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Abstract  

The aim of this work was to analyze migrating cell populations, in search of motion 

models able to accurately describe the features of normal and transformed fibroblast 

movement, under different experimental conditions. Diverse diffusive models were 

evaluated, by fitting them to experimental datasets obtained by collecting 

quantitative data on cell direction and step length under standard culture condition as 

well as after introduction of a wound in the cell layer. The analysis showed that 

fibroblast movement has the features of a superdiffusion in all the examined cases, as 

the squared displacements scale superlinearly with time. The persistent random walk 

model fits all data from fibroblast populations, although a varying degree of 

persistence was found under different experimental conditions. For NIH3T3 

fibroblasts, high persistence was always observed, while NIHRas fibroblasts showed 

lower persistence in non wound stimulated cultures compared to stimulated ones. In 

presence of a wound stimulus, directional analysis allowed to associate persistence 

with a marked ability of fibroblasts to move, all together, towards a specific direction 

defined by the wound stimulus. Another superdiffusive model, the Lévy walk, was 

not successful in describing NIH3T3 and NIHRas fibroblast populations.  

The procedures have been made available within MotoCell, a web application 

previously developed to quantitatively study cell movement, in an effort to generate 

an effective tool, that can easily perform all the steps of a cell motility study, ranging 

from cell tracking, to descriptive statistics and model fit analysis. 
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1. Introduction 

 

1.1. Cell migration 

Cells are dynamic entities that continuously change their shape and position, also in 

response to stimuli coming from the surrounding environment. The resulting transfer 

of individual cells or cell groups from one location to another is often referred to as 

cell migration, a phenomenon easily observed in cultured cells, as well as in vivo. 

Cell migration is involved at various extents in many fundamental processes, such as 

development, organogenesis, growth and survival, and may also be related to 

pathological situations such as inflammation or atherosclerosis, as well as tissue 

invasion by cancer cells and formation of tumour metastasis.  

 

1.1.1.  Embryogenesis 

Migration is central in the developing embryo, where cells from different areas 

move, over short or long distance paths, in order to reach their final destination; this 

movement is associated with morphogenesis and correct positioning of the 

developing tissues and organs. Different forms of migration are involved in 

embryogenesis: single cells can individually migrate through the extracellular matrix 

(ECM) or be passively transported by the blood circle, while continuous epithelial 

sheets may fold, invaginate or expand. At all stages of development, migration is 

coordinated and highly regulated, and defective migration can results in severe 

embryonic malformations often incompatible with life (Kurosaka and Kashina 2008).  

For example, during gastrulation cells migrate within the blastocyst as large 

populations to form embryonic layers (endoderm, mesoderm and ectoderm); these 

cells start to differentiate by evolving into precursors that need to migrate again to 

their final destination in order to undergo terminal differentiation and generate the 

different organs. Muscle cell precursors migrate from somites to the emerging limbs, 

while, in the developing brain, neuronal precursors migrate out of the neural tube and 

take residence in the layers that will form the brain. Migration of cells from the 

neural crest is among the best studied embryonic migrations: these cells arise from 
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the top of the neural tube and migrate to a plethora of locations including bone, 

cartilage, peripheral nerves, and skin (Locascio and Nieto 2001). 

In the embryo, different stimuli are involved in starting the migratory behaviour, 

including chemotactic or haptotactic molecules, contact guidance, contact inhibition 

of movement, and population pressure. 

 

1.1.2. Response to injury 

Human bodies are constantly exposed to environmental stress of different origin, 

such as thermal changes, chemicals or infectious agents as bacteria and viruses. In 

many cases, response to these stimuli involves recruitment of specific cell types to 

the site of injury, to accomplish the inflammatory or immunological response, aimed 

to combat infection or a toxic agent. In these examples, cells orderly migrate towards 

the damaged site with different mechanisms: going through the extracellular matrix, 

being transported by the blood stream or literally rolling along the vascular wall in 

small vessels before extravasating at the site of inflammation. This rolling movement 

is mediated by reversible adhesive interactions between the leukocytes primary 

involved in injury, monocytes and T lymphocytes, and the vascular surface (Crane 

and Liversidge 2008). 

Cell migration is also involved in tissue repair, where the skin or another organ tissue 

heals itself after injury. Cutaneous wound healing includes a complex series of 

events, in which epidermal repair is initiated by the progressive extension of a 

tongue, i.e. a stratified sheet of epidermal cells from peripheral epidermis across the 

wound. In this process, migration acts in concert with mitosis. Although mitotic 

activity is not specifically located at or close to the margin of the epidermal sheet, 

where cellular migration plays a very important role in filling the gap, mitosis plays 

an important role in replacing cells that have moved away to keep overall epidermal 

continuity (Krawczyk 1971).  

 

1.1.3. Cell migration in disease 

In pathological processes, abnormal external signals or altered cell response may 

result in migration of the wrong cell type and/or to the wrong place, and these events 

may have effects on tissue homeostasis and, more generally, on health state. 

Examples include autoimmune syndromes in which immune cells selectively move 
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to specific locations, such as the joints in rheumatoid arthritis or central nervous 

system in multiple sclerosis, where they destroy the supporting tissue, causing severe 

damage (Prat et al. 2002); dissemination of tumour cells leading to metastatization. 

Tumour invasion is a complex multistep process, in which cells leave the primary 

tumour to migrate towards distant tissues where they eventually will generate 

secondary foci. This process happens for cells naturally able to migrate, but may also 

involve non migrating cell types that acquire this ability after transformation 

(O'Hayre et al. 2008). The mechanisms of tissue invasion by primary or 

metastatizing cells are well studied in many cancer types. For example, in metastasis 

formation by many adenocarcinomas, cell migration is followed by invasion of 

adjacent tissues and intravasation into blood/lymphatic vessels. In these tumors, the 

migratory phenotype of invasive carcinoma cells is often associated with increased 

expression or modifications of genes known to affect cell motility. Among these,  the 

genes coding for proteins of the Ras superfamily, small GTPases involved in cellular 

signalling pathways responsible for growth, migration, adhesion and more, are often 

overexpressed or constitutively activated (Bos 1989). Deregulation of Ras oncogene 

has been related to almost every step of multi-step tumorigenesis and contributes to 

many different cancer cell features. For example, expression of dominant negative 

H-Ras (S17N) has been shown to inhibit motility in many carcinoma cells, including 

serum-stimulated chemotaxis of T24 bladder carcinoma cells (Gildea et al. 2000), 

hepatocyte growth factor (HGF) stimulated chemotaxis of various ovarian carcinoma 

cells (Ueoka et al. 2000) and chemotaxis of MCF-7 breast cancer cells toward 

urokinase-type plasminogen activator, uPA (Nguyen et al. 1999). The effects of H-

Ras on cell motility in many cases appear to be mediated by the activation of MAP 

kinase cascade, although other pathways may be involved; for example in EGF-

stimulated MTLn3 carcinoma cells, Ras is required for PI3K activation, PIP3 

production and lamellipodial extension, thus suggesting a role for Ras in forming 

protrusions, a membrane structure required for cell motility (Yip et al. 2007). 

 

1.1.4. Dynamics of cell movement 

Cell displacement is obtained through a highly coordinated process beginning with 

the creation of a spatial asymmetry and polarization of the cell body according to an 

axis oriented along the displacement direction. The overall translocation process may 
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be described as a cycle, where four steps may be distinguished: extension of a 

protrusion at the leading edge, establishment of new sites of adhesion to the 

substratum at the front, cell body contraction, and detachment of adhesions at the cell 

rear. These steps involve assembly, disassembly or reorganization of actin 

cytoskeleton, and must be coordinated both in space and time to generate productive 

movement (Pollard and Borisy 2003). An essential role of the actin cytoskeleton is to 

stabilize the asymmetric distribution of key components of the directional response 

apparatus. An early event in polarization, in fact, is a change in the distribution of 

filamentous F-actin which loses the circular symmetry, around the cell rim, to 

concentrate in specific regions in preparation of the extension of protrusive 

structures. These structures at the leading edge of motile cells are highly dynamic 

and contain dense arrays of actin filaments. These filaments are organized with their 

barbed ends (fast growing, or plus, ends) preferentially oriented in the direction of 

the protrusion. The simplest such structures are filopodia, thin cylinders that can 

extend tens of microns. Lamellipodia, instead, are thin protrusive sheets that 

dominate the leading edges of cultured fibroblasts and other motile cells. The 

characteristic rufflings at the fibroblast leading edges is due to lamellipodia that lift 

up off the substrate and move backwards (Mitchison 1996).  

The response to environmental cues in terms of cell migration involves the actin 

cytoskeleton but also requires a crosstalk between these structures and the focal 

adhesion machinery. Focal adhesions are dot-like adhesion structures, located 

underneath the lamellipodium with the aim to sense the extracellular environment 

and thus affect their behaviour (Riveline 2001). At the focal adhesion level, actin 

filaments can be linked to the cytoplasmic domains of integrin subunits through 

numerous anchoring proteins, such as talin, that connect two integrin dimers with 

actin filaments (Geiger 2009). These contacts are highly dynamic, in fact, during cell 

migration, both composition and morphology of the focal adhesion change: when a 

cell proceeds along its chosen path, a focal adhesion becomes progressively closer to 

the trailing edge and eventually must be dissolved to complete cell body 

translocation (Huttenlocher 1997). 
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1.2. Methods and tools for studying cell migration 

1.2.1. Experimental setup 

Cell cultures are often studied as model systems for movement, as the same complex 

membrane machinery supports cell movement on the culture surface  in vitro, as well 

as cell migration in vivo. For this reason eukaryotic cell cultures are a good 

experimental system where cells may move according to random patterns, but may 

also be induced to coordinated migration by means of specific stimuli, such as a 

chemical attractant or a mechanical injury. 

A variety of methods are used to study cell migration. Many of them evaluate 

movement by comparing the initial state with the final one, as for example the 

commonly used transwell assay, in which the movement of cells to the opposite side 

of a porous membrane is evaluated. The assay uses cell culture devices consisting of 

an upper and a lower chamber, separated by a microporous, polycarbonate 

membrane. Cells are placed in the upper chamber and their response to a chemotactic 

gradient, created by placing a chemoattractant in the lower chamber, is measured by 

quantifying the number of cells that adhere to the underside of the membrane or that 

appear in the lower chamber, in suspension or even attached to the bottom. Other 

methods use underagarose migration assay, where a layer of agarose gel is placed 

between a cell population and a chemoattractant. As a concentration gradient 

develops from the diffusion of the chemoattractant into the gel, cells migrate through 

the agarose and may be visualized over time by using microphotography, as they 

move upward through the gel along the gradient. Originally developed in 1975 by 

Nelson et al. (Nelson et al. 1975), this technique has been used for a variety of 

purposes, including quantifying chemotaxis (Krauss et al. 1994), determining the 

effects of disease on leukocyte chemotaxis (Flo et al. 1994), and measuring 

neutrophil responses to multiple chemotactic gradients (Heit et al. 2002; Heit and 

Kubes 2003).  

 

Wound healing 

The in vitro scratch assay is an easy, low-cost and well-developed method to 

measure cell migration in vitro. Confluent or subconfluent cell monolayers are 

scraped to create a “wound”, i.e. an acellular area, which is then monitored to see 
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how the remaining cells move into it and fill the empty space. This method is based 

on the observation that, upon creation of an artificial gap on a confluent cell 

monolayer, the cells at the edge of the newly created gap move toward the opening 

space to close the “wound” (Liang et al. 2007). Capturing images before and after 

migration and comparing them, to evaluate the ability of cells to close the gap, is the 

typical end point wound healing assay (Fenteany et al. 2000). By using this assay, for 

example, the characteristic collective migration of L1 fibroblasts has been modeled 

as a sheet migration, in which fibroblasts spread and migrate as a group, in order to 

close the empty space (Bindschadler and McGrath 2007). 

 

1.2.2. Video time lapse 

Many of the described methods may take advantage of dynamic microscopy, as the 

progressive acquisition of subsequent frames during the experiment, that allows to 

have a detailed record of the phenomenon as a function of time. Random movements 

of cells plated on the plastic surface of commonly used Petri culture dishes, may be 

acquired and analyzed to quantitatively evaluate migration. In addition, 

morphological changes of the membrane and cell shape may be visually evaluated, to 

study the behaviour of membrane structures involved in cell rearrangements in 

response to changes in extracellular environment.  

Wound healing experiments may also be evaluated in this way, by following the 

advancement of the edge in the course of the experiment. The collection of recorded 

images allows to observe the modality of filling the gap and to evaluate the extension 

of the closed area, together with the time used to complete the process. 

Time-lapse microscopy techniques provide a complete picture of complex migration 

phases that occurs over time. Different types of mammary epithelial cells have been 

observed to follow a bimodal behaviour during random migration. A bimodal 

correlated model of migration, as a continuum alternation of directional and re-

orientation phase, allowed to describe the behaviour of epithelial cells during time 

(Potdar et al. 2009 and 2010). 

 

1.2.3. Motion analysis tools 

Various programs are available for tracking the movement of cells and to analyze the 

path covered by the cells. Some of these tools are freely available for the analysis of 
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the movement within large applications, such as ImageJ plugins, Particle Tracker 

(ParTrac) and MtrackJ (MtrackJ). ImageJ (Abramoff et al. 2004) is a tool for 

analysis and processing of images widely used, in which were included plugins, such 

as the Particle Tracker (website: ParTrac). It allows to view and analyze later the 

selected cells in several ways: by saving trajectories and analyzing them at a later 

time, by displaying all the trajectories in a non-progressive way or progressively 

focusing on all of them, displaying the trajectories present in a selected area. These 

trajectories can also be kept as the file containing the coordinates of the cell positions 

in order to obtain a graph of the shifts as a function of time. MtrackJ (website: 

MtrackJ), however, has been developed to facilitate manual tracking of moving 

objects in two-dimensional or multidimensional images and may be used to evaluate 

cell displacement and velocity  during the period of analysis. 

Cell_motility (Martens et al. 2006) is an open source Java application that allows a 

clear and concise analysis for a large number of data related to cell movement, 

starting from a data file containing the coordinates of individual cells. This is able to 

reprocess these data in order to obtain three outputs: a picture of tracks followed by 

each cell; a graph that represents the relation between mean square displacement and 

time; and a table summarizing the data and parameters used for calculations.  

In order to analyze the movement of cells, in particular experimental conditions, 

some software tools were developed. For example, the freely available TScratch tool 

(website: TScratch) was designed to automate the measurement of area progressively 

occupied by cells in wound healing assay (Geback et al. 2009). 

Commercial programs, such as MetaMorph (websites: Metam), however, provide 

data on the motility and morphology of an entire cell population, such as the length 

of the trajectories, the directionality index, the index of migration, and in case of 

wound healing experiments, the closing speed of wound.  

Similarly, the DIAS (Dynamic image analysis system, Solltech inc.) software, 

starting from the dynamics of the cell centroid, computes parameters such as 

velocity, direction change and persistence; and by considering the dynamics changes 

in contours, it provides parameters, such as width, length area and perimeter 

(Wessels et al. 2006 and 2009).  
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1.3. MotoCell  

A freely accessible web application, MotoCell, was previously developed in our 

laboratory to evaluate migration of cell populations, maintained in various 

experimental conditions. Methods for cell tracking, parameter evaluation and 

statistical analysis procedures have been integrated in the software package 

(Cantarella et al. 2009, website: MotoCell). 

 

1.3.1. Processing of experimental results  

MotoCell has been designed to track and evaluate paths followed by cultured cells 

moving on a surface. Cell tracking results in a set of x-y coordinates that are written 

to a table. The final destiny of each tracked cell is also recorded: paths may last for 

the whole observation time, but may also prematurely end because of the death of a 

moving cell, or a mitotic event, or following the movement of the cell beyond the 

limits of the observation field. The paths may be shown superimposed upon the 

images of the movie, and their coordinates may be edited, in order to correct eventual 

tracking errors. The system may be used to associate cells into subsets, which may be 

separately evaluated. Cell coordinates for each time steps are stored in text files and 

further processed through the web interface to evaluate movement statistics. 

 

1.3.2. Statistical analysis  

Cell coordinates are used by MotoCell to calculate statistical parameters as speed, 

direction and linearity, able to describe the movement of single cells along their path 

or of whole cell populations. Analysis of directional movement may be carried out 

by using circular statistics, where the single displacements are treated as circularly 

varying quantities. In this way, directional movement of the cells may be studied by 

eliminating the modulo effect; the calculated linear dispersion coefficient (R), and 

the corresponding angular dispersion (S), describe the dispersion of cell directions 

around the average direction. The Rayleigh test may be used to assess the 

significance of R linear dispersion coefficient.  

The results are quickly made available as a number of tables and plots, designed 

according to specific experimental situations, which may be downloaded as text or 

pdf files. The software allows to quantitatively evaluate the behaviour of single cells 
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as well as entire populations or subgroups of cells identified on the basis of shared 

features. For example, in wound healing assays, the tool allows to group cells on the 

basis of distance from the wound, thus creating subpopulations that can be analyzed 

separately or all together (Cantarella et al. 2009).  

 

1.4. Motion models for cell migration 

Cell migration may be studied by breaking it down to a discrete number of path 

segments, where the cell moves in a straight line producing cell displacements joined 

by turning angles, in which a “decision making” process possibly results in a change 

of path direction. These decisions are taken on the basis of the current cell condition 

and/or information, or lack thereof, from the surrounding medium. This information 

may come in various forms, for example composition of the extracellular matrix or 

concentration of soluble factors, and affect cell migration.  

Movement can be modelled in various ways, the simplest possibly being standard 

diffusion. More complex models assume a non-uniform distribution of turning 

angles, as in the case of a correlated random walk, where the walker, once taken a 

decision, tends to persist in it for a certain time, or in the case of a directional bias, 

where, when challenged with a decision, some directions are taken more often than 

others. Another alternative is the so-called Lévy walk, where no persistence or 

directional bias is assumed, but the distance covered in the various time units follows 

a well defined power law distribution model. 

 

1.4.1. Simple random walk 

A simple random walk represents a spatial-temporal trajectory, in which the 

probability of turning angles is uniform at each step and step displacements are short. 

These features mean that, in a simple random walk, the walker randomly selects, at 

each time point, an angle from a uniform distribution and a displacement from a 

distribution following a fast decay function, such as Gaussian or exponential.  

The simplest model of movement using random walks is uncorrelated and unbiased. 

Uncorrelated means that, at each step, direction of movement is completely 

independent of the previous steps, and unbiased means that there is no preferential 

direction: position at the end of each step is only dependent on the starting position 
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and the followed direction is completely random. In this context, the mean squared 

displacement, defined as the squared distance averaged over many random walk 

paths all starting from the origin, is related with time by the expression  

 

   (1) 
 
where ! is equal to 1. Brownian motion, that well describes the diffusion of particles 

within a fluid, does not perfectly describe the movements of living organisms, which 

deviate from a typical Brownian motion. Migration of living cells may in fact be 

better described by the standard diffusion equation: 

 

     (2) 
  
where p(x,t) is the probability that the walker be at distance x at time t, x is the 

walker position and D is the diffusion coefficient. Assuming that movement in any 

direction is allowed, the simple random walk model can be well described by this 

equation (Codling et al. 2008). 

This model is the basis of most of the theory of diffusive process. By using this 

model it was possible to describe the purely random movement of animals and cells, 

and, at the same time, by searching for the features of this model in different 

experimental conditions, the simple random walk model could be observed as a 

component of more complex models of movement. The first evidence for simple 

random walk behaviour in bacterial cell migration was on the soil bacteria P. putida, 

where cells propel themselves through their surrounding media by rotating flagella 

that form a tuft at one end of their body (Harwood et al. 1989). In the absence of a 

chemical gradient, a single cell traces a path consisting of a series of straight runs 

interrupted by changes in direction, initiated by a reversal in rotational direction of 

the flagellar motors of the bacteria. This swimming pattern resembles a three-

dimensional random walk and is shared by other bacterial species. 

The simple random walk model has been evaluated also in higher organisms, by 

searching for these features in eukaryotic cell motion. By performing time-lapse 

imaging of medial ganglionic eminence (MGE)-derived cortical interneurons, 
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tangentially migrating in the marginal zone (MZ) in flat-mount cortices, Tanaka et al. 

found that they exhibit a range of diverse types of behaviour in terms of the rate and 

direction of migration. They distinguish three different interneuron populations, 

based on their motility behaviour: stationary, directed and wandering cells. By 

computing the mean squared displacement of these cells during time, the 

predominant population, the wandering one, could be effectively modeled by a 

random walk. The authors note that the wandering population exhibits this motion 

model while waiting for the arrival of signals, such as a guidance cue which 

activated a directed movement (Tanaka et al. 2009) 

In some cases the simple random walk model has been found in the study of cell 

migration in concomitance with loss of directionality associated with extracellular 

factors, such as in the formation of new blood vessels during angiogenesis, a process 

mediated by directed migration and adhesion of endothelial cells (ECs).  Individual 

cells follow this model when they lose their sense of direction upon addition of 

arachidonic acid (AA), an amphiphilic compound incorporated into the cellular 

membrane, and expected to alter its dynamics by causing changes in its composition. 

Though instantaneous speed of individual cells is not affected by higher AA 

concentration, cells lose their ability for directed migration and the mean squared 

displacement is found to be linearly related to time with a diffusion coefficient ! 

close to 1, as in a simple random walk model (Rossen et al. 2011). 

Computational models have been used to simulate cell dispersal and predict the 

diffusion coefficient ! of the migration process. T cell movement within lymph 

nodes, both in the absence and presence of antigens, has been studied by using 

computer simulation of idealized random walk (Beauchemin et al. 2007). It was 

found that ! may be correctly predicted starting from three parameters: time that a 

cell spends crawling, time required for cytoskeleton reorganization, and average cell 

speed. In this way, the proposed random walk model allowed to well describe the 

behaviour of T cells in two phases: the first, in which cells perform a random walk 

for displacements over long times; the second, in which they follow straight 

trajectories over short periods of times (Beauchemin et al. 2007).  

As discussed, the mean squared displacement, defined in (1), for a typical diffusive 

random walk is linearly related to time. However, there are situations where dispersal 

is not diffusive, and the MSD is not linear in time but, instead, has some other 

power-law relationship. Such situations are known as anomalous diffusion. The key 
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is the value of ! parameter in the relation (1): for ! < 1 the situation is subdiffusion, 

for ! > 1 is superdiffusion, for !=2 is a ballistic or wavelike diffusion. 

 

1.4.2. Correlated random walk 

It has been observed that cell migration does not always occur in a completely 

random manner, but a tendency often exists to maintain the same direction for 

shorter or longer time intervals. This behaviour means that, although the simple 

random walk model is unable to describe this motion process, a more complex one, 

which implies a correlation between subsequent steps, might do. This led to 

formulate a new mathematical model, the correlated random walk (Gail and Boone 

1970). Several scientists attempted to define this model, with different assumptions, 

as the common result was to correlate the mean squared displacements, d2(t), with 

time by means of two parameters, speed (S) and time persistence (P) (Dunn 1983). 

This last parameter defines the correlation between subsequent movements as the 

time in which a cell persists in keeping the same direction. According to this model, 

the mean-squared displacement, d2(t), can be obtained from (Alt and Hoffmann 

1990):  

 

   (3) 

 
For t >> P, d2(t)~2S2P, where movement is described by a normal diffusion; whereas 

for t<<P the equation becomes d2(t)~S2t2, where motion is essentially unidirectional, 

without changes in direction (Dickinson and Tranquillo 1993).   

Fürth found this random walk model for the first time in his study of protozoa 

motility. This observation was the basis of later studies, where a search strategy was 

hypothesized for both Dictyostelium and Polysphondylium cells, characterized by a 

zig-zag motion manner, where a left turn is followed by a right turn, while 

maintaining a directional persistence (Li et al. 2008; Maeda et al. 2008). These cells 

bias their motion by apparently remembering the last turn and moving in the same 

direction as the previous one for almost 10 minutes, turning eventually away from 

this direction. Once oriented by reorganizing their cytoskeletral complex in order to 

elongate a protrusion, they take advantage of this time persistence to move away 
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from their position in a more or less straight line (Li et al. 2008). The persistent 

random walk behaviour of Dictyostelium has been confirmed by using a stochastic 

model with a detailed characterization of pseudopodia extension associated to 

migration (Van Haarster 2010).  

Gail and Boone used the correlated random walk model to study mammalian cell 

motility in a study on mouse fibroblast migration. Observations over successive short 

time intervals revealed a tendency for cells to persist in their motion direction for 2.5 

hours (Gail and Boone 1970). Years later, Selmeczi et al. saw that, by evaluating the 

parameters obtained from the persistent random walk model for both fibroblasts and 

keratinocytes, it is possible to show that these cells maintain memory of the past 

movement (Selmeczi et al. 2005).  

How the biochemical signals are related to physical processes underlying locomotion 

of fibroblasts has been studied on complex human matrix substratum (Ware et al. 

1998). It was observed that EGF induced motility could only be found over a certain 

range of matrix concentrations, because different amounts of both permissive and 

inhibitory signals modulate motility in response to the stimulus. In these conditions, 

cell speed and directional persistence were respectively found to be directly and 

indirectly related to membrane extension rate induced by EGF treatment during 

sustained migration (Ware et al. 1998). This effect of EGF on cell migration has also 

been observed in glioblastoma cell migration in three-dimensional matrices (Kim et 

al. 2008). 

The persistent random walk model was also found to be associated to the movement 

of pre-plasma cell (pre-PCs) during in vivo differentiation of mouse lymph nodes 

(Fooksman et al. 2010). In vivo movement of pre-PCs between germinal center 

compartment and medullary cords in lymph nodes is typically guided by chemokine 

gradients. Although cell tracks obtained in presence of this stimulus were initially 

expected to follow a random walk, a more in-depth analysis revealed that the pre-

PCs displayed a greater velocity with very long steps between turns. This motion has 

been well described by the persistent random walk model (Fooksman et al. 2010).  

 

1.4.3. Biased random walk 

Another well-known specialized random walk model is the biased random walk 

(BRW). This model is used to describe motion processes in which a directional bias 
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affects the walker in choosing which direction to take. When cell migration is 

affected by the presence of environmental factors, such as nutrient availability, 

molecular gradients, electrical fields and so on, this model is possibly able to better 

describe motion under the experimental conditions, compared to the simple random 

walk model. The assumption is that, if there is a directional bias, the walker moves 

with higher probability following the preferred direction or towards a given target. In 

some cases motion is affected by a directional bias and, at the same time, shows 

directional persistence in time, producing a model called biased and correlated 

random walk (Codling et al. 2008). The main feature of these models is the presence 

of a directional bias that may be quantified by analyzing the probability distribution 

of movement directions in a circular plot (Codling and Hill 2005; Codling et al. 

2008). When the distribution is uniform, net displacements are distributed with equal 

probability F(") around the unit circle: in this case 

 

           (4) 

 
The concentration of directions around a preferred one is well described by the von 

Mises distribution, which relates probability F(") to ! and # as in 

 

           (5) 
 
where I0 denotes the modified Bessel function of the first kind and zero-order, which 

is defined by  

 

     
(6) 

 
The parameter ! is the mean angle and the parameter k is known as the concentration 

parameter, where k"0. The distribution is unimodal and is symmetrical around !=! 

(Bentley 2006). 
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The uncorrelated random walk model has often been used to model bacterial 

movement, as an alternation of run and tumble where, if there is a preferred 

direction, the probability of making long straight runs towards this direction becomes 

more likely. Keller and Segel (1971) modelled as a random walk the movement of E. 

coli when the concentration of chemical attractants is able to affect the turning rate. 

Bacterial chemotaxis, in this way, is determined by diffusion, with the addition of a 

directional bias depending on the concentration of a chemical substance. This 

particular movement was also studied by means of a random walk foraging 

algorithm, developed by Nicolau et al. (2009). Chemotaxis is a directional movement 

driven by a concentration gradient of signal molecules. Similarly, haptotaxis is a 

form of directional movement, occurring in response to extracellular matrix (ECM) 

molecules, such as fibronectin or hyaluronic acid (Petrie et al. 2009). The movement 

of different eukaryotic cells has been studied over the years by using different type of 

chemotaxis assays. For example, polymorphonuclear leukocyte behaviour, in 

response to different concentration of chemotactic peptide N-

formylnorleucylleucyphenylalanine (FNLLP), has been modeled by taking into 

account the kinetic fluctuation in chemoattractant-receptor binding (Tranquillo et al. 

1988). In this study it was found that, in environments where chemoattractants are 

uniformly distributed, paths follow a persistent random walk model, whereas in 

presence of chemoattractant gradients they switch to a biased random walk, 

characterized by a directional movement most likely related to an increased number 

of receptors at the leading edge (Tranquillo et al. 1988). The biased random walk 

model was widely used to describe the movement of chemosentitive cells like 

bacteria or leukocytes (Hill and Hader 1997; Hartman et al. 1994; Ambravaneswaran 

et al. 2010), but this directed motion has been observed also in physiological 

processes, such as differentiation (Wong et al. 2010) and wound healing (Schneider 

et al. 2010). The neural stem cell mode of migration in vitro has been studied, both in 

absence of directional cues and in presence of applied electric fields. By generating a 

model for biased migration of neural stem cell, it was observed that pharmacological 

treatments, such as the LY294002 phosphatidylinositol-3-OH kinase inhibitor, 

negatively affect directional migration (Arocena et al. 2010). Similarly, Al-Shanti et 

al. demostrated that both velocity and directionality of murine myoblasts during 

wound healing are strongly affected by pharmacological inhibitor MAPK and PI3K 
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pathways, involved in the processes of cell protrusion extension in the direction of 

cellular migration (Al-Shanti et al. 2011). 

Various studies focus on cell migration with directional cues determined by external 

stimuli such as mithogenic factors and contact guidance, associated with 

extracellular matrix modifications (Fang et al. 1999; Groh and Louis 2010). The 

overall conclusion is that, by means of different intracellular pathways activated by 

the ligand-receptor interaction, these factors regulate cell directionality and induce 

biased migration . 

In mouse fibroblasts, biased random walk may be strongly affected by primary 

ciliary formation. The authors in fact demonstrated that ORPK mouse fibroblasts, a 

line defective in ciliary assembly, respond to a wound stimulus by moving at higher 

speed but with randomly distributed directions, unlike the parental MEF line which 

show a strongly directional behaviour. This happens even in presence of PDGF, a 

key regulator of directional cell migration in wound healing (Scheneider et al. 2010). 

  

1.4.4. Lévy walk  

The Lévy walk model is a type of random walk in which the movement of the walker 

is described by a uniform distribution of step directions and a power-law distribution 

of step lengths. This means that the step lengths follow the distribution function:  

 

    (7) 

 

where l are the lengths, P(l) their probability and ! is an exponent that, for in Lévy 

walk, is included in the interval 1<!<3, given that for !>3, owing to the central limit 

theorem, the distribution becomes close to the Gaussian, thus returning to the simple 

random model (Bartumeus 2007). Breaking down a motion process described by a 

Lévy walk model in time intervals of different width, the power law distribution of 

step lengths can still be observed, because of the scale invariance properties of this 

model. The step length distribution results in a superdiffusive process, characterized 

by the presence of a number of very long steps and the mean squared displacement 

of the walker scales superlinearly with time, unlike normal diffusion where this 

relation is linear (Selmeczi et al. 2008). 
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Lévy walk models have been widely used in different fields in order to characterize 

dispersal of animals in ecology, but also migration of microrganisms and eukaryotic 

cells. It is generally assumed that the advantage for walker in selecting step lengths 

in this way, compared with simple random walk model, is that Lévy walk represents 

an optimal solution to the biological problem of searching for food when it is 

sparsely and randomly distributed outside the walker’s sensory detection range. 

Matthaus et al. observed that, in the absence of chemical gradients, the length of 

individual step is commonly distributed exponentially, but in presence of fluctuations 

in the level of CheR, an enzyme of the chemotaxis-signalling pathway of E. coli, the 

distribution follows a power-law, assuming a Lévy walk behaviour (Matthaus et al. 

2009).  

This motion strategy was also found to describe the spontaneous movement of 

Dictyostelium discoideum (Takagi et al. 2008). Quantitative analysis at different 

stages showed that velocity distribution closely follows a power-law tail in all 

conditions, although in later stages increased persistence is observed. A possible 

explanation of this behaviour is that motion characteristics of the amoeba’s cells 

have a physiological origin, in that in the first phases of development, Lévy walk is 

an optimal strategy for foraging, while in subsequent phases, the need to form the 

multicellular organism, pushes the cells to make a more targeted walk (Takagi et al. 

2008). 

This Lévy like behaviour of Dictyostelium cells was hypothesized by Van Haastert, 

in his study of extended pseudopodia direction while cells searching for food. In this 

case, however, they did not observe Lévy walk behaviour for Dictyostelium cells 

movement. They motivated this observation with the suppression of de novo 

pseudopodia formation in favor of splitting the existing ones, so causing an increase 

in long displacements in starvation conditions (Van Haastert and Bosgraaf 2009). 

Recent studies on cell movement associated this model also to mammalian cells. It 

was observed that the movements of the rat’s microglia were well described by a 

Lévy walk model (Grinberg et al. 2011). In this study by using control slice cultures, 

the authors found that microglial cells move according to the Lévy walk model. 

Furthermore, they showed that the number of cells moving at longer distances, such 

as described by a Lévy walk, is inversely proportional to synaptic activity: it was 

reduced by increasing neuronal activity with lipopolyssacharide; in contrast, it was 

increased by blocking synaptic activity via tetrodotoxin (Grinberg et al. 2011). 
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2. Scope 

Main target of this thesis was to analyze migrating cell populations, by using motion 

models able to describe different specializations of the simple random walk model, 

also in relation to environmental conditions. Starting from cell migration features, 

four random walk models were selected: the simple normal diffusion, and three 

superdiffusive models, i.e. Lévy, persistent and biased random walks. One section of 

the work was focused on the development of computational procedures able to 

estimate the parameters involved in the equations describing the selected models. 

Another aim of this project was to introduce these procedures in MotoCell, a 

migration analysis tool previously developed in our laboratory, through a 

reorganization of the software object architecture. Finally, the developed procedures 

for modelling cell migration were applied to the study of mouse fibroblast motion. 

To this aim NIH3T3 and transformed NIHRas fibroblasts were analyzed in 

experiments in which cells move randomly on the culture surface and in wound 

healing assays, which allow to study the effects of a directional stimulus on cell 

movement. 
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3. Results 

 

3.1. Modelling cell migration 

3.1.1. Method for motion analysis through simple random walk model 

Simple random walk is probably the simplest commonly used motion model and is 

characterized by the absence of time correlation and directional bias. This means that 

the direction of movement is completely independent of the previous directions, and 

there is no preferred direction of migration.  

In a discrete space, the simple random walk model well describes movements in 

which the walker moves in all possible directions making steps of variable length, 

normally distributed around an average value. This model is therefore characterized 

by a Gaussian distribution of step lengths and a uniform distribution of directions. 

This means that the simple random walk model results in a normal diffusion process, 

in which the mean squared displacement is linearly correlated with time. Starting 

from these considerations, the applicability of the model can be analyzed by focusing 

on its different features: Gaussian distribution of step lengths, uniform distribution of 

directions and normal diffusion during time.  

 

Evaluation of the distribution of step lengths 

One feature of the random walk model, as said before, is that the step lengths are 

expected to follow a Gaussian distribution. As in our experiments the step length 

data assume the form of a discrete variable, a procedure was developed aimed to test 

this hypothesis, by fitting a Gaussian model to the inverse cumulative distribution 

taken from a dataset. In this way, the problem of bins with zero step length values 

was largely reduced. In this procedure Gaussian, as well as a number of non 

Gaussian well-known distributions, were fitted with a collection of step lengths 

generated from a simulation of simple random walk, as shown in figure 1.1a. The 

distributions used in this analysis were, in addition to Gaussian: Poisson, 

exponential, Weibull, log-normal, Cauchy and geometric. For each tested 

distribution, parameter estimation was obtained by using a maximum likelihood 

method (see ‘Methods’). Goodness of fit of the estimated distributions to the 



Fig. 1.1. Cumulative step length distribution of two dataset generated from a simulation

of simple random walk (a) and correlated random walk (b). Data are plotted together

with different estimated cumulative distribution functions: normal, Poisson,

exponential, geometric, Cauchy, Weibull and log-normal.  Tables on the right side

report the R2 coefficients and the results of the Kolmogovor-Smirnov test used to assess

the goodness of fit (99% confidence level).

Step length CDF(a)

Step length CDF(b)

Distribution R
2

Kolmog. test (D) Cr. Value (0.01)

Normal 0.87 0.13 0.07

Weibull 0.98 0.07 0.07

Log-normal 0.99 0.09 0.07

Cauchy 0.95 0.13 0.07

Exponential 0.90 0.17 0.07

Poisson 0.88 0.23 0.07

Geometric 0.63 0.40 0.07

DistrAnalysis

Distribution R
2

Kolmog. test (D) Cr. Value (0.01)

Normal 0.99 0.07 0.09

Weibull 0.98 0.10 0.09

Log-normal 0.94 0.10 0.09

Cauchy 0.96 0.10 0.09

Exponential 0.73 0.30 0.09

Poisson 0.72 0.30 0.09

Geometric 0.44 0.40 0.09

DistrAnalysis
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simulated datasets was qualitatively evaluated by calculating the R2 determination 

coefficient and by applying the Kolmogorov-Smirnov test. As expected, the Gaussian 

distribution is the one that best fits the simulated data, as also confirmed by the high 

value of 0.99 for the R2 coefficient, together with the result of Kolmogorov-Smirnov 

test, although other distributions show very good levels of fit. As a control, another 

dataset was generated from a correlated random walk simulation, a motion model 

where a Gaussian distribution of the steps is not expected (figure 1.1b). In this case, 

other distributions, such as the Weibull and the log-normal, fit much better to the 

simulated step length data, while the Gaussian distribution shows a worse fit, 

actually the worst after the geometric one. The goodness of fit for these statistical 

distributions is also confirmed by the Kolmogorov-Sminov test, positive for P<0.01. 

 

Directional analysis: circular distribution models 

As said before, the simple random walk model implies that, at each time point, a 

moving object randomly chooses one of all possible directions. This means that a 

circular uniform distribution must be expected. In order to evaluate this aspect, an 

assay was set up, where the circular distribution was tested, together with von Mises, 

another circular distribution which well describes direction angles more or less 

tightly concentrated around a mean value. The maximum likelihood estimation 

method was used to estimate the von Mises distribution parameters ! and #. The fit 

of the predicted models to the original datasets was assessed by using the Watson test 

for both uniform and von Mises distributions.   

The method was tested by using different datasets, generated from a simple and a 

biased random walk simulations; the results for one dataset were reported in figure 

1.2. The estimated curves for uniform distribution, in blue, and for von Mises 

distribution, in red, are reported around a circular plot, together with the simulated 

data (black points). As seen in panel (a) for the simple random walk simulation, the 

uniform distribution is confirmed by the result of Watson test, clearly away from the 

critical value for a confidence interval of 99%. Viceversa, in the case of the biased 

random walk simulation, fig. 1.2b, the uniform distribution hypothesis should be 

rejected (admitted error of 1%), while the von Mises distribution should still be 

accepted, as shown from the results of the Watson test. The different fit to the data is 

clearly visible in the circular plots, where the red curve representing the estimated 



Angle distribution

Fig. 1.2. Distribution of directions of two datasets simulating a simple random walk (a)

and a biased random walk (b). The circular uniform distribution, in blue, and the

estimated curve of von Mises distribution, in red, are plotted together with the black

points representing directions (•). The results of Watson test for goodness of fit have

been reported, for both von Mises (test vM) and uniform (test Circ), in the tables below

the charts (confidence level 99%).

(a)

(b)

Test vM. Cr. value vM Test Circ. Cr. value Circ.

Dataset 1 0.03 0.09 0.18 0.27

Test vM. Cr. value vM Test Circ. Cr. value Circ.

Dataset 2 0.11 0.16 1.66 0.27
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von Mises distribution is in much better agreement with the data than the blue one, 

representing the uniform distribution. 

 

Evaluating diffusion behaviour  

Normal diffusion is the third important aspect of the simple random walk model. To 

verify whether an empirical dataset resembles a normal or an anomalous diffusion 

process, the trend of mean squared displacement in time is commonly analyzed. In 

fact, in normal diffusion this relationship is linear, unlike other models where the 

displacement may grow faster or more slowly. Basically the expected distance from 

the starting point may be described according to the formula: 

 

   (8) 

 

where MSD is the mean squared displacement, and ! is the random motility 

exponential coefficient, that for simple diffusion is equal to 1. For other diffusion 

models, the lambda coefficient may be lower than 1 (subdiffusion) or higher, 

between 1 and 2 (superdiffusion). Values higher than 2 may only be reached by 

walkers not moving at constant speed, but accelerating in time. 

The estimation of the unknown ! coefficient for a given dataset was performed with 

the commonly used Gauss-Newton algorithm for nonlinear equation solution. This 

analysis, as seen in the figure 1.3 for different datasets generated from simulations of 

superdiffusion, normal diffusion and subdiffusion, allows to clearly discriminate the 

different diffusion types. 

 

By using the three described approaches together, it is therefore possible to study the 

different features of a random walk process and to easily discriminate movement 

described well by a simple random walk model; these same features can be used as a 

hint for investigating different motion models other than simple diffusion.  

 



Fig. 1.3. Graphic representation of diffusion types. Mean squared displacements (MSD)

are plotted vs time for different datasets respectively simulating subdiffusion (orange),

normal diffusion (red) and superdiffusion (blue). Dotted black curves represent the

trend of diffusion with fixed ! values of: 0,1,2.

M
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3.1.2. Step length distribution model: “Lévy walk” 

The Lévy walk model is a specialized random walk, characterized by a typical 

distribution of the step length frequencies following a power law tail. Such a 

frequency distribution is described by: 

 

    (9) 

 

where l is the step length and µ the exponential decay index.   

In the case of Lévy walk model, the necessary condition for the power law, 

describing the distribution of movement lengths, is that the exponent µ falls within 

the range 1 < µ # 3. So, to detect if a movement follows the model of Lévy walk, this 

exponent should be estimated, in order to verify if it is in the Lévy index interval 

definition. To perform the power law exponent estimation and test the Lévy walk 

model, there are some considerations to do on the power law equation and estimation 

methods. 

 

Exponent estimation methods 

The probability density function (PDF) decays following a power law, as implied by 

the fact that P(l) is proportional to l-!, as shown in equation 9. But this function does 

not precisely define the proportionality term that appears between P(l) and l-!. This 

implies that, to use this function for parameter estimation, it is necessary to explicitly 

define the proportionality constant that links these two variables. Since the 

proportional hypothesis is concerned with the tail of the PDF, it requires the 

definition of a value at which the tail starts. Referring to the analyzed data, i.e. step 

lengths of moving cells, it is possible to assume that all data fall in the tail of the 

power law distribution. By naming a the beginning of the tail , it was defined as the 

shortest measured or measurable movement which allows to include in the analysis 

all movements observed in the dataset. Considering movements that are " a, the PDF 

for x is: 

 

   (10) 
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where C is the proportionality constant given by C=(!-1)a!-1. The f(x) now defines a 

valid probability density function to work with. 

Starting from this equation, the estimation of the ! exponent has been attempt by 

using three parameter estimation methods: the maximum likelihood estimation, the 

cumulative distribution function and the logarithmic binning with normalization. 

To test whether differences in the selected methods result in inaccurate estimation of 

µ exponent, different sets of random numbers (n=500) were generated from a 

probability density distribution P(l)~l-!, with µ=2. A sample size of 500 elements 

with exponent equal to 2, well represents a set of step lengths in a movement 

describing a theoretically optimal Lévy walk, and it is comparable with the minimum 

size of cell population experimentally produced.   

Maximum likelihood estimation (MLE) is one of the preferred approaches for 

estimating frequency distribution parameters. The MLE method first requires 

determination of the likelihood function. Given known data x, and selected a as the 

tail start, the log-likelihood function for the power law tail is: 

 

    

! 

log[L(µ | x)] = n • log(µ "1)+ n •(µ "1)• log(a)"µ log(xj )
j=1

n

#
      

(11) 

 

where L(µ|x) is the likelihood function of a particular value of the unknown 

parameter µ given the know data x (n is the sample size). By applying the MLE 

method, the results for the simulated datasets yielded an average µ of -2.1 (± 0.5), 

with a mean determination coefficient R2 = 0.64 (table 1.1). This estimation result for 

one set of data is described in figure 1.4a, in which the simulated step lengths are 

represented as the logarithmic value of frequency distribution. As shown, the red line 

of estimated data doesn’t match well with the blue line representing the simulated 

set. 

The second method of work is the cumulative distribution function (CDF): in this 

case 

 



Fig. 1.4. Methods for estimating power law exponent (!) for a Lévy walk simulated

dataset 1 with !=2. Logarithm of probability density function (a), cumulative

distribution function (b) and observations frequency, reported for each bin as divided

by the width of logarithmic bin (c) were plotted. The line interpolating the simulated

data is blue, while the estimated lines obtained with the maximum likelihood (MLE, in

a), the cumulative distribution function (CDF, in b) and the logarithmic binning with

normalization (LBN, in c) methods are red.

Table 1.1. Estimation of  ! exponent for 10 sample datasets tested for Lévy walk model.

Three estimating methods are used: CDF = cumulative distribution function; MLE =

maximum likelihood estimation; LBN = normalized logarithmic binning. Average !

coefficient and R2 obtained are reported together whit standard deviation values.

Estimating method Estimated ! R
2

MLE -2.1 ± 0.50 0.64 ± 0.260

CDF -2.1 ± 0.30 0.93 ± 0.130

LBN -1.9 ± 0.06 0.98 ± 0.006

(b) (c)

log lin bins

lo
g
 c

o
u
n
ts

Maximum likelihood estimation

(a)
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! 

F(xj ) = (
xj

b
)(µ+1)

     
(12) 

 

where b is the maximum value of the data. The CDF is progressively constructed for 

a set of observed data, by ranking the n observed xj values from smallest to largest. 

The probability that an observation is less than or equal to xj is then estimated as j/n. 

Having determined the CDF for a power-law distribution, the exponent µ of the 

probability density function can be estimated by using regression. The traditional 

approach is to transform the equation for the CDF in order to render the slope 

directly linked with µ: 

 

    

! 

log(F(xj )) = "(µ +1)log(b)+ (µ +1)log(xj )    (13) 

 

In this way the slope of the regression is equal to µ+1, making necessary to subtract 

1 to obtain µ. In figure 1.4b the results for one simulated dataset are showed: for 

each value of xj, the logarithm of the rank is plotted against log(xj). In this plot it is 

possible to see that the estimated data, in red, again seem to have a margin of error 

respect to the empirical data, in blue. Making the CDF estimation for all the 

simulated datasets with the known exponent µ=2, the average value was -2.1 (± 0.3), 

with an R2 value of 0.93 (table 1.1).  

The third way to estimate the exponent of a power-law distribution is logarithmic 

binning with normalization method (LBN). This method (Fig. 1.4c) involves setting 

bin breaks such that each bin is twice the width of the preceding bin. This approach 

is similar to the linear binning method, but uses bins of logarithmically rather than 

linearly increasing width. This causes a reduction in the number of empty and low-

count bins at large values of xj, because the linear width of a bin increases linearly 

with x. The count of each bin is then divided by the width of that bin to have a 

frequency density for each bin. The frequency density for each bin is then plotted, as 

logarithmic values, against the geometric midpoint of that bin, as seen in figure 1.4c. 

A linear regression of the plotted points, in red, gives an estimate of µ, as the 

negative of the slope, for one of the simulated dataset. As shown, in this case the red 

line of the estimated data seems to be a very good estimation of the simulated data, 

draw in blue. The µ values obtained by applying the LBN method showed an average 



Results - 7 

of 1.9, with a very low standard deviation (0.06). Furthermore, the goodness of the 

estimation was confirmed by a high determination coefficient of 0.98 (table 1.1). 

 

Comparative result evaluation  

The average value of the exponents estimated with the three techniques, for the 

simulated datasets, was reported in table 1.1, together with their standard deviation 

and the mean determination coefficient R2, used as index of goodness of fit. As seen 

in the table, although all the three estimation methods seem to estimate quite well the 

power law exponent of 2, they don’t have the same precision. In fact, the MLE and 

the CDF methods show a high standard deviation for the exponent values (0.5 for 

MLE, and 0.3 for CDF) and quite low R2 index of 0.64 (MLE) and 0.93 (CDF). This 

poor parameter estimation, for the two methods above, was explained by the selected 

dataset characteristics. In fact, even if the sample size of 500 elements seems to be 

larger, at large step length values their frequency is still very low. So, these two 

methods estimate the µ index with lower precision, because they were strongly 

affected by the low number of large values in the tail. 

On the other hand, the LBN method seems to solve this problem, in fact it estimates 

very well the µ exponent with a low standard deviation of 0.06 and a high R2 index 

of 0.98. In fact, by setting a different weight for the long steps bins, this method 

smoothes the effect of dataset size, performing, in presented experimental condition, 

the better exponent estimation than the other two methods, MLE and CDF.  

 

Selected method: LBN 

The LBN provides an accurate method to estimate the parameter of a power law 

distribution, for a set of data that simulate a real step lengths distribution, directly 

from the slope of the linear regression; for this reason, this method was used to 

perform Lévy index estimation. The procedure to evaluate the best fit for the Lévy 

walk model can be resumed in these following steps: compute the step lengths 

frequency distribution from the coordinates of moving cells; set the starting limit, a, 

of the power law tail; estimate the exponent of the distribution function by using the 

logarithmic binning with normalization method; assess the estimation with the R2 

coefficient; verify if the estimated exponent falls in the range 1 < µ # 3. 



Results - 8 

 

3.1.3. Correlated random motion: “Persistent random walk model” 

Correlated random walk, unlike simple random walk, is a motion model that implies 

a correlation between orientated successive steps. This feature produces a local 

directional bias. In fact, the assumption is that each step tends to point towards the 

same direction as the previous one, although the influence of the initial direction of 

motion progressively diminishes over time and step directions are uniformly 

distributed in the long time scale. 

The persistent random walk is a form of correlated random walk, in which the 

correlation between successive steps is determined by the persistence parameter. 

This parameter is the time that, on average, a cell spends in moving in the same 

direction as the previous step. In the persistent random walk model, mean squared 

displacements (MSD or d2) are related to time by means of persistence and speed 

parameters: 

 

    (14) 

 

where d2 is the mean squared displacement (!m2), S the speed (!m/min), P the 

persistence (min) and t the observation time (min). The mean squared displacement 

can be determined from experimental data, for a time interval ti =ni $t (where ni is 

the number of steps at ti), tracked for the total observation time and calculated by: 

 

   (15) 

 

where x i is the position vector at time i. The d2 values are calculated for all time 

intervals during the total motion observation period. In persistent random walk 

model, given the observation time intervals, the mean square displacement of the 

analyzed dataset is only dependent on parameters S (speed) and P (persistence). 
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Nonlinear estimation problem 

As seen above, the expression describing the persistent random walk model is a 

nonlinear function; therefore, in order to estimate the unknown parameters, P and S, 

a fit through a nonlinear regression method is required. As in other cases involving 

nonlinear regression, persistence and speed values are computed by a procedure 

requiring an iterative approach, directed to minimize the sum of the squared 

residuals, as indicated by: 

 

   (16) 

 

where the subscripts r and p respectively indicate real data values and values 

estimated from the model. The basic idea of iterative method involves these steps: 1) 

calculate the sum of squares for the curve defined by the initial set of parameters, 2) 

adjust the parameters to make the curve closer to the experimental data, 3) stop the 

calculation when the sum of squared residuals (RSS) reaches its minimum, 4) report 

the best fit result. The only difficult step in this process is adjusting the equation 

parameters to decrease the distance between empirical and estimated data. There are 

several algorithms used to solve this problem, whose effectiveness depends on the 

data used to calculate the curve from the model function. 

In this study, to obtain the best parameter estimation, different optimization 

algorithms have been tested. Three different datasets were generated, according to 

different motion models, which simulate an average speed of 0.1 µm/min and 

different persistence values, for an observation time of 24 hours, in which the step 

interval was fixed at 40 minutes. Dataset 1 was built by using a random walk with no 

persistence (P=10 min), the dataset 2 with a moderate persistence (P=120 min), and 

dataset 3 with a strong persistence (P=720 min). These sets of parameters include 

most of the experimental situations used in this study, where moving cell populations 

were observed during 24 hours, and tracked every 40 minutes. In figure 1.5 the mean 

squared displacements computed for these datasets were plotted as a function of 

time, together with the results obtained for the PRW estimation by using three 



Fig. 1.5. Persistent random walk estimation methods. Three methods were selected to

estimate parameters of persistent random walk: Newton algorithm (a), gradient

descendent algorithm (b), and Levenberg-Marquardt algorithm (c). Performances were

compared by applying them on three samples having the same speed of 0.1 !m/min and

different persistence, respectively of 10 min, 120 min and 720 min [added noise

N(0,100)]. Mean square displacements were plotted as a function of time together with

the estimated curves (respectively in blue, green and red).

(a)

P (min) S (!m/min ) R
2

Dataset 1 7.68 0.11 0.73

Dataset 2 108.17 0.1 0.99

Dataset 3 797.84 0.09 0.99

P (min) S (!m/min ) R
2

Dataset 1 0 0 NaN

Dataset 2 - - -

Dataset 3 277.86 0.12 0.98

(b)

(c)

P (min) S (!m/min ) R
2

Dataset 1 0 0 NaN

Dataset 2 5.83 0.40 0.97

Dataset 3 1.00 1.45 0.88
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different estimation algorithms: “Newton” (a), “Gradient descendent” (b) and 

Levenberg-Marquardt (c). As shown in panel a, the first approach of “Newton” 

algorithm appears to reach a good fit only for dataset 3 with maximum persistence 

value, whereas it completely fails the estimation for dataset 2, and gets a wrong fit 

for the dataset 1. Also by using different simulation datasets, the “Newton” method 

failed to make the estimation. This happens because in the iterative search for 

convergence, this method executes the calculation of the inverse of a matrix. If this 

matrix is singular, as for some of used simulations, the iteration cannot go on and the 

algorithm fails. This problem, together with the high computational complexity of 

the calculation for each iteration, makes this method poorly suited for the presented 

study. 

Similarly, the second approach of  “Gradient descendent” algorithm is able to make 

the estimation but, for all three datasets, this is not well approximated to the 

simulated data (figure 1.5b). In fact, as reported in the table on the right, it estimates 

speed and persistence parameters that are far from those used for all simulated 

datasets. The “Gradient descendent” approach was tested by using different sets of 

PRW model simulations with known parameters, P and S. The estimation results 

were very discordant, because the estimated parameter values were far from the real 

ones. This method, again, did not provide a good solution to the persistent random 

walk model, starting from the data presented in this study. 

Finally, the “Levenberg-Marquardt” algorithm (LM) was tried to solve the persistent 

random walk model equation. As shown in figure 1.5c, unlike the first two 

approaches, the LM method is able to reach a better fit. By applying the LM 

algorithm on the three datasets generated from the PRW model, the method 

iteratively computes the minimum of sum of squared residuals and gets better values 

for the estimating parameters speed and persistence, reported in the table on the 

right. This method is a blend of “Gradient descendent” and “Gauss-Newton” 

algorithms. The “Levenberg-Marquardt” method uses the “Gradient descent” in the 

early iterations, performing long steps to faster reach the convergence area of RSS, 

then decreases the step size by gradually switching to a modified “Newton” 

approach, the “Gauss-Newton”, that works far better in estimating the approximation 

of the local minimum value. In this way the LM algorithm solves the estimation 

problem found by using the other two methods, by taking advantage in term of 

computational quickness. The LM algorithm works very well in estimating the model 
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parameters and representing the best fit to the empirical data for all cases of 

persistent motion (P=10 min., P=120 min. and P=720 min.). In fact, it yielded 

estimated values of speed and persistence that are very close to the real ones used in 

the simulations, still in the case of very low persistent motion (dataset 1). It is 

possible to note that the red line representing the estimated values closely matches 

the empirical data and allows to identify, through the slope of the curve, the different 

persistence behaviour.  

Being the LM an iterative approach, it is possible to improve the estimation 

performance by making some considerations on the experimental dataset. By 

performing a preliminary analysis on the experimental data, it is possible to do some 

assumptions about the parameters, speed and persistence, to be estimated. These two 

measures are obviously defined as finite positive values and, therefore, the 

persistence value is defined within the interval from zero to the total observation 

time, and speed is determined by starting from a short interval around the average 

experimental value. In the present study, during a 24 hour observation time, the 

persistence ranges between 0 > P > 1400 minutes. However, this is still a large 

interval, that implies an ideal movement hypothesis, where cells move along a 

straight line during all the observation time. For this reason, a further narrowing of 

the parameter intervals may be done, according to the experimental situation and by 

taking advantage from the information available in literature on the behaviour of 

similar cell types. Taking all this into consideration, the initial persistence interval 

was adjusted depending on the performed analysis. The expected interval for the 

speed parameter was selected in a range around the expected mean values. By 

providing the iterative LM algorithm with these hints, it was possible obtain a  

quicker and more accurate estimate of the unknown parameters. 

 

3.1.4. Biased random walk model 

A directional bias is introduced when the probability of moving in a specific 

direction is greater than that of going in other directions. Paths showing a consistent 

bias towards a preferred direction or towards a given target are defined as biased 

random walks, or biased and correlated random walks if persistence is also observed. 

In order to assess the relevance of the different aspects of this model, correlation 

between the direction of subsequent steps and directional bias may be separately 
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analyzed. The persistent random walk model is used to study directional correlation 

in time, as reported in the previous section, while directional analysis may be used to 

assess the directional bias.    

 

Directional analysis 

As described in previous section, analysis of directionality was carried on by fitting 

the circular uniform distribution, that describes movements in all possible directions, 

and the von Mises distribution, that describes movements concentrated around a 

mean direction, to experimental data. In presence of a directional bias, the 

distribution of net displacements is not well described by the circular uniform 

distribution but a good fit may still be observed with a von Mises distribution. As 

shown in figure 1.2b, when a high concentration of net displacements is present, as 

in the case of a dataset generated from a biased random walk simulation, the data are 

described well by the von Mises distribution (red curve), but the fit with the circular 

uniform is lost, as also confirmed by the Watson test. This combination allows to 

highlight a motion pattern characterized by a preferred direction. On the other hand, 

as shown in figure 1.2a, by testing a dataset generated from a simple random walk 

simulation, the high dispersion of net displacement angles is well described by both 

the uniform distribution and the von Mises one. The effectiveness of this method in 

distinguishing biased and non-biased migration was confirmed by testing it on 

different datasets, from simulated experiments or from the observation of cells 

migrating under random conditions and in presence of a directional stimulus,  

Taken together, the persistent random walk model, analyzed by means of the 

Levenberg-Marquardt algorithm for nonlinear regression, and the directional 

analysis, performed by using circular distributions, allowed the analysis of the biased 

and correlated random walk model. 

 

3.2. MotoCell 

In the course of this study, different computational procedures were developed, as 

shown before, in order to model the process of cell migration: these include methods 

to evaluate fitting of simple random walk, Lévy walk and persistent random walk 

models to empirical data. In order to quickly apply these methods to the study of 
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experimental data, MotoCell, a tool previously developed in our laboratory (see 

Introduction), was expanded to add new procedures. To this aim, different 

architectural modifications were introduced, directed to the use of new statistical 

tests, necessary to analyze and model movement in cell populations. 

 

3.2.1. Software reorganization 

Figure 2.1 shows the new MotoCell object architecture, where newly inserted objects 

are identified with the “new” label, whereas modified old objects are marked with an 

asterisk (“*”). Five object groups are present: objects used to create the web 

interface, in purple; objects used to define the physical entities involved in cell 

migration, in blue; objects responsible for text and graphical output, in green; 

analysis objects, in red or orange (R based analyzers, see below). A motocalc object 

was also created as the link between the interface generator objects and the new 

analyzer objects.  

Analysis objects are all derived from the Analyzer object, developed to perform 

generic data analysis. This was then extended by creating several children objects, 

built to execute specific analysis procedures. These include all statistical analyses, 

already available in MotoCell and discussed in “Introduction”, used to determine 

descriptive parameters for linear and circular statistics, calculated for the whole 

population as well as for each individual cell and/or step of migration. As many 

computational procedures were based on R, a complex environment for statistical 

computing (see Methods), an Ranalyzer object was also created, able to directly 

execute R scripts in MotoCell. This new structure allowed to easily generate new 

groups of statistical tests, that include, among others, migration analysis through 

Lévy and persistent random walk models. 

As shown in figure 2.2, the idea was to design an independent object for each 

analysis group. The objects have the form of a plugin, i.e. they may be added without 

introducing any changes to the existing code, by just dropping an extra file in a 

plugin directory. During the construction of the main interface page, the software 

queries the Analyzer plug-ins to know the implemented tests and their class; this 

information is used to construct the interface and to present the various analysis tools 

in a consistently organized way. If selected, the plug-in is then called to perform the 

calculations necessary to the requested analysis and later on to generate the output. 



Fig. 2.1. New object architecture of MotoCell: the objects are grouped in order to easily
recognize those responsible for building the interface (purple), the output objects
(green) and the data objects (blue). The new analyzer objects (red) and R interface
objects (orange) are marked as “new” while the “*”  identifies the objects modified
within this work.
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Fig. 2.2. Functioning of analysis plug-in. MotoCell queries an Analyzer object to build
the main page interface; the Analyzer performs all computing operations also by using
R scripts and  generates the output results.

Interface

Main page

Analyzer
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A new class includes all the objects involved in migration analysis by means of 

motion models, such as simple random walk, persistent and biased random walk, 

Lévy walk.  

 

3.2.2. New tracking procedure 

When migration analysis is performed for long time periods, cell observation may be 

affected by a number of different events: cells may split following a mitosis event, 

die by apoptosis or other ways, or simply go out of the observation area. Of course 

cells may also increase, as splitting produces newborn cells and new cells may enter 

the field of view. These events affect the statistical analysis by introducing two types 

of bias. First of all, cell split and death cause a progressive reduction in cell number 

during the observation time, meaning that, although a significant quantitative 

evaluation may be done in the first part of the analysis, at the end of the observation 

time the same procedures are often no longer representative of the behaviour of the 

whole cell population. Furthermore, paths followed by cells that go against these 

events have a reduced duration compared to the whole duration of the analysis. This 

means that, by performing a quantitative evaluation of motion during time, the 

behaviour of cells that move for long time periods will have a higher weight in the 

analysis compared to cells followed for a short time. This is especially strange, as 

during the observation time cells tend instead to grow, rather than reduce in number. 

In order to counter this effect, a new tracking method was introduced in MotoCell to 

track cells appearing later in the course of the observation time. The cell origin is 

recorded, for example as “newborn” in the case of cells derived from a mitosis, or 

“find” for cell that suddenly appear within the field of view. By using this new 

tracking procedure, daughter cells can be directly tracked, by also keeping a link to 

their parent cell, soon after the birth, or later on. The continuous introduction of new 

cells was shown to improve the analysis of migration, by including a larger number 

of paths thus reducing or solving the problems deriving from the small number of 

cell in the final stages.  

The tracking of all cells that appear during the analysis provided us with an easy 

method to perform a measure of the state of the cell culture during time. In figure 2.3 

the output of this analysis is shown, where the whole cell population is represented 

by lines, one for the lifetime of each cell: the symbols at the beginning and end of the 



Fig. 2.4. Virtual cell synchronization. The plots show two different modes of
synchronizing cells: (a) synchronized on the cell birth event, (b) synchronized on the
cell division event.

(b)(a)

Fig. 2.3. Population viability analysis. The plot shows the result of cell life span
analysis. Each segment represents the life span of a single cell, and ends with a symbol
representing its final destiny. The table reports statistics on cell origin, destiny and
average life span during the observation time.
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line respectively represent its origin and final destiny. A viability analysis of the cell 

population is also included, obtained by combining the information on the lifespan of 

each cell: average life span is calculated as the mean time between cell birth and the 

next mitosis event, whereas proliferation rate, i.e. the time needed for the 

population’s duplication is calculated as follows: 

 

   (17) 

 

where PR is the proliferation rate, e the cell number at start, n the newborn cells, gi 

the cells that appear into the field of view, fi the cells found during the analysis, d the 

dead cells, l the lost cells, go the cells that go out the field of view, fp the cells that  

cover all time of the analysis. 

Virtual synchronization of cell population allows to study the different migration 

behaviour of cells in relation to their phase of life, as reported in figure 2.4, where 

cell paths are aligned according to the birth (a) or split (b) events. 

 

3.3. Fibroblast migration models 

3.3.1. Searching for simple random walk features 

Quantitative analysis of cell motility was carried out by observing cells under the 

microscope and producing time lapse series by acquiring images at regular intervals. 

The paths followed by each cell have been sampled at 10 minute intervals (steps) for 

24 hours, although quantitative analysis and statistical evaluation have usually been 

done at 40 minute intervals in order to avoid the noise introduced by an exceedingly 

large number of very small steps of just 1 or two pixels. As said, MotoCell software 

was used according to the described procedures. NIH3T3 and Ras transformed 

fibroblasts were studied in order to evaluate the effect of the oncogene on their 

migration features both when moving randomly and when responding to a directional 

stimulus in wound healing experiments. 

The assumption that cells move according to a simple random walk, was evaluated 

by the previously described tests, checking for features such as Gaussian distribution 

of step lengths, uniform distribution of cell directions and normal diffusion during 

time. These tests were carried on for both NIH3T3 and NIHRas populations and 
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under random and stimulated motion conditions. In the following sections the aspects 

of step length distribution and diffusion will be analyzed, while the distribution of 

cell directions will be discussed later on. 

 

Step length distribution 

The distribution of the step lengths was tested by evaluating, for each cell 

population, the inverse cumulative distribution of the step lengths, i.e. the distance 

travelled in a 40 minute interval. Cumulative distribution of the Gaussian that best fit 

the experimental data was estimated. The results have been reported in figure 3.1a-d. 

For normal and transformed fibroblasts, under both experimental conditions, step 

length distribution, appears to be well described by a Gaussian distribution, as shown 

by the blue curves. This observation was also confirmed by the values of the R2 

coefficient, reported in the corresponding tables, close to 1 in almost all cases. By 

quantitatively testing the goodness of fit by means of the Kolmogorov-Smirnov test, 

it was observed that the Gaussian distribution hypothesis of step length might be 

accepted for almost all fibroblast population, although in some cases with a very low 

margin, as for example for the NIH3T3 fibroblast population under stimulated 

condition (fig 3.1c).  

The data have also been tested against other statistical distributions, represented in 

figure 3.1. Six statistical distributions have been selected to evaluate their fit to the 

experimental data: the Poisson, the exponential, the geometric, the Cauchy, the 

Weibull and the log-normal. For each statistical distribution, the estimated curves are 

reported in figure 3.1, together with the cumulative distribution of the step lengths 

for randomly moving (a-b) and wound stimulated (c-d) NIH3T3 and NIHRas 

fibroblasts. A shown, the step length distribution is often well described by these 

other distributions: specifically distributions of the exponential family, such as the 

log-normal  (cyan curve) or the Weibull (purple curve) often fit to the data as well as 

the Gaussian one. The goodness of fit was quantitatively assessed, again, by the high 

values of R2 coefficient, and by the Kolmogorov-Smirnov test, as reported in the 

tables. The test was repeated for several experimental data sets, and the computed R2 

coefficients for the different distributions have been reported in table 3.1. Also in 

these cases, a good fit of Gaussian and other exponential distributions to the 

experimental data was often found, indicating that these results cannot be used to 



Fig. 3.1. Analysis of step length distribution for NIH3T3 and NIHRas fibroblasts

randomly moving or stimulated by a wound. Different statistical distributions were

fitted to four experimental datasets. Results of fitting are reported as cumulative

distributions together with the data from each population: (a) NIH3T3 and (b) NIHRas,

both randomly moving, (c) NIH3T3 and (d) NIHRas, wound stimulated. Goodness of

fit, evaluated by using R2 coefficient and Kolmogorov-Smirnov test, are reported in the

tables.

(c)

NIH3T3 NIHRas(b)(a)

(d)



Table 3.1. Summary of R2 values obtained by fitting different distributions to several

datasets. NIH3T3 and NIHRas fibroblasts were assayed both as randomly moving and

under wound stimulus.

Distribution Normal Weibull Log-Normal Cauchy Exponential Poisson Geometric

Dataset 1 0.90 0.97 0.99 0.97 0.97 0.90 0.93

Dataset 2 0.95 0.98 0.99 0.98 0.95 0.97 0.89

Dataset 3 0.97 0.99 0.99 0.98 0.96 0.97 0.91

Dataset 4 0.91 0.98 0.99 0.98 0.97 0.89 0.93

Distribution Normal Weibull Log-Normal Cauchy Exponential Poisson Geometric

Dataset 5 0.95 0.98 0.99 0.97 0.96 0.92 0.91

Dataset 6 0.94 0.98 0.99 0.97 0.96 0.95 0.88

Dataset 7 0.95 0.98 0.99 0.98 0.95 0.96 0.88

Dataset 8 0.97 0.99 0.99 0.87 0.93 0.97 0.87

Dataset 9 0.95 0.97 0.99 0.98 0.93 0.98 0.84

Dataset 10 0.94 0.97 0.99 0.98 0.93 0.98 0.86

Dataset 11 0.93 0.98 0.99 0.97 0.97 0.93 0.93

Distribution Normal Weibull Log-Normal Cauchy Exponential Poisson Geometric

Dataset 12 0.96 0.99 1.00 0.97 0.97 0.85 0.95

Dataset 13 0.94 0.99 1.00 0.98 0.97 0.90 0.94

Distribution Normal Weibull Log-Normal Cauchy Exponential Poisson Geometric

Dataset 14 0.95 0.99 1.00 0.98 0.97 0.90 0.94

Dataset 15 0.98 0.99 0.98 0.96 0.94 0.86 0.90

Dataset 16 0.89 0.97 0.99 0.95 0.98 0.84 0.94

Dataset 17 0.97 0.99 0.99 0.98 0.95 0.89 0.91

Dataset 18 0.96 0.99 1.00 0.98 0.94 0.94 0.89

Dataset 19 0.95 0.99 1.00 0.97 0.96 0.87 0.93

wound

NIHRas

wound

NIH3T3

random

random
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conclusively define the Gaussian as the best fitting model for NIH3T3, but also for 

NIHRas, in any of the two migration conditions. This ambiguous result led to 

investigate other features of the simple random walk model. 

 

Diffusion analysis 

A simple random walk, as described before, typically results in a normal diffusion 

process, in which the mean squared displacements are linearly correlated with time. 

As the relation between mean squared displacements and time may be used to 

distinguish normal diffusion from other diffusion types, diffusive behaviour was 

studied in NIH3T3 and NIHRas populations under unstimulated and stimulated 

motion conditions. In figure 3.2 the mean squared displacements were plotted as a 

function of time for a 12 hours observation time. For the two populations in both 

unstimulated (a-b) and stimulated (c-d) conditions, the resulting curves do not follow 

the trend expected for normal diffusion. In fact, the calculated MSD is not linearly 

correlated with the time, but the points representing the experimental data fall into 

the expected interval of a superdiffusive process, characterized by a ! exponent 

included in the interval between 1 and 2 (black dotted lines in figure). Estimation of 

the ! exponent for different data sets (see table 3.2) confirmed that the observed 

migration has the features of a superdiffusive process, as shown by the lambda 

values falling within the interval between 1-2. In general, a different degree of 

superdiffusion was observed between the two populations: superdiffusion is more 

pronounced for populations of NIHRas transformed fibroblasts (b-d) than for the 

parental NIH3T3 fibroblasts (a-c), in both experimental conditions. 

This superdiffusive behaviour is typical of fast moving cells, i.e. cells increasing 

their distance from the starting point faster than if moving according to a normal 

diffusion model (bottom black line in fig. 3.2). This result led to investigate other 

random walk models, able to better describe motion types with these features. 

 

3.3.2. Superdiffusive random walk models 

The simple random walk is a probabilistic model that implies strong simplifications, 

and, as such, it is not necessarily fit to describe real cell movement. Superdiffusive 

random walk models are more complex and involve additional parameters, such as 



Fig. 3.2. Diffusion analysis of mouse fibroblasts. Mean squared displacements

obtained in absence of directional stimulus (a and b) and in presence of it (c and d).

Results for NIH3T3 and NIHRas cell populations are reported on the right and on the

left side respectively.
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Table 3.2. Summary of results obtained by estimating ! diffusion exponent for several

datasets. NIH3T3 and NIHRas fibroblasts were assayed both as randomly moving

(random) and under wound stimulus (wound).

Dataset 1 1.41

Dataset 2 1.23

Dataset 3 1.39

Dataset 4 1.40

Dataset 5 1.46

Dataset 6 1.39

Dataset 7 1.48

Dataset 8 1.50

Dataset 9 1.41

Dataset 10 1.40

NIH3T3

random

wound

Dataset 12 1.51

Dataset 13 1.42

Dataset 14 1.55

Dataset 15 1.64

Dataset 16 1.39

Dataset 17 1.50

Dataset 18 1.51

Dataset 19 1.63

random

NIHRas

wound
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speed, persistence and others, introduced to better describe the migration 

phenomena. As observed (fig. 3.1) when analysing step length distribution, in many 

cases, the Gaussian function is not always able to properly describe the step length 

distributions observed for moving NIH3T3 and NIHRas populations, while other 

long tail distributions are sometimes as good as if not better than the Gaussian one. 

By taking into account this information two models were selected among the 

superdiffusive ones: the Lévy walk and the persistent random walk. 

 

Lévy walk 

Lévy walk is a well known model of superdiffusion, characterized by step lengths 

following a power law distribution function as in: 

 

, 1 <µ< 3         (18) 

 

where l is the step length and µ is the Lévy index. Estimates for the Lévy ! index 

were obtained from the step lengths of a cell population by using the procedure 

developed, described under 2.1.2, which uses normalized logarithmic binning to 

describe the step length distribution as a line whose slope corresponds to the Lévy ! 

index. 

The results obtained for NIH3T3 fibroblasts are shown in figure 3.3. The tested data 

points, although falling into the Lévy walk interval delimited by the black dotted 

lines, are poorly described by the model, as shown by the nonlinear shape of the 

distribution function and by the R2 coefficients, not very high in both experimental 

conditions (a-b). However, there is a difference between the two experimental 

conditions and in the case of the population moving after the wound stimulus, the 

calculated function appears to better follow the experimental data, with an estimated 

µ exponent of 1.89, i.e. within the interval expected of the Lévy model.  

NIHRas fibroblast populations, randomly plated and stimulated by a directional 

stimulus, were also analyzed and results are shown in figure 3.4. The experimental 

data do not result in a straight line in both experimental conditions (a-b) and are 

therefore again not described by the Lévy walk model, with lower values of R2 

coefficient. The test was repeated for several data sets for each cell line and for each 

experimental condition: R2 and estimated ! index, reported in table 3.3, confirm the 



Fig. 3.3. Migration analysis of NIH3T3 fibroblasts by using the Lévy walk model.

Normalized logarithmic bins of the step lengths obtained in absence of directional

stimulus (a) and under wound effect (b), were reported on the charts together with the

line of the best fit of the Lévy walk to the experimental data (red line). The two dotted

black lines delimit the ! exponent range of Lévy walk (!=1-3) and, between these, the

blue dotted line indicates the trend when ! is fixed to 2. In the tables on the right, the

estimated ! exponents, calculated for each experimental dataset, were reported together

with the coefficient R2.

(b)

(a)



Fig. 3.4. Migration analysis of NIHRas fibroblasts by using the Lévy walk model.

Normalized logarithmic bins of the step lengths obtained in absence of directional

stimulus (a) and under wound effect (b), were reported on the charts together with the

line representing the best fit of Lévy walk to the data (red line). The two dotted black

lines delimit the ! exponent range of Lévy walk (!=1-3) and, between these, the blue

dotted line indicates the trend when ! is fixed to 2. In the tables on the right, the

estimated ! exponents, calculated for each experimental dataset, were reported together

with the coefficient R2.

(b)

(a)



Table 3.3. Summary of results obtained by estimating ! parameters for several datasets.

NIH3T3 and NIHRas fibroblasts were assayed both as randomly moving and under

wound stimulus.

Estimated ! R
2

Dataset 1 1.53 0.9

Dataset 2 1.46 0.71

Dataset 3 1.89 0.79

Dataset 4 1.22 0.75

Dataset 5 1.66 0.75

Dataset 6 1.09 0.8

Dataset 7 1.89 0.85

Dataset 8 1.11 0.64

Dataset 9 0.63 0.57

Dataset 10 0.83 0.55

Estimated ! R
2

Dataset 12 0.92 0.69

Dataset 13 1.24 0.77

Dataset 14 0.19 0.19

Dataset 15 0.63 0.35

Dataset 16 0.64 0.35

Dataset 17 0.96 0.66

Dataset 18 0.87 0.54

Dataset 19 0.78 0.56

Dataset 20 1.19 0.63

NIH3T3

random

NIHRas

wound

random

wound
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results shown before for both NIH3T3 and NIHRas fibroblasts, with the Lévy walk 

model poorly describing the migration, with the only possible exception of 

stimulated NIH3T3 fibroblasts. 

 

Persistent random walk 

In order to analyze fibroblast motion by using the persistent random walk model, 

speed and persistence parameters were estimated by using the developed procedure 

based on the Levenberg-Marquardt algorithm for nonlinear regression (see Results 

2.1.3).  

The results obtained for NIH3T3 populations, in random motion and stimulated 

conditions, were shown in figure 3.5, where the plotted points represent the squared 

displacements of each cell at time intervals ranging from 40 min to 24 hours. The red 

dotted lines represent the mean squared displacements estimated by using the LM 

algorithm for the persistent random walk model estimation. The model appears to fit 

NIH3T3 migration data in both motion conditions (fig. 3.5a-b), with the reliability of 

the estimated parameters confirmed by using the Student’s t-test. A similar 

curvature, corresponding to a similar degree of persistence (200-300 minutes) was 

observed for unstimulated (figure 3.5a) and stimulated conditions (fig. 3.5b). The 

speed estimates also appear similar between the two populations and are close to the 

values obtained by averaging the step lengths for the two fibroblast populations.  

Motion analysis through the persistent random walk model for NIHRas fibroblasts, 

in both random and stimulated culture conditions is reported in figure 3.6. As for the 

parental NIH3T3fibroblasts, the migration is well described by the persistent random 

walk model. However in this case, a consistent increase of the squared displacements 

after directional stimulus can be observed in wounded compared to unstimulated 

fibroblasts, associated with a different curvature of the estimated curves (red), 

indicative of a different degree of persistence, depending on motion conditions. 

Persistence for the NIHRas fibroblasts raises from 100 min under unstimulated 

conditions to over 600 min after wound, corresponding to a change from 2 to about 

16 steps. Regarding to the estimated speed, increased values were always found for 

NIHRas populations compared to parental ones, but they are apparently not 

dependent on the directional stimulus. Also in this case the estimated speed is 

comparable to that calculated by averaging the step lengths. 



Fig. 3.5. Migration analysis of NIH3T3 fibroblasts by using the persistent random walk

model. Squared displacements of NIH3T3 cells randomly moving (a) and under

directional stimulus (b) have been plotted as a function of the time. The better

estimation obtained by using the persistent random walk model has been superimposed

to the points as a red dotted curve. In order to evaluate the goodness of fit, the R2

coefficients have been reported in the tables together with estimated persistence and

speed, and with the corresponding Student’s t-test for significance.

(a)

(b)



Fig. 3.6. Migration analysis of NIHRas fibroblasts by using the persistent random walk

model. Squared displacements of NIHRas cells randomly moving (a) and under

directional stimulus (b) have been plotted as a function of the time. The better

estimation obtained by using the persistent random walk model has been superimposed

to the points as a red dotted curve. In order to evaluate the goodness of fit, the R2

coefficients have been reported in the tables together with estimated persistence and

speed, and with the corresponding Student’s t-test for significance.

(a)

(b)
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The different degree of persistence observed in parental and transformed fibroblast 

populations under both random and wound conditions, was confirmed for several 

datasets analyzed by using the persistent random walk model, as reported in table 

3.4. As shown, the estimated speed values for both populations do not change much 

between the different experimental conditions. On the other hand, persistence, which 

for NIH3T3 cells appears similar in unstimulated and stimulated conditions, for 

NIHRas is strongly dependent on the experimental conditions, low in random but 

very high under the effect of directional stimulus.  

Taken together, these results allow to conclude that NIHRas fibroblasts respond to 

the presence of a directional stimulus by increasing directional persistence, defined 

as the time spent moving in the same direction, while showing a speed similar to that 

observed in random motility assays. 

 

3.3.3. Directionally biased walk 

Biased and correlated random walk also belongs to the superdiffusive family. This 

model takes into account a directional bias such as that provided by an external 

stimulus in addition to the correlation between subsequent movement directions, 

studied by the persistent random walk model. In this study, directional analysis was 

performed by using circular distribution models.  

 

Directional analysis 

The effects of a directional bias on migration were evaluated by using circular 

distributions, in order to distinguish uniform from unidirectional and other non 

uniform distributions of directions. The von Mises distribution, commonly used as a 

model for points tightly concentrated around a mean direction, was used for 

evaluating the unidirectional movement. 

In order to attempt to model the behaviour of cell populations according to von 

Mises distribution, the net displacements of each cell following a path have been 

used to compute the maximum likelihood estimate of the parameters of the von 

Mises distribution. Overlays of the theoretical curve with the experimental data 

obtained for randomly moving NIH3T3 and NIHRas populations, are reported in 

figure 3.7, and for both populations under stimulated conditions in fig. 3.8. The 

distribution of net cell displacements in the course of random movement clearly 



Table 3.4. Persistence (P) and speed (S) estimation for several populations of NIH3T3

and NIHRas fibroblasts. Cells were assayed both as randomly moving and under

wound stimulus.

P (min) S (!m/min)

Dataset 3 360.00 0.20

Dataset 21 291.40 0.27

Dataset 22 256.18 0.25

Dataset 23 220.69 0.32

Dataset 24 190.14 0.21

Dataset 25 68.77 0.27

Dataset 26 187.17 0.37

Dataset 27 145.44 0.31

Dataset 28 268.75 0.16

P (min) S (!m/min)

Dataset 13 86.56 0.29

Dataset 29 67.49 0.56

Dataset 30 60.04 0.58

Dataset 31 77.35 0.48

Dataset 14 463.90 0.16

Dataset 15 220.34 0.45

Dataset 16 340.30 0.24

Dataset 17 720.00 0.26

Dataset 18 619.87 0.36

Dataset 19 345.70 0.28

NIHRas

random

wound

NIH3T3

random

wound



Fig. 3.7. Directions analysis of mouse fibroblasts. The distributions of cell directions

for NIH3T3 in (a) and for NIHRas in (b) in random motion conditions, has been

reported together with the theoretical von Mises curve (in red). The Watson test was

used to evaluate the goodness of fit of the von Mises and the Circular uniform

distributions to the experimental data, as shown in tables.

(a)

(b)



(a)

(b)

Fig. 3.8. Directions analysis of mouse fibroblasts under a directional stimulus. The

distributions of cell directions for NIH3T3 in (a) and for NIHRas in (b) during wound

healing has been reported together with the theoretical von Mises curve (in red). Von

Mises parameters, mean direction and directions concentration, have been estimated

and reported in the tables. The Watson test was used to evaluate the goodness of fit of

the von Mises and the Circular uniform distributions to the experimental data, as

shown in tables.
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follows a circular uniform distribution (figure 3.7a-b), as also confirmed by the 

Watson test results reported in the table. As expected for these two populations, the 

hypothesis of von Mises distribution may also be accepted. A different behaviour 

was observed for the two fibroblast populations, NIH3T3 and NIHRas, stimulated by 

the presence of the wound. As shown in figure 3.8, a strong concentration of cell net 

displacements can be observed, confirmed by the poor fitting shown by the uniform 

circular distribution (Watson test values well above the threshold for P>0.01). This 

gathering of cell directions is well described by the von Mises distribution, as shown 

from the good fit of the estimated von Mises distribution, in red, to the experimental 

data. This goodness of fit was confirmed by the Watson test that allows to accept the 

von Mises distribution hypothesis. The directional behaviour of both parental and 

transformed fibroblasts in presence of the wound stimulus was also found in the 

several analyzed datasets. The estimated parameters for the von Mises distribution 

that best fits to each different dataset are reported in table 3.5. 

In conclusion, by taking into account the results obtained in directional analysis of 

parental and transformed mouse fibroblasts, it was possible to conclude that a gap 

introduced into a cell monolayer leads to a strong directional bias of migration. In 

fact, by observing the distributions of fibroblast net displacements, they were 

strongly concentrated around a mean direction that closely follows the direction 

expected because of the stimulus (fig 3.8). As shown before, this directional bias is 

associated with increased persistence in the same direction and therefore the biased 

and correlated random walk model is the one which best describes the migration 

behaviour of both NIH3T3 and NIHRas fibroblast populations in presence of a 

wound. 



Table 3.5. Summary of data obtained by estimating mean direction and direction

concentration by using the von Mises distribution. Different populations of NIH3T3

and NIHRas fibroblasts were assayed as randomly moving and under wound stimulus.

Mean Direction  Dir. Concentration

Dataset 1 66.52 ± 30.93 0.53 ± 0.30

Dataset 2 -17.43 ± 60.61 0.24 ± 0.25

Dataset 3 -77.45 ± 21.12 0.42 ± 0.16

Dataset 4 113.60 ± 21.81 0.95 ± 0.40

Dataset 5 24.38 ± 41.21 0.64 ±  0.48

Dataset 6 -162.00 ± 19.56 1.56 ±  0.69

Dataset 7 149.70 ± 10.21 3.70 ±  1.50

Dataset 8 12.54 ±   5.25 9.68 ±  3.68

Dataset 9 -3.72 ± 12.91 2.76 ±  1.12

Dataset 10 -21.58 ±  3.52 26.96 ± 11.94

Dataset 11 -28.04 ±  6.42 1.93 ±  0.31

Mean Direction Dir. Concentration

Dataset 12 122.40 ± 56.13 0.29 ± 0.29

Dataset 13 89.31 ± 29.21 0.37 ± 0.19

Dataset 14 97.53 ± 12.21 0.93 ± 0.22

Dataset 15 -21.62 ±   4.39 19.48 ± 9.06

Dataset 16 -9.45 ± 11.05 3.01 ± 1.12

Dataset 17 1.68 ±   9.83 3.64 ± 1.38

Dataset 18 7.68 ± 15.12 1.81 ± 0.66

Dataset 19 -21.08 ± 15.38 2.00 ± 0.78

wound

random

wound

NIH3T3

NIHRas

random
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4. Discussion 

Focus of this work was to propose models for the description of normal and transformed 

fibroblast migration. The starting idea was that, because of the stochastic nature of the 

migration process, it would be possible to formalize cell motion, by using well-known 

models of random walk, that could be used as a predictive tool. Random walk models 

have been applied in the past to a wide range of different problems in the biological 

sciences, such as the study of animal dispersal in ecology (Bartumeus et al. 2005; 

Smouse et al. 2010) and, including cell migration, to derive information about the process 

underlying cell motility (Gail and Bone 1970; Tranquillo et al. 1988; Hartman et al. 

1994). In the currently available software tools for analysis of cell migration, the 

modelling approach has been often neglected, with a few exceptions as in the case of 

“Cell_motility” by Martens et al. (2006), which allows to study migration by using the 

persistent random walk model. In the context of this thesis, MotoCell, a web application 

previously developed in our laboratory, was enhanced by implementing the described 

model fitting procedures. Special care was taken towards statistical significance of the 

analysis, by introducing various tests to evaluate goodness of fit and by attempting to 

increase the number of cell movements under evaluation through the use of partial paths 

as those followed by cells that are lost or appear later within the observation field. The 

practice of selecting full paths, that usually excludes shorter paths from quantitative 

analysis, is commonly used by many scientists (Selmeczi et al. 2005; Potdar et al. 2010). 

However, while in principle producing more homogeneous data, in practice this may 

result in migration analysis with low statistical significance, because of a reduced number 

of cells. In its current form, MotoCell allows to study the whole observed population by 

maintaining a more stable number of cells during time, and without the need for path 

selection. 

Within this work, a first approach was the evaluation of the diffusive features of the 

migration process. Diffusion analysis allows to distinguish cell populations moving 

according to a simple random walk model from those following other super- or 

subdiffusive models. Observations about these anomalous diffusion processes have been 

often associated to cancer cell migration in vitro (Dieterich et al. 2007). In the current 

work, a superdiffusive behaviour was found for both normal and transformed mouse 

fibroblasts under different experimental conditions, i.e. in random movement, when cells 

are exploring the surrounding space, as well as in wound healing assays, where migration 
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is directed to the invasion of the empty space created by scratching the cell layer. The 

superdiffusive behaviour may have different origins, among which the presence of short 

displacements alternated with very long displacements as in the Lévy walk model, or 

strong correlation between subsequent motion directions as in the persistent random walk 

model (Campos et al. 2010). 

The analysis of fibroblast migration was carried out by fitting these theoretical models to 

experimental data, through the estimation of equation parameters by regression. The 

problem of Lévy walk model estimation has been long studied in literature (Edwards et al. 

2007; White et al. 2008; Sims et al. 2007), with controversial findings about the correct 

estimation method. For the experimental data discussed in this study, it was found that 

the best working estimation method is logarithmic binning with normalization: it allows 

to reduce the error derived from dataset variability by distributing data within bins of 

different width, that end up by containing a more homogeneous number of data per bin. 

In the case of persistent random walk model, the problem of parameter estimation was 

dealt with by using the Levenberg-Marquardt algorithm for nonlinear regression, a 

method that, as in other cases (Heglung et al. 2007), was proved successful also with our 

data.  

Because of the intrinsic features of cells migrating on a substrate, which typically spend 

some time testing the surroundings by extending protrusions before translocating the cell 

body to the new position in a short time, the Lévy walk model, which typically alternates 

many short steps with a few longer ones, appeared to be a reasonable candidate. This 

model was found to work in other physiological and pathological situations, such as 

movement of cells within the epidermis to form new tissue (Reynolds 2010), or 

microglial cells moving within brain sections (Grinberg et al. 2011). However, in our 

tests, the Lévy walk model was generally not found to produce good fit, with the only 

possible exception of wound stimulated NIH3T3. 

The persistent random walk model was tested as an alternative superdiffusive migration 

model. This has been used in other studies on the behaviour of cells in standard culture 

conditions, often in cases where directional persistence over time may be expected (Ware 

et al. 1998; Kim et al. 2008). Heglund et al. (2007) found that a behaviour compatible 

with a persistent random walk could be observed in diabetic but not in non-diabetic 

fibroblast migration. In the present work, normal and transformed fibroblast populations 

appear to closely follow the persistent random walk model, although at different degrees 

of persistence, and also in relation with the experimental conditions. NIH3T3 fibroblasts 
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in random movement conditions show a relatively high persistence as well as cells 

moving under the directional stimulus produced by the wound. This behaviour indicates 

that in these cells, persistence is an intrinsic feature, not affected by the directional 

stimulus. A possible explanation of this behaviour lies in the time that cells spend to 

rearrange their cytoskeletal structures, which keeps cells moving for a while along the 

direction indicated by a previously extended protrusion. On the other hand, a change in 

the degree of persistence was seen for transformed fibroblasts: they show lower 

persistence in random motion than in presence of a directional stimulus. This effect is 

associated with a different path linearity: typically more tortuous paths may be observed 

in these cells when freely moving in random motility assays. In cells induced to move by 

the wound stimulus, these paths are more linear and result in higher persistence. This 

suggests that, in these cells, the presence of the wound strongly affects cell behaviour, by 

increasing cell persistence well over the values found for the parental NIH3T3 cell line. It 

is expected that a role is played by cell transformation by the Ras oncogene, which has 

otherwise been associated to deregulated cell migration induced by constitutive Ras 

activation which upregulates different intracellular pathways involved in cell adhesion 

and migration. 

This directional persistence observed in subsequent steps, may be associated with the 

presence of a directional bias determining a motion process following a model defined 

biased and correlated random walk. This combined random walk model has been 

observed for example in microorganism chemotaxis (Hill and Hader 1997; Codling and 

Hill 2005). In the analyzed populations moving under the wound stimulus, the two 

aspects of persistence and directionality have been often found associated. However, 

these two features may also result in separated motion models described by the persistent 

random walk, and in the other case, by a biased random walk. In this study, a high 

persistent behaviour without directional bias was observed for mouse fibroblast 

populations in random movement conditions. A similar behaviour has been described for 

polymorphonuclear neutrophils that follow a persistent or a biased random walk model, 

when cells are plated respectively in presence of a uniform concentration or a gradient of 

chemoattractants (Tranquillo et al. 1988).  

In the present study the superdiffusive migration models were found to best describe the 

behaviour of the observed fibroblast populations. In other cases, where migration was 

studied after introducing variations within the environmental conditions, such as changes 

in soluble factors or extracellular matrix components, this superdiffusive behaviour was 
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shown to be lost or modified in favor of a diffusive process (Ware et al. 1998; Rossen et 

al. 2011). These environmental changes allow to investigate cell migration under 

conditions that mimic physiological and pathological situations occurring in vivo, and to 

test the effects of different pharmacological treatments. Transformation of cells with the 

Ras oncogene reveals the influence that constitutive Ras activation exerts on persistence 

of motion. By introducing a directional bias, as in wound healing assays, a strong 

directional and persistent migration was seen for both normal and transformed 

fibroblasts. This may be changed by treatment of transformed cells with PD, an inhibitor 

of the MAPK pathway, which revealed that, under stimulated condition, these cells lose 

directionality, despite maintaining time persistence (data not shown). These results allow 

to conclude that the presented random walk model approach is an effective tool, that may 

be further developed to generate computational schemes tuned for modelling cell 

migration under experimental conditions that reproduce specific in vivo events.
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5. Methods  

 

5.1. Cell propagation  

Murine fibroblasts with normal and transformed phenotype, respectively NIH3T3 

and NIHRas, were grown in DMEM (Dulbecco's Modified Eagle's Medium) culture 

medium supplemented with 10% FBS (foetal bovine serum). Penicillin (10U/ml) and 

streptomycin (10 ng/ml) antiobiotics and L-Glutamine 2mM were added to the 

culture medium. Each operation was conducted in conditions of sterility under a 

vertical laminar flow hood.  Cells were mantained in incubator at 37 ° C in 

atmosphere made of 95% air and 5% CO2. Culture conditions and cell growth were 

followed by optical microscope observations.  

Cell propagation was performed by detaching cells with a solution of trypsin/EDTA 

(trypsin 0.05% and 0.53 mM EDTA) and collecting them with complete culture 

medium. After centrifugation at 1200 rpm for10 minutes, pellets were suspended in 

fresh medium, properly diluted and plated again. In order to plate cells at specific 

densities, the Burker chamber was used to count them. 

 

5.2. Random motility assay  

To investigate the random movement ability, cells were seeded (25000/well) in 12 

well plates and maintained in complete medium at 37°C in an incubator with 5% 

CO2. After 16-18 h, the multiwell was placed in the incubator chamber of the 

microscope. Phase contrast images at 10x magnification were recorded every 10 

minutes for 24 hours with a video camera. The pixel/micron ratio of the acquired 

images was determined by acquiring images of a square with fixed known 

dimensions. 

 

5.3. Wound healing assay 

The dynamics of wound healing was studied by seeding 25000 cells/cm2 for 

NIH3T3, and 50000 cell/cm2 for smaller NIHRas, in complete medium; 24 h after 
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plating, the cell layer was scratched with a tip and the closure process was followed 

for further 24 hours by acquiring 1 digital frame every 10 minutes. 

 

5.4. Microscopy and image acquisition 

Images of different samples have been acquired by using the Zeiss Cell Observer 

system. The system is composed by an inverted microscope (Axiovert 200M), an 

incubator chamber for observation of living cells and a digital camera (Axiocam 

H/R). The microscope is connected to an Intel personal computer running Window 

XP, through the Zeiss acquisition software (Axiovision 6.0) that manages the 

microscope and captures images. The microscope is equipped with phase contrast 

optics, while a motorized stage along three axes (x, y and z) permits prolonged 

automatic acquisition at different positions or levels. An incubator chamber controls 

the temperature (maintained at 37 °C), the CO2 (at 5%) and the humidity for the long 

observation of living cells. Within this work, digital frames were acquired as 14 bit 

images of 650x514 pixels. 

 

5.5. Cell tracking and quantitative analysis 

The acquired movies were analyzed with MotoCell (an application previously 

developed and revised during this work as described in the Results section). With 

this tool, cell paths were semi-automatically tracked by inputting and storing x and y 

cell coordinates at each time step. Cells were typically followed over a 24 hour 

period and paths were tracked every 40 minutes.  

Concerning the quantitative evaluation of cell migration, some definitions are 

necessary in order to understand the terms used: 

• Step is the elementary displacement between two subsequent time points in 

which the observation period has been divided;  

• Step length is the distance covered at each step;  

• Squared displacement is the square of distance moved by cell over different 

time interval;  

• Mean squared displacement is obtained by averaging the squared 

displacements over all tracked cells at each time interval; 

• Direction is the angle of a vector describing the net displacement of the cell. 
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In the present study, the fit of various model functions to experimental data was 

tested. The results of the fitting analysis was associated with different tests of 

inferential statistics in order to evaluate the significance of parameters estimated 

from the models, and to assess the goodness of fit of the estimated values to the 

experimental data. Inferential statistics tools, integrated in MotoCell, are: the 

Student’s t-test used to test the reliability of the estimated parameters; R2 

determination coefficient together with the Kolmogorov-Smirnov (Stephens 1974) 

and the Watson tests (Watson 1961; Lockhart 1985) used to quantify the goodness of 

fit between estimated and experimental data.  

 

5.6. Generation of simulated datasets  

In order to test the procedures, simulated dataset were generated in order to assay the 

procedures with samples controlled in number, type and variability. The “adehabitat” 

package available within R environment, consisting of a collection of tools 

developed for the analysis of habitat selection of animals (Calenge 2007), was used 

for this purpose. By using the simulations function group, dataset were generated for 

simple random walk model (“simm.brown”), correlated random walk model 

(“simm.crw”), Lévy walk (“simm.levy”) and biased random walk (“simm.mou”). 

Simulated datasets for the persistent random walk model were generated by using 

model equation with different values for the two parameters speed and persistence, 

and by adding a Gaussian noise N (0,100). 

 

5.7. Parameter Estimation  

R based methods were used to obtain the estimation of the different parameters 

involved in the discussed models. Within step length distribution analysis, the 

method “fitdistr” (MASS package) was used to estimate the parameters of the 

different statistical distributions, by means of the maximum likelihood estimation 

method; the cumulative generator functions of each statistical distribution were used 

to compute the corresponding estimated curves (pnorm, pweibull, plnorm, pcauchy, 

pexp, ppois, pgeom). For the maximum likelihood estimation of parameters # and µ, 

relative to the circular von Mises distribution, the “mle.vonmises” function of the 

“circular” R package was used. In the study of regression methods for the analysis of 
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cell migration through the Lévy walk model, the following function were used: ”mle” 

(package “stats4”) for the maximum likelihood estimation method, “lm” for linear 

regression in both cumulative distribution and logarithmic binning with 

normalization method, after logarithmic conversion of data. In order to achieve the 

nonlinear regression analysis, both in the study of diffusion and in the analysis of 

movement through the persistent random walk model (PRW), “modFit” (package 

“FME”) was used with different input options. The algorithm used for regression 

analysis was specified for this function as an option; the Newton algorithm was used 

to determine the ! exponent of diffusion relation; this, together with the Gradient and 

Levenberg-Marquardt algorithm (Moré 1978), were used for the estimation of speed 

and persistence parameters of PRW equation. 

 

5.8. Software development 

The procedures to study cell motion with random walk models were developed by 

using R (website: R), an open source environment for statistical computations and 

graphics, which runs on a wide variety of platforms. R is a combination of different 

statistics packages and programming language. For the applications described in the 

present study, R scripts were used for each of the performed modelling analysis. In 

the R environment, there are several packages supplied for statistical techniques, 

which can be extended via packages available through the CRAN family.  In this 

study the additional packages used were: “MASS” and “matlab”, for implementation 

of methods derived from the S and the MATLAB languages; “FME” and “stats4”, 

for nonlinear regression analysis; “circular”, for circular data analysis; “Hmisc”, for 

linear data analysis and high-level graphics; “adehabitat”, for dataset simulations. 

The software version used was R 2.12.1. 

The revision of MotoCell and the implementation of new features described in the 

Results section, have been reported in Cantarella et al. 2009. Software development 

was carried out by using PHP version 5.2.  
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