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1.INTRODUCTION 

 

1.1 Background 

 

Mitochondria are highly specialized organelles and major players in fundamental 

aspects of cell physiology. In eukaryotic cells, energy production is functionally 

coupled to metabolic demands and the cells efficiently adapt oxidative 

respiration in response to changes in extracellular microenvironment and 

metabolic nutrient availability.  

These organelles produce approximately 15 times more ATP from glucose than 

the glycolytic pathway in eukaryotic cells by coupling electron transport to the 

generation of proton gradients for oxidative phosphorylation. Cells of highly 

metabolic tissues such as muscle, liver and brain, are therefore particularly 

dependent on mitochondria. In particular, in the central nervous system 

mitochondria produce over 95% of ATP utilized by the brain (Erecinska and 

Silver, 1994) and within neurons they are distributed to regions of high metabolic 

demand, including synapses, nodes of Ranvier and myelination/ demyelination 

interfaces (Berthold et al., 1993; Bristow et al., 2002; Kageyama and Wong-

Riley, 1982; Rowland et al., 2000). The generation, processing and transmission 

of neural impulses rely heavily on sodium (Na+), potassium (K+) and calcium 
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(Ca2+) ion gradients across the plasma membrane. In fact, 50–60% of total brain 

ATP is used to maintain these gradients, especially through Na+/K+ pumps 

(Erecinska and Silver, 1994).  

In addition to the generation of cellular energy, mitochondria also play an 

important role in regulating calcium homeostasis (Babcock et al., 1997; Budd 

and Nicholls, 1996; Jouaville et al., 1995; Werth and Thayer, 1994) as well as in 

neuronal Ca2+ signaling. Indeed, calcium serves as a regulator of kinases, 

phosphatases, proteases, transcription factors and ion channels as well as an 

intracellular messenger for membrane excitability, exocytosis, vesicle trafficking, 

muscle contraction, cell proliferation, fertilization, metabolism, crosstalk between 

signaling pathways and apoptosis (Carafoli et al., 2001). Additionally, Ca2+-

sensitive dehydrogenases can regulate oxidative phosphorylation and ATP 

synthesis during times of high cellular demand (McCormack and Denton, 1980). 

Ca2+ uptake, sequestration and release by the endoplasmic reticulum (ER) and 

mitochondria – the two major Ca2+-regulating organelles – play essential roles in 

modulating and interpreting Ca2+ signals. 

In addition, mitochondrial calcium overload and subsequent dysfunction are 

thought to be critically important for triggering the cell death that follows 

ischemic and traumatic brain injury as well as in several neurodegenerative 

disorders including Alzheimer’s, Parkinson’s, Huntington’s diseases and 
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amyotrophic lateral sclerosis (ALS). Given above, it is really interesting to focus 

the attention on mitochondrial calcium handling, and on the role that it plays in 

bioenergetics, organelle communication, organelle dynamics and trafficking, cell 

death signaling, and other equally important aspects of cell signaling.  

 

 

Fig. 1: Mitochondrial dynamics. Modified from Hood et al., 2006 
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Moreover, in a typical mammalian cell mitochondria are dynamic organelles that 

populate the cytoplasm and undergo continual fusion and fission event. Indeed 

they fuse and divide, branch and fragment, swell and extend, exist in clusters 

and as individual entities. Importantly, they travel throughout the cell, from the 

cell body outwards (anterograde movement) and in the opposite direction 

(retrograde movement) to deliver ATP and other metabolites where they are 

most required. This is seen most strikingly in highly elongated cells such as 

neurons: mitochondria are enriched at presynaptic terminals at the ends of 

axons and at postsynaptic terminals at the ends of dendrites, where bioenergetic 

demand is particularly high.  

The inability of mitochondria to execute all these functions would be expected to 

disrupt cellular physiology and viability, and the degree of impairment likely 

corresponds to that cell’s requirements for having well-functioning mitochondria 

positioned in the right place at the right time. For these reasons, there is growing 

enthusiasm for the notion that defects in mitochondrial dynamics might play a 

pivotal role in the pathogenesis of neurodegenerative disorders and the 

consequences of dynamic changes in mitochondrial morphology under 

physiological and injurious conditions require many further study (Frank et al., 

2001; Rintoul et al., 2003; Szabadkai et al., 2004; Yu et al., 2006). 
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1.2 Mitochondria and calcium homeostasis 

 

Besides performing oxidative phosphorylation, mitochondria, are able to sense 

and shape calcium (Ca2+) transients, thus controlling cytosolic Ca2+signals and 

Ca2+-dependent proteins. Indeed, it has been well established for many years 

that mitochondria have a huge capacity to accumulate calcium. While the 

physiological significance of this pathway was hotly debated until relatively 

recently, it is now clear that the ability of mitochondria in calcium handling is an 

ubiquitous phenomenon described in every cell system in which the issue has 

been addressed. Therefore, mitochondria are now recognized as one of the 

main intracellular calcium storing organelles which play a key role the 

intracellular calcium signalling (Rizzuto et al., 2000). The maintenance of m, 

strictly dependent by the holding of mitochondrial Ca2+ and Na+ within a narrow 

range of concentrations, is an essential requirement for calcium accumulation 

into mitochondria (Murgia et al. 2009). This process has enormous functional 

consequences both for cell physiology and for pathophysiology. Indeed, the 

presence of high levels of Ca2+ inside to the mitochondrial matrix is necessary 

for the right functioning of mitochondrial enzymes (Nicholls et al., 2004). 

Nevertheless, when calcium concentration into the mitochondria overcomes its 

storage capability, as happens in pathological conditions such as in neuronal 



9 

 

anoxia, a subsequent increase in reactive oxygen species free radical 

production (ROS) occurs to face the rapid rise of [Ca2+]i. This results in a 

damage of the inner mitochondrial membrane and the oxidation of the proteins 

involved in the electron transport, in proton pumping and in ATP production 

(Dugan and Choi, 1994). A further consequence of the rise of mitochondrial 

[Ca2+]i is the increase of inner mitochondrial membrane permeability that leads 

to the opening of Mitochondrial Permeability Transition Pore (mPTP). This 

causes the release, from mitochondria to cytosol, of molecules potentially 

harmful for the cell such as cytocrome c, responsible for the impairment of 

cellular respiration and for induction of cell death (Atlante et al., 2003; Petrosillo 

et al., 2004), the apoptosis inducing factor (AIF), Smac/Diablo, and molecules 

with molecular weight lower than 15.000 daltons. As consequence of these 

events mitochondrial membrane permeability and ATP production are 

irreversibly affected, the mitochondrial capability to regulate intracellular calcium 

concentration in response to stress stimuli is impaired (Kroemer et al., 1998; 

Bernardi et al., 2001) and cells are committed to die. 

These diverse Ca2+-mediated processes, which occur over the course of 

microseconds to hours, are highly dependent on the spatiotemporal distribution 

of [Ca2+]i (Berridge et al., 2000; Berridge et al., 2003). Microdomains of high 

[Ca2+]i have been identified near Ca2+ channels on the plasma membrane and 
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endoplasmic reticulum (ER) (Brini et al., 1995). Mitochondria play an important 

role in regulating [Ca2+]i, in concert with the sarco-endoplasmic reticulum Ca2+-

ATPase, the plasma membrane Ca2+-ATPase and Na+/Ca2+ exchanger (Saris 

and Carafoli, 2005). In particular, mitochondrial Ca2+ uptake becomes relevant 

for the cells when [Ca2+]i reach concentration of 400–500 nM (Nicholls and 

Scott, 1980).  

The ionic homeostasis of mitochondria is largely maintained by mechanisms 

regulating the efflux or the influx of Ca2+ (Figure.2).  

 

Fig. 2: Mechanisms that regulate mitochondrial calcium homeostasis.  

 

Precisely, mitochondrial calcium uptake is primarily driven by the 

electrochemical potential gradient established by the mitochondrial membrane 
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potential and by a relatively low [Ca2+]m. Ca2+ is taken up through the 

mitochondrial inner membrane (IMM) by a uniporter (MCU) whose molecular 

identity has been recently demonstrated. In 2010, Palmer and Mootha reported 

that a new mitochondrial EF hand protein MICU1 (mitochondrial calcium uptake 

1) was required for high capacity mitochondrial calcium uptake, and proposed 

that MICU acts as a calcium sensor that controls the entry of calcium across the 

uniporter (Perocchi et al., 2010). Building up on this discovery, two groups 

simultaneously identified the mitochondrial calcium uniporter in June 2011 (De 

Stefani et al., 2011; Baughman et al., 2011). First, using in silico analysis 

combined with phylogenetic profiling and analysis of RNA and protein co-

expressed with MICU1, the group of Mootha isolated a novel protein that co-

immunoprecipitated with the exogenously expressed MICU1. Then, using the 

same database, the group of Rizzuto independently identified the same protein. 

Functional analysis confirmed that this protein behaves as expected for the 

mitochondrial uniporter, and it was therefore assigned the defining name of 

MCU. This purified MCU protein is a 40 kDa protein containing two 

transmembrane domains localized in the inner membrane which markedly 

enhances mitochondrial Ca2+ uptake into the mitochondrial matrix, driven by an 

electrochemical potential gradient across the inner mitochondrial membrane, 
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usually estimated at -200,-180 mV, and generated either by the respiratory chain 

activity and by ATP hydrolysis (De Stefani et al., 2011; Gouriou et al., 2011).  

The very steep voltage sensitivity of mitochondrial calcium import (Kapus et al., 

1991) has interesting functional implications since, even modest mitochondrial 

depolarisation could profoundly affect mitochondrial calcium uptake. This may 

be important for the cells both in terms of the consequences for physiological 

calcium signalling and in terms of pathophysiology. In this way, mechanisms that 

cause small changes in mitochondrial potential may be surprisingly 

cytoprotective in pathological conditions of calcium overload (Rakhit et al., 

2001).  

An uptake pathway with properties distinct from those of the uniporter has also 

been described (Sparagna et al., 1995; Buntinas et al., 2001). This has been 

referred to as the rapid uptake mode (RaM). This pathway has the capacity to 

transfer Ca2+ very rapidly into the mitochondria during the rising phase of a Ca2+ 

pulse. The properties of the pathway differ in different tissues (Buntinas et al., 

2001), but in heart, the pathway saturates quickly and is slow to reset after 

activation. However, the functional significance of the pathway remains to be 

established. 

On the other hand, compared to the MCU and the others Ca2+ influx 

mechanism, the proteins that catalyze the efflux of this ion from mitochondria 
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have received much less attention. Ca2+ efflux is catalyzed by antiporters that 

drive Ca2+ out of the mitochondrial matrix in exchange with either Na+ or H+ 

(Nicholls and Crompton, 1980). Two types of exchangers have been functionally 

characterized in the 1970s, the Na+/Ca2+ and the H+/Ca2+ exchangers (Carafoli 

et al., 2003). These two pathway have been defined Na+-independent pathway 

for Ca2+ efflux (“NICE”) and Na+-dependent pathway for Ca2+ efflux (“NCE”) 

respectively. They have different kinetic of activation and calcium affinity (Harris 

et al., 1979; Lehninger et al., 1978; Ramachandran and Bygrave, 1978). The 

Na+-independent Ca2+ efflux is the main mitochondrial Ca2+ efflux system in non-

excitable cells and since no specific cations have been found to be exchanged 

with Ca2+ it is believed to be a Ca2+-H+ exchanger (Saris et al., 2005). This 

transport mechanism requires transmembrane potential, since it is not observed 

in non-energized mitochondria, thus indicating that it is not an electroneutral 

passive 1Ca2+–2H+ exchanger (Gunter et al., 1991). Indeed, this system is able 

to extrude Ca2+ against a gradient that is much higher than predicted from 

thermodynamics for an electroneutral H+/Ca2+ exchanger, which indicates that it 

uses a component of the electrochemical gradient for its activity. A characteristic 

of this transporter is that it saturates at low calcium loads and its kinetics are 

extremely slow (Bernardi et al., 1999). This emphasizes a feature of the 

mitochondrial Ca2+ machinery: it is equipped with high Vmax uptake transport 
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systems coupled to slow and easily saturable release systems, increasing the 

risk of Ca2+ overload (Murgia et al., 2009).  

The molecule catalyzing mitochondrial Na+/Ca2+ exchange has been recently 

identified as NCLX/ NCKX6, a protein localized in mitochondrial cristae (Palty et 

al., 2009), whereas stomatin-like protein 2 (SLP-2), an inner membrane protein, 

was shown to negatively modulate the activity of the mitochondrial 

Na+/Ca2+exchanger (Da Cruz et al., 2010). Functional evidence from knock-

down and overexpression studies indicate that NCLX is an essential part of the 

mitochondrial sodium calcium exchanger whereas SLP-2 is an accessory 

protein that negatively regulates mitochondrial Ca2+ extrusion. The identity of 

these proteins remains still uncertain and this issue will be discussed in more 

details in the next section of this thesis work.  

Another mechanism responsible of mitochondrial calcium efflux is represented 

by mPTP, the “permeability transition pore”, with a protein composition still 

under debate, although there is evidence that several outer mitochondrial 

membrane (OMM), mitochondrial intermembrane space (IMS) and IMM proteins 

are involved in its regulation. The opening of this PTP channel can be induced 

by intramitochondrial Ca2+, while ATP, ADP, Mg2+ and cyclosporin A inhibit it. 

The identity of the PTP’s components remains elusive but several evidence 

indicate a role for cyclophilin D and the adenine nucleotide translocase (Schinzel 
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et al., 2005; Vieira et al., 2000). The physiological role of mitochondrial Ca2+ 

induced permeability is still unclear: indeed, opening of a large pore in the inner 

mitochondrial membrane would allow maximal Ca2+ flux, due to the collapse of 

the membrane potential and would guarantee fast Ca2+ release even for very 

small [Ca2+] gradients. The PTP has also been proposed to represent a way of 

clearing the mitochondrial matrix of damaged or unneeded molecules; 

permeability transition could also provide an important pathway for inducing 

apoptosis or for removing damaged mitochondria (Bernardi et al. 1999). 

Finally, in the last few years, it has been recognized that the OMM might also 

play a role in the control of mitochondrial Ca2+ cycling. More specifically, it 

serves as a significant permeability barrier not only to Ca2+ uptake but also to 

Ca2+efflux. On the other hand, it should be mentioned that the voltage 

dependent anion channel (VDAC) located on the OMM, plays a relevant role in 

the regulation of Ca2+ permeability across this external membrane, thus 

favouring the activity of the specific transport systems of the inner membrane 

(Crompton et al., 2002). Moreover, VDAC, together with the adenine nucleotide 

translocase (ANT) and cyclophilin-D, might also elicit mitochondrial Ca2+ efflux 

since it is a part of the mitochondrial PTP (Bernardi, 1999, Crompton et al., 

2002).  
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From a pathological point of view, a cellular Ca2+ deregulation leading to 

mitochondrial Ca2+ overload and cell death through PTP opening followed by 

mitochondrial swelling has been described, as final step, for many 

neurodegenerative diseases. For instance, Gandhi and co-workers reported that 

a impaired Ca2+ efflux from mitochondria through the mitochondrial Na+/Ca2+ 

exchanger occurs in neurons lacking PINK1, a serine threonine kinase 

implicated in autosomal recessive early-onset parkinsonism (Gandhi et al., 

2009). This led to increased Ca2+ uptake capacity, decreased membrane 

potential, and increased ROS production, all conditions leading to early 

triggering of the PTP opening and concomitant neuronal death (Contreras et al., 

2010).  

 

1.2.1 Mitochondrial sodium calcium exchanger 

 

By catalyzing Na+-dependent Ca2+ efflux, the putative mitochondrial Na+/Ca2+ 

exchanger (mNCX) plays a fundamental role in regulating mitochondrial Ca2+ 

homeostasis, oxidative phosphorylation, and Ca2+ crosstalk among 

mitochondria, cytoplasm, and the endoplasmic reticulum (ER). Although the 

activity of this transporter was documented more than 30 years ago, its 

molecular identity remained unknown. The first evidence suggesting that 
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mitochondria can efflux Ca2+ ions in exchange for Na+ ions was reported by 

Carafoli et al. in 1974. Then, the discovery of the benzothiazepine derivative 

CGP37157 (CGP) as a blocker of the mNCX constituted a breakthrough for the 

functional characterization of the mNCX (Chiesi et al., 1988). Moreover, the 

stoichiometry of mitochondrial Na+-dependent Ca2+ efflux has been the subject 

of protracted controversy. In 2008 Kim and Matsuoka provided conclusive 

evidence of the direction of the mitochondrial Na+/Ca2+ exchange: located in the 

inner mitochondrial membrane, the mNCX mediates the efflux of Ca2+ from the 

mitochondria coupled to the influx of Na+, with a stoichiometry of 3Na+/2Ca2+, 

suggesting that the exchanger is electrogenic Since no gene encoding for 

proteins belonging to the family of the Na+/Ca2+ exchanger has been found in the 

mitochondrial genome (Anderson et al., 1981), the main speculation is that 

OMM and the IMM not possess their own endogenous proteins operating as a 

Ca2+ efflux/influx pathway and mNCX encoded by a nuclear gene, translated into 

the cytoplasm and then transferred to mitochondria as it occurs for the majority 

of mitochondrial proteins. Indeed, 90% of mitochondrial proteins are coded by 

nuclear genes, synthesized in the cytosol, and, subsequently, imported into 

mitochondria through protein translocation machineries of the outer and inner 

membranes (Stojanovski et al., 2003). As for most ion transporters of the inner 

mitochondrial membrane, identity of these proteins has been long searched. 
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Only recently has the NCLX exchanger, a member of the NCX family, been 

hypothesized to be expressed and localized in the IMM. This Li+ sensitive protein 

localized within the cristae, is both phylogenetically and functionally distinct from 

NCX and NCKX family members. These authors also showed that NCLX 

participates to the mitochondrial Na+/Ca2+ exchanger activity. However, the 

molecular mechanisms involved in NCLX expression, transport, localization, as 

well as its role in mitochondrial activity regulation still remain unidentified. The 

role of mNCX in brain ischemia is controversial but there are a lot of 

considerations that suggest an involvement of mNCX in this pathological event: 

in brain it is well known that during ischemia mitochondria release Ca2+ via the 

putative mNCX, this further depletes ATP in ischemic neurons; mNCX controls 

intramitochondrial Ca2+, whose excessive rise is a trigger for PTP opening and 

apoptosis; finally, mNCX can revert its mode of operation and act as an influx 

pathway for Ca2+ ions into the mitochondrial matrix.  

 

1.2.2 Mitochondrial calcium handling during ischemia 

 

The ischemic failure has been ascribed to the complex interplay among multiple 

pathways including excitotoxicity, acidotoxicity, ionic imbalance, oxidative stress, 

inflammation and apoptosis, which can all lead to cell death and irreversible 
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tissue injury (Dirnagl et al., 1999). Brain tissue has a high metabolic rate and 

thus is particularly vulnerable to ischemic damage. Reduction of the cerebral 

blood flow reduces the delivery of oxygen and glucose to the brain tissue and, 

within minutes, impairs the ability of neurons to maintain ionic gradients (Martin 

et al., 1994). Mitochondria have been implicated as central players in the 

development of ischemic cell death both through impairment of their normal role 

in generating much of the ATP for neural cell function and as key mediators in 

cell death pathways. In this regards, ATP depletion, occurring in the ischemic 

brain, induces neuronal membrane depolarization and promotes the release of 

synaptic glutamate, a rise in cytosolic Ca2+, the reverse operation of glutamate 

transporters and the consequent swelling of the cells (Choi et al., 1994; Sattler 

and Tymianski, 2000; Nishizawa et al., 2001; Tanaka et al., 2004). This cascade 

of events leads to a massive entry of calcium into the cells, which is well known 

to play an essential role in stroke induced cerebral damage. The increase in free 

cytosolic calcium is transmitted to the matrix of mitochondria by Ca2+ channels 

and exchangers located on the inner mitochondrial membrane. Moderate 

calcium elevations within the mitochondrial matrix increase the activity of 

enzymes of the tri-carboxylic cycle, therefore boosting metabolism. Excessive 

increases in matrix [Ca2+], however, alter the permeability of mitochondria, 

impair their ability to generate ATP and cause the release of pro-apoptotic 
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factors (Sims et al., 2010). Therefore, mitochondrial dysfunctions resulting from 

a calcium overload have been shown to be important in the process of ischemia-

induced cell death (Starkov et al., 2004). Mitochondrial changes resulting in the 

release of proteins are central to the intrinsic pathway. These proteins lead to 

the activation of caspases, particularly caspase-3 in brain, which in turn induces 

cellular changes including internucleosomal chromatin condensation and DNA 

fragmentation (Rich et al., 2000; Kroemer et al., 2007; Hengartner et al., 2000). 

Large mitochondrial channels promote cytochrome c release (Clem et al., 1998; 

Fujita et al., 1998) and synaptic failure (Jonas et al., 2003). If the mPTP, VDAC, 

and other proteins are involved in excitotoxity, perhaps the BCL-2 family 

proteins also come together in a protein complex with these mitochondrial 

players during ischemic injury. Indeed, patch clamp studies revealed that 

ischemic insults in neurons quickly produce changes in synaptic efficacy 

coincident with the onset of large mitochondrial ion channel activity (Jonas et al., 

2003; Bonanni et al., 2006). Besides plasma membrane depolarization, the 

other important event in ischemia is a rise in cytosolic calcium as a result of 

several intracellular events (Figure 3). Indeed, the depletion of intracellular ATP 

slows the activity of intracellular membrane and plasma membrane calcium 

ATPases which are used to extrude calcium from the cell. In addition, the lack of 

ATP causes impairment of Na+/K+ exchanger activity and a consequent 
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depolarization of the plasma membrane. This activates voltage-gated calcium 

channels and induces the release of glutamate, which further acts on calcium-

permeable glutamate receptors at post synaptic level to allow the influx of 

calcium into the cells. Moreover, the energy failure both in neurons and in glial 

cells leads to additional glutamate release following reversal of the glutamate 

uptake transporters. Finally, intracellular acidification caused by lactic acidosis 

also contributes to excitotoxicity by leading to increased intracellular Na+ through 

Na+/H+ exchange, with resultant further impairment of Na+/Ca2+ exchange. All 

these pathways contribute to the triggering of Ca2+ entry into neurons and, in 

turn, to larger than usual increases in the cytosolic calcium concentration. To 

avoid calcium overload, plasma membrane calcium pumps (PMCA) actively 

extrude calcium from the cytoplasm during neuronal activity. The increased 

turnover of PMCA increases the consumption of intracellular ATP that, in 

neurons, is mainly derived from mitochondrial oxidative phosphorylation. 

Cytosolic Ca2+ elevations are rapidly transmitted to the mitochondrial matrix, 

where they amplify the activity of Krebs cycle enzymes and of the ATP 

synthase, thereby increasing the production of ATP (Denton et al., 2009; Jouaville 

et al., 1999). During physiological Ca2+ elevations, the boost of ATP enables 

PMCA to extrude the cytosolic calcium and to sustain neuronal activity. 

Conversely, during ischemia the levels of oxygen and glucose drop rapidly 
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leading to impairment in ATP produced by mitochondria and by cytosolic 

glycolysis. As a result, ATP-dependent calcium extrusion mechanisms 

progressively interrupt because the continuous activity of the Na+/K+ ATPase 

depletes intracellular reservoir of ATP. The relationship between Na+/K+ ATPase 

and PMCA is directly demonstrated since the PMCA activity, collapsed during 

metabolic depletion, can be rescued by inhibition of the Na+/K+ ATPase (Castro 

et al., 2006). PMCA inhibition amplifies the cytosolic calcium elevations that are 

transmitted to the mitochondrial matrix, and can then triggers mitochondrial 

calcium overload, mitochondrial dysfunction, release of mitochondrial pro-

apotpotic factors and activation of death signals (Starkov et al., 2004; Duchen et 

al., 2004; Kristian et al., 1998).  

                

Fig. 3: Illustration of dendritic ionic disruption and mitochondrial dysregulation in 
ischemic neurons (Kintner et al., 2010) 
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On the other hand, calcium release from the endoplasmic reticulum has been 

associated to ischemia induced-cell damage (Paschen et al., 1999; Chen et al., 

2008). Mitochondria and endoplasmic reticulum are maintained in very close 

proximity by linker proteins (Csordas et al., 2010; Csordas et al., 2006). Because 

of this proximity, the release of calcium ions through IP3 receptor of the 

endoplasmic reticulum readily triggers an entry of calcium in adjacent 

mitochondria (Giacomello et al., 2010; Rizzuto et al., 2003). Thus, neuronal 

mitochondria are exposed both to Ca2+ ions entering across membrane 

channels and to Ca2+ ions released from endoplasmic reticulum Ca2+ stores. 

Although the magnitude of this ischemia-induced mitochondrial Ca2+ elevation is 

comparable to the responses evoked by the opening of membrane channels or 

by the addition of Ca2+-mobilizing agonists, its duration far exceeds the 

physiological responses. Long lasting cytosolic Ca2+ elevations are an essential 

feature of the ischemic process in neurons (Cross et al., 2010; Bano et al., 2007). 

This Ca2+ overload reflects the failure of Ca2+ extruding systems to cope with the 

excess Ca2+ ions that enter cells across deregulated plasma membrane 

channels, following the cleavage of plasma membrane Ca2+ pumps (Schwab et 

al., 2002; Pottorf et al., 2006), and Na+/Ca2+exchangers (Bano et al., 2005). After 

this global cytosolic Ca2+ elevation, mitochondria are exposed to micromolar 

Ca2+concentrations for long durations in ischemic neurons, which favours Ca2+ 
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uptake by the MCU. Importantly, mitochondria start a significant calcium 

buffering activity whenever the cytoplasmic calcium level rises above the “set-

point” for the balance of mitochondrial influx and efflux of calcium (Nicholls and 

Chalmers, 2004). However, acutely massive elevations in cytosolic calcium, or 

chronically elevated cytoplasmic calcium above the set-point, leads to calcium 

overload in the mitochondria and induces permeability transition, via the 

calcium-activated pore (mPTP) in the inner membrane. Although the causal 

relationship between mitochondrial Ca2+ accumulation and mPTP opening is 

well established, it is not clear exactly how or if the mPTP always gets activated 

during ischemia (Reynolds et al., 1999). Indeed it is clear that calcium 

accumulation by mitochondria impairs cellular energy: the mitochondria need to 

constantly keep the proton gradient during long-term calcium uptake and, 

therefore, in the presence of plasma membrane depolarization after glutamate 

exposure, the cells need more energy than that produced by mitochondria 

during ischemia. This condition induces mitochondrial membrane potential 

depolarisation, further activation of the voltage dependent mPTP, and neuronal 

cell death. The relationship between mPTP and neuronal death during cerebral 

ischemia do not directly imply the involvement of matrix Ca2+ accumulation 

(Gouriou et al., 2011). By the way, it has been hypothesized that mitochondrial 

Ca2+ overload is a consequence, rather than a cause, of the bioenergetic failure 
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that follows mPTP opening, suggesting that Ca2+ elevation represents a marker 

of diseased mitochondria and not the cause of the mPTP activation which 

occurs after reperfusion (Kim et al., 2006). Another important parameter to take 

into account is the timing of the mPTP opening during ischemia/reperfusion. In 

this regard, there is a broad consensus that in the heart, during ischemia, the 

factors promoting mPTP opening such as increased matrix Ca2+ and 

depolarization, are balanced by mPTP antagonists such as intracellular acidosis, 

high levels of Mg2+ and ADP, thus preventing mPTP opening (Di Lisa et al., 

2011). Therefore, it is possible to speculate that the restoring of oxygen and 

substrate occurring during reperfusion enables mitochondria re-energized to 

take up the Ca2+ accumulated in the cytosol during ischemia and, to produce a 

burst in ROS. The combination of these factors provides ideal conditions for 

triggering mPTP opening (Halestrap et al., 2010). Whether the same sequence of 

events also occurs in ischemic brain is not known, and further studies are 

needed to determine the precise timing of the PTP opening during cerebral 

ischemia.  

The recent identification of the proteins involved in mitochondrial Ca2+ uptake 

and release provides new opportunities to study the role of mitochondrial Ca2+ 

in neuronal death during cerebral ischemia. Targeting the proteins that control 

the fluxes of Ca2+ should reveal whether altered mitochondrial Ca2+ handling 
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is causally related to ischemic neuronal death, and can potentially increase 

the repertoire of therapeutic tools to treat ischemic brain diseases. In this 

context, a strategy to reduce mitochondrial Ca2+ content during ischemia 

might be addressed to potentiate the activity of mitochondrial efflux pathways 

both on the IMM and on the OMM. The molecular identification of NCLX and 

NCX as proteins able to regulate mitochondrial Na+/Ca2+ exchange might 

result as new promising targets for the development of therapeutic strategies 

aimed to prevent mitochondrial dysfunction occurring during ischemia and 

reperfusion in the brain. However, further efforts have to be performed to 

improve the knowledge on the functional properties of these transporters in 

order to finely tune their activity to preserve mitochondrial function during 

stroke.  
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1.3 AKAP proteins 

 

Many proteins are responsible of regulation of mitochondrial physiology. In 

particular, subcellular targeting through association with anchoring proteins 

has emerged as an important mechanism by which the cells localize 

signalling enzymes to sites where they can be accessed optimally by 

activators and, in turn, they may interact with particular substrates. Among 

these proteins, A Kinase Anchor Proteins (AKAPs) represent a family of non-

enzymatic scaffold proteins which anchor and concentrate PKA in specific 

cellular and subcellular compartments (Rubin et al., 1994; Dodge and Scott, 

2000; Edwards and Scott, 2000). 

AKAPs are a group more than 50 proteins functionally, rather then 

structurally, related proteins and each contains a common RII-binding site 

formed by amphipathic 14-18 amino acid aligned along one face of the helix 

and charged residues and the other side, that bind amino termini of PKA-RII 

dimer (Carr et al., 1991; Newlon et al., 1997). 

Although most AKAPs that have been characterized to bind to RII subunits 

with high affinity, several AKAPs have been reported to interact specifically 

with RI. RII subunits bind to AKAPs with nanomolar affinity; by contrast, RI 

subunits bind to AKAPs with only micromolar affinity. However D-AKAP1 and 
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D-AKAP2 are examples of dual-specificity AKAPs that can anchor both types 

of R subunit (Huang et al., 1997; Wang et al., 2001). 

Each AKAP also contains a subcellular targeting domain that restricts its 

localization within the cell. A combination of subcellular-fractionation and 

immunohistochemical studies have identified AKAPs in association with a 

variety of cellular compartments, including centrosomes, dendrites, 

endoplasmic reticulum, mitochondria, nuclear membrane, plasma membrane 

and vesicles (Wong and Scott, 2004). 

Although AKAPs have been defined on the basis of their interaction with PKA, 

an additional feature of many of these molecules is their ability to bind to 

other signalling enzymes. AKAPs form a multiprotein complex with the 

presence of signal transduction and signal termination enzymes in the same 

network. This creates focal points of enzyme activity where the bidirectional 

regulation of signalling events can be controlled and the phosphorylation 

status of target substrates is precisely regulated (Feliciello et al., 2001). 

Besides kinase and phosphatase, also phosphodiesterases, the enzymes that 

catalyze cAMP metabolism, are present in complex with AKAP and PKA. 

Upon hormonal stimulation, increased cAMP levels overcome the PDE 

activity, releasing active PKA-C subunit from the AKAP complex. This leads 

to PKA phosphorylation of the tethered PDE4D3 on Ser54, thereby increasing 
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the local PDE activity. The subsequent increase in cAMP metabolism returns 

cAMP levels to basal, favouring the reformation of the PKA holoenzyme 

(Carlisle Michel et al., 2004). 

Structural data indicate that there is a single region of multiple contact sites, 

between the RII subunit dimer and the AKAP. AKAP-PKA complex is likely to 

be a constitutive interaction in cells and not subject to regulation. These 

findings, altogether, suggested that AKAPs serve to place the PKA 

holoenzyme at locations where it can respond rapidly to flow of cAMP 

production and to allow certain PKA phosphorylation events by placing the 

enzyme close to a particular subset of substrates. 

 

1.3.1 Role of AKAP121 in the cellular hypoxia 

 

Mitochondrial AKAP121 (also named D-AKAP1) has a major role in targeting 

PKA to the OMM. AKAP121, AKAP100 and AKAP84 are products of a single 

gene (AKAP1) that are generated by alternative RNA splicing (Lin et al., 

1995; Trendelenburg et al., 1996; Chen et al., 1997; Huang et al., 1997; 

Huang et al., 1999; Furusawa et al., 2002). All splice variants share a similar 

525 aminoacid residue NH2-terminal core, but diverge significantly at the C-

terminus. 
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AKAP121 is widely expressed in several tissues such as germ-cell lineage, 

hearth and thyroid and its accumulation is regulated at the transcriptional 

level by the cAMP/PKA pathway (Feliciello et al., 1998).  

AKAP121 is composed of different domains indicated below (Figure 4) . 

             

Fig. 4: AKAP121 structure 

 

(A) The R-binding domain (RBD) of AKAP121 (residues 302-322) is identical 

in all splice variants and it mediates the interaction with RII at high affinity (Kd 

2-8 nM) and with RI at low affinity (Kd 185 nM) (Herberg et al., 2000). 

(B) The first 30 NH2-terminal residues mediate the targeting of S-

AKAP121/84-PKAII complexes to mitochondria, both in male germ-cells and 

in transfected heterologous cells (Lin et al., 1995; Chen et al., 1997). AKAP84 

accumulates in the outer membrane of mitochondria in spermatids at a late 

phase of development, during the beginning of nuclear condensation and tail 

elongation. De-novo expression of AKAP84 during late spermatogenesis 
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coincides with the maximal expression and subsequent anchoring of RII and 

PKAII to mitochondria (Lin et al., 1995). 

(C) Phosphatase binding domain (PBD) of AKAP121 (residues 30-110) that 

binds Tyrosine Phosphatase D1 (PTPD1). PTPD1 activates src tyrosine 

kinase and increases the magnitude and duration of epidermal growth factor 

(EGF) signalling. AKAP121 binds to and redistributes PTPD1 from the 

cytoplasm to mitochondria and inhibits EGF signalling. By binding and/or 

targeting the phosphatase on mitochondria, AKAP121 modulates the 

amplitude and persistence of src-dependent EGF transduction pathway 

(Moller et al., 1994; Cardone et al., 2004). 

(D) KH domain a conserved sequence of AKAP149/AKAP121 (AKAP121 

residues 565-613, AKAP149 residues 611-659) with RNA-binding capabilities 

(Trendelenburg et al., 1996; Chen et al., 1997).  

This multicomponent system, reminiscent of other AKAP complexes at cell 

membranes, ensures efficient translation and import of nuclear-encoded 

mitochondrial proteins. It is suggested that PKA may phosphorylate some of 

these proteins co-translationally, as well as acting on AKAP121 itself to 

regulate the stability of the RNA-AKAP121 complex (Ginsberg et al., 2003; 

Feliciello et al., 2005). Functionally, AKAP121 by anchoring the PKA to 

mitochondria supports cAMP signalling and suppresses apoptosis: a cAMP 
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increases following adenylyl cyclase stimulation activates a membrane-

anchored PKA (included Golgi-centrosome PKA, indicated as AKAP). PKA 

catalytic subunit dissociated from the holoenzyme enters the nucleus and 

phosphorylates CREB1. The rise in cAMP concentrations dissociates and 

activates mitochondrial-anchored PKA, which phosphorylates serine155 of the 

proapoptotic protein BAD. This protein is a BH3-proapoptotic Bcl-2 family 

member and acts at a key nodal point in the mitochondrial apoptotic pathway. 

Un-phosphorylated BAD binds to and inactivates antiapoptotic Bcl-2 homologs, 

favouring release of cytochrome C from mitochondria and inducing apoptosis. 

Phosphorylation by PKA blocks BAD association with Bcl-2 and inhibits 

apoptosis (Harada et al., 1999). 

Recently it has been demonstrated that the PKA anchoring protein AKAP121 

regulates the activity of the components of the mitochondrial respiratory chain, 

thus promoting m hyperpolarization and improving the oxidative synthesis of 

ATP in a PKA dependent manner (Livigni et al., 2006). Interestingly, the cell, in 

response to reduction in oxygen availability, degrades mitochondrial scaffold 

protein AKAP121. AKAP121 transmits cAMP/PKA signal to mitochondria, thus 

stimulating ATP synthesis. Hypoxia-induced E3–Ub ligase Siah2 was detected 

in complex with AKAP121. Siah2 binding leads to ubiquitination and rapid 

degradation of AKAP121, both in vitro and in intact tissue. The consequent drop 
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in AKAP121 concentrations significantly reduced mitochondrial activity (Carlucci 

et al., 2008). In higher eukaryotes, oxygen fuels mitochondrial respiration and 

oxidative ATP synthesis. Oxygen concentration is maintained at physiological 

levels by highly organized respiratory and circulatory systems. In ischemia, 

obstruction of blood flow to tissue leads to decrease of oxygen (hypoxia) and 

metabolite diffusion to cells. Hypoxia is rapidly detected by oxygen-sensing 

mechanisms that alter gene transcription patterns. These alterations have an 

important role in switching from oxidative to fermentative metabolism. 

The major regulator of cellular responses to hypoxia is HIF-1α. HIF-1α is a 

transcription factor composed of a heterodimer of a hypoxia-inducible α-subunit 

and a constitutively expressed β-subunit. HIF-1α induces expression of a 

number of genes, including that of vascular endothelial growth factor, 

transforming growth factor-β and erythropoietin, which are involved in 

vascularization, erythropoiesis, metabolism and other central cellular processes. 

Under normoxic conditions, HIF-1α hydroxylation by PHD2 promotes HIF-1α 

binding to the von Hippel–Lindau complex and rapid degradation by the Ub–

proteasome pathway (Berra et al, 2003). Hypoxia induces expression of Siah2, 

which carries an N-terminal RING domain followed by two zinc-finger motifs and 

a C-terminal substrate-binding domain. The RING finger domain of Siah2 

mediates transfer of Ub monomer from E2 Ub–ligase to PHD1/3, promoting its 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2323260/?tool=pubmed#b3


34 

 

proteasomal degradation. As a result, HIF-1α accumulates and activates 

transcription of hypoxia-induced genes (Hu et al, 1997; Nakayama et al, 2004). 

Recent findings demonstrated a new mechanism that the cells utilize to adapt 

physiologically to oxygen deprivation. This involves regulation of components of 

the signal transduction pathway that controls oxidative respiration at the post-

translational level. Indeed Siah2 induces ubiquitination and proteasomal 

degradation of the scaffold protein AKAP121, thus lowering the basal activity of 

mitochondrial respiration in hypoxic cells. The cells exposed to hypoxia or 

overexpressing Siah2 show an AKAP121 degradation accompanied by a 

significant decrease in ΔΨm and mitochondrial metabolic activity. In view of the 

ubiquitous expression of AKAP121, this regulatory system might likely be used 

as a rapid and efficient way to attenuate oxidative metabolism during hypoxia in 

most, if not all, tissues. In particular, AKAP121 is also expressed in discrete 

brain areas, including hippocampus and cortex, as well as in the corpus striatum 

and cerebellum. Interestingly, middle cerebral artery occlusion consistently 

decreased AKAP121 levels specifically in the ischaemic cortical area. 

 

 

                    

http://www.ncbi.nlm.nih.gov/pubmed/9334332
http://www.ncbi.nlm.nih.gov/pubmed/15210114
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Fig.5: Role of AKAP 121 in hypoxia (Carlucci et al., 2008) 

 

1.4 Mitochondrial fusion and fission 

 

Mitochondria are highly dynamic organelles that continuously move, divide and 

fuse in a highly regulated fashion under the control of the so-called 

“mitochondria-shaping” protein family. Neurons are particularly sensitive and 

vulnerable to abnormalities in mitochondrial dynamics, due to their large energy 

demand and their long extended processes where mitochondria need to be 

transported. Emerging evidence indicates a role for mitochondria-shaping 
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proteins in several physiological functions, from apoptosis to ROS production, 

which are implicated in the pathogenesis of neurodegenerative diseases 

Many studies suggest that changes in the mitochondrial shape can affect a 

variety of biological processes. Mitochondria change their morphology by 

undergoing fusion or fission and the fine balance between these two opposing 

reactions be altered by a variety of factors, including oxidative stress and 

apoptosis. Although mitochondria are key organelles for all cells, neurons are 

extremely sensitive to their functionality. Neurons are highly specialized cells 

with long extended processes including axons and dendrites. In addition, the 

long extended neuronal processes are highly active in intercellular signal 

transduction through the release of neurotransmitters from the synapses, a 

process that requires large amounts of energy. Accordingly, the ability of 

mitochondria to fuse, divide and migrate is particularly important for synaptic 

function. In addition to energy supply, mitochondria also play a critical role in 

synaptic plasticity through the maintenance of calcium homeostasis in the 

synaptic microenvironment. Thus, mitochondria are important regulators of 

neuronal cell life and death via their role in energy production, Ca2+ signaling 

and participation in apoptosis (Yuan and Yanker, 2000).  

In a typical mammalian cell, the mitochondria are highly dynamic and undergo 

continual fusion and fission (Chen et al., 2005). These processes control not only 
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the overall morphology of the mitochondrial population, but also its proper 

function. Three proteins have been shown to be central to the fusion of 

mammalian mitochondria. The mitofusins, Mfn1 and Mfn2, are essential 

GTPases localized to the mitochondrial outer membrane (Chen et al., 2003; 

Santel et al., 2001). Deletion of either Mfn1 or Mfn2 results in mitochondrial 

fragmentation, although low levels of mitochondrial fusion remain. Deletion of 

both mitofusins abolishes all mitochondrial fusion (Koshiba et al., 2004; Chen et 

al., 2005). Mitofusins are required on adjacent mitochondria during fusion and 

form complexes in trans that tether mitochondria together. The third protein 

required for fusion is OPA1, a dynamin-related GTPase (Cipolat et al., 2004; 

Chen et al., 2005). OPA1 is localized to the intermembrane space, with tight 

association with the inner membrane (Griparic et al., 2004; Satoh et al., 2003).  

Separate machinery mediates mitochondrial fission. Fission requires Fis1, a 

mitochondrial outer membrane protein, and Drp1, another dynamin-related 

GTPase (Chen et al., 2005). Inhibition of either protein results in elongation and 

increased interconnectivity of mitochondrial tubules (Lee et al., 2004; Smirnova 

et al., 2005). Whereas Fis1 is localized uniformly on mitochondria, Drp1 

oligomerizes into puncta on the mitochondrial surface, and some of these 

puncta proceed to mitochondrial fission. Both fusion and fission are important for 

mitochondrial function. When mitochondrial fusion is completely abrogated, by 



38 

 

removal of mitofusins or OPA1, cells grow poorly and have greatly reduced 

respiratory function (Chen et al., 2005). Clearly, these results indicate that 

mitochondrial fusion is important for the health of the mitochondrial population 

and of the entire cell. Mitochondrial dynamics is thought to protect mitochondrial 

function by allowing the mixing and exchange of small molecules, proteins and 

mtDNA (Chen et al., 2004). Mutations in mitochondrial fusion proteins would 

lead to mitochondrial dysfunction by preventing this ability of mitochondria to 

cooperate. In addition, mitochondrial morphology defects have secondary 

effects on the transport of mitochondria. Finally, fission has been shown to be an 

important component of the mitochondrial apoptosis pathway (Youle et al., 

2005). In many models of programmed cell death, mitochondria fragment during 

the early stages of apoptosis, and inhibition of Drp1 or Fis1 can ameliorate cell 

death. In contrast, mitochondrial fusion molecules can demonstrate protective 

effects in programmed cell death (Youle et al., 2005; Sugioka et al., 2004). 

Given the above, it is not surprising that defects in mitochondrial dynamics lead 

to neurological disease. Remarkably, mitochondrial dysfunction is considered to 

be one of the key event linking ischemic/recirculation insult with neuronal cell 

death (Berridge et al. 2003). Moreover, recent studies showed that in a cardiac 

cell model of ischemia, mitochondria undergo fragmentation, a process that is 

dependent on the mitochondrial fission protein dynamin-related protein 1 (Drp1) 
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(Ong et al., 2011), suggesting a role of Drp1 also in the pathogenesis of cerebral 

ischemia/reperfusion. 

         

Fig.6. Mitochondrial fusion and fission proteins on the OMM ( Youle and Karbowsky, 
Nat Rev Mol Cell Biol. 2005) 
 

The balance between fusion and fission requires tight control of the factors that 

participate in mitochondrial dynamics. The activity of these proteins can be 

modulated by covalent modifications, such as phosphorylation, sumoylation and 

ubiquitylation (Carlucci et al., 2008). The mitochondrial fusion and fission 

machinery is tightly controlled by protein phosphorylation. In particular, post-

translational regulation of Drp1 is an active area of research, with ubiquitylation, 

sumoylation, and phosphorylation having been documented (Chang and 

http://www.ncbi.nlm.nih.gov/pubmed/16025099
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Blackstone, 2007; Cribbs and Strack, 2007; Han et al., 2008; Harder et al., 

2004; Nakamura et al., 2006; Wasiak et al., 2007). Indeed, Drp1 is a direct 

substrate of PKA: -adrenergic stimulation of heart muscle by isoproterenol in 

vivo or PKA activation increases phosphorylation of hDrp1 within the GTPase 

effector domain (GED) at Ser637 and inhibits its GTPase activity (Cribbs et al., 

2007). This down regulation of activity probably reflects the inability of the 

phosphorylated GED domain to interact intramolecularly with the Drp1 GTP-

binding motif. The resulting inactivation of Drp1 promotes elongation of 

mitochondria and enhances cellular resistance to pro-apoptotic stimuli. On the 

other hand, membrane depolarization or L-type calcium channel agonists 

promote de-phosphorylation of Drp1 phospho-Ser637 by the calcium-activated 

Ser/Thr phosphatase calcineurin (also known as PP2B) (Chang et al., 2007; 

Cribbs et al., 2007). The subsequent calcium-dependent de-phosphorylation 

restores Drp1 GTPase activity and induces mitochondrial fragmentation and cell 

death (Cribbs et al., 2007). These findings indicate a mechanism whereby 

distinct intracellular second messengers can integrate and focus at target sites 

to regulate mitochondria dynamics and cell survival. This type of regulation, 

based on protein modification, can rapidly adapt mitochondrial activity to 

changes in metabolic demands and nutrients availability.  
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2.AIMS OF THE STUDY 

 

In the first step of the present study we examined (a) whether the nuclear 

encoded NCX family proteins are present on mitochondria and, if they are, (b) 

where they are localized, (c) what might be their contribution to mitochondrial 

Ca2+ handling and, finally, (d) whether NCX activity on mitochondria is controlled 

by AKAP121, a member of the AKAP family proteins in the outer mitochondrial 

membrane (Carlucci et al 2008; Livigni et al 2006).  

In order to identify whether one or all three isoforms were present at 

mitochondrial level, molecular biology experiments were performed on 

mitochondrial extracts obtained from BHK cells transfected with each isoform of 

the sodium/calcium exchanger (NCX), NCX1, NCX2 and NCX3. These 

experiments identified the presence of only isoform 3 of the sodium/calcium 

exchanger (NCX3) on the mitochondrial membrane. These observations were 

supported by immunocytochemistry experiments using specific fluorescent 

antibodies against NCX and specific mitochondrial markers. In addition, using a 

biochemical approach, it was demonstrated that NCX3 is present on the outer 

mitochondrial membrane. Further studies were designed to clarify the functional 

role of the Na+/Ca2+ exchanger in the regulation of mitochondrial ionic 

homeostasis and the possible involvement of AKAP121 in the modulation of this 
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function. This working hypothesis has been supported by experimental evidence 

that proteins belonging to the NCX family show multiple phosphorylation sites, 

both for the PKA and for PKC, which would, therefore, seem be involved in 

regulating the activity of this exchanger, both in response to physiological and 

pathological stimuli (Blaustein and Lederer, 1999; Schulze et al., 2003). Since 

the AKAP121 protein is responsible to target the PKA to mitochondria, it turns 

out to be a potential regulator of mitochondrial calcium concentrations by 

modulating the NCX activity. To verify this hypothesis, we measured 

mitochondrial calcium levels using confocal microscopy techniques in BHK cells 

stably transfected with NCX3 which endogenously express AKAP121 and  BHK 

wild-type cells (WT) transiently co-transfected with NCX3 and AKAP121. In 

these cells, immunocytochemistry experiments and immunoprecipitation 

techniques showed that NCX3 is present in mitochondria and co-localize with 

AKAP121 through direct physical interaction. Functional experiments were 

carried out by measuring the mitochondrial calcium concentration ([Ca2+]mito) in 

BHK cells transiently transfected with NCX3 and co-transfected with AKAP-121. 

Under these conditions the obtained results showed that the basal [Ca2+]mito was 

lower than that measured in BHK WT cells or BHK cells transiently transfected 

with NCX3. This effect was abolished when cells were transiently transfected 

with NCX3 and AKAP121L313-319P mutant, unable to bind PKA, or with PKI 
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construct, able to specifically inhibit PKA. On the other hand, evidence that 

mNCX3 is involved in Ca2+ extrusion is that the Ca2+ lowering effect, found in 

cells transfected with NCX3, was completely prevented by the benzothiazepine 

compound CGP-37157, a selective mNCX inhibitor (Cox et al., 1993; Nicolau et 

al., 2009). Consistently, when BHK cells either transfected with NCX3F or co-

transfected with NCX3F+AKAP121 were treated with CGP-37157, [Ca2+]m were 

higher than those observed in untreated cells. The obtained results supported 

the hypothesis that AKAP121 was able to control [Ca2+]mito by regulating the 

activity of NCX3 on the outer mitochondrial membrane. It has also been 

explored the hypothesis that AKAP121 may play a role in the regulation of the 

mitochondrial NCX3 under cellular stress conditions such as hypoxia or 

treatment with calcium ionophores, such as ionomycin. In both experimental 

conditions mitochondrial calcium levels measured in BHK WT cells were higher 

than those measured in BHK cells transiently transfected with NCX3 or co-

transfected with NCX3 + AKAP121. These data suggest that in cellular stress 

conditions NCX3 could work extruding calcium from the mitochondria and that 

this effect could be modulated by PKA through AKAP-121. Indeed, the cells 

transiently co-transfected with siRNA directed against NCX3 and AKAP-121 or 

with the mutant AKAP121L313-319P showed [Ca2+]mito similar to that observed in 

BHK WT cells. Moreover the results obtained in neurons exposed to Oxygen 
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and Glucose Deprivation (OGD) and OGD/Reoxygenation (Rx) demonstrated 

that also the endogenous mNCX3 plays a relevant role in the regulation of 

mitochondrial Ca2+extrusion. Indeed, [Ca2+]m significantly increased when 

neurons were exposed to OGD, a condition in which NCX3 expression was 

reduced. On the other hand, [Ca2+]m decreased following OGD/Rx, a condition in 

which NCX3 expression returned to the basal levels. Interestingly, when NCX3 

was knocked down, an impairment in mitochondrial Ca2+ extrusion was recorded 

both under basal and OGD/Rx conditions, whereas no alteration in mitochondrial 

Ca2+extrusion occurred during OGD. These results might be related to changes 

in the expression of endogenous NCX3 and AKAP121 during OGD and OGD/Rx 

(Sirabella et al., 2009; Carlucci et al., 2008). Such finding led to the hypothesis 

that the interplay between mNCX3 and AKAP121 contributes to cell survival and 

the interaction between these two proteins appears to have a crucial role in 

preventing hypoxic cell death. 

A second step of the study was addressed to investigate the molecular 

mechanisms that regulate mitochondrial biogenesis in cellular models of 

cerebral ischemia with particular regard to mitochondrial fusion and fission 

events in cells exposed to hypoxic insult. To this aim, experiments were 

performed in cellular models of in vitro ischemia using primary cultures of 

hippocampal and cortical neurons exposed to a combined protocols of OGD 
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(Scorziello et al., 2005) or chemical hypoxia (Secondo et al., 2007) followed by a 

period of reoxygenation. Changes in mitochondrial morphology, mitochondrial 

membrane potential (m) and mitochondrial calcium concentration were 

measured by using specific probes and confocal microscopy. The obtained data 

showed that alteration in mitochondrial morphology, an increase in [Ca2+]mito and 

an impairment in m occurred in cells exposed to hypoxia. To evaluate the 

involvement of the mitochondrial fusion and fission proteins in the pathogenesis 

of ischemic neuronal death we performed Western Blotting experiments on 

lysates obtained from hippocampal and cortical neurons exposed to 3 and 6 

hours of OGD. The obtained results showed that during OGD an increase of the 

expression levels of Dynamin Related Protein 1 (Drp1), a protein involved in the 

mitochondrial fission phenomenon, and a reduction of the expression levels of 

Mitofusin 2 (Mfn2), crucial protein of the mitochondrial fusion event occurred. 

Further objective of this project was to verify whether the protein AKAP121 could 

participate in the molecular events underlying the process of mitochondrial 

fusion and fission during ischemia. Since it was recently shown that AKAP121 is 

rapidly degraded in cells exposed to hypoxia by a mechanism mediated by the 

activation of SIAH2, we used neurons obtained from transgenic mice Siah2 -/- to 

evaluate alterations in the mechanisms that regulate the metabolic mitochondrial 

activity. Finally, due to the evidence that mitochondrial calcium homeostasis 
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seems to be involved in the alteration of mitochondrial dynamics during the 

neuronal ischemic death, the next step of the study was to verify the role of 

NCX3 and the putative interaction between this protein and AKAP121 in 

mitochondrial fission and fusion during ischemia. To this aim the neurons were 

exposed to OGD, a condition in which NCX3 and AKAP121 expression were 

reduced, followed by OGD/Rx, a condition in which NCX3 and AKAP121 

expression returned to the basal levels (Carlucci et al., 2008; Sirabella et al., 

2009). Interestingly, after the reoxygenation the reduction of mitochondrial 

FormFactor and AspectRatio values observed during OGD returned to the basal 

values. These results might be related to changes in the expression of 

endogenous NCX3 and AKAP121 during OGD and OGD/Rx, suggesting the 

involvement of these two proteins in the alteration of mitochondrial morphology 

observed during hypoxia.  

Understanding the mechanisms that regulate the mitochondrial metabolic 

activity during the cellular response to hypoxia, the characterization of the 

molecular mediators involved in mitochondrial fusion and fission events and the 

identification of ligands that can modulate these phenomena might be useful to 

set new strategies for the treatment of cerebral ischemia. 
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3. EXPERIMENTAL PROCEDURES 

 

3.1 Cell Culture 

Wild type and stably transfected BHK cells with canine cardiac NCX1, rat brain 

NCX2, or NCX3 (Linck et al., 1998) were grown on plastic dishes in a mix of 

DMEM and Ham's F12 media (1:1) (Gibco, Invitrogen, MI, Italy) supplemented 

with 5% fetal bovine serum, 100 U/ml penicillin, and 100 µg/ml streptomycin 

(Sigma, St. Louis, Missouri, USA). Cells were cultured in a humidified 5% CO2 

atmosphere; the culture medium was changed every two days. For confocal and 

calcium imaging experiments, cells were plated on glass coverslips (Fisher, 

Springfield, NJ, USA) coated with poly-D-lysine (100 µg/ml) (Sigma, St. Louis, 

Missouri, USA), and used at least 24- hrs after seeding. 

Mixed cultures of cortical neurons from Wistar rat pups, 2–4 days old, were 

prepared by modifying a previously described method (Abramov et al., 2007). 

The tissue was minced and trypsinized (0.1% for 15 min at 37°C), triturated, and 

plated on poly-D-lysine-coated coverslips and cultured in Neurobasal medium 

(Invitrogen) supplemented with B-27 (Invitrogen) and 2mM L-glutamine. For 

immunocytochemistry experiments, cells were plated at concentration of 1.8x106 

on 25-mm glass coverslips. Cultures were maintained at 37°C in a humidified 

atmosphere of 5%CO2 and 95% air, fed twice a week, and maintained for a 

minimum of 10 days before experimental use.  
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Primary cultures from NCX3 -/- mice were obtained as previously reported 

(Sokolow et al., 2004; Molinaro et al., 2008). 

3.2 Plasmids and transfection 

Mouse pCEP4-AKAP121 cDNA was a gift from Dr C. Rubin (Albert Einstein 

College of Medicine, NY). Vectors encoding CMV promoter, AKAP-121 protein, 

and AKAP-121 mutant lacking PKA binding activity (AKAP121L313-319P) have 

been previously described (Affaitati et al., 2003). PKA activity was fully inhibited 

by co-transfecting a specific PKA inhibitor (PKI) which contains a PKA 

pseudophosphorylation site as previously described (Orellana et al., 1993). 

OmicLink Expression M14 vector expressing NCX3-Flag was engineered by 

ligating an oligonucleotide encoding a 3XFLAG epitope to the carboxy terminus 

of mouse NCX3 cDNA (GeneCopeia). No deletion mutant of-length NCX3 was 

used. In order to knocking down NCX3, the nucleotide sequence corresponding 

to the first nucleotide of the start codon (+124–142) of rat NCX3 (GenBank 

accession no.U53420) was inserted in the mammalian expression vector 

pSUPER.retro.puro (OligoEngine). All these constructs were transiently 

transfected using Lipofectamine 2000 (Invitrogen) together with the plasmid 

vector for the green fluorescent protein (GFP) (0.5 μg). The siRNAs were 

transiently transfected using Lipofectamine 2000 (Invitrogen) at a final 

concentration of 250 pmol/ml of culture medium.  
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3.3 Mitochondrial Extracts 

- Extraction via differential centrifugation method  

BHK-Wt and NCX3 transfected cells were lysed in a buffer solution (Buffer A) 

containing the following (mM): 250mannitol, 0.5EGTA, 5HEPES (pH7.4), 

1.5MgCl2, 0.1%aprotinin, 0.7mg/ml pepstatin, and 1μg/ml leupeptin. Lysates 

were passed through a 26-gauge needle ten times. Samples were centrifuged 

twice, (2000rpm, 5min; 13000rpm, 10min). After the first centrifugation pellets, 

corresponding to the fraction that contains membranes but does not contain the 

intracellular organelles including mitochondria, was separated from supernatants 

and dosed for proteins. Supernatants, corresponding to the cytosolic fraction 

containing the organelles, were further centrifuged (2000rpm, 5min) to separate 

mitochondria from cytosolic fraction. Supernatants (Cytosol) were removed and 

dosed for proteins. The pellets containing mitochondria were then lysed in 50μl 

of lysis buffer containing (mM) 20Tris-HCl (pH7.5) , 10NaF, 150NaCl, 1PMSF, 

1% NONIDETP40, 1Na3VO4, 0.1%aprotinin, 0.7mg/ml pepstatin, and 1μl/mg 

leupeptin, and kept on ice for 15min. Finally, samples were purified again by 

centrifugation (13000rpm, 10min) and supernatants (mitochondria) were dosed 

for proteins by Bradford’s (Bradford et al., 1976) assay. The three fractions 

obtained were used for Western Blot(WB). The purity of mitochondrial 

preparation was assessed by evaluating the expression of the proteins: GM131 
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a Golgi marker, calnexin, an endoplasmic reticulum marker, and LAMP1, a 

lysosomes marker on the fractions relative to membranes, cytosol, and 

mitochondria 

- Extraction via Percoll gradient method 

The Percoll gradient method was used to purify mitochondria from tissues. C57 

mice and ncx3 -/-, previously anesthetized with halothane, were killed by 

decapitation, and the brains were rapidly removed. Each brain was incubated 

twice in cold phosphate buffer solution (PBS) and then homogenized in 5ml of 

buffer A. The homogenate was passed through a 22-gauge needle once and 

then through a 26-gauge needle five times. Subsequently, it was centrifuged 

four times for 5 min at 2000 rpm and once for 10 min at 13000 rpm. The 

supernatant was removed and dosed for proteins. The pellet, containing 

mitochondria, was suspended in 1ml buffer A and then stratified in a 3ml 

solution containing: 30% v/v Percoll, 250mM mannitol, 0.5mM EGTA, 5mM 

HEPES (pH 7.4), and centrifuged in a Sorvall centrifuge at 9,500g for 30 min at 

4°C. The fraction containing mitochondria, lying under the brown Percoll band, 

was removed, suspended in buffer A, and, then, centrifuged twice at 8000 rpm 

for 10 min. The pellet obtained was re-suspended in a 50μl NCX lysis buffer, 

kept on ice for 10 min and then centrifuged at 13000 rpm. The supernatant was 

dosed for proteins by Bradford’s assay and then used for Western Blot analysis.  
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3.4 Immunocytochemistry 

BHK-WT, and BHK cells stably transfected with NCX3 isoform and cortical 

neurons were cultured on glass coverslips (BHK cells for 48 h and cortical 

neurons for 11 DIV). The cells were rinsed twice in cold 0.01 M saline phosphate 

buffer at pH 7.4 (PBS) and fixed at room temperature in 4% (w/v) 

paraformaldheyde (Sigma, Milan, Italy) for 20 minutes. Following three washes 

in PBS, cells were blocked in PBS containing 10% FBS and the following 

antibodies: anti-NCX3 rabbit (kindly supplied by Dr. Philipson, dilution 1:4000), 

anti-MnSOD mouse (Upstate, dilution 1:200), anti-Flag mouse (Sigma, dilution 

1:500), and anti-AKAP121 rabbit (Carlucci et al., 2008); dilution 1:100). The cells 

were then incubated overnight at 4°C. Next, slides were washed in PBS, 

incubated with anti-rabbit cy2 antibody (Jackson; dilution 1:200) and anti-mouse 

cy3 antibody (Jackson; dilution 1:200) for 1 hr at room temperature (25°C) under 

dark conditions, and washed again with PBS. Finally they were mounted onto 

Slow fadeTM antifade (Invitrogen-Molecular Probes) and analysed by confocal 

microscopy. 

In some experiments, cells were incubated with Mitotracker Red CM XROS 

(20nM, 37°C for 30 min) before fixation to stain mitochondria in live cells. 

Cells were analyzed for co-localization between Mito (red ) and NCX3 (green) by 

using the “co-localization highlighter” plug-in for ImageJ Software (NIH, 
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Bethesda, MA, USA). Before co-localization analysis threshold settings for each 

image were determined and quantification was achieved by counting the number 

of NCX3/Mito co-localized points (white) per microscope field. Results were 

expressed as a percentage of colocalization. 

3.5 Western Blot 

- NCXs detection. 

Protein samples (50 g) were analyzed on 8% sodium dodecyl sulfate 

polyacrilamide gel with 5% sodium dodecyl sulfate stacking gel (SDS-PAGE) 

and electrotransferred onto Hybond ECL nitrocellulose paper (Amersham). 

Membranes were blocked with 5% not fat dry milk in 0.1% Tween-20 (TBS-T; 2 

mM Tris–HCl, 50 mM NaCl, pH 7.5) for 2 h at RT and subsequently incubated 

overnight at 4°C in the blocked buffer with the 1:1000 antibody for NCX1 

(polyclonal rabbit antibody, Swant), 1:1000 antibody for NCX2 (polyclonal rabbit 

antibody, Alpha Diagnostic), and 1:5000 antibody for NCX3 (polyclonal rabbit 

antibody, Philipson’s Laboratory). The membranes were washed with 0.1% 

Tween 20 and incubated with the secondary antibodies for 1 h (1:5000; 

Amersham). Immunoreactive bands were detected with the ECL (Amersham). 

Discrimination among the distinct types of extracts was ensured by running 

parallel Western Blots with the endogen protein tubulin (localized to cell 

membrane), Mn-SOD (localized into mitochondrial matrix), VDAC (outer 
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mitochondrial membrane) or COX4 (inner mitochondrial membrane). The optical 

density of the bands was determined by Chemi Doc Imaging System (Biorad). 

- Immunoprecipitation and immunoblot analysis. 

Cells were homogenized in lysis buffer containing (50 mM Tris-HCl pH 7.4, 0.15 

M NaCl, 1 mM EDTA, 1 % Triton X-100, 100 mM NaF, 100 mM Na3VO4, 5 µg/ml 

aprotinin, 10 µg/ml leupeptin and 2 µg/ml pepstatin). The lysates were cleared 

by centrifugation at 15,000 x g for 15 min. Cell lysates (2 mg) were 

immunoprecipitated with anti-Flag mouse antibody (1:100). An aliquot of cell 

lysate (100 µg) or immunoprecipitates were resolved by SDS-PAGE gel and 

transferred onto nitrocellulose membrane. Immunoblot analysis was performed 

using anti AKAP-121 antibody, as previously described (Cardone et al., 2004). 

Chemio-luminescent (ECL) signals were quantified by Chemi Doc Imaging 

System (Biorad).  

3.6 Immuno-Electron Microscopy analysis 

Cells were fixed with a mixture of 4% paraformaldehide and 0.05% 

glutaraldehyde, labeled with a polyclonal antibody against NCX3 using the gold-

enhance protocol, embedded in Epon-812, and cut in thin sections (Polishchuk et 

al., 2003). EM images were acquired from thin sections using a FEI Tecnai-12 

electron microscope equipped with an ULTRA VIEW CCD digital camera (FEI, 

Eindhoven, The Netherlands). Surface gold density (arbitrary units, au) was 
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estimated according to Griffiths and Hoppeler method (Griffiths et al., 1986). 

According to this method a morphometric grid with definitive size (100 nm) was 

applied to all images acquired and then the number of gold particles present on 

membranes of interest (mitochondria, ER, PM) was counted. Next, the number 

of intersections between the organelle membranes and the grid was calculated. 

In the case of mitochondria only outer membrane was calculated. Finally, the 

number of gold particles was divided by the number of intersections to derive the 

gold density value. Thirty structures were analyzed for each compartment of 

interest. Surface gold density for NCX3 in mitochondria corresponded to 0.19 

AU in neurons and 0.21 AU in BHK- transfected cells; surface gold density for 

NCX3 in ER corresponded to 0.24 AU in neurons and to 0.32 AU in BHK-

transfected cells and finally, in plasma membrane surface gold density for NCX3 

corresponds to 0.23 AU in neurons and 0.98 AU in BHK-transfected cells. 

3.7 Imaging mitochondrial Ca2+ and mitochondrial membrane potential. 

[Ca2+]m was assessed using the fluorescent dye X-Rhod1. Cells were loaded 

with X-Rhod1 0.2 M for 15 min in a medium containing 156 mM NaCl, 3 mM 

KCl, 2 mM MgSO4, 1.25 mM KH2PO4, 2 mM CaCl2, 10 mM glucose, and 10 mM 

Hepes. The pH was adjusted to 7.35 with NaOH. At the end of the incubation, 

cells were washed 3 times in the same medium. An increase in mitochondria-

localized intensity of fluorescence was indicative of mitochondrial Ca2+ overload.  
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Mitochondrial membrane potential was assessed using the fluorescent dye 

tetramethyl rhodamine ethyl ester (TMRE) in the “redistribution mode”. Cells 

were loaded with TMRE (20 nM) for 30 min in the above described medium. At 

the end of the incubation, the cells were washed in the same medium containing 

TMRE (20 nM) and allowed to equilibrate. A decline in mitochondria-localized 

intensity of fluorescence was indicative of mitochondrial membrane 

depolarization. 

Confocal images were obtained using a Zeiss inverted 510 confocal laser 

scanning microscopy and a 63X oil immersion objective. The illumination 

intensity of 543 Xenon laser, used to excite X-Rhod-1 and TMRE fluorescence, 

was kept to a minimum of 0.5% of laser output to avoid phototoxicity.  

3.8 Imaging cytosolic Ca2+  

[Ca2+]i was measured by single cell computer-assisted video imaging (Secondo 

et al., 2007). In brief, cells, grown on glass coverslips, were loaded with 5 M 

Fura-2 acetoxymethyl ester (Fura-2AM) for 30 min at room temperature in 

normal Krebs solution containing (in mM): 5.5 KCl, 160 NaCl, 1.2 MgCl2, 1.5 

CaCl2, 10 glucose, and 10 Hepes–NaOH, pH 7.4. At the end of the Fura-2AM 

loading period, the coverslips were placed into a perfusion chamber (Medical 

System, Co. Greenvale, NY, USA) mounted onto a Zeiss Axiovert 200 

microscope (Carl Zeiss, Germany) equipped with a FLUAR 40X oil objective 
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lens. The experiments were performed as previously reported (Secondo et al., 

2007). 

3.9 Chemical hypoxia (CH/HYP) 

Chemical hypoxia was reproduced by treating cells with 5g/ml oligomycin and 

2mM 2-DG in a medium without glucose and containing (in mM): 145 NaCl, 5.5 

KCl, 1.2 MgCl2, 1.5 CaCl2, and 10 Hepes, pH 7.4, for 45 min as already 

described (Secondo et al., 2007). Control cells were exposed to normal Krebs 

solution composed of (in mM): 145 NaCl, 5.5 KCl, 1.2 MgCl2, 1.5 CaCl2, 10 

Glucose, and 10 Hepes, pH 7.4 for 45 min.  

3.10 Combined oxygen and glucose deprivation and reoxygenation (OGD) 

Cortical neurons were exposed to OGD for 3 hrs followed by 24 hrs 

reoxygenation according to a previously reported protocol (Goldberg et al., 

1993). Briefly, the culture medium was replaced with a hypoxia medium 

previously saturated for 20 min with 95% N2 and 5% CO2 and containing NaCl 

116 mM, KCl 5.4 mM, MgSO4 0.8 mM, NaHCO3 26.2 mM, NaH2PO4 1 mM, 

CaCl2 1.8 mM, glycine 0.01 mM and 0.001 w/v phenol red. Hypoxic conditions 

were maintained using a hypoxia chamber (temperature 37°C, atmosphere 95% 

N2 and 5% CO2). These experimental conditions induced 30% decrease of pO2 

in the medium.  

Deprivation of oxygen and glucose was stopped by placing the cells in the 
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regular culture medium saturated with a mixture of 95% O2 and 5% CO2 for 10 

min. Reoxygenation was achieved by returning neurons to normoxic conditions 

(37°C in a humidified 5% CO2 atmosphere) for 24 hrs. 

3.11 Determination of cell death: Propidium Iodide assay 

Cell death was evaluated by measuring the ratio between dead and living cells. 

To quantify cell death after the experimental procedures, the cells were washed 

with normal Krebs and double stained with 36M Fluorescein Diacetate (FDA) 

and 7M Propidium Iodide (PI) for 5 min at 37°C in a phosphate buffer solution. 

Stained cells were examined immediately with a standard inverse fluorescence 

microscope at 480 nm and 546 nm (Secondo et al., 2007). PI- and FDA-positive 

cells were counted in three representative high power fields of independent 

cultures and cell death was determined by the ratio of the number of PI positive 

cells/PI + FDA-stained positive cells (Wei et al., 2000). 

3.12 Quantification of ATP content 

ATP content was measured with a commercial bioluminescent assay (ATP 

bioluminescent assay kit, Sigma, St. Louis, Missouri, USA) according to 

manufacturer’s instruction. Briefly, ATP was extracted by boiling the samples in 

a solution containing (in mM) 100 TRIS, 4 EDTA, pH 7.75. After centrifugation at 

10,000×g for 60 s, samples were diluted at 1:50 in dilution buffer (Sigma, FL-

AA). To obtain bioluminescence measurements with a standard luminometer, 
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100l of supernatant was mixed with 100l of luciferin–luciferase solution. The 

standard curve of ATP was obtained by serial dilution of 2M ATP solution 

(Maeda et al., 2003). 

3.13 Statistical Analysis 

Data were generated from a minimum of three independent experiments. 

Calcium measurements were performed at least in 20 cells for each of the  three 

independent experimental sessions. Data are expressed as mean +S.E.M. 

Statistical analysis was performed with analysis of variance followed by 

Newman-Keuls test. Statistical significance was accepted at the 95% confidence 

level (P +0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 

 

4.RESULTS 

 

4.1 Biochemical identification and localization of NCX3 isoform on the 
OMM 

 

Western blot experiments on mitochondrial fractions obtained from BHK cells 

stably transfected with each of the three isoforms of NCX were firstly performed 

in order to identify which NCX isoform might be present on mitochondria. The 

results obtained demonstrated that NCX3 protein, apart its presence at the 

plasmamembrane (PM) level, was also localized on mitochondria membranes 

(Figure 7A), whereas NCX1 and NCX2 isoforms were not detected (Figure 7C-

D). In particular, experiments performed on whole mitochondria or mitochondrial 

fraction of BHK-NCX3 transfected cells demonstrated that NCX3 is located on 

the outer mitochondrial membrane. Indeed, when the outer mitochondrial 

membrane was removed by treatment with the detergent TritonX-100 (0.2%) or 

with Trypsin (20 g/ml), or with TritonX-100+Trypsin (Sardanelli et al., 2006), 

NCX3 immunoreactivity disappeared. Instead, Mn-SOD immunoreactivity, a 

marker of mitochondrial matrix, and COX-4 a marker of IMM, remained 

unaffected (Figure 7B).  
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Fig. 7. Biochemical identification and localization of NCX3 isoform on the outer 
mitochondrial membrane in BHK transfected cells. A, Expression of NCX3 within 

membrane, cytosolic, and mitochondrial fractions obtained from BHK-WT and stably 
transfected BHK-NCX3 cells. B, Localization of NCX3 isoform on the outer 

mitochondrial membrane. Whole mitochondria of stably transfected BHK-NCX3 cells 

were digested with trypsin (2g/100l) in the absence or in the presence of Triton X-100 
(0.2% v/v) as indicated. C-D, Expression of NCX1 (C) and NCX2 (D) within membrane, 

cytosolic, and mitochondrial fractions obtained from BHK-WT and stably transfected 
BHK-NCX1 or BHK-NCX2 cells, respectively. 
 
 
 

This finding was supported by electron microscopy experiments performed in 

NCX3 BHK transfected cells (Figure 8) demonstrating that NCX3 is present for 

98% in the plasmamembrane, for 21% on the OMM and for 32% in ER. 
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.                

Fig.8: Distribution of NCX3 in BHK-Wt and in BHK-NCX3 stably transfected cells 
along the PM, ER and mitochondria (arrows). In mitochondria gold particles can be 
detected exclusively on OMM. Surface gold density for NCX3 in mitochondria in BHK-
transfected cells corresponded to 0.21 AU, in ER to 0.32 AU and, finally, in 
plasmamembrane to 0.98 AU.  
 

 

In order to exclude the presence of ER contamination and to validate the purity 

of mitochondrial preparation, Western Blot analysis on mitochondrial extracts 

from NCX3 BHK transfected cells were performed using antibodies against 

different markers specific for ER (calnexin), for Golgi apparatus (GM131), for 

lysosomes (LAMP1) and for mitochondria (DRP1 and COXIV). The results of 

these experiments confirmed the absence of calnexin positivity on mitochondrial 

fraction, excluding therefore, the presence of ER contamination (Figure 9).  
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Fig 9: Validation of the purity of mitochondrial preparation. Absence of ER 

(calnexin), Golgi (GM130) and lysosomes (LAMP1) contamination on mitochondrial 
fraction (DRP1 and COXIV positive) in BHK-NCX3 stably transfected cells.  

 

Interestingly, confocal double immunofluorescence experiments showed the 

coexistence of NCX3 immunoreactivity with MitoTracker-stained mitochondria, 

both along neurites and in the cell body of cortical neurons (Figure 10A, panels 

d,e). Furthermore, a higher magnification image of a single mitochondrion from 

neurites (Figure 10A, panel f) revealed that NCX3 immunosignal was selectively 

localized at the level of mitochondrial membranes. The calculated percentage of 

NCX3 immunoreactivity in mitochondria corresponds to 25% of the total NCX3 

signal (Figure 10B).  
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Fig.10: Mitochondrial distribution of NCX3 in cortical neurons. A(panels a-d), A 

representative cortical neuron double-labelled with NCX3(green) and 
MitoTracker(red).(e), Co-expression of NCX3 punctate staining(green) with 
mitochondria(red) along a single neurite.(f), Higher magnification image depicting NCX3 

punctate distribution on a single mitochondrion. Scale bars:20m in a-d;5m in e;2m 
in f.(B), Quantification of co-localization amount of NCX3 immunosignal at mitochondrial 

level measured as percentage of the total NCX3 immunosignal. 

 

 

Electron microscopy experiments were performed in NCX3+/+ and NCX3-/- 

neurons (Figure 11A) demonstrating that surface gold density for NCX3 in 

mitochondria corresponded to 0.19 AU, in ER corresponded to 0.24 AU and, 

finally, in plasma membrane corresponds to 0.23 AU in neurons (Figure 11B).  
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Fig.11: Mitochondrial distribution of NCX3 in cortical neurons. (A) Distribution and 
(B) quantification of endogenous NCX3 in NCX3+/+ and NCX3-/- neurons along the 
PM, ER and mitochondria(arrows).Insets show NCX3 exclusively on OMM.  

 

 

These morphological data were corroborated by Western Blot analysis. Indeed, 

mitochondria obtained from whole brain of NCX3 +/+ mice displayed a clear-cut 

NCX3 immunoreactivity.  
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                               A 

                                      

                                B 

                               

 

Fig.12: Mitochondrial expression and function of NCX3 in the brain. (A), 

Localization of NCX3 within membrane, cytosolic and mitochondrial fractions obtained 
from total mouse brain of wild type NCX3+/+ mice and within total lysates obtained from 
NCX3-/- mice. (B), Quantification of basal [Ca2+]m levels measured in cortical neurons 

obtained from NCX3-/- and NCX3+/+ mice. 

 
 

Once demonstrated that NCX3 is present on mitochondria, further experiments 

were performed in order to demonstrate its role in mitochondrial calcium 

handling. To this aim cells were loaded with the fluorescent probe X-Rhod-1 and 

[Ca2+]m measured by a confocal approach. The results of these experiments 

demonstrated that basal [Ca2+]m levels were higher in cortical neurons obtained 

from NCX3-/- than in NCX3+/+neurons (Figure12B). Conversely, BHK cells 
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over-expressing NCX3 displayed lower [Ca2+]m than did BHK-Wt cells (Figure 

13).  

 

                                   

 

 

Fig.13: Quantification of basal mitochondrial [Ca2+]m measured in BHK-Wt and in 
stably transfected BHK-NCX3 cells. *P<0.05 vs BHK-Wt cells 
 

 

4.2 Biochemical interaction between NCX3 and AKAP121 on the outer 

mitochondrial membrane 

 

Once NCX3 was localized on the OMM, further experiments were performed to 

characterize its biochemical properties. In particular, we hypothesized whether 

the PKA anchoring protein AKAP121, which is exclusively localized on the 

mitochondria, might play a role in the regulation of mitochondrial NCX3 activity. 

This hypothesis was supported by the observation that NCX family proteins 

have been demonstrated to possess multiple sites of phosphorylation, by PKA 

and PKC responsible of regulating Na+/Ca2+ exchanger activity, in response to 
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both physiological and pathophysiological stimuli (Blaustein and Lederer, 1999; 

Schulze et al., 2003). To test this hypothesis, BHK-Wt cells were transiently co-

transfected with NCX3-Flag (NCX3F) and AKAP121. In these cells, confocal 

microscopy showed that NCX3F immunoreactivity co-localized in a large number 

of mitochondria stained with MitoTracker (Figure 14A, panels a-h). Double 

immunofluorescence experiments (Fig.14A, panels i-l) performed with both anti-

NCX3 and anti-FLAG antibodies revealed the co-existence of NCX3 and NCX3F 

immunosignals. 
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Fig.14: Localization of NCX3F at mitochondrial level in BHK WT cells. (panels a-d) 
Co-localization of anti-FLAG antibodies(green) with MitoTracker(red) in BHK-; (panels 
e-h) higher magnification images of the frame depicted in a-d showing numerous NCX3 

puncta localized on mitochondria. Scale bars: 20m in a-d; 5m in e-h; (panels i-l) 
co-localization of anti-FLAG antibody(red) with NCX3 antibody(green) in BHK-

NCX3F.Scale bars: i-l, 20m  

 

 

In addition, immunocitochemistry experiments showed that AKAP121 co-

localized with NCX3F in BHK cells co-transfected with both constructs (Figure 

15A). Moreover, we performed co-immunoprecipitation experiments using total 

lysates prepared from BHK wild type, transiently NCX3-transfected and 

NCX3+AKAP121 co-transfected cells. Forty-eight hrs following transfection, total 

lysates were prepared and subjected to immunoprecipitation with anti-Flag 

antibody. Subsequently, the precipitates were immunoblotted with anti-AKAP121 

antibody. The results obtained demonstrated that NCX3 and AKAP121 form a 

stable complex in transiently NCX3F+AKAP121 co-transfected BHK cells (Figure 

15B). Conversely, in BHK cells singly transfected with NCX3F, only a light co-

precipitated band was observed, implying the possible involvement of the 

constitutively expressed AKAP121 protein. 
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Fig.15: Interaction between NCX3 and AKAP121 in double transiently co-
transfected BHK cells. (A) Co-expression of anti-Flag (green) and AKAP121 (red) 

antibodies in BHK-NCX3F cells. Scale bar in a-c: 5m. (B) Cells extracts from BHK-
AKAP121 and BHK-AKAP121+NCX3F were subjected to immunoprecipitation with anti-
Flag antibodies followed by immunoblotting with either anti-AKAP121 or anti-Flag 
antibodies. 

 

 

 

4.3 Functional interaction between mitochondrial NCX3 and AKAP121 

 

To demonstrate that the molecular interaction between NCX3 and AKAP121 

may be responsible for the mitochondrial Ca2+ handling, further experiments 

were performed on BHK cells transiently co-transfected with NCX3F and 

AKAP121. In these cells, basal [Ca2+]m were lower than those measured in 

single transiently transfected AKAP121, NCX3F, and Wt BHK cells (Figure 16). 
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However, [Ca2+]min BHK-NCX3 transiently transfected cells resulted higher 

compared to [Ca2+]m measured in stably transfected BHK-NCX3 cells. This was 

probably due to an adaptative response occurring in stably transfected cells 

which affects intracellular calcium homeostasis (Fig.16 vs Fig.13). Interestingly, 

when the cells were transiently co-transfected with NCX3F and the AKAP121L313-

319P, a mutant unable to bind PKA, the [Ca2+]m were higher than those detected 

in BHK cells transiently co-transfected with NCX3F and AKAP121. Similar results 

occurred when these cells were further transiently co-transfected with the 

specific Protein Kinase Inhibitor (PKI) construct, which is able to inhibit the 

catalytic subunit of PKA (Figure 16). 

                        

Fig.16: [Ca2+]m in BHK WT and in BHK-NCX3F transiently transfected. Basal [Ca2+]m 

in BHK-Wt cells and transiently transfected with AKAP121, NCX3F, NCX3F+AKAP121, 
NCX3F+AKAP121L313-319P, and the PKI construct.*P<0.05 vs BHK–Wt cells, BHK-
AKAP121 or BHK-NCX3F; **P<0.05 vs BHK-NCX3F+AKAP121. 

 

To evaluate the effect of NCX3 and AKAP121 on Ca2+ efflux under conditions of 



71 

 

elevated [Ca2+]m, BHK cells co-transfected with NCX3F and AKAP121 were first 

exposed to ionomycin (3M, 15min) to allow mitochondrial Ca2+ loading and to 

activate mitochondrial Ca2+ efflux mechanisms such as mNCX. They were then 

exposed to the mitochondrial uncoupler FCCP (250nM) to induce mitochondrial 

depolarization and Ca2+ extrusion (Park et al., 2002). After ionomycin treatment, 

the amount of Ca2+ extruded in the cytoplasm upon FCCP exposure was 

measured as [Ca2+]I increase. This release is widely considered as an index of 

mitochondrial Ca2+ efflux. For instance, when Ca2+ release in the cytoplasm is 

low, higher activity of mitochondrial Ca2+ efflux pathway may occur. Intriguingly, 

BHK cells transfected only with NCX3F showed an increase in Ca2+ efflux activity 

as compared to wild type or BHK cells transfected with AKAP121. In these cells, 

however, Ca2+ efflux activity decreased when AKAP121 was silenced but 

significantly increased when the cells were co-transfected with NCX3F and 

AKAP121 (Figure 17). Moreover, when the catalytic subunit of PKA was 

inhibited by the PKI construct, the effect of AKAP121 was neutralized and the 

resulted Ca2+ efflux was similar to that obtained in NCX3F transfected cells. The 

specificity of siRNA for AKAP121 was reported in Figure 17. 
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Fig.17: Effect of ionomycin on [Ca2+]m in BHK-NCX3F+AKAP121, BHK-
NCX3F+siAKAP121, BHK-NCX3F+AKAP121+PKI. *P<0.05 vs BHK-Wt and BHK-
AKAP121. **P<0.05 vs BHK-NCX3F;^P<0.05 vs BHK-NCX3F+AKAP121; (inset), Effect 
of siAKAP on AKAP121 protein expression in BHK-Wt and BHK-NCX3F. *P<0.05 
vs BHK-Wt. 

 

 

To further demonstrate that mNCX3 controls Ca2+ efflux from mitochondria, BHK 

NCX3F and NCX3F+AKAP121 transiently co-transfected cells were preincubated 

with the putative inhibitor of mitochondrial Na+/Ca2+ exchanger CGP-37157 (Cox 

et al.,1993) and then exposed to FCCP to induce mitochondrial Ca2+ extrusion. 

CGP-37157 (10M) reduced FCCP-induced mitochondrial Ca2+ extrusion in BHK 

cells transiently transfected either with NCX3F or NCX3F+AKAP121. Conversely, 
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CGP-37157 was ineffective in BHK–Wt cells since this clone does not express 

the NCX isoforms (Figure 18). Moreover, to rule out the possibility that 

ionomycin or CGP-37157 could trigger a depolarization of the mitochondrial 

membrane, we measured m in ionomycin- and CGP-treated cells (Figure 18 

inset). 

 

                        

Fig.18: Effect of CGP-37157 on [Ca2+]i measured in BHK-Wt and BHK-NCX3F or 
BHK-NCX3F+AKAP121 transfected cells. *P<0.05 vs BHK-Wt; **P<0.05 vs BHK-

NCX3F and vs BHK-NCX3F+AKAP121; (inset),m in BHK-Wt cells after treatment 

with CGP-37157 and with ionomycin. Each bar represents the mean ± S.E.M. of 
different experimental values in 3 independent experimental sessions. 

 

 

4.4 Effect of hypoxia on mNCX3 activity in cortical neurons and in NCX3F-

AKAP121 BHK transfected cells  

 

To demonstrate whether endogenous NCX3 modulates mitochondrial Ca2+ 
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extrusion, experiments were performed in cortical neurons exposed to Oxygen 

and Glucose Deprivation (OGD) followed by Reoxygenation (Rx). Quantitative 

co-localization analysis of NCX3 with Mitotracker demonstrated that NCX3 

mitochondrial immunosignal decreased during OGD and returned to the basal 

level after OGD/Rx (Figure 19).  

          A                                                       B 

                

Fig.19. Localization of mNCX3 in cortical neurons exposed to OGD and OGD/Rx. 
A, Confocal double immunofluorescence images displaying both NCX3 (green) and 

Mito (red) immunosignals in cortical neurons under control conditions (panels a-c) and 
following OGD (d-f) or OGD/Rx (g-i). Superimposed images displaying co-localizing 

pixels (white) in panels c, f and i. Scale bars: a-i: 20m. B, Quantification of the number 
of NCX3/Mito colocalized points (white). Each bar represents the mean ± S.E.M. of the 
data obtained from 10 microscope fields per group in 3 independent experimental 
sessions.*P<0.05 vs CTL; **P<0.05 vs OGD. 

 

Accordingly, [Ca2+]m significantly increased when neurons were exposed to 
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OGD, whereas decreased following OGD/Rx (Figure 20). Interestingly, when 

NCX3 was knocked down with siRNA, an impairment in mitochondrial Ca2+ 

extrusion was recorded both under basal and OGD/Rx conditions. On the other 

hand, no alteration occurred in mitochondrial Ca2+ extrusion during OGD, a 

condition in which NCX3 mitochondrial immunosignal decreased. 

 

 

Fig.20: [Ca2+]m measured by X-Rhod1 and Fura-2AM in cortical neurons 
transiently transfected with siNCX3 and exposed to OGD and OGD/Rx. *P<0.05 vs 
CTL;**P<0.05 vs OGD;***P<0.05 vs OGD/Rx 

 

 

The increase in [Ca2+]m elicited by chemical hypoxia in BHK-Wt cells was 

reduced when these cells were transfected with NCX3F, thus showing that 

mNCX3 was working as a Ca2+ efflux pathway (Figure 21). Moreover, when BHK 

cells were transfected with NCX3F and, subsequently, with AKAP121L313-319P 

mutant, [Ca2+]m increased in response to chemical hypoxia. Similarly, the 

silencing of endogenous AKAP121 in BHK cells transfected with NCX3F reduced 
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Ca2+ efflux activity of the mNCX, as demonstrated by the increase in the [Ca2+]m 

caused by chemical hypoxia (Figure 21). Interestingly, the transfection of the 

PKI construct in NCX3F+AKAP121 transiently co-transfected BHK cells 

prevented the reduction in [Ca2+]m operated by the exchanger and the anchoring 

protein during chemical hypoxia (Figure 21).  

A                                                                    B 

 
 
Fig.21. Effect of chemical hypoxia on [Ca2+]m in NCX3-AKAP-121 BHK transfected 
cells. [Ca2+]m measured after 45 min chemical hypoxia exposure in BHK-WT cells and 

in BHK-WT cells transiently transfected with NCX3-Flag (NCX3F), NCX3F+ siAKAP-121; 
NCX3F+ AKAP-121, NCX3F+ AKAP121L313-319P mutant and NCX3F+ AKAP-121+ PKI 
construct. The quantification of [Ca2+]m is expressed as arbitrary units of X-Rhod1 
fluorescence under normoxic conditions (black bar) and after 45 min of chemical 
hypoxia (white bars). Each bar represents the mean ±S.E.M. of different experimental 
values studied in three independent experimental sessions. *P < 0.05 vs.control BHK-
WT cells; **P < 0.05 vs. BHK-WT cells exposed to 45 min of chemical hypoxia; ***P < 
0.05 vs. BHK-NCX3F and transfected cells exposed to chemical hypoxia; ^P < 0.05 vs. 
BHK-NCX3F + AKAP-121 co-transfected cells exposed to chemical hypoxia.  
 

 

In agreement with these results, cell survival in response to chemical hypoxia 

was higher in BHK cells transfected with NCX3F or co-transfected with 
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NCX3F+AKAP121. Moreover, the silencing of constitutively expressed AKAP121 

completely reverted the pro-survival effect exerted by either NCX3F or 

NCX3F+AKAP121 transfection (Figure 22). 

 

                  

Fig.22 Effect of chemical hypoxia + 15 hours of reoxygenation on cell viability in 
BHK-WT cells and in BHK transiently transfected with NCX3F, NCX3F + AKAP121, 

and NCX3F + siRNA AKAP-121. The cells were double stained with 36 M fluorescein 

diacetate and 7 M propidium iodide (PI) under control conditions and after 45 min of 
chemical hypoxia + 15 hours of reoxygenation. *P < 0.05 vs. respective control; **P < 
0.05 vs. BHK-WT  cells exposed to 45 min chemical hypoxia + 15 h reoxygenation; **P 
< 0.05 vs. BHK-NCX3F cells exposed to 45 min chemical hypoxia + 15 h reoxygenation.  
 

 

4.5 Effect of hypoxia on mitochondrial morphology in primary neurons  

 

Primary cultures of hippocampal neurons (Figure 23) were exposed to a protocol 

of chemical hypoxia for 45 minutes. After this treatment the cells were incubated 

with fluorescent probes specific for the mitochondrial mass, such as Mitotracker 

Red CMXRos or MitoTracker GreenTM. The neurons showed a strong alteration 
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of mitochondrial morphology after the hypoxic stimulus: from elongated to small 

and spherical mitochondria. 

 

Fig.23: Effect of chemical hypoxia on mitochondrial morphology in hippocampal 
neurons 

. 

 

 

4.6 Analysis of mitochondrial morphology using the ImageJ 1.42 software 

 

To label mitochondria, the cells were incubated with MitoTracker Red 

(Invitrogen, 20 nM) for 15 min prior to fixation. Digital images were captured on a 

confocal microscope, using a 100X oil immersion lens and subjected to a 2D 

deconvolution step, which is meant to compensate for optical imperfections of 

the microscope. To this end, we used the ‘‘Interative Deconvolution’’, a plug-in 
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written by Bob Dougherty for ImageJ. After these image enhancements, 

mitochondrial shape metrics were reported by an ImageJ macro, 

"Morphometry", described by Cribbs and Strack (Methods in Enzymology, 

2009). This macro allowed us to determine two parameters of mitochondrial 

morphology: form factor (FF) and aspect ratio (AR). The aspect ratio (major axis 

divided by minor axis) is a useful shape metric for simple rod-like mitochondria, 

but it does not faithfully represent the shape of kinked, branched, or highly 

interconnected mitochondria. The form factor takes into account perimeter and 

area and can therefore capture complex mitochondrial shapes. As the inverse of 

circularity, form factors range from 1 for a perfect circle to infinity as the ratio of 

particle perimeter to area increases. The values assigned to each element, 

specifically to each mitochondrion, vary from 0 (circular mitochondria, 

completely fragmented) to 4 (elongated and highly interconnected).  

Primary cultures of hippocampal neurons were exposed to a protocol of 

chemical hypoxia for 45 minutes, incubated with MitoTracker and, therefore, 

analysed by confocal microscopy in order to obtain several images to process 

by the macro "Morphometry". The obtained results showed that in the cells 

subjected to hypoxic insult, the values of FF and AR of mitochondria were 

significantly lower than those measured in control cells. (Figure 24). 

A                                                          B 
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Fig.24: A, FormFactor and B, Aspect Ratio in hippocampal neurons subjected to 
chemical hypoxia. *P<0.05 vs CTL cells 
 

 

Similar results were obtained both in hippocampal and cortical neurons exposed 

to 3 and 6 hours of OGD. After this treatment the cells showed a reduction of the 

FF and AR values, suggesting a marked effect of hypoxia on the mitochondrial 

morphology (Figure 25). 
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Fig.25: A, FormFactor and B, Aspect Ratio in cortical neurons exposed to 3 and 6 
hours of OGD. *P<0.05 vs CTL cells 

 

 

4.7 Analysis of DRP-1 and MFN-2 expression in hippocampal neurons 

exposed to OGD 

 

Further aim of the study was to evaluate changes in DRP-1 and Mfn-2 

expression after ischemic insult. The results obtained showed that the levels of 

DRP-1 expression significantly increased in hippocampal neurons exposed to 3 

and 6 hours of OGD, while expression levels of MFN2 decreased, suggesting 
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the involvement of these proteins in mitochondrial fragmentation event during 

the ischemic process (Figure 26). 

 

                         

Fig.26: DRP-1 and MFN2 expression in hippocampal neurons exposed to 3 and 6 

hours of OGD. *P<0.05 vs CTL cells 
 

4.8 Quantification of mitochondrial functional parameters in cortical 

neurons exposed to 6 hours of OGD. 

 

Once demonstrated that the neurons exposed to OGD showed mitochondrial 

morphology changes and alterations of the mitochondrial fusion and fission 

events, the next step of the study was to verify a relationship between these 

phenomena and mitochondrial functions. To this aim, confocal microscopy 

experiments were performed to evaluate the mitochondrial membrane potential 

in cortical neurons exposed to OGD. The neurons were incubated with TMRE 



83 

 

and the obtained results showed that the intensity of fluorescence measured in 

mitochondria of neurons exposed both to 3 and to 6 hours of OGD was 

significantly lower than that measured in mitochondria of control neurons (Figure 

27A). In parallel, we measured the intramitochondrial calcium levels with the 

fluorescent probe X-Rhod1. The results obtained showed an increase in the 

intensity fluorescence of mitochondria in neurons exposed to OGD (3 and 6 

hours) compared to control cells (Figure 27B). 

 

A                                                                B 

Fig.27: A, Effect of OGD on m and B, on [Ca2+]m in cortical neurons. *P<0.05 vs 
CTL cells 
 

 

Furthermore it has long been known that hypoxia is able to induce a significant 

depletion of ATP. Indeed, hippocampal neurons exposed to 3 and 6 hours of 
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OGD showed a significant reduction in ATP levels compared to baseline levels 

of ATP measured in control cells (Figure 28). 

                                   

Fig.28: Quantification of ATP content in hippocampal neurons exposed to OGD. 
*P<0.05 vs CTL cells 

 

 

4.9 Effect of OGD on mitochondrial morphology in Siah2 +/+ versus  

Siah2-/- cortical neurons. 

 

Siah’s contribution to mitochondria function was also provided by its ability to 

regulate the stability of A-kinase anchoring protein 121 (AKAP121) (Carlucci et 

al., 2008). Control of AKAP121 stability suggests a possible role for Siah2 in 

regulating mitochondrial membrane potential, mitochondrial activity and possibly 

oxidative phosphorylation. Given that AKAP121 was demonstrated to be a Siah2 

substrate in mitochondria (Carlucci et al., 2008), we assessed the possibility that 

AKAP121 plays a role in regulating mitochondrial morphology. Indeed, it was 
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recently shown that AKAP121 is rapidly degraded in cells subjected to hypoxia 

by a mechanism mediated by the activation of SIAH2. This effect associates 

with a loss of mitochondrial membrane potential and reduced mitochondrial 

metabolic activity (Carlucci et al., 2008). Considering these observations we 

used neurons from Siah2 +/+ and Siah2 -/- mice to evaluate changes of 

mitochondrial morphology and functional parameters, such as mitochondrial 

membrane potential, mitochondrial calcium concentration and ATP production. 

The data obtained showed that the reduction of FF and AR observed during 

OGD in neurons Wt reverted in the absence of Siah2. 

A                                                                   B 

           

Fig.29: A, FormFactor and B, AspectRatio in cortical neurons obtained from Siah2 
+/+  and Siah2 -/- mice. *P<0.05 vs CTL cells 
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Once demonstrated that mitochondria of neurons siah2 -/- exposed to OGD did 

not show the same morphological changes observed in mitochondria of the 

neurons siah2+/+, further experiments were performed in these neurons to 

evaluate differences in mitochondrial functional parameters. The obtained 

results demonstrated that after OGD the neurons siah2 -/- did not show the 

same alteration of m (Figure 30A), the same reduction in [Ca2+]m (figure 30B) 

and the same alteration of ATP levels (Figure 30C) observed in neurons 

siah2+/+, suggesting the involvement of AKAP121 protein in the phenomenon of 

mitochondrial fragmentation during hypoxic stimulus. 

 
 
Fig.30: A, Mitochondrial [Ca2+] B, m, and C, ATP content in cortical neurons 
siah2-/- and siah2+/+ exposed to 3 hrs of OGD. *P<0.05 vs Wt cells 
 

Since the previous data demonstrated that mitochondrial calcium homeostasis 

seems be involved in the alteration of mitochondrial dynamics during the 
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neuronal ischemic death, the next step was to verify the role of NCX3 and the 

putative interaction between this protein and AKAP121 in this phenomenon. To 

this aim the neurons were exposed to OGD, a condition in which NCX3 and 

AKAP121 expression were reduced, followed by OGD/Rx, a condition in which 

NCX3 and AKAP121 expression returned to the basal values (Carlucci et al., 

2008; Sirabella et al., 2009). Interestingly, after the Reoxygenation the reduction 

of mitochondrial FF and AR values observed during OGD returned to the basal 

values (Figure 31). These results might be related to changes in the expression 

of endogenous NCX3 and AKAP121 during OGD and OGD/Rx, suggesting the 

involvement of these two proteins in the alteration of mitochondrial morphology 

observed during hypoxia.  

 

 
 
Fig.31: FF and AR in cortical neurons exposed to OGD and OGD/Rx. *P<0.05 vs 
CTL cells 
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5.DISCUSSION 

 

The results of the present study clearly demonstrate that the nuclear encoded 

NCX3 is the only isoform of the Na+/Ca2+-exchanger localized within the outer 

mitochondrial membrane (OMM), where it plays a relevant role in the control of 

mitochondrial Ca2+homeostasis both under basal and under hypoxic conditions.  

First, this study provides evidence that only the nuclear encoded NCX3 isoform, 

but not NCX1 and NCX2, was localized on mitochondria. In particular, mNCX3 

was specifically localized on the OMM, as its lysis by detergent agents 

completely eliminated NCX3 immunoreactivity at mitochondrial level. In this 

regard, an even more convincing result was that NCX3 gene ablation induced 

protein loss from the OMM and mitochondrial Ca2+accumulation in cortical 

neurons. Interestingly, in neurons NCX3-mitochondrial localization is particularly 

evident along the neurites and in the neuropils close to the plasmatic 

membrane, where ATP is necessary to drive the activity of those proteins 

involved in the regulation of ionic homeostasis (Blaustein et al., 2002; Lytton et 

al., 2009). Recently the group of Palty et al. identified in the inner mitochondrial 

membrane (IMM), particularly within the cristae, another component of the 

Na+/Ca2+exchanger family, namely, NCLX. This Li+ sensitive protein is both 

phylogenetically and functionally distinct from NCX and NCKX family members 

(Palty et al., 2010). These authors also showed that NCLX participates to the 
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mitochondrial Na+/Ca2+ exchanger activity. This novel finding is not in contrast 

with the results of this study, in that we proposed a model in which the Na+/Ca2+ 

exchange activity in mitochondria requires two consecutive steps. The first, 

operated by the Na+-sensitive NCLX, mediates Ca2+ transport from the matrix to 

the intermembrane space, and the second one, operated by mNCX3, that 

promotes Ca2+ efflux from the intermembrane space to the cytosol. This 

interpretation is in line with the recent physiological role attributed to the OMM in 

the control of mitochondrial Ca2+ cycling. Indeed, although the outer surface of 

the membrane is not a passive permeable membrane, it does constitute a 

permeability barrier not only to Ca2+ influx but also to Ca2+ efflux (Szabadkai et 

al., 2008). On the other hand, evidence that mNCX3 is involved in Ca2+ extrusion 

is that the Ca2+ lowering effect found in cells transfected with NCX3F was 

completely prevented by the benzothiazepine compound CGP-37157, a 

selective mNCX inhibitor (Cox et al., 1993; Nicolau et al., 2009). 

An interesting finding emerging from our studies is the demonstration that 

mNCX3 co-localizes with AKAP121, a member of PKA anchoring protein 

expressed on the OMM, and that this interaction modulates mNCX3 activity. 

Such finding led to the hypothesis that the interplay between mNCX3 and 

AKAP121 contributes to cell survival. Indeed, when the constitutively expressed 

AKAP121 was silenced, the prosurvival effect exerted by the overexpression of 
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these two proteins was prevented. It was previously demonstrated that 

AKAP121 regulates the activity of the components of the mitochondrial 

respiratory chain, thus promoting m hyperpolarization and improving the 

oxidative synthesis of ATP in a PKA dependent manner (Livigni et al., 2006). 

Similarly, in this study, immunoprecipitation assays and confocal microscopy 

experiments revealed that mNCX3 interacts with AKAP121, thus suggesting 

involvement of the anchoring protein in promoting mNCX3 Ca2+ extrusion activity 

under basal and hypoxic conditions. Consistently, when BHK cells either 

transfected with NCX3 or co-transfected with NCX3+AKAP121 were treated with 

CGP-37157, [Ca2+]m was higher than the one observed in untreated cells. This 

finding thus suggested that either endogenous or overexpressed AKAP121 

might play a role in the regulation of mNCX3 efflux activity. Noticeably, these 

effects seem to be mediated by the anchoring activity of AKAP121 to PKA on 

mitochondria, since the kinase inhibition with a specific cDNA construct 

abolished the AKAP121 effects on [Ca2+]m. This interaction appears to be even 

more relevant when considering its role in preventing hypoxic cell death. Indeed, 

the silencing of AKAP121 significantly reduced mNCX3 Ca2+ efflux activity and, 

consequently, increased cell death during hypoxia. Accordingly, we reasoned 

that the activation of mNCX3 by AKAP121-anchored PKA on the OMM regulates 

mitochondrial Ca2+ handling, thus boosting mitochondrial metabolism and, in turn 
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cell survival. These results are in line with previous data obtained in our 

laboratory demonstrating that in BHK cells, NCX3 isoform significantly 

contributes to the maintenance of [Ca2+]i homeostasis during experimental 

conditions mimicking ischemia, thereby preventing m collapse and cell death 

(Secondo et al., 2007). Moreover, the results obtained in neurons exposed to 

OGD and OGD/Rx demonstrated that also the endogenous mNCX3 plays a 

relevant role in the regulation of mitochondrial Ca2+ extrusion. Indeed, [Ca2+]m 

significantly increased when neurons were exposed to OGD, a condition in 

which NCX3 expression was reduced. On the other hand, [Ca2+]m decreased 

following OGD/Rx, a condition in which NCX3 expression returned to the basal 

values. Interestingly, when NCX3 was knocked down, an impairment in 

mitochondrial Ca2+ extrusion was recorded both under basal and OGD/Rx 

conditions, whereas no alteration in mitochondrial Ca2+ extrusion occurred 

during OGD. These results might be related to changes in the expression of 

endogenous NCX3 and AKAP121 during OGD and OGD/Rx (Sirabella et al., 

2009; Carlucci et al., 2008). The identification of NCX3 isoform as a molecular 

target of PKA on the OMM represents the first evidence for a functional 

relationship between AKAP121 and those mitochondrial proteins able to 

regulate mitochondrial Ca2+ efflux.  

This finding might have important physiological and patho-physiological 
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implications. Specifically, a considerable crosstalk between bioenergetic function 

and Ca2+ homeostasis occurs within the mitochondria, for Ca2+ is necessary to 

activate mitochondrial oxidative metabolism and to promote mitochondrial 

respiration (Denton et al., 1980; McCormack et al., 1990; Denton et al., 2009). 

However, if [Ca2+]m increases over its buffering capacity, ATP production will 

decrease, causing mPTP to open, and, eventually, cells to die by apoptosis 

(Krieger et al., 2002; Jeong et al., 2008). Therefore, this study proposes a model 

in which mNCX3 complexes with AKAP121 on the OMM and controls 

mitochondrial Ca2+efflux and cell survival in a PKA-sensitive manner, suggesting 

that the identification of the mitochondrial complex mNCX3/AKAP121 is able to 

finely tune mitochondrial calcium handling from the OMM. This evidence might 

represent an interesting molecular target for the investigation of those 

mitochondrial dysfunctions involved in neurodegenerative diseases. Despite the 

functional link between oxygen availability and mitochondrial function, the 

possible relationship between mitochondrial fission and fusion events and 

mitochondrial adaptations to hypoxia is largely unexplored. 

In the second part of this study it was demonstrated that in ischemic neurons 

increase in the expression of Drp1, a protein involved in mitochondrial fission, 

occurred. This was associated to changes in mitochondrial morphology, 

mitochondrial membrane potential, mitochondrial calcium concentration and 
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ATP production. These effects might be related to the reduction in AKAP121 

and NCX3 expression occurring during OGD. This hypothesis was supported by 

the experiments performed in SIAH2 KO mice in which AKAP121 was not 

degraded during hypoxia. Indeed neurons obtained by SIAH2 KO mice react to 

hypoxia maintaining high level of ATP and calcium content similar to that 

observed in WT cells. The obtained results propose a new role for Siah2, in 

addition to previously characterized Siah2-mediated enhancement of 

transcriptional reprogramming via HIF- and inhibition of oxidative 

phosphorylation by AKAP121 degradation (Nakayama et al., 2004; Carlucci et 

al., 2008). Indeed it is possible to speculate that Siah2, by regulating AKAP121 

on mitochondria could affect mitochondrial Na+/Ca2+exchanger (mNCX3) activity 

and indirectly play a role in the mechanisms that regulate the mitochondrial 

metabolic activity during cellular response to hypoxia. 
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