Tesi di Dottorato

LE POLITICHE DI CONTROLLO DELLA PRODUZIONE DI TIPO \textit{PULL}: ANALISI COMPARATIVA MEDIANTE APPROCCIO SIMULATIVO

Tutor
Prof. Ing. Liberatina Carmela Santillo

Dottorando
Ing. Giuseppe Naviglio

Anno Accademico
2010/2011
A mio padre e a mia madre
Sommario

PREMESSA ... 1
CAPITOLO 1 LA LEAN PRODUCTION E LE POLITICHE DI CONTROLLO DELLA PRODUZIONE ... 4
 1.1 LEAN PRODUCTION ... 4
 1.1.1 Oltre la produzione snella: WCM ... 8
 1.2 INTRODUZIONE ALLE POLITICHE DI CONTROLLO PUSH E PULL ... 10
 1.2.1 Logica push ... 14
 1.2.2 Logica pull .. 17
 1.2.3 Criterio di scelta tra logica push o pull ... 25
 1.3 SISTEMI IBRIDI PUSH/PULL ... 29
 1.4 CLASSIFICAZIONE DEI SISTEMI PULL .. 34
CAPITOLO 2 LE POLITICHE DI CONTROLLO DELLA PRODUZIONE “PULL”: LITERATURE REVIEW ... 37
 2.1 KANBAN CONTROL SYSTEM (KCS) .. 37
 2.1.1 Kanban cards ... 40
 2.1.2 Literature review: metodi ed approcci allo studio dei KCS 43
 2.2 CONWIP CONTROL SYSTEM (CCS) ... 46
 2.2.1 CONWIP card .. 50
 2.2.2 Literature review: metodi ed approcci allo studio dei CCS 51
 2.3 BASE STOCK CONTROL SYSTEM (BSCS) ... 53
 2.3.1 Literature review: Metodi ed approcci allo studio dei BSCS 55
 2.4 CONWIP-KANBAN CONTROL SYSTEM (CKCS) 57
 2.4.1 Tecnica generica Kanban-CONWIP .. 59
 2.4.2 Literature review: metodi ed approcci allo studio dei CKCS 60
 2.5 GENERALIZED KANBAN CONTROL SYSTEM (GKCS) 61
 2.5.1 Literature review: metodi ed approcci allo studio dei GKCS 63
2.6 EXTENDED KANBAN CONTROL SYSTEM (EKCS) 65
 2.6.1 Literature review: metodi ed approcci allo studio degli EKCS 66
2.7 EXTENDED-CONWIP-KANBAN CONTROL SYSTEM (ECKCS) 67
 2.7.1 Literature review: metodi ed approcci allo studio degli ECKCS 70
2.8 CONFRONTO TRA LE POLITICHE DI CONTROLLO DELLA PRODUZIONE .. 72

CAPITOLO 3 PULL SYSTEMS: MODELLI DI SIMULAZIONE 82
3.1 L’APPROCCIO SIMULATIVO .. 82
3.2 LA SIMULAZIONE ... 83
 3.2.1 I modelli di simulazione ... 86
 3.2.2 Simulatori ad eventi ... 86
3.3 IL SOFTWARE .. 94
 3.3.1 Il linguaggio SIMAN - ARENA .. 94
 3.3.2 Entità, attributi e variabili in SIMAN ... 96
 3.3.3 I blocchi funzionali in SIMAN .. 97
 3.3.4 Il software: Arena ... 98
 3.3.5 OptQuest ... 102
3.4 IL SISTEMA PRODUTTIVO: IPOTESI DI BASE PER LA COSTRUZIONE DEI MODELLI IN ARENA ... 104
3.5 MODELLO KANBAN CONTROL SYSTEM 106
 3.5.1 Costruzione del modello Kanban Control System in ARENA 110
3.6 MODELLO CONWIP CONTROL SYSTEM 113
 3.6.1 Costruzione del modello CONWIP Control System in ARENA 117
3.7 MODELLO BASE STOCK CONTROL SYSTEM 119
 3.7.1 Costruzione del modello Base Stock Control System in ARENA 122
3.8 MODELLO CONWIP-KANBAN CONTROL SYSTEM 125
 3.8.1 Costruzione del modello CONWIP-Kanban Control System in ARENA 129
3.9 MODELLO GENERALIZED KANBAN CONTROL SYSTEM 132
 3.9.1 Costruzione del modello Generalized Kanban Control System in ARENA 136
INDICE

3.10 MODELLO EXTENDED KANBAN CONTROL SYSTEM
- 3.10.1 Costruzione del modello Extended Kanban Control System in ARENA

3.11 MODELLO EXTENDED-CONWIP-KANBAN CONTROL SYSTEM
- 3.11.1 Costruzione del modello Extended-CONWIP-Kanban Control System in ARENA

CAPITOLO 4 ANALISI E CONFRONTO DEI MODELLI IN AMBIENTE DETERMINISTICO

- **4.1 PARAMETRI DI CONFRONTO**
 - 4.1.1 Livello di Servizio
 - 4.1.2 Livello medio di Work-In-Process
 - 4.1.3 Ritardo medio nell’evasione degli ordini
 - 4.1.4 Costo totale

- **4.2 VERIFICA DEI MODELLI E IDENTIFICAZIONE DEI PARAMETRI DI CONTROLLO**
 - 4.2.1 Modello Kanban
 - 4.2.2 Modello CONWIP
 - 4.2.3 Modello Base Stock
 - 4.2.4 Modello CONWIP-Kanban
 - 4.2.5 Modello Generalized Kanban
 - 4.2.6 Modello Extended Kanban
 - 4.2.7 Modello Extended-CONWIP-Kanban

- **4.3 DEFINIZIONE DEGLI SCENARI DI CONFRONTO**
 - 4.3.1 Variazione della domanda
 - 4.3.2 Variazione dei tempi di produzione

CAPITOLO 5 ANALISI E CONFRONTO DEI MODELLI IN AMBIENTE STOCASTICO

- **5.1 PREMESSA**
- **5.2 DEFINIZIONE DEGLI SCENARI DI INTERESSE**
- **5.3 RUN DI UNA SIMULAZIONE STOCASTICA: considerazioni di tipo statistico**
INDICE

5.3.1 Calcolo del numero di replicazioni... 276
5.4 I° SCENARIO: Variazione della Domanda .. 279
 5.4.1 I° SCENARIO: Variazione dei Tempi di Produzione..................................... 292
5.5 II° SCENARIO: Variabilità degli arrivi della Domanda................................. 302
 5.5.1 Una variante del II° SCENARIO: Variazione della Domanda....................... 310
 5.5.2 II° SCENARIO: Variazione dei Tempi di Produzione................................... 317
5.6 III° SCENARIO: Variabilità negli arrivi della Domanda 324
 5.6.1 III° SCENARIO: Variabilità dei Tempi di Produzione.................................. 332
5.7 ANALISI DEI RISULTATI SPERIMENTALI... 336

CAPITOLO 6 SINGLE-STAGE MULTI-PRODUCT KANBAN SYSTEM................................. 342
 6.1 IL SISTEMA SINGLE – STAGE MULTI – PRODUCT GESTITO MEDIANTE KANBAN... 342
 6.2 LITERATURE REVIEW... 347
 6.3 Descrizione del modello.. 359
 6.3.1 Le ipotesi di base.. 361
 6.3.2 Il modello di flusso logico.. 362
 6.4 COSTRUZIONE DEL MODELLO IN ARENA... 368
 6.4.1 Parte I : la domanda del cliente finale ... 368
 6.4.2 Parte II : il reparto di assemblaggio.. 370
 6.4.3 Parte III : modalità di riempimento della tabelliera kanban............... 372
 6.4.4 Parte IV : la tabelliera kanban... 374
 6.4.5 Parte V : il reparto di produzione.. 376
 6.4.6 Parte VI : il supermarket.. 378
 6.4.7 Gli input del modello.. 381
 6.5 L’OTTIMIZZAZIONE ... 383
 6.5.1 Definizione della funzione obiettivo.. 384
 6.5.2 Definizione degli scenari di ottimizzazione.. 391
 6.6 RISULTATI SPERIMENTALI... 392
6.6.1 Il Costo di Backlog ... 392
6.6.2 Il Costo di Mantenimento a Scorta ... 397
6.6.3 La Domanda ... 399
6.6.4 Il Tempo di Produzione .. 403
6.6.5 Il Numero di Prodotti ... 405
6.7 IL DESIGN OF EXPERIMENT (DOE) ... 410
 6.7.1 Introduzione al DOE .. 410
 6.7.2 Applicazione del DOE ai risultati sperimentali 416
CONCLUSIONI .. 433
APPENDICE A: Risultati delle simulazioni .. 435
APPENDICE B: UN’APPLICAZIONE .. 453
BIBLIOGRAFIA ... 462
RINGRAZIAMENTI ... 470
PREMESSA

Nelle vicende degli ultimi anni è facile cogliere un’esigenza sempre più diffusa nel mondo industriale: il modello tradizionale d’impresa non risulta più adatto al contesto in cui si trovano le aziende, sempre più sottoposte ad una pressione competitiva spietata e di diversa natura. Si è avvertita, quindi, la necessità di ripensare il modello d’impresa.

La pressione competitiva, però, non è soltanto più intensa ma è anche molto diversa. Ciò può essere attribuito a diversi fattori, il più importante dei quali è sicuramente l’innovazione continua; attraverso la riduzione dei cicli di vita dei prodotti, infatti, si riduce il tempo utile di sfruttamento, producendo un’accelerazione dei tempi d’azione. La riduzione dei margini di profitto innesca, poi, varie reazioni come la ricerca di maggiore efficienza e di riduzione dei costi, di un contatto più profondo con i clienti attraverso prodotti e servizi differenziati per dare “valore aggiunto”, ecc.

Inoltre la diffusione dei mezzi di comunicazione che, oltre ad ampliare gli orizzonti geografici, accresce la possibilità del consumatore di confrontare prima di scegliere, e quindi diventano soggetti in continuo movimento, sempre meno fedeli e pronti a cambiare fornitore.

Un altro fattore è senza dubbio anche la grande mobilità acquistata in alcuni settori dal mercato del lavoro che obbliga le imprese ad uno sforzo continuo di ricerca del personale, di formazione e di stabilizzazione. La grande rapidità acquistata dalle relazioni sociali ed economiche, infatti, fa diventare fattori critici di successo la velocità di acquisizione delle informazioni, la rapidità di reazione ai cambiamenti e la tempestività di risposta.

Alla luce di queste riflessioni, sorge la necessità di trovare nuovi modelli d’impresa che siano in grado di far fronte a questa situazione; capaci, cioè, di essere creativi e innovativi, in grado di percepire e gestire i cambiamenti. Per
ottenere questi risultati l’azienda deve orientarsi ad operare on-demand, allo scopo di garantire flessibilità ma efficacia allo stesso tempo. Cominciano a svilupparsi, allora, i cosiddetti sistemi di controllo di tipo pull, basati su una nuova strategia di gestione della produzione “tirata” dal mercato, cioè dalla domanda effettiva del cliente, in contrapposizione ai più tradizionali sistemi di tipo push (come MRP), in cui la produzione viene “spinta” in avanti a partire dalle previsioni della domanda del cliente.

A partire dal modello universalmente noto come Lean Thinking, nel corso degli anni gli esperti hanno sviluppato e proposto diverse politiche di controllo fondate sulla logica pull, quali le tecniche di base Kanban, CONWIP e Base Stock, nonché tecniche derivanti dalla combinazione di due delle suddette politiche come Generalized Kanban, Extended Kanban e CONWIP-Kanban e la più recente tecnica definita Extended-CONWIP-Kanban, data dalla combinazione delle tre politiche di base.

In letteratura esistono diversi lavori sull’analisi dei singoli sistemi di controllo, ma vi è poco, invece, su confronti più estesi delle diverse politiche; è difficile, infatti, individuare ed analizzare i parametri di prestazione che permettano di quantificare la bontà di queste tecniche: la difficoltà sta proprio nel valutare, a seconda della tipologia di produzione, quale dei sistemi di controllo può dare prestazioni migliori in base alle proprie caratteristiche.

Il seguente lavoro si propone quindi di effettuare un’analisi comparativa, mediante approccio simulativo, dei sistemi di controllo della produzione pull in differenti scenari, valutando come, in base alle proprie caratteristiche, ciascun sistema risponde alle diverse condizioni ipotizzate. Dopo aver introdotto i principi della Lean Production e le caratteristiche delle logiche push e pull, si fornisce un quadro generale delle varie politiche di controllo di tipo pull, sia di base che ibride, con particolare riferimento a quanto già presente in letteratura e ai risultati ottenuti da vari autori in termini di confronto tra le stesse.
Quindi, ogni meccanismo di controllo viene chiarito attraverso un diagramma di flusso e modellato attraverso il software ARENA, che consente di modellare diversi scenari di produzione basandosi sulla simulazione ad eventi discreti. Dopodiché si è effettuata l’analisi e la comparazione dei vari modelli, individuandone i parametri di controllo più opportuni ai fini del confronto ed evidenziandone analogie e differenze attraverso i risultati ottenuti dalla simulazione per diversi scenari di confronto.

CAPITOLO 1
LA LEAN PRODUCTION E LE POLITICHE DI CONTROLLO DELLA PRODUZIONE

1.1 LEAN PRODUCTION

Nel corso degli ultimi anni, in un contesto industriale in continua evoluzione e sempre più concorrenziale, si è avvertita la necessità di individuare nuovi modelli di impresa che fossero in grado di adattarsi ai cambiamenti e far fronte alla pressione competitiva. Già a partire dagli anni '80 gli studiosi occidentali focalizzarono la propria attenzione sul Toyota Production System (TPS), un rivoluzionario modello produttivo sviluppato dall’industria giapponese Toyota. Tale modello si era affermato negli anni ’60 e ’70 come alternativa ai più tradizionali sistemi Materials Requirements Planning (MRP) che si erano, invece, diffusi nelle aziende occidentali.

Il TPS consisteva in un sistema coordinato di metodi e approcci alla produzione basato sulla filosofia gestionale Just-In-Time (JIT): il principio logistico alla base della gestione dei flussi dei materiali con la tecnica JIT, è quello secondo il quale bisogna realizzare e consegnare, nella quantità e nella qualità necessaria e con il minimo costo possibile, i prodotti finiti “giusto in tempo” per essere consegnati ai clienti. Ciò implica la necessità di eliminare qualsiasi tipo di spreco riscontrabile in azienda, in termini di materiali, forza lavoro, spazio e tempo, che non contribuisca a creare valore per il cliente finale, in un’ottica di miglioramento continuo della produzione.
Questo nuovo approccio non aveva interessato le sole attività di pianificazione e controllo della produzione, ma aveva trovato riscontro in ogni area aziendale, derivando da considerazioni di carattere strategico volte all’acquisizione di vantaggi competitivi. Diversi studiosi occidentali rilevarono l’alto livello di competitività così raggiunto dall’azienda giapponese in seguito all’applicazione dei principi di riduzione degli sprechi; questi principi furono allora riproposti con maggiore forza alle industrie occidentali, assimilandoli ad una nuova filosofia di produzione nota come produzione snella (Lean Production).

L’obiettivo del nuovo approccio industriale è di garantire valore per il cliente finale, eliminando tutti gli sprechi, intesi come qualsiasi attività, svolta dall’azienda, che utilizza risorse ma non crea valore per il cliente: si tratta di attività che non apportano nessun valore al prodotto finale e pertanto devono essere eliminate.

In realtà questo obiettivo deve essere condiviso e perseguito in ogni fase di un’azienda manifatturiera, non solo in quella a carattere strettamente produttivo: si parla, infatti, anche di “pensiero snello” (Lean Thinking), basato sulla condivisione di principi e valori piuttosto che sull’applicazione di rigide regole e procedure. Le imprese tradizionali, infatti, adottano regole, istituzioni, manuali e procedure che spesso costituiscono vere e proprie barriere fra di loro ostacolando in maniera notevole il corretto funzionamento dell’impresa. E’ consigliabile abbattere le rigide divisioni di responsabilità e fare condividere al personale dell’azienda la stessa visione e gli stessi valori per permettergli di rispondere in modo autonomo e correttamente alle mutevoli condizioni competitive. Il pensiero snello è, quindi, prima di tutto una visione e un nuovo modo di intendere la realtà industriale, poi è un modello tecnico, organizzativo e gestionale capace di ottenere elevate performance su più fronti; è una leva fondamentale per cambiare le regole della competizione e per acquisire rilevanti vantaggi competitivi; è un sistema che riesce ad utilizzare le risorse nel modo più conveniente e ad ottenere economie di scala attraverso stretti legami fra molte imprese a monte e a valle.
Applicare i principi del *Lean Thinking* in un’organizzazione aziendale provoca un grande cambiamento sia nell’ambiente produttivo (la trasformazione della produzione da struttura a job-shop o linea in un processo a flusso “tirato” basato su celle di fabbricazione) sia sul piano organizzativo (passaggio da una visione funzionale ad una per processi con la conseguente revisione dei livelli gerarchici e costruzione di team interfunzionali in grado di collaborare in maniera attiva, sviluppo di nuove competenze e snellimento delle funzioni). Siamo in presenza di una rivoluzione culturale nell’azienda che, dovendo generare un grande cambiamento, inevitabilmente trova delle grandi resistenze ad ogni livello. Il tutto è esasperato dal fatto che i risultati si ottengono solo applicando alla lettera i principi *Lean Thinking*: non si ottengono risultati se si fanno compromessi per non affrontare situazioni difficili o conservare parzialmente la struttura esistente, anzi, si rischia di peggiorare la situazione. Imprenditori e manager che vogliano sposare la filosofia *Lean* devono innanzitutto condividerne totalmente i principi e poi imparare a vincere le resistenze al cambiamento e a diffondere tra i collaboratori metodologie e obiettivi.

Il cosiddetto *Lean Thinking*, comunque, non esprime concetti assolutamente nuovi, piuttosto può essere considerato come un’evoluzione dei modelli organizzativi che l’hanno preceduto (come qualità totale o reingegnerizzazione dei processi) a cui riesce a dare una convincente sistematizzazione ed integrazione, riuscendo ad adattarsi ai diversi settori che richiedano la gestione dei processi. Infatti, ispirandosi al TPS giapponese, gli studiosi occidentali sono riusciti ad estrarre da un approccio operativo e fortemente contestualizzato all’interno di uno specifico settore, quello automobilistico, un sistema organizzativo-gestionale, riassumendolo in una serie di principi applicabili in ogni settore dove vi sia la necessità di organizzare e gestire i processi.

Questo sistema sembra adattarsi bene allo scenario industriale odierno che ha imposto nuove forme di competizione: i mercati soffrono di incertezza e la domanda è soggetta a forte turbolenza. Essa ha assunto caratteri di irregolarità e discontinuità rendendo difficili o poco affidabili le previsioni su cui si basano le
tecniche tradizionali di gestione della produzione come MRP; i clienti sono sempre più esigenti.

L’obiettivo basilare per un’impresa diviene, quindi, generare valore aggiunto per il proprio cliente, fornendogli ciò che desidera, nel momento in cui lo desidera, con le caratteristiche e nelle condizioni pattuite, e associando al prodotto un servizio distintivo (assistenza post-vendita, manutenzione, sostituzione in garanzia, formazione nell’utilizzo o quant’altro).

Per ottenere questi risultati l’azienda deve orientarsi ad operare on-demand, allo scopo di garantire flessibilità ma efficacia allo stesso tempo, consolidando al proprio interno il know-how e le competenze chiave che la distinguono dalla concorrenza. La produzione snella si presenta quindi come un modello produttivo in grado di supportare efficacemente una strategia produttiva fortemente tirata dal mercato, che consenta di adattarsi alla domanda del cliente e, al contempo, di ridurre i costi associati all’espletamento delle attività operative. I risultati tipici che si possono ottenere consistono nella riduzione dei costi di produzione, nella riduzione del tempo di attraversamento del sistema, nell’incremento dell’indice di rotazione delle scorte e nel miglioramento dell’utilizzazione della capacità produttiva.

Quando l'azienda ha definito il valore per il cliente ed eliminato gli ostacoli e quindi gli sprechi per fare sì che il flusso scorra senza interruzioni, allora è giunto il momento di permettere ai clienti di tirare il processo (cioè il flusso di valore). Ciò l’azienda deve acquisire la capacità di progettare, programmare e realizzare solo quello che il cliente vuole nel momento in cui lo vuole. Si devono assumere, per governare la produzione, atteggiamenti di risposta agli ordini effettivi dei clienti, al posto delle consuete tecniche anticipatorie che, se potevano rivelarsi vincenti in passato, quando la domanda era discretamente lineare, non rispondono attualmente alle esigenze di un mercato variabile per volumi e per preferenze degli acquirenti. La riduzione dei tempi, ottenibile con un lavoro sulla riorganizzazione del flusso, favorisce certamente l’adozione del
modello di produzione tirata dagli ordini dei clienti ma per realizzarla sono necessari strumenti e logiche di tipo just in time - Kanban.

I sistemi di controllo che si basano su questa nuova strategia di gestione della produzione “tirata” dal mercato, cioè dalla domanda effettiva del cliente, vengono definiti, appunto, sistemi di tipo pull, in contrapposizione ai sistemi più tradizionali di tipo push (come MRP), in cui la produzione viene “spinta” in avanti a partire dalle previsioni della domanda del cliente.

1.1.1 Oltre la produzione snella: WCM

WCM è l’acronimo di World Class Manufacturing, locuzione che sta ad indicare un complesso di metodi, principi, politiche, tecniche di management utili a gestire un’impresa.

Il termine World Class Manufacturing è stato introdotto nel 1986 da Richard Schonberger1, ma è stato poi ripreso da molti altri autori, ed identifica un programma di innovazione basato sul miglioramento continuo, che prevede l’eliminazione di ogni tipo di spreco e perdita (Muda) con il coinvolgimento delle risorse umane a tutti i livelli d’impresa.

Tale modello ha origine dalla analisi dei processi produttivi delle aziende giapponesi condotta da R. Schonberger a metà degli anni ‘80, che ha portato ad individuare un’insieme di pratiche organizzative radicalmente innovative. Si tratta di un sistema coerente di tecniche che hanno per obiettivo il miglioramento delle prestazioni dell’azienda, con lo scopo di realizzare un processo produttivo efficiente, flessibile e di elevata qualità. L’efficienza produttiva fa parte, infatti, di una cultura manageriale che trova i suoi capisaldi nella produzione snella, nella qualità totale e nel coinvolgimento delle persone.

Il vantaggio competitivo di queste tecniche sta nel modo in cui viene sviluppato il potenziale umano che gestisce l’impresa.

1 R.J. Schonberger, laureato in ingegneria, con un'ampia esperienza di produzione, è “George Cook Professor” di management all’University of Nebraska e presidente della Schonberger & Associates, Inc., Management Development & Consulting, una delle più note società di consulenza americane specializzate nei nuovi sistemi di produzione.
I principali limiti della lean production, superati dal world class manufacturing, sono:

1. **Il ruolo della funzione di produzione**, in termini di suo contributo ad ogni stadio della pianificazione strategica, è largamente ignorato; nelle imprese world class questo ruolo è sia centrale, sia valorizzato consapevolmente.

2. Non c’è alcun riferimento ad una **strategia di produzione** esplicita. Una strategia di produzione che discenda da, e formi una parte essenziale della strategia aziendale, è, invece, una delle caratteristiche principali delle imprese di produzione eccellenti.

4. **La mancanza di enfasi strategica**. Una caratteristica intrinseca della mentalità delle imprese di produzione eccellenti è la loro capacità di pensare strategicamente, che gli consente di imparare e di rispondere più rapidamente e più facilmente ad eventuali fallimenti e di sfruttare pienamente le opportunità di miglioramento.

Di conseguenza le caratteristiche operative della produzione snella sono valide ed ogni impresa farebbe bene ad emularle, ma devono essere poste su una base strategica.

Pertanto il world class manufacturing incorpora gli elementi trovati nella lean production, ma il concetto di snellezza deve essere esteso, per essere incluso in uno schema più ampio di **produzione strategica**.

L’espressione “produzione strategica” significa che **l’impresa deve lottare nel lungo periodo per essere world-class in tutto quello che fa**, e considerare le capacità di produzione come competenze distintive.
La considerazione della rilevanza strategica della produzione, quale elemento prioritario del world class manufacturing, è ben evidenziato da Hayes e Wheelwright, per i quali la produzione deve assumere un ruolo chiave nell’aiutare l’intera impresa a raggiungere un vantaggio competitivo rispetto a tutti i suoi concorrenti su scala mondiale.

Lo sviluppo del WCM è avvenuto inizialmente nell’ambito di un settore tipicamente metalmeccanico, caratterizzato da produzioni a flusso teso (automotive), ma ora si sta estendendo ad altri settori industriali ed ai servizi.

1.2 INTRODUZIONE ALLE POLITICHE DI CONTROLLO PUSH E PULL

I sistemi di controllo fondati sulla logica push si basano su previsioni della domanda: in questa tipologia di sistemi la produzione schedulata autorizza la produzione nelle stazioni di lavoro delle varie fasi. Gli ordini arrivano nella prima fase, basandosi, appunto, sulle previsioni della domanda o di ordini di produzione per il consumo futuro. Non appena la lavorazione è completata in una stazione di lavoro, la parte è spinta al posto di lavoro (fase) a valle.

Il meccanismo di controllo di tipo pull, invece, lavora sulla base di eventi reali della domanda, piuttosto che su sue previsioni (Gershwin et al. 1993). La domanda di ogni stazione a valle è inviata alla stazione a monte sulla base dell’attuale consumo di prodotti della fase a valle, a partire dalla domanda di prodotti finiti richiesti dai consumatori finali. Quindi, in un sistema di controllo pull, la produzione è autorizzata dalla domanda attuale e la fase a monte produce ciò che serve a soddisfare la domanda della fase a valle, che è infine controllata dalla domanda effettiva dei clienti finali.
previsioni, come accade nei sistemi di controllo che adottano la logica push. Ne deriva, quindi, che l’andamento del livello di scorte in un sistema di tipo push è affetto da errori nelle previsioni, mentre quello in un sistema pull dipende dalla fluttuazione della domanda.

In letteratura è possibile individuare diversi approcci per definire e distinguere, in generale, le due tecniche.

Il più comune, come già visto, è quello di caratterizzare le differenze fra politica push o pull in termini di rilascio dell’ordine di produzione (De Toni et al., 1988; Karmarkar, 1989; Ding e Yuen, 1991; etc.); da questo punto di vista, in un sistema pull la richiesta o il prelievo di un item da parte della fase a valle ne autorizza, quando necessario, la produzione presso la fase a monte, innescando, così, il flusso di materiali o componenti. Al contrario, un sistema push autorizza la produzione o il flusso di materiali in anticipo rispetto alla domanda futura.

Un altro modo consiste nell’esaminare la struttura del flusso delle informazioni (Olhager e Östlund, 1990; Hodgson e Wang, 1991 a, b; etc.). In un sistema pull il flusso fisico dei materiali è innescato dalla domanda locale della fase a valle; la domanda locale si manifesta e viene trasferita attraverso un’informazione locale (come, ad esempio, i contenitori kanban vuoti). In questo contesto, la logica pure pull rappresenta una strategia di controllo “decentralizzato”, in cui l’informazione, relativa alla domanda finale del cliente da soddisfare, giunge solo all’ultima stazione di lavoro e non direttamente anche tutte le altre stazioni. Il controllo di tipo push, invece, utilizza un’informazione globale e “centralizzata”: l’informazione relativa alle previsioni di domanda e ordini dei clienti viene elaborata per controllare ogni livello di produzione del sistema.

Sulla base di questa caratterizzazione, Pyke e Cohen introducono la possibilità di adottare tecniche di controllo ibride, in cui siano presenti simultaneamente sia aspetti tipici della logica pull che aspetti tipici della logica push. Secondo Pyke e Cohen (1990), infatti, un sistema di pianificazione e controllo della produzione presenta sempre elementi caratteristici della logica push: quindi, anche in un ambiente manifatturiero di tipo pull, decisioni di pianificazione
globali e accentrate possono limitare il valore di certe variabili operative del sistema di controllo. Ad esempio, in un sistema JIT il lotto minimo di produzione viene individuato attraverso considerazioni tipiche della logica push. Infine un’ulteriore strada seguita in letteratura per distinguere i sistemi push e pull fa riferimento ad un approccio pratico associato al livello di WIP (Work-In-Process) all’interno del sistema. Attraverso un’analisi simulativa volta al confronto fra sistemi push e pull, Spearman e Zazanis (1992) osservarono che i meriti della tecnica pull derivano dal limitato livello di WIP e non dalle caratteristiche proprie di questa logica. In generale, da questo punto di vista, la caratterizzazione fra le due logiche consiste nel distinguere l’entità del WIP e, quindi, delle code all’interno del sistema: un sistema push può essere considerato come un sistema a reti di code aperto, con capacità infinita delle code, mentre un sistema pull rappresenta un sistema a reti di code chiuso. Quindi, ad esempio, un sistema MRP privo di un qualche meccanismo che consenta di limitare il WIP, genererebbe un livello di WIP maggiore di quello presente in un ambiente pull, a meno che il sistema non riesca a seguire esattamente l’originale schedulazione della produzione.

Sulla base delle suddette differenziazioni, si può concludere che se il flusso di materiali all’interno di un sistema ha origine a partire da una logica di pianificazione centrale, che non controlla il livello di WIP, allora questo sistema è molto vicino a un sistema pure push: in un sistema pure push le parti o i componenti avanzano in base alla schedulazione prestabilita, anche se la macchina successiva è occupata o inattiva. In un sistema pure pull, invece, il processo successivo “tira” le parti o i componenti dalla fase precedente, utilizzando l’informazione locale e controllando il livello di WIP. Quindi il sistema JIT-Kanban funziona come un sistema di controllo pull, mentre un sistema MRP lavora come un sistema push. Le uguaglianze ‘MRP=push’ e ‘JIT=pull’ non sono, però, sempre vere, così come affermato da Pyke e Cohen (1990): mentre i sistemi di produzione MRP o JIT rappresentano due diverse possibili strutture dell’intero sistema
manifatturiero, le logiche push o pull individuano, invece, più precisamente, due
possibili regole per la gestione del flusso dei materiali all’interno del sistema.
Quindi per un sistema manifatturiero è possibile operare contemporaneamente
sia secondo una logica push che secondo una logica pull, dipendentemente dalla
fase di produzione. In un ambiente produttivo di questo tipo, cioè ibrido
push/pull, la distinzione fra le due politiche pure diviene meno netta e molto più
ambigua.

1.2.1 Logica push
Si parla di Flow control - Look ahead - Push quando si programmano i flussi
logistici in base alle previsioni del fabbisogno. Le previsioni della domanda,
necessarie alla pianificazione della produzione in un sistema push, sono
elaborate, in genere, dal Settore Vendite dell’azienda, sulla base dell’analisi dei
dati storici di vendita dei prodotti. Il programma di produzione in un sistema di
controllo push è basato sulla previsione della domanda per controllare il flusso
di materiale proveniente da una workstation a monte di una workstation a valle.
Le previsioni sulla domanda in un sistema push sono sul livello di scorta o di
work-in-process per ogni fase di produzione. Al fine di evitare errate previsioni
della domanda e conservare uno stock sufficiente di sicurezza, le scorte lungo il
processo produttivo sono spesso tenute ad alto livello; ciò può comportare
inutili costi di mantenimento e problemi legati alla produzione. Il principale
svantaggio di un sistema di controllo push, infatti, è un alto livello di Work-In-
Process inventory ed errori di previsioni possono provocare scorte in eccesso e
lunghi lead time.
Nella visione tradizionale aziendale è necessario anticipare l’ingresso dei
materiali in fabbrica e gli ordini di lavorazione, perché il tempo di
attraversamento è più lungo dell’orizzonte del portafoglio ordini. Nei modelli di
tipo push la produzione viene attivata dalla presenza dei materiali: si emette un
programma di produzione per ciascun reparto dello stabilimento in funzione dei
consumi previsti, delle scorte esistenti, di quelle desiderate e dei tempi necessari
per le lavorazioni. In caso di variazione del consumo devono essere modificati tutti i programmi di produzione (attività che richiede tempo) con il rischio di produrre ciò che non serve e non produrre ciò che serve. È un approccio di tipo deterministico (l’idea di base è quella di ottimizzare l’utilizzo delle macchine), adatto a produzioni con grandissima varietà di prodotti molto differenziati.

La maggioranza delle aziende manifatturiere nel mondo crea programmi di produzione nell’ipotesi che possano essere eseguiti. Se il lavoro si sviluppa come programmato, esso procede da un centro di lavorazione a quello successivo previsto dal programma. Dunque un sistema a spinta o pressione (*push system*) consiste nel fabbricare le parti e mandarle dove esse occorreranno, o in un magazzino, *spingendo* in questo modo il materiale lungo la produzione, secondo il programma. In questo sistema la funzione del controllo di produzione è di mantenere la produzione in linea con il programma. La maggior parte delle aziende manifatturiere ha degli scarti tra ciò che è programmato e ciò che realmente occorre, cosicché il controllo della produzione consiste nel riconoscere questi scarti e agire di conseguenza. Tre tipi base di azioni possono avvenire in risposta agli scarti dal programma:
1. fare in modo che l’attività si riadegui al programma;
2. sollecitare;
3. riprogrammare.

Delle tre azioni, le ultime due non sono considerate auspicabili. Il loro uso indica che la società non è in grado di sviluppare un valido programma, oppure non è capace di adeguarsi se esso risulta valido. Di solito si *suppone* che dovremmo essere capaci di programmare e controllare in qualche modo uno stabilimento così come è.

Nel sistema push il ritmo di produzione è scandito dalle risorse disponibili, date dalla previsione “incerta” della domanda (MRP) o peggio dalla sola capacità produttiva dei macchinari e quindi è, indirettamente, un sistema make-to-order.

![Diagram](image.png)

Figura 1.4 – Il ritmo produttivo nel sistema push

Con una gestione di tipo push il focus si pone su aspetti quali:

- affidabilità delle previsioni;
- saturazione degli impianti e della manodopera;
- qualità e affidabilità dei fornitori;
- ottimizzazione del Lotto Economico di Produzione.

Per chiarire meglio come si sviluppa la tecnica Push vengono schematizzati nelle figure 1.5 e 1.6 rispettivamente il flusso logico della pianificazione e controllo, e il flusso dei materiali.
1.2.2 Logica pull

Molta attenzione è stata dedicata all'analisi di tipo pull come sistema di controllo per ridurre il livello di scorte in-process e migliorare la qualità del prodotto. Si parla di *Stock control - Look back - Pull* quando non si programma...
La Lean Production e le politiche di controllo della produzione

Il flusso ma ci si limita ad approvvigionarsi quando le scorte scendono sotto un certo livello. I sistemi di controllo di tipo pull mirano a limitare eccessivi livelli di scorte tra le fasi di produzione e ridurre i tempi di consegna. In un sistema basato sulla logica di controllo pull, la produzione è autorizzata dalla domanda attuale e la fase a monte produce “Just-In-Time” ciò che serve a soddisfare la domanda della fase a valle, che è infine controllata dalla domanda di prodotti finiti.

Just-In-Time manufacturing è un sistema di tipo pull che idealmente dipende dalla domanda del cliente finale per autorizzare la produzione. In accordo con Monden (1983), l’idea di produrre le quantità necessarie e nel tempo giusto è descritto dal termine just-in-time. In definitiva è un sistema di produzione ripetitivo che produce le unità necessarie in quantità necessarie al tempo giusto.

Il termine di sistema a trazione (pull system) indica che il materiale è richiamato da chi lo usa, ovvero che è messo a disposizione quando occorre. Questo è un ottimo modo di vedere quali parti occorrono realmente e quali no. Se, una volta completata la produzione, essa è accatastata nel punto dove è prodotta e nessuno viene a prenderla, gli operai possono immediatamente constatare che la produzione di una certa parte deve fermarsi. Se viene mandata in un deposito o in qualche posto fuori vista, occorre più tempo per prendere la stessa decisione (e forse occorre la tardiva consultazione di un prospetto delle giacenze). D’altra parte, se qualcuno richiede delle parti che non sono state fabbricate, anche quel messaggio è chiaramente ed immediatamente capito. Il risultato è che la gente vuole avere sottomano solo ciò che occorre, ma non in eccesso, specialmente se lo spazio a disposizione è limitato.

Tale logica si focalizza, pertanto, sul flusso dei materiali in maniera molto spinta, al fine di eliminare qualsiasi forma di non valore aggiunto nel processo, oltre che mettere in evidenza l’importanza della qualità sia per le macchine che per gli operatori. Il flusso dei materiali viene letto come una sequenza di “compiti” (o tasks), in modo da assemblare il prodotto finito come una “sommatoria sequenziale di parti” piuttosto che con il principio della distinta
CAPITOLO 1

La Lean Production e le politiche di controllo della produzione

base. La linea di produzione in un tipico ambiente produttivo a flusso teso può essere dotata di diverse linee di alimentazione e macchine in cella (machine cells) che poi confluiscono nella linea principale. Le machine cells sono un insieme di macchine diverse tra loro e capaci di produrre una famiglia di prodotti simili, al fine di alimentare la linea principale con un ritmo costante ed efficiente. Nella produzione pull non esiste, pertanto, un’aggregazione di macchine simili nello stesso luogo. Il punto di confluenza delle linee di alimentazione alla linea principale viene posizionato laddove serve la lavorazione o l’assemblaggio di un componente prima che entri nella linea produttiva principale. In questo modo viene ridotto al minimo lo stoccaggio di sottoassiemi, per cui il componente viene direttamente utilizzato nella linea principale. La produzione pull richiede per sua natura un’elevata qualità del processo basata su un ritmo produttivo anche giornaliero, in modo da seguire variazioni veloci della domanda. C’è però da dire che il pull elimina i tempi di coda, di attesa e la schedulazione della produzione, elementi dove notoriamente si annidano le maggiori inefficienze e sprechi di tempo. Come indica il termine, è proprio la domanda del cliente che “tira” il prodotto finito lungo il suo processo produttivo, interessando tutta la supply chain a monte. Al contrario di come si possa immaginare, la produzione pull non è “riservata” a ristrette tipologie di prodotti, ma si può concretamente applicare ad un’estesa gamma, una volta che si sono superate le solite resistenze al cambiamento. Infatti il processo produttivo avanza correttamente anche se i volumi dovessero calare del 50%; è però chiaro che il “commitment” del top management e dell’intera azienda è fondamentale per operare in questa maniera a dir poco rivoluzionaria. Proprio perché il tempo di attraversamento è molto più breve rispetto alla produzione push, si è maggiormente in grado di reagire agli imprevisti di qualsiasi natura, alle fluttuazioni della domanda e così via. Per funzionare in maniera ottimale, questo sistema dovrebbe:

- portare la parte giusta nel luogo giusto e al momento giusto;
CAPITOLO 1

La Lean Production e le politiche
di controllo della produzione

- prevenire la dilatazione dei tempi di transito, controllando l’andamento delle scorte di semilavorati per ciascuna parte e per ogni operazione;
- prevenire la necessità di mettere scorte in magazzino.

Ancora, affinché la produzione senza scorte funzioni adeguatamente, il sistema a trazione dovrebbe avere due caratteristiche:

1. dovrebbe sincronizzare il movimento del materiale col ritmo a cui è ritirato per l’uso allo sbocco del condotto, riflettendo così nel piano di produzione le fluttuazioni delle domande di mercato;
2. dovrebbe contenere entro certi limiti la quantità delle scorte nel condotto.

Se la scorta nel condotto è tenuta entro certi limiti, il risultato è un sistema a trazione (pull system) a volume. Questo è molto importante per controllare il livello delle scorte nel circuito produttivo. Se il processo di alimentazione non ha alcun luogo per accumulare le scorte che non sia il condotto, esso può solamente produrre e riempire il condotto quando appare uno spazio vuoto nel circuito produttivo. Il prelievo del materiale, per l’uso, causa uno “spazio vuoto” nel condotto. Il materiale avanza nel condotto per lasciare uno spazio vuoto all’estremità di alimentazione.

Al ridursi della quantità di scorte nel condotto e con l’aumento della frequenza delle rimozioni all’uscita del condotto, il sistema cessa di essere finalizzato al controllo delle scorte. Il prelievo delle scorte per l’uso diviene un segnale di azione all’altra estremità del condotto, in modo da assicurare il rifornimento di chi le usa. Questo punto è molto importante per gli ulteriori sviluppi, ma difficile da comprendere di primo acchito. Il sistema a schede di controllo della Toyota è un sistema a trazione (pull system) a volume fisso. Il sistema di trasmissione delle sequenze di montaggio dell’industria automobilistica è un sistema a trazione, ma non sempre a volume fisso. In ogni modo per la
produzione senza scorte molte società hanno finora copiato il sistema Toyota, alcune con l’aggiunta di proprie variazioni.

Detto questo, l’obiettivo della produzione pull è quello di incrementare la qualità e il rispetto delle consegne, permettendo ai materiali di fluire senza interruzioni ed attese direttamente nel flusso produttivo.

Molti decidono di adottare il pull flow perché hanno deciso di essere più attenti alle mutate esigenze dei clienti, e la risposta del sistema può essere superiore (in termini di flessibilità) alle attese stesse. Tutto dipende dalla riduzione dei tempi di attraversamento: i cambiamenti del cliente possono essere più facilmente recepiti senza che danneggino il processo produttivo. E’ comunque necessario definire delle “griglie temporali” di accettazione delle modifiche, al di sotto delle quali non è possibile intervenire sul prodotto in fase di trasformazione, pena l’aggravio di costi. La morale è che il pull flow facilita l’integrazione della funzione produzione nell’azienda facendola diventare un elemento chiave di vantaggio competitivo: le vendite hanno un’arma maggiore in tasca (maggiore flessibilità e capacità di fare previsioni), i fornitori diventano detentori reali della qualità dei loro componenti, l’amministrazione e finanza ha capitali a disposizione per fare investimenti più redditizi anziché mantenere magazzini rilevatisi non più necessari (se non ai punti di disaccoppiamento).

Nell’azienda che utilizza un sistema “pull” i magazzini di materie prime e prodotti finiti praticamente non sono più necessari, mentre i magazzini semilavorati lasciano il posto a piccoli polmoni: ogni centro di lavorazione è dotato di un punto di stoccaggio in uscita e un punto di stoccaggio in entrata. Di seguito, nella figura 1.7 e figura 1.8, sono riportate le schematizzazioni dei layout, rispettivamente, di un’impresa “tradizionale” e di un’impresa basata sulla logica “pull”.
Un sistema di gestione di tipo “pull” ha il paradigma del suo funzionamento nelle considerazioni seguenti: esso crea, prima e dopo ogni reparto produttivo, dei buffer di materiali di disaccoppiamento il cui scopo è quello di garantire il tempo di consegna richiesto dal reparto immediatamente a valle. Ogni reparto della catena logistica vede, infatti, la valle come un cliente e il reparto a monte come un fornitore. Si noti che se ogni reparto deve produrre parecchi tipi differenti di pezzi, il livello totale di scorte può essere inaccettabilmente alto. In un sistema di gestione basato completamente sull’approccio “push” viene meno questa visione segmentata del flusso produttivo per lasciare il posto ad un’ottica integrata di tutta la produzione ed, eventualmente, anche
dell’approvvigionamento. L’eliminazione delle scorte è un obiettivo dichiarato anche in questo secondo approccio, in cui un sistema di gestione centralizzato, tipo MRP, ha il compito di “spingere” i prodotti dentro la fabbrica e di regolarne l’avanzamento al suo interno. Il principale inconveniente dei sistemi “push” è legato alle eventuali variazioni del piano di produzione: se esso cambia, i prodotti che sono stati già lavorati risultano non più necessari e devono quindi essere messi a magazzino in attesa di un loro eventuale futuro utilizzo. Nei sistemi “pull”, invece, il tutto inizia con l’ordine che tira la produzione di cellula in cellula, attraverso sistemi come il kanban, creando il minor numero di scorte di disaccoppiamento e permettendo, al tempo stesso, di lavorare per l’ottimizzazione dei tempi di attraversamento della singola cella.

In sintesi, nel sistema Pull il ritmo di produzione è scandito dalla domanda effettiva (quindi dalle richieste del cliente finale) e quindi è indirettamente un sistema make-to-stock.

![Figura 1.9 – Il ritmo produttivo nel sistema pull](image)

L’idea di base è quella di rispondere in modo idealmente istantaneo agli input (reali o previsionali) provenienti dal mercato, in modo da poter ammortizzare tramite un determinato livello di scorta la variabilità della domanda. Pertanto, data la sua struttura, è un sistema adatto a produzioni ripetitive con programmi relativamente stabili.

Con una gestione di tipo “pull” ci si concentra su:

- bilanciamento fra le varie stazioni (fasi);
ripristino di un livello di scorta prefissato;
focus sull’output piuttosto che sull’input.

Inoltre bisogna anche dire che per implementare il pull flow è necessario un impegno congiunto da parte di tutte le funzioni aziendali. In particolare si può affermare che:

1. una produzione pull che strategicamente coinvolga l’intera azienda necessita di essere sostenuta dalla direzione;
2. la schedulazione della produzione va sostituita con la gestione degli ordini cliente, che va a sincronizzarsi con l’avanzamento del flusso teso;
3. il volume ed il mix produttivo vengono tarati giornalmente, in funzione della domanda corrente;
4. la gestione finanziaria sarà coerente con il flusso teso e la rilevazione delle ore di lavoro;
5. la progettazione svilupperà nuovi prodotti secondo i principi del Concurrent Engineering, ossia rendendo quanto più parallele le attività progettuali e di industrializzazione;
6. il coinvolgimento dei dipendenti riguarderà soprattutto la ricerca della massima qualità del prodotto, in linea con il ritmo richiesto dal cliente;
7. un impegno all’eccellenza di tutta l’organizzazione è insito nel nuovo modo di lavorare. Quando si parla di produzione pull non bisogna poi dimenticare che ciò si realizza facendo convergere le metodologie tipiche della qualità totale, delle cadenze produttive ritmate anche su base giornaliera, delle previsioni di una certa flessibilità, del backflush, e così via. Il team di lavoro dovrà mettere da parte l’obiettivo della sola produttività, e mettere in primo piano la qualità del prodotto e di conseguenza la cadenza produttiva che viene chiesta.
direttamente dalla domanda. La flessibilità della manodopera deriva
dalla capacità di saper svolgere qualche altra attività oltre quella
principale: ad esempio, un elettricista dovrà eventualmente anche
fare saldature o montaggi (se parliamo di prodotti elettromeccanici),
nel caso in cui serve bilanciare la linea. La manodopera è quindi vista
con un’ottica completamente diversa rispetto alla produzione push,
laddove era importante abbassare il più possibile l’incidenza del
proprio costo sul prodotto finito (oggi ormai a livelli del 10 %). Il
pull flow si concentra invece sui costi dei materiali e sulle spese
generalì, laddove la manodopera deve ormai focalizzarsi nel generare
la massima qualità in un’ottica di miglioramento continuo.

E’ evidente il diverso approccio rispetto alla produzione a cui si è abituati con i
classici sistemi MRP, per reparti, costruendo sottoassiemi, e così via. Non
bisogna però nascondere che adottare una vera produzione pull comporta dei
rischi dettati dal forte cambiamento che comporterà a tutti i livelli, ma è
sicuramente una grande sfida, dove i grossi benefici non possono che generare
vantaggio competitivo a volte anche indipendentemente dalla variabile
geografica, specie per chi adotta il modello con professionalità, forte
determinazione e spirito di miglioramento continuo.

1.2.3 Criterio di scelta tra logica push o pull
La scelta di un sistema push o pull tiene conto del tempo di produzione (P =
Production) e di quello di consegna (D = Delivery) essendo:

- **Delivery time** – D : tempo di consegna, cioè l’intervallo che va dal
 momento in cui il cliente ordina un prodotto al momento in cui vuole che
 questo prodotto gli venga consegnato.
- **Production time** – P : tempo di produzione, inteso come tempo di
 attraversamento cumulativo di un prodotto dal momento in cui vengono
Ordinate le materie prime a quello in cui vengono trasformate in prodotto finito, attraverso le varie fasi del processo.

Il lead time (LT) aziendale rappresenta il periodo di tempo compreso tra l’inizio della prima attività e la fine dell’ultima attività di un ciclo di produzione; così che il lead time è pari alla somma dei tempi necessari per compiere tutte le attività sequenziali, incluse quelle operative, i set-up, i controlli, le attese ed i trasporti.

In particolare il **LT di produzione** è il tempo di attraversamento del prodotto nella linea, è l’intervallo di tempo che intercorre dal momento in cui sono disponibili i prodotti in input a quando è disponibile il prodotto in output.

Poi si deve tenere conto del **Lead Time di approvvigionamento**, che viene definito come l’intervallo di tempo che intercorre dal momento in cui viene ordinata la merce a quando essa è disponibile per la produzione. Infine **P** è definito come il tempo di attraversamento cumulativo di un prodotto, dal momento in cui vengono ordinate le materie prime a quello in cui esse vengono trasformate in prodotto finito, passando attraverso le varie fasi del processo.

Detto ciò è naturale che **P** viene a costituire l’orizzonte temporale minimo con il quale la produzione deve guardare al mercato finale determinando la lunghezza del programma di produzione. Oltre al tempo **P** in azienda si ha da gestire il **tempo D**, o tempo di consegna. Il suo valore è generalmente fissato dal cliente o dal mercato, pertanto dipende dal tipo di business considerato e non è un dato modificabile dalla produzione. Nel caso di produzione a magazzino, può essere dell’ordine di poche ore, mentre nei casi di produzioni su commessa può assumere valori maggiori dello stesso tempo **P**. Nella maggior parte dei casi **P** è maggiore di **D** e di conseguenza sono necessarie delle previsioni per approvvigionare i materiali e realizzare le operazioni produttive.

I casi che si possono verificare sono i seguenti:

1. **P > D**: il programma di produzione si estende per un orizzonte temporale pari a **P** e si colma di ordini di produzione solamente sino
all’istante D. L’intervalllo rimanente P-D deve essere gestito tramite previsioni. In tal caso P/D > 1 implica la necessità di un investimento di capitale al momento P con un ritorno previsto al momento D (momento nel quale termina la fase a rischio). La domanda che ci si pone è: otterremo un adeguato ritorno dell’investimento, considerati tutti i rischi connessi all’inaffidabilità delle previsioni, all’obsolescenza e al deterioramento? Il rischio è tanto maggiore quanto più grande è l’intervalllo P-D e si comprende dunque l’importanza di minimizzarlo.

2. $P \leq D$: il programma di produzione è già totalmente definito dagli ordini. Nell’intervalllo D-P abbiamo una certa libertà nella gestione delle priorità di soddisfaccimento degli ordini, che possiamo sfruttare per un’ottimizzazione delle fasi produttive. In tal caso il rischio dell’investimento non c’è.

Il Lean Manufacturing System privilegia questo secondo tipo di approccio, tanto che un sistema produttivo viene definito PUSH se $P/D > 1$, PULL se $P/D \leq 1$.

Sia nei sistemi a logica push che in quelli a logica pull, il piano principale di produzione si estende per un orizzonte temporale pari al tempo di produzione, solo che l’entità di questo orizzonte cambia e in particolare risulterà ridotta nel caso pull, come mostrato nella figura 1.10.
Il limite massimo a cui si cerca di tendere è un **Pull System “puro”** cioè dove il processo viene innescato dalla domanda del cliente e sale a ritroso lungo le fasi a monte fino a quella di approvvigionamento delle materie prime. Sistemi “PULL PURI” sono possibili a livello teorico ma molto rari in pratica, ad esempio nelle tipologie produttive manifatturiere prevalgono le situazioni in cui il portafoglio ordini è completato da previsioni di vendita almeno nella parte iniziale cioè, in genere le prime fasi del processo (i semilavorati) vengono gestite in logica push (tramite le previsioni), mentre vengono gestite in logica pull le fasi finali del processo, essendo, appunto, il D-time superiore al P-time (sistemi ibridi push/pull). Inoltre un sistema pull teoricamente non necessita di previsioni, in realtà ciò è vero solo per i prodotti mentre non lo è per impianti e forza lavoro.
I sistemi produttivi “PULL PURI” rappresentano dunque un modello di eccellenza, costituiscono un target per i sistemi push raggiungibile attraverso l’abbattimento del tempo di produzione (P). Tale operazione può essere effettuata con strumenti quali l’ingegneria di prodotto, di processo e con interventi gestionali. L’idea base muove dalla considerazione che il tempo di attraversamento aumenta al crescere del grado di integrazione verticale di un processo produttivo. Si può allora pensare di frammentare un sistema produttivo in n sottosistemi (cellule) indipendenti tra loro, ognuno caratterizzato da un tempo di attraversamento P il cui valore sarà dell’ordine di P/n. Proprio in ciò si trova il paradigma del funzionamento pull che vuole creare, prima e dopo ogni reparto produttivo, dei buffer di materiali di disaccoppiamento il cui scopo è quello di garantire il tempo D richiesto dal reparto immediatamente a valle. Ogni reparto della catena logistica vede, infatti, il reparto a valle come un cliente e il reparto a monte come un fornitore.

1.3 SISTEMI IBRIDI PUSH/PULL

In seguito agli studi condotti da Pyke e Cohen (1990) sulla possibilità di combinare le logiche push e pull in un unico sistema di controllo ibrido, diversi autori hanno condotto studi voltì all’integrazione dei sistemi di tipo push e pull; mentre è ovvio che ogni singola logica è caratterizzata dai propri vantaggi e svantaggi, gli studi hanno mostrato che la loro combinazione può comportare molti benefici. Nella maggior parte dei casi, l’integrazione delle due logiche riesce ad eliminare gli svantaggi e a rafforzare i vantaggi di ogni singola politica.

Hodgson and Wang (1991 a, b) hanno sviluppato un modello markoviano studiato attraverso la programmazione dinamica e la simulazione per diverse strategie di controllo, incluse quelle pure push, pure pull e ibrida push/pull. In quest’ultima strategia, che integra le logiche push e pull, ogni singola fase del sistema può essere controllata o con logica push o con logica pull. Inizialmente
CAPITOLO 1

La Lean Production e le politiche di controllo della produzione

(1991 a) il modello di sistema produttivo analizzato era costituito da quattro fasi, le prime due in parallelo e le altre in sequenza; successivamente (1991 b) lo studio è stato esteso ad un sistema a cinque stadi. In entrambi i casi la strategia integrata, in cui le prime due fasi seguono la logica push e le altre la logica pull, risulta la più conveniente in termini di valore medio dei costi da sostenere. Lo stesso risultato è stato osservato anche per un sistema costituito da otto fasi, portando Hodgson e Wang a concludere che questo livello di integrazione rappresenterebbe la strategia ibrida ottimale per un sistema multi-fase.

Cochran e Kim (1998) hanno classificato i sistemi ibridi push/pull in sistemi integrati verticalmente od orizzontalmente. I sistemi integrati verticalmente consistono in due livelli: un sistema di pianificazione a livello più alto di tipo push e uno esecutivo a livello più basso di tipo pull. In questo tipo di sistemi ibridi la pianificazione della produzione viene stabilita tramite MRP, mentre l’esecuzione e il controllo seguono la logica del Just-In-Time: questo schema permette al sistema produttivo di mantenere un livello inventariale basso, riuscendo, al contempo, a reagire abbastanza velocemente alle fluttuazioni della domanda. I sistemi integrati orizzontalmente, invece, prevedono che alcune fasi siano gestite secondo la logica push e altre secondo la logica pull: un sistema di questo tipo, ad esempio, può essere costituito da un certo numero di stazioni push nelle prime fasi, seguite dalle restanti di tipo pull, o viceversa. In particolare è stato considerato un sistema ibrido caratterizzato da un “punto di integrazione mobile” (movable junction point), definito come l’ultima stazione del sistema a logica push, a valle della quale la restante parte del sistema viene gestita con tecnica pull. A seconda della posizione di questo punto, il sistema di controllo considerato può essere di tipo pure push, ibrido push/pull o pure pull.

L’obiettivo del loro studio è stato quello di minimizzare il costo associato a questo sistema produttivo, individuando la posizione del ‘junction point’, il livello di scorta di sicurezza ed il numero di kanban da utilizzare nelle fasi pull. Con la logica ibrida è possibile ridurre i costi totali di mantenimento a scorte e di penuria del sistema del 20-25% rispetto alla logica pure push. Per altri studi
CAPITOLO 1
La Lean Production e le politiche di controllo della produzione

Flapper et al. (1991) hanno suggerito di applicare i principi del JIT nelle attività di realizzazione di prodotti gestiti con logica MRP, proponendo uno schema per inglobare la tecnica JIT in ambiente MRP. I principali benefici ottenuti consistono in costi più bassi, lead times più brevi, migliore qualità, riduzione degli spazi occupati. Huq e Huq (1994) hanno, invece, individuato in quali condizioni è più opportuno integrare un sistema push MRP con la logica pull del JIT. Hanno analizzato gli effetti delle variazioni dei tempi di processo e di set-up, dei livelli di carico e del tasso di guasto delle macchine per un sistema pull JIT in ambiente job-shop, mostrando che suddetti valori influenzano la validità della scelta di integrare il sistema MRP con la tecnica JIT. Bushée e Svestka (1999) hanno proposto un algoritmo euristico bidirezionale per ridurre il tempo medio di flusso e il ritardo medio nelle consegne. Tutti i lavori più critici vengono individuati e schedulati attraverso una determinata regola di carico (dispatching rule), mentre la schedulazione dei restanti jobs avviene seguendo la regola di carico completamente opposta. In questo modo si raggiunge un elevato tasso di utilizzo delle risorse, riducendo il tempo di inutilizzo delle macchine; i due indici di tempo risultano migliori se confrontati con sistemi pure push o pure pull.

In relazione ai sistemi integrati orizzontalmente, Olhager e Östlund (1990) hanno proposto diversi meccanismi caratterizzati da diversi livelli di integrazione a seconda degli istanti di arrivo degli ordini clienti, della posizione delle risorse ‘bottleneck’ (colli di bottiglia) e del tipo di prodotto. L’integrazione ha consentito, tra gli altri risultati, di contrarre il tempo ciclo fino ad una settimana, di ridurre il livello inventoriale del 75% e di incrementare le vendite del 10-15%. Beamon e Bermudo (2000) hanno, invece, sviluppato un algoritmo per ridurre i costi di magazzino mantenendo, allo stesso tempo, un elevato
CAPITOLO 1

La Lean Production e le politiche di controllo della produzione

Livello di servizio per un sistema produttivo di assemblaggio multi-line e multi-stage. La filosofia push viene applicata ad ogni linea produttiva a partire dal prelievo del materiale dal magazzino delle materie prime fino all’arrivo dei componenti nel magazzino alla fine di ogni linea, a monte della fase di assemblaggio; da questo punto in poi, fino alla fase finale, il sistema è gestito con logica pull. Anche in questo caso, i risultati ottenuti sono a favore del sistema ibrido. Gli studi di Cochran e Kaylani (2008), invece, fanno riferimento a un sistema multi-product integrato orizzontalmente che consente di ridurre i costi di produzione rispetto alle logiche pure di base push o pull. Cochran e Kaylani hanno sviluppato un algoritmo genetico per ottimizzare il sistema di produzione ibrido attraverso la localizzazione del punto di integrazione e la determinazione dei valori ottimali della scorta di sicurezza, per la parte push, e del numero di kanban per la parte pull.

Un algoritmo genetico è stato utilizzato anche da Ghrayeb et al. (2008) per l’analisi di un sistema ibrido in ambiente assemble-to-order: in questo contesto nelle fasi iniziali del sistema le materie prime vengono lavorate per realizzare semilavorati e componenti di montaggio che poi saranno assemblati nelle fasi successive in base agli ordini dei clienti. Quindi la prima parte del sistema è controllata con logica push, mentre la parte finale con logica pull, poiché le lavorazioni dei componenti in queste fasi vengono innescate dalle richieste dei clienti. L’obiettivo è di minimizzare la somma dei costi di mantenimento a scorta e dei costi associati al delivery lead time; Questo sistema è stato, infatti, proposto per riuscire a raggiungere, contemporaneamente, valori relativamente bassi sia dei tempi di consegna che dei costi di mantenimento a scorta, obiettivo conflittuale sia in ambito push che pull.

In base alla logica push le parti in lavorazione vengono rilasciate alla stazione successiva il più velocemente possibile per garantire che le stazioni a valle siano sempre alimentate e non risultino inattive per mancanza di parti da processare. Ciò consente di ridurre il delivery lead time perché nel sistema vengono lavorate più parti di quante siano necessarie ed è, quindi, disponibile una grande quantità
di prodotti finiti o semilavorati: variazioni nella domanda, anche notevoli rispetto alle previsioni, non comportano, dunque, particolari problemi, poiché nel sistema vengono mantenuti a scorta semilavorati e prodotti finiti che consentono di soddisfare la domanda. D’altro canto questo modo d’operare determina elevati volumi di WIP nel sistema, sia sottoforma di prodotti finiti che di semilavorati, che si traduce in elevati costi di mantenimento a scorte.

Secondo la logica pull, invece, quando arriva un ordine, questo viene soddisfatto, se possibile, attraverso le scorte di prodotti finiti: non appena il prodotto finito richiesto viene prelevato, il meccanismo di controllo pull genera un segnale che innesca la produzione nella stazione a monte, al fine di reintegrare le scorte. Questo meccanismo ha luogo stazione dopo stazione, a partire dall’ultima fase fino alla prima, per poi prelevare le materie prime dal relativo buffer. Un sistema pull può, così, ridurre in maniera significativa il livello di WIP nel sistema e, di conseguenza, i costi di mantenimento, mentre risulta caratterizzato, in genere, da un più lungo delivery lead time, col maggior rischio di dover sostenere i costi associati ai ritardi nelle consegne.

Ghrayeb et al. hanno allora integrato le due logiche per superare questo conflitto di prestazioni; ancora una volta, le prestazioni della politica ibrida sono risultate migliori di quelle dei singoli sistemi push o pull.

![Schema di un generico sistema ibrido push/pull](image)
1.4 CLASSIFICAZIONE DEI SISTEMI PULL

Negli ultimi decenni molte aziende manifatturiere nel mondo hanno adottato la lean production come strategia per aumentare la propria competitività globale; a partire dagli anni ’80, infatti, l’approccio giapponese della produzione Just-In-Time (JIT) ha innescato la nascita di diversi “pull production systems” che sottolineano l’importanza dei sistemi di controllo della produzione che reagiscono alla domanda effettiva, piuttosto che a previsioni della domanda futura.

Le tre politiche pull tradizionali sono rappresentate dalle tecniche Kanban Control System (KCS), CONWIP Control System (CCS) e Base Stock Control System (BSCS). La più semplice è la logica CONWIP caratterizzata da un unico parametro di controllo per l’intera linea di produzione, ovvero la quantità di CONstant-Work-In-Process, livello di WIP globale consentito nell’intero sistema; le politiche Kanban e Base Stock richiedono, invece, un parametro di controllo per ogni fase produttiva dato, rispettivamente, dal numero di kanban che limita il livello di WIP locale in ogni fase e dal livello di scorta di sicurezza di parti finite (base stock level), cioè il numero di pezzi che devono essere prodotti per essere stoccati in buffer all’uscita dalle fasi produttive per mantenere il livello di scorta prestabilito.

Dalla combinazione di due tra queste politiche derivano, poi, le tecniche ibride CONWIP-Kanban, Generalized Kanban Control System (GKCS) e Extended Kanban Control System (EKCS). Il controllo ibrido più semplice è il CONWIP-Kanban che combina, appunto, i vantaggi della logica CONWIP e di quella Kanban: questa politica ibrida necessita, quindi, di un parametro di controllo per l’intera linea (quantità di CONWIP) e di un parametro di controllo per ogni fase (numero di kanban).

Le logiche Generalized Kanban ed Extended Kanban sono entrambe date dalla combinazione delle politiche Kanban e Base Stock: sono entrambe caratterizzate, infatti, da due parametri di controllo per fase, cioè il numero di
kanban e il base stock level. La differenza principale tra le due riguarda le informazioni sulla domanda che sono inoltrate attraverso le fasi: il meccanismo Extended Kanban Control è concettualmente meno complesso del Generalized Kanban Control, dato che le informazioni sulla domanda sono direttamente trasferite ad ogni fase usando la domanda globale come nel controllo Base Stock. Inoltre, a differenza del Generalized Kanban Control, i ruoli del base stock e del kanban sono completamente separati a causa del flusso di domanda globale: di conseguenza, è potenzialmente più facile da implementare.

La più recente politica di controllo ibrida proposta è la cosiddetta Extended-CONWIP-Kanban Control System (ECKCS), derivante dalla combinazione di tutte e tre le logiche pull di base; in questo tipo di sistema la produzione viene controllata agendo su due parametri relativi ad ogni fase della produzione, ovvero il numero di kanban e il base stock level, e su un parametro extra relativo all’intera linea produttiva, cioè il livello di CONWIP. Questo meccanismo di controllo può essere implementato indifferentemente a partire da una delle politiche di base, combinando, passo dopo passo, le tre tecniche pull tradizionali: a partire da una prima logica pull di base, si passa all’implementazione di una tecnica ibrida tramite la sovrapposizione di una seconda politica di base, per poi ottenere, definitivamente, l’Extended-CONWIP-Kanban Control introducendo anche l’ultima delle tre politiche di base non ancora considerata.
CAPITOLO 1

La Lean Production e le politiche di controllo della produzione

Figura 1.12 – Pull Production Systems
2.1 KANBAN CONTROL SYSTEM (KCS)

Il kanban, che in giapponese significa cartellino, è il sistema di controllo della produzione di tipo pull più diffuso. Tale sistema è, infatti, spesso noto come Toyota Production System in quanto introdotto dalla Toyota per gestire il flusso produttivo. Il kanban è una tecnica di movimentazione dei materiali che permette la perfetta sincronizzazione tra la richiesta di materiale da una fase a valle e la produzione lanciata dalla fase a monte.

In Giappone, le insegne, i cartelloni e i tagliandi sono tutti chiamati kanban, ma nella Toyota il termine si riferisce ad una scheda (o bolla) di movimentazione o ad una scheda (o bolla) di produzione. Il Kanban non è altro che una scheda che richiama la produzione da valle, con la quale si attiva la schedulazione ed il controllo degli stadi produttivi a monte. Tale scheda permette di livellare le scorte tra processi e la sincronizzazione di ogni fase con il resto del sistema, un po’ come il “passo” scandito dalle note di una marcia militare.

Le informazioni contenute nel kanban si riferiscono a cosa produrre o movimentare e sono, generalmente, la denominazione del pezzo cui si riferisce, il numero di disegno, la quantità, l’indicazione del prodotto a cui è
destinato. I pezzi sono movimentati ed immagazzinati in contenitori standard; non è quindi possibile realizzare una quantità di prodotto diversa da quella associata al contenitore.

All’interno del sistema Pull / Just in Time, il cartellino Kanban assume il ruolo di garantire la presenza del materiale nel posto giusto e al momento giusto nelle varie fasi di processo. Ciò avviene mediante il trasferimento dell’informazione (il “segnale”) di produzione da valle verso monte, attraverso le varie fasi di processo.

La prima regola del controllo Kanban è che non si può produrre se non si ha a disposizione un cartellino di autorizzazione; i reparti a monte devono, perciò, produrre solo le parti che sono state consumate dalle fasi a valle.

Un’altra regola da rispettare scrupolosamente, strettamente legata alla precedente, impone che i reparti a valle possano approvvigionarsi da quelli a monte solamente dei pezzi che effettivamente servono, nella quantità necessaria ed al momento del consumo.

Prima che il sistema a schede possa essere attuato, è necessaria una sostanziale revisione fisica delle attrezzature e della disposizione (layout) degli impianti. Devono essere definiti e fissati i percorsi, cosicché ciascun particolare abbia un percorso definito attraverso la produzione, e occorre che in ogni stabilimento ci sia un solo punto di rifornimento per ciascuna parte. Ogni centro di lavorazione deve essere definito e organizzato in modo che le scorte siano tenute solamente nel centro di lavorazione e non in depositi. Ogni centro deve avere un punto di stoccaggio in entrata e uno in uscita che servano come aree di sosta, dove il materiale va organizzato per trovarsi esattamente al posto giusto per un facile prelievo durante il lavoro. In effetti l’intero stabilimento viene organizzato come se fosse un magazzino.

È da notare che i fornitori sono considerati centri di lavorazione spartiti con altre società, e che il sistema di controllo a schede si estende ad essi proprio come se essi fossero parte dello stabilimento.
Le condizioni di realizzazione del kanban sono:

- produzione standardizzata
- riduzione dei tempi di attrezzamento e riattrezzamento
- standardizzazione dei cicli di lavoro
- layout degli impianti
- controllo autonomo dei difetti (Jidoka)
- automazione flessibile
- miglioramento del lavoro

Il vantaggio di tale approccio è nel limitare il numero di pezzi in ogni fase produttiva attraverso la definizione del numero di Kanban in ogni fase. Il suo svantaggio è che il sistema, soprattutto nelle fasi a monte, non può rispondere abbastanza rapidamente ai cambiamenti della domanda.

Le informazioni sulla domanda del cliente sono trasferite a monte attraverso le varie fasi dal segnale kanban. Inoltre la filosofia del controllo kanban è che la domanda del cliente è trasmessa a monte dalla fase i solo quando un prodotto finito è disponibile a valle della fase i.

Il controllo kanban è un semplice meccanismo di controllo che dipende solo da un parametro per fase, il numero di kanban K_i per ogni fase i. Questo parametro influenza sia il trasferimento di prodotti finiti a monte attraverso il sistema sia il trasferimento della domanda a valle.

Il KCS consente, quindi, di rendere disponibile per ogni stazione di lavoro il materiale ‘giusto in tempo’ affinché venga processato, trasferendo alla fase a monte le informazioni su cosa e quanto produrre. In un sistema Kanban,
infatti, il trasferimento di parti finite in ogni fase a valle è perfettamente sincronizzato con il trasferimento della domanda nella fase a monte. Il cartellino kanban adempie, allora, a tre funzioni principali:

1. consente di visualizzare il flusso informativo all’interno del sistema che corrisponde al flusso dei materiali, poiché ogni parte in lavorazione (WIP) può muoversi solo se ha attaccato il proprio cartellino kanban;
2. ogni cartellino staccato in una fase a valle, svolge una funzione di controllo della produzione, indicando quantità e tipo di parte che deve essere prodotta a monte;
3. il numero di kanban, infine, misura l’attuale livello di scorte: quindi controllare il numero di kanban corrisponde a controllare il livello di scorte, cosicché aumentare o diminuire il numero di kanban equivale ad aumentare o diminuire la quantità di scorte.

2.1.1 Kanban cards

In generale, per il controllo della produzione, sono usati due tipi di schede:

1. *Scheda di movimentazione (kanban di prelievo o withdrawal kanban)* - Questa scheda (*Figura 2.2*) autorizza il movimento di un componente tra due specificati centri di lavorazione. Essa indica i tipi e le quantità di componenti che il processo successivo deve ritirare dal processo precedente ed è impiegato per far risalire il consumo tra le varie fasi di lavorazione - operazione. La scheda circola tra il punto di stoccaggio esterno o in uscita dal centro di rifornimento (dove la parte è prodotta) e il punto di stoccaggio in entrata del centro di lavorazione utente. La scheda è sempre associata ad un contenitore standard di parti quando questo è spostato al centro di lavorazione che le utilizza. Le informazioni della scheda di movimentazione includono: il numero
di codice del componente; la capacità del contenitore; il numero della scheda; il numero del centro di lavorazione fornitore; il numero del punto di stoccaggio in uscita di quel centro di lavorazione; il numero del centro di lavorazione utente; il numero del punto di stoccaggio in entrata di quel centro di lavorazione; il tipo e la quantità di prodotto che la fase a valle deve ritirare da quella a monte. Quando un contenitore di parti è selezionato per l’uso dal punto di stoccaggio in entrata, la scheda di movimentazione è staccata e messa in una scatola di raccolta. Sarà presa e ripartita al centro di rifornimento come autorizzazione per prendere un altro contenitore di parti. Le schede di movimentazione, perciò, circolano solo tra centri di lavorazione e ciascuna riguarda solo un particolare componente.

![Figura 2.2 – Un esempio di kanban di movimentazione](image)

2. Scheda di produzione (kanban di ordine di produzione o production ordering kanban) - Questa scheda (Figura 2.3) autorizza la produzione di un contenitore standard di parti per rimpiazzarne uno appena prelevato da un punto di stoccaggio in uscita. Essa indica l’esatta quantità ed il tipo di prodotto che deve essere prodotta dal processo precedente (fase a monte). Queste schede sono usate solamente al centro di produzione ed al suo punto di stoccaggio in
uscita. Le informazioni sulla scheda di produzione sono: il numero di codice della parte da produrre; la capacità del contenitore; il numero del centro fornitore.

Figura 2.3 – Un esempio di kanban di produzione

In letteratura sono noti due schemi base di controllo kanban. Il sistema più semplice è basato su un solo tipo di kanban che autorizza la produzione (**single card kanban**), ma è possibile introdurre anche un altro cartellino per controllare la movimentazione dei materiali oltre alla produzione (**dual card kanban**):

- **Single Card Kanban**: utilizza il solo kanban di produzione. Esso, generalmente, viene utilizzato nei casi di particolare vicinanza tra i reparti operativi (trasporti interoperazionali di scarsa rilevanza).

Figura 2.4 – Single Card Pull Control System
- **Dual Card Kanban**: utilizza entrambi i kanban di produzione e prelievo. Esso, generalmente, viene utilizzato quando i centri di lavorazione sono distanti o quando i materiali sono difficili da trasportare per il loro peso.

![Dual Card Pull Control System](image)

Figura 2.5 – Dual Card Pull Control System

2.1.2 Literature review: metodi ed approcci allo studio dei KCS

Diversi approcci sono stati seguiti per l’ottimizzazione del numero di kanban, la maggior parte dei quali restituiscono semplici formule per individuare il numero di kanban da utilizzare nel sistema (Karmarkar, 1986; Davis e Stubitz 1987; Bitran e Chang, 1987; So e Pinault, 1988; Mitra e Mitrani, 1990; Ohno, Nakashima e Kojima, 1995). Tayur (1993) ha dimostrato che, per un numero fisso di kanban, la presenza di un singolo buffer massimizza la produttività, ed ha allora proposto un algoritmo euristico per l’allocazione dei kanban in caso di più celle nel sistema. Pettersen and Segerstedt (2009) hanno confermato questi risultati attraverso la simulazione, sottolineando l’importanza di utilizzare dei cartellini kanban extra nella fase finale del sistema.

Il sistema Kanban tradizionale, infatti, con un numero fisso di cartellini, non risulta soddisfacente in ambienti instabili; per questo diversi autori si sono focalizzati sullo studio di meccanismi di controllo nei quali è possibile

Il sistema Kanban tradizionale, introdotto per sistemi produttivi in linea, è stato esteso ai sistemi di assemblaggio da Matta et al. (2004), che hanno individuato due diversi meccanismi di trasmissione dei segnali, definendo i sistemi Simultaneous Kanban Control System (SKCS) e Independent Kanban Control System (IKCS). Il controllo kanban è stato anche studiato in ambienti multi-product, distinguendo tra Shared Kanban System e Dedicated Kanban System, in cui vengono utilizzati, rispettivamente, cartellini Kanban dello stesso tipo, condivisi da tutte le tipologie di prodotti, o insiemi di Kanban differenti, ognuno dedicato ad ogni varietà di prodotto (Baynat et al., 2002; Deokar, 2004; Khuller, 2006).
2.2 CONWIP CONTROL SYSTEM (CCS)

Il CONWIP (acronimo di CONstant Work In Process) è una tecnica di controllo del flusso di materiale utilizzabile in moltissimi sistemi produttivi. Si fonda sulla logica pull e può essere considerato una forma generalizzata del Kanban perché, come il Kanban, basa il proprio funzionamento sull’utilizzo di segnali che autorizzano la produzione (per lo più associati al movimento di cartellini).

Il sistema di controllo e gestione della produzione CONstant Work-In-Process (CONWIP) è una tecnica ibrida push/pull che limita il numero totale di parti lavorate all’interno del sistema nello stesso momento fissando un valore costante del Work-In-Process totale. Quando viene raggiunto tale valore soglia, la produzione di nuovi pezzi inizia solo quando un prodotto finito lascia il sistema.

![Fig. 2.6 – Sistema controllato con logica CONWIP](image-url)
In questo sistema le parti vengono mosse in contenitori standard; perciò ognuno di essi contiene all’incirca lo stesso ammontare di lavoro. Risulta allora che il tempo totale di processo al collo di bottiglia è approssimativamente lo stesso per ogni contenitore. Quando inizia la produzione, tutti i cartellini disponibili sono localizzati all’inizio della linea su una rastrelliera (backlog list). Quando arrivano gli ordini di produzione, i cartellini hanno il compito di autorizzare l’ingresso dei contenitori standard, pieni di materie prime, nel sistema. Un cartellino viene attaccato a un contenitore standard di parti all’inizio della linea. Una volta che la materia prima è autorizzata a entrare, il materiale scorre liberamente come se fosse in un sistema push e viene processato il più velocemente possibile fino ad arrivare nell’ultimo buffer come prodotto finito. Il cartellino scorre con il contenitore standard attraverso l’intero processo. Ogni volta che un lavoro è completato alla stazione di lavoro finale, il cartellino è staccato e mandato indietro all’inizio della linea, nella rastrelliera, dove aspetta per essere eventualmente attaccato ad un altro contenitore di parti. In un sistema CONWIP i cartellini percorrono un circuito chiuso che include l’intera linea di produzione.

Inizialmente il CCS era stato presentato per la produzione in linea, dove per linea produttiva si intende un sistema caratterizzato da macchinette in serie separate da buffer. Questa logica di controllo prevede che una nuova parte entri nel sistema e inizi ad essere processata solo non appena un prodotto finito lascia la linea produttiva per essere consegnato al cliente finale. Questo implica che il livello totale di WIP nel sistema si mantiene costante: da qui il nome CONWIP (CONstant-Work-In-Process). Il CCS utilizza, quindi, un solo tipo di scheda per controllare la quantità totale di WIP consentita in tutta la linea, vincolando, cioè, il livello massimo di WIP per l’intero sistema. Quando si raggiunge tale livello, non viene autorizzata nessuna produzione.
CAPITOLO 2 Le politiche di controllo della produzione di tipo pull: Literature review

prima che non termini la lavorazione di un pezzo. Ciò si verifica nel momento in cui giunge la domanda del cliente. In effetti una linea di controllo CONWIP può essere vista come un’unica cella kanban comprendente tutte le fasi. Il controllo CONWIP viene, infatti, considerato un caso particolare del controllo Kanban single-stage: anche se ci sono più fasi, il controllo di produzione CONWIP viene eseguito solo all’ingresso del sistema produttivo, mentre per tutte le altre fasi intermedie tra la prima e l’ultima si opera come in un sistema con tecnica di tipo push, cioè i pezzi si spostano a valle senza nessun blocco. Una volta che un primo pezzo (semilavorato o pezzo da assemblare) viene rilasciato all’ingresso del sistema, infatti, è spinto attraverso il sistema il più velocemente possibile.

Il vantaggio di questo controllo, infatti, è quello di combinare bassi livelli inventariali, mantenuti attraverso i cartellini che autorizzano la produzione, e l’elevata produttività che si raggiunge attraverso la logica push.

Il sistema di controllo CONWIP può essere, in effetti, considerato come un sistema pull alla fine della linea e un sistema push dall’inizio della linea verso la fine. La parte del sistema che opera con tecnica push può incorrere, ovviamente, nelle problematiche inerenti ai sistemi push.

Un inconveniente di questo meccanismo consiste nel non considerare l’impatto che un eventuale centro “bottleneck” (collo di bottiglia) può avere sulle prestazioni dell’intera linea produttiva. La logica CONWIP stabilisce un limite superiore al livello inventariale dell’intero sistema produttivo, senza controllare però i livelli di scorte delle varie fasi: questo rappresenta uno svantaggio della politica, poiché può comportare l’accumulo di materiale all’ingresso di un’eventuale fase collo di bottiglia. In alcuni casi i buffer nel controllo CONWIP sono troppo pieni: se vi è una fase “bottleneck”, si accumula materiale per un tempo troppo elevato.

Una situazione analoga si verifica in caso di guasti: quando una macchina lungo la linea CONWIP si guasta, la quantità di materiale a valle viene
gradualmente smaltita dalle richieste dei clienti. L’arrivo della domanda provoca il rilascio di nuovi pezzi grezzi nel sistema, che attravereranno le varie fasi fino a giungere alla macchina guasta: ci sarà allora l’accumulo di materiale. Quando tutti i cartellini CONWIP si sono accumulati prima della macchina in guasto, il rilascio di nuove materie prime al sistema si blocca.
Nel caso di sistemi di produzione multi-prodotto risulta di primaria importanza anche la strategia di configurazione del CONWIP. Infatti, aldilà della soluzione classica in cui ogni cartellino può agganciare tutte le tipologie di prodotto, può rivelarsi assai vantaggioso suddividere i cartellini in gruppi e disporre che i cartellini di un gruppo possano agganciare solo un tipo (o alcune ben determinate tipologie) di prodotto.
Il controllo CONWIP è un meccanismo di controllo molto semplice che dipende, quindi, da un solo parameetro per l’intero sistema, ovvero la quantità di CONWIP C. Ciò influenza sia la cessione di pezzi finiti a valle sia il trasferimento delle richieste a monte attraverso il sistema.
Non vi è alcuna informazione sulla domanda tra le fasi, ad eccezione tra l’ultima e la prima fase.

La capacità di produzione o il tasso di produzione massima del sistema è interessato solo dalla quantità di cartellini CONWIP, cioè dipende solo dal parametro C.
Con riferimento ai sistemi produttivi di applicazione del CONWIP, esso potrebbe operare sull’intero processo produttivo, su sottosistemi del processo...
produttivo (se quest’ultimo fosse troppo lungo), su una linea manifatturiera, su un sistema composto da più linee manifatturiere dentro una cella manifatturiera, su un sistema composto da più celle manifatturiere, sull’intera Supply Chain.

2.2.1 CONWIP card

Il controllo CONWIP limita il WIP totale del sistema attraverso l’utilizzo di un solo tipo di cartellino che viene attaccato al job non appena entra nel sistema e lo accompagna attraverso tutto il processo produttivo per poi essere staccato solo alla fine del processo. Questo meccanismo si ripete, invece, in ogni fase nel caso del controllo Kanban.

La scelta del numero idoneo di cartellini per il controllo influenza in modo significativo le prestazioni del sistema. Nel meccanismo Kanban è necessario individuare un numero di cartellini per ogni fase: N parametri per un sistema con N fasi; nel caso CONWIP il numero di cartellini è unico ed è riferito all’intero sistema.

Il numero di cartellini in un sistema pull può essere stabilito secondo due diversi approcci (Framinan et al., 2003):

1. card setting: date determinate condizioni, questa procedura stabilisce il numero di cartellini in modo da rendere le prestazioni del sistema accettabili in relazione a determinate misure operative considerate. Si assume che il numero di cartellini così ottenuto resti fisso durante tutto l’intervallo decisionale considerato;

2. card controlling: con questo metodo si stabiliscono delle regole per modificare il numero corrente di cartellini, adattandolo a determinati eventi che modificano il contesto considerato, come variazione della domanda o WIP in eccesso, con lo scopo di raggiungere un livello target di prestazione.
Il card setting è stato ampiamente trattato in letteratura (Monden, 1983; Framinan et al., 2003), mentre esistono solo pochi studi relativi al card controlling e al confronto tra le due procedure.

Hopp e Roof (1998) hanno sviluppato la cosiddetta procedura per il controllo statistico della produttività in ambiente make-to-order: questo meccanismo adatta dinamicamente il numero di cartellini in un sistema CONWIP incrementandolo o riducendolo per garantire un livello target di produttività. Tardif e Maaseidvaag (2001) hanno, invece, sviluppato una procedura card controlling per i sistemi CONWIP in ambiente make-to-stock: questo approccio si basa sul trade-off tra il livello di scorte di prodotti finiti e la domanda arretrata (backordered) in un certo istante, con l’obiettivo di ridurre sia il livello di WIP che i costi associati alla domanda arretrata; stabiliscono quindi un numero massimo di ‘extra cards’ che possono essere aggiunti o sottratti al sistema per il controllo.

Framinan et al. (2005) hanno introdotto una nuova procedura di controllo, con l’obiettivo di garantire un determinato livello di produttività in ambiente make-to-order o, in alternativa, un determinato livello di servizio in ambiente make-to-stock. I livelli di produttività o di servizio vengono monitorati o ad intervalli fissati di tempi o tenendo conto del numero di parti prelevate dal sistema, adattandoli ai cambiamenti introducendo un numero massimo di cartellini extra da poter aggiungere o sottrarre al sistema.

Gli effetti del card setting e del card controlling sono stati studiati anche per i sistemi Kanban (Monden, 1983; Gupta e Al-Turki, 1997; Takahashi e Nakamura, 1999).

2.2.2 Literature review: metodi ed approcci allo studio dei CCS

CAPITOLO 2

Le politiche di controllo della produzione di tipo pull: Literature review

2.3 BASE STOCK CONTROL SYSTEM (BSCS)

Base Stock Control è una tecnica di controllo di tipo pull per la coordinazione di sistemi di produzione multi-fase. Il Base Stock system è stato inizialmente proposto per i sistemi di produzione/scorta, con capacità di produzione infinita e utilizza l’idea di una scorta di sicurezza per le giacenze dei prodotti finiti come buffer di sicurezza tra le fasi di coordinamento.

Nel sistema Base Stock non sono presenti fisicamente cartellini che autorizzano la produzione come nel Kanban o CONWIP: affinchè una parte venga rilasciata dall’output buffer di una fase alla fase successiva è sufficiente che arrivi la domanda per la richiesta di quella parte; in alternativa il BSCS può essere visto come un sistema di controllo di tipo pull caratterizzato da un numero infinito di autorizzazioni alla produzione in ogni fase.

Nella politica Base Stock la scorta iniziale in ogni buffer di output, chiamata base stock level, controlla la quantità di materiale tenuto al momento in linea e in attesa di un’altra domanda.

Quando arriva la domanda per un item, è immediatamente trasmessa ad ogni cella di produzione (fase) per autorizzare il rilascio di una nuova parte.

![Figura 2.8 – Base Stock Control (schema semplificato)]
Un vantaggio di questo meccanismo, oltre all’utilizzo del JIT, è che risponde rapidamente alla domanda. Infatti evita il blocco delle informazioni della domanda che vengono trasferite immediatamente a tutte le fasi di produzione (flusso informativo globale).

Il lato negativo è che non dà un limite al numero di pezzi che circolano nel sistema, poiché ogni richiesta che arriva al sistema autorizza il rilascio di nuove materie prime nella prima fase. Un modo per superare questo inconveniente sarà quello di imporre un ulteriore meccanismo di controllo del WIP per ogni fase.

Tale sistema di controllo è considerato reattivo in funzione della domanda che viene trasmessa a tutte le fasi di produzione. I prodotti finiti vengono stoccati in un magazzino prodotti finiti e utilizzati per soddisfare la domanda del cliente.

Se non vi sono prodotti finiti in magazzino quando arriva la domanda, la domanda è backordereed. La politica Base Stock cerca di mantenere una certa quantità di pezzi finiti in ciascun buffer di uscita. La quantità stabilita come scorta viene chiamata base stock level per ogni fase. Per operare un Base Stock control è necessario trasmettere le informazioni sulla domanda ad ogni fase non appena disponibili.

Il controllo Base Stock è un semplice meccanismo di controllo che dipende solo da un parametro per fase, cioè il livello di scorta S_i (base stock level). Questo parametro determina il numero massimo di prodotti finiti che deve essere realizzato al fine di mantenere quel determinato livello di scorta. Il basestock level influenza la cessione di pezzi finiti a valle attraverso il sistema, ma non interferisce nel trasferimento di informazioni richieste a monte.

La capacità produttiva del sistema non dipende da S_i, ma è data dalla capacità di produzione della fase collo di bottiglia.
I buffer pezzi finiti sono vincolati dal livello di basestock, tuttavia i livelli di WIP in ogni fase sono illimitati. Quando una fase non funziona, la domanda continuerà a prelevare pezzi dal buffer di output, e le macchine a valle del guasto continueranno a funzionare normalmente fino a quando necessitano di pezzi dalla fase in guasto.
Le fasi a monte continueranno a ricevere informazioni dirette della domanda, e rilasceranno i pezzi prodotti. Ci sarà quindi un illimitato accumulo di scorte alla macchina guasta.

2.3.1 Literature review: Metodi ed approcci allo studio dei BSCS
Trasferire subito la richiesta dei clienti ad ogni fase, non appena essa giunge al sistema, permette di migliorare il coordinamento e, quindi, le prestazioni del sistema stesso. Questi vantaggi risultano ulteriormente amplificati se la domanda dei clienti può essere conosciuta in anticipo: questa informazione è nota in letteratura come Advance Demand Information (ADI) e consente di ridurre i costi dell’intero sistema, raggiungendo alti livelli di servizio in corrispondenza di livelli di scorte più bassi (Chen, 2001; Van Donselaar et al., 2001; Gallego 2001; Karaesmen et al., 2003, 2004; Wijngaard, 2004; Wang e Toktay, 2006). In particolare, Liberopoulos e Koukoumialos (2004),
hanno analizzato le prestazioni di un sistema Base Stock con ADI nei casi single-stage e dual-stage. Liberopoulos (2007) ha poi focalizzato l’attenzione sul trade-off tra livello di scorte ed ADI per un modello di sistema fornitore single-stage in ambiente make-to-stock, che utilizza la politica Base Stock per soddisfare gli ordini dei clienti, di cui sono disponibili informazioni in anticipo di un intervallo stabilito di tempo, detto demand lead-time. Liberopoulos ha dimostrato che se le richieste di fornitura arrivano realmente nell’ordine preso in considerazione, allora il trade-off tra livello ottimale di base stock e demand lead-time è “esaustivo”, nel senso che se il demand lead-time è sufficientemente lungo, allora il livello ottimale di scorte tenderà a zero. È ovvio che le condizioni considerate non sono sempre riscontrabili nella realtà: variazioni nella domanda dei clienti sono inevitabili; e maggiore è la variabilità della domanda, più alti saranno i livelli di scorte richiesti per assicurare un adeguato livello di servizio. Questa situazione si verifica, in genere, in corrispondenza di grossi ordini da parte dei clienti che possono avere effetti negativi su tutta la supply chain a monte; è preferibile ricevere piccoli ordini più frequentemente, piuttosto che grandi ordini anche se a ritmo minore (Larsen et al. 2008; Larsen e Thorstenson, 2008). Da queste considerazioni, Du e Larsen (2010) hanno proposto un nuovo modello Base Stock in cui si introduce la massima dimensione di un ordine che permette di distinguere tra ordini “regolari” (regular) e ordini “più grandi” (larger): con questo modello si tende a soddisfare al meglio gli ordini regolari, nel rispetto di un determinato livello di servizio, a scapito degli ordini maggiori che vengono soddisfatti con un livello di servizio più basso. Questo controllo può avvenire seguendo due regole diverse: postpone (posporre) o split (dividere). Nel primo caso il soddisfacimento di un larger order viene posticipato di un determinato intervallo di tempo rispetto all’arrivo: ogni regular order che giunge al sistema in questo periodo viene soddisfatto prima dell’ordine maggiore. Questo meccanismo rappresenta un

2.4 CONWIP-KANBAN CONTROL SYSTEM (CKCS)

Il CONWIP-Kanban è una politica di controllo mista Kanban e CONWIP proposta da Bonvik et al. (1997). In pratica è un kanban a cui all’ultima stazione della linea vengono tolti i relativi cartellini kanban e vengono aggiunti i cartellini CONWIP per l’intero sistema.

![Figura 2.9 – CONWIP-Kanban Control (schema semplificato)](image_url)

Combinare i due controlli permette di superare l’aspetto negativo della logica CONWIP che, fissando un limite superiore al livello inventariale dell’intero sistema produttivo, senza controllare però i livelli di scorte delle varie fasi, può comportare l’accumulo di materiale all’ingresso di un’eventuale fase collo di bottiglia o di una macchina guasta. Se le fasi a monte sono relativamente veloci e affidabili, si può scegliere di limitare l’accumulo di
scorte prima che sia raggiunto il livello massimo, implementando anche il meccanismo Kanban, progettato per controllare che i singoli buffer tra i centri di lavoro non superino certi limiti fissati. È stata proposta allora la politica di controllo ibrida CONWIP-Kanban che combina i vantaggi della tecnica CONWIP, ovvero elevata produttività e basso livello di WIP totale nel sistema, con quelli della logica Kanban, cioè controllo del livello inventariale ad ogni fase. Quindi i cartellini CONWIP limitano il livello di WIP nell’intero sistema, mentre il numero massimo di kanban disponibili in ogni fase controlla il livello inventariale della relativa fase, ad eccezione dell’ultima in cui non c’è alcun controllo Kanban, ma sono disponibili, invece, i cartellini CONWIP. Le celle controllano i problemi nella linea e bloccano il rilascio di parti alla linea se non riescono a lavorare più velocemente. Non c’è bisogno del controllo Kanban per bloccare l’ultima macchina, poiché ogni materiale che passa questo centro di lavoro raggiungerà il magazzino di prodotti finiti se la macchina può eseguire l’operazione. In un sistema di controllo ibrido CONWIP-Kanban, quindi, la prima fase necessita di due cartellini di autorizzazione a produrre: un cartellino kanban dalla seconda fase e un cartellino CONWIP dall’ultima fase. In tale politica di controllo la domanda è comunicata direttamente al buffer prodotti finiti e l’autorizzazione alla produzione nella prima fase avviene attraverso la tecnica CONWIP; ci sono anche dei limiti sulla quantità di scorta in ogni fase come nel controllo Kanban. Questa politica quindi agisce come il CONWIP, ma diminuisce le scorte quando insorgono dei problemi. Si può notare che è simile al controllo Kanban, poiché circolano cartellini tra macchine e buffer. L’ampiezza dei buffer è determinata dal numero di cartellini kanban in circolazione. L’unica differenza è che i cartellini staccati dall’ultimo centro di lavoro sono spediti indietro alla prima macchina della linea, invece che all’ultima. Da là seguono
le parti fino a ritornare al buffer di prodotti finiti da cui torneranno ancora una volta indietro.

Il CONWIP-Kanban control system è una tecnica ibrida che dipende da un parametro per fase, cioè il numero di kanban K_i, e da un parametro addizionale per l’intero sistema, cioè il limite di WIP totale, indicato con C. Il numero di kanban e il CONWIP influenzano sia il trasferimento di pezzi finiti a valle sia il trasferimento della domanda a monte attraverso il sistema. L’informazione sulla domanda del cliente viene trasferita a monte da un segnale kanban e trasferita alla prima fase dal segnale CONWIP.

2.4.1 Tecnica generica Kanban-CONWIP

Come Bonvik et al. (1997), anche Gaury et al. (2000) hanno proposto un modello di controllo per superare i difetti di Kanban e CONWIP. Partendo quindi dall’idea di Bonvik et al. (1997) di un sistema ibrido CONWIP-Kanban, con un flusso di cartellini kanban che aiutano il flusso dei cartellini CONWIP, hanno sviluppato un loro modello, che è ancora una tecnica mista Kanban-CONWIP. In pratica è un CONWIP a cui vengono aggiunti i cartellini kanban ad ogni stazione della linea, compresa l’ultima, a differenza della tecnica ibrida CONWIP-Kanban di Bonvik (1997) che ne è provvista.

2.4.1.1 Tecnica generica personalizzata Kanban-CONWIP

A differenza di Bonvik et al. (1997), Gaury et al. (2000) ritengono che la presenza delle celle kanban sia utile, ma non necessaria per ogni stadio della linea.

Il modello misto da loro proposto, la tecnica Generica Kanban-CONWIP, viene allora considerato un modello da cui partire per trovare la configurazione migliore per un dato sistema. Infatti non è detto che sia necessario mantenere per ogni coppia di centri di lavoro i relativi cartellini kanban. La tecnica Generica Kanban-CONWIP rappresenta un sistema con
Le politiche di controllo della produzione di tipo pull: Literature review

celle kanban ad ogni stazione della linea, compresa anche l’ultima, che invece era assente in Bonvik et al. (1997). Partendo da questo sistema, tramite una simulazione vengono studiate tutte le combinazioni possibili di presenza e assenza di celle kanban e viene poi scelta la migliore, detta Generica Personalizzata.

Questa tecnica Generica Personalizzata è diversa per ogni tipo di sistema manifatturiero, in quanto viene scelta la configurazione migliore caso per caso.

2.4.2 Literature review: metodi ed approcci allo studio dei CKCS

A partire dal tipo di produzione a vista (pull), i sistemi di produzione di tipo kanban sono stati oggetto di numerose ricerche e sviluppi alla fine degli anni Novanta. Nell'ambito della produzione in serie, diversi autori hanno proposto metodi approssimati e sviluppati algoritmi per semplificare i problemi di controllo affrontati (Dallery e Le Bihan, 1999; Gershwin e Schor, 2000; Sadr e Malhame, 2004; Geraghty e Heavey, 2004; Koh e Bulfin, 2004; Takahashi et al., 2007; Lavoie et al., 2009). In particolare, Tang et al. (2009) hanno sviluppato un metodo approssimato per la valutazione delle prestazioni di un sistema CONWIP-Kanban costituito da due macchine in serie, esteso poi al caso di tre macchine. Le formulazioni derivanti dal loro studio sono risultate coerenti con le simulazioni effettuate; in più il loro modello, basato sulla teoria delle catene di Markov nel caso tempo-continuo, pur essendo stato sviluppato per casi specifici, può essere applicato anche a situazioni più complesse, poiché le assunzioni alla base della semplificazione non risultano particolarmente restrittive.

2.5 GENERALIZED KANBAN CONTROL SYSTEM (GKCS)

Il Generalized Kanban Control System unisce i vantaggi del sistema kanban, con cui si raggiunge un migliore coordinamento e controllo del WIP, e del Base Stock che si adatta rapidamente alle variazioni della domanda. Il GKCS dipende da due parametri per fase, il numero di kanban K_i e il base stock level S_i. Il primo parametro controlla il livello di work-in-process in ogni fase e il base stock determina il numero di pezzi che devono essere prodotti per essere stoccati in buffer all’uscita dalle fasi produttive per mantenere il livello di scorta prestabilito. Nei sistemi GKCS i kanban vengono usati come cartellini di autorizzazione alla produzione, per trasferire le parti alle fasi a valle, mentre il massimo numero di parti nell’output buffer di ogni fase è dato dal livello base di scorte. La domanda di prodotti proveniente dall’esterno viene trasmessa da ogni fase a valle a quella a monte, determinando, in ogni fase, la richiesta della produzione di una nuova
parte che a sua volta autorizza il prelievo del materiale da ogni fase a monte perché possa essere lavorato nella fase successiva. La mancanza di cartellini kanban in un determinato stage impedisce il trasferimento della domanda che viene rinviato fino al momento in cui non sarà disponibile un nuovo kanban, mentre il prelievo di materiale da parte di una determinata fase può essere rinviato a causa della mancanza di parti finite nel buffer di uscita della fase precedente. Nel GKCS, però, la domanda viene inviata a monte separatamente dal rilascio di pezzi a valle: ogni kanban è staccato non appena i pezzi sono completati dalla cella di produzione. In questo sistema, quindi, il trasferimento della domanda a monte ad una determinata fase non è completamente sincronizzato con il trasferimento di pezzi finiti alla fase successiva.

Il GKCS comprende entrambe le politiche di base da cui è composto come casi particolari:

- quando $K_i = S_i$ per ogni fase i, allora il GKCS coincide con il controllo Kanban tradizionale di parametri K_i per ogni fase i;
- nel caso in cui $K_i = \infty$ e $S_i \geq 0$ per ogni fase i, allora il GKCS è equivalente al BSCS con lo stesso base stock level S_i per ogni fase i.

La capacità produttiva del GKCS dipende da entrambi i parametri di controllo.
2.5.1 Literature review: metodi ed approcci allo studio dei GKCS

Così come per i sistemi Kanban, anche per i sistemi GKCS la determinazione del numero di Kanban per ogni fase è considerata come una decisione di gestione importante, che incide sul livello di prestazioni desiderato. La
decisione mira a evitare backorders ad ogni stazione, mantenendo l'inventario al suo livello più basso possibile. Diversi approcci alternativi sono stati proposti per l'adeguamento del numero di Kanban (metodi analitici, di simulazione, euristici). Frein Y. e Mascolo hanno esaminato l'influenza dei parametri di progetto sull'efficienza dei GKCS, ricavando regole generali ed una migliore comprensione dei GKCS. Essi hanno sviluppato sia un modello analitico che un modello di simulazione. Wormgoor ha sviluppato un modello analitico utilizzando la teoria delle code di rete per le prestazioni dei sistemi GKCS (single class and multi class GKCS); ha poi mostrato le sue applicazioni per il miglioramento e il controllo operativo del sistema reale di produzione mondiale. Infine ha effettuato la validazione con il modello di simulazione. Dallery Y. e Liberopoulos G. hanno confrontato i sistemi EKCS con i GKCS, dimostrando come i sistemi EKCS siano superiori a GKCS con esempi numerici, utilizzando la simulazione e modelli di analisi. L'impatto di fattori come la domanda, fermo macchina, il numero di Kanban e ottimizzazione globale nei GKCS è stato in realtà poco studiato. Analogamente al controllo Kanban tradizionale, il GKCS è stato esteso ai sistemi di assemblaggio, considerando le due diverse regole per il trasferimento dei vari componenti alla fase di montaggio, che può avvenire simultaneamente o meno: si individuano allora, rispettivamente, Simultaneous Generalized Kanban Control System, SGKCS, e Independent Generalized Kanban Control System, IGKCS (Chaouïya et al., 2000). Inoltre il GKCS è stato studiato per sistemi multi-product, distingue tra shared GKCS e dedicated GKCS a seconda dell’utilizzo di kanban dedicati ad ogni tipo di prodotto o meno (Baynat et al., 2002; Deokar, 2004).
2.6 EXTENDED KANBAN CONTROL SYSTEM (EKCS)

L’Extended Kanban Control System è un meccanismo di controllo proposto per i sistemi produttivi multi-stage in alternativa al GKCS. L’EKCS, infatti, è un’ulteriore tecnica che combina le due politiche di base Kanban e Base Stock. Essa unisce i vantaggi di questi due meccanismi: in ogni fase del sistema, il WIP è limitato dal numero di kanban cards, mentre la domanda è immediatamente trasferita a tutte le celle di produzione, come nel BSCS, in modo tale che tutte le fasi ricevano informazioni sulla domanda appena disponibili. Semplicità e limitazione del Work-In-Process in ogni fase sono importanti caratteristiche di questo sistema.

I kanban si muovono a monte separatamente dalla domanda, mentre i pezzi vengono trasferiti sempre insieme ai propri kanban, che non vengono subito staccati dai pezzi alla fine di ogni lavorazione, come accade nel GKCS. L’EKCS, quindi, dipende da due parametri per fase, numero di kanban cards K_i e livello target di scorta S_i.

L’Extended Kanban Control System impone, però, un vincolo tra i due parametri: prevede che il numero di kanban cards per ogni fase sia maggiore del numero del livello di base stock stabilito.

In determinate condizioni, l’EKCS si riduce alle politiche di base Kanban e Base Stock. In particolare:

- l’EKCS è equivalente al KCS se risulta $K_i = S_i$ per ogni fase i;
• se risulta $K_i = \infty$ e $S_i \geq 0$ per ogni fase i, l’EKCS è equivalente al BSCS con lo stesso base stock level S_i per ogni fase i.
La capacità produttiva di questo sistema dipende solo dal numero di kanban K_i in ogni fase i.

2.6.1 Literature review: metodi ed approcci allo studio degli EKCS

Nel sistema di controllo EKCS la domanda è trasmessa subito ad ogni fase produttiva come avviene nel Base Stock. Utilizzando questa proprietà di trasferimento delle informazioni, Khuller (2006) ha analizzato il sistema EKCS multi-stage nel caso particolare in cui il livello di base stock di ogni fase coincida con il massimo livello di WIP ammesso in quella fase. Nel suo studio l’EKCS considerato in queste condizioni viene definito Extended information Kanban Control System (EiKCS) e si riferisce, in particolare, alla parte informativa dell’EKCS. Per l’analisi di un sistema EKCS in presenza di advance demand information (ADI) si può far riferimento, principalmente, agli studi di Liberopoulos e Koukoumalos (2004).

Diversi approcci alternativi sono stati proposti per l'adeguamento del numero di Kanban (metodi analitici, di simulazione, euristici). L'impatto di fattori come la domanda, il fermo macchina, il numero di Kanban e la ottimizzazione globale non è stato molto studiato. In particolare la determinazione del numero ottimale di Kanban negli EKCS è ancora in fase di sviluppo.

2.7 EXTENDED-CONWIP-KANBAN CONTROL SYSTEM (ECKCS)

L’Extended-CONWIP-Kanban Control System è dato dalla combinazione delle tre logiche pull di base, CONWIP, Base Stock e Kanban, includendo ognuna di esse come caso particolare.

Attraverso il controllo Extended-CONWIP-Kanban (ECK) è possibile combinare i principali vantaggi delle tre politiche pull classiche: il flusso
informativo globale, tipico del Base Stock, il livello totale di WIP del sistema, limitato dal meccanismo CONWIP e il livello locale di WIP in ogni fase, limitato dalla logica Kanban

Questa tecnica di controllo è caratterizzata da due parametri per fase, ovvero il numero di kanban K_i e il basestock level S_i, ed un parametro extra per l’intero sistema, cioè il numero di CONWIP C. Ogni parametro K_i limita il massimo numero di parti nella i-esima fase; il parametro S_i rappresenta il livello target di parti finite nell’output buffer di ogni fase, mentre il parametro C limita il livello totale di WIP nel sistema. Le informazioni relative alla domanda vengono subito trasmesse ad ogni fase non appena arrivano al sistema, come nel caso dei controlli Base Stock o Extended Kanban.

![Diagramma ECKK](image)

Figura 2.12 – Extended-CONWIP-Kanban Control (schema semplificato)

Inoltre, come per l’EKCS, è possibile raggiungere il giusto trade-off tra la necessità di un basso livello di scorte di parti finite, per ridurre i costi di mantenimento, e un livello di scorte più alto per rispondere rapidamente alle variazioni della domanda; i due controlli sono completamente separati: il primo si basa sul parametro base stock level e il secondo sul numero di kanban e di CONWIP. Quindi un’importante caratteristica dell’ECK, rispetto all’EKCS, è che introduce anche il parametro di controllo CONWIP per l’intero sistema.

Si possono individuare diversi motivi che giustificano la scelta dell’aggiunta di questo parametro extra.
Innanzitutto, il controllo CONWIP impone un controllo del Work-In-Process più forte rispetto al Kanban: ciò si traduce in un più efficace ripristino dei guasti. Se una macchina si guasta, il materiale nel suo output buffer viene comunque prelevato in caso di necessità per soddisfare la domanda a valle; il prelievo di materiale autorizza, quindi, la lavorazione di nuove parti. Se la macchina resta guasta a lungo, senza controllo CONWIP, la fase a monte di essa continuerà a produrre e accumulare parti finché non sarà raggiunto il limite massimo di WIP per quella fase, dato dal numero di kanban: questo potrebbe determinare, però, un livello di WIP dell’intero sistema troppo elevato.

In secondo luogo, imponendo anche il controllo CONWIP, si raggiunge un livello inventariale più basso nel caso in cui i tempi di processo delle varie fasi siano correlati fra loro. Secondo gli studi simulativi di Takahashi e Nakamura (2002), il meccanismo di controllo CONWIP è più efficiente in caso di correlazione dei tempi di processo rispetto al controllo Kanban: ciò si traduce in un livello medio di WIP più basso, a parità di produttività del sistema.

Il meccanismo di controllo ECK combina, quindi, gli aspetti caratteristici delle tre logiche pull di base. La produzione è guidata dal flusso informativo globale della domanda, che viene subito trasferita alle varie celle di lavoro non appena arriva al sistema, come accade nel sistema Base Stock; il livello totale di WIP nel sistema è limitato dal numero di CONWIP, secondo la logica di controllo CONWIP; ogni parte finita, nel buffer di uscita di una fase, viene trasferita a valle solo se è disponibile il cartellino kanban della fase a valle, come accade per il controllo Kanban tradizionale.

Quindi, in casi particolari, l’ECKCS può essere ricondotto ad ognuna delle tre politiche pull di base:
• quando $K_i = \infty$ in ogni fase i, $C = \infty$ e $S_i \geq 0$ in ogni fase i, allora il sistema ECK è equivalente al Base Stock Control System con base stock level pari a S_i in ogni fase i;
• quando $K_i = \infty$ in ogni fase i, $S_i = 0$ in ogni fase i e $C \geq 0$, allora il sistema ECK è equivalente al CONWIP Control System con numero di CONWIP pari a C;
• quando $C = \infty$ e $K_i = S_i$ in ogni fase i, allora il sistema ECK è equivalente al Kanban Control System caratterizzato da parametri K_i in ogni fase i.

2.7.1 Literature review: metodi ed approcci allo studio degli ECKCS
Recenti sono gli studi relativi alla tecnica di controllo ibrida Extended-CONWIP-Kanban introdotta da Boonlertrvanch (2005): questo schema di controllo combina le tre politiche pull di base Kanban, Base Stock e CONWIP, includendo ognuna di queste politiche come caso particolare. Le prestazioni di questo nuovo meccanismo di controllo sono state valutate, tramite simulazione, in diversi scenari, mostrandone l’elevato livello di stabilità in presenza di cambiamenti; in più è stato proposto anche un semplice metodo per adattare i parametri di controllo del sistema alle variazioni della domanda. La stabilità del controllo ECK è evidente anche dalle simulazioni condotte da Miao e Xu (2009), in diverse circostanze, per un sistema produttivo costituito da quattro fasi in serie e modellato mediante rete di Petri; tale logica è stata confrontata sia con le altre politiche di controllo di tipo pull, sia con la logica push MRP: con il sistema ECK si sono ottenute le migliori performance in termini di WIP e prodotti consegnati, mentre il controllo MRP è risultato il meno vantaggioso rispetto a tutte le politiche analizzate. La superiorità del controllo ECK su quello MRP deriva, ovviamente, dalla logica pull su cui è basato, in opposizione alla logica push.
che caratterizza il sistema MRP; inoltre l’ECKCS è risultato anche migliore delle altre politiche pull perché consente di combinare tutti i principali vantaggi derivanti dalle logiche pull di base.
2.8 CONFRONTO TRA LE POLITICHE DI CONTROLLO DELLA PRODUZIONE

In letteratura sono state presentate moltissime trattazioni relative all’analisi delle singole strategie di controllo della produzione pull, mentre è possibile individuare solo pochi studi relativi al confronto fra le varie tecniche; ciò è dovuto, in parte, al fatto che le diverse politiche di controllo sono state analizzate ipotizzando contesti differenti che non hanno permesso uno studio comparativo semplice e diretto fra tutte le tecniche.

In genere gli studi condotti dai vari autori mostrano che le prestazioni dei diversi sistemi possono variare anche significativamente, a parità di condizioni ipotizzate. Le ragioni alla base di queste differenze di performance rappresentano principalmente i risultati delle differenze, tra le varie politiche di controllo, in termini di meccanismo di controllo del WIP e di trasferimento del flusso informativo.

Il controllo del WIP può essere classificato come controllo locale o globale. Il controllo locale del WIP limita, separatamente, la massima quantità di WIP in ogni fase del sistema, mentre il controllo globale del WIP limita la massima quantità totale di WIP nel sistema. Quindi le quantità di WIP di ogni fase risultano maggiormente correlate tra loro se nel sistema è implementato, oltre al controllo locale, anche il controllo globale del WIP, come accade nei meccanismi CONWIP-Kanban ed ECK; tutte le altre politiche utilizzano il controllo locale del WIP, ad eccezione della logica CONWIP in cui viene implementato il controllo globale.

Per quanto riguarda il flusso informativo, questo può essere classificato come accoppiato, parzialmente accoppiato o disaccoppiato al meccanismo di controllo del WIP, a seconda della modalità con cui le informazioni relative alla domanda vengono trasmesse nel sistema. Nel controllo Kanban le informazioni della domanda vengono trasferite a monte solo quando il
materiale viene prelevato da valle: il flusso informativo è completamente accoppiato al controllo del WIP.
Questa condizione viene rilassata nei sistemi CONWIP, CONWIP-Kanban e GKCS. Nei primi due l’informazione è trasferita alla prima fase del sistema, ma solo quando il buffer prodotti finiti risulta non vuoto; nel GKCS il trasferimento della domanda a monte non è completamente sincronizzato con il trasferimento del materiale a valle. Per questo sistema il flusso informativo risulta, allora, solo parzialmente accoppiato al meccanismo di controllo del WIP.
Per tutte le altre politiche l’informazione relativa alla domanda viene trasferita direttamente a tutte le fasi non appena la domanda giunge al sistema: il trasferimento delle informazioni è completamente disaccoppiato al controllo del WIP.
Il disaccoppiamento tra flusso informativo e movimentazione dei materiali deriva dalla necessità di stabilire la quantità opportuna di materiale da mantenere nel sistema per raggiungere il giusto trade-off tra rapidità di risposta alle variazioni di domanda e bassi costi inventariali. Infatti alti livelli di WIP e prodotti finiti nel sistema garantiscono di rispondere rapidamente all’aumento della domanda, ma determinano contemporaneamente alti costi di mantenimento.
Questo conflitto è evidente nel meccanismo Kanban, in cui l’unico parametro di controllo per fase, ovvero il numero di kanban, gioca due ruoli opposti:
- limitare il livello di WIP in ogni fase (minore è il numero di cartellini, minore è la quantità di WIP);
- fornire il livello target nell’output buffer di ogni fase necessario a fronteggiare eventuali interruzioni e variazioni nel sistema (necessità di un maggior numero di cartellini).
Questa caratteristica "due ruoli in un parametro" può portare a cattive prestazioni del sistema soprattutto quando la domanda effettiva o tempi di
lavorazione sono molto variabili. Per esempio, in una situazione di variabilità elevata della domanda, si vorrebbe avere un numero "grande" di Kanban, per rispondere rapidamente alla domanda. Allo stesso tempo, si vorrebbe avere un numero “piccolo” di kanban in periodi di scarsa domanda, per ridurre i costi di magazzino, poiché il numero di kanban è uguale al livello target del buffer di pezzi finiti. Quindi il sistema non può svolgere al meglio i due ruoli in condizioni di forte variabilità di domanda o processo.

Lo stesso problema si verifica implementando il controllo Base Stock: un alto base stock level da un lato permette di compensare gli aumenti nelle richieste, ma dall’altro determina un maggiore livello di WIP medio nel sistema. Anche in questo caso, infatti, il parametro di controllo rappresenta il livello target di output in ogni fase per garantire una determinata quantità di parti finite negli output buffer.

Questa difficoltà porta, allora, alla necessità di separare i due ruoli in due parametri di controllo differenti. Questo disaccoppiamento avviene in parte nel GKCS, considerando due parametri differenti per fase, numero di kanban e base stock level, che consentono di trasferire la domanda a monte senza la necessità di avere parti finite nell’output buffer. Il disaccoppiamento è totale, invece, nell’EKCS in cui la distinzione completa dei due ruoli nei due parametri di controllo per fase consente di trasferire direttamente la domanda a tutte le fasi in seguito all’arrivo nel sistema.

Di conseguenza la capacità produttiva dell’EKCS dipende solo dal numero di kanban per fase e non anche dal livello di base stock, come invece accade nel GKCS, in cui la capacità produttiva dipende da entrambi i parametri.

Come nell’EKCS, i due ruoli sopra menzionati sono completamente disaccoppiati anche nel controllo Extended-CONWIP-Kanban; a differenza dell’EKCS, però, l’ECK introduce il numero di cartellini CONWIP come parametro di controllo extra per l’intero sistema. Con questa logica è possibile mantenere bassi livelli di scorte di parti finite, stabilendo valori
bassi del parametro base stock level, e allo stesso tempo rispondere rapidamente agli incrementi di domanda, fissando determinati valori del numero di cartellini kanban e CONWIP.

In generale i vantaggi del CONWIP sul Kanban possono essere riassunti nella tabella 2.1.
Le caratteristiche che rendono il CONWIP superiore ai sistemi pull in generale, ed in particolare al sistema Kanban, sono elencate di seguito:

- implementazione più semplice: fissa un solo set di cartellini per l’intera linea;
- può accogliere un mix di prodotti che cambia, grazie all’uso di cartellini specifici della linea e alla Backlog List;
- è applicabile a una maggiore varietà di ambienti produttivi;
- può accogliere un collo di bottiglia che cambia posizione (dipendente dal mix), poiché il WIP si accumula naturalmente di fronte alla macchina più lenta;
- permette operazioni con ampi tempi di setup, quindi un ampio mix di prodotti;
- secondo Spearman et al. (1990), il kanban è un sottocaso del CONWIP, quindi non può essere superiore.
I risultati degli studi di Gstettner e Kuhn (1996), invece, hanno mostrato che il Kanban control può essere superiore al CONWIP per una linea produttiva, stabilendo un numero appropriato di cartellini kanban in ogni stazione della linea: a parità di livello di throughput raggiunto con entrambe le tecniche, il meccanismo Kanban consente di accumulare una quantità minore di WIP. Allo stesso risultato è giunto anche Khosasteh-Ghamari (2008), confrontando i due meccanismi nel caso di sistemi di assemblaggio.

Nella tabella 2.2 sono riportate le prestazioni dei due sistemi.

<table>
<thead>
<tr>
<th></th>
<th>Kanban</th>
<th>CONWIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo di attraversamento</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varianza tempo di attraversamento</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puntualità data di consegna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIP (a parità di livello di servizio)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produttività (a parità di WIP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varianza della produttività</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabella 2.2 – Prestazioni Kanban e CONWIP

Per quanto riguarda la tecnica ibrida CONWIP-Kanban, è possibile far riferimento agli studi di ottimizzazione effettuati da Bonvik (1997) tramite simulazione: le prestazioni di un sistema ibrido CONWIP-Kanban risultano migliori rispetto a quelle derivanti dalla logica Kanban e dalla logica CONWIP implementate singolarmente. Il vantaggio della tecnica ibrida rispetto a quella Kanban aumenta all’aumentare della lunghezza del processo,
del grado di variabilità del processo e del livello di servizio; le prestazioni del sistema ibrido rispetto a quello CONWIP, invece, migliorano all’aumentare del tasso di utilizzazione del sistema.

In particolare, nella tabella 2.3 sono riportate, a titolo di esempio, le differenze di WIP medio, a parità di produttività e di livello di servizio (fonte: Bonvik, 1997).

<table>
<thead>
<tr>
<th>Politica</th>
<th>Produttività (parti/min)</th>
<th>Livello di servizio (%)</th>
<th>WIP medio (parti)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanban</td>
<td>.650</td>
<td>98.1</td>
<td>66.6</td>
</tr>
<tr>
<td>CONWIP</td>
<td>.648</td>
<td>98.3</td>
<td>49.3</td>
</tr>
<tr>
<td>Hybrid</td>
<td>.648</td>
<td>98.3</td>
<td>49.3</td>
</tr>
</tbody>
</table>

Linea di 6 macchine. Domanda di 0.65 parti/min

<table>
<thead>
<tr>
<th>Politica</th>
<th>Produttività (parti/min)</th>
<th>Livello di servizio (%)</th>
<th>WIP medio (parti)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanban</td>
<td>.749</td>
<td>98.3</td>
<td>113.6</td>
</tr>
<tr>
<td>CONWIP</td>
<td>.750</td>
<td>98.2</td>
<td>82.4</td>
</tr>
<tr>
<td>Hybrid</td>
<td>.750</td>
<td>98.2</td>
<td>80.8</td>
</tr>
</tbody>
</table>

Linea di 6 macchine. Domanda di 0.75 parti/min

<table>
<thead>
<tr>
<th>Politica</th>
<th>Produttività (parti/min)</th>
<th>Livello di servizio (%)</th>
<th>WIP medio (parti)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanban</td>
<td>.852</td>
<td>98.2</td>
<td>253.0</td>
</tr>
<tr>
<td>CONWIP</td>
<td>.850</td>
<td>98.4</td>
<td>223.1</td>
</tr>
<tr>
<td>Hybrid</td>
<td>.849</td>
<td>98.4</td>
<td>206.2</td>
</tr>
</tbody>
</table>

Linea di 6 macchine. Domanda di 0.85 parti/min

Tabella 2.3 – Differenze di WIP medio tra Kanban, CONWIP e Hybrid

La politica ibrida CONWIP-Kanban è stata confrontata con le politiche base CONWIP e Kanban, ma anche con quella Base Stock (Bonvik et al., 1997). Le diverse logiche sono state confrontate in un sistema costituito da quattro stadi in serie, simulando il comportamento dei diversi sistemi in corrispondenza di una domanda sia costante che variabile: la politica di controllo ibrida consente di ridurre il livello inventariale del sistema del 10-20% rispetto al solo meccanismo Kanban, a parità di livello di servizio considerato; mentre le prestazioni del CONWIP e del Base Stock risultano intermedie rispetto ai due risultati precedenti. Anche gli studi relativi ai sistemi ibridi Kanban/Base Stock, ovvero Generalized Kanban control ed
Extended Kanban control hanno mostrato per tali politiche ibride risultati migliori, in generale, rispetto alle singole politiche di base (Karaesmen e Dallery, 1998).

I semplici meccanismi di base come il Kanban o il Base Stock risultano migliori in casi particolari e semplici come, ad esempio, in un sistema produttivo con una o due fasi, ma presentano inconvenienti se applicati a contesti diversi, in condizioni più generali. Inoltre per i sistemi in serie Dallery e Liberopoulos (1996) hanno dimostrato che la domanda dei consumatori è soddisfatta più velocemente in EKCS che in GKCS.

Gli ultimi studi comparativi tra controlli ibridi mostrano la superiorità dell’Extended-CONWIP-Kanban rispetto a tutte le altre politiche fondate sulla logica pull, sia di base che ibride, poiché quest’ultimo meccanismo combina tutti i vantaggi derivanti dalle varie tecniche. Tramite simulazione sono stati ottenuti risultati migliori sia in termini di prestazioni (trade-off tra livello di servizio e livello inventariale), che in termini di stabilità delle soluzioni, al variare delle condizioni sia esterne che interne al sistema.

Boonlertvanich (2005) ha simulato i diversi sistemi pull in tre differenti scenari, partendo da un caso base, caratterizzato da una certa variabilità nella domanda e nei tempi di processo, espressi in termini di variazione del Mean Time To Failure (MTTF) e del Mean Time To Repair (MTTR). Ha poi valutato le performance dei sistemi al variare di queste condizioni, rispetto al caso base, considerando altri due scenari.

I tre diversi casi ipotizzati sono riportati nella tabella 2.4.
In tutti i casi presi in esame, le prestazioni delle politiche ibride (CONWIP-Kanban, GKCS, EKCS, ECK) sono risultate migliori di quelle delle logiche di base nel raggiungere un elevato livello di servizio in corrispondenza di più bassi livelli di scorte. In particolare, tra le politiche ibride, l’Extended-CONWIP-Kanban risulta la migliore in tutti i casi, anche se in determinate circostanze altri sistemi ibridi hanno raggiunto performance molto simili. Questi risultati enfatizzano, quindi, non solo le migliori prestazioni della politica ECK, ma anche, in generale, la sua maggiore robustezza alle variazioni.

Risultati analoghi sono stati ottenuti anche da Miao e Xu (2009), al variare della domanda e dei tempi di processo. In base alle prove di Miao e Xu la politica Kanban risulta particolarmente adatta ad ambienti produttivi stabili, ripetitivi e non mutevoli, in cui, invece, le politiche ibride, e più di tutte quella ECK, risultano più robuste.

In realtà la maggior parte degli studi condotti, presenti in letteratura, è stata incentrata sul confronto fra solo alcuni dei sistemi di controllo della
produzione pull, tralasciando il raffronto complessivo relativo alle diverse politiche descritte.
Un primo obiettivo di questo lavoro di tesi, invece, è quello di effettuare una comparazione tra i diversi sistemi di controllo della produzione, analizzati in scenari differenti, evidenziando le modalità di risposta alle molteplici condizioni ipotizzate.
Il confronto, dunque, interesserà tutti i meccanismi di controllo, valutandone le prestazioni sulla base di determinati parametri di performance.
CAPITOLO 3
PULL SYSTEMS:
MODELLI DI SIMULAZIONE

3.1 L’APPROCCIO SIMULATIVO

Lo scopo di questa tesi è quello di evidenziare le differenze tra i sistemi di controllo della produzione di tipo pull, quali Kanban, CONWIP, Base Stock, e sistemi ibridi, ipotizzando differenti scenari di produzione, mediante il confronto di modelli, rappresentazione dei sistemi, che consentono di studiarli a fondo.

In generale, se il modello è “sufficientemente semplice”, è possibile un’analisi dello stesso mediante approccio analitico/numerico/statistico:

- equazioni differenziali
- programmazione lineare
- teoria delle code
- catene di Markov
- ...

Se il modello è molto complesso (spesso nei casi reali) e/o se non è facile/possibile identificare le leggi matematiche che governano l’intero sistema e/o se la componente stocastica è elevata, si applica la simulazione.

Lo strumento di analisi scelto ai fini dell’obiettivo che ci si propone è proprio la simulazione.

I sistemi descritti in precedenza sono stati modellati attraverso ARENA, un pacchetto software dalle grandi potenzialità, capace di simulare sistemi di
qualsiasi tipo ed in grado di dare una rappresentazione grafica animata particolarmente dettagliata e realistica del sistema da simulare.

3.2 LA SIMULAZIONE

Con il termine simulazione si intende l’attività del replicare, per mezzo di opportuni modelli, una realtà già esistente o da progettare, al fine di studiare, nel primo caso, gli effetti di possibili interventi o eventi in qualche modo prevedibili, o, nel secondo, di valutare diverse possibili scelte progettuali alternative.

La simulazione prevede la costruzione di un modello, che deve essere validato, di un esistente sistema al fine di identificare e comprendere quei fattori che controllano il sistema e/o predicono il suo comportamento futuro.

Lo scopo della simulazione è di ricreare in un “ambiente controllato” le dinamiche del sistema reale, dando una sua visione globale; essa, infatti, evidenzia le interdipendenze tra le diverse parti, mostra l’evolvere del sistema nel tempo, monitorando i valori dei parametri che lo influenzano e fornisce gli indicatori di performance.

I vantaggi derivanti dalla simulazione sono innumerevoli:

- Riduzione dei costi: gli esperimenti svolti direttamente sul sistema reale possono essere molto onerosi. Uno studio di simulazione, invece, riduce drasticamente il rischio di costo perché consente di valutare in anticipo le conseguenze economiche legate alle scelte di gestione ipotizzate, spesso legate a molti fattori non facilmente valutabili. È quindi possibile individuare gli errori prima che vengano commessi ed evitare così costi dovuti a scelte non ottimali. Allo stesso tempo il modello consente di valutare inoltre i potenziali risparmi nell’adozione di nuove tecniche organizzative;
- **Maggior comprensione del fenomeno e ripetibilità:** nella realtà è impossibile sperimentare il sistema più di una volta senza che vi siano variazioni nei parametri iniziali. Nella simulazione, invece, si può ripetere la stessa sequenza di eventi alle stesse condizioni iniziali ma a partire da input differenti: i risultati dello stesso problema sono direttamente confrontabili e permettono di scegliere quindi quella ottimale. Inoltre l’esperimento, essendo ripetibile, concede più possibilità per raccogliere i dati a differenza del caso reale;

- **Riduzione dei tempi:** eseguire un esperimento su un sistema reale può richiedere molto tempo mentre con la simulazione bastano pochi minuti per ottenere gli stessi risultati. Inoltre c’è la possibilità di espandere e comprimere il tempo simulato;

- **Sicurezza e legalità:** sperimentare nuove soluzioni può essere pericoloso e a volte persino illegale. Grazie all’ausilio della simulazione le varie idee possono essere testate e si può capire con sicurezza quale sia la migliore;

- **Riduzione dei rischi per le idee più innovative:** molte volte, per paura di un fallimento, le idee troppo innovative (le più rischiose) non vengono neppure provate. Con la simulazione, tutto questo è reso possibile dato il basso rischio, incoraggiando così le innovazioni e i miglioramenti. Poter studiare dinamicamente un sistema senza perturbarlo realmente offre l’opportunità di testare le scelte gestionali ipotizzate in sicurezza e a basso costo;

Risulta quindi chiara l’importanza della simulazione come strumento di supporto alle decisioni.

Non bisogna comunque dimenticare alcuni **svantaggi:**

- i risultati della simulazione possono dare solo un’indicazione di quello che sarà il comportamento del sistema;
- lo sviluppo del modello potrebbe risultare molto oneroso, anche a
 causa del personale altamente qualificato richiesto, e i tempi di calcolo
 per effettuare una simulazione significativa potrebbero dilatarsi molto;
- l’output della simulazione deve essere interpretato per identificare la
 soluzione migliore e questo può comportare un’analisi di dati molto
 complessa.

La simulazione costituisce uno strumento molto potente e largamente
impiegato nello studio di qualsiasi sistema, trovando tipica applicazione
nelle seguenti aree:
- progettazione e analisi di processi industriali (manifatturieri e di
 processo);
- progettazione e valutazione di organismi di servizi (call-centers, fast-
 foods, ospedali, banche, uffici postali..);
- determinazione di strategie di ordine e inventario;
- progettazione ed implementazione operativa di sistemi di trasporto
 (autostrade, aeroporti, porti..);
- analisi di sistemi finanziari e/o economici;
- valutazione di sistemi d’arma militari e dei loro requisiti logistici;
- etc.
3.2.1 I modelli di simulazione

Un modello di simulazione può essere statico o dinamico. Un modello statico è una rappresentazione di un sistema in un istante di tempo particolare oppure un modello rappresentativo di un sistema nel quale la variabile tempo non gioca alcun ruolo; esempi di simulazione statiche sono i modelli Monte Carlo; d’altro canto un modello di simulazione dinamica rappresenta un sistema che si evolve nel tempo così come l’approvvigionamento all’interno di un sistema produttivo.

Un modello di simulazione può essere deterministico o stocastico. Se un modello di simulazione non contiene alcuna componente probabilistica (oppure random), esso viene chiamato deterministico; un complicato sistema (e quindi non analiticamente trattabile) di equazioni differenziali che descrive una reazione chimica potrebbe ben rappresentare un modello del genere. Nei modelli deterministici, l’output è ben determinato una volta che i dati in ingresso e le relazioni che costituiscono il modello sono state specificate, nonostante il tempo necessario all’elaborazione dei dati sia particolarmente lungo. Molti sistemi, tuttavia, devono essere modellati a partire da dati in ingresso di tipo probabilistico o random: ciò genera la nascita di modelli di simulazione di tipo stocastico.

Un’ultima distinzione si basa sul modo di evolversi del sistema nel tempo facendo distinzione tra modelli di simulazioni continui, nei quali le variazioni avvengono nel tempo con continuità, e modelli di simulazione discreti, nei quali le variazioni sono di tipo discontinuo.

3.2.2 Simulatori ad eventi

I simulatori sono packages per la simulazione orientati alle applicazioni. Esistono numerosi pacchetti software di tipo interattivo per la simulazione come ARENA®, Witness, Extend, Micro Saint. Alcuni sono abbastanza
CAPITOLO 3
Pull systems: modelli di simulazione

generali anche se dedicati a specifici tipi di sistemi come impianti industriali, sistemi di comunicazione, altri invece sono molto specifici.
I simulatori permettono di costruire un programma di simulazione utilizzando menù grafici senza bisogno di programmare. Sono abbastanza facili da imparare e un inconveniente che spesso presentano è quello di essere limitati a modellare quei sistemi previsti dalle loro caratteristiche.
Una particolare categoria di simulatori sono i simulatori ad eventi.
Si intende per evento l’accadimento di una modifica del sistema in osservazione. Il sistema passa da una condizione iniziale ad una finale mediante una successione finita di eventi. Tra un evento e il successivo il sistema non muta.
All’interno del sistema troviamo le entità, che corrispondono ad un concetto molto estensivo. Un’entità può essere un oggetto materiale, oppure immateriale. Un’entità può essere singola, oppure un gruppo di parti che la compongono.
Le entità devono essere:

- Transitorie, non sono cioè componenti fisse del sistema ma le attraversano cioè sono create, contabilizzate ed eliminate;
- Passive, non sono elementi attivi, cioè per procedere nel sistema devono essere movimentate da altri componenti il sistema stesso (le macchine). L’entità è in perenne attesa.

Le entità possono essere, alternativamente:

- Anonime, non vi è traccia alla fine della elaborazione di quello che è capitato alla singola entità;
- Personalizzate, viene conservato tutto quello che fanno durante l’evoluzione del sistema.

Le macchine sono gli elementi attivi del sistema e partecipano a tutte le operazioni previste.
Le proprietà delle macchine sono:
Descrivono un ciclo; una macchina compie delle operazioni sulle entità mediante un ciclo che è la descrizione degli stati in cui si trova o si potrà trovare la macchina. Gli stati sono regolati da relazioni di precedenze. Una macchina è un elemento fisso del sistema, non può essere creata né eliminata. Una macchina che sta operando su un’entità si dice occupata, altrimenti è libera ed è in attesa di iniziare un’operazione;

Generano eventi; in un sistema un evento può essere generato solo da una macchina. Quando una macchina passa da uno stato “libero” ad uno stato “occupato” o viceversa genera un evento. Questo aspetto rende molto generale il concetto di macchina che quindi può essere intesa come generatore di eventi oltre che esecutrice di operazioni;

Ogni macchina ha un orologio locale.

Le operazioni o attività costituiscono la parte attiva del ciclo delle macchine e risultano essere caratterizzate dalle seguenti informazioni:

- Quali sono le macchine e le entità che vi partecipano;
- Come si determina l’inizio di tale attività;
- Quali sono le condizioni di avvio dell’operazione;
- Come si determina l’evento di fine attività;
- Quali sono i cambiamenti di stato che avvengono nel sistema per l’effetto dell’inizio e della fine dell’operazione.

Le operazioni si possono classificare in:

- Immediate, quando l’unica condizione affinché inizi un’operazione è legata al fatto che la macchina sia libera e le entità disponibili in attesa;
- Condizionate, quando non basta che la macchina sia libera, ma è necessario che si verifichino altre condizioni aggiuntive.
Comunque, per quanto detto in precedenza, si può far riferimento alla seguente regola generale: “L’inizio di una operazione è sempre contemporaneo ad un evento di fine operazione, cioè alla liberazione di una macchina”.

Per la costruzione dei modelli oggetto dello studio è stato utilizzato il software ARENA, che appartiene a questa categoria, ossia a quella dei simulatori ad eventi. Arena è uno dei software migliori in questo ambito, con un’interfaccia grafica particolarmente semplice da usare. Si tratta, inoltre, di un software che, pur essendo orientato allo sviluppo di problemi in ambito manifatturiero, risulta molto flessibile nell’adattarsi a qualsiasi tipo di sistema.

3.2.3 Fasi di costruzione di un modello di simulazione

Per condurre, in modo corretto, uno studio di simulazione è essenziale seguire i seguenti passi (Fig. 3.1):

- **Formulazione del problema.** Qualunque studio di simulazione ha inizio con la definizione del problema. Se il problema è posto dal cliente è di fondamentale importanza che l’analista lo capisca in tutti i suoi aspetti. Se il problema, al contrario, è posto dall’analista è importante che il cliente capisca la formulazione e ne sia in pieno accordo. Non è infrequente la riformulazione del problema in fasi avanzate.
Capitolo 3: Pull systems: modelli di simulazione

⇒ Obiettivi del progetto e piano generale. Gli obiettivi riguardano le domande cui si deve dare risposta con la simulazione. Il piano del progetto dovrebbe includere tutti gli eventuali scenari da investigare. Il piano dello studio dovrebbe essere formulato includendo tempo necessario, personale impiegato, hardware e software richiesti, fasi dello sviluppo del modello, output per ogni fase, costo dello studio. Il consiglio degli esperti è quello di focalizzarsi su pochi obiettivi e di individuare pochi parametri per la misura delle performance del sistema, definirli accuratamente, e su di essi agire per tutta la durata dello studio di simulazione.

⇒ Modello concettuale. Il sistema reale deve essere astratto e posto in una serie di relazione matematiche e/o logiche di componenti. Di regola si costruisce un modello semplice e dopo si implementa. Il cliente dovrebbe essere aggiornato e coinvolto nella creazione del modello, questo migliorerà il modello e fornirà al cliente stesso i mezzi per utilizzarlo in futuro. In ogni caso è fondamentale stabilire il livello di dettaglio necessario per il conseguimento degli obiettivi preposti.

⇒ Modello di simulazione. Qui il modello concettuale viene “tradotto” in un linguaggio di programmazione oppure in un tool di simulazione. Questa fase è molto delicata perché si tratta di costruire il modello utilizzando le strutture del programma, volendo fare un paragone si
potrebbe dire che si deve entrare nella testa del calcolatore e avere una rappresentazione del modello attraverso gli schemi mentali del programma di simulazione.

Verifica. In questa fase ci si pone una domanda: Il modello si comporta correttamente? Che ha lo scopo di verificare l’assenza di errori logici e sintattici nel modello, bisogna in pratica accertare che il modello si comporti nel modo in cui il suo progettista aveva previsto. L’animazione rappresenta uno strumento di supporto molto utile per questa fase. E’ importante che questa verifica sia continua nel tempo. La verifica a fine modello può risultare disastrosa con conseguente eliminazione del modello stesso.

Validazione. In questa fase la domanda è: Il modello può “sostituire” il sistema reale? La validazione è praticamente la fase in cui si definisce se il sistema simulato è “sovrapponibile” con la realtà. In generale per validarlo si usano dati storici del sistema e si vede se gli output sono equivalenti ai risultati passati. Sfortunatamente non è detto che esista il sistema reale perché si potrebbe simulare per esempio l’ampliamento di un impianto. Esistono tuttavia altri metodi. La scelta di quali e quanti parametri usare per la validazione del modello non è cosa semplice, la letteratura consiglia pochi parametri, ma significativi. Il modello potrà ritenersi validato quando i risultati da esso ottenuti si discostano da quelli reali di una quantità inferiore al margine di errore ritenuto accettabile per quel particolare tipo di sistema.

Progetto ad esperimenti. In questa fase andrà stabilita la durata ed il numero di iterazioni da eseguire per ogni esperimento, nonché la modalità con cui effettuare le misure in ogni iterazione ed i criteri di valutazione dei risultati ottenuti ad ogni esperimento. Per ogni
scenario che deve essere simulato si devono, quindi, prendere in considerazione: lunghezza dei Run, il numero di replicazioni ed infine il modo di inizializzare il sistema se è richiesto.

- **Lanci e Analisi.** I lanci e l’analisi hanno lo scopo di stabilire le performances ed i benchmarks del sistema secondo gli scenari simulati.

- **Altri lanci.** In base all’analisi condotta sui run che sono stati completati l’analista deve decidere se siano sufficienti o se si debbano simulare altri scenari.

Documentazione e presentazione. Tale fase consiste nell’analizzare, secondo i criteri prefissati, i risultati generati dall’esperimento di simulazione, per cui molta importanza riveste la presentazione stessa dei dati, che devono poter essere facilmente esaminabili e comprensibili dall’analista e, possibilmente, anche dal committente. La documentazione per un’azienda può essere fondamentale. Se il modello verrà utilizzato nuovamente dall’azienda, dovrà essere in grado di sfruttarlo senza più il supporto dell’analista (se l’analista è un consulente esterno). Inoltre con la giusta documentazione una ipotetica modifica del modello risulterebbe sicuramente più facile. I risultati a loro volta dovranno essere chiari e semplici cosicché si possano mettere a confronto varie soluzioni. La presentazione è uno strumento di supporto alla decisione. Se il cliente è stato coinvolto nel progetto e l’analista ha seguito tutte le fasi la probabilità di giusta implementazione è elevata.
Il processo di simulazione non segue però ordinatamente la successione, è piuttosto una procedura trial and error in cui si esegue una fase che rimanda ad altre in funzione dei risultati ottenuti; si effettuano cioè dei nuovi ingressi
qualora una sessione portasse a dei risultati in contraddizione con dei passi precedenti: se, per esempio, la fase di verifica del modello fornisse esiti negativi allora sarebbe necessario ripetere la fase di costruzione del modello; al limite, se non fosse possibile fornire delle raccomandazioni in grado di centrare l’obiettivo scelto, si dovrebbe scegliere un diverso target ed iniziare d’accapo la procedura.

3.3 IL SOFTWARE

3.3.1 Il linguaggio SIMAN - ARENA

Il sistema SIMAN, SImulation ANalysis della System Modeling Corporation, è un pacchetto software utilizzabile per la realizzazione di simulazioni servendosi di un sistema di elaborazione, quale, un Personal Computer MS-DOS. La gamma dei sistemi che possono essere modellati mediante SIMAN è abbastanza ampio, comprendendo:

✓ Sistemi continui;
✓ Sistemi discreti, con la possibilità di sfruttare un’orientazione ai processi o agli eventi;
✓ Combinazione di sistemi discreto-continui.

L’autore di questo linguaggio è Tennis Pegden, già ideatore del linguaggio SLAM. L’ultima versione SIMAN ideata, ha assunto il nome ARENA, strutturata ad oggetti che possono essere collegati fra loro con un procedimento grafico ad icone, rappresentando la logica del flusso delle entità all’interno del sistema; successivamente ciascun modulo può essere modificato aggiungendo i dati necessari per l’esperimento di simulazione ad eventi discreti o continui. Il risultato sarà un ambiente di sviluppo integrato e
di semplice utilizzazione, sia per la comprensione della struttura del modello di simulazione e sia ai fini aziendali.

Il SIMAN prevede che, nella simulazione di un sistema, si costruiscano delle strutture fondamentali separate:

- La struttura del modello del sistema ("Model Frame");
- La struttura sperimentale ("Experimental Frame").

Una prima definizione, molto sintetica, delle due strutture potrebbe essere la stessa adottata da Pegden nell’esporre i concetti teorici del SIMAN: “il modello del sistema definisce le sue caratteristiche statiche e dinamiche, la struttura sperimentale ne definisce, invece, le condizione alle quali il modello deve essere sottoposto per fornire i risultati richiesti”. Il notevole vantaggio che si ottiene da una simile architettura è quello di richiedere modeste risorse di calcolo e di poter effettuare differenti esperimenti di simulazione sullo stesso sistema, facendo variare la sola struttura sperimentale ed utilizzando sempre lo stesso modello del sistema o viceversa. La struttura sperimentale rappresenta, quindi, un elemento indispensabile per poter effettuare la simulazione; in essa, infatti, vengono specificate le condizioni che caratterizzano il particolare esperimento che si vuole compiere sul sistema descritto nella struttura del modello. La specificazione delle modalità di funzionamento del sistema, oggetto della simulazione, avviene attraverso la definizione di vari elementi dai quali la struttura sperimentale può pensarsi costituita.

L’ampia gamma di sistemi, che è possibile sottoporre a simulazione con SIMAN, è dovuta al fatto che il modello del sistema da costruire potrà essere costituito da:
Equazioni algebriche, alle differenze e differenziali, per la modellazione di sistemi continui;

Diagrammi a blocchi, ottenuti in modo interattivo con i pre-processori grafici blocks e elements, o attraverso istruzioni in modalità batch, per la modellazione dei sistemi discreti.

Una combinazione delle due modalità precedenti, per modellare un sistema discreto-continuo.

Vogliamo adesso fornire, gli elementi di base per effettuare la simulazione di sistemi discreti utilizzando il linguaggio SIMAN, per cui d’ora in poi l’attenzione sarà rivolta alla modellazione di questo tipo di sistemi in cui si possono individuare due elementi fondamentali:

- Le entità;
- I blocchi funzionali.

3.3.2 Entità, attributi e variabili in SIMAN

Abbiamo già menzionato nei paragrafi precedenti alcuni elementi costituenti un sistema. In particolare è stato detto che sotto il nome di entità vanno gli oggetti che nell’ambito di un sistema discreto sono impegnati in attività. Esempi di entità sono rappresentati dai materiali o dai pezzi in lavorazione in una fabbrica, oppure dai clienti in un grande magazzino.

È possibile assegnare ad ogni entità del sistema attributi che specifichino alcune delle caratteristiche proprie della entità stessa; ad esempio, un pezzo in un’industria manifatturiera potrebbe essere caratterizzato dal codice di identificazione e dal numero progressivo di ingresso nel sistema. Gli attributi di una entità sono rappresentati dagli elementi di un vettore di reali ciascuno dei quali è direttamente assegnabile dall’utente, e da un gruppo di attributi interi assegnati dal sistema nel corso della simulazione. Gli attributi sono
specifici per ciascuna entità, possono essere modificati nel corso della simulazione e vengono eliminati solo quando l’entità esce dal sistema produttivo.

Oltre alle caratteristiche di tipo individuale, è possibile considerare anche i parametri globali del modello contenuti nelle variabili; esse, pertanto, non sono riferite alla singola entità, dipendono dallo stato del sistema e non vengono cancellate dall’uscita delle entità dal sistema. Costituiscono esempi di variabili il numero di entità presenti in una certa coda oppure il tempo corrente del sistema.

Esistono in SIMAN tre diversi tipi di variabili:
- Variabili assegnabili dall’utente;
- Variabili del sistema, che ne descrivono lo stato corrente;
- Variabili random, che sono utilizzate, ad esempio, per specificare la distribuzione dei tempi di interarrivo delle entità nel sistema o del tempo di servizio nelle varie stazioni.

3.3.3 I blocchi funzionali in SIMAN

Nel linguaggio SIMAN esistono dieci diversi tipi di blocchi elementari, ognuno dei quali è in grado di svolgere una o più funzioni, in tal caso il blocco funzionale è individuato da una specifico nome, a seconda della funzione svolta.

I blocchi `QUEUE`, `STATION`, `BRANCH`, `PICKQ`, `Q_PICK`, `SELECT` e `MATCH`, sono in grado di svolgere un’unica funzione e pertanto il blocco funzionale avrà lo stesso nome del blocco elementare. Invece, i blocchi `OPERATION`, `HOLD` e `TRANSFER` possono svolgere più di una funzione; in tal caso il nome assunto dal blocco funzionale dipenderà dal tipo di operazione, conservazione o trasferimento; ad esempio il tipo di operazione `DELAY` individua quel blocco di tipo `OPERATION` che riguarda il flusso di una entità. Tutti i tipi di blocchi elementari, inclusi i tipi `OPERATION`,

HOLD e TRANSFER, sono dotati di operandi che controllano la funzione svolta dal relativo blocco.

3.3.4 Il software: Arena

ARENA è il prodotto più recente, sviluppato dalla System Modeling; esso è un pacchetto software dalle grandi potenzialità, capace di simulare sistemi di qualsiasi tipo, perfettamente integrato con i sistemi operativi WINDOWS ed in grado di dare una rappresentazione grafica animata, del sistema da simulare, particolarmente dettagliata e realistica. Arena è un VIS (Visual Interactive Tool) tool che supporta la modellazione di vari scenari usando la simulazione ad eventi discreti:

- Sistemi dinamici di business.
- L’analisi di complessi sistemi di servizi e management.
- L’analisi della supply chain che include l’immagazzinamento il trasporto e la logistica.
- Sistemi di previsione delle performance basati sui costi, sulla produttività e utilizzo.
- Lo studio dei colli di bottiglia tipo code o risorse sovroutilizzate.

Con Arena l’utente può sviluppare il modello interattivamente, creare le animazioni del sistema, lanciare la simulazione, collezionare i dati di output dalla simulazione, creare ed esaminare i risultati statistici dei lanci di simulazione. Arena include anche l'Input Analyzer, che è un modulo di analisi dei dati di input. Il software è interfacciabile in ambiente VBA, tale caratteristica ne consente la facile integrazione con moduli realizzati con altri software al fine di ottimizzare lo scheduling della produzione e, più in generale, la gestione delle risorse. I modelli/oggetti grafici usati da questo software sono basati su semplici schemi a blocchi (flow chart) che presenta il sistema come un network logico di attività correlate.
Arena supporta la costruzione di modelli gerarchici ciò permette di rappresentare un elemento come rappresentazione di un sottomodello. I sottomodelli possono contenere a loro volta sottomodelli. Il supporto dei modelli gerarchici permette di scomporre i sistemi complessi in sottosistemi più semplici e comprensibili.

Esso ha apparentemente una impostazione completamente diversa dal suo predecessore, infatti, SIMAN è un linguaggio di tipo convenzionale, basato su una serie di istruzioni da impostare caso per caso; al contrario ARENA, come già anticipato, è un linguaggio ad oggetti, in esso, i comandi sono disponibili sotto forma di oggetti da disporre sul piano di lavoro, la cui impostazione viene effettuata tramite finestre di dialogo suddivise generalmente in tre campi:

M Model Workspace: è l’area che contiene i blocchi necessari per la costruzione del modello logico e tutto quello che c’è di grafico, come l’animazione e le scritte.

M Spreadsheet View: si tratta dell’area destinata ai dati del modello contenuti nei relativi moduli utilizzati nella realizzazione del flowchart rappresentativo del sistema.

M Project Bar: contiene i “template” dai quali trasportare, all’interno della Model Workspace, i blocchi per la costruzione del diagramma di flusso.
Arena è un pacchetto software che consente di costruire modelli costituiti da moduli; la collocazione di un modulo all’interno della shell grafica equivale alla scrittura di un blocco funzionale in linguaggio SIMAN. Quando la simulazione è lanciata, il modello di Arena è subito convertito nel linguaggio di programmazione SIMAN e poi compilato ed eseguito usando l’engine di simulazione del SIMAN. Questo processo è immediato e non è interrotto a meno che non siano individuati errori di sintassi durante la fase di controllo e compilazione, runtime error oppure non si interrompa l’esecuzione.

Oltre alla modellazione e alla simulazione del sistema reale, tale software consente il monitoraggio “in itinere” del processo produttivo con la visualizzazione delle operazioni correnti nonché l’analisi finale dei risultati ottenuti e la valutazione di situazioni che, altrimenti, non potrebbero essere tenute sotto controllo. L’insieme di queste caratteristiche conferisce ad ARENA una grande flessibilità, la capacità di costruire modelli di uno stesso sistema con notevoli livelli di dettaglio e, quindi, la possibilità di essere
utilizzato tanto da utenti alle prime armi quanto da esperti nel settore della modellazione di sistemi produttivi.

Arena contiene un Quick Preview che provvede a fornire delle brevi istruzioni su come costruire modelli semplici. Contiene anche 2 librerie di modelli molto utili, le SMARTs Library e le Examples Library. Le SMARTs Library contengono una numerosa raccolta di semplici modelli creati con tecniche differenti. Le Examples Library contengono diversi modelli di complessità variabile che dimostrano la costruzione di modelli e animazione per parecchi tipi di sistemi più complessi.

Come già detto Arena è un software di simulazione ad eventi discreti. Più semplicemente delle entità entrano nella logica di processo e vengono processate dai moduli.

Ricordiamo che per entità s’intendono degli oggetti (clienti, documenti, treni, semilavorati) che sono serviti, prodotti, processati dai moduli. Nei processi di business sono generalmente documenti cartacei o elettronici (contratti, ordini, ecc). Nei processi di servizi sono generalmente persone (persone negli ospedali, negli aeroporti ecc). Nei processi industriali sono materie prime, semilavorati, prodotti finiti. In casi particolari potrebbero essere i pacchetti di comunicazione (Tcp-ip, Udp, Mac) nella Network analysis. Si possono avere più tipi di entità nello stesso modello come ad esempio: vari tipi di semilavorati che diventano un prodotto finito oppure un gruppo di passeggeri che si dividono per fare il check-in di prima e di seconda classe. Ad ogni entità si possono assegnare degli attributi. Questi possono essere dei numeri (ex codice a barre di un prodotto) oppure l’immagine stessa della entità circolante dentro il simulatore. In Arena i moduli sono flow chart e data object che definiscono il processo da simulare. Tutte le informazioni che definiscono il processo sono contenute nei Moduli. I flow chart sono l’insieme degli oggetti che piazzati nella finestra di modellazione (finestra principale di Arena) descrivono il processo.
3.3.5 OptQuest

Abbiamo già citato in precedenza questo programma parlando di Arena. Optquest è infatti un tool opzionale acquistabile a parte e che permette l’ottimizzazione dei modelli simulativi costruiti con esso.

Decidiamo di utilizzare questo programma in quanto utilizza la metodologia che avevamo individuato, algoritmi metaeuristici, e soprattutto ci libera dal peso di dover effettuare le simulazioni in maniera manuale. Infatti Optquest è totalmente integrato con Arena ed è capace di controllarlo, pianifica quindi un piano degli esperimenti, ricava i risultati e cerca il minimo secondo dei criteri da impostati dall’utente.

Se avessimo deciso di ottimizzare il nostro modello, senza utilizzare Optquest, avremmo dovuto impostare i valori delle variabili per ogni strategia che avremmo considerato direttamente nel modello Arena, far partire la simulazione, analizzarne i risultati e poi introdurre di seguito ulteriori valori delle variabili, far ripartire la soluzione e così via fino ad individuare quella ottima. Inoltre bisognerebbe decidere come cambiare i valori delle variabili tra una simulazione e l’altra, con quale criterio. Tale procedura è tediosa e, se decidiamo di esplorare milioni di diverse alternative, impraticabile. Possiamo dire che Optquest migliora Arena consentendoci di automatizzare in maniera efficiente la ricerca di una strategia ottima.

Quando Optquest viene lanciato controlla il modello di Arena (effettua una procedura che lo stesso Arena effettua ogni volta prima di lanciare una simulazione) e carica dal modello stesso alcune informazioni. In particolare Optquest definisce, a partire dal modello di Arena, dei Controls e dei Responses.
I Controls sono le variabili all’interno del nostro modello, Optquest è capace di cambiarne il valore iniziale. I Responses sono invece gli output che noi abbiamo impostato nel modello, sottoforma di record o di statistiche.

In poche parole, per lanciare una simulazione con Optquest, è necessario prima di tutto selezionare un certo numero di controlli indicandone il valore massimo e minimo raggiungibile, eventualmente se si tratta di valori continui o discreti e, nel secondo caso, il passo tra due valori. Si deve poi indicare poi se ci sono dei vincoli tra più controlli, per esempio due che sommati devono essere sempre un determinato valore. Il limite di Optquest in questo caso è quello di non essere capace di lavorare con vincoli non lineari.

Bisogna indicare poi di seguito l’obiettivo e se si tratta di un obiettivo da minimizzare, da massimizzare o un cosiddetto goal, cioè bisogna far si che quell’output raggiunga un determinato valore. È possibile in questa fase anche impostare dei cosiddetti requirements, si tratta di output che noi vogliamo impostare all’interno di un determinato intervallo, ad esempio potremmo nel nostro caso richiedere di ottimizzare il costo totale di un servizio richiedendo che il tempo medio di attesa non superi un determinato valore. Nel nostro caso abbiamo deciso di non impostare nessun requirements in quanto tutte le opzioni da valutare sono già valutate all’interno della funzione obiettivo e verranno calcolati contestualmente ad essa.

È possibile inoltre impostare determinate opzioni, come il numero di simulazioni da effettuare o il tempo massimo di ottimizzazione. È possibile per esempio impostare anche che l’ottimizzazione si fermi dopo un certo numero di iterazioni non migliorative della funzione obiettivo. Un’opzione molto importante riguarda invece il numero di repliche da fare per ogni iterazione, si può impostare per esempio un valore fisso, oppure uno variabile finché non venga tenuto sotto un certo valore il rapporto tra la semiampiezza dell’intervallo di confidenza.
3.4 IL SISTEMA PRODUTTIVO: IPOTESI DI BASE PER LA COSTRUZIONE DEI MODELLI IN ARENA

Per analizzare le diverse politiche di controllo indicate, si farà riferimento ad uno schema generico di sistema produttivo multi-fase, in cui ogni fase viene considerata come un sistema di produzione/scorta caratterizzato da un processo di produzione e da un buffer di uscita. Ci sono diversi motivi per aggregare le attività produttive per fasi e controllare il flusso dei materiali solo nei punti di coordinamento tra le varie fasi. Innanzitutto, nella maggior parte dei casi reali, le attività produttive di un sistema manifatturiero possono essere naturalmente raggruppate in fasi ben distinte ed identificabili che operano indipendentemente le une dalle altre. In secondo luogo, una volta entrata in una fase produttiva, ogni parte segue un processo continuo caratterizzato dalle diverse attività, quindi risulterebbe inappropriato effettuare il controllo della produzione in corrispondenza di ogni singola macchina. Quindi, infine, aggregare le attività produttive per fasi, consente di individuare un numero minore di punti di controllo, rendendo il problema più semplice e facile da implementare.

Si farà riferimento a sistemi produttivi in serie, in cui le parti attraversano le varie fasi seguendo sempre la stessa sequenza, senza la possibilità di rientrare nel sistema, una volta uscite. La prima fase viene alimentata dal buffer delle materie prime mentre ogni fase successiva viene alimentata dalle parti presenti nel buffer di uscita della relativa fase a monte. La costruzione dei modelli è riferita a tale schema di sistema produttivo; ma i modelli rappresentano, comunque, una riproduzione della realtà ovviamente troppo varia e complessa da realizzare se non attraverso della ipotesi semplificative che possono essere così riassunte:
• le fasi produttive sono 5 per ogni modello e costituite da un’unica macchina per ogni fase;

• si produce un unico tipo di prodotto finito, quindi i tempi di set-up delle macchine sono pari a zero;

• la domanda che entra nel sistema è deterministica e arriva con cadenza di 1 giorno;

• la domanda non soddisfatta nel giorno viene rinviata ai giorni successivi;

• il sistema produttivo è funzionante per 240 giorni all’anno (=4sett./mese*5giorni/sett.*12 mesi) per un turno di 8 ore (=1920 ore/anno);

• i valori di domanda richiesti sono al netto degli scarti;

• gli arrivi della domanda sono tra loro indipendenti;

• il tasso di guasto è assunto pari a zero;

• il tempo di movimentazione delle parti è trascurabile;

• la dimensione dei contenitori kanban è di un pezzo;

• vi è disponibilità infinita di materia prima nel sistema.

Nella descrizione del funzionamento dei vari sistemi, per semplicità di rappresentazione grafica, i diversi meccanismi di controllo verranno sempre raffigurati, a titolo di esempio, per un sistema costituito da due sole fasi in serie.

3.5 MODELLO KANBAN CONTROL SYSTEM

In un sistema di controllo Kanban tradizionale, i cartellini kanban che autorizzano la produzione accompagnano le parti attraverso tutto il sistema. Esistono due versioni del sistema kanban originale, single-card Kanban e dual-card Kanban, già trattate in precedenza. In particolare, si farà riferimento solo al sistema kanban single-card. Questa politica di controllo limita la quantità di scorta ad un livello massimo per ogni cella costituita da una fase (stage) e da un buffer di output dove tale valore massimo equivale al numero di kanban che circolano nella cella. Indichiamo con B_0 il buffer materie prime mentre con B_i (i=1,2,.....,N) i buffer di output relativi alla N fasi. Ogni B_i contiene sia i prodotti finiti che i kanban della fase i.

Si riporta a titolo di esempio, come già anticipato, un sistema costituito da due sole fasi in sequenza.

![Diagram of Kanban Control System](image)

Figura 3.3 – Kanban Control System

Quando il sistema è nello stato iniziale, B_i contiene k_i prodotti finiti relativi alla fase i, ogni parte ha attaccato un kanban, gli altri buffer sono vuoti. Il
Il movimento dei kanban è mostrato in figura 3.3. Il controllo kanban opera come segue: quando arriva la domanda del cliente al sistema, la domanda D richiede il rilascio al buffer $B_i=N=2$ di prodotti finiti al cliente. In questo momento si presentano due possibilità:

- se è disponibile un pezzo nel buffer $B_i=N=2$ (caso iniziale), questo viene rilasciato al cliente dopo aver staccato il kanban della fase 2 ad esso attaccato. Questo kanban k_2 è trasferito alla fase a monte e con esso la richiesta di produzione di nuovi pezzi finiti alla fase 2.

- se invece non vi sono pezzi disponibili nel buffer $B_i=N=2$, la domanda D va arretrata (“backordered”) e si attende che una nuova parte completa dalla fase 2 arrivi in $B_i=N=2$. Non appena un prodotto finito sarà rilasciato al cliente, il kanban ad esso attaccato verrà trasferito alla fase 2.

Appena il segnale kanban k_2 giunge alla fase 2, autorizza la produzione di una nuova parte. In questo momento altre due situazioni possono verificarsi:

- se un pezzo al quale è attaccato un kanban k_1 è disponibile in B_1, è istantaneamente staccato il kanban k_1 relativo alla fase 1 e attaccato un kanban k_2 della fase 2. Allo stesso tempo una parte con kanban k_2 è rilasciata alla cella 2. Il kanban k_1 viene trasferito a monte autorizzando il rilascio di materie prime dal buffer iniziale alla cella 1.

- se non vi sono pezzi disponibili in B_1, la fase 2 attende che un nuovo pezzo finito arrivi nel buffer B_1.

Le informazioni sulla domanda del cliente sono trasferite a monte dal segnale kanban. Se alla fase i un prodotto finito non è disponibile nel buffer B_i, nessun kanban è trasferito a monte e le informazioni sulla domanda sono temporaneamente ferme, per poi riprendere quando un pezzo diventa di
nuovo disponibile in B_i. La domanda del cliente è trasmessa a monte dalla fase i solo quando un prodotto finito è disponibile a valle della fase i.

Ogni parte all’interno del sistema non resta mai priva di un cartellino kanban; anche i pezzi finiti disponibili negli output buffer delle varie celle sono accoppiati ai relativi kanban: in ogni fase i, i kanban k_i vengono staccati dai pezzi finiti presenti nel buffer B_i solo quando i pezzi vengono trasferiti alla fase $i+1$.

In ogni fase del sistema vale, allora, la seguente relazione:

$$NQ(K_i) + NQ(M_i) + NQ(B_i) = k_i \quad i = 1, \ldots, N$$

$NQ(K_i)$: numero di kanban disponibili nella fase i;

$NQ(M_i)$: numero di parti in lavorazione alla macchina i;

$NQ(B_i)$: numero di parti finite nell’output buffer i.

Ciò implica, quindi, che il numero di parti in lavorazione e di parti finite in ogni fase i è limitato, complessivamente, da k_i. Di seguito si riporta il modello logico della politica di controllo Kanban.
Figura 3.4 – Modello logico del Kanban Control System
3.5.1 Costruzione del modello Kanban Control System in ARENA

La richiesta di prodotti da parte del cliente è stata modellata attraverso un modulo “create”, avente distribuzione di arrivo costante e modalità di arrivo giornaliera (tutta la richiesta giornaliera arriva nella prima ora). L’entità domanda cliente creata resterà in attesa in un “hold” se non vi sono prodotti finiti nel buffer 5 (in arena è un “hold”) dell’ultima fase; in caso vi siano prodotti finiti, l’entità viene rilasciata. Valutando il numero medio di parti in coda a tale “hold” avremo una misura delle entità consegnate in ritardo al cliente (costo di backlog).

Non appena le entità vengono rilasciate dal blocco “hold” entrano in un “remove” che preleva i prodotti finiti dalla coda dell’ “hold” buffer finale 5. Le entità prelevate (prodotti finiti) entrano in un “separate” che scinde una parte fisica rappresentata dai prodotti finiti da una parte di segnale, che in questo modello è il kanban 5 relativo alla quinta fase.

La parte fisica entra in un “record” che conta il numero di pezzi consegnati, per poi entrare in un “dispose” che modella la consegna al cliente.

Il segnale kanban 5 entra in un “match” e resta in coda, in attesa che nel “match” giungano entità (pezzi) dalla fase 4 in modo da autorizzare la produzione alla fase 5. Le entità dalla fase 4 vengono rilasciate da un “hold” chiamato buffer 4 quando nel “match” vi sono kanban, cioè l’altra coda non è vuota.

Il blocco “match” rilascia un’entità quando vi è la presenza contemporanea di entità sulle due code. In tal caso il blocco “match” simula l’accoppiamento del kanban 5 ai pezzi del buffer della fase 4. In output al “match” vi sono due uscite: una rappresenta il pezzo, prelevato dal buffer 4, che entra in un “process”, blocco che simula la produzione della fase 5; l’altra rappresenta il kanban 4 staccato dal pezzo appena prelevato. L’entità che rappresenta il pezzo in produzione viene trattenuta nel “process” per un tempo stabilito e poi inviata all’ “hold” buffer 5. Il segnale kanban 4 entra in un altro blocco
“match” (della fase 4) e attende pezzi provenienti dal buffer della fase 3, il quale invia entità (pezzi) al “match” solo se in tale blocco vi è presenza di kanban 4.

L’invio del segnale kanban nel “match” rappresenta la logica kanban di autorizzazione della produzione alla fase a monte una volta liberati i kanban della fase a valle.

La logica e l’utilizzo dei blocchi Arena si ripete fino al “match” della prima fase in cui le due code rappresentano le materie prime e i kanban della fase 1 che autorizzano l’ingresso delle entità in uscita dal “match” al blocco “process” della prima fase, per poi essere inviate al modulo “hold” che rappresenta il buffer 1. Al termine, quindi, di ogni “process” relativo alle 5 fasi che compongono il modello, vi è un “hold”, che rappresenta il buffer in cui vengono trattenute in coda le entità (pezzi) prodotte.
CAPITOLO 3 Pull systems: modelli di simulazione

Figura 3.5 – Modello Kanban Control System
3.6 MODELLO CONWIP CONTROL SYSTEM

Il CONWIP Control System utilizza un solo tipo di scheda per controllare la quantità totale di WIP consentita in tutta la linea. Quando viene raggiunto tale valore soglia, la produzione di nuovi pezzi inizia solo quando un prodotto finito lascia il sistema. Ai fini di coerenza, viene rappresentato un sistema con due sole fasi.

Quando inizia la produzione, tutti i cartellini disponibili sono localizzati all’inizio della linea. Quando arrivano gli ordini di produzione, i cartellini hanno il compito di autorizzare l’ingresso di materie prime nel sistema. Una volta che la materia prima è autorizzata a entrare, il materiale scorre liberamente come se fosse in un sistema push e viene processato il più velocemente possibile fino ad arrivare nell’ultimo buffer come prodotto finito. Ogni volta che un lavoro è completato alla stazione di lavoro finale, il cartellino è staccato e mandato indietro all’inizio della linea nella backlog list, dove aspetta per essere eventualmente attaccato ad un altro contenitore di
CAPITOLO 3
Pull systems: modelli di simulazione

parti. In un sistema CONWIP, i cartellini percorrono un circuito chiuso che include l’intera linea di produzione (Figura 3.6). Affinché un lavoro entri nel sistema devono essere presenti un ordine di produzione, un cartellino (autorizzazione) e le materie prime. Lo stesso cartellino autorizza il materiale a entrare e a muoversi lungo il sistema e completare la produzione (autorizzazione alla produzione e alla movimentazione del materiale).

Quando il sistema è nella condizione iniziale, cioè prima che ogni domanda giunga al sistema, il buffer \(B_{i=N-1} = B_1 \), nel modello in figura, è vuoto. Solo il buffer \(B_{i=N} = B_2 \) contiene prodotti finiti con attaccati i cartellini CONWIP.

La politica di controllo CONWIP opera come segue:

quando arriva la domanda del cliente, al sistema si richiede il rilascio di un prodotto finito dal buffer \(B_{i=N} = B_2 \) al cliente. Al momento si presentano due possibilità:

- se i prodotti finiti sono presenti nel buffer \(B_{i=N} = B_2 \), sono immediatamente consegnati al cliente e il cartellino CONWIP è staccato dai pezzi e trasferito nella backlog list.

- mentre, se non vi sono prodotti finiti nel buffer finale, la domanda \(D \) è arretrata e attende un nuovo pezzo completo dalla fase a monte.

Per tutte le altre fasi intermedie tra la prima e l’ultima si opera come in un sistema con tecnica di tipo push, cioè i pezzi si spostano a valle senza nessun blocco: anche se ci sono più fasi, il controllo di produzione CONWIP viene eseguito solo all’ingresso del sistema produttivo e i buffer intermedi, come \(B_1 \), non svolgono alcuna azione di controllo. Ogni volta che una parte lascia il buffer prodotti finiti, il suo cartellino è staccato e inviato alla prima fase di produzione, che autorizza l’ingresso nel sistema di materie prime. Tutte le altre fasi sono sempre autorizzate a produrre qualsiasi sia la quantità di pezzi.
nel sistema. Non vi è alcuna informazione sulla domanda tra le fasi, tranne all’ultima e la prima fase.

La quantità totale di componenti nel sistema è vincolata dal numero di cartellini CONWIP C e può essere espressa come segue:

$$NQ(C) + \sum_{i=1}^{N} NQ(M_i) + \sum_{i=1}^{N} NQ(B_i) = C$$

$NQ(C)$: numero cartellini CONWIP disponibili nella prima fase; $NQ(M_i)$: numero di parti in lavorazione alla macchina i; $NQ(B_i)$: numero di parti finite nell’output buffer i.

Di seguito è riportato il diagramma di flusso della logica CONWIP.
Figura 3.7 – Modello logico del CONWIP Control System
3.6.1 Costruzione del modello CONWIP Control System in ARENA

La creazione della domanda del cliente avviene come nel modello precedente attraverso un “create” sempre con la stessa modalità.

Le entità create vengono trattenute in un “hold” e rilasciate quando vi sono prodotti finiti nel buffer finale modellato attraverso un “hold”.

Se vi sono prodotti finiti nel buffer le entità vengono rilasciate dall’“hold” ed entrano in un “remove” che preleva le entità (pezzi) dal buffer e inviate in un “separate” che separa la parte fisica che rappresenta i prodotti finiti dal segnale CONWIP. Le entità (prodotti finiti) vengono contate in un “record” per aver traccia del numero di ordini evasi (calcolo del livello di servizio) e inviati ad un “dispose” che modella la consegna. Il segnale CONWIP entra in un “hold” in cui si verifica se il numero di entità circolanti è inferiore al CONstant-Work-In-Process stabilito. Se tale livello è inferiore, l’entità (cartellino CONWIP) entra in un “remove” per prelevare dal buffer 0 (modellato con un “hold”) le materie prime che entrano in un “process” composto dai 3 moduli seize, delay, release, i quali indicano il fatto che la macchina, rispettivamente, afferra, processa e rilascia l’entità. Le entità attraversano 5 “process” in serie, ognuno per una fase, e al termine entrano in un “hold” che rappresenta il buffer finale (Fig. 3.8).
Figura 3.8 – Modello CONWIP Control System
3.7 MODELLO BASE STOCK CONTROL SYSTEM

Nella politica Base Stock la scorta iniziale in ogni buffer di output, ovvero il base stock level, controlla la quantità di materiale tenuto al momento in linea e in attesa di un’altra domanda. Quando arriva la domanda per un item, per autorizzare il rilascio di una nuova parte, è necessario che le informazioni vengano trasmesse a tutte le celle di produzione come richiesto dalla domanda, che può essere definita domanda globale. Per operare un Base Stock Control è, quindi, necessario trasmettere le informazioni sulla domanda ad ogni fase non appena disponibili.

Indichiamo con D la domanda globale e D_i la domanda relativa alle varie fasi di produzione. Nel sistema Base Stock non c’è coordinazione tra fasi consecutive e il trasferimento di pezzi è autorizzato dalla domanda globale.

![Base Stock Control System](image)

Figura 3.9 – Base Stock Control System

Quando il sistema è nella condizione iniziale, prima che tutte le richieste arrivino al sistema, il buffer B_i contiene s_i livello di base stock di prodotti
La politica Base Stock opera come segue: quando arriva la domanda dei clienti al sistema, questa è separata in N+1 domande (ad esempio uguali a tre se vi sono due fasi): ogni richiesta \(D_i \) è immediatamente trasferita alla rispettiva fase e la domanda \(D \) chiede il rilascio di un prodotto finito dal buffer \(B_N \) al cliente (lo schema rappresentato in figura 3.9 è relativo a due sole fasi in sequenza, quindi \(B_N = B_2 \)).

A questo punto ci sono due possibilità:

- se vi sono pezzi disponibili in \(B_i \), vengono rilasciati immediatamente alla fase a valle (o consegnati al cliente nel caso dell’ultima fase) e viene avviata la produzione di prodotti per recuperare il base stock; la domanda \(D_i \) è soddisfatta.
- se non vi sono pezzi disponibili in \(B_i \), la domanda è backordered e si attende che una nuova parte completa arrivi dalla fase a monte.

La relazione esistente tra domanda e parti presenti nel sistema è data dall’equazione:

\[
NQ(D_i) + NQ(M_i) + NQ(B_i) = s_i + NQ(D_{i+1}) \quad i = 1, \ldots, N
\]

- \(NQ(D_i) \): numero di parti richieste alla fase \(i \);
- \(NQ(M_i) \): numero di parti in lavorazione alla macchina \(i \);
- \(NQ(B_i) \): numero di parti finite nell’output buffer \(i \);
- \(NQ(D_{i+1}) \): numero di parti richieste alla fase \(i+1 \);

mentre il vincolo sulle parti finite presenti negli output buffer del sistema è dato, ovviamente, da:

\[
NQ(B_i) \leq s_i \quad i = 1, \ldots, N
\]

Di seguito si riporta il diagramma di flusso del BSCS.
Arrivo domanda di prodotti finiti da parte del cliente finale

La domanda D viene inviata ad ogni fase $i=1,2,...,N$

IL BUFFER $B_{i=N} > D$? Con $B_{i=N} = s_N$

SI

I prodotti vengono consegnati al cliente

NO

IL BUFFER $B_{i=N-1} > D - B_{i=N} + s_N$?

SI

Consegna pezzi alla fase $i=N$

NO

PRODUZIONE ALLA FASE $i=N$

INVIÒ PRODOTTI FINITI AL BUFFER $B_{i=N}$

IL BUFFER $B_{i=N-2} > D - \sum B_i$? con $i \in [1;N]$

SI

RICHIESTA MATERIE PRIME AL FORNITORE

NO

CONSEGNA MATERIE PRIME ALLA FASE $i=N-1$

PRODUZIONE ALLA FASE $i=N-1$

INVIÒ PEZZI AL BUFFER $B_{i=N-1}$

Figura 3.10 – Modello logico del Base Stock Control System
3.7.1 Costruzione del modello Base Stock Control System in ARENA

La domanda del cliente viene modellata attraverso un blocco “create” e le entità create entrano subito in un “separate” per poter essere duplicate: in uscita al “separate” si hanno, allora, due entità. Un’entità entra in un “hold” e resta in coda fino a quando non vi sono prodotti finiti (entità) nel buffer 5 finale, modellato con un “hold”; l’altra entità viene ulteriormente duplicata in un “separate”. In uscita al “separate” un’entità si trasforma in una richiesta di reintegro del buffer 5, definita domanda 5, ed entra in un “hold” dove avviene, contemporaneamente, il controllo del base stock level del buffer 5 e della disponibilità di pezzi nel buffer 4. L’altra entità entra nuovamente in un “separate” per consentire, da un lato, il controllo del livello di scorta del buffer 4 e della disponibilità di pezzi nel buffer 3 e, dall’altro, il trasferimento della domanda alla fase precedente: in questo modo la domanda (entità) del cliente viene subito trasferita ad ogni fase del sistema.

Se nel buffer 5 vi sono prodotti finiti, le entità che aspettano in coda all’“hold” l’arrivo dei prodotti sono, quindi, rilasciate ed entrano in un “remove” che preleva i prodotti finiti dalla coda dell’“hold” buffer 5. Le entità prelevate (prodotti finiti) entrano in un “record” che conta il numero di pezzi consegnati per poi entrare in un “dispose” che modella la consegna al cliente.

L’entità che, invece, rappresenta la richiesta di reintegro del buffer 5, viene rilasciata dall’“hold” dove attende in coda nel caso in cui il livello di scorta del buffer 5 è al di sotto del valore stabilito di base stock level e se, contemporaneamente, risultano disponibili pezzi finiti nel buffer 4. A questo punto l’entità rilasciata entra in un “remove”, rimuovendo pezzi dal buffer 4 che in Arena è rappresentato da un “hold”. Le entità prelevate vengono
inviate in un “process”, blocco che simula la produzione della fase 5, dopodiché entrano nel blocco “hold” che modella il buffer 5. Intanto l’entità richiesta di reintegro del buffer 4 attende in coda in un blocco “hold” finché non risultano verificate, contemporaneamente, le due condizioni: livello di scorta del buffer 4 inferiore al base stock level stabilito e buffer 3 non vuoto. Verificate le due condizioni, l’entità viene rilasciata in un “remove” per consentire il prelievo di pezzi dal buffer 3. Ancora una volta l’entità che rappresenta il pezzo viene inviata ad un “process” che modella la produzione nella fase 4 e, infine, trasferita nel blocco “hold” che individua il buffer 4. La logica pull si ripete fino alla prima fase in cui il segnale di richiesta di reintegro del buffer 1, giunto subito, come in ogni fase, insieme alla richiesta del cliente finale, attende in coda in un “hold” che il livello di scorta del buffer 1 scenda al di sotto del limite stabilito: quando ciò accade, il segnale viene rilasciato ed entra in un “remove” per il prelievo di materie prime dal buffer materie prime, sempre rappresentato da un “hold”. Le entità prelevate vengono inviate ad un “process” che simula la produzione della fase 1, l’entità viene trattenuta per un tempo stabilito e inviata ad un “hold” che rappresenta il buffer 1. Al termine, quindi, di ogni “process” relativo alle 5 fasi che compongono il modello vi è un “hold”, che rappresenta il buffer in cui vengono trattenute in coda le entità (pezzi) prodotte.
Figura 3.11 – Modello Base Stock Control System
3.8 MODELLO CONWIP-KANBAN CONTROL SYSTEM

Questa politica di controllo combina i meccanismi CONWIP e Kanban, quindi in tale sistema vengono movimentati sia cartellini CONWIP che cartellini Kanban. La domanda è comunicata al buffer prodotti finiti mentre l’autorizzazione alla produzione nella prima fase avviene attraverso la tecnica CONWIP; ci sono, inoltre dei limiti sulla quantità di scorta in ogni fase come nel controllo Kanban.

Consideriamo un modello CONWIP-Kanban multi-fase, anche se a titolo di esempio, ancora una volta, viene schematizzato il sistema con due fasi (figura 3.12).

![Figura 3.12 – CONWIP-Kanban Control System](image)

B_0 rappresenta sempre il buffer materie prime, B_i con $i=1,2,\ldots,N$ ogni buffer relativo alle N fasi. Con k_i indichiamo i kanban relativi alle varie fasi e con C i cartellini CONWIP. I kanban e i cartellini CONWIP si muovono come mostrato in figura 3.12.
Quando il sistema è nello stato iniziale, il buffer $B_{i=N} = B_2$ contiene $k_{i=N} = k_2$ prodotti finiti, ogni prodotto ha attaccati un kanban relativo alla fase $i=N=2$ e un cartellino CONWIP. Il buffer $B_{i=N-1} = B_1$ contiene $C - (k_{i=N} = k_2)$ pezzi, ogni pezzo ha attaccato sia il kanban relativo alla fase i sia il cartellino CONWIP. Restano $k_{i=N-1} = k_1 - (C - k_2)$ kanban liberi alla fase $i=N-1=1$.

Si ipotizza che la somma di tutti i kanban nel sistema sia maggiore o uguale al livello CONWIP.

Il controllo CONWIP-Kanban opera come segue: quando arriva la domanda D del cliente al sistema viene richiesto il rilascio di prodotti finiti dal buffer di output $B_{i=N} = B_2$ al cliente. A questo punto si presentano due possibilità:

- se ci sono prodotti finiti al buffer di output $B_{i=N} = B_2$, i prodotti sono consegnati al cliente dopo aver staccato i kanban e i cartellini CONWIP. Questi kanban sono trasferiti a monte alla fase $i=N=2$ portando con sé un segnale di richiesta per la produzione di un nuovo prodotto finito alla fase $i=N=2$. Il cartellino CONWIP è trasferito, invece, alla prima fase per autorizzare il rilascio di materie prime;

- se non ci sono prodotti finiti al buffer di output $B_{i=N} = B_2$ la domanda è arretrata (“backordered”) e resta in attesa fin quando un nuovo prodotto finito giunge nel buffer $B_{i=N} = B_2$ alla fase $i=N=2$. Quando il nuovo prodotto sarà pronto, immediatamente verrà consegnato al cliente dopo aver staccato il kanban e il cartellino CONWIP che verranno istantaneamente trasferiti.

Nel momento in cui giunge il segnale kanban $k_{i=N} = k_2$ alla fase $i=N=2$, questo autorizza la produzione di nuovi pezzi e possono accadere due cose:

- se ci sono pezzi disponibili nel buffer $B_{i=N-1} = B_1$ alla fase $i=N-1=1$, a questi è immediatamente staccato il kanban $k_{i=N-1} = k_1$ e attaccato il kanban $k_{i=N} = k_2$. Allo stesso tempo, le coppie (pezzi-kanban) sono
rilasciate alla cella di produzione \(i=N=2 \). I kanban \(k_{i=N-1} = k_1 \) sono trasferiti alla fase a monte per autorizzare il rilascio di materie prime alla fase \(i=N-1=1 \);

- se non ci sono pezzi disponibili nel buffer \(B_{i=N-1} = B_1 \), il kanban \(k_{i=N} = k_2 \) resta in attesa che un nuovo pezzo giunga nell’output buffer \(B_{i=N-1} = B_1 \).

In questo modo l’informazione sulla domanda del cliente viene trasferita a monte da un segnale kanban e trasferita alla prima fase dal segnale CONWIP. Nel caso in cui, in una determinata fase \(i \), non sia presente alcuna parte finita nel relativo output buffer \(B_i \), allora nessun kanban è trasferito a monte e l’autorizzazione per il rilascio di nuove parti a valle è momentaneamente sospesa; è riattivato quando nuovi pezzi sono disponibili nel buffer \(B_i \).

Inoltre, questo controllo CONWIP limiterà il WIP totale del sistema perché, anche se vi è un kanban libero nella prima fase, le materie prime non sono rilasciate a meno che il Work-In-Process totale dell’intero sistema non è al disotto del limite di WIP.

Il CONWIP Control impone, infatti, per l’intero sistema:

\[
NQ(C) + \sum_{i=1}^{N} NQ(M_i) + \sum_{i=1}^{N} NQ(B_i) = C
\]

\(NQ(C) \): numero cartellini CONWIP disponibili nella prima fase;
\(NQ(M_i) \): numero di parti in lavorazione alla macchina \(i \);
\(NQ(B_i) \): numero di parti finite nell’output buffer \(i \).

Il Kanban Control in ogni fase è dato, invece, da:

\[
NQ(K_i) + NQ(M_i) + NQ(B_i) = k_i \quad i = 1, \ldots, N
\]

\(NQ(K_i) \): numero di kanban disponibili nella fase \(i \);
\(NQ(M_i) \): numero di parti in lavorazione alla macchina \(i \);
\(NQ(B_i) \): numero di parti finite nell’output buffer \(i \).
Nella figura seguente si riporta il diagramma di flusso del CONWIP-Kanban Control System.
3.8.1 Costruzione del modello CONWIP-Kanban Control System in ARENA

La richiesta di prodotti da parte del cliente è stata modellata attraverso un modulo “create”, avente distribuzione di arrivo costante e modalità di arrivo giornaliera (tutta la richiesta giornaliera arriva nella prima ora). Se non vi sono prodotti finiti nel buffer 5 (in Arena è un “hold”) dell’ultima fase, l’entità creata resterà in attesa in un altro “hold”; valutando il numero medio di parti in coda a tale “hold” avremo una misura delle entità consegnate in ritardo al cliente (costo di backlog).

Se nel buffer 5 vi sono prodotti finiti, le entità sono rilasciate ed entrano in un “remove” che preleva i prodotti finiti dalla coda (“hold”) del buffer finale 5. Le entità prelevate (prodotti finiti) entrano in un “separate” che scinde una parte fisica da una parte di segnale. La parte fisica, rappresentata dai prodotti finiti, entra in un “record” che conta il numero di pezzi consegnati per aver traccia del numero di ordini evasi (calcolo del livello di servizio), per poi entrare in un “dispose” che modella la consegna al cliente. Il segnale, invece, entra a sua volta in un “separate” per distinguere il segnale kanban 5, relativo alla quinta fase, dal segnale CONWIP.

Il segnale kanban 5 entra in un “match” e resta in coda in attesa che nel “match” giungano entità (pezzi) dalla fase 4 in modo da autorizzare la produzione alla fase 5. Le entità dalla fase 4 vengono rilasciate da un “hold”, chiamato buffer 4, quando nel “match” vi sono kanban 5 disponibili, cioè l’altra coda risulta non vuota.

Il blocco “match” rilascia un’entità quando vi è la presenza contemporanea di entità sulle due code. In tal caso il blocco “match” simula l’accoppiamento del kanban 5 al pezzo del buffer della fase 4. In output al modulo “match” vi sono due uscite: una rappresenta il pezzo, prelevato dal buffer 4, che entra in un “process”, blocco che simula la produzione della fase 5; l’altra rappresenta il kanban 4 staccato dal pezzo appena prelevato. L’entità che rappresenta il pezzo in produzione viene trattenuta nel “process” per un
tempo stabilito e poi inviata all’ “hold” buffer 5. Il segnale kanban 4 entra in un altro blocco “match” (della fase 4) e attende pezzi provenienti dal buffer della fase 3, il quale invia entità (pezzi) al “match” solo se in tale blocco vi è presenza di kanban 4.

L’invio del segnale kanban nel “match” rappresenta la logica kanban di autorizzazione della produzione alla fase a monte una volta liberati i kanban della fase a valle.

La logica e l’utilizzo dei blocchi Arena si ripete fino al “match” della prima fase in cui la produzione viene autorizzata non solo dalla presenza di kanban 1 ma anche dalla disponibilità di cartellini CONWIP che consentano di mantenere limitato il WIP totale dell’intero sistema entro un certo valore stabilito. In questo blocco “match” entrano quindi i segnali kanban 1, provenienti dal “match” della fase 2, e i segnali CONWIP, derivanti, invece, dal prelievo del prodotto finito dal buffer della fase 5. Kanban 1 e CONWIP attendono, in due code separate, l’arrivo di materie prime, provenienti dal buffer materie prime modellato come un “hold”, in cui si verifica se c’è disponibilità di kanban 1 e se il numero totale di entità circolanti nel sistema è inferiore al CONstant-Work-In-Process stabilito. Il buffer invia, quindi, entità (materie prime) al “match” solo quando le altre due code del “match” risultano non vuote, ovvero se in tale blocco vi è simultaneamente presenza di kanban 1 e CONWIP: ciò autorizza l’ingresso al “process” produzione della prima fase delle entità (materie prime) in uscita dal “match”.

130
Figura 3.14 – Modello CONWIP-Kanban Control System
CAPITOLO 3 |
Pull systems: modelli di simulazione

3.9 MODELLO GENERALIZED KANBAN CONTROL SYSTEM

Il Generalized Kanban Control system è una versione modificata del controllo Kanban. Nel Generalized Kanban Control ogni fase i ha k_i kanban che autorizzano la produzione.

![Diagramma del Generalized Kanban Control System](image)

In più, inizialmente i buffer B_i, $i=1,...,N$, hanno s_i (base stock level) pezzi finiti in ogni fase, con B_0 buffer materie prime. Le informazioni sulla domanda D globale arrivano al buffer dell’ultima fase mentre le informazioni sulla domanda D_i di pezzi vengono comunicate ad ogni fase dalla corrispondente fase a valle.

Il Generalized Kanban Control opera come segue, considerando a titolo di esempio due fasi. Quando la domanda del cliente giunge al sistema, essa è istantaneamente divisa in due parti: la prima domanda D richiede il rilascio al cliente di prodotti finiti dal buffer dell’ultima fase $B_{i=N}=B_2$, la seconda domanda $D_{i=N}=D_2$ richiede la produzione di pezzi alla fase 2.

Quando arriva la domanda D:

Figura 3.15 – Generalized Kanban Control System

...
• se vi sono pezzi disponibili nel buffer $B_{i=N} = B_2$, vengono rilasciati al cliente;

• in caso contrario la domanda è arretrata (backordered) e resta in attesa fin quando un prodotto finito non giunge nel buffer $B_{i=N} = B_2$.

Quando arriva la domanda $D_{i=N} = D_2$:

• se nella fase 2 vi sono kanban disponibili k_2, le informazioni sulla domanda D_1 sono immediatamente trasmesse a monte. Il kanban k_2 autorizza la produzione alla fase 2.

 ✓ Se un nuovo pezzo è disponibile in B_1, è istantaneamente unito ad un kanban k_2 e la coppia pezzo-kanban è inviata alla fase 2 per la lavorazione;

 ✓ altrimenti il kanban attende che un pezzo finito giunga nel buffer B_1.

• Se alla fase 2 non vi sono kanban k_2 disponibili, la domanda resta in attesa. Le informazioni sulla domanda non vengono inviate a monte fin quando non saranno disponibili i kanban k_2.

Quindi nel Generalized Kanban Control System, inizialmente, per ogni fase i, ci sono s_i pezzi finti privi di kanban nei buffer di uscita e k_i kanban liberi in attesa. La domanda viene inviata a monte separatamente dal rilascio di pezzi a valle; la domanda è trasferita a monte da una fase i, quando sono verificate due condizioni:

1. vi è altra domanda in attesa D_{i+1}

2. sono disponibili kanban k_{i+1} alla fase $i+1$.

Non è necessario, invece, che siano presenti parti finite nell’output buffer B_i. Nel Generalized Kanban Control, inoltre, i kanban vengono staccati non
appena i pezzi terminano la lavorazione in una determinata cella di produzione e non quando il pezzo viene trasferito alla cella successiva: il trasferimento della domanda a monte ad una determinata fase non è completamente sincronizzato con il trasferimento di pezzi finiti alla fase successiva. Tutto ciò permette un parziale disaccoppiamento tra il trasferimento di kanban e il trasferimento della domanda. Il sistema prevede, infatti, due punti di sincronizzazione: uno tra domanda e kanban, l’altro tra kanban e pezzo. I controlli Kanban e Base Stock determinano allora, per questo sistema, le seguenti relazioni:

\[NQ(DK_i) + NQ(M_i) + NQ(K_i) = k_i \quad i = 1, \ldots, N \]

\[NQ(B_i) - NQ(DK_{i+1}) + NQ(D_i) - NQ(K_i) = s_i - k_i \quad i = 1, \ldots, N \]

\(NQ(DK_i) \): numero di kanban sincronizzati alla domanda nella fase \(i \);
\(NQ(M_i) \): numero di parti in lavorazione alla macchina \(i \);
\(NQ(K_i) \): numero di kanban disponibili nella fase \(i \);
\(NQ(B_i) \): numero di parti finite nell’output buffer \(i \).

\(NQ(DK_{i+1}) \): numero di kanban sincronizzati alla domanda nella fase \(i+1 \);
\(NQ(D_i) \): numero di parti richieste alla fase \(i \).

Ciò implica che il numero di parti in lavorazione e di parti finite in ogni fase \(i \) è limitato, rispettivamente, da \(k_i \) e \(s_i \).

Nel seguente diagramma è riportata la logica del modello Generalized Kanban Control System.
Figura 3.16 – Modello logico del Generalized Kanban Control System
3.9.1 Costruzione del modello Generalized Kanban Control System in ARENA

La creazione della domanda del cliente avviene, come nel modello precedente, attraverso un “create” sempre con la stessa modalità.

Le entità create entrano in un “separate” per poter essere duplicate: in uscita al “separate” si hanno, allora, due entità. La prima entra in un “hold” e resta in coda fino a quando non vi sono prodotti finiti (entità) nel buffer 5 finale, modellato attraverso un “hold”; la seconda entità si trasforma in una richiesta di reintegro del buffer 5, definita domanda 5. Quando vi sono prodotti finiti (entità) nel buffer 5 finale, la prima entità viene rilasciata dall’ “hold” ed entra in un “remove” che consente di prelevare le entità (prodotti finiti) dal buffer 5. Le entità prodotti finiti vengono contate in un “record” ed inviate ad un “dispose” che modella la consegna al cliente. Il segnale che rappresenta una richiesta di reintegro del buffer 5, invece, va in un “hold” dove avviene il controllo del livello di scorta del buffer 5. Nel caso in cui tale livello è al di sotto del valore stabilito di base stock level, l’entità segnale viene rilasciata ed inviata in un “match” dove attende in coda l’arrivo di segnali kanban 5. Quando le due code risultano non vuote, il “match” rilascia simultaneamente le due entità. Per inoltrare la domanda alla fase precedente è necessario un segnale di richiesta di reintegro del buffer 4: l’entità segnale di richiesta in uscita dal “match” viene, quindi, inviata in un “hold” dove avviene il controllo del livello di scorta del buffer 4, a sua volta modellato attraverso un “hold”; se nel “match” non vi sono kanban 5 la domanda non può essere inviata alla fase 4 e attende in coda. L’entità segnale kanban 5 entra, invece, in un altro blocco “hold” dove attende in coda fino a quando non risultano disponibili entità (pezzi) nel buffer 4: se vi sono pezzi nel buffer 4, l’entità viene rilasciata ed inviata in un “remove” che consente di prelevare l’entità (pezzo) dal buffer 4 che viene poi inviata ad un modulo “process” che
rappresenta la produzione alla fase 5. L’entità in uscita dal “process” entra poi in un “separate” dove viene suddivisa in una parte fisica e in una parte di segnale. La parte fisica, rappresentata dal pezzo che ha subito la lavorazione alla fase 5, viene inviata al buffer 5; la parte di segnale, che rappresenta il kanban 5 staccato dal pezzo, ritorna in coda al “match” in attesa che nel “match” giunga una richiesta (entità) di reintegro del buffer 5 dal blocco “hold” precedente. Il modulo “match” consente di sincronizzare i due segnali che, a differenza del sistema precedente, non sono più completamente accoppiati: in uscita dal “match” il segnale di domanda viene inviato all’ “hold” della fase precedente indipendentemente dal rilascio delle entità (pezzi) al modulo “process”.

L’utilizzo dei blocchi Arena si ripete fino al “match” della prima fase secondo la logica pull: il segnale di richiesta di reintegro dei buffer viene inoltrato, fase dopo fase, verificando in un “hold” il livello di scorta del buffer e inviando, quando necessario, le entità in coda al “match” in attesa dei kanban; dopodiché i segnali kanban attendono in un altro modulo “hold” la disponibilità di pezzi nel buffer della fase precedente, che vengono rilasciati tramite un blocco “remove” e inviati al “process” . In uscita da questo blocco la parte fisica, separata dal segnale kanban tramite un “separate”, viene inviata in un “hold” che, per ogni fase, rappresenta il buffer che trattiene in coda le entità (pezzi) prodotte.
Figura 3.17 – Modello Generalized Kanban Control System
3.10 MODELLO EXTENDED KANBAN CONTROL SYSTEM

L’ Extended Kanban Control System è simile al Generalized Kanban Control System già visto. Le differenze riguardano le informazioni sulla domanda che non sono inoltrate attraverso le fasi, ma vengono trasmesse immediatamente a tutte le fasi, non appena la domanda del cliente giunge al sistema (figura 3.18).

Indichiamo con B_i il buffer di uscita della fase i, che contiene coppie di kanban e prodotti finiti della fase i-esima, mentre con B_0 il buffer materie prime. D_i rappresenta la domanda di produzione di nuovi pezzi finiti in ogni fase i, invece D indica la domanda del cliente. Infine k_i sono i kanban relativi alla fase i-esima.

Nella condizione iniziale, ogni buffer di uscita B_i contiene s_i prodotti finiti con i rispettivi kanban attaccati; quindi in ogni fase i sono disponibili $k_i - s_i$ kanban liberi. Questo controllo impone, allora, anche un vincolo sui due

![Diagramma Extended Kanban Control System](image-url)
parametri: per ogni fase i deve risultare $k_i > s_i$, in modo tale che il numero di kanban liberi della fase i sia positivo.

L’Extended Kanban Control opera come segue:

quando la domanda del cliente arriva al sistema, è istantaneamente divisa in $N+1$ richieste (ad esempio uguale a tre se vi sono due fasi); la prima domanda D richiede il rilascio al cliente di prodotti finiti dal buffer B_N (nel caso di due fasi al buffer B_2). Le altre domande $N(=2)$, che costituiscono la domanda in input ad ogni fase i, richiedono la produzione di nuovi pezzi alla fase i-esima. Quando giunge la domanda D:

- se nel buffer finale $B_{i=N}=B_2$ vi sono prodotti finiti, vengono rilasciati al cliente dopo aver staccato il kanban $k_{i=N}=k_2$ della fase $i=N=2$. Il kanban viene, quindi, trasferito a monte;

- in caso contrario la domanda è arretrata (backordered) e resta in attesa che un nuovo prodotto finito arrivi in $B_{i=N}=B_2$.

Allo stesso tempo, quando la domanda D_i giunge alla fase i-esima con $i=1,2,\ldots,N$:

- se vi sono sia pezzi con kanban k_{i-1} nel buffer B_{i-1}, che kanban k_i ancora liberi nella fase successiva, un pezzo è immediatamente prelevato dal buffer B_{i-1}, viene staccato il kanban k_{i-1} e attaccato il kanban relativo alla fase i-esima k_i. La nuova coppia pezzo-kanban viene allora inviata alla produzione nella fase i. Allo stesso tempo il kanban relativo alla fase $i-1$ è trasferito a monte;

- se non ci sono pezzi nel buffer B_{i-1} o non vi sono kanban liberi k_i la domanda D_i è arretrata (backordered) e resta in attesa.

Nell’Extended Kanban Control, quindi, quando arriva la domanda del cliente al sistema è immediatamente trasmessa ad ogni fase. Ciò implica che
ciascuna fase del sistema conosce immediatamente la necessità di produzione di nuovi pezzi, al fine di ricostituire il buffer prodotti finiti. In questo sistema le parti si muovono sempre insieme ai kanban, ma i kanban non partecipano mai al trasferimento della domanda a monte: essi si muovono a monte separatamente dalla domanda. Quando un kanban relativo alla fase \(i \) è liberato e trasferito alla fase a monte, permette il trasferimento di un pezzo finito dal buffer \(B_{i=N-1} \) alla produzione nella cella \(i \)-esima, a condizione che vi sia la domanda \(D_i \) di produzione di un nuovo pezzo alla fase \(i \). Il ruolo dei kanban, quindi, consiste solo nell’autorizzare il trasferimento di parti finite a valle e non il trasferimento della domanda a monte: il trasferimento della domanda e il trasferimento dei kanban risultano completamente disaccoppiati. In questo sistema i controlli Kanban e Base Stock determinano le seguenti relazioni:

\[
NQ(K_i) + NQ(M_i) + NQ(B_i) = k_i \quad i = 1,\ldots,N
\]

\[
NQ(K_i) + NQ(D_{i+1}) - NQ(D_i) = k_i - s_i \quad i = 1,\ldots,N
\]

\(NQ(K_i) \) : numero di kanban disponibili nella fase \(i \);

\(NQ(M_i) \) : numero di parti in lavorazione alla macchina \(i \);

\(NQ(B_i) \) : numero di parti finite nell’output buffer \(i \).

\(NQ(D_{i+1}) \) : numero di parti richieste alla fase \(i+1 \);

\(NQ(D_i) \) : numero di parti richieste alla fase \(i \);

con \(k_i > s_i \quad i = 1,\ldots,N \)

Di seguito si riporta il diagramma di flusso del modello Extended Kanban Control System.
CAPITOLO 3
Pull systems: modelli di simulazione

Figura 3.19 – Modello logico del Extended Kanban Control System

ARRIVO DOMANDA DI PRODOTTI FINITI DA PARTE DEL CLIENTE FINALE

INVIO DOMANDA AD OGNI FASE \(i=1,2,\ldots,N \)

IL BUFFER \(B_{i=N} \geq D \)?

SI

IL BUFFER \(B_{i=N-1} \geq D-B_N \)?

SI

CI SONO KANBAN \(k_{i=N} \) LIBERI?

NO

CI SONO KANBAN \(k_{i=N-1} \) LIBERI?

SI

REINTEGRO MATERIE PRIME

NO

LA DOMANDA \(D_{i=N} \) RESTA IN ATTESA

NO

LA DOMANDA \(D_{i=N-1} \) RESTA IN ATTESA

SI

PRELIEVO MATERIE PRIME DAL BUFFER \(B_{i=N-2}=B_0 \)

NO

VIENE STACCATO IL KANBAN \(k_{i=N-1} \) E ATTACCATO \(k_{i=N} \)

PRODUZIONE ALLA FASE \(i=N \)

I PRODOTTI FINITI SONO INVIATI AL BUFFER \(B_{i=N} \)

SI

VENGONO STACCATI I KANBAN \(k_{i=N} \) E SONO LIBERI

NO

I PRODOTTI FINITI SONO CONSEGNATI AL CLIENTE

SI

PRELIEVO PEZZI DAL BUFFER \(B_{i=N-1} \)

NO

INVIO NUOVI PEZZI AL BUFFER \(B_{i=N-1} \)

PPN
3.10.1 Costruzione del modello Extended Kanban Control System in ARENA

La domanda del cliente viene modellata attraverso un blocco “create” e le entità create entrano subito in un “separate” per poter essere duplicate: in uscita al “separate” si hanno, allora, due entità. Un’entità entra in un “hold” e resta in coda fino a quando non vi sono prodotti finiti (entità) nel buffer 5 finale, modellato con un “hold”; l’altra entità viene ulteriormente duplicata in un “separate”. In uscita al “separate” un’entità si trasforma in una richiesta di reintegro del buffer 5, definita domanda 5, ed entra in un “hold” dove resta in attesa fino a quando il livello di scorta del buffer 5 scende al di sotto del valore stabilito di base stock level; l’altra entità entra nuovamente in un “separate” per consentire, da un lato, il controllo del livello di scorta del buffer 4 e, dall’altro, il trasferimento della domanda alla fase precedente: in questo modo la domanda (entità) del cliente viene subito trasferita ad ogni fase del sistema.

Se nel buffer 5 vi sono prodotti finiti, le entità che aspettano in coda all’ “hold” l’arrivo dei prodotti sono, quindi, rilasciate ed entrano in un “remove” che preleva i prodotti finiti dalla coda dell’ “hold” buffer 5. Le entità prelevate (prodotti finiti) entrano in un “separate” che scinde una parte fisica, rappresentata dai prodotti finiti, da una parte di segnale, ovvero il kanban 5 relativo alla quinta fase.

La parte fisica entra in un “record” che conta il numero di pezzi consegnati, per poi entrare in un “dispose” che modella la consegna al cliente. Il segnale kanban 5 entra in un “match” nel quale sono in coda le entità che rappresentano i kanban 5 inizialmente liberi nel sistema, modellati attraverso un blocco “create”. I segnali kanban 5 restano in coda in attesa che nel “match” giungano le entità che rappresentano la richiesta di reintegro del buffer 5, rilasciate dall’ “hold” quando il livello di scorta scende al di sotto
del valore stabilito di base stock level. In uscita al “match” si hanno allora due segnali (entità), kanban 5 e domanda 5. La presenza contemporanea delle due entità autorizza la produzione; a questo punto, ovvero una volta autorizzata la produzione, il segnale (entità) che rappresenta la domanda 5 entra in un modulo “dispose”: non è necessario che questo segnale si trasformi in una richiesta di reintegro per il buffer 4, come accade nel modello precedente, poiché in questo modello le entità che rappresentano la domanda vengono subito inviate ai blocchi “hold” di ogni fase non appena giunge al sistema la domanda del cliente. Il segnale (entità) kanban 5 entra, invece, in un altro “hold” dove attende in coda l’arrivo di entità (pezzi) nel buffer 4 (“hold”).

Quando nel buffer 4 ci sono pezzi disponibili, l’entità viene rilasciata ed inviata in un “remove” per consentire il prelievo di un’entità (pezzo) dalla coda dell’“hold” che modella il buffer 4. L’entità rimossa entra poi in un “separate” dove viene suddivisa in una parte fisica e in una parte di segnale. L’entità segnale, che rappresenta il kanban 4 staccato dal pezzo appena prelevato, viene inviata ad un blocco “match” dove attende in coda l’arrivo delle entità che rappresentano la richiesta di reintegro del buffer 4. La parte fisica, ovvero l’entità che modella il pezzo, entra in un modulo “process” dove viene trattenuta per un tempo stabilito per simulare la produzione alla fase 5; dopodiché viene inviata al blocco “hold” che modella il buffer 5.

Ogni fase del sistema viene modellata allo stesso modo, seguendo la logica pull, fino al blocco “match” della prima fase, le cui code rappresentano i segnali kanban 1 e domanda 1 che, insieme, autorizzano la produzione alla prima fase.
CAPITOLO 3

Pull systems: modelli di simulazione

Figura 3.20 - Modello Extended Kanban Control System
3.11 MODELLO EXTENDED-CONWIP-KANBAN CONTROL SYSTEM

L’Extended-CONWIP-Kanban Control deriva dall’unione delle tre politiche pull di base, quindi la sua implementazione prevede di combinare, in un’unica logica di controllo, i tre meccanismi di base Kanban, Base Stock e CONWIP, agendo sul base stock level s_i e il numero di kanban k_i, in ogni fase, nonché sul numero di cartellini CONWIP C disponibili nell’intero sistema. Coerentemente a quanto trattato in precedenza, il meccanismo descritto è applicabile sempre ad un sistema produttivo con N fasi in serie, facendo riferimento, in particolare, al caso di due sole fasi. Inoltre indichiamo ancora con B_i il buffer di uscita di ogni fase i e con B_0 il buffer materie prime.

Inizialmente, in ogni fase i, sono disponibili k_i cartellini kanban, mentre nei buffer B_i, $i=1,\ldots,N-1$, sono presenti pezzi finiti in numero pari a s_i, con un ugual numero di cartellini CONWIP. Nella prima fase sono disponibili i rimanenti $C - \sum_{i} s_i$ cartellini CONWIP, $i=1,\ldots,N-1$: risulta, infatti $C \geq \sum_{i} s_i$, con $i=1,\ldots,N-1$.

![Diagram](image-url)
La produzione nel sistema è guidata, ovviamente, dalla domanda dei clienti. Quando la domanda giunge al sistema, questa viene divisa in \(N+1 \) richieste, indicate con \(D_i \), \(i = 1, \ldots, N+1 \), che vengono immediatamente trasferite a monte alle varie fasi \(i \). Il trasferimento della domanda risulta completamente disaccoppiato al trasferimento dei kanban. A questo punto possono verificarsi due situazioni:

- se sono presenti pezzi finiti nel buffer \(B_{i-1} = B_1 \) e kanban \(k_i = k_2 \) disponibili nella fase \(i=2 \) (oppure materie prime in \(B_0 \), kanban \(k_1 \) e cartellini CONWIP, se si considera la fase 1, o, semplicemente, prodotti finiti nel buffer \(B_N = B_2 \), se si considera l’ultima fase), allora il pezzo viene prelevato dal buffer \(B_{i-1} = B_1 \) e trasferito a valle per la lavorazione nella fase \(i=2 \) (oppure il prodotto finito viene inviato al cliente, \(i = N \)). La domanda viene, così, soddisfatta;

- se non ci sono parti finite nel buffer \(B_{i-1} = B_1 \) o kanban \(k_i = k_2 \) disponibili nella fase \(i=2 \) (oppure non sono presenti cartellini CONWIP se \(i = 1 \)), allora la domanda \(D_i = D_2 \) è backordered e resta in attesa fino a quando non saranno disponibili parti finite in \(B_{i-1} = B_1 \) e kanban \(k_i = k_2 \) (e cartellini CONWIP, se \(i = 1 \)).

Se nella fase \(i \) c’è un pezzo finito nel buffer \(B_i \), un kanban disponibile \(k_{i+1} \) e una richiesta \(D_{i+1} \), allora il kanban \(k_{i+1} \) viene attaccato al pezzo e trasferito a valle per la lavorazione alla fase \(i+1 \), con attaccato anche il cartellino CONWIP: la domanda \(D_{i+1} \) è così soddisfatta. Quando il pezzo termina la lavorazione nella fase \(i+1 \), il kanban \(k_{i+1} \) viene staccato e inviato a monte della fase, mentre la parte viene trasferita nel buffer \(B_{i+1} \) con attaccato il cartellino CONWIP, ad eccezione dell’ultima fase dove, alla fine della lavorazione, il cartellino CONWIP viene staccato e inviato alla prima fase, mentre il prodotto finito viene inviato al buffer senza alcun cartellino.
Nell’ultima fase, non appena arriva un prodotto finito in B_N e una richiesta D_{N+1}, il prodotto viene rilasciato al cliente e la domanda viene soddisfatta.

Nella prima fase, invece, non appena arriva un kanban k_1, un cartellino CONWIP e la domanda D_1, il kanban k_1 e il cartellino CONWIP vengono attaccati sulla materia prima che viene trasferita a valle per la lavorazione nella fase $i = 1$. La domanda D_1 è soddisfatta.

La dinamica di questo meccanismo è data, quindi, dalla combinazione delle dinamiche dei tre meccanismi di base; è possibile, allora, definire tre proprietà dell’ECKCS che descrivono, per questo sistema, il controllo Kanban, il controllo Base Stock ed il controllo CONWIP.

Il Kanban Control in ogni fase è dato da:

$$NQ(K_i) + NQ(M_i) = k_i \quad i = 1, \ldots, N$$

$NQ(K_i)$: numero di kanban disponibili nella fase i;

$NQ(M_i)$: numero di parti in lavorazione alla macchina i;

Il controllo relativo al base stock level in ogni fase è descritto da:

$$NQ(D_i) + NQ(M_i) + NQ(B_i) = s_i + NQ(D_{i+1}) \quad i = 1, \ldots, N$$

$NQ(D_i)$: numero di parti richieste alla fase i;

$NQ(M_i)$: numero di parti in lavorazione alla macchina i;

$NQ(B_i)$: numero di parti finite nell’output buffer i;

$NQ(D_{i+1})$: numero di parti richieste alla fase $i+1$;

Il CONWIP Control impone, invece, per l’intero sistema:
$NQ(C) + \sum_{i=1}^{N} NQ(M_i) + \sum_{i=1}^{N-1} NQ(B_i) = C$

$NQ(C) =$ numero cartellini CONWIP disponibili nella prima fase;
$NQ(M_i) =$ numero di parti in lavorazione alla macchina i;
$NQ(B_i) =$ numero di parti finite nell’output buffer i.

Il numero totale di parti nel sistema è dato allora da:

$$\sum_{i=1}^{N} NQ(M_i) + \sum_{i=1}^{N} NQ(B_i) = \sum_{i=1}^{N} s_i - NQ(D_i) + NQ(D_{N+1})$$

Di seguito si riporta il diagramma di flusso della logica ECKCS.
IL BUFFER $B_{i=N-2} \geq D-B_i$?

SI

NO

IL BUFFER $B_{i=N-1} \geq D-B_i$?

SI

NO

IL BUFFER $B_{i=N-2} \geq D-\sum B_i$? con $i \in [1;N]$

SI

NO

CI SONO KANBAN $k_i = N$ LIBERI?

SI

NO

REINTEGRO MATERIE PRIME

CI SONO CONWIP LIBERI?

SI

NO

LA DOMANDA $D_{i=N}$ RESTA IN ATTESA

SI

NO

PRELIEVO PEZZI DAL BUFFER $B_{i=N-1}$

VIENE ATTACCATO IL KANBAN $k_{i=N}$

PRODUZIONE ALLA FASE $i=N$

VENGONO ATTACCATI IL CONWIP E IL KANBAN $k_{i=N-1}$ E SONO LIBERI

I PRODOTTI FINITI SONO INVIATI AL BUFFER $B_{i=N}$

NO

LA DOMANDA $D_{i=N-1}$ RESTA IN ATTESA

LA DOMANDA $D_{i=N-1}$ RESTA IN ATTESA

VENGONO STACCATI IL CONWIP E IL KANBAN $k_{i=N-1}$ E SONO LIBERI

PRODUZIONE ALLA FASE $i=N-1$

VIENE STACCATO IL KANBAN $k_{i=N-1}$

INVIO NUOVI PEZZI AL BUFFER $B_{i=N-1}$

CI SONO KANBAN $k_i = N-1$ LIBERI?

SI

NO

CI SONO KANBAN $k_i = N$ LIBERI?

SI

NO

NO

Figura 3.22 – Modello logico del Extended CONWIP Kanban Control System
3.11.1 Costruzione del modello Extended-CONWIP-Kanban Control System in ARENA

La domanda del cliente viene modellata attraverso un blocco “create” analogamente a quanto fatto per tutti i modelli già trattati; inoltre, come nel modello precedente, la domanda viene subito inviata ad ogni fase del sistema, quindi il flusso delle informazioni relative alla domanda viene modellato esattamente come per il sistema precedente: le entità create vengono subito inviata ad un “separate” per poter essere duplicate: in uscita al “separate” si hanno, allora, due entità. Un’entità entra in un “hold” e resta in coda fino a quando non vi sono prodotti finiti (entità) nel buffer 5 finale, modellato con un “hold”; l’altra entità viene ulteriormente duplicata in un “separate”. In uscita al “separate” un’entità si trasforma in una richiesta di reintegro del buffer 5, definita domanda 5, ed entra in un “hold” dove resta in attesa fino a quando il livello di scorta del buffer 5 scende al di sotto del valore stabilito di base stock level; l’altra entità entra nuovamente in un “separate” per consentire, da un lato, il controllo del livello di scorta del buffer 4 e, dall’altro, il trasferimento della domanda alla fase precedente.

Se nel buffer 5 vi sono prodotti finiti, le entità che aspettano in coda all’“hold” l’arrivo dei prodotti sono, quindi, rilasciate ed entrano in un “remove” che preleva i prodotti finiti dalla coda dell’ “hold” buffer 5. Le entità prodotti finiti vengono contate in un “record” ed inviate ad un “dispose” che modella la consegna al cliente.

Quando il livello di scorta del buffer 5 scende di sotto del valore stabilito di base stock level, l’entità che modella la domanda 5 viene rilasciata dall’“hold” ed entra in un blocco “match” dove sono in attesa in coda le entità che rappresentano i kanban 5, inizialmente disponibili nel sistema e modellati attraverso un blocco “create”. I due segnali (entità), kanban 5 e domanda 5, autorizzano la produzione: in uscita dal blocco “match” il segnale che rappresenta la domanda 5 entra in un modulo “dispose”, mentre il segnale
kanban 5 entra in un blocco “hold” dove avviene il controllo della presenza di entità (pezzi) nel buffer 4 (“hold”).

L’entità resta in coda fino a quando non vi sono pezzi disponibili nel buffer 4, dopodiché viene rilasciata ed inviata in un “remove”, consentendo di prelevare un’entità (pezzo) dalla coda dell’“hold” che modella il buffer 4. L’entità (pezzo) rimossa viene poi inviata ad un modulo “process” che rappresenta la produzione alla fase 5. L’entità in uscita dal “process” entra poi in un “separate”, dove viene suddivisa in una parte fisica e in una parte di segnale. La parte fisica, rappresentata dal pezzo che ha subito la lavorazione alla fase 5, viene inviata al buffer 5; il segnale, invece, entra a sua volta in un “separate” per distinguere il segnale kanban 5, relativo alla quinta fase, dal segnale CONWIP. Il segnale (entità), che rappresenta il kanban 5 staccato dal pezzo, ritorna in coda al “match” in attesa che nel “match” giunga una richiesta (entità) di reintegro del buffer 5 dal blocco “hold” precedente; il segnale (entità) che rappresenta il cartellino CONWIP viene invece inviato al blocco “match” della prima fase.

Per tutte le altre fasi l’utilizzo dei blocchi Arena si ripete secondo la logica pull fino al blocco “match” della prima fase, con la sola differenza che le entità segnale in uscita al blocco “separate”, successivo al blocco “process” di ogni fase, non vengono inviate ad un secondo “separate” per distinguere tra kanban e CONWIP, ma rappresentano già il solo segnale (entità) kanban che viene inviato al blocco “match” della relativa fase.

Nella prima fase del sistema l’autorizzazione alla produzione necessita anche di segnali CONWIP che consentano di mantenere limitato il WIP totale dell’intero sistema entro un certo valore stabilito. Il blocco “match” della prima fase è caratterizzato, infatti, da quattro code. Tre code consistono di entità che rappresentano segnali quali i CONWIP provenienti dall’ultima fase, i kanban 1 relativi alla prima fase e la domanda 1 di richiesta di reintegro del buffer 1: queste entità attendono in code separate l’arrivo nel
“match” delle entità che modellano le materie prime che, a loro volta, sono in coda in un blocco “hold” che rappresenta il buffer materie prime. Le entità (materie prime) vengono rilasciate dall’ “hold” quando nel “match” le altre tre code risultano non vuote: nel blocco devono essere disponibili i kanban 1, la richiesta di reintegro del buffer 1 e deve risultare che il numero totale di entità circolanti nel sistema sia inferiore al CONstant-Work-In-Process stabilito. In uscita dal blocco “match” le entità che rappresentano le materie prime possono essere, quindi, inviate al blocco “process” che modella la produzione alla fase 1.
Figura 3.23 – Modello Extended-CONWIP-Kanban Control System
CAPITOLO 4
ANALISI E CONFRONTO DEI MODELLI IN AMBIENTE DETERMINISTICO

4.1 PARAMETRI DI CONFRONTO

Per evidenziare le differenze tra i sistemi di controllo della produzione è necessario definire dei parametri di performance. I modelli costruiti in ARENA verranno confrontati in termini di:

- livello di servizio;
- livello medio di Work-In-Process;
- ritardo medio nell’evasione degli ordini;
- costo totale definito come somma del costo di backlog e del costo di mantenimento.

4.1.1 Livello di Servizio

Il livello di servizio viene considerato nel confronto tra i modelli in quanto esplicativo di una misura di soddisfazione per il cliente finale (maggiore è il livello di servizio assicurato, maggiore è la soddisfazione del cliente).

Tale indice è definito come

\[L_S = 1 - \left(\frac{N_{mR}}{N_{tO}} \right) \]

con \(N_{mR} \) : numero medio di unità in ritardo;
\(N_{tO} \) : numero totale di ordini.
4.1.2 Livello medio di Work-In-Process

Il valore medio di WIP (acronimo di Work-In-Process) è definito come il numero di pezzi che si trovano mediamente nel sistema. Tale valore comprende, quindi, sia il numero medio di pezzi in coda alle produzioni, sia il numero medio di pezzi presenti nei buffer di uscita di ogni fase i.

Il livello medio di WIP è dato allora da

\[
WIP = \sum_{i=1}^{N} (N_{mPi} + N_{mBi})
\]

con

- \(N_{mPi}\) : numero medio di pezzi in coda alla produzione i;
- \(N_{mBi}\) : numero medio di pezzi nel buffer di uscita i.

4.1.3 Ritardo medio nell’evasione degli ordini

Ai fini del confronto dei sistemi di produzione modellati in ARENA, il ritardo medio nell’evasione di un ordine, j, viene definito come l’intervallo di tempo che, mediamente, intercorre tra l’istante in cui la domanda del cliente giunge al sistema e l’istante in cui la domanda viene soddisfatta, ovvero i prodotti finiti escono dal sistema per essere consegnati al cliente finale (ordine evaso). Considerando il totale degli ordini giunti al sistema si ha:

\[
R_m = \sum_j \left(t_{Aj} - t_{Ej} \right) / N_{tO}
\]

con

- \(R_m\) : ritardo medio;
- \(t_{Aj}\) : istante di arrivo dell’ordine j;
- \(t_{Ej}\) : istante di evasione dell’ordine j;
- \(N_{tO}\) : numero totale di ordini giunti al sistema.
4.1.4 Costo totale

Il costo totale è dato dalla somma di due aliquote: costo di backlog e costo di mantenimento.

- **Costo di backlog**: è il costo che l’azienda sostiene nel momento in cui non è in grado di soddisfare nell’immediato le richieste del cliente, ragion per cui avrà del lavoro accumulato da svolgere. A questo punto il cliente ha due possibili scelte da prendere: o annullare l’ordine delle unità in ritardo, o accettare comunque la consegna ritardata, ma imponendo delle penali all’azienda. Il caso in esame prevede che, qualora l’azienda non riesca ad effettuare istantaneamente tutte le consegne, il cliente è disposto ad attendere imponendo una penale rappresentata proprio da tale costo. Per le unità consegnate in ritardo ci saranno delle penali quantificabili in un costo unitario e dunque è intenzione dell’azienda ridurre il più possibile questa voce di costo. L’espressione completa del costo di backlog (C_B) è dunque:

$$C_B = (N_{mR} \times C_u)$$

con N_{mR}: numero medio di unità in ritardo ([unità]);
C_u: costo unitario di backlog.

- **Costo di mantenimento**: per l’analisi dei modelli in ARENA è definito come il costo associato all’immobilizzo di materiale all’interno del sistema, sia in forma di pezzi stoccati negli output buffer che in coda alle produzioni lungo tutta la linea produttiva. Dato che questi pezzi o prodotti finiti rappresentano immobilizzo di
materiale, ad essi sono, quindi, associate delle voci di costo riassumibili nel costo unitario di mantenimento. L’espressione completa del costo di mantenimento è dunque:

\[C_M = \sum_{i=1}^{N} [(N_{mPi} + N_{mBi}) \times C_u] \]

con \(N_{mPi} \): numero medio di pezzi in coda alla produzione \(i \);
\(N_{mBi} \): numero medio di pezzi nel buffer di uscita \(i \);
\(C_u \): costo unitario di mantenimento.

In sintesi, la statistica di riferimento in Arena è il costo totale \(C_T \):

\[C_T = C_B + C_M \]

4.2 VERIFICA DEI MODELLI E IDENTIFICAZIONE DEI PARAMETRI DI CONTROLLO

L’analisi e il confronto dei sistemi di produzione di tipo pull richiedono la definizione e lo studio di appropriati valori dei parametri di controllo di ognuno dei modelli, in modo tale da effettuare un valido confronto dei modelli stessi. Per confrontare in maniera opportuna i modelli è stato necessario, infatti, valutare e uniformare i modelli rispetto ai relativi parametri di controllo.

Il criterio di scelta è stato di caratterizzare i diversi modelli con valori dei rispettivi parametri che garantissero per ogni sistema un livello di servizio abbastanza elevato. A tal fine, per ogni modello, sono stati valutati i parametri di confronto, definiti nel paragrafo 4.1, al variare dei rispettivi parametri di controllo, considerando una politica di approvvigionamento.
dell’intero anno per la quale la fornitura di materie prime al relativo buffer avviene all’inizio del primo giorno di simulazione per un quantitativo totale che ricopre l’intera richiesta dell’anno in esame. Individuare i parametri di controllo più opportuni, ai fini di un valido confronto tra i diversi modelli, risulta sicuramente più semplice per i sistemi pull di base, caratterizzati da un unico parametro di controllo, piuttosto che per i sistemi combinati, caratterizzati da più parametri e, in alcuni casi, tra loro vincolati.

I sistemi di base quali Kanban, CONWIP e Base Stock sono caratterizzati da un unico parametro di controllo ovvero, rispettivamente, numero di Kanban, numero di cartellini CONWIP e valore del base stock level. Il range di variazione di ogni parametro di controllo è stato scelto facendo riferimento ai valori più frequentemente utilizzati in letteratura: da 2 a 10 per i kanban, da 4 a 12 per i cartellini CONWIP e da 4 a 12 per il valore di base stock level.

Per i sistemi combinati in cui non esiste alcun vincolo tra i parametri di controllo, ovvero CONWIP-Kanban e Generalized Kanban, è stato possibile far variare i rispettivi parametri nello stesso intervallo di valori considerato per i sistemi di base, simulando il comportamento dei sistemi per tutte le possibili combinazioni di parametri: il modello CONWIP-Kanban è caratterizzato da due parametri, quali numero di CONWIP e numero di kanban, fatti variare, quindi, rispettivamente negli intervalli da 4 a 12 e da 2 a 10; il modello Generalized Kanban è caratterizzato, invece, dal base stock level e dal numero di kanban, per i quali è stato possibile, analogamente, considerare gli stessi range di variazione dei singoli parametri scelti per i sistemi di base, ovvero rispettivamente da 4 a 12 e da 2 a 10.

Nella scelta degli intervalli di variazione dei parametri per la valutazione dei sistemi Extended Kanban ed Extended-CONWIP-Kanban è stato necessario, invece, tener conto dei vincoli tra i parametri di controllo. Nel primo modello il numero di kanban e il base stock level sono vincolati, in ogni fase, dalla relazione $k_i > s_i$; si è deciso, allora, di far variare il livello di base stock nel
range compreso tra 4 e 12 e, per ognuno di questi valori, considerare intervalli di variazione per il numero di kanban tutti di pari ampiezza, ma che rispettassero, allo stesso tempo, il vincolo tra i parametri: quindi per $s = 4$ si è scelto di far variare k da 5 a 13, per $s = 5$ k è stato scelto nel range di variazione compreso da 6 a 14 e così via, fino a considerare $s = 12$ e k compreso tra 13 e 21. Individuati tali intervalli, sono state effettuate le simulazioni del sistema in corrispondenza di ogni possibile combinazione tra k ed s. Infine nel modello Extended-CONWIP-Kanban, caratterizzato da tutti e tre parametri di controllo, è stato possibile far variare il numero di kanban e il livello di base stock, tra cui non sussiste alcun vincolo, rispettivamente per intervalli compresi tra 2 e 10 e tra 4 a 12. Nella scelta del range di variazione del numero di CONWIP è stato necessario, invece, tener conto del vincolo tra C ed s: $C \geq \Sigma_i s_i$, $i=1, \ldots, N-1$. Al variare di s sono stati considerati, quindi, intervalli di variazione di C di pari ampiezza e nel rispetto del vincolo. Poiché in ARENA è stato modellato un sistema con 5 fasi, allora per $s = 4$ C è stato scelto tra 16 e 24, per $s = 5$ l’intervallo valutato è compreso tra 20 e 28 e così via, fino a considerare $s = 12$ e C da 48 a 56. Definiti gli intervalli di variazione dei parametri, il comportamento del sistema è stato simulato per ogni possibile combinazione tra k, s e C.

Raccolti tutti i dati, si è deciso di caratterizzare ogni modello con valori dei rispettivi parametri che garantissero un elevato livello di servizio maggiore del 99,8% (si è supposto un range di variazione tra il 99,87% e 99,90%). Nel modello Kanban si raggiunge un valore di livello di servizio compreso in tale intervallo in corrispondenza di 4 cartellini, nel modello CONWIP per $C = 7$ e nel modello Base Stock in corrispondenza di $s = 4$. Per i sistemi combinati la scelta dei parametri è ricaduta su valori che, garantendo un livello di servizio compreso nell’intervallo scelto, non si discostassero troppo da quelli dei parametri individuati per i sistemi di base. Per il CONWIP-Kanban si è scelto $C = 8$ e $k = 4$, il Generalized Kanban è stato caratterizzato con $k = 5$ ed $s = 4$, ...
per il modello Extended Kanban la scelta è stata di \(k = 5 \) ed \(s = 4 \) ed, infine, \(k = 5, s = 4 \) e \(C = 16 \) per definire il sistema Extended-CONWIP-Kanban.

Per valutare, allora, l’andamento delle statistiche, definite nel paragrafo 4.1, al variare dei parametri di controllo, vengono considerati tutti i valori ottenuti dalle simulazioni dei sistemi di base, mentre per i sistemi combinati, per i quali è stato necessario effettuare un numero maggiore di simulazioni, si riportano, per brevità, solo i risultati derivanti da alcune tra le possibili combinazioni dei parametri che sono state considerate. Tale fase rappresenta anche un momento di verifica dei modelli di simulazione creati in ARENA poiché sono state costruite alcune curve sperimentali riportanti l’influenza dei parametri di controllo di ciascun sistema sugli indicatori di performance scelti per il confronto.

4.2.1 Modello Kanban

Il modello Kanban mostra un livello di servizio pari al 99,88% in corrispondenza di \(k = 4 \).

La politica Kanban limita la quantità di WIP in ogni fase del sistema, pari, appunto, al numero di cartellini kanban per fase. Quindi, all’aumentare del numero di kanban per fase, cresce linearmente il WIP in ogni stage e, di conseguenza, anche il WIP dell’intero sistema (figura 4.1).
Al crescere del numero di pezzi circolanti nel sistema cresce, ovviamente, anche la capacità del sistema di soddisfare la domanda: ciò si traduce nell’aumento, quasi lineare, del livello di servizio al crescere del numero di kanban (figura 4.2), risultato coerente con la logica del sistema.
Poter disporre di un numero crescente di WIP all’interno del sistema consente di soddisfare più rapidamente la domanda, consegnando più velocemente il prodotto finito al cliente, come mostrato dall’andamento decrescente del ritardo medio nell’evasione degli ordini (figura 4.3).

Queste variazioni hanno effetti, ovviamente, sui costi associati al sistema: l’aumento del WIP comporta il conseguente aumento del costo di mantenimento, mentre il costo di backlog si riduce al crescere della rapidità di risposta alla domanda. L’aumento del costo di mantenimento, però, risulta più che proporzionale alla diminuzione del costo di backlog e ciò determina, quindi, anche l’aumento, complessivamente, del costo totale associato al sistema all’aumentare del numero di kanban (figura 4.4).
Quindi, in corrispondenza del valore scelto per il parametro di controllo, \(k_i = 4 \), è possibile limitare la quantità di WIP che circola all’interno del sistema, evitando di incrementare notevolmente il costo totale e riuscendo a garantire, allo stesso tempo, un livello di servizio abbastanza elevato, pari al 99,88%.

4.2.2 Modello CONWIP

Con il modello CONWIP è possibile raggiungere un livello di servizio pari al 99,87% utilizzando 7 cartellini. Come noto dalla logica CONWIP, il WIP totale circolante all’interno del sistema è limitato dal numero di cartellini CONWIP: di conseguenza, come mostrato in figura 4.5, all’aumentare nel numero di cartellini CONWIP aumenta anche il WIP medio del sistema.
All’aumentare del numero di cartellini CONWIP il livello di servizio aumenta, come si nota dal grafico in figura 4.6, per effetto dell’aumento dei pezzi circolanti all’interno del sistema: inizialmente il livello di servizio aumenta molto rapidamente per poi crescere in maniera più lenta in corrispondenza di valori più alti del parametro C. Ciò indica che, nelle condizioni ipotizzate nella costruzione del modello, non è necessario disporre di un gran numero di cartellini CONWIP e, quindi, di WIP, per raggiungere un livello di servizio abbastanza elevato poiché al crescere di C aumentano i pezzi in coda alle produzioni e non i prodotti finiti nel buffer finale. Coerentemente a questo risultato, il ritardo medio nell’evasione degli ordini presenta un andamento specular a quello del livello di servizio: inizialmente il ritardo si riduce drasticamente, per poi diminuire meno rapidamente.
L’andamento del costo totale associato al sistema deriva, ovviamente, dalla variazione dei costi di mantenimento e di backlog al variare di C: inizialmente il costo di backlog diminuisce molto più velocemente rispetto all’aumento del costo di mantenimento, quindi anche il costo totale,
inizialmente, si riduce molto velocemente; successivamente la riduzione del costo di backlog diventa molto meno accentuata, risultando meno che proporzionale all’aumento del costo di mantenimento che, quindi, prevale nel costo totale, determinando l’andamento leggermente crescente della curva in corrispondenza di un maggior numero di cartellini CONWIP.

![Costo totale al variare del numero di cartellini CONWIP](image)

In corrispondenza del valore scelto per il parametro di controllo, ovvero $C = 7$, è possibile ottenere un livello di servizio abbastanza elevato, pari al 99,87%, in corrispondenza di costi totali non eccessivi.

4.2.3 Modello Base Stock

Il parametro di controllo individuato per il sistema Base Stock è $s_i = 4$, cui corrisponde un livello di servizio pari al 99,90%. I risultati relativi al modello Base Stock mostrano, come prevedibile dalla logica stessa di controllo,
l’aumento del WIP medio al crescere del base stock level: il livello di base stock rappresenta il livello di scorta da assicurare nei buffer di uscita di ogni fase del sistema, quindi l’aumento di s determina l’aumento proporzionale del numero di pezzi in ogni buffer e, di conseguenza, anche l’incremento lineare del valore di WIP medio dell’intera linea (figura 4.9).

\[\text{Figura 4.9 – WIP medio al variare del base stock level} \]

Anche l’andamento crescente del livello di servizio all’aumentare del valore di base stock level risulta coerente con la logica stessa del modello; al crescere del livello di base stock aumenta il numero di pezzi finiti nei buffer e, di conseguenza, la disponibilità di prodotti finiti da consegnare al cliente: cresce, cioè, la capacità del sistema di soddisfare la domanda (figura 4.10).
La presenza di un numero sempre maggiore di pezzi e di prodotti finiti all’interno del sistema consente di soddisfare le richieste dei clienti sempre più rapidamente, come si nota dall’andamento decrescente del ritardo medio nell’evasione degli ordini all’aumentare del livello di base stock (figura 4.11).
Nel costo totale associato al sistema Base Stock prevale l’effetto del costo di mantenimento su quello del costo di backlog: l’aumento del WIP medio determina l’incremento del costo di mantenimento che aumenta in modo più che proporzionale rispetto alla diminuzione del costo di backlog, derivante dal minor ritardo nel soddisfare la domanda; di conseguenza, anche il costo totale è caratterizzato da un andamento crescente al crescere del livello di base stock.

La scelta del parametro di controllo è ricaduta sul valore di \(s_i = 4 \), poiché rispetto a tutti gli altri valori considerati, comporta il costo totale inferiore, in corrispondenza di un livello di servizio elevato, pari al 99,90%.

4.2.4 Modello CONWIP-Kanban

I parametri scelti per tarare il modello CONWIP-Kanban sono pari a 4 cartellini kanban e 8 cartellini CONWIP, cui corrisponde un livello di servizio pari a 99, 88%.
Per i sistemi ibridi, che dipendono da più di un parametro di controllo, l’analisi delle variazioni dei modelli al variare dei rispettivi parametri diventa più complessa rispetto a quella dei sistemi di base: si è deciso di valutare, inizialmente, l’andamento dei parametri di confronto al variare, singolarmente, di ogni parametro di controllo del modello, per poi rappresentare, complessivamente, la famiglia di curve che si ottengono al variare anche degli altri parametri.

Nel modello CONWIP-Kanban, il numero di cartellini CONWIP limita il numero totale di pezzi circolanti all’interno del sistema, quindi all’aumentare del parametro C si può disporre di una quantità sempre maggiore di pezzi, come mostrato dall’andamento crescente del WIP medio al variare del numero di cartellini CONWIP (figura 4.13), analogo a quello ottenuto per il modello CONWIP di base.

![Figura 4.13 – WIP medio al variare del numero di cartellini CONWIP](image)

Diverso, invece, risulta l’andamento del WIP medio al variare del numero di cartellini kanban. In corrispondenza di bassi valori di k, il WIP medio cresce...
leggermente all’aumentare del numero di kanban, per mantenersi poi costante in corrispondenza di valori di k più alti. Inizialmente, infatti, in corrispondenza di un numero minore di kanban rispetto ai cartellini CONWIP, è possibile incrementare il numero di pezzi in ogni fase aumentando k, senza superare il limite del WIP totale nel sistema determinato dal controllo CONWIP. Questa possibilità, però, si riduce via via per valori di k più alti, coerentemente alla logica di controllo del modello che, oltre a limitare il WIP medio in ogni fase tramite kanban, impone anche il controllo del WIP medio totale dell’intero sistema: infatti raggiunto il livello di WIP medio definito da C, pur incrementando il numero di kanban, con la possibilità di poter disporre di più pezzi in ogni fase, la quantità totale di pezzi nel sistema, però, non può aumentare perché limitata dal parametro C, con la conseguenza che la curva del WIP medio risulta caratterizzata da un andamento costante nell’ultimo tratto (figura 4.14).

Figura 4.14 – WIP medio al variare del numero di kanban
Quindi, considerando l’andamento del WIP medio del sistema al variare di k, poiché il WIP cresce all’aumentare di C, allora la curva in funzione di k trasla verso l’alto considerando un numero crescente di cartellini CONWIP (figura 4.15).

![Diagramma WIP medio](image)

Figura 4.15 – Famiglia di curve di WIP medio al variare di k per C crescente

Nel modello CONWIP-Kanban il livello di servizio inizialmente cresce e poi assume andamento costante, sia all’aumentare dei cartellini CONWIP che all’aumentare del numero di kanban.

Al crescere di C il livello di servizio aumenta inizialmente molto rapidamente, per effetto dell’aumento dei pezzi circolanti all’interno del sistema, per poi mantenersi costante in corrispondenza di valori più alti del parametro C (figura 4.16). Ciò indica che, nelle condizioni ipotizzate nella costruzione del modello, non è possibile aumentare ulteriormente il livello di servizio disponendo di un gran numero di cartellini CONWIP, poiché il valore più alto di C determina un maggiore accumulo di materiale in coda.
alle produzioni e non nei buffer come pezzi finiti, quindi non è possibile migliorare la capacità del sistema di soddisfare le richieste dei clienti.

![Livello di servizio](attachment:livello-di-servizio.png)

Figura 4.16 – Livello di servizio al variare dei cartellini CONWIP

Al crescere del numero di kanban, invece, il livello di servizio aumenta ma meno velocemente rispetto all’aumento di C: inizialmente la pendenza della curva è maggiore per poi ridursi fino a determinare un andamento costante della curva nell’ultimo tratto. Inizialmente, infatti, in corrispondenza di un numero minore di kanban rispetto ai cartellini CONWIP, è possibile incrementare il numero di pezzi in ogni fase aumentando k, senza superare il limite del WIP totale nel sistema determinato dal controllo CONWIP, migliorando la capacità del sistema di soddisfare la domanda dei clienti, coerentemente alla logica Kanban. Questa possibilità, però, si riduce via via per valori di k più alti, poiché l’incremento del numero di pezzi nel sistema è limitato dalla logica CONWIP, quindi raggiunto il livello di WIP medio definito da C, non è possibile aumentare ulteriormente il numero di pezzi.
circolanti all’interno del sistema aumentando il numero di kanban, con la conseguenza che, pur introducendo più cartellini kanban, il WIP medio resta costante, determinando, quindi anche un livello di servizio costante.

Considerando l’andamento del livello di servizio al variare, singolarmente, dei parametri di controllo, allora le curve di livello di servizio in funzione di C, al crescere di k, coincidono inizialmente in corrispondenza di valori bassi di C, poiché, pur aumentando i cartellini kanban, non è possibile far circolare nel sistema una quantità maggiore di pezzi, limitata dai cartellini CONWIP, e, quindi il livello di servizio non varia. In corrispondenza di un numero maggiore di cartellini CONWIP, invece, nel sistema è ammesso un livello maggiore di WIP che, quindi, può aumentare attraverso l’incremento di cartellini kanban, consentendo al sistema di aumentare la propria capacità di soddisfare la domanda: le curve di livello di servizio, allora, crescono via via con pendenza maggiore nell’ultimo tratto, all’aumentare di k (figura 4.18).
Le curve di livello di servizio in funzione di k, invece, partono dallo stesso punto e coincidono, inizialmente, in parte del tratto crescente, ma non in quello costante: al crescere di C, le curve aumentano sempre con la stessa pendenza ma fino a valori via via maggiori di k, prima di assumere andamento costante. Infatti la possibilità di aumentare il livello di servizio del sistema, attraverso l’incremento di cartellini kanban, aumenta, secondo la logica del sistema, al crescere di C: aumentando il numero di cartellini CONWIP, aumenta la quantità di WIP che può circolare nel sistema, quindi, a parità di cartellini kanban, è possibile far aumentare maggiormente il WIP medio, garantendo livelli di servizio via via maggiori (figura 4.19).
All’aumentare di C la velocità del sistema nel soddisfare le richieste dei clienti inizialmente aumenta, per la capacità del sistema di movimentare maggiore WIP per la produzione di pezzi finiti, riducendo, così, il ritardo nell’evasione degli ordini; per valori maggiori di C, la quantità maggiore di WIP nel sistema si accumula in coda alle produzioni e non garantisce di avere a disposizione più pezzi finiti nei buffer per soddisfare la domanda: la velocità nell’evasione degli ordini non cambia. Quindi l’andamento della curva di ritardo medio al variare di C è specular e a quella del livello di servizio: inizialmente decresce molto rapidamente e poi si assesta su un valore costante.
Coerentemente alla curva di livello di servizio in funzione di k, il ritardo nell’evasione degli ordini, al crescere dei cartellini kanban, risulta, inizialmente, leggermente decrescente e poi costante. In corrispondenza di pochi cartellini kanban, la possibilità di incrementare il WIP, fissato il valore di C, consente di avere a disposizione più velocemente i prodotti finiti da consegnare ai clienti, con la conseguente diminuzione dei tempi di attesa nel soddisfare la domanda; per valori maggiori di k, raggiunto il livello di WIP medio definito da C, non è possibile aumentare ulteriormente il numero di pezzi circolanti all’interno del sistema aumentando il numero di kanban: di conseguenza il livello di servizio resta costante e, quindi, anche la velocità del sistema nell’evadere gli ordini (figura 4.21).
Le curve in funzione di C risultano coincidenti, inizialmente, al crescere di k, poiché, in corrispondenza di pochi cartellini CONWIP, non è possibile cercare di aumentare il livello di servizio del sistema e, quindi, ridurre il ritardo, introducendo più cartellini kanban, in quanto il valore di WIP medio non può variare perché limitato da C. Questa possibilità, però, si ha in corrispondenza di valori di C più alti che consentono di far aumentare leggermente il livello di servizio al crescere di k, con la conseguenza che le curve di ritardo in funzione di C assumono andamento costante, nell’ultimo tratto, in corrispondenza di valori sempre più bassi (figura 4.22).
Le curve di ritardo in funzione di \(k \), invece, partono dallo stesso punto e coincidono, inizialmente, in parte del tratto decrescente, ma non in quello costante: al crescere di \(C \), le curve presentano andamento decrescente sempre con la stessa pendenza ma fino a valori via via minori di \(k \), prima di assumere andamento costante. Aumentando il numero di cartellini CONWIP, aumenta la quantità di WIP che può circolare nel sistema, quindi, a parità di cartellini kanban, è possibile far aumentare maggiormente il WIP medio, garantendo livelli di servizio via via maggiori e aumentando la velocità nel soddisfare la domanda (figura 4.23).
L’andamento della curva di costo totale è data dalla somma di costo di mantenimento e costo di backlog, dipendenti, rispettivamente, dai valori di WIP medio e ritardo medio. All’aumentare di C, il costo di mantenimento risulta sempre crescente poiché crescente è l’andamento del WIP, mentre il costo di backlog inizialmente si riduce rapidamente per poi diventare costante, coerentemente alla tendenza del ritardo medio. Per valori bassi di C, la rapida diminuzione del costo di backlog prevale sull’aumento meno veloce del costo di mantenimento, quindi anche il costo totale diminuisce drasticamente; laddove il costo di backlog si mantiene costante, invece, il costo di mantenimento continua a crescere, determinando l’andamento crescente della curva di costo totale (figura 4.24).

Figura 4.23 – Famiglia di curve di ritardo medio al variare di k per C crescente
Al crescere di k, invece, il costo di mantenimento risulta prima leggermente crescente e poi costante, analogamente alla variazione di WIP, mentre il costo di backlog inizialmente si riduce per poi assumere andamento costante, coerentemente alla capacità del sistema di soddisfare la domanda. La riduzione del costo di backlog risulta più che proporzionale all’incremento del costo di mantenimento, quindi anche il costo totale presenta andamento decrescente, in corrispondenza di un basso numero di kanban, mentre per valori maggiori assume, ovviamente, andamento costante (figura 4.25).
Dalla rappresentazione delle curve di costo totale in funzione di C (figura 4.26), si nota come, al crescere di k, il costo si riduca drasticamente, ma fino a valori via via più bassi all’aumentare di k, assumendo andamento crescente a partire da valori di costo sempre inferiori, coerentemente all’andamento del costo totale al variare, singolarmente, di k. Infatti, inizialmente, per valori bassi di C, il costo di backlog si riduce drasticamente fino a valori più bassi poiché l’aumento di cartellini kanban consente di far crescere lievemente il livello di servizio; questa aliquota di costo influenza maggiormente il costo totale poiché, sebbene il costo di mantenimento aumenti all’aumentare di k, questo aumento risulta meno rapido della riduzione del costo di backlog e, quindi, anche il costo totale si riduce. Di conseguenza le curve in funzione di C cambiano pendenza a partire da valori via via più bassi al crescere di k, quindi sono caratterizzate da tratti crescenti in corrispondenza di valori sempre più bassi di costo, al crescere di k.

Figura 4.25 – Costo totale al variare del numero di kanban
Le curve di costo in funzione di k, invece, al crescere di C si spostano verso l’alto e assumono andamento decrescente per un tratto iniziale sempre più lungo. Per effetto dell’aumento del WIP, il costo di mantenimento aumenta in modo più che proporzionale alla diminuzione del costo di backlog, quindi la curva si sposta verso valori di costo più alti; inoltre il costo di backlog si riduce fino a valori sempre inferiori al crescere di C poiché, a parità di kanban, se aumenta il numero di cartellini CONWIP, aumenta la quantità di pezzi che possono circolare nel sistema per soddisfare la domanda. Quindi le curve di costo totale, sebbene in corrispondenza di costi totali più alti, inizialmente assumono andamento decrescente in corrispondenza di variazioni maggiori di k (figura 4.27)
Tra tutte le possibili combinazioni dei parametri considerate, si è deciso di tarare il sistema CONWIP-Kanban con valori pari a \(k_i = 4 \) e \(C = 8 \), poiché questa rappresenta la combinazione con valori più vicini a quelli dei parametri dei sistemi di base, ovvero \(k_i = 4 \) per il modello Kanban e \(C = 7 \) per il modello CONWIP, in corrispondenza di un livello di servizio sempre abbastanza alto, pari al 99,88% e di bassi costi totali.

4.2.5 Modello Generalized Kanban

Per il modello Generalized Kanban in corrispondenza dei parametri scelti, \(k_i = 5 \) e \(s_i = 4 \), si raggiunge un livello di servizio pari al 99,88%.
Anche in questo caso viene analizzata prima la risposta del modello al variare, singolarmente, di ogni parametro di controllo e poi vengono riportate le famiglie di curve al variare di entrambi i parametri.

Il WIP medio circolante all’interno del sistema presenta andamento crescente, ovviamente, sia all’aumentare del numero di kanban che all’aumentare del livello di basestock. Infatti, al crescere di k, aumenta il numero di parti che possono circolare in ogni fase e, quindi, il WIP medio totale dell’intero sistema (figura 4.28); all’aumentare del basestock level aumenta direttamente il numero di pezzi finiti presenti fisicamente in ogni buffer del sistema: quindi il WIP medio totale del sistema non solo aumenta ma anche più rapidamente rispetto al variare di k (figura 4.29).
In entrambi i casi, di conseguenza, le curve traslano verso l’alto al crescere del secondo parametro, poiché l’andamento del WIP medio risulta crescente all’aumentare di entrambi i parametri; al crescere di s, però, in particolare, le curve della famiglia di WIP medio in funzione di k (figura 4.30) traslano maggiormente rispetto alle curve in funzione di s per k crescente (figura 4.31), proprio perché, come risulta dall’andamento del WIP al variare dei singoli parametri, il numero totale di pezzi nel sistema aumenta di più all’aumentare di s che di k.

Figura 4.29 – WIP medio al variare del base stock level
Figura 4.30 – Famiglia di curve di WIP medio al variare di k per s crescente

Figura 4.31 – Famiglia di curve di WIP medio al variare di s per k crescente
Il livello di servizio nel modello Generalized Kanban non dipende dal numero di kanban per fase, ma solo dal livello di base stock: all’aumentare di s aumenta la disponibilità di pezzi e prodotti finiti negli output buffer e cresce, di conseguenza, la capacità del sistema di soddisfare la domanda dei clienti (figura 4.32).

![Livello di servizio](image)

Figura 4.32 – Livello di servizio al variare del base stock level

Questo risultato è coerente con la logica del modello che consente il parziale disaccoppiamento tra il trasferimento della domanda e la movimentazione dei pezzi, controllando questi flussi attraverso due parametri di controllo differenti: la presenza dei cartellini kanban in ogni fase consente di evitare l’accumulo illimitato di WIP nel sistema, ma allo stesso tempo, il controllo del base stock level garantisce la movimentazione di una quantità sufficiente di pezzi necessari a reintegrare gli output buffer allo scopo di mantenere un livello minimo di prodotti per garantire un determinato livello di servizio.
Quindi la capacità del sistema nel soddisfare la domanda dei clienti dipende solo dal valore di s e non da k (figura 4.33).

La retta, quindi, trasla verso l’alto all’aumentare del livello di base stock, per effetto dell’influenza di questo parametro sul livello di servizio (figura 4.34).
La logica del modello Generalized Kanban giustifica, di conseguenza, anche l’andamento della rapidità nell’evadere gli ordini al variare dei parametri. Avere a disposizione nei buffer quantità crescenti di pezzi e, quindi, di prodotti finiti da poter consegnare subito ai clienti, consente di soddisfare sempre più velocemente la domanda, come mostra l’andamento decrescente del ritardo medio all’aumentare del livello di base stock (figura 4.35); d’altro canto, il parziale disaccoppiamento tra flusso di domanda e flusso dei materiali rende indipendente la velocità di evasione degli ordini dal numero di kanban, poiché questi limitano la quantità di pezzi circolanti in ogni fase del sistema, ma non il numero di pezzi finiti presenti nei buffer, garantito dal controllo del base stock level (figura 4.36).
CAPITOLO 4
Analisi e confronto dei modelli
in ambiente deterministico

Figura 4.35 – Ritardo medio al variare del base stock level

Figura 4.36 – Ritardo medio al variare del numero di kanban
Quindi, considerando che il ritardo medio nell’evasione degli ordini si mantiene costante al variare di \(k \), ma diminuisce all’aumentare di \(s \), allora la retta trasla verso il basso considerando livelli crescenti di base stock (figura 4.37).

Figura 4.37 – Famiglia di curve di ritardo medio al variare di \(k \) per \(s \) crescente

Si considera, infine, l’effetto delle variazioni di \(k \) ed \(s \) sui costi totali associati al sistema: in entrambi i casi i costi totali aumentano al crescere dei parametri.

All’aumentare dei cartellini kanban, se la velocità nel soddisfare la domanda dei clienti non varia, allora anche il costo di backlog si mantiene costante, coerentemente alla logica del sistema; nel contempo, il costo di mantenimento cresce per effetto dell’incremento del WIP medio all’aumentare di \(k \). Ne deriva che anche l’andamento del costo totale, dato
dalla somma dei suddetti costi, risulta crescente al crescere del numero di kanban (figura 4.38).

Al crescere del livello di base stock, invece, il costo di backlog si riduce perché disporre di maggiori quantità di pezzi e prodotti finiti consente, come visto, di ridurre il ritardo nella consegna dei prodotti al cliente e, quindi, il costo ad esso associato. L’aumento di s, però, determina anche l’aumento del WIP medio, con il conseguente incremento del costo di mantenimento che cresce più velocemente rispetto alla riduzione del costo di backlog, determinando, quindi, l’andamento crescente del costo totale all’aumentare di s.

Figura 4.38 – Costo totale al variare del numero di kanban
In entrambi i casi l’effetto maggiore sul costo totale è dovuto al costo di mantenimento legato al WIP medio che circola nel sistema: di conseguenza la crescita del costo totale risulta più rapida al variare del livello di base stock che al variare del numero di kanban, coerentemente alla rapidità con cui aumenta il WIP medio al variare dei singoli parametri.

Questa considerazione giustifica la traslazione delle curve di costo totale analoga a quelle del WIP medio: per effetto dell’aumento del WIP, al crescere di \(s \) la curva in funzione di \(k \) si sposta verso l’alto, così come la curva in funzione di \(s \), che al crescere di \(k \), trasla verso l’alto ma in misura minore, poiché minore risulta l’aumento del WIP al variare singolarmente di \(k \) (figure 4.40 e 4.41).
CAPITOLO 4

Analisi e confronto dei modelli in ambiente deterministico

Figura 4.40 – Famiglia di curve di costo totale al variare di \(k \) per \(s \) crescente

Figura 4.41 – Famiglia di curve di costo totale al variare di \(s \) per \(k \) crescente
Ai valori scelti per i parametri di controllo, $k_i = 2$ e $s_i = 4$, corrisponde il costo totale più basso e un livello di servizio abbastanza elevato, pari al 99,88%.

4.2.6 Modello Extended Kanban

I parametri scelti per caratterizzare il modello Extended Kanban sono pari a $s_i = 4$ e $k_i = 5$, cui corrisponde un livello di servizio pari al 99,90%.

Analogamente al modello Generalized Kanban, anche in questo caso il WIP medio nel sistema cresce al crescere, singolarmente, sia del numero di kanban che del base stock level: l’aumento dei cartellini consente di far circolare più pezzi in ogni fase, mentre l’aumento del livello di base stock consente di avere a disposizione più pezzi e prodotti finiti negli output buffer, col conseguente aumento, in entrambi i casi, del WIP dell’intero sistema; inoltre dalle figure 4.42 e 4.43 è possibile notare come, anche in questo caso, il numero medio di pezzi circolanti all’interno del sistema cresca più rapidamente al crescere di s che al crescere di k.
CAPITOLO 4
Analisi e confronto dei modelli in ambiente deterministico

Figura 4.42 – WIP medio al variare del numero di kanban

Figura 4.43 – WIP medio al variare del base stock level
Queste variazioni si ritrovano, ovviamente, anche nella rappresentazione delle famiglie di curve di WIP medio che traslano, quindi, maggiormente al crescere di \(s \) che al crescere di \(k \) (figure 4.44 e 4.45). Inoltre si può notare come le curve in funzione di \(k \) si spostino anche verso destra, oltre che a traslare verso l’alto, al crescere di \(s \), nel rispetto del vincolo imposto dalla logica del modello, ovvero \(k_i > s_i \) : se il livello di base stock aumenta, è necessario incrementare anche il numero di cartellini kanban.

![Figura 4.44 – Famiglia di curve di WIP medio al variare di \(k \) per \(s \) crescente](image-url)
Gli andamenti del livello di servizio al variare dei parametri in figura 4.46 e figura 4.47 mostrano la coerenza dei risultati con la logica del modello Extended Kanban, in cui si ha il completo disaccoppiamento tra flusso di domanda e flusso dei materiali: la capacità del sistema di soddisfare la domanda dei clienti è influenzata solo dalla disponibilità di pezzi e prodotti finiti nei buffer del sistema, ma risulta indipendente dal numero di cartellini kanban, che limitano il WIP in ogni fase, poiché il controllo del base stock level garantisce il reintegro dei buffer e, quindi, un determinato livello di servizio. Ciò è reso possibile, come nel modello Generalized Kanban, attraverso il controllo del flusso di domanda e del flusso di materiali tramite due parametri distinti. Quindi non si ha variazione di livello di servizio al variare di k, ma solo al variare di s: aumentare il base stock level consente di avere a disposizione una quantità crescente di pezzi e, quindi, di prodotti finiti da consegnare ai clienti, incrementando la capacità del sistema di soddisfare la domanda.
Figura 4.46 – Livello di servizio al variare del base stock level

Figura 4.46 – Livello di servizio al variare del numero di kanban
Figura 4.47 – Livello di servizio al variare del numero di kanban
Di conseguenza, al crescere di s la retta in funzione di k trasla verso l’alto, poiché aumenta la capacità del sistema di soddisfare la domanda, e si sposta verso destra nel rispetto del vincolo \(k_i > s_i \) (figura 4.48).

![Livello di servizio](image)

Figura 4.48 – Famiglia di curve di livello di servizio al variare di k per s crescente

In base alla logica del sistema, quindi, se il livello di servizio dipende solo da s e non da k, allora anche la velocità del sistema nel soddisfare le richieste dei clienti è influenzata solo dal livello di base stock e non dal numero di cartellini kanban. In particolare, all’aumentare di s aumenta la disponibilità di pezzi e prodotti finiti nei buffer da poter consegnare ai clienti, riuscendo ad evadere più velocemente gli ordini: il ritardo medio, quindi, decresce al crescere di s.
CAPITOLO 4
Analisi e confronto dei modelli in ambiente deterministico

Figura 4.49 – Ritardo medio al variare del numero di kanban

Figura 4.50 – Ritardo medio al variare del base stock level
Quindi, tenendo conto del vincolo tra i parametri e dell’andamento decrescente al crescere di s, la retta in funzione di k trasla verso il basso e si sposta verso destra all’aumentare del livello di base stock (figura 4.51).

\[s = 4 \]
\[s = 5 \]
\[s = 6 \]
\[s = 7 \]

Figura 4.51 – Famiglia di curve di ritardo medio al variare di k per s crescente

Coerentemente a quanto ottenuto finora, è possibile motivare l’andamento del costo totale del sistema al variare dei parametri di controllo. Al crescere di k, infatti, il ritardo medio nell’evasione degli ordini si mantiene costante, mentre il WIP medio del sistema aumenta: ciò si traduce in un andamento costante del costo di backlog e in una tendenza crescente del costo di mantenimento, determinando la tendenza crescente anche del costo totale all’aumentare del numero di kanban (figura 4.52).
Al crescere di s, invece, il ritardo si riduce e il WIP aumenta: di conseguenza, il costo di backlog diminuisce e il costo di mantenimento cresce. Quest’ultima aliquota, però, ha effetto maggiore sul costo totale poiché cresce in modo più che proporzionale alla riduzione del costo di backlog: di conseguenza il costo totale associato al sistema Extended Kanban presenta andamento crescente anche al crescere del livello di base stock (figura 4.53).
In entrambi i casi l’effetto maggiore sul costo totale è dovuto al costo di mantenimento legato al WIP medio che circola nel sistema: di conseguenza la crescita del costo totale risulta più rapida al variare del livello di base stock che al variare del numero di kanban, coerentemente alla rapidità con cui aumenta il WIP medio al variare dei singoli parametri. Questa considerazione giustifica la traslazione delle curve di costo totale analoga a quelle del WIP medio: per effetto dell’aumento del WIP, al crescere di s la curva in funzione di k trasla verso l’alto e si sposta verso destra nel rispetto del vincolo che sussiste tra i parametri; anche la curva in funzione di s, al crescere di k, trasla verso l’alto ma in misura minore, poiché minore risulta l’aumento del WIP al variare singolarmente di k (figure 4.54 e 4.55).
CAPITOLO 4
Analisi e confronto dei modelli
in ambiente deterministico

Figura 4.54 – Famiglia di curve di costo totale al variare di k per s crescente

Figura 4.55 – Famiglia di curve di costo totale al variare di s per k crescente
Per il modello Extended Kanban sono stati scelti parametri di controllo $k_i = 5$ e $s_i = 4$, per avere un valore di s_i pari a quello scelto per il sistema Base Stock di base, nel rispetto del vincolo imposto dal sistema, per cui $k_i > s_i$, e per garantire un livello di servizio abbastanza elevato, che risulta pari al 99,90%, in corrispondenza di costi non eccessivi.

4.2.7 Modello Extended-CONWIP-Kanban

L’ultimo modello analizzato combina i principali vantaggi di ogni sistema pull di base: ciò si riscontra nell’andamento dei parametri di confronto, introdotti in precedenza, al variare dei tre parametri di controllo, che risulta coerente alla logica del modello.

I parametri individuati per il modello Extended-CONWIP-Kanban sono pari a 5 cartellini kanban e 16 cartellini CONWIP in corrispondenza di un livello di basestock pari a 4. Caratterizzando il modello con questi valori dei parametri si raggiunge un livello di servizio pari al 99,90%.

Si considera, inizialmente, l’andamento di ogni statistica, al variare, singolarmente di ognuno dei tre parametri.

Coerentemente alla logica CONWIP, la curva del WIP medio circolante all’interno del sistema presenta un andamento dapprima crescente e poi costante, al crescere del parametro C. Incrementare il numero di cartellini CONWIP, infatti, consente di far circolare un maggior numero di pezzi all’interno del sistema, da cui l’andamento inizialmente crescente del WIP medio; una volta raggiunto, però, il livello di WIP sufficiente a soddisfare le richieste dei clienti, nelle condizioni ipotizzate, non è più necessario far circolare nel sistema ulteriore materiale, nel rispetto della logica pull. Di conseguenza, pur incrementando il numero di cartellini CONWIP, il WIP medio si mantiene costante poiché non è richiesta una quantità maggiore di pezzi (figura 4.56).
CAPITOLO 4
Analisi e confronto dei modelli
in ambiente deterministico

Nella valutazione dell’andamento del WIP medio al variare del base stock level è necessario tener conto del vincolo imposto dal sistema, ovvero $C \geq \Sigma_i s_i$, $i = 1,\ldots, N-1$. Al crescere di s, ovviamente anche il WIP medio aumenta, poiché aumenta il numero di pezzi e prodotti finiti negli output buffer; è possibile aumentare s, però, solo fino al valore per cui risulta $\Sigma_i s_i = C$, $i = 1,\ldots, N-1$, in corrispondenza del quale il livello medio di WIP nel sistema subisce una lieve diminuzione, evidente in figura 4.57.
Figura 4.57 – WIP medio al variare del base stock level

All’aumentare del numero di kanban, invece, fissati determinati valori di s e C, il WIP medio del sistema risulta sempre crescente perché, ovviamente è possibile far circolare più pezzi in ogni fase del sistema, a condizione, però, che la somma dei pezzi definiti da s_i, $i = 1, \ldots, N-1$, sia sufficientemente inferiore a C. Infatti, se la quantità di pezzi e prodotti finiti nel sistema non è troppo elevata rispetto al limite definito dal parametro C, allora è possibile far aumentare il WIP nel sistema incrementando il numero di cartellini kanban, senza superare il valore imposto dal controllo CONWIP.
Se, però, s aumenta a parità di C, questa possibilità si riduce, poiché è già presente nel sistema una certa quantità di WIP definita da s, con la conseguenza che, a parità di variazione di k, si raggiunge prima il limite di WIP medio circolante nel sistema definito da C: quindi la curva di WIP medio inizialmente crescente, all’aumentare di s si sposta verso l’alto, per effetto dell’aumento dei pezzi e dei prodotti finiti nei buffer del sistema, e non presenta più andamento completamente crescente, ma un tratto finale costante, nel rispetto del controllo CONWIP. Il punto in cui la curva assume andamento costante si sposta verso sinistra all’aumentare di s poiché si raggiunge prima il limite massimo di WIP ammesso nel sistema, in corrispondenza di un numero minore di cartellini kanban, fino ad ottenere un andamento totalmente costante del WIP medio al variare di k, in corrispondenza del valore di s per cui risulta $\sum s_i = C$, $i = 1, \ldots, N-1$, e per il quale non è possibile aumentare ulteriormente il WIP medio del sistema introducendo ulteriori cartellini kanban.
Fissato invece il valore di s, all’aumentare di C, con \(C \geq \sum s_i \), i = 1,…, N-1, la retta di WIP medio in funzione di k trasla verso l’alto, per effetto dell’aumento dei pezzi che è possibile far circolare nel sistema (figura 4.60).
CAPITOLO 4 Analisi e confronto dei modelli in ambiente deterministico

Figura 4.60 – Famiglia di curve di WIP medio al variare di k per C crescente

Si riporta, quindi, anche la rappresentazione delle curve di WIP medio in funzione di C al variare degli altri due parametri di controllo.

Al crescere di s, la curva trasla verso l’alto e verso destra: il primo spostamento è dovuto all’aumento del numero di pezzi e prodotti finiti nei buffer del sistema, mentre il secondo spostamento risulta coerente col vincolo tra i parametri: se s aumenta, deve necessariamente aumentare anche il valore minimo di cartellini CONWIP da utilizzare nel sistema, quindi la curve si spostano anche verso destra.
Al variare di k, invece, a parità di s, le curve in funzione di C partono tutte dallo stesso punto e coincidono, inizialmente, in corrispondenza di un tratto crescente; dopodiché le curve assumono andamento costante, coerentemente a quanto ottenuto in corrispondenza dell’incremento di C. Il punto in cui le curve cambiano pendenza, però, si ottiene in corrispondenza di valori crescenti di C al crescere di k: infatti se il livello di base stock non cambia, ma C aumenta, l’incremento di cartellini kanban consente di aumentare il livello di WIP medio del sistema che può raggiungere via via valori massimi più alti prima di mantenersi costante (figura 4.62).
In ogni traslazione si ritrova la maggiore variazione del WIP medio al crescere di \(s \) che al crescere di \(k \) o \(C \), analogamente al diverso andamento del WIP al variare dei singoli parametri.

Si considerano, infine, le traslazioni della curva di WIP medio in funzione di \(s \), sia al variare di \(k \) che di \(C \). La curva in funzione di \(s \), analizzata in precedenza, trasla verso l’alto all’aumentare di \(k \), coerentemente all’andamento crescente del WIP medio al variare del numero di cartellini kanban (figura 4.63).
Al crescere di C, invece, le curve in funzione di s coincidono inizialmente nel tratto crescente, raggiungendo, però, via via valori massimi più alti in corrispondenza di s maggiori: a parità di k e di variazione di base stock level, nel tratto finale, è possibile far incrementare il WIP medio del sistema aumentando il numero di cartellini CONWIP.
Anche nel modello Extended-CONWIP-Kanban, il trasferimento della domanda e la movimentazione dei materiali risultano completamente disaccoppiati: di conseguenza la capacità di soddisfare le richieste dei clienti dipende solo dal livello di base stock e non dal numero di cartellini kanban o di cartellini CONWIP. All’aumentare di s aumenta il livello di servizio, poiché aumentano i pezzi e, quindi, i prodotti finiti da poter consegnare ai clienti, indipendentemente dai valori di k e C che consentono di limitare la quantità di pezzi circolanti, rispettivamente, in ogni fase e nell’intero sistema, senza influire, però, sulla capacità del sistema di soddisfare la domanda, garantita dal controllo del base stock level.
CAPITOLO 4
Analisi e confronto dei modelli in ambiente deterministico

Figura 4.65 – Livello di servizio al variare del base stock level

Figura 4.66 – Livello di servizio al variare del numero di cartellini CONWIP
Di conseguenza, la retta in funzione di k trasla verso l’alto al crescere del base stock level, per effetto dell’aumento del livello di servizio al variare di s (figura 4.68).
CAPITOLO 4
Analisi e confronto dei modelli in ambiente deterministico

La curva in funzione di C, invece, al crescere di s trasla verso l’alto, conseguentemente all’aumento del livello di servizio al variare del livello di basestock, e in più si sposta verso destra nel rispetto del vincolo $C \geq \Sigma_i s_i$, $i = 1,\ldots, N-1$: se si considerano livelli di base stock crescenti è necessario incrementare, allora, di volta in volta, anche il numero di cartellini CONWIP (figura 4.69).

![Figura 4.68 – Famiglia di curve di livello di servizio al variare di k per s crescente](image-url)
I risultati relativi alla velocità nell’evadere gli ordini sono coerenti con quanto già valutato, nel rispetto della logica del sistema: se la capacità del sistema di soddisfare le richieste dei clienti è influenzata solo dalla variazione del base stock level e non da k ed s, allora anche il ritardo nelle consegne dipenderà solo da s, risultando indipendente da k e C.
CAPITOLO 4
Analisi e confronto dei modelli
in ambiente deterministico

Figura 4.70 – Ritardo medio al variare del numero di kanban

Figura 4.71 – Ritardo medio al variare del numero di cartellini CONWIP
Ovviamente, all’aumentare di s, cioè di pezzi e prodotti finiti disponibili nei buffer del sistema, è possibile evadere più velocemente gli ordini, come mostrato dall’andamento del ritardo medio, che risulta decrescente al crescere di s (figura 4.72).

Figura 4.72 – Ritardo medio al variare del base stock level

Coerentemente a questo decremento, la retta in funzione di k trasla verso il basso al crescere di s, mentre la retta in funzione di C trasla verso il basso e, inoltre, si sposta verso destra nel rispetto del vincolo $C \geq \Sigma_i s_i$, $i = 1,\ldots, N-1$.
CAPITOLO 4
Analisi e confronto dei modelli
in ambiente deterministico

Figura 4.73 – Famiglia di curve di ritardo medio al variare di k per s crescente

Figura 4.74 – Famiglia di curve di ritardo medio al variare di C per s crescente
Tutte queste variazioni al crescere dei parametri di controllo, influenzano ovviamente, il costo totale del sistema.

Coerentemente alle variazioni di ritardo nelle consegne e WIP medio, al crescere di C il costo di backlog si mantiene costante, mentre il costo di mantenimento segue lo stesso andamento della curva di WIP medio: di conseguenza anche il costo totale, al crescere di C presenta andamento analogo a quello del WIP medio, ovvero dapprima crescente e poi costante (figura 4.75).

![Figura 4.75 – Costo totale al variare del numero di cartellini CONWIP](image)

Al crescere del livello di base stock, invece, si è mostrato come il ritardo nell’evasione degli ordini diminuisca e il WIP medio nel sistema aumenti, per poi ridursi lievemente nel tratto finale: a queste variazioni corrispondono, di conseguenza, andamenti analoghi, rispettivamente, del costo di backlog e del costo di mantenimento. Inizialmente, però, l’incremento del costo di mantenimento risulta più che proporzionale alla riduzione del costo di
backlog, influenzando maggiormente il costo totale che presenta andamento crescente, per poi decrescere nel tratto finale per l’effetto congiunto della riduzione sia del costo di backlog che del costo di mantenimento (figura 4.76).

![Figura 4.76 – Costo totale al variare del base stock level](image)

All’aumentare del numero di kanban, invece, la velocità del sistema nel soddisfare la domanda non cambia, quindi il costo di backlog si mantiene costante; allo stesso tempo, fissati determinati valori di s e C, il WIP medio del sistema risulta sempre crescente a condizione, però, che la somma dei pezzi definiti da s_i, $i = 1, \ldots, N-1$, sia sufficientemente inferiore a C: in quest’ipotesi, anche il costo di mantenimento cresce in modo proporzionale al WIP, determinando, quindi, l’andamento crescente del costo totale al crescere di k (figura 4.77).
Quindi al variare di k, il costo di mantenimento segue andamento analogo a quello del WIP, mentre il costo di backlog si mantiene costante. Al crescere di s, però, si è mostrato come la tendenza del WIP cambi, assumendo andamento costante nell’ultimo tratto e in corrispondenza di valori sempre più bassi di k, fino a presentare andamento totalmente costante in corrispondenza del valore di s per cui risulta $\sum_{i} s_i = C$, $i = 1,\ldots, N-1$.

Le variazioni del costo di mantenimento sono proporzionali a quelle del WIP medio che circola nel sistema ed hanno effetto prevalente sul costo totale: quindi anche l’andamento delle curve di costo totale varia in modo analogo a quello delle curve di WIP medio: al crescere di s, quindi, la curva di costo si sposta verso l’alto e non presenta più andamento completamente crescente, ma un tratto finale costante che ha inizio in corrispondenza di valori di k sempre minori. A differenza delle curve di WIP, però, le curve di costo si spostano verso l’alto in misura minore al crescere di s, coerentemente
all’effetto di questo parametro sul costo di backlog che si mantiene costante al variare di k, fissato s, ma diminuisce all’aumentare del livello di base stock, a parità di variazione di k (figura 4.78).

![Diagrama](image)

Figura 4.78 – Famiglia di curve di costo totale al variare di k per s crescente

Fissato invece il valore di s, all’aumentare di C, con \(C \geq \Sigma_{i} s_{i}, i = 1,\ldots, N-1 \), il costo di backlog non varia poiché il ritardo medio si mantiene costante al variare di C, mentre il costo di mantenimento aumenta in seguito all’aumento del WIP: la retta di costo totale in funzione di k, quindi, trasla verso l’alto all’aumentare del numero di cartellini CONWIP (figura 4.79).
Dall’analisi delle statistiche al variare dei singoli parametri, la velocità del sistema di soddisfare la domanda non varia al variare di \(k \), quindi anche il costo di backlog si mantiene costante; il WIP medio, invece, risulta dapprima crescente e poi costante, quindi anche il costo di mantenimento assume lo stesso andamento e influenza la variazione del costo totale: di conseguenza la tendenza delle curve di costo totale in funzione di \(C \) al crescere di \(k \) è analoga a quella delle curve di WIP medio. Al variare di \(k \) e a parità di \(s \), le curve in funzione di \(C \) partono tutte dallo stesso punto e coincidono, inizialmente, in corrispondenza di un tratto crescente; dopodiché le curve assumono andamento costante, coerentemente a quanto ottenuto in corrispondenza dell’incremento di \(C \). Il punto in cui le curve cambiano pendenza, però, si ottiene in corrispondenza di valori crescenti di \(C \) al crescere di \(k \), come per le curve di WIP medio (figura 4.80).
Al crescere di s, invece, la curva di costo totale in funzione di C si sposta verso l’alto, coerentemente all’andamento crescente del costo totale al variare del livello di basestock, e verso destra rispettando il vincolo imposto dal sistema, $C \geq \sum s_i$, $i = 1, \ldots, N-1$.

Figura 4.80 – Famiglia di curve di costo totale al variare di C per k crescente
Tenendo conto dell’andamento crescente del costo totale all’aumentare del numero di kanban, la curva di costo totale in funzione di s trasla, di conseguenza, verso l’alto al crescere di k.

Figura 4.81 – Famiglia di curve di costo totale al variare di C per s crescente
Al crescere di C, invece, le curve in funzione di s coincidono inizialmente nel tratto crescente, raggiungendo, però, via via valori massimi più alti in corrispondenza di s maggiori (figura 4.83), coerentemente all’andamento delle curve di WIP medio, poiché il valore di WIP incide sul costo di mantenimento che ha effetto prevalente sul costo totale.
La combinazione dei parametri di controllo $k_i = 5$, $s_i = 4$ e $C = 16$ garantisce un livello di servizio abbastanza elevato, pari al 99,90%, a costi abbastanza contenuti. Il vincolo imposto dal sistema, ovvero $C \geq \Sigma s_i$, $i = 1, \ldots, N-1$, non consente di abbassare ulteriormente il valore del parametro C.

Figura 4.83 – Famiglia di curve di costo totale al variare di s per C crescente
4.3 DEFINIZIONE DEGLI SCENARI DI CONFRONTO

L’analisi e la valutazione delle statistiche per ogni sistema considerato, al variare dei rispettivi parametri di controllo, ha consentito, quindi, di definire i valori dei parametri con cui tarare ogni modello, riassunti in tabella 4.1.

<table>
<thead>
<tr>
<th>Modello</th>
<th>KCS</th>
<th>CCS</th>
<th>BSCS</th>
<th>CKCS</th>
<th>GKCS</th>
<th>EKCS</th>
<th>ECKCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametri</td>
<td>k = 4</td>
<td>C = 7</td>
<td>s = 4</td>
<td>C = 8</td>
<td>s = 4</td>
<td>s = 4</td>
<td>s = 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>k = 4</td>
<td>k = 5</td>
<td>k = 5</td>
<td>k = 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C = 16</td>
</tr>
</tbody>
</table>

Tabella 4.1 – Parametri di controllo

Ai medesimi risultati, e a conferma della validità degli stessi, si è giunti attraverso una procedura di ottimizzazione mediante il software Optquest come riportato di seguito.

\[
\begin{align*}
\text{Min! } & C_{TOT} \\
\text{t.c. } & 99,85\% \leq L_s \leq 100\%
\end{align*}
\]

I limiti di esplorazione Lower Bound ed Upper Bound delle variabili di controllo sono stati scelti considerando il range di variazione dei parametri per ogni sistema, desunto dalla letteratura come nel caso precedente. Individuati i parametri di controllo con cui caratterizzare i diversi modelli, è possibile, quindi, passare al confronto tra le performance dei vari sistemi. Il confronto viene effettuato per due scenari differenti: in uno viene valutata la risposta dei sistemi al variare della domanda dei clienti finali, nell’altro si valuta la risposta dei sistemi al variare dei tempi di produzione. In entrambi i casi si considera una politica di approvvigionamento di tipo Just-In-Time per soddisfare la domanda giornaliera, cioè il buffer materie prime viene rifornito di materie prime pari alla richiesta giornaliera.
4.3.1 Variazione della domanda

In questo scenario, per ogni modello considerato, vengono valutati i parametri di confronto, definiti nel paragrafo 4.1, ipotizzando diversi valori di domanda. La domanda viene incrementata fino al 30%, a partire dal valore iniziale di 20 pezzi/giorno, simulando, di volta in volta, la risposta dei sistemi per incrementi del 5%. Si consideri come varia la risposta dei diversi modelli in corrispondenza di tale range di variazione: i risultati ottenuti vengono riportati di seguito per ognuno dei sistemi.

KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_S</td>
<td>99,88</td>
<td>99,87</td>
<td>99,86</td>
<td>99,86</td>
<td>99,85</td>
<td>97,76</td>
<td>95,67</td>
</tr>
<tr>
<td>C_M</td>
<td>15,83</td>
<td>15,63</td>
<td>15,42</td>
<td>15,21</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>C_B</td>
<td>5,67</td>
<td>6,37</td>
<td>7,12</td>
<td>7,92</td>
<td>8,75</td>
<td>128,9</td>
<td>249,3</td>
</tr>
<tr>
<td>C_T</td>
<td>21,5</td>
<td>22</td>
<td>22,54</td>
<td>23,13</td>
<td>23,75</td>
<td>143,9</td>
<td>264,3</td>
</tr>
<tr>
<td>WIP</td>
<td>15,83</td>
<td>15,625</td>
<td>15,42</td>
<td>15,21</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>R_m</td>
<td>2,83</td>
<td>3</td>
<td>3,17</td>
<td>3,33</td>
<td>3,41</td>
<td>41,31</td>
<td>76,77</td>
</tr>
</tbody>
</table>

CONWIP CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_S</td>
<td>99,87</td>
<td>99,86</td>
<td>99,85</td>
<td>99,84</td>
<td>99,83</td>
<td>97,74</td>
<td>95,65</td>
</tr>
<tr>
<td>C_M</td>
<td>2,83</td>
<td>2,63</td>
<td>2,42</td>
<td>2,21</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C_B</td>
<td>5,96</td>
<td>6,75</td>
<td>7,62</td>
<td>8,58</td>
<td>9,63</td>
<td>129,9</td>
<td>250,3</td>
</tr>
<tr>
<td>C_T</td>
<td>8,79</td>
<td>9,38</td>
<td>10,04</td>
<td>10,79</td>
<td>11,63</td>
<td>131,9</td>
<td>252,3</td>
</tr>
<tr>
<td>WIP</td>
<td>2,83</td>
<td>2,63</td>
<td>2,42</td>
<td>2,21</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>R_m</td>
<td>3,36</td>
<td>3,52</td>
<td>3,55</td>
<td>3,57</td>
<td>3,58</td>
<td>41,63</td>
<td>77,11</td>
</tr>
</tbody>
</table>

Tabella 4.2 – Variazione della domanda KCS

Tabella 4.3 – Variazione della domanda CCS
BASE STOCK CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_S</td>
<td>99,9</td>
<td>99,89</td>
<td>99,88</td>
<td>99,87</td>
<td>99,86</td>
<td>97,78</td>
<td>95,69</td>
</tr>
<tr>
<td>C_M</td>
<td>21,5</td>
<td>22</td>
<td>22,54</td>
<td>23,13</td>
<td>23,75</td>
<td>143,9</td>
<td>264,3</td>
</tr>
<tr>
<td>C_B</td>
<td>5</td>
<td>5,67</td>
<td>6,38</td>
<td>7,12</td>
<td>7,92</td>
<td>127,9</td>
<td>248,3</td>
</tr>
<tr>
<td>C_T</td>
<td>26,5</td>
<td>27,67</td>
<td>28,92</td>
<td>30,25</td>
<td>31,67</td>
<td>271,8</td>
<td>512,6</td>
</tr>
<tr>
<td>WIP</td>
<td>21,5</td>
<td>22</td>
<td>22,54</td>
<td>23,13</td>
<td>23,75</td>
<td>143,9</td>
<td>264,3</td>
</tr>
<tr>
<td>R_m</td>
<td>2,67</td>
<td>2,83</td>
<td>3</td>
<td>3,17</td>
<td>3,25</td>
<td>41,02</td>
<td>76,49</td>
</tr>
</tbody>
</table>

Tabella 4.4 – Variazione della domanda BSCS

CONWIP-KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_S</td>
<td>99,88</td>
<td>99,87</td>
<td>99,86</td>
<td>99,86</td>
<td>99,85</td>
<td>97,76</td>
<td>95,67</td>
</tr>
<tr>
<td>C_M</td>
<td>3,83</td>
<td>3,63</td>
<td>3,42</td>
<td>3,21</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>C_B</td>
<td>5,67</td>
<td>6,37</td>
<td>7,12</td>
<td>7,92</td>
<td>8,75</td>
<td>128,9</td>
<td>249,3</td>
</tr>
<tr>
<td>C_T</td>
<td>9,5</td>
<td>10</td>
<td>10,54</td>
<td>11,13</td>
<td>11,75</td>
<td>131,9</td>
<td>252,3</td>
</tr>
<tr>
<td>WIP</td>
<td>3,83</td>
<td>3,63</td>
<td>3,42</td>
<td>3,21</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R_m</td>
<td>2,83</td>
<td>3</td>
<td>3,17</td>
<td>3,33</td>
<td>3,41</td>
<td>41,31</td>
<td>76,77</td>
</tr>
</tbody>
</table>

Tabella 4.5 – Variazione della domanda CKCS

GENERALIZED KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_S</td>
<td>99,88</td>
<td>99,87</td>
<td>99,86</td>
<td>99,86</td>
<td>99,85</td>
<td>97,76</td>
<td>95,67</td>
</tr>
<tr>
<td>C_M</td>
<td>14,37</td>
<td>14,09</td>
<td>13,8</td>
<td>13,5</td>
<td>13,21</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>C_B</td>
<td>5,67</td>
<td>6,37</td>
<td>7,12</td>
<td>7,92</td>
<td>8,75</td>
<td>128,9</td>
<td>249,3</td>
</tr>
<tr>
<td>C_T</td>
<td>20,04</td>
<td>20,46</td>
<td>20,92</td>
<td>21,42</td>
<td>21,96</td>
<td>141,9</td>
<td>262,3</td>
</tr>
<tr>
<td>WIP</td>
<td>14,37</td>
<td>14,09</td>
<td>13,8</td>
<td>13,5</td>
<td>13,21</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>R_m</td>
<td>2,83</td>
<td>3</td>
<td>3,17</td>
<td>3,33</td>
<td>3,41</td>
<td>41,31</td>
<td>76,77</td>
</tr>
</tbody>
</table>

Tabella 4.6 – Variazione della domanda GKCS

236
CAPITOLO 4
Analisi e confronto dei modelli
in ambiente deterministico

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_S</td>
<td>99,9</td>
<td>99,89</td>
<td>99,88</td>
<td>99,87</td>
<td>99,86</td>
<td>97,78</td>
<td>95,69</td>
</tr>
<tr>
<td>C_M</td>
<td>16,5</td>
<td>16,33</td>
<td>16,16</td>
<td>16,02</td>
<td>16,01</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>C_B</td>
<td>5</td>
<td>5,67</td>
<td>6,38</td>
<td>7,12</td>
<td>7,92</td>
<td>127,9</td>
<td>248,3</td>
</tr>
<tr>
<td>C_T</td>
<td>21,5</td>
<td>22</td>
<td>22,54</td>
<td>23,14</td>
<td>23,93</td>
<td>143,9</td>
<td>264,3</td>
</tr>
<tr>
<td>WIP</td>
<td>16,5</td>
<td>16,33</td>
<td>16,16</td>
<td>16,02</td>
<td>16,01</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>R_m</td>
<td>2,67</td>
<td>2,83</td>
<td>3</td>
<td>3,17</td>
<td>3,25</td>
<td>41,02</td>
<td>76,49</td>
</tr>
</tbody>
</table>

Tabella 4.7 – Variazione della domanda EKCS

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_S</td>
<td>99,9</td>
<td>99,89</td>
<td>99,88</td>
<td>99,87</td>
<td>99,86</td>
<td>97,78</td>
<td>95,69</td>
</tr>
<tr>
<td>C_M</td>
<td>12,58</td>
<td>12,25</td>
<td>11,91</td>
<td>11,59</td>
<td>11,25</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>C_B</td>
<td>5</td>
<td>5,67</td>
<td>6,38</td>
<td>7,12</td>
<td>7,92</td>
<td>127,9</td>
<td>248,3</td>
</tr>
<tr>
<td>C_T</td>
<td>17,58</td>
<td>17,92</td>
<td>18,29</td>
<td>18,71</td>
<td>19,17</td>
<td>138,9</td>
<td>259,3</td>
</tr>
<tr>
<td>WIP</td>
<td>12,58</td>
<td>12,25</td>
<td>11,91</td>
<td>11,59</td>
<td>11,25</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>R_m</td>
<td>2,67</td>
<td>2,83</td>
<td>3</td>
<td>3,17</td>
<td>3,25</td>
<td>41,02</td>
<td>76,49</td>
</tr>
</tbody>
</table>

Tabella 4.8 – Variazione della domanda ECKCS

Le performance dei modelli possono essere confrontate in modo più diretto facendo riferimento all’andamento dei grafici raffiguranti le variazioni dei parametri di confronto al crescere della domanda. Le variazioni del WIP medio ottenute per ogni modello al crescere della domanda risultano coerenti alle rispettive logiche di controllo (figura 4.84).
In corrispondenza del range di variazione considerato, nel modello Kanban il WIP medio circolante all’interno del sistema inizialmente tende a ridursi lievemente, per poi mantenersi costante in corrispondenza di incrementi maggiori di domanda.

Per piccole variazioni di domanda, infatti, il sistema è in grado di rispondere alla domanda attraverso i pezzi circolanti nel sistema che, prelevati dai buffer e trasformati in prodotti finiti, possono essere consegnati ai clienti: il prelievo dei materiali dai buffer riduce il valore medio di WIP all’interno del sistema.

Per variazioni maggiori di domanda, il numero di kanban scelto non riesce più a garantire rapidamente il reintegro del buffer finale dei prodotti finiti: quindi, per cercare di soddisfare la domanda, i cartellini kanban autorizzano continuamente la movimentazione dei materiali con la conseguenza che il valore di WIP medio all’interno del sistema non può più diminuire ma si assesta su un valore costante. La capacità del sistema di rispondere alla
domanda, quindi, si mantiene abbastanza elevata per piccole variazioni, per poi diminuire velocemente in corrispondenza di incrementi maggiori: nel range di variazione della domanda considerato, il livello di servizio si riduce dal valore iniziale del 99,88% fino al valore di 95,67%.

Andamento analogo si riscontra per il WIP medio circolante nel sistema controllato con logica CONWIP: anche in questo caso, inizialmente il WIP medio si riduce leggermente, per effetto del prelievo dei prodotti finiti dal buffer del sistema, e poi si mantiene costante in corrispondenza di incrementi maggiori al fine di soddisfare la domanda.

A differenza, però, del sistema Kanban, che limita il WIP medio circolante in ogni fase del sistema, il controllo CONWIP impone il limite sul WIP medio totale circolante nell’intero sistema, di conseguenza la quantità totale di materiale ammesso nel sistema CONWIP risulta minore rispetto al WIP medio che circola nel sistema Kanban. Di conseguenza con il controllo CONWIP il livello di servizio segue andamento analogo ma in corrispondenza di valori leggermente più bassi, coerentemente alla minore disponibilità di materiale nel sistema: il livello di servizio si riduce dal valore iniziale pari a 99,87% fino al valore di 99,65%.

Diversa è la variazione di WIP medio per la politica Base Stock al crescere della domanda.

Questo modello, infatti, non impone alcun limite al WIP circolante nel sistema; inoltre la domanda che arriva al sistema viene subito trasferita ad ogni fase per garantire il reintegro dei vari buffer. Di conseguenza, se la domanda dei clienti finali aumenta, aumenta anche la richiesta di reintegro dei singoli buffer, che viene subito inoltrata alle varie fasi consentendo il prelievo dei materiali dai buffer precedenti. Ciò si traduce nell’aumento del WIP in ogni fase e, quindi, nell’aumento del WIP medio totale, in assenza del controllo che limiti la quantità totale di pezzi circolanti nel sistema. A questo accumulo illimitato di WIP nel sistema, però, non corrisponde sempre un
livello di servizio abbastanza elevato, a parità di incremento di domanda. Infatti l’incremento del WIP medio nel sistema è dovuto al maggiore accumulo dei pezzi in coda alle produzioni, una volta prelevati dai buffer precedenti, e non all’aumento dei pezzi finiti presenti in ogni buffer, che consentirebbero di avere a disposizione, quindi, anche un gran numero di prodotti finiti da consegnare ai clienti per soddisfare la domanda. Di conseguenza, nonostante l’aumento del WIP medio, il livello di servizio garantito dal modello Base Stock risulta comunque decrescente al crescere della domanda. La possibilità di avere a disposizione nel sistema una quantità maggiore di pezzi, però, consente al sistema Base Stock di rispondere, ovviamente, meglio alla domanda rispetto ai modelli Kanban e CONWIP basati sul controllo del WIP: infatti, a parità di incremento di domanda, il controllo Base Stock garantisce livelli di servizio maggiori, che variano dal 99,90% al 95,69%.

I risultati ottenuti mostrano come i sistemi di produzione ibridi consentano di combinare i vantaggi dei singoli sistemi di base, coerentemente alle rispettive logiche.

Il modello CONWIP-Kanban, ad esempio, limita il WIP medio dell’intiero sistema tramite il parametro C, consentendo, comunque, di far circolare un certo numero di pezzi in ogni fase, limitato dal numero di cartellini kanban: ciò permette di raggiungere lo stesso livello di servizio ottenuto col controllo Kanban di base, ma movimentando una quantità inferiore di materiale nel sistema, grazie al controllo CONWIP. La variazione di WIP è analoga a quella dei sistemi di base, ovvero dapprima lievemente decrescente e poi costante, ma si ottiene in corrispondenza di valori abbastanza inferiori a quelli di WIP medio del KCS, a parità di livello di servizio di quest’ultimo sistema, e in corrispondenza di valori di poco superiori a quelli di WIP medio del CCS, da cui deriva anche un livello di servizio maggiore del CKCS.
La politica GKCS che combina il controllo Base Stock e quello Kanban, presenta, invece, il vantaggio di rispondere meglio all’aumento di domanda rispetto al solo controllo Kanban, imponendo un determinato livello di base stock per ogni buffer, e, allo stesso tempo, di evitare l’accumulo illimitato di materiale nel sistema imponendo il limite di WIP tramite cartellini kanban; ciò risulta possibile attraverso il parziale disaccoppiamento tra flusso informativo e flusso dei materiali rispetto al controllo Kanban di base. Nel GKCS i cartellini kanban vengono staccati dai pezzi subito dopo la fine di ogni lavorazione e non quando i pezzi finiti vengono prelevati dai buffer: la richiesta di reintegro dei buffer può essere, allora, inoltrata a cascata attraverso le fasi nel momento in cui si rendono disponibili i cartellini kanban, che non corrisponde più al momento in cui i pezzi finiti vengono rilasciati a valle. Ciò consente di richiamare più velocemente il materiale dai buffer, con la conseguenza che col GKCS è possibile raggiungere lo stesso livello di servizio ottenuto con il KCS utilizzando un numero minore di cartellini kanban e, quindi, in corrispondenza di valori più bassi di WIP medio circolante nel sistema. Rispetto al solo controllo Base Stock, invece, il GKCS consente di ottenere un livello di servizio solo di poco inferiore ma col vantaggio di riuscire a ridurre notevolmente il WIP medio. L’andamento del WIP medio risulta prima decrescente e poi costante al crescere della domanda poiché il controllo Kanban limita la quantità di pezzi in ogni fase mentre il controllo Base Stock garantisce un determinato livello di pezzi e prodotti finiti che possono essere prelevati per soddisfare le richieste di clienti. Per piccoli incrementi di domanda, il sistema riesce a soddisfare le richieste dei clienti: aumenta il numero di prodotti finiti che vengono prelevati dal buffer finale, mentre, allo stesso tempo, il WIP di ogni fase viene comunque limitato, con la conseguenza che il WIP medio totale dell’intero sistema risulta decrescente. Quando la domanda aumenta ulteriormente, però, il sistema non riesce a reintegrare velocemente i buffer,
di conseguenza c’è minore disponibilità di prodotti finiti che determina la movimentazione continua di materiale, comportando un valore costante di WIP medio nel sistema. La quantità di materiale circolante nel GKCS risulta, quindi, inferiore sia a quella del KCS che a quella del BSCS. Anche il modello EKCS combina i vantaggi del controllo Kanban e di quello Base Stock, ma rispetto al GKCS consente di movimentare una quantità ancora maggiore di pezzi all’interno del sistema. Questo risultato è coerente con la logica del controllo EKCS, nel quale il flusso informativo e il flusso dei materiali sono completamente disaccoppiati, e deriva dalla principale differenza esistente fra i due modelli, che consiste nella diversa modalità di trasferimento della domanda alle varie fasi: nel GKCS, la domanda viene inviata a monte solo quando risultano disponibili i cartellini kanban, mentre nel modello EKCS la richiesta di pezzi viene inviata subito a tutte le fasi non appena la domanda dei clienti giunge al sistema. Di conseguenza nell’EKCS il rilascio del materiale avviene prima, potendo disporre, mediamente, di una quantità maggiore di WIP all’interno del sistema. Questa possibilità consente di rispondere meglio all’incremento di domanda, raggiungendo livelli di servizio compresi tra il 99,90% e il 95,69%, un po’ più alti di quelli ottenuti con il GKCS. Anche in questo caso il WIP medio totale dell’intero sistema risulta prima decrescente e poi costante all’aumentare della domanda, poiché, inizialmente, aumenta il numero di prodotti finiti che vengono prelevati dal buffer finale, mentre, allo stesso tempo, il WIP di ogni fase viene limitato dai cartellini kanban; e successivamente richieste sempre maggiori determinano la movimentazione continua di materiale, comportando un valore costante di WIP medio nel sistema. In definitiva il modello EKCS consente di rispondere meglio alle variazioni di domanda rispetto al KCS, raggiungendo livelli di servizio più alti, mentre ha il vantaggio di garantire lo stesso livello di servizio del BSCS in corrispondenza, però, di quantità abbastanza inferiori di WIP medio.
La stessa capacità di risposta alle variazioni della domanda può essere ottenuta per valori di WIP medio addirittura inferiori attraverso il controllo Extended-CONWIP-Kanban, che combina le tre logiche pull di base: a parità di numero di kanban e di livello di base stock, il modello ECKCS consente di rispondere ugualmente bene agli incrementi di domanda, come l’EKCS, ma movimentando, mediamente, una minore quantità di pezzi nel sistema imponendo il controllo del WIP totale attraverso i cartellini CONWIP. Nel modello Extended-CONWIP-Kanban la domanda viene subito trasferita alle varie fasi come per il modello EKCS, riuscendo a raggiungere lo stesso livello di servizio garantito dal reintegro dei buffer tramite il controllo base stock e la movimentazione dei cartellini kanban; e a allo stesso tempo è possibile limitare complessivamente il rilascio di pezzi nel sistema attraverso il controllo CONWIP, evitando la movimentazione di quantità non necessarie di materiale nel sistema. Quindi la curva del livello di servizio coincide con quelle dei sistemi BSCS ed EKCS, mentre l’andamento del WIP medio risulta prima decrescente e poi costante, ma in corrispondenza di valori più bassi rispetto al WIP dei modelli BSCS ed EKCS (figura 4.85).
Anche i risultati relativi al ritardo medio nell’evadere gli ordini risultano coerenti alle logiche di controllo che definiscono i diversi modelli. In tutti i casi l’andamento del ritardo medio risulta specularmente a quello del livello di servizio, ovvero per piccoli incrementi di domanda il ritardo cresce solo lievemente, per poi aumentare drasticamente in corrispondenza di incrementi maggiori (figura 4.86).
Inizialmente il modello Kanban riesce ad adattarsi abbastanza bene all’incremento di domanda poiché il numero di cartellini scelto consente di far circolare materiale sufficiente a far fronte a piccole variazioni: quindi il tempo necessario ad evadere gli ordini aumenta solo lievemente. Man mano che la domanda aumenta, però, il limite del WIP in ogni fase imposto dai kanban non permette di richiamare nel sistema una quantità di pezzi tale da reintegrare rapidamente il buffer dei prodotti finiti: di conseguenza la domanda dei clienti si accumula e resta in attesa per tempi più lunghi, come mostrato in figura 4.86 dal rapido aumento del ritardo medio per incrementi più alti di domanda.

Anche il controllo CONWIP consente di non ritardare particolarmente le consegne dei prodotti ai clienti solo per piccole variazioni di domanda, ma nel momento in cui il WIP del sistema comincia a mantenersi costante, l’aumento di domanda comporta anche l’aumento del tempo necessario a
soddisfare la richiesta dei clienti, con conseguente incremento del ritardo medio nell’evadere gli ordini. Inoltre poter disporre di una minore quantità di WIP nel CCS rispetto al KCS, porta il sistema CONWIP a soddisfare più lentamente la domanda, che resta in attesa per tempi maggiori nel modello CCS che in quello KCS: quindi nel primo caso i valori di ritardo medio risultano maggiori.

Tra i sistemi pull di base quello in grado di adattarsi più rapidamente agli incrementi di domanda è, ovviamente il sistema Base Stock, poiché trasferire subito la domanda dei clienti ad ogni fase consente di reintegrare rapidamente la quantità di pezzi nei buffer, avendo a disposizione più velocemente i prodotti finiti da poter consegnare ai clienti: la domanda, quindi, mediamente, resta meno tempo in attesa prima di poter essere soddisfatta. Sebbene anche nel caso del BSCS la curva di ritardo medio aumenti di poco solo inizialmente per poi crescere più rapidamente nel tratto finale, per effetto dell’aumento del WIP medio in coda alle produzione e non nei buffer, i valori ottenuti risultano coerenti con la logica del sistema poiché inferiori a quelli relativi al CCS e al KCS.

Il ritardo nell’evasione degli ordini registrato con il controllo CONWIP-Kanban coincide con quello ottenuto con il controllo Kanban di base, coerentemente a quanto valutato in termini di livello di servizio: a parità di cartellini kanban nei due modelli, è possibile movimentare la quantità di materiale sufficiente a garantire lo stesso livello di servizio, ovvero la stessa capacità del sistema di soddisfare la domanda che mediamente, quindi, resta in attesa per lo stesso tempo sia nel CKCS che nel KCS. L’andamento del ritardo medio al crescere della domanda, allora, coincide per i due sistemi. Rispetto al controllo CONWIP di base, invece, il CONWIP-Kanban consente di movimentare più pezzi e rispondere, quindi, meglio all’incremento di domanda, consentendo di ridurre il ritardo nell’evasione degli ordini.
I parametri scelti per il modello GKCS, garantiscono lo stesso livello di servizio raggiunto con il controllo Kanban, quindi anche i tempi necessari a soddisfare la domanda coincidono con quelli del KCS, anche se in corrispondenza di minori quantità di WIP medio circolante nel sistema: le curve di ritardo medio del GKCS e del KCS coincidono. Nel GKCS, invece, la domanda resta in attesa, mediamente, per un tempo di poco superiore rispetto al BSCS, anche se il GKCS consente di ridurre notevolmente il WIP medio.

La differenza di velocità nel soddisfare la domanda attraverso il controllo EKCS e quello GKCS deriva dalla diversità tra le logiche di controllo: poiché il completo disaccoppiamento tra flusso di domanda e flusso di materiali consente di far circolare più materiale nell’EKCS, reintegrando più velocemente i buffer, allora in questo sistema saranno disponibili più rapidamente i prodotti finiti da consegnare ai clienti per soddisfare la domanda, con una riduzione del ritardo medio nell’evasione degli ordini rispetto al GKCS. Coerentemente ai valori del livello di servizio ottenuti per il BSCS e il KCS, anche i valori di ritardo nell’evasione degli ordini, per il sistema EKCS, coincidono con quelli del BSCS e risultano inferiori a quelli del KCS.

Infine, in relazione al sistema Extended-CONWIP-Kanban, i parametri scelti garantiscono lo stesso livello di servizio del BSCS e dell’EKCS, che risulta superiore al livello di servizio garantito da tutti gli altri modelli, sia di base che ibridi. Quindi, anche la velocità di evasione degli ordini coincide con quella del sistema Base Stock ed Extended Kanban e risulta superiore a quella di tutti gli altri sistemi. A parità di livello di servizio e ritardo nell’evasione degli ordini, però, l’ECKCS è in grado di movimentare quantità notevolmente inferiori di WIP. Il vantaggio di una politica di controllo rispetto alle altre, infatti, non può essere valutato in modo assoluto in relazione ad un solo parametro di confronto, ma è necessario tener conto
dell’effetto congiunto di ogni politica di controllo su più parametri, in modo da averne una valutazione globale, poiché una determinata logica potrebbe garantire performance peggiori rispetto ad un’altra, in relazione ad un unico parametro di confronto, ma garantire, nel complesso, performance più vantaggiose globalmente, se riferite allo stesso tempo a più parametri.
Per concludere il confronto tra le prestazioni dei vari modelli all’incremento di domanda, si riportano, quindi, anche gli andamenti delle curve di costo totale associato ai vari sistemi (figura 4.87).

Il costo totale è dato dalla somma di due aliquote, ovvero costo di mantenimento e costo di backlog, legati, rispettivamente, ai valori di WIP medio e di ritardo medio.
Nel modello Kanban il costo di mantenimento risulta leggermente decrescente per piccoli incrementi di domanda e costante per incrementi maggiori, analogamente alla variazione di WIP nel sistema; il costo di
backlog, invece, ha andamento lievamente crescente inizialmente, per poi crescere molto più rapidamente per incrementi maggiori di domanda, conseguentemente alla riduzione della capacità e velocità del sistema di soddisfare la domanda. Per piccoli incrementi di domanda, il costo di mantenimento decresce ma in modo meno che proporzionale all’aumento del costo di backlog, quindi anche il costo totale risulta inizialmente crescente, anche se molto lentamente; al crescere della domanda il costo di mantenimento resta costante mentre il costo di backlog aumenta molto rapidamente: quindi anche il costo totale crescerà molto velocemente nel tratto finale.

I costi di mantenimento e di backlog presentano gli stessi andamenti anche per il sistema CONWIP, di conseguenza anche la curva di costo totale è caratterizzata dallo stesso andamento di quella del KCS; in questo caso, però, i costi di mantenimento sono molto più bassi rispetto al KCS, poiché nel sistema circola un quantità inferiore di WIP, mentre i costi di backlog risultano più alti, poiché il sistema risponde meno velocemente alle variazioni di domanda. La riduzione del costo di mantenimento è più che proporzionale all’aumento del costo di backlog, quindi, complessivamente, il costo totale associato al sistema CONWIP al variare della domanda risulta inferiore a quello del sistema Kanban.

Il sistema Base Stock, invece, consente di avere costi di backlog più bassi rispetto al KCS e al CCS, grazie alla migliore capacità del sistema di rispondere alla domanda, sebbene la tendenza del costo di backlog sia crescente con l’aumento della domanda, analogamente all’incremento del ritardo nell’evadere gli ordini. D’altro canto, l’assenza di controllo del WIP, consente il continuo accumulo di pezzi nel sistema, con il conseguente incremento del costo di mantenimento, che cresce, al variare della domanda, in modo proporzionale all’aumento del WIP, ovvero molto lentamente per piccoli incrementi di domanda per poi crescere molto più velocemente. Le
due aliquote di costo, quindi, variano allo stesso modo all’aumentare della domanda, di conseguenza la curva di costo totale risulta crescente, inizialmente, con una pendenza molto bassa che poi aumenta notevolmente nell’ultimo tratto, in misura maggiore rispetto alle curve di costo totale del KCS e del CCS. Il costo totale del BSCS, infatti, risulta notevolmente maggiore del costo degli altri due sistemi di base, a causa della maggiore influenza del costo di mantenimento.

Anche nella valutazione del costo totale, i risultati ottenuti mostrano, in generale, il vantaggio dei modelli ibridi rispetto alle politiche di base. La curva di costo totale del modello CONWIP-Kanban segue lo stesso andamento delle curve relative, singolarmente, alle due logiche pull di base. A parità di livello di servizio e ritardo medio rispetto al KCS, il CKCS è caratterizzato, di conseguenza, anche dagli stessi valori di costo di backlog, ma presenta costo di mantenimento molto inferiore rispetto alla politica Kanban di base, in linea con la logica del modello che prevede anche il controllo del WIP totale del sistema, circolante in quantità inferiore rispetto al KCS. Di conseguenza, anche i valori di costo totale del CKCS risultano più bassi di quelli del KCS.

Il costo di backlog del sistema CONWIP-Kanban, invece, risulta inferiore a quello del sistema CONWIP di base, in relazione alla migliore capacità e velocità del sistema di rispondere alle variazioni di domanda, ma la presenza di WIP maggiore nel sistema comporta valori di costo di mantenimento più alti, che incidono maggiormente sul costo totale che, quindi, risulta un po’ più alto di quello del CCS.

Anche le curve di costo dei modelli GKCS ed EKCS hanno andamento crescente più lento per piccole variazioni di domanda e più rapido per variazioni maggiori, seguendo la tendenza dei costi di backlog che hanno influenza maggiore: in entrambi i casi, infatti, i costi di mantenimento risultano prima decrescenti e poi costanti, mentre i costi di backlog risultano
crescenti con pendenza differente; inizialmente la crescita dei costi di backlog è più rapida della riduzione dei costi di mantenimento e, quindi, anche il costo totale risulta leggermente crescente, per poi aumentare notevolmente al crescere della domanda, in corrispondenza di costi di mantenimento costanti e costi di backlog crescenti con pendenza maggiore.

Il GKCS comporta lo stesso costo di backlog del sistema Kanban, poiché i parametri scelti garantiscono lo stesso livello di servizio e la stessa velocità nel soddisfare la domanda dei clienti, ma costo di mantenimento inferiore in quanto quello stesso livello di servizio viene raggiunto in corrispondenza di valori più bassi di WIP medio: il costo totale del GKCS è più basso del costo totale associato al KCS.

Rispetto al sistema Base Stock, invece, il GKCS comporta costi di backlog di poco più alti, in riferimento alla velocità del sistema di rispondere alle variazioni di domanda. Questo lieve incremento iniziale del costo di backlog, però, non incide sull’effetto positivo del sistema di ridurre notevolmente il costo di mantenimento derivante dalla presenza di minori quantità di WIP: il costo totale del GKCS risulta, quindi, inferiore anche al costo totale del BSCS, coerentemente alla logica del sistema che limita il WIP in ogni fase.

Il sistema Extended Kanban, invece, consente di far circolare più pezzi nel sistema rispetto al sistema Kanban, raggiungendo livello di servizio più alto, con minor ritardo nell’evasione degli ordini. Ciò si traduce in costi di mantenimento maggiori e costi di backlog inferiori che, complessivamente, determinano simili valori di costo totale rispetto al sistema Kanban.

Rispetto al BSCS, i parametri individuati per l’EKCS, invece, garantiscono stesso livello di servizio e velocità nel soddisfare la domanda e, quindi, determinano anche stessi valori di costo di backlog, in corrispondenza di WIP medio inferiore: in linea con la logica del sistema, i costi di mantenimento sono più bassi di quelli del BSCS, di conseguenza anche il costo totale associato all’EKCS risulta inferiore.
Il costo totale dell’EKCS al crescere della domanda risulta, invece, maggiore del costo totale del GKCS: sebbene il costo di backlog risulti inferiore per la migliore capacità del sistema di rispondere alla domanda, il costo totale risente del maggior costo di mantenimento, coerentemente alla logica del sistema che consente di movimentare più materiale rispetto al GKCS.

Infine si consideri la curva di costo totale del sistema Extended-CONWIP-Kanban: ancora una volta l’andamento è determinato dall’influenza del costo di backlog che, al crescere della domanda, cresce dapprima leggermente e poi più rapidamente; il costo di mantenimento risulta, invece, prima decrescente e poi costante, ma la riduzione iniziale non è tale da influenzare il costo totale che, quindi, risulta lievemente crescente per piccoli incrementi di domanda e presenta pendenza maggiore per incrementi maggiori.

A parità di livello di servizio i costi complessivi del sistema risultano inferiori a quelli del BSCS e dell’EKCS: il sistema comporta uguale costo di backlog, a parità di ritardo medio nell’evasione degli ordini, ma costi di mantenimento notevolmente inferiori grazie al controllo del WIP, che non avviene solo in ogni fase, ma è garantito complessivamente, per l’intero sistema, attraverso l’uso di cartellini CONWIP.

Rispetto al controllo Kanban e al GKCS, l’ECKCS risponde meglio agli incrementi di domanda e anche in corrispondenza di valori più bassi di WIP medio circolante nel sistema: ciò consente di ridurre sia il costo di backlog che il costo di mantenimento, determinando, complessivamente, valori di costo totale inferiori.

In relazione alle politiche CONWIP e CONWIP-Kanban, con il modello ECKCS si ottengono valori di costo totale maggiori, poiché è possibile movimentare, ovviamente, quantità maggiori di WIP, sostenendo, quindi, costi di mantenimento più alti; d’altro canto è possibile raggiungere livelli di servizio maggiori, garantiti dal controllo del reintegro del livello di base stock dei vari buffer.
In definitiva, tutti i sistemi riescono a garantire un livello di servizio abbastanza elevato per incrementi di domanda non superiori al 20%; più precisamente, riassumendo quanto emerso dalla valutazione dei parametri di confronto, analizzati per ogni politica di controllo, i sistemi che garantiscono il livello di servizio più alto sono il Base Stock, l’Extended Kanban e l’Extended-CONWIP-Kanban; un livello di servizio leggermente più basso si raggiunge con i sistemi Kanban, Generalized Kanban e CONWIP-Kanban; mentre il livello di servizio più basso in assoluto si ottiene per il sistema CONWIP. A questi risultati è necessario, associare, però, anche la valutazione dei costi totali da sostenere per garantire questi livelli di servizio: tra i primi tre sistemi, a parità di livello di servizio, quello che comporta il costo totale più basso è l’ECKCS, mentre tra KCS, GKCS e CKCS, quest’ultimo determina il costo totale minore, sempre a parità di livello di servizio. Il sistema CONWIP di base, invece, pur comportando il costo totale più basso in assoluto, presenta, però, anche livello di servizio più basso.

Quindi, nelle ipotesi considerate nella costruzione dei modelli e in base ai parametri di controllo scelti per ognuno di essi, i sistemi che rispondono meglio, in generale, alla variazione di domanda sono il CONWIP-Kanban e l’Extended-CONWIP-Kanban.

4.3.2 Variazione dei tempi di produzione

I modelli costruiti in ARENA sono stati confrontati anche al variare dei tempi di produzione di ogni macchina della linea.

I valori dei tempi di produzione sono stati incrementati fino al 50% del valore iniziale, pari a 20 minuti: fino al 30% l’incremento è stato considerato per step del 5%, per arrivare poi all’incremento totale del 50% con step del 10%. I risultati ottenuti sono in linea con le logiche di controllo delle varie politiche.
CAPITOLO 4

Analisi e confronto dei modelli in ambiente deterministico

KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione tempi di produzione %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_s)</td>
<td>99,88</td>
<td>99,87</td>
<td>99,87</td>
<td>99,86</td>
<td>99,85</td>
<td>97,78</td>
<td>95,69</td>
<td>91,52</td>
<td>87,35</td>
</tr>
<tr>
<td>(C_m)</td>
<td>15,83</td>
<td>15,62</td>
<td>15,42</td>
<td>15,37</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>(C_b)</td>
<td>5,67</td>
<td>5,95</td>
<td>6,23</td>
<td>6,52</td>
<td>7,13</td>
<td>102,42</td>
<td>190,96</td>
<td>349,07</td>
<td>486,1</td>
</tr>
<tr>
<td>(C_t)</td>
<td>21,5</td>
<td>21,57</td>
<td>21,65</td>
<td>21,89</td>
<td>22,13</td>
<td>117,42</td>
<td>205,96</td>
<td>364,07</td>
<td>501,1</td>
</tr>
<tr>
<td>WIP</td>
<td>15,83</td>
<td>15,62</td>
<td>15,42</td>
<td>15,21</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>(R_m)</td>
<td>2,83</td>
<td>2,97</td>
<td>3,12</td>
<td>3,26</td>
<td>3,28</td>
<td>41,048</td>
<td>76,45</td>
<td>139,73</td>
<td>194,55</td>
</tr>
</tbody>
</table>

Tabella 4.9 – Variazione dei tempi di produzione KCS

CONWIP CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione tempi di produzione %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_s)</td>
<td>99,87</td>
<td>99,86</td>
<td>99,86</td>
<td>99,85</td>
<td>99,84</td>
<td>97,76</td>
<td>95,67</td>
<td>91,49</td>
<td>87,32</td>
</tr>
<tr>
<td>(C_m)</td>
<td>2,83</td>
<td>2,63</td>
<td>2,42</td>
<td>2,21</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(C_b)</td>
<td>5,96</td>
<td>6,31</td>
<td>6,71</td>
<td>7,16</td>
<td>7,65</td>
<td>103,42</td>
<td>191,96</td>
<td>350,07</td>
<td>487,1</td>
</tr>
<tr>
<td>(C_t)</td>
<td>8,79</td>
<td>8,94</td>
<td>9,13</td>
<td>9,37</td>
<td>9,65</td>
<td>105,42</td>
<td>193,96</td>
<td>352,07</td>
<td>489,1</td>
</tr>
<tr>
<td>WIP</td>
<td>2,83</td>
<td>2,63</td>
<td>2,42</td>
<td>2,21</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(R_m)</td>
<td>3,36</td>
<td>3,37</td>
<td>3,38</td>
<td>3,48</td>
<td>3,57</td>
<td>41,45</td>
<td>76,9</td>
<td>140,23</td>
<td>195,15</td>
</tr>
</tbody>
</table>

Tabella 4.10 – Variazione dei tempi di produzione CCS

BASE STOCK CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione tempi di produzione %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_s)</td>
<td>99,9</td>
<td>99,89</td>
<td>99,88</td>
<td>99,88</td>
<td>99,87</td>
<td>97,8</td>
<td>95,71</td>
<td>91,54</td>
<td>87,38</td>
</tr>
<tr>
<td>(C_m)</td>
<td>21,5</td>
<td>21,57</td>
<td>21,65</td>
<td>21,73</td>
<td>21,8</td>
<td>21,42</td>
<td>205,97</td>
<td>364,07</td>
<td>501,1</td>
</tr>
<tr>
<td>(C_b)</td>
<td>5</td>
<td>5,25</td>
<td>5,5</td>
<td>5,75</td>
<td>6</td>
<td>101,42</td>
<td>189,96</td>
<td>348,07</td>
<td>485,1</td>
</tr>
<tr>
<td>(C_t)</td>
<td>26,5</td>
<td>26,82</td>
<td>27,15</td>
<td>27,48</td>
<td>27,8</td>
<td>218,85</td>
<td>395,93</td>
<td>712,14</td>
<td>986,2</td>
</tr>
<tr>
<td>WIP</td>
<td>21,5</td>
<td>21,57</td>
<td>21,65</td>
<td>21,73</td>
<td>21,8</td>
<td>21,42</td>
<td>205,97</td>
<td>364,07</td>
<td>501,1</td>
</tr>
<tr>
<td>(R_m)</td>
<td>2,67</td>
<td>2,8</td>
<td>2,93</td>
<td>3,07</td>
<td>3,08</td>
<td>40,68</td>
<td>76,08</td>
<td>139,37</td>
<td>194,2</td>
</tr>
</tbody>
</table>

Tabella 4.11 – Variazione dei tempi di produzione BSCS
Analisi e confronto dei modelli in ambiente deterministico

CONWIP-KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione tempi di produzione %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_s</td>
<td>99,88</td>
<td>99,87</td>
<td>99,87</td>
<td>99,86</td>
<td>99,85</td>
<td>97,78</td>
<td>95,69</td>
<td>91,52</td>
<td>87,35</td>
</tr>
<tr>
<td>C_M</td>
<td>3,83</td>
<td>3,62</td>
<td>3,42</td>
<td>3,21</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>C_B</td>
<td>5,67</td>
<td>5,95</td>
<td>6,23</td>
<td>6,52</td>
<td>7,13</td>
<td>102,42</td>
<td>190,96</td>
<td>349,07</td>
<td>486,1</td>
</tr>
<tr>
<td>C_T</td>
<td>9,5</td>
<td>9,57</td>
<td>9,65</td>
<td>9,73</td>
<td>10,13</td>
<td>105,42</td>
<td>193,96</td>
<td>352,07</td>
<td>489,1</td>
</tr>
<tr>
<td>WIP</td>
<td>3,83</td>
<td>3,62</td>
<td>3,42</td>
<td>3,21</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>R_m</td>
<td>2,83</td>
<td>2,97</td>
<td>3,12</td>
<td>3,26</td>
<td>3,28</td>
<td>41,048</td>
<td>76,45</td>
<td>139,73</td>
<td>194,55</td>
</tr>
</tbody>
</table>

GENERALIZED KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione tempi di produzione %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_s</td>
<td>99,88</td>
<td>99,87</td>
<td>99,87</td>
<td>99,86</td>
<td>99,85</td>
<td>97,78</td>
<td>95,69</td>
<td>91,52</td>
<td>87,35</td>
</tr>
<tr>
<td>C_M</td>
<td>14,37</td>
<td>14,09</td>
<td>13,82</td>
<td>13,53</td>
<td>13,26</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>C_B</td>
<td>5,67</td>
<td>5,95</td>
<td>6,23</td>
<td>6,52</td>
<td>6,8</td>
<td>102,42</td>
<td>190,96</td>
<td>349,07</td>
<td>486,1</td>
</tr>
<tr>
<td>C_T</td>
<td>20,04</td>
<td>20,04</td>
<td>20,05</td>
<td>20,05</td>
<td>20,06</td>
<td>203,96</td>
<td>362,07</td>
<td>499,1</td>
<td></td>
</tr>
<tr>
<td>WIP</td>
<td>14,37</td>
<td>14,09</td>
<td>13,82</td>
<td>13,53</td>
<td>13,26</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>R_m</td>
<td>2,83</td>
<td>2,97</td>
<td>3,12</td>
<td>3,26</td>
<td>3,28</td>
<td>41,048</td>
<td>76,45</td>
<td>139,73</td>
<td>194,55</td>
</tr>
</tbody>
</table>

EXTENDED KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione tempi di produzione %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_s</td>
<td>99,9</td>
<td>99,89</td>
<td>99,88</td>
<td>99,88</td>
<td>99,87</td>
<td>97,8</td>
<td>95,71</td>
<td>91,54</td>
<td>87,38</td>
</tr>
<tr>
<td>C_M</td>
<td>16,5</td>
<td>16,32</td>
<td>16,15</td>
<td>16,14</td>
<td>16,13</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>C_B</td>
<td>5</td>
<td>5,25</td>
<td>5,5</td>
<td>5,75</td>
<td>6</td>
<td>101,42</td>
<td>189,96</td>
<td>348,07</td>
<td>485,1</td>
</tr>
<tr>
<td>C_T</td>
<td>21,5</td>
<td>21,57</td>
<td>21,65</td>
<td>21,89</td>
<td>22,13</td>
<td>117,42</td>
<td>205,96</td>
<td>364,07</td>
<td>501,1</td>
</tr>
<tr>
<td>WIP</td>
<td>16,5</td>
<td>16,32</td>
<td>16,15</td>
<td>16,14</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>R_m</td>
<td>2,67</td>
<td>2,8</td>
<td>2,93</td>
<td>3,07</td>
<td>3,08</td>
<td>40,68</td>
<td>76,08</td>
<td>139,37</td>
<td>194,2</td>
</tr>
</tbody>
</table>

Tabella 4.12 – Variazione dei tempi di produzione CKCS
Tabella 4.13 – Variazione dei tempi di produzione GKCS
Tabella 4.14 – Variazione dei tempi di produzione EKCS
EXTENDED-CONWIP-KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione tempi di produzione %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>L₅</td>
<td>99,9</td>
<td>99,89</td>
<td>99,88</td>
<td>99,88</td>
<td>99,87</td>
<td>97,8</td>
<td>95,71</td>
<td>91,54</td>
<td>87,38</td>
</tr>
<tr>
<td>C₅</td>
<td>12,58</td>
<td>12,26</td>
<td>11,94</td>
<td>11,62</td>
<td>11,3</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>C₆</td>
<td>5</td>
<td>5,25</td>
<td>5,5</td>
<td>5,75</td>
<td>6</td>
<td>101,42</td>
<td>189,96</td>
<td>348,07</td>
<td>485,1</td>
</tr>
<tr>
<td>C₇</td>
<td>17,58</td>
<td>17,51</td>
<td>17,44</td>
<td>17,37</td>
<td>17,3</td>
<td>112,42</td>
<td>200,96</td>
<td>359,07</td>
<td>496,1</td>
</tr>
<tr>
<td>WIP</td>
<td>12,58</td>
<td>12,26</td>
<td>11,94</td>
<td>11,62</td>
<td>11,3</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>R₉</td>
<td>2,67</td>
<td>2,8</td>
<td>2,93</td>
<td>3,07</td>
<td>3,08</td>
<td>40,68</td>
<td>76,08</td>
<td>139,37</td>
<td>194,2</td>
</tr>
</tbody>
</table>

Tabella 4.15 – Variazione dei tempi di produzione ECKCS

Il confronto risulta più evidente osservando l’andamento delle curve in figura 4.88 e figura 4.89.
In corrispondenza del range di variazione considerato, nel modello Kanban il WIP medio circolante all’interno del sistema inizialmente tende a ridursi lievemente, per poi mantenersi costante in corrispondenza di incrementi maggiori dei tempi di produzione. Inizialmente, il numero di kanban scelto consente al sistema di realizzare i prodotti finiti da consegnare ai clienti senza grande accumulo di materiale in coda alle produzioni: il prelievo dei pezzi dai buffer determina, allora, la riduzione del WIP medio nel sistema. Quando i tempi di produzione aumentano maggiormente, il materiale richiamato dai cartellini kanban resta per tempi più lunghi in coda alle produzioni che non in attesa nei buffer sottoforma di pezzi o prodotti finiti: quindi il valore di WIP medio circolante nel sistema si mantiene costante, poiché, per soddisfare la domanda, viene movimentata tutta la quantità di materiale ammessa, limitata dal numero di cartellini kanban. Di conseguenza, il livello di servizio garantito dal KCS si mantiene, inizialmente, abbastanza elevato e subisce, in
seguito, una rapida diminuzione coerentemente alla minore disponibilità di prodotti finiti nel buffer finale da consegnare ai clienti. In corrispondenza del range di variazione dei tempi di produzione considerato, il livello di servizio ottenuto con il modello Kanban si riduce dal valore iniziale del 99,88% fino al valore di 87,35%.

Andamento analogo si riscontra per il WIP medio circolante nel sistema controllato con logica CONWIP: anche in questo caso, inizialmente il WIP medio si riduce leggermente, per effetto del prelievo dei prodotti finiti dal buffer del sistema, e poi si mantiene costante in corrispondenza di incrementi maggiori al fine di soddisfare la domanda.

A differenza, però, del sistema Kanban, che limita il WIP medio circolante in ogni fase del sistema, il controllo CONWIP impone il limite sul WIP medio totale circolante nell’intero sistema, di conseguenza la quantità totale di materiale ammesso nel sistema CONWIP risulta minore rispetto al WIP medio che circola nel sistema Kanban. Di conseguenza con il controllo CONWIP il livello di servizio segue andamento analogo ma in corrispondenza di valori leggermente più bassi, coerentemente alla minore disponibilità di materiale nel sistema: la riduzione del valore di livello di servizio ottenuta va dal 99,87% fino al valore di 87,32%.

Diversa è la variazione di WIP medio per la politica Base Stock in cui non è previsto alcun controllo al WIP circolante nel sistema: l’andamento della curva risulta sempre crescente, inizialmente con pendenza minore e poi con pendenza molto più elevata. Non appena la domanda del cliente giunge al sistema e viene trasferita ad ogni fase, dai singoli buffer vengono prelevati i pezzi necessari a soddisfare la domanda e a garantire il livello di base stock stabilito. Se, a parità di domanda, i tempi macchina aumentano, i pezzi resteranno in coda alle produzioni per tempi sempre maggiorni, determinando accumulo sempre maggiore di pezzi. Ciò si traduce nell’aumento del WIP in ogni fase e, quindi, nell’aumento del WIP medio totale, in assenza del
controllo che limiti la quantità totale di pezzi circolanti nel sistema. A questo accumulo illimitato di WIP nel sistema, però, non corrisponde sempre un livello di servizio abbastanza elevato. Infatti l’incremento del WIP medio nel sistema è dovuto al maggiore accumulo dei pezzi in coda alle produzioni, una volta prelevati dai buffer precedenti, e non all’aumento dei pezzi finiti presenti in ogni buffer, che consentirebbero di avere a disposizione, quindi, anche un gran numero di prodotti finiti da consegnare ai clienti per soddisfare la domanda. Di conseguenza, nonostante l’aumento del WIP medio, il livello di servizio garantito dal modello Base Stock risulta comunque decrescente al crescere dei tempi di produzione.
La possibilità di avere a disposizione nel sistema una quantità maggiore di pezzi, però, consente al sistema Base Stock di garantire, ovviamente, livelli di servizio maggiori rispetto ai modelli Kanban e CONWIP basati sul controllo del WIP: infatti, a parità di incremento dei tempi di produzione, il livello di servizio varia dal 99,90% al valore di 87,38%.
La logica CONWIP-Kanban, combinando le due politiche di base, consente, a parità di cartellini kanban, di raggiungere lo stesso livello di servizio ottenuto col controllo Kanban di base, ma movimentando una quantità inferiore di materiale nel sistema, grazie al controllo CONWIP. La variazione di WIP è analoga a quella dei sistemi di base, ovvero dapprima lievemente decrescente e poi costante, ma si ottiene in corrispondenza di valori abbastanza inferiori a quelli di WIP medio del KCS, a parità di livello di servizio di quest’ultimo sistema, e in corrispondenza di valori di poco superiori a quelli di WIP medio del CCS, da cui deriva anche un livello di servizio maggiore del CKCS.
Anche al variare dei tempi di produzione, il sistema Generalized Kanban consente di raggiungere lo stesso livello di servizio del KCS ma utilizzando un numero minore di cartellini kanban e, quindi, in corrispondenza di valori più bassi di WIP medio circolante nel sistema. Rispetto al solo controllo Base
Stock, invece, il GKCS consente di ottenere un livello di servizio solo di poco inferiore ma col vantaggio di riuscire a ridurre notevolmente il WIP medio. L’andamento del WIP medio risulta, ancora una volta, prima decrescente e poi costante. Per piccoli incrementi dei tempi di produzione, la logica Generalized Kanban consente di soddisfare la domanda dei clienti prelevando i prodotti finiti disponibili nel buffer finale grazie al livello di base stock garantito, mentre i pezzi prelevati dai buffer precedenti attendono in coda alle produzioni. Poiché la quantità di materiale è limitata in ogni fase dai cartellini kanban, il prelievo di prodotti finiti da consegnare determina una riduzione del WIP medio totale nel sistema. Quando i tempi di produzione aumentano ulteriormente, il sistema non riesce a reintegrare velocemente i buffer, di conseguenza c’è minore disponibilità di prodotti finiti che determina la movimentazione continua di materiale, comportando un valore costante di WIP medio nel sistema. Sebbene la quantità di WIP medio nel sistema si mantenga costante, ciò non garantisce livelli di servizio costanti: inizialmente, infatti, il livello di servizio si riduce lievemente, ma poi subisce una diminuzione più veloce poiché il valore di WIP medio nel sistema è dato non tanto dai pezzi finiti presenti nei buffer, quanto dai pezzi in coda alle produzioni.

I valori di WIP medio ottenuti con il modello Extended Kanban risultano superiori a quelli del GKCS, coerentemente alla logica del sistema che consente di richiamare più WIP nel sistema; anche in questo caso l’andamento del WIP risulta prima decrescente e poi costante poiché, per piccole variazioni dei tempi macchina, il controllo del livello di base stock continua a garantire la disponibilità di prodotti finiti che vengono prelevati dal buffer per essere consegnati ai clienti, ma per incrementi maggiori è necessario richiamare nel sistema tutta la quantità di materiale possibile per cercare di soddisfare la domanda. La maggiore quantità di WIP nel sistema consente di raggiungere livelli di servizio più alti rispetto al GKCS, ma
comunque rapidamente decrescenti per maggiori variazioni dei tempi di produzione, conseguentemente alla grande quantità di pezzi in coda alle lavorazioni e non disponibili come pezzi finiti nei buffer. Rispetto alle logiche di base da cui deriva, l’EKCS consente di raggiungere livelli di servizio maggiori di quelli ottenuti con il sistema Kanban e uguali a quelli del sistema Base Stock, ma in entrambi i casi in corrispondenza di valori di WIP inferiori.

Lo stesso livello di servizio è garantito dal sistema Extended-CONWIP-Kanban, ma limitando l’accumulo di pezzi in coda alle produzioni grazie al controllo del WIP medio nel sistema attraverso cartellini CONWIP; l’andamento della curva di WIP medio è analogo a quello dell’EKCS ma in corrispondenza di valori più bassi di WIP, mentre la curva di livello di servizio coincide con quella relativa al BSCS e all’EKCS: in corrispondenza di valori più alti dei tempi di produzione, il sistema non riesce, comunque, a reintegrare più velocemente i buffer, ma presenta il vantaggio di determinare minori code in produzione grazie al controllo CONWIP.

Le curve di ritardo medio nell’evasione degli ordini assumono, ovviamente, andamento specularre alle rispettive curve di livello di servizio (figura 4.90).
In tutti i casi le curve presentano, dapprima andamento leggermente crescente e poi aumento molto più rapido; i parametri di controllo scelti per i vari modelli consentono di soddisfare la domanda abbastanza velocemente fino ad un incremento dei tempi macchina del 20%, dopodiché i tempi di produzione diventano troppo lunghi per garantire un rapido reintegro del buffer dei prodotti finiti da consegnare ai clienti: la domanda resta in coda, quindi, per tempi mediamente sempre maggiori al crescere dei tempi di produzione.

Coerentemente alle differenze in termini di livello di servizio, il ritardo maggiore nel soddisfare la domanda si ottiene per il sistema CONWIP, cui corrispondono livelli di servizio più bassi, mentre i sistemi in grado di soddisfare più velocemente la domanda, al crescere dei tempi di produzione, sono il Base Stock, l’Extended Kanban e l’Extended-CONWIP-Kanban, per i quali le curve di ritardo medio coincidono; gli altri tre sistemi analizzati,
ovvero Kanban, CONWIP-Kanban e Generalized Kanban, presentano valori di ritardo intermedi che risultano, fra loro, coincidenti, analogamente alle rispettive curve di livello di servizio.

Per completare il confronto tra le varie logiche al variare dei tempi di produzione, si consideri come queste variazioni influiscano sui costi totali associati ai vari sistemi (figura 4.91).

![Costo Totale](image)

Figura 4.91 – Confronto costo totale per variazione dei tempi di produzione

Nel modello Kanban il costo di mantenimento segue, ovviamente, l’andamento del WIP medio, quindi risulta inizialmente decrescente e poi costante; il costo di backlog, invece, coerentemente all’andamento del ritardo medio, cresce prima lentamente e poi molto più rapidamente. La riduzione del costo di mantenimento risulta meno che proporzionale all’aumento del costo di backlog, quindi la curva di costo totale assume, inizialmente, andamento leggermente crescente e poi aumenta con pendenza molto maggiore per incrementi più alti dei tempi di produzione, seguendo
l’andamento del costo di backlog in corrispondenza del costo di mantenimento costante.

Stesso andamento si ottiene per la curva di costo totale associato al modello CONWIP, conseguentemente ad andamenti analoghi delle due aliquote di costo; la grande riduzione di WIP nel CCS rispetto al KCS, però, comporta costi di mantenimento molto più bassi che riducono notevolmente anche i valori di costo totale.

Il modello Base stock, invece, oltre a presentare costi di backlog crescenti in relazione all’andamento del ritardo medio, comporta anche costi di mantenimento sempre crescenti, conseguentemente all’aumento continuo di WIP medio. Entrambi i costi crescono prima lentamente per poi aumentare drasticamente, in corrispondenza di incrementi maggiori dei tempi macchina, determinando lo stesso andamento della curva di costo totale. Sebbene i costi di backlog risultino inferiori sia a quelli del modello Kanban che a quelli del modello CONWIP, l’aumento di WIP determina costi di mantenimento maggiori, coerentemente alla logica del sistema, che influiscono maggiormente sul costo totale che, quindi, risulta più alto sia di quello del KCS che del CCS.

Il sistema CONWIP-Kanban, a parità di ritardo rispetto al sistema Kanban di base, presenta gli stessi valori di costo di backlog, ma costi di mantenimento molto più bassi, grazie al controllo CONWIP che limita la quantità di materiale circolante, complessivamente, nel sistema. Quindi, la curva di costo totale assume lo stesso andamento della curva relativa al KCS, ma in corrispondenza di valori più bassi. Rispetto al sistema CONWIP, invece, il costo totale risulta di poco superiore, per effetto dei maggiori valori di WIP medio: nonostante il costo di backlog risulti leggermente inferiore grazie alla capacità di soddisfare la domanda più velocemente, l’aumento dei costi di mantenimento influiscono di più sul costo totale che, quindi, risulta lievemente superiore al costo del CCS.
Anche le curve di costo dei modelli GKCS ed EKCS hanno andamento crescente più lento per piccoli incrementi dei tempi di produzione e più rapido per variazioni maggiori, seguendo la tendenza dei costi di backlog che hanno influenza maggiore: in entrambi i casi, infatti, i costi di mantenimento risultano prima decrescenti e poi costanti, mentre i costi di backlog risultano sempre crescenti con pendenza differente. La diminuzione del costo di mantenimento non prevale sull’aumento del costo di backlog, che determina, quindi, l’andamento inizialmente di poco crescente del costo totale; in corrispondenza di valori costanti dei costi di mantenimento, la curva di costo totale assume la stessa pendenza del costo di backlog, risultando crescente in misura molto più rapida.

Il GKCS comporta lo stesso costo di backlog del sistema Kanban, poiché i parametri scelti garantiscono lo stesso livello di servizio e la stessa velocità nel soddisfare la domanda dei clienti, ma costo di mantenimento inferiore in quanto quello stesso livello di servizio viene raggiunto in corrispondenza di valori più bassi di WIP medio: il costo totale del GKCS è più basso del costo totale associato al KCS. Rispetto al sistema Base Stock, invece, il GKCS comporta costi di backlog di poco più alti, ma costi di mantenimento abbastanza inferiori che, quindi, consentono di avere, complessivamente, costi totali più bassi.

Il sistema Extended Kanban, invece, consente di far circolare più pezzi nel sistema rispetto al sistema Kanban con minor ritardo nell’evasione degli ordini. Ciò si traduce in costi di mantenimento maggiori e costi di backlog inferiori che, complessivamente, determinano stessi valori di costo totale del sistema Kanban. Rispetto al BSCS, i parametri individuati per l’EKCS, invece, garantiscono stesso livello di servizio e velocità nel soddisfare la domanda e, quindi, determinano anche stessi valori di costo di backlog, in corrispondenza di WIP medio inferiore: in linea con la logica del sistema, i
costi di mantenimento sono più bassi di quelli del BSCS, di conseguenza anche il costo totale associato all’EKCS risulta inferiore.

Il costo totale dell’EKCS al crescere dei tempi macchina risulta, invece, maggiore del costo totale del GKCS: sebbene il costo di backlog risulti inferiore per la maggiore rapidità del sistema nel soddisfare la domanda, l’influenza maggiore sul costo totale è data dal costo di mantenimento, che risulta maggiore coerentemente alla logica del sistema che consente di movimentare più materiale rispetto al GKCS.

Anche in questo caso, la curva di costo totale del sistema Extended-CONWIP-Kanban presenta lo stesso andamento delle curve relative ai modelli Base Stock ed Extended-Kanban, ma in corrispondenza di valori più bassi: a parità di costi di backlog, dovuti agli stessi valori di ritardo, il modello Extended-CONWIP-Kanban comporta costi di mantenimento inferiori, grazie al limite imposto sul WIP medio, sia in ogni fase che complessivamente nell’intero sistema. Il costo totale dell’ECKCS risulta inferiore anche a quello dei modelli Kanban e GKCS poiché comporta sia costi di backlog che costi di mantenimento inferiori, in relazione alla minore quantità di WIP medio nel sistema e alla maggiore rapidità nel soddisfare le richieste dei clienti.

In relazione alle politiche CONWIP e CONWIP-Kanban, con il modello ECKCS si ottengono valori di costo totale maggiori, poiché è possibile movimentare, ovviamente, quantità maggiori di WIP, sostenendo, quindi, costi di mantenimento più alti; d’altro canto è possibile raggiungere livelli di servizio maggiori, garantiti dal controllo del reintegro del livello di base stock dei vari buffer.

Anche in corrispondenza di variazione dei tempi di produzione, tutti i sistemi riescono a garantire livelli di servizio abbastanza elevati per incrementi non superiori al 20%; anche in questo scenario di confronto i sistemi che garantiscono il livello di servizio più alto sono il Base Stock, l’Extended
Kanban e l’Extended-CONWIP-Kanban; un livello di servizio leggermente più basso si raggiunge con i sistemi Kanban, Generalized Kanban e CONWIP-Kanban; mentre il livello di servizio più basso in assoluto si ottiene per il sistema CONWIP. Ancora una volta, il costo totale più basso in assoluto si ottiene per il modello CONWIP, cui corrisponde, però, anche il livello di servizio più basso; tra i sistemi che garantiscono i livelli di servizio più alti, invece, il costo totale inferiore si ottiene per il modello Extended-CONWIP-Kanban, mentre in corrispondenza di livelli di servizio intermedi il costo totale inferiore è dato dal sistema CONWIP-Kanban.

Quindi i sistemi Extended-CONWIP-Kanban e CONWIP-Kanban riescono a rispondere meglio degli altri anche a variazioni dei tempi di produzione.
CAPITOLO 5
ANALISI E CONFRONTO DEI MODELLI IN AMBIENTE STOCASTICO

5.1 PREMESSA

In questo capitolo si sono confrontati i modelli delle politiche di controllo della produzione di tipo pull rilassando alcune ipotesi definite nei capitoli precedenti. L’idea è quella di rendere i modelli sempre più adattabili alle svariate realtà aziendali e sempre più elastici nel rispondere alle fluttuazioni casuali che caratterizzano la produzione, considerando nello specifico dati di input stocastici e distribuzioni aleatorie, in modo da costituire un supporto valido per la gestione strategica di qualsivoglia sistema pull. Introducendo negli scenari di confronto considerati elementi soggetti ad aleatorietà, si avrà a che fare, quindi, con modelli stocastici.

5.2 DEFINIZIONE DEGLI SCENARI DI INTERESSE

Gli scenari di confronto considerati saranno nel seguito così denominati:

- **Scenario I**: Domanda e Tempo di Produzione deterministici.
 Si è deciso innanzitutto di scardinare una delle ipotesi alla base della costruzione dei modelli in Arena, ossia quella di tasso di guasto assente, in modo da desumere l’influenza dei guasti macchina su ciascuno dei sistemi di controllo, valutandone gli effetti provocati sui parametri di performance. È stato ipotizzato pertanto il blocco della linea produttiva
CAPITOLO 5
Analisi e confronto dei modelli in ambiente stocastico

dovuta ai guasti, con TBF (Time Between Failures) e TTR (Time To Repair) per ogni macchina distribuiti esponenzialmente.

Le politiche di controllo della produzione saranno analizzate in ambiente stocastico, data la presenza dei guasti macchina, comparando la risposta dei sistemi per variazioni (incrementi) della Domanda e dei Tempi di Produzione.

Per gli scenari che seguono si sottintende la presenza dei guasti.

- **Scenario II**: Domanda con arrivi *aleatori (normali)* e Tempi di produzione *deterministici*. Le politiche di controllo della produzione saranno analizzate in ambito stocastico, comparando la risposta dei sistemi per incrementi della variabilità degli arrivi della Domanda e variazione (incrementi) dei Tempi di Produzione.

- **Scenario III**: Domanda con arrivi *aleatori (normali)* e Tempi di Produzione *aleatori (normali)*. Le politiche di controllo della produzione saranno analizzate in ambito stocastico, comparando la risposta dei sistemi per incrementi della variabilità degli arrivi della Domanda e dei Tempi di Produzione.

La Tabella 5.1 fornisce una sintesi degli scenari descritti:

<table>
<thead>
<tr>
<th>SCENARIO</th>
<th>GUASTI MACCHINA</th>
<th>Distribuzione arrivi domanda</th>
<th>Tproduzione</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TBF (ore)</td>
<td>TTR (ore)</td>
<td>(ore)</td>
</tr>
<tr>
<td>I° SCENARIO</td>
<td>Expo (μ=120)</td>
<td>Expo (μ=3)</td>
<td>Deterministici (8)</td>
</tr>
<tr>
<td>II° SCENARIO</td>
<td>Expo (μ=120)</td>
<td>Expo (μ=3)</td>
<td>Normali (μ=8 ; σ=1)</td>
</tr>
<tr>
<td>III° SCENARIO</td>
<td>Expo (μ=120)</td>
<td>Expo (μ=3)</td>
<td>Normali (μ=8 ; σ=1)</td>
</tr>
</tbody>
</table>

Tabella 5.1 – Scenari di confronto
Le risposte esibite dai sistemi nelle condizioni ipotizzate saranno evidenziate tramite opportuni grafici realizzati in Excel, così da fornire una rappresentazione più efficace dei risultati ottenuti di volta in volta dalla simulazione.
5.3 RUN DI UNA SIMULAZIONE STOCASTICA: considerazioni di tipo statistico

Nell’affrontare l’analisi ed il confronto dei sistemi produttivi di tipo pull attraverso lo strumento della Simulazione, i modelli che meglio descrivono i sistemi appartenenti a tale realtà sono discreti, dinamici e stocastici. Un modello, in genere, può avere sia ingressi casuali sia ingressi deterministici nelle differenti componenti: quali siano gli elementi trattati come deterministici e quali siano trattati come casuali dipende dal realismo del modello. Visto che l’aleatorietà delle variabili in un qualsiasi sistema reale è sempre presente, i modelli stocastici sono più idonei a modellare sistemi complessi dove il fenomeno aleatorietà è consistente.

Il confronto dei sistemi descritti in precedenza e modellati attraverso il software Arena viene effettuato in ambito stocastico, per differenti scenari. Per indicare a ciascun modello costruito quante volte effettuare la simulazione è sufficiente inserire il numero desiderato nel blocco RUN SETUP:

![Figura 5.1 – Blocco Run Setup](image)
CAPITOLO 5
Analisi e confronto dei modelli
in ambiente stocastico

Una replica, o run, non è altro che una prova eseguita sul modello, della durata dipendente dalle caratteristiche del sistema reale in studio, e basata su un set di input cui sono stati assegnati opportuni valori. Effettuando un numero di repliche n maggiore di uno, si eseguono più prove, n per la precisione, tutte della medesima durata, sul medesimo modello e fondate sugli stessi valori degli input. La determinazione della lunghezza del run di simulazione è uno dei punti critici dell’esperimento di simulazione. Le decisioni all’interno di una gestione tradizionale di un esperimento fanno riferimento ad un compromesso tra l’affidabilità dei risultati cercati e il costo e/o tempo di sperimentazione. Entrambi si incrementano all’ aumentare della complessità del modello.

Quando il modello si basa su input deterministici, non modificando alcuna informazione tra una replica e l’altra, gli output sono gli stessi, per cui, in tale circostanza, è inutile eseguire più repliche.

Quando invece gli input, non necessariamente tutti, seguono delle distribuzioni statistiche, in generale, gli output sono essi stessi variabili aleatorie.

L’errore tipico che si commette nell’effettuare una simulazione è quello di eseguire un singolo run e considerare i risultati che si osservano come stime del comportamento del sistema reale. Tali stime, in realtà, sono solo valori particolari di variabili aleatorie che possono anche avere varianza molto elevata. Questo implica che, in un particolare run di una simulazione, queste stime possono anche differire di molto dalle corrispondenti reali caratteristiche del modello.

Per definire il numero di volte che deve essere effettuata una simulazione dobbiamo fare alcune considerazioni di tipo statistico.

Si supponga di voler valutare il valore medio di un certo indice di prestazione x, dove x è una variabile aleatoria con valore medio μ e varianza σ^2.

Ripetendo n esperimenti di simulazione, per ipotesi statisticamente indipendenti tra loro, si ottengono n osservazioni indipendenti $X_1, X_2, ..., X_n$. Una stima di μ è data dalla media campionaria:
CAPITOLO 5

Analisi e confronto dei modelli
in ambiente stocastico

\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \]

Quello stimatore è anch’esso una variabile aleatoria: ripetendo più volte la simulazione \(\bar{X}(n) \) assume valori diversi.

In generale \(\bar{X}(n) \neq \mu \), per cui è necessario valutare l’affidabilità della stima; il metodo dell’intervallo di confidenza consiste nel determinare un \textit{intervallo} attorno al valore \(\bar{X}(n) \), in modo da prevedere con una certa probabilità (detta \textit{confidenza}) che \(\mu \) cada in questo intervallo. Ogni intervallo di confidenza è accompagnato dal relativo livello di significatività, che rappresenta una misura del rischio di cadere in errore nello stimare il valore di una statistica. Il range di valori compresi tra il limite inferiore e quello superiore (dell’intervallo) dipende dal livello di probabilità selezionato e dalla numerosità del campione. Quindi, se è vero che non possiamo dire se il vero valore della variabile è contenuto all’interno dell’intervallo di confidenza che abbiamo stimato, è vero però che intervalli di confidenza stretti indicano che la stima ottenuta con il campione è una stima precisa della variabile.

In formule si esprime nel modo seguente:

\[P\left[\bar{X}(n) - \mu < \delta \right] = 1 - \alpha \]

dove \(\delta \) è la semi-ampiezza dell’\textit{intervallo di confidenza}:

\[\left[\bar{X}(n) - \delta; \bar{X}(n) + \delta \right] \]

Tipicamente \((1 - \alpha)\) vale 0.9, 0.95 o 0.99 cioè affidabilità del 90, 95 o 99% rispettivamente.

La Varianza di \(X(n) \) è:

\[\text{Var} \{X(n)\} = \sigma^2/n \]

da cui si vede che all’aumentare del numero di campioni la stima della media migliora.

La varianza si può stimare mediante la \textit{varianza campionaria} \(S^2(n) \):

\[S^2(n) = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \bar{X}(n) \right)^2 \]
Essa è uno stimatore non polarizzato, cioè:

$$E\{S^2(n)\} = \sigma^2$$

sostituendo quindi σ^2 con $S^2(n)$ si ha:

$$Var[\bar{X}(n)] = S^2(n)/n = \frac{1}{n(n-1)} \sum_{i=1}^{n} (X_i - \bar{X}(n))^2$$

Se il numero di osservazioni è elevato ($n > 30$) si può assumere che $X(n)$ abbia distribuzione gaussiana (Teorema del Limite centrale).

Si introduce la variabile aleatoria Z_n:

$$Z_n = (\bar{X}(n) - \mu)/\sqrt{\frac{S^2(n)}{n}}$$

La variabile Z_n ha valor medio nullo e varianza unitaria con distribuzione gaussiana (variabile normale standard).

Poiché si suppone n abbastanza grande, si può sostituire $S^2(n)$ al posto di σ^2 nell’espressione di Z_n:

$$P\left\{ -z_{1-\frac{\alpha}{2}} \leq \frac{\bar{X}(n) - \mu}{\sqrt{S^2(n)/n}} \leq z_{\frac{\alpha}{2}} \right\} = P\left\{ \bar{X}(n) - z_{\frac{\alpha}{2}} \sqrt{\frac{S^2(n)}{n}} \leq \mu \leq \bar{X}(n) + z_{\frac{\alpha}{2}} \sqrt{\frac{S^2(n)}{n}} \right\} \approx 1 - \alpha$$

Il simbolo “\approx” indica che questa è un’approssimazione.

Si ricava quindi la semi-ampiezza dell’intervallo di confidenza:

$$\delta = z_{\frac{\alpha}{2}} \sqrt{\frac{S^2(n)}{n}}$$

Se i campioni X_i hanno distribuzione normale la variabile:

$$t_n = (\bar{X}(n) - \mu)/\sqrt{\frac{S^2(n)}{n}}$$

ha una distribuzione detta t di Student a $n-1$ gradi di libertà e l’intervallo di confidenza (semi-ampiezza) è in questo caso esattamente espresso da:

$$\delta = t_{n-1,1-\frac{\alpha}{2}} \sqrt{\frac{S^2(n)}{n}}$$

e i suoi valori si trovano tabulati per i diversi valori di n.

274
Il metodo di analisi dell’output che utilizza la *t di Student* per il calcolo dell’intervallo di confidenza ha lo svantaggio di non consentire all’analista di controllare la semi-ampiezza dell’intervallo di confidenza, ovvero la precisione della stima $\bar{X}(n)$. Infatti per n fissato, la semi-ampiezza dell’intervallo di confidenza dipende solo dalla varianza di X che non è nota né controllabile.
L’intervallo di confidenza al $100\times(1-\alpha)\%$ è per definizione:

$\text{Stima} \pm \text{margine di errore}$

e rappresenta l’intervallo che contiene il valore vero del parametro della popolazione con una probabilità al più pari a $(1-\alpha)$. L’entità dell’errore si riduce all’aumentare della dimensione del campione, mentre aumenta all’aumentare della deviazione standard della popolazione. Non è possibile intervenire sulla varianza della popolazione per ridurre l’entità dell’errore, ma è comunque possibile determinare la dimensione campionaria n che consente di ottenere l’errore desiderato.
Esistono due modi per misurare l’errore che si commette:

$\text{Errore assoluto: } \beta = |\bar{X}(n) - \mu|$

$\text{Errore relativo: } \frac{|\bar{X}(n) - \mu|}{|\mu|}$

Si introdurrà, in seguito, una procedura che consente di determinare il numero di repliche richieste per stimare la media $\mu = E(X)$ con un errore o precisione specificati.
5.3.1 Calcolo del numero di replicazioni

È chiaro a questo punto come l’analisi dei sistemi pull modellati in ARENA debba essere desunta da risultati che siano statisticamente significativi. Ogni simulazione fornisce come output il valor medio “Average” della variabile (parametro di confronto) calcolata durante la simulazione, accompagnata dalla semi-ampiezza “Half Width” dell’intervallo di confidenza con cui la variabile è stata stimata. Per determinare il numero di replicazioni per ogni simulazione stocastica si è deciso di ricorrere al metodo iterativo delle replicazioni indipendenti proposto da Law e Kelton. Aumentando il numero di repliche, infatti, è possibile ottenere un intervallo di confidenza accettabile.

I modelli sono confrontati in termini di:

1) livello di servizio;
2) livello medio di Work-In-Process;
3) ritardo medio nell’evasione degli ordini;
4) costo totale definito come somma del costo di backlog e del costo di mantenimento.

Per ognuno di questi parametri di performance (\(p_i \), \(i=1,2,3,4 \)) la procedura iterativa utilizzata per il calcolo del numero di replicazioni è la seguente:

1. Si ricava per \(n_0 \) fissato la semi-ampiezza “Half Width” dell’intervallo di confidenza con cui la variabile \(p_i \) è stata stimata. La simulazione fornisce un livello di significatività del 95%, fornito di default da ARENA.
2. Si fissa l’errore assoluto \(\beta \) (precisione) desiderato e si valuta il soddisfacimento della disuguaglianza:

\[
h_0(n_0, \alpha) \leq \beta;
\]
3. Se la disuguaglianza non è verificata, si aumenta di uno il numero di repliche, e gli intervalli di confidenza vengono ricalcolati dopo ogni iterazione finché non si raggiunge la precisione desiderata.
Il numero di replicazioni scelto (per ogni modello) sarà il numero maggiore, \(n_{p_{\text{max}}} \), in modo da essere sicuri di avere delle stime significative per tutti e quattro i parametri.

Tenendo conto della necessità di trovare un numero di replicazioni tale da garantire un buon trade-off tra l’affidabilità dei risultati cercati e il tempo di sperimentazione, si imposta un valore iniziale di replicazioni \(n_0 = 10 \), ed un valore dell’erroyre assoluto desiderato \(\beta = 0.25 \).

Relativamente al sistema controllato con logica Kanban, e nell’ambito del primo scenario di confronto, i risultati ottenuti col metodo prescelto sono i seguenti:

<table>
<thead>
<tr>
<th>KCS n=10 replicazioni</th>
<th>Average</th>
<th>Half width ((h_p))</th>
<th>n_{pi} replicazioni > n_0 : h_p \leq \beta</th>
<th>Average</th>
<th>Half width ((h_p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo totale</td>
<td>24,849</td>
<td>1,9</td>
<td>503</td>
<td>24,3</td>
<td>0,25</td>
</tr>
<tr>
<td>Livello di servizio</td>
<td>99,76</td>
<td>0,05</td>
<td>10</td>
<td>99,76</td>
<td>0,05</td>
</tr>
<tr>
<td>WIP medio</td>
<td>5,3618</td>
<td>0,46</td>
<td>37</td>
<td>13,0586</td>
<td>0,25</td>
</tr>
<tr>
<td>Ritardo medio</td>
<td>0,93</td>
<td>0,93</td>
<td>131</td>
<td>5,0073</td>
<td>0,25</td>
</tr>
</tbody>
</table>

Tabella 5.2 – Numero opportuno di ripliche di una simulazione (KCS)

Nel modello Kanban, per \(n_0 = 10 \), la simulazione restituisce (in corrispondenza del valore medio, Average) una semi-ampiezza (Half width) dell’intervallo di confidenza al 95% maggiore dell’errore assoluto desiderato \(\beta = 0.25 \), per ogni parametro di prestazione \(p_i \) (i=1,2,4), escluso il livello di servizio. Si ripete allora la simulazione con \(n > n_0 \), fin quando la semi-ampiezza risulta almeno pari a \(\beta \).

Il numero di replicazioni necessarie a che si verifichi la disuguaglianza \(h_{pi} \leq \beta \) è \(n_{p_1} = 503 \) per il costo totale, \(n_{p_2} = 10 \) per il livello di servizio, \(n_{p_3} = 37 \) per il WIP medio, \(n_{p_4} = 131 \) per il ritardo medio.
Scegliendo $n = n_{p_{\text{ma}}} = n_{p_{1}} = 503$ replicazioni per la simulazione, otterremo delle stime significative per tutti i parametri considerati.

Procediamo in maniera analoga ricavando il numero opportuno di repliche di una simulazione per tutte le altre politiche di controllo della produzione, riportando in Appendice i risultati ottenuti a riguardo.

Assumiamo, inoltre, che il numero di repliche ottenuto sia sufficiente a garantire stime affidabili anche per gli altri scenari di confronto.

Dimensionate opportunamente le simulazioni per ogni modello ed identificati gli indicatori di performance su cui basare il confronto, si procede con l’analisi delle risposte dei modelli fornite dalle simulazioni nelle differenti condizioni ipotizzate.
5.4 1° SCENARIO: Variazione della Domanda

Il primo scenario di confronto considerato è quello in cui si rilassa l’ipotesi che il sistema produttivo non sia soggetto a guasti. Nelle condizioni supposte per la costruzione dei modelli, e tenendo conto del numero di parametri ottenuto per tarare gli stessi, il modello che risponde peggio all’introduzione dei guasti della linea di produzione è il modello CONWIP, che riduce il suo livello di servizio dal valore 99,87% al valore 99,64%, seguito dal modello CONWIP-Kanban, che vede una diminuzione del livello di servizio dal valore 99,88% al valore 99,67%. La riduzione prevalente del livello di servizio nel sistema CONWIP è legata alla logica di base dello stesso: una nuova parte entra nel sistema ed inizia ad essere processata solo non appena si riduce il livello di WIP totale limitato dal controllo CONWIP. Con il blocco della linea produttiva dovuta ai guasti, però, i pezzi con attaccati i cartellini CONWIP si accumulano prima di ogni macchina guasta, non consentendo la movimentazione di materiale, e quindi il rilascio di nuove materie prime al sistema si blocca. Le riduzioni del livello di servizio a cui sono soggetti gli altri sistemi per l’introduzione dei guasti sono meno significative, comprese in un range di valori che va dal 99,76%, per il modello Generalized Kanban, e il 99,79%, per il modello Base Stock, che, quindi, in termini di livello di servizio, risponde meglio alla presenza dei guasti della linea produttiva. Quando la linea si blocca, infatti, ogni richiesta che arriva al sistema autorizza lo stesso il rilascio di materie prime nella prima fase, mentre la domanda continua a prelevare pezzi dal buffer di output, che contiene una quantità di pezzi finiti definita come scorta.

In generale l’introduzione dei guasti macchina determina per tutti i sistemi una diminuzione del WIP medio e un incremento del ritardo, dal momento che l’azienda non è in grado di soddisfare nell’immediato le richieste del cliente, ragion per cui avrà del lavoro accumulato da svolgere.
Queste variazioni hanno effetti, ovviamente, sui costi associati al sistema: la riduzione del WIP comporta la conseguente riduzione del costo di mantenimento, mentre il costo di backlog aumenta al diminuire della rapidità di risposta alla domanda.

In questo scenario, per ogni modello, vengono valutati i parametri di confronto, ipotizzando diversi valori di domanda. La domanda viene incrementata fino al 40%, a partire dal valore iniziale di 20 pezzi/giorno, simulando, di volta in volta, la risposta dei sistemi per incrementi iniziali del 5%, e poi del 10%.

I risultati ottenuti dalla simulazione in relazione alla risposta dei modelli in corrispondenza di tale range di variazione sono riportati in Appendice.

Per un confronto più diretto si riportano invece i grafici, ottenuti in Excel, raffiguranti le variazioni dei parametri di confronto al variare della domanda.
In corrispondenza del range di variazione considerato, nel modello Kanban il WIP medio circolante all’interno del sistema inizialmente tende a ridursi, per poi mantenersi costante in corrispondenza di incrementi maggiori di domanda. Per piccole variazioni di domanda, infatti, il sistema è in grado di rispondere alla domanda attraverso i pezzi circolanti nel sistema che, prelevati dai buffer e trasformati in prodotti finiti, possono essere consegnati ai clienti: il prelievo dei materiali dai buffer riduce il valore medio di WIP all’interno del sistema. Per variazioni maggiori di domanda, il numero di kanban ottenuto non riesce più a garantire rapidamente il reintegro del buffer finale dei prodotti finiti: quindi, per cercare di soddisfare la domanda, i cartellini kanban autorizzano continuamente la movimentazione dei materiali con la conseguenza che il valore di WIP medio all’interno del sistema non può più diminuire, ma si assesta su un valore costante. La capacità del sistema di rispondere alla domanda, quindi, si mantiene abbastanza elevata per piccole variazioni, per poi diminuire velocemente in corrispondenza di incrementi maggiori: nel range di variazione della domanda considerato il livello di servizio si riduce dal valore iniziale 99,77% fino al valore 86,06%.
Andamento analogo si riscontra per il WIP medio circolante nel sistema controllato con logica CONWIP: inizialmente il WIP medio si riduce leggermente, per effetto del prelievo dei prodotti finiti dal buffer del sistema, e poi si mantiene costante in corrispondenza di incrementi maggiori al fine di soddisfare la domanda.

A differenza, però, del sistema Kanban, il controllo CONWIP impone il limite sul WIP medio totale circolante nell’intero sistema, per cui la quantità totale di materiale ammesso nel sistema CONWIP risulta minore rispetto al WIP medio che circola nel sistema Kanban. Pertanto con il controllo CONWIP il livello di servizio segue andamento analogo ma in corrispondenza di valori più bassi, coerentemente alla minore disponibilità di materiale nel sistema, oltre che per l’impatto negativo esercitato dai guasti sulla risposta del modello: il livello di servizio si riduce dal valore iniziale pari al 99,64% fino al valore 84,41%.

Diversa è la variazione di WIP medio per la politica Base Stock al crescere della domanda (Figura 5.2)

Questo modello, infatti, non impone alcun limite al WIP circolante nel sistema; inoltre la domanda che arriva al sistema viene subito trasferita ad ogni fase per garantire il reintegro dei vari buffer. Di conseguenza, se la domanda dei clienti finali aumenta, aumenta anche la richiesta di reintegro dei singoli buffer, che viene subito inoltrata alle varie fasi consentendo il prelievo dei materiali dai buffer precedenti. Ciò si traduce nell’aumento del WIP in ogni fase e, quindi, nell’aumento del WIP medio totale. A questo accumulo illimitato di WIP nel sistema, però, non corrisponde sempre un livello di servizio abbastanza elevato, a parità di incremento di domanda. Infatti l’incremento del WIP medio nel sistema è dovuto al maggiore accumulo dei pezzi in coda alle produzioni, una volta prelevati dai buffer precedenti, e non all’aumento dei pezzi finiti presenti in ogni buffer, che consentirebbero di avere a disposizione, quindi, anche un gran numero di prodotti finiti da consegnare ai clienti per soddisfare la domanda. Di conseguenza, nonostante l’aumento del WIP medio, il livello di servizio garantito dal modello Base Stock risulta comunque decrescente al crescere della domanda.
La possibilità di avere a disposizione nel sistema una quantità maggiore di pezzi, però, consente al sistema Base Stock di rispondere, ovviamente, meglio alla domanda rispetto ai modelli Kanban e CONWIP basati sul controllo del WIP: infatti, a parità di incremento di domanda, il controllo Base Stock garantisce livelli di servizio maggiori, che variano dal 99,79% al 88,35% (Figura 5.3).

Il modello CONWIP-Kanban limita il WIP medio dell’intero sistema tramite il parametro C, consentendo, comunque, di far circolare un certo numero di pezzi in ogni fase, limitato dal numero di cartellini kanban. I valori del livello di servizio del modello CONWIP-kanban risultano intermedi a quelli raggiunti nei sistemi di base, più prossimi al controllo CONWIP, pur essendo superiori rispetto a quest’ultimo. È soprattutto la presenza dei guasti della linea produttiva il motivo a cui ricondurre questa risposta del modello, essendo prevalente l’incidenza che ha sul controllo CONWIP il blocco della linea produttiva, rispetto all’effetto esercitato sul controllo Kanban. La variazione di WIP è analoga a quella dei sistemi di base, cioè dapprima lievemente decrescente e poi costante, ma si ottiene in corrispondenza di valori inferiori a quelli di WIP medio del KCS, e superiori a quelli del sistema CONWIP. Con la politica ibrida GKCS, che combina i controlli Kanban e Base stock, è possibile raggiungere valori del livello di servizio prossimi a quelli ottenuti con il KCS, utilizzando un numero minore di cartellini kanban e, quindi, in corrispondenza di valori più bassi di WIP medio circolante nel sistema. Rispetto al solo controllo Base Stock, invece, il GKCS consente di ottenere un livello di servizio minore, ma col vantaggio di riuscire a ridurre notevolmente il WIP medio. L’andamento del WIP medio risulta prima decrescente e poi costante al crescere della domanda poiché il controllo Kanban limita la quantità di pezzi in ogni fase, mentre il controllo Base Stock garantisce un determinato livello di pezzi e prodotti finiti che possono essere prelevati per soddisfare le richieste di clienti. Per piccoli incrementi di domanda il sistema riesce a soddisfare le richieste dei clienti: aumenta il numero di prodotti finiti che vengono prelevati dal buffer finale, mentre, allo stesso tempo, il WIP di ogni fase viene comunque limitato, con la conseguenza che il
CAPITOLO 5
Analisi e confronto dei modelli in ambiente stocastico

WIP medio totale dell’intero sistema risulta decrescente. Quando la domanda aumenta ulteriormente, però, il sistema non riesce a reintegrare velocemente i buffer, e la minore disponibilità di prodotti finiti determina la movimentazione continua di materiale, comportando un valore costante di WIP medio nel sistema. Anche il modello EKCS combina i vantaggi del controllo Kanban e di quello Base Stock, ma rispetto al GKCS consente di movimentare una quantità ancora maggiore di pezzi all’interno del sistema. Questo risultato è coerente con la logica del controllo EKCS, nel quale il flusso informativo e il flusso dei materiali sono completamente disaccoppiati, e deriva dalla principale differenza esistente fra i due modelli, che consiste nella diversa modalità di trasferimento della domanda alle varie fasi: nel GKCS la domanda viene inviata a monte solo quando risultano disponibili i cartellini kanban, mentre nel modello EKCS la richiesta di pezzi viene inviata subito a tutte le fasi appena la domanda dei clienti giunge al sistema. Di conseguenza nell’EKCS il rilascio del materiale avviene prima, potendo disporre, mediamente, di una quantità maggiore di WIP all’interno del sistema. Questa possibilità consente di rispondere meglio all’incremento di domanda, raggiungendo livelli di servizio compresi tra 99,77% e 86,43%, più alti rispetto a quelli ottenuti con il GKCS.

Anche in questo caso il WIP medio totale dell’intero sistema risulta prima decrescente e poi costante all’aumentare della domanda, così com’era lecito attendersi alla luce delle considerazioni fatte in precedenza.

Il modello EKCS consente di rispondere meglio alle variazioni di domanda rispetto al KCS, raggiungendo livelli di servizio più alti, mentre ha il vantaggio di garantire quantità abbastanza inferiori di WIP medio rispetto al Base Stock.

La stessa capacità di risposta alle variazioni della domanda può essere ottenuta per valori di WIP medio addirittura inferiori attraverso il controllo Extended-CONWIP-Kanban, che combina le tre logiche pull di base: a parità di numero di kanban e di livello di base stock, il modello ECKCS consente di rispondere ugualmente bene agli incrementi di domanda, come l’EKCS, ma movimentando, mediamente, una minore quantità di pezzi nel sistema imponendo il controllo del
WIP totale attraverso i cartellini CONWIP. La curva del livello di servizio, quindi, coincide quasi con quella dell’EKCS, mentre l’andamento del WIP medio risulta prima decrescente e poi costante, ma in corrispondenza di valori più bassi rispetto al WIP dei modelli BSCS ed EKCS.
Anche i risultati relativi al ritardo medio nell’evadere gli ordini risultano coerenti alle logiche di controllo che definiscono i diversi modelli.

In tutti i casi l’andamento del ritardo medio risulta speculare a quello del livello di servizio, ovvero per piccoli incrementi di domanda il ritardo cresce solo lievemente, per poi aumentare drasticamente in corrispondenza di incrementi maggiori (Figura 5.4).
Inizialmente il modello Kanban riesce ad adattarsi più o meno bene all’incremento di domanda poiché il numero di cartellini consente di far circolare materiale sufficiente a far fronte a piccole variazioni: quindi il tempo necessario ad evadere gli ordini aumenta lievemente. Man mano che la domanda aumenta, però, il limite del WIP in ogni fase imposto dai kanban non permette di richiamare nel sistema una quantità di pezzi tale da reintegrare rapidamente il
buffer dei prodotti finiti: di conseguenza la domanda dei clienti si accumula e resta in attesa per tempi più lunghi, come mostrato in Figura 5.4 dal rapido aumento del ritardo medio per incrementi più alti di domanda.

Anche il controllo CONWIP consente di non ritardare particolarmente le consegne dei prodotti ai clienti solo per piccole variazioni di domanda, ma nel momento in cui il WIP del sistema comincia a mantenersi costante, l’incremento di domanda comporta anche l’aumento significativo del tempo necessario a soddisfare la richiesta dei clienti, con conseguente aumento del ritardo medio nell’evadere gli ordini. Inoltre poter disporre di una minore quantità di WIP nel CCS rispetto al KCS, porta il sistema CONWIP a soddisfare più lentamente la domanda, che resta in attesa per tempi maggiori nel modello CCS che in quello KCS: quindi i valori di ritardo medio risultano maggiori.

Nel modello Base Stock la domanda resta meno tempo in attesa prima di poter essere soddisfatta, poiché essa è trasferita ad ogni fase consentendo di reintegre rapidamente la quantità di pezzi nei buffer. Sebbene anche nel caso del BSCS la curva di ritardo medio aumenti di poco solo inizialmente per poi crescere più rapidamente nel tratto finale, per effetto dell’aumento del WIP medio in coda alle produzioni e non nei buffer, i valori ottenuti risultano coerenti con la logica del sistema poiché inferiori a quelli relativi al CCS e al KCS.

Il ritardo nell’evasione degli ordini registrato con il controllo CONWIP-Kanban risulta leggermente inferiore al controllo CONWIP di base, consentendo di movimentare più pezzi e rispondere meglio all’incremento di domanda.

Nel modello GKCS i tempi necessari a soddisfare la domanda sono piuttosto prossimi a quelli del KCS, e superiori a quelli del BSCS, ma si ricavano in corrispondenza di minori quantità di WIP medio circolante nel sistema rispetto ai due controlli di base. La differenza di velocità nel soddisfare la domanda attraverso il controllo EKCS e quello GKCS deriva, invece, dalla diversità tra le logiche di controllo: poiché il completo disaccoppiamento tra flusso di domanda e flusso di materiali consente di far circolare più materiale nell’EKCS, reintegrandone più velocemente i buffer, allora in questo sistema saranno
disponibili più rapidamente i prodotti finiti da consegnare ai clienti per soddisfare la domanda, con una riduzione del ritardo medio nell’evasione degli ordini rispetto al GKCS. I valori di ritardo nell’evasione degli ordini per il sistema EKCS risultano inferiori a quelli del KCS, coerentemente con quanto accade per l’andamento del livello di servizio.

Infine, in relazione al sistema Extended-CONWIP-Kanban, si osserva un livello di servizio leggermente superiore al livello di servizio ottenuto per il sistema EKCS, per cui la velocità di evasione degli ordini risulta di poco inferiore. Inoltre rispetto al sistema Base Stock, che determina il livello di servizio più elevato e quindi il ritardo minore, l’ECKCS è in grado di movimentare quantità notevolmente inferiori di WIP.

Per concludere il confronto tra le prestazioni dei vari modelli all’incremento di domanda, si riportano anche gli andamenti delle curve di costo totale associato ai vari sistemi (Figura 5.5).

![Figura 5.5 – Confronto Costo totale per Variazione della Domanda](image)
Il costo totale è dato dalla somma delle aliquote costo di mantenimento e costo di backlog, legati, rispettivamente, ai valori di WIP medio e di ritardo medio.

Nel modello Kanban il costo di mantenimento risulta leggermente decrescente per piccoli incrementi di domanda e costante per incrementi maggiori, analogamente alla variazione di WIP nel sistema; il costo di backlog, invece, ha andamento lievemente crescente inizialmente, per poi crescere molto più rapidamente per incrementi maggiori di domanda, conseguentemente alla riduzione della capacità e velocità del sistema di soddisfare la domanda. Per piccoli incrementi di domanda il costo di mantenimento decresce, ma in modo molto meno che proporzionale all’aumento del costo di backlog, quindi il costo totale risulta inizialmente crescente, anche se molto lentamente; al crescere della domanda il costo di mantenimento resta costante, mentre il costo di backlog aumenta molto rapidamente, quindi anche il costo totale crescerà molto velocemente nel tratto finale.

I costi di mantenimento e di backlog presentano gli stessi andamenti anche per il sistema CONWIP, per cui la curva di costo totale è caratterizzata dallo stesso andamento di quella del KCS; in questo caso, però, i costi di mantenimento sono molto più bassi rispetto al KCS, poiché nel sistema circola un quantità inferiore di WIP, mentre i costi di backlog risultano più alti, poiché il sistema risponde meno velocemente alle variazioni di domanda. L’aumento del costo backlog è più che proporzionale alla riduzione del costo di mantenimento, quindi, complessivamente, il costo totale associato al sistema CONWIP al variare della domanda risulta superiore a quello del sistema Kanban.

Il sistema Base Stock, invece, consente di avere costi di backlog più bassi rispetto al KCS e al CCS, grazie alla migliore capacità del sistema di rispondere alla domanda, sebbene la tendenza del costo di backlog sia crescente con l’aumento della domanda, analogamente all’incremento del ritardo nell’evadere gli ordini. D’altro canto l’assenza di controllo del WIP consente il continuo accumulo di pezzi nel sistema, con il conseguente incremento del costo di mantenimento, che cresce, al variare della domanda, in modo proporzionale.
all’aumento del WIP, ovvero molto lentamente per piccoli incrementi di domanda per poi crescere molto più velocemente. Le due aliquote di costo, quindi, variano allo stesso modo all’aumentare della domanda, per cui la curva di costo totale risulta crescente, inizialmente, con una pendenza molto bassa che poi aumenta notevolmente nell’ultimo tratto, in misura maggiore rispetto alle curve di costo totale del KCS e del CCS. Il costo totale del BCS, infatti, risulta notevolmente maggiore del costo degli altri due sistemi tradizionali, a causa della maggiore influenza del costo di mantenimento.

La curva di costo totale del modello CONWIP-Kanban segue lo stesso andamento delle curve relative, singolarmente, alle due logiche pull di base da cui deriva. Il costo di backlog risulta inferiore a quello del sistema CONWIP, ma la presenza di WIP maggiore nel sistema comporta valori del costo di mantenimento di poco più alti. L’aumento del costo di mantenimento, però, è meno che proporzionale alla riduzione del costo di backlog, motivo per cui il costo totale del CKCS risulta leggermente minore di quello del CCS. Rispetto alla politica Kanban, invece, il sistema CONWIP-Kanban presenta un costo di mantenimento inferiore, in linea con la logica del modello che prevede anche il controllo del WIP totale del sistema, ma un costo di backlog piuttosto superiore, soprattutto per l’influenza esercitata dal blocco della linea produttiva sul sistema, pertanto i valori di costo totale del CKCS risultano maggiori di quelli del KCS.

Anche le curve di costo dei modelli GKCS ed EKCS hanno andamento crescente più lento per piccole variazioni di domanda e più rapido per variazioni maggiori, seguendo la tendenza dei costi di backlog che hanno influenza maggiore: in entrambi i casi, infatti, i costi di mantenimento risultano prima decrescenti e poi costanti, mentre i costi di backlog risultano crescenti con pendenza differente; inizialmente la crescita dei costi di backlog è più rapida della riduzione dei costi di mantenimento e, quindi, anche il costo totale risulta leggermente crescente, per poi aumentare notevolmente al crescere della domanda, in corrispondenza di costi di mantenimento costanti e costi di backlog crescenti con pendenza maggiore.
Il GKCS comporta un costo di backlog superiore a quello del sistema Kanban di base, ma un costo di mantenimento inferiore per valori più bassi di WIP medio: poiché l’aumento del costo di backlog risulta più che proporzionale alla diminuzione del costo di mantenimento, il costo totale del GKCS risulta poco più alto del costo totale associato al KCS. Rispetto al sistema Base Stock, il GKCS comporta costi di backlog più alti, conseguentemente alla velocità del sistema di rispondere alle variazioni di domanda. Questo incremento del costo di backlog, però, non incide sull’effetto positivo del sistema di ridurre notevolmente il costo di mantenimento derivante dalla presenza di minori quantità di WIP: il costo totale del GKCS risulta, quindi, inferiore al costo totale del BSCS, coerentemente alla logica del sistema che limita il WIP in ogni fase.

Il costo totale dell’EKCS risulta inoltre di poco superiore al costo totale del GKCS, per variazioni minori della domanda, ma per incrementi maggiori questa tendenza si inverte. Inizialmente, infatti, l’influenza prevalente sul costo totale dell’EKCS è data dal costo di mantenimento maggiore, coerentemente alla logica del sistema che consente di movimentare più materiale rispetto al GKCS, mentre il costo di backlog risulta inferiore per la maggiore rapidità del sistema nel soddisfare la domanda. All’aumentare della domanda, però, la riduzione dei costi di backlog esercita un peso maggiore sui costi totali, rispetto all’incremento dei costi di mantenimento.

Il controllo Extended Kanban, inoltre, consente di far circolare più pezzi nel sistema rispetto al sistema Kanban, raggiungendo un livello di servizio più alto, con minor ritardo nell’evasione degli ordini. Ciò si traduce in costi di mantenimento maggiori e costi di backlog inferiori che, complessivamente, per variazioni maggiori della domanda, determinano valori di costo totale inferiori rispetto al sistema Kanban.

In linea con la logica del sistema, i costi di mantenimento dell’EKCS sono piuttosto bassi rispetto a quelli sostenuti con il BSCS, in corrispondenza di WIP medio inferiore. Il costo di backlog, invece, risulta maggiore per l’EKCS, ma il suo incremento è meno che proporzionale alla riduzione del costo di
mentenimento; pertanto il costo totale associato all’EKCS è inferiore a quello del BSCS.

Il costo totale dell’EKCS al crescere della domanda risulta minore anche del costo totale del GKCS: il costo di backlog, infatti, è inferiore per la migliore capacità del sistema di rispondere alla domanda, ed esercita un’influenza maggiore dell’incremento del costo di mantenimento, dovuto alla possibilità del sistema di movimentare più materiale rispetto al GKCS.

Infine si consideri la curva di costo totale del sistema Extended-CONWIP-Kanban: ancora una volta l’andamento è determinato dall’influenza del costo di backlog che, al crescere della domanda, cresce dapprima leggermente e poi più rapidamente; il costo di mantenimento risulta, invece, prima decrescente e poi costante, ma la riduzione iniziale non è tale da influenzare il costo totale che, quindi, risulta lievemente crescente per piccoli incrementi di domanda e presenta pendenza maggiore per incrementi maggiori.

I costi complessivi del sistema risultano leggermente inferiori a quelli dell’EKCS, poiché sia i costi di backlog che quelli di mantenimento sono minori nell’ECKCS.

Rispetto al controllo Kanban e al GKCS, l’ECKCS risponde meglio agli incrementi di domanda, riducendo cospicuamente il costo di backlog e determinando, quindi, valori di costo totale inferiori.

Anche in relazione alle politiche CONWIP e CONWIP-Kanban, con il modello ECKCS si ottengono valori di costo totale minori. Infatti, nonostante sia possibile movimentare quantità piuttosto maggiori di WIP, sostenendo, quindi, costi di mantenimento più alti, il sistema consente una riduzione del costo di backlog che risulta più influente sul costo totale, rispondendo meglio agli aumenti della domanda; d’altro canto è possibile raggiungere livelli di servizio maggiori, garantiti dal controllo del reintegro del livello di base stock dei vari buffer.
In definitiva tutti i sistemi riescono a garantire un livello di servizio abbastanza elevato* per incrementi di domanda non superiori al 10%. Quando la domanda aumenta ulteriormente, infatti, il livello di servizio si riduce via via in misura maggiore, e, corrispondentemente, anche il costo totale subisce una crescita sensibile.

I sistemi che garantiscono il livello di servizio più alto sono il Base Stock, l’Extended-CONWIP-Kanban e l’Extended kanban; un livello di servizio leggermente più basso si raggiunge con i sistemi Kanban e Generalized Kanban, mentre il livello di servizio più basso in assoluto si ottiene per il sistema CONWIP, seguito dal sistema CONWIP-Kanban. A questi risultati è necessario associare, però, anche la valutazione dei costi totali da sostenere per garantire quei determinati livelli di servizio: tra i diversi sistemi, quello che comporta il costo totale più basso, associato ad un elevato livello di servizio, è l’ECKCS, seguito dall’EKCS.

Il sistema Base Stock, che consente il raggiungimento del più elevato livello di servizio, comporta invece i costi maggiori, seguito dal modello CONWIP e CONWIP-Kanban. Questi ultimi due sistemi di controllo, quindi, forniscono le prestazioni peggiori relativamente al trade-off livello di servizio/costo totale. I sistemi Kanban e Generalized Kanban garantiscono, invece, prestazioni intermedie, abbastanza prossime a quelle dei modelli EKCS ed ECKCS.

5.4.1 I° SCENARIO: Variazione dei Tempi di Produzione

I modelli costruiti in ARENA sono stati confrontati anche al variare dei tempi di produzione di ogni macchina della linea produttiva.

I valori dei tempi di produzione sono stati incrementati fino al 40% del valore iniziale, pari a 20 minuti, considerando inizialmente step di variazione del 5%, e poi del 10%.

* Si intende, per “abbastanza elevato”, un livello di servizio compreso tra il 98% e il 100%.
Si riportano in Appendice i risultati ottenuti per ogni modello dalle simulazioni, mentre, per un confronto più evidente, si osservano di seguito gli andamenti delle curve ottenute in Excel rappresentative dei parametri di confronto.

![Image of WIP medio](image1.png)

Figura 5.6 – Confronto WIP medio per Variazione dei Tempi di Produzione

![Image of Livello di servizio](image2.png)

Figura 5.7 – Confronto Livello di servizio per Variazione dei Tempi di Produzione
In corrispondenza del range di variazione considerato, nel modello Kanban il WIP medio circolante all’interno del sistema inizialmente tende a ridursi lievemente, per poi mantenersi costante in corrispondenza di incrementi maggiori dei tempi di produzione. Inizialmente, infatti, il numero di cartellini kanban ottenuto consente al sistema di realizzare i prodotti finiti da consegnare ai clienti, senza grande accumulo di materiale in coda alle produzioni: il prelievo dei pezzi dai buffer determina, allora, la riduzione del WIP medio nel sistema. Quando i tempi di produzione aumentano maggiormente, il materiale richiamato dai cartellini kanban resta per tempi più lunghi in coda alle produzioni che non in attesa nei buffer sottoforma di pezzi o prodotti finiti, per cui il valore di WIP medio circolante nel sistema si mantiene costante; infatti per soddisfare la domanda viene movimentata tutta la quantità di materiale ammessa, limitata dal numero di cartellini kanban. Pertanto il livello di servizio garantito dal KCS si mantiene, inizialmente, abbastanza elevato e subisce, in seguito, una rapida diminuzione, passando dal valore 99,77% al valore 86,63%.

Il medesimo andamento si riscontra per il WIP medio circolante nel sistema controllato con logica CONWIP: anche in questo caso inizialmente il WIP medio si riduce leggermente, per effetto del prelievo dei prodotti finiti dal buffer del sistema, e poi si mantiene costante in corrispondenza di incrementi maggiori al fine di soddisfare la domanda. Con il controllo CONWIP il livello di servizio segue andamento analogo ma in corrispondenza di valori più bassi, coerentemente alla minore disponibilità di materiale nel sistema, oltre che per l’influenza negativa esercitata dai guasti macchina sul sistema. La riduzione del livello di servizio ottenuta va dal valore 99,64% al valore 84,68%.

Per la politica Base Stock, in cui non è previsto alcun controllo del WIP circolante nel sistema, l’andamento della curva risulta sempre crescente, inizialmente con pendenza minore e poi con pendenza molto più elevata. Non appena la domanda del cliente giunge al sistema e viene trasferita ad ogni fase, dai singoli buffer vengono prelevati i pezzi necessari a soddisfare la domanda e a
garantire il livello di base stock stabilito. Se, a parità di domanda, i tempi macchina aumentano, i pezzi resteranno in coda alle produzioni per tempi sempre maggiori, accumulandosi. Ne deriva un aumento del WIP in ogni fase e, quindi, un aumento del WIP medio totale; nonostante l’aumento del WIP medio, però, il livello di servizio garantito dal modello Base Stock risulta comunque decrescente al crescere dei tempi di produzione, proprio perché si accresce il numero di pezzi in coda alle produzioni, piuttosto che nei buffer.

Avendo a disposizione nel sistema una quantità maggiore di pezzi, però, il sistema Base Stock garantisce, ovviamente, livelli di servizio maggiori rispetto ai modelli Kanban e CONWIP. Il modello CONWIP-Kanban, combinando le due politiche tradizionali, consente di raggiungere un valore di livello di servizio intermedio a quello ottenuto per i sistemi di base, prossimo al controllo CONWIP, movimentando una quantità inferiore di materiale nel sistema rispetto al controllo Kanban. La variazione di WIP è analoga a quella dei sistemi di base, cioè dapprima lievemente decrescente e poi costante, ma si ottiene in corrispondenza di valori abbastanza inferiori a quelli di WIP medio del KCS, e in corrispondenza di valori di poco superiori a quelli di WIP medio del CCS, da cui deriva anche un livello di servizio maggiore del CKCS.

Anche al variare dei tempi di produzione, il sistema Generalized Kanban consente di raggiungere valori del livello di servizio abbastanza prossimi a quelli del KCS, in corrispondenza di valori più bassi di WIP medio circolante nel sistema. Rispetto al solo controllo Base Stock, invece, il GKCS consente di ottenere un livello di servizio inferiore, ma riducendo abbondantemente il WIP medio. L’andamento del WIP medio risulta, ancora una volta, prima decrescente e poi costante. Per piccoli incrementi dei tempi di produzione, la logica Generalized Kanban consente di soddisfare la domanda dei clienti prelevando i prodotti finiti disponibili nel buffer finale grazie al livello di base stock garantito, mentre i pezzi prelevati dai buffer precedenti attendono in coda alle produzioni. Poiché la quantità di materiale è limitata in ogni fase dai cartellini kanban, il prelievo di prodotti finiti da consegnare determina una riduzione del WIP medio
totale nel sistema. Quando i tempi di produzione aumentano ulteriormente, il sistema non riesce a reintegrare velocemente i buffer, di conseguenza c’è minore disponibilità di prodotti finiti che determina la movimentazione continua di materiale, comportando un valore costante di WIP medio nel sistema. Sebbene la quantità di WIP medio nel sistema si mantenga costante, ciò non garantisce livelli di servizio costanti: inizialmente, infatti, il livello di servizio si riduce lievemente, ma poi subisce una diminuzione più veloce poiché il valore di WIP medio nel sistema è dato non tanto dai pezzi finiti presenti nei buffer, quanto dai pezzi in coda alle produzioni.

I valori di WIP medio ottenuti con il modello Extended Kanban risultano superiori a quelli del GKCS, coerentemente alla logica del sistema che consente di richiamare più WIP nel sistema; anche in questo caso l’andamento del WIP risulta prima decrescente e poi costante poiché, per piccole variazioni dei tempi macchina, il controllo del livello di base stock continua a garantire la disponibilità di prodotti finiti che vengono prelevati dal buffer per essere consegnati ai clienti, ma per incrementi maggiori è necessario richiamare nel sistema tutta la quantità di materiale possibile per cercare di soddisfare la domanda. La maggiore quantità di WIP nel sistema consente di raggiungere livelli di servizio più alti rispetto al GKCS, ma comunque rapidamente decrescenti per maggiori variazioni dei tempi di produzione, conseguentemente alla grande quantità di pezzi in coda alle lavorazioni e non disponibili come pezzi finiti nei buffer. Rispetto alle logiche di base da cui deriva, l’EKCS consente di raggiungere livelli di servizio maggiori di quelli ottenuti con il sistema Kanban, ed inferiori a quelli del sistema Base Stock, ma in entrambi i casi in corrispondenza di valori di WIP inferiori.

I livelli di servizio garantiti dal sistema Extended-CONWIP-Kanban sono lievemente superiori a quelli ottenuti dal sistema Extended Kanban, mentre è limitato l’accumulo di pezzi in coda alle produzioni grazie al controllo del WIP medio nel sistema attraverso cartellini CONWIP; l’andamento della curva di WIP medio è analogo a quello dell’EKCS, ma si ottiene in corrispondenza di
valori più bassi di WIP; per valori più alti dei tempi di produzione, il sistema non riesce, comunque, a reintegrare più velocemente i buffer, ma presenta il vantaggio di determinare minori code in produzione grazie al controllo CONWIP.

Le curve di ritardo medio nell’evasione degli ordini assumono, ovviamente, andamento specular alle rispettive curve di livello di servizio (Figura 5.8).

![Figura 5.8 – Confronto Ritardo medio per Variazione dei Tempi di Produzione](image)

In tutti i casi le curve presentano dapprima andamento leggermente crescente e poi aumentano molto più rapidamente; i parametri di controllo ottenuti per i vari modelli consentono di soddisfare la domanda abbastanza velocemente fino ad un incremento dei tempi macchina del 10%, dopodiché i tempi di produzione diventano troppo lunghi per garantire un rapido reintegro del buffer dei prodotti finiti da consegnare ai clienti: la domanda resta in coda, quindi, per tempi mediamente sempre maggiori al crescere dei tempi di produzione.

Coerentemente alle differenze in termini di livello di servizio, il ritardo maggiore nel soddisfare la domanda si ottiene per il sistema CONWIP, cui corrispondono livelli di servizio più bassi, seguito dal sistema CONWIP-Kanban, mentre i
sistemi in grado di soddisfare più velocemente la domanda sono, al crescere dei tempi di produzione, il Base Stock, che risulta il migliore in assoluto, seguito dall’Extended-CONWIP-Kanban e dall’Extended Kanban. In particolare, per questi ultimi 2 sistemi, le curve di ritardo medio quasi coincidono, soprattutto per minori incrementi del tempo di produzione; i sistemi Kanban e Generalized Kanban determinano invece valori di ritardo intermedi.

Per completare il confronto tra le varie logiche al variare dei tempi di produzione, si consideri come queste variazioni influiscono sui costi totali associati ai vari sistemi (Figura 5.9).

![Costo totale](image)

Figura 5.9 – Confronto Costo totale per Variazione dei Tempi di Produzione

Nel modello Kanban il costo di mantenimento segue, ovviamente, l’andamento del WIP medio, quindi risulta inizialmente decrescente e poi costante; il costo di backlog, invece, coerentemente all’andamento del ritardo medio, cresce prima lentamente e poi molto più rapidamente. La riduzione del costo di mantenimento risulta meno che proporzionale all’aumento del costo di backlog, quindi la curva di costo totale assume, inizialmente, andamento leggermente crescente e poi
aumenta con pendenza molto maggiore per incrementi più alti dei tempi di produzione, seguendo l’andamento del costo di backlog in corrispondenza del costo di mantenimento costante.

Stesso andamento si ottiene per la curva di costo totale associato al modello CONWIP, conseguentemente ad andamenti analoghi delle due aliquote di costo; la grande riduzione di WIP nel CCS rispetto al KCS, però, comporta costi di mantenimento molto più bassi che riducono notevolmente anche i valori di costo totale.

Il modello Base Stock, invece, oltre a presentare costi di backlog crescenti in relazione all’andamento del ritardo medio, comporta anche costi di mantenimento sempre crescenti, conseguentemente all’aumento continuo di WIP medio. Entrambi i costi crescono prima lentamente per poi aumentare drasticamente, in corrispondenza di incrementi maggiori dei tempi macchina, determinando lo stesso andamento della curva di costo totale. Sebbene i costi di backlog risultino inferiori sia a quelli del modello Kanban che a quelli del modello CONWIP, l’aumento di WIP determina costi di mantenimento maggiori, coerentemente alla logica del sistema, che influiscono maggiormente sul costo totale; quest’ultimo, quindi, risulta più alto di quello del KCS e del CCS.

Il CKCS presenta un costo di backlog superiore al controllo Kanban di base, ed un costo di mantenimento inferiore, in linea con la logica del modello che prevede anche il controllo del WIP totale del sistema, circolante in quantità inferiore rispetto al KCS. L’incremento del costo di backlog, però, risulta più significativo rispetto alla riduzione del costo di mantenimento, per cui i valori di costo totale associati al CKCS risultano maggiori di quelli del KCS.

Rispetto al sistema CONWIP, invece, il costo totale del CKCS risulta di poco inferiore, poiché nonostante presenti valori maggiori dei costi di mantenimento, il costo di backlog assume valori minori, grazie alla capacità del sistema di soddisfare la domanda più velocemente, ed influisce di più sul costo totale.

Anche le curve di costo dei modelli GKCS ed EKCS hanno andamento crescente più lento per piccoli incrementi dei tempi di produzione e più rapido per
variazioni maggiori, seguendo la tendenza dei costi di backlog che hanno incidenza maggiore: in entrambi i casi, infatti, i costi di mantenimento risultano prima decrescenti e poi costanti, mentre i costi di backlog risultano sempre crescenti con pendenza differente. La diminuzione del costo di mantenimento non prevale sull’aumento del costo di backlog, che determina, quindi, l’andamento inizialmente poco crescente del costo totale; in corrispondenza di valori costanti dei costi di mantenimento, la curva di costo totale assume la stessa pendenza del costo di backlog, risultando crescente in misura molto più rapida.

Il GKCS comporta un costo di backlog molto prossimo a quello del sistema Kanban di base, ma determina un costo di mantenimento inferiore in quanto quel livello di servizio viene raggiunto in corrispondenza di valori più bassi di WIP medio: per incrementi minori del tempo di produzione, il costo totale del GKCS risulta leggermente più basso del costo totale associato al KCS, e leggermente superiore per incrementi maggiori.

Rispetto al sistema Base Stock, invece, il GKCS comporta costi di backlog più alti, ma costi di mantenimento molto inferiori, coerentemente alla logica del sistema che limita il WIP in ogni fase: il costo totale del GKCS risulta, quindi, inferiore anche al costo totale del BSCS.

Il sistema Extended Kanban, invece, consente di far circolare più pezzi nel sistema rispetto al sistema Kanban di base, con minor ritardo nell’evasione degli ordini. Ciò si traduce in costi di mantenimento maggiori e costi di backlog inferiori che, complessivamente, determinano valori di costo totale di poco inferiori a quelli del sistema Kanban. Rispetto al BSCS, l’EKCS garantisce un livello di servizio inferiore, determinando un costo di backlog superiore, ma in corrispondenza di WIP medio minore: in linea con la logica del sistema, i costi di mantenimento sono molto più bassi di quelli del BSCS, per cui anche il costo totale associato all’EKCS risulta inferiore.

Il costo totale dell’EKCS risulta inoltre inferiore al costo totale del GKCS per variazioni dei tempi macchina maggiori del 10%, poiché i minori costi di backlog
esercitano un’influenza maggiore sul costo totale rispetto ai maggiori costi di mantenimento.

Infine si consideri la curva di costo totale del sistema Extended-CONWIP-Kanban: anche in questo caso l’andamento è determinato dall’influenza del costo di backlog che, al crescere dei tempi di produzione, cresce dapprima leggermente e poi più rapidamente; il costo di mantenimento risulta, invece, prima decrescente e poi costante, ma la riduzione iniziale non è tale da influenzare il costo totale che, quindi, risulta lievemente crescente per piccoli incrementi dei tempi macchina e presenta pendenza maggiore per incrementi maggiori.

I costi complessivi del sistema ECK risultano ancora una volta inferiori a quelli determinati da tutte le altre politiche di controllo della produzione, sia tradizionali che ibride.

In corrispondenza delle variazioni dei tempi di produzione ipotizzate in questo scenario di confronto, tutti i sistemi riescono a garantire livelli di servizio abbastanza elevati per incrementi dei tempi di produzione non superiori al 10%.

Anche in questo caso i sistemi che garantiscono il livello di servizio più alto sono il Base Stock, l’Extended Kanban e l’Extended-CONWIP-Kanban; un livello di servizio un po’ più basso si raggiunge con i sistemi Kanban e Generalized Kanban, mentre il livello di servizio più basso in assoluto si ottiene per il sistema CONWIP, seguito dal sistema CONWIP-Kanban. Ancora una volta il costo totale più alto in assoluto si ottiene per il modello Base Stock, cui corrisponde il livello di servizio maggiore, seguito dai sistemi CONWIP e CONWIP-Kanban; tra i sistemi che garantiscono i livelli di servizio più elevati, il costo totale inferiore si ottiene per il modello Extended-CONWIP-kanban, seguito dal modello Extended Kanban.

I sistemi Generalized kanban e kanban garantiscono, invece, prestazioni intermedie relativamente al trade-off livello di servizio/costo totale.

Inoltre si nota che tutti i modelli rispondono meglio a variazioni dei tempi di produzione piuttosto che a variazioni della domanda.
5.5 II° SCENARIO: Variabilità degli arrivi della Domanda

Nel secondo scenario di confronto è scardinata l’ipotesi di domanda con arrivi deterministici, oltre che quella di assenza di guasti nel sistema produttivo. Nello specifico si ipotizza che gli arrivi della domanda siano distribuiti normalmente, con valore medio pari a 8 ore, e deviazione standard pari a 1 ora. La variabilità degli arrivi della domanda è legata al valore della deviazione standard: maggiore è la deviazione standard, maggiore sarà la variabilità. Il range di variazione ipotizzato, di conseguenza, è tale che la deviazione standard degli arrivi della domanda al sistema produttivo si incrementa di volta in volta, con step del 25%. La variabilità viene espressa per comodità attraverso il coefficiente di variazione, CV, che misura la dispersione in rapporto alla media:

$$CV = \left(\frac{\sigma}{\mu} \right)$$

Le variazioni del CV considerate fanno riferimento all’intervallo $[0,13;0,5]$, ottenuto in corrispondenza dell’incremento di deviazione standard ipotizzato. I risultati derivati dalle simulazioni, relativi ad ogni modello, sono visibili in Appendice, mentre si riportano di seguito le curve ottenute in Excel rappresentative delle variazioni dei parametri di prestazione per un confronto più immediato.
CAPITOLO 5
Analisi e confronto dei modelli in ambiente stocastico

Si osserva che nel modello Kanban il valore del WIP medio si mantiene abbastanza costante, riducendosi solo leggermente, seguendo un andamento oscillatorio, con il susseguirsi di lievi riduzioni ed incrementi. Il livello di servizio subisce, in corrispondenza del range di variabilità supposto, una riduzione dal valore 99,66% al valore 98,8%, seguendo un andamento fluttuante.
Nel sistema controllato con logica CONWIP la quantità di materiale nel sistema segue andamento simile, ma in corrispondenza di valori più bassi, coerentemente alla ridotta disponibilità di materiale nel sistema. Il livello di servizio si riduce dal valore iniziale pari a 99,47% fino al valore 98,51%, con il susseguirsi di variazioni positive e negative.

Il WIP medio per la politica Base Stock segue un andamento fluttuante, complessivamente crescente, in assenza del controllo che limiti la quantità totale di pezzi circolanti nel sistema. Il livello di servizio garantito dal modello Base Stock risulta comunque minore all’aumentare della variabilità degli arrivi della domanda, pur seguendo, anche in questo caso, un andamento fluttuante. La possibilità di avere a disposizione nel sistema una quantità maggiore di pezzi, però, consente al sistema Base Stock di rispondere meglio alla domanda rispetto ai modelli Kanban e CONWIP: il controllo Base Stock garantisce livelli di servizio maggiori, che variano dal 99,69% al 98,86%, raggiunto con il succedersi di variazioni positive e negative.

Proseguendo nell’analisi e nel confronto dei sistemi, si sottintenderà l’andamento fluttuante esibito da tutti gli indicatori di prestazione, valutando solo se complessivamente i modelli reagiscono alle sollecitazioni cui sono soggetti in maniera coerente alle rispettive logiche di controllo.

Il modello CONWIP-Kanban raggiunge un livello di servizio intermedio a quello ottenuto col controllo Kanban di base e CONWIP, più prossimo a quest’ultimo, data l’influenza dei guasti sul sistema. Rispetto al controllo Kanban, ovviamente, movimenta una quantità inferiore di materiale, grazie al controllo CONWIP. Il WIP medio assume un andamento piuttosto costante che si ottiene in corrispondenza di valori abbastanza inferiori a quelli di WIP medio del KCS, e in corrispondenza di valori di poco superiori a quelli di WIP medio del CCS, da cui risulta anche un livello di servizio maggiore del CKCS rispetto al CCS.

Con il sistema GKCS è possibile raggiungere quasi lo stesso livello di servizio ottenuto con il KCS, ma per valori più bassi di WIP medio circolante nel sistema. Rispetto al controllo Base Stock, invece, il GKCS consente di ottenere un livello
di servizio inferiore, ma col vantaggio di riuscire a ridurre consistentemente il WIP medio, il cui andamento risulta ancora oscillatorio. Rispetto al GKCS, il modello EKCS consente di movimentare una quantità maggiore di pezzi all’interno del sistema. Questo risultato è coerente con la logica del controllo EKCS, e consente di raggiungere livelli di servizio compresi tra il 99,67% e il 98,81%, un po’ più alti di quelli ottenuti con il GKCS. Anche in questo caso il WIP medio totale dell’intero sistema si mantiene abbastanza costante, riducendosi poco, assumendo di volta in volta valori decrescenti e crescenti. Il modello EKCS risponde meglio nelle condizioni ipotizzate rispetto al KCS, raggiungendo livelli di servizio più alti, mentre determina un livello di servizio inferiore a quello del BSCS in corrispondenza, però, di quantità piuttosto inferiori di WIP medio.

La curva del livello di servizio dell’ECKCS coincide con quella dell’EKCS, ma si ottiene movimentando, mediamente, una minore quantità di pezzi nel sistema, imponendo il controllo del WIP totale attraverso i cartellini CONWIP.

L’andamento del ritardo medio, per tutti i modelli, risulta specularare a quello del livello di servizio, caratterizzato, cioè, da variazioni positive e negative, con fluttuazioni che tendono, complessivamente, ad assumere valori maggiori all’aumentare della variabilità degli arrivi della domanda (Figura 5.12).
Il confronto tra le prestazioni dei vari modelli deve tener conto anche dei costi dei sistemi. Si riportano allora gli andamenti del costo totale, somma del costo di mantenimento e del costo di backlog (Figura 5.13).

Nel modello Kanban il costo di mantenimento risulta abbastanza costante, complessivamente leggermente decrescente all’aumentare della variabilità degli
arrivi della domanda, seguendo variazioni positive e negative ottenute di volta in volta; il costo di backlog, invece, cresce lievemente inizialmente, e poi molto più rapidamente per incrementi maggiori di variabilità degli arrivi della domanda, conseguentemente alla riduzione della capacità e velocità del sistema di soddisfare la domanda. Anche in questo caso l’aumento del costo di backlog è raggiunto con un andamento oscillatorio. Poiché il costo di backlog cresce in misura più che proporzionale alla riduzione del costo di mantenimento, anche il costo totale crescerà.

I costi di mantenimento e di backlog presentano andamenti simili per il sistema CONWIP, per cui anche la curva di costo totale è caratterizzata da andamento analogo a quella del KCS; in questo caso, però, i costi di mantenimento sono piuttosto bassi rispetto al KCS, poiché nel sistema circola una quantità inferiore di WIP, mentre i costi di backlog risultano più alti. La riduzione del costo di mantenimento è meno che proporzionale all’aumento del costo di backlog, quindi, complessivamente, il costo totale associato al sistema CONWIP al variare della domanda risulta superiore a quello del sistema Kanban.

Il sistema Base Stock, invece, consente di avere costi di backlog più bassi rispetto al KCS e al CCS, grazie alla migliore capacità del sistema di rispondere alla domanda, sebbene la tendenza del costo di backlog sia crescente con l’aumento della variabilità degli arrivi della domanda. Il costo di mantenimento, invece, cresce oscillando, poiché l’assenza di controllo del WIP causa il continuo accumulo di pezzi nel sistema. Le due aliquote di costo, quindi, variano allo stesso modo all’aumentare della variabilità; pertanto la curva di costo totale risulta crescente, inizialmente, con una pendenza molto bassa, che poi aumenta notevolmente nell’ultimo tratto, in misura maggiore rispetto alle curve di costo totale del KCS e del CCS. Il costo totale del BSCS, infatti, risulta maggiore del costo degli altri due sistemi tradizionali, a causa della maggiore influenza del costo di mantenimento.

Il costo di backlog del sistema CONWIP-Kanban risulta inferiore a quello del sistema CONWIP di base, in relazione alla migliore capacità e velocità del
CAPITOLO 5
Analisi e confronto dei modelli
in ambiente stocastico

sistema di rispondere alla domanda, e, nonostante la presenza di WIP maggiore nel sistema che comporta valori di costo di mantenimento più alti, il costo totale risulta inferiore a quello del CCS, per l’incidenza maggiore del costo di backlog. Il costo di mantenimento si presenta invece molto inferiore rispetto alla politica Kanban di base, in linea con la logica del modello che prevede anche il controllo del WIP totale del sistema, circolante in quantità inferiore rispetto al KCS. I valori di costo totale del CKCS risultano, però, più alti di quelli del KCS, per la maggiore influenza del costo di backlog che assume valori maggiori che nel controllo kanban.

Sottintendendo ancora l’andamento sempre oscillatorio dei valori di costo per i sistemi, le curve relative ai modelli GKCS ed EKCS hanno la tendenza a crescere, più rapidamente per incrementi maggiori di variabilità degli arrivi della domanda, seguendo la tendenza dei costi di backlog che hanno un peso maggiore. Il GKCS comporta un costo di backlog che segue un andamento molto prossimo a quello del sistema Kanban, presentando quasi la stessa velocità nel soddisfare la domanda dei clienti, ma costo di mantenimento inferiore: complessivamente il costo totale del GKCS è leggermente più basso del costo totale associato al KCS.

Rispetto al sistema Base Stock, invece, il GKCS comporta costi di backlog più alti, ma ha la capacità di ridurre notevolmente il costo di mantenimento derivante dalla presenza di minori quantità di WIP: il costo totale del GKCS risulta, quindi, inferiore anche al costo totale del BSCS. Il controllo Extended Kanban, invece, consente di far circolare più pezzi nel sistema rispetto al sistema Kanban, determinando costi di mantenimento maggiori, ma raggiungendo un livello di servizio più alto, con minor ritardo nell’evasione degli ordini. Nonostante i costi di backlog siano inferiori a quelli del sistema Kanban, complessivamente i valori di costo totale dell’EKCS risultano leggermente superiori a quelli del KCS. Rispetto al BSCS, invece, i parametri individuati per l’EKCS determinano un costo totale inferiore; il controllo Extended kanban, infatti, è caratterizzato da valori di costo di backlog superiori, ma costi di mantenimento piuttosto inferiori,
in corrispondenza di WIP medio minore, che esercitano un’influenza maggiore sul costo totale.

Il costo totale dell’EKCS al crescere della variabilità risulta, invece, di poco superiore al costo totale del GKCS: sebbene il costo di backlog risulti inferiore per la migliore capacità del sistema di rispondere alla domanda, il costo totale risente del maggior costo di mantenimento, coerentemente alla logica del sistema che consente di movimentare più materiale rispetto al GKCS.

Infine si considera la curva di costo totale del sistema Extended-CONWIP-Kanban: l’andamento è sempre determinato dall’influenza del costo di backlog che, al crescere della variabilità degli arrivi della domanda, cresce dapprima leggermente e poi più rapidamente, sempre attraverso il susseguirsi di variazioni positive e negative; il costo di mantenimento risulta, invece, decrescente, oltre che fluttuante. I costi complessivi del sistema risultano inferiori a quelli dei sistemi BSCS ed EKCS. In relazione a quest’ultimo, in particolare, l’ECKCS comporta un costo di backlog leggermente inferiore, e costi di mantenimento piuttosto inferiori grazie al controllo del WIP, che non avviene solo in ogni fase, ma è garantito complessivamente, per l’intero sistema, dall’uso di cartellini CONWIP.

Rispetto al controllo Kanban e al GKCS, l’ECKCS risponde meglio, determinando costi di backlog abbastanza minori, che comportano valori di costo totale inferiori.

Anche in relazione alle politiche CONWIP e CONWIP-Kanban, con il modello ECKCS si ottengono valori di costo totale minori. Infatti, nonostante sia possibile movimentare quantità maggiori di WIP, sostenendo, quindi, costi di mantenimento più alti, i costi di backlog risultano abbastanza inferiori.

I modelli rispondono bene agli incrementi di variabilità degli arrivi della domanda per l’intero range di variabilità ipotizzato, raggiungendo valori di livello di servizio che si mantengono abbastanza elevati.

Ancora una volta, il modello che esibisce le performance migliori in termini di trade-off livello di servizio/costo totale è il modello ECKCS, che, però, non
CAPITOLO 5
Analisi e confronto dei modelli in ambiente stocastico

risulta nettamente preferibile rispetto ai sistemi Kanban, Extended Kanban e Generalized kanban. I modelli che forniscono le risposte peggiori nel confronto globale, invece, sono il CCS e il CKCS. Il sistema Base Stock offre di nuovo il livello di servizio più elevato, ma provoca anche i costi totali maggiori.

5.5.1 Una variante del II° SCENARIO: Variazione della Domanda

Nell’ambito del secondo scenario di confronto si è inoltre pensato di valutare come potesse incidere sul comportamento dei sistemi l’incremento della domanda, fissando un certo valore di variabilità degli arrivi della stessa.

Nello specifico si fa riferimento ad una domanda caratterizzata da arrivi distribuiti normalmente, con valore medio pari a 8 ore, e deviazione standard pari a 2 ore.

La domanda viene incrementata fino al 40%, a partire dal valore iniziale di 20 pezzi/giorno, simulando, di volta in volta, la risposta dei sistemi per incrementi iniziali del 5%, e poi del 10%.

I risultati delle simulazioni relative ad ogni modello sono visibili in Appendice, mentre per un confronto più diretto si riportano i grafici ottenuti in Excel raffiguranti le variazioni dei parametri di confronto al variare della domanda.

![Figura 5.14 – Confronto WIP medio per Variazione della Domanda](image-url)
I risultati ottenuti sono rispondenti alle logiche di controllo delle varie politiche. L’introduzione della variabilità degli arrivi della domanda ha determinato, rispetto al primo scenario di confronto:

- una riduzione del livello di servizio e del WIP medio (quindi del costo di mantenimento);
- un aumento del ritardo medio, del costo di backlog e del costo totale (l’incremento del costo di backlog è più che proporzionale alla diminuzione del costo di mantenimento).

In corrispondenza del range di variazione considerato, nel modello Kanban il WIP medio circolante all’interno del sistema inizialmente tende ad aumentare leggermente, per poi mantenersi costante in corrispondenza di incrementi maggiori di domanda. Il livello di servizio si riduce dal valore 99,25% al valore 85,87%.

Nel sistema CONWIP inizialmente il WIP medio si riduce leggermente, per effetto del prelievo dei prodotti finiti dal buffer del sistema, e poi si mantiene
costante in corrispondenza di incrementi maggiori. Il livello di servizio segue andamento analogo ma in corrispondenza di valori più bassi, riducendosi dal valore iniziale pari a 99,01% al valore 84,13%.

Come è lecito attendersi per la politica Base Stock, invece, si osserva un aumento del WIP medio garantendo livelli di servizio maggiori, che variano dal 99,28% al 88,24%.

I valori del livello di servizio del modello CONWIP-Kanban risultano intermedi rispetto a quelli raggiunti nei sistemi di base da cui deriva, più prossimi al controllo CONWIP (data la presenza dei guasti), pur essendo superiori rispetto a quest’ultimo. La variazione di WIP è dapprima lievemente decrescente e poi costante, inferiore al livello di WIP del sistema Kanban, e superiore a quello del sistema CONWIP. La politica GKCS comporta valori del livello di servizio prossimi a quelli ottenuti con il KCS, in corrispondenza di valori più bassi di WIP medio circolante nel sistema. L’andamento del WIP medio risulta prima decrescente e poi costante al crescere della domanda. Rispetto al solo controllo Base Stock, invece, il GKCS consente di ottenere un livello di servizio minore, riducendo sensibilmente il WIP medio.

Il modello EKCS consente di movimentare una quantità maggiore di pezzi all’interno del sistema, rispetto al controllo Generalized Kanban, rispondendo meglio all’incremento di domanda. In questo caso il WIP medio totale dell’intero sistema risulta prima crescente e poi costante all’aumentare della domanda. Il modello EKCS consente di rispondere meglio alle variazioni di domanda rispetto al KCS, raggiungendo livelli di servizio più alti, mentre ha il vantaggio di garantire quantità abbastanza inferiori di WIP medio rispetto al Base Stock.

La curva del livello di servizio dell’ECKCS risulta quasi coincidente con quella dell’EKCS, mentre il WIP medio presenta un andamento prima crescente e poi costante, ma in corrispondenza di valori più bassi rispetto al WIP dei modelli BSCS ed EKCS (Figura 5.14).

Anche i risultati relativi al ritardo medio nell’evadere gli ordini risultano coerenti alle logiche di controllo che definiscono i diversi modelli.
In tutti i casi l’andamento del ritardo medio risulta specular e quello del livello di servizio (Figura 5.16).
Per concludere il confronto tra le prestazioni dei vari modelli all’incremento di domanda, si riportano gli andamenti delle curve di costo totale associato ai vari sistemi (Figura 5.17).
Il costo di mantenimento segue un andamento analogo alla variazione di WIP nel sistema; il costo di backlog, invece, ha andamento lievemente crescente inizialmente, per poi crescere molto più rapidamente per incrementi maggiori di domanda, conseguentemente alla riduzione della capacità e velocità del sistema di soddisfare la domanda, ed esercita un’influenza maggiore sul costo totale. Di conseguenza il costo totale risulta crescente, aumentando rapidamente all’aumentare della domanda.

I costi di mantenimento del CCS sono piuttosto bassi rispetto a quelli del KCS, poiché nel sistema circola un quantità inferiore di WIP, mentre i costi di backlog risultano più alti, poiché il sistema risponde meno velocemente alle variazioni di domanda. L’aumento del costo backlog è più che proporzionale alla riduzione del costo di mantenimento, quindi, complessivamente, il costo totale associato al sistema CONWIP al variare della domanda risulta superiore a quello del sistema Kanban.

Il sistema Base Stock, invece, consente di avere costi di backlog più bassi rispetto al KCS e al CCS, grazie alla migliore capacità del sistema di rispondere alla domanda, sebbene la tendenza del costo di backlog sia crescente con
l’aumento della domanda, analogamente all’incremento del ritardo nell’evadere gli ordini. D’altro canto, l’assenza di controllo del WIP, consente il continuo accumulo di pezzi nel sistema, con il conseguente incremento del costo di mantenimento, che cresce, al variare della domanda, in modo proporzionale all’aumento del WIP, ossia molto lentamente per piccoli incrementi di domanda per poi crescere molto più velocemente. Pertanto la curva di costo totale risulta crescente, inizialmente con una pendenza molto bassa, che poi aumenta notevolmente nell’ultimo tratto, in misura maggiore rispetto alle curve di costo totale del KCS e del CCS. Il costo totale del BSCS, infatti, risulta notevolmente maggiore del costo degli altri due sistemi di base, a causa della maggiore influenza del costo di mantenimento.

Il CKCS è caratterizzato da valori del costo di backlog leggermente inferiori a quelli del sistema CONWIP, in relazione alla migliore capacità e velocità del sistema di rispondere alle variazioni di domanda, mentre la presenza di WIP maggiore nel sistema comporta valori di costo di mantenimento più alti, che incidono di meno sul costo totale il quale, quindi, risulta inferiore a quello del CCS; inoltre presenta un costo di backlog superiore al controllo Kanban di base, soprattutto per la maggiore influenza esercitata sul sistema dal blocco della linea produttiva dovuto ai guasti, mentre ha un costo di mantenimento abbastanza inferiore rispetto alla politica Kanban, in linea con la logica del modello che prevede anche il controllo del WIP totale del sistema, circolante in quantità inferiore rispetto al KCS. L’incremento dei costi di backlog, però, incide maggiormente sul costo totale rispetto alla riduzione del costo di mantenimento, per cui i valori di costo totale del CKCS risultano più alti di quelli del KCS.

Anche le curve di costo totale dei modelli GKCS ed EKCS hanno andamento crescente più lento per piccole variazioni di domanda e più rapido per variazioni maggiori, seguendo la tendenza dei costi di backlog che hanno influenza maggiore. Il GKCS comporta un costo di backlog superiore a quello del sistema Kanban di base, ma costo di mantenimento inferiore per valori più bassi di WIP medio; le variazioni più influenti sul costo totale sono però quelle determinate
dal costo di backlog, per cui il costo totale del GKCS risulta leggermente superiore del costo totale associato al KCS. Rispetto al sistema Base Stock, invece, il GKCS comporta costi di backlog più alti, conseguentemente alla velocità del sistema di rispondere alle variazioni di domanda. Il costo totale del GKCS risulta, però, inferiore al costo totale del BSCS, poiché i costi di mantenimento sono piuttosto inferiori.

Il sistema Extended Kanban, invece, consente di far circolare più pezzi nel sistema rispetto al sistema Kanban, raggiungendo un livello di servizio più alto, con minor ritardo nell’evasione degli ordini. Ciò si traduce in costi di mantenimento maggiori e costi di backlog inferiori che, complessivamente, per variazioni maggiori della domanda, determinano valori di costo totale inferiori rispetto al sistema Kanban.

In linea con la logica del sistema, i costi di mantenimento dell’EKCS sono piuttosto inferiori rispetto a quelli del BSCS, in corrispondenza di WIP medio minore, e di conseguenza anche il costo totale associato all’EKCS risulta inferiore, nonostante il costo di backlog sia superiore rispetto al BSCS.

Il costo totale dell’EKCS al crescere della domanda risulta minore inoltre del costo totale del GKCS: il costo di backlog, infatti, è inferiore per la migliore capacità del sistema di rispondere alla domanda, ed ha incidenza maggiore sul costo totale rispetto all’incremento del costo di mantenimento, dovuto alla possibilità del sistema di movimentare più materiale rispetto al GKCS.

Infine si consideri la curva di costo totale del sistema Extended-CONWIP-Kanban, il cui andamento dipende prevalentemente dal costo di backlog. La curva si presenta lievemente crescente per piccoli incrementi di domanda, e più pendente per incrementi maggiori.

Infatti il costo di backlog, al crescere della domanda, cresce dapprima leggermente e poi più rapidamente, mentre il costo di mantenimento risulta prima crescente e poi costante.

Il costo totale associato all’ECKCS risulta minore rispetto a quello degli altri sistemi. Una netta differenza è riscontrabile soprattutto nel raffronto con i
modelli CONWIP e CONWIP-Kanban, mentre il sistema Extended kanban determina un costo totale abbastanza paragonabile a quello dell’ECKCS.

Alla luce delle risposte ottenute, quindi, e così com’era lecito attendersi considerando globalmente i sistemi relativamente al trade-off livello di servizio/costo totale, il modello Extended-CONWIP-Kanban esibisce le prestazioni migliori, seguito dal sistema EKCS. Prestazioni intermedie sono determinate dai sistemi Generalized Kanban e Kanban, mentre il modello che risulta meno soddisfacente è il CCS, seguito dal CKCS.

Il BSCS consente il raggiungimento del livello di servizio più elevato, ottenuto in corrispondenza, però, anche del costo maggiore, determinato prevalentemente dal costo di mantenimento che assume i valori più alti nel confronto con gli altri sistemi.

5.5.2 II° SCENARIO: Variazione dei Tempi di Produzione

Anche per questo scenario i modelli sono stati confrontati in base alle risposte fornite dalle simulazioni in relazione alle variazioni dei tempi di produzione, deterministici, incrementati fino al 40% a partire dal valore iniziale di 20 minuti. Nonostante la variabilità negli arrivi della domanda, distribuiti normalmente con valore medio pari a 8 ore e deviazione standard pari a 1 ora, i risultati ottenuti dalle simulazioni, consultabili in Appendice, sono molto simili, oltre che coerenti alle diverse logiche di controllo, a quelli ricavati nel primo scenario, essendo tale variabilità non particolarmente significativa.

Si riportano di seguito i grafici ottenuti in Excel raffiguranti l’andamento dei parametri di confronto al variare dei tempi di produzione.
In corrispondenza del range di variazione considerato, nel modello Kanban il WIP medio circolante all’interno del sistema inizialmente tende a ridursi lievemente, per poi mantenersi costante in corrispondenza di incrementi maggiori dei tempi di produzione. Di conseguenza il livello di servizio garantito dal KCS si mantiene, inizialmente, abbastanza elevato e subisce, in seguito, una rapida
diminuzione, dovuta alla minore disponibilità di prodotti finiti nel buffer finale da consegnare ai clienti.

Lo stesso vale per il WIP medio circolante nel controllo CONWIP, che presenta valori più bassi per la minore disponibilità di materiale nel sistema.

Nella politica Base Stock, in cui non è previsto alcun controllo al WIP circolante nel sistema, l’andamento della curva risulta sempre crescente, inizialmente con pendenza minore e poi con pendenza molto più elevata, mentre il livello di servizio risulta comunque decrescente al crescere dei tempi di produzione, riducendosi dal valore 99,69% al valore 88,61%.

La logica CONWIP-Kanban consente di raggiungere un livello di servizio intermedio a quello raggiunto dai sistemi di base, più prossimo al livello di servizio del controllo CONWIP. L’andamento del WIP è dapprima lievemente decrescente e poi costante, ma si ottiene in corrispondenza di valori abbastanza inferiori a quelli del WIP medio del KCS, e di valori di poco superiori a quelli del WIP medio del CCS.

Il sistema Generalized Kanban consente di raggiungere un livello di servizio abbastanza simile a quello del KCS, ottenuto per valori più bassi di WIP medio circolante nel sistema. Rispetto al controllo Base Stock, invece, il GKCS determina un livello di servizio inferiore, riducendo notevolmente il WIP medio. L’andamento del WIP medio risulta, ancora una volta, prima decrescente e poi costante. Inizialmente il livello di servizio si riduce lievemente, ma poi subisce una diminuzione più veloce poiché il valore di WIP medio nel sistema è dato non tanto dai pezzi finiti presenti nei buffer, quanto dai pezzi in coda alle produzioni.

I valori di WIP medio ottenuti con il modello Extended Kanban risultano superiori a quelli del GKCS, coerentemente alla logica del sistema che consente di richiamare più WIP nel sistema; anche in questo caso l’andamento del WIP risulta prima decrescente e poi costante. Rispetto alle logiche di base da cui deriva, l’EKCS consente di raggiungere livelli di servizio maggiori di quelli ottenuti con il sistema Kanban e minori da quelli del sistema Base Stock, ma in entrambi i casi in corrispondenza di valori di WIP inferiori.
Un livello di servizio leggermente superiore è garantito dal sistema Extended-CONWIP-Kanban, per il quale l’andamento della curva di WIP medio è uguale a quello dell’EKCS, ma si ottiene in corrispondenza di valori più bassi di WIP. Le curve di ritardo medio nell’evasione degli ordini assumono, ovviamente, andamento specularle alle rispettive curve di livello di servizio (Figura 5.20).

![Ritardo medio](image.png)

Figura 5.20 – Confronto Ritardo medio per Variazione dei Tempi di Produzione

In tutti i casi le curve presentano dapprima un andamento leggermente crescente e poi un aumento molto più rapido; i parametri di controllo ottenuti per i vari modelli consentono di soddisfare la domanda abbastanza velocemente fino ad un incremento dei tempi macchina del 10%, dopodiché i tempi di produzione diventano troppo lunghi per garantire un rapido reintegro del buffer dei prodotti finiti da consegnare ai clienti: la domanda resta in coda, quindi, per tempi mediamente sempre maggiori al crescere dei tempi di produzione.

Coerentemente alle differenze in termini di livello di servizio, il ritardo maggiore nel soddisfare la domanda si ottiene per il sistema CONWIP, cui corrispondono livelli di servizio più bassi, seguito dal controllo CONWIP-Kanban, mentre i
sistemi in grado di soddisfare più velocemente la domanda, al crescere dei tempi di produzione, sono il Base Stock, l’Extended-CONWIP-Kanban e l’Extended Kanban; i sistemi Kanban e Generalized Kanban, presentano, invece, valori di ritardo intermedi.
Si osservi come queste variazioni influiscono sui costi totali associati ai vari sistemi (Figura 5.21).

![Diagramma Costo Totale](image)

Figura 5.21 – Confronto Costo totale per Variazione dei Tempi di Produzione

Nel modello Kanban il costo di mantenimento segue, ovviamente, l’andamento del WIP medio, quindi risulta inizialmente decrescente e poi costante; il costo di backlog, invece, coerentemente all’andamento del ritardo medio, cresce prima lentamente e poi molto più rapidamente. La riduzione del costo di mantenimento risulta meno che proporzionale all’aumento del costo di backlog, quindi la curva di costo totale assume andamento crescente. La pendenza della curva risulta molto maggiore per incrementi più alti dei tempi di produzione, seguendo l’andamento del costo di backlog, in corrispondenza del costo di mantenimento costante. Stesso andamento si ottiene per la curva di costo totale associato al
modello CONWIP, conseguentemente ad andamenti analoghi delle due aliquote di costo; la grande riduzione di WIP nel CCS rispetto al KCS, però, comporta costi di mantenimento molto più bassi che riducono notevolmente anche i valori di costo totale.

Il modello Base Stock, invece, oltre a presentare costi di backlog crescenti in relazione all’andamento del ritardo medio, comporta anche costi di mantenimento sempre crescenti, conseguentemente all’aumento continuo di WIP medio. Entrambi i costi crescono prima lentamente per poi aumentare drasticamente, in corrispondenza di incrementi maggiori dei tempi macchina, determinando lo stesso andamento della curva di costo totale. I costi di backlog risultano inferiori sia a quelli del modello Kanban che a quelli del modello CONWIP, ma l’aumento del WIP determina costi di mantenimento piuttosto maggiori, che rendono molto più elevato il costo totale. Il sistema CONWIP-Kanban presenta un costo di backlog superiore al controllo Kanban di base, ma costi di mantenimento più bassi, grazie al controllo CONWIP che limita la quantità di materiale circolante, complessivamente, nel sistema. Il costo totale del CONWIP-Kanban, però, risulta maggiore rispetto a quello del KCS, perché l’incremento del costo di backlog risulta più significativo della riduzione del costo di mantenimento. Nonostante il costo di mantenimento si presenti maggiore nel CONWIP-Kanban rispetto al controllo CONWIP, invece, il costo totale risulta di poco inferiore, per l’influenza che il costo di backlog, maggiore nel CKCS, esercita sul costo totale.

Anche le curve di costo dei modelli GKCS ed EKCS hanno andamento crescente più lento per piccoli incrementi dei tempi di produzione e più rapido per variazioni maggiori, seguendo la tendenza dei costi di backlog, che hanno incidenza maggiore. Il GKCS comporta un costo di backlog leggermente superiore a quello del sistema Kanban, e un costo di mantenimento inferiore, per valori più bassi di WIP medio, che però incide di meno sul costo totale. Pertanto il costo totale del GKCS risulta un po’ più alto del costo totale associato al KCS. Rispetto al sistema Base Stock, invece, il GKCS comporta costi di backlog più
alti, ma costi di mantenimento inferiori che consentono di avere complessivamente costi totali più bassi.

Il controllo Extended Kanban consente di far circolare più pezzi nel sistema rispetto al sistema Kanban, con minor ritardo nell’evasione degli ordini. Ciò si traduce in costi di mantenimento maggiori e costi di backlog inferiori che, complessivamente, determinano valori di costo totale minori del sistema Kanban. Rispetto al BSCS, invece, l’EKCS determina un costo di backlog superiore, in corrispondenza di WIP medio decisamente inferiore, per cui i costi totali sono più bassi, data l’incidenza dei costi di mantenimento.

Il costo totale dell’EKCS al crescere dei tempi macchina risulta inoltre inferiore al costo totale del GKCS: il costo di backlog è minore per la maggiore rapidità del sistema nel soddisfare la domanda, ed esercita un’influenza maggiore sul costo totale, mentre il costo di mantenimento risulta maggiore coerentemente alla logica del sistema che consente di movimentare più materiale rispetto al GKCS.

Il costo totale dell’ECKCS risulta, infine, inferiore a quello degli altri modelli, sia tradizionali che ibridi.

Analizzando globalmente le risposte fornite dai modelli in relazione al trade-off livello di servizio/costo totale, il sistema ECKCS mostra i risultati più soddisfacenti, seguito dall’EKCS. Prestazioni intermedie sono raggiunte dai sistemi Generalized Kanban e Kanban, mentre i sistemi che rispondono peggio nelle condizioni ipotizzate sono ancora il CCS e il CKCS.

Inoltre, contrariamente a quanto ci si potesse aspettare, i sistemi hanno dimostrato una capacità di adattamento alle variazioni dei tempi di produzione leggermente superiore a quella osservata nel primo scenario, nonostante gli arrivi della domanda fossero caratterizzati da una certa variabilità.
5.6 III° SCENARIO: Variabilità negli arrivi della Domanda

Nel terzo scenario di confronto è scardinata l’ipotesi, rispetto al secondo scenario, di tempi di produzione deterministici. Nello specifico si ipotizza che i tempi di produzione siano distribuiti normalmente, con valore medio pari a 20 minuti, e deviazione standard pari a 2 minuti.

Il range di variazione ipotizzato è tale che la deviazione standard degli arrivi della domanda al sistema produttivo si incrementa di volta in volta, con step del 25%.

La variabilità viene espressa attraverso il coefficiente di variazione, CV, che misura la dispersione in rapporto alla media:

$$ CV = \left(\frac{\sigma}{\mu} \right) $$

Le variazioni del CV considerate fanno riferimento all’intervallo [0,13;0,5], ottenuto in corrispondenza dell’incremento di deviazione standard ipotizzato.

Anche in questo caso le risposte fornite dai modelli risultano coerenti alle logiche di controllo delle diverse politiche confrontate.

I risultati delle simulazioni per ogni modello sono mostrati in Appendice, mentre di seguito si riportano le curve ottenute in Excel rappresentative delle variazioni dei parametri di prestazione, per un confronto più immediato.
Si osserva che nel modello Kanban il valore del WIP medio si riduce lievemente, seguendo un andamento oscillatorio, con il susseguirsi di lievi riduzioni ed
incrementi. Anche il livello di servizio subisce una riduzione dal valore iniziale del 99,54% al valore 98,51%, seguendo un andamento fluttuante.

Il WIP medio circolante nel sistema controllato con logica CONWIP, invece, si mantiene piuttosto costante, con fluttuazioni di minore entità rispetto al controllo Kanban, ma è ottenuto in corrispondenza di valori più bassi. Ciò è determinato non solo dalla minore disponibilità di materiale nel sistema, ma anche dall’influenza maggiore esercitata dal blocco della linea produttiva dovuto ai guasti a cui è soggetto. Il livello di servizio si riduce dal valore iniziale pari a 99,27% fino al valore 97,96%, con il susseguirsi di variazioni positive e negative.

Il WIP medio per la politica Base Stock segue un andamento fluttuante, complessivamente crescente, in assenza del controllo che limiti la quantità totale di pezzi circolanti nel sistema. Il livello di servizio garantito dal modello Base Stock risulta comunque minore all’aumentare della variabilità degli arrivi della domanda, pur seguendo, anche in questo caso, un andamento fluttuante, ed assumendo valori superiori rispetto ai modelli Kanban e CONWIP.

Proseguendo nell’analisi e nel confronto dei sistemi, si sottintenderà l’andamento fluttuante esibito da tutti gli indicatori di prestazione, valutando solo se complessivamente i sistemi reagiscono alle sollecitazioni cui sono soggetti in maniera coerente alle rispettive logiche di controllo.

Il modello CONWIP-Kanban raggiunge un livello di servizio intermedio a quello ottenuto col controllo Kanban di base e CONWIP, più prossimo a quest’ultimo, data l’influenza dei guasti sul sistema che determinano il blocco della linea produttiva. Rispetto al controllo Kanban, ovviamente, movimenta una quantità inferiore di materiale nel sistema, grazie al controllo CONWIP. Il WIP medio assume valori abbastanza costanti, inferiori a quelli di WIP medio del KCS, e in corrispondenza di valori di poco superiori a quelli di WIP medio del CCS, da cui deriva anche un livello di servizio maggiore del CKCS rispetto al CCS.

Con il sistema GKCS è possibile raggiungere valori di livello di servizio abbastanza prossimi a quelli ottenuti con il KCS, in corrispondenza di valori più bassi di WIP medio circolante nel sistema. Rispetto al controllo Base Stock,
invece, il GKCS consente di ottenere un livello di servizio inferiore, ma col vantaggio di riuscire a ridurre notevolmente il WIP medio. L’andamento del WIP medio risulta ancora oscillatorio, con fluttuazioni maggiori rispetto al sistema CONWIP, e assume valori intermedi a quelli dei due sistemi di base da cui deriva. Anche il modello EKCS combina i vantaggi del controllo Kanban e di quello Base Stock, e rispetto al GKCS consente di movimentare una quantità superiore di pezzi all’interno del sistema. Questo risultato è coerente con la logica del controllo EKCS, e consente il raggiungimento di valori del livello di servizio compresi tra il 99,59% e il 98,54%, leggermente più alti di quelli ottenuti con il GKCS. In questo caso il WIP medio totale dell’intero sistema si riduce leggermente, assumendo di volta in volta valori decrescenti e crescenti. Il modello EKCS consente di raggiungere livelli di servizio poco più alti rispetto al modello Kanban, mentre determina un livello di servizio inferiore a quello del BSCS in corrispondenza, però, di quantità abbastanza inferiori di WIP medio.
Attraverso il controllo Extended-CONWIP-Kanban è possibile rispondere bene agli incrementi di variabilità degli arrivi della domanda, come avviene per l’EKCS, ma movimentando, mediamente, una minore quantità di pezzi nel sistema imponendo il controllo del WIP totale attraverso i cartellini CONWIP. Quindi la curva del livello di servizio risulta abbastanza coincidente con quella del sistema EKCS, mentre il WIP medio si riduce, ed assume valori più bassi anche rispetto al WIP del modello BSCS.
L’andamento del ritardo medio, per tutti i modelli, risulta speculare a quello del livello di servizio, caratterizzato, cioè, da variazioni positive e negative, con fluttuazioni che tendono, complessivamente, ad assumere valori maggiori all’aumentare della variabilità (Figura 5.24).
Il confronto tra le prestazioni dei vari modelli all’incremento di variabilità degli arrivi della domanda deve tener conto anche dei costi associati ai sistemi. Si riportano allora gli andamenti del costo totale, somma del costo di mantenimento e del costo di backlog (Figura 5.25).
Nel modello Kanban il costo di mantenimento risulta complessivamente lievemente decrescente all’aumentare della variabilità degli arrivi della domanda, seguendo variazioni positive e negative ottenute di volta in volta; il costo di backlog, invece, cresce lievemente inizialmente, e poi molto più rapidamente per incrementi maggiori di variabilità, conseguentemente alla riduzione della capacità e velocità del sistema di soddisfare la domanda. Anche in questo caso l’aumento del costo di backlog è raggiunto con un andamento oscillatorio. Poiché il costo di backlog cresce in misura più che proporzionale alla riduzione del costo di mantenimento, anche il costo totale crescerà.

I costi di mantenimento del sistema CONWIP si mantengono piuttosto costanti, mentre i costi di backlog tendono ad aumentare al crescere della variabilità, per cui la curva di costo totale assumerà complessivamente un andamento crescente, oltre che fluttuante; il costo totale associato al sistema CONWIP risulta superiore a quello del sistema Kanban.

Il sistema Base Stock, invece, consente di avere costi di backlog più bassi rispetto al KCS e al CCS, grazie alla migliore capacità del sistema di rispondere alla domanda, sebbene la tendenza del costo di backlog sia crescente con l’aumento della variabilità degli arrivi della domanda, analogamente all’incremento del ritardo nell’evadere gli ordini. L’assenza di controllo del WIP, però, consente il continuo accumulo di pezzi nel sistema, con il conseguente incremento del costo di mantenimento, che cresce, oscillando, al variare della variabilità degli arrivi della domanda. Pertanto la curva di costo totale risulta crescente, inizialmente, con una pendenza molto bassa, che poi aumenta notevolmente nell’ultimo tratto, in misura maggiore rispetto alle curve di costo totale del KCS e del CCS. Il costo totale del sistema CONWIP-Kanban risulta inferiore a quello del sistema CONWIP di base, nonostante la presenza di WIP maggiore nel sistema che comporta valori di costo di mantenimento più alti.
Infatti il modello CONWIP-Kanban determina costi di backlog inferiori al modello CONWIP, che incidono prevalentemente sul costo totale. Il costo di mantenimento risulta invece inferiore rispetto alla politica Kanban di base, in linea con la logica del modello che prevede anche il controllo del WIP totale del sistema, circolante in quantità inferiore rispetto al KCS. I valori di costo totale del CKCS risultano, però, più alti di quelli del KCS, per la maggiore incidenza del costo di backlog, che assume valori maggiori che nel controllo kanban.

Sottintendendo ancora l’andamento oscillatorio dei valori di costo, le curve relative ai modelli GKCS ed EKCS hanno andamento crescente, seguendo la tendenza dei costi di backlog che hanno influenza maggiore. Il GKCS comporta un costo di backlog che segue un andamento prossimo a quello del sistema Kanban, poiché i parametri di controllo garantiscono valori abbastanza simili di livello di servizio, ma il costo di mantenimento è inferiore: complessivamente il costo totale del GKCS risulta leggermente inferiore al costo totale associato al KCS.

Rispetto al sistema Base Stock, invece, il GKCS comporta costi di backlog più alti e costi di mantenimento molto inferiori, derivanti dalla presenza di minori quantità di WIP: il costo totale del GKCS risulta quindi inferiore al costo totale del BSCS.

Il sistema Extended Kanban consente di far circolare più pezzi nel sistema rispetto al sistema Kanban, determinando costi di mantenimento maggiori, ma raggiungendo un livello di servizio leggermente più alto, con minor ritardo nell’evasione degli ordini. I costi di backlog, invece, risultano inferiori a quelli del sistema Kanban, determinando un costo totale lievemente inferiore per l’EKCS. Il costo di backlog dell’EKCS assume valori abbastanza prossimi a quelli ricavati per il BSCS, in corrispondenza di WIP medio inferiore: in linea con la logica del sistema, i costi di mantenimento sono piuttosto bassi rispetto a quelli del BSCS, di conseguenza anche il costo totale associato all’EKCS risulta inferiore.
Il costo totale dell’EKCS al crescere della domanda risulta, invece, lievemente superiore al costo totale del GKCS, sebbene il costo di backlog risulti inferiore per la migliore capacità del sistema di rispondere alla domanda. Infatti il costo di mantenimento subisce un incremento, coerentemente alla logica del sistema, che esercita un’influenza maggiore sul costo totale. Infine si considera la curva di costo totale del sistema Extended-CONWIP-Kanban: l’andamento è ancora determinato dall’influenza del costo di backlog che, al crescere della variabilità degli arrivi della domanda, cresce dapprima leggermente e poi più rapidamente, sempre attraverso il susseguirsi di variazioni positive e negative; il costo di mantenimento risulta, invece, lievemente decrescente, oltre che fluttuante. I costi complessivi del sistema risultano inferiori a quelli del sistema BSCS, e prossimi a quelli del sistema EKCS; il sistema comporta valori del costo di backlog molto vicini a quelli dell’EKCS, e costi di mantenimento inferiori grazie al controllo del WIP, che non avviene solo in ogni fase, ma è garantito complessivamente, per l’intero sistema, attraverso l’uso di cartellini CONWIP.

Rispetto al controllo Kanban e al GKCS, l’ECKCS determina sia un costo di backlog che un costo di mantenimento di poco inferiori.

Infine, in relazione alle politiche CONWIP e CONWIP-Kanban, con il modello ECKCS si ottengono valori di costo totale minori. Infatti, nonostante sia possibile movimentare quantità maggiori di WIP, sostenendo, quindi, costi di mantenimento più alti, i costi di backlog risultano abbastanza inferiori.

Anche per questo scenario, in cui sia gli arrivi della domanda che i tempi di produzione sono caratterizzati da una certa variabilità, il modello ECKCS dimostra di adattarsi meglio alle variazioni ipotizzate, relativamente al trade-off livello di servizio/costo totale, mentre i sistemi CONWIP e CONWIP-Kanban esibiscono le risposte peggiori.

I modelli EKCS, GKCS e KCS consentono il raggiungimento di prestazioni intermedie, ma non nettamente differenti rispetto al modello ECKCS.
Inoltre, come per lo scenario precedente, i sistemi consentono il raggiungimento di valori abbastanza elevati di livello di servizio per tutto il range di variabilità considerato.

5.6.1 III° SCENARIO: Variabilità dei Tempi di Produzione

I modelli sono confrontati anche in base alle risposte fornite dalle simulazioni in relazione alle variazioni dei tempi di produzione, *aleatori*, incrementandone la variabilità.

Il range di variazione ipotizzato è tale che la deviazione standard dei tempi di produzione del sistema produttivo si incrementa di volta in volta, con step del 25%.

La variabilità viene espressa attraverso il coefficiente di variazione, *CV*, che misura la dispersione in rapporto alla media:

\[
CV = \frac{\sigma}{\mu}
\]

Le variazioni del *CV* considerate fanno riferimento all’intervallo [0,1;0,4], ottenuto in corrispondenza dell’incremento di deviazione standard ipotizzato.

I risultati ottenuti dalle simulazioni per ognuno dei modelli sono mostrati in Appendice, mentre si riportano di seguito i grafici ottenuti in Excel, raffiguranti l’andamento dei parametri di confronto al variare dei tempi di produzione, per un confronto più diretto.
CAPITOLO 5
Analisi e confronto dei modelli in ambiente stocastico

Figura 5.26 – Confronto WIP medio per incrementi del CV(Tempi di Produzione)

Figura 5.27 – Confronto Livello di servizio per incrementi del CV(Tempi di Produzione)
Nelle condizioni ipotizzate per questo scenario, i valori assunti dai parametri prestazionali per ogni modello risultano coerenti alle rispettive logiche di controllo.

I valori più alti di WIP medio, quindi, si registrano per il modello Base Stock, in assenza del controllo che limiti la quantità totale di pezzi circolanti nel sistema. Nel controllo CONWIP, invece, la quantità di materiale ammessa a circolare nell’intero sistema è minore rispetto a tutti gli altri sistemi.

Il WIP medio per ogni modello tende ad aumentare molto lievemente, seguendo un andamento oscillatorio. L’incremento maggiore si registra per il modello Base Stock, mentre nei modelli CONWIP e CONWIP-Kanban il WIP medio assume valori piuttosto costanti per l’intero range di variabilità considerato. Per gli altri sistemi di controllo si registrano valori intermedi di WIP medio.

Relativamente al livello di servizio, invece, i valori maggiori sono esibiti dal sistema Base Stock, seguito dall’ECKCS. Anche i modelli EKCS, GKCS e Kanban presentano valori del livello di servizio molto elevati.

In generale, infatti, i sistemi reagiscono bene all’incremento di variabilità dei tempi di produzione, mantenendo un livello di servizio che, oscillando, resta alto.
Un discorso a parte va fatto invece per i sistemi CONWIP e CONWIP-Kanban, per i quali il livello di servizio subisce, oscillando, una riduzione consistente rispetto agli altri sistemi.

Coerentemente alle differenze in termini di livello di servizio, il ritardo maggiore nel soddisfare la domanda si ottiene per il sistema CONWIP, seguito dal sistema CONWIP-Kanban, mentre i sistemi in grado di soddisfare più velocemente la domanda sono il Base Stock e l’Extended-CONWIP-Kanban. Occorre a questo punto comparare i sistemi tenendo conto dei costi associati ad essi (Figura 5.28).

![Figura 5.29 – Confronto Costo totale per incrementi del CV(Tempi di Produzione)](image)

Il costo di mantenimento segue, ovviamente, l’andamento del WIP medio, mentre il costo di backlog dipende dal ritardo medio, ed esercita un’influenza maggiore sul costo totale.

In generale il costo totale è caratterizzato da un andamento oscillatorio, ottenuto in corrispondenza di un certo range di valori, ma non tende, complessivamente, ad aumentare molto. Per i modelli CONWIP e CONWIP-Kanban, però, l’andamento del costo totale risulta piuttosto crescente, oltre che molto fluttuante,
ed esibisce i valori maggiori in assoluto rispetto agli altri sistemi. Questi due modelli, infatti, risentono sensibilmente dei costi di backlog, che assumono valori molto elevati, mentre i costi di mantenimento risultano piuttosto costanti. I costi totali minori sono quelli associati al sistema ECKCS, mentre valori intermedi sono quelli determinati dai sistemi EKCS, GKCS e KCS. A differenza di quanto ottenuto negli scenari precedenti, il costo totale maggiore non è quello relativo al sistema Base Stock, che comunque comporta costi elevati, ma è determinato dai sistemi CONWIP e CONWIP- Kanban, a cui corrispondono anche valori del livello di servizio più bassi. Ancora una volta, invece, il modello che esibisce le prestazioni migliori relativamente al trade-off livello di servizio/costo totale è l’ECKCS. Inoltre si nota come tutti i sistemi (tranne il CCS e CKCS) rispondano meglio agli incrementi di variabilità dei tempi di produzione che non a quelli degli arrivi della domanda, rispetto ai quali, invece, sono più sensibili.

5.7 ANALISI DEI RISULTATI SPERIMENTALI

In questo capitolo abbiamo studiato e confrontato le prestazioni delle politiche di controllo tradizionali ed ibride in una varietà di situazioni produttive. Le differenze ottenute nelle condizioni di confronto analizzate forniscono un valido supporto alle decisioni in merito alla scelta della politica di controllo più idonea da utilizzare. Prima di analizzare più nel dettaglio alcuni dei risultati conseguiti, preme sottolineare che, in generale, le risposte fornite dai modelli nelle condizioni ipotizzate sono coerenti alle rispettive logiche di base. In sintesi si riportano le principali differenze che distinguono le varie tecniche, le quali costituiscono il motivo fondamentale a cui ricondurre le risposte esibite dai sistemi di controllo negli scenari considerati:
Per lo studio comparativo si è deciso di valutare gli effetti congiunti di ogni politica di controllo su più parametri di performance, in modo da decidere quali delle tecniche risultasse più appropriata.
L’analisi condotta ha in particolare posto l’attenzione sulla necessità di raggiungere un opportuno compromesso tra due spinte contrastanti, livello di servizio elevato e costi ridotti, dipendenti dalla quantità di WIP circolante nel sistema.

Garantire un elevato livello di servizio attraverso una certa quantità di WIP comporta, infatti, minori costi di backlog, e consente di far fronte ad eventualità non espressamente previste. D’altro canto si verificherà un inevitabile aggravio dei costi di mantenimento. Limitare maggiormente il WIP per ridurre i costi di mantenimento determina, invece, maggiori costi di backlog e livelli di servizio più bassi.

Riassumendo e valutando globalmente quanto emerso dalla valutazione dei parametri di confronto, analizzati per ogni politica di controllo, si ricava che il sistema che garantisce il livello di servizio maggiore è il Base Stock, che, nel range di variazioni e di variabilità considerati nei diversi scenari, risente meno del blocco della linea produttiva dovuto ai guasti macchina. Inoltre trasferire subito la domanda dei clienti ad ogni fase consente di reintegrare rapidamente la quantità di pezzi nei buffer, avendo a disposizione più velocemente i prodotti finiti da poter consegnare ai clienti. Livelli di servizio elevati sono garantiti inoltre dal controllo Extended-CONWIP-Kanban; un livello di servizio leggermente più basso si raggiunge con i sistemi Extended Kanban, Generalized Kanban e Kanban, mentre il livello di servizio più basso in assoluto si ottiene per il sistema CONWIP, seguito dal sistema CONWIP-Kanban.

In sintesi:
CAPITOLO 5
Analisi e confronto dei modelli in ambiente stocastico

<table>
<thead>
<tr>
<th>Ls</th>
<th>KCS</th>
<th>CCS</th>
<th>BSCS</th>
<th>CKCS</th>
<th>GKCS</th>
<th>EKCS</th>
<th>ECKCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCS</td>
<td>></td>
<td><</td>
<td>></td>
<td>≈</td>
<td><</td>
<td><</td>
<td></td>
</tr>
<tr>
<td>CCS</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>BSCS</td>
<td>></td>
<td>>></td>
<td>></td>
<td>>></td>
<td>></td>
<td>></td>
<td></td>
</tr>
<tr>
<td>CKCS</td>
<td><</td>
<td>></td>
<td><</td>
<td>></td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>GKCS</td>
<td>≈</td>
<td>></td>
<td><</td>
<td>></td>
<td>≈</td>
<td><</td>
<td></td>
</tr>
<tr>
<td>EKCS</td>
<td>></td>
<td>></td>
<td><</td>
<td>></td>
<td>≈</td>
<td><</td>
<td></td>
</tr>
<tr>
<td>ECKCS</td>
<td>></td>
<td>>></td>
<td><</td>
<td>>></td>
<td>></td>
<td>≈</td>
<td></td>
</tr>
</tbody>
</table>

>: maggiore;
<: minore;
>>: molto maggiore;
<<: molto minore;
≈: prossimo

Tabella 5.4 – Confronto globale Livello di servizio
A questi risultati è necessario associare la valutazione dei costi totali da sostenere per garantire questi livelli di servizio, poiché il confronto tra le prestazioni dei vari modelli deve tener conto anche dei costi legati ai sistemi.

In sintesi:

<table>
<thead>
<tr>
<th>Cr</th>
<th>KCS</th>
<th>CCS</th>
<th>BSCS</th>
<th>CKCS</th>
<th>GKCS</th>
<th>EKCS</th>
<th>ECKCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCS</td>
<td>></td>
<td><</td>
<td><<</td>
<td><</td>
<td>≈</td>
<td>≈</td>
<td>></td>
</tr>
<tr>
<td>CCS</td>
<td>></td>
<td><</td>
<td><</td>
<td>></td>
<td>></td>
<td>></td>
<td></td>
</tr>
<tr>
<td>BSCS</td>
<td>>></td>
<td>></td>
<td>></td>
<td>>></td>
<td>>></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CKCS</td>
<td>></td>
<td><</td>
<td><</td>
<td>></td>
<td>></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKCS</td>
<td>≈</td>
<td><</td>
<td><<</td>
<td><</td>
<td>≈</td>
<td><</td>
<td></td>
</tr>
<tr>
<td>EKCS</td>
<td>≈</td>
<td><</td>
<td><<</td>
<td><</td>
<td>≈</td>
<td><</td>
<td></td>
</tr>
<tr>
<td>ECKCS</td>
<td><</td>
<td><</td>
<td><<</td>
<td><</td>
<td><</td>
<td>≈</td>
<td></td>
</tr>
</tbody>
</table>

>: maggiore;
<: minore;
>>: molto maggiore;
<<: molto minore;
≈: prossimo

Tabella 5.5 – Confronto globale Costo totale
CAPITOLO 5

Analisi e confronto dei modelli in ambiente stocastico

Nonostante il sistema Base Stock consenta il raggiungimento del più elevato livello di servizio, il rovescio della medaglia è rappresentato dall’incremento del WIP medio totale, in assenza del controllo che limiti la quantità totale di pezzi circolanti nel sistema. L’incremento della capacità del sistema di rispondere alla domanda, infatti, avviene a scapito dei costi di mantenimento, che esercitano un’influenza maggiore sul costo totale rispetto ai costi di backlog. Pertanto il costo totale del BSCS assume i valori più alti nel confronto con tutti gli altri sistemi (fa eccezione lo scenario in cui si ipotizza un incremento della variabilità dei tempi di produzione, in cui il sistema CONWIP, seguito da quello CONWIP-Kanban, assume valori di costo molto superiori a quelli esibiti dal sistema Base Stock).

Un livello di servizio molto alto, a costi ridotti, è comunque garantito dal sistema Extended-Conwip-Kanban, grazie al quale è possibile limitare complessivamente il rilascio di pezzi nel sistema attraverso il controllo CONWIP, evitando la movimentazione di quantità non necessarie di materiale nel sistema, e riducendo, quindi, i costi di mantenimento. Il sistema EKCS presenta, in generale, un livello di servizio quasi coincidente a quello dell’ECKCS, il quale, però, risulta preferibile all’EKCS determinando costi totali minori.

Alla luce delle analisi svolte, inoltre, i sistemi CONWIP e CONWIP-Kanban hanno mostrato le performance peggiori, relativamente al trade-off livello di servizio/costi totale. Nel sistema CONWIP, in particolare, il livello di servizio risulta compromesso non sono dalla minore disponibilità di materiale movimentato, coerentemente alla logica di base, ma anche dal blocco della linea produttiva dovuto ai guasti macchina ipotizzato. Nonostante il controllo CONWIP presenti i costi di mantenimento più bassi, infatti, il sistema è caratterizzato da valori molto elevati del costo di backlog, che incidono in misura maggiore sul costo totale, e che ha mostrato i valori più alti nel confronto con tutti gli altri sistemi.
Pertanto il sistema che risponde peggio nelle diverse condizioni ipotizzate è il sistema CONWIP, seguito dal sistema CONWIP-Kanban.

Infine i sistemi Kanban e Generalized Kanban garantiscono prestazioni intermedie, sia in termini di livello di servizio che di costi totali, abbastanza prossime ai sistemi EKCS ed ECKCS, e piuttosto lontane da quelle derivanti dai sistemi CONWIP e CONWIP-Kanban.

Sintetizzando, dunque:

<table>
<thead>
<tr>
<th>TRADE-OFF (L_s / C_T)</th>
<th>ALTO (MEDIO-ALTO)</th>
<th>BASSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODELLI</td>
<td>ECKCS</td>
<td>CCS</td>
</tr>
<tr>
<td></td>
<td>GKCS</td>
<td>CKCS</td>
</tr>
<tr>
<td></td>
<td>KCS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BSCS</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 5.6 – Confronto globale Trade-off (L_s / C_T)

In tutti gli scenari analizzati la politica di controllo Extended-CONWIP-Kanban ha dimostrato prestazioni superiori nel raggiungere un elevato livello di servizio con costi ridotti rispetto alle altre politiche, sia tradizionali, che ibride.

La superiorità del controllo ECK rispetto ai EKCS, GKCS e KCS, tuttavia, risulta meno netta in situazioni produttive caratterizzate da una certa variabilità degli arrivi della domanda e/o dei tempi di produzione.

I risultati ottenuti sottolineano l'importanza e la solidità della politica ECKCS, idonea a funzionare bene in tutte le circostanze considerate, presentando migliori caratteristiche di robustezza al variare delle condizioni analizzate.

In realtà il sistema più noto ed utilizzato attualmente è il KCS, che ha costi e difficoltà di implementazione non elevati, trattandosi di un semplice meccanismo di controllo. Poiché le simulazioni hanno evidenziato risultati medio-alti in relazione al compromesso livello di servizio/costo totale, è possibile ritenere che possa essere sufficientemente adatto ad essere impiegato in un ambiente industriale particolarmente volatile e mutevole come quello attuale.
6.1 IL SISTEMA SINGLE – STAGE MULTI – PRODUCT GESTITO MEDIANTE KANBAN

La variante meno complessa di un sistema manifatturiero con più prodotti controllato mediante kanban è un sistema con un unico impianto di produzione multi - prodotto. Oltre all’impianto di produzione, il sistema contiene una cassetta di raccolta (la scheduling board, altrimenti detta tabelliera kanban), un magazzino di uscita per prodotti finiti, i contenitori per conservare e trasportare i prodotti finiti, e una serie di kanban per ogni prodotto nel sistema (Fig. 6.1).

Tradizionalmente, come già detto in precedenza, un Kanban è un cartellino e deve essere attaccato ad ogni contenitore nel magazzino di uscita. Il numero di kanban è limitato, in modo da limitare il numero massimo di prodotti finiti nel sistema.
CAPITOLO 6 Single-stage multi-product kanban system

Figura 6.1 – Sistema kanban di base con tre prodotti differenti

Quando un contenitore viene prelevato, il Kanban ad esso associato viene staccato dal contenitore e viene messo in una cassetta di raccolta (la scheduling board appunto). In alternativa, il Kanban potrebbe essere staccato quando l’ultimo prodotto viene rimosso dal contenitore (questo è equivalente a utilizzare un numero fisso di contenitori per limitare il livello massimo di scorte di un prodotto). Inoltre, i kanban rimossi possono essere messi in una scatola di raccolta kanban situata nel magazzino di uscita prima di essere trasferiti alla scheduling board, o quando si è accumulato un determinato numero di kanban o quando un determinato lasso di tempo è trascorso dall’ultimo trasferimento. Un Kanban staccato, detto anche “attivo”, autorizza la produzione di un contenitore standard del prodotto indicato sulla scheda. Quando il contenitore è stato riempito con il numero di prodotti indicato sul cartellino, l’ormai “inattivo” Kanban viene attaccato al contenitore e il contenitore viene trasferito al magazzino di output (Fig. 6.2).

Tra la produzione di prodotti differenti, devono essere eseguiti dei setup (ossia dei cambi di configurazione), i quali possono consumare una notevole quantità di tempo. Un protocollo di cambio dei setup (setup change protocol) definisce le regole per decidere quando e con quali altri setup, il setup corrente dell’impianto di produzione dovrebbe essere cambiato in seguito.
Una possibilità è che gli items di un prodotto vengano processati fino a quando non ci sono più kanban attivi di tale prodotto sulla scheduling board (si parla in tal senso di “processamento esaustivo”, “exhaustive processing”).

Figura 6.2 – Modelli di un sistema kanban single – stage multi – product senza backorders

Poi l’impianto di produzione viene configurato (tramite l’opportuno setup) per il prossimo prodotto in base ad una sequenza ciclica di setup fissata in precedenza, ad esempio: prodotto 1, prodotto 2, prodotto 3 (e poi si ripete d’accapo). Qualora non dovessero essere attivi Kanban per il prodotto successivo, allora tale prodotto verrà saltato. Durante il periodo di inattività, il setup attuale viene mantenuto in modo che l’impianto di produzione possa immediatamente riprendere la produzione se il Kanban attivo seguente autorizza la produzione del prodotto che è stato fabbricato per ultimo.

In un tale sistema kanban può essere adottata una tabelliera kanban quale strumento operativo molto semplice ed immediato per gestire la produzione in reparto o, nello specifico, della cella a monte.

La tabelliera riporta in ogni colonna il codice da produrre nel reparto. Ogni colonna è divisa in tre zone (Fig. 6.3):
CAPITOLO 6 Single-stage multi-product kanban system

- **zona verde**: produzione in massima economicità. Si produce solo se non si ha altro da fare. La regola è: “lotti minimi e molti setup”.
- **zona bianca**: produzione normale. Zona di operatività normale della produzione.
- **zona rossa**: produzione urgente. La produzione dei kanban di questa zona va eseguita subito. La regola è: “esaurire tutti e soli i lotti della zona rossa”.

E’ chiaro che la presenza in reparto di una tabelliera di questo tipo consente all’operatore di sapere sempre che cosa deve fare. In particolare, se tutti i cartellini si trovano nella zona verde o bianca, devono essere messi in produzione tutti i codici, uno alla volta, con lotti di dimensioni minime secondo la *Pattern*. La dimensione minima dei lotti è rappresentata proprio dalla dimensione della zona verde.

Se, invece, alcuni cartellini arrivano in zona rossa, allora l’operatore deve completare la produzione che stava realizzando (completare il contenitore kanban), effettuare un setup e ripartire immediatamente dalla produzione di un lotto del codice che è finito in zona rossa. Il dimensionamento di tale tabelliera può essere effettuato o attraverso metodologie analitiche (nei casi più semplici) e sia tramite simulazione (nei casi più complessi).
CAPITOLO 6
Single-stage multi-product kanban system

![Diagram of Kanban System](image)

Figura 6.3– Tabelliera Kanban
6.2 LITERATURE REVIEW

Numerosi sono gli studi condotti sui sistemi controllati mediante kanban. Alcuni di questi sono stati selezionati, analizzati e riportati in ordine cronologico nella tabella 6.1, dove vengono riassunte le caratteristiche peculiari di ciascun articolo.

In particolare, sulle righe della tabella sono stati riportati gli studi in ordine cronologico (il titolo dell’articolo viene rimandato alla bibliografia), mentre sulle colonne sono stati riportati la tipologia e l’argomento. Più nello specifico, la tipologia indica il tipo di studio condotto sui sistemi kanban, che può essere:

- Algoritmi (tra cui genetici) – viene studiato il sistema kanban utilizzando come approccio quello degli algoritmi.
- Modelli di reti di code e Reti di Petri – il sistema kanban viene rappresentato e risolto mediante i modelli queueing networks.
- Catene di Markov – il sistema kanban viene approcciato utilizzando le Catene di Markov.
- Modelli matematici – viene fornito un metodo matematico per la risoluzione dei sistemi kanban.
- Simulazione – il sistema kanban viene studiato e risolto grazie a una numerosa famiglia di tecniche di simulazione.
- Rassegna della letteratura – vengono menzionati gli autori che nei loro lavori hanno argomentato in materia di kanban.
- Caso studio – viene affrontato nell’articolo un caso reale in cui vi è stata l’applicazione di un sistema kanban.
- Concettuale – l’articolo è improntato su una trattazione generale e concettuale dei sistemi kanban.
- Metodologia – viene proposta una metodologia per gestire diversi sistemi mediante kanban.
F. O. minimizzazione dei costi – sono articoli in cui l’obiettivo è quello di minimizzare i costi. Una funzione obiettivo incentrata sulla minimizzazione dei costi sarà oggetto di questo lavoro di tesi e pertanto è stata menzionata anche questa voce nella parte relativa alla tipologia.

Invece, sotto la voce **argomento** sono stati racchiusi i seguenti concetti:

- **Tecniche** – indica il tipo di tecnica affrontata nell’articolo (cioè kanban oppure altre tecniche, come conwip, ibride, etc…) e se è stato svolto un confronto tra più tecniche.
- **Implementazione** – considera gli articoli che hanno proposto un’implementazione del kanban in sistemi di svariata natura.
- **Argomenti vari con kanban** – riguarda quegli studi che hanno posto l’accento su vari aspetti del kanban, come sue caratteristiche, modalità di funzionamento e altro.
- **Cartellini** – indica essenzialmente il calcolo del numero dei cartellini, esposto sia come formula generica di calcolo, sia come parametro numerico ottenuto dall’implementazione del sistema kanban.
- **Safety stock** – questa voce si riferisce agli articoli che hanno considerato come parametro di riferimento oppure hanno calcolato la scorta di sicurezza necessaria nei sistemi kanban.
- **Buffer size** – riguarda gli studi che hanno considerato il calcolo della dimensione del buffer in un kanban system.
- **Inventory** – questo parametro indica la giacenza calcolata a seguito dell’implementazione di un sistema kanban.
- **Liste di priorità** – indica le regole di priorità scelte per gestire opportunamente un sistema kanban (come sequencing, scheduling, backlog)
- **Indicatori di performance** – questa voce indica i vari indici di performance che sono stati utilizzati negli articoli per valutare i
risultati ottenuti oppure ottenibili in un sistema kanban. I più utilizzati sono:

1. throughput
2. WIP
3. backorders
4. setup
5. costi
6. tempo ciclo
7. lead time
8. livello di servizio.

Gli altri indicatori meno utilizzati sono stati raccolti nella voce “altre”.

- Supermarket – indica quegli articoli che hanno posto la loro attenzione sul supermarket all’interno di un sistema kanban.
<table>
<thead>
<tr>
<th>TIPOLOGIA</th>
<th>ARGOMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TECNICHE</td>
</tr>
<tr>
<td></td>
<td>CARTELLINI</td>
</tr>
<tr>
<td></td>
<td>LISTE PRIORITY'</td>
</tr>
<tr>
<td></td>
<td>PERFORMANCE</td>
</tr>
<tr>
<td></td>
<td>SAFETY STOCK</td>
</tr>
<tr>
<td></td>
<td>BUFFER SIZE</td>
</tr>
<tr>
<td></td>
<td>INVENTORY</td>
</tr>
<tr>
<td></td>
<td>SEQUENCING</td>
</tr>
<tr>
<td></td>
<td>SCHEDULING</td>
</tr>
<tr>
<td></td>
<td>BACKLOG</td>
</tr>
<tr>
<td></td>
<td>THROUGHPUT</td>
</tr>
<tr>
<td></td>
<td>WIP</td>
</tr>
<tr>
<td></td>
<td>BACKORDERS</td>
</tr>
<tr>
<td></td>
<td>SETUP</td>
</tr>
<tr>
<td></td>
<td>COSTS</td>
</tr>
<tr>
<td></td>
<td>TEMPO CICLO</td>
</tr>
<tr>
<td></td>
<td>LEAD TIME</td>
</tr>
<tr>
<td></td>
<td>SERVICE LEVEL</td>
</tr>
<tr>
<td></td>
<td>ALTRE</td>
</tr>
<tr>
<td></td>
<td>SUPERMARKET</td>
</tr>
<tr>
<td>F.O., MIN COSTI</td>
<td>X</td>
</tr>
<tr>
<td>ALGORITMI (TRA CI GENETICI)</td>
<td>X</td>
</tr>
<tr>
<td>QUEUE NETWORK MODELS & RETI DI PETRI</td>
<td>X</td>
</tr>
<tr>
<td>CATENE DI MARKOV</td>
<td>X</td>
</tr>
<tr>
<td>CONCETTUALE</td>
<td>X</td>
</tr>
<tr>
<td>METODOLOGIA</td>
<td>X</td>
</tr>
<tr>
<td>CASO STUDIO</td>
<td>X</td>
</tr>
<tr>
<td>MODELLO MATEMATICO</td>
<td>X</td>
</tr>
<tr>
<td>SIMULAZIONE</td>
<td>X</td>
</tr>
<tr>
<td>RASSEGNA LETTERATURA</td>
<td>X</td>
</tr>
<tr>
<td>PRESENTAZIONE KANBAN</td>
<td>X</td>
</tr>
<tr>
<td>PRESENTAZIONE ALTRE TECNICHE</td>
<td>X</td>
</tr>
<tr>
<td>CONFRONTO TRA TECNICHE</td>
<td>X</td>
</tr>
<tr>
<td>IMPLEMENTAZIONE</td>
<td>X</td>
</tr>
<tr>
<td>ARGOMENTI VARI CON KANBAN</td>
<td>X</td>
</tr>
<tr>
<td>CALCOLO N. KANBAN</td>
<td>X</td>
</tr>
<tr>
<td>SAFETY STOCK</td>
<td>X</td>
</tr>
<tr>
<td>BUFFER SIZE</td>
<td>X</td>
</tr>
<tr>
<td>INVENTORY</td>
<td>X</td>
</tr>
<tr>
<td>SEQUENCING</td>
<td>X</td>
</tr>
<tr>
<td>SCHEDULING</td>
<td>X</td>
</tr>
<tr>
<td>BACKLOG</td>
<td>X</td>
</tr>
<tr>
<td>THROUGHPUT</td>
<td>X</td>
</tr>
<tr>
<td>WIP</td>
<td>X</td>
</tr>
<tr>
<td>BACKORDERS</td>
<td>X</td>
</tr>
<tr>
<td>SETUP</td>
<td>X</td>
</tr>
<tr>
<td>COSTS</td>
<td>X</td>
</tr>
<tr>
<td>TEMPO CICLO</td>
<td>X</td>
</tr>
<tr>
<td>LEAD TIME</td>
<td>X</td>
</tr>
<tr>
<td>SERVICE LEVEL</td>
<td>X</td>
</tr>
<tr>
<td>ALTRE</td>
<td>X</td>
</tr>
<tr>
<td>SUPERMARKET</td>
<td>X</td>
</tr>
</tbody>
</table>

350
<table>
<thead>
<tr>
<th>TITOLO</th>
<th>TIPOLOGIA</th>
<th>ARGOMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.O. MINI COSTI</td>
<td>ALGORITMI (TRA CI GENETICI)</td>
<td>TECNICHE</td>
</tr>
<tr>
<td></td>
<td>QUEUEING NETWORK MODELS E RETI DI PETRI</td>
<td>CARTELLINI</td>
</tr>
<tr>
<td></td>
<td>CONCETTUALE</td>
<td>BU)F SIZE</td>
</tr>
<tr>
<td></td>
<td>METODOLOGIA</td>
<td>INVENTORY</td>
</tr>
<tr>
<td></td>
<td>CASO STUDIO</td>
<td>SEQUENCING</td>
</tr>
<tr>
<td></td>
<td>MODELLO MATEMATICO</td>
<td>SCHEDULING</td>
</tr>
<tr>
<td></td>
<td>SIMULAZIONE</td>
<td>BACKLOG</td>
</tr>
<tr>
<td></td>
<td>RASSEGNA LETTERATURA</td>
<td>THROUGHPUT</td>
</tr>
<tr>
<td></td>
<td>PRESENTAZIONE KANBAN</td>
<td>WIP</td>
</tr>
<tr>
<td></td>
<td>ALTRE TECNICHE</td>
<td>BACKORDERS</td>
</tr>
<tr>
<td></td>
<td>CONFRONTO TRA TECNICHE</td>
<td>SETUP</td>
</tr>
<tr>
<td></td>
<td>IMPLEMENTAZIONE</td>
<td>COSTI</td>
</tr>
<tr>
<td></td>
<td>ARGOMENTI VARI CON KANBAN</td>
<td>TEMPO CICLO</td>
</tr>
<tr>
<td></td>
<td>CALCOLO N. KANBAN</td>
<td>LEAD TIME</td>
</tr>
<tr>
<td></td>
<td>SAFETY STOCK</td>
<td>SERVICE LEVEL</td>
</tr>
<tr>
<td></td>
<td>QUEUEING NETWORK MODELS E RETI DI PETRI</td>
<td>ALTRE</td>
</tr>
<tr>
<td></td>
<td>CONCETTUALE</td>
<td>SUPERMARKET</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIPOLOGIA</th>
<th>ARGOMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERMARKET</td>
<td>F.O. MINI COSTI</td>
</tr>
<tr>
<td></td>
<td>ALGORITMI (TRA CI GENETICI)</td>
</tr>
<tr>
<td></td>
<td>QUEUEING NETWORK MODELS E RETI DI PETRI</td>
</tr>
<tr>
<td></td>
<td>CONCETTUALE</td>
</tr>
<tr>
<td></td>
<td>METODOLOGIA</td>
</tr>
<tr>
<td></td>
<td>CASO STUDIO</td>
</tr>
<tr>
<td></td>
<td>MODELLO MATEMATICO</td>
</tr>
<tr>
<td></td>
<td>SIMULAZIONE</td>
</tr>
<tr>
<td></td>
<td>RASSEGNA LETTERATURA</td>
</tr>
<tr>
<td></td>
<td>PRESENTAZIONE KANBAN</td>
</tr>
<tr>
<td></td>
<td>ALTRE TECNICHE</td>
</tr>
<tr>
<td></td>
<td>CONFRONTO TRA TECNICHE</td>
</tr>
<tr>
<td></td>
<td>IMPLEMENTAZIONE</td>
</tr>
<tr>
<td></td>
<td>ARGOMENTI VARI CON KANBAN</td>
</tr>
<tr>
<td></td>
<td>CALCOLO N. KANBAN</td>
</tr>
<tr>
<td></td>
<td>SAFETY STOCK</td>
</tr>
<tr>
<td></td>
<td>QUEUEING NETWORK MODELS E RETI DI PETRI</td>
</tr>
<tr>
<td></td>
<td>CONCETTUALE</td>
</tr>
<tr>
<td></td>
<td>METODOLOGIA</td>
</tr>
<tr>
<td></td>
<td>CASO STUDIO</td>
</tr>
<tr>
<td></td>
<td>MODELLO MATEMATICO</td>
</tr>
<tr>
<td></td>
<td>SIMULAZIONE</td>
</tr>
<tr>
<td></td>
<td>RASSEGNA LETTERATURA</td>
</tr>
<tr>
<td></td>
<td>PRESENTAZIONE KANBAN</td>
</tr>
<tr>
<td></td>
<td>ALTRE TECNICHE</td>
</tr>
<tr>
<td></td>
<td>CONFRONTO TRA TECNICHE</td>
</tr>
<tr>
<td></td>
<td>IMPLEMENTAZIONE</td>
</tr>
<tr>
<td></td>
<td>ARGOMENTI VARI CON KANBAN</td>
</tr>
<tr>
<td></td>
<td>CALCOLO N. KANBAN</td>
</tr>
<tr>
<td></td>
<td>SAFETY STOCK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARGOMENTO</th>
<th>TIPOLOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTE PRIORITA’</td>
<td>F.O. MINI COSTI</td>
</tr>
<tr>
<td></td>
<td>ALGORITMI (TRA CI GENETICI)</td>
</tr>
<tr>
<td></td>
<td>QUEUEING NETWORK MODELS E RETI DI PETRI</td>
</tr>
<tr>
<td></td>
<td>CONCETTUALE</td>
</tr>
<tr>
<td></td>
<td>METODOLOGIA</td>
</tr>
<tr>
<td></td>
<td>CASO STUDIO</td>
</tr>
<tr>
<td></td>
<td>MODELLO MATEMATICO</td>
</tr>
<tr>
<td></td>
<td>SIMULAZIONE</td>
</tr>
<tr>
<td></td>
<td>RASSEGNA LETTERATURA</td>
</tr>
<tr>
<td></td>
<td>PRESENTAZIONE KANBAN</td>
</tr>
<tr>
<td></td>
<td>ALTRE TECNICHE</td>
</tr>
<tr>
<td></td>
<td>CONFRONTO TRA TECNICHE</td>
</tr>
<tr>
<td></td>
<td>IMPLEMENTAZIONE</td>
</tr>
<tr>
<td></td>
<td>ARGOMENTI VARI CON KANBAN</td>
</tr>
<tr>
<td></td>
<td>CALCOLO N. KANBAN</td>
</tr>
<tr>
<td></td>
<td>SAFETY STOCK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERFORMANCE</th>
<th>ARGOMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.O. MINI COSTI</td>
<td>ALGORITMI (TRA CI GENETICI)</td>
</tr>
<tr>
<td></td>
<td>QUEUEING NETWORK MODELS E RETI DI PETRI</td>
</tr>
<tr>
<td></td>
<td>CONCETTUALE</td>
</tr>
<tr>
<td></td>
<td>METODOLOGIA</td>
</tr>
<tr>
<td></td>
<td>CASO STUDIO</td>
</tr>
<tr>
<td></td>
<td>MODELLO MATEMATICO</td>
</tr>
<tr>
<td></td>
<td>SIMULAZIONE</td>
</tr>
<tr>
<td></td>
<td>RASSEGNA LETTERATURA</td>
</tr>
<tr>
<td></td>
<td>PRESENTAZIONE KANBAN</td>
</tr>
<tr>
<td></td>
<td>ALTRE TECNICHE</td>
</tr>
<tr>
<td></td>
<td>CONFRONTO TRA TECNICHE</td>
</tr>
<tr>
<td></td>
<td>IMPLEMENTAZIONE</td>
</tr>
<tr>
<td></td>
<td>ARGOMENTI VARI CON KANBAN</td>
</tr>
<tr>
<td></td>
<td>CALCOLO N. KANBAN</td>
</tr>
<tr>
<td></td>
<td>SAFETY STOCK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARGOMENTO</th>
<th>PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.O. MINI COSTI</td>
<td>ALGORITMI (TRA CI GENETICI)</td>
</tr>
<tr>
<td></td>
<td>QUEUEING NETWORK MODELS E RETI DI PETRI</td>
</tr>
<tr>
<td></td>
<td>CONCETTUALE</td>
</tr>
<tr>
<td></td>
<td>METODOLOGIA</td>
</tr>
<tr>
<td></td>
<td>CASO STUDIO</td>
</tr>
<tr>
<td></td>
<td>MODELLO MATEMATICO</td>
</tr>
<tr>
<td></td>
<td>SIMULAZIONE</td>
</tr>
<tr>
<td></td>
<td>RASSEGNA LETTERATURA</td>
</tr>
<tr>
<td></td>
<td>PRESENTAZIONE KANBAN</td>
</tr>
<tr>
<td></td>
<td>ALTRE TECNICHE</td>
</tr>
<tr>
<td></td>
<td>CONFRONTO TRA TECNICHE</td>
</tr>
<tr>
<td></td>
<td>IMPLEMENTAZIONE</td>
</tr>
<tr>
<td></td>
<td>ARGOMENTI VARI CON KANBAN</td>
</tr>
<tr>
<td></td>
<td>CALCOLO N. KANBAN</td>
</tr>
<tr>
<td></td>
<td>SAFETY STOCK</td>
</tr>
</tbody>
</table>

351
<table>
<thead>
<tr>
<th>TITOLO</th>
<th>TIPOLOGIA</th>
<th>ARGOMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.O. MINI COSTI</td>
<td>ALGORITMI (TRA CI GENETICI)</td>
<td>CARTELLINI</td>
</tr>
<tr>
<td>QUEUING NETWORK MODELS & RETI DI PETRI</td>
<td>CATENE DI MARKOV</td>
<td>SAFETY STOCK</td>
</tr>
<tr>
<td>METODOLOGIA</td>
<td>CASO STUDIO</td>
<td>BUFFER SIZE</td>
</tr>
<tr>
<td>MODELLO MATEMATICO</td>
<td>SIMULAZIONE</td>
<td>INVENTORY</td>
</tr>
<tr>
<td>RASSSEGNA LETTERATURA</td>
<td>PRESENTAZIONE DI KANBAN</td>
<td>SEQUENCING</td>
</tr>
<tr>
<td>PRESENTAZIONE ALTRI TECNICHE</td>
<td>CONFRONTO TRA TECNICHE</td>
<td>SCHEDULING</td>
</tr>
<tr>
<td>IMPLEMENTAZIONE</td>
<td>ARGOMENTI VARI CON KANBAN</td>
<td>BACKLOG</td>
</tr>
<tr>
<td>CALCOLO N. KANBAN</td>
<td>SAFETY STOCK</td>
<td>THROUGHPUT</td>
</tr>
<tr>
<td>SAFETY STOCK</td>
<td>BUFFER SIZE</td>
<td>WIP</td>
</tr>
<tr>
<td>INVENTORY</td>
<td>SEQUENCING</td>
<td>BACKORDERS</td>
</tr>
<tr>
<td>SCHEDULING</td>
<td>BACKLOG</td>
<td>SETUP</td>
</tr>
<tr>
<td>WIP</td>
<td>COSTI</td>
<td>SETUP</td>
</tr>
<tr>
<td>COSTI</td>
<td>TEMPO CICLO</td>
<td>LEAD TIME</td>
</tr>
<tr>
<td>TEMPO CICLO</td>
<td>SERVICE LEVEL</td>
<td>ALTE</td>
</tr>
<tr>
<td>SERVICE LEVEL</td>
<td>OTHER</td>
<td>SUPERMARKET</td>
</tr>
</tbody>
</table>

		LISTE PRIORITA’	PERFORMANCE			
[59]	X	X	X			
[9]	X	X	X	X	X	
[20]	X	X	X	X		
[19]	X	X				
[28]	X	X	X	X		
[21]	X	X	X			
[24]	X	X	X	X	X	X
CAPITOLO 6
Single-stage multi-product kanban system

<table>
<thead>
<tr>
<th>TITOLO</th>
<th>TIPOLOGIA</th>
<th>ARGOMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F.O. MINI COSTI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALGORITMI (TRA CUI GENETICI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QUEUEING NETWORK MODELS E RETI DI PETRI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONCETTUALE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METODOLOGIA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASO STUDIO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MODELLO MATEMATICO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIMULAZIONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RASSEGNA LETTERATURA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRESENTAZIONE KANBAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONFRONTO TRA TECNICHE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IMPLEMETAZIONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARGOMENTI VARI CON KANBAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CALCOLO N. KANBAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAFETY STOCK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BUFFER SIZE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INVENTORY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQUENCING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCHEDULING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BACKLOG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THROUGHPUT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WIP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BACKORDERS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SETUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COSTI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEMPO CICLO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD TIME</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SERVICE LEVEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALTRE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUPERMARKET</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LISTE PRIORITY’</th>
<th>PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TITOLO</th>
<th>TIPOLOGIA</th>
<th>ARGOMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>[52]</td>
<td>X</td>
<td>X X X X</td>
</tr>
<tr>
<td>[7]</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>[81]</td>
<td>X X</td>
<td>X X X</td>
</tr>
<tr>
<td>[14]</td>
<td>X X X</td>
<td>X</td>
</tr>
<tr>
<td>[13]</td>
<td>X</td>
<td>X X</td>
</tr>
<tr>
<td>[42]</td>
<td>X X X</td>
<td>X</td>
</tr>
</tbody>
</table>

Note

[1] [52] [7] [81] [14] [13] [42]
<table>
<thead>
<tr>
<th>TITOLO</th>
<th>TIPOLOGIA</th>
<th>ARGOMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALGORITMI (TRA CI GENETICI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QUEUEING NETWORK MODELS E RETI DI PETRI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONCETTUALE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METODOLOGIA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASO STUDIO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MODELLO MATEMATICO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIMULAZIONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RASSEGNA LETTERATURA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRESENTAZIONE KANBAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRESENTAZIONE ALTRI TECNICHE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONFRONTO TRA TECNICHE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IMPLEMENTAZIONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARGOMENTI VARI CON KANBAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CALCOLO N. KANBAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAFETY STOCK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BUFFER SIZE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INVENTORY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQUENCING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCHEDULING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BACKLOG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THROUGHPUT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WIP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BACKORDERS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SETUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COSTI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEMPO CICLO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAD TIME</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SERVICE LEVEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALTRE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUPERMARKET</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LISTE PRIORITY’</th>
<th>PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N.</th>
<th>TITOLO</th>
<th>TIPOLOGIA</th>
<th>ARGOMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>[60]</td>
<td>X X X X X</td>
<td>X</td>
</tr>
<tr>
<td>38</td>
<td>[38]</td>
<td>X</td>
<td>X X</td>
</tr>
<tr>
<td>47</td>
<td>[47]</td>
<td>X</td>
<td>X X</td>
</tr>
<tr>
<td>43</td>
<td>[43]</td>
<td>X X X X</td>
<td>X X X X</td>
</tr>
<tr>
<td>35</td>
<td>[35]</td>
<td>X X X</td>
<td>X</td>
</tr>
<tr>
<td>76</td>
<td>[76]</td>
<td>X</td>
<td>X X</td>
</tr>
<tr>
<td>78</td>
<td>[78]</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
CAPITOLO 6
Single-stage multi-product kanban system

<table>
<thead>
<tr>
<th>TITOLO</th>
<th>TIPOLOGIA</th>
<th>ARGOMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.O. MINI COSTI</td>
<td>ALGORITMI (TRA CUI GENETICI)</td>
<td>TECNICHE</td>
</tr>
<tr>
<td>QUEUING NETWORK MODELS E RETI DI PETRI</td>
<td>CATENE DI MARKOV</td>
<td>CARTE LLINI</td>
</tr>
<tr>
<td>CONCETTUALE</td>
<td>METODOLOGIA</td>
<td>IMPLEMENTAZIONE</td>
</tr>
<tr>
<td>CASO STUDIO</td>
<td>MODELLO MATEMATICO</td>
<td>ARGOMENTI VARI CON KANBAN</td>
</tr>
<tr>
<td>SIMULAZIONE</td>
<td>RASSSEGNA LETTERATURA</td>
<td>CALCOLO N. KANBAN</td>
</tr>
<tr>
<td>PRESENTAZIONE KANBAN</td>
<td>ALTRE TECNICHE</td>
<td>SAFETY STOCK</td>
</tr>
<tr>
<td>CONFRONTO TRA TECNICHE</td>
<td>IMPLEMETNATIONE</td>
<td>BUFFER SIZE</td>
</tr>
<tr>
<td>ARGOMENTI VARI CON KANBAN</td>
<td></td>
<td>INVENTORY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEQUENCING</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCHEDULING</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BACKLOG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>THROUGHPUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WIP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BACKORDERS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COSTI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEMPO CICLO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEAD TIME</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SERVICE LEVEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALTRE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUPERMARKET</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	[82]	X	X	X	X	X			
	[55]	X	X	X	X		X	X	X
	[58]	X	X	X	X	X	X		
	[3]	X	X		X	X			
	[68]	X	X		X		X		
	[85]	X	X	X	X	X	X		
	[2]	X	X	X	X		X	X	
CAPITOLO 6
Single-stage multi-product kanban system

<table>
<thead>
<tr>
<th>TIPOLOGIA</th>
<th>ARGOMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.O. MINI COSTI</td>
<td>ALGORITMI (TRA CUI GENETICI)</td>
</tr>
<tr>
<td>QUEUEING NETWORK MODELS E RETI DI PETRI</td>
<td>METODOLOGIA</td>
</tr>
<tr>
<td>CATENE DI MARKOV</td>
<td>CASO STUDIO</td>
</tr>
<tr>
<td>CONCETTUALE</td>
<td>MODELLO MATEMATICALE</td>
</tr>
<tr>
<td>SIMULAZIONE</td>
<td>RASSSEGNA LETTERATURA</td>
</tr>
<tr>
<td>PRESENTAZIONE KANBAN</td>
<td>PRESENTAZIONE ALTRE TECNICHE</td>
</tr>
<tr>
<td>CONFRONTO TRA TECNICHE</td>
<td>IMPLEMENTAZIONE</td>
</tr>
<tr>
<td>ARGOMENTI VARI CON KANBAN</td>
<td>CALCOLO N. KANBAN</td>
</tr>
<tr>
<td>SAFETY STOCK</td>
<td>BUFFER SIZE</td>
</tr>
<tr>
<td>INVENTORY</td>
<td>SEQUENCING</td>
</tr>
<tr>
<td>SCHEDULING</td>
<td>BACKLOG</td>
</tr>
<tr>
<td>THROUGHPUT</td>
<td>WIP</td>
</tr>
<tr>
<td>BACKORDERS</td>
<td>SETUP</td>
</tr>
<tr>
<td>COSTI</td>
<td>TEMPO CICLO</td>
</tr>
<tr>
<td>LEAD TIME</td>
<td>SERVICE LEVEL</td>
</tr>
<tr>
<td>ALTRE</td>
<td>SUPERMARKET</td>
</tr>
</tbody>
</table>

<p>| | LISTE PRIORITÀ’ | PERFORMANCE |
| | | | | |
| [48] | X | X |
| [17] | X | X | X |
| [71] | X | X | X | X |
| [74] | X | X | X | X |
| [25] | X | X | X | X |
| [26] | X | X | X | X |
| [66] | X | X | X | X | X |</p>
<table>
<thead>
<tr>
<th>TITOLO</th>
<th>F.O. MINI COSTI</th>
<th>ALGORITMI (TRA CI GENETICI)</th>
<th>QUEUEING NETWORK MODELS ET RETI DI PETRI</th>
<th>CATENE DI MARKOV</th>
<th>METODOLOGIA</th>
<th>CASO STUDIO</th>
<th>MODELLO MATEMATICO</th>
<th>SIMULAZIONE</th>
<th>RASSEGNA LETTERATURA</th>
<th>PRESENTAZIONE KANBAN</th>
<th>ALTRE TECNICHE</th>
<th>IMPLEMENTAZIONE</th>
<th>ARGOMENTI VARI CON KANBAN</th>
<th>CALCOLO N. KANBAN</th>
<th>SAFETY STOCK</th>
<th>BUFFER SIZE</th>
<th>INVENTORY</th>
<th>SEQUENCING</th>
<th>SCHEDULING</th>
<th>BACKLOG</th>
<th>THROUGHPUT</th>
<th>WIP</th>
<th>BACKORDERS</th>
<th>SETUP</th>
<th>COSTI</th>
<th>TEMPO CICLO</th>
<th>LEAD TIME</th>
<th>SERVICE LEVEL</th>
<th>ALTRE</th>
<th>SUPERMARKET</th>
</tr>
</thead>
<tbody>
<tr>
<td>[72]</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>[75]</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>[84]</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>[77]</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>[44]</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>[31]</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>[86]</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Tabella 6.1: Classificazione articoli

<table>
<thead>
<tr>
<th>Articolo</th>
<th>F.O. MINI COSTI</th>
<th>ALGORITMI (TRA CUI GENETICI)</th>
<th>QUEUEING NETWORK MODELS E RETI DI PETRI</th>
<th>CONCETTUALE</th>
<th>METODOLOGIA</th>
<th>CASO STUDIO</th>
<th>MODELLO MATEMATICO</th>
<th>SIMULAZIONE</th>
<th>RASSEGNA LETTERATURA</th>
<th>PRESENTAZIONE KANBAN</th>
<th>ALTRE TECNICHE</th>
<th>CONFRONTO TRA TECNICHE</th>
<th>IMPLEMENTAZIONE</th>
<th>ARGOMENTI VARI CON KANBAN</th>
<th>CALCOLO N. KANBAN</th>
<th>SAFETY STOCK</th>
<th>BUFFER SIZE</th>
<th>INVENTORY</th>
<th>SEQUENCING</th>
<th>SCHEDULING</th>
<th>BACKLOG</th>
<th>THROUGHPUT</th>
<th>WIP</th>
<th>BACKORDERS</th>
<th>SETUP</th>
<th>COSTI</th>
<th>TEMPO CICLO</th>
<th>LEAD TIME</th>
<th>SERVICE LEVEL</th>
<th>ALTRE</th>
<th>SUPERMARKET</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5]</td>
<td>X</td>
</tr>
<tr>
<td>[67]</td>
<td>X X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>[34]</td>
<td></td>
<td>X X X X</td>
<td>X</td>
</tr>
<tr>
<td>[69]</td>
<td>X</td>
<td>X X</td>
<td>X</td>
</tr>
</tbody>
</table>
6.3 Descrizione del modello

Altro step di questo lavoro di tesi è quello di rappresentare e analizzare (mediante uno studio parametrico) un sistema produttivo single – stage multi – product (ossia con una sola fase produttiva e che produce un certo numero di prodotti) gestito mediante kanban. Per questo sistema verrà costruito un modello di simulazione utilizzando il software Arena e di qui si passerà alla sua ottimizzazione.

Il sistema in esame rappresenta un generico processo produttivo single – stage multi – product. Nello schema esso è costituito da un reparto di produzione e da un reparto di assemblaggio, ma nello specifico ci si riferirà esclusivamente al reparto di produzione, mentre quello di assemblaggio servirà solo per la generazione della domanda da parte del cliente finale. Tale sistema produce tre tipologie di componenti C1, C2 e C3, i quali vengono fabbricati nello stadio di fabbricazione a monte e vengono inviati allo stadio di assemblaggio a valle, che monterà i prodotti finiti P1, P2 e P3 (da C1, C2 e C3 rispettivamente). Il coefficiente di impiego dei tre prodotti è unitario, il che significa che la domanda di P1, P2 e P3 verrà automaticamente tradotta nella domanda dei componenti C1, C2 e C3.

Questi dunque sono i prodotti principali per il sistema, i cosiddetti main runner e per gestirli opportunamente viene prevista una logica di produzione di tipo pull, in cui è la domanda del cliente finale (e quindi dell’assemblaggio) che tira la produzione. I due reparti sono disaccoppiati da un supermarket, nei cui scaffali sono stocate le parti, nelle quantità strettamente necessarie e in modo da garantire il più rapido soddisfacimento delle richieste del cliente. Vi è poi una tabelliera kanban nei pressi del reparto di produzione, nella quale sono raccolti i kanban di produzione, che rappresentano gli ordini di produzione provenienti dal reparto di assemblaggio, al fine di garantire il giusto reintegro delle quantità consumate.
a valle del sistema produttivo. Il sistema quindi è annoverato nei sistemi kanban a un solo cartellino.

Il sistema, in sintesi, si presenta come in figura 6.4.

Dove:

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zv1</td>
<td>Zv2</td>
<td>Zv3</td>
</tr>
<tr>
<td>Zb1</td>
<td>Zb2</td>
<td>Zb3</td>
</tr>
<tr>
<td>Zr1</td>
<td>Zr2</td>
<td>Zr3</td>
</tr>
</tbody>
</table>

Come si può notare dalla figura 6.4, nel sistema ci sono due distinti flussi:

- un flusso fisico di materiali (frecce rosse), che procede da sinistra verso destra ed è così sintetizzato: nel reparto produttivo a monte entrano le materie prime necessarie alla lavorazione, vengono lavorate per dar vita ai componenti C1, C2 e C3 e questi vengono poi inviati nel supermarket e stoccati. Di qui i componenti vengono prelevati dal reparto di assemblaggio a valle, a seconda della richiesta del cliente, vengono assemblati nei prodotti finiti P1, P2 e P3 e vengono consegnati al cliente finale, lasciando così il sistema.
Un flusso logico di richiesta materiale (frecce blu), che procede a ritroso, da destra verso sinistra ed è così sintetizzato: il cliente finale richiede all’assemblaggio i prodotti finiti P1, P2 e P3 di cui necessita, l’assemblaggio preleva i componenti necessari dal supermarket e invia di volta in volta una richiesta di reintegro del materiale consumato (sotto forma di cartellini kanban) al reparto a monte. Gli ordini vengono raccolti nella tabelliera kanban e vengono prelevati dal reparto di produzione, il quale provvede poi a realizzare i componenti consumati a valle.

6.3.1 Le ipotesi di base

Il sistema oggetto della simulazione rappresenta il punto iniziale di sviluppo di realtà più complesse e pertanto poggia su tutta una serie di ipotesi semplificative, che possono essere così riassunte:

- Il reparto di produzione è costituito da una sola macchina, quindi l’impianto di produzione è condiviso da tutti i prodotti.
- La domanda annua di P1, P2 e P3 è perfettamente livellata nel corso dell’anno ed è pari rispettivamente a 540.000 pezzi, 360.000 pezzi e 720.000 pezzi. Ciascuna domanda poi verrà tradotta in una richiesta per un contenitore pieno di uno specifico prodotto.
- Il sistema produttivo è operativo per 240 giorni all’anno per 3 turni da 8 ore ciascuno (= 5.760 ore / anno).
- Nel reparto di produzione la macchina impiega esattamente lo stesso tempo per produrre i componenti C1, C2 e C3 (quindi il tempo di produzione è lo stesso per tutti i prodotti ed è pari a 30 minuti).
- I valori di domanda richiesti sono già al netto di eventuali scarti.
- Gli arrivi di domanda sono tra loro indipendenti.
- Il tasso di guasto è assunto pari a zero.
- Il tempo di setup è trascurabile.
Il tempo di trasporto è trascurabile.
La tempo di movimentazione delle parti è trascurabile.
Tra fasi successive esiste un’unica area di deposito (supermarket).
La dimensione dei contenitori è pari a 250 pezzi.
La dimensione del lotto minimo di produzione è pari a 1.
Il coefficiente di impiego dei componenti è unitario.
La domanda che entra nel sistema ha una distribuzione deterministica (constant) di arrivo e arriva con cadenza di 24 ore.
Vi è disponibilità infinita di materie prime nel reparto di produzione.
Essendo il lotto minimo di dimensioni unitarie, processare un contenitore equivale a processare un lotto minimo.
Il supermarket è dimensionato opportunamente sulla base della dimensione massima della tabelliera, al fine di mantenere a scorta il minor numero di prodotti (contiene solo una ben specifica scorta di sicurezza iniziale).
La domanda del cliente (rappresentata dalle richieste dell’assemblaggio) viene generata all’inizio di ogni giornata e il cliente esige che la sua richiesta venga immediatamente soddisfatta. Qualora non lo sia, è disposto a tollerare un ritardo che non si protrae oltre la giornata in questione, trascorsa la quale la richiesta è da considerarsi ritirata. Pertanto nel sistema non sono consentiti backorders ed è consentita una situazione temporanea di backlog.

6.3.2 Il modello di flusso logico
Nei paragrafi 6.3 e 6.3.1 sono stati introdotti gli elementi costitutivi e le ipotesi di partenza del sistema produttivo di riferimento. Di seguito invece viene fornita una spiegazione di dettaglio del funzionamento del sistema, che può essere schematizzata nel diagramma di flusso rappresentato in figura 6.5,
CAPITOLO 6
Single-stage multi-product kanban system

nel quale viene conservata la distinzione tra flusso fisico e informativo introdotta nel paragrafo 6.3

Nello specifico, si parte da una situazione in cui il supermarket è pieno e i due reparti sono fermi, in attesa dell’arrivo delle richieste. Il cliente finale invia le richieste dei 3 prodotti all’assemblaggio, il quale verifica innanzitutto se nel supermarket vi è disponibilità di componenti per soddisfare tale richiesta. Se vi è disponibilità, allora l’assemblaggio preleva di volta in volta un contenitore di ciascun codice dal supermarket, separa il kanban dal contenitore, invia al reparto di produzione la richiesta di reintegro del contenitore consumato e procede all’assemblaggio dei prodotti. Le richieste di reintegro si accumulano nella tabelliera kanban posta nel reparto di produzione sotto forma di kanban di produzione. Questi ultimi, a seconda dei posti disponibili in tabelliera, assumeranno diverse priorità di processamento. In particolare, se nella colonna della tabelliera del prodotto in questione la zona verde non è ancora piena, allora verrà assegnato a quel codice una priorità di tipo verde; se è piena, si passerà ad esaminare la disponibilità in zona bianca. Se la zona bianca non è piena, la priorità assegnata sarà di tipo bianco, altrimenti il codice assumerà una priorità di tipo rosso. Queste priorità definiscono l’urgenza di processamento di quel particolare codice; in particolare una priorità di tipo rosso rappresenta una richiesta immediata di reintegro e quindi, appena la macchina del reparto di produzione sarà libera, dovranno essere processati uno per volta tutti i contenitori in zona rossa. La priorità di tipo bianco rappresenta una richiesta di allerta di tipo visivo, in quanto avvisa che quel codice sta per entrare in zona rossa, ma non possiede una priorità vera e propria su quella verde e pertanto, una volta esauriti tutti i cartellini rossi, la produzione processerà indifferenemente cartellini bianchi e verdi. Ancora, essendo il lotto minimo di produzione di dimensioni unitarie, la macchina processerà un contenitore per volta, sia esso rosso, bianco o verde. Ogni contenitore prodotto viene poi inviato al supermarket e qui viene stoccatato in attesa di essere prelevato dal reparto di assemblaggio.
CAPITOLO 6 Single-stage multi-product kanban system

ALL’ASSEMBLAGGIO ARRIVA LA RICHIESTA DI PRODUZIONE DEI 3 CODICI DA PARTE DEL CLIENTE FINALE

L’ASSEMBLAGGIO INVIA AL SUPERMARKET LA RICHIESTA DI PRELIEVO DEL CODICE DA PROCESSARE

IL CODICE E’ PRESENTE NEL SUPERMARKET?

Sì

PRELAVLA IL CODICE DA ASSEMBLARE DALLO SCAFFALE OPPORTUNO

No

L’ASSEMBLAGGIO SI FERMA FINO A CHE NON ARRIVA IL CODICE NEL SUPERMARKET

AGGIORNA (DECREMENTA DI 1) LO STATO DELLO SCAFFALE DA CUÍ È STATO PRELEVATO IL CODICE

SEPARA IL PEZZO DAL CARTELLINO

L’ASSEMBLAGGIO LAVORA IL PEZZO

IL PEZZO ESCE DAL SISTEMA

L’ASSEMBLAGGIO INVIA IL SEGNALE DI RIENTRRO DEL CODICE PER MEZZO DEL CARTELLINO

IL CARTELLINO ARRIVA NELLA TABELLIERA KANBAN

364
CAPITOLO 6 Single-stage multi-product kanban system

INVIA NELLA COLONNA 1 DELLA TABELLIERA

E’ IL CODICE 1 ?

NO

INVIA NELLA COLONNA 2 DELLA TABELLIERA

E’ IL CODICE 2 ?

NO

INVIA NELLA COLONNA 3 DELLA TABELLIERA

E’ IL CODICE 3

NO

LA ZONA VERDE 1 E’ PIENA?

NO

ASSEGNA PRIORITY VERDE

AGGIUNGI ALLA ZONA VERDE 1 E AGGIorna

NO

LA ZONA BIANCA 1 E’ PIENA?

NO

ASSEGNA PRIORITY BIANCO

AGGIUNGI ALLA ZONA BIANCA 1 E AGGIorna

NO

ASSEGNA PRIORITY ROSSO

AGGIUNGI ALLA ZONA ROSSA 1 E AGGIorna

NO

LA ZONA VERDE 2 E’ PIENA?

NO

ASSEGNA PRIORITY VERDE

AGGIUNGI ALLA ZONA VERDE 2 E AGGIorna

NO

LA ZONA BIANCA 2 E’ PIENA?

NO

ASSEGNA PRIORITY BIANCO

AGGIUNGI ALLA ZONA BIANCA 2 E AGGIorna

NO

ASSEGNA PRIORITY ROSSO

AGGIUNGI ALLA ZONA ROSSA 2 E AGGIorna
CAPITOLO 6

Single-stage multi-product kanban system

Figura 6.5 – Schema di flusso logico del sistema kanban
6.4 COSTRUZIONE DEL MODELLO IN ARENA

Il sistema introdotto nel paragrafo 6.3 è stato costruito in Arena. Di seguito viene riportata la logica che sottintende la costruzione delle varie parti di tale modello e la sua composizione nei blocchi funzionali di Arena.

6.4.1 Parte I : la domanda del cliente finale

La generazione della richiesta dei 3 prodotti P1, P2 e P3 è stata modellata mediante 3 moduli create, aventi distribuzione di arrivo costante e modalità di arrivo giornaliera (tutta la richiesta arriva nella prima ora della giornata). Le entità create vengono trattenute in 3 moduli hold (uno per ogni prodotto), e vengono rilasciate solo quando almeno un contenitore di quel determinato prodotto è presente nello scaffale opportuno del supermarket. Un contatore per ogni prodotto segna il numero medio di entità trattenute in ciascun hold, fornendo in tal modo una misura delle unità che verranno consegnate in ritardo al cliente (backlog). Non appena avviene il rilascio delle entità, un separate scinde l’entità in due parti distinte: una parte fisica, che rappresenta il componente che viene inviato all’assemblaggio e viene trasformato nel prodotto finito, e una parte di segnale, che rappresenta la richiesta di reintegro del contenitore consumato al reparto di produzione.
Figura 6.6 – La domanda del cliente finale
6.4.2 Parte II: il reparto di assemblaggio

L’entità scissa in precedenza, che rappresenta il contenitore di componenti prelevato dal supermarket, viene inviata al reparto di assemblaggio, rappresentato da un modulo process composto dai 3 moduli seize, delay, release, i quali indicano il fatto che la macchina, rispettivamente, afferra, processa e rilascia l’entità. Una volta lavorati i contenitori e ottenuti i prodotti finiti, uno snodo decisionale del tipo if – then riconosce il tipo di prodotto (cioè se il prodotto lavorato è P1, P2 oppure P3) e lo smista opportunamente per farlo uscire dal sistema. In particolare, viene dapprima contato e memorizzato il numero dei prodotti evasi, utilizzando un modulo record e di qui i prodotti finiti lasciano il sistema attraverso dei moduli dispose.
Figura 6.7 – Il reparto di assemblaggio
6.4.3 Parte III : modalità di riempimento della tabelliera kanban

La parte dell’entità scissa con il separate e che rappresenta il segnale di reintegro dei contenitori prelevati dall’assemblaggio, viene inviata alla tabelliera kanban. Per decidere in quale zona inviare i vari cartellini, sono stati utilizzati dei moduli decide, ciascuno per ogni tipo di prodotto. Avendo accorpato la zona verde e la zona bianca della tabelliera, il primo decide considera se la zona verde – bianca è piena. Se non lo è, il cartellino viene inviato nella zona verde – bianca; se invece è piena, il cartellino viene inviato nella zona rossa. Se anche la zona rossa è piena, le entità vengono trattenute in un modulo hold denominato “sovra caricamento rosso”, il quale rilascerà le entità non appena la zona rossa è tornata ad avere almeno un posto disponibile. Questo sovracarico costituisce un’ulteriore aliquota di backlog e pertanto viene monitorato con un contatore che segna il numero medio di unità trattenute in attesa di entrare nella zona rossa. Con questi snodi decisionali, ogni entità viene inviata nelle opportune colonne della tabelliera kanban.
Figura 6.8 – Modalità di riempimento della tabelliera kanban
6.4.4 Parte IV: la tabelliera kanban

Le 3 colonne della tabelliera kanban (ognuna delle quali rappresenta un prodotto) sono costituite ciascuna da 2 zone: la zona verde – bianca e la zona rossa. Si avrà quindi:

- zona verde – bianca del prodotto 1
- zona rossa del prodotto 1
- zona verde – bianca del prodotto 2
- zona rossa del prodotto 2
- zona verde – bianca del prodotto 3
- zona rossa del prodotto 3.

Ognuna di queste zone è stata modellata con un modulo hold. In particolare, all’interno di ciascun hold è stata impostata la seguente regola di priorità di rilascio dei cartellini: i cartellini presenti nelle 3 zone verdi possono essere rilasciati solo se le 3 zone rosse sono vuote. Quindi i kanban rossi hanno la priorità di processamento e verranno rilasciati non appena la macchina è libera. Dato che la macchina può processare solo un contenitore per volta, il primo cartellino ad essere rilasciato sarà quello appartenente alla coda rossa che ha raggiunto la dimensione massima. Se nessuna coda è satura, viene data la precedenza alla zona rossa che ha il maggior numero di elementi in coda.Questo fino a che tutte le zone rosse hanno almeno un elemento in coda. Appena le zone rosse sono vuote, si passa alle zone verdi – bianche. La modalità di scelta del cartellino da processare è simile a quella stabilita per le zone rosse, con la sola differenza che, una volta che è stato prelevato un cartellino dalla zona con il maggior numero di elementi in coda, si continuera a processare cartellini di quella zona fino a che la zona non sarà vuota oppure fino a che non andrà a finire almeno un cartellino in zona rossa. In questo
modo la macchina lavorerà, quando possibile, lo stesso prodotto, riducendo il numero di setup da effettuare per processare prodotti diversi.

Figura 6.9 – La tabelliera kanban
6.4.5 Parte V: il reparto di produzione

Ogni cartellino rilasciato da un hold viene inviato alla macchina del reparto di produzione. Appena avviene il rilascio del cartellino, un modulo signal invia un segnale (pari a 1) ad un circuito posto inferiormente, che libera le entità intrappolate in 3 hold denominati “statistiche”. Le statistiche (statp1, statp2, statp3) altro non sono che 3 moduli hold creati con lo scopo di memorizzare l’ultima unità prodotta dalla macchina. Appena prima della produzione di un contenitore, un separate scinde l’unità da processare in una parte fisica e una parte di segnale. La parte di segnale viene opportunamente inviata a uno dei 3 moduli hold “statistiche” (mediante moduli decide si identifica se il prodotto che si sta per lavorare è P1, P2 oppure P3 e in base a questo si invia il segnale alla statistica relativa) e viene conservata fino a che un successivo segnale di valore 1 non svuoterà tutti e 3 gli hold (le entità usciranno poi attraverso moduli dispose). Questo circuito di memoria dell’ultima unità prodotta consentirà agli hold delle zone verdi – bianche di rilasciare il cartellino relativo al prodotto lavorato per ultimo (come spiegato precedentemente). Dopo aver attraversato il modulo signal, l’entità entra nel reparto di produzione, rappresentato da un process costituito dai moduli seize, delay, release (l’entità viene afferrata, lavorata e rilasciata). Appena viene trattenuta dal seize, viene assegnato alla macchina (mediante un modulo assigne) un attributo “timebusy = 1”, che rappresenta il fatto che la macchina è occupata; quando l’entità viene rilasciata (alla fine della lavorazione), l’attributo diventa “timebusy = 0”, che rappresenta il fatto che la macchina è diventata di nuovo libera ed è pronta per processare un altro contenitore.
Figura 6.10 – Il reparto di produzione
6.4.6 Parte VI: il supermarket

Appena processata, l’entità viene inviata al supermarket e, in particolare, attraverso dei moduli decide il contenitore prodotto viene inviato nello scaffale opportuno (rispettivamente nello scaffale p1, p2 oppure p3 a seconda che il contenitore appartenga al prodotto P1, P2 oppure P3). Gli scaffali sono modellati con blocchi hold del tipo “infinite hold”, che trattengono le entità fino a che non viene imposta loro una condizione di prelievo dell’entità mediante un modulo remove (utilizzato nella parte I per prelevare i contenitori dagli scaffali). Per riempire gli scaffali nell’istante iniziale con la scorta di sicurezza sono stati utilizzati dei moduli create (essi generano il giusto numero di entità a scorta solo nel primo istante, quindi non rappresentano nessuna parte del sistema; hanno solo una funzionalità ai fini della simulazione).
CAPITOLO 6
Single-stage multi-product kanban system

Figura 6.11 – Il supermarket
Capitolo 6
Single-stage multi-product kanban system

Figura 6.12 – Il modello completo in Arena
6.4.7 Gli input del modello

Una volta costruito il modello in Arena (come specificato in precedenza), si è passati alla selezione degli input necessari per la simulazione. In particolare, sono stati configurati i parametri di sistema riportati di seguito.

La prima configurazione effettuata è stata quella riguardante la lunghezza di replicazione, scelta pari a 1 giorno, in quanto si ipotizza che gli ordini devono essere evasi tutti nell’arco della giornata (non sono consentiti backorders) e quindi è interessante vedere come risponda il sistema in 24 ore e, dunque, come viene dimensionata la tabelliera kanban.

Successivamente si è passati al dimensionamento del supermarket. Prima dell’arrivo delle richieste da parte del cliente, infatti, è necessario che vi sia a magazzino un certo livello di scorta di sicurezza per ciascun prodotto. Per garantire ciò sono stati utilizzati i moduli create del supermarket, i quali all’istante \(t = 0.0 \) immettono in ogni scaffale un numero di scorte pari alla somma dell’ampiezza massima della zona verde-bianca e della zona rossa di ciascun prodotto. In tal modo è assicurato un minimo livello di scorte presenti inizialmente nel sistema, tale da non superare comunque la massima dimensione di ciascuna colonna della tabelliera.

Inizializzato il supermarket, viene fatta partire nell’istante successivo (\(t = 0.1 \)) la richiesta dei 3 prodotti. Avendo a disposizione da dati storici i valori di domanda annua e il tempo di apertura dell’impianto, e conoscendo la dimensione fissa del contenitore, è stata calcolata la domanda giornaliera dei prodotti in termini di contenitori nel modo seguente:

Domanda annua:
\[
\begin{align*}
D_{\text{annua}} (P1) &= 540.000 \text{ pezzi} \\
D_{\text{annua}} (P2) &= 360.000 \text{ pezzi} \\
D_{\text{annua}} (P3) &= 720.000 \text{ pezzi}.
\end{align*}
\]

Giorni lavorativi all’anno = 240.
Domanda giornaliera:

\[D_{\text{giornaliera}} (P1) = 2250 \text{ pezzi} \quad (540.000 / 240) \]

\[D_{\text{giornaliera}} (P2) = 1500 \text{ pezzi} \quad (360.000 / 240) \]

\[D_{\text{giornaliera}} (P3) = 3000 \text{ pezzi} \quad (720.000 / 240). \]

Dimensione del contenitore = 250 pezzi.

Richiesta giornaliera in contenitori:

Contenitori P1 = 9 \((2250 / 250) \)

Contenitori P2 = 6 \((1500 / 250) \)

Contenitori P3 = 12 \((3000 / 250) \).

Queste richieste arrivano all’inizio di ogni giornata e devono essere evase nell’arco della giornata.

Il tempo di produzione di riferimento è stato scelto, sempre sulla base di considerazioni di tipo storico, pari a 30 minuti.

Per effettuare un primo tentativo di simulazione sono state impostate le seguenti ampiezze massime delle zone:

\[Z_{v-b} 1 = 5 \]

\[Z_{v-b} 2 = 3 \]

\[Z_{v-b} 3 = 6 \]

\[Z_r 1 = 2 \]

\[Z_r 2 = 1 \]

\[Z_r 3 = 2. \]

Tali zone serviranno solo come condizione iniziale in OptQuest, pertanto non sono significative ai fini della simulazione.

Poiché il passo successivo alla simulazione consiste nell’ottimizzazione del sistema, sono state altresì definite delle statistiche di riferimento, che sono:
Costo totale $C_T = C_B + C_M$

Dove:

C_B: Costo di Backlog = definito come la sommatoria (estesa al numero dei prodotti) dei prodotti tra il numero medio di unità consegnate in ritardo al cliente per quel prodotto e il costo unitario di backlog di quel prodotto (posto inizialmente pari a 1 euro/unità).

C_M: Costo di Mantenimento a Scorta = definito come la sommatoria (estesa al numero dei prodotti) dei prodotti tra il numero medio di unità stoccate a magazzino per quel prodotto e il costo unitario di mantenimento a scorta di quel prodotto (posto inizialmente pari a 1 euro/unità).

$\text{Livello di servizio } L_S = 1 - \left(\frac{\text{numero medio di unità consegnate in ritardo al cliente per quel prodotto}}{\text{numero totale di ordini evasi nella giornata per quel prodotto}} \right)$.

Essendo queste statistiche il punto di partenza per l’ottimizzazione seguente alla simulazione, verranno riprese in modo più dettagliato e formalizzate matematicamente nel capitolo successivo.

6.5 L’OTTIMIZZAZIONE

Nei paragrafi precedenti è stato definito il modello del sistema produttivo considerato, sono stati impostati degli input di simulazione ed è stato fatto un cenno sulla costruzione delle statistiche di riferimento create per l’ottimizzazione. Lo step successivo consiste nello stimare l’ampiezza massima che deve avere ciascuna zona della tabelliera kanban, al fine di
ottimizzare una determinata funzione obiettivo selezionata. Il problema consiste quindi nel dimensionamento della tabelliera utilizzando la simulazione e quindi l’ottimizzazione. Dopo ciò, si procederà all’analisi parametrica dei fattori principali del sistema e allo studio delle loro interazioni.

6.5.1 Definizione della funzione obiettivo

Per effettuare la procedura di ottimizzazione è stata innanzitutto selezionata la funzione obiettivo più appropriata. Per come è stato costruito il modello, la scelta è ricaduta su una funzione che influenzasse l’ampiezza massima delle zone della tabelliera e, dunque, su una funzione di costo totale. Le aliquote di costo significative per il modello sono essenzialmente due:

- **COSTO DI BACKLOG**: è il costo che l’azienda sostiene nel momento in cui non è in grado di soddisfare nell’immediato le richieste del cliente, ragion per cui avrà del lavoro accumulato da svolgere. A questo punto il cliente ha due possibili scelte da prendere: o annullare l’ordine delle unità in ritardo, o accettare comunque la consegna ritardata, ma imponendo delle penali all’azienda. Il caso in esame prevede che l’azienda, qualora non riesca ad effettuare istantaneamente tutte le consegne, riesca comunque ad evadere completamente l’ordine nell’arco di una giornata; quindi non vi sono richieste annullate da parte del cliente. Tuttavia, per le unità consegnate in ritardo ci saranno delle penali quantificabili in un costo unitario e dunque è intenzione dell’azienda ridurre il più possibile questa voce di costo. Nel modello in Arena il costo di backlog è valutabile nei blocchi “controllo presenza pezzo sullo scaffale” (in
CAPITOLO 6
Single-stage multi-product kanban system

quanto se il pezzo richiesto non è presente sullo scaffale, bisognerà attenderne la fabbricazione e quindi verrà consegnato in ritardo) e “sovraccarico rosso” (in quanto se la tabelliera è già piena e arriva un’altra richiesta di reintegro, questa dovrà attendere la liberazione di un posto nella zona rossa di quel codice e questo rappresenterà un ulteriore ritardo nella consegna). Avendo opportunamente inizializzato la dimensione del supermarket, la seconda aliquota sarà sempre nulla. L’espressione completa del costo di backlog (C_B) è dunque:

$$C_B = \sum_{i=1}^{3} (N_{mR,i} \times C_{u,i})$$ \hspace{1cm} (6.1)

Dove: $N_{mR,i} =$ numero medio di unità in ritardo per il prodotto i

([unità])

$C_{u,i} =$ costo unitario di backlog per il prodotto i ([euro/unità]).

Tradotta in termini di blocchi di Arena:

$C_B =$ (numero medio di elementi P1 presenti nella coda *controllo presenza pezzi P1 sullo scaffale* *costo unitario di backlog di P1) + (numero medio di elementi P2 presenti nella coda *controllo presenza pezzi P2 sullo scaffale* *costo unitario di backlog di P2) + (numero medio di elementi P3 presenti nella coda *controllo presenza pezzi P3 sullo scaffale* *costo unitario di backlog di P3) + (numero medio di elementi P1 presenti nella coda *sovraccarico rosso P1* *costo unitario di backlog di P1) + (numero medio di elementi P2 presenti nella coda *sovraccarico rosso P2* *costo unitario di backlog di P2) + (numero medio di elementi P3 presenti nella coda *sovraccarico rosso P3* *costo unitario di backlog di P3).
Dove è stato posto come valore iniziale di riferimento:

Costo unitario di backlog di P1 = Costo unitario di backlog di P2 = Costo unitario di backlog di P3 = 1 euro/unità.

❖ COSTO DI MANTENIMENTO A SCORTA: è il costo che l’azienda sostiene per mantenere a scorta i codici dei prodotti stoccati negli scaffali del supermarket. Dato che questi codici significano immobilizzo di materiale, ad essi sono associate delle voci di costo riassumibili nel costo unitario di mantenimento a scorta. Nel modello in Arena, il costo di mantenimento a scorta è valutabile nei blocchi “scaffale” dei 3 prodotti (in quanto sugli scaffali verranno stoccati i componenti in attesa del prelievo da parte dell’assemblaggio). L’espressione completa del costo di mantenimento a scorta è dunque:

\[
C_M = \sum_{i=1}^{3} (G_{m,i} \cdot C_{u,i})
\]

(6.2)

Dove: \(G_{m,i}\) = giacenza media del prodotto i nel periodo considerato ([unità])

\(C_{u,i}\) = costo unitario di mantenimento a scorta ([euro/unità]).

Tradotta in termini di blocchi di Arena:

\[
C_M = (\text{numero medio di elementi P1 presenti nella coda scaffale P1} \times \text{costo unitario di mantenimento a scorta di P1}) + (\text{numero medio di elementi P2 presenti nella coda scaffale P2} \times \text{costo unitario di mantenimento a scorta di P2})
\]
P2) + (numero medio di elementi P3 presenti nella coda scaffale P3 * costo unitario di mantenimento a scorta di P3).

Dove è stato posto come valori iniziale di riferimento:

Costo unitario di mantenimento a scorta di P1 = Costo unitario di mantenimento a scorta di P2 = Costo unitario di mantenimento a scorta di P3 = 1 euro/unità.

In particolare, i costi unitari sono stati posti pari a 1 euro/unità, in quanto l’attenzione non è stata posta nella voce di costo intesa in termini assoluti e rispecchiante quella sostenuta nella realtà, bensì si è tenuto conto del peso che ciascuna delle due voci di costo può avere all’interno del costo totale, al fine di valutare come il sistema risponde (modificando l’ampiezza delle zone della tabelliera) al variare dell’aliquota preponderante.

In sintesi, la statistica di riferimento in Arena è il costo totale (C_T):

$$
C_T = C_B + C_M \quad (6.3)
$$

Obiettivo dell’ottimizzazione è ovviamente quello di minimizzare tale funzione, considerando una serie di vincoli che verranno in seguito riportati.

Un’altra statistica che è stata considerata ai fini dell’ottimizzazione è il Livello di Servizio, definito per ciascun prodotto come segue:

$$
L_{S,i} = 1 – \left(\frac{N_{mR,i}}{N_{mO,i}} \right) \quad (6.4)
$$
Dove: \(N_{mR,i} \) = numero medio di unità in ritardo per il prodotto i

\(N_{mO,i} \) = numero totale di ordini per il prodotto i.

Tradotto in Arena:

\(L_{S,1} = 1 - \left(\text{numero medio di elementi P1 presenti nella coda controllo presenza pezzi P1 sullo scaffale / numero totale di elementi P1 ordinati} \right) \)

\(L_{S,2} = 1 - \left(\text{numero medio di elementi P2 presenti nella coda controllo presenza pezzi P2 sullo scaffale / numero totale di elementi P2 ordinati} \right) \)

\(L_{S,3} = 1 - \left(\text{numero medio di elementi P3 presenti nella coda controllo presenza pezzi P3 sullo scaffale / numero totale di elementi P3 ordinati} \right) \)

Questa statistica è stata considerata in quanto esplicativa di una misura di soddisfazione per il cliente finale (maggiori saranno il livello di servizio assicurato, maggiore sarà la soddisfazione del cliente).

A questo punto è stata avviata l’ottimizzazione con OptQuest. Per prima cosa è stata scelta un’ottimizzazione di riferimento, definita “base”, dalla quale far partire poi tutte le altre ottimizzazioni, variando di volta in volta il parametro in esame. Tale “base” ha costi unitario di backlog e di mantenimento a scorta pari a 1, tempo di produzione pari a 30 minuti, numero di prodotti pari a 3 e domanda pari rispettivamente a P1= 9, P2= 6, P3=12.

Le variabili di controllo selezionate (ossia le variabili di interesse che opportunamente impostate rendono minima la funzione obiettivo) sono le ampiezze massime delle zone e quindi si hanno 6 variabili di controllo, che sono: \(Z_{r,1}; Z_{r,2}; Z_{r,3} Z_{v-b,1}; Z_{v-b,2}; Z_{v-b,3} \).
Per queste variabili sono state impostati dei valori iniziali di tentativo, desunti da dati storici (che rappresentano le condizioni iniziali di esplorazione della soluzione ottima), pari a:

\[Z_{r,1} = 2 \]
\[Z_{r,2} = 1 \]
\[Z_{r,3} = 2 \]
\[Z_{v-b,1} = 5 \]
\[Z_{v-b,2} = 3 \]
\[Z_{v-b,3} = 6. \]

Ancora, come limiti di esplorazione sono stati scelti:

Lower Bound = 1 (in quanto sono significative ampiezze > 0)

Upper Bound = 25 (in quanto nessuna richiesta massima giornaliera di prodotti arriva ai 25 contenitori e quindi è verosimile pensare che nessuna zona superi quel valore di soglia).

Essendo Arena un software di simulazione a eventi discreti, ogni Type delle variabili è stato impostato come “Discrete”.

Dopo la configurazione delle variabili di controllo, OptQuest chiede di impostare eventuali vincoli e quindi la funzione obiettivo. Per garantire la ricerca di una soluzione ottima che fosse il più possibile fedele alla realtà produttiva, sono stati impostati i seguenti vincoli: l’ampiezza delle zone deve essere almeno pari a 1; la dimensione delle zone verdi deve essere maggiore dell’ampiezza delle rispettive zone rosse, almeno di una unità.

Quindi il problema si presenta come segue:
Min! C_T = C_B + C_M

Sottoposto a:

ampiezza massima Z_{r,1} >= 1
ampiezza massima Z_{r,2} >= 1
ampiezza massima Z_{r,3} >= 1
ampiezza massima Z_{v-b,1} >= 1
ampiezza massima Z_{v-b,2} >= 1
ampiezza massima Z_{v-b,3} >= 1
ampiezza massima Z_{v-b,1} - ampiezza massima Z_{r,1} >= 1
ampiezza massima Z_{v-b,2} - ampiezza massima Z_{r,2} >= 1
ampiezza massima Z_{v-b,3} - ampiezza massima Z_{r,3} >= 1.

Ogni ottimizzazione è caratterizzata da un certo numero di simulazioni da lanciare, tra le quali OptQuest cerca il valore ottimo, rispettando i vincoli, e da un numero di replicazioni per ogni simulazione. Per stabilire il miglior numero di simulazioni da lanciare, ci si è riferiti al manuale, il quale fornisce tale numero in funzione del numero di variabili di controllo. Avendo 6 variabili, il minimo numero di simulazioni consigliato è 100. Comunque, per la ricerca della soluzione ottima della “base” sono state condotte 250 simulazioni, mentre per le successive il numero di simulazioni è stato ridotto a 150, essendo stato ritenuto sufficiente per la determinazione di una soluzione ottima convincente.
L’ampiezza ottima delle zone trovata per la soluzione “base” è:

\[
\begin{align*}
Z_{r,1} &= 1 \\
Z_{r,2} &= 1 \\
Z_{r,3} &= 1 \\
Z_{v-b,1} &= 3 \\
Z_{v-b,2} &= 2 \\
Z_{v-b,3} &= 3.
\end{align*}
\]

Queste zone diventeranno la condizione iniziale per ciascuna ottimizzazione seguente. Come si può notare, la soluzione ottima non si discosta molto dalle condizioni iniziali imposte sulla base dell’analisi di dati storici e, in particolare, OptQuest fornisce tale soluzione molto rapidamente (ossia già dalle prime simulazioni l’ottimo trovato è quello finale). Al fine di testare la bontà della soluzione, sono state varie più volte le condizioni iniziali e il risultato è sempre stato il medesimo. Dunque si è convenuto che il minimo trovato fornisce una soluzione realistica e soddisfacente del problema considerato.

Al termine della fase di ottimizzazione per ogni singolo parametro, si riprenderà la simulazione del modello.

6.5.2 Definizione degli scenari di ottimizzazione

Una volta impostati i parametri di ottimizzazione, sono stati selezionati degli scenari all’interno dei quali studiare le variabili di controllo.

Gli scenari di interesse sono:

- Il Costo di Backlog – si è partiti dal costo di riferimento pari ad 1 e si è fatto variare il peso associato al costo di backlog, lasciando tutti gli
altri valori impostati su quelli di riferimento. In particolare i pesi considerati sono stati: 0.5; 1; 4; 8.

Il Costo di Mantenimento a Scorta – anche per questo costo sono stati variati i pesi, lasciando inalterati gli altri valori di riferimento. I pesi considerati sono stati: 0.5; 1; 4; 8.

La Domanda – Sempre a parità di impostazioni di riferimento, è stata fatta variare la domanda giornaliera dei 3 prodotti, in questo modo: 4-3-6; 9-6-12; 11-8-14; 13-10-16; 18-12-24.

Il Tempo di Produzione – si è partiti dalla situazione “base” in cui il tempo di produzione era pari a 30 minuti e, a parità di tutto il resto, si è analizzato un tempo via via crescente, pari a: 40; 50; 60 minuti.

Il Numero di Prodotti – è stata analizzata la situazione in cui i prodotti dell’azienda erano 3 e poi si è passati a considerare la situazione con 2 e 4 prodotti rispettivamente, sempre lasciando inalterate le altre condizioni.

6.6 RISULTATI SPERIMENTALI

6.6.1 Il Costo di Backlog

Come è stato già accennato, il primo scenario analizzato è stato quello relativo al costo di backlog C_B. Essendo partiti da una situazione in cui sia il costo unitario di backlog che il costo unitario di mantenimento a scorta sono unitari, si è ritenuto interessante far variare dapprima il peso di un fattore, lasciando l’altra aliquota di costo pari a 1 e poi fare il viceversa. Questo perché le due voci di costo sono inversamente proporzionali tra loro, nel senso che se l’azienda dà un’importanza maggiore al costo di backlog (il che significa che l’attenzione è rivolta più sulla minimizzazione di questa voce),
allora verosimilmente accetterà di avere una tabelliera di dimensioni maggiori pur di soddisfare il più possibile il cliente, anche se questo significherà avere più unità a magazzino e quindi un costo di mantenimento a scorta più significativo. Viceversa, se il peso maggiore lo riveste il costo di mantenimento, l’azienda propenderà verso soluzioni che prevedono una dimensione della tabelliera minore, visto che avere zone più ampie significa inevitabilmente avere più unità a magazzino, e questo ovviamente farà aumentare i ritardi nelle consegne e dunque il costo di backlog. Queste considerazioni fanno presupporre che riducendo il peso del costo di backlog, OptQuest troverà come ottimo delle ampiezze massime delle zone minori; aumentando il peso invece le zone dovrebbero via via crescere.

In particolare, le soluzioni trovate al variare del peso sono riassunte nella tabella 6.2. Dalla tabella si evince quanto detto in precedenza, ossia che all’aumentare del peso aumentano le ampiezze massime delle zone della tabelliera, anche se l’aumento delle zone rosse è inizialmente più contenuto rispetto a quelle verdi, a conferma del fatto che, rappresentando le zone rosse delle emergenze, si cerca di non aumentarne troppo la dimensione al fine di non trovarsi a gestire troppe emergenze di reintegro.

L’andamento dell’ampiezza delle zone in funzione dell’aumento del peso del costo di backlog è rappresentato in figura 6.13.
Il grafico presentato in figura riporta sull’asse delle ordinate il valore delle variabili di controllo (ossia le ampiezze massime delle zone) trovato in corrispondenza di ciascun ottimo e sull’asse delle ascisse il peso del costo di backlog (ordinato per valori crescenti). L’unità di misura e l’ampiezza della scala dei valori delle ordinate sono state scelte in base ai valori massimi e minimi trovati in tutti gli scenari, così da consentire una lettura e un confronto più rapido tra grafici.

Dall’analisi dei dati emerge altresì che le zone ottime trovate da OptQuest sono sempre coerenti con i dati di partenza del modello. Infatti l’ampiezza delle zone del prodotto P3 ha il valore più elevato rispetto agli altri prodotti, essendo P3 il prodotto maggiormente richiesto (mentre le zone di P2 sono le più piccole, essendo P2 il meno richiesto).

La coerenza con le aspettative è stata avvalorata anche dall’analisi dei costi totali, i quali hanno un andamento crescente, al crescere del peso del costo di backlog (figura 6.14).
Tale grafico riporta sulle ordinate il valore del costo totale e sulle ascisse i valori crescenti del peso del costo di backlog; le ampiezze degli assi sono sempre uniformate a tutti gli altri risultati.

Avendo introdotto precedentemente anche la statistica *Livello di servizio*, è stata condotta un’analisi grafica per valutare il legame tra questa statistica e l’aumento del costo di backlog (figura 6.15).

In tale grafico riportiamo sulle ordinate i valori di livello di servizio per i 3 prodotti e sulle ascisse il peso di C_B, crescente.
CAPITOLO 6
Single-stage multi-product kanban system

Come si può notare, il livello di servizio dei 3 prodotti aumenta all’aumentare del peso del costo di backlog. Questo andamento è spiegato dal fatto che all’aumentare del peso di C_B, OptQuest ricercherà come ottimo delle zone con ampiezze massime più ampie, a discapito del supermarket, nel quale saranno stoccati più codici (per rispondere più velocemente alle esigenze del cliente). Ovviamente, essendo in tal modo il cliente maggiormente soddisfatto (grazie al minor numero di unità consegnate in ritardo), aumenterà il livello di servizio, che in corrispondenza di un peso pari ad 8 diventerà addirittura unitario perché il numero di unità in ritardo diventa in pratica irrelevante se confrontato con il numero di unità consegnate istantaneamente.

E’ interessante notare anche che i valori del livello di servizio si attestano comunque su valori elevati (sempre superiori all’80%) e quindi il sistema risulta essere efficiente, in quanto risponde bene adattandosi alle variazioni imposte.
6.6.2 Il Costo di Mantenimento a Scorta

Il secondo scenario analizzato è stato il costo di mantenimento a scorta, C_M. Si prevedeva per questo una riduzione dell’ampiezza massima delle zone all’aumentare del peso del costo C_M, questo per ridurre il numero di unità mediamente stoccate nel supermarket (dando maggiore importanza alla minimizzazione di tale aliquota). I risultati trovati sono conformi alle previsioni e sono riassunti in tabella 6.3.

Per quanto riguarda le zone, esse hanno un andamento decrescente all’aumentare del peso assegnato a C_M, e i valori maggiori si riscontrano nei prodotti P3 e P1 che, in successione, sono quelli più venduti (figura 6.16).

Un’importante osservazione riguarda i risultati ottenuti in corrispondenza di un peso pari a 8 di C_M. Infatti, a causa dei vincoli imposti al problema, la soluzione ottima risultava essere coincidente con quella trovata in corrispondenza del peso 4. Questo perché non era consentito esplorare soluzioni che prevedessero ampiezze delle zone ancora minori di quelle trovate nello step precedente. Allora, al fine di testare la bontà del modello, sono stati rilassati i vincoli e il Lower Bound è stato ridotto da 1 a 0.

Conformemente a quanto ci si aspettava, OptQuest ha trovato questa volta una soluzione diversa da quella trovata per il peso pari a 4 e in particolare l’ampiezza delle zone si è ulteriormente ridotta.
CAPITOLO 6 Single-stage multi-product kanban system

398

Figura 6.16 – Andamento costo mantenimento – ampiezza massima zone

Come prima, anche in questo caso il costo totale (figura 6.17) è risultato crescente all’aumentare del peso del costo di mantenimento a scorta, anche se l’impennata che subisce è superiore a quella che subiva nel caso del costo di backlog, in quanto nello scenario “base” (dove C_B e C_M avevano entrambi peso unitario) il valore di C_M era superiore a quello di C_B (dunque l’aumento del costo totale è più marcato perché il valore di C_M è più elevato).

Figura 6.17 – Andamento costo mantenimento – costo totale
Infine, è stato valutato l’andamento del livello di servizio dei 3 prodotti (figura 6.18). Dato che ora il peso maggiore lo riveste il costo di mantenimento a scorta, l’importante è avere pochi codici stoccati e di conseguenza le zone saranno ridotte, a discapito del livello di servizio, che risulterà decrescente all’aumentare del peso. Si nota in particolare che in corrispondenza del peso pari a 8 il livello di servizio assume il minimo valore intorno al 70% (valore non auspicabile in azienda, ma prevedibile in questo scenario dove la celerità nella risposta al cliente viene messa in secondo piano).

![Diagrama](image)

Figura 6.18 – Andamento costo di mantenimento – livello di servizio

6.6.3 La Domanda

Lo scenario successivo considerato è stato quello relativo alla domanda. Nel capitolo precedente è stato detto che la domanda annua veniva livellata fino alla giornata e poi veniva tradotta in consumo di contenitori al giorno. Lo scenario “base” è stato dapprima dimezzato (in termini di arrivo delle
richieste dei 3 prodotti) e poi incrementato fino ad un valore considerato limite, dato l’orizzonte temporale di un giorno. Come previsione, ci si aspettava che all’aumentare della domanda, Optquest si rivolgesse verso ottimi aventi ampiezza maggiore delle zone, in quanto sorgeva la necessità di soddisfare una richiesta crescente (più richiesta significa avere una probabilità maggiore di effettuare consegne in ritardo al cliente e per evitare ciò l’azienda non può far altro che aumentare la dimensione della tabelliera). A conferma di quanto detto, sono riportati nella tabella 6.4 i risultati ottenuti per lo scenario “domanda”.

Dunque, le zone della tabelliera sono crescenti al crescere della domanda di contenitori (figura 6.19) e l’aumento è più significativo per le zone del prodotto P3, essendo quello maggiormente richiesto.

![DOMANDA - AMPIEZZA ZONE](image)

Figura 6.19 – Andamento domanda – ampiezza massima zone

Più nello specifico, si può notare che l’ultimo valore di domanda testato è relativo ad un caso limite, in cui il numero di contenitori da produrre è troppo
elevato data la struttura del sistema produttivo (in particolare, avendo fissato il tempo di produzione pari a 30 minuti). In questo caso il sistema reagisce comunque bene, in quanto dà la priorità alla soddisfazione del cliente e, pur di non avere backorders, decide di aumentare la quantità di codici a magazzino, in modo da avere già una cospicua disponibilità iniziale. Infatti, alla fine della giornata, le richieste del cliente sono state tutte soddisfatte, anche se è rimasta qualche richiesta di reintegro del materiale consumato da completare.

Come nei casi precedenti, il costo totale risulta crescente al crescere della domanda (figura 6.20), in quanto aumenteranno sia il costo di backlog che il costo di mantenimento a scorta, avendo più codici da produrre.

Il livello di servizio ha un andamento che si discosta leggermente da quello degli scenari precedenti, ma coerente con i dati impostati. Infatti, all’inizio ha un valore molto elevato, arrivando in alcuni casi al valore limite 1. Questo
perché i valori di domanda nel primo caso sono molto bassi e quindi le scorte nel supermarket bastano quasi da sole a soddisfare la richiesta del cliente. Ne consegue una soddisfazione del cliente molto elevata e quindi un livello di servizio eccellente. A partire dal secondo valore, il livello di servizio subisce un decremento rispetto al primo termine e di qui inizia ad aumentare piano piano, attestandosi comunque sempre su valori elevati (figura 6.21).

![Figura 6.21 – Andamento domanda – livello di servizio](image)

Questo andamento è dovuto al fatto che, sebbene la richiesta aumenti (e questo farebbe supporre ad una riduzione del livello di servizio, a parità di tutti gli altri dati), aumenta anche l’ampiezza delle zone e in particolare l’aumento della dimensione della tabelliera è in proporzione più significativo rispetto all’aumento della domanda (che aumenta di 2 contenitori alla volta). Quindi in totale il livello di servizio risulta crescente.
6.6.4 Il Tempo di Produzione

Anche per il quarto scenario, ossia il tempo di produzione, si prevedeva un aumento delle zone al crescere del tempo di produzione, in quanto lavorare in maggior tempo un contenitore significa reintegrare con più lentezza i codici e quindi occorre una zona più ampia della tabelliera per accettare un numero maggiore di richieste di reintegro (e anche per inizializzare il supermarket con un numero maggiore di pezzi, essendo dimensionato inizialmente sulla dimensione massima delle zone della tabelliera). I risultati sono riportati in tabella 6.5.

Dunque OptQuest ha fornito valori ottimi delle zone crescenti al crescere del tempo di produzione (figura 6.22).

![Figura 6.22 – Andamento tempo di produzione – ampiezza massima zone](image)

Ovviamente, anche il costo totale è risultato crescente al crescere del tempo di produzione (aumentano entrambe le aliquote di costo), anche se il suo aumento è molto più ridotto rispetto agli scenari precedenti (figura 6.23).
Questo perché il tempo di produzione è stato fatto aumentare a incrementi di 10 minuti (considerando ritardi nella produzione dovuti a fermi, guasti o quant’altro rallenti la produzione rispetto al caso ideale), che sono si significativi per la produzione, ma non tanto da far impennare il costo totale. Per quanto riguarda il livello di servizio in questo caso, c’è da dire che esso ha un andamento crescente al crescere del tempo di produzione (figura 6.24). Ciò si spiega con il fatto che l’aumento del tempo di produzione comporta un aumento delle zone della tabelliera e questo determina un valore maggiore di scorta iniziale, favorendo la rapidità delle consegne al cliente e quindi aumentando il livello di servizio.
In corrispondenza dell’ultima sperimentazione il livello di servizio raggiunge quasi per tutti i prodotti un valore unitario, in quanto ci si trova di fronte al caso limite in cui per tollerare un T_p di 60 minuti sono state aumentate di molto le ampiezze delle zone e di conseguenza il supermarket ha una scorta di sicurezza iniziale molto elevata (che quasi da sola riesce a coprire la richiesta), il che comporta una elevata soddisfazione del cliente.

6.6.5 Il Numero di Prodotti

L’ultimo scenario analizzato è stato il numero di prodotti. Per considerare questo parametro sono state effettuate delle modifiche al modello di partenza, in quanto era stato costruito appositamente per un sistema produttivo con 3 prodotti. Nello specifico il modello è stato adattato ai due casi considerati e cioè 2 e 4 prodotti rispettivamente, mentre la logica governante è sempre la medesima.

Conformemente a quanto ci si aspettava (vedi tabella 6.6), all’aumentare del numero di prodotti (lasciando inalterati tutti gli altri parametri) l’ampiezza delle zone in generale aumenta (figura 6.25).
L’aumento delle zone tuttavia non è molto significativo, in quanto la differenza tra il numero di prodotti è molto ridotta. Per questo motivo, l’ampiezza delle zone rosse trovata come ottimo è sempre pari ad 1 (valore minimo possibile), mentre solo per le zone verdi si riscontra un leggero aumento nella dimensione.

Lasciando uguali tutti gli altri parametri, il costo totale risulterà crescente al crescere del numero dei prodotti (figura 6.26), a causa dell’aumento delle 2 aliquote di costo, mentre non si apprezzano variazioni significative nel livello di servizio (in quanto l’aumento dei prodotti viene compensato con l’aumento delle zone della tabelliera) e pertanto, esso non verrà rappresentato.

Figura 6.25 – Andamento numero di prodotti – ampiezza massima zone
Figura 6.26 – Andamento numero di prodotti – costo totale
Tabella 6.1 – Costo di backlog

<table>
<thead>
<tr>
<th>PESO</th>
<th>ZR1</th>
<th>ZR2</th>
<th>ZR3</th>
<th>ZVB1</th>
<th>ZVB2</th>
<th>ZVB3</th>
<th>COSTO TOTALE</th>
<th>COSTO BACKLOG</th>
<th>COSTO MANTEN</th>
<th>L.S.1</th>
<th>L.S.2</th>
<th>L.S.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6,9375</td>
<td>0,5833</td>
<td>6,3542</td>
<td>0,9815</td>
<td>0,9792</td>
<td>0,9757</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>8,95</td>
<td>2,9167</td>
<td>6,0417</td>
<td>0,8657</td>
<td>0,934</td>
<td>0,8906</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>22,9375</td>
<td>3,6875</td>
<td>19,25</td>
<td>0,8194</td>
<td>0,924</td>
<td>0,8611</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>28,375</td>
<td>6,375</td>
<td>22</td>
<td>0,7014</td>
<td>0,8403</td>
<td>0,7726</td>
</tr>
</tbody>
</table>

Tabella 6.2 – Costo di mantenimento a scorta

<table>
<thead>
<tr>
<th>PESO</th>
<th>ZR1</th>
<th>ZR2</th>
<th>ZR3</th>
<th>ZVB1</th>
<th>ZVB2</th>
<th>ZVB3</th>
<th>COSTO TOTALE</th>
<th>COSTO BACKLOG</th>
<th>COSTO MANTEN</th>
<th>L.S.1</th>
<th>L.S.2</th>
<th>L.S.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6,9375</td>
<td>0,5833</td>
<td>6,3542</td>
<td>0,9815</td>
<td>0,9792</td>
<td>0,9757</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>8,95</td>
<td>2,9167</td>
<td>6,0417</td>
<td>0,8657</td>
<td>0,934</td>
<td>0,8906</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>22,9375</td>
<td>3,6875</td>
<td>19,25</td>
<td>0,8194</td>
<td>0,924</td>
<td>0,8611</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>28,375</td>
<td>6,375</td>
<td>22</td>
<td>0,7014</td>
<td>0,8403</td>
<td>0,7726</td>
</tr>
</tbody>
</table>

Tabella 6.3 – Domanda

<table>
<thead>
<tr>
<th>VALORI</th>
<th>OTTIMO</th>
<th>COSTO TOTALE</th>
<th>COSTO BACKLOG</th>
<th>COSTO MANTEN</th>
<th>L.S.1</th>
<th>L.S.2</th>
<th>L.S.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4; 3; 6</td>
<td>1 1 1 2 2 2</td>
<td>7,60417</td>
<td>0,25</td>
<td>7,3542</td>
<td>0,9792</td>
<td>1</td>
<td>0,9722</td>
</tr>
<tr>
<td>9; 6; 12</td>
<td>1 1 1 3 2 3</td>
<td>8,95</td>
<td>2,9167</td>
<td>6,0417</td>
<td>0,8657</td>
<td>0,934</td>
<td>0,8906</td>
</tr>
<tr>
<td>11; 8; 14</td>
<td>1 2 2 4 3 4</td>
<td>11,1042</td>
<td>3,3958</td>
<td>7,7083</td>
<td>0,899</td>
<td>0,9427</td>
<td>0,9167</td>
</tr>
<tr>
<td>13; 10; 16</td>
<td>3 2 5 5 4 7</td>
<td>13,5417</td>
<td>1,8958</td>
<td>11,6458</td>
<td>0,9423</td>
<td>0,9575</td>
<td>0,9374</td>
</tr>
<tr>
<td>18; 12; 24</td>
<td>5 3 7 7 6 9</td>
<td>14,3208</td>
<td>1,8958</td>
<td>12,425</td>
<td>0,963</td>
<td>0,9792</td>
<td>0,9592</td>
</tr>
</tbody>
</table>
Capitolo 6

Single-stage multi-product kanban system

Tabella 6.4 – Tempo di produzione

<table>
<thead>
<tr>
<th>MINUTI</th>
<th>ZR1</th>
<th>ZR2</th>
<th>ZR3</th>
<th>ZVB1</th>
<th>ZVB2</th>
<th>ZVB3</th>
<th>OTTIMO</th>
<th>COSTO TOTALE</th>
<th>COSTO BACKLOG</th>
<th>COSTO MANTEN</th>
<th>L.S.1</th>
<th>L.S.2</th>
<th>L.S.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>8,95</td>
<td>2,9167</td>
<td>6,0417</td>
<td>0,8657</td>
<td>0,934</td>
<td>0,8906</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>9,1111</td>
<td>2,3056</td>
<td>6,8056</td>
<td>0,9196</td>
<td>0,9467</td>
<td>0,9398</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>9,3333</td>
<td>0,7292</td>
<td>8,6042</td>
<td>0,9846</td>
<td>0,9711</td>
<td>0,9653</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>10,7667</td>
<td>0,125</td>
<td>10,6417</td>
<td>1</td>
<td>1</td>
<td>0,9896</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 6.5 – Numero di prodotti

<table>
<thead>
<tr>
<th>N. PROD</th>
<th>ZR1</th>
<th>ZR2</th>
<th>ZR3</th>
<th>ZR4</th>
<th>ZVB1</th>
<th>ZVB2</th>
<th>ZVB3</th>
<th>ZVB4</th>
<th>OTTIMO</th>
<th>COSTO TOT</th>
<th>COSTO BACK</th>
<th>COSTO MANTEN</th>
<th>L.S.1</th>
<th>L.S.2</th>
<th>L.S.3</th>
<th>L.S.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>5,99863</td>
<td>0,00274</td>
<td>5,9959</td>
<td>0,9998</td>
<td>0,9999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td>8,95</td>
<td>2,9167</td>
<td>6,0417</td>
<td>0,8657</td>
<td>0,934</td>
<td>0,8906</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td></td>
<td>11,8958</td>
<td>5,8542</td>
<td>6,0417</td>
<td>0,8796</td>
<td>0,9201</td>
<td>0,816</td>
<td>0,8611</td>
<td></td>
</tr>
</tbody>
</table>
6.7 IL DESIGN OF EXPERIMENT (DOE)

6.7.1 Introduzione al DOE

Il DOE consiste in una sequenza di prove sperimentali da effettuare per studiare e ottimizzare un processo.

Un esperimento programmato è una prova o una serie di prove in cui vengono fatte variare deliberatamente le variabili di ingresso di un processo (fattori), in modo da poter osservare e identificare le corrispondenti variazioni della risposta in uscita. I metodi della programmazione degli esperimenti possono essere usati sia nello sviluppo sia nella messa a punto del processo per migliorarne le prestazioni o per ottenere un processo robusto ovvero insensibile alle sorgenti esterne di variabilità.

Obiettivi dell’esperimento possono comprendere:

- determinare quali variabili hanno più influenza sulla risposta;
- come aggiustare le variabili per ottimizzare la risposta;
- come aggiustare le variabili per minimizzare la variabilità della risposta;

I metodi di SPC (Statistical Process Control) e il DOE (Design Of Experiment), entrambi potenti strumenti per il miglioramento e l’optimizzazione del processo, sono strettamente complementari e collegati tra loro: l’SPC è un metodo statistico passivo in cui osserviamo il processo in attesa di certe informazioni che potranno condurre a cambiamenti utili. Tuttavia, se il processo è sotto controllo, l’osservazione passiva non può produrre molta informazione utile. Viceversa, il DOE è un metodo statistico attivo: si faranno in effetti una serie di prove sul processo, effettuando cambiamenti negli ingressi e osservando i corrispondenti cambiamenti nelle uscite, cosa che produce informazione che può condurre ad un miglioramento del processo. I metodi del DOE possono essere molto utili nella messa sotto controllo statistico del processo. Ad esempio, si supponga che una carta di controllo indichi che il processo è fuori controllo, e che il processo abbia
molte variabili in ingresso controllabili. Può essere difficile ricondurre il processo sotto controllo a meno che non conosciamo quali variabili in ingresso hanno importanza. I metodi di programmazione degli esperimenti possono essere utili per identificare queste variabili di ingresso influenti. La programmazione degli esperimenti è uno strumento di importanza critica per il miglioramento di un processo e per lo sviluppo di nuovi processi. L’applicazione tempestiva di queste tecniche può condurre a:

- un aumento del volume di prodotto;
- una riduzione della variabilità ed un più preciso rispetto delle specifiche di progetto;
- una riduzione dei tempi di sviluppo e dei costi totali.

Il DOE gioca un ruolo essenziale nelle attività di progetto, quando si sviluppano nuovi prodotti o si migliorano quelli esistenti. Alcune applicazione del DOE comprendono:

- il confronto di configurazioni di progetto;
- la valutazione di alternative sui materiali;
- la determinazione dei parametri chiave in quanto ad influenza sulle prestazioni.

Le tecniche più largamente utilizzate nella programmazione degli esperimenti sono:

Piani Fattoriali:

Gli esperimenti fattoriali sono un particolare tipo di esperimenti in cui ciascuno dei fattori viene considerato a due livelli. Sono tra quelli più utilizzati in quanto:

- permettono di verificare un numero grande di fattori senza dover ricorrere a troppe prove;
- si prestano efficacemente al frazionamento, alla suddivisione in blocchi;
- sono piani esplorativi eccellenti.
Gli esperimenti fattoriali sono quindi una sequenza di prove da cui si raccolgono dati sulla variabile risposta e in cui i livelli di un fattore controllabile, o le combinazioni di livelli di due o più fattori controllabili, vengono cambiati come definito dal progetto dell’esperimento.

I vantaggi degli esperimenti fattoriali sono:

1. gli effetti combinati di due o più fattori su una risposta possono essere analizzati solo modificando simultaneamente due o più fattori;
2. ogni prova di un esperimento fattoriale fornisce informazioni su tutti i fattori dell’esperimento consentendo risparmio di tempo e risorse;
3. i cambiamenti simultanei di molti fattori tratte da un esperimento fattoriale sono applicabili ad una grande varietà di condizioni.

Superfici di Risposta:

La metodologia delle Superfici di Risposta (Response Surface) è costituita da un gruppo di tecniche matematiche e statistiche utilizzate per la modellazione e l’analisi in applicazioni in cui la risposta di interesse è influenzata da un certo numero di variabili di ingresso e l’obiettivo è di ottimizzare questa risposta. Mediante la metodologia delle superfici di risposta si è in grado di comprendere come è influenzata una particolare risposta dal gruppo di variabili in ingresso all’interno di una certa regione di interesse. La valutazione degli effetti di vari fattori sul comportamento della risposta è resa possibile dall’analisi della regressione. Nell’analisi della regressione i dati, inizialmente raccolti da un esperimento, vengono successivamente utilizzati per quantificare, mediante l’utilizzo di un certo modello, la relazione tra la variabile di risposta e le variabili di ingresso.

I metodi delle superfici di risposta sono delle tecniche che vengono impiegate prima, durante e dopo che si è effettuata l’analisi della regressione sui dati. Prima dell’analisi occorre pianificare l’esperimento e quindi è necessario scegliere le
variabili esplicative e determinare i valori da utilizzare durante la sperimentazione. Dopo l’analisi della regressione devono essere applicate le tecniche di ottimizzazione. La metodologia delle superfici di risposta include quindi l’applicazione della regressione e di altre tecniche allo scopo di ottenere una migliore comprensione delle caratteristiche del sistema di risposta oggetto di studio.

In molti problemi, la relazione tra la risposta e le variabili indipendenti è sconosciuta. Il primo passo è quindi di trovare una funzione che approssimi localmente la vera relazione tra la risposta e le variabili indipendenti. Se la risposta è ben modellata da una funzione lineare delle variabili indipendenti, allora la funzione approssimante è un modello del primo ordine, se invece è presente una curvatura nel sistema, allora deve essere utilizzato un polinomio di grado superiore quale ad esempio un modello del secondo ordine. Ovviamente non è verosimile che modelli polinomiali come questi rappresentino una adeguata approssimazione della reale relazione nell’intero spazio delle variabili indipendenti ma per una regione relativamente piccola essi funzionano abbastanza bene. Il metodo dei minimi quadrati viene utilizzato per stimare i parametri nel polinomio approssimante. L’analisi della superficie di risposta è quindi fatta in termini di superficie adattata. Se la superficie adattata è una approssimazione adeguata della vera funzione della risposta, allora l’analisi della superficie adattata sarà approssimativamente equivalente all’analisi del sistema reale. La strategia seguita si basa su una sperimentazione sequenziale che facilita un’efficiente ricerca dello spazio del fattore di ingresso mediante la realizzazione di un esperimento di primo ordine al quale segue un esperimento del secondo ordine. L’analisi dell’esperimento di secondo ordine può essere eseguita approssimando la relazione della superficie di risposta con un modello di regressione del secondo ordine.
Mixture:

La tecnica del DOE fornisce un metodo efficiente per ottimizzare i processi e può portare a risultati interessanti se applicata alle formulazioni. Come accelerare l’esplorazione delle possibili alternative compositive di una miscela. Nell’applicare la tecnica DOE, generalmente ci si indirizza verso progetti con modelli fattoriali a due livelli, che implicano la scelta di tutte le combinazioni di ciascun fattore ai suoi livelli alto e basso. Con tantissimi fattori, soltanto una frazione delle prove sperimentali deve essere completata per valutare gli effetti principali e le interazioni semplici. Tuttavia, quando la variabile dipendente misurata o risposta dipende dalle proporzioni degli ingredienti, come nelle formulazioni chimiche o alimentari, i modelli fattoriali possono non avere senso. Se si conducono esperimenti sulle formulazioni dove sono importanti soltanto le proporzioni e non la quantità, i disegni fattoriali non funzionano. È quindi necessario ottimizzare la formulazione attraverso un Mixture Design, che considera la dipendenza della variabile dipendente o risposta sulla proporzionalità degli ingredienti.

Metodo di Taguchi

Nei progetti di sviluppo di prodotto e nella messa a punto dei processi industriali, la realizzazione di prove sperimentali rappresenta quasi sempre una fonte notevole di costi, sia come impiego di tempo che di risorse umane e materiali. Infatti, lo studio e la sperimentazione effettuata su sistemi complessi, che quindi presentano numerosi parametri di funzionamento e diversi fattori che influiscono sulle loro prestazioni, richiede generalmente tempi lunghi e risorse notevoli, specie affrontando l’influenza dei singoli fattori singolarmente; inoltre, uno studio così condotto non porta necessariamente a risultati significativi, con forte rischio di perdita degli investimenti fatti. Il DOE è un metodo di approccio alla progettazione ed organizzazione degli esperimenti, mediante il quale è possibile
analizzare in modo sistematico la natura, gli obiettivi, gli elementi significativi degli esperimenti e dei processi su cui operano, e poter così finalizzare le prove sperimentali alla massima efficacia. Mediante una ragionata applicazione delle tecniche del DOE, è quindi possibile ridurre drasticamente i costi della realizzazione di prove sperimentali, e operando su prove pianificate correttamente è possibile ottenere risultati ricchi di informazioni, anche in considerazione delle semplici tecniche di analisi statistica che il DOE ha fatto proprie. In particolare, attraverso l’adozione delle matrici ortogonali e del metodo di Taguchi, è possibile con l’ausilio di semplici strumenti indagare su un largo numero di parametri e, con l’applicazione di appropriate metodologie statistiche, ottenere valutazioni importanti sul comportamento del sistema con un minimo numero di prove sperimentali. La progettazione degli esperimenti con l’applicazione del metodo di Taguchi può essere inoltre un valido strumento nella ricerca di continui miglioramenti della qualità dei prodotti e dei processi: attraverso la sperimentazione si possono identificare i fattori che più influenzano la qualità e le prestazioni dei prodotti stessi, selezionare per essi dei valori ottimizzati e, seguendo i paradigmi del Robust Design, rendere i prodotti stessi più stabili nel loro comportamento rispetto all’influenza delle variabili esterne ed incontrollabili.

Un’ulteriore considerazione va fatta sulla necessità di analizzare la variabilità nel DOE; per fare ciò si utilizza Minitab.

Un’analisi tradizionale di un esperimento pianificato aiuta a determinare le migliori impostazioni delle variabili (Fattori) che influenzano i processi. Ad esempio quando si vuole conoscere le impostazioni di produzione per realizzare la lunghezza target di una parte per automobile, o le procedure che consentono una riduzione di tempo di risposta in un Call Center. Se nelle misurazioni effettuate esiste però una certa quantità di variabilità, non è detto che i risultati ottenuti ci daranno le informazioni opportune per migliorare il rendimento del processo in esame. Per assicurarsi che i risultati siano in grado di darci le
informazioni attese o che rispondano alle esigenze del nostro cliente, è necessario identificare il grado di variabilità dei fattori. In Minitab questo è possibile utilizzando le funzioni di Analyze Variability.

6.7.2 Applicazione del DOE ai risultati sperimentali
L’analisi DOE effettuata sui dati sperimentali ha condotto ai risultati riportati di seguito.

Obiettivo della sperimentazione:
Comprendere i fattori critici e l’impatto delle loro interazioni sull’ampiezza delle zone della tabelliera (buffer size), sui costi totali (overall costs) e sul livello di servizio (service level).

Output misurati:

<table>
<thead>
<tr>
<th>Main Response Variables</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>buffer size</td>
<td>it evaluates the impact of the factors on the supermarket dimension</td>
</tr>
<tr>
<td>overall cost</td>
<td>it is the sum of the following production costs: drum inventory cost+backlog (not fulfilled) costs+production costs</td>
</tr>
<tr>
<td>service level</td>
<td>it quantifies how faster the query of a upstream cell is satisfied (1-backlog/total parts)</td>
</tr>
</tbody>
</table>

Tabella 6.6 – Output misurati

Tabella delle previsioni dei fattori utilizzati, creata per confrontare i risultati con le ipotesi, in accordo al ciclo di Deming PDSA:
Tabella 6.7 – Previsioni dei fattori

<table>
<thead>
<tr>
<th>Fattore</th>
<th>P(1), P(2), P(3)</th>
<th>P(1), P(2), P(3)</th>
<th>P(1), P(2), P(3)</th>
<th>P(1), P(2), P(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fattore 1</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Fattore 2</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Fattore 3</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Piano di Campionamento (Factor Relationship Diagram):

Tabella 6.8 – Alias Structure

<table>
<thead>
<tr>
<th>Alias Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cust req Bkl c v Inv c i Prod t Prod n</td>
</tr>
<tr>
<td>Cust req Bkl c v Inv c i Prod t Prod n</td>
</tr>
<tr>
<td>Cust req Bkl c v Inv c i Prod t Prod n</td>
</tr>
<tr>
<td>Cust req Bkl c v Inv c i Prod t Prod n</td>
</tr>
<tr>
<td>Cust req Bkl c v Inv c i Prod t Prod n</td>
</tr>
<tr>
<td>Cust req Bkl c v Inv c i Prod t Prod n</td>
</tr>
<tr>
<td>Cust req Bkl c v Inv c i Prod t Prod n</td>
</tr>
</tbody>
</table>

CAPITOLI 6 Single-stage multi-product kanban system
Analisi delle risposte definite

Step di analisi: Approccio Pratico - Grafico - Quantitativo;

Per evitare analisi multilivello, faremo i confronti a due a due per la Customer Request (domanda del cliente).

Facciamo una comparazione rapida delle tre risposte utilizzando il Multi-Vari Chart, dato che la struttura del DOE crossed lo permette.

![Multi-Vari Chart for Service level by Bkl_c_v - Cust_req](image_url)
Non sembra esserci molta differenza in termini di Livello di Servizio al variare della richiesta del cliente. Al livello 12 il livello di servizio sembra essere leggermente più basso.

![Multi-Vari Chart for Buffer Size by Bld_c_v - Cust_req](image)

Figura 6.29 - Multi – Vari Chart della dimensione delle zone

In termini di dimensione delle zone, possiamo notare un incremento della dimensione delle zone all’aumentare della richiesta del cliente, più ripida dopo la richiesta al livello 12.

![Multi-Vari Chart for Total Cost by Bld_c_v - Cust_req](image)

Figura 6.30 - Multi – Vari Chart del costo totale
In termini di Costo Totale, non notiamo grosse differenze tra i livelli 6-12-24.

Quindi riassumendo, l’aumento della richiesta da parte del cliente impatta essenzialmente sulla dimensione delle zone.

Non vi è nessuna correlazione tra i 3 KPI del modello.
In questo caso vi è perfetta correlazione, basta quindi analizzare la somma “buffer size”.

![Matrix Plot of LS1; LS2; LS3; LS4; Service level](image)

Figura 6.33 – Matrix Plot (3)

Osserviamo una buona correlazione, che implica che sarà sufficiente analizzare la somma del livello di servizio.

Si è passati poi all’analisi delle varie risposte. In particolare, di seguito è riportata solo l’analisi della risposta 6-12 (le risposte 6-24 e 12-24 sono state studiate ma omesse in questo lavoro, in quanto il caso 24 rappresenta un caso limite; pertanto si è deciso di riportare solo il caso più verosimile nelle realtà aziendali. Comunque i risultati delle altre 2 risposte sono in linea con quelli ottenuti dalla prima risposta; dunque alla fine sarà possibile estrapolare un’analisi generalizzata dei dati).

Comparazione risposta 6-12;

Step Pratico: ANOG - Time Series Plot - Scatterplot

ANOG: si ordinano i dati dal più grande al più piccolo e poi si cercano pattern nei valori dei fattori.
Tabella 6.9 a), b), c) – Dati

<table>
<thead>
<tr>
<th>Cust_req</th>
<th>Bkl_c_v</th>
<th>Inv_c_i</th>
<th>Prod_t</th>
<th>Prod_n</th>
<th>Buffer Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>8</td>
<td>8</td>
<td>30</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>8</td>
<td>60</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>0.5</td>
<td>30</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>8</td>
<td>30</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>8</td>
<td>60</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>0.5</td>
<td>30</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>0.5</td>
<td>60</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>8</td>
<td>34</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>0.5</td>
<td>60</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>8</td>
<td>30</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>8</td>
<td>60</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>0.5</td>
<td>30</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>0.5</td>
<td>60</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>8</td>
<td>60</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>0.5</td>
<td>30</td>
<td>4</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cust_req</th>
<th>Bkl_c_v</th>
<th>Inv_c_i</th>
<th>Prod_t</th>
<th>Prod_n</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.5</td>
<td>0.5</td>
<td>30</td>
<td>2</td>
<td>2.99897</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>0.5</td>
<td>30</td>
<td>2</td>
<td>3.0012</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>0.5</td>
<td>60</td>
<td>4</td>
<td>3.16875</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>0.5</td>
<td>60</td>
<td>4</td>
<td>3.40525</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>0.5</td>
<td>60</td>
<td>4</td>
<td>4.5521</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>0.5</td>
<td>60</td>
<td>2</td>
<td>5.08476</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>0.5</td>
<td>30</td>
<td>4</td>
<td>8.875</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>0.5</td>
<td>30</td>
<td>4</td>
<td>11.5229</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>8</td>
<td>30</td>
<td>4</td>
<td>12.9456</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>8</td>
<td>30</td>
<td>4</td>
<td>20.6042</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>8</td>
<td>60</td>
<td>2</td>
<td>47.2491</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>8</td>
<td>60</td>
<td>2</td>
<td>47.892</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>8</td>
<td>30</td>
<td>2</td>
<td>47.9836</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>8</td>
<td>30</td>
<td>2</td>
<td>48.0192</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>8</td>
<td>60</td>
<td>4</td>
<td>53.3667</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>8</td>
<td>60</td>
<td>4</td>
<td>55.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cust_req</th>
<th>Bkl_c_v</th>
<th>Inv_c_i</th>
<th>Prod_t</th>
<th>Prod_n</th>
<th>Service level</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0.5</td>
<td>0.5</td>
<td>30</td>
<td>2</td>
<td>1.9983</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>0.5</td>
<td>60</td>
<td>2</td>
<td>1.9986</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>0.5</td>
<td>60</td>
<td>2</td>
<td>1.999</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>30</td>
<td>2</td>
<td>2</td>
<td>1.9992</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>0.5</td>
<td>30</td>
<td>2</td>
<td>1.9992</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>8</td>
<td>30</td>
<td>2</td>
<td>1.9996</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>0.5</td>
<td>30</td>
<td>2</td>
<td>1.9996</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>8</td>
<td>30</td>
<td>4</td>
<td>2.8161</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>0.5</td>
<td>60</td>
<td>4</td>
<td>3.2906</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>0.5</td>
<td>60</td>
<td>4</td>
<td>3.3809</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>8</td>
<td>30</td>
<td>4</td>
<td>3.7153</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>8</td>
<td>60</td>
<td>4</td>
<td>3.7301</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>8</td>
<td>60</td>
<td>4</td>
<td>3.7878</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>0.5</td>
<td>30</td>
<td>4</td>
<td>3.9827</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>0.5</td>
<td>30</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Nelle tabelle le croci in rosso indicano i fattori che sono quelli che guidano la variabilità.

![Time Series Plot of Buffer Size](image)

Figura 6.34 – Time Series Plot del buffer size

Questo diagramma indica una variabilità guidata da un singolo fattore, in questo caso il numero di prodotti.

![Time Series Plot of Total Cost](image)

Figura 6.35 – Time Series Plot del costo totale

In questo caso c’è un salto che indica la presenza di una potenziale interazione di ordine superiore che guida la variazione.
C’è evidenza di un fattore (numero di prodotti) che guida la variazione nella risposta.

Non si rileva nessun trend specifico, a parte il Buffer size che indica qualche sospetta interazione Customer request con i fattori, dato che notiamo un incremento dei valori della risposta.
Step Grafico: NPP - Pareto - Main Effects - Interaction Plot

Si effettua una comparazione dell’analisi dei dati grezzi con i dati trasformati secondo la rank.

Figura 6.38 – Pareto Chart (1)

Per quanto riguarda l’analisi rank, ci sono troppi valori uguali per considerarsi robusta; questo significa che si deve guardare con attenzione l’analisi dei dati grezzi in parallelo.

Sono confermati i seguenti fattori:

Numero di prodotti;

Valore del costo di Backlog;

Richiesta del cliente.

Solo nella rank:

Impatto di costo di magazzino.

Solo dati grezzi:

Richiesta del cliente * Numero di prodotti → non c'è confounding significativo, essendo A un fattore di blocco.
Per quanto riguarda il Costo Totale, non ci sono valori uguali, quindi la rank analisi è più robusta dell’analisi dei dati grezzi.

Tutti gli effetti principali sono significativi; pertanto ci riferiremo solo a quelli.

Impatto Costo Magazzino;

Valore del costo di Backlog;

Richiesta del cliente;

Numero di Prodotti;

Tempo di produzione.

\[
\text{Bkl_c_v}\times\text{Prod_t} + \text{Inv_c_i}\times\text{Prod_n} \\
\text{Bkl_c_v}\times\text{Prod_n} + \text{Inv_c_i}\times\text{Prod_t}
\]
Quindi guarderemo le interazioni in grassetto nero.

Figura 6.40 – Pareto Chart (3)

In questo caso gli effetti statisticamente significativi sono, in accordo all’analisi rank:

Numero di prodotti;

\[Bkl_c*y*Prod_n + Inv_c_i*Prod_t \]

Quindi guarderemo le interazioni in grassetto nero.

Studiamo i Main Effect e gli Interaction plot per valutare le direzioni di lavoro:
Direzioni di lavoro per ridurre la dimensione del buffer:

richiesta cliente \rightarrow 6; OK con le previsioni

valore costo di backlog \rightarrow 0.5; OK con le previsioni

impatto costo di immagazzinamento \rightarrow 8.0; Non OK con le previsioni

numero di prodotti \rightarrow 2; OK con le previsioni.
In termini di interazioni, se siamo sul valore 2 del numero di prodotti, siamo robusti alle variazioni della richiesta del cliente.

![Main Effects Plot for Total Cost](image.png)

Figura 6.43 – Main Effects Plot per il Costo Totale

Settaggi per ridurre il Costo Totale:

- richiesta cliente → 6; OK con le previsioni
- valore costo di backlog → 0.5; OK con le previsioni
- impatto costo di magazzino → 0.5; OK con le previsioni
- tempo di produzione → 30; OK con le previsioni
- n° di prodotti → 4; questo é un segnale inatteso.
Figura 6.44 – Interaction Plot per il Costo Totale (1)
Se lavoriamo con impatto costo Inventory a 0.5, siamo robusti verso le variazioni del n° di prodotti.

Figura 6.45 – Interaction Plot per il Costo Totale (2)
Con impatto costo Inventory a 0.5, siamo robusti verso le variazioni del tempo di produzione.

Figura 6.46 – Main Effects Plot del livello di servizio

Se settiamo il numero di prodotti a 2, diminuisce il tempo di servizio.

Figura 6.47 – Interaction Plot del livello di servizio
Se settiamo il numero di prodotti a 2, vi è robustezza al valore del costo di backlog.

L’analisi DOE applicata a tutti i parametri significativi del modello e a tutte le combinazioni dei fattori, ha confermato i risultati trovati dall’ottimizzazione e dall’analisi parametrica.

In particolare, il sistema risulta essere robusto alla variabilità dei fattori (soprattutto alla variabilità della domanda, fattore di influenza principale in questo modello).

Quindi il modello rispecchia bene il comportamento di quelle realtà aziendali che possiedono una struttura produttiva simile a quella rappresentata e fornisce una soluzione più che soddisfacente dal punto di vista economico (minimizzazione dei costi) e dal punto di vista dell’affidabilità (robustezza alle variazioni).
CONCLUSIONI
Questo lavoro di tesi si è proposto di analizzare e confrontare le politiche di controllo della produzione di tipo pull in un sistema produttivo multi-fase, evidenziando differenze e similitudini delle azioni di controllo in ciascuna politica.
L’analisi è stata incentrata sulla necessità di raggiungere un opportuno compromesso tra prestazioni in termini di livello di servizio e prestazioni in termine di costi che risultano tra loro contrastanti: infatti, garantire un determinato livello di servizio attraverso una certa quantità di WIP da movimentare nel sistema comporta, di conseguenza, minori costi di backlog, ma alti costi di mantenimento; viceversa, limitare maggiormente il WIP nel sistema per ridurre i costi di mantenimento comporta, invece, maggiori costi di backlog e livelli di servizio più bassi.
I risultati ottenuti sono in linea con le logiche di base dei modelli e mostrano la superiorità della politica di controllo ECK nel fornire le prestazioni migliori in relazione al trade-off livello di servizio/costo totale.
Le differenze ottenute nelle condizioni di confronto analizzate forniscono un valido strumento di supporto alle decisioni in merito alla scelta della politica di controllo più idonea da utilizzare per quelle aziende che volessero implementare una politica di controllo della produzione pull.
È possibile infatti “personalizzare” i modelli fornendo in input dati diversi, in modo da valutare le risposte di un qualsivoglia sistema produttivo preso in considerazione, e decidere quali delle politiche sia la più adeguata.
Nonostante la sua superiorità, infatti, la politica Extended Conwip Kanban Control System risulta piuttosto difficile da implementare, poiché i parametri da controllare derivano dalla combinazione dei tre meccanismi di controllo di base. Inoltre è da sottolineare che il sistema più noto ed utilizzato attualmente è il Kanban Control System, che ha costi e difficoltà di implementazione non elevati, trattandosi di un semplice meccanismo di controllo. Ciò avvalorato dal fatto che
le simulazioni hanno evidenziato risultati medio-alti in relazione al compromesso livello di servizio/costo totale.
Pertanto la decisione in merito all’attuazione della politica di controllo più adatta sarà guidata dalle caratteristiche e dalle priorità che una data azienda decide di perseguire.
Quindi nell’ultima parte del lavoro è stato analizzato il sistema Kanban multi prodotto. Si è proposto di costruire delle curve sintetiche rappresentative dell’influenza di parametri caratteristici di una realtà produttiva gestita mediante la tecnica Kanban. La costruzione del modello è stata effettuata utilizzando un simulatore ad eventi quale Arena, con lo scopo di rimanere quanto più possibile fedeli alla realtà aziendale.
Poiché il modello costruito funge da base per sistemi produttivi più complessi, sono state impostate delle ipotesi semplificative, che tuttavia non inficiano la veridicità del modello. Infatti l’analisi parametrica ha condotto a risultati coincidenti con quanto ci si aspettava facesse il sistema in linea teorica, al variare dei parametri di interesse. In particolare, il sistema modifica l’ampiezza delle zone della tabelliera kanban a seconda dell’importanza di ciascun fattore, minimizzando sempre il costo totale sostenuto di volta in volta.
I risultati sperimentali ottenuti hanno dimostrato che il modello costruito può essere utilizzato come valido strumento di supporto alle decisioni strategiche per quelle aziende che vogliono progettare al meglio il proprio Supermarket Pull Kanban, con un’attenzione particolare rivolta al corretto dimensionamento della tabelliera kanban e tutte le attività coinvolte con essa.
APPENDICE A: Risultati delle simulazioni

Si riportano, di seguito, i valori dei parametri di confronto ottenuti dalle simulazioni nei differenti scenari di confronto ipotizzati, per ogni modello come visto nel Capitolo 5.

I° SCENARIO DI CONFRONTO: Variazione della Domanda

KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>13,17</td>
<td>12,11</td>
<td>10,66</td>
<td>10,09</td>
<td>9,98</td>
<td>9,98</td>
<td>9,98</td>
</tr>
<tr>
<td>Ls</td>
<td>99,77</td>
<td>99,65</td>
<td>99,1</td>
<td>97,36</td>
<td>95,21</td>
<td>90,63</td>
<td>86,06</td>
</tr>
<tr>
<td>Cb</td>
<td>11,13</td>
<td>17,55</td>
<td>46,84</td>
<td>138,55</td>
<td>252,1</td>
<td>492,89</td>
<td>733,69</td>
</tr>
<tr>
<td>Cm</td>
<td>13,17</td>
<td>12,11</td>
<td>10,66</td>
<td>10,10</td>
<td>9,98</td>
<td>9,98</td>
<td>9,98</td>
</tr>
<tr>
<td>Cr</td>
<td>24,3</td>
<td>29,66</td>
<td>57,50</td>
<td>148,64</td>
<td>262,06</td>
<td>502,87</td>
<td>743,67</td>
</tr>
<tr>
<td>Rm</td>
<td>5,11</td>
<td>7,31</td>
<td>17,47</td>
<td>48,61</td>
<td>84,32</td>
<td>151,66</td>
<td>209,55</td>
</tr>
</tbody>
</table>

Tabella A.1 – Variazione della Domanda per KCS

CONWIP CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>2,74</td>
<td>2,55</td>
<td>2,50</td>
<td>2,44</td>
<td>2,43</td>
<td>2,43</td>
<td>2,43</td>
</tr>
<tr>
<td>Ls</td>
<td>99,64</td>
<td>99,43</td>
<td>98,11</td>
<td>96,04</td>
<td>93,78</td>
<td>89,10</td>
<td>84,41</td>
</tr>
<tr>
<td>Cb</td>
<td>17,29</td>
<td>32,97</td>
<td>96,69</td>
<td>202,59</td>
<td>318,66</td>
<td>559,46</td>
<td>800,26</td>
</tr>
<tr>
<td>Cm</td>
<td>2,74</td>
<td>2,55</td>
<td>2,50</td>
<td>2,44</td>
<td>2,43</td>
<td>2,43</td>
<td>2,43</td>
</tr>
<tr>
<td>Cr</td>
<td>20,03</td>
<td>35,52</td>
<td>99,19</td>
<td>205,03</td>
<td>321,09</td>
<td>561,89</td>
<td>802,69</td>
</tr>
<tr>
<td>Rm</td>
<td>7,91</td>
<td>13,17</td>
<td>35,57</td>
<td>70,81</td>
<td>106,46</td>
<td>172,33</td>
<td>228,86</td>
</tr>
</tbody>
</table>

Tabella A.2 – Variazione della Domanda per CCS
BASE STOCK CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>25,65</td>
<td>29,16</td>
<td>37,75</td>
<td>74,04</td>
<td>173,07</td>
<td>413,86</td>
<td>654,66</td>
</tr>
<tr>
<td>Ls</td>
<td>99,79</td>
<td>99,73</td>
<td>99,58</td>
<td>98,92</td>
<td>97,12</td>
<td>92,73</td>
<td>88,35</td>
</tr>
<tr>
<td>Cb</td>
<td>9,92</td>
<td>13,65</td>
<td>22,34</td>
<td>58,92</td>
<td>158,10</td>
<td>389,79</td>
<td>639,59</td>
</tr>
<tr>
<td>Cm</td>
<td>25,65</td>
<td>29,16</td>
<td>37,75</td>
<td>74,04</td>
<td>173,07</td>
<td>413,86</td>
<td>654,66</td>
</tr>
<tr>
<td>Cr</td>
<td>35,57</td>
<td>42,81</td>
<td>60,09</td>
<td>132,96</td>
<td>331,17</td>
<td>803,65</td>
<td>1294,25</td>
</tr>
<tr>
<td>Rm</td>
<td>4,62</td>
<td>5,79</td>
<td>8,58</td>
<td>20,74</td>
<td>53,12</td>
<td>123,44</td>
<td>183,79</td>
</tr>
</tbody>
</table>

Tabella A.3 – Variazione della Domanda per BSCS

CONWIP-KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>3,66</td>
<td>3,47</td>
<td>3,36</td>
<td>3,34</td>
<td>3,33</td>
<td>3,33</td>
<td>3,33</td>
</tr>
<tr>
<td>Ls</td>
<td>99,67</td>
<td>99,42</td>
<td>98,30</td>
<td>96,28</td>
<td>94,04</td>
<td>89,38</td>
<td>84,71</td>
</tr>
<tr>
<td>Cb</td>
<td>15,96</td>
<td>29,23</td>
<td>86,93</td>
<td>191,21</td>
<td>306,83</td>
<td>547,62</td>
<td>788,42</td>
</tr>
<tr>
<td>Cm</td>
<td>3,66</td>
<td>3,47</td>
<td>3,36</td>
<td>3,34</td>
<td>3,33</td>
<td>3,33</td>
<td>3,33</td>
</tr>
<tr>
<td>Cr</td>
<td>19,62</td>
<td>32,70</td>
<td>90,29</td>
<td>194,55</td>
<td>310,16</td>
<td>550,95</td>
<td>791,75</td>
</tr>
<tr>
<td>Rm</td>
<td>7,02</td>
<td>11,63</td>
<td>31,98</td>
<td>66,85</td>
<td>102,5</td>
<td>168,59</td>
<td>225,32</td>
</tr>
</tbody>
</table>

Tabella A.4 – Variazione della Domanda per CKCS

GENERALIZED KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>11,60</td>
<td>10,41</td>
<td>8,93</td>
<td>8,45</td>
<td>8,35</td>
<td>8,34</td>
<td>8,34</td>
</tr>
<tr>
<td>Ls</td>
<td>99,76</td>
<td>99,62</td>
<td>98,94</td>
<td>97,12</td>
<td>94,94</td>
<td>90,35</td>
<td>85,75</td>
</tr>
<tr>
<td>Cb</td>
<td>11,6</td>
<td>19,01</td>
<td>54,78</td>
<td>150,46</td>
<td>264,63</td>
<td>505,43</td>
<td>746,23</td>
</tr>
<tr>
<td>Cm</td>
<td>11,60</td>
<td>10,41</td>
<td>8,93</td>
<td>8,45</td>
<td>8,35</td>
<td>8,34</td>
<td>8,34</td>
</tr>
<tr>
<td>Cr</td>
<td>23,20</td>
<td>29,42</td>
<td>63,71</td>
<td>158,91</td>
<td>272,98</td>
<td>513,77</td>
<td>754,27</td>
</tr>
<tr>
<td>Rm</td>
<td>5,32</td>
<td>7,86</td>
<td>20,36</td>
<td>52,77</td>
<td>88,51</td>
<td>155,5</td>
<td>213,11</td>
</tr>
</tbody>
</table>

Tabella A.5 – Variazione della Domanda per GKCS
APPENDICE A

Risultati delle simulazioni

EXTENDED KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>15,08</td>
<td>14,45</td>
<td>13,58</td>
<td>13,23</td>
<td>13,19</td>
<td>13,25</td>
<td>13,25</td>
</tr>
<tr>
<td>Ls</td>
<td>99,77</td>
<td>99,66</td>
<td>99,17</td>
<td>97,48</td>
<td>95,35</td>
<td>90,81</td>
<td>86,25</td>
</tr>
<tr>
<td>Cs</td>
<td>10,84</td>
<td>16,53</td>
<td>40,70</td>
<td>126,89</td>
<td>388,72</td>
<td>478,22</td>
<td>718,64</td>
</tr>
<tr>
<td>CM</td>
<td>15,08</td>
<td>14,45</td>
<td>13,58</td>
<td>13,23</td>
<td>13,19</td>
<td>13,25</td>
<td>13,25</td>
</tr>
<tr>
<td>Ct</td>
<td>25,88</td>
<td>30,98</td>
<td>54,29</td>
<td>140,12</td>
<td>252,06</td>
<td>491,46</td>
<td>731,91</td>
</tr>
<tr>
<td>Rm</td>
<td>5,02</td>
<td>7,04</td>
<td>16,12</td>
<td>46,53</td>
<td>82,01</td>
<td>149,32</td>
<td>207,35</td>
</tr>
</tbody>
</table>

Tabella A.6 – Variazione della Domanda per EKCS

EXTENDED-CONWIP-KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>11,70</td>
<td>11,15</td>
<td>10,53</td>
<td>10,29</td>
<td>10,26</td>
<td>10,26</td>
<td>10,26</td>
</tr>
<tr>
<td>Ls</td>
<td>99,77</td>
<td>99,67</td>
<td>99,22</td>
<td>97,59</td>
<td>95,48</td>
<td>90,96</td>
<td>86,43</td>
</tr>
<tr>
<td>Cs</td>
<td>10,81</td>
<td>16,53</td>
<td>40,68</td>
<td>126,88</td>
<td>388,72</td>
<td>478,16</td>
<td>717,04</td>
</tr>
<tr>
<td>CM</td>
<td>11,70</td>
<td>11,15</td>
<td>10,53</td>
<td>10,29</td>
<td>10,26</td>
<td>10,26</td>
<td>10,26</td>
</tr>
<tr>
<td>Ct</td>
<td>22,51</td>
<td>27,65</td>
<td>51,21</td>
<td>137,17</td>
<td>249,12</td>
<td>488,42</td>
<td>727,3</td>
</tr>
<tr>
<td>Rm</td>
<td>4,98</td>
<td>6,92</td>
<td>15,24</td>
<td>44,55</td>
<td>79,95</td>
<td>147,23</td>
<td>205,37</td>
</tr>
</tbody>
</table>

Tabella A.7 – Variazione della Domanda per ECKCS

I’SCENARIO DI CONFRONTO: Variazione dei Tempi di Produzione

KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione tempi di produzione %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>13,17</td>
<td>12,17</td>
<td>10,78</td>
<td>9,85</td>
<td>10,11</td>
<td>10,11</td>
<td>10,11</td>
</tr>
<tr>
<td>Ls</td>
<td>99,77</td>
<td>99,66</td>
<td>99,17</td>
<td>97,59</td>
<td>95,46</td>
<td>91,04</td>
<td>86,63</td>
</tr>
<tr>
<td>Cs</td>
<td>11,13</td>
<td>16,18</td>
<td>39,13</td>
<td>110,63</td>
<td>199,72</td>
<td>365,19</td>
<td>507,21</td>
</tr>
<tr>
<td>CM</td>
<td>13,17</td>
<td>12,17</td>
<td>10,78</td>
<td>9,85</td>
<td>10,11</td>
<td>10,11</td>
<td>10,11</td>
</tr>
<tr>
<td>Ct</td>
<td>24,3</td>
<td>28,35</td>
<td>49,91</td>
<td>120,48</td>
<td>209,83</td>
<td>375,3</td>
<td>517,32</td>
</tr>
<tr>
<td>Rm</td>
<td>5,11</td>
<td>7,12</td>
<td>16,15</td>
<td>44,39</td>
<td>80,25</td>
<td>146,09</td>
<td>202,86</td>
</tr>
</tbody>
</table>

Tabella A.8 – Variazione dei Tempi di Produzione per KCS
<table>
<thead>
<tr>
<th>VARIAZIONE TEMPI DI PRODUZIONE</th>
<th>CONWIP CONTROL SYSTEM</th>
<th>BASE STOCK CONTROL SYSTEM</th>
<th>CONWIP-KANBAN CONTROL SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>2,74, 2,55, 2,44, 2,43, 2,45, 2,41, 2,41</td>
<td>25,65, 28,23, 34,86, 64,71, 144,53, 318,78, 468,15</td>
<td>3,66, 3,47, 3,36, 3,34, 3,33, 3,32, 3,32</td>
</tr>
<tr>
<td>Cp</td>
<td>17,29, 30,91, 85,76, 172,61, 258,63, 424,16, 564,01</td>
<td>9,92, 12,71, 19,55, 49,58, 129,47, 303,71, 453,09</td>
<td>15,96, 27,31, 76,37, 161,79, 249,82, 413,34, 533,46</td>
</tr>
<tr>
<td>CM</td>
<td>2,74, 2,55, 2,44, 2,43, 2,45, 2,41, 2,41</td>
<td>25,65, 28,23, 34,86, 64,71, 144,53, 318,78, 468,15</td>
<td>3,66, 3,47, 3,36, 3,34, 3,33, 3,32, 3,32</td>
</tr>
<tr>
<td>Cr</td>
<td>20,03, 33,46, 88,20, 175,04, 261,08, 426,57, 566,42</td>
<td>35,57, 40,94, 54,41, 114,29, 274, 622,49, 921,24</td>
<td>19,62, 30,78, 79,73, 165,13, 253,15, 416,66, 536,78</td>
</tr>
<tr>
<td>Rm</td>
<td>7,91, 12,96, 34,72, 69,40, 103,75, 169,91, 225,9</td>
<td>4,61, 5,72, 8,34, 20,13, 52,28, 122,17, 182,22</td>
<td>7,02, 11,45, 30,95, 65,10, 100,19, 165,45, 221,5</td>
</tr>
</tbody>
</table>

Tabella A.9 – Variazione dei Tempi di Produzione per CCS

Tabella A.10 – Variazione dei Tempi di Produzione per BSCS

Tabella A.11 – Variazione dei Tempi di Produzione per CKCS
APPENDICE A

Risultati delle simulazioni

<table>
<thead>
<tr>
<th>Variazione tempi di produzione</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>11,60</td>
<td>11,07</td>
<td>9,56</td>
<td>8,97</td>
<td>8,87</td>
<td>8,87</td>
<td>8,87</td>
</tr>
<tr>
<td>Ls</td>
<td>99,76</td>
<td>99,65</td>
<td>99,09</td>
<td>97,4</td>
<td>95,31</td>
<td>90,87</td>
<td>86,44</td>
</tr>
<tr>
<td>CB</td>
<td>11,6</td>
<td>16,9</td>
<td>42,94</td>
<td>118,7</td>
<td>206,02</td>
<td>371,1</td>
<td>512,75</td>
</tr>
<tr>
<td>CM</td>
<td>11,60</td>
<td>11,07</td>
<td>9,56</td>
<td>8,97</td>
<td>8,87</td>
<td>8,87</td>
<td>8,87</td>
</tr>
<tr>
<td>Cr</td>
<td>23,2</td>
<td>27,97</td>
<td>52,5</td>
<td>127,67</td>
<td>211,74</td>
<td>379,98</td>
<td>521,65</td>
</tr>
<tr>
<td>Rm</td>
<td>5,32</td>
<td>7,42</td>
<td>17,67</td>
<td>47,98</td>
<td>82,77</td>
<td>148,44</td>
<td>205,05</td>
</tr>
</tbody>
</table>

Tabella A.12 – Variazione dei Tempi di Produzione per GKCS

<table>
<thead>
<tr>
<th>Variazione tempi di produzione</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>15,08</td>
<td>14,49</td>
<td>13,66</td>
<td>13,27</td>
<td>13,27</td>
<td>13,40</td>
<td>13,40</td>
</tr>
<tr>
<td>Ls</td>
<td>99,77</td>
<td>99,68</td>
<td>99,24</td>
<td>97,65</td>
<td>95,6</td>
<td>91,2</td>
<td>86,79</td>
</tr>
<tr>
<td>CB</td>
<td>10,84</td>
<td>15,24</td>
<td>33,79</td>
<td>102,47</td>
<td>188,24</td>
<td>353,25</td>
<td>495,73</td>
</tr>
<tr>
<td>CM</td>
<td>15,08</td>
<td>14,49</td>
<td>13,66</td>
<td>13,27</td>
<td>13,27</td>
<td>13,40</td>
<td>13,40</td>
</tr>
<tr>
<td>Cr</td>
<td>25,88</td>
<td>29,73</td>
<td>47,44</td>
<td>115,75</td>
<td>201,51</td>
<td>366,65</td>
<td>509,13</td>
</tr>
<tr>
<td>Rm</td>
<td>5,02</td>
<td>6,89</td>
<td>14,87</td>
<td>43,52</td>
<td>78,06</td>
<td>143,93</td>
<td>200,84</td>
</tr>
</tbody>
</table>

Tabella A.13 – Variazione dei Tempi di Produzione per EKCS

<table>
<thead>
<tr>
<th>Variazione tempi di produzione</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>11,7</td>
<td>11,18</td>
<td>10,57</td>
<td>10,31</td>
<td>10,29</td>
<td>10,30</td>
<td>10,30</td>
</tr>
<tr>
<td>Ls</td>
<td>99,77</td>
<td>99,68</td>
<td>99,29</td>
<td>97,77</td>
<td>95,74</td>
<td>91,38</td>
<td>87,01</td>
</tr>
<tr>
<td>CB</td>
<td>10,81</td>
<td>15,21</td>
<td>33,75</td>
<td>102,42</td>
<td>188,23</td>
<td>353,24</td>
<td>495,7</td>
</tr>
<tr>
<td>CM</td>
<td>11,7</td>
<td>11,18</td>
<td>10,57</td>
<td>10,31</td>
<td>10,29</td>
<td>10,30</td>
<td>10,30</td>
</tr>
<tr>
<td>Cr</td>
<td>22,5</td>
<td>26,39</td>
<td>44,32</td>
<td>112,73</td>
<td>198,52</td>
<td>363,54</td>
<td>506,0</td>
</tr>
<tr>
<td>Rm</td>
<td>4,98</td>
<td>6,75</td>
<td>14,01</td>
<td>41,47</td>
<td>75,69</td>
<td>141,41</td>
<td>198,39</td>
</tr>
</tbody>
</table>

Tabella A.14 – Variazione dei Tempi di Produzione per ECKCS
II°SCENARIO DI CONFRONTO: Variabilità degli arrivi della Domanda, distribuiti normalmente, espressa mediante il CV (σ/μ)

KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>CV (arrivi domanda)</th>
<th>0,13</th>
<th>0,16</th>
<th>0,19</th>
<th>0,22</th>
<th>0,25</th>
<th>0,28</th>
<th>0,31</th>
<th>0,34</th>
<th>0,38</th>
<th>0,41</th>
<th>0,44</th>
<th>0,47</th>
<th>0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>11,1</td>
<td>9,73</td>
<td>10,05</td>
<td>9,84</td>
<td>9,78</td>
<td>9,38</td>
<td>9,87</td>
<td>9,93</td>
<td>9,75</td>
<td>10,09</td>
<td>9,49</td>
<td>9,58</td>
<td>10,53</td>
</tr>
<tr>
<td>Cb</td>
<td>16,14</td>
<td>23,88</td>
<td>22,34</td>
<td>27,49</td>
<td>35,63</td>
<td>40,69</td>
<td>39,24</td>
<td>34,96</td>
<td>55,01</td>
<td>55,86</td>
<td>60,07</td>
<td>58,93</td>
<td>56,59</td>
</tr>
<tr>
<td>Cm</td>
<td>11,1</td>
<td>9,73</td>
<td>10,05</td>
<td>9,84</td>
<td>9,78</td>
<td>9,38</td>
<td>9,87</td>
<td>9,93</td>
<td>9,75</td>
<td>10,09</td>
<td>9,49</td>
<td>9,58</td>
<td>10,53</td>
</tr>
<tr>
<td>Cr</td>
<td>27,24</td>
<td>33,61</td>
<td>32,39</td>
<td>37,33</td>
<td>45,61</td>
<td>50,07</td>
<td>49,11</td>
<td>44,89</td>
<td>64,76</td>
<td>65,95</td>
<td>69,56</td>
<td>68,51</td>
<td>67,12</td>
</tr>
<tr>
<td>Rm</td>
<td>7,01</td>
<td>10,04</td>
<td>9,48</td>
<td>11,45</td>
<td>14,71</td>
<td>16,67</td>
<td>16,04</td>
<td>14,4</td>
<td>22,42</td>
<td>22,65</td>
<td>24,39</td>
<td>23,8</td>
<td>23,02</td>
</tr>
</tbody>
</table>

Tabella A.15 – Variazione del CV (arrivi Domanda) per KCS

CONWIP CONTROL SYSTEM

<table>
<thead>
<tr>
<th>CV (arrivi domanda)</th>
<th>0,13</th>
<th>0,16</th>
<th>0,19</th>
<th>0,22</th>
<th>0,25</th>
<th>0,28</th>
<th>0,31</th>
<th>0,34</th>
<th>0,38</th>
<th>0,41</th>
<th>0,44</th>
<th>0,47</th>
<th>0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>2,62</td>
<td>2,55</td>
<td>2,58</td>
<td>2,57</td>
<td>2,57</td>
<td>2,54</td>
<td>2,57</td>
<td>2,57</td>
<td>2,56</td>
<td>2,6</td>
<td>2,55</td>
<td>2,56</td>
<td>2,61</td>
</tr>
<tr>
<td>Ls</td>
<td>99,47</td>
<td>99,27</td>
<td>99,29</td>
<td>99,2</td>
<td>99,01</td>
<td>98,89</td>
<td>98,93</td>
<td>99,03</td>
<td>98,58</td>
<td>98,84</td>
<td>98,46</td>
<td>98,48</td>
<td>98,51</td>
</tr>
<tr>
<td>Cb</td>
<td>25,22</td>
<td>34,72</td>
<td>33,83</td>
<td>38,15</td>
<td>47,09</td>
<td>52,64</td>
<td>50,63</td>
<td>46,22</td>
<td>67,02</td>
<td>67,87</td>
<td>72,94</td>
<td>71,55</td>
<td>69,58</td>
</tr>
<tr>
<td>Cm</td>
<td>2,62</td>
<td>2,55</td>
<td>2,58</td>
<td>2,57</td>
<td>2,57</td>
<td>2,54</td>
<td>2,57</td>
<td>2,57</td>
<td>2,56</td>
<td>2,6</td>
<td>2,55</td>
<td>2,56</td>
<td>2,61</td>
</tr>
<tr>
<td>Cr</td>
<td>27,84</td>
<td>37,27</td>
<td>36,41</td>
<td>40,72</td>
<td>49,66</td>
<td>55,18</td>
<td>53,3</td>
<td>48,79</td>
<td>69,59</td>
<td>70,47</td>
<td>75,49</td>
<td>74,11</td>
<td>72,19</td>
</tr>
<tr>
<td>Rm</td>
<td>10,74</td>
<td>14,39</td>
<td>14,09</td>
<td>15,78</td>
<td>19,42</td>
<td>21,53</td>
<td>20,67</td>
<td>19,03</td>
<td>27,36</td>
<td>27,63</td>
<td>29,7</td>
<td>29</td>
<td>28,49</td>
</tr>
</tbody>
</table>

Tabella A.16 – Variazione del CV (arrivi Domanda) per CCS

BASE STOCK CONTROL SYSTEM

<table>
<thead>
<tr>
<th>CV (arrivi domanda)</th>
<th>0,13</th>
<th>0,16</th>
<th>0,19</th>
<th>0,22</th>
<th>0,25</th>
<th>0,28</th>
<th>0,31</th>
<th>0,34</th>
<th>0,38</th>
<th>0,41</th>
<th>0,44</th>
<th>0,47</th>
<th>0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>22,82</td>
<td>21,09</td>
<td>21,98</td>
<td>21,34</td>
<td>23,33</td>
<td>22,88</td>
<td>24,11</td>
<td>23,87</td>
<td>26,42</td>
<td>26,79</td>
<td>28,09</td>
<td>27,32</td>
<td>32,97</td>
</tr>
<tr>
<td>Cb</td>
<td>15,05</td>
<td>22,66</td>
<td>21,86</td>
<td>26,26</td>
<td>34,16</td>
<td>39,04</td>
<td>37,41</td>
<td>33,26</td>
<td>52,79</td>
<td>53,73</td>
<td>57,49</td>
<td>56,51</td>
<td>53,48</td>
</tr>
<tr>
<td>Cm</td>
<td>22,82</td>
<td>21,09</td>
<td>21,98</td>
<td>21,34</td>
<td>23,33</td>
<td>22,88</td>
<td>24,11</td>
<td>23,87</td>
<td>26,42</td>
<td>26,79</td>
<td>28,09</td>
<td>27,32</td>
<td>32,97</td>
</tr>
<tr>
<td>Cr</td>
<td>37,87</td>
<td>43,75</td>
<td>43,84</td>
<td>47,6</td>
<td>57,49</td>
<td>61,92</td>
<td>61,52</td>
<td>57,13</td>
<td>79,21</td>
<td>80,72</td>
<td>85,58</td>
<td>83,83</td>
<td>86,45</td>
</tr>
<tr>
<td>Rm</td>
<td>6,56</td>
<td>9,56</td>
<td>9,22</td>
<td>10,96</td>
<td>14,11</td>
<td>16,02</td>
<td>15,3</td>
<td>13,72</td>
<td>21,52</td>
<td>21,81</td>
<td>23,34</td>
<td>22,83</td>
<td>21,78</td>
</tr>
</tbody>
</table>

Tabella A.17 – Variazione del CV (arrivi Domanda) per BSCS
APPENDICE A

Risultati delle simulazioni

CONWIP-KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>CV (arrivi domanda)</th>
<th>0.13</th>
<th>0.16</th>
<th>0.19</th>
<th>0.22</th>
<th>0.25</th>
<th>0.28</th>
<th>0.31</th>
<th>0.34</th>
<th>0.38</th>
<th>0.41</th>
<th>0.44</th>
<th>0.47</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ls</td>
<td>99.51</td>
<td>99.3</td>
<td>99.32</td>
<td>99.23</td>
<td>99.04</td>
<td>98.92</td>
<td>98.97</td>
<td>99.06</td>
<td>98.62</td>
<td>98.59</td>
<td>98.5</td>
<td>98.52</td>
<td>98.56</td>
</tr>
<tr>
<td>Cm</td>
<td>23.64</td>
<td>31.18</td>
<td>32.27</td>
<td>36.62</td>
<td>45.46</td>
<td>50.89</td>
<td>48.93</td>
<td>44.51</td>
<td>65.31</td>
<td>66.07</td>
<td>71.09</td>
<td>69.72</td>
<td>67.49</td>
</tr>
</tbody>
</table>

Tabella A.18 – Variazione del CV (arrivi Domanda) per CKCS

GENERALIZED KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>CV (arrivi domanda)</th>
<th>0.13</th>
<th>0.16</th>
<th>0.19</th>
<th>0.22</th>
<th>0.25</th>
<th>0.28</th>
<th>0.31</th>
<th>0.34</th>
<th>0.38</th>
<th>0.41</th>
<th>0.44</th>
<th>0.47</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ls</td>
<td>99.66</td>
<td>99.5</td>
<td>99.61</td>
<td>99.42</td>
<td>99.24</td>
<td>99.13</td>
<td>98.17</td>
<td>99.26</td>
<td>98.83</td>
<td>98.8</td>
<td>98.72</td>
<td>98.74</td>
<td>98.78</td>
</tr>
<tr>
<td>Cm</td>
<td>16.39</td>
<td>24.12</td>
<td>23.44</td>
<td>27.75</td>
<td>35.94</td>
<td>41.03</td>
<td>39.6</td>
<td>35.29</td>
<td>55.4</td>
<td>56.22</td>
<td>60.51</td>
<td>59.35</td>
<td>57.17</td>
</tr>
<tr>
<td>Cm</td>
<td>10.18</td>
<td>8.83</td>
<td>9.28</td>
<td>8.93</td>
<td>8.66</td>
<td>8.47</td>
<td>8.95</td>
<td>9.02</td>
<td>8.83</td>
<td>9.16</td>
<td>8.55</td>
<td>8.65</td>
<td>9.26</td>
</tr>
<tr>
<td>Cr</td>
<td>26.57</td>
<td>32.95</td>
<td>32.72</td>
<td>36.68</td>
<td>43.8</td>
<td>49.5</td>
<td>48.55</td>
<td>44.31</td>
<td>64.23</td>
<td>65.38</td>
<td>69.06</td>
<td>68.0</td>
<td>66.43</td>
</tr>
</tbody>
</table>

Tabella A.19 – Variazione del CV (arrivi Domanda) per GKCS

EXTENDED KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>CV (arrivi domanda)</th>
<th>0.13</th>
<th>0.16</th>
<th>0.19</th>
<th>0.22</th>
<th>0.25</th>
<th>0.28</th>
<th>0.31</th>
<th>0.34</th>
<th>0.38</th>
<th>0.41</th>
<th>0.44</th>
<th>0.47</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>12.83</td>
<td>11.36</td>
<td>11.87</td>
<td>11.49</td>
<td>11.54</td>
<td>11.11</td>
<td>11.66</td>
<td>11.7</td>
<td>11.55</td>
<td>11.92</td>
<td>11.33</td>
<td>11.45</td>
<td>12.25</td>
</tr>
<tr>
<td>Ls</td>
<td>99.67</td>
<td>99.51</td>
<td>99.52</td>
<td>99.43</td>
<td>99.25</td>
<td>99.15</td>
<td>99.19</td>
<td>99.27</td>
<td>98.85</td>
<td>98.82</td>
<td>98.74</td>
<td>98.76</td>
<td>98.81</td>
</tr>
<tr>
<td>Cm</td>
<td>15.81</td>
<td>23.52</td>
<td>22.8</td>
<td>27.11</td>
<td>35.16</td>
<td>40.23</td>
<td>38.74</td>
<td>34.44</td>
<td>54.31</td>
<td>55.27</td>
<td>59.41</td>
<td>58.26</td>
<td>55.92</td>
</tr>
<tr>
<td>Cm</td>
<td>12.83</td>
<td>11.36</td>
<td>11.87</td>
<td>11.49</td>
<td>11.54</td>
<td>11.11</td>
<td>11.66</td>
<td>11.7</td>
<td>11.55</td>
<td>11.92</td>
<td>11.33</td>
<td>11.41</td>
<td>12.25</td>
</tr>
<tr>
<td>Cr</td>
<td>28.64</td>
<td>34.88</td>
<td>34.67</td>
<td>38.6</td>
<td>46.7</td>
<td>51.34</td>
<td>50.4</td>
<td>46.14</td>
<td>65.86</td>
<td>67.19</td>
<td>70.74</td>
<td>69.67</td>
<td>68.17</td>
</tr>
<tr>
<td>rm</td>
<td>6.93</td>
<td>9.95</td>
<td>9.64</td>
<td>11.33</td>
<td>14.63</td>
<td>16.53</td>
<td>15.86</td>
<td>14.28</td>
<td>22.27</td>
<td>22.5</td>
<td>24.21</td>
<td>23.59</td>
<td>22.84</td>
</tr>
</tbody>
</table>

Tabella A.20 – Variazione del CV (arrivi Domanda) per EKCS
APPENDICE A
Risultati delle simulazioni

EXTENDED-CONWIP-KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>CV (arrivi domanda)</th>
<th>0,13</th>
<th>0,16</th>
<th>0,19</th>
<th>0,22</th>
<th>0,25</th>
<th>0,28</th>
<th>0,31</th>
<th>0,34</th>
<th>0,38</th>
<th>0,41</th>
<th>0,44</th>
<th>0,47</th>
<th>0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>10,36</td>
<td>9,36</td>
<td>9,67</td>
<td>9,42</td>
<td>9,60</td>
<td>9,11</td>
<td>9,48</td>
<td>9,52</td>
<td>9,43</td>
<td>9,65</td>
<td>9,26</td>
<td>9,30</td>
<td>9,75</td>
</tr>
<tr>
<td>Ct</td>
<td>15,77</td>
<td>23,5</td>
<td>22,71</td>
<td>27,1</td>
<td>35,04</td>
<td>40,13</td>
<td>38,71</td>
<td>34,36</td>
<td>54,26</td>
<td>55,25</td>
<td>59,33</td>
<td>58,23</td>
<td>55,72</td>
</tr>
<tr>
<td>Cm</td>
<td>10,36</td>
<td>9,36</td>
<td>9,67</td>
<td>9,42</td>
<td>9,60</td>
<td>9,11</td>
<td>9,48</td>
<td>9,52</td>
<td>9,43</td>
<td>9,65</td>
<td>9,26</td>
<td>9,30</td>
<td>9,75</td>
</tr>
<tr>
<td>Ct</td>
<td>26,13</td>
<td>32,86</td>
<td>32,38</td>
<td>36,52</td>
<td>44,44</td>
<td>49,24</td>
<td>48,19</td>
<td>43,88</td>
<td>63,69</td>
<td>64,9</td>
<td>68,59</td>
<td>67,53</td>
<td>65,47</td>
</tr>
<tr>
<td>Rm</td>
<td>6,87</td>
<td>9,99</td>
<td>9,60</td>
<td>11,3</td>
<td>14,52</td>
<td>16,49</td>
<td>15,84</td>
<td>14,19</td>
<td>22,13</td>
<td>22,41</td>
<td>24,12</td>
<td>23,53</td>
<td>22,67</td>
</tr>
</tbody>
</table>

Tabella A.21 – Variazione del CV (arrivi Domanda) per ECKCS

Una variante del II° SCENARIO: Variazione della Domanda

KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>9,78</td>
<td>9,85</td>
<td>9,96</td>
<td>9,95</td>
<td>9,98</td>
<td>9,96</td>
<td>9,96</td>
</tr>
<tr>
<td>LS</td>
<td>99,25</td>
<td>99,06</td>
<td>98,44</td>
<td>96,89</td>
<td>94,84</td>
<td>90,40</td>
<td>85,87</td>
</tr>
<tr>
<td>Ct</td>
<td>35,63</td>
<td>46,92</td>
<td>80,60</td>
<td>162,19</td>
<td>270,27</td>
<td>504,21</td>
<td>742,76</td>
</tr>
<tr>
<td>Cm</td>
<td>9,78</td>
<td>9,85</td>
<td>9,96</td>
<td>9,95</td>
<td>9,98</td>
<td>9,96</td>
<td>9,96</td>
</tr>
<tr>
<td>Ct</td>
<td>45,41</td>
<td>56,77</td>
<td>90,56</td>
<td>172,14</td>
<td>280,25</td>
<td>514,17</td>
<td>752,72</td>
</tr>
<tr>
<td>Rm</td>
<td>14,71</td>
<td>18,26</td>
<td>29,61</td>
<td>56,75</td>
<td>90,47</td>
<td>155,67</td>
<td>212,67</td>
</tr>
</tbody>
</table>

Tabella A.22 – Variazione della Domanda per KCS

CONWIP CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>2,57</td>
<td>2,50</td>
<td>2,45</td>
<td>2,44</td>
<td>2,43</td>
<td>2,43</td>
<td>2,43</td>
</tr>
<tr>
<td>LS</td>
<td>99,01</td>
<td>98,62</td>
<td>97,48</td>
<td>95,55</td>
<td>93,35</td>
<td>88,78</td>
<td>84,13</td>
</tr>
<tr>
<td>Ct</td>
<td>47,09</td>
<td>68,16</td>
<td>127,53</td>
<td>226,63</td>
<td>339,81</td>
<td>574,34</td>
<td>813,09</td>
</tr>
<tr>
<td>Cm</td>
<td>2,57</td>
<td>2,50</td>
<td>2,45</td>
<td>2,44</td>
<td>2,43</td>
<td>2,43</td>
<td>2,43</td>
</tr>
<tr>
<td>Ct</td>
<td>49,66</td>
<td>70,66</td>
<td>129,98</td>
<td>229,07</td>
<td>342,24</td>
<td>576,77</td>
<td>815,52</td>
</tr>
<tr>
<td>Rm</td>
<td>19,42</td>
<td>26,42</td>
<td>46,83</td>
<td>79,42</td>
<td>114,03</td>
<td>177,64</td>
<td>233,22</td>
</tr>
</tbody>
</table>

Tabella A.23 – Variazione della Domanda per CCS
BASE STOCK CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>23,33</td>
<td>29,31</td>
<td>42,54</td>
<td>80,95</td>
<td>162,95</td>
<td>385,29</td>
<td>620,35</td>
</tr>
<tr>
<td>Ls</td>
<td>99,28</td>
<td>99,16</td>
<td>98,92</td>
<td>98,21</td>
<td>96,71</td>
<td>92,61</td>
<td>88,28</td>
</tr>
<tr>
<td>Ct</td>
<td>34,16</td>
<td>41,68</td>
<td>56,45</td>
<td>96,37</td>
<td>179,78</td>
<td>404,81</td>
<td>642,53</td>
</tr>
<tr>
<td>Cm</td>
<td>23,33</td>
<td>29,31</td>
<td>42,54</td>
<td>80,95</td>
<td>162,95</td>
<td>385,29</td>
<td>620,35</td>
</tr>
<tr>
<td>Ct</td>
<td>57,49</td>
<td>70,99</td>
<td>98,99</td>
<td>177,32</td>
<td>342,73</td>
<td>790,1</td>
<td>1262,88</td>
</tr>
<tr>
<td>Rm</td>
<td>14,11</td>
<td>16,26</td>
<td>20,81</td>
<td>33,76</td>
<td>60,37</td>
<td>125,44</td>
<td>184,75</td>
</tr>
</tbody>
</table>

Tabella A.24 – Variazione della Domanda per BSCS

CONWIP-KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>3,38</td>
<td>3,36</td>
<td>3,34</td>
<td>3,34</td>
<td>3,34</td>
<td>3,34</td>
<td>3,34</td>
</tr>
<tr>
<td>Ls</td>
<td>99,04</td>
<td>98,70</td>
<td>97,66</td>
<td>95,78</td>
<td>93,60</td>
<td>89,05</td>
<td>84,43</td>
</tr>
<tr>
<td>Ct</td>
<td>45,46</td>
<td>64,26</td>
<td>119,08</td>
<td>216,01</td>
<td>328,4</td>
<td>562,73</td>
<td>801,38</td>
</tr>
<tr>
<td>Cm</td>
<td>3,38</td>
<td>3,36</td>
<td>3,34</td>
<td>3,34</td>
<td>3,34</td>
<td>3,34</td>
<td>3,34</td>
</tr>
<tr>
<td>Ct</td>
<td>48,84</td>
<td>67,62</td>
<td>122,42</td>
<td>219,35</td>
<td>331,74</td>
<td>566,07</td>
<td>804,72</td>
</tr>
<tr>
<td>Rm</td>
<td>18,59</td>
<td>24,82</td>
<td>43,65</td>
<td>75,60</td>
<td>110,07</td>
<td>173,9</td>
<td>229,68</td>
</tr>
</tbody>
</table>

Tabella A.25 – Variazione della Domanda per CKCS

GENERALIZED KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>8,86</td>
<td>8,84</td>
<td>8,83</td>
<td>8,77</td>
<td>8,76</td>
<td>8,77</td>
<td>8,77</td>
</tr>
<tr>
<td>Ls</td>
<td>99,24</td>
<td>99,04</td>
<td>98,37</td>
<td>96,77</td>
<td>94,69</td>
<td>90,23</td>
<td>85,69</td>
</tr>
<tr>
<td>Ct</td>
<td>35,94</td>
<td>47,82</td>
<td>84,2</td>
<td>168,34</td>
<td>277,3</td>
<td>511,45</td>
<td>750,04</td>
</tr>
<tr>
<td>Cm</td>
<td>8,86</td>
<td>8,84</td>
<td>8,83</td>
<td>8,77</td>
<td>8,76</td>
<td>8,77</td>
<td>8,77</td>
</tr>
<tr>
<td>Ct</td>
<td>44,8</td>
<td>56,66</td>
<td>93,03</td>
<td>177,11</td>
<td>286,06</td>
<td>520,22</td>
<td>758,81</td>
</tr>
<tr>
<td>Rm</td>
<td>14,83</td>
<td>18,60</td>
<td>30,92</td>
<td>58,89</td>
<td>92,83</td>
<td>157,9</td>
<td>214,75</td>
</tr>
</tbody>
</table>

Tabella A.26 – Variazione della Domanda per GKCS
APPENDICE A

Risultati delle simulazioni

EXTENDED KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>11,54</td>
<td>11,99</td>
<td>12,73</td>
<td>13,08</td>
<td>13,21</td>
<td>13,30</td>
<td>13,30</td>
</tr>
<tr>
<td>Ls</td>
<td>99,25</td>
<td>99,09</td>
<td>98,56</td>
<td>97,14</td>
<td>95,15</td>
<td>90,76</td>
<td>86,28</td>
</tr>
<tr>
<td>Cbr</td>
<td>35,16</td>
<td>45,52</td>
<td>74,55</td>
<td>150,23</td>
<td>255,95</td>
<td>488,38</td>
<td>726,19</td>
</tr>
<tr>
<td>Cm</td>
<td>11,54</td>
<td>11,99</td>
<td>12,73</td>
<td>13,08</td>
<td>13,21</td>
<td>13,30</td>
<td>13,30</td>
</tr>
<tr>
<td>Ct</td>
<td>46,70</td>
<td>57,51</td>
<td>87,28</td>
<td>163,31</td>
<td>269,16</td>
<td>501,68</td>
<td>739,49</td>
</tr>
<tr>
<td>Rm</td>
<td>14,52</td>
<td>17,72</td>
<td>27,40</td>
<td>52,57</td>
<td>85,70</td>
<td>150,83</td>
<td>207,99</td>
</tr>
</tbody>
</table>

Tabella A.27 – Variazione della Domanda per EKCS

EXTENDED-CONWIP-KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione domanda %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>9,40</td>
<td>9,66</td>
<td>10,01</td>
<td>10,17</td>
<td>10,19</td>
<td>10,18</td>
<td>10,18</td>
</tr>
<tr>
<td>Ls</td>
<td>99,26</td>
<td>99,07</td>
<td>98,50</td>
<td>97,1</td>
<td>95,40</td>
<td>90,93</td>
<td>86,39</td>
</tr>
<tr>
<td>Cbr</td>
<td>35,04</td>
<td>45,49</td>
<td>74,47</td>
<td>150,19</td>
<td>243,16</td>
<td>480,47</td>
<td>720,62</td>
</tr>
<tr>
<td>Cm</td>
<td>9,40</td>
<td>9,66</td>
<td>10,01</td>
<td>10,17</td>
<td>10,19</td>
<td>10,18</td>
<td>10,18</td>
</tr>
<tr>
<td>Ct</td>
<td>44,44</td>
<td>55,15</td>
<td>84,48</td>
<td>160,36</td>
<td>253,35</td>
<td>490,65</td>
<td>730,8</td>
</tr>
<tr>
<td>Rm</td>
<td>14,52</td>
<td>18,06</td>
<td>28,51</td>
<td>55,06</td>
<td>80,97</td>
<td>147,47</td>
<td>205,29</td>
</tr>
</tbody>
</table>

Tabella A.28 – Variazione della Domanda per ECKCS
II' SCENARIO DI CONFRONTO: Variazione dei Tempi di Produzione

KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione tempi di produzione %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>11,10</td>
<td>10,66</td>
<td>10,12</td>
<td>9,85</td>
<td>9,86</td>
<td>9,88</td>
<td>9,88</td>
</tr>
<tr>
<td>Ls</td>
<td>99,66</td>
<td>99,55</td>
<td>99,12</td>
<td>97,59</td>
<td>95,53</td>
<td>91,18</td>
<td>86,80</td>
</tr>
<tr>
<td>Cb</td>
<td>16,14</td>
<td>21,32</td>
<td>41,94</td>
<td>110,63</td>
<td>197,52</td>
<td>360,47</td>
<td>502,44</td>
</tr>
<tr>
<td>Cm</td>
<td>11,10</td>
<td>10,66</td>
<td>10,12</td>
<td>9,85</td>
<td>9,86</td>
<td>9,88</td>
<td>9,88</td>
</tr>
<tr>
<td>Cr</td>
<td>27,24</td>
<td>31,98</td>
<td>52,06</td>
<td>120,48</td>
<td>207,38</td>
<td>370,35</td>
<td>512,32</td>
</tr>
<tr>
<td>Rm</td>
<td>7,01</td>
<td>9,03</td>
<td>17,11</td>
<td>44,39</td>
<td>78,95</td>
<td>143,82</td>
<td>200,34</td>
</tr>
</tbody>
</table>

Tabella A.29 – Variazione dei Tempi di Produzione per KCS

CONWIP CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione tempi di produzione %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>2,62</td>
<td>2,50</td>
<td>2,43</td>
<td>2,42</td>
<td>2,41</td>
<td>2,41</td>
<td>2,41</td>
</tr>
<tr>
<td>Ls</td>
<td>99,47</td>
<td>99,2</td>
<td>98,11</td>
<td>96,15</td>
<td>93,94</td>
<td>89,40</td>
<td>84,82</td>
</tr>
<tr>
<td>Cb</td>
<td>25,22</td>
<td>38,25</td>
<td>87,77</td>
<td>172,08</td>
<td>260,02</td>
<td>420,73</td>
<td>560,41</td>
</tr>
<tr>
<td>Cm</td>
<td>2,62</td>
<td>2,50</td>
<td>2,43</td>
<td>2,42</td>
<td>2,41</td>
<td>2,41</td>
<td>2,41</td>
</tr>
<tr>
<td>Cr</td>
<td>27,84</td>
<td>40,75</td>
<td>90,2</td>
<td>174,5</td>
<td>262,43</td>
<td>423,14</td>
<td>562,82</td>
</tr>
<tr>
<td>Rm</td>
<td>10,74</td>
<td>15,74</td>
<td>35,31</td>
<td>68,90</td>
<td>103,96</td>
<td>167,99</td>
<td>223,74</td>
</tr>
</tbody>
</table>

Tabella A.30 – Variazione dei Tempi di Produzione per CCS

BASE STOCK CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione tempi di produzione %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>22,82</td>
<td>25,60</td>
<td>32,80</td>
<td>61,27</td>
<td>136,75</td>
<td>306,13</td>
<td>455,35</td>
</tr>
<tr>
<td>Ls</td>
<td>99,69</td>
<td>99,62</td>
<td>99,47</td>
<td>98,86</td>
<td>97,17</td>
<td>92,94</td>
<td>88,61</td>
</tr>
<tr>
<td>Cb</td>
<td>15,05</td>
<td>18,04</td>
<td>25,45</td>
<td>54,11</td>
<td>129,65</td>
<td>299,04</td>
<td>448,27</td>
</tr>
<tr>
<td>Cm</td>
<td>22,82</td>
<td>25,60</td>
<td>32,80</td>
<td>61,27</td>
<td>136,75</td>
<td>306,13</td>
<td>455,35</td>
</tr>
<tr>
<td>Cr</td>
<td>37,87</td>
<td>43,64</td>
<td>58,25</td>
<td>115,38</td>
<td>266,4</td>
<td>605,17</td>
<td>903,62</td>
</tr>
<tr>
<td>Rm</td>
<td>6,56</td>
<td>7,71</td>
<td>10,55</td>
<td>21,83</td>
<td>52,06</td>
<td>119,93</td>
<td>179,65</td>
</tr>
</tbody>
</table>

Tabella A.31 – Variazione dei Tempi di Produzione per BSCS
VARIAZIONE TEMPI DI PRODUZIONE

CONWIP-KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione tempi di produzione %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>3,45</td>
<td>3,38</td>
<td>3,33</td>
<td>3,32</td>
<td>3,32</td>
<td>3,31</td>
<td>3,31</td>
</tr>
<tr>
<td>Ls</td>
<td>99,51</td>
<td>99,27</td>
<td>98,31</td>
<td>96,41</td>
<td>94,23</td>
<td>89,73</td>
<td>85,19</td>
</tr>
<tr>
<td>CB</td>
<td>23,64</td>
<td>34,91</td>
<td>79,03</td>
<td>161,17</td>
<td>248,96</td>
<td>409,97</td>
<td>549,91</td>
</tr>
<tr>
<td>CM</td>
<td>3,45</td>
<td>3,38</td>
<td>3,33</td>
<td>3,32</td>
<td>3,32</td>
<td>3,31</td>
<td>3,31</td>
</tr>
<tr>
<td>Cr</td>
<td>27,09</td>
<td>38,29</td>
<td>82,36</td>
<td>164,49</td>
<td>252,28</td>
<td>413,28</td>
<td>553,22</td>
</tr>
<tr>
<td>Rm</td>
<td>9,92</td>
<td>14,32</td>
<td>31,77</td>
<td>64,49</td>
<td>99,47</td>
<td>163,59</td>
<td>219,39</td>
</tr>
</tbody>
</table>

GENERALIZED KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione tempi di produzione %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>10,18</td>
<td>9,62</td>
<td>8,95</td>
<td>8,67</td>
<td>8,66</td>
<td>8,66</td>
<td>8,67</td>
</tr>
<tr>
<td>Ls</td>
<td>99,66</td>
<td>99,54</td>
<td>99,04</td>
<td>97,45</td>
<td>95,37</td>
<td>91,02</td>
<td>86,61</td>
</tr>
<tr>
<td>CB</td>
<td>16,39</td>
<td>22,07</td>
<td>45,46</td>
<td>116,74</td>
<td>203,93</td>
<td>366,49</td>
<td>508,09</td>
</tr>
<tr>
<td>CM</td>
<td>10,18</td>
<td>9,62</td>
<td>8,95</td>
<td>8,67</td>
<td>8,66</td>
<td>8,66</td>
<td>8,67</td>
</tr>
<tr>
<td>Cr</td>
<td>26,57</td>
<td>31,69</td>
<td>54,41</td>
<td>125,41</td>
<td>212,59</td>
<td>375,15</td>
<td>516,76</td>
</tr>
<tr>
<td>Rm</td>
<td>7,11</td>
<td>9,34</td>
<td>18,51</td>
<td>46,82</td>
<td>81,50</td>
<td>146,2</td>
<td>202,56</td>
</tr>
</tbody>
</table>

EXTENDED KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione tempi di produzione %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>12,83</td>
<td>12,80</td>
<td>12,79</td>
<td>12,78</td>
<td>12,81</td>
<td>12,80</td>
<td>12,80</td>
</tr>
<tr>
<td>Ls</td>
<td>99,67</td>
<td>99,56</td>
<td>99,16</td>
<td>97,70</td>
<td>95,65</td>
<td>91,31</td>
<td>86,94</td>
</tr>
<tr>
<td>CB</td>
<td>15,81</td>
<td>20,34</td>
<td>37,16</td>
<td>100,08</td>
<td>185,69</td>
<td>348,61</td>
<td>490,6</td>
</tr>
<tr>
<td>CM</td>
<td>12,83</td>
<td>12,80</td>
<td>12,79</td>
<td>12,78</td>
<td>12,81</td>
<td>12,80</td>
<td>12,80</td>
</tr>
<tr>
<td>Cr</td>
<td>28,64</td>
<td>33,14</td>
<td>49,95</td>
<td>112,86</td>
<td>198,5</td>
<td>361,41</td>
<td>503,4</td>
</tr>
<tr>
<td>Rm</td>
<td>6,93</td>
<td>8,86</td>
<td>16,22</td>
<td>42,48</td>
<td>76,96</td>
<td>142,02</td>
<td>198,72</td>
</tr>
</tbody>
</table>

Tabella A.32 – Variazione dei Tempi di Produzione per CKCS

Tabella A.33 – Variazione dei Tempi di Produzione per GKCS

Tabella A.34 – Variazione dei Tempi di Produzione per EKCS
APPENDICE A

Risultati delle simulazioni

EXTENDED-CONWIP-KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>Variazione tempi di produzione %</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>10,36</td>
<td>10,24</td>
<td>10,20</td>
<td>10,21</td>
<td>10,21</td>
<td>10,21</td>
<td>10,21</td>
</tr>
<tr>
<td>Ls</td>
<td>99,67</td>
<td>99,57</td>
<td>99,22</td>
<td>97,83</td>
<td>95,81</td>
<td>91,52</td>
<td>87,19</td>
</tr>
<tr>
<td>Cb</td>
<td>15,77</td>
<td>20,76</td>
<td>37,04</td>
<td>100,02</td>
<td>185,58</td>
<td>348,51</td>
<td>490,55</td>
</tr>
<tr>
<td>CM</td>
<td>10,36</td>
<td>10,24</td>
<td>10,20</td>
<td>10,21</td>
<td>10,21</td>
<td>10,21</td>
<td>10,21</td>
</tr>
<tr>
<td>Cr</td>
<td>26,13</td>
<td>31,00</td>
<td>47,24</td>
<td>110,23</td>
<td>195,79</td>
<td>358,72</td>
<td>500,76</td>
</tr>
<tr>
<td>Rm</td>
<td>6,87</td>
<td>8,64</td>
<td>15,21</td>
<td>40,19</td>
<td>74,27</td>
<td>139,18</td>
<td>195,72</td>
</tr>
</tbody>
</table>

Tabella A.35 – Variazione dei Tempi di Produzione per ECKCS

III° SCENARIO DI CONFRONTO: Variabilità degli arrivi della Domanda distribuiti normalmente espressa mediante il CV (σ/μ)

KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>CV (arrivi domanda)</th>
<th>0,13</th>
<th>0,16</th>
<th>0,19</th>
<th>0,22</th>
<th>0,25</th>
<th>0,28</th>
<th>0,31</th>
<th>0,34</th>
<th>0,38</th>
<th>0,41</th>
<th>0,44</th>
<th>0,47</th>
<th>0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>10,96</td>
<td>9,97</td>
<td>10,41</td>
<td>10,15</td>
<td>10,14</td>
<td>9,75</td>
<td>10,16</td>
<td>10,11</td>
<td>10,11</td>
<td>10,44</td>
<td>9,93</td>
<td>9,93</td>
<td>9,90</td>
</tr>
<tr>
<td>Cb</td>
<td>22,03</td>
<td>23,83</td>
<td>24,58</td>
<td>28,46</td>
<td>42,11</td>
<td>41,09</td>
<td>40,05</td>
<td>53,61</td>
<td>61,41</td>
<td>59,33</td>
<td>58,93</td>
<td>68,85</td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>10,96</td>
<td>9,97</td>
<td>10,41</td>
<td>10,15</td>
<td>10,14</td>
<td>9,75</td>
<td>10,16</td>
<td>10,11</td>
<td>10,11</td>
<td>10,44</td>
<td>9,93</td>
<td>9,93</td>
<td>9,90</td>
</tr>
<tr>
<td>Cr</td>
<td>32,99</td>
<td>33,79</td>
<td>34,99</td>
<td>38,60</td>
<td>52,25</td>
<td>50,85</td>
<td>50,20</td>
<td>63,72</td>
<td>63,73</td>
<td>71,45</td>
<td>71,34</td>
<td>69,26</td>
<td>78,74</td>
</tr>
<tr>
<td>Rm</td>
<td>9,39</td>
<td>10,41</td>
<td>10,33</td>
<td>11,84</td>
<td>12,27</td>
<td>16,81</td>
<td>16,36</td>
<td>14,68</td>
<td>22,75</td>
<td>23,18</td>
<td>24,79</td>
<td>23,88</td>
<td>28,29</td>
</tr>
</tbody>
</table>

Tabella A.36 – Variazione del CV (arrivi Domanda) per KCS

CONWIP CONTROL SYSTEM

<table>
<thead>
<tr>
<th>CV (arrivi domanda)</th>
<th>0,13</th>
<th>0,16</th>
<th>0,19</th>
<th>0,22</th>
<th>0,25</th>
<th>0,28</th>
<th>0,31</th>
<th>0,34</th>
<th>0,38</th>
<th>0,41</th>
<th>0,44</th>
<th>0,47</th>
<th>0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>2,64</td>
<td>2,62</td>
<td>2,64</td>
<td>2,63</td>
<td>2,65</td>
<td>2,62</td>
<td>2,63</td>
<td>2,62</td>
<td>2,62</td>
<td>2,65</td>
<td>2,61</td>
<td>2,61</td>
<td>2,64</td>
</tr>
<tr>
<td>Ls</td>
<td>99,27</td>
<td>99,14</td>
<td>99,15</td>
<td>99,08</td>
<td>98,79</td>
<td>98,70</td>
<td>98,84</td>
<td>98,89</td>
<td>98,33</td>
<td>98,44</td>
<td>98,32</td>
<td>98,28</td>
<td>97,96</td>
</tr>
<tr>
<td>Cb</td>
<td>35,01</td>
<td>40,84</td>
<td>40,47</td>
<td>43,55</td>
<td>57,29</td>
<td>61,66</td>
<td>55,29</td>
<td>52,21</td>
<td>82,86</td>
<td>72,86</td>
<td>78,78</td>
<td>80,17</td>
<td>91,32</td>
</tr>
<tr>
<td>CM</td>
<td>2,64</td>
<td>2,62</td>
<td>2,64</td>
<td>2,63</td>
<td>2,65</td>
<td>2,62</td>
<td>2,63</td>
<td>2,62</td>
<td>2,62</td>
<td>2,65</td>
<td>2,61</td>
<td>2,61</td>
<td>2,64</td>
</tr>
<tr>
<td>Cr</td>
<td>37,65</td>
<td>43,46</td>
<td>43,12</td>
<td>46,19</td>
<td>59,94</td>
<td>64,27</td>
<td>57,92</td>
<td>54,86</td>
<td>85,49</td>
<td>75,51</td>
<td>81,39</td>
<td>82,78</td>
<td>93,96</td>
</tr>
<tr>
<td>Rm</td>
<td>14,5</td>
<td>16,76</td>
<td>16,63</td>
<td>17,85</td>
<td>23,25</td>
<td>25,05</td>
<td>22,5</td>
<td>21,40</td>
<td>32,49</td>
<td>29,63</td>
<td>31,96</td>
<td>33,21</td>
<td>37,60</td>
</tr>
</tbody>
</table>

Tabella A.37 – Variazione del CV (arrivi Domanda) per CCS
APPENDICE A

Risultati delle simulazioni

<table>
<thead>
<tr>
<th>BASE STOCK CONTROL SYSTEM</th>
<th>CV (arrivi domanda)</th>
<th>0,13</th>
<th>0,16</th>
<th>0,19</th>
<th>0,22</th>
<th>0,25</th>
<th>0,28</th>
<th>0,31</th>
<th>0,34</th>
<th>0,38</th>
<th>0,41</th>
<th>0,44</th>
<th>0,47</th>
<th>0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>21,82</td>
<td>21,36</td>
<td>22,51</td>
<td>22,24</td>
<td>23,79</td>
<td>22,22</td>
<td>24,78</td>
<td>24,34</td>
<td>27,41</td>
<td>26,72</td>
<td>27,71</td>
<td>27,54</td>
<td>32,07</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>18,69</td>
<td>22,93</td>
<td>22,39</td>
<td>27,25</td>
<td>36,25</td>
<td>39,39</td>
<td>38,08</td>
<td>39,5</td>
<td>53,8</td>
<td>53,45</td>
<td>57,07</td>
<td>56,72</td>
<td>65,98</td>
<td></td>
</tr>
<tr>
<td>Crm</td>
<td>21,82</td>
<td>21,36</td>
<td>22,51</td>
<td>22,24</td>
<td>23,79</td>
<td>22,22</td>
<td>24,78</td>
<td>24,34</td>
<td>27,41</td>
<td>26,72</td>
<td>27,71</td>
<td>27,54</td>
<td>32,07</td>
<td></td>
</tr>
<tr>
<td>Rm</td>
<td>40,51</td>
<td>44,29</td>
<td>44,91</td>
<td>49,59</td>
<td>60,14</td>
<td>62,61</td>
<td>62,86</td>
<td>64,58</td>
<td>81,31</td>
<td>80,17</td>
<td>84,78</td>
<td>84,26</td>
<td>97,05</td>
<td></td>
</tr>
<tr>
<td>Rm</td>
<td>8,02</td>
<td>9,5</td>
<td>9,42</td>
<td>11,27</td>
<td>12,43</td>
<td>16,13</td>
<td>15,57</td>
<td>13,90</td>
<td>21,53</td>
<td>21,72</td>
<td>23,17</td>
<td>22,64</td>
<td>27,02</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONWIP-KANBAN CONTROL SYSTEM</th>
<th>CV (arrivi domanda)</th>
<th>0,13</th>
<th>0,16</th>
<th>0,19</th>
<th>0,22</th>
<th>0,25</th>
<th>0,28</th>
<th>0,31</th>
<th>0,34</th>
<th>0,38</th>
<th>0,41</th>
<th>0,44</th>
<th>0,47</th>
<th>0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>3,47</td>
<td>3,41</td>
<td>3,46</td>
<td>3,42</td>
<td>3,44</td>
<td>3,43</td>
<td>3,44</td>
<td>3,40</td>
<td>3,48</td>
<td>3,45</td>
<td>3,44</td>
<td>3,53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ls</td>
<td>99,29</td>
<td>99,24</td>
<td>99,26</td>
<td>98,92</td>
<td>98,81</td>
<td>98,90</td>
<td>98,99</td>
<td>98,45</td>
<td>98,49</td>
<td>98,34</td>
<td>98,41</td>
<td>98,11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>33,53</td>
<td>36,16</td>
<td>35,15</td>
<td>38,04</td>
<td>51,25</td>
<td>56,56</td>
<td>52,08</td>
<td>47,44</td>
<td>73,10</td>
<td>70,98</td>
<td>78,37</td>
<td>74,90</td>
<td>79,15</td>
<td></td>
</tr>
<tr>
<td>Crm</td>
<td>3,47</td>
<td>3,61</td>
<td>3,46</td>
<td>3,42</td>
<td>3,44</td>
<td>3,43</td>
<td>3,44</td>
<td>3,40</td>
<td>3,48</td>
<td>3,45</td>
<td>3,44</td>
<td>3,53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crm</td>
<td>37</td>
<td>39,57</td>
<td>38,60</td>
<td>41,46</td>
<td>54,69</td>
<td>59,98</td>
<td>55,52</td>
<td>50,88</td>
<td>76,51</td>
<td>74,46</td>
<td>81,82</td>
<td>78,35</td>
<td>82,68</td>
<td></td>
</tr>
<tr>
<td>Rm</td>
<td>13,85</td>
<td>14,79</td>
<td>14,40</td>
<td>15,55</td>
<td>20,83</td>
<td>22,90</td>
<td>21,06</td>
<td>19,27</td>
<td>29,55</td>
<td>28,70</td>
<td>31,59</td>
<td>30,02</td>
<td>32,39</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GENERALIZED CONTROL SYSTEM</th>
<th>CV (arrivi domanda)</th>
<th>0,13</th>
<th>0,16</th>
<th>0,19</th>
<th>0,22</th>
<th>0,25</th>
<th>0,28</th>
<th>0,31</th>
<th>0,34</th>
<th>0,38</th>
<th>0,41</th>
<th>0,44</th>
<th>0,47</th>
<th>0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>9,61</td>
<td>9,13</td>
<td>9,46</td>
<td>9,27</td>
<td>9,80</td>
<td>8,86</td>
<td>9,39</td>
<td>9,38</td>
<td>9,24</td>
<td>9,45</td>
<td>9,0</td>
<td>9,14</td>
<td>9,55</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>21,12</td>
<td>24,49</td>
<td>24,23</td>
<td>29,16</td>
<td>30,2</td>
<td>41,31</td>
<td>40,77</td>
<td>35,83</td>
<td>54,01</td>
<td>55,73</td>
<td>61,78</td>
<td>60,09</td>
<td>68,55</td>
<td></td>
</tr>
<tr>
<td>Crm</td>
<td>9,61</td>
<td>9,13</td>
<td>9,46</td>
<td>9,27</td>
<td>9,80</td>
<td>8,86</td>
<td>9,39</td>
<td>9,38</td>
<td>9,24</td>
<td>9,45</td>
<td>9,0</td>
<td>9,14</td>
<td>9,55</td>
<td></td>
</tr>
<tr>
<td>Crm</td>
<td>30,73</td>
<td>33,62</td>
<td>33,70</td>
<td>38,42</td>
<td>40,0</td>
<td>50,17</td>
<td>50,16</td>
<td>45,21</td>
<td>63,25</td>
<td>65,18</td>
<td>70,77</td>
<td>49,23</td>
<td>78,1</td>
<td></td>
</tr>
<tr>
<td>Rm</td>
<td>8,15</td>
<td>9,72</td>
<td>9,45</td>
<td>11,38</td>
<td>12,5</td>
<td>16,86</td>
<td>15,64</td>
<td>14,43</td>
<td>25,1</td>
<td>22,17</td>
<td>23,82</td>
<td>23,01</td>
<td>27,86</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXTENDED KANBAN CONTROL SYSTEM</th>
<th>CV (arrivi domanda)</th>
<th>0,13</th>
<th>0,16</th>
<th>0,19</th>
<th>0,22</th>
<th>0,25</th>
<th>0,28</th>
<th>0,31</th>
<th>0,34</th>
<th>0,38</th>
<th>0,41</th>
<th>0,44</th>
<th>0,47</th>
<th>0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>12,14</td>
<td>11,57</td>
<td>12,15</td>
<td>11,77</td>
<td>12,81</td>
<td>11,78</td>
<td>11,95</td>
<td>12,01</td>
<td>12,03</td>
<td>12,33</td>
<td>11,80</td>
<td>11,90</td>
<td>12,01</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>18,88</td>
<td>23,6</td>
<td>22,01</td>
<td>27,03</td>
<td>31</td>
<td>41,2</td>
<td>38,52</td>
<td>33,89</td>
<td>53,9</td>
<td>55,13</td>
<td>59,01</td>
<td>58,97</td>
<td>67,91</td>
<td></td>
</tr>
<tr>
<td>Crm</td>
<td>12,14</td>
<td>11,36</td>
<td>12,15</td>
<td>11,77</td>
<td>12,81</td>
<td>11,78</td>
<td>11,95</td>
<td>12,01</td>
<td>12,03</td>
<td>12,33</td>
<td>11,80</td>
<td>11,90</td>
<td>12,01</td>
<td></td>
</tr>
<tr>
<td>Crm</td>
<td>31,02</td>
<td>35,17</td>
<td>34,16</td>
<td>38,81</td>
<td>43,81</td>
<td>52,98</td>
<td>50,46</td>
<td>45,89</td>
<td>65,96</td>
<td>67,46</td>
<td>70,81</td>
<td>70,88</td>
<td>79,92</td>
<td></td>
</tr>
<tr>
<td>Rm</td>
<td>8,13</td>
<td>9,73</td>
<td>9,41</td>
<td>11,35</td>
<td>13,24</td>
<td>17,2</td>
<td>16,16</td>
<td>14,41</td>
<td>22,19</td>
<td>23,17</td>
<td>24,26</td>
<td>22,98</td>
<td>27,81</td>
<td></td>
</tr>
</tbody>
</table>

Tabella A.40 – Variazione del CV (arrivi Domanda) per GKCS

Tabella A.41 – Variazione del CV (arrivi Domanda) per EKCS

Tabella A.42 – Variazione del CV (arrivi Domanda) per GKC

Tabella A.43 – Variazione del CV (arrivi Domanda) per CKC
APPENDICE A

Risultati delle simulazioni

EXTENDED-CONWIP-KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>CV (arrivi domanda)</th>
<th>0,13</th>
<th>0,16</th>
<th>0,19</th>
<th>0,22</th>
<th>0,25</th>
<th>0,28</th>
<th>0,31</th>
<th>0,34</th>
<th>0,38</th>
<th>0,41</th>
<th>0,44</th>
<th>0,47</th>
<th>0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>9,59</td>
<td>9,11</td>
<td>9,43</td>
<td>9,24</td>
<td>9,50</td>
<td>8,85</td>
<td>9,37</td>
<td>9,36</td>
<td>9,21</td>
<td>9,42</td>
<td>8,97</td>
<td>9,12</td>
<td>9,51</td>
</tr>
<tr>
<td>Cb</td>
<td>18,71</td>
<td>23,54</td>
<td>22,0</td>
<td>27,02</td>
<td>30,95</td>
<td>41,18</td>
<td>38,5</td>
<td>33,82</td>
<td>53,91</td>
<td>55,67</td>
<td>58,76</td>
<td>58,93</td>
<td>67,89</td>
</tr>
<tr>
<td>Cm</td>
<td>9,59</td>
<td>9,11</td>
<td>9,43</td>
<td>9,24</td>
<td>9,50</td>
<td>8,85</td>
<td>9,37</td>
<td>9,37</td>
<td>9,21</td>
<td>9,42</td>
<td>8,97</td>
<td>9,12</td>
<td>9,51</td>
</tr>
<tr>
<td>Cr</td>
<td>28,3</td>
<td>12,68</td>
<td>31,43</td>
<td>36,26</td>
<td>40,45</td>
<td>50,03</td>
<td>47,87</td>
<td>43,18</td>
<td>63,12</td>
<td>65,09</td>
<td>67,73</td>
<td>68,08</td>
<td>77,4</td>
</tr>
<tr>
<td>Rm</td>
<td>8,07</td>
<td>9,54</td>
<td>9,40</td>
<td>11,28</td>
<td>12,86</td>
<td>16,86</td>
<td>15,74</td>
<td>14,93</td>
<td>22,06</td>
<td>22,08</td>
<td>23,82</td>
<td>23,89</td>
<td>27,59</td>
</tr>
</tbody>
</table>

Tabella A.42 – Variazione del CV (arrivi Domanda) per ECKCS

KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>CV (tempi produzione)</th>
<th>0,1</th>
<th>0,13</th>
<th>0,18</th>
<th>0,2</th>
<th>0,23</th>
<th>0,25</th>
<th>0,28</th>
<th>0,3</th>
<th>0,33</th>
<th>0,35</th>
<th>0,38</th>
<th>0,4</th>
<th>0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>10,96</td>
<td>11,37</td>
<td>10,65</td>
<td>11,47</td>
<td>10,73</td>
<td>11,6</td>
<td>10,75</td>
<td>11,6</td>
<td>11,10</td>
<td>11,72</td>
<td>11,52</td>
<td>11,76</td>
<td>11,23</td>
</tr>
<tr>
<td>Cb</td>
<td>22,03</td>
<td>16,95</td>
<td>20,88</td>
<td>17,48</td>
<td>22,09</td>
<td>18,02</td>
<td>25,43</td>
<td>18,81</td>
<td>24,18</td>
<td>19,77</td>
<td>24,21</td>
<td>21,09</td>
<td>33,19</td>
</tr>
<tr>
<td>Cm</td>
<td>10,96</td>
<td>11,37</td>
<td>10,65</td>
<td>11,47</td>
<td>10,73</td>
<td>11,6</td>
<td>10,75</td>
<td>11,6</td>
<td>11,10</td>
<td>11,72</td>
<td>11,52</td>
<td>11,76</td>
<td>11,23</td>
</tr>
<tr>
<td>Cr</td>
<td>32,89</td>
<td>28,32</td>
<td>31,53</td>
<td>28,95</td>
<td>32,82</td>
<td>29,62</td>
<td>36,18</td>
<td>30,47</td>
<td>35,28</td>
<td>31,49</td>
<td>35,73</td>
<td>32,85</td>
<td>44,42</td>
</tr>
<tr>
<td>Rm</td>
<td>9,39</td>
<td>7,33</td>
<td>8,89</td>
<td>7,54</td>
<td>9,32</td>
<td>7,75</td>
<td>10,67</td>
<td>10,71</td>
<td>10,15</td>
<td>8,44</td>
<td>10,21</td>
<td>8,96</td>
<td>13,74</td>
</tr>
</tbody>
</table>

Tabella A.43 – Variazione del CV (Tempi Produzione) per KCS

CONWIP CONTROL SYSTEM

<table>
<thead>
<tr>
<th>CV (tempi produzione)</th>
<th>0,1</th>
<th>0,13</th>
<th>0,15</th>
<th>0,18</th>
<th>0,2</th>
<th>0,23</th>
<th>0,25</th>
<th>0,28</th>
<th>0,3</th>
<th>0,33</th>
<th>0,35</th>
<th>0,38</th>
<th>0,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>2,64</td>
<td>2,67</td>
<td>2,68</td>
<td>2,70</td>
<td>2,73</td>
<td>2,74</td>
<td>2,79</td>
<td>2,79</td>
<td>2,86</td>
<td>2,98</td>
<td>2,95</td>
<td>3,03</td>
<td>2,64</td>
</tr>
<tr>
<td>Ls</td>
<td>99,27</td>
<td>99,39</td>
<td>99,13</td>
<td>99,3</td>
<td>98,79</td>
<td>99,12</td>
<td>98,45</td>
<td>98,72</td>
<td>97,78</td>
<td>97,98</td>
<td>96,58</td>
<td>97,02</td>
<td>95,83</td>
</tr>
<tr>
<td>Cb</td>
<td>35,01</td>
<td>28,99</td>
<td>41,46</td>
<td>33,18</td>
<td>57,02</td>
<td>41,98</td>
<td>72,03</td>
<td>60,39</td>
<td>102,2</td>
<td>93,59</td>
<td>153,8</td>
<td>135,6</td>
<td>185</td>
</tr>
<tr>
<td>Cm</td>
<td>2,64</td>
<td>2,67</td>
<td>2,68</td>
<td>2,70</td>
<td>2,73</td>
<td>2,74</td>
<td>2,79</td>
<td>2,79</td>
<td>2,86</td>
<td>2,98</td>
<td>2,95</td>
<td>3,03</td>
<td>2,64</td>
</tr>
<tr>
<td>Cr</td>
<td>37,65</td>
<td>31,66</td>
<td>44,14</td>
<td>35,88</td>
<td>44,71</td>
<td>44,72</td>
<td>74,82</td>
<td>63,18</td>
<td>105,1</td>
<td>96,57</td>
<td>156,8</td>
<td>138,6</td>
<td>187,6</td>
</tr>
<tr>
<td>Rm</td>
<td>14,5</td>
<td>12,14</td>
<td>17,01</td>
<td>13,74</td>
<td>23,21</td>
<td>17,16</td>
<td>29,21</td>
<td>24,40</td>
<td>41,09</td>
<td>37,6</td>
<td>61,84</td>
<td>54,31</td>
<td>74,05</td>
</tr>
</tbody>
</table>

Tabella A.44 – Variazione del CV (Tempi Produzione) per CCS
APPENDICE A

Risultati delle simulazioni

BASE STOCK CONTROL SYSTEM

<table>
<thead>
<tr>
<th>CV (tempi produzione)</th>
<th>0,1</th>
<th>0,13</th>
<th>0,15</th>
<th>0,18</th>
<th>0,2</th>
<th>0,23</th>
<th>0,25</th>
<th>0,28</th>
<th>0,3</th>
<th>0,33</th>
<th>0,35</th>
<th>0,38</th>
<th>0,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>21,82</td>
<td>19,78</td>
<td>22,02</td>
<td>23,56</td>
<td>23,36</td>
<td>23,83</td>
<td>22,52</td>
<td>24,11</td>
<td>22,72</td>
<td>24,5</td>
<td>24,41</td>
<td>24,95</td>
<td>24,67</td>
</tr>
<tr>
<td>Cw</td>
<td>18,69</td>
<td>15,47</td>
<td>18,42</td>
<td>15,79</td>
<td>20,79</td>
<td>16,06</td>
<td>21,35</td>
<td>16,35</td>
<td>25,4</td>
<td>16,63</td>
<td>24,52</td>
<td>17,18</td>
<td>22,87</td>
</tr>
<tr>
<td>Cm</td>
<td>21,82</td>
<td>19,78</td>
<td>22,02</td>
<td>23,56</td>
<td>23,36</td>
<td>28,83</td>
<td>22,52</td>
<td>24,11</td>
<td>22,72</td>
<td>24,6</td>
<td>24,41</td>
<td>24,95</td>
<td>24,67</td>
</tr>
<tr>
<td>Cr</td>
<td>40,51</td>
<td>35,25</td>
<td>40,44</td>
<td>43,35</td>
<td>39,35</td>
<td>39,89</td>
<td>44,02</td>
<td>40,46</td>
<td>48,12</td>
<td>41,43</td>
<td>48,93</td>
<td>42,13</td>
<td>47,54</td>
</tr>
<tr>
<td>Rm</td>
<td>8,02</td>
<td>6,73</td>
<td>8,89</td>
<td>6,85</td>
<td>8,79</td>
<td>6,95</td>
<td>9,03</td>
<td>7,06</td>
<td>9,01</td>
<td>7,25</td>
<td>10,15</td>
<td>7,38</td>
<td>9,62</td>
</tr>
</tbody>
</table>

CONWIP-KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>CV (tempi produzione)</th>
<th>0,1</th>
<th>0,13</th>
<th>0,15</th>
<th>0,18</th>
<th>0,2</th>
<th>0,23</th>
<th>0,25</th>
<th>0,28</th>
<th>0,3</th>
<th>0,33</th>
<th>0,35</th>
<th>0,38</th>
<th>0,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>3,47</td>
<td>3,51</td>
<td>3,50</td>
<td>3,55</td>
<td>3,54</td>
<td>3,59</td>
<td>3,62</td>
<td>3,64</td>
<td>3,70</td>
<td>3,69</td>
<td>3,76</td>
<td>3,77</td>
<td>3,84</td>
</tr>
<tr>
<td>Cw</td>
<td>33,53</td>
<td>26,55</td>
<td>38,13</td>
<td>29,0</td>
<td>41,72</td>
<td>33,24</td>
<td>45,4</td>
<td>41,16</td>
<td>66,43</td>
<td>57,94</td>
<td>90,66</td>
<td>87,14</td>
<td>128,5</td>
</tr>
<tr>
<td>Cm</td>
<td>3,47</td>
<td>3,51</td>
<td>3,50</td>
<td>3,55</td>
<td>3,54</td>
<td>3,59</td>
<td>3,62</td>
<td>3,64</td>
<td>3,70</td>
<td>3,69</td>
<td>3,76</td>
<td>3,77</td>
<td>3,84</td>
</tr>
<tr>
<td>Cr</td>
<td>37,0</td>
<td>30,06</td>
<td>41,63</td>
<td>32,55</td>
<td>45,26</td>
<td>36,83</td>
<td>49,02</td>
<td>44,8</td>
<td>70,13</td>
<td>61,63</td>
<td>94,42</td>
<td>90,91</td>
<td>132,3</td>
</tr>
<tr>
<td>Rm</td>
<td>13,85</td>
<td>11,05</td>
<td>15,15</td>
<td>11,99</td>
<td>16,95</td>
<td>13,65</td>
<td>18,47</td>
<td>16,74</td>
<td>26,74</td>
<td>23,37</td>
<td>36,51</td>
<td>34,98</td>
<td>51,83</td>
</tr>
</tbody>
</table>

GENERALIZED KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>CV (tempi produzione)</th>
<th>0,1</th>
<th>0,13</th>
<th>0,15</th>
<th>0,18</th>
<th>0,2</th>
<th>0,23</th>
<th>0,25</th>
<th>0,28</th>
<th>0,3</th>
<th>0,33</th>
<th>0,35</th>
<th>0,38</th>
<th>0,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>9,61</td>
<td>10,41</td>
<td>9,90</td>
<td>10,49</td>
<td>9,54</td>
<td>10,57</td>
<td>9,59</td>
<td>10,02</td>
<td>10,59</td>
<td>10,09</td>
<td>10,57</td>
<td>10,25</td>
<td></td>
</tr>
<tr>
<td>Cw</td>
<td>21,12</td>
<td>17,28</td>
<td>21,97</td>
<td>17,83</td>
<td>23,79</td>
<td>18,53</td>
<td>27,47</td>
<td>19,35</td>
<td>27,13</td>
<td>20,95</td>
<td>26,68</td>
<td>22,2</td>
<td>32,4</td>
</tr>
<tr>
<td>Cm</td>
<td>9,61</td>
<td>10,41</td>
<td>9,90</td>
<td>10,49</td>
<td>9,94</td>
<td>10,57</td>
<td>9,5</td>
<td>10,57</td>
<td>10,02</td>
<td>10,59</td>
<td>10,09</td>
<td>10,57</td>
<td>10,24</td>
</tr>
<tr>
<td>Cr</td>
<td>30,73</td>
<td>27,69</td>
<td>31,87</td>
<td>28,32</td>
<td>31,73</td>
<td>29,1</td>
<td>29,92</td>
<td>32,15</td>
<td>31,54</td>
<td>36,77</td>
<td>32,87</td>
<td>42,65</td>
<td></td>
</tr>
<tr>
<td>Rm</td>
<td>8,15</td>
<td>7,46</td>
<td>9,32</td>
<td>7,68</td>
<td>10,03</td>
<td>7,95</td>
<td>11,47</td>
<td>8,27</td>
<td>11,36</td>
<td>8,92</td>
<td>11,19</td>
<td>9,43</td>
<td>13,50</td>
</tr>
</tbody>
</table>

EXTENDED KANBAN CONTROL SYSTEM

<table>
<thead>
<tr>
<th>CV (tempi produzione)</th>
<th>0,1</th>
<th>0,13</th>
<th>0,15</th>
<th>0,18</th>
<th>0,2</th>
<th>0,23</th>
<th>0,25</th>
<th>0,28</th>
<th>0,3</th>
<th>0,33</th>
<th>0,35</th>
<th>0,38</th>
<th>0,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>12,14</td>
<td>13,24</td>
<td>12,09</td>
<td>13,41</td>
<td>12,81</td>
<td>13,61</td>
<td>12,96</td>
<td>13,73</td>
<td>12,76</td>
<td>13,92</td>
<td>13,57</td>
<td>14,05</td>
<td>13,54</td>
</tr>
<tr>
<td>Cw</td>
<td>18,88</td>
<td>16,33</td>
<td>24,03</td>
<td>16,73</td>
<td>22,07</td>
<td>17,13</td>
<td>25,51</td>
<td>17,71</td>
<td>27,38</td>
<td>18,4</td>
<td>24,16</td>
<td>19,34</td>
<td>27,51</td>
</tr>
<tr>
<td>Cm</td>
<td>12,14</td>
<td>13,24</td>
<td>12,09</td>
<td>13,41</td>
<td>12,81</td>
<td>13,61</td>
<td>12,96</td>
<td>13,73</td>
<td>12,76</td>
<td>13,92</td>
<td>13,57</td>
<td>14,05</td>
<td>13,54</td>
</tr>
<tr>
<td>Cr</td>
<td>31,02</td>
<td>29,57</td>
<td>36,12</td>
<td>30,14</td>
<td>34,88</td>
<td>30,74</td>
<td>38,47</td>
<td>31,44</td>
<td>40,14</td>
<td>32,32</td>
<td>37,73</td>
<td>33,39</td>
<td>41,05</td>
</tr>
<tr>
<td>Rm</td>
<td>8,13</td>
<td>7,24</td>
<td>10,75</td>
<td>7,45</td>
<td>10,25</td>
<td>7,69</td>
<td>11,01</td>
<td>8,0</td>
<td>8,76</td>
<td>8,41</td>
<td>10,77</td>
<td>9,04</td>
<td>12,16</td>
</tr>
</tbody>
</table>
DIMENSIONAMENTO DELLE SIMULAZIONI
Avendo a che fare con modelli stocastici, è stato necessario dimensionare opportunamente le simulazioni, in modo da ottenere risultati relativi ai parametri di confronto che fossero statisticamente significativi.
Si riportano di seguito i risultati ottenuti utilizzando il metodo iterativo delle replicazioni indipendenti, applicato a ciascun indicatore di performance (per ogni modello).

Tabella A.49 – Variazione del CV (Tempi Produzione) per ECKCS

<table>
<thead>
<tr>
<th>CV (tempi produzione)</th>
<th>0,1</th>
<th>0,13</th>
<th>0,15</th>
<th>0,18</th>
<th>0,2</th>
<th>0,23</th>
<th>0,25</th>
<th>0,28</th>
<th>0,3</th>
<th>0,33</th>
<th>0,35</th>
<th>0,38</th>
<th>0,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIP</td>
<td>9,59</td>
<td>10,57</td>
<td>9,76</td>
<td>10,67</td>
<td>10,15</td>
<td>10,75</td>
<td>10,34</td>
<td>10,81</td>
<td>10,91</td>
<td>10,89</td>
<td>10,77</td>
<td>10,97</td>
<td>10,57</td>
</tr>
<tr>
<td>Cb</td>
<td>18,71</td>
<td>16,3</td>
<td>24,01</td>
<td>16,69</td>
<td>22,0</td>
<td>17,1</td>
<td>25,49</td>
<td>17,68</td>
<td>27,35</td>
<td>18,37</td>
<td>24,13</td>
<td>19,31</td>
<td>27,48</td>
</tr>
<tr>
<td>Cr</td>
<td>9,59</td>
<td>10,57</td>
<td>9,76</td>
<td>10,67</td>
<td>10,15</td>
<td>10,75</td>
<td>10,34</td>
<td>10,81</td>
<td>10,91</td>
<td>10,89</td>
<td>10,77</td>
<td>10,97</td>
<td>10,57</td>
</tr>
<tr>
<td>Cm</td>
<td>28,3</td>
<td>26,87</td>
<td>33,77</td>
<td>27,36</td>
<td>32,15</td>
<td>27,85</td>
<td>35,83</td>
<td>28,49</td>
<td>38,26</td>
<td>29,26</td>
<td>34,9</td>
<td>30,28</td>
<td>38,05</td>
</tr>
<tr>
<td>Rm</td>
<td>8,07</td>
<td>7,97</td>
<td>10,05</td>
<td>7,24</td>
<td>9,38</td>
<td>7,39</td>
<td>10,73</td>
<td>7,62</td>
<td>8,55</td>
<td>7,89</td>
<td>10,19</td>
<td>8,26</td>
<td>11,42</td>
</tr>
</tbody>
</table>

Tabella A.50 – Numero opportuno repliche di una simulazione (KCS)

<table>
<thead>
<tr>
<th>KCS</th>
<th>n=10 replicazioni</th>
<th>Average</th>
<th>Half width (h_P)</th>
<th>npi replicazioni > n0 : h_P ≤ β</th>
<th>Average</th>
<th>Half width (h_P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Costo totale</td>
<td>24,849</td>
<td>1,9</td>
<td>503</td>
<td>24,3</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td>Livello di servizio</td>
<td>99,76</td>
<td>0,05</td>
<td>10</td>
<td>99,76</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>WIP medio</td>
<td>5,3618</td>
<td>0,46</td>
<td>37</td>
<td>13,0566</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td>Ritardo medio</td>
<td>0,93</td>
<td>0,93</td>
<td>131</td>
<td>5,0073</td>
<td>0,25</td>
</tr>
</tbody>
</table>

Tabella A.51 – Numero opportuno repliche di una simulazione (CCS)

<table>
<thead>
<tr>
<th>CCS</th>
<th>n=10 replicazioni</th>
<th>Average</th>
<th>Half width (h_P)</th>
<th>npi replicazioni > n0 : h_P ≤ β</th>
<th>Average</th>
<th>Half width (h_P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Costo totale</td>
<td>20,8232</td>
<td>4,26</td>
<td>1411</td>
<td>20,03</td>
<td>0,25</td>
</tr>
<tr>
<td></td>
<td>Livello di servizio</td>
<td>99,62</td>
<td>0,09</td>
<td>10</td>
<td>99,62</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td>WIP medio</td>
<td>2,7401</td>
<td>0,01</td>
<td>10</td>
<td>2,7401</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>Ritardo medio</td>
<td>8,2457</td>
<td>1,77</td>
<td>349</td>
<td>7,6919</td>
<td>0,25</td>
</tr>
</tbody>
</table>
APPENDICE A
Risultati delle simulazioni

Tabella A.52 – Numero opportuno repliche di una simulazione (BSCS)

<table>
<thead>
<tr>
<th>Costo totale</th>
<th>Average</th>
<th>Half width (h_p)</th>
<th>ηpi replicazioni > n0 : h_p ≤ β</th>
<th>Average</th>
<th>Half width (h_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSCS n=10 replicazioni</td>
<td>35,92</td>
<td>2,61</td>
<td>279</td>
<td>35,57</td>
<td>0,25</td>
</tr>
<tr>
<td>Livello di servizio</td>
<td>99,79</td>
<td>0,03</td>
<td>10</td>
<td>99,79</td>
<td>0,03</td>
</tr>
<tr>
<td>WIP medio</td>
<td>25,82</td>
<td>1,3</td>
<td>132</td>
<td>25,18</td>
<td>0,25</td>
</tr>
<tr>
<td>Ritardo medio</td>
<td>4,66</td>
<td>0,55</td>
<td>67</td>
<td>4,49</td>
<td>0,25</td>
</tr>
</tbody>
</table>

Tabella A.53 – Numero opportuno repliche di una simulazione (CKCS)

<table>
<thead>
<tr>
<th>Costo totale</th>
<th>Average</th>
<th>Half width (h_p)</th>
<th>ηpi replicazioni > n0 : h_p ≤ β</th>
<th>Average</th>
<th>Half width (h_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CKCS n=10 replicazioni</td>
<td>20,33</td>
<td>3,87</td>
<td>1398</td>
<td>19,62</td>
<td>0,25</td>
</tr>
<tr>
<td>Livello di servizio</td>
<td>99,65</td>
<td>0,08</td>
<td>10</td>
<td>99,65</td>
<td>0,08</td>
</tr>
<tr>
<td>WIP medio</td>
<td>3,66</td>
<td>0,03</td>
<td>10</td>
<td>3,66</td>
<td>0,03</td>
</tr>
<tr>
<td>Ritardo medio</td>
<td>7,31</td>
<td>1,6</td>
<td>243</td>
<td>6,91</td>
<td>0,25</td>
</tr>
</tbody>
</table>

Tabella A.54 – Numero opportuno repliche di una simulazione (GKCS)

<table>
<thead>
<tr>
<th>Costo totale</th>
<th>Average</th>
<th>Half width (h_p)</th>
<th>ηpi replicazioni > n0 : h_p ≤ β</th>
<th>Average</th>
<th>Half width (h_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GKCS n=10 replicazioni</td>
<td>24,23</td>
<td>2,19</td>
<td>561</td>
<td>23,2</td>
<td>0,25</td>
</tr>
<tr>
<td>Livello di servizio</td>
<td>99,75</td>
<td>0,05</td>
<td>10</td>
<td>99,75</td>
<td>0,05</td>
</tr>
<tr>
<td>WIP medio</td>
<td>12,14</td>
<td>0,48</td>
<td>36</td>
<td>12,06</td>
<td>0,25</td>
</tr>
<tr>
<td>Ritardo medio</td>
<td>5,51</td>
<td>1,05</td>
<td>142</td>
<td>5,09</td>
<td>0,25</td>
</tr>
</tbody>
</table>

Tabella A.55 – Numero opportuno repliche di una simulazione (EKCS)

<table>
<thead>
<tr>
<th>Costo totale</th>
<th>Average</th>
<th>Half width (h_p)</th>
<th>ηpi replicazioni > n0 : h_p ≤ β</th>
<th>Average</th>
<th>Half width (h_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EKCS n=10 replicazioni</td>
<td>26,36</td>
<td>1,74</td>
<td>352</td>
<td>25,88</td>
<td>0,25</td>
</tr>
<tr>
<td>Livello di servizio</td>
<td>99,76</td>
<td>0,04</td>
<td>10</td>
<td>99,76</td>
<td>0,04</td>
</tr>
<tr>
<td>WIP medio</td>
<td>15,08</td>
<td>0,41</td>
<td>28</td>
<td>15,11</td>
<td>0,25</td>
</tr>
<tr>
<td>Ritardo medio</td>
<td>5,18</td>
<td>0,79</td>
<td>57</td>
<td>4,88</td>
<td>0,25</td>
</tr>
</tbody>
</table>

Tabella A.56 – Numero opportuno repliche di una simulazione (KCS)

<table>
<thead>
<tr>
<th>Costo totale</th>
<th>Average</th>
<th>Half width (h_p)</th>
<th>ηpi replicazioni > n0 : h_p ≤ β</th>
<th>Average</th>
<th>Half width (h_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECKS n=10 replicazioni</td>
<td>15,47</td>
<td>1,62</td>
<td>372</td>
<td>22,51</td>
<td>0,25</td>
</tr>
<tr>
<td>Livello di servizio</td>
<td>99,77</td>
<td>0,04</td>
<td>10</td>
<td>99,77</td>
<td>0,04</td>
</tr>
<tr>
<td>WIP medio</td>
<td>11,67</td>
<td>0,28</td>
<td>12</td>
<td>11,7</td>
<td>0,25</td>
</tr>
<tr>
<td>Ritardo medio</td>
<td>5,15</td>
<td>0,74</td>
<td>61</td>
<td>4,95</td>
<td>0,25</td>
</tr>
</tbody>
</table>
APPENDICE B: UN’APPLICAZIONE

In Appendice si riporta un applicazione dei modelli di simulazione costruiti nel Capitolo 3. In particolare tali modelli sono stati opportunamente modificati al fine di modellare un sistema produttivo conciario (che nel nostro caso è da semi-lavorato a finito) di una azienda nel napoletano che date le sue caratteristiche stava vagliando l’opportunità di implementare delle logiche di produzione a trazione. Il processo produttivo dell’azienda in questione è stato rappresentato attraverso la seguente Value Stream Map.

Current state map da wet-blue a finite

Consideriamo la mappa del flusso del valore attuale (Figura B.1) del processo che trasforma il semilavorato wet–blue in pelle finita riportata in figura. La gestione programmata della produzione è rappresentata al centro in alto della mappa. In alto a sinistra si trova il fornitore della materia prima mentre in alto a destra si trova il cliente finale. Il fornitore del semilavorato wet-blue è prevalentemente esterno all’azienda. Infatti la conceria acquista prodotti (semilavorati) che hanno subito le prime fasi del processo produttivo per soddisfare l’intero fabbisogno dei clienti. I clienti finali (esterni) generano una domanda di 38400 pelli/mese, e poiché si lavora 24 giorni al mese, la domanda giornaliera è di 1600 pelli/giorno. Inoltre si effettuano dalla conceria delle spedizioni giornaliere di prodotti finiti.
Figura B.1 Mappa del flusso del valore da wet-blue a grezzo
Nella zona della mappa in alto a destra, vicino l’icona del cliente, vi è un box in cui si riporta oltre che il quantitativo mensile richiesto dai clienti, il takt time calcolato come il rapporto tra il tempo di lavoro giornaliero e la richiesta giornaliera del cliente; nel nostro caso:

Takt time= 18sec.

Per quanto riguarda il flusso informativo, rappresentato nella mappa da frecce di diverse forme, si effettua uno scheduling attraverso riunioni settimanali con i diversi capi reparto, e, inoltre, per ogni processo vengono inviate al sistema centrale informazioni, in formato elettronico. Per quanto riguarda i flussi fisici, si hanno nell’ordine:
- magazzino semilavorati;
- operazioni preliminari;
- attesa;
- riconcia tintura e ingrasso;
- attesa;
- asciugamento;
- attesa;
- processo di palissonatura;
- attesa;
- processo di inchiodaggio;
- attesa;
- rifinitura;
- attesa.

Ciascun processo è rappresentato da un process box in cui sono presenti le informazioni relative al processo:
- il nome;
- le risorse umane dedicate.
Ulteriori informazioni sono contenute nella griglia sottostante il process box, dove sono inseriti in modo sintetico i parametri:
- tempo ciclo, necessario per la lavorazione di una pelle;
- tempo di setup, necessario per cambiare le attrezzature sulla macchina;
- grado di affidabilità che tiene conto di eventuali problemi relativi a probabilità di guasto della macchina, difettosità e scarti ed eventuale carenza del personale;
- tempo disponibile che rappresenta la durata del turno di lavoro al netto di break e interruzioni programmate che non essendoci risulta pari a 28800 secondi.

Dal magazzino semilavorati (figura) si prelevano giornalmente le quantità di materiale che dovrà essere lavorata. Nel box relativo alle Operazioni Preliminari compaiono il tempo di ciclo paria 14,4 secondi con l’aiuto di un operatore e relativi Uptime e Avaliable time. Successivamente le pelli, dopo una breve attesa, vengono caricate in opportuni bottali per subire il processo di Riconcia – Tintura – Ingrasso che sono operazioni di tipo chimico che hanno una durata di circa 9 ore; considero, quindi, come tempo ciclo (tempo a valore aggiunto) di 9 secondi.

Di seguito vi sono delle pelli in scorta che attendono di essere processate dall’operazione di Asciugamento. In tale operazione le pelli vengono in un tempo ciclo di 13,3 mediante l’aiuto di otto operatori. Dopodiché vi è una scorta di pelli che attendono di subire la palissonatura rappresentata nel box successivo. La palissonatura è un operazione meccanica che rende le pelli più morbide e confortevoli. Nella conceria vi sono due palissoni che funzionano con l’aiuto di 4 operatori rappresentati nel box da un’apposita icona. Inoltre nella griglia sottostante il box si riporta il tempo ciclo pari a 12 secondi, il tempo disponibile pari a 28800 e l’affidabilità dell’impianto espressa in percentuale. Poi si ha un magazzino intermedio in cui sono conservati i semilavorati in attesa di essere effettuata l’operazione di inchiodaggio. Il tempo di ciclo è pari a 11,2 secondi con l’aiuto di tre operatori, Uptime del 98% ce Avaliable Time di 28800 secondi.
L’ultima operazione è quella di rifinizione. Ottenuta in un tempo ciclo di 11,2 secondi attraverso l’utilizzo di 8 operatori che svolgono le diverse operazioni. Uptime del 98% ed Avaliable Time di 28800 secondi. Le pelli misurate vengono imballate e pronte per la spedizione al cliente.

Infine, nella estremità inferiore della mappa si trova la time line suddivisa in due parti:
- quella a valore, dove sono indicati i tempi delle attività che aggiungono valore al prodotto;
- quella a non valore, dove sono indicate le durate delle attività a non valore, come soste e attese di materiale.

In particolare, per ciascuna scorta interoperazionale si è effettuata una stima, espressa in termini di tempo, basata sui quantitativi medi presenti a magazzino durante la gestione attuale. Tale stima mostra una dei valori molto consistenti di materiali a scorta che incidono molto in termini di costi. Il tempo di attraversamento complessivo sulla time line risulta pari a circa 13,552 giorni.

Ricapitolando, l’obiettivo ultimo che si prefigge questo studio riguarda, da un lato il livellamento dei valori dei Lead Time e di Processing Time che discostano molto tra di loro rendendo il processo produttivo poco efficiente, e dall’altro una significativa riduzione delle scorte. In tale ottica, la proposta di attuazione delle logiche Pull di produzione è mirata all’ottenimento di tale miglioramento, al fine di garantire dei parametri di produttività più efficaci, capaci di rendere il processo quanto più efficiente possibile.

Tale processo produttivo è stato modellato secondo le sette logiche di controllo della produzione pull decritte nel capitolo 2 ed è stato ottimizzato al fine di individuale quale delle sette fosse la più conveniente da implementare.

Il problema è stato così impostato:
I risultati ottenuti costituiscono il punto di partenza per l’analisi ed il confronto dei diversi sistemi di controllo della produzione considerati in questo lavoro di tesi. Essi risultano utili ad identificare le variabili di stato appartenenti alle diverse logiche. In particolare, in riferimento al caso reale, per l’identificazione dei valori ottimi del numero di cartellini Kanban, del numero di cartellini CONWIP e del livello di Base Stock, bisogna innanzitutto considerare che la movimentazione dei pezzi avviene tramite l’utilizzo di carrelli standard, che permettono la movimentazione di materie prime, semilavorati e pezzi finiti. Tenendo presente la capacità di trasporto di tali moduli (che ammonta a 25 pelli ciascuno), è facile risalire al valore ottimo delle diverse variabili. I risultati ottimi, essendo nell’ordine del numero di pezzi, sono stati manipolati in base alla standardizzazione del processo considerato. In base ai valori ottimi delle variabili riferiti alla funzione obiettivo descritta in precedenza, vincolati ad un certo livello di servizio, si ottengono di conseguenza i diversi valori delle caratteristiche produttive peculiari dei singoli modelli quali: Costo di Backlog, Costo di Mantenimento, Costo Totale, Livello di Servizio e Work in Process. Tutti i risultati vengono riassunti nella tabella riportata di seguito:
Tabella B.1 - Risultati dell’ottimizzazione

<table>
<thead>
<tr>
<th>KANBAN C.S.</th>
<th>CONWIP C.S.</th>
<th>BASE_STOCK C.S.</th>
<th>EXTENDED-KANBAN C.S.</th>
<th>EXTENDED-CONWIP C.S.</th>
<th>GENERALIZED KANBAN C.S.</th>
<th>COSTO DI BACKLOG (€)</th>
<th>COSTO DI MANTENIMENTO (€)</th>
<th>LIVELLO DI SERVIZIO (%)</th>
<th>WIP (PEZZI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>599</td>
<td>615</td>
<td>560</td>
<td>615</td>
<td>561</td>
<td>561</td>
<td>5250</td>
<td>2800</td>
<td>95.2</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5849</td>
<td>3415</td>
<td>95.3</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6973</td>
<td>3765</td>
<td>95.2</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6756</td>
<td>3011</td>
<td>95.4</td>
<td>885</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3011</td>
<td>3011</td>
<td>95.4</td>
<td>885</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350</td>
<td>350</td>
<td>95.4</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350</td>
<td>350</td>
<td>95.4</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350</td>
<td>350</td>
<td>95.4</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350</td>
<td>350</td>
<td>95.4</td>
<td>350</td>
</tr>
</tbody>
</table>
Partiamo dal considerare innanzitutto le tre logiche di base.
Questo studio ha dimostrato una maggiore produttività media raggiunta con il controllo CONWIP, piuttosto che con quello Kanban per il sistema in serie single-product considerato. Con la logica CONWIP è possibile, infatti, garantire livelli inventariali più bassi e produttività meno variabile rispetto al controllo Kanban. Per il sistema CONWIP è evidente una quantità di WIP minore e produttività maggiore rispetto al sistema Kanban.
Le prestazioni della politica di controllo Base Stock invece, si presentano leggermente inferiori rispetto alle altre due politiche. Compaiono, infatti, dei valori di Costi totali e di WIP maggiori. Risulta, però un miglior livello di servizio coerentemente col fatto che questo tipo di logica è caratterizzata da una scorta di sicurezza per le giacenze dei prodotti finiti come buffer di sicurezza tra le fasi di coordinamento.
Per quanto riguarda la tecnica ibrida CONWIP-Kanban, in accordo con quanto riscontrato in letteratura, le prestazioni di un sistema ibrido CONWIP-Kanban risultano migliori rispetto a quelle derivanti dalla logica Kanban implementata singolarmente. Il vantaggio della tecnica ibrida rispetto a quella Kanban è dato dal controllo globale del CONWIP; mentre il controllo locale del kanban aiuta solo a migliorare le performance. La politica di controllo ibrida consente di ridurre il livello inventariale del sistema addirittura del 50% rispetto al solo meccanismo Kanban, a parità di livello di servizio considerato; mentre le prestazioni del CONWIP e del Base Stock risultano intermedie rispetto ai due risultati precedenti.
ed un Costo Totale leggermente maggiore per Extended Kanban. Il WIP infine, si attesta su valori simili a quelli dei sistemi di Base.

La politica Extended Conwip Kanban risulta pertanto, sicuramente la migliore di quelle prese in considerazione. Il Costo Totale è nettamente inferiore rispetto a quello di tutte le altre politiche, ciò a conferma del fatto che i due sistemi di controllo applicati ad ogni fase, aggiunti al parametro di sistema rappresentato da CONWIP, riescono a garantire un livello inventariale nettamente migliore. Questo fattore, infatti, sta alla base delle politiche di tipo Pull e rappresenta il vero obiettivo da raggiungere per perseguire caratteristiche di produttività efficienti. Il Livello di servizio si attesta su un valore in linea a gli altri.

In conclusione quindi, come ci si aspettava dai riscontri in letteratura, le prestazioni garantite dalla tecnica ibrida che ingloba le tre tecniche di base, riesce a sfruttare i loro vantaggi peculiari, garantendo prestazioni molto elevate a parità di contesto produttivo.

Nella tabella è possibile notare infine, i valori ottimi dei parametri ottenuti a seguito dell’ottimizzazione. Sono elencati: il numero di Cartellini Kanban, il numero di cartellini Conwip ed il valore di Base Stock ottenuti. Tali valori risultano assolutamente coerenti alle capacità produttive riscontrate nelle singole politiche di controllo. Si osservano dei valori contenuti dei parametri relativi alle tre politiche di base ed un leggero incremento per le politiche ibride, ad eccezione della ECKCS, in cui si registrano quantità inferiori in assoluto.
BIBLIOGRAFÍA

Research, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (Giugno).

[18]. Chun-Che Huang, Andrew Kusiak - Overview of Kanban systems, 1996.

[26]. Florin Blaga, Tiberiu Vesselenyi, Ioan Moga - Study about the implementation of kanban method for fabrication management concerning the manufacturing line of the product gas cooker grate, 2007.

[33]. Hyo–Seong Lee, Mandyam M. Srinivasan – The continuous review (s,S) policy for production/inventory systems with Poisson demands and arbitrary processing times, 1987.

RINGRAZIAMENTI

A conclusione del mio dottorato di ricerca volevo ringraziare la prof.ssa Santillo, oltre che per la sicura guida scientifica, per avermi dato la possibilità di intraprendere questo percorso. Ringrazio il prof. Zoppoli e il prof. De Carlini per il prezioso supporto scientifico e costante disponibilità.

Ringrazio inoltre i colleghi e amici del dipartimento Teresa, Guido, Mosè, Elpidio, Daniela M., Daniela C., Roberto, Luigi, Pino e Pasquale per le continue collaborazioni scientifiche e per i momenti goliardici passati.

Un sentito ringraziamento va inoltre a Daniela M., Barbara, Annalisa, Antonia e Carlo che con i loro lavori di tesi, hanno arricchito la mia ricerca scientifica.

Ringrazio soprattutto i miei familiari, per i loro sacrifici, il loro aiuto, il loro esempio e per il loro costante sostegno durante questo percorso e non solo.

Un particolare ringraziamento va a Rosalba che mi ha saputo sempre motivare e aiutare a superare tutte le difficoltà.