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Introduction

In the era of the quest for physics beyond the Standard Model, the discovery
of neutrino oscillations is celebrated as the first direct observation that we are
on the right path. The first hints of this effect came from the detection of neu-
trinos from the sun.From the beginning of the 1970s until the late 1990s, all
measurements of the solar neutrino flux yielded values two or three times lower
than expected. This discrepancy was known as the solar neutrino problem.
The work of Wolfenstein (1977), and Mikheev and Smirnov (1986) offered an
explanation in terms of the neutrino oscillations in matter, but the alterna-
tive explanations in terms of the inefficiency of detection, poorly understood
nuclear cross sections and flaws in the solar model were given preference.

The first clear signature of neutrino oscillations came in 1998, when
the Super-Kamiokande collaboration published indications of so-called atmo-
spheric oscillations: In the decay cascade of primary cosmic rays in the atmo-
sphere a large number of GeV muon neutrinos are produced. Since the flux
of cosmic rays is isotropic, the flux of neutrinos should be isotropic as well.
The measured flux of the sub-GeV νµ’s indeed was isotropic, but for the GeV
energies the flux showed a clear zenith-angle dependence with a substantial
up–down asymmetry. This could be explained only by the oscillations of the
up-going neutrinos as they travel through the earth.

Shortly after, physicists were able to tag neutral current events, and the re-
sults of the Sudbury neutrino observatory showed that electron neutrinos were
de facto less abundant in the total solar flux: More than half of the electron
neutrinos produced in the interior of the sun changed flavor while propagat-
ing through its outer layers, exactly as theorized by Wolfenstein, Mikheev
and Smirnov. These two measurements were milestones in the development
of neutrino physics.

It was not long before physicists conducted the oscillation experiments
with completely controlled sources. Today we measure the parameters of
neutrino mixing with percent level uncertainty, but there are still questions to
be answered. What is the absolute scale of the neutrino masses. What is their
relative arrangement? Are neutrinos their own antiparticles? The data we did
acquire so far are enough to influence the astrophysics and cosmology. That
is why today we discuss the cosmological upper bounds on absolute masses,
and determining the number of neutrino families with cosmological tools such
as big bang nucleosynthesis and cosmic microwave background analysis. We
may even extract information on the neutrino mass hierarchy from a next
supernova explosion.
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Much of these questions refer to systems that are much denser than any-
thing we can create on earth. For example, the density in the core of a
supernova can reach 1012 g/cm3! In such extreme conditions, the difference
between interaction and propagation states makes neutrino evolution highly
nontrivial and sometimes counter intuitive. Who would have thought that
two species that mix in vacuum do not mix in the presence of asymmetries
at high densities? Or that they can completely swap spectra while streaming
from a supernova core? The thorough treatment of neutrino oscillations at
high densities is a necessary prerequisite to extracting their properties from
observations.

My doctoral work focused neutrinos in two environments: (i) in the early
Universe, with an emphasis on their role during primordial nucleosynthesis;
and (ii) the free-stream regime from a supernova core, with special attention
paid to analytic and semi-analytic aspects of the problem.

In the first chapter, I give a general framework for the physics of neutrino
oscillations. The second and third chapters are devoted to the cosmological
role of neutrinos during the primordial nucleosynthesis with and without large
asymmetries. I show in the second chapter how various observations of primor-
dial abundances point to different numbers of relativistic degrees of freedom
in the early Universe. The third chapter clears the ground for the next preci-
sion measurements of the cosmic microwave background, such as Planck, that
will provide independent and complementary answers to the same question. I
show what is the maximal contribution of asymmetric neutrinos to the total
energy density of the Universe and make a clear statement on the significance
of the future Planck measurement.

The next two chapters are devoted to the treatment of neutrinos streaming
from a supernova. In the fourth, I explain the general framework of supernova
physics and the evolution of neutrino fluxes. I concentrate on the effects we
expect and the numerical problems present. In the fifth chapter, I present the
stability analysis and the semi-analytical solution it gives for questions posed
in the previous chapter.



Chapter 1

Neutrino oscillations at high
densities

1.1 Neutrinos in SM

In the standard model neutrinos appear as members of the weak isospin dou-
blets: (

νe
e

)
L

(
νµ
µ

)
L

(
ντ
τ

)
L

. (1.1)

They are introduced as massless, exclusively left-handed fermions, which in-
teract only weakly. With Z boson though the neutral current and with W

bosons through the charged current

Lweak = − g

cos θw

ZµJ
µ
NC −

g√
2

(
W+
µ J

µ
CC +W−

µ J
µ†
CC

)
, (1.2)

where g is the coupling constant of the SU(2)L group and θw is the Weinberg
angle. The charged and neutral currents are

JµCC = ν̄l L γ
µ lL + quark terms ,

JµNC =
1

2
ν̄l L γ

µ νl L −
1

2
l̄L γ

µ lL + sin2 θw l̄L γ
µ lL + quark terms , (1.3)

where the index l runs through three lepton generations l = e, µ, τ . The quark
terms are omitted for brevity.

At energies well below the masses of the gauge bosons (E . 100 GeV), it is
safe to integrate them out and obtain an effective description, the 4-fermions
point interaction, as proposed by Fermi before the fundamental theory:

Leff = −4GF√
2

(
JµNC J

†
NCµ + JµCC J

†
CCµ

)
, (1.4)

where Fermi constant GF in close relation with the mass of the W boson mw

GF =
g2

4
√

2m2
w

= 1.166× 10−5 GeV−2 . (1.5)
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1.2 Neutrino Oscillations

In Eq. 1.3 it evident that only left chiral components of neutrinos interact.
In fact, as originally proposed by Glashow, Salam and Weinberg, the model
of electroweak interaction did not need right-handed neutrinos, because neu-
trinos were taken to be massless. Even before the Standard Electroweak
Model, during the 1960’s, Maki, Nakagawa and Sakata [Maki 1962] and inde-
pendently Pontecorvo [Pontecorvo 1968] proposed that neutrinos could have
non-zero masses and that their mass eigenstates need not coincide with their
interaction eigenstates. Therefore, we could observe mixing between different
neutrino flavors. Since then, numerous experiments have observed neutrino
oscillations, proving that neutrinos have mass.

1.2.1 Neutrino masses and mixings

Neutrino flavor eigenstates (νe, νµ, ντ ) and mass eigenstates (ν1, ν2, ν3) are
related through a 3× 3 matrix Uνeνµ

ντ

 = U

ν1

ν2

ν3

 . (1.6)

If neutrinos are Dirac particles, the transformation is unitary and it is conve-
nient to parametrize the mixing matrix in terms of three mixing angles θ12,
θ23, θ13 and one CP-violating phase δ

U =

 c12 s12 0

−s12 c12 0

0 0 1

 c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13

1 0 0

0 c23 s23

0 −s23 c23

 , (1.7)

where sij = sin θij and cij = cos θij, with θij ∈ [0, π/2] and δ ∈ [0, 2π].
The most sensitive probes of the neutrino masses are oscillation experi-

ments, but they are sensitive only to the squared-mass differencesm2
i−m2

j ,not
the absolute masses. We have only upper bounds on the absolute masses
from cosmology (

∑
mν . 0.5 eV [Abazajian 2011]) or from β-decay experi-

ments (mνe ≤ 2.3 eV [Kraus 2005]) while the time-of-flight experiments are
in conflict with relativity [Adamson 2007, Adam 2011]. For Majorana neutri-
nos the neutrinoless double β-decay experiments report a value comparable
to cosmological limits (mνe ≡ |

∑
U2
eimνi | . 0.3− 0.7 eV [Andreotti 2011]).

The squared-mass difference between the second and first mass eigenstates1

∆m2
21 = m2

2 −m2
1 > 0 (1.8)

1m2 > m1 as seen from the solar neutrino experiments
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m1

m2

m3

m3

atm
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< 0
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ν
ν
ν

µ

τ

e

Figure 1.1: Neutrino mass eigenstates and the corresponding hierarchies. Fla-
vor content is given in color coding.

is called the solar squared-mass difference, ∆m2
�. It is experimentally ob-

served that it is much smaller than the other two ∆m2
21 � ∆m2

31,∆m
2
32. The

atmospheric mass difference is defined as

∆m2
atm = m2

3 −
m2

1 +m2
2

2
. (1.9)

It can be both positive and negative. In the first case we are dealing with the
normal hierarchy and in the latter with the inverted (see Fig. 1.1).

Experiments have constrained five parameters governing neutrino mixing
as summarized in Table 1.1. The sign of ∆m2

13 and the value of the CP-
violating phase δ are still unknown. Until very recently, only an upper bound
on sin2 θ13 existed, but in the last year global-fit analyses gave the first indica-
tions of non-zero θ13 [Fogli 2011, Schwetz 2011]. These analyses were further
strengthened by the T2K long-baseline experiment’s search for the appear-
ance of electron neutrinos through νµ → νe transitions [Abe 2011] and Double
Chooz, a reactor neutrino experiment looking at a disappearance of ν̄e’s pro-
duced in a nuclear reactor [De Kerret 2011]. These results open the possibility
of measuring, in a not so distant future, the neutrino mass hierarchy and a
possible CP violation in the leptonic sector [Nunokawa 2008].

As already mentioned, the original model of leptons did not contain mass
terms for neutrinos, because there was no indication of their masses. Presently,
we are confident of the existence of neutrino masses, but only for the interact-
ing left chiral projection. We cannot tell whether the νR, needed to construct
Dirac mass terms, actually exists. Moreover, as genuinely neutral particles,
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Table 1.1: Results of the global 3ν oscillation analysis [Fogli 2011], in terms of
best-fit values and allowed 1, 2 and 3σ ranges for the mass-mixing parameters.

∆m2
�/10−5 eV2 sin2 θ12 sin2 θ13 sin2 θ23 ∆m2

atm/10−3 eV2

7.58 0.306 0.021 0.42 2.35
7.32 – 7.80 0.291 – 0.324 0.013 – 0.028 0.39 – 0.50 2.26 – 2.47
7.16 – 7.99 0.275 – 0.342 0.008 – 0.036 0.36 – 0.60 2.17 – 2.57
6.99 – 8.18 0.259 – 0.359 0.001 – 0.044 0.34 – 0.64 2.06 – 2.67

neutrinos are the only candidates to also have a Majorana nature, so the most
general mass term one can introduce in the Lagrangian is

− 1

2

(
νL, νCL

)(mL mD

mD mR

)(
νCR
νR

)
+ h.c. , (1.10)

where mL(R) stands for the left(right) handed Majorana mass and mD is the
Dirac mass. Charge-conjugate states νCL,R ≡ (νC)L,R = (νR,L)C have oppo-
site chiralityand are not independent on the particle states. Majorana terms
unavoidably violate lepton number, making neutrinoless double beta decay
possible. In the early Universe, they introduce a mixing between left-handed
and right-handed (and hence super-weakly interacting, sterile) neutrinos, so
a system initially consisting of only left-handed, active components can also
populate the sterile sector. In the effective description such processes are typ-
ically suppressed by a factor (m/E)2 with m being a typical neutrino mass
and E their energy. This manuscript considers only the relativistic neutrinos,
neglecting the processes induced by Eq. 1.10. In this approximation the right-
handed components νR and νCL decouple from other species, and we are left
with only two left-handed degrees of freedom νL and νCR per flavor, which will
be referred to as neutrinos and antineutrinos respectively.

Neutrinos will always be considered as propagating at the speed of light,
yet with a dispersion relation

E2 = p2 +M2 , (1.11)

where p is the momentum of the neutrino and M its phenomenological mass,
which in general depends on the Dirac and Majorana terms2 of Eq. 1.10. In
practice, we will neglect the mass term (E = p), except for the oscillations it
induces.

2All possible effects of neutrinos masses and interactions on velocities will be ne-
glected, including also the recent observation of superluminal neutrinos at the order of
10−5 [Adam 2011].
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1.2.2 Vacuum oscillations in the one-particle formalism

Probably the most pedagogical and descriptive way of understanding the neu-
trinos oscillations is in the wave function formalism. To account for multiflavor
nature of the neutrino state, it is represented by an N -dimensional vector in
flavor space |ψ〉, N being the number of flavors. Such a state of the energy
Ω0 =

√
p2 +M2 propagating in vacuum obeys the Schrödiger equation

i∂t|ψ〉 = Ω0|ψ〉 ∼
(
p+

M2

2p

)
|ψ〉 . (1.12)

The mass eigenstate basis is defined as the one in which the mass matrix M
is diagonal, so in the flavor basis it is rotated by the PMNS mixing matrix:

M = U Mdiag U
† . (1.13)

In general one is interested in calculating probability of transition from
one state to another

Pνα→νβ =
∣∣∣〈νβ|e−i Ω0 t|να〉

∣∣∣2 . (1.14)

All the terms in Ω0 proportional to the unity matrix vanish under the modulus
and only the traceless part of it carries information about flavor conversions. It
is therefore customary to reduce the mass matrix to its traceless contribution.

For most practical purposes, it is possible to consider only two flavors νe
and νx with a vacuum mixing angle θ0:

νe = cos θ0 ν1 + sin θ0 ν2

νx = − sin θ0 ν1 + cos θ0 ν2 . (1.15)

The mass matrix then reduces to

M2 =

(
cθ0 sθ0
−sθ0 cθ0

)(
m2

1 0

0 m2
2

)(
cθ0 −sθ0
sθ0 cθ0

)
−Tr−−−→

(
cθ0 sθ0
−sθ0 cθ0

)(
−∆m2

2
0

0 +∆m2

2

)(
cθ0 −sθ0
sθ0 cθ0

)
. (1.16)

The probability for the transition νe → νx now is given by the usual oscillation
formula

Pνe→νx =

∣∣∣∣∣(0 1)

(
cθ0 sθ0
−sθ0 cθ0

)(
ei ∆m2

4p
t 0

0 e−i ∆m2

4p
t

)(
cθ0 −sθ0
sθ0 cθ0

)(
1

0

)∣∣∣∣∣
2

Pνe→νx = sin2 2θ0 sin2 ∆m2

4p
t (1.17)
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1.2.3 Matrices of occupation numbers

The most straightforward generalization of the one-particle formalism to
multi-particle one is through a definition of the density matrix

(−)

% = |ψ〉〈ψ|
for (anti)neutrino state |ψ〉. The equation of motion follows directly from
1.12

i∂t
(−)

%= ±
[
Ω0,

(−)

%

]
= ±

[
M2

2p
,

(−)

%

]
, (1.18)

where M2 is the traceless part of the mass matrix and the upper (lower)
sign refers to (anti)neutrinos. In the two flavor case the squared-mass matrix
follows from Eq.1.16

M =
∆m2

2

(
− cos 2θ0 sin 2θ0

sin 2θ0 cos 2θ0

)
. (1.19)

For a complete treatment of the neutrino ensemble in contact with a thermal
bath, it is natural to generalize the density matrix to a matrix of occupation
numbers [Dolgov 1981, Stodolsky 1987, Raffelt 1993, Sigl 1993]. In this for-
malism, an ensemble consisting of two flavors of neutrinos is described by a
hermitian matrix

%p =

(
nνe(p) nνeνx(p)

nνxνe(p) nνx(p)

)
, (1.20)

whose diagonal entries represent the usual occupation numbers at momentum
p for the corresponding flavor nνe =

∫
d3p

(2π)3 nνe(p), while the off-diagonal
elements nνxνe = n∗νeνx describe the mixing between the flavors and encode
the information related to coherence of the system. In vacuum % matrices
also obey the Eq. 1.18. For antineutrinos analogous matrices are defined.

In the 2×2 case it is sometimes convenient to expand all the matrices in
terms of the Pauli matrices. For this purpose we introduce the polarization
vector P

% =
nνe + nνx

2
+
nνe − nνx

2
P · σ , (1.21)

and similarly P for antineutrinos. The normalization of the second term is
arbitrary and changes depending on the context and author. Here it is chosen
so that a pure system of νe(x) corresponds to P = (0, 0,±1), while for an equal
mixture of both species Pz = 0.

It is common to write the equations of motion as the precession equation
for the polarization vectors

Ṗ = ωB×P , Ṗ = −ωB×P , (1.22)

with ω the frequency of oscillation

ω =
∆m2

2p
(1.23)
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Figure 1.2: Left Panel: Mass direction vector B in different hierarchies. A
small angle (2θ) between B and the z axis corresponds then to inverted and
the large angle (π − 2θ) to normal mass hierarchy. Right Panel: Polarization
vectors for particles P and antiparticles P precessing around B.

and a unit vector B

B = (sin 2θ0, 0,− cos 2θ0)T . (1.24)

The form of the precession Eqs. 1.22 makes it clear that the vacuum conver-
sions do not change the overall content of the system — the length of the
polarization vector P remains unchanged.

Visual interpretation of the vacuum evolution is given in Fig. 1.2.3a. The
vector B, of unit length, plays the role of the magnetic field around which the
two polarization vectorsP andP precess in opposite directions with an energy-
dependent frequency ω. For a small mixing angle, in the normal hierarchy, B is
almost anticollinear to the z axis. Inverted hierarchy corresponds to ω → −ω,
but since ω always shows up multiplied by B, it is sometimes convenient to
keep the frequency ω > 0 and to sweep the hierarchy transformation in the
definition of B, so that in the inverted hierarchy B is almost collinear with
the z axis (see Fig. 1.2.3b).

1.3 Matter potential

Neutrino interactions with matter, although very weak, will influence their
propagation. For normal matter (electrons, neutrons and protons), only the
charged current will affect flavor content, because the neutral current interac-
tions are flavor blind and contribute equally in all flavors. The Hamiltonian
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describing charged current interactions between electron neutrinos and elec-
trons is

HCC =
2GF√

2
[ ν̄eL γ

α νeL ] [ ē γα (1− γ5) e ] . (1.25)

The average of the Hamiltonian over the electron background in the rest frame
of the medium is given by

HCC =
2GF√

2
[ ν̄eL γ

α νeL ]

∫
d3p

2E(2π)3
fe(p, T )

1

2

∑
h=±1

〈e(p, h)| ē γα (1− γ5) e |e(p, h)〉 . (1.26)

We consider only forward scattering, with no momentum or helicity exchange
between electron and neutrino, so the initial and final states are the same.
The sum over helicities as usual reduces to a trace

1

2

∑
h=±1

〈e(p, h)| ē γα (1− γ5) e |e(p, h)〉 (1.27)

=
1

2
Tr

[(∑
h=±1

u(p, h)u(p, h)

)
γα (1− γ5)

]
(1.28)

=
1

2
Tr
[
(p/+m) γα (1− γ5)

]
= 2 pα . (1.29)

The Hamiltonian becomes

HCC =
√

2GF ν̄eL

(∫
d3p

2E(2π)3
fe(p, T ) 2p/

)
νeL (1.30)

=
√

2GF ν̄eL

(∫
d3p

(2π)3
fe(p, T )

1

E
(Eγ0 − pγ)

)
νeL . (1.31)

We are usually dealing with a background of homogeneous and isotropic elec-
trons, so fe(p, T ) = fe(p, T ) and the integral over momenta can be performed∫

d3p

(2π)3
fe(p, T )

1

E
(Eγ0 − pγ) = γ0

∫
d3p

(2π)3
fe(p, T ) = neγ

0 , (1.32)

where ne is the electron number density. The integral over p vanishes due to
its symmetry. The same procedure for positrons yields and opposite sign in
the result, so the effective Hamiltonian from a background of electrons and
positrons is simply

HCC = GF

√
2 (ne − nē) ν̄eγ0νe . (1.33)
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Therefore, while traveling through a see of electrons, electron neutrinos expe-
rience a positive energy shift proportional to the density of electrons,

λ = GF

√
2 (ne − nē) , (1.34)

due to repulsive interaction with the background. In the language of flavor
matrices, this potential is represented by a diagonal contribution to Hamil-
tonian diag(λ, 0, 0), whose trace-free part in the 2×2 case reads HCC =
λ
2

diag(+1,−1). Together with the vacuum contribution, the Hamiltonian
now reads

H =
1

4E

(
−∆m2 cos 2θ0 + 2Eλ ∆m2 sin 2θ0

∆m2 sin 2θ0 ∆m2 cos 2θ0 − 2Eλ

)
. (1.35)

1.3.1 Finite gauge boson mass corrections to the matter
potential

The potential shift of Eq. 1.34 has been calculated from the effective four
fermion interaction governed only by the Fermi constant GF. However, in
some environments such as the early Universe, the finite masses of gauge
bosons might be relevant. Table 1.2 shows neutrino potentials from elec-
troweak interactions with background electrons, protons and neutrons calcu-
lated at tree level [Notzold 1988]. Note how the same first-order contributions
to electron and µ (τ) neutrino potential in the background of electrons can-
cel out. Corrections of the order GF/M

2
w are due to gauge-boson propagator

expansion
−1

k2 −M2
w

' 1

M2
w

+
k2

M4
w

=
1

M2
w

− 2Eνme

M4
w

(1.36)

and can be relevant in a CP-symmetric plasma such as in the early Universe,
where the electron asymmetry is of the order of the baryon one, fixed by
WMAP to ∼ 10−10.

Although not directly, a neutrino can also interact with a background
photon by exchanging an electron. However, such a potential is O(α) times
smaller than the GF/M

2
w contribution, which itself is already a correction, so

the neutrino–photon interactions are irrelevant in the early Universe.

1.3.2 MSW effect

The diagonalization of Hamiltonian 1.35 makes it natural to define the ef-
fective mass splitting ∆m2

m in the medium and the mixing angle θm in the
medium such that

UmHU
m† ≡ ∆m2

m

4E

(
− cos 2θm sin 2θm
sin 2θm cos 2θm

)
, (1.37)
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Table 1.2: Potentials for neutrinos propagating through an isotropic non-
relativistic background. The upper sign is for neutrinos, the lower for an-
tineutrinos. nf is the number density of fermions in the background medium.

ν flavor Background Potential shift

νe e ±GF√
2
(4 sin2 θw + 1)(ne − nē)− 8

√
2GF

3M2
w
Eν(ρe + ρē)

νµ, ντ e ±GF√
2
(4 sin2 θw − 1)(ne − nē)

νe, νµ, ντ n ∓GF√
2
(nn − nn̄)

νe, νµ, ντ p ∓GF√
2
(4 sin2 θw − 1)(np − np̄)

with Um transforming the flavor eigenstates and mass eigenstates in the
medium

νe = cos θm ν
m
1 + sin θm ν

m
2

νx = − sin θm ν
m
1 + cos θm ν

m
2 . (1.38)

These two parameters are functions of vacuum values (∆m2, θ0) and neutrino
energy:

∆m2
m = ∆m2 sin 2θ0

sin 2θm
(1.39)

and

sin2 2θm =
sin2 2θ0

sin2 2θ0 + (cos 2θ0 − 2Eλ
∆m2 )2

. (1.40)

The oscillation probability P (νe → νe) in matter has the same form as
Eq. 1.17, with θ0 → θm and ∆m2 → ∆m2

m.
From Eq. 1.40 we observe a resonant dependence of the mixing angle θ(λ)

with a maximum at

cos 2θ0 =
2Eλ

∆m2
, (1.41)

leading to the famous Mikheyev-Smirnov-Wolfenstein (MSW) ef-
fect [Wolfenstein 1978, Mikheev 1986]. The MSW resonant conversions
happen for neutrinos in the normal mass hierarchy and for antineutrinos in
the inverted one (for antineutrinos one must change λ→ −λ).
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1.3.3 Matter potential as a vector

In the language of polarization vectors, the matter potential appears as a
constant vector pointing along the z axis (i.e. toward the electron flavor)

V = (0, 0, λ)T , (1.42)

so that the equations of motion for the polarization vectors are

Ṗ = (ωB + V)×P , Ṗ = (−ωB + V)×P . (1.43)

The polarization vectors now precess around V and B. The system behaves
as in vacuum but with a smaller mixing angle — P’s precess around a vector
closer to the z axis, the effect known as the matter suppression.

1.4 Coherence vs. decoherence

When we consider realistic ensembles in which neutrinos in general have con-
tinuous energy distributions, we define a frequency-dependent (and through
Eq. 1.23 also energy-dependent) polarization vector Pω, properly normalized
so that total P =

∫
dωPω has the same physical meaning as before. Consider

a system starting in pure weak-interaction eigenstate with all Pω’s collinear
with the z axis and without the ordinary matter term. As each mode precesses
with different frequency, eventually all of them will fan out in cone centered
on B with the total P collinear to it. We call this a kinematical decoherence.

Ordinary matter can postpone the decoherence. A large matter term
(|V| � ω) in the previous picture, typically not energy dependent, makes
all modes precess quickly around it. Since this precession is the same for
all (particle and antiparticle) modes, we can change perspective and go to a
frame corotating around z in which the matter term does not exist. In this
frame B rotates fast around the z axis with frequency λ, so the transverse
part of B averages to zero — only the z component of B survives. If we
start from a pure state with all the polarization vectors along the z axis, the
system remains stuck in its initial state. This preserves the original coherence
for a longer time. Neutrino self-interaction is even more effective in keeping
the coherence and can stack all modes together, making them oscillate with
common frequency.

1.5 Neutrino self-interaction

In extreme environments, such as supernovae and the early Universe, the
density of neutrinos can be so high that the they themselves create a refractive
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Figure 1.3: Feynman diagrams for neutrino self-interactions.

index to their own propagation [Notzold 1988, ?]. These self-interactions arise
from considering the Feynman diagrams shown in Figure 1.5. Following the
same reasoning as for the background of charged leptons, we can derive the
potential for νe’s

Vνeνe = 2GF

√
2 (nνe − nν̄e) +GF

√
2 (nνx − nν̄x) , (1.44)

where the factor of 2 for the background of the same flavor originates from
the fact that there is no distinction between initial and final states and νe’s
can in fact exchange momenta. The potential for the other flavor is the same
with νe ↔ νx.

However, proper treatment of the system must also include the zero-
momentum-transfer processes in which neutrinos exchange flavors, corre-
sponding to the right panel of Fig. 1.5 for να 6= νβ. These processes correspond
to a Hamiltonian

Hνeνx =
GF√

2
[ ν̄xL(p) γα (1− γ5) νeL(p) ] [ ν̄e(q) γα (1− γ5) νx(q) ] , (1.45)

which introduces an additional off-diagonal potential

Vνeνx =
GF√

2
(nνeνx − nν̄eν̄x) , (1.46)

where nex and n̄ex are the off-diagonal elements of the % matrices introduced
in Eq. 1.20. Since the contributions proportional to the identity matrix do not
change the physics, we can subtract the common terms GF

√
2 (nνe − nν̄e) +

GF

√
2 (nνx −nν̄x) from the diagonal elements of the potential, leaving us with

the effective Hamiltonian of the neutrino–neutrino interaction

Hνν =
√

2GF(%− %̄) . (1.47)

While this form holds for homogeneous and isotropic systems, in order to
develop a general formalism, we should make the integration over momenta
explicit

Hνν =
√

2GF

∫
dp

(2π)3
(%p − %̄p)(1− cos2 β) , (1.48)
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where β is the angle between the two neutrinos originating from the angular
dependence of the scattering amplitude. This feature will prove very impor-
tant for the treatment of neutrinos streaming from a supernova (see Ch. 4).
Here I will comment on the isotropic case.

The equations of motion for polarization vectors in the presence of the
neutrino self-interaction (with collisions neglected) are now

Ṗω = (+ωB + V + µ(P−P))×Pω ,

Ṗω = (−ωB + V + µ(P−P))×Pω , (1.49)

where the strength of self-interaction µ depends on the normalization of the
polarization vectors and in general is proportional to neutrino densities. If
they are normalized according to Eq. 1.21 µ =

√
2GF(nνe − nνx).

1.5.1 Synchronized neutrino oscillations in the early
Universe

Inclusion of neutrino self-interactions in the equations of motion makes the
system inherently non-linear. One must know the neutrino background to
determine how an individual neutrino oscillates, but one must know the flavor
of every individual neutrino to determine the background. First investiga-
tions [Samuel 1993] by brute-force numerical computation led to a discovery
of synchronized oscillations: instead of a quick mode dephasing due to dif-
ferent frequencies, when the ν–ν potential is comparable to or higher than a
typical vacuum frequency, the modes get locked to each other, forming one
common vector that oscillates with a common frequency ωsynch corresponding
to an average vacuum frequency.

The first analytical investigations of this counter-intuitive effect appeared
10 years after it was first discovered in numerical simulations [Pastor 2002].
Suppose there exists only a self-interaction term. The equations of motion for
both neutrinos and antineutrinos are then

Ṗω = µJ×Pω , (1.50)

where J is the total polarization vector J =
∫

dωPω. Of course, if all neutrinos
are initially prepared in a specific flavor state, all Pω’s, and therefor J, lie in
the z axis, and no precession takes place. The evolution is also trivial if the
system is in a perfect incoherent state with all vectors pointing in different
directions so that J = 0.

Consider, however, a system in which the Pω’s point in different directions,
but do not sum to zero. All of them precess around a common direction J
with a common frequency µ. We now switch on the vacuum term and suppose
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it is much weaker than the self-interaction term (〈ω〉 � µ). A typical Pω then
precesses around J much faster than around B, so that its projection on total
vector Pω|J = Ĵ(Ĵ ·Pω) is the only component external B field sees, since its
transverse part averages to zero. Slow movement of J around B is therefore
followed by every individual Pω, so they all precess around B with a common
frequency ωsynch

J̇ = ωsynch B× J . (1.51)

It is straightforward now to get the synchronization frequency. From the
definition of J it follows that

J̇ =

∫
dω Ṗω =

∫
dω Ṗω|J

=

∫
dω ωB×Pω|J

= B× Ĵ

∫
dω ωPω · Ĵ . (1.52)

With Eq. 1.51 this yields

ωsynch =
1

|J|

∫
dω ωPω · Ĵ . (1.53)

In particular, if the system was initially in a coherent state, i.e. all modes had
started aligned,

ωsynch ≡ 〈ω〉 =

∫
dωω|Pω|∫
dω|Pω|

. (1.54)

1.5.2 Bipolar oscillations

The above picture for neutrinos is easily generalized to include antineutrinos
as well. The system behaves the same way, except that the role of total
angular momentum is now played by I = J− J̄. Antiparticles appear on the
same footing as particles, but they rotate in the opposite sense. Vector I is
the one that precesses slowly around B

I = ωsynchB× I , (1.55)

while all the individual Pω and Pω are stuck to it. The synchronization
frequency is now

ωsynch =
1

|I|

(∫
dωωÎ ·Pω +

∫
dωωÎ ·Pω

)
. (1.56)

Starting from a coherent state of perfect chemical equilibrium (vanish-
ing I), the evolution is trivial. Although it might seem irrelevant, the in-
clusion of antineutrinos leads to a qualitatively new phenomenon — bipolar
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Figure 1.4: The behavior of Pz and P z for a schematic system with only one
frequency ω = 1, in inverted mass hierarchy with a mixing angle θ0 = 0.02

and strong neutrino self-interaction µ = 10.

oscillations. Suppose we are dealing with an ensemble very close to but not at
a vanishing chemical equilibrium. In this case I is very small, corresponding
to large ωsynch. If the mixing is large (B tilted substantially away from the z
axis), the effect of self-interactions is to increase the precession frequency of
individual polarization vectors to ωsynch.

If the mixing is small, the evolution strongly depends on the mass hi-
erarchy. The situation closely resembles a pendulum in flavor space in a
homogeneous force field ωB [Hannestad 2006]. In this picture the inverse of
ν-ν interaction strength µ−1 has the role of the moment of inertia while I
acts as the pendulum orbital angular momentum. Since the force field ωB

determines the preferred direction, switching between mass hierarchies can be
understood only as switching the angle of B with respect to the z axis (as
shown in Fig. 1.2.3). In the case of normal hierarchy, B points to a direction
opposite to P and P, so the system is in the minimum of potential energy.
The role of self-interaction then increases the oscillation frequency beyond the
typical vacuum values.

For the inverted mass hierarchy, the preferred direction B is almost aligned
with the z axis, i.e. almost collinear to P and P. A small seed of |I| is enough
to drive P and P in the opposite directions away from their initial orientations
until the state of almost complete flavor conversions. The inertia the system
has acquired then drives it back to a situation close to the initial one and the
evolution repeats (see Fig. 1.4). We call this behavior bipolar oscillations. It
is important to stress that the these flavor conversions are of a different nature
than the MSW effect.
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This effect is known to be able to suppress flavor evolution. In the early
Universe, a “pathological” case may exist with two species of neutrinos having
opposite chemical potentials (see Sec. 3.1) P = −P, so the resulting total
angular momentum is large I = P−P = 2P. On the other hand, ωsynch = 0,
so the initial conditions remain frozen until neutrinos dilute enough so that
the self-interaction does not dominate the evolution.

The suppression of the evolution is also observed in the context of super-
novae (see Sec. 4.3.1). The usual flux hierarchy Fνe > Fν̄e > Fνx ensures that
the two polarization vectors initially have different lengths P−P = ε. In fact,
if the asymmetry ε is big enough, the self-interaction dominates the evolution.

1.6 Collision term

So far we have treated the evolution of the neutrino ensembles in the absence
of collisions. Whenever mentioned, the decoherence was purely kinematical,
with the origin in dephasing of different polarization vectors due to their
different frequencies. Collisions fundamentally change this picture introducing
momentum exchanging processes.

The collision term C[%p] must account for creation and annihilation pro-
cesses and all the momentum exchanging processes of neutrinos with the back-
ground and among neutrinos themselves. The general expression account-
ing exactly for all the effects is rather complicated and lengthy [Sigl 1993].
The useful approximations for the applicable in the early Universe are given
in [Bell 1999, McKellar 1994].

1.6.1 Collisional integral

The diagonal entries of the collision term are the Boltzmann collisional in-
tegrals in the usual sense. Suppose for a moment that there is no neutrino
oscillations. The distribution function for each species nνα would then evolve
independently and the collisional term would have just the collisional integrals
on the diagonal. The element for one representative species fν has the form

C[fν ] =
∑ 1

2(2π)5

∫
dΩ Λ(f1, f2, f3, f4)M2δ4(p̄1 + p̄2 − p̄3 − p̄4), (1.57)

where p1 ≡ q, f1 ≡ fν and dΩ is the phase space element of the integration
over all the momenta except q

dΩ =
d3p2

2E2

d3p3

2E3

d3p4

2E4

. (1.58)
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Table 1.3: Neutrino reactions relevant in the early Universe and the corre-
sponding square matrix elements.

Reaction M2

νi + ν̄i → e− + e+ 32G2
F [(CV + CA)2Q3 + (CV − CA)2Q2 + (C2

V − C2
A)Q4]

νi + e− → νi + e− 32G2
F [(CV + CA)2Q1 + (CV − CA)2Q3 − (C2

V − C2
A)Q5]

νi + e+ → νi + e+ 32G2
F [(CV + CA)2Q3 + (CV − CA)2Q1 − (C2

V − C2
A)Q5]

νi + ν̄i → νi + ν̄i 128G2
FQ3

νi + ν̄i → νj + ν̄j 32G2
FQ3

νi + ν̄j → νi + ν̄j 32G2
FQ3

νi + νk → νi + νk 32G2
FQ1

Pauli blocking factors are included in through

Λ(f1, f2, f3, f4) ≡ f4f3(1− f2)(1− f1)− f1f2(1− f3)(1− f4), (1.59)

and M2 is the matrix element squared and summed over initial and final
spin states; p̄i are four-momenta of the incoming (1,2) and outgoing (3,4)
particles, and the sum is taken over all reactions involving f1. In the ealy
Universe, it is enough to consider the reactions presented in Table 1.3, along
with the respective matrix elements [Hannestad 1995]. Indecies i, j, k run
over electron, muon, and tau neutrino, with the exception that j 6= i.

Quantities Qi are defined as follows:

Q1 = (p̄1 · p̄2)(p̄3 · p̄4),

Q2 = (p̄1 · p̄3)(p̄2 · p̄4),

Q3 = (p̄1 · p̄4)(p̄2 · p̄3),

Q4 = m2(p̄1 · p̄2),

Q5 = m2(p̄1 · p̄3), (1.60)

where m is the electron mass. It has been shown [Hannestad 1995] that the
integrals over d3p4 and over angles in d3p2 and d3p3 can be computed ana-
lytically, yielding

C[fν ] =
∑ 1

2(2π)5

∫
p2

2dp2

2E2

p2
3dp3

2E3

Λ(f1, f2, f3, f4)F (p1, p2, p3) . (1.61)

We will omit here the exact form of functions F (p1, p2, p3), but the form of
diagonal entries in Eq. 1.61 is the one to be implemented numerically.
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1.6.2 Damping function

Damping is easy to illustrate if one includes the possibility of neutrino creation
and absorption by the charged-current reactions νen ↔ pe. An initial νe is
subsequently found to be a νµ with an average probability 1

2
sin2 2θ. As νµ,

it cannot take part in the weak interactions. So, per CC-reaction, a νµ is
produced shrinking the length of the initial polarization vector until a perfect
chemical equilibrium is reached with P = (0, 0, 0). The rate at which it
happens is 1

2
sin2 2θ Γ, where Γ is a typical interaction rate for the ambient

physical conditions. One should note that in this case the final length of the
total polarization vector is zero, while in the case of a simple dephasing, the
off-diagonal elements survive (although in kinematical decoherence).

Moreover, the simple dephasing does not change the projection P ·B, so
it is very common to define the damping factor D such that the precession
formulas are now

Ṗ = (ωB + V)×P−DPT , (1.62)

where PT is the component of the polarization vector transverse to B and
represents the off-diagonal elements of the % matrices. The exact form of
the damping parameter is determined by the scattering amplitudes on the
background.

In general, for N interactiong species, in the limit of small momuntum
transfer in the reactions, the damping factor is [Raffelt 1993]

D =

∫
dp dp′ S(p− p′)|G|2 , (1.63)

where G is the matrix of coupling constants. For practical purposes, we have
adopted the damping factors as in [McKellar 1994]

D =
1

2
F
[
16+3(nνe +nνx)+(8s4

w +4s2
w +4)nν̄e +(8s4

w−4s2
w +4)nν̄x

]
, (1.64)

where the collision rate F is

F =
49G2

F

12π2

ζ2(4)

ζ(3)
T 5 . (1.65)
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Standard big bang nucleosynthesis

The observation that the Universe is expanding today leads naturally to a
hypothesis of a big bang. The large-scale homogeneity and isotropy of the
galaxy distributions and an almost perfect black-body spectrum of cosmic
microwave background (CMB) radiation further strengthen the idea that the
Universe went through a phase whet it was hot and dense enough for photons
to be in equilibrium with electrons and protons (T ∼ eV). Going even further
back in time, we allow the Universe to be even hotter (T ∼ MeV) and to act
as a thermonuclear reactor, synthesizing the light elements from a primordial
plasma. This process is known as the big bang nucleosynthesis (BBN). Based
upon well known physics, it has become one of the main pillars of the hot big
bang model. It constrains the properties of the Universe when it was a few
seconds old, corresponding to temperatures of the MeV scale and is still the
earliest cosmological probe available. Its products, the main observables to
measure, are the predicted abundances of light elements 2H, 3He, 4He and 7Li.

Probably the most famous result of BBN is the determination of the
baryon-to-photon ratio η long before any possibility of extracting it from
other probes, such as the CMB (see Fig. 2.1). The agreement between the
predicted and measured abundances of light elements, spanning more than
nine orders of magnitude, confirmed the consistency and credibility of BBN
as a method. Eventually other probes gained advantage in measuring η, and
data on the primordial light-element abundances accumulated, so BBN appli-
cation shifted towards other non-constrained properties of the early Universe,
such as concerning neutrinos, extra dimensions, decaying dark matter, etc..
The value of η is now used as an input, usually fixed to its WMAP measure-
ment [Komatsu 2011]

η = (6.19± 0.14)×10−10 . (2.1)

In this chapter I describe the flow of BBN with an emphasis on the role
of non-mixed neutrinos. I briefly discuss measurements of the primordial
abundances of light elements and how different values for helium-4 lead to
qualitatively different conclusions on the number of light thermalized species
in the early Universe. Finally, I motivate the detailed study of asymmetric
oscillating neutrinos in the following chapter.
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Figure 2.1: The dependence of the light element abundances produced during
BBN on the value of baryon-to-photon ratio η. The with of the line represents
the theoretical uncertainty and the boxes depict the ±2σ regions (smaller
boxes include only statistical errors and larger box statistical and systematical
errors). The narrow vertical band indicates the CMB measure of the cosmic
baryon density, while the wider band indicates the BBN concordance range
(both at 95% CL). Plot taken from PDG [Nakamura 2010].

2.1 Standard cosmology

The isotropy and homogeneity single out the Friedmann-Robertson-Walker
(FRW) metric for the Universe. In comoving spherical coordinates we have

ds2 = gµνdx
µdxν = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (2.2)

where a(t) is the scale-factor and k = 1, 0,−1 determines the spatial curvature
for closed, flat and open Universe respectively. For simplicity, we will restrict
to a flat Universe, favored by present observations. The expansion of the
Universe is governed by the Einstein equations relating the metric with the
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total energy-momentum tensor. For the FRW metric, Einstein equations give
the Friedmann equation for the Hubble parameter

H2 ≡
(
ȧ

a

)2

=
8π GN

3
ρ , (2.3)

where GN is the Newton gravitational constant and ρ is the energy density of
the Universe, which accounts all the species present in the plasma (photons,
neutrinos, baryons, electrons, dark matter, etc..). This equation should be
complemented with the covariant conservation of energy-momentum tensor
(∂νT µν), which for a perfect fluid of density ρ and pressure p reduces to

d(ρa3)

da
= −3P a2 , (2.4)

where P is the pressure of the fluid filling the Universe.
At the temperatures of interest, radiation is the dominant form of energy

content of the Universe, with the equation of state P = ρ/3 and the equa-
tions 2.3 and 2.4 give the typical scaling of the energy density with the scale
parameter ρ ∼ a−4, or in terms of temperature T = T0a

−1. We can take the
present value of the photon temperature T0 = 2.73 K, since the photons have
always scaled the same way.

As usual, the present values of radiation and baryon energy densities
are expressed in terms of the parameters Ωi = ρ0

i /ρcr, i = r, b, with
ρcr = 3H2

0/(8πGN) the critical density today, and the Hubble parameter today
H0 = 100h km s−1 Mpc−1, with h = 0.73+0.04

−0.03 [Nakamura 2010]. For baryons,
their ratio with photons η = nb/nγ is also commonly used. It is proportional
to the initial baryon-antibaryon asymmetry per comoving volume produced
at some early stage of the universe evolution. This ratio is constant after the
e+e− annihilation phase at the value of [Serpico 2004]

η10 ≡ η · 1010 ' 273.45 Ωbh
2 . (2.5)

In thermodynamic equilibrium each particle species i is described by a
homogeneous and isotropic phase space distribution function,

fi(p, T ) =

[
exp

(
Ei(p)

T
− ξi

)
± 1

]−1

, (2.6)

where Ei(p) =
√
p2 +m2

i is the energy, +/− corresponds to the Fermi-
Dirac/Bose-Einstein statistics, and ξi the chemical potential. For particles
that can be emitted and absorbed in any number, such as photons, the chemi-
cal potential is zero. A system containing more (fewer) particles than antipar-
ticles has a positive (negative) chemical potential. It is worth noting here that
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having an equilibrium distribution does not necessarily mean that the species
really is in equilibrium — a species decoupled from the rest of the plasma can
retain its equilibrium distribution. This is precisely what happened to relic
photons at the epoch of recombination. Although the measured spectra of the
CMB is the best thermal curve we know, CMB photons are definitely not in
thermal equilibrium at present. They have just retained the spectral shape
from when they were in thermal equilibrium.

It is convenient to define the asymmetry of a particle species analogously
to the baryonic one, which for neutrinos is

ηνi =
nνi − nν̄i

nγ
=

1

12ζ(3)

(
Tνi
Tγ

)3 (
π2ξi + ξ3

i

)
. (2.7)

In the comoving frame, the number density and energy density can be
expressed as follows

ni(T ) = gi

∫
d3p

(2 π)3
fi(p, T ) , (2.8)

ρi(T ) = gi

∫
d3p

(2 π)3
Ei(p) fi(p, T ) , (2.9)

where gi is the number of internal degrees of freedom. For example, photons
and neutrinos can exist in two helicities (g = 2), while for electron–positron
plasma g = 2×2 = 4. For massless species, pressure is given by Pi = ρi/3 and
entropy density

si =
ρi + Pi
Ti

=
4

3

ρi
Ti

. (2.10)

Note that the entropy per comoving volume is a conserved quantity (s(a)a3 =

const.), guaranteed by the conservation of energy-momentum (Eg. 2.4).
It is very common to define the total number of relativistic particle species

g? as the sum over all bosonic states and fermionic ones:

g? =
∑
b

gb

(
Tb
Tγ

)4

+
7

8

∑
f

gf

(
Tf
Tγ

)4

, (2.11)

where the additional factor of 7/8 comes from the differences in the first
momenta of relevant distributions and we allow different temperatures for
different species. This permits us now to write the total energy content and
the entropy in the radiation era as1

ρ = g?
π2

30
T 4 (2.12)

s = g?
2π2

45
T 3 . (2.13)

1The temperature without a subscript is the one of photons.
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For example, in equilibrium plasma consisting of photons, e± and three
types of neutrinos, at temperatures above the electron mass but below the
muon mass, 0.5 . T . 100 MeV, the effective number of relativistic species is

g? = 10.75 . (2.14)

In this range of temperatures proper time is connected to temperature
through [Dodelson 2003]

t = 1.477 s

(
1 MeV

T

)2

. (2.15)

2.2 Big bang nucleosynthesis

2.2.1 Overview

The main paradigm of bang bang model is that in the early Universe all the
particle species (electrons, positrons, photons, neutrinos and nucleons) were
in kinetic and chemical equilibrium due to the high interaction rates (weak,
strong and electromagnetic). All the baryon content was in the form of free
protons and neutrons. Any heavier nuclei that form would soon be dissociated
by the surrounding plasma, so they constitute a completely negligible fraction
of the baryon density. As expansion proceeds, plasma dilutes and cools, and
weak processes lose efficiency. When the rate of a process that keeps a par-
ticle species in equilibrium drops below the expansion rate H, the species
departs from thermodynamical equilibrium with the remaining plasma. This
is the case of neutrinos, which only interact via weak processes and freeze
out at a temperature of a few MeV. Soon after, at a temperature TD ∼ 0.7

MeV, charged-current weak interactions transforming protons to neutrons and
vice versa also become too slow to guarantee their chemical equilibrium. The
n/p density ratio departs from its equilibrium value and freezes out at the
value n/p = exp(−∆m/TD) ∼ 1/7, with the neutron–proton mass difference
∆m = 1.29 MeV. It is further reduced by neutron decays. Although the pho-
ton temperature is already below the deuterium binding energy BD ' 2.2

MeV, no sizable amounts of 2H are formed via the n+ p→2H + γ process be-
cause of the large photon to nucleon density ratio. Namely, photo-dissociation
processes are much more efficient than the deuterium synthesis because the
number of photons vastly exceeds the number of baryons (there are ∼ 1010

photons per nucleon) so it delays deuterium synthesis until temperature TN ,
such that exp(BD/TN)η ∼ 1, i.e. TN ∼ 0.1 MeV. This moment is known as
the deuterium bottleneck — once the 2H abundance reaches sizable amounts,
the whole nuclear-process network sets in (Fig. 2.2), leading to heavier-nuclei
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7 Li6 Li

7 Be

n p 2 H 3 H

3 He 4 He

Figure 2.2: The most relevant reactions for the primordial nucleosynthesis.

production (note the rise of tritium and 4He abundance and deuterium de-
pletion at 0.1 MeV). The delicate role of deuterium during BBN makes it a
sensitive baryometer as seen from Fig. 2.1 where the BBN-preferred region
is dominated by deuterium abundance. As it turns out, with η fixed to the
WMAP value, deuterium proves necessary to break degeneracies between dif-
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Figure 2.3: The evolution of nuclides with photon temperature.
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ferent parameters.
To predict the abundances of various nuclei, one must search for a simulta-

neous solution to a set of coupled equations governing the evolution of nuclei,
the expansion of the Universe, taking into account the covariant conservation
of the total–energy momentum tensor, of the baryon number and the electric
charge. This is typically done numerically. There are different public codes
available that tackle this issue. The research presented in this manuscript is
mostly based on results obtained using PArthENoPE, a code developed by the
Naples Astroparticle Physics Group [Pisanti 2008].

Interestingly, however, it is easy to obtain a qualitative estimate of the
main BBN outcome, the abundance of 4He. The final density n4He of 4He is
relatively insensitive to the whole nuclear network, and a very good approx-
imation is to assume that all neutrons that have not decayed until TN are
eventually bound into helium nuclei. This leads to the famous result for the
helium mass fraction Yp ≡ 4n4He/nb

Yp ∼
2

1 + exp(∆m/TD) exp(t(TN)/τn)
∼ 0.25 , (2.16)

with t(TN) the value of time at TN and τn the neutron lifetime. All state-of-
the-art numerical simulations produce values close to this estimate and, more
importantly, experimental measurements cluster around this value.

2.2.2 Neutrino decoupling and effective number of neu-
trinos

At energies above the MeV scale, the weak interaction rate is high enough
to keep neutrinos in thermal equilibrium with the rest of the electromagnetic
plasma. When the rate of weak interactions Γw ' 〈σw v〉ne± ∼ G2

F T
2×T 3

drops below the Hubble expansion rate at the period (Γw < H ∼
√
GNT

2),
neutinos decouple from the rest of the plasma, retaining their equilibrium
distributions. An accurate estimate of the decoupling temperatures for the
electron neutrinos is 2.3 MeV, while for µ and τ is a slightly higher (3.5 MeV),
because they interact only via neutral current processes [Dolgov 2002a].

Soon after, at T ∼ me, electrons and positrons annihilate into photons,
heating up the thermal bath, which does not communicate anymore with the
neutrinos. This is the origin of different temperatures of photons and neu-
trinos [Kolb 1990]. From the conservation of entropy density per comoving
volume, it is possible to get a very good estimate for the ratio of the temper-
atures. Before the annihilation (but below the muon annihilation epoch), we
have

(se±,γ + sν) a
3 = const. , (2.17)
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with both species sharing the temperatures Tin. After the e± annihilation,
we have the separate entropy conservations for electromagnetic plasma and
neutrinos

sν(ain)a3
in = sν(aend)a

3
end ,

se±,γ(ain)a3
in = sγ(aend)a

3
end . (2.18)

Taking the ratio of the two equation and just by counting the number of parti-
cle species that contribute to the entropy before and after the e± annihilation,
we arrive to the ratio of neutrino and photon temperature

Tν
T

=

(
2

2 + 4×7/8

)1/3

=

(
4

11

)1/3

' 1.401 , (2.19)

After the e± annihilation, we can express the total energy content of the
Universe in terms of the photon energy density ργ = π2T 4/15,

ρ = ρr = ργ

(
1 +

7

8

(
4

11

)4/3

Neff

)
. (2.20)

This equation is in fact a definition of the effective number of neutrinos Neff ,
which parametrizes the contribution of neutrinos to energy density.

Naively, one would expect Neff = 3 for three species of active neutrinos or
Neff = 4, 5, . . . if there are more than three completely thermalized neutrino-
like species. However, being just a historical artifact conveniently expressing
the energy content of the Universe, it can have non-integer values. Any devia-
tion from the simplest (mν = 0, ξν = 0) equilibrium distribution for neutrinos
also leaves a trace in Neff . E.g., treating e−e+ annihilation properly, one
finds that the simplest approximation of so-called instantaneous decoupling
is wrong: electrons from the high-energy distribution tails do have enough
energy to annihilate into neutrinos, producing small non-thermal distortions
in high-energy parts of neutrino spectra, and making them effectively hotter.
This translates into increase of their energy contribution to the standard value
of Neff = 3.04 [Mangano 2002].

The effect of increased Neff on the primordial abundances of light elements
is not difficult to understand: higher energy content means faster expansion, so
there is less neutrons decaying before the BBN onset meaning more neutrons
to make light nuclei — increasing Neff raises YP and 2H/H.

2.2.3 Role of neutrinos in weak rates

Neutrinos enter the set of BBN equations in two places: their mere presence
contributes to the total energy density, thus governing the expansion rate
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of the Universe through the Friedmann equation 2.3; and electron neutrinos
play a direct role in the weak processes regulating the neutron-to-proton ratio
through the reactions

(a) νe + n→ e− + p , (d) ν̄e + p→ e+ + n ,

(b) e− + p→ νe + n , (e) n→ e− + ν̄e + p ,

(c) e+ + n→ ν̄e + p , (f) e− + ν̄e + p→ n . (2.21)

This means that, to get an accurate theoretical prediction for light-element
abundances, processes (a)− (f) require a careful and thorough treatment.

In the so-called Born approximation of the weak rates, the calculation is
straightforward, following from V−A theory, in the limit of infinite nucleon
mass [Weinberg 2008]. For example, the neutron decay rate takes the form
(neglecting the very small neutrino mass)

ωb(n→ e−ν̄ep) =
G2

F

2π3
(CV + 3C2

A)∫
dpe p

2
e p

2
ν Θ(pν) [1− fν̄e(pν)] [1− fe(pe)] , (2.22)

where CV and CA are the nucleon vector and axial couplings, and pν =

∆m−
√
p2
e +m2

e. The rates for all the other processes are obtained from 2.22
by changing the statistical factors and the expression for the neutrino energy in
terms of the electron energy. An average can be performed at this level of ap-
proximation over an equilibrium Fermi-Dirac distribution for leptons, and the
accuracy of the so-obtained rates is of the order of 10%, propagating to a few
percent accuracy in the final abundances [Serpico 2004]. The main source of
uncertainty in weak rates represent the couplings CA and CV . Luckily, they en-
ter in the same form in all the processes as in the pure nucleon decay (e) whose
half-life is experimentally measured τ exn = (885.7±0.8) s [Nakamura 2010], so
they can be factored out, leaving the neutron lifetime that is the main “the-
oretical” uncertainty in the calculation of weak rates. In the present-day
era of precision cosmology it is necessary to aim for higher accuracy for the
weak rates calculation. The inclusion finite-nucleon-mass corrections, electro-
magnetic radiative corrections and thermal radiative corrections rendered the
calculations of weak rates accurate at per mille level [Serpico 2004].

As seen in Eq. 2.22, electron neutrinos enter the BBN equations at a fun-
damental level, so that their momentum distribution is fully relevant. Any
asymmetry (chemical potential) they possess manifests in the weak rates and
easily translates to the final abundances. Qualitatively, this effect is also
understood directly from reactions (a)− (f): an excess of neutrinos over an-
tineutrinos (ξνe > 0) shifts the chemical equilibrium toward protons, reducing
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the n/p ratio and resulting in lower abundances; an excess of antineutrinos
(ξνe < 0) leads to an increase of Yp and 2H/H. There is a degeneracy between
electron neutrino chemical potential ξνe and the effective number of neutrinos
∆Neff — while ξνe > 0 decreases the abundances, ∆Neff raises n/p ratio, can-
celing any effect on the final abundances. The situation is further complicated
because a non-zero chemical potential also increases the effective number of
neutrinos by the amount

∆N ξi
eff =

30

7

(
ξνi
π

)2

+
15

7

(
ξνi
π

)4

(2.23)

per flavor i = e, µ, τ , so one should not make premature conclusions, but
rather perform simulations.

2.3 Observational abundances

Extracting primordial abundances from a variety of observations is not a triv-
ial task. Astrophysical environments are typically altered by the stellar activ-
ity throughout the history of the Universe, so when inferring the primordial
values of the abundances one must either look at the least contaminated parts
of the Universe or know enough physics to extrapolate present measured abun-
dance to their original values.

For example, any 2H nucleus contained in a pre-stellar nebulae is burned
out during their collapse, and we don’t know of any astrophysical sources of
them. Hence, the post-BBN deuterium evolution is expected to be a mono-
tonic function of time, and any astrophysical deuterium measurement can be
assumed to represent a lower bound on its primordial abundance. The best
values are the ones obtained from the observation of old structures such as
high redshift Quasar Absorption Systems (QAS) — hydrogen-rich clouds at
high redshifts that absorb light from the background quasars. Although the
isotope shift of the absorption line makes the detection relatively easy, only
few observations can claim to have measured the primordial deuterium, meet-
ing all the requirements: (i) neutral hydrogen column density in the range2

17 . log[N(HI)/cm−2] . 21; (ii) low metallicity [M/H] to reduce the chances
of deuterium astration; and (iii) low internal velocity dispersion of the atoms
of the clouds, allowing the isotope shift of only 81.6 km/s to be resolved. For
this reason, only a handful of determinations of pristine 2H/H have been made
(see Fig. 2.5). In Ref. [Iocco 2009] a consistent analysis of these measurements

2 There is a lower limit on column density determined by the sensitivity of the detection
and a upper limit to avoid saturation.
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has been combined, giving a value for the deuterium-to-proton ratio

2H/H =
(
2.87+0.22

−0.21

)
×10−5 . (2.24)

LSS1134aLSS1134aLSS1134a

Figure 2.4: The nine measurements of QSA’s used in the global analysis in
Ref. [Iocco 2009] (black points). The horizontal band represents the value of
Eq. 2.24. The red triangle is the observation in Ref. [Fumagalli 2011]. Figure
adapted from [Iocco 2009].

All of these measurements have heavy-element abundances that exceed
the BBN prediction by many orders of magnitude, so one could in principle
argue about their credibility. However, a new observation claims a detection
of two genuinely pristine gas clouds with no detectable elements heavier than
hydrogen [Fumagalli 2011]. The observed absorbers are at redshift z ' 3.4,
when the Universe was only two billion years old. Only one of them has a
detectable deuterium line from which one can infer the deuterium abundance
(LLS1134a in Fig. 2.5) in very good agreement with the result of Eq. 2.24.

The situation regarding the primordial abundance of 4He is somewhat the
reverse of that of deuterium. In this case, hydrogen burning in the successive
stellar population can only increase the amount of 4He. Luckily, stellar activity
can also be tagged by measuring the abundance of “metals” (nuclei with Z > 4)
such as C, N and O. Since the Universe is born with zero metallicity, measuring
4He in old and unevolved systems and extrapolating the 4He–metallicity (O/H,
N/H or C/H) correlations to zero gives the primordial abundance of helium-4.

Although this is a very intuitive and reasonable approach, it depends very
much on the way one treats systematic uncertainties. That is why there are
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different values appearing in the literature. The analysis in Ref. [Iocco 2009]
yields a value

Yp = 0.250± 0.003 , (2.25)

which will be used in most of this manuscript.

p

p

Figure 2.5: Linear regression of the helium mass fraction Yp vs. oxygen
abundance. Figure adapted from [Izotov 2010].

The determination of the abundances of other nuclei produced in primor-
dial nucleosynthesis is still an open question with often different and incon-
sistent answers. Two of them, of 3He and 7Li, are even famous through the
corresponding “3He and 7Li problems”. It is expected that 3He should have
a similar chemical evolution as 4He and therefore its abundance should have
the same type of correlation as Yp. However, measurements do not show
significant dependence on the location (or metallicity) in the Galaxy, so it
is common to report only the upper limit to the primordial 3He abundance
3He/H < (1.1 ± 0.2)×10−5 [Steigman 2007]. Numerical simulations typically
satisfy this constraint very easily and therefore it does not carry information
relevant for physics (??).

The abundance of 7Li, on the other hand, although not difficult to measure,
suffers from a very rich post-BBN life. It can be created and destroyed in stars,
and the values measured on the surface of very young stars may not reflect
the situation deeper in the center because of the turbulent convective flows a
star typically exerts. Inferring primordial value from measurements requires
thorough and reliable models of the stellar interior. That is why, on the
observational side, there are results incompatible at more-than-2σ level. It is
generally believed that, as for the lithium problem, a piece of stellar physics
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is missing. Therefore, abundances of 3He and 7Li are usually not considered
in the conservative statistical BBN analysis and are rather invoked to support
a particular non-standard BBN scenario.

2.4 Results

A typical outcome of a BBN analysis is shown in Figure 2.6. For each point of
a grid in (ξνe ,∆N

extra
eff ), a BBN simulation is run with the code PArthENoPE.

The calculated abundances are then confronted with their measured values to
construct a likelihood function

L((ξνe ,∆N) ∝ exp
(
−χ2(ξνe ,∆N)/2

)
, (2.26)

with χ2 constructed from the abundances Xi

χ2(ξνe ,∆N) =
∑
ij

[Xi(ξνe ,∆N)−Xobs
i ]Wij(ξνe ,∆N)[Xj(ξνe ,∆N)−Xobs

j ] .

(2.27)
The proportionality constant can be obtained by requiring normalization to
unity, and Wij(ξνe ,∆N) denotes the inverse covariance matrix,

Wij(ξνe ,∆N) = [σ2
ij + σ2

i,expδij + σ2
ij,other]

−1 , (2.28)

where σij and σi,exp represent the nuclear rate uncertainties and experimen-
tal uncertainties of nuclide abundance Xi, respectively, while by σ2

ij,other we
denote the propagated squared error matrix due to all other input parameter
uncertainties (τn, Ωbh

2, GN, etc..). Typically the experimental errors vastly
exceed all the others, which can be safely neglected.

From Fig. 2.6 it seems that the results prefer higher effective number of
neutrinos, minimizing the χ2 close to Neff = 4. In fact, marginalizing the
likelihood over electron neutrino chemical potential does give a similar value,
but is it correct to assume uniform distribution for ξνe? In the simplest of
scenarios, we would expect the neutrino asymmetry to be of the same order of
magnitude as the baryon one ∼ 10−10 (see Sec. 3). From Eq. 2.7 it reads that
the chemical potential and the asymmetry are almost linear and of the same
order of magnitude. For the scale of ξνe plotted it is effectively zero, so we
should cut the plane at ξνe = 0 after which we are left with a χ2 as a function
of ∆Neff only. This χ2 now excludes additional relativistic degrees of freedom
(∆Neff = 1) at 3σ confidence level (see Fig. 2.7).

Recently new measurements and methods have been applied to measure
the helium mass fraction [Aver 2010, Izotov 2010]. Typically they agree on a



34 Chapter 2. Standard BBN

larger central value with respect to the result of Eq. 2.25:

Yp = 0.2565± 0.0010(stat.)± 0.0050(syst.) [Izotov 2010] , (2.29)
Yp = 0.2573± 0.0033 [Aver 2010] . (2.30)

In the so-called Standard BBN, which does not treat neutrino asymmetries,
such results seem to exclude Neff ' 3 at more than 2σ confidence level (see
Fig. 2.7) and have been used as an evidence for non-standard big bang nucle-
osynthesis.

Extra radiation density can also be measured with other cosmological
probes. It postpones the epoch of matter-radiation equality; in the CMB
power spectrum it boosts the amplitude of the first acoustic peak of the an-
gular power spectrum and shifts all peaks to smaller scales. Moreover, the
power spectrum of density fluctuations on small scales is suppressed, leading
to observable effects in the cosmic large-scale structures (LSS). However, the
sensitivity of CMB and LSS analysis to extra effective number of neutrinos is
rather weak. The best answer at present coming from WMAP collaboration is
a modest constraint 2.6 . Neff . 6 at 2σ [Komatsu 2011]. Future experiments,
such as PLANCK, are designed to have much better precision [Hamann 2008]
on this and all the other cosmological parameters. In this case a possible con-
tribution ∆Neff ∼ 0.2 can make a difference between discovery of a new degree
of freedom or neutrino asymmetry. Considering this a question arises: What
is the maximal contribution that active, normal, but asymmetric neutrinos
can leave to ∆Neff?
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Chapter 3

Degenerate big bang
nucleosynthesis

Neutrino oscillations have implications in many research areas in particle and
astroparticle physics. However, the consequences of non-zero neutrino mix-
ing in cosmology are usually not considered relevant, despite the fact that
relic neutrinos are the second most abundant particles in the Universe, with
almost the same number density as photons. The reason is well known: if
we believe that all neutrino flavors were produced thermally in the early hot
Universe, then they all had the same energy spectra. Any asymmetry they
possessed in the early stages of the Universe was then redistributed between
lepton and baryon sector in the sphaleron era leaving the lepton asymmetry
of the same order as baryon one, i.e. ∼ 10−10. Thus neutrino oscillations
can not modify the properties of cosmological neutrinos (except for very small
effects from non-instantaneous neutrino decoupling [Mangano 2005]). How-
ever, lepton asymmetry in the neutrino sector is in principle unconstrained
or weakly constrained with the values O(1) still allowed1. There are models
in which neutrino asymmetry is orders of magnitude larger than the baryon
one; e.g. a small mixture with sterile neutrinos could cause both species to
undergo opposite and exponential asymmetry growth sometimes even flipping
their original sign [Bell 1999, Enqvist 1999].

Big Bang nucleosynthesis is the most precise method to put bounds on
neutrino asymmetries and it is sensitive only to values |ην | & 10−2. Only
larger values lead to significant enhancements of neutrino contribution to the
energy density or to changes in the weak rates leaving an observable trace in
the light element abundances. In particular, the primordial abundance of 4He
depends on the presence of an electron neutrino asymmetry and in the case of
no extra d.o.f. sets a stringent bound electron neutrino degeneracy parameter

− 0.021 ≤ ξνe ≤ 0.005 . (3.1)

This corresponds to a cut in Fig. 2.6 at ∆N extra
eff = 0. If there were no mixing,

the constraints on the total neutrino asymmetry would be very loose, allowing
values even of the order of unity.

1Charged lepton asymmetry is very well constrain by imposing charge neutrality of
Universe.
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If neutrino mixing is effective before the the BBN onset, the constraint
(3.1) applies to all other flavors as well. This in turn also implies that, if
neutrinos indeed, reach perfect kinetic and chemical equilibrium before they
decouple, any large excess in cosmic radiation density, if observed, must be
ascribed to extra relativistic degrees of freedom since the additional contri-
bution to radiation density due to non vanishing ξνα is very small. Assuming
that the neutrino distributions are given by their equilibrium form, the BBN
bound on the neutrino degeneracies leads to the following upper limit on the
excess contribution to Neff [Dolgov 2002b],

∆Neff =
∑

α=e,µ,τ

[
30

7

(
ξνα
π

)2

+
15

7

(
ξνα
π

)4
]
. 0.0006 , (3.2)

which is tiny, even compared with the value of Neff = 3.046 found solving the
neutrino kinetic equations in absence of asymmetries [Mangano 2005].

The problem, however, was proven to be not as simple [Pastor 2009]. Fla-
vor oscillations driven by ∆m2

atm take place when neutrinos are still fastly
scattering off the surrounding medium, so that the changes in their distribu-
tion due to oscillations are efficiently readjusted into an equilibrium Fermi-
Dirac function. Instead, flavor conversions due to ∆m2

sol and θ12 occur around
neutrino decoupling. This implies, at least in principle, that if neutrinos suc-
ceed in achieving comparable asymmetries in all flavors before BBN, their
distributions might acquire distortions with respect to equilibrium values due
to inefficient interactions.

This can be easily understood by a simple example. Suppose that at
temperatures higher than 2 − 3 MeV we start with a vanishing total asym-
metry, but ηin

νe = −2ηin
νx 6= 0 and we artificially switch-off scattering and pair

processes. Due to solar-scale oscillations, in the case of maximal mixing,
asymmetries in each flavor will eventually vanish, but the resulting neutrino
distributions will not correspond to equilibrium, since averaging two equilib-
rium distributions with different chemical potential does not yield a Fermi-
Dirac function. Only scatterings and pair-processes can drive it back to an
equilibrium distribution with, in this case, zero chemical potential.

Although this example is quite extreme and unrealistic it illustrates well
that the interplay of neutrino freeze–out and ∆m2

sol oscillations deserves more
careful scrutiny. In fact, depending on the initial flavor neutrino asymmetries
and the value of θ13, the final neutrino distributions at the onset of BBN might
show non-thermal distortions which change the neutron-proton chemical equi-
librium due to the direct role played by electron (anti)neutrinos. Moreover,
this corresponds to an asymmetry-depending parameter Neff > 3 which is
not anymore given by the equilibrium value of 2.23 due to inefficient entropy
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transfer from neutrinos to the electromagnetic plasma. These features will
prove to be quite important in case of large initial asymmetries and opposite
values for νe and νµ,τ chemical potentials. It was shown that with fine-tuned
and opposite initial asymmetries, the BBN bound could be respected, with a
residual off-equilibrium excess of radiation density.

In papers [Mangano 2011a] and [Mangano 2011b] we have considered a
wide range of values of the initial neutrino asymmetries and solved their
evolution with the corresponding kinetic equations, including both collisions
and oscillations. The obtained shape of the neutrino distributions was then
plugged into the BBN dynamics to obtain more accurate bounds on the total
lepton asymmetry stored in the neutrino sector, as well as the way it was
distributed at some early stage in the νe and νx flavors.

3.1 Evolution of asymmetric neutrinos

We are interested in calculating the evolution of the active neutrino spectra
from large temperatures, when they followed a Fermi-Dirac form, until the
BBN epoch. This includes taking into account neutrino interactions among
themselves and with charged leptons, as well as flavor oscillations, which be-
come effective at similar temperatures. The equations of motion for the %
matrices are

i %̇p = +

[
M2

2p
, %p

]
+
√

2GF

[(
− 8p

3m2
w

E + %− %̄
)
, %p

]
+ C[%p] , (3.3)

i ˙̄%p = −
[
M2

2p
, %̄p

]
+
√

2GF

[(
− 8p

3m2
w

E + %− %̄
)
, %̄p

]
+ C[%̄p] . (3.4)

In the calculations presented both mass-squared differences and the angles
θ12 and θ23 were fixed to the best-fit values in Ref.[Schwetz 2011]. Varying
these parameters within the allowed 3σ ranges does not modify the results.
Instead, we considered the whole presently allowed region for θ13, in the range
0.001 < sin2 θ13 < 0.04 at 3σ (see Table 1.1) adding the case of zero θ13 for
comparison.

The small baryon density in the early Universe implies that the refrac-
tive matter term proportional to the difference between the charged lepton
and antilepton number densities (CP asymmetric) can be neglected com-
pared to the CP symmetric term, proportional to the sum of energy densities
[Notzold 1988]. This appears in Eq. 3.4 through the flavor diagonal matrix of
charged-lepton energy densities E (see Table 1.2).

The onset of flavor oscillations occurs at a the temperature when the vac-
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uum and the background matter terms become equal in magnitude

∆m2

2p
cos 2θ ∼ 8

√
2GFp

3m2
W

(%l− + %l+) . (3.5)

There are two flavor oscillations happening. First, at T ' 15 MeV, ντ − νµ
mixing driven by ∆m2

31 and θ23 set on [Dolgov 2002b]. That is long before
neutrino decoupling, so the weak interactions are still very effective meking the
two species reach full equilibrium. That is why, for the rest of the treatment,
it is enough to consider the 2× 2 case with νe’s and νx’s representing both µ
and τ species. For the same reason, our numerical calculations start at T = 10

MeV with initial degeneracy parameters ξνx ≡ ξνµ = ξντ and ξνe .
For flavor neutrino oscillations involving νe’s and νx’s, the relevant param-

eters in Eq. 3.5 are ∆m2
31 and θ13, so we get that the oscillations set on at

temperature

Tc ' 19.9
( p
T

)−1/3
(
|∆m2

31|
eV2

)1/6

MeV (3.6)

if cos 2θ13 ' 1 and e± are taken as relativistic particles. For |∆m2
31| =

2.5× 10−3 eV2 and an average neutrino momentum, one finds Tc ' 5 MeV. It
is this fact that complicates the whole problem – Tc is too close to neutrino
decoupling temperature (2− 3 MeV)! That is why the interplay between mix-
ing (tending only to average two distributions out) and collisions (actually
exchanging momenta and driving the distributions ot equilibrium form) is so
delicate. A proper analysis of neutrino influence on BBN has to account fo
the whole shape of the neutrino distribution(s).

Luckily, the spectral distorsions from the equilibrium shape are proven to
be small [Pastor 2009]. So, for the purpose of implementing the effect in the
BBN code, it is enough to parametrize the numerically generated spectra with
two effective parameters ξνα and Tνα . The emphasis is put that the parameters
are just effective, because, strictly speaking, since the spectra are in general
off-equilibrium, the degeneracy parameter and the temperature can not be
defined. These effective parameters are then included in PArthENoPE for each
moment in time. This approach is justified since the nuclear network does not
give feedback to the neutrino evolution; neutrinos influence nucleosynthesis,
but not vice versa.

3.1.1 Examples of neutrino evolution

In Figure 3.1, left upper panel, we show the final energy spectra of relic elec-
tron neutrinos and antineutrinos in the extreme case of zero θ13 and non-zero
total asymmetry (ην = −0.41, and ηin

νe = 0.82). The upper (lower) solid line
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Figure 3.1: Top Left panel: The final energy spectra of relic electron neu-
trinos and antineutrinos in arbitrary units for ην = −0.41, and ηin

νe = 0.82

and with vanishing θ13. Upper (lower) solid line stands for electron neutrino
(antineutrino) calculated numerically (label ”real”). Upper (lower) dotted line
stands for electron neutrino (antineutrino) given by a Fermi/Dirac distribu-
tion in terms of the fitted parameters ξνα and Tνα .
Bottom Left panel: Evolution of the neutrino energy density corresponding to
the rigth panel. The vertical axis is marked with Neff , left before e+e− annihi-
lation, right afterwards. The solid curves correspond to vanishing θ13 (upper
black line) and sin2 θ13 = 0.04 (lower red line). The case without asymmetries
is shown for comparison (blue dotted line).
Right Panel: Evolution of the effective comoving temperatures and degener-
acy parameters of electron (solid lines) and muon or tau (dashed lines) neu-
trinos in the same case. Both the case of vanishing θ13 (thick black lines) and
sin2 θ13 = 0.04 (thin red lines) are shown. The effective temperature for the
case without asymmetries is shown in the upper panel for comparison (blue
dotted line).
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stands for the spectra of electron neutrinos (antineutrinos) calculated numer-
ically, while the corresponding dotted lines are described by a Fermi/Dirac
distribution in terms of the effective electron neutrino chemical potential and
temperature. Both cases lead to the same value of the electron neutrino asym-
metry but the real calculation shows that an excess of radiation in neutrinos
remains. The right panel of the same Figure illustrates precisely that: As
soon as the flavor conversions start, the entropy transfer from the residual in-
teractions distorts the equilibrium spectra effectively heating them up. Hotter
neutrinos contribute more to the energy density rising the effective number of
neutrinos above its equilibrium value.

In the right panel of Fig. 3.1 we show the evolution of the ratio of neutrino
to photon energy densities, ρν/ργ, properly normalized so that it corresponds
to Neff at early and late times. The fast drop of ρν/ργ at T ∼ 0.2 MeV rep-
resents photon heating by e+e− annihilations. The case without asymmetries
(dotted line) ends at late times at Neff = 3.046 instead of 3 because of residual
neutrino heating [Mangano 2005]. We also show (solid lines) the evolution for
our main example, where initially Neff = 4.16 for our choice of neutrino asym-
metries. One can see that as soon as oscillations become effective reducing the
flavor asymmetries, the excess of entropy is transferred from neutrinos to the
electromagnetic plasma, cooling the former and heating the latter, but this
process is only very effective for large values of θ13. While the final Neff is 3.1

for sin2 θ13 = 0.04, for vanishing θ13 a significant deviation from equilibrium
survives and leads to a final enhanced value of Neff = 3.3.

Figure 3.2 illustrates how the neutrino asymmetry evolution depends on
the value of θ13 and the mass hierarchy. Typically, only cases with total
asymmetry close to zero (i.e. ηνe ' −2ηνx) satisfy stringent BBN bounds on
ηνe . If ∆m2

31 > 0 (normal neutrino mass hierarchy, NH) both terms in Eq. 3.5
have the same sign and neutrino oscillations follow an MSW conversion when
the vacuum term overcomes the matter potential at T ' Tc. The degree of
conversion depends in this case on the value of θ13 [Dolgov 2002b, Wong 2002,
Abazajian 2002], being very efficient compared with θ13 = 0 if this mixing
angle presents a value close to the upper bound.

The conversion for non-zero θ13 is more evident for the inverted mass
hierarchy, due to the resonant character of the MSW transition for ∆m2

31 <

0. Indeed, for IH the sum of the two terms in Eq. 3.5 vanishes and the
equipartition of the total lepton asymmetry among the three neutrino flavors
is quickly achieved, even for sin2 θ13 . 0.01, unless of course θ13 is extremely
small. Finally, for negligible θ13 flavor oscillations are not effective until T . 3

MeV (outer lines in Fig. 3.2), a value that can be found putting ∆m2
31 in

Eq. 3.5.
As mentioned, the moment when flavor oscillations become effective de-
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Figure 3.2: Evolution of the flavor neutrino asymmetries when ηin
νe = −0.82

and zero total asymmetry. The outer solid curves correspond to vanishing θ13

(black lines), while the inner ones (red lines) were calculated in the NH for
two values of sin2 θ13: from left to right, 0.04 and 0.02. The same two values
of sin2 θ13 apply to the cases shown as blue dotted lines, but in the IH.

termines also how much time do weak interactions have to drive the averaged
distributions made by mixing to the equilibrium one (the sooner – the better).
The smaller the mixing angle θ13 is, the spectra are more off-equilibrium, with
degeneracy paramters not well defined and the increase of their contribution
to total energy budget with respect to the equilibrium value.

A way to see the role of flavor oscillations on the reduction of the final
value of Neff from neutrino asymmetries is given in Figure 3.3. Here we have
fixed the initial electron neutrino asymmetry to ηin

νe = −0.82 as in Figure 3.2,
but varied the total asymmetry in the range −0.8 ≤ ην ≤ 0.8. In the absence
of neutrino mixing the final value of Neff is that given by Eq. 3.2, directly
related to the chemical potentials, and for this particular range it can be as
large as Neff ' 4.6. Instead, when oscillations are included the three flavor
asymmetries are modified and the contribution of neutrinos is largely reduced,
even for θ13 = 0. Finally, for sin2 θ13 = 0.04 and both NH or IH, the final flavor
asymmetries are given by ηνα ' ην/3. In such a case, we expect neutrinos to
almost follow Fermi-Dirac spectra and Neff as given in Eq. 3.2. For instance,
for ην = 0.8 one expects ξνe,µ,τ ' 0.38 and a total contribution to the radiation
energy density of Neff ' 3.19, very close to what we find in our numerical
calculations for sin2 θ13 = 0.04, while we found Neff ' 3.43 for θ13 = 0.
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Figure 3.3: Final contribution of neutrinos to the total radiation energy den-
sity, parametrized with Neff , as a function of the total neutrino asymmetry for
a particular value of the initial electron neutrino asymmetry (ηin

νe = −0.82).
From top to bottom, the various lines correspond, respectively, to the follow-
ing cases: no neutrino oscillations (ηνe conserved), θ13 = 0, and sin2 θ13 = 0.04

for normal (red solid line) and inverted (blue dotted line) neutrino mass hier-
archy.

3.2 Results

Differently than in the previous treatments, where both neutrino asymme-
tries and the corrisponding Neff were considered as constant parameters, in
the analysis presented here we have exactly followed the evolution of the neu-
trino distribution versus the photon temperature Tγ, which is our evolution
parameter. We have changed the public numerical code so that for any given
initial values (at Tγ = 10 MeV) for the total neutrino asymmetry ην =

∑
α ηνα ,

unchanged by flavor oscillations, and electron neutrino asymmetry ηin
νe we ob-

tain the time dependent neutrino distributions, as described in the previous
section. The latter are then fitted in terms of Fermi-Dirac functions with the
two evolving parameters Tνα(Tγ) and ξνα(Tγ). Weak rates are then averaged
over the corresponding electron (anti)neutrino distribution. The Hubble pa-
rameter is also modified to account for the actual evolution of total neutrino
energy density. In this way the final abundances of both the ratio 2H/H and
the 4He mass fraction, Yp, are numerically computed as a function of the input
parameters ην and ηin

νe and compared with the corresponding experimental de-
terminations. We have used the values of Ref. [Iocco 2009], Eqs. 2.25 and 2.24,
and Ref. [Aver 2010], Eq. 2.30. While their uncertainties on Yp are the same,
they differ for the central value, actually the smaller and higher of all results
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Figure 3.4: The 95% C.L. contours from our BBN analysis in the ην−ηin
νe plane

for θ13 = 0 (left) and sin2 θ13 = 0.04 (right). The two contours correspond
to the different choices for the primordial 4He abundances of Eqs. 2.25 (blue)
and 2.30 (purple). The (red) dot-dashed line is the set of values of ην and
ηin
νe which, due to flavor oscillations, evolve towards a vanishing final value
of electron neutrino asymmetry ηfin

νe . We also report as dashed lines the iso-
contours for different values of Neff , the effective number of neutrinos after
e+e− annihilation stage.
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Figure 3.5: Bounds in the ηin
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the lines correspond to 95% C.L. regions singled out by the 4He mass fraction
(solid lines) of Eq. 2.25, and deuterium (dashed lines) as in Eq. 2.24.
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reported in Chapter 2, a fact which will produce two different bounds on the
electron neutrino asymmetry.

3.2.1 Constraints on the asymmetries

Typical outcomes from the analysis described is shown in Fig. 3.4 with the
95% C.L. contours for the total asymmetry ην and the initial value of the
electron neutrino parameter ηin

νe for the adopted determinations of 2H and 4He
and for two different choices of θ13. In both cases the contours are close to
and aligned along the red dot-dashed line which represents the set of initial
values for the asymmetries which eventually evolve toward a vanishing final
electron neutrino asymmetry, ηfin

νe ' 0, which is preferred by 4He data. We
recall that 4He is strongly changed if neutron/proton chemical equilibrium is
shifted by a large value of νe − ν̄e asymmetry around the freezing of weak
rates (Tγ ∼ 0.8 MeV). For large θ13, oscillations efficiently mix all neutrino
flavors and at BBN ηνα ∼ ην/3, so the bounds on ην are quite stringent. For
a vanishing θ13 the contours for ην and ηin

νe show a clear anticorrelation, and
even values of order unity for both parameters are still compatible with BBN.
It worth remembering, however, that this value of θ13 is currently in conflict
with the results from long baseline experiments.

We stress that for any value of θ13 the data on primordial deuterium is
crucial for closing the allowed region that the 4He bound fixes along the ηfin

νe '
0 line. In fact, though 2H is less sensitive than 4He to neutrino asymmetries
and effective temperature which enter the Universe expansion rate, see e.g.
[Iocco 2009], yet including it in the analysis breaks the degeneracy between
ηin
νe and ην which is present when only 4He is used. This can be read from
Figure 3.5 where the 95% C.L. in the ηin

νe - ην plane are shown for 4He and
2H separately, for the case θ13 = 0. The solid lines bound the region of the
plane compatible with the 4He measurement, whereas the dashed contours
correspond to deuterium observation. The different shape of these two regions
is due to the different dependence of nuclide abundances on ηin

νe and ην , thus
their combination breaks the degeneracy and closes the contour.

The main outcome of our BBN analysis is summarized in Figure 3.6 for
the adopted determinations of 2H and 4He. From this plot one can easily see
the effect of flavor oscillations on the BBN constraints on the total neutrino
asymmetry. In the absence of neutrino mixing the value of ηνe is severely
constrained by 4He data, arising from a narrow region for the electron neutrino
degeneracy, −0.018 ≤ ξe ≤ 0.008 at 68% C.L. Instead, the asymmetry for
other neutrino flavors could be much larger, since the absolute value of total
asymmetry is only restricted to the region |ην | . 2.6 [Hansen 2002]. As we
have previously seen, flavor oscillations modify this picture and an initially
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Figure 3.6: 95% C.L. contours from our BBN analysis in the ην − ηin
νe plane

for several values of sin2 θ13: 0 (black solid line), 0.04 and NH (red solid line),
0.04 and IH (blue dotted line). The case of no neutrino flavor oscillations is
shown for comparison as the black dashed contour.

large ηin
νe can be compensated by an asymmetry in the other flavors with

opposite sign. The most restrictive BBN bound on ηνe applies then to the
total asymmetry, an effect that visible Figure 3.6 as a rotation of the allowed
region from a quasi-horizontal one for zero mixing to an almost vertical region
for sin2 θ13 = 0.04, in particular for the IH. In all cases depicted in Figure 3.6
the allowed values of the asymmetries are mainly fixed by the 4He bound,
which imposes that the value of ηνe at BBN must be very close to zero, while
the data on primordial deuterium is crucial for closing the region.

For values of θ13 close to the upper limits set by experimental data, the
combined effect of oscillations and collisions leads to an efficient mixing of
all neutrino flavors before BBN. Therefore, the individual neutrino asymme-
tries have similar values, approximately ηνα ' ην/3, and the BBN bound
on the electron neutrino asymmetry applies to all flavors, and in turn to ην
as considered in previous analyses [Iocco 2009, Barger 2003b, Barger 2003a,
Cuoco 2004, Cyburt 2005, Serpico 2005, Simha 2008]. We find that for
sin2 θ13 = 0.04 the allowed region at 95% C.L. is −0.17(−0.1) ≤ ην ≤ 0.1(0.05)

for neutrino masses following a normal (inverted) mass hierarchy. Note, how-
ever, that in the IH this result approximately holds for any value of sin2 θ13

within the favoured region by oscilation data, due to the resonant character
of the conversions. Instead, as discussed in [Mangano 2011a], in the NH even
values of order |ην | ' 0.6 are still compatible with BBN if θ13 is very small.
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The allowed regions of the total neutrino asymmetry are depicted in Fig. 3.7
in function of the mixing angle θ13 and the mass hierarchy.

The analysis presented can be recasted into constrains on the initial flavor
degeneracy parameters ξin

νe and ξin
νx as in Fig. 3.8. We found also interesting

to consider a new pair of variables: the electron neutrino asymmetry at the
onset of BBN ηfin

νe , and the difference ηfin
νx −η

fin
νe , which in the standard analysis

is usually assumed to be vanishing. One can see from this figure that, while
the (95% C.L.) bound on ηfin

νe is independent of the value of θ13, the difference
between the final νe and νx asymmetries strongly depends upon this yet un-
known mixing angle, as expected. In fact, for large θ13 we recover the standard
result, ηfin

νx ∼ ηfin
νe , due to efficient mixing by oscillations and collisions, while

for θ13 = 0 the two asymmetries can be different.

3.2.2 Constraints on the effective number of neutrinos

In Figures 3.4, 3.8 and 3.9 we also plot iso-contours for the value of the effective
number of neutrinos, Neff , evaluated after e+e− annihilations. For large θ13

(right-hand panels of the reported figures) BBN data bound Neff to be very
close to the standard value 3.046, since all asymmetries should be very small
in this case and flavor oscillations modify the neutrino distributions while
neutrinos are still strongly coupled to the electromagnetic bath. Therefore, we
do not expect non-thermal features in the neutrino spectra in this case, since
scatterings and pair processes allow for an efficient transfer of any entropy
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Figure 3.8: Same results as in Figure 3.4 in the plane of initial flavor degen-
eracy parameters ξin

νx and ξin
νe .

excess. On the other hand, for vanishing θ13 (left-hand panels of the reported
figures), larger values of Neff are still compatible with BBN data, up to values
of the order of 3.4 at 95% C.L. The dependence of the largest possible value
of Neff on the value of the mixing angle θ13, obtained by spanning in the
asymmetry parameter plane the region compatible with BBN, is reported in
Fig. 3.10.

It is worth noticing that the final values of Neff , in particular for large final
asymmetries of νx, are also slightly larger than the Neff that one would obtain
using the equilibrium expression of Eq. 2.7. For example, if we take ηfin

νe = 0

and ηfin
νx = 0.3, a point on the boundary of the BBN contours (see Fig. 3.9)

and compute the corresponding effective chemical potentials, using Eq. 3.2
one gets Neff = 3.2, while the actual value is larger, Neff = 3.4, a signal that
in this case the interplay of solar-like oscillations and neutrino freeze-out has
produced indeed, a mild non-thermal distortion in neutrino distributions.

We notice that our BBN results correspond to a minimal scenario with
primordial neutrino asymmetries, as we do not consider a possible extra con-
tribution to Neff coming from relativistic degrees of freedom other than stan-
dard active neutrinos. Their effect is known to produce looser bounds on
neutrino asymmetries, as they speed up expansion and thus, can compensate
the effect of a positive νe− ν̄e asymmetry. We have explicitly checked that, for
some choices of primordial asymmetries, the addition of extra radiation does
not modify the evolution of flavor neutrino asymmetries. Of course, in such
a case the contribution to the energy density of the additional relativistic de-
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Figure 3.9: Same results as in Fig. 3.4 in the plane of ηfin
νe and the difference

ηfin
νx − η

fin
νx , where the superscript indicates that the asymmetries are evaluated

at the onset of BBN, Tγ ∼ 1 MeV, after flavor oscillations shuffled the initial
ηin
να .

grees of freedom adds up to the surviving excess to Neff arising from neutrino
asymmetries.

The complete dependence of the largest possible value ofNeff from neutrino
asymmetries in the region compatible with BBN, as a function of the neutrino
mass hierarchy and the mixing angle θ13 is reported in Figure 3.10. If the
true value of θ13 lies in the upper part of the region favoured by oscillation
experiments (in particular T2K) or ∆m2

31 < 0, the presence of primordial
asymmetries can not lead to a contribution to the radiation energy density
Neff > 3.1 . On the other hand, for the NH and very small values of θ13, larger
values of Neff are still compatible with BBN data, up to 3.43 at 95% C.L.

3.3 Summary

We have found the BBN constraints on the cosmological lepton number and
its associated contribution to the radiation energy density, taking into account
the effect of flavor neutrino oscillations. Once the other neutrino mixing pa-
rameters have been fixed by oscillation data, we have shown that pinpointing
the value of θ13 is crucial to establish the degree of conversion of flavor neutrino
asymmetries in the early Universe.

The most stringent BBN bound on the total neutrino asymmetry, |ην | .
0.1, requires that reactor neutrino experiments in the near future, such as
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Double Chooz, Daya Bay or Reno, confirm that the value of the third neutrino
mixing angle is such that sin2 θ13 & 0.03, the central value of the T2K analysis.
This conclusion also applies to the whole allowed range of θ13 values at 3σ if
neutrino masses follow an inverted hierarchy scheme.

Similarly, a measured value sin2 θ13 & 0.03 will imply that the maximum
contribution of neutrino asymmetries to the radiation content of the Universe
can not exceed Neff ' 3.1, well below the expected sensitivity of the Planck
satellite (0.4 at 2σ) [Hamann 2008, Bowen 2002], whose first data release on
the anisotropies of the cosmic microwave background (CMB) is expected in
one year or so.

Finally, BBN remains the best way to constrain a potential cosmological
lepton number, despite the present precision of the measurements of the CMB
anisotropies and other late cosmological observables. Bounds on the neutrino
asymmetries with these data do not improve those found in our work, but are
of course sensitive to other neutrino properties such as their masses.





Chapter 4

Role of neutrinos in supernova
dynamics

Historical astronomical classification of supernovae was based purely on the
properties of their spectra, such as the presence (Type I) or absence (Type
II) of hydrogen lines (see Table 4). According to the present-day theory of
stellar evolution, only one type, SN Ia, have different nature then the others:
they originate from a white dwarf in a binary system that accretes material
from the companion star. Once its mass reaches the Chandarsekhar limit
(MCh ≈ 1.44M�), it implodes, triggering the thermonuclear reactions and an
explosion of energy carried mostly by the photons. During the explosion all the
material of a star is blown away and no compact remnant remains. Because
if the same mechanism and precise conditions, all Type Ia supernovae have
similar spectra and luminosities which can be calculated. This property makes
them the best standard candles in astronomy.

All other types of supernovae are core-collapse supernovae. They are trig-
gered by an implosion of an inner iron core of a massive star, which turns
to an explosion that expels the outer layers into space, creating a planetary
nebula typically with a pulsar in its center. Core-collapse supernovae are one
of the most energetic phenomena in the Universe: one single explosion is ca-
pable outshining an entire galaxy made out of billions of stars. Yet, the light
amounts to less than one percent of its energy content — all the rest is emit-
ted in the form of neutrinos. Therefore, neutrinos coming from a core-collapse
supernova could provide valuable information about the extreme environment
such as the supernova core, where the matter is at nuclear densities and ener-
gies of the order of 10 MeV. Understanding if the evolution of neutrinos from
a supernova core to present detectors on Earth has been a subject of interest
in the recent years.

4.1 Physics of core collapse supernovae

4.1.1 Mechanism

By the end if its hydrostatic burning, a massive star has the famous onion-
like structure, with shells that are relics of all the previous burning phases
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Figure 4.1: Schematic representation of the evolutionary stages of a core
collapse SN. The panels display the dynamical conditions in their upper half,
with arrows representing velocity vectors. The nuclear composition as well as
the nuclear and weak processes are indicated in the lower half of each panel.
The horizontal axis gives mass information. MCh means the Chandrasekhar
mass and Mhc the mass of the subsonically collapsing, homologous inner core.
The vertical axis shows the corresponding radii, with RFe, Rs, Rg, Rns, and
Rν being the iron core radius, shock radius, gain radius, neutron star radius,
and neutrinosphere, respectively. Figure taken from [Janka 2007].
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Table 4.1: Classification of supernovae

(hydrogen, helium, carbon, neon, oxygen and silicon). In the final stage iron
is synthesized, as the most stable nucleus in the Universe. When the mass
of the iron core reaches the Chandarsekhar limit, the electron degeneracy
pressure cannot withstand anymore the gravitational potential and the core
collapses. The important phase of the explosion that follows are given in
Fig. 4.1:

1) In the first phase of the collapse, the electrons are captured on nuclei and
transformed into electron neutrinos (via weak reactions e− p → n νe),
which escape freely. This reduction of electron density increases the
compressibility of the core (it takes less gravitational energy to reduce
the volume), accelerating the collapse further. In the process, it also
shifts the neutron-to-proton ratio towards more neutron rich material.

2) When the core reaches the density ρtrap = 1012g/cm3, neutrinos are not
free to stream out from the core because their diffusion time due to
scattering on nuclei becomes larger than the collapse time. Neutrinos
are trapped. As a consequence, inside the core, the β-equilibrium is
reached and the Fermi sea of neutrinos builds up.

3) The inner part of the core continues the collapse at subsonic speed,
with all its parts in causal contact. Once it reaches nuclear densities,
with much lower compressibility, the inner core decelerates and bounces
back, forming a shockwave. In the mean time, the outer parts of the
core are pulled to the center at supersonic speeds and do not decelerate
as the homologous core. Instead, the shockwave propagates through the
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infalling material of the outer core and other layers forming an environ-
ment in which heavier nuclei can be formed (r-process nucleosynthesis)
and eventually expels all out in the interstellar medium.

However, the exact scenario and crucial physical arguments of this appealing
and simple prompt mechanism of SN explosions are still uncertain and under
investigation. Present state-of-the-art simulations suggest that the energy
available for the shock is not sufficient to drive the explosion [Buras 2003].

4) Shock eats up its own energy in the outer layer by dissociation of heavy
nuclei into free nucleons. Since electron capture rate on free protons is
significantly larger then on heavier neutron rich nuclei, a neutronization
phase that follows transforms almost all electrons in neutrinos, which
then carry the energy away. This neutronization (deleptonization) burst
happens mostly outside the inner core and since these neutrinos can free-
stream through matter they carry away the lepton number.

5) The shock is weakened so much that it stalls at a radius r ∼ 100− 200

km and turns into an accretion shock, with the matter from outer layers
still infalling. In the center, the core accretes the surrounding material
and a proto-neutron star (PNS) is formed. The PNS will later become a
neutron star, or a black hole if its mass is greater than 25M�. The hot
PNS is subsequently cooled by the emission neutrinos, which had lost
a part of their energy while drifting through the nuclear material, and
therefore exit the PNS with energies E ∼ 10 − 20 MeV. The sphere at
which the environment becomes transparent for neutrinos is called the
neutrinosphere. During the cooling, neutrinos will carry away 99% of
the total energy of the collapse.

6) On their way out, neutrinos can deposit energy while going through
the shockwave and revive it in the delayed explosion scenario. This
energy deposition is of course flavor discriminating with electron flavor
capable of depositing more energy. It has been estimated that if 10−20%

energy radiated in the form of electron neutrinos is converted to thermal
energy of nucleons and leptons in the gain layer, the shock can be re-
energized to make a supernova.1 The heated material expands and a
hot bubble region of matter at lower densities and high temperatures is
formed between the shock-wave front and the surface of the PNS. The
persisting pressure of neutrinos restarts the explosion and, at the same
time, the neutrinosphere radius decreases down to Rν ∼ 10 km.

1In the perspective of possible flavor and spectral swaps (see Sec. 4.3.2), this feature will
prove to be very important for SN simulations.
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The first considerations of core collapse supernova dynamics already
pointed that the hot bubble region should be convectively unstable. The
neutrino heating in the gain radius closer to the PNS is much more effective
than at larger distances. The matter at low entropy and higher density outside
the shock region can penetrate the hot bubble, get heated close to PNS and
expelled again causing the large scale convective motion. Indeed multidimen-
stional (2D and 3D) hydrodynamic simulations confirmed this expectations.
They have also discovered a generic instability of the system to non-radial de-
formations [Blondin 2003]. This standing accretion shock instability (SASI)
causes a bipolar (and quadrupolar) sloshing of the shock with large pulsational
expansions and contractions. The turbulent motion caused by it significantly
enhances the neutrino heating and thus indirectly helps the shock expansion.
As the presence of SASI changes the geometry of the system, it is believed
to be the origin of typically asymmetric nebulae born in a SN explosion. A
dominant monopole mode can lead to a large recoil of the newly born neutron
star and provide a mechanism for pulsar kicks and an unstable l = 1,m = 1

SASI mode can create strong rotational flow close to PNS and explain pulsar
spins.

Despite the discovery of SASI and the general progress in the area of SN
simulation, no selfconsistent explosion for a model of progenitor mass larger
than about 12M� has been observed [Buras 2003]. For each of them one would
have to intervene by hand raising the obtained neutrino luminosities to trigger
the explosion and it seems at present that a piece of physics is missing. One of
the directions in this search for the missing puzzle points toward the physics
of neutrinos. In general, SN simulations are performed without neutrinos
oscillations. However, if significant neutrino flavor evolution happens between
the PNS and the shock, it would have to be included in the simulations.
On the contrary, if one could prove that in that region no flavor conversions
happen, it would be a consistency check for simulations; it would mean it is
not necessary to include the neutrino oscillations in the codes and that the
missing physics should be searched for elsewhere.

4.1.2 Neutrinos from supernovae

A simple estimate of the number of neutrinos can be made upon general
arguments: Virial theorem states that the average kinetic energy for a non-
relativistic particle is half of its potential energy. For a nucleon on the surface
of the neutron start it is

〈Ekin〉 =
1

2

GN MnsmN

Rns

' 25 MeV , (4.1)
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where mN is the nucleon mass, GN is the Newton constant, Mns = 1.5M� is
the typical mass of the (proto-)neutron star, and Rns = 15 km is its typical
diameter. For a few seconds, neutrinos are in equilibrium with the nucle-
ons in the PNS, so they share the same kinetic energy of O(10) MeV. The
gravitational binding energy is roughly

GNM
2
ns

Rns

∼ 1057 GeV , (4.2)

and it is almost all carried by neutrinos. Dividing by the number of families
and the typical energies, we arrive to striking 1058 neutrinos per family! About
10% of them are emitted in the initial deleptonization burst and the rest in
the cooling phase on a second time scale.

Many effects, known and speculative, leave an imprint on neutrinos on
their way from the SN core to detectors on Earth. SASI instabilities, neu-
trino self-interaction, MSW conversions, Earth-matter effects, possible non-
standard interactions, etc. could answer some questions on fundamental
physics and the mechanism of SN explosion. Therefore, a detection of high-
statistics-SN-neutrino signal is goal of the present day SN neutrino physics.
A typical SN at a typical galactic distance of 10 kpc would leave O(104)

events in the largest existing low-energy neutrino detector (32 kton mass)
Super-Kamiokande [Super-K]. Other terrestrial experiments would also detect
neutrinos from a typical galactic SN – SNO (about 400 events), KamLAND
(300), LVD (200), MiniBooNE (200), Icarus (200), Borexino (100), Baksan
(100) [Scholberg 2007]. The biggest detector on Earth, the 2.5 Mton IceCube
on South pole, is not optimized for detection of such low-energy neutrinos,
but a systematic increase of background noise would correspond to O(106) of
events and would allow us to see the “neutrino light curve” with the possible
imprints of SASI [Lund 2010].

With this network of detectors, we would be capable of pinpointing the
coordinates of the supernova within few degrees precision [SNEWS]. Since
the photons due to their electromagnetic interaction are typically trapped in
the accreting material, first light appears hours after neutrinos, which would
give time for the community to observe the most energetic phenomena in the
Universe with all possible resources.

In the core itself and after the emission, muon and tau neutrinos and
antineutrinos share the same physics. They are produced at the same rates,
with the same average energies well below the threshold for the production of
µ and τ leptons, their luminosities are same, and they interact only via neutral
current and therefore feel the same potential. For this reason, in the context
of supernova physics, mu and tau neutrinos and antineutrinos are usually
referred as unique non-electron flavor νx. On the other hand, the distinction
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Figure 4.2: Neutrino signal of a core-collapse SN for a 10.8M� progenitor
according to a numerical simulation of the Basel group [Fischer 2010]. All
quantities are in the laboratory frame of a distant observer. In this spherically
symmetric simulation the explosion was triggered by hand. Left: Prompt
neutrino burst. Middle: Accretion phase. Right: Cooling phase. Plot taken
from [Wurm 2011].

between electron neutrinos and antineutrinos has to be made, mostly because
of the deleptonization of material in the core and around which results in the
large chemical potential of electron neutrinos.

Neutrino spectra are formed as they diffuse from the core outwards. Due
to decreasing density, at some point the reactions become inefficient that
defines the neutrinosphere. In general, however, different species interact with
different rates and have different neutrinospheres. The sooner they decouple,
the less time they have to scatter down in the momentum space and hence are
emitted with higher local average energies. Non-electron neutrinos react only
through neutral current and are the first to decouple with energies Eνx ∼ 24−
27 MeV. Electron neutrinos and antineutrinos are both affected by β reactions.
The proto-neutron star, however, contains more neutrons than protons, which
leads to a higher absorption rate for νe’s than for ν̄e’s. Therefore, the νe sphere
lies at a larger radius than the ν̄e sphere, so the mean energy of emitted νe,
Eνe ∼ 10− 12 MeV, is always less than the mean energy of ν̄e, Eν̄e ∼ 14− 17

MeV. This reflects in the usual flux hierarchy Fνe > Fν̄e > Fνx .
An example of a neutrino light-curve us given in Figure 4.2. The three

phases (deleptonization burst, accretion and cooling ) are clearly separated.
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These luminosities are obtained from a spherically symmetric simulation in
which the explosion was triggered by hand. That explains the peak in the νe
luminosities during the accretion phase.

4.2 Flavor evolution of neutrino fluxes

In order to interpret the future neutrino signal from a supernova, we have
to account for all the possible effects neutrinos could have suffered on their
way from the core to detectors. First of all, there are the collective conver-
sions in the region close to the supernova. Then, in the outer envelope, the
MSW conversions take place, at densities ρ ∼ 103 − 104 g/cm3 for the at-
mospheric and at ρ ∼ 10 − 100 g/cm3 for the solar parameters. After that
the mass eigentstates of neutrinos travel independently and if the detector is
shadowed by the Earth itself, we have to take into account again the MSW
effect. Over the last decade, a plethora of possibilities have been investigated,
with a solid conclusion that, if we know all the contributions, we can extract
valuable information on the missing ingredient for the SN simulation, and the
neutrino properties, such as the last mixing angle θ13 and the mass hierarchy.
As the last experimental results suggest that the measurement of θ13 is just
around the corner, the significance of supernova signal has moved to the mass
hierarchy2.

The main uncertainty in the neutrino propagation from the core are the
first few hundreds of kilometers, where the neutrinos are largely influenced by
their own refractive effects. Any definitive answer on how this region influences
the spectra is crucial for understanding the next SN-neutrino signal.

4.2.1 Spatial evolution in spherical symmetry

Once they are emitted from the core, neutrinos free-stream, so no collisions
or any momentum changing processes are present, unlike in the early Uni-
verse. In Chapter 1, a general equation for matrices of occupation numbers is
developed for this situation

i∂t%p = [Hp, %p] and i∂t%̄p = [H̄p, %̄p] , (4.3)

where the Hamiltonian for each mode is

Hp =
M

2p
+ λL +

√
2GF

∫
d3q

(2π)3
(%q − %̄q) (1− vq · vp) . (4.4)

2I do not discuss here how a signal from a supernova contributes constraining other
physical parameters, such as neutrino magnetic moment, electric charge or mass, or even
the presence of other particles. See [Raffelt 1996] for more details.
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Figure 4.3: Typical radial dependence of ordinary matter potential λ and the
neutrino self-coupling strength µ for a supernova in the cooling phase.

The matrix of vacuum oscillation frequencies for relativistic neutrinos is the
same as Eq. 1.19. The matter effect is represented by λ =

√
2GF(ne− − ne+)

and L = diag(1, 0, 0), given here in the weak interaction basis. We ignore
the possible presence of other charged-lepton flavors. The Hamiltonian for
antineutrinos H̄p is the same with M→ −M.

It is customary to reduce the system to 2 flavors, νe and νx, neglecting
the solar squared-mass difference ∆m2

� � ∆m2
atm. Therefore, for the rest

of this manuscript, a generic squared-mass difference will always refer to the
atmospheric one ∆m2 ≡ ∆m2

atm, and a generic mixing angle θ = θ13.
Figure 4.3 shows a typical radial profile of parameters relevant for neutrino

evolution equations. Natural unit for distance in the supernova physics is km
and expressing all the potentials in km−1 simplifies the formalism. Matter
potential λ scales as electron density (approximately ∝ r−2), with a strong
drop at the radius of the shockwave. For the case shown, the shockwave is
already propagated to larger radius. Comparing the value of lambda with
the typical vacuum frequency ω0 =

〈
∆m2

2E

〉
' 0.3 km−1 we see that the well

understood MSW conversions take place at 104 – 105 km away from the core,
allowing us to treat them separately.

The strength of neutrino self-interaction, as usual parametrized by µ, scales
as ∝ r−4, reflecting the usual radial dilution of the flux (∝ r−2) with the
other two powers coming from angular dependence of the interaction – as
the neutrino rays become more collinear going further from the core, the
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Figure 4.4: Geometry of the neutrino propagation. Figure adapted
from [Duan 2006].

interaction drops for another two powers. Close to the core, where neutrino
fluxes are extremely large, neutrino self-interaction dominates the evolution.
During the accretion phase, the matter potential is comparable to ν–ν one,
so the delicate interplay those two effects can have significant impact.

Instead of a homogeneous system that evolves in time, in the case of a su-
pernova we consider a stationary system that evolves in space. Since neutrinos
propagate at the speed of light, it is safe to consider snapshots of supernova
explosion and evolve fluxes for each snapshot independently. The occupation
numbers (%p matrix elements) depend both on spatial coordinates and on
momenta, but there is no conceptual problem as long as we consider spatial
variations that are slow on the scale of the inverse neutrino momenta.

In the Eq. 4.4 the factor (1−vq ·vp) = (1−cosϑpq) represents the current-
current nature of the weak interaction where vp = p/p is the velocity. If the
gas is isotropic, as in the early Universe, this term averages to 1. In general,
also matter potential would have a similar term, but in the absence of net flux
of matter, it is safe to neglect it. If the system is axially symmetric relative
to some direction, the angular factor simplifies after an azimuthal integration
to [Duan 2006, Raffelt 2007]

(1− vq · vp)→ (1− vqvp) , (4.5)

where the velocities are along the symmetry axis.
The multi-angle effects are crucial for understanding the evolution of neu-

trinos from a SN, so we cannot reduce the equations to plane waves moving
in the same direction. However, we can take advantage of the global spherical
symmetry, implying that the ensemble is represented by matrices that depend
on a radial coordinate r, the zenith angle relative to the radial direction ϑR,
and the energy E, which in the relativistic limit is identical to momentum
p = |p|.
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A neutrino is launched from a radius R, at an angle ϑR relative to the
radial direction (see Fig. 4.4), has a radial velocity

vR = cosϑR . (4.6)

At the point P , the neutrino trajectory forms an angle ϑr with the radial
direction, implied by simple geometry to be [Duan 2006]

R sinϑR = r sinϑr . (4.7)

Therefore, the radial velocity at r is

vu,r = cosϑr =

√
1− R2

r2
u , (4.8)

where a new angular variable is introduced

u = 1− v2
R = sin2 ϑR . (4.9)

It is convenient to label the angular modes with u, because the physical zenith
angle for the same ray changes with distance so that the equations would be
more complicated. Labeling the angular dependence with u recognizes the
uniqueness of a neutrino ray emitted ad one angle.

The density matrices %p,u,r are not especially useful to describe a spheri-
cally symmetric system because they vary with radius even in the absence of
oscillations. A quantity that is conserved in the absence of oscillations is the
total flux matrix

Jr = 4πr2

∫
d3p

(2π)3
%p,r vp,r . (4.10)

To express the integral in comoving variables, we observe that d3p in spherical
coordinates is p2dp dϕ d cosϑr and that Eq. (4.8) implies∣∣∣∣d cosϑr

du

∣∣∣∣ =
1

2vu,r

R2

r2
. (4.11)

Therefore, we finally define the differential flux matrices

Jp,u,r =
R2p2%p,u,r

2π
, (4.12)

where we have used
∫

dϕ = 2π for axial symmetry. The total flux matrix is
now just

Jr =

∫ 1

0

du

∫ ∞
0

dp Jp,u,r . (4.13)
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In the absence of oscillations, the total and differential fluxes are conserved,
∂rJr = 0 and ∂rJp,u,r = 0.

Since the radial velocity along a neutrino trajectory is vu,r = dru/dt =

cosϑu,r, taking the radial distance instead of time as the independent variable
in Eq. 4.3 transforms the derivative ∂t → vu,r∂r, so that the equation of motion
become i∂rJp,u,r = v−1

u,r [H, Jp,u,r]. In other words, we project the evolution
along a given trajectory to an evolution along the radial direction. For vacuum
oscillations this has the effect of “compressing” the oscillation pattern for non-
radial modes, so that even for monochromatic neutrinos, the effective vacuum
oscillation frequency depends on both r and u.

The equations of motion for the flux matrices are fi-
nally [Esteban-Pretel 2008b]

i∂rJp,u,r = [Hp,u,r, Jp,u,r] (4.14)

with the Hamiltonian

Hp,u,r =
M2

2p
v−1
u,r + λL v−1

u,r

+

√
2GF

4πr2

∫
du′
∫

dq

(
1

vu,rvu′,r
− 1

)
(Jq,u′,r − Jq,u′,r) (4.15)

and the same for Jq,u′,r with M2

2p
→ −M2

2p
.

4.2.2 Polarization vectors

There is no unique way to introduce polarization vectors. In fact, the number
of conventions used in the literature is probably comparable to number of au-
thors, with some contributing more to the entropy of the field. One definition
suitable in the SN context is

Jp,u,r =
F (νe)p,u + F (νx)p,u

2
+
F (ν̄e)− F (ν̄x)

2
Pp,u,r · σ ,

J̄p,u,r =
F (ν̄e)p,u + F (ν̄x)p,u

2
+
F (ν̄e)− F (ν̄x)

2
Pp,u,r · σ , (4.16)

where σ is the vector of Pauli matrices. The quantity F (να)p,u is the number
flux of να neutrinos emitted from the neutrino sphere with energy E ∈ (p, p+

dp) and at an angle sin2 ϑR ∈ (u, u+ du). The total number flux of flavor α is
a simple integral F (να) =

∫
dp
∫

duF (να)p,u. Note that the normalization of
the second term is the same and it is the difference between flux of ν̄e’s and
ν̄x’s. As a consequence, at the neutrino sphere we have the normalization

Pz = |P| = 1 + ε and P̄z = |P̄| = 1 , (4.17)
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where epsilon in the asymmetry of the spectra

ε =
F (νe)− F (ν̄e)

F (ν̄e)− F (ν̄x)
. (4.18)

The first terms in Eqs. 4.16 are simply 1
2
Tr(Jp,u,r), i.e. they represent the

sum of the fluxes and are constant during the evolution, reflecting the con-
servation of number of neutrinos in the absence of momentum-exchanging
processes. Being proportional to the identity matrix, they disappear under
the commutator in the equations of motion.

At the neutrino sphere we have a coherent state Jinitp,u,R =

diag(F (νe)p,u, F (νx)p,u), so the initial conditions for the polarization vectors
are

P z
p,u,R = |Pp,u,R| =

F (νe)p,u − F (νx)p,u
F (ν̄e)− F (ν̄x)

and

P̄ z
p,u,R = |P̄p,u,R| =

F (ν̄e)p,u − F (ν̄x)p,u
F (ν̄e)− F (ν̄x)

. (4.19)

Finally, we use the definition of the polarization vectors(Eq. 4.16) in the
equations of motion 4.15 to obtain the equations for the polarization vectors

∂rPp,u,r =
[
v−1
u,r (ωpB + λL) +

√
2GF

F (ν̄e)−F (ν̄x)
4πr2 . . .

. . .
∫

dp′
∫

du′
(

1
vu,rvu′,r

− 1
) (

Pp′,u′,r −Pp′,u′,r

)]
×Pp,u,r (4.20)

and similarly for antineutrinos.
In general, full multi-angle–multi-energy simulations are very difficult.

Even for a toy model of a SN, with a black body emission at the neutrino
sphere Rν = 10 km, and a matter profile as in Fig. 4.3, a proper simulation is
very challenging. We must resort to simplifications.

4.3 Single-angle approximation

The easiest way to get a grasp of the effects a SN neutrino flux can suffer is
to neglect the multi-angle nature of the problem. Of course, far from being
realistic, this simplification overlooks a very important effect of kinematical
decoherence due to different trajectories in both vacuum and matter terms,
but it offers a clean playground to study the effects of various terms in the
equations of motion. It also preserves the energy structure of the spectra, the
only thing detectable on Earth.3

3 Seen from Earth, a supernova is a point-like object, so no angular resolution is ever
possible.
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The main idea is to assume an angular mode representative for all. For a
black body emission, in which all of the angular modes are equally occupied,
it is natural to take neutrinos emitted at ϑR = 45◦ (u0 = 0.5) as the repre-
sentative ones. In this case, there is no integration over u and all the radial
velocities appearing in the equation are set to

v =

√
1− R2

2r2
. (4.21)

The angular dependence in the self-interaction term simplifies to

1

vu0,rvu0,r

− 1→ R2

2r2

1

1− R2

2r2

, (4.22)

making it depend only on the difference of the total polarization vectors

µr (Pr −Pr)×Pp,r . (4.23)

Here we have introduced the radial dependent neutrino self-interaction
strength µ as

µr =
√

2GF
F (ν̄e)− F (ν̄x)

4πR2

R4

2r4

1

1− R2

2r2

. (4.24)

For large distances from the core, it scales as ∝ R4/2r4.4 The equations of
motion for polarization vectors can now be written in a concise form

∂rPp,r =
[
+ωpB + λL + µr (Pr −Pr)

]
×Pp,r

∂rPp,r =
[
−ωpB + λL + µr (Pr −Pr)

]
×Pp,r (4.25)

4.3.1 Self-interaction suppression in supernovae

The self-maintaining coherence of bipolar oscillations plays very important
role in the SN neutrino physics. Contrary to the case exposed in Sec. 1.5.2, in
the SN environment, neutrino–self-interaction strength scales as r−4, so the
behavior is somewhat different. Unlike the exact periodic motion as in Fig. 1.4,

4Some authors [Duan 2006, Fogli 2007] prefer to reduce the equations to a single-angle by
assuming all the angular modes behave as the radial one. In this case, one writes equations
only for u = 0, but does not neglect the other angular modes. Instead, the integration over
angles in Eq. 4.20 is actually performed to obtain somewhat different radial dependence of
(1−

√
1−R2/r2)2. At large radii, this “averaged angle” approximation scales as ∝ R4/4r4,

i.e. is weaker than the strict single-angle approach by a factor of two. In comparing with
the multi-angle simulations, it turns out that the single-angle grasps better the relevant
effects.
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Figure 4.5: Left Panel: Pz for νe and νe in a toy supernova model (in-
verted hierarchy, mixing angle θ = 0.02, single frequency ω = 0.3 km−1,
µ = 0.3 × 105 km−1(R/r)4 and the radius of the neutrinosphere R = 10 km)
with symmetric initial conditions (ε = 0). Right Panel: Zoom in the region
close to neutrinosphere in the left panel (thick blue curve). The thick red line
shows the evolution of the flavor content in the presence of the small asym-
metry ε = 0.01. Thin blue lines correspond to various intermediate values
ε ∈ {0.001, 0.002, . . . , 0.009}.

this case shows an evident decline of upper envelope of survival probability
(Fig. 4.5 left panel). In the pendulum analogy, this effect is easy to understand:
At the neutrinosphere, the system begins with the usual bipolar oscillations.
As the pendulum oscillates, we adiabatically increase its moment of inertia
µ−1 (µ decreases with radius), so at each swing, the pendulum does not have
enough energy to reach to the previous height. In the end it settles in the
position performing just harmonic oscillations around the direction B.

However, the situations complicates in the presence of a non-vanishing
neutrino asymmetry ε. If the asymmetry is large enough, the non-vanishing
initial value of the total polarization vector (P−P), multiplied by µ can make
the self-interaction term high enough to completely suppress any evolution.
The right panel of Figure 4.5 shows that: Prominent bipolar oscillations which
reach almost complete conversions are very sensitive to even small values of
asymmetry. The change in behavior is noticeable even for the asymmetry of a
few thousandths. In this example the value ε = 0.01 is enough to block flavor
conversions, sticking all of the polarization vectors to one. Of course, as µ
decreases, at some on-set radius it is not strong enough to hold the polarization
vectors together and the bipolar oscillation start after all. So, interestingly,
in the presence of asymmetry, bipolar oscillations are not associated with the
limit of infinite self-interaction, but rather with the intermediate values.

In the single-angle approximation, a constant matter potential in Eq. 4.25
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acts equally to all modes, so it has no physical effects. It can be made explicit
by switching to a frame of reference that rotates around B with a frequency
λ (see Sec. 1.4). This fast rotation around one direction then stabilizes the
pendulum. However, the effect is just in the logarithmic delay of the onset
radius of the bipolar phase. The same logarithmic dependence is observed
with the decrease of the mixing angle, so the matter effect in the single-angle
simulations can be mimicked by and artificially small mixing angle.

4.3.2 Spectral swaps

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

energy HMeVL

fl
ux

Ha.u
.L

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

energy HMeVL

fl
ux

Ha.u
.L

0 10 20 30 40 50 60
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

energy HMeVL

Pz
0

0 10 20 30 40 50 60
-0.4

-0.2

0.0

0.2

0.4

energy HMeVL

Pz
f

Figure 4.6: Top: Final spectra of neutrinos (top left) and antineutrinos
(top right panel) superimposed on merely visible non-oscillated initial spectra
(dashed lines). Blue curves are for electron and red curves for other flavor.
Bottom: Initial (left) and final (right) spectra of the z component of the
polarization vectors. Blue points represent P i

z (blue points) and red points
P
i

z.

In a complex system with multiple number of modes, a typical outcome
of a simulation is with some of the polarization vectors pointing down and
some of them pointing up.5 This shows up in the spectra as a spectral swap,

5Let me remind that the notion on what is vertical is determined by the mass-direction
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probably the most peculiar phenomena observed in the physics of neutrinos
streaming from a supernova — a part or a complete spectrum is swapped
between neutrino species. In Figure 4.6 an example of spectral swaps is shown.
We start with the equal luminosities and Fermi-Dirac spectra for all species,
but different mean energies (Eνe = 10, Eν̄e = 15 and Eνx = 24 MeV), and we
evolve it through potentials from Fig. 4.3. After the collective oscillations, the
spectrum of neutrinos is the same as the original one until some energy Esplit,
and after that it is as the spectra of the other flavor. IN the antineutrino
sector we have a almost complete swap.

In Figure 4.7 we see that the evolution of the individual polarization vectors
is qualitatively the same. At first, until ∼ 60 km, very large asymmetry
ε = 1.33, typical for the cooling phase, in combination with high µ makes
all the polarization vector precess with the same very high frequency, keeping
them aligned and basically stuck together. The matter term in that region
is also very high making the effective mixing angle very small, so that the
synchronized oscillations have such a small amplitude that they are not even
visible. After the matter term has dropped to some intermediate values, the
common polarization vector, formed during the synchronization phase, begins
to fall down and to perform bipolar oscillations. The decrease of µ makes the
oscillations loose their amplitude and eventually die out and the polarization
vectors are driven to their final positions. We are left with almost a complete
swap in the antineutrino sector and a partial in the neutrino sector — the
polarization vectors below the split energy are driven back to their initial
position pointing upwards.

Qualitatively, we would not actually expect a complete conversion in both
neutrino and antineutrino sectors: The initial conditions in supernova dictate
the larger number of neutrinos than antineutrinos and the same number of
other species, so if all the antineutrinos swapped, conservation of the net
lepton number [Fogli 2007]∫ ∞

Esplit

dE(F νe
E,R − F

νx
E,R) =

∫ ∞
0

dE(F ν̄e
E,R − F

νx
E,R) (4.26)

prevents the same thing happening to neutrinos. For the example, from
Eq. 4.26 the splitting energy if found to be Esplit ' 7 MeV in a good agreement
with observed situation. These heuristic arguments, of course, do not explain
the dynamics of the system that allowed it to reach this state neither why
the conversions in the antineutrino sector are almost complete. In fact, it can
be shown that the formation of spectral splits is a general property of spec-
tra with crossings and that in the limit of perfect adiabaticity, antineutrinos

B.
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always manifest complete flavor conversions. Any deviation from a complete
swap in the antineutrino sector is related with the presence of matter terms
and the µ radial slope [Fogli 2008].
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Figure 4.7: Radial evolution of P i
z normalized to initial value for particular

energies in the single-angle approximation (top panel) and in multi angle case
(bottom panel) Synchronised, bipolar and the phase in which the spectral
split is formed are clearly visible.

4.4 Multi-angle treatment

Incorporating the multi-angle nature of the problem in the simulations re-
quires codes with more powerful integrators wit greater CPU-time demands.
The presence of matter in multi-angle treatment is not as trivial as in the
single-angle case — the matter term depends on the angle and introduces
new source of kinematical decoherence, just as the vacuum term in previous
considerations. Of course, also here the vacuum term leads to kinematical
decoherence — it is different for each angle and p mode, but typically λ� ω,
so the decoherence due to the vacuum term can be neglected. Physically, it
amounts to different angular modes arriving at the same radius had follow
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different trajectories and acquiring different phases in the precession. So, if
there was not for their internal interaction keeping them fixed one to another,
they would quickly decohere. How quickly, of course, depends on the value
of λ. Moreover, λ has the maximum at the same place as µ, close to neu-
trinosphere, so the interplay between these two effects must be treated with
great care.

For the supernova spectra and the matter profile from the previous con-
siderations (Fig. 4.6), a proper treatment of the angular modes does not yield
in different final spectra [Fogli 2007]. Kinematical decoherence is noticeable
only in the evolution of the individual polarization vectors (Fig. 4.7 bottom
panel). For sufficiently large asymmetry, the radial variation of different an-
gular modes is collective and they behave as if they were all emitted with the
same angle relative to the radial direction. These conclusions are not analiti-
cally understood but are consistently observed in numerical simulations.

In general, the decoherence among different angular modes does occur and
leads to different results with respect to the single-angle study. In fact it is
self-accelerating if the asymmetry ε is very small and the matter densities are
very high, such as during the accretion phase of the SN explosion.

In practice, the number of angular bins necessary to have a stable solution
and extract any conclusion depends highly on the value of matter terms and
the asymmetry, ranging from 60 (for the toy case described – moderate matter
densities and large asymmetry) to O(103), for simulations of fluxes from a SN
in accretion phase with high λ and small ε. This is the main problem in
simulations of SN fluxes: We expect the highest neutrino signal during the
accretion phase, exactly when the simulations are most difficult — the matter
density can largely surpass the neutrino density and the neutrino asymmetry
has the smallest values (see Fig. 4.8).
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Figure 4.8: Time evolution of neutrinos fluxes and the asymmetry dur-
ing the accretion phase, for a 10.8M� model [Fischer 2010]. Adapted
from [Chakraborty 2011].
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Due to numerical difficulties, it is customary to reduce the energy modes
to one, keeping the angular structure. The usual choice of a representative
energy is 15 MeV, corresponding to a frequency ω ' 0.4 km−1. It is not
essential since the main purpose is to determine if the dense matter affects
the collective conversions.



Chapter 5

Flavor stability analysis for
neutrinos streaming from a

supernova

The neutrino-neutrino interactions make the neutrino flux evolution close to
a supernova (SN) core numerically very challenging and are able even to com-
pletely swap spectra of different flavors [Dasgupta 2009]. It has been shown
that the multi-angle matter effects can suppress the flavor evolution during
the accretion phase when the matter density is higher or comparable to neu-
trino densities [Esteban-Pretel 2008a]. However, during this phase the inter-
play between neutrino collective effects and (ordinary) matter effects is most
delicate and we are forced to make various simplifications of the problem
(single-angle, single-energy, semi-isotropic radiation etc.). However, recent
linearized stability analysis (LSA) of the flavor evolution equations, developed
in Ref. [Banerjee 2011], allows for the first time the full analytic treatment of
the problem, without the need for any of the mentioned simplifications.

5.1 Stability analysis

5.1.1 Linearized equation of motion

The equations of motion for the flux matrices J and J, derived in the previous
Chapter, are driven by the Hamiltonian in Eq. 4.15. However, instead of
writing down two equations for neutrinos and antineutrinos with the change in
sign of vacuum frequency, it is sometimes useful to think of antineutrinos in the
Dirac hole picture and represent them through negative occupation numbers
for (differential) flux matrices JE,u,r for negative energies. This sign convention
simplifies the formalism and allows one never to distinguish between neutrinos
and antineutrinos. The Hamiltonian driving the system now is written more
concisely

Hp,u,r =
M2

2p
v−1
u,r + λL v−1

u,r +

√
2GF

4πr2

∫
du′
∫

dq

(
1

vu,rvu′,r
− 1

)
Jq,u′,r . (5.1)
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The vacuum oscillations are described by the vacuum frequency matrix

M2

2p
= ±ω

2

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
, (5.2)

background matter through the matrix λL = diag(λ, 0) and vu,r is the radial
projection of neutrino velocity at the radius r. The upper sign refers to the
inverted hierarchy and the lower to normal. If not explicitly stated, only
the inverted hierarchy will be considered, but we should keep in mind that
going back to normal hierarchy requires just a switch ω → −ω. As before, the
angular dependence is labeled with u = sin2 ϑR = (1−cos2 ϑr) r

2/R2, where R
is the radius of the neutrinosphere. Henceforth we drop the explicit subscript
r to denote the r-dependence of all quantities.

Instead of polarization vectors, matrix formalism is more apt for this chap-
ter. Useful quantity to describe the flavor content is the swapping matrix S,
defined through

Jp,u =
Tr Jp,u

2
+
F e
p,u,R − F x

p,u,R

2
Sp,u , (5.3)

where F e,x,R
p,u are differential flavor fluxes at the inner boundary radius R. For

positive energies p > 0, F e,x ≡ F νe,νx , while for negative energies p < 0,
F e,x ≡ −F ν̄e,νx .

Normalization of the swapping matrix is chosen so that at the boundary
radius, where neutrinos are emitted, it has only diagonal entries

Sp,u ≡
(
sp,u Sp,u
S∗p,u −sp,u

)
=

(
1 0

0 −1

)
, (5.4)

i.e. initial condition in terms of the swapping matrix reduce to s = 1, S = 0.
As always, the flux summed over all flavors, Tr Jp,u = F e

p,u + F x
p,u, is

conserved in our free-streaming limit and does not contain any information
relevant for physics, which is contained only in the trace-free part of the
Hamiltonian. The vacuum term defined as in Eq. 5.2 is already traceless,
the background medium term reduces to λL −Tr−−−→ λ

2
diag(+1,−1) and the

self-interaction can be written as
√

2GF

4πr2

∫ ∫
· · · Jq,u′,r

−Tr−−−→
√

2GF

4πr2

∫ ∫
· · ·

F e
q,u′,R − F x

q,u′,R

2
Sq,u′,r

= µR
R2

2r2

∫ ∫
· · · gq,u′ Sq,u′,r . (5.5)

The parameter µR is defined as

µR =
√

2GF
F ν̄e
R − F

νx
R

4πR4
, (5.6)
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while gp,u is the flavor difference spectrum

gp,u =
F νe
p,u,R − F

νx
p,u,R

F ν̄e
R − F

νx
R

for E > 0 , and

gp,u =
F ν̄e
p,u,R − F νx

p,u,R

F ν̄e
R − F

νx
R

for E > 0 . (5.7)

It is adimensional (up to integration) with the normalization in antineutrino
sector ∫ 0

−∞
dE

∫ 1

0

du gp,u =
−F ν̄e

R − (−F νx
R )

F ν̄e
R − F

νx
R

= −1 . (5.8)

The integration of gp,u over both neutrinos and antineutrinos gives the asym-
metry of the spectra∫ ∞

−∞
dE

∫ 1

0

du gp,u = −1 +
F νe
R − F

νx
R

F ν̄e
R − F

νx
R

= ε . (5.9)

For the purpose of discussing analytical aspects of the problem, it is more
convenient to label the energy modes by their vacuum frequency ω =

|∆m2
31|

2E
=

5.96 km−1
(

MeV
E

)
. The equations essentially do not change except for the

Jacobian of the integration in the ν–ν term which can be incorporated in the
g-spectrum. The region around ω = 0 corresponds to high-E tail and the
high-ω tails fall off as ω−4 (see Fig. 5.1). The overall normalization is still
fixed by

∫ 0

−∞ dω
∫ 1

0
du gω,u = −1.
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Figure 5.1: An example of the gω-spectrum for Fermi-Dirac (anti)neutrinos
in the absence of other flavor. Temperature T = 10 MeV and degeneracy
parameter ξ = 0.1, corresponding to the asymmetry ε = 0.2.
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The equation of motion for the swap matrix is now i∂rSω,u = [Hω,u, Sω,u],
or explicitly

i∂rsω,u = Hω,uS
∗
ω,u −H∗ω,uSω,u

i∂rSω,u = 2 (Sω,uhω,u −Hω,usω,u) (5.10)

with the Hamiltonian

Hω,u ≡
(
hω,u Hω,u

H∗ω,u −hω,u

)
, (5.11)

where the elements of the Hamiltonian are

hω,u = µR
R2

2r2

∫
dω′

∫
du′
(

1

vuvu′
− 1

)
gω′,u′ sω′,u′ +

(
ω

2
cos 2θ +

λ

2

)
1

vu
,

Hω,u = µR
R2

2r2

∫
dω′

∫
du′
(

1

vuvu′
− 1

)
gω′,u′ Sω′,u′ +

ω

2
sin 2θ

1

vu
(5.12)

As a next step towards linearized equations suitable for linear analysis, we
expand the radial velocity from Eq. 4.8 for large distance from the source

vr = 1 +
u

2

R2

r2
, (5.13)

where bimodal oscillations actually begin. We are interested in small-
amplitude limit of the Equations 5.10, so we set s = 1. The vacuum mixing
angle is small, so it is safe to put cos 2θ = 1. Since λ� ω we can also neglect
a small radius-dependent spread of frequencies ω (1 + uR2/2r2) ' ω. These
approximations significantly simplify the elements of the Hamiltonian matrix

hω,u = µ

∫
dω′

∫
du′

u+ u′

2
gω′,u′ +

ω + λ

2

(
1 +

u

2

R2

r2

)
,

Hω,u = µ

∫
dω′

∫
du′

u+ u′

2
gω′,u′Sω′,u′ , (5.14)

where the usual definition of neutrino self-interaction is used

µ = µR
R4

2r4
. (5.15)

The differential equation for Sω,u now has terms common for all modes,
Sω,uλ and Sω,u

∫
dω′

∫
du′u′ gω′,u′Sω′,u′ . Such terms engender only pure preces-

sion same for all modes and are of no interest, so we can safely drop them out.
There is also a term proportional to the overall integration of the g-spectrum,
already defined as the asymmetry ε.
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Finally, we arrive to the equation for Sω,u

i∂rSω,u = [ω + u(λ+ εµ)]Sω,u − µ
∫
du′ dω′ (u+ u′) gω′u′ Sω′,u′ , (5.16)

where the matter potential is redefined to incorporate also the imprint of the
multiangle effects

λ := λ
R2

2r2
=
√

2GF(ne − nē)
R2

2r2
. (5.17)

So defined, the background matter potential scales as 1/r∼4, just as µ (the
additional two powers are from the usual matter density profiles ne ∝ 1/r∼2).
This is the linearized form of the general equations of motion and provides
the starting point for the stability analysis.

Let me now just summarize the crucial elements of the analysis performed.
Besides the small-amplitude approximation |Sω,u| � 1, we have taken the
neutrinos to be far from the neutrino sphere, (R/r)2 � 1, yet before the
MSW resonance region, so that the ordinary matter effect is large and the
effective mixing angle in matter is small (cos θ = 1). A proper treatment
for non-zero mixing angle actually provides the initial disturbance to kick-
start exponentially growing modes. Here, however, we do not ask how the
instability gets started, but only discuss the existence of the exponentially
growing modes.

5.1.2 Eigenvalue equation

For the purpose of stability analysis, the question is whether the small quantity
Sω,u does manifest exponential growth with radius. To investigate it, we write
the solution of the linear differential equation 5.16 in the form

Sω,u = Qω,u e
−iΩr (5.18)

where the eigenvector Qω,u and the frequency Ω are in general complex num-
bers. A purely real Ω would correspond to a pure precession mode, and a
possible imaginary part would imply an exponential growth. This ansatz
leads to the eigenvalue equation for Qω,u [Banerjee 2011],

(ω + uλ̄− Ω)Qω,u = µ

∫
du′ dω′ (u+ u′) gω′u′ Qω′,u′ , (5.19)

where λ̄ ≡ λ+ εµ. Implicitly, Qω,u carries also a label Ω, because for every Ω,
in general exist a different Qω,u.

Note that if (Qω,u,Ω) satisfy the eigenvalue equation 5.19, so do their
complex conjugates (Q∗ω,u,Ω

∗). Therefore, for each complex solution Ω = γ+iκ
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there exist another solution Ω = γ−iκ. A positive imaginary part corresponds
to exponential growth and a negative one to exponential decay toward the
asymptotic solution Sω,u = 0. Since they always appear in pairs it is enough
to determine one.

The right-hand side of the Eq. 5.19 is of the form a+ bu, so we can search
for a solution of the form

Qω,u =
a+ bu

ω + uλ̄− Ω
, (5.20)

with a and b complex numbers that in general do not depend on either ω or
u. Inserting this ansatz in the eigenvalue equation provides

a+ bu = µ

∫
du′ dω′ gω′,u′

(u+ u′)(a+ b u′)

ω′ + u′λ̄− Ω
. (5.21)

The structure of this equation is more transparent if we define the integrals

In =

∫
du dω gω,u

un

ω + uλ̄− Ω
. (5.22)

Then our eigenvalue equation becomes

a+ bu = µ
[
(aI1 + bI2) + (aI0 + bI1)u

]
. (5.23)

This equation is supposed to be satisfied for every u, so we need to match the
coefficients of the linear u polynomial on both sides separately. We can then
write this in matrix form

µ−1

(
a

b

)
=

(
I1 I2

I0 I1

)(
a

b

)
. (5.24)

This has the form of an eigenvalue equation for a 2 × 2 matrix and so the
nontrivial solutions exist if

det

[(
I1 I2

I0 I1

)
− µ−1

]
= 0 (5.25)

or explicitly
(I1 − µ−1)2 = I0I2 . (5.26)

This equation is the basis of the stability analysis of the neutrino flux stream-
ing from a supernova.

To summarize, the necessary ingredients for the stability analysis are:

(i) the adimensional gω,u-spectrum going in the integrals in Eq. 5.22 and
whose total integrals gives the asymmetry ε,
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(ii) absolute values of the neutrino fluxes F ν̄e
R and F νx

R at the neutrino sphere,
for the definition of µR and later µ (Eqs. 5.15 and 5.6), and

(iii) the matter density profile ne(r), which goes into definition of matter
potential λ (Eq. 5.17).

Of course, the first two ingredients are degenerate with having distributions
for all three species F νe

R , F ν̄e
R and F νx

R .

Normal hierarchy

Turning to the normal hierarchy case corresponds to the change ω → −ω
in Eq. 5.16 to obtain and equation for the off-diagonal elements of the swap
matrix S̃ω,u in the normal hierarchy

i∂rS̃ω,u = [−ω + u(λ+ εµ)] S̃ω,u − µ
∫
du′ dω′ (u+ u′) gω′u′ S̃ω′,u′ , (5.27)

In terms of the solution Sω,u of Eq. 5.16, the solution of this equation is given
by

S̃ω,u(µ, λ, gω,u) = S∗ω,u(µ,−λ,−gω,u) = S∗ω,u(−µ,−λ, gω,u) . (5.28)

Since S and S∗ should have the same stability behavior, this implies that the
stability conditions for normal hierarchy are the same as those for the inverted
hierarchy with a change in the sign of gω,u or µ and the additional change in
the sign of λ.

5.2 Comparison with simulations

5.2.1 Schematic spectra

To completely appreciate the linearized flavor-stability analysis exposed in
the previous section, it was necessary to confront it with numerical sim-
ulations. For this, we have chosen the analysis of the flavor conversion
during the accretion phase of a supernova performed by Chakraborty et
al. [Chakraborty 2011]. Although they have assumed a schematic model with
semi-isotropic and monochromatic spectra (ω0 = 0.4 km−1), these simulations
are numerically very demanding because of high neutrino fluxes which con-
tribute to the stiffness and unreliability of the system and even higher matter
densities which are supposed to suppress any flavor evolution.

They have performed numerical simulation of the neutrino flavor evolution
for the 10.8M� model at various post bounce times (Fig. 4.8) and found
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that partial flavor conversions do occur after all, but in a small time-window
200 ms . tpb . 300 ms.

From the point of view of the stability analysis, gω,u spectrum has a very
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Figure 5.2: Survival probability for electron antineutrinos as a function of
radius for different snapshots of a 10.8M� model from Fig. 4.8 [Fischer 2010].
Red dashed lines are results of evolution without matter. Figure adopted
from [Chakraborty 2011].
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Figure 5.3: Contours of κ and the trajectory of SN (thick red line) at t =

300 ms (left) and 400 ms (right) post bounce for a 10.8M� model discussed
in Ref. [Chakraborty 2011].
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simple form

gω,u = −δ(ω + ω0) + (1 + ε) δ(ω − ω0) (5.29)

and the integrals In can be solved analytically. Then it is straightforward to
find a combination (γ, κ) for each pair (µ, λ). This is exactly what we did
for each of the snapshots in Fig. 5.2 — we have basically scanned the plane
(µ, λ) in search of the solution with κ 6= 0 Figure 5.3 summarize the results
of our scan for two representative snapshots at t = 300 ms and t = 400 ms
post bounce, where we plot the isocontrours of κ in the (µ, λ)-plane. In the
same plane, we then draw a parametric curve (µ(r), λ(r)) a supernova actually
follows, so called trajectory. Basically, since the radial dependence of µ is a
pure power law, the trajectory can be plotted vs. r as well. Note that high
λ and high µ region in the upper left corner of the plot is close to the proto-
neutron star.

The scale of the system is set by its mean vacuum frequency, usually of
O(0.1), so the instability region could be defined as κ ' 0.1. If the trajectory
of the supernova enters the instability region, exponentially growing modes
exist, and the flavor conversion do occur. Of course, being a linearized and
approximate, the flavor stability analysis cannot answer the question of the
final state of the system, but rather only if anything happens at all.

Using the linearized stability analysis we obtain [Sarikas 2011a] the same
results as from the simulations [Chakraborty 2011]: when their spectra are
stable, the SN trajectory does not cross the instability region, and for snap-
shots where they see partial flavor conversion we see trajectory of the SN
entering the instability region far from the neutrinosphere; we even find the
exact onset radius at which it happens! Figure 5.3 shows the region where
κ 6= 0 solutions exist together with its isocontours and the trajectory of the
supernova in (µ, λ) plane.

5.2.2 Two instability crossings

We find interesting a possibility of two instability crossings if the supernova
is following the path λ ∼ 0.4µ. In that case it would cross twice the IR. We
run few simulations that confirmed this scenario.

The outcome of one of them is shown in Fig. 5.4. Again we find the
same type and quality of agreement as when comparing with the simulations
[Chakraborty 2011]. When κ > 0, the off-diagonal element of the swap matrix
|S| oscillates and grows exponentially and the system is unstable, while for
κ = 0, it just oscillates periodically, i.e. system is stable.
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Figure 5.4: Instability parameter κ and the off-diagonal element of the swap
matrix |S| as a function of radius for a toy model with two instability crossings
(semi-isotropic emission at R = 10 km, µr = 7× 104 km−1 R4

2r4 , λr = 0.43µr).

5.3 Application to multi-energy spectra

Excited by the power the stability analysis showed confronted with simula-
tions, in Ref [Sarikas 2011b], we have tried to apply it to the realistic super-
nova spectra, without any simplifications and to exploit the potential of the
method in its fullness.

5.3.1 Realistic accretion-phase spectra

We have obtained spectra from a spherically symmetric simulation of a su-
pernova evolved through the accretion phase performed by the Garching As-
trophysics Group [Hudepohl 2010], using a 15M� progenitor star. The ar-
tificial triggering of an explosion was not necessary because our interest is
limited to the accretion phase, but otherwise the SN model is comparable
to Ref. [Chakraborty 2011]. We have used several snapshots with the same
outcome and we illustrate our findings with one taken at 280 ms post bounce.

We have fitted the neutrino fluxes to analytic functions of E and u. Typi-
cally the fitted functions undershoot the data, but not more than 10% in total
luminosity. Considering the fact that only flux difference is important for the
stability analysis, our approach is justified.

Figure 5.5 shows the spectra in energy and the u variable. A νe excess from
deleptonization is evident and we have a ν̄e flux almost twice that of νx. The
average energies for νe, ν̄e and νx are 15.3, 18.1, and 16.9 MeV respectively.
To define u we had to choose the base radius R, usually referred as the radius
of neutrino-sphere. In reality, the definition of a neutrino-sphere as a sphere
of radius at which the optical depth of a neutrino ray equals 2/3 is not good
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Figure 5.5: Flux spectra for our 280 ms SN model. The angle variable 0 ≤
u ≤ 1 is based on R = 44.7 km.

enough for the purpose of studying the flux evolution. Moreover, the choice
of R is rather arbitrary, as long is chosen far enough that neutrinos are free-
streaming, but not before eventual flavor conversions. We choose R = 44.7 km
as the radius closest to the PNS after which neutrinos just free-stream and
the angular modes encompass most of the u range. Choosing it at even larger
distance would correspond to more radially peaked spectra.

In the right panel of Figure 5.5 we show the the corresponding angular
distributions. The deviation of the real spectra from the black body emission
is significant1. In fact, isotropic emission from a neutrino sphere is not a
good description because neutrino “last scattering surface” in the context of
supernovae is actually a thick layer (as it is in general also for the photons of
CMB). More energetic neutrinos are last scattered at larger distance than the
low energy ones and the effect is also different for different species. Electron
neutrinos emerge from a more broader region than the other flavors. That is
why the νx emission is more “peaked” in the radial direction with respect to
electron one [Raffelt 2001].

Moreover, the ν̄e and νx intensities are similar in the radial direction with
the excess ν̄e flux largely arising from its broader angular distribution (larger
emission region). Flavor oscillations depend on the difference of the e and
x distributions, which is small in the radial direction. Interestingly, then,
it turns out that the situation in the multi-angle analysis is more similar
to a single angle one because the modes which are affected the most are
concentrated around u ∼ 0.2. The angular distributions do not cross, although
in principle there could have been a forward νx excess.

The neutrino flux difference distribution g(ω, u) is shown in Fig. 5.6. It

1 One should keep in mind that the typical model prevailing in the SN neutrino com-
munity was the black-body emission with all u-modes equally populated.
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is negative for anti-neutrinos (ω < 0) because Fν̄e > Fν̄x . For ω ∼ 0.2 km−1

there is a spectral crossing as a function of u, i.e. for large E the νx flux does
exceed the νe flux in the forward direction.

Self-induced oscillations exchange the positive and negative parts of
g(ω, u), leaving fixed the overall flavor content ε = (Fνe−Fνx)/(Fν̄e−Fνx)−1 =∫
dω du g(ω, u). Our g(ω, u) is mostly negative for anti-neutrinos and mostly

positive for neutrinos, so collective oscillations largely correspond to pair con-
versions νeν̄e ↔ νxν̄x. Accretion-phase distributions are “single crossed” in
this sense, i.e. g(ω, u) changes sign essentially only on the line ω = 0, because
of the large excess of the νe and ν̄e fluxes. Significant multiple crossings are
typical for the cooling phase [Dasgupta 2009].

5.3.2 Results

Up to the MSW region, the matter effect is so large that the flux matrix JE,u
is very nearly diagonal in the weak-interaction basis, the usual approximation
made in SN neutrino transport. Neutrinos remain stuck in flavor eigenstates
unless the off-diagonal JE,u elements start growing by the self-induced in-
stability. To find the latter we linearize the EoM in the small off-diagonal
amplitudes.

Figure 5.6: Distribution g(ω, u) describing the neutrino fluxes. The numbers
denote the isocontours g(ω, u) = 0, and the maximal and minimal values
g(ω, u) = ±7. The integral over negative frequencies is normalized to −1.



5.4. Summary 85

Λ=0

Λ=100 km
-1

Λ=1000 km
-1

0 500 1000 1500 2000

0

1

2

3

Μ H km
-1
L

Κ
H
k
m
-

1
L

Figure 5.7: Growth rate κ for our SN model as a function of µ for various λ
values as indicated.

Figure 5.7 shows κ(µ) for different values of λ. It is evident that increasing
the matter potential, the κ > 0 region shifts toward larger µ values. The
notion of matter multi-angle suppresion now also gets more concrete – what
has used to be instable region, increased λ can make it stable again.

In Fig. 5.8 we show contours of κ in the (µ, λ) plane, just as in Fig.5.3. The
difference is that for realistic spectra the integrals 5.22 cannot be determined
analytically, but rather numerically. This affects significantly the CPU-time
demands for the analysis, but we are still well bellow the values a typical
simulation needs.

The findings are qualitativelly the same as in the previous section: for
large µ and λ values, the system is unstable for λ ∼ µ. In other words, if the
local neutrino number density is much smaller or much larger than the local
electron density, the system is stable.

We also show the locus of [µ(r), λ(r)] along the radial direction. Since
µ(r) ∝ r−4, the red solid line in Fig. 5.8 is essentially the SN density profile.
The step-like feature is the shock wave where the matter density drops by
about an order of magnitude. Without matter (λ = 0), neutrinos would enter
the instability strip at µ ∼ 100, corresponding to r ∼ 150 km. We find similar
results for all other snapshots at times 150, 400, 500 and 600 ms postbounce,
i.e., neutrinos do not encounter a self-induced instability.

5.4 Summary

In order to interpret correctly and non-ambiguously the neutrino signal from
a next galactic SN and to extract as much physics as possible from it, it is
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Figure 5.8: Contours for the growth rate κ in km−1. Also shown is the profile
for our 280 ms SN model. The vertical axis essentially denotes the density,
the horizontal axis the radius (µ ∝ r−4).

crucial to understand the evolution of neutrinos from the SN core to Earth
detectors. The inherent non-linearity of the flavor evolution close to the SN
core makes the problem very difficult to solve. That is why one usually resorts
to various simplifications and approximations – single-energy, single-angle,
semi-isotropic emission etc.

Linearized stability analysis [Banerjee 2011] makes it possible to treat the
problem for the first time analytically without the need for any special as-
sumptions. We have performed LSA for models from Ref. [Chakraborty 2011]
and compared the results with the outcome of the numerical simulations and
we have found a surprising level of agreement. We are able to predict whether
and when the instability occurs without significant computing power and/or
time. Of course, if we are interested in what happens after the instability has
developed and the final outcome of the flavor evolution, we have to go back
to simulations. Stability analysis can not answer those questions, but it can
help reduce the computing time for the simulations: instead of evolving from
an arbitrary radius (often deep inside the stability region), we can now run a
simulation directly from the point close to instability and save all the time it
would take to reach it in the first place.

We are now also able to perform the stability analysis of an arbitrary SN
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model. For an accretion-phase SN model and concomitant neutrino fluxes
with realistic energy and angle distributions, self-induced flavor conversions
do not occur. One should apply this method to a broader class of models to
see if our conclusion is generic. It also remains to extend a linearized analysis
to cases without cylindrical symmetry of the angular distribution in view of
Sawyer’s concerns about a significant multi-angle instability [Sawyer 2009]. In
realistic 3D models, the neutrino distribution is not cylindrically symmetric
and even if this were the case, in principle even a small fluctuation could
trigger a novel instability if it were to exist.

Recent experimental evidence suggests that the neutrino mixing angle θ13

is not very small [Fogli 2011], a point that should become clear with the on-
going round of reactor and long-baseline experiments. In this case one can
distinguish the neutrino mass hierarchy in a high-statistics SN neutrino sig-
nal by the presence or absence of Earth matter effects, but only if collective
oscillations do not exchange flavors before the MSW region. If the collective
flavor swap were fully operational, the mass hierarchy could be distinguished
for an extremely small value of θ13 where the MSW conversion is no longer
adiabatic [Dasgupta 2008]. If θ13 is “large” in this sense, the absence of col-
lective flavor oscillations during the SN accretion phase, if generic, is good
news.





Conclusions

During my Ph.D. training I have contributed to the understanding of some
cosmological and astrophysical aspects of neutrino physics. The central theme
in both fields is the nontrivial evolution of mixed neutrinos giving rise to effects
a priori not expected.

In the context of cosmology, I have worked in the Astroparticle physics
group of the Physics Department of the University of Naples and the Naples
section of the National Institute of Nuclear Physics (INFN). Together with
Dr. Sergio Pastor (Institute for Particle Physics – IFIC, Valencia), we have
examined the largest BBN-allowed asymmetries in the lepton sector. Electric
charge neutrality constrains the electron asymmetry to be the same as the
baryon asymmetry O(10−10), so virtually all the lepton asymmetry resides in
the neutrino sector. All three species of neutrinos affect the expansion rate at
the epoch of primordial nucleosynthesis, and electron flavor directly influences
the neutron–proton balance. That is why the primordial abundances of light
elements are sensitive to neutrino properties and it is possible to constrain
them with present-day observations. Our results offer the best constraints on
the initial and final lepton asymmetries, which depend on the value of the
mixing angle θ13. The values obtained are still orders of magnitude larger
than the baryon asymmetry.

Since we explicitly followed the neutrino distributions, we were also able to
put constraints on the maximal contribution of neutrinos to the total energy
density of the Universe at the epoch of BBN, usually expressed by the effec-
tive number of neutrinos Neff . This is important because the same parameter
can be obtained from other independent probes such as analysis of the cos-
mic microwave background. By the beginning of 2013, we expect the Planck
mission to publish the most precise measurement of Neff so far. Our results
on Neff will then be a clear guideline to whether or not the Planck value will
signal the presence of extra contributions to the energy density at the epoch
of BBN. A measurement larger then our constraint will be the first evidence
of a new particle beyond the Standard Model.

Among all astrophysical environments, core-collapse supernovae are most
important for the physics of neutrinos. The formation of a neutron star in the
center of the explosion necessarily involves the emission of a vast number of
neutrinos, which carry away the lepton number. For a typical supernova at a
typical galactic distance of ∼10 kpc, existing neutrino detectors on Earth can
see a high-statistics signal. The next such event will help us constrain many
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of the still-unknown properties of neutrinos and may definitely answer some
of the hot questions in neutrino physics. It will also provide a unique insight
into the dynamics of the most energetic phenomena in the Universe, which
are not yet completely understood by modern physics.

To properly understand the signal, we must account for all the effects neu-
trinos experience on their way from the supernova core to our detectors. To
this end we perform numerical simulations. Very often, however, the CPU-
time demands are so high, that we are led to various simplifications and ap-
proximations whose justification is sometimes arguable. Under the supervision
of Prof. Georg Raffelt at the Max Planck Institute for Physics in Munich, I
set out to understand the evolution of neutrinos from a supernova during the
accretion phase, when the measured signal would also have its peak. This
means that we must deal simultaneously with the high density of neutrinos
themselves and the high density of the accreted matter.

We chose to work with realistic spectra obtained from a simulation per-
formed by the core-collapse supernovae group of the Max Planck Institute
for Astrophysics in Garching. The answer one expects only on the basis of
qualitative estimates was virtually impossible to confirm through numerical
simulations. It turned out that it is obtained much easier, if we analyze the
problem from the stability point of view. We have proved that no neutrino fla-
vor conversions happen in the region close enough to influence the simulations
of supernovae, hence confirming their consistency. Our result also provided a
definite answer on precisely what effects should be taken into account when
interpreting the next supernova neutrino signal.

The equations of neutrino oscillations at high densities are the same for
both the early Universe and supernovae. It is therefore interesting to note
how the same underlying physics leaves different imprint in them. We have
seen that we always have a first phase of the evolution in which the two re-
fractive terms — of the ordinary matter and of other neutrinos — suppress
the evolution so the system is virtually static. In the early Universe we then
go inevitably through the epoch of flavor conversions and the presence of col-
lisions. Their effectiveness is the reason why we speak about the degree of
equilibration between different species and their impact on observables such as
Neff . On the other hand, in a supernova we have to pay attention to the deli-
cate interplay between matter suppression and the neutrino self-interaction to
understand if the evolution remains trivial or not. In the latter case, the non-
homogeneity of the system is to blame for a possible development of spectral
swaps, the interesting features in general very difficult to predict. Whether or
not these effects happen and their possible impact on the observables to be
measured in the near future was the main focus of my activity.
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The ongoing experiments and observations promise a fruitful next few
years. We expect reactor neutrino experiments (Double Chooz, Reno and
Daya Bay) will determine the nonzero value of θ13 beyond a reasonable doubt
on a year timescale, opening a path to determine the value of the CP-violating
phase. Likewise, the Planck collaboration is scheduled to publish analysis of
the cosmic microwave background with the highest precision ever. Within a
few years, β-decay experiments, such as KATRIN, will reach a level of sensi-
tivity on the absolute neutrino mass comparable to the cosmological bounds.
The results of these efforts and possible surprises (a nearby supernova) will en-
sure the significant role of neutrinos in our understanding of the Universe. In
the absence of new physics from the LHC, neutrino physics offers the strongest
link between physics on the microscale and on the largest scales observable.
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Neutrino Oscillations at High Densities:
Cosmological and Astrophysical Aspects

Abstract:
This doctoral thesis treats the effects of neutrino oscillations in the early

universe and supernovae. The main probe for the context of the early uni-
verse is big bang nucleosynthesis (BBN). I explain the general link between
neutrinos and BBN with an emphasis on the degeneracy between neutrino
asymmetry and extra degrees of freedom. I show how the degenerate effects
of both oscillations and collisions lead to observables detectable in the near fu-
ture that brake this degeneracy and draw bounds on neutrino asymmetry and
their contribution to the energy density of the universe in the current epoch.
Considering astrophysical aspects, I analyze the significance of a proper treat-
ment of neutrino evolution to understand the neutrino signal from the next
galactic supernova (SN). I show the type of effects collective neutrino conver-
sions can produce and the numerical difficulties confronted. Finally, I show
how that stability analysis can complement a numerical treatment and provide
definitive answers in some example cases.

Keywords: neutrinos, big bang nucleosynthesis, neutrino: supernova,
neutrino: asymmetry, neutrino: oscillations, lepton number, physics of the
early universe, primordial asymmetries, MSW effect, neutrino: mass hierarchy,
stability analysis
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