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Abstract

Genetic based diseases are commonly thought as an “error”, i.e. as the result of

one or few rare mutations in the DNA. While this explanation can work fine for

Mendelian, high penetrance, diseases, it is less plausible for complex diseases (CD).

Indeed, this important class of diseases is characterized by the fact of being caused

by hundreds of variants, each of them “common” in the population and with a small

effect. As a possible explanation for such an apparent paradox, it has been proposed

that variants associated with CD are the result of direct or indirect evolutionary

pressures in ancient times. According to this hypothesis, those variants (or variants

close to them) were selected in our ancestors for being advantageous and that they

became dangerous only recently because of the totally different environment we live

in. Then, the very recent changes in the environment, together with the late onset

characterizing these diseases, provided no time for natural selection to act against

them.

As a first step toward addressing this hypothesis, I analyzed the genomic distribution

of a specific marker of selective pressure, namely FST . I examined, in particular,

its relationship with genes associated to human CD finding indeed suggestions of

positive selection occurred on them.

To better understand the role of natural selection on genes associated with CD I then

focused on two different cases of study corresponding to two different scenarios. In

the first one, I found hints for schizophrenia to be, at least partially, a maladaptive
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Abstract

by-product of natural selection which acted on vitamin D related genes when first

humans moved to higher latitudes.

In the second example, I focused on the case in which variants increasing the risk for

autoimmune diseases are most likely to be the actual and direct target of selection.

I found that a plausible hypothesis is that the diseases themselves are the results of

an environmental mismatch with respect to that our ancestors, when these variants

were selected.
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Chapter 1

Complex diseases in an evolutionary

perspective

In the past years, the main contributions of genetic to medicine were directed towards

the finding of visible chromosomal defects and mutations in genes that interfere with

the specific function of a single gene and thereby cause “Mendelian” or “monogenic”

diseases. The result of this big effort is such that, to date, more than 4,000 disor-

ders are known and, for the majority of them, the molecular mechanism is known

as well (www.omim.org). Many reasons account for this tendency, not last the

technologies not available up to few years ago and the relative simplicity (compared

to other phenotypes) of the study of these disorders. Mendelian diseases, indeed,

although rare are characterized by simple and clear-cut pattern of transmission and

are usually due to one or few highly penetrant and strongly deleterious alleles that

segregate in families.

However, the vast majority of human diseases shows incomplete pattern of pene-

trance and they are usually caused by many genetic and environmental factors and

by (non-linear) interactions among them. To this class of disorders, known as “com-

plex diseases” (CDs), belong those pathologies with the highest prevalence in the

3
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Chapter 1 Complex diseases in an evolutionary perspective

human being, such as cancer, cardiovascular diseases, asthma, diabetes mellitus, etc

[1].

At least until few years ago, the search for genetic mechanisms underlying CDs was

not successful as it was for Mendelian ones [2]. One of the most important reason is

that, because of their intrinsic multi-factoriality, each allele is expected to influence

the disease risk only in a small amount and this can explain why traditional methods

for mapping (e.g. linkage analysis) work poorly. But, with the introduction of high-

density single nucleotide polymorphisms genotyping platforms, the scenario became

different. Genome-wide association studies (GWAS) allowed to unveil many, well

replicated, risk loci associated to common diseases [3]. Moreover, the decrease of

their cost and the possibility of studying even more individuals, also allowed to

identify very subtle signals in a relatively cheap and quick way [4].

A deeper look at these results, however, unveil a subtle evolutionary paradox. Power

of GWAS strongly depends on the frequency of the variant in the sample and in the

population [5]. Indeed, variants which are rare in the population could not even be

present on the array while those that have low frequency in the sample are usually

unable to reach a genome-wide significance threshold. The high consistency of many

of these results, and consequently the likelihood of them being true, supports the

evidence that susceptibility variants are “common” (frequency > 5%) in the popu-

lation. It is worth stressing that this doesn’t means that all the variants affecting

the risk for common diseases needs to be common. Unfortunately, because of the

limits of current technologies, right now this is the range of frequencies we can more

comfortably focus on [6].

Even under the conservative hypothesis that they represent just a piece, more or

less big, of the genetic puzzle explaining CDs, the contribution of those variants

is non negligible. In one of the first large scale GWAS, for example, Zeggini and

colleagues found about 10 variants associated with type 2 diabetes (T2D) mellitus

which frequencies range from 15% up to 45%[7] in a UK samples, and in general
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few variants associated with T2D show an allelic frequency < 10%. Five variants

strongly associated with age-related macular degeneration risk (∼ 50% of explained

variance) shows frequencies above 20% [8].

Overall, the average minor allele frequency of CD-risk variants is about 30% [9].

If we instead look at genetic variation responsible for Mendelian diseases they are

essentially rare (� 1%). From an evolutionary perspective, indeed, it is reasonable

that variants providing strongly deleterious phenotypes, as many Mendelian disor-

ders are, are likely to be removed by purifying selection. But, the fact that a similar

reasoning doesn’t work for CDs, led to the question which represents the aim of this

thesis: why mutations that increase the risk for a disease should be present at such

an high frequency in the human population?.

Several explanations can be hypothesized. First of all, it cannot be excluded that

common variants are just proxies for a set of surrounding rare mutations. More-

over it should be kept in mind that CDs can be sometimes characterized by milder

phenotypes, with late onset and a modest or null impact on reproductive fitness.

However, in some cases both this assumptions have been showed to be false and some

more advanced and general explanations are needed. One of the most intriguing is

the idea that natural selection played, in the past, an important role. Indeed, many

mechanisms underlying CDs become clearer and more understandable if looked from

an evolutionary perspective. Aim of this work will be to clarify how selective pres-

sure could have played a role in the evolution of CDs, to assess on a genome-wide

scale its role, and to exhibit some concrete examples relative to different models.

As an example of how studying and understanding evolution has an even more

important impact in medicine and, eventually, on health, it is worth to remark that

the National Academy of Sciences of USA held on April 2009 in Washington DC

one of its famous Arthur M. Sackler colloquia on the topic “Evolution in Health and

Medicine” [10].
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Chapter 1 Complex diseases in an evolutionary perspective

1.1 Evolutionary models for CDs

The most basic mechanism one can imagine acting on diseases is purifying or neg-

ative pressure. As discussed for Mendelian diseases, indeed, one should expect that

disease alleles are removed from the population due to their deleterious effect. At

the same time, the mutational process re-introduce new disease alleles. At a certain

point, these two forces will reach a balance (mutation–selection balance) between

the input of new mutations and purifying selection that removes them [11] and sus-

ceptibility allele (if rare) will reach an equilibrium frequency approximately equal to

the mutation rate divided by the selection against the allele in heterozygotes. Under

this model, traits are expected to feature an high levels of allelic heterogeneity and

a low prevalence, as it is the case for Mendelian diseases [12].

There are some cases in which also Mendelian disorders are caused by mutations

with a frequency (> 1%). This is the famous case, for example, of β-globin defects

that lead to sickle cell anaemia in homozygotes individuals but protect heterozygotes

against malaria. In this case is reasonable to hypothesize that the allele is kept in

the population because of a balancing selection acting on the heterozygotes.

In 2001, Pritchard investigated the effect of the mutation–selection balance in the

framework of CDs [13]. In this work, he simulated under this model two sets of

neutral and slightly deleterious susceptibility alleles (e.g. with a late and an early

onset effect) contributing susceptibility to a disease and looked at their overall fre-

quency. Interestingly, while in the neutral case susceptibility alleles tend to be either

rare or close to fixation, in the selected case the probability of having alleles at an

intermediate frequencies was considerably higher. This result seems to suggest that

CDs are unlikely to be due to selectively neutral alleles.

More interesting for their usefulness in shedding light on the biological mechanisms

leading to a disease, and central focus of this thesis, are the cases in which suscep-

tibility alleles for CDs underwent a positive selection. This apparently paradoxical
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1.1 Evolutionary models for CDs

cases, that as we will see in Chapter 2 are not unusual, can be explained by different

general models.

The first and more simple scenario is the case in which one gene, one allele or

linked alleles, have an antagonistic pleiotropic effect and one of the phenotypes has

a beneficial effect in terms of fitness which overcomes (or reaches a trade-off) the

detrimental effects of another trait. For example, the gene p53 helps, in human,

to prevent cancer by preventing cells with DNA damages from dividing, but it can

also suppress the division of stem cells, which allows the body to renew and replace

deteriorating tissues during aging [14]. In Chapter 3 I will present one of this cases

of “indirect” positive selection in which genes increasing the risk for schizophrenia

also have a beneficial effect of vitamin D metabolism. Indeed, while vitamin D defi-

ciency can severely compromise the capability of individuals to reproduce (causing

for example rickets and pelvic deformities), schizophrenia has a late onset and a

scarce influence on reproductive fitness.

A similar case is the one in which different adaptations conflict, which requires a

compromise between them to ensure an optimal cost-benefit trade-off. This is, for

example, the very well known case of skin pigmentation, which needs to guarantee

protection from UV (favored in dark skins) and at the same time allow the skin

synthesis of vitamin D (favored in light skin).

All the models discussed so far assume that the selective force is constant and

doesn’t change in the time. However, this assumption is in many case far from

being true both because environment changes over time and because our ancestors

moved in several moments of our history to different places finding different living

conditions.

A first scenario, of “spatially varying selection”, is the one in which peoples adapted

to environmental conditions specific for one place and, after moving to different

places and different living conditions, the variants that so far provided an advan-

tage became deleterious. One of the best known example is the “sodium retention”

7



Chapter 1 Complex diseases in an evolutionary perspective

hypothesis, proposed to try to explain the inter-ethnic differences in the the preva-

lence of hypertension. The idea is that the ancestral populations living in equatorial

Africa adapted to the hot and humid climate thanks to an increase of the rate of

sodium retention. When then peoples moved to cooler and drier climate, those vari-

ants lost their advantageous and became even detrimental making individuals more

prone to hypertension.

Conceptually similar is the case of “timing varying selection”, according to which

populations adapted to specific environment and life styles and, when these changed,

variants conferring adaptation became dangerous. Stated in a different way, this hy-

pothesis asserts that CDs, or at least a subset of them, could be the result of an

environmental mismatch between our ancestors’ and ours life styles. The impact of

the selective shifts resulting from these transitions has been formalized, for type 2

diabetes and obesity, by Neal in 1962 and is known as “thrifty genotype”. During

the hunter-gatherer period, populations underwent continuous cycles of feast and

famine. In such environment, it is easy to figure out that genetic variants allowing

a better and more efficient fats and carbohydrates storage were extremely advan-

tageous, increasing the chances for individuals to survive and reproduce. As the

transition from that life style occurred to more reliable food sources and different

dietary patterns, that “thriftiness” became detrimental.

In both the previous scenarios of varying selection, there is a relatively recent change

in the selective pressures acting on biological processes responsible for maintaining

the correct balance between the organism and its environment. The recent environ-

mental change disrupts this balance leading, in turn, to new detrimental phenotypes

since it was too rapid to allow the gene pool to re-adapt accordingly. According to

this model it is thus plausible that the ancestral version of susceptibility alleles to

CDs should reflect adaptations in early populations, when these alleles were main-

tained by purifying selection [15].

I will discuss in Chapter 4 the case of autoimmune diseases. It has been hypothe-
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1.1 Evolutionary models for CDs

sized, indeed, that variants increasing the risk for autoimmune diseases were actually

advantageous in environments with high pathogens load and variability. Today, the

higher sanitary conditions typical of industrial societies “transformed” that ances-

tral advantage in an increased risk for autoimmune diseases. It will be also clear that

being able to estimate the timing when selection occurred/started helps in testing

this hypothesis and in understanding how those big changes in our ancestors living

styles had an impact today on CDs risk.

In the entire work I will assume that selection acted on a single gene at a time.

However, this is a reductive hypothesis which will discard all the cases in which

the change in the fitness is due to many genes, each of them with a moderate to

small effect. The search for signatures of “polygenic adaptation” is still at the very

beginning and in Chapter 5 I will present one of the first case of study.

Results presented in chapters 2, 3 and 5 are published on scientific journals and

the respective references are reported at the beginning of each chapter. Results

discussed in chapter 4, instead, are in part preliminary and the manuscript is in

preparation. For this last project I want to acknowledge the principal investigator

Anna Di Rienzo from the University of Chicago and all the peoples in her group.

I want to specifically acknowledge Gorka Alkorta-Aranburu, which was responsible

for all the biological and experimental aspects of the project, and David Witonsky,

which worked on all the preliminary aspects, for their constant support and the

interesting discussions. I also want to thank Dick Hudson and Molly Przeworski

from the University of Chicago for their illuminating insights.
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Chapter 2

A genome-wide assessment of

selective pressure on human genome

and its relationship with diseases

Genetic differences are present in humans at both individual and population level.

Human genetic variations are studied for their evolutionary relevance and for their

potential medical applications. This studies can help scientists in understanding

ancient human population migrations as well as how selective forces act on the

human being [16, 17].

According to the theory of neutral variation, most of the genetic variability within

species are caused by random drift of selectively neutral polymorphic alleles [18].

Genetic drift should affect all loci across the genome in a similar manner. There-

fore, when a locus shows extraordinary high or low levels of variability this may be

interpreted as evidence for natural selection [19]. High levels of population differen-

tiation can suggest the acting of a positive selection of advantageous alleles in one

or more populations. On the contrary, lower levels of population differentiation can

be considered as the effect of balancing selection that tends to maintain a constant

proportion of alleles across all populations [20].

11



Chapter 2 Genome-wide scan

Population differentiation is sensitive to a variety of demographic factors (including

the rate of drift within populations and the extent of gene flow among them), making

it difficult to rule out demographic scenarios that could account for the observed

variations. Another class of tests is aimed to detect signature of natural selection by

comparing data from different species. These tests explore the fact that mutations

can be synonymous and non synonymous, and that non-synonymous mutations are

more likely to have an effect on individual fitness. This method is also known as

dN/dS. Results obtained by this comparative approach are rarely interpreted in

terms of population genetics theory [21].

The human population is also not homogeneous in terms of disease susceptibil-

ity. Risks of common diseases are substantially different among ethnic groups [22].

The understanding of population genetic differentiation, especially in genes associ-

ated with diseases, can help to explain the observed variations in the prevalence

of diseases. It is not difficult to forecast that, in the future, genetic structure of

populations can be used in public health management [23]. Moreover, natural se-

lection on genes that underlie human disease susceptibility has been invoked. In

this framework, ancestral alleles reflect ancient adaptation. With the shift in the

environment, these alleles increase the risk for common diseases [15].

Different strategies to quantify the population genetic differentiation have been elab-

orated [24–30]. One of the most used is a measure devised by Wright and known

as fixation index, or FST [31, 32], which is the amount of genetic variation among

groups relative to a panmictic state. As a test of selection, observed FST values are

compared to those expected under neutrality. The main difficulty of this approach

is to determine the distribution of FST values under neutrality [24]. Recently, how-

ever, the abundance of genetic data available allows the creation of an empirical

genome-wide distribution to be used for the comparisons. Rather than statistically

testing specific loci, we can use their position relative to this distribution to gain

insights about their selective histories. In addition, the abundance of information

about variability of many genes makes it possible to analyze not only single genes,

12



2.1 Results

but also sets of functionally related genes. International HapMap Project [33] by

supplying data of a large number of Single Nucleotide Polymorphisms (SNPs) across

many human populations, is providing an exceptional tool for studying the genetic

structure of human populations.

In the present work we report the results of a genome-wide estimation of FST on

3, 917, 301 SNPs from the latest release of HapMap data. Our results show a het-

erogeneous distribution of FST values among genomic regions. Furthermore, we

studied the relationship between FST and an evolutionary measure obtained by a

comparative interspecific approach. We applied a gene set approach, widely used

for microarray data, to detect biochemical pathways under selection. Finally, we

detected a signature of selection within genes associated with complex diseases. 1

2.1 Results

Using FST , we estimated populations differentiation for 3, 917, 301 SNPs in popula-

tion samples from the International HapMap Project data (Public release 27, merged

II + III). To retain the largest number of SNPs broadly reflecting a continental sub-

division, we used data from Yoruba (Africa), Japanese (Asia), Han Chinese (Asia)

and CEPH (European descendant) individuals. Combining data from these popula-

tions we were able to compare the largest set of genotyped SNPs up to now available.

We pooled Japanese and Han Chinese samples due to their geographical closeness.

Furthermore, this pooling allowed us to compare our data with previous studies [25,

34]. FST was estimated according to Weir and Cockerham [32, 35].

After exclusion for Minor Allele Frequency (MAF), we obtained a final SNP sample

1The results presented in this chapter are published in: Amato R, Pinelli M, Monticelli A, Marino

D, Miele G and Cocozza, S. (2009) Genome-wide scan for signatures of human population

differentiation and their relationship with natural selection, functional pathways and diseases.

PLoS ONE 4(11): e7927.
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Chapter 2 Genome-wide scan

of 2, 125, 440 SNPs. The mean FST was 0.122 (SE = 5 × 10−5, median = 0.091,

interquartile range = 0.131; see Table 2.1 for more detailed statistics). Figure 2.1

shows distribution of FST values for each chromosome. The median FST values of

SNPs on the autosomal and sexual chromosomes were statistically different (Kruskal-

Wallis test, p-value < 10−16). The median FST values for X and Y chromosomes

were 0.129 (mean = 0.174) and 0.676 (mean = 0.606) respectively and were notably

higher than those of autosomal chromosomes. Also medians between autosomal

chromosomes showed significant differences, but in a very small range of values

(median range = 0.084 to 0.098).

Figure 2.1: Distribution of FST values across chromosomes. For each chro-

mosome, the box length is the interquartile range while the horizontal

line inside it is the value of the median. The whiskers extend to the

most extreme data point < 1.5 times the interquartile range from the

box. Extremes of the notches represents 95% confidence interval of the

median.
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2.1 Results

Chr Number of SNPs Mean SD Median IQR

1 160631 0.121 0.110 0.090 0.129

2 182756 0.127 0.114 0.096 0.135

3 141273 0.123 0.111 0.092 0.134

4 131470 0.122 0.112 0.090 0.131

5 138353 0.118 0.107 0.088 0.126

6 142779 0.114 0.104 0.084 0.123

7 114767 0.120 0.110 0.089 0.130

8 119383 0.123 0.110 0.092 0.132

9 97952 0.120 0.108 0.089 0.128

10 110485 0.120 0.110 0.089 0.129

11 106880 0.115 0.105 0.086 0.124

12 96493 0.119 0.108 0.089 0.126

13 83084 0.117 0.104 0.089 0.125

14 67477 0.120 0.107 0.090 0.131

15 59040 0.130 0.116 0.098 0.138

16 59604 0.121 0.108 0.091 0.129

17 50163 0.127 0.114 0.094 0.137

18 62453 0.116 0.103 0.089 0.123

19 32325 0.119 0.109 0.090 0.129

20 51481 0.123 0.113 0.090 0.133

21 28532 0.120 0.110 0.089 0.128

22 26757 0.122 0.109 0.091 0.130

X 61204 0.174 0.153 0.129 0.189

Y 98 0.606 0.282 0.676 0.528

Overall 2125440 0.122 0.111 0.091 0.131

Table 2.1: Per-chromosome statistics of FST values

15



Chapter 2 Genome-wide scan

For each chromosome, we computed the correlations of all pairs of FST values for

neighbouring SNPs separated by a fixed number of SNPs (1 to 30). This method is

commonly used to assess whether FST values are non randomly distributed across

chromosomes [19, 36]. As expected, we found that correlation plots are different

from those expected from a noisy signal (Figure 2.2). Moreover, scrambling FST

values across each chromosome produced vanishing correlation values demonstrating

that the distribution of data is non-random (data not shown). This result was also

supported by a test for non-randomness of data (Ljung-Box test, p-value < 10−16).

Figure 2.2 shows a clear difference between correlation plots of autosomal and X-

linked SNPs, the latter showing higher autocorrelation values. Chromosome Y was

excluded from this analysis because of the small number of SNPs sampled.

To attribute FST value to genes we followed the approach by Akey et al. and Pikrell

et al. [19, 30, 36], considering FST of a gene the maximum FST value in the gene

region (see 2.3). It is worth stressing that this approach is very conservative for

genes with low FST values.

Selection affects both interspecific (between-species) and intraspecific (within-species)

variability. FST is a measure of intraspecific variability. Estimation of genic dN/dS

is an interspecific measure of variability [21]. We compared the gene FST values that

we obtained with previously reported data from a genome-wide estimation of genic

dN/dS [37]. In that article the authors divided genes into subgroups with strong,

weak and no evidence of positive selection. We compared FST values of genes be-

longing to these subgroups. Genes with both weak and strong evidence of positive

selection showed lower FST values than genes with no evidence of positive selection

(ANOVA, p-value < 0.001; Bonferroni post-hoc, no evidence vs. weak evidence p-

value < 0.02, no evidence vs. strong evidence p-value < 0.005, weak evidence vs.

strong evidence = N.S.; Figure 2.3).

To identify functions potentially under selective pressure, we used an innovative

approach, focusing on gene pathways instead of outliers. We performed this “gene

16



2.1 Results

Figure 2.2: Correlation between FST values. The correlation is calculated, for

each chromosome, for all pairs of SNPs separated by a fixed number of

intervening SNPs. Black line shows mean value and 2σ error bars of

the correlation of SNPs belonging to autosomal chromosomes. Red line

shows correlation among X-linked SNPs.
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Figure 2.3: Mean FST value of genes with and without interspecific evi-

dence of positive selection. Genes were grouped according to the

strength of evidence of their positive selection across six species [37].

Vertical bars represent 95% confidence interval.
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Pathway Name KEGG ID Size FDR

Enriched by

high FST genes

Axon guidance HS04360 126 < 0.001

Focal adhesion HS04510 194 0.008

ECM receptor interaction HS04512 85 0.009

Regulation of actin cytoskeleton HS04810 199 0.010

Adherens junction HS04520 75 0.010

Calcium signaling pathway HS04020 168 0.010

Enriched by

low FST genes

Antigen proc. and presentation HS04612 70 0.001

Table 2.2: Leading edge genes of the high FST enriched KEGG pathways

identified by GSEA. For each pathway is showed the name, the KEGG

ID, the number of genes included in the pathway and the p-value after

the False Discovery Rate (FDR) correction.

set” analysis using the Gene Set Enrichment Analysis (GSEA) algorithm [38, 39].

GSEA is oriented to identify sets of functionally related genes and is currently used

in the analysis of microarray data. Screening the KEGG pathway database by

GSEA, we identified 6 KEGG pathways enriched by genes with high values of FST

and one pathway enriched by genes with low values of FST (Table 2.2). In this

method, the enrichment of a pathway is mainly driven by a group of genes that are

called “leading edge genes” (see 2.3). Figure 2.4 shows the leading edge genes for

the six pathways with high FST values. A partial overlap of genes among pathways

is present.

We then studied populations differentiation of genes associated with complex dis-

eases. We used the Genetic Association Database (GAD) to select genes annotated
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Figure 2.4: Leading edge genes of the high FST enriched KEGG pathways

identified by GSEA. Genes are indicated by gene symbols. Red box

marks the presence of that gene, as leading edge gene, in that pathway.
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Figure 2.5: Mean FST value of genes associated to complex diseases. Genes

found positively associated with complex diseases according to the Ge-

netic Association Database are compared with the remaining ones. Ver-

tical bars represent 95% confidence interval.

as having positive association with complex diseases. We compared FST values

of these genes with those where no association had been positively found. Genes

associated with complex diseases showed a significant higher mean value of FST (t-

test, p-value < 0.001; Moving Block Bootstrap, empirical p-value = 0.0005; Figure

2.5). Then, we divided diseases in subgroups according to the GAD classification

of diseases. Figure 2.6 shows that large differences of FST values exist among dis-

ease classes, while mean FST values are usually higher than those of non associated

genes.
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Figure 2.6: Mean FST values of genes in different disease classes. Genes were

grouped according to the diseases classification of Genetic Association

Database. Vertical bars represent 95% confidence interval. Horizontal

solid and dashed lines represent mean value and 95% confidence interval

of the set of non associated genes.
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2.2 Discussion

The study of the evolutionary forces acting in diseases and physiological traits is

an exciting field that may drive further researches and, in the future, public health

policies. The study of population genetic differentiation could help the understand-

ing of human evolution, demographic history and disease susceptibility [40]. To

study population differentiation we performed a genome-wide FST calculation us-

ing the latest available data release from the HapMap. Using this release we were

able to increase both the number of SNPs and the number of individuals analyzed

in comparison to recent analogous studies [29]. We focused on samples from three

different continents (Africa, Asia, Europe) to obtain a broad but sound measure of

populations differentiation.

We found an overall mean FST value (0.122) broadly consistent with previous esti-

mations [19, 29, 36]. The slightly higher value that we obtained could be explained

by the exclusion of SNPs with MAF < 0.05 and the inclusion of heterochromosomes

in the calculation. Indeed, as expected [19], we observed a significantly higher me-

dian FST value of X-linked SNPs with respect to the autosomal ones. Furthermore,

we found median FST value of Y-linked SNPs to be significantly higher than both

the autosomal and the X-linked ones. Previous data from smaller datasets suggested

a similar phenomenon [41], but, in our knowledge, this is the first observation made

on Y chromosome FST in a more robust framework. The higher population dif-

ferentiation for X and Y chromosomes can be due to various causes: their smaller

effective population size (three-quarter and one-quarter of autosomes, respectively),

the lower mutation and recombination rates and the different selective pressure be-

tween genders have been invoked [19, 21, 42].

Keinan et al. showed that there was a period of accelerated genetic drift on chro-

mosome X associated with the human dispersal out of Africa. In particular, they

estimated the autosome-to-X genetic drift ratio between North Europeans and East

Asians is consistent with the expected 3/4 while it is significantly reduced between
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North Europeans and West Africans, and between East Asians and West Africans

[43]. As possible explanations they suggested that a gender-biased process reduced

the female effective population size, or that an episode of natural selection affecting

chromosome X was associated with the founding of non-African populations. Our

results are consistent with these finding. We computed population pair-wise FST

and we found that the autosome-to-X genetic drift ratios (Q), estimated as in [43],

are compatible with those reported in [43] (Asia-Europe Q = 0.72; Asia-Africa Q =

0.66; Europe-Africa Q = 0.65).

The weak but significant correlation that we found among FST values of neighbouring

markers demonstrated that they are non-randomly distributed along chromosomes.

This result confirms previous observations made on smaller datasets [19, 36]. We

extended for the first time this observation to the X chromosome and we found

that correlation was slightly stronger than that of autosomes. It has been observed

that correlation between SNPs is proportional to Linkage Disequilibrium (LD) [36].

Therefore, the higher value of autocorrelation that we found can be explained by

the higher value of LD in X chromosome [36].

Population genetics approach has been largely used for studying natural selection.

Other approaches include the comparative one, in which data from different species

are used. The most commonly used method is to compare the ratio of nonsynony-

mous mutations per nonsynonymous site to the number of synonymous mutations

per nonsynonymous site (dN/dS). Data from comparative studies and from popula-

tion genetics are poorly connected. We found that genes with a high dN/dS ratio,

indicating positive selection, showed a significantly lower FST mean value. In our

knowledge this represents the first attempt to connect human population genetic

data and comparative data at a genome-wide level. Our finding does not conflict

with previous studies performed on a restricted number of genes [44]. It is well

established that comparative data provides the most unambiguous evidence for se-

lection, but relatively vague assertion on the type of selection and if the selection

is currently acting in a population [21]. For such reasons the connection with pop-

24



2.2 Discussion

ulation genetic data is needed. Further studies, mainly focused on this topic, are

required to confirm and understand the relationship that we found.

We used a gene set approach to identify pathways with extraordinary levels of popu-

lation genetic differentiation. The traditional approach used to perform this analysis

is based on the identification of those loci outliers in a given statistic. This approach

has been recently reviewed and its limits explored [24, 45–47]. Interestingly, similar

criticisms are arising on analogous methods used in transcriptomic data analysis. In

this field, alternative approaches, as the “gene set” ones, are gaining increasing in-

terest. Among the tools implementing this approach, Gene Set Enrichment Analysis

[38, 39] is one of the most used [48, 49]. The key idea underlying GSEA is to focus

on gene sets, which are defined as groups of genes sharing common features (e.g. bi-

ological pathways, chromosomal position, etc.). In microarray data analysis, GSEA

aims to determine whether a gene set shows statistically significant, concordant dif-

ferences between two biological states or phenotypes. This method has been tailored

for microarray data, however its use is being explored also in different fields [50, 51].

To the best of our knowledge, the present report is the first attempt to functionally

analyse genes under selective pressure by a gene set statistical approach.

Using very conservative statistics, the GSEA analysis found differential FST values

on seven KEGG pathways, one enriched by low FST genes and six enriched by high

FST genes. However, it is important to note that the discrepancy between the num-

ber of low and high FST pathways is a consequence of the way by which we attributed

FST values to genes rather than underlying evolutionary forces. The only pathway

with decreased degree of differentiation among populations was the “antigen pro-

cessing and presentation” pathway (Figure 2.7). Included in this pathway are genes

involved in the antigen-presenting machinery as (i) the expression of major histo-

compatibility complex (MHC) molecules, (ii) the mechanism of cross-presentation,

and (iii) the interaction of antigen-presenting cells. Opposing views exist concerning

the evolutionary forces that shaped the innate immune system. In particular, the

relative impact of purifying and balancing selection is under discussion [52, 53]. Bar-
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Figure 2.7: Antigen processing and presentation. Genes are colored according

to their FST value.

reiro et al demonstrated that several SNPs of genes related to the immune response

to pathogens showed very high FST values [29]. On the other hand, Akey et al.

reported a four times increase of proteins that perform a defense/immunity function

in the group of the low FST genes [19]. Moreover, low levels of population differen-

tiation have been previously detected at loci that are involved with host-pathogen

responses (HLA class I and class II genes, beta-globin, G6PD, glycophorin A, in-

terleukin 4 receptor-alpha and CCR5 ) [20]. Further evidence arises from the group

of genes that we studied and that were previously described to be under positive

selection. This group of genes, which we found with low FST values, was described

to be enriched for several functions related to immunity and defense [37].

Among the six gene sets enriched by high FST genes, we found the “calcium signal-

26



2.2 Discussion

Figure 2.8: Calcium signaling pathway. Genes are colored according to their FST

value.

ing” pathway. Calcium is the most abundant mineral in the body. It is also a highly

versatile intracellular signal that regulates many cellular processes in response to

different external stimuli, as growth factors [54]. We found very high FST values in

three genes belonging to the growth factor stimulated calcium signaling pathway,

namely EGFR, ERBB2, and ERBB4. It is interesting to note that a previous study

from Pickrell et al. found that ERBB4 showed extreme signs of haplotype selec-

tive sweep in non-African populations [30]. The authors suggested that this gene

could affect an unidentified phenotype that experienced a strong recent selection in

non-African population. Our gene set approach seems to confirm this finding and

expands this observation to other members of the ERBB gene family.

The other five high FST pathways are involved in the control of cell shape and mobil-

ity. Among them, four interconnected pathways (“focal adhesion”, “regulation of the
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Figure 2.9: Focal adhesion. Genes are colored according to their FST value.

actin cytoskeleton”, “adherens junction” and “extra cellular matrix receptor interac-

tion”; Figures 2.9, 2.10, 2.11 and 2.12, respectively) govern growth-related processes

and morphogenesis. Morphological traits have been demonstrated to show strong

signature of positive selection [29]. These pathways were found also to be altered in

a mouse model of fetal alcohol syndrome, associated with a low birth-weight pheno-

type [55]. Indeed, human body shape and size varies among populations showing a

correlation with geographic and climate variables [56]. In addition, in the “adherens

junction” pathway, one of the strongest FST values was showed by TCF7L2, the

gene with largest type 2 diabetes effect size found to date [57]. This last finding

is consistent with previous observations [30, 57]. Since it has been demonstrated

that TCF7L2 variants also substantially influence normal birth-weight variations

[58], a complex interplay between pathways that govern growth-related processes

and susceptibility to type 2 diabetes could be hypothesized.

The last high FST pathway, the “axon guidance” (Figure 2.13), is involved in brain

wiring during fetal development and repair throughout life. Axon guidance proteins

28



2.2 Discussion

Figure 2.10: Regulation of actin cytoskeleton. Genes are colored according to

their FST value.
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Figure 2.11: Adherens junction. Genes are colored according to their FST value.
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Figure 2.12: ECM receptor interaction. Genes are colored according to their

FST value.
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Figure 2.13: Axon guidance. Genes are colored according to their FST value.

and their relative binding partners have also an emerging role in the pathogenesis

of several neurodegenerative and psychiatric diseases such as schizophrenia [59, 60].

Signature of recent positive selection inferred by identification of selective sweeps in

specific populations was found in genes involved in schizophrenia [61]. Moreover,

population dependent results were obtained when gene-association studies were per-

formed using several high FST genes present in this gene set [62, 63].

It has been suggested that alleles involved in common disease could be targets of se-

lection [15, 56, 64, 65]. The common disease/common variant (CD/CV) hypothesis

proposes that common diseases are usually caused by one or a few common disease

susceptibility alleles. These genetic variants represent ancestral alleles, presumably

under selective pressure, that have become disadvantageous after changes in envi-

ronment and of lifestyle [64, 66, 67]. We found that genes associated with complex
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diseases showed a significant higher mean value of FST , supporting the CD/CV

hypothesis. However, several previous studies of SNPs associated with complex dis-

eases did not find significant evidence of population differentiation [68, 69]. On the

other hand, further studies observed that the distribution of maximum FST was

shifted upward in regions associated with type 2 diabetes mellitus [30]. Moreover

SNPs known to protect against obesity and diabetes showed very high FST values

[29]. Simulation studies also provided support for the CD/CV hypothesis [70].

According to the GAD classification of diseases, we divided the overall group of the

genes associated with complex diseases. Clear differences in FST means among the

various classes were present. In particular, several disease classes, namely “hema-

tological”, “infection”, and “immune”, showed an FST mean value slightly lower

than the mean value of non-associated genes. Nevertheless, the majority of the

classes showed FST mean values to be higher than the non-associated one. Highest

FST values were detected in “pharmacogenomics” and “psychiatric” classes. GAD

classifies in “pharmacogenomics” those diseases related to drug effects. It is well

established that drugs effects are ethnic specific [71]. The GAD “psychiatric” class

includes mental disorders. Why genes that confer susceptibility to mental diseases

are still maintained by natural selection, is an old question which, up to now, is

still unanswered. The compensatory advantage for genes associated to intermedi-

ate phenotypes has been invoked as explanation for this phenomenon, also called

“psychiatric paradox” [72]. Further studies should be performed to determine if the

high level of population differentiation that we found for this disease class could be

related to the psychiatric paradox.
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2.3 Materials and Methods

2.3.1 Data

All analysis are based on the HapMap Public Release #27 (merged II+III) datafiles

(http://www.hapmap.org). We analyzed the data from the CEPH (Utah resi-

dents with ancestry from northern and western Europe; CEU, n = 165), Yoruba in

Ibadan, Nigeria (YRI, n = 167), Han Chinese in Beijing, China (CHB, n = 84)

and Japanese in Tokyo, Japan (JPT, n = 86) samples. We pooled the CHB

and JPT samples to form a single sample. Additional SNP information about

physical positions and SNP-gene association were obtained from dbSNP build 129

(http://www.ncbi.nlm.nih.gov/projects/SNP). In particular, according

to dbSNP classification, we considered all SNPs within 2 kb of a gene (locus region)

as associated to that gene. Data from the International HapMap Project and dbSNP

were merged in a local MySQL database by a set of script from Amigo et al. [73].

When we consider the whole Hap map dataset (autosomes and heterochromosomes)

we analyzed a total of 3, 917, 301 SNPs.

We excluded by this analysis SNPs that were non sampled or non polymorphic in

all the three samples. We excluded also SNPs with a minor allele frequency < 5%

in any of the 3 samples, getting a final SNP sample of 2, 125, 440 SNPs.

2.3.2 Estimation of FST

Fixation index (FST ) was calculated using the unbiased estimator proposed by Weir

and Cockerham [32, 35]. We implemented this calculation in a Perl script available

upon request.

All analyses presented in this work were also performed by using the original FST

estimator proposed by Wright [31] and results are almost identical to that obtained
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by the Weir and Cockerham method. This result is not surprising considering pre-

vious reports [19, 74] and the strong correlation that we found between these two

measures (Spearman’s ρ = 0.97, p< 10−16; see Figure 2.14).

The maximum FST values among those of the SNPs associated to the gene according

to dbSNP (see 2.3.1) was used to assign a FST value to each gene. This approach

is consistent with previously described ones [19, 30]. We studied the correlation

between FST value and gene length and we found that the former have a quite

marginal effect on the latter (r2 = 0.2).

Figure 2.14: Correlation between Wright’s and Weir and Cockerham’s es-

timators for FST . Red line represent the diagonal.
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2.3.3 Statistical Analysis

SNPs FST values are not normally distributed across chromosomes. Thus to detect

differences among medians FST values of chromosomes we used the non-parametric

Kruskal-Wallis test. Conversely, FST values of genes are normally distributed (Kolmogorov-

Smirnov/Lilliefor test, p< 0.001) thus comparison among these values were per-

formed by using parametric tests (ANOVA and t-test).

All statistical analyses were performed with R ver. 2.9 (R Foundation for Sta-

tistical Computing, Vienna, Austria; http://www.r-project.org/). Non-

randomness of data was assessed by using a Ljung-Box test (R function “Box.test”).

We calculated the autocorrelation of each chromosome which can be seen as the

mean correlation of all pairs of FST values separated by a fixed number of values (R

function “acf”).

“Positively Selected Genes” (database “hg18”, table “mammalPsg”) in UCSD Genome

browser (http://genome.ucsc.edu). This list was produced by a genome wide

scan in six mammalian genomes performed by Kosiol et al. [37]. In particular they

identified (i) 400 genes with strong evidence of positive selection across species, (ii)

144 genes with strong evidence of positive selection in one or more branches, (iii)

3705 genes with weak evidence of positive selection on one or more branches, and

(iv) 12280 (orthologs) genes with no significant evidence of positive selection. We

pooled first and second group into a single “strong evidence of positive selection”

group. Differences among groups were evaluated by ANOVA with Bonferroni post-

hoc calculation.

Genes associated with complex diseases were obtained from the Genetic Association

Database (GAD; October 1 2007 update; http://geneticassociationdb.

nih.gov). We only kept genes with positive evidence of association, for a total of

1789 genes. According to GAD, these genes are divided into 15 classes of diseases.

We excluded from the analysis four diseases classes (Other, Unknown, Mitochon-
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drial and Normal variations) because they were not informative. Differences among

groups were evaluated by a t-test and a resampling approach. In particular, we used

a Moving Block Bootstrap (MBB) strategy [75]. Briefly, (i) we resampled 10000

times 1789 set of adjacent SNPs {ni}j with i = 1, . . . , 1789 and j = 1, . . . , 10000

and with each set ni having the same number of SNPs as the i-th GAD associated

gene; (ii) for each resample, we computed the FST of each set ni according to our

method (the maximum FST values among those of the SNPs in the set); then, (iii)

we computed the mean FST value of each resample j obtaining a distribution to

which compare the mean FST value of the GAD associated genes.

2.3.4 Functional Analysis

We used Gene Set Enrichment Analysis (GSEA) 2.0 [76] to detect KEGG pathways

enriched by genes with low or high values of FST . We provided GSEA, by its

“Preranked” feature, with a list L of genes ranked according to their FST value.

Given an a priori defined set of genes S representing a pathway (e.g., genes encoding

products in a metabolic pathway), the goal of GSEA is to find out whether the

members of S are randomly distributed throughout L or mainly found at the top or

bottom (i.e. being “enriched”). Since GSEA preferably expect the values to rank

for (in our case FST ) to vary from negative to positive values, we linear shifted these

values to get vanishing mean.

We explored the enrichment of KEGG pathways included in the software. For each

pathway a False Discovery Rate (FDR) is computed, representing the statistical

significance of the enrichment. For experimental conditions similar to the ours,

GSEA user’s guide suggests a threshold of significance FDR ≤ 0.05. Because of the

exploratory nature of this study, we used a more conservative threshold of signifi-

cance (FDR ≤ 0.01). Overlap among pathways was examined by the “Leading edge

analysis” feature of GSEA.
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Chapter 3

Adaptation to latitude: a possible

model for schizophrenia

Among the environmental factors that strongly influenced our evolutionary history,

geographical latitude deserves particular attention. Latitude, indeed, severely affects

many natural phenomena such as climate, flora and fauna, light-dark cycle, and all

of them, in turn, have an impact on many aspects of our life. For sake of brevity

hereafter we refer to all these phenomena simply as “latitude”.

Genetic traits following a latitudinal gradient have been observed for several poly-

morphisms in humans as well as in natural populations of model organisms like

Drosophila and Arabidopsis thaliana [77–80]. The best known example of this kind

of spatial variation in Homo Sapiens is skin pigmentation. The clinal gradation

of skin colouration is correlated with UV radiation levels and represents a compro-

mising solution to the conflicting physiological requirements of photoprotection and

vitamin D UV-dependent synthesis [81]. The latter is very important since vitamin

D is involved in many health outcomes (e.g. cardiovascular diseases, rickets, pelvic

deformities, infections, etc.).

A possible influence of latitude on the circadian phenotype has also been suggested
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[82, 83]. Circadian rhythm is a ubiquitous feature of living systems. Daylight hours

vary with latitude and seasons therefore adaptability of circadian clocks is of fun-

damental importance for the adaptation of organisms to the alternating light/dark

cycles.

Another example of spatial variation is human body size and shape. These pheno-

types show a correlation with climate (that in turn has a strong relationship with

latitude) suggesting also for humans the adaptation to the classical ecological rules

that individuals living in colder regions are bulkier and have shorter limb lengths

[84, 85].

Nevertheless, it is also possible that an allelic variant increasing the fitness of indi-

viduals at particular latitudes will no longer be advantageous or even increase the

risk for some pathologies at different latitudes. In particular, several diseases show

latitudinal clinals. A well known example regards sodium homeostasis. It have been

postulated that in hot climate regions, genetic variants inducing enhanced sodium

retention were positively selected. This adaptive process would allow a proper vas-

cular tone and salt storage in conditions of excessive sweating. These same variants,

when carried by individuals migrated in colder climates (i.e. African American),

would increase the risk for sodium retention-related hypertension [86]. Supporting

this hypothesis, several studies reported a strong correlation between latitude and

the frequencies of hypertension susceptibility variants [86, 87].

In addition, there is growing evidence supporting the idea that these diseases are

frequently due to a negative by-product of adaptive changes during human evolution

[61]. This is the case when natural selection favours a vital phenotype at the price

of predisposing to some other pathology that, for example, do not directly affect

the reproduction or are characterized by a late onset-age. Indeed, contrasting forces

often affect the outcome of natural selection. For instance, depigmentation is crucial

for vitamin D synthesis at higher latitudes but it also exposes a higher risk for

skin cancer. As most individuals do not develop cancer until they are past their
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reproductive age, from an evolutionary point of view, skin cancer represents a less

powerful selective force than vitamin D availability in serum [88].

Many other common diseases like different types of cancer, dismetabolic conditions,

schizophrenia, Parkinson’s disease, etc. have an incidence following a latitudinal

gradient [56, 89–91]. However, the relative importance of variation of environmental

exposures or genetic predisposition is not yet fully defined. In some cases, a genetic

adaptation has been suggested [56, 61], even if the direct target of this process is

often unclear.

In this work, we investigated the latitude-driven adaptation phenomena, for the first

time, on a wide genomic scale. In particular, we selected a set of SNPs and genes

showing signs of latitude-dependent population differentiation, and by a biological

characterization of the genes, we found enrichment for neural-related processes. In

light of this result, we investigated whether genes associated to pathological phe-

notypes, namely psychiatric and neurological diseases, were enriched for Latitude-

Related Genes (LRGs). Remarkably, we found a strong enrichment of LRGs in the

set of genes associated with schizophrenia. In an attempt to try to explain this

possible link between latitude and schizophrenia, we investigated their association

with vitamin D, which had been previously associated, separately, to both of them.

Our findings suggest a molecular link among latitude, schizophrenia and vitamin D.

1

3.1 Results

A set of SNPs showing high levels of latitude-dependent population differentiation

was selected by using a two-step approach. Our starting point consists of geno-

1The results presented in this chapter are published in: Amato R, Pinelli M, Monticelli A, Miele G

and Cocozza S. (2010) Schizophrenia and Vitamin D Related Genes Could Have Been Subject

to Latitude-driven Adaptation. BMC evolutionary biology 10: 351
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type data concerning about 660, 000 SNP loci of 938 unrelated individuals from 51

populations of the Human Genome Diversity Panel [42].

The first step was the estimation of the population differentiation level of each SNP.

After the exclusion for minor allele frequency and for SNPs falling in intergenic

regions, we obtained a set of 224, 501 SNPs. For all of them we calculated FST

according to the Weir and Cockerham estimator [35], and to select SNPs with high

levels of population differentiation, we extracted those at the top of the empirical

distribution of FST values. Because of the differences existing between the distri-

bution of FST values for autosomic and X-linked SNPs 2.1, these two sets were

handled separately. In particular, we selected 22, 132 autosomic and 459 X-linked

SNPs falling in the top 10% of their own distributions (namely with FST value

greater than 0.153 and 0.262, respectively).

In the second step, we computed for each SNP the absolute value of correlation

between the frequency of the ancestral allele in the 51 populations and the abso-

lute value of geographical latitude of the population location. We again handled

the distributions of correlation values of autosomic and X-linked SNPs separately

because of their differences. Moreover, since population sizes were very different, we

computed the correlation by taking into account the number of individuals in each

population. We selected the autosomic and X-linked SNPs with absolute value of

correlation greater than 0.567 and 0.575 respectively, corresponding to the highest

10% of their respective distributions. We finally obtained two sets of 2193 autosomic

and 46 X-linked SNPs corresponding to 1307 and 29 unique genes. Hereafter, we de-

note by LRGs (Latitude-Related Genes) this set of genes whose SNPs showed both

high FST (mean = 0.230) and high latitude correlation (mean = 0.616) values.

High FST values can be produced both by selection and by demography. The effect

of population histories is potentially the major confounding factor in the interpre-

tation of genetic differences among populations. We tried to estimate the extent of

population differentiation that could be ascribed to selection following the approach
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proposed by Barreiro et al. [29]. To achieve this goal, in their paper Barreiro and

colleagues used a genome-wide approach analyzing both genic and non-genic SNPs.

The main difference between ours and BarreiroÕs approach is that, in our study,

we considered intragenic SNPs only, since we were focused on functional analysis at

a gene level. In Figure 3.1 we report the proportion in the set of LRGs of SNPs

according to their classes (dbSNP classification). The intronic set does not show

any significant variation with respect to the expected 1% (red line). This value

represents the expected ratio between the number of LRGs SNPs and the number

of all the intragenic SNPs (10% of 10%), under neutral hypothesis. Conversely,

non-synonymous SNP class shows an enrichment of about 30% (p = 0.016; Fisher’s

exact test). This kind of enrichment has been interpreted by Barreiro and colleagues

as a signature of selection.

As a further test for the procedure, we chose a well-known latitude dependent phe-

nomenon such as skin pigmentation and we checked whether LRGs were statistically

overrepresented in the set of genes associated to this phenotype. As expected a sig-

nificant enrichment was found (7 out of 24 genes in common, Fisher’s exact test

p-value 0.0003).

To characterize the set of LRGs we used two methods, tissue localization and func-

tional characterization. Firstly, we explored the tissue localization of proteins en-

coded by these genes. To achieve this, we used the Database for Annotation, Vi-

sualization and Integrated Discovery (DAVID) focusing on the “Uniprot Tissue”

list, a curated list of localization based on literature mining. We found that genes

expressed in brain and brain-related tissues were significantly enriched in LRGs,

accounting for more than a half of them (Table 3.1).

LRGs were also functionally characterized by looking for overrepresentation of Gene

Ontology (GO) annotation terms [92]. Because of the high redundancy of GO, we

used the Model-based Gene-Set Analysis (MGSA) method included in Ontologizer

2.0 [93, 94]. This promising and novel approach analyses all categories together by
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Figure 3.1: Proportion, in the set of LRGs, of SNPs according to their

dbSNP classification. Red line represents the expected ratio between

the number of LRGs SNPs and the number of all the intragenic SNPs (1%

= 10% of 10%), under neutral hypothesis. Error bars represent the 95%

confidence level of the observed proportion obtained in the analytical

way by using the Wilson score interval method.

Tissue LRGs count (%) p-value

Brain 683 (56.6%) 3× 10−18

Amygdale 112 (9.3%) 8× 10−6

Thalamus 76 (6.3%) 1.4× 10−4

Table 3.1: Enrichment in tissue for LRGs computed using the DAVID’s

Uniprot Tissue category. For each tissue is reported the number

and the percentage of LRGs expressed in the tissue and the significance

(Fisher’s exact test, Bonferroni adjusted) of that enrichment.

44



3.1 Results

Name Sub Ontology Marginal

mean

(Min-Max)

LRGs count Total

Count

Synapse

(GO:0045202)

CC 0.998 (0.980 - 1) 60 351

Neuropetide sig-

naling pathway

(GO:0007218)

BP 0.793

(0.764 - 0.828)

13 86

Cell morphogenesis

(GO:0000902)

BP 0.734

(0.680 - 0.789)

58 420

Table 3.2: Enrichment for GO terms by LRGs. For each term is reported the

sub ontology to whom it belongs (CC: cellular component; BP: biological

process), the mean, minimum and maximum marginal posterior probabil-

ity of being involved (among 20 runs) and the number of genes annotated

in the list of LRGs and in total.

embedding them in a Bayesian network. Differently from other methods, it provides

for each term a marginal posterior probability that reflects a measure of certainty in

its involvement in the process. Following the authors’ recommendation, we repeated

the analysis 20 times in order to see whether the reported marginal probabilities

of the top terms fluctuated. We found that two terms out of the three showing a

posterior probability above 0.5 consistently among the 20 runs were related to neural

processes (Table 3.2).

All these results suggested a further investigation about a possible relationship be-

tween LRGs and genes involved in neuropsychiatric diseases related with latitude.

Indeed, several neurological diseases were previously described to have a latitude-

shaped incidence and/or prevalence [89, 91, 95]. To perform this task we compared

the list of LRGs with publicly available collections of genes involved in schizophre-
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Disease Overlap with

LRGs

Total

count

p-value Adjusted

p-value

Schizophrenia 85 885 4× 10−6 1.6× 10−5

Parkinson’s disease 40 490 0.021 0.084

Multiple sclerosis 16 178 0.058 0.232

Alzheimer’s disease 45 618 0.075 0.3

Table 3.3: Enrichment of neuropsychiatric diseases lists by LRGs. For each

disease genes list, it is reported the number of LRGs present, the total

size of the list and the significance of the overlap (Fisher’s exact test and

Bonferroni’s correction.

nia, multiple sclerosis, Parkinson’s and Alzheimer’s disease [60, 96–98]. While there

is a weak or non significant overlap with genes related to multiple sclerosis, Parkin-

son’s and Alzheimer’s disease, we found a significant enrichment of 85 LRGs in genes

related to schizophrenia (Fisher’s exact test, Bonferroni adjusted p-value 1.6×10−5;

Table 3.3 and Figure 3.2).

We explored if the enrichment found for schizophrenia with the used list was also

present in pruned sub-lists. Four different lists were used and all fairly support the

presence of a relationship between latitude and schizophrenia.

“Association”: It was obtained from the SchiZophreniaGene (SZGene) database,

cleaning data according to a risk-allele evaluation pipeline developed by Sun et

al. [99]. According to this meta-analysis, 278 protein-coding genes were selected

having significant p-values using a combined OR method or at least one positive

association result in publication. In this gene set we found an enrichment of 27

LRGs (p = 0.0068).

“Core”: It contains genes that have been manually collected to include those that

have been commonly considered as candidate genes in expert review or had signif-
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Figure 3.2: Overlaps among latitude, vitamin D and schizophrenia related

genes. In each circle is reported the number of genes present in the list.

For the two-way intersections is reported the size and the significance of

the overlap (Fisher’s exact test).
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icant results in the meta-analysis of association studies. Ross et al. [100] reviewed

the evidence in four domains (association with schizophrenia, linkage to gene locus,

biological plausibility, and altered expression in schizophrenia) and suggested 19

genes being candidates. They also included 27 genes with significant meta-analysis

results performed by the SchizophreniaGene team. The genes were selected by hav-

ing a nominally significant summary OR in all ethnic groups or Caucasian samples.

After removing redundancy, the core gene set contains 38 genes. In this set we found

an enrichment of 7 LRGs (p = 0.0059).

“75 genes by COR”: This list contains 75 genes that were prioritized by ranking

about 500 genes from more than 2000 association studies [99]. This list shows an

enrichment of 11 LRGs (p = 0.0041).

“173 by Ng et al.”: This list contains 173 genes and it is based on genetic studies for

schizophrenia from four major categories: association studies, linkage analyses, gene

expression, and literature search. Genes in these data sets are initially scored by

category-specific scoring methods. Then, an optimal weight matrix is searched by a

two-step procedure (core genes and unbiased P values in independent genome-wide

association studies). Finally, genes are prioritized by their combined scores using the

optimal weight matrix. This set shows an enrichment of 19 LRGs (p = 0.0061).

We then investigated for possible latitude-dependent biological mechanisms linking

latitude to neural development. An important factor hypothesized to be both lat-

itude dependent and neural development-related is vitamin D. We checked for an

enrichment of LRGs in Vitamin D Related (VDR) genes by manually creating a list

of 943 genes that broadly comprised the most important processes in which it is

involved, since a comprehensive list is not yet present in the literature. To achieve

this, we merged: a list of 6 genes implied in the metabolism of vitamin D obtained

from Reactome, a list of 26 genes in the pathway of the control of the expression

by vitamin D receptor from Biocarta and a list of 911 genes from a large-scale

identification of 1,25(OH)2D3 target genes by Wang and colleagues [101].
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We computed the overlap between LRGs and VDR genes and found a significant

overlap of 97 genes (p-value 3.5× 10−8, Fisher’s exact test; Figure 3.2). This result

suggests that VDR genes show signature of latitude-dependent population differen-

tiation. Also the overlap of 70 genes between VDR and schizophrenia related genes

was significant (p-value 1.4 × 10−6, Fisher’s exact test; Figure 3.2) confirming the

role of vitamin D in schizophrenia pathogenesis.

Finally, we found 9 genes (SMARCA2, MITF, DLGAP1, MAGI1, IL4R, NTRK3,

RUNX1, PPP3CA and INPP4B) in common among those ones related to latitude,

vitamin D and schizophrenia (Figure 3.2). We checked whether or not in these 9

genes belonged SNPs, selected by our procedure, that were previously studied in

relationship to either schizophrenia or vitamin D related phenotypes. One SNP re-

sulted from the analysis, rs3793490 (FST = 0.202, correlation = 0.626), an intronic

SNP of the SMARCA2 gene. In Figure 3.3 is reported its alleles geographic distri-

bution (A) and the values of cross-Population Extended Haplotype Homozygosity

(XP-EHH) (B) of the genomic region. This test detects alleles that have risen to

high frequency rapidly, enough that long-range association with nearby polymor-

phisms (the long-range haplotype) have not been eroded by recombination. The

analysis showed a strong sign of recent selective pressure.

3.2 Discussion

Many natural phenomena are directly or indirectly related to latitude. Living at

different latitudes has consequences in being generally exposed to different climates,

diets, light/dark cycles, etc. Therefore, it is reasonable to presume that exposure of

individuals to different latitudes could have shaped genetic background as a result of

the adaptation process. Indeed, relationships between allelic frequencies of specific

genes and latitude have been identified in plants [102–104] and animals [105, 106].

Previous studies in humans, at specific loci, have found evidence of correlation be-
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Figure 3.3: Alleles geographic distribution (A) and cross-population ex-

tended haplotype homozygosity (B) for the SNP rs3793490.

Images were readapted from the “HGDP Selection Browser”. The red

line marks the SNP’s position inside the SMARCA2 gene region.
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tween allelic frequencies and latitude of sampled populations. For example allelic

frequencies of a genetic polymorphism in the prion gene PRNP showed a clear cor-

relation with the latitude within Europe [107] and one in the ACP1 worldwide

[108].

To explore possible genetic adaptations to latitude, within this work we defined

a set of latitude-related genes (LRGs) following a two step approach. Firstly, we

identified SNPs with a high level of population differentiation (FST ) with the aim

to enrich for variants under selective pressure. From these we then extracted those

SNPs showing high values of correlation of allelic frequencies with the geographical

latitude. To the best of our knowledge this is the first search at a wide genomic

level for loci showing latitude-dependent populations differentiation.

Both functional characterization and expression localization of LRGs resulted in a

strong enrichment of neural-related processes (Tables 3.1 and 3.2). The relation-

ship between neural development and latitude is partially known. In particular,

there exists evidence of a latitude correlation of some physiological neural-related

phenotypes. It was reported for humans that cranial capacity is different between

populations, probably, as results of adaptation for brain cooling and that the cran-

iofacial diversity results from the tissues of neural crest origin [85]. It is worth

stressing that although population differences are observed in these phenotypes, no

relationship exists with mental functioning. Also, for several pathological neural

phenotypes there has been described previously a relationship with latitude. For

multiple sclerosis and schizophrenia there was a latitudinal variation in incidence

and prevalence [91, 95]. An association between mortality related to Parkinsonism

and birthplace geographical latitude was also found [109].

When we compared the list of LRGs with those containing genes associated to

neurological and psychiatric diseases, we found a vanishing enrichment of LRGs

in genes related to multiple sclerosis, Alzheimer’s and Parkinson’s disease (Table

3.3). This is not surprising. Concerning Alzheimer’s and Parkinson’s diseases, it
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should be noted that the relationships with latitude reported in the literature are

not largely confirmed as in the case of the other two diseases. Multiple sclerosis

has a strong immunity component in the etiology. Since genes involved in immunity

related processes usually exhibit low levels of FST [19] (see also 2.1), they are likely

to be excluded by our procedure, in this way weakening the enrichment.

In contrast, we found a strong significant enrichment of LRGs in genes associated

with schizophrenia (Table 3.3 and Figure 3.2). The correlation of schizophrenia

prevalence with latitude is both large and robust [110]. In previous surveys it was

noted that there is a strong tendency for schizophrenia prevalence to increase with

increasing latitude [91, 111]. The present result also agrees with that obtained in one

of our previous works, based on different data and different statistical approaches.

In this previous study, we explored for signs of natural selection in genes associ-

ated to complex diseases, and the strongest level of population differentiation was

observed in genes associated to psychiatric diseases (see 2.1). In addition, testing

for recent selective sweeps in human populations, Crespi and colleagues found sig-

nificant evidence for adaptive evolution of several genes underlying schizophrenia

[61]. Our results may suggest that a latitude-related adaptation occurred for some

schizophrenia associated genes, but to which extent this phenomenon is related to

the latitude-shaped prevalence of schizophrenia is of course still an open question.

Searching for a mechanism that could connect latitude and schizophrenia at a molec-

ular level, we reasoned that a well-known phenomenon separately linked to both of

them is vitamin D. Indeed, vitamin D is essential for normal growth, calcium absorp-

tion and skeletal development. The cutaneous synthesis of vitamin D is a function of

skin pigmentation and of the solar zenith angle which, in turn, depends on latitude,

season, and time of day [112]. With the same dietary intake, the most important

determinant for vitamin D levels is considered to be where individuals live, because

of the dependence on geographical location of the availability of UV radiation for

vitamin D synthesis. Ancestral populations who migrated out of Africa, moving

from south to north were exposed to less incident sunlight. It is commonly accepted
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that, in these conditions, depigmentation was favored [81]. This adaptation process

was compulsory, since pelvic deformities due to vitamin D deficiency could prevent

normal childbirth, but it is reasonable to suggest that also other molecular mech-

anisms apart from depigmentation could have been subject to selective pressure in

order to increase the levels of vitamin D in the body.

To test this link at a genomic level, we created a hand-curated list of genes that,

at different levels, are related to vitamin D (see 3.1). We found among vitamin D

related genes a significant enrichment for genes latitude-related (Figure 3.2). This

result may suggest that vitamin D related genes could have been subject, at least in

part, to a latitude-dependent adaptation, supporting the hypothesis that selection

also acted on other mechanisms different from depigmentation.

On the other hand, the relationship between vitamin D and schizophrenia is well

established. Vitamin D receptors were found in most tissues other than those clas-

sically involved in the vitamin D action (bone, gut, kidney, etc.). In particular,

receptors for vitamin D are widely distributed in the nervous system and vitamin D

has been recently implicated in brain function [113]. There is growing evidence that

low vitamin D levels adversely impact on brain development [114]. In mice, it has

been suggested that changes in brain development induced by prenatal vitamin D

deficiency lead to specific functional alterations in hippocampal synaptic plasticity

[115]. Also in humans, maternal vitamin D insufficiency has been associated with

childhood rickets and longer term problems including schizophrenia [116]. In addi-

tion, epidemiological data suggest that vitamin D deficiency may be associated with

increased risks of mental health disorders such as schizophrenia [117]. Despite the

consistence of this relationship, to our knowledge studies connecting schizophrenia

and vitamin D at a molecular level are not yet available.

We found a significant overlap of 70 genes between schizophrenia and vitamin D

related genes (Figure 3.2). Our analysis provides the first hint, at a genomic level, of

the existence of a relationship between them. The largest part of vitamin D related
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genes in our list is made by genes differentially expressed in epithelial cells after

treatment with the biological active form of vitamin D [101]. It is therefore possible

that the same genes could be regulated by vitamin D levels also in neurons during

brain development that, in turn, have been associated to schizophrenia [110].

According to our hypothesis that vitamin D could be the link between latitude

and schizophrenia, we focused on the 9 LRGs present in both the lists of vitamin

D and schizophrenia related genes (Figure 3.2). Among these genes, that were

related to schizophrenic phenotypes, several of them were also previously described

in association with bone development. However, no evidence of selective adaptation

was present in the literature until now.

For example, one of these genes is the neurotrophic tyrosine kinase receptor type

3 (NTRK3 ) which encodes a member of the NTRK family. These neurotrophins

(NTs) receptors are best known for their role in the differentiation and survival

of various types of neurons [118]. Gene expression of NTRK3 has been reported

to be reduced in patients with schizophrenia [119, 120]. Furthermore, it has been

suggested that the NTRK3 gene influences hippocampal function and may modify

the risk of schizophrenia [121]. Nevertheless, NTs and their receptors are also pro-

duced by a growing list of non-neuronal cells [122] including osteoblastic cell lines

[123]. NTs receptors were observed in the bone forming area during fracture healing.

NTRK3 was observed in osteoblast like cells and hypertrophic chondrocytes [124].

Another example is PPP3CA (protein phosphatase 3 catalytic subunit alpha iso-

form). This gene, also known as calcineurin A alpha, acts as a calcium-sensor and

regulator of calcium homeostasis. For this reason, it shapes calcium and cyclic AMP

dependent processes like synaptic activity, receptor desensitization, cell survival and

neuroplasticity. Expression of PPP3CA, previously described by microarrays analy-

sis from cortical [125] and rat hippocampus tissues [126], was found down regulated

in schizophrenic anterior temporal lobe [127]. On the other hand, PPP3CA is also

expressed in osteoclasts, playing a role in the regulation of bone resorption and its
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deletion results in osteoporosis [128, 129].

At least in one case, we also found independent evidence of an adaptive process,

reasonably suggesting a molecular mechanism. This is the case of the SMARCA2

(SWI/SNF related, matrix associated, actin dependent regulator of chromatin, sub-

family a, member 2) gene. The protein encoded by SMARCA2 (also known as BRM )

is part of the large ATP-dependent chromatin remodelling complex SNF/SWI, which

is required for transcriptional activation of genes normally repressed by chromatin.

Mammalian SWI/SNF complex actually consists of a small series of compositionally

distinct assemblies distinguished by the presence of alternative subunits. The com-

plexes contain either one of two closely related alternative ATPases: Brahma (BRM

i.e. SMARCA2 ) or Brahma-related gene 1 (BRG1 ). The combinatorial assembly of

these complexes could account for the specificity of their functions in different tis-

sues and development phases. SWI/SNF components and DNA replication-related

factors form, in turn, a human multiprotein complex (WINAC) that directly inter-

acts with vitamin D receptor [130]. WINAC and vitamin D receptor are targeted to

vitamin D responsive promoters in the absence of ligand to both positively and neg-

atively regulated genes. WINAC may rearrange the nucleosome array around the

positive and negative vitamin D responsive elements (VDREs), thereby facilitat-

ing the coregulatory complexes access for further transcription control. Subsequent

binding of coregulators requires ligand binding. Several studies have revealed that

one family of the SWI/SNF complexes based on the BRG1 and BRM ATPases has

particular critical dosage-dependent roles in the development of the nervous system

[131, 132].

One of the five SNPs with the highest levels of both population differentiation and

correlation with latitude that we identified at this locus was rs3793490. In a previous

study this SNP was associated with SMARCA2 expression levels in the human brain

[133]. In particular, the T variant, whose frequency increases in a latitude dependent

way, is associated with low SMARCA2 expression levels. Much evidence suggests

that low levels of SMARCA2 may play a role in the pathophysiology of schizophre-
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nia. SMARCA2 knockout mice showed impaired social interaction and prepulse

inhibition. In the mouse brain, psychotogenic drugs lowered SMARCA2 expres-

sion while antipsychotic drugs increased it [133]. On the other hand, in MC3T3-E1

cell line, deficiency of SMARCA2 results in an accelerated rate of mineralization

with higher levels of expression of osteogenic markers [134]. In addition, the most

prominent phenotype of SMARCA2 null mice is a larger (about 14% more than

normal) body size with a disproportionately increased bone and muscle mass [135].

Putting together all this data seems to suggest that SMARCA2 deficiency is asso-

ciated with different effects on bones and neurons. It is possible to speculate that

a selective pressure could have favoured a haplotype containing the T allele in an

environment with low vitamin D availability, for its positive effect on the bone phe-

notype. In turn, the low SMARCA2 expression levels linked to this variant could

be responsible for the increased risk of schizophrenia. The XP-EHH analysis that

we performed (Figure 3.3) confirms the presence of a strong recent positive selec-

tion in the SMARCA2 locus. Interestingly, the homozygosity geographical pattern

detected by XP-EHH recognises the effect that we found with correlation analysis.

These results agree with a previously described hypothesis of schizophrenia being, at

least partly, a maladaptive by-product of adaptive changes during human evolution

[61].

In Figure 3.2 besides the described overlaps among the lists used, large non-intersecting

areas exist. This can be partially due to technical limitations of our work. Anyway,

these areas of non-intersection were, at least in part, expected. As stated, latitude

acts directly or indirectly, on a wide variety of phenomena, therefore it is expected

that its effects are not limited just to vitamin D and neural development. For similar

reasons, we expected that also the link between latitude and schizophrenia cannot

be completely explained by vitamin D. For example, in the intersection between

LRGs and genes related with schizophrenia there is a gene involved in the circadian

rhythms, TIMELESS.

Circadian rhythm consists of light and dark phases which coincide with the phases
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of the solar day and that is, obviously, correlated with the different photoperiods

existing at different latitudes. TIMELESS is required for normal progression of

S-phase and is involved in the circadian rhythm autoregulatory loop. Associations

between circadian gene polymorphisms, including TIMELESS, and some mental

disorders have been found, including schizophrenia [136]. In addition, expression

of TIMELESS was investigated in the pitcher-plant mosquito, Wyeomyia smithii,

and was found to vary with latitude of origin. This suggests that other mechanisms

should be taken into account [137].

It is worth stressing that this work represents just an initial exploration of this com-

plex problem and can suffer from some limitations. The first aspect to take into

account is the arbitrary choice of the thresholds used as inclusion criteria in the list

of LRGs. However, it should be underlined that our aim was just to obtain a list

enriched for genes showing both high levels of population differentiation and correla-

tion with latitude. Another important aspect is that the largest part of our analysis

is based on hand-curated lists. Nevertheless, it should be noted that these lists are

widely used [138, 139]. The only exception is the list of vitamin D related genes

that we had to build ex novo since no others were present in literature. In addi-

tion, a cause-effect relationship can never be conclusively established based only on

a reciprocal enrichment between sets of genes. Moreover, alternative explanations

of the observed enrichments can be imagined. For example, we cannot exclude the

presence of an unknown common factor, different from vitamin D, linking together

schizophrenia and latitude. A further limit of our approach concerns the gene level

analysis. In fact, focusing on genes rather than on SNPs, does not allow to conclu-

sively assess whether variants related to latitude coincide with those involved in the

studied phenotypes. In other words, even if a gene is associated to both latitude

adaptation and schizophrenia, we cannot exclude that this is due to functionally

independent variants. For this reason our conclusions should be corroborated by

further and more detailed studies. Finally, we are aware that population differenti-

ation is influenced by demographic history and thus it cannot be straightforwardly
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interpreted as a sign of natural selection. Some approaches have been proposed to

evaluate the impact of natural selection on population differentiation. Under the as-

sumption of neutrality, any set of SNPs, even if classified according to their physical

location and functional impact, should show the same degree of population differen-

tiation. According to Barreiro and colleagues, any deviation from this expectation

should be attributable to selection [29]. In particular, the authors observed that

variants leading to amino-acid changes (non-synonymous mutations) are overrepre-

sented among SNPs showing high level of FST . They interpreted this excess as the

result from the action of natural selection. We used a similar approach to analyse

our data. We found an excess of non-synonymous polymorphisms in LRGs. This

result seems to suggest the appreciable presence of genes under selective pressure in

LRGs.

Recently, an international team of researchers presented the first detailed analysis of

the draft sequence of the Neanderthals’ genome [140]. In particular, they showed the

presence of interbreeding between Neanderthals and Homo Sapiens occurred after

the Out-of-Africa migration. Affecting mainly the non-African populations, this

genetic flow could mimic a latitudinal effect on the Africa-Europe axis and therefore

potentially influences our conclusions. First of all, LRGs are selected according to

a worldwide latitude correlation, which is only partially due to the Africa-Europe

axis. This is the case, for example, of the rs3793490 SNP (Figure 3.3) where it is

also clear a latitudinal effect out of this axis. In addition, Europeans and Asians

share only 1% to 4% of their nuclear DNA with Neanderthals suggesting a limited

impact, if any, on our conclusions. Finally, we observed that approximately 10%

of LRGs are present in the list of genes that Green et al. showed to have evolved

recently in our lineage after we split from Neanderthals, and thus, at least in these

cases, we can confidently exclude the influence of interbreeding.
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3.3 Materials and Methods

3.3.1 Data

The whole analysis is based on genotypes data of 660, 918 single-nucleotide poly-

morphisms (SNPs) in samples from the Human Genome Diversity Panel (HGDP-

CEPH), which represents 938 unrelated individuals from 51 populations from sub-

Saharan Africa, North Africa, Europe, the Middle East, South/Central Asia, East

Asia, Oceania, and the Americas. We removed the two small heterogeneous South-

ern Bantu populations as in [141]. Genotypic data was retrieved from http://

hagsc.org/hgdp/ [42] while geographical information was obtained from http:

//www.cephb.fr/en/hgdp/.

For all the SNPs, we computed the allelic frequencies within each population by

using the R package “genetics” version 1.3.4. Additional SNP information about

physical positions and SNP-gene mapping were obtained from dbSNP build 129

http://www.ncbi.nlm.nih.gov/projects/SNP. Data from the HGDP-CEPH

project and dbSNP were merged in a local MySQL database.

After excluding SNPs with minor allele frequencies less than 5% in all of the popu-

lations, we obtained a set of 655, 810 SNPs. Since we were interested in performing

this study at a gene level, we retained only intragenic SNPs obtaining a final set of

224, 501 SNPs. In particular, we considered all SNPs within 2 kb of a gene, accord-

ing to dbSNP classification. We also excluded the Y-linked SNPs because of scarce

numbers.

Genes underlying skin pigmentation were obtained from a study by Myles and col-

leagues [142]. Genes related to neuropsychiatric diseases were obtained from a set of

publicly available comprehensive, uniform and regularly updated database of genes

considered involved in schizophrenia, multiple sclerosis, Parkinson’s and Alzheimer’s

disease [60, 96–98]. These databases collect genes related to these phenotypes re-
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Chapter 3 Adaptation to latitude

sulting from different approaches (association, genome-wide, candidate, etc.). We

used the January 30th 2010 update of these databases, containing 892, 197, 511 and

622 genes, respectively. The list of vitamin D related genes was manually created

by merging three different lists of genes related in different ways to vitamin D. The

first list is the “Vitamin D (calciferol) metabolism” pathway by Reactome (RE-

ACT 13523.2). The second one was extracted from the Biocarta’s pathway “Con-

trol of the expression by vitamin D receptor” (h vdrPathway) as present on the

Cancer Genome Anatomy Project http://cgap.nci.nih.gov/. Finally, can-

didate transcriptional target genes of vitamin D were obtained from a set of genes

differentially expressed in SCC25 cells treated with 1,25(OH)2D3 by a genome-wide

microarray analysis [101].

A common problem in using lists of genes is that different types of gene identifiers are

used. The effect is that usually only part of the genes is recognized. Therefore, each

tool that we used lost a variable number of genes during the analyses. Nevertheless,

to obtain the best performances from each tool we decided to provide them with the

whole lists. In particular, DAVID recognized 1207 identifiers and MGSA recognized

1101 ids. In addition, overlaps between lists of genes were computed by using

MatchMiner web tool, which also takes into account gene aliases and/or different

types of gene identifiers [143]. This tool recognized 885 schizophrenia, 178 multiple

sclerosis, 490 Parkinson’s disease, 618 Alzheimer’s disease and 1254 latitude related

genes.

3.3.2 Statistical analysis

For all SNPs we calculated the fixation index (FST ) according to the Weir and Cock-

erham estimator [35] using the previously developed Perl script (see 3.3). We then

computed the absolute value of the correlation between the frequency in each popu-

lation of the ancestral allele and the absolute value of the latitude of the population

weighted by its sample size. This was to avoid the overweighting of allelic frequen-
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cies inside small populations and was implemented simply by using the weighted

mean, standard deviation and covariance.

Statistical significance of overlaps was estimated by using Fisher’s exact test, consid-

ering 21463 genes (number of distinct gene symbols present in the “refGene” track

of UCSC Genome Browser) as background population. All statistical analyses were

carried out with R ver. 2.10.1 [144]. The whole study was conducted considering a

p-value of 0.001 as statistical significance threshold.

To check for a potential bias toward larger genes (since they can contain more

genotyped SNPs), we applied the non -parametric Mann-Whitney test to compare

the difference among the lengths of LRGs with respect to the remaining genes in

the “refGene” track of UCSC Genome Browser. There is no statistical evidence for

a difference (p = 0.07), with median length of LRGs slightly smaller than median

of the others.

3.3.3 Biological characterization

The analysis of gene expression localization was performed by using the Database for

Annotation, Visualization and Integrated Discovery (DAVID) v6.7 and the “UP TISSUE”

category [145, 146]. The “Uniprot tissue” (UP TISSUE) list is based on literature

mining and reports for each gene in which tissues it has been found to be expressed,

by using a curated vocabulary.

Overrepresentation of GO terms was assessed by using Ontologizer 2.0 and the

Model-based Gene Set Analysis (MGSA) method. The idea behind this approach

is to estimate the marginal posterior probability of a term being enriched by using

a Bayesian Network. The greater probability for a GO term being near to 1, the

higher is the certainty of its involvement in the process. All parameters were left

to “auto”, allowing the system to automatically estimate the optimal a priori prob-

abilities and the false positive and false negative rates. Probabilities are estimated
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by MGSA using 107 Markov-Chain Monte Carlo (MCMC) steps. Since MCMC is

not guaranteed to converge in any a priori defined number of steps, we repeated the

analysis 20 times and retained only terms having a marginal posterior probability

greater than 0.5 in every run, as recommended by authors.
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Chapter 4

Evolutionary forces shaping

autoimmunity

In human history, infections have been a powerful selective pressure [147]. After

the human species originated in sub-Saharan Africa more than 100 kya, it spread

much of the globe. In this journey, humans were exposed to new pathogens that

challenged their immune system; as a result, genetic variants conferring resistance to

infections would have been preferentially selected. However, several genetic variants

that protect against infections may also predispose to autoimmune diseases (ADs)

in contemporary populations (e.g., alleles of solute carrier family 11 member 1,

SLC11A1 ) gene that protect against tuberculosis predispose to rheumatoid arthritis

(RA) and type 1 diabetes (T1D) [148, 149]. Consequently, genetic perturbations of

the immune system that occurred as a result of adaptations to pathogen exposure

may involve variation that influences risk to ADs, and might also be responsible for

population differences in AD prevalence. 1

1The manuscript based on the results presented in this chapter is currently in preparation. This

project was developed at the University of Chicago under the supervision of Anna Di Rienzo.

Gorka Alkorta-Aranburu performed all the experiments and was responsible for all the biological

contents. David Witonsky actively contributed in the preliminary phases and during the whole

project.
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Common disorders of the immune response and AD in particular. The purpose of

the body’s immune system is to fight infectious agents, such as viruses or bacteria.

However, several things can go wrong with the immune system. Disorders of the

immune system can be broken down into four main categories: immunodeficiency

disorders (when a part of the immune system is not present or is not working prop-

erly), cancers of the immune system, allergic disorders (in which the immune system

overreacts in response to an antigen, for example, asthma, eczema and allergies), and

ADs (in which the body’s own immune system attacks its own tissue). Normally, AD

is prevented by a self-tolerance mechanism, which depends on a succession of control

layers that operate at different sites and stages of development. Interestingly, genetic

variation in tolerance control layer genes has been associated with autoimmunity:

(1) genes that affect autoantigen availability and clearance (e.g., component C3,

C1q, C2, and C4 of the complement pathway, Mannan-binding lectin, autoimmune

regulator AIRE ); (2) genes that affect apoptosis (e.g., Fas and FasL mutations in

autoimmune lymphoproliferative syndrome ALPS ); (3) genes that affect signaling

threshold (for example decreasing receptor sensitivity in the thymus can fail to nega-

tively select autoreactive cells, and increasing sensitivity in the periphery can cause

an exaggerated immune response causing autoimmunity; and (4) genes affecting

co-stimulatory molecules, for instance, citotoxic T lymphocyte-associated antigen 4

(CTLA4 ). CTL4 is a member of the CD28 family that binds to CD80 and CD86

and transduces an inhibitory signal to T cells. When the gene for CTLA4 is knocked

out in mice, it results in a severe and lethal autoimmune syndrome [150]. Even in

humans, CTLA4 variation, together with protein tyrosine phosphatase (PTPN22 )

and TNF-α variation, has been associated with different ADs indicating that au-

toimmune phenotypes could represent pleiotropic outcomes of non-specific diseases’

genes that underline similar immunogenetic mechanisms [151].

Still, the strongest influence on susceptibility is the major histocompatibility com-

plex (MHC), in particular human leukocyte antigens (HLA) [151]. In addition to

genetics, environmental factors also influence AD risk. Certain drugs elicit autoim-
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munity as a side-effect (e.g., procainamide induces lupus-like autoantibodies [152])

and toxins can also cause autoimmunity (e.g., heavy metals such us gold or mer-

cury [153]). Infections are also associated with the onset of AD. Infections destruct

tissues, so inflammatory mediators (e.g., cytokines and chemokines) are released,

which can activate self-reactive lymphocytes. Many pathogens can secret their own

cytokines or prevent lymphocyte apoptosis [154, 155]. Even in healthy individuals

isolated breakdowns of one or more layers can be detected. However, ADs only

develop when enough safe guards are overcome to lead to a sustained and persistent

immune response against self, including the generation of effectors of tissue destruc-

tion. This is because each tolerance layer is partly effective in preventing anti-self

responses, and all of them together provide efficient protection against autoimmunity

without inhibiting the immune system’s ability to fight against pathogens. Conse-

quently, some degree of autoimmunity can be thought of as the evolutionary price

of being able to make effective responses against pathogens.

The identification of genes that promote autoimmunity might help in AD diagnosis,

prognosis, identifying risk individuals who could benefit from medical intervention

before disease and suggesting new therapeutic strategies. Recent advances, such as

the International HapMap project [34, 156] and high throughput genotyping plat-

forms (e.g., Illumina, and Affymetrix) offer new opportunities to rapidly screen

common genetic variation across the genome, making GWASs powerful and ap-

proachable. As a result of these advances, several GWASs have identified a large

number of common AD risk variants (ADRVs) without prior knowledge of position

or function. At the same time, methods to scan the human genome for selection sig-

nals have been developed and applied to large-scale data sets such as those from the

HapMap project [25, 27, 157]. Interestingly, several of these studies found signals of

selection in genes involved in the immune response, further supporting the notion

that pathogens have exerted strong selective pressures on the human genome. For

example, using SNP data, Voight et al. [25] detected a significant excess of MCH-

1 mediated immunity genes with evidence for partial sweeps in the CEU (CEPH
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European population) (p-value < 0.0001), but not in the YRI (Yoruba population,

Ibadan, Nigeria) (p-value = 0.002) or the ASN (the Han Chinese and Japanese

populations) populations. In addition, Sabeti et al. [27] also reported that like-

glycosyltransferase (LARGE ) and dystrophin (DMD) genes, which are both related

to infection by the Lassa virus, are suspected to be under positive natural selection

in the YRI.

4.0.4 Major transitions in pathogen exposure during human

history.

Many significant human diseases are thought to have arisen with the introduction

of agriculture. Before the Neolithic period, the main form of human subsistence was

hunting and gathering (HG), which was characterized by small and scattered popula-

tions. Approximately 10,000 years ago, however, with the introduction of agriculture

and animal husbandry, humans transitioned to a sedentary agricultural (AG) subsis-

tence, population size/density increased, and humans became attractive pathogen

hosts because large populations in small areas maximize the chance of transmission

between longer-lived barriers. Therefore, the human population growth during the

Neolithic created the conditions that favored the emergence of pathogens that spe-

cialize in human hosts [158]. In addition, many pathogens became endemic. As

most individuals reaching reproductive age were exposed to pathogens in early life

and acquired resistance, variants conferring resistance were preferentially transmit-

ted to the next generation and, therefore, were selectively advantageous. Nutritional

deficiency reinforced this selection. First, since AGs rely on 1 or 3 crops, not having

back-up crops, starvation, mortality and disruption of fertility cycles are expected

[159]. Second, in order for mothers to quickly return to reproductive readiness, AG

infants were weaned earlier; in addition, the low-protein and high-carbohydrate diet

typical of the agricultural subsistence made these infants more prone to diarrhea and

infections. This high AG infant mortality was balanced by reducing birth spacing,
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which worsens infant and mother’s nutrition and health [159].

In addition to subsistence, other features of the physical environment are known

to be important determinants of pathogen load and diversity. It is well established

that plant and animal species diversity is strongly correlated with distance from the

equator. It was recently shown that this correlation holds for pathogens, and that it

is mainly due to climatic factors [160]. This raises the question of whether the main

shift in the selective pressures acting on ADRVs occurred (1) when humans changed

the environment with the introduction of agriculture, (2) when climate changed, for

instance, during the last glaciations and humans moved to higher latitudes, or (3)

when humans became exposed to different climates and environments as a result of

the exodus from Africa. The first two scenarios are not distinguishable in terms of

the timing of selection as both transitions occurred within a relatively recent window

of time (the last 14 kya). The third scenario, however, is expected to result in older

selection signals compared to the other two. Therefore, the end of the Ice Age

(coupled with the advanced agriculture) and the dispersal out of Africa represent

two major moments when genetic variants affecting autoimmunity could have been

selected.

To understand the evolutionary forces shaping autoimmunity, a population genet-

ics approach is proposed. When a genetic variant is advantageous, chromosomes

carrying it quickly increase in frequency while chromosomes that do not carry the

selected variant are lost. This process creates a signature in the patterns of neutral

variation tightly linked to the selected site, which may affect multiple aspects of ge-

netic variation (i.e., nucleotide diversity, variation frequency spectrum, and patterns

of linkage disequilibrium). In order to characterize these aspects of variation, a full

re-sequencing approach is necessary. Full re-sequencing data are also necessary to

uncover the variant that underlies a disease association signal and to narrow down

the location of an advantageous variant. Next-generation sequencing technologies

offer new opportunities for population genetics beyond the conventional and low

throughput capillary-based sequencing.
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Finally, under a high pathogen load, genetic variants resulting in over-responsive

immunity (e.g., ADRVs) can be advantageous. This raises the possibility that some

of the ADRVs were evolutionarily advantageous at some point during human his-

tory. In addition, if pathogen loads vary across populations, the frequency of over-

responsive immune variants may differ substantially as a result of local adaptations.

Indeed, a preliminary analysis of ADRVs identified in genome wide association stud-

ies (GWAS) showed that several of these variants carry signals of positive natural

selection. In addition, consistent with the idea that these variants were the targets

of local adaptations, their geographic distribution is often restricted to closely re-

lated populations. For example, some ARDVs seem to have been locally selected

in Europeans, perhaps during the Neolithic period. Moreover, autoimmune disease

prevalence differs among ethnic groups even when they live in similar environments,

e.g. ethnically diverse populations living in the United States.

In conclusion, reconstructing the chronology of local adaptations will yield important

insights into the origin of ADs. Answering where and when selective factors shaped

genetic variation has the potential to understand the evolutionary history of the

autoimmunity phenotype, which in turn will be used to guide the future search to

define the key populations and the causative ADRVs to be functionally studied.

4.1 Methods

4.1.1 Selection of the AD-risk regions.

Two general AD loci with signatures of European local adaptation were selected:

4q27 and 12q24. Interestingly, the protective/derived allele in 4q27 and the risk/derived

allele in 12q24 are associated with signals of positive selection in Europe (i.e., re-

stricted to Europe and significant iHS signal).
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Chromosome 4q27 region

It represents a general AD risk locus. WTCCC found a risk haplotype highly as-

sociated with T1D [161], which was later replicated with rs17388568 for T1D and

associated with Grave’s disease (GD) [162]. To be noted, the intergenic rs6822844*C

(ancestral) allele was a perfect proxy for the risk haplotype highly associated with

T1D [163, 164], RA [163–167], CD [164, 168, 169], ulcerative colitis (UC) [168, 169]

, juvenile idiopathic arthritis (JIA) [170], psoriatic arthritis (PSA) [171], psoriasis

(PS) [171], early onset psoriasis [172] and SLE [163]. In addition, in a CeD GWAS,

besides the HLA region, rs13119723 was the most significant finding, but a follow-up

in two cohorts highlighted rs6822844*C with even stronger risk-association p-value

(meta-analysis p-value = 1.3 × 10−14) [173, 174] and replicated in a Scandinavian

CeD cohort [175].

All those polymorphisms were present in a strong LD block containing four genes:

KIAA110, ATP-dependent DNA helicase (ADAD), interleukin (IL)-2, and IL-21.

IL-2 and IL-21 are strong AD candidate genes. For example, IL-2 is an important

cytokine in T and B lymphocyte proliferation; about half of IL-2 deficient mice

die of autoimmune haemolytic anaemia before 2 months of age, and the survivors

develop inflammatory bowel disease [176, 177], which suggests an essential role of

IL-2 in the immune response to antigenic stimuli. In addition, the receptor of the

type I cytokine IL-21 is expressed on T, B, and NK cells; and BXSB-Yaa mice,

which develop a SLE-like disease, have greatly elevated IL-21, suggesting a role for

IL-21 in the development of AD [178]. Overall, the ancestral/risk alleles/haplotype

of T1D, GD, RA, CD, UC, JIA, PSA, PS, early onset PS, SLE and CeD appear

to be the same, and of similar frequency, which are significantly correlated with

climate variables, and latitude. Interestingly, the derived/protective rs6822844*T

allele shows evidence of recent selection in the HapMap CEU - European population

(iHSCEU = −1.958). Furthermore, this protective/derived/selected allele is only

present in Europe, Middle East, West Asia, and the Siberian Yakut population,
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while the risk allele is fixed in the remaining HGDP populations (Figure 4.1).

Figure 4.1: Pie chart of the allele frequencies worldwide for the SNP

rs6822844. Pies report the allele frequency distribution in each one of

the 53 HGDP population (derived allele is in orange). From the HGDP

Selection Browser.

Chromosome 12q24 region

The chromosome 12q24 also represents a general AD risk locus. 12q24 harbors a

large number of SNPs significantly associated with T1D [161]. The ancestral/risk

allele of rs17696736 - GW significant p-value - showed evidence of recent selection

in the European population (iHSCEU = −3.21) and its frequency is correlated with

latitude. Interestingly, in the follow-up replication study [162], four SNPs for which

the LD r2 values with rs17696736 ranged from 0.59 to 0.82 were tested and the nsSNP

in exon 3 of SH2B3 encoding a pleckstrin homology domain (R262W- rs3184504)

had the highest association (p-value = 1.73 × 10−21; odds ratio (OR) = 1.33, 95%
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c.i. = 1.26 − 1.42). This single nsSNP was sufficient to model the association

of the entire region [162]. Not only the derived rs3184504*T allele increased risk

for T1D [161], but also for CeD [173], multiple sclerosis (MS) [179], myocardial

infarction [173] and is correlated with the Soluble ICAM-1 (sICAM-1 ) which is and

endothelium-derived inflammatory marker that has been associated with diverse

conditions such as myocardial infarction, diabetes, stroke, and malaria [180].The

derived/risk rs3184504*T allele is also present in the longer haplotype suggesting

that it was recently advantageous.

Interestingly, (1) multiple SNPs in this region have |iHSCEU | > 2, suggesting strong

recent selection on variation in this region in the European population; (2) this region

is significantly enriched for high FST (CEU vs. ASN and CEU vs. YRI) values; and

(3) the the worldwide distribution of rs3184504 is similar to other AD-risk alleles

in this candidate region: Europe, Middle East, West Asia, and the Siberian Yakut

population (Figure 4.2). SH2B3 is strongly expressed in monocytes and dendritic

cells, as well as to a lesser extent in resting B, T and natural killer (NK) cells

(Genomic Novartis Foundation SymAtlas [181]). The observed higher small intestine

SH2B3 expression in inflamed celiac biopsies may reflect leukocyte recruitment and

activation [173].

SH2B3 regulates T-cell receptor, growth factor and cytokine receptor-mediated sig-

naling implicated in leukocyte and myeloid cell homeostasis [182]. The R262W

amino acid change in the pleckstrin homology domain may be important in plasma

membrane targeting [173]. SH2B3−/− mice have increased responses to multiple

cytokines [183].

OCA2

In addition to the previous regions, we selected a third genomic region in chromo-

some 15 which is not associated with AD but blue eye-color in Europeans. It is

another variant that even if it is associated with a completely different phenotype,
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Figure 4.2: Pie chart of the allele frequencies worldwide for the SNP

rs3184504. Pies report the allele frequency distribution in each one of

the 53 HGDP population (derived allele is in orange). From the HGDP

Selection Browser.
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shares similar features with the above mentioned AD loci. Variation in rs12913832

is relatively common in Caucasians though rare among other ethnic groups [184] and

correlates with skin, eye, and hair color variation [185] (Figure 4.3). For example, the

G/G genotype is associated with blue eye color [184, 186]. As a note, rs12913832 is

part of the “h-1” haplotype, spanning 166kB and found in homozygous state in 97%

of individuals with blue eye color [184]: rs4778241(C), rs1129038(A), rs12593929(A),

rs12913832(G), rs7183877(C), rs3935591(G), rs7170852(A), rs2238289(T), rs3940272(C),

rs8028689(T), rs2240203(A), rs11631797(G), and rs916977(G). rs12913832 is near

the OCA2 gene and may be functionally linked to eye color due to a lowering of

promoter activity of the OCA2 gene.

Figure 4.3: Pie chart of the allele frequencies worldwide for the SNP

rs12913832. Pies report the allele frequency distribution in each one of

the 53 HGDP population (derived allele is in orange). From the HGDP

Selection Browser.

We included this region for two reason. First of all, it is known that this gene
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underwent selective pressure after the out of Africa migration. For this reason, this

region will represent a sort of benchmark for the age estimation method. On the

other hand, skin pigmentation has a direct effect on vitamin D metabolism that, in

turn, play a central role on the immune system. Hence, it could be important to

understand the timing of the selection process of this gene with respect to those of

the previous regions.

4.1.2 Selection of samples

DNA of 14 European individual genomes from the Centre dÕEtude du Polymor-

phism Humain (CEPH) was purchased from the Coriell Cell Repository (http:

//ccr.coriell.org) with the corresponding genotypes for the targeted-SNPs

(i.e., chr4:rs6822844; chr12:rs3184504 and chr15:rs12913832). As a note, allele T in

chr4 and chr12, and allele G in chr15 show evidence of recent selection. Individuals

were selected in order to enrich the sample for the selected alleles. This led to the

following composition:

rs6822844 3× T/T homozygotes and 11× G/T heterozygotes

rs3184504 5× T/T homozygotes and 9× C/T heterozygotes

rs12913832 11× G/G homozygotes and 3× A/G heterozygotes

4.1.3 Design of the capturing arrays and sequencing

First, to define the coordinates of the region to be captured/sequenced, per each re-

gion, the targeted-SNPs (i.e., chr4:rs6822844; chr12:rs3184504 and chr15:rs12913832)

were used as the reference. Per targeted-SNPs, all SNPs with r2CEU > 0.2 and within

2 Mb were selected. The SNP with the lower and the SNP with the higher coordi-

nate defined the region to be captured. This resulted in a 2.26Mb region for chr4;

1.9 Mb for chr12; and 1.47 Mb for chr15. However, the SNPs whose coordinates
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limited the length of the chr4 and chr15 region resulted to be outliers among the rest

of the LD-SNPs. Once removed, the coordinates of the regions to be captured and

sequenced were defined as follows (hg 18): chr4: 122729299-123782528 (1.053 Mb);

chr12: 109769404-111681303 (1.911 Mb), and chr15: 25542017-26213429 (0.671 Mb).

Second, NimbleGen designed the capturing arrays (OID20617) by first masking the

repeats of the requested regions and designed unique probes (with an average of

∼ 85bp) as determined by the SSAHA algorithm. These unique probes allowed

for up to 5 insertions, deletions or mismatches. Only unique probes were designed.

Finally, 72.3% of the targeted regions were directly covered by probes, and 86.5%

of the regions were either directly covered or within 100bp of a probe.

Capturing was performed on Roche 385K NimbleGen Capturing Arrays. The cap-

turing protocol was modified so that Illumina next-generation sequencing method

could be used instead of 454 sequencing.

Two different sequencing runs were performed in the Illumina Genome Analyzer II

using paired-end 76 bp reads. The number of reads obtained per sample is summa-

rized in Table 4.1.

4.1.4 Raw data preprocessing

Sequencing data alignment

First, the human reference genome version b36 was obtained from GenomeAnal-

ysisToolKit (GATK) website as part of the GATK resource bundle. Second, the

obtained reads were aligned to the reference genome using BWA 0.5.9rc1 [187].

The search for suffix alignment coordinates (bwa aln) and the alignment (bwa

sampe) were both performed with the default parameters (see http://bio-bwa.

sourceforge.net/bwa.shtml); but within the alignment step (bwa sampe),

we changed the following parameter values from the default: (i) -a (maximum in-

sert size for a read pair to be considered being mapped properly) 600 was used
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instead of the default value of 500; and (ii) -r @RG\tID:<unique id>\tSM:<sample

id>\tPU:<lane>\tPL:ILLUMINA was used instead of the default ’none’ to specify

the read group for each sample. The latter was needed by GATK since samples were

going to be pooled before the SNP calling step. Third, following GATK’s “Best prac-

tice for variant detection v. 2”, realignment around indels was performed. We per-

formed sample-level realignment with known and novel indels using GATK 1.0.4905

and default parameters. Known indels were from obtained from dbSNP 130. Novel

potential indels were obtained with GATK RealignerTargetCreator. The number of

aligned reads per sample is summarized in Table 4.1.

Using Picard-tools 1.38 and default parameters (http://picard.sourceforge.

net/), a different BAM file is created per sample with unique, sorted and indexed

reads. Also the duplicated reads (i.e. read pairs with the same orientation and

alignment position) were removed using Picard-tools.

Base quality score recalibration

The base quality scores were recalibrated to get them closer to the actual proba-

bility of a read mismatching the reference genome using GATK 1.0.4905 with de-

fault parameters and QualityScoreCovariate, CycleCovariate and DinucCovariate

as covariates (http://www.broadinstitute.org/gsa/wiki/index.php/

Base_quality_score_recalibration). ReadGroupCovariate was not used

because for each sample all reads belong to the same group. GATK walks over all

of the reads and tabulates data about the selected covariates: assigned quality score

× machine cycle producing this base × current base + previous base (dinucleotide).

For each of such bin, it counts the number of bases within the bin and how often such

bases mismatch the reference base, excluding loci known to vary in the population

(according to dbSNP). The new quality score is the sum of the global difference be-

tween reported quality scores and the empirical quality, plus the quality bin specific

shift, plus the quality-per-cycle and quality-per-dinucleotide effect.
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Indels and genotyping call

Indels were called, per sample, using GATK and default parameters according to

GATK’s “Best practice for variant detection v. 2”.

Genotypes were called using the default parameters and the “pooled” method. Only

variants in the targeted regions or 400bp up- or down-stream of a targeted region

were called.

A set of filters was then used to discard low quality genotype calls. The “called/ac-

cepted” variants satisfied the following conditions: (1) QUAL > 50 (PHRED-scaled

quality of the variant); (2) QD > 5 - Quality by Depth; (3) SB > −0.10 -

Strand bias (variant allele is supported by reads that map to both strands?); (4)

HRun > 5 - largest contiguous homopolymer run of variant allele in either direc-

tion; (5) MQ0 > 4 or MQ0 > 0.1 ×DP - number of covering reads with mapping

quality score zero; (6) Not in cluster, defined as 3 SNPs in 10bp and (7) not inside

an indel.

Comparing our data with the HapMap genotype calls, our mean concordance is

99.97%; our false positive (i.e. HapMap homozygote called heterozygote) was 0.01%;

our false negative rate (i.e. HapMap heterozygote called homozygote) was 0.02%;

our non-reference sensitivity (i.e. fraction of variant sites in HapMap that we call

variant) was 96.91%; and finally, our non-reference discrepancy rate (i.e. discrepancy

of genotype call excluding concordant reference homozygotes calls) was 0.08%.

Haplotypic phase determination

IMPUTE2 was used for imputation and phasing using the whole HapMap panel as

reference panel. The default values were used, except (1) the number of iterations

was increased from 30 to 50; and (2) the maximum number of copying states to

use for diploid phasing updates was also incremented from 80 to 100. To increase

phasing performances, also variants sampled in the HapMap panel and falling in
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non-targeted regions were considered. Those variants were then discarded. Also, we

discarded all variants were at least one of the genotype was imputed.

Identification of the subregions

For the age estimation purpose, we simulated only a smaller part of the regions. This

allowed us to decrease the computational cost of the method and also to improve

the estimation. Indeed, in this way summary statistics are mainly affected by the

haplotype, without dilution of the information due to larger, neutral regions. To

select the subregions, we took into account two aspects, namely the position of

the haplotype and the presence of strong recombination hotspots. First, selected

haplotypes were roughly identified by visual inspection for each region. Then, the

“selected subregion” was obtained as the subregion including the haplotype and

enclosed between either the edge of the targeted regions and/or a strong (> 20×

the background recombination rate) recombination hotspot.

For Chr4, haplotype spans about 500 kbp and selected subregion goes from (hg 18)

123,100,000 to 123,800,000 for a total of 700 kbp; for Chr12, haplotype spans about

700 kbp and selected subregion goes from 109,900,000 to 111,500,000 for a total of

1.6 Mbp; for Chr15, haplotype spans about 300 kbp and selected subregion goes

from 25,850,000 to 26,100,000 for a total of 350 kbp (Figure 4.4).

4.1.5 Allele age estimation

One of the most interesting question in population genetics, today, is to understand

“why” (the functional relevance) and “when” (the timing) loci underwent positive

selection. The two questions are, of course, strictly related and answering to one

can help in the understanding of the other one.

Regarding the timing, what researchers are primarily interested into is the age of

the onset of the selective pressure. This quantity, indeed, can potentially provide
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Figure 4.4: Genetic map of the captured regions. On the y-axis is reported

the recombination rate in cM/Mb. Yellow boxes represent the “selected

subregions” while vertical red dashed lines mark the haplotypes. With

a blue triangle is marked the position of the selected SNP.
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important hints on why the allele was selected and, eventually, its biological role.

Unfortunately, this quantity is hard to estimate also because of its vague definition.

For this reason, two proxies commonly used are the time since the most recent com-

mon ancestor (tMRCA) and the age of the allele (that is the time of the mutation,

assuming that the selection occurred on a new allele). Relative relationship among

these quantities are shown in Figure 4.5.

Figure 4.5: Cartoon of selection acting on a new mutation. Coalescent tree

showing the relative relationship among onset of selection, age of the

mutation (red cross) and time since most recent common ancestor (black

circle).

Several analytical methods have been proposed to estimate the age of specific classes

of alleles, namely rare, near to fixation or fixed [188–190]. However, it is possible to

show that given the estimated human effective population size and realistic selection

coefficients, sweeps occurred after the out of Africa are, on average, incomplete [191]

and thus selected alleles are likely to be at intermediate frequencies.

Among the most used allele age estimation methods, particular attention deserves

the haplotype decay method. A relatively simple and widely used implementation

of this method was proposed by Voight and colleagues [25]. The main idea comes

from the fact that the probability of observing two identical chromosomes at a given
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recombination distance, decay exponentially with the time. In particular, given r

the recombination distance at which the two chromosomes are still identical and T

the tMRCA expressed in number of generations,

P (Homo) = e−rT .

This method makes some simplifying assumptions about the demographic model

which make it unsuitable in many real application. In particular, they assume a

population that is panmitic and constant in size, which is clearly unrealistic for

human.

Another interesting approach, known as counting method, comes from Thomson

and colleagues [190]. This method starts building a tree for the region of interest

and counting the number of mutations. Since neutral mutations accumulate at a

constant rate, the total number results to be proportional to the tMRCA. Given xi

the number of mutations on branch i (from the root to the tip, and thus the number

of mutations carried by the i-th chromosome, n the number of chromosomes and µ

the mutation rate,

T =

∑n
i=1 xi
nµ

.

Contrarily from the haplotype decay, this method makes no assumptions on the

demographic model. However, it only consider one tree per region and thus its

interpretation in presence of recombination is not straightforward.

Moreover, both these methods as well as many others, usually just provide a punc-

tual estimation of the age and no general rules exist to assess the confidence interval

of these estimations.

Many methods for parameter estimation that are also able to provide confidence/-

credible intervals are based on the concept of likelihood, that it the probability of

the data given the parameter. Given an unknown (set of) parameter θ and the data

D, for the Bayes’ rule

P (θ|D) ∝ P (D|θ)Pθ = L (θ)Pθ (4.1)
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where L (θ) is the likelihood of θ and Pθ is the a priori distribution of θ.

Usually, the likelihood function is derived from theory. In the case of age estimation,

this can include population genetics and coalescent theory. The problem with this

approach, however, is the difficulty of deriving such a likelihood function, and this

restrict their applicability to very simple scenarios.

A different class of methods tries to overcome this problem bypassing the exact

likelihood calculation by means of simulations and a set of quantities (hereafter called

“summary statistics” or SSs) that summarize the data. One of these approaches is

known as Approximate Bayesian Computation (ABC) [192]. The main intuition is

very simple. Suppose you can calculate from the data a minimal set of quantities

able to represent all the information contained in it and let’s call S(D) this set of

summary statistics calculated on the data set D. Moreover, suppose an appropriate

model M for the data is available. In other words, suppose it is possible to generate

simulated data sets where the underlying model is the same as the real data. The

näıve implementation, using a simple rejection schema, is as follows:

1. sample a θ∗ value from Pθ,

2. generate a new simulation X∗ under the model M with parameter θ∗,

3. if S(X∗) = S(D) then accept θ∗.

The idea behind ABC is that it is possible to approximate the a posteriori distribu-

tion of the parameter θ using the a posteriori distribution of the accepted parameter

θ∗. That is

P (θ|D) ≈ P (θ∗|X∗) (4.2)

In the practice, the probability that a simulation X yields to a S(X) that is exactly

equal to S(D) is almost vanishing. For this reason, instead of considering simulations

that are “exactly” as expected, one can consider all simulations that are “similar”

or “close enough” to the expected value. Formally, given a distance metric ∆(·, ·)
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(e.g. Euclidean distance), it is possible to reformulate the third step as: 3. if

∆ (S(X∗, S(D)) ≤ ε then accept θ∗, where ε is an arbitrary similitude threshold.

A statistic S is “sufficient” if P (D|S(D), θ) does not depend on θ. In other words,

if S provides as much information to estimate θ as the whole data set. It is possible

to show that if S is sufficient, for vanishing ε the relationship in Eq. 4.2 tends to an

equality.

A clear advantage of the ABC approach is that it can deal with models on any

complexity, given the fact that simulations of the data under the model still remain

feasible. On the other hand, one of the limitations is given by threshold ε. Indeed,

it is worth to stress that ε has a double role: on one hand one wants to keep this

value as low as possible to increase the precision of the approximation, but this

also decrease the acceptance rate yielding a prohibitive computational cost. On the

other hand, increasing the value will increase the acceptance rate as well but can also

distort the approximation because all the retained simulations are treated equally,

independently from the actual distance ∆ (S(X∗, S(D)).

One of the first strategies to overcome this limitation was proposed by Beaumont

in 2002 [192]. Without going into details, I just want to recall the main idea that is

to improve the approximation by weighting the θ∗ according to the actual distance

∆ (S(X∗, S(D)) and adjusting their values using local-linear regression to weaken

the effect of the discrepancy between S(D) and S(X∗).

4.1.6 Algorithm and implementation

The method for age estimation of selected allele under positive selection via ABC

can be summarized as follows:

1. generate a new simulations X∗ where the mutation of the allele under positive

selection occurred t∗ generations ago;
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2. emulate all the characteristics of the re-sequencing data;

3. calculate S(X∗);

4. if ∆ (S(X∗, S(D)) ≤ ε then accept t∗;

5. finally, calculate the a posteriori P (t|D) using Eq. 4.2

I’m now going to discuss more in details each one of the previous steps. It is worth to

notice that in the implementation of the method I’m going to estimate the logarithm

of the age of the allele (t) instead of t. This is because we are more interested in

differences in orders of magnitude of the age than on the exact value. Moreover,

many SSs have an almost linear linear relationship with log(t), and this allows to

improve the estimation since there are steps where a linear relation is assumed (e.g.

local-linear regression).

Step 1 – Generation of simulations

The first, crucial step for using ABC is the capability of producing simulations with

the same underlying model as the real data. To this aim, we used mssel, a modified

version of ms [193] kindly provided by Richard Hudson. This simulator uses a

coalescent approach to generate neutrally-evolving regions linked to a site at which

an allele is under selection, allowing recombination, gene-conversion and a variety of

demographic model. Some parameters are required in order to resemble the specific

region.

First of all, one needs to specify the sample composition desired in the output in

terms of the number of haplotypes carrying the ancestral and the derived allele at

the selected site. We used, for each region, the same composition as in the real data.

As stated before, samples were enriched for the derived allele, hence in this way we

kept the same bias also in the simulations, allowing us to directly compare real and

simulated summary statistics.
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The second set of parameters are the population mutation (Θ) and recombination

(ρ) rates. For both of them, we assumed Ne = 12000. ρ was estimated, for each

region, from the HapMap data. The mutation rate, instead, was calculated based

on the divergence from other species and using 1000 Genomes Project data (www.

1000genomes.org). The ancestral sequence for each base were defined by the 4-

way (human, chimp, orangutan, rhesus) EPO alignments (ftp://ftp.ensembl.org/pub/release-

54/emf/ensembl-compara/epo 4 catarrhini/). Only sites where the mutation oc-

curred in the human lineage (uppercase in the 1000 Genomes Project notation:

chimp, orangutan and rhesus sequence agree, human disagree) were considered. We

then counted the number of derived alleles fixed in the whole 1000 Genomes Project

sample (June 2011 release) and thus estimated the mutation rate assuming 5My

split time and 25 years per generation. We obtained a consistent estimation of

1.2 mutation/generation/bp for all of the three regions. Interestingly, the region

in chromosome 12 showed a decrease of nucleotide diversity in all the population

(also in YRI, where there should be no selection). Using π estimator, we obtained

a mutation rate of 0.6 for this region, roughly consistent in CEU, YRI and ASN.

Demographic model was obtained from [194]. Briefly, a 10-fold reduction of the

population (bottleneck from 12,000 to 1,200) occurred between 27,500 and 40,000

years ago. A 10-fold expansion (from 12,000 to 120,000) then started 12,500 years

ago.

Last input provided is the trajectory for the selected allele. While the previous

parameters are kept, a new trajectory is generated for each simulation, varying the

time when the mutation occurred but such that all of them ends with the actual

frequency of the allele in the real population (CEU population, HapMap data).

This device will ensure that all simulations will match the real data for the final

frequency of the allele. First, a generation t∗ is randomly drawn from a log-uniform

(distribution uniform in the log space) a priori distribution between log(50) and

log(3000). As stated before, indeed, we are going to estimate log(t) instead of t

and the use of a flat a priori will not affect the estimation (maximum uncertainty).
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After that, a selection coefficient s is drawn from a uniform distribution between 0

and 0.1. Given the starting point t∗, a trajectory is simulated forward time using

s and a co-dominant diffusion process. If the final frequency of the allele matches

the desired one (accounting for a sampling error), then the trajectory is saved and

a coalescent simulation is generated. Otherwise, a new value for s is drawn and the

process is repeated. Notice that in this process any time t has equal probability

despite of different population size across time. We explicitly take into account this

aspect in the step 5.

Step 2 – Introducing potential sources of error

Re-sequencing data are affected by some biases that could, in principle, influence

the estimation. The strategy adopted was to try to identify these potential sources

of errors and try to include them in the simulations as far as possible. In this way,

even though these factors have an effect, they are took into account and simulations

and real data are still comparable.

Among the features that more likely could have an effect, the most relevant are (i)

the small sample size (14 individuals), (ii) the presence of region un-targeted and,

most likely, un-sequenced sub-regions (gaps), (iii) phasing uncertainty for novel and

rare variants and (iv) the complex demographic history of sequenced individuals

(Europeans). In the following I’m going to present how each feature is introduced in

the simulations and the comparison, in terms of relative error, with a vanilla model

in which the feature is absent.

Even if the cost per base is decreasing every day, re-sequencing is still an expensive

technology. For this reason, the number of individuals that can be analyzed is

strongly limited by the available budget. Hence, the first analysis was aimed to

assess the effect of a small sample size. In Figure 4.6 is reported the relative error

of the ABC point estimates (posterior median) for different sample sizes (number of

chromosmes). It is calculated as log2

(
t̂
t

)
, where, for each simulations, t is the age of
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the allele in that particular realization and t̂ represent its ABC estimation. A value

of 1.0 or −1.0 corresponds to a two-fold over- or under-estimation, respectively. Is

it possible to see that, even though a bigger sample size actually decreases both

the bias and the variance of the estimation, the improvement is not justified by the

increasing sequencing cost.

Figure 4.6: Boxplot of log2 ratio of the estimate to the true age of the

allele using different sample sizes. 10, 000 simulations are produced

as described in step 1, but with a constant population size (N = 10, 000),

uniform recombination rate, additive dominance and with the selected

allele at a frequency of 50% in the population and in the sample.

As discussed in Section 4.1.3, the probes on the capturing array were designed

masking repetitive elements. This means that subregions for which no probes were

inserted on the chip are likely to remain un-sequenced. Actually, this is not totally

true because a single fragment of DNA (and thus the two reads associated) can

straddle a targeted and an un-targeted subregion. Hence, considering the typical

length of the DNA fragments and the length of the reads, it is plausible that variants

lying in the un-targeted subregions but within 200bp from a the edge (i.e. a targeted
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subregion) still have enough coverage to be confidently called. On the other hand,

variants to far from a targeted subregion will be missed and this can result in an

overall decrease in the number of segregating sites in the regions. We emulated this

potential bias in the simulations with a very simple approach. We removed from

the simulated haplotypes all the segregating sites distant more than 200bp from a

targeted subregions, according to their positions in the real regions2. Again, the

presence of gaps influences in a negligible way the quality of the estimation (Figure

4.7).

Figure 4.7: Boxplot of log2 ratio of the estimate to the true age of the

allele in simulations with (blue) and without (yellow) gaps.

Simulations parameters are the same as those reported in the caption of

Figure 4.6

Next generation sequencing is one of the best way to identify novel and rare variants.

Although they are crucial for population genetics in general and for the aim of this

work in particular (2 out of the 3 summary statistics used relies on them), those

2NimbleGen provided a BED file with the positions, for each of the three regions, of the regions

for which probes were designed

89



Chapter 4 Evolutionary forces shaping autoimmunity

variants are, unfortunately, hard to correctly phase since no other examples are

presents either in reference panels (novelty) or in the sequenced population (rarity).

Of course, this problem is less severe with the increase of the allele count (interme-

diate or high frequency variants). On the other hand, all variants outputted by the

simulator are, by construction, correctly phased. We introduced this uncertainty in

the phasing in the simulations as well, but under some simplistic assumptions: (i)

all variants with a count greater than 2 are correctly phased and (ii) all variants

with a count equal or less than 2 (singletons and doubletons) have a 50% chance

of being placed on the wrong chromosome. It is worth noticing that the latter is

a very conservative assumption since it is assumed that singletons and doubletons

are placed completely randomly on the chromosomes. The implementation of these

two constraints is straightforward. As a first step, we coupled chromosomes in or-

der to emulate individuals, respecting the actual composition of homozygotes and

heterozygotes of the selected SNP. Then, for each variant with a count equal or

less than 2 we randomly place, with a probability of 50%, the allele on the other

chromosome of the individual. Once again, the effect of this uncertainty is almost

absent (Figure 4.8).

Finally, we compared the performances of the estimation in simulations with con-

stant population size versus a complex demographic history (as reported in step 1).

Results are reported in Figure 4.9 divided per demographic phase (pre-bottleneck,

bottleneck, recovery, expansion). It can be seen that demography has an impact on

the estimation in the sense that both bias and variance changes over time.

Step 3 – Summary statistics

Another very important aspect of ABC is the choice of the right set of SSs. As

discussed, we wish this set to be sufficient in order to obtain an accurate estimation

of the a posteriori distribution. Moreover, because of the local-linear regression

step and of the used distance metric ∆, this set needs to be non-redundant. Several
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Figure 4.8: Boxplot of log2 ratio of the estimate to the true age of the

allele in simulations with (red) and without (yellow) phasing

uncertainty. Simulations parameters are the same as those reported in

the caption of Figure 4.6
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Figure 4.9: Boxplot of log2 ratio of the estimate to the true age of the al-

lele in simulations with constant population size (yellow) and

with complex demography (green). Four panels represents the four

demographic phases: (from right to left) before the bottleneck, during

the bottleneck, after the recovery and during the expansion. On the top

is reported a cartoon of the demographic model (green: complex demog-

raphy, yellow: constant population size) for convenience (left: present,

right: past). Simulations parameters, but demograpy, are the same as

those reported in the caption of Figure 4.6
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strategies have been proposed to face this problem [195, 196], including PCA reduc-

tion and feature selection techniques, but up to now there are no general rules and

the optimal choice still depends on the specific problem.

For the aims of our problem, we used two different sets of SSs. A first set (SC) is

used to be sure that simulated regions are actually representative of the real data

and thus that the model is an appropriate one. This set is composed by 4 SSs,

namely the number of segregating sites in the region (σ), nucleotide diversity of the

region (π), Tajima’s D (DT ) and Fay and Wu’s H (H). These summary statistics are

calculated considering all the 28 haplotypes (i.e. derived and ancestral haplotypes

together). It is worth stressing that this set is not directly used for the estimation

of the age, but it only has check purposes. For this reasons, eventual correlations

among these 4 SSs are non influential. For each region, we checked that SC(D) was

in the bulk of the distribution of simulated values.

The second set (S) was used for the age estimation. We choose three uncorrelated

quantities known to be informative about the age of the selected allele. In particular,

we considered (i) the length in genetic distance of the non-recombining haplotype

surrounding the selected allele (LH), (ii) the number of mutations accumulated in

this haplotype (MH) and (iii) the number of singleton variants divided by the total

number of segregating sites in the haplotype (RH). This set of SSs is calculated only

on the set of chromosomes carrying the derived (selected) allele.

The haplotype was defined using the same approach proposed by Voight and col-

league to define the region to integrate in the calculation of their iHS statistic [25].

Namely,the boundaries are defined as the positions away from the selected allele

(core) where the extended haplotype homozygosity reaches 0.05. The first SS is the

length of this haplotype. However, since the actual genetic map for the real data is

non-uniform (as assumed in mssel), LH is normalized, separately in the simulated

and in the real data, by the total recombination length of the region. Interestingly,

this SS is strictly related to the Voight’s implementation of the haplotype decay
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LH MH RH age

LH 1 0.09 0.156 0.90

MH - 1 0.155 0.44

RH - - 1 0.56

Table 4.2: Correlation among summary statistics. Spearman’s correlation co-

efficients, corrected for age.

method.

The second statistic, MH , is instead related to the counting method described above.

Together, these first two SSs are aimed to capture and put together the advantages

of these two well established methods.

The last statistics, RH , comes from the observation that allele frequency spectrum,

and in particular the number of singleton variants, can be influenced by both de-

mography and selection. Because all our simulations assume the same demographic

scenario (and, hopefully, the real data too), the main influence on this number is

more likely to be due to selection. But, since the mode of selection, again, is the

same in all the simulations except for the age/strength of the selection, this number

eventually result to be informative on the age.

In order to quantify the influence on the estimation and to exclude collinearity,

we calculated the correlation among these three SSs as well as the correlation be-

tween each of them and the age (Table 4.2). Correlations among SSs is calculated

correcting for age in order to exclude spurious correlations.

Step 4 – Acceptance criterion

We chose Euclidean distance as ∆(·, ·) function, so that acceptance regions are

spheres [192]. Regarding the value of ε, we again followed the approach originally
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proposed by Beaumont and we set ε to be a quantile, Pε, of the empirical distribution

function ∆ (S(X∗, S(D)). In the specific, we used Pε = 0.001 meaning that the 0.1%

of simulated X∗ that are closest to D are retained.

Step 5 – A posteriori density estimation

Once obtained the set of {X∗} as defined in the previous step, the a posteriori

density is estimated using a Gaussian kernel with a bandwidth chose following Sil-

verman’s “rule of thumb” (R default option). As pointed out in step 1, the size of

the population at the particular t∗ is not considered. But, since the probability for

a mutation to occur is proportional to N ,the density estimation process explicitly

take into account this fact by weighting each t∗ by N (t∗).

4.2 Results and Discussion

In the previous section I described how data for the three regions were obtained

and how ABC works. As stated, one of the step is to check that the model used to

generate simulations is a good model for the data. In general, this is an hard problem

and no definitive solutions exist yet. To assess, at least qualitatively, this point we

checked whether the the simulator was able to produce haplotypes “compatible”

with the real ones. In particular, we verified that the all the summary statistics in

the “control set” (SC , see 4.1.6) were in the bulk of the respective distributions of

simulated values. Results are reported in Figure 4.10, 4.11 and 4.12.

It is possible to see that the simulations of regions on chromosome 4 and 15 do fit

the real data. Unfortunately, this is not true for the region on chromosome 12. As

it can be seen, the region exhibits a lower nucleotide diversity than what the simu-

lator is able to reproduce. It is worth remarking that these four SSs are calculated

considering both the derived and the ancestral (which are supposed to be neutral)
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Figure 4.10: Comparison between real and simulated “control” summary

statistics (SC) for region on chromosome 4. Distribution of the

four summary statistics in the control set (SC) for the simulated region.

Red line indicates the true value of the SS for the real region.
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Figure 4.11: Comparison between real and simulated “control” summary

statistics (SC) for region on chromosome 12. Distribution of the

four summary statistics in the control set (SC) for the simulated region.

Red line indicates the true value of the SS for the real region.
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Figure 4.12: Comparison between real and simulated “control” summary

statistics (SC) for region on chromosome 15. Distribution of the

four summary statistics in the control set (SC) for the simulated region.

Red line indicates the true value of the SS for the real region.
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haplotypes and, given the nature of the statistics and the composition of the sam-

ple, they should be dominated by these latter. If we look at the same statistics, but

calculated only considering the derived haplotypes, the situation is different (Figure

4.13). This time, simulations seem to fit the real data. Putting together, these re-

sults suggest the presence of some uncontrolled phenomenon affecting the “neutral”

background (background selection, higher gene content, the presence of a previous

sweep). However, the statistics calculated only considering derived haplotypes sug-

gest that the model is good enough to represent, at least, the selection phenomenon.

For this reason, and given the fact the the set of SSs used for the estimation only

consider derived haplotypes, we are confident in proceeding with the age estimation

also for the allele in this region, even though further investigations are needed.

We estimated the a posteriori distribution of the age for the three alleles using

1, 000, 000 simulations for each region (Figure 4.14).

According to this estimation, the allelic variant associated with blue eyes and skin

pigmentation (on chromosome 15) arose, as expected, most probably after the out-

of-Africa when people moved to higher latitude. In particular, even tough the 95%

credible interval is wide ([7,700 − 60,000]), the most reasonable range of dates for

this allele is between the out-of-Africa migration (∼ 30,000 years ago) and the end

of the last glaciation/beginning of the agricultural era (∼ 10 − 20,000 years ago).

As mentioned, we included this variant essentially for checking purposes since it is

known that it arose after the migration out of Africa, and our estimation reflects

the expectation.

More interesting are the estimations for the two variants associated with AD. The

first thing that leaps out is that the two mutations occurred in two different mo-

ments. Credible intervals for variant on chromosome 4 and 12 are [23,000− 75,000]

and [3,300 − 18,000], respectively. Hence, the variant on chromosome 4 arose in

a period of time compatible with the out-of-Africa migration, while the variant on

chromosome 12 is likely to have been selected with the introduction of agriculture.
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Figure 4.13: Comparison between real and simulated “control” summary

statistics (SC) for region on chromosome 12, calculated consid-

ering only derived haplotypes. Distribution of the four summary

statistics in the control set (SC) for the simulated region. Red line

indicates the true value of the SS for the real region.
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Figure 4.14: A posteriori density estimation of the age of the three alleles.

Each line represents the a posteriori distribution of the age of the allele

on chromosome 4, 12 and 15, respectively.

Ideally, variants associated with ADs and under positive selection should be protec-

tive. This is the case of the variant on chromosome 4, where the derived allele shows

signature of positive selection and confers protection against ADs, too. Hence, the

most plausible explanation for the protective allele being beneficial is because of the

protection that gives by reducing ADs risk. It is worth noting that some ADs, like

T1D, have an early onset, thus they can definitively affect the fitness.

The variant on chromosome 12, on the other hand, seems to be instead compatible

with the scenario described in the introduction. With the introduction of agriculture

and animal husbandry, humans transitioned to a sedentary agricultural subsistence,

population size/density increased, and humans became attractive pathogen hosts

because large populations in small areas maximize the chance of transmission be-
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tween longer-lived barriers. Therefore, the human population growth during the

Neolithic created the conditions that favored the emergence of pathogens that spe-

cialize in human hosts. In this scenario, as described more in details in Section

4.0.4, variants conferring a higher responsiveness to pathogens can be selected, even

tough this can lead as a side effect to an over-responsiveness of the immune system

and thus an increased risk for ADs. In a recent study, Corona and colleagues found

that alleles under selection and increasing the risk of T1D are more frequent than

alleles under selection and decreasing the risk [197]. Indeed, among the 80 SNPs

most associated with T1D and showing strong signs of positive selection, 58 alleles

associated with disease susceptibility show signs of positive selection, while only 22

associated with disease protection show signs of positive selection.

Although we examined just two variants and no general conclusions can be drawn, it

seems that the balance between protection against pathogens and protection against

ADs was broken towards two different directions in two different moments of our

history.
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Chapter 5

Future directions: polygenic

adaptation and the case of study of

height

Decades of work provided evidence of selective pressure in Homo Sapiens at the

level of individual genes or loci [46, 65, 198]. Among the others, methods based on

population differentiation were widely used to unveil their signature [199]. However,

in most cases, variation in phenotype among individuals is the result of a polygenic

effect, involving multiple genetic variations at multiple unlinked loci [200]. Up to

now, only few studies investigated the presence of selective pressure on polygenic

traits in humans. A possible explanation for this lack of evidence is that polygenic

adaptation might be largely undetected by conventional methods able to look for

selection [201, 202]. Furthermore, the identification of signatures of polygenic evo-

lution could require genome-scale data sources, with a well-defined set of genetic

variants involved in the polygenic effect.

Stature is one of most studied polygenic traits, because measuring height is easy

and replicable and its inheritance well recognized. Recently, genome-wide associa-

tion studies contributed in the identification of genes involved in this trait. Lango
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Allen and colleagues, in particular, demonstrated that hundreds of genetic variants,

in at least 180 loci, influence adult height [203]. Although this result explains ap-

proximately only 10% of the phenotypic variation in height, this study provides up

to now the most detailed description of a polygenic effect in humans at molecular

level.

From an evolutionary point of view, a complex interaction of different forces acts on

stature and the complete dynamics is still not completely clear. In particular, several

studies suggested a stabilizing selection on human height because of an increased

number of health problems in very short and very tall individuals [204, 205]. At the

same time, other studies invoked a directional sexual selection on male human height

in that taller men often have more reproductive chances [206]. Anyway, a worldwide

distributed sexual selection seems to represent an overall reasonable scenario, even

though local adaptation phenomena that could favor particular heights and body

shapes in particular environmental conditions cannot be excluded.

In this work we explored, in a simple simulated model, the behavior of FST on

a generic polygenic trait. We then investigated whether a similar behavior was

observable in a real case, namely in the set of loci related to height. 1

5.1 Results and Discussion

To analyze the behavior of FST on a polygenic trait, we started by simulating the

action of a polygenic stabilizing selection pressure in a very simple model. Such a

model relies on the following simplifying assumptions: (i) each contributing allele has

small and relatively equal additive effects, without neither environmental influences

nor non-linear effects (dominance, epistasis, etc), (ii) individual fitness is given by

1The results presented in this chapter are published in: Amato R, Miele G, Monticelli A and

Cocozza S. (2011) Signs of selective pressure on genetic variants affecting human height. PLoS

ONE 6(11): e27588
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a bell-shaped curve where the maximum is achieved by individual owning only a

part of the advantageous alleles, (iii) no migration or demographic events affect the

populations.

Under these simple assumptions, we observed that the set of alleles involved in

the phenomenon has a higher mean FST value than those subject to genetic drift

only. We thus checked whether the same behavior was observable in the 180 loci

influencing adult height. Indeed, more than 80% of its variation within a given

population is estimated to be attributable to additive genetic factors of small effects.

Moreover, the authors found no evidence that non-additive effects including gene-

gene interaction would increase the proportion of the phenotypic variance explained

[203]. In the light of this, our simulations seem to reasonable model this scenario

and, for this reason, we explicitly searched for an increase in the mean FST value of

the 180 variants associated to height.

We found in the FST distribution for these variants an overrepresentation of higher

values with respect to the genomic background (median=0.1 vs. 0.086; p=0.0356,

one-tailed Mann-Whitney test; Figure 5.1). We investigated for potential confound-

ing factors, first of all whether the increase was just due to the presence of outliers.

We thus excluded from the initial set of height related variants those falling in the

top or in the bottom 5% tail according to the genomic distribution of FST , obtain-

ing a set of 161 SNPs (hereafter denoted as “core set”). The number of outliers

excluded is compatible with the expected 5% (4% and 5% of the SNPs falling in

the top and in the bottom tail, respectively). Moreover, the “core set” still exhibits

a significant overrepresentation of high values FST value (median=0.1 vs. 0.086;

p=0.0232, one-tailed Mann-Whitney test).

In a recent paper, Pritchard and Di Rienzo argued that a signature of selection

on a polygenic trait should reasonably be small and spread across the loci [207].

Our result is, to some extension, in agreement with this hypothesis. Indeed, the

increased FST value is not dominated by few outlier loci, but small and distributed.
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Figure 5.1: FST density distribution for the genomic background and the

height associated variants. Green lines mark the 5th and 95th per-

centiles of the genomic distribution.

From this point of view, also the low value of statistical significance that we found

could be expected.

On the other hand, if we consider height either under a stabilizing selective pressure

or a worldwide distributed sexual selection, the higher mean FST value could seem

unexpected. Under these hypotheses, indeed, we expected a result that is opposite

to that obtained, even in presence of marginal phenomena of local adaptation. In

these conditions, one should expect the majority of the genes having a vanishing

FST and some outliers with very high values of FST . But looking at the simulated

alleles trajectories over time, a possible explanation could be suggested. In simula-

tions, one can observe that, in different populations, different sets of alleles become

prevalent (Figure 5.2). In particular, the dynamics favors in each population the

prevalence of a specific subset of alleles among the large amount of different subset

choices all capable to maximize the phenotype under selective pressure. In absence

of extraneous forces, the choice of the allele subset for each population is just ran-

domly driven and, hence, it is highly probable to be different for each population.
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This results in an increase of the mean diversity among the populations.

Figure 5.2: Trajectories of the allelic frequencies for markers under poly-

genic selection in three simulated populations. Each column, i.e.

top and bottom panel together, represents a different population. Top

panels show trajectories over time for the set of 10 alleles under polygenic

selection; bottom panels show trajectories for set of 10 neutral alleles.

Different colors mark different alleles, consistently across populations.

This very simple model resembles the behavior of a well-known statistical mechanics

phenomenon denoted as Spontaneous Symmetry Breaking (SSB). This mechanism

generally plays a relevant role in system self-organization, and it is common in many

fields of Natural Sciences where a system described in a theoretically symmetrical

way ends up in a non-symmetrical state. The physics of condensed matter probably

provides the most striking examples of SSB phenomena. In a ferromagnet cooled

below its critical temperature, as the thermal fluctuations slow down, will become

energetically favorable the appearance of domains where all elementary magnets

point in the same direction, randomly chosen, and hence breaking the original rota-
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tional symmetry.

SSB has been widely observed in biological systems. Population genetics also pro-

vides examples of SSB even though in this case to lead the breaking are the initial

conditions, stochastically modified by events like drift, bottlenecks, etc, and other

stochastic events like the born of new mutations. Among the others, we can quote

the role of symmetry breaking and coarsening in spatially distributed evolutionary

processes relevant for genetic diversity and species formation [208], and the relevance

of symmetry breaking in the long-term evolution of multilocus traits [209].

The symmetry-breaking scenario could represent a simple yet reasonable model of

the selection acting on height. But, even though height is basically under stabilizing

selection, local adaptive phenomena cannot be excluded. To explicitly explore the

presence of local adaptive phenomena, we analyzed how iHS, another marker of

selective pressure, is distributed in genetic variants involved in height. iHS is a score

specifically oriented to detect recent adaptive phenomena with higher geographical

resolution. We found that, in each population, the number of SNPs associated with

height having a value of iHS falling in the highest 5% of the genomic distribution

is compatible with the expectation (varying from 4-7% across populations; Figure

5.3). This finding seems to indicate that, even if recent local adaptation phenomena

cannot be excluded, their role seems to be marginal.

Another hypothesis that we explored was that loci responsible of local adaptive

phenomena on different phenotypes, in linkage disequilibrium with height related

variants, were responsible of the selective signatures that we found. Under this hy-

pothesis, the increased mean FST value that we attributed to the height associated

genes could be the by-product of selective pressures acting on other traits. To test

this hypothesis, we extracted height related SNPs that were in linkage disequilib-

rium (r2 > 0.8 in at least one population) with alleles associated to other traits

in genome-wide studies. We found 11 SNPs, 9 of which belonging to the “core

set” (Table 5.1). As far as we know, there are no clearly identified signals of selec-
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Figure 5.3: Variants associated to height with high iHS score. Red squares

indicate mark the population in which the iHS score for the variant falls

in the top 5th percentile of the respective distribution.
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tive pressure on the phenotypes in linkage disequilibrium with the height associated

SNPs. Moreover, also removing these SNPs from the analysis, the “core set” still

show a significant higher FST (median= 0.099 vs. 0.086; p= 0.03452, one-tailed

Mann-Whitney test).

We are aware that the increase in the mean FST value could be, at least in part, due

to an eventual difference across the mean heights of the three populations considered.

In other words, the increase in the mean FST value can be divided in two distinct

components, where the first one accounts for the differences in the mean height while

the second one accounts for the pure genetic differences. Unfortunately, at the best

of our knowledge, data regarding the mean height of each population are not present

in literature so far. For this reason, we were unable to estimate the relative weight

of the two components or exclude the effect of the first one. Moreover, it is worth

stressing that the 180 associated SNPs found by Lango Allen and colleagues only

explain about 10% of the variance in adult height [203]. For this reason, wherever

present, phenotypic differences among populations should have a marginal effect.

5.2 Materials and Methods

5.2.1 Data and statistical analysis

Analysis is based on the HapMap Public Release #27 (merged II+III) datafiles.

We analyzed data from the CEPH (Utah residents with ancestry from northern and

western Europe), Yoruba in Ibadan, Nigeria (YRI), Han Chinese in Beijing, China

(CHB) and Japanese in Tokyo, Japan (JPT) samples. We pooled the CHB and JPT

samples to form a single sample. Additional SNP information about physical posi-

tions and SNP-gene association were obtained from dbSNP build 129. We excluded

by this analysis SNPs that were either non sampled or non polymorphic in all the

three samples. We also excluded SNPs with a minor allele frequency < 5% in all of
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the 3 samples. Per-population linkage disequilibrium data (r2) were obtained from

HapMap Public Release #27 (merged II+III) as well. FST was calculated using the

unbiased estimator proposed by Weir and Cockerham as discussed in 2.3. All data

was merged in a local MySQL database. As “genomic background” we refer to all

the SNPs in this database, for a total of 3, 294, 557 SNPs.

Variants associated with height were collected from [203]. Of the 180 provided SNPs,

176 were present in our database and hence considered in our analysis.

The normalized iHS scores were obtained from UCSC Genome Browser “HGDP

iHS” track. They were calculated using SNPs genotyped in 1043 individual coming

from 53 populations worldwide by the Human Genome Diversity Project in collab-

oration with the Centre d’Etude du Polymorphisme Humain (HGDP-CEPH). The

53 populations were divided into seven continental groups: Africa (Bantu popula-

tions only), Middle East, Europe, South Asia, East Asia, Oceania and the Americas.

Per-SNP iHS scores were smoothed in windows of 31 SNPs, centered on each SNP.

Data on the association of SNPs with diseases was obtained from a catalog of genome

wide association studies available at http://www.genome.gov/gwastudies,

(accessed 12/13/10).

All statistical analyses were performed with R ver. 2.10 (R Foundation for Statistical

Computing, Vienna, Austria; http://www.r-project.org/) considering 0.05

as significance threshold.

5.2.2 Simulations

We simulated three populations of diploid organisms of fixed sample size evolving

independently each other. Individuals are represented by 20 markers, where half of

them are assumed to be neutral, and the remaining ones contribute additively and

uniformly to the phenotype in a codominant way. Basically, markers evolve under

a Wright-Fisher model with recombination. Polygenic selection is then simulated
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5.2 Materials and Methods

through viability selection. Denoting with m the number of beneficial alleles carried

by an individual, each contributing with x to the phenotype, the fitness is parame-

terized as exp
(
− (m− µ)2 x2

2s

)
. In the previous expression the quantity s measures

the selection strength and µ is the number of beneficial alleles that maximizes the

fitness. In figure 5.2 it is shown a particular case where the sample size is N = 10000,

s = 10, µ = 10 and x = 5. Furthermore, the initial allele frequency is set to 0.5 for

all markers. Lower values of N increase the effect of genetic drift, while different

values of µ change the number of alleles rising in frequency in each population. By

tuning the value of x2/s one can change the strength of selection hence affecting the

time required to observe relevant variation in allele frequencies. Nevertheless, these

changes do not qualitatively affect the results.
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