -1.53 

 
39.0 0.73 -3.26 

4.8 1.77 -1.47 
 

39.9 0.96 -1.24 
5.8 0.94 -1.31 

 
41.1 0.97 -2.33 

6.4 1.73 -1.42 
 

42.1 3.33 -2.48 
7.5 3.06 -1.66 

 
43.3 2.65 -4.74 

7.6 3.11 -1.67 
 

43.9 1.62 -3.01 
8.3 4.37 -1.10 

 
45.2 0.87 -3.10 

9.0 2.02 -1.11 
 

46.2 0.38 -3.80 
9.9 2.99 -1.85 

 
47.2 3.02 -2.57 

10.7 1.11 -0.93 
 

48.0 -0.30 -2.34 
11.1 2.18 -0.74 

 
48.1 -0.63 -1.71 

11.3 2.16 -1.50 
 

48.3 -2.37 -2.16 

11.8 1.77 -1.23 
    12.5 0.22 -0.68 
    13.3 1.05 -1.42 
    14.0 2.05 -0.76 
    14.6 1.70 -0.80 
    15.2 2.08 -0.83 
    15.4 -1.09 -1.67 
    16.7 1.86 -1.62 
    17.2 0.81 -1.24 
    17.5 0.96 -1.16 
    18.3 2.34 -1.78 
    18.9 0.36 -2.73 
    19.9 1.20 -0.65 
    20.8 -2.35 -0.73 
    21.5 -1.50 -1.24 
    21.9 -1.69 -1.44 
    22.9 -1.80 -1.60 
    23.7 1.73 -0.59 
    24.3 3.26 -1.56 
    25.4 3.55 -2.84 
    26.4 2.70 -1.72 
    27.4 2.49 -3.31 
    28.4 3.78 -2.96 
    29.0 3.38 -1.78 
    30.0 3.92 -3.12 
    31.0 3.45 -1.42 
    32.1 4.05 -2.28 
     


