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1 INTRODUCTION 

In recent years the development of policies aiming at promoting the use of public 

transport, thus decreasing the demand for private transportation, assumed a 

continuously growing importance (Goldman, Gorham, 2006).  

Promoting public transportation is in fact one of the main levers to ensure 

environmental sustainability: an increased use of public transport, and a consequent 

reduction of the number of vehicles on the road, may significantly lessen global vehicle 

emissions. So, great attention is given by Transport Authorities and researchers to 

define strategies aiming at encouraging the use of public transport. Among these, 

ensuring that passengers perceive high service quality is of paramount importance.  

Under this perspective, service punctuality and customers’ waiting time are of great 

concern (Van Hagen et al., 2007), (dell’ Olio et al., 2011). Ensuring that a transport 

service has adequate on-time performances, besides the use of highly dependable 

technologies, requires the definition of organizational settings and maintenance 

management policies capable of minimizing service degradation in failure conditions. 

So, three specific needs arise for Transport Authorities. First, service quality 

perceived by passengers should be measured and the effects of service improving 

strategies estimated via customer oriented, clear and easy to apply approaches, based on 

a solid stochastic and statistical framework. Second, Reliability, Availability, 

Maintainability (RAM) characteristics of transport systems should be controlled due to 

their strong relationship with service on-time performances, and hence with service 

quality. Third, the effects of organizational settings and maintenance management 

policies should be incorporated in the assessment of transport systems RAM 

performances.  
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The need to control RAM performances of transport systems and to embed, at the 

same time, the effects of organizational settings and maintenance management policies 

in RAM assessments, led the majority of Transport Authorities to focus on operational 

RAM indexes. These indexes, unlike inherent ones, directly account for the above 

effects and virtually all invitations to tender for transport systems contain specific 

operational RAM requirements for the whole system and its main constituents. 

Moreover, severe penalty payments are foreseen in the event that contractual RAM 

requirements are not met. 

In addition, Transport Authorities are now assigning a substantial weight to RAM 

performances in tender evaluation processes, due to their strong relationship with 

service quality and system lifecycle cost.  

Consequently, companies operating in the transport sector shall be capable of 

designing and controlling Quality and operational RAM performances of the systems 

they intend to deliver. In addition, they should be capable of quantifying the effects of 

reliability objectives on the system lifecycle cost since the tender phase. 

A proper assessment of the above performances since the early stages of 

development, besides being a need arising from the market, is a twofold advantage. 

First, it allows to evaluate operational RAM performances associated to different design 

alternatives, thus enabling companies to choose the best technical proposal according to 

tender evaluation criteria. Second, it allows to timely define design guidelines to be 

taken into account to meet operational RAM requirements, thus avoiding costly and 

time consuming re-design or even retrofit activities during revenue operation.  

In such a context, the definition of methods and tools for designing and controlling 

service quality, operational RAM performances and the effects of reliability objectives 
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on the lifecycle cost is of crucial importance for both Transport Authorities and 

companies delivering transport systems. In fact, Transport Authorities aim at offering an 

high quality transport service, whereas companies delivering transport systems have to 

develop technical solutions able to perfectly fit tender evaluation criteria and hence to 

regard RAM performances as a source of competitive advantage. 

1.1. Research Objectives 

The main objective of this research consists in the development of probabilistic and 

statistical models aimed at aiding Transport Authorities and companies operating in the 

Transport sector in: 

 Evaluating Quality of Transport services; 

  Assessing the effects of organizational settings and maintenance 

management policies on operational availability of transportation systems; 

 Assessing the effects of reliability objectives on the System Lifecycle cost. 

In the field of service quality evaluation, lots of studies concerning the 

importance of transport service quality attributes relevant for the customers are 

available and different approaches have been proposed to measure service quality. 

These approaches, mainly rely on aggregate indexes based on the abovementioned 

attributes. Thus, if even these approaches allow Transport Authorities to know what 

really matters for customers and to identify areas characterized by a room for a service 

quality improvement, they cannot be easily used to estimate the effects of service 

changes neither as a self assessment tool. For such purposes, the need of quality indexes 

that can be calculated on the basis of commonly available data and information arises.  

From this point of view, the advancement this research activity attempts to bring 
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consists in proposing a stochastic approach capable of satisfying the above need. 

As previously highlighted, another important concern of Transport Authorities 

and companies delivering transport systems is represented by operational RAM 

performances of transport systems. Here the main role is played by the fleet of vehicles 

and by decisions concerning fleet and maintenance service dimensioning. Fleet 

dimensioning is often performed by transit agencies adopting, as mandatory 

requirement, spare ratios recommended by funding agencies (e.g. Federal Transit 

Administration).Unfortunately, the above ratios are not available for all kinds of 

transport systems. In addition, using spare ratios doesn’t allow to account for mutual 

interactions between fleet size and maintenance dimensioning. Thus,  trade-off analyses 

cannot be performed. In order to overcome this issue, Markov models can be used. 

Unfortunately, not always Markov models work adequately: while the hypothesis of 

exponentially distributed failure times is usually met in practice, the hypothesis of 

exponentially distributed repair times is often not realistic and should be removed to 

obtain satisfactory results, since they depend on the repair time distribution. 

Considering non exponential repair times, leads one to handle non-Markovian 

processes, which are more difficult to treat, from both an analytical and numerical 

standpoint, than Markov processes. From this point of view, aim of this research 

activity consists in identifying an approach for the analysis of the effects of maintenance 

management decisions on the operational availability of a fleet of vehicles. More 

specifically, this research aims at defining an approach capable of taking into account 

all main factors influencing availability and of preserving, at the same time, analytical 

and numerical tractability of the resulting models.  

As previously highlighted, great attention is given by Transport Authorities to 
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the System lifecycle cost, which is greatly influenced by system reliability and 

maintainability characteristics. Thus, in order to be competitive, companies delivering 

transport systems should be capable of assessing the effects of reliability objectives on 

the system lifecycle cost. As far as I know, these assessments are not performed in the 

industry. In fact, in a typical industrial environment, lifecycle cost estimates are 

performed by analogy, on the basis of costs actually born to design, build, operate and 

maintain similar systems. Moreover, the translation of costs born for a given system in 

costs to be born for a new system is largely subjective and empirical, especially for 

costs related to the efforts to be sustained during the early stages of operation to 

improve the system reliability level. From this point of view, another aim of this 

research activity consists in developing a model capable of explaining and explicitly 

accounting for costs depending on reliability: failures during revenue operation, the 

acquisition of a given inherent reliability level and efforts required to reach the planned 

reliability target. More in detail, attention is focused on the formulation and parameter 

estimation of a failure intensity which properly models the failure rate behavior of 

complex repairable systems during the early stages of operation, including field testing, 

and the useful life. 

1.2. Research Methodology 

Being this research activity strongly stimulated by practical needs arising in the 

Transport sector, it has been devoted to define approaches and methodologies that are 

easy to apply and, at the same time, rigorous from a statistical and probabilistic point of 

view. So, for each of the considered engineering problems, the most important 

variables/factors are identified and a proper set of statistical and probabilistic tools to 

deal with them are chosen. Then, the main hypotheses arising from the previously 
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chosen tools and methodologies to check them are identified; acceptability of 

approximations due to numerical procedures is checked as well. At last, in order to 

validate the proposed approaches, they are applied to real case studies and the 

acceptability of the underlying hypotheses is properly checked.  

In order to ensure practical usability of the proposed methodologies, great attention 

has been given in managing the trade-off between their tractability and their capability 

to properly deal with the probabilistic features characterizing the considered 

engineering problems. In this sense, besides the precious suggestions of my supervisors, 

the collaboration with engineers and managers of the RAMS department of Ansaldo 

STS S.p.A. has been extremely helpful. Also the choice of commercial software, such 

as MATLAB® and Mircrosoft Excel, to implement routines required to apply the 

proposed methodologies has been made to facilitate their practical usability.  

1.3. Products of the Research activity 

The performed research activity led to the following publications/talks in 

International  Conferences: 

 Erto P, Giorgio M, Scuotto M (2010). Statistical Quality Indexes for a public bus 

service, in: Methods, Models and Information Technologies for Decision Support 

Systems, Pescara, 12-15 September  , 199-202. 

 Di Tommaso P, Giorgio M, Scuotto M, Testa A (2011). Operational Availability 

evaluation of Complex Systems with non-exponential downtimes, contributed talk in: 

Games and Decisions in Reliability and Risk, Belgirate 19-21 May  

http://www.mi.imati.cnr.it/conferences/gdrr11/talks.html. 

The research activity also led to the following submission to an international journal:  

 Erto P, Giorgio M, Scuotto M. Statistical Tools for evaluating mass transport 
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service quality, submitted to Applied Stochastic Models in Business and Industry.  

There is also the following paper in progress, to be submitted to an international journal: 

 Di Tommaso P, Erto P, Giorgio M, Scuotto M, Testa A, Operational Availability 

assessment of Transportation Systems with non-exponential downtimes. 

At last, a special mention to the Ansaldo STS Innovation Award 2010 has been gained with 

the following innovative idea (see attachments to chapter 1 for Ansaldo STS CEO 

acknowledgements): 

 Lamberti I, Mormile T, Nardone R, Scuotto M, Metro Model Sim: a tool for 

supporting metro systems Design with the aim of cost reduction, fulfilling 

performance requirements. 

1.4. Thesis Outline 

This thesis consists of four distinct parts, an introductory framework and three 

chapters in which methodologies proposed to manage the three considered engineering 

problems are applied and discussed.  

The framework aims at giving an overview of probabilistic tools used to formulate 

the models and methodologies proposed for the considered engineering problems. 

Attention is focused on stochastic processes used to develop the proposed approaches 

and methodologies. 

In chapter 3, a service quality evaluation approach, based on a set of quality indexes 

related to the customer waiting time, is introduced and applied to evaluate the 

performances of a bus route operated by A.N.M. (Azienda Napoletana Mobilità). A 

proper checking of the main working hypotheses on the basis of real data shows that the 

above methodology can be very helpful for quality evaluation of a high frequency bus 

service.  
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In chapter 4 are presented stochastic models that can be used to evaluate the impact of 

different organizational settings and maintenance management policies on the 

operational availability of a fleet of vehicles. Different configurations concerning spare 

vehicles and maintenance crews are considered. Moreover, repair times are realistically 

assumed to be non-exponential random variables, thus leading one to manage non-

Markovian stochastic processes. Fleet operational availability is computed via Device of 

Stages technique and, for comparison purposes, via Monte Carlo Simulation too. It is 

shown that the proposed non-Markovian models based on the Device of Stages 

technique can be more accurate than pure Markov models and formulas often used by 

practitioners. In addition, it is shown that they require less processing capability than 

that required by Monte Carlo Simulation.  

In chapter 5, a lifecycle cost – reliability model is presented. More precisely, attention 

is focused on the formulation and parameter estimation of a failure intensity model 

capable of fitting early and useful life failures of a complex repairable system. The 

model allows to count via a Non Homogeneous Poisson Process the failures that must 

be financially supported during the early and useful life of a complex repairable system. 

Model validity is checked fitting the proposed model to the failure process experienced 

by trains running in the Copenhagen driverless metro system during the first two years 

of operation. In addition, an illustrative application of the proposed Lifecycle cost – 

Reliability model is performed, in order to highlight that the proposed model is capable 

of explicitly accounting for the influence of the reliability objectives on costs related to 

system acquisition, development, early and useful life operation. 
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2 THE ENGINEERING PROBLEMS AND THE STOCHASTIC FRAMEWORK 

2.1. Introduction 

In this chapter, an overview of probabilistic tools used to formulate the models and 

methodologies proposed for the considered engineering problems is given. First, basic 

definitions and general concepts concerning stochastic processes are recalled. Then, 

attention is focused on stochastic processes involved in each application developed to 

cope with the engineering problems described in the previous chapter. More in detail, an 

overview on point process is provided. These processes have been extensively used to 

develop the applications described in chapters 3 and 5. More precisely, the Renewal 

Process (RP) has been found to be adequate in modeling the bus headways (i.e. times 

between two consecutive bus arrivals at a given stop), whereas the Homogenous 

Poisson Process (HPP) is adequate to model passengers arrivals at a given stop 

associated to an high frequency transport service. A Non Homogenous Poisson Process 

(NHPP) based on a hyperbolic failure intensity has been found to be adequate to model 

the failure rate behavior during the first two years of operation of the fleet of light rail 

vehicles running in the Copenhagen Metro System, thus representing a solid basis to 

model the number of failures to be financially supported during the early stages of 

operation, including testing, and the useful life of a complex repairable system.  

Once provided an overview on point processes, Markov and non-Markovian 

stochastic processes are introduced. An extensive use of these stochastic processes is 

made in chapter 4, where the importance of the inherent repair distribution in 

operational availability assessments is highlighted. Phase-type distributions, which 

allow to treat non-Markovian processes without losing numerical and mathematical 
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tractability of Markov processes, are characterized as well. 

2.2. Stochastic processes: basic concepts and definitions 

A stochastic process is a family of random variables   TttX  , defined on a 

given probability space, indexed by the parameter t, where t varies over an index set T. 

Experimental observations     1 ,..., kX t X t , 1 ,..., kt t T  constitute a realization of the 

process. The set of all possible values that random variables can take is called the state 

space. 

 If the state space of a stochastic process is discrete, it is called a discrete state 

process. If the state space is continuous, then the stochastic process is a continuous-state 

process. Stochastic processes can be discrete-parameter processes or continuous-

parameter processes if the parameter set T is discrete or continuous, respectively. 

In order to fully characterize a stochastic process, it is necessary to specify in which 

way the joint distribution of the random variables constituting the process can be 

derived.  

Important characteristics  of a stochastic process are the following functions: 

 mean value function     Xm t E X t , which for each fixed t provides the 

mean of the random variable  X t ; 

 auto-covariance function       1 2 1 2, ,XXC t t Cov X t X t , which provides 

information concerning stochastic dependencies between each couple of 

random variables constituting the process,  1X t and  2X t . 

It is to note that for 1 2t t t  ,   ( , )XXC t t Var X t , which provides, for each fixed 

t, the variance of the random variable  X t .  
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Another useful function, is autocorrelation  1 2,XXK t t . It easy to show that the 

following equation holds: 

            1 2 1 2 1 2 1 2, , ,XX XX X XK t t E X t X t C t t m t m t    

A stochastic process   TttX   is said to be (strictly) stationary if for any 

1 ,..., nt t and s in T, the random vectors     1 ,..., nX t X t and 

    1 ,..., nX t s X t s  have the same distribution. This means that the joint statistics 

of X of all orders are unaffected by a shift in time. A stochastic process is wide sense 

stationary if    X Xm t m t s   and    1 2 1 2, ,XX XXC t t C t s t s   , 1 2, , ,t t t s T  . 

Strict stationarity always implies wide sense stationarity but not vice-versa.  

If statistical averages associated to a stochastic process are asymptotically equal to 

time averages, the process is ergodic. Ergodicity can be formally expressed via the 

following equation: 

    1

2lim
T

T
T

E X t X t dt
T

 


        

where    is a real function.  

If a stochastic process is wide sense stationary and ergodic, it is possible to obtain 

various realizations of the process “cutting” a single realization in as many parts. This is 

very important to obtain accurate estimates of the mean value and auto-covariance 

functions. However, it is not easy to test whether a stochastic process is wide sense 

stationary and ergodic or not. In addition, it is to underline that wide sense stationarity 

does not imply ergodicity. 



 Quality, Availability and Lifecycle cost of Transportation systems 

The engineering problems and the stochastic framework 
 

  

12 

 

   

2.3. Point Processes  

A Point Process is a continuous-parameter stochastic process in which random 

variables obtained for each fixed t,  tN , express the number of events (e.g. failures, 

customer arrivals at a bus stop) occurred up to time t. Of course  tN  may only assume 

non-negative integer values and for each 12 tt   is    12 tNtN  , being   00 N . The 

family of random variables   0, ttN  defines a counting process. Other interesting 

variables associated to a point process are, for example, the time to kth event measured 

from time 0, Tk, and the time between the (k-1)th and kth arrival, Xk. The above variables 

are linked with one another via the following equations: 









k

i
ik

kkk

XT

TTX

1

1

 

where 00 T  and ,...2,1,0k  

In addition, it is easy to show that   ktN   and  tTk   are equivalent events. Thus, 

a point process is fully specified, when the counting process   0, ttN  or all joint 

distributions of Tk or Xk are specified.  

A first important function associated to a point process is the expected number of 

events     tNEtM  . This function provides , for each fixed t, the expected value of 

the random variable N(t). This function can be expressed in different manners, based on 

the relationship between N(t) and Tk .In fact, being    tTtG kk  Pr  it is easy to 

understand that     tGktN kPr . In addition, 

        1PrPrPr  ktNktNktN . Thus, it follows that: 

            











 

10 0
1Pr

k
k

k k
kk tGtGtGkktNktM  
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Another important function is the intensity function,  tz , defined as follows: 

   
t

tttN
tz

t 





1,Pr
lim

0

 

If the above limit exists, the quantity   ttz  provides, for small values of t , the 

probability of observing at least one event in  ttt , . It is possible to show that if the 

point process is orderly (i.e. the probability of observing simultaneous events is equal to 

zero), the following equation holds: 

     





1k

k tg
dt

tdM
tz  

being  tgk  the probability density function (pdf) of the time to the kth event measured 

from time 0. 

An interesting random variable associated to a point process is the forward 

recurrence time, tW , defined as the time to the next event measured from an arbitrary 

point in time t.  

2.3.1. Homogeneous Poisson Process 

A Homogeneous Poisson Process is a continuous-time orderly counting process 

defined as follows: 

        ii

k

i i

n
ii

iii abC
n

abC
kikbaN

i




 


exp
!

,...,1;,Pr
1

 

where C is a non-negative constant.  

From the above definition, the following properties arise: 

 The number of events  ii baN ,  over a finite interval  ii ba ,  follows a 

Poisson distribution with mean  ii abC  ; 
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 The number of events  ii baN ,   ki ,...,1  in non-overlapping intervals are 

stochastically independent random variables. This means that a Homogenous 

Poisson Process is characterized by independent increments; 

 The probability distribution of the number of events counted in any time 

interval only depends on the length of the interval. This means that a 

Homogeneous Poisson Process is characterized by stationary increments; 

 The intensity is constant and equal to C. 

It is possible to show that the above process is orderly. Thus, the intensity function 

coincides with the first derivative of the mean value function: 

  CtCdxtM
t

 
0

 

From the properties above, it follows that the time between two consecutive events 

are stochastically independent random variables; in addition they are exponentially 

distributed with parameter C. Thus, it follows that Tk is an Eralng random variable with 

scale parameter C and shape parameter k. Moreover, due to the fact that the 

Homogeneous Poisson Process is characterized by stationary and independent 

increments, the forward recurrence time is an exponential random variable with 

parameter C. So, for a Homogeneous Poisson Process the random variables Xi and Wt 

have the same distribution, which is independent on t and on the number of events 

occurred up to t; in other words, for this process, the memory-less property holds. 

2.3.2. Non Homogeneous Poisson Process 

A Non Homogeneous Poisson Process is a continuous-time orderly counting process 

defined as follows: 
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  
 

 






















 




i

i

i
i

i

b

a

k

i i

n
b

a

iii dttz
n

dttz

kikbaN exp
!

,...,1;,Pr
1

 

From the above definition, the following properties arise: 

 The number of events  ii baN ,  over a finite interval  ii ba ,  follows a 

Poisson distribution with mean  
i

i

b

a

dttz ; 

 The number of events  ii baN ,   ki ,...,1  in non-overlapping intervals are 

stochastically independent random variables. This means that a Non 

Homogenous Poisson Process is characterized by independent increments; 

 A Non Homogenous Poisson Process is characterized by non-stationary 

increments. In other words, the probability distribution of the number of 

events counted in any time interval, besides depending on the length of the 

interval, depends on the position of the lower limit of the considered 

interval. 

In addition, the random variables Xk are not in general stochastically independent, 

neither identically distributed. 

The mean value function of a Non Homogenous Poisson Process is: 

   
t

dxtztM
0

 

The cumulative distribution function (cdf) of the forward recurrence time  wKt  can 

be obtained as follows: 

      











 

wt

t

t dttzwttNwK exp10,Pr1  
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The expected value of the forward recurrence time,   wKE t , can be obtained as 

follows: 

        
 











00

exp1 dwdttzdwwKwKE
wt

t

tt  

It can be noted that  wKt  and   wKE t  only depend on t and not on process 

history up to time t.  

2.3.3. Renewal Process 

A renewal process is a continuous-time orderly counting process in which times 

between events are positive, independent and identically distributed (IID) random 

variables.  

Just like other point processes, a renewal process can be specified in three standard 

ways: 

 Specifying  the joint distributions of the arrival epochs T1, T2,…; 

 Specifying the joint distributions of the times between events X1, X2,…;  

 By the joint distributions of the counting random variables, N(t) for t > 0.  

The simplest characterization is through the times between events Xi, since they are 

IID.  

Such a stochastic process is called renewal process because it probabilistically it 

starts over at each arrival epoch, Ti. The cdf of the time to the kth event, Tk,  can be 

expressed as follows: 

       tFktNtT k
Xk  PrPr  

Where   tF k
X  is the k-fold convolution of the time between arrivals cdf. 

The mean value function, M(t), can be expressed as follows: 
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                     














00

1

0

1PrPr
k

k
X

k

k
X

k
X

k

tFtFtFkktNktNktNEtM

 

The mean value function, in the context of renewal processes is also called renewal 

function. The first derivative of the mean value function with respect to t ,  tm , is 

called renewal density and it can be expressed as follows: 

      





0k

k
X tf

dt

tdM
tm  

Where   tf k
X  is the k-fold convolution of the time between arrivals pdf. 

An important relationship between Renewal function and renewal density is given by 

the renewal equation: 

        
t

XX dxxmxtFtFtM
0

 

In general, it is not easy to determine analytical expressions for  tM  and  tm . 

However, it is possible to show that as t tends to infinity, a renewal process tends to 

behave like a Homogeneous Poisson Process. Thus,  tm  and  tM  tend to be constant 

and linear respectively. 

For some applications, it is interesting to determine the expression of the  forward 

recurrence time (time to the next event measured from a specific point in time t)  cdf, 

 twFW . The forward recurrence time cdf can be expressed as follows: 

         
t

XXW dxxmxwtFwtFtwF
0

1  

Where  XF  is the cdf of the time between events. 

The above expression can be easily justified: the first term includes probability of all 
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renewal realizations with at least a renewal point in  t,0 , whereas the second term 

includes probability of all realizations with at least a renewal point in  t,0  and no 

renewal points in  wtt , . It is possible to show that as t tends to infinity, the forward 

recurrence time cdf associated to a Renewal Process,  wFW
 , can be expressed as 

follows: 

 
  

 XE

dwwF
wF

w

X

W

 
 0

1
 

2.4. Markov Processes  

Let  be a finite or countable set. The stochastic process    TttX  is a Markov 

process if the following property holds:  

   

Ttttt

xtXxtXxtXxtXxtX

kn

nnnn





;.....

)()(Pr)(,...,)()(Pr

0

00

 

The above property is known as memoryless property, since the state probability 

distribution at a given point in time t only depends on the current state  ntX .  

In order to completely define a Markov Process it is necessary to define an initial-

state probability vector )0(  and transition probability functions ),( tvpij  over the 

interval [0,t] for each couple of states. The initial-state probability vector )0(  is such 

that    jjXj )0(Pr)0( , whereas transition probability functions are defined 

as follows:  

  tvjiivXjtXtvpij  0,)()(Pr),(  

Transition probability functions are characterized by the following main properties:  
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tvitvp

otherwise

jiif
ttp

j
ij

ij





 






01),(

0

1
),(

 

A Markov process is homogeneous if the following property holds: 

  0)()(Pr),0()(  vTtivXjvtXtptp ijij  

A Markov process is regular if only a finite number of state transitions can be 

observed in a finite time interval. If the state space   is finite, the Markov process is 

certainly regular. 

When dealing with Markov processes, it is important to classify the process states. 

The states can be classified via the random variable  iXti t  :0inf:)( , which 

represents the time in which the process visits the state i for the first time for t > 0. 

If    0)(Pr 0  iXi , the state i is transient, whereas if   0)(Pr 0  iXi  

the state i is recurrent. Recurrent states are positive recurrent if     iXiE 0)(  and 

null recurrent if     iXiE 0)( . A state from which it is impossible to leave is 

called absorbing state. 

2.4.1. Chapman-Kolmogorov equations and transition rate  

The Chapman-Kolmogorov equation allows to express transition probability from the 

state i entered at time v to the state j at time t, visiting a generic state k at time u. The 

equation takes the following form: 

tuvjitupuvptvp
k

kjikij  


0,),(),(),(  

A Markov process cannot be easily treated via the above equation. Thus, the 
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transition rate is introduced, which is involved in the Kolmogorov Differential 

Equations. Transition rate from a state j, qj(t), measures how quickly, at time t,  the state 

j is left by the process and is formally defined as follows: 

h

http

h

httpttp

t

tvp
tq jj

h

jjjj

h
tv

jj
j

),(1
lim

),(),(
lim

),(
)(

00












  

Thus, it is possible to obtain: 

0
)(

lim)()(1),(
0


 h

ho
beinghohtqhttp

h
jjj  

In the same fashion, it is possible do define a transition rate from state i to a state j: 

 

h

http

h

ttphttp

t

tvp
tq ij

h

ijij

h
tv

ij
ij

),(
lim

),(),(
lim

),(
)(

00












  

and hence: 

0
)(

lim)()(),(
0


 h

ho
beinghohtqhttp

h
ijij  

2.4.2. Kolmogorov Differential Equation  

The Chapman-Kolmogorov equation can be arranged as follows:  

tuvhtupuvphtvp
k

kjikij  


0),(),(),(  

Thus, it is possible to write: 

tuvtuphtupuvptvphtvp kj
k

kjikijij  


0)],(),()[,(),(),(  

And hence: 

tuv

h

tuphtup
uvp

h

tuphtupuvp

h

tvphtvp jjjj
ij
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kjik
ijij









 

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Taking the limits 0h  and tu  it is possible to obtain: 

)(),()(),(
),(

tqtvptqtvp
t

tvp
jij

jk
kjik

ij 






 

which represents the Kolmogorov differential equation. Each transition probability 

function associated to a Markov Process can be obtained solving the above equation.  

If a Markov Process is stationary, the Kolmogorov differential equation can be 

written as follows: 

)()()()(
)(

tqtptqtp
t

tp
jij

jk
kjik

ij 






 

The above expression can be also arranged in the following matrix form: 

QtPP )(


 

Where: 

 P is the transition probability matrix; 

 Q is the infinitesimal generator of the Markov process. The generic element 

Q(i,j) of Q is qij, whereas Q(i,i) coincides with - qi. 

The infinitesimal generator is characterized by the following properties: 

0

0

0

ij

ij

ij
j

q if i j

q if i j

q i


 
 

  

 

The Kolmogorov differential equation for homogeneous and regular Markov 

processes admits the following unique solution: 

....
!

)(
.....)( 

k

Qt
QtIetP

k
Qt  
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In general, it is not easy to obtain an analytical expression of P(t). An analytical 

expression of P(t) can be easily obtained when the cardinality of   is small, using 

eigenvectors and eigenvalues of Q. The simplest situation can be encountered when Q 

has distinct eigenvalues. In this case, Q is also characterized by distinct eigenvectors 

and it can be easily diagonalized:  

DXXQ 1  

Thus:  

XeXetP DtQt 1)(   

The analytical expression of ( )t can be obtained as )()0()( tPt   . 

Using the Kolmogorov differential equation, it is also possible to characterize the 

distribution of the sojourn time of the process in a given state. Such a task, can be easily 

performed considering a two state Markov process characterized by the following 

infinitesimal generator: 

0 0
Q

  
  
 

 

for which the second state is absorbing. 

Solving the Kolmogorov differential equation, the following transition probability 

matrix can be obtained:  

  1

0 1

t te e
P t

   
  
 

 

From the above expression, it is easy to note that the sojourn time of the process in 

the state 1 is exponentially distributed. In general, the sojourn time of a Markov process 

in a given state is an exponentially distributed random variable. However, the sojourn 

time of the process in a set of states is not exponentially distributed.  
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2.4.3. Subordinated Process, Embedded Markov chain and main theorems 

In order to define the subordinated process and the embedded Markov chain, it is 

useful to introduce the concept of Markov chain. Basically, a Markov chain represents a 

particular case of Markov process, for which the parameter t is discrete. Just like for a 

Markov Process, a Markov chain is homogeneous if the transition probability matrix P 

does not depend on t. 

Starting from a Markov chain with transition probability matrix R, it is possible to 

obtain a Markov process generating transitions via a Homogeneous Poisson Process 

with parameter  : 

)),(1(),(

0

),(
!

)(
)( jiRtjitRtkt

k

k

ij eeejiRe
k

t
tp 





  
 

Such a Markov process is called subordinated process and the transition probability 

matrix is: 

)()( RItetP    

Thus, )1),((),(),,(),(  iiRiiQjiRjiQ  . The infinitesimal generator Q depends 

on  , which has to be such that  ii
i

q max . In fact, R is a stochastic matrix and 


Q

IR  . 

Starting from a Markov process, the embedded Markov chain can be obtained 

sampling the process at each point in time in which a transition occurs. The transition 

matrix of the embedded Markov chain can be characterized as follows: 

ji
q

q

q

q
jiR

ii

ij

ik
ik

ij 



),(  

The embedded Markov chain is very important since the states of a Markov process 
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can be classified on the basis of the embedded Markov chain: a given state of a Markov 

process is transient/recurrent if it is transient/recurrent for the embedded Markov chain. 

In addition, a Markov process is irreducible if the embedded Markov chain is 

irreducible (basically irreducibility means that it is possible to get any state from any 

state).  

In addition, the following theorems hold for the stationary probability vector: 

 Theorem 1: If a Markov process is irreducible and recurrent, there exists 

)(lim:* tPP
t 

 ,  ijjiP )(),(*   and  is the stationary probability 

vector. In addition, two only situations can occur: 0  or 1)( 
j

j . In 

the former case all states are null states, in the latter case all states are 

recurrent states.  

 Theorem 2: If a Markov process is recurrent with infinitesimal generator Q, the 

stationary probability vector is the unique solution of the equation 0Q  

2.5. Non Markovian Processes  

For Markov processes, the probability that the process enters a given state at time t 

only depends on the current state. When other forms of dependency affect the process 

evolution, the stochastic process is non markovian. Non markovian stochastic processes 

can be further classified on the basis of the form of stochastic dependence affecting 

process evolution. Before classifying non Markovian processes, some definitions are 

needed. 

2.5.1. Markov renewal sequence and Markov renewal process 

The sequence   , , 0n nY S n   is a Markov renewal sequence with state space I, if 
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the following property holds: 

   
 

1 1 0 0 1 1

1 1 0

Pr , ,..., , Pr

0, ,

n n n n n n n n nY j S S x Y i S Y S Y j S S x Y i

Y j S x Y i n i j I

              

        
 

The vector-valued stochastic process N(t) = (Nj(t), j  I) is defined as a Markov 

renewal process, where: 

   
 

 

   

1

1

0

sup 0 :

N t

j j
n

n

j

n

N t Z n

if Y j
z t

otherwise

N t n S t






 


  



 

Nj(t) is the number of times state j is visited by time t, N(t) is total number of state 

changes by time t.  For Markov renewal processes, future evolution only depends on the 

current state of the process at Markov renewal points Sk, that is process evolution 

depends only on the current state solely at specific time epochs. 

2.5.2. Markov regenerative process and main non-Markovian processes 

A stochastic process   0Z t t  is a Markov regenerative process if there exists a 

Markov renewal sequence   , , 0n nY S n  of random variables such that all conditional 

distributions of     ,0n n nZ S t Z u Y i u S     coincide with   n nZ S t Y i   

and   0Z t Y i . 

Thus, at each Sn the process evolution does not depend on the history before it. For a 

Markov regenerative process, the stochastic process between two consecutive renewal 

points could be any continuous time stochastic process. In other words different local 

behaviours are allowed between two consecutive Markov regenerative points. Thus, this 
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family of stochastic processes allow to define a wide class of non Markovian processes. 

For example, a Semi-Markov process is a Markov regenerative process such that no 

state changes can occur between two consecutive Markov regenerative points. Such a 

process can be viewed as a Markov regenerative process for which the length of time 

between two Markov regenerative points depends on the current state and on the state to 

be entered next. 

Differently from Semi-Markov processes, for other Markov regenerative processes 

state changes are allowed between two consecutive Markov regenerative points. As an 

example, this is the case of Semi-regenerative stochastic processes, for which the 

stochastic process between two Markov renewal points is a Markov process. 

In order to deal with Markov regenerative processes, it is important to define the 

kernel K(t) and the local kernel E(t). 

Each element  ijK x of the kernel  K x  is defined as follows: 

     1 1 1 1 0Pr Prij n n n nK x Y j S S x Y i Y j S t Y i             

It is possible to note that  , 0nY n  is a Markov chain with transition probability 

matrix of  ijK  . Such a chain is called embedded Markov chain of the Markov 

regenerative process. 

Each element  ijE x of the kernel  E x  is defined as follows: 

       1 1 0Prij n n nE x M x j S S x Y i M x j S x Y i            

It is possible to show that the transition probability matrix of a Markov regenerative 

process P(t) satisfies the following generalized Markov renewal equation: 
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     

     
0

*

*
t

iu uj uj iu

P t E t K P t

K P t P t x dK x

 

 
 

This is the general form of the equation that allows to obtain the transition probability 

matrix. It can be further particularized for each specific non markovian process and the 

corresponding numerical solution can be more or less complicated. In some specific 

cases, to be addressed in the following section, it is possible to obtain the state 

probability vector of a non markovian process without losing numerical and analytical 

tractability of Markov processes. 

2.5.3. Modelling non exponential sojourn times in a Markovian setting: Phase-
Type distributions 

It has been pointed out that the sojourn time of a Markov process in a given state is an 

exponentially distributed random variable, whereas the sojourn time of the process in a 

set of states is not. Thus, when dealing with non markovian processes, each process 

state for which the sojourn time is not exponential can be modeled by a proper 

arrangement of multiple “stages” for which the sojourn time is exponential. By this 

way, a non markovian process can be treated without losing numerical and 

mathematical tractability of Markov processes. This is the basic idea behind the Device 

of Stages technique. In general, the application of this technique leads to approximate 

results. Nevertheless, any desired degree of accuracy can be obtained, based on the 

following theoretical result (Schassberger, 1973): 

   
,

,

, , , ,
1 ,

0, 0, ,lim
k nr

n
k n

k n k n k n k n
n k k n

F s p p r
s




 

 
       

   

where  F s  is the Laplace-Stieltjes transform of a non negative random variable. In 
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other words, each non negative random variable is the weak limit of mixtures of Erlang 

distributions.  

From a practical standpoint, the application of this technique is not exempt from 

drawbacks. As an example, each state with a non exponential sojourn time should be 

modeled by means of a reasonably low number of stages, in order to control the 

dimension of the state space associated to the underlying Markov process. Also the 

number of parameters associated to each arrangement of stages should be controlled, in 

order to avoid numerical problems when parameters have to be determined. In addition, 

each arrangement of stages should be characterized by a reasonably simple structure, so 

that the underlying Markov model can be easily generated.  

Before dealing with the problem of approximating a non exponential random variable 

via   an arrangement of exponential stages, it is worthy to formally characterize the 

sojourn time in a set of exponential stages. Such a random variable is Phase-Type 

distributed.  

Given a Markov process with m+1 states, such that states 1,…,m are transient and the 

state m+1 is an absorbing state, a Phase-Type distribution is the distribution of time 

from the above process's starting until absorption in the absorbing state. The 

infinitesimal generator of the considered Markov process, is characterized by the 

structure reported below:  











00

0SS
Q  

where mmS  , uSS 0 ,  Tu 1...1 , mu  and xm10  .  

The initial probability vector is  1, m , being m . The Phase-Type 
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distribution cdf is: 

    utStFT  exp1   

where  exp S t u    is the probability that the process only visited the m transient 

states by time t. 

The Phase-Type distribution pdf is: 

    uStStfT  exp  

A first example of Phase-Type distribution is the Erlang with parameters r, λ for 

which,  given r=3, we obtain: 
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Also mixtures of Erlang random variables are Phase-Type distributions. For example, 

for a mixture of Erlang random variables with 221  rr  it is possible to write: 
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As previously highlighted, it is possible to approximate an arbitrarily distributed 

sojourn time via a Phase-Type distribution. The choice of a proper Phase-Type 

distribution depends on the random variable to be approximated. For example, a 

Weibull distribution with an increasing hazard rate function can be approximated via an 

Erlang random variable, whereas a Weibull distribution with a decreasing hazard rate 

function can be approximated by means of an Hyperexponential distribution (i.e. a 

mixture of exponential random variables) (Bobbio, Cumani, 1983). Several techniques 
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can be used to determine the parameters of the Phase-Type distribution. Among these, 

the simplest one is the moment matching technique. This technique consists in 

determining the desired parameters equating the moments of the Phase type distribution 

with the moments of the random variable to be approximated. Obviously, the number of 

equations is equal to the number of parameters to be determined. In addition, the 

random variable to be approximated shall have a number of finite moments equal to the 

number of parameters to be determined. When a Weibull with an increasing hazard rate 

function has to be approximated, the following system of equations shall be solved to 

determine the parameters of the Erlang random variable: 
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The number of stages n can be obtained rounding to the nearest integer the number 

2
12

2
1

mm

m


, whereas λ can be obtained solving the first equation. As an example, in the 

following figure is reported a Weibull pdf with parameters 1, 1.5    and the 

approximating pdf of an Erlang random variable with parameters 2, 2.22n   . 



 Quality, Availability and Lifecycle cost of Transportation systems 

The engineering problems and the stochastic framework 
 

  

31 

 

   

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time

Weibull and Erlang approximation

Weibull pdf
Erlang pdf

 

Figure 2-1: Weibull pdf 1, 1.5   (solid line) and Erlang approximation pdf 

2, 2.22n    (dash-dot line) 

When a Log-normal distribution has to be approximated, mixtures of Erlang random 

variables with the same shape parameter n can be used (Johnson, Taaffe, 1989). Such an 

approach, if r is the number of Erlang random variables in the mixture, leads to solve a 

system of 2r equations: r-1 “branching” probabilities, r scale parameters and the 

common shape parameter n have to be determined. However, when the standard 

deviation of the Log-normal random variable is low when compared to the mean, the 

use of a single Erlang distribution might be satisfactory. As an example, in the 

following figure is depicted a Log-normal pdf with parameters 1, 0.3    (solid 

line) and the corresponding Erlang approximation with parameters 

11, 3.87n   (dash-dot line). 
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Figure 2-2: Log-normal pdf 1, 0.3   (solid line) and Erlang approximation pdf 

11, 3.87n    (dash-dot line) 

It has to be noted that an Erlang distribution can also be used to approximate 

deterministic distributions, since the Erlang distribution is the Phase-Type distribution 

with the minimum variance (Aldous, Shepp, 1987).  
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3 QUALITY EVALUATION OF A MASS TRANSPORT SERVICE 

Sometimes, a measure of the service quality is substantially suggested by the market. 

Often, a suggested and effective service quality measure is the price that customers are 

willing to pay. However, this approach cannot be adopted when prices are established 

on the basis of political considerations, as in the case of an urban mass transport service. 

In this instance, quality evaluations have to be performed focusing on the service 

characteristics which customers are more concerned about. Among these, the main 

characteristic is the time spent by customers at the stop points waiting for the transport 

mean (e.g. a bus). 

With special reference to this important characteristic, in this chapter a general 

methodology is proposed which can be used to measure the quality of a mass transport 

service with short headways, when the time schedule is unknown to customers. The 

proposed approach has been tested using a real data set of bus arrival times from the 

route 181 of the Azienda Napoletana Mobilità S.p.A, the neapolitan mobility company. 

3.1. Introduction 

High quality service offered to passengers by a urban mass transport company is the 

main lever for encouraging people to use mass transit instead than private cars. 

Appropriate quality indexes have to be adopted to measure the offered quality level, 

which shall be continuously monitored and, when possible, improved by means of 

adequate policies and/or operational choices. 

In many cases, a convincing service quality measure is the price customers are 

willing to pay for availing it. Unfortunately, this kind of mechanism doesn’t hold for 

urban mass transport services, since prices are established on the basis of political 
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considerations, to promote the public transport usage. A quality characteristic of a mass 

transport service which customers are very concerned about is the service punctuality 

(Van Hagen et al., 2007). Unfortunately, an urban mass transport service is normally 

characterized by short headways that prevent customers to rely on a time table. For such 

a transport service, being the concept of punctuality not applicable, the focus shall move 

to the customers waiting time, which distribution strongly depends on scheduled 

frequency of passage (headway) and service regularity (i.e. Inspection Paradox) (Stein, 

Dattero, 1985). In this experimental context, specific quality indexes, based on the 

customer waiting time, are needed. The indexes proposed in this chapter exactly possess 

this characteristic. They have an unambiguous operative meaning and are easy to 

calculate. The only little obstacle to their use consists in the fact that the waiting time 

distribution, needed to perform the considered analysis, is not simple to obtain, unless 

samples of waiting time data collected among targeted customers are available. Indeed, 

this kind of surveys is very costly and time consuming and, as a matter of fact, is rarely 

performed in practice. On the contrary, information and/or data regarding the arrival 

processes of both transport means and customers, at the stop points are very often 

available. 

Thus, in order promote the use of the proposed indexes a methodology is presented 

that can be adopted to obtain the customers waiting time distribution from the this latter 

kind of data (i.e. bus arrivals at the stop and customers’ behaviour). 

The methodology consists in two steps: 

 modelling the arrival processes of both customers and transport means on the 

basis of the available data/information and some non restrictive hypotheses; 

 obtaining the stationary distribution of the Forward Recurrence Time (Cox, 
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Isham, 1980) of the bus arrival process and using it to model the customers 

waiting time. 

It is shown that, under the hypotheses considered in this chapter, the adopted 

approach gives a very good approximation for the exact customers waiting time 

distribution. 

The proposed methodology is applied to the route 181 of the public bus transport 

service managed by A.N.M. (Azienda Napoletana Mobilità S.p.A, (www.anm.it)). The 

study is performed using a real data set of bus arrival times provided by A.N.M. All the 

main assumed hypotheses have been successfully tested  on the basis of the available set 

of data. 

3.2. Formulation Of The Waiting Time Distribution 

As previously remarked, in this chapter the customers waiting time distribution is 

(indirectly) obtained combining models describing bus and customers arrival process at 

a specific bus stop of interest. 

It is assumed that times between bus arrivals (i.e., the Headways, H) are identically 

distributed random variables, which cumulative density function is indicated as  HF  . 

Moreover, it is assumed that the customers arrival process at the stop of interest is a 

Homogenous Poisson Process stochastically independent on the bus arrival process.  

As additional hypothesis, for sake of simplicity, it is assumed that buses have infinite 

load capacity (i.e. customers waiting time ends when the first bus arrives). 

Under the hypotheses given above, the customer waiting time cumulative distribution 

function (CdF) can be formulated as follows: 

      
0

W W TF w F w t f t dt


    (3.1) 
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Where: 

  0,  is the length of the time horizon on which the proposed method is applied; 

  WF w t  is the forward recurrence time distribution from the time t, which 

coincides with the waiting time distribution of a customer that reaches the bus 

stop at time t; 

  Tf t  is the probability density function (pdf) of the arrival time at the bus stop 

of the generic customer (i.e. a customer randomly chosen among those that 

reach the stop in the interval  0, ); 

  wF w  is the (unconditional) forward recurrence time CDF, which coincides 

with the (unconditional) waiting time distribution of the generic customer. 

In particular, assumed that at least one customer reaches the stop in the time interval 

 0, , as the arrival Process is Homogeneous Poisson,  Tf t  is a uniform  0,  random 

variable (i.e.   1Tf t  ) (Ross, 1996). 

Unfortunately, as previously mentioned, Equation (3.1), is not easy to use, unless 

customers waiting times are directly observed. 

As an instance, if even one assumes that sequences of successive headways constitute 

a Renewal Process (i.e. if the additional hypothesis that headways are s-independent is 

made), in order to obtain the forward recurrence time distribution from the time t, 

 WF w t , it would be necessary to solve the following equation (Cox, 1967): 

        
0

1
t

W H HF w t F t w F t w u m u du         (3.2) 

which is not an easy task, since the Renewal Density,  m u , is often unavailable in 
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closed form (Arnold, Groeveld, 1981). 

Anyway, a nice approximation for  wF w , for large , is represented by the following 

stationary forward recurrence time distribution,  WF w  (Cox, Isham, 1980), (Daley, 

Vere-Jones, 2002): 

 

       

    
0 0

0

1
lim lim

1
1

W W X W

w

H

F w F w t f t dt F w t dt

F h dh
E H

 

  


 
  

  

 


 (3.3) 

where  E H  is the mean headway. 

On the basis of the CDF (3.3) the following value is obtained for the mean customer 

waiting time  E W : 

      
 2 2

E H Var H
E W

E H
   (3.4) 

a result that is well known to experts involved in transit service planning (Ceder, 

2007), (Osuna, Newell, 1972). From (3.4) follows that the mean customer waiting time 

increases with the headway variance. As to say: the generic customer that reaches the 

bus stop at time t, randomly chosen in [0, ] , picks an interval between bus arrivals that 

is larger, in mean, than  E H . In fact, long intervals are more likely to be selected than 

short ones.  

3.3. Service Quality Indexes 

In this section the proposed service quality indexes are introduced. The first one, the 

well known System Service Dependability (SSD) (Heimann, 1972), (Fielding, 1979), 

(Silcock, 1981), (Erto et al., 1995) is here proposed in a customized version which 
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allows its use in the considered experimental context. The other two indexes, the 

Density of Hope of End Waiting (DHEW) and Mean Residual Waiting Time (MRWT), 

are reformulated in terms of waiting time. The intrinsic meaning of all the considered 

indexes is discussed in details. Moreover the diagnostic capabilities of the indexes are 

pointed out via a simple sensitivity analysis. 

3.3.1. SYSTEM SERVICE DEPENDABILITY 

In the field of mass transport services, widespread measures of service quality are 

based on the ratio of the number of successes over a total number of trials, called 

Dependability (Erto et al., 1995), where the term success is specifically defined for each 

specific application. 

In several studies regarding Bus and Railway Systems, the System Service 

Dependability (SSD) has been defined as the ratio of the number of customers incurring 

in a delay not higher than a tolerable value, say d, to the total number of served 

customers (Heimann, 1972), (Silcock, 1981). For Airline Services, a System 

Dependability measure is given by the Dispatch Reliability, defined as the ratio of the 

number of flights that depart without a cancelation or a delay higher than a tolerable 

value to the number of scheduled flights (Fielding, 1979). 

In this study the success is defined as the occurrence of a waiting time not greater 

than a tolerable value, say Tw . So, the Dependability is defined as follows: 

    PrW T TSSD F w W w    (3.5) 

3.3.2. DENSITY OF HOPE OF END WAITING 

The Density of Hope of End Waiting (DHEW) is defined as: 
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 

0

,
lim

w

HEW w w
DHEW

w 




  (3.6) 

where the HEW (namely, the Hope of end Waiting) is given by: 

      
 

,
1

W W

W

F w w F w
HEW w w

F w

  
 


  

The DHEW fits the concept of Density of Hope of End Delay (Erto et al., 1995) to 

the case of absence of time table considered in this chapter. 

The HEW depends on two variables, w and w . The HEW gives, for each w,  the 

probability that the Waiting time is less than or equal to w w   given that the time 

already spent at the stop is w. 

Since the Density of Hope of End Waiting is obtained via equation (3.6) it is a 

function of w only. It is the analogous, in terms of waiting time, of the Hazard Rate 

function, used in Reliability. The DHEW provides useful diagnostic information about 

the transport service under study, in fact: 

 An increasing DHEW indicates that the transport service is robust with respect 

to the causes of disorder, since the probability that the waiting ends increases as 

the already accumulated waiting time increases; 

 A constant DHEW indicates that the transport service is indifferent with respect 

to the causes of disorder, since the probability that the waiting ends doesn’t 

depend on the waiting time already accumulated at the bus stop; 

 A decreasing DHEW indicates that the transport service is not able to react to 

the causes of disorder (i.e. it is weak), since the probability that the waiting ends 

decreases as the waiting time increases. 
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3.3.3. MEAN RESIDUAL WAITING TIME 

The Mean Residual Waiting Time (MRWT) is defined as follows : 

  
  
 

1
( )

1

W

w

W

F x dx
MRWT w E W w W w

F w




   




  

It is inspired to the concept of Mean Residual Life, well known in Reliability. The 

Mean Residual Waiting Time represents the mean of the residual waiting time, W w , 

calculated under the hypotesis that the waiting time already accumulated at the bus stop 

is larger than w . The MRWT is proportional to the inverse of  the DHEW, in fact: 

 An increasing MRWT indicates that the expected residual waiting time increases 

as the waiting time increases; 

 A constant MRWT indicates the expected residual waiting time doesn’t depend 

on the waiting time already accumulated at the bus stop; 

 A decreasing MRWT indicates the expected residual waiting time decreases as 

the waiting time increases. 

3.3.4. SENSITIVITY OF THE INDEXES TO THE HEADWAY VARIANCE 

Figure 3-1 shows results obtained for the proposed indexes for different values of the 

Headway Variance, which is used to determine different service regularity. In the 

performed analysis the Headway is modelled as a Gamma variable, which use is 

motivated in section 3.4.1. A mean Headway of 12 minutes is assumed. The values 

1,2,5   are respectively adopted for the shape parameter, in order to specify different 

Headway variances (the higher   the smaller the headway variance). Moreover the 

limiting case of a perfectly regular transport service is considered for which the 

headway is exactly equal to 12 minutes. 



 Quality, Availability and Lifecycle cost of Transportation systems 

Quality evaluation of a mass transport service 
 

  

41 

 

   

Figure 3-1-a depicts the waiting time CdF  WF  , strictly linked to SSD via equation 

(3.5). As service regularity increases (i.e. variance of H decreases), the SSD increases. 

For 1   the headway is an exponential random variable, thus, because of the 

memoryless property, the identical exponential distribution is also obtained for the 

waiting time. 

Figures 3-1-b and 3-1-c show the DHEW and the MRWT computed on the basis of 

the Waiting Time Distribution (3.3). Of course, for 1  , being the waiting time 

Exponentially distributed, both the DHEW and the MRWT are constant. Obviously the 

DHEW increases and the MRWT decreases with service regularity. 

 

Figure 3-1: Service Quality Indexes in different regularity conditions 

3.4. A first Case Study: Quality evaluation of the route 181 operated by A.N.M. 

The service quality indexes introduced in section 3.3 have been used to analyse the 

route 181 of Azienda Napoletana Mobilità S.p.A. The route is characterized by 55 bus 
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stops distributed along a route of 13.9 km, that connects the “Campi Flegrei” railway 

station to “Piazza Medaglie d’oro” and vice-versa. Arrival Times of buses at main stops, 

maxi-nodes, are collected in a Data Recording System that allows monitoring in real 

time the service performances. For this exemplificative application, attention has been 

focused on the Via Caravaggio stop. A real data set (see Attachments to chapter 3) of 

bus arrival times is used to check that a Gamma RP fits the bus arrival process. The 

same data set was used to estimate the Gamma distribution parameters. 

No data about the customers arrival process are available. Thus, the hypothesis that 

the customers arrival process is an Homogenous Poisson Process stochastically 

independent on the bus arrival process, was not checked. Anyway, it is to note that 

when a mass transport service is characterized by quite short headways, as in the 

considered application, this hypothesis seems to be very convincing (Kho et al., 2005). 

The section is structured as follows. In section 3.4.1 appropriate statistical tests of 

hypotheses are adopted to check the bus arrival process assumptions. In section 3.4.2 

the accuracy of the approximation adopted to model the waiting time distribution is 

discussed in some details. At last, in section 3.4.3 results of the performed analysis are 

presented. 

3.4.1. STATISTICAL HYPOTHESIS CHECKING  

The Gamma model for time between bus arrivals (Larson, Odoni, 1981), (Billi et al., 

2003) has been considered : 

    
11 h

Hf h h e 
 





 (3.9) 

For parameter estimation purposes the mid-point imputation approach is adopted, 

which for our one minute precision data (see Attachments to chapter 3) and an 
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estimated median headway of about 11 minutes, doesn’t affect the validity of the 

performed analyses (Law, Brookmeyer, 1992).  

The hypothesis of Renewal Process has been checked via the Generalised Anderson 

Darling (GAD) Test, which presents good power against both monotonic and non-

monotonic alternatives (Kvaloy et al., 2001). 

The available sequences of headways have been treated as a unique realization of a 

Renewal Process in order to check both the presence of day by day (i.e. inter day) and 

headway by headway (i.e. intraday) heterogeneities. 

The GAD score 0.97 is obtained which, at 5% level of significance, doesn’t give 

evidence against the null hypothesis (the 5% GAD test rejection limit is 2.49). 

Goodness of fit of the Gamma model has been checked via a modification of the 

Locke’s test (Locke, 1976) based on the consistent BKR test of independence (Lukacs, 

1995), (Blum et al., 1961), (Wilding, Govind, 2008).  

The randomized 98 pairs (one observation has been randomly discarded) used to 

perform the test are reported in Appendix B. The 5% rejection limit for the BKR test 

has been calculated adopting the Gaussian “portable” approximation of the BKR 

statistic given in (Mudholkar, Wilding, 2005). For the considered number of pairs the 

rejection limit 4.62 has been obtained. The BKR statistic 3.10 has been computed on the 

basis of the available data. Thus, the considered sets of pairs gives no evidence against 

the null hypothesis of Gamma distributed headways. 

Table 3-1 reports the Maximum Likelihood Estimates of the shape, , and scale,  

parameters of the Gamma distribution. The Maximum Likelihood Estimates of the 

Mean and Variance are also reported: 
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Headway Model Parameters Headway Mean and Standard Deviation [min] 

 

 

4.14 

3.13 

Mean 

Standard Deviation 

12.96 

6.37 

Table 3-1: Headway model parameters and elementary statistics 

3.4.2. CHECKING APPROXIMATION ACCURACY 

In this chapter the limiting distribution (3.3) is used, for a finite   to approximate the 

exact customer waiting time distribution (3.1). In order to check the approximation 

accuracy a simple approach based on the Phase-Type Renewal Processes theory (Neuts, 

1978) is adopted, which enables to avoid searching solutions for equations (3.1) and 

(3.2), that are quite cumbersome to solve. 

Note that the Gamma random variable isn’t a PH one unless the shape parameter is an 

integer. Thus, a Gamma(5,β) distribution is considered for the headway. Moreover, the 

value 12.59 min   has been used for the scale parameter, in order to set the mean of 

Headways to the estimated value 12.96 (see Table 3-1). 

For any given mean headway value and finite time  , the approximation gets worse 

as the variance decreases. So the performed check, made considering a Gamma(5,2.59) 

RP, is conservative.  The CTMC   , 0X t t   associated to the Gamma(5,) RP is 

characterized by the following generator *Q : 

 

1 1

1 1

* 1 1

1 1

1 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0
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 
 

 

 

 

 

 

 

 
  
  
 

 
  

 (3.11) 
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where  X t  may be viewed as the (transient) state of the Gamma (5,β) distribution 

visited by the renewal process at time t. 

Following the main results given in (Kao, Smith, 1992) it is possible to show that that 

the forward recurrence time CdF at time t,  F W t , for this renewal process can be also 

formulated as: 

      
 

5

1

5 1 ,

5 1i
i

i w
F W t v t

i

 


 


    (3.12) 

where: 

   1,....,5iv t i   are the state probabilities at time t associated to the CTMC 

  , 0X t t  . They can be obtained solving    *( ) 0 expv t v Q t   where 

 0 [1 0 0 0 0]v  ; 

  ,s x   is the lower incomplete gamma function: 1

0
, 0

x
s zz e dz s    

(Abramowitz, Stegun, 1972); 

  s  is the gamma function: 1

0
, 0s zz e dz s


   . 

Equation (3.12) can also be interpreted using the total probability theorem. In fact it is 

easy to recognize that if  X t i  the forward recurrence time is  Gamma 5 1,i    

distributed, thus  F W t  can be obtained multiplying the forward recurrence time 

distributions conditioned on  X t  by the correspondent state probabilities. 

As stated in section 3.2, the arrival time of the generic customer at the stop of interest 

is Uniform [0,] distributed and is stochastically independent on the bus arrival process. 

So the customer waiting time CdF ,  WF w , can be expressed as follows: 
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    
 
 

5

10

5 1 ,1

5 1i
i

wi
F W v t dt

i

  
 

 


    (3.13) 

Figure 3-2 reports the stationary forward recurrence time pdf (dashed line) and the 

exact waiting time density obtained via equation (3.13) in the case of a  = 3 hour long 

time interval (i.e. the length of the 7-10 AM daily observation interval). 

 

Figure 3-2: Comparison between the exact customer waiting time and forward 

recurrence time densities 

Even for the selected, very small,  value the stationary forward recurrence time 

distribution constitutes a very good approximation for the exact customer waiting time 

distribution. Obviously the larger is the time interval of interest, the better the 

approximation. 

3.4.3. SERVICE QUALITY EVALUATION 

In this paragraph, the limiting waiting time distribution (equation (3.3)) obtained 

using the estimated headway distribution, that is a Gamma(4.14, 3.13), is used to 

evaluate the service quality indexes introduced in Section 3.3. The resulting limiting 
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waiting time distribution, which cannot be expressed in analytic form, is represented in 

Figure 3-3. 

 

Figure 3-3: Estimated Waiting Time pdf 

Results obtained for the indexes are represented in Figure 3-4. In the same figure, for 

comparison purposes, results obtained in the case of a perfectly regular transport service 

are represented, which are the best possible to attain with the assumed (i.e. estimated) 

mean headway value. A visual analysis of Figure 3-4 highlights that the DHEW is a 

concave increasing function (see figure 3-4-b); this means that the service is robust, but 

its robustness cannot be easily perceived by customers. In fact, for example, the MRWT 

dynamic (figure 3-4-c) shows that after 10 minutes already spent at the stop the 

expected residual waiting time is still about 5.5 minutes, whereas the initial mean 

waiting time for the generic customer is 8.04 minutes. Thus, after 10 minutes spent at 

the bus stop the mean residual waiting time decreases of (about) 2.5 minutes only, a 

result that may discourage customers to wait (consider that in the case of the perfectly 

regular transport service in figure 3-4-c after 10 minutes spent at the bus stop the mean 

the residual waiting time is 1.50 minutes). 
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Moreover, as an example, the SSD plot evidences that the generic customer waiting 

time exceeds 7.45 minutes (1.15 times the half headway) with probability 0.45 (i.e. the 

45% of the customers wait more than 7.45 minutes) whereas in the case of a perfectly 

regular transport service the generic customer waiting time exceeds 7.45 minutes with 

probability 0.42. Thus not big differences are evidenced by this index if a small value is 

considered for the reference waiting time. On the contrary if the SSD is calculated with 

reference to a waiting time of 14 minutes, larger than the mean headway, a value of 

about 0.85 is obtained for the service under study, whereas the value 1 is obtained for 

the perfectly regular service. 

 

Figure 3-4: Service quality indexes for the route 181- Comparison between actual 

service (continuous line) and perfectly regular service (dash-dotted line) 

Equation (3.4), as long as results in figures 3-1 and 3-4, gives evidence that reducing 

the headway variance allows to obtain noteworthy quality improvement. This led 
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Transport Authorities to develop, implement and test various service-regularizing 

strategies (Hounsell et al., 2008), (Panglinan et al., 2008). Besides improving service 

quality, reducing headway variance leads to reduce operating costs (i.e. vehicle 

operating hours per day, labor, energy and maintenance costs). For example, as shown 

via the comparison performed in figure 3-5, given the generic customer mean waiting 

time, if the headway standard deviation reduces from 6.37 to 5 minutes the system 

quality improves (in terms of both DHEW and MRWT) and (see equation 3.4) 

requested mean headway increases from 12.96 to 14.33 minutes. This apparently 

“small” change allows to save about 340 runs per year, only considering the working 

days and the time interval 7.00-10.00 am. 

 

Figure 3-5: Comparison between actual (solid line) and forecasted service (dash-

dotted line) 
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3.5. Conclusions 

A set of service quality indexes related to the customer waiting time has been 

introduced and applied to evaluate the performances of  a real bus route. The stationary 

distribution of the Forward Recurrence Time has been adopted to model the generic 

customer waiting time. 

Conditions in which the proposed approach can be used are specified and the main 

working hypotheses have been checked. It is shown that the proposed quality indexes 

are characterized by a precise operative meaning and don’t require expensive and 

extensive data collection. On the basis of data that are usually available in practice, the 

proposed indexes enable quantifying the effect of service regularity on customers 

waiting time. On the basis of this inference, a service improvement strategy can be 

formulated and the expected results estimated.  
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4 AVAILABILITY ASSESSMENT OF TRANSPORTATION SYSTEMS WITH 
NON EXPONENTIAL DOWNTIMES 

4.1. Introduction 

In the last decades Reliability, Availability and Maintainability (RAM) characteristics 

of transport systems have been assuming a continuously growing importance. Indeed, 

quantitative RAM requirements for the whole system and its main constituents (e.g. 

Fleet, Traction system, Overhead Catenary System) are nowadays set in practically all 

the invitations to tender for transport systems. In addition, such requirements are almost 

always defined via operational indexes which strongly depend on organisational 

strategies. So, in order to well operate under this new perspective, it is absolutely 

necessary to dispose of complex stochastic models, which allow to account for the 

effects of management strategies/decisions on transport systems RAM. In many cases, 

effective models can be developed via Markov theory, which relies on the assumption 

that failure and repair times are exponentially distributed. Unfortunately, not always 

markovian models work adequately. In fact, while the hypothesis of exponentially 

distributed failure times is usually met in practice, the hypothesis of exponentially 

distributed repair times is often not realistic and should be removed to obtain 

satisfactory results. In this chapter, some non-Markovian stochastic models are 

presented that can be used to evaluate the effect of managerial decisions concerning 

maintenance service (i.e. number of spare trams, numbers of servers) on operational 

availability of a fleet of trams in presence of non exponential repair times. 

Modelling/computation is practically performed adopting the Device of Stages (DOS) 

technique (Cox, Miller, 1965), (Singh et al., 1973), (Neuts, 1981). In addition, Monte 

Carlo Simulation (MCS) (Asgarpoor, Mathine, 1997), (Billinton, Li, 1994) is also 
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carried out and results obtained are compared with those obtained via DOS technique. 

The influence of spare vehicles and number of servers on fleet operational availability is 

studied and discussed. The effect of inherent repair time distribution (Knessl et al., 

1987), (Cooper et al., 1998), (Gupta, Srinivasa Rao, 1998), (Colini et al., 2009), on 

short and long term operational availability is also investigated and highlighted. Main 

advantages and drawbacks of the two considered approaches (DOS&MCS) are 

discussed. 

4.2. A second Case Study: Operational Availability assessment of the 
AnsaldoBreda fleet 

Operational Availability of a fleet of identical trams, produced by AnsaldoBreda for 

ANM (Azienda Napoletana Mobilità), to operate a tramway line in the city of Naples, is 

analysed. The study is performed only taking into account failures of the 

traction/braking subsystems (two traction modules and one braking module for each 

tram), which mainly affect fleet availability. Values of inherent Mean Time To Failures 

(MTTF), 3000 hours, and Mean Time To Repair (MTTR), 3 hours, of the single 

traction/braking subsystem were directly provided by AnsaldoBreda. 

In order to model the stochastic dependence among the states of different trams, 

generated by the presence of the queue, the whole fleet is modelled as a multi-state 

system. Operational availability of the fleet is computed in the following spare 

trams/servers configurations: 

1) 0 spare trams and 1 server 2) 1 spare tram and 1 server 
3) 0 spare trams and 2 servers 4) 1 spare tram and 2 servers 

 

Table 4-1: spare trams/servers configurations considered for the case study 

Fleet Availability under configurations 1 and 2 is evaluated via model B1, whereas 
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under configurations 3 and 4 model B2 is adopted. These models are described in 

sections 4.3 and 4.4 respectively. The application is developed on the basis of the 

following hypotheses: 

i. The transport service operates “24 hours a day”; 

ii. Planned service requires at least twenty trams available; 

iii. The generic tram is withdrawn from service when a failure occurs to at least one 

module of its traction/braking subsystem; 

iv. Time that a failed tram spends to reach the workshop and time that the spare 

tram (when present) spends to replace a failed tram is not considered; 

v. Only first level maintenance is performed at the workshop (i.e. spare modules 

are used to replace the failed ones, which are repaired off-line with the aim of 

maximizing fleet availability); 

vi. Limitless spare modules are available at the workshop;  

vii. Time spent to perform preventive maintenance is not considered; 

viii. Failure times and inherent repair times of trams are mutually independent 

random variables, r.v.; 

ix. In both 1 and 2 server case, trams to be repaired are arranged in a single 

(common) queue, served according to a First In First Out (FIFO) discipline; 

x. Servers work independently. Maintenance crews are assumed to have identical 

skills and experience (consequently, inherent repair times are identically and 

independently  distributed r.v.); 
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xi. At any point in time, probability that more than 3 trams need to be repaired is set 

to zero. This simplifying assumption doesn’t significantly affect the results for 

the considered MTTR and MTTF values. 

In this chapter the inherent repair time is assumed to be an Erlang-3 r.v. This 

assumption allows to easily apply the DOS approach. However, alternative choices are 

discussed in some details. 

4.3. Model B1(1 Server)  

In presence of 1 server and an Erlang-3 inherent repair time, the stochastic process 

describing the system state is Semi-Regenerative (Çinlar, 1975). In fact, in presence of a 

single server, operating according to a FIFO discipline, after each repair completion the 

process enjoys absence of memory, that is process evolution from then onward depends 

on the current process state (number of trams to be repaired) and not on previous 

history. In this case (see hypotheses in section 4.2), four states can be defined for the 

fleet, identified by the label d=0,1,2,3, which specifies the number of trams at the 

workshop. The state space and transitions between states are reported in Figure 4-1, 

being s=0 (i.e. number of spare trams) under configuration 1 and s=1 under 

configuration 2. 

 

Figure 4-1: Model B1 - State Space 

Fleet is available if 20 20s d   . Transition rates due to failures (continuous 

arrows) are time invariant, (these rates only depend on the number of running trams), 

transition rates due to repairs (dash-dot arrows) depend only on the time elapsed since 
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the last repair completion. 

4.3.1. DEVICE OF STAGES TECHNIQUE 

The basic idea behind the DOS technique is that of modeling a single state with non 

exponential sojourn time by a proper arrangement of multiple stages in which sojourn 

time is exponential. Theoretically, DOS allows to model/approximate any non negative 

r.v. (Schassberger, 1973). An eventual drawback of this technique is that, in some cases, 

depending on the shape of the random variable to model, it may lead to a very  large 

number of stages for some states. The state space in Figure 4-1 leads to the model in 

Figure 4- 2.  

 

Figure 4- 2: Model B1 DOS- State Space and transitions 

As it is shown in the figure above, in order to identify states with 1d   it is now 

necessary to specify not only the number of trams to be repaired, d, but also the stage, r, 

of the ongoing repair. In the case d=0 the label r is conventionally set to 0 to signify that 

the server is not busy. Transitions due to failures (solid arrows) make d increase by 1 

and leave r unchanged. Transitions due to repairs (dash-dot arrows), occurring at a rate 

3 / MTTR  , make d decrease by 1 only when the stage 3r is left. 

4.3.2. MONTE CARLO SIMULATION 

MCS method is applied on the basis of the model depicted in Figure 4-1. In order to 

compute fleet Operational Availability via MCS, 105 realizations of the chronological 

system State Transition Process (Billinton, Li, 1994), over a discrete ( 0.1t h  ) time 
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span of 300 hours, were generated. During each Monte Carlo trial, a realization of the 

process is obtained simulating the random walk which guides the system from one state 

to another, at different times. To do this, transition by transition, given the state the 

system occupies and the time at which this state was reached, it is determined the time 

at which the next transition occurs and the state reached as a consequence of this 

transition. In particular, 0d   is characterized by an exponential sojourn time, since 

only transitions due to failures can occur and hence only state 1 can be entered. When 

1d   both failure and repair transitions can occur. So, for example, if the system state 

changes from 0 to 1 at time t, sojourn time in state 1, say min1t , is defined as the smaller 

between a failure time , 1Ft , and a repair time, 1Rt , generated from two independent r.v, 

Exponential and Erlang-3 distributed, respectively. Thus, the System enters a new state 

at time min1t t . The new state is d=0 if 1 1F Rt t , it is d=2 otherwise. In the latter case, a 

new failure time, 2Ft , generated from the appropriate exponential r.v., is compared with 

the residual repair time, 1 1R Ft t . Sojourn time in state d=2, min 2t , is defined as the 

smaller between 2Ft  and 1 1R Ft t . The new state will be d=1 if 2 1 1F R Ft t t  , state d=3 

otherwise. When d=3 only transition to state d=2 is allowed. The sojourn time in state 

d=3 is equal to  1 1 2R F Ft t t  . Such a procedure is repeated until total time reached 

300 hours. Operational Availability was computed averaging over the results of 105 

trials. Stateflow and Simulink Charts developed to perform MCS under configuration 1 

are reported in attachments for chapter 4. Failure and Repair Times were obtained via 

MATLAB Exprnd and Gamrnd functions. 
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4.4. Model B2 (2 Servers) 

When 2 servers and Erlang-3 inherent repair times are considered, the process 

describing the system state is Generalized Semi-Markov (Ciardo et al., 1994). In fact, in 

presence of 2 servers, process enjoys absence of memory only when the workshop is 

empty (as a consequence of the previous transitions). The state space and the transitions 

between states are now those reported in Figure 4- 3: 

 

Figure 4- 3: Model B2 - State Space and transitions 

4.4.1. DEVICE OF STAGES 

For 1d  , model is the same as that described in section 3.1. To identify states with 

2d   it is now necessary to specify the number of  trams in the workshop, d, and the 

stages, r1 and r2, of the two ongoing repair activities. Then, repair transitions for 2d   

are organized as shown in Figure 4- 4. 

 

Figure 4- 4: Model B2 DOS- State Space and repair transitions 

Repair transitions depicted by thick arrows occur at a rate equal to 6/MTTR. Those 

depicted by fine arrows occur at a rate equal to 3/MTTR. Transitions due to failures 

make d increase by 1 and leave unchanged the stage(s) of ongoing repair(s) (see also 

section 4.3.1). Only states such that r1r2 are defined in the model. The use of this 
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expedient allows to split states 2d   and 3d   in only 6 stages instead of 9, without 

loss of useful information. In the case d=0, r1=r2=0 indicates that both servers are not 

busy. Similarly, for d=1, r1=0 and r2≠0 indicates that only one server is busy. 

4.4.2. MONTE CARLO SIMULATION 

Implementing MCS for the two servers case is a little bit more difficult than the 

previous case, because for 2d  it is necessary to keep memory of the instants in which 

both ongoing repairs started. In order to simplify this task MCS was performed starting 

from the model described in section 4.4.1, adopting a procedure similar to that outlined 

in section 4.3.2. 

4.5. Fleet Availability 

Results obtained via both DOS and MCS are reported in the following Figure 4-5. All 

configurations (Table 4-1) are considered. It is assumed that at time 0 all trams are 

available. 
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Figure 4-5: Fleet Availability – DOS (solid line) vs MCS (dashed line) 
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MCS has been performed as described in 4.3.2 and 4.4.2. Fleet availability via DOS 

technique has been numerically obtained via a discrete-time approximation (step size 

equal to 0.1 hours) of the differential equation describing the evolution of the state 

probability vector. Of course, for the Erlang-3 inherent repair time, DOS technique 

leads to exact state probabilities of the involved non-Markovian processes (see sections 

4.4.3 and 4.4.4). Results obtained via DOS (solid line) and MCS (dashed line) are in 

quite good agreement one each other. The highest fleet availability value is obtained (as 

expected) under configuration 4, both in the transient and steady phase. It is possible to 

note that the presence of a spare tram determines an important improvement of fleet 

operational availability, while the impact of the number of servers is less relevant. 

About MCS, it is to note that 105 Monte Carlo trials don’t allow to perform accurate 

evaluations of the considered availability level (see fluctuations in figure 4-5). 

Consequently, considered that even more severe requirements are usually defined in the 

invitations to tender, the DOS approach is usually to be preferred to MCS. 

4.6. Comparisons With Other Approaches 

In this section the results provided by models B1 and B2 are compared to those 

obtained via the following: 

1) Model C: the model often used by practitioners, which neglects the 

effect/presence of the queue and assumes that the spare tram is (always) 

available with probability 1; 

2) Model Di i=1,2,: a Markov model with inherent exponential repair time. 

Comparisons between results obtained via the above models L=C,D1,D2 and M=B1, 

B2 are made adopting the following index: 
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           2121 ,,,1001% BBMDDCLtAtAtAt MMLLM   

which represents the percent difference in unavailability at time t computed via the 

compared models. All computation are performed assuming that at time 0 all trams are 

available. 

4.6.1. MODEL C VERSUS MODELS B1 AND B2 

Model C calculates availability,  CA t , via the following equation: 

       1,01
20 20
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where s is the number of spare trams (available with probability 1) and: 

    1 1
exp ; ; ; 0,1p t t s

MTTF MTTR

     
   

         
 

Model C assumes that spare trams availability is 1 for every 0t  . 

For s=0 equation (4.1) reduces to the equation proposed in (Trivedi, 2002) for a series 

of n identical systems in presence of n identical servers operating independently of one 

another. 

Results obtained applying this model may significantly differ from those obtained via 

models B1 and B2. This mainly depends on the number of servers, the number of spare 

trams, the shape of the repair time distribution, MTTF and MTTR of the single unit 

(mainly on MTTF/MTTR). Plots of  1 %CB t  and  2 %CB t  are reported in Figure 4-

6. 
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Figure 4-6: plots of indexes  1 %CB t  and  2 %CB t  

For each configuration, three different values are considered for the MTTF: 1000, 

2000, and 3000 hours, respectively. Related results are reported in Figure 4-6. The 

MTTF increases as indicated by the arrow. 

In all cases model C leads to overestimate fleet availability. For given a MTTF, %  

decreases as the number of servers increases and increases as s passes from 0 to 1. The 

worst results are obtained under configuration 2, where %  approaches 50%. 

4.6.2. MODELS DI VERSUS MODELS BI 

Mathematical details of the well known models Di are skipped for sake of brevity. 

Plots of  1 1 %D B t  and  2 2 %D B t  obtained under each configuration are depicted in 

Figure 4-7. 



 Quality, Availability and Lifecycle cost of Transportation systems 

Availability assessment of transportation systems with non exponential downtimes 
 

  

62 

 

   

0 10 20 30 40
0

5

10

15

20

Time [h]

 D
1B

1(t
)%

Configuration 1 (0 spares 1 server)

0 10 20 30 40
-60

-40

-20

0

20

40

Time [h]

 D
1B

1(t
)%

Configuration 2 (1 spare 1 server)

0 10 20 30 40
0

5

10

15

20

Time [h]

 D
2B

2(t
)%

Configuration 3 (0 spares 2 servers)

0 10 20 30 40
-10

0

10

20

30

40

Time [h]

 D
2B

2(t
)%

Configuration 4 (1 spare 2 servers)

Single Unit MTTF Single Unit MTTF

Single Unit MTTF

Single Unit MTTF

 

Figure 4-7: plots of indexes  1 1 %D B t  and  2 2 %D B t  

As in section 4.6.1, three different values are considered for the MTTF (i.e. 1000, 

2000, and 3000 hours). Figure 4-7 shows that the effect of MTTF in this case is not 

relevant. On the contrary, the effect of different repair time distributions on fleet 

operational Availability is clear. Configuration 2 is the one for which the effect of 

different repair time distributions is more evident. The related plot shows that during the 

first (say 5 hours) the index ∆% increases and assumes positive values; subsequently it 

decreases settling on a constant negative value. Plots related to configurations 1,3 and 4 

give a clear evidence of the effect of the repair time distribution on transient phase 

availability. On the contrary the effect on steady phase availability, although certainly 

present, cannot be appreciated on the basis of a visual analysis. More in detail, 

availability in configurations 1 and 3 (i.e. 0 spare trams) is higher under the Exponential 

than under the Erlang-3 time to repair, both in the transient and steady phase. For 
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configurations 2 and 4 (i.e. 1 spare tram) transient phase availability is higher under the 

Exponential repair time, while steady phase availability is higher under the Erlang-3 

repair time. The observed effects (given the MTTR) seem to be mainly due to 

differences in skewness and variance of the two considered repair time distributions. 

Skewness affects availability since probability of performing quicker than average (i.e. 

MTTR) repairs increases as the (positive) skewness increases. Variance affects 

Availability via the waiting time distribution, whose mean increases as the variance of 

the repair time distribution increases, as a consequence of the so called inspection 

paradox (Stein, Dattero, 1985).  

Obtained results, at least in the steady phase, are in accordance with results obtained 

in literature for finite source queues (Knessl et al., 1987), (Gupta, Srinivasa Rao, 1998). 

Obviously, the performed analysis doesn’t allow defining a mathematical relationship 

between the fleet operational availability and the repair time distribution, neither it 

enables one to a-priori establish how significantly the repair time distribution may affect 

availability. Despite this, it clearly highlights that fleet operational availability is 

influenced by the repair time distribution, both in the transient and in the steady phase, 

even though the discussed effect may appear not always relevant. Nonetheless, a proper 

modelling of the repair time distribution can be always considered worthy, even if this 

leads to more complicated mathematics. In fact, in the considered applicative field, 

penalties due to poor availability performance are usually so severe to make intolerable 

even a very little loss of accuracy. 

4.7. Conclusions 

The effect of managerial decisions concerning maintenance service, namely the 

number of spare trams and the number of servers, on the operational availability of a 
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fleet of trams was analysed. The realistic hypothesis that Inherent repair times are non-

exponential random variables was assumed. The impact on fleet availability of this 

latter assumption was evaluated via appropriate non-Markovian processes. Device of 

Stages technique has been used to compute fleet operational availability under four 

different configurations (i.e. operational scenarios). Availability computation was also 

performed via Monte Carlo Simulation, highlighting drawbacks this approach may lead 

too. It is shown that the proposed non-Markovian models allow to adequately evaluate 

the impact on fleet operational availability of the considered factors, which affect both 

transient and steady phase availability. Results provided by the proposed models were 

also compared to those obtained via two simpler models: a pure markovian model and a 

model which is usually adopted by practitioners. Obtained results evidence that the 

latter simpler models cause a loss of accuracy that is not possible to tolerate. In fact, in 

the considered applicative field, the severity of penalties foreseen in the case of poor 

availability performance is very high. Indeed, this kind of penalties, which are 

customarily set as a percent of Operation & Maintenance payments, can go up to tens of 

millions of Euros (e.g. in the case of a fleet of 20 trains and a System lifecycle of 20 

years this kind of penalty approaches 10 millions of Euros). 
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5 QUALITY VS COSTS: THE LIFE CYCLE COST 

5.1 Towards a whole Lifecycle Cost – Reliability Model 

Since promoting public transportation is one of the main levers to ensure 

environmental sustainability, great interest has been focused by Transport Authorities 

on policies aiming at promoting the use of public transport. In this respect, ensuring that 

passengers perceive a high service quality is of paramount importance. In addition, an 

increased use of public transport can be achieved making it relatively affordable with 

low fares. Thus, Transport Authorities have to manage an important trade-off between 

Quality and costs.  

As previously highlighted, service quality is mainly related to service on-time 

performances, which strongly depend on systems reliability and on the operators’ 

capability of minimizing service degradation in failure conditions. Thus, the above 

trade-off can be in large part explained managing the trade-off between reliability and 

costs from a lifecycle perspective (i.e. taking into account costs to be born during the 

whole system lifecycle). Of course, managing this trade-off on an integrated basis, since 

the early stages of the system lifecycle is strategically important also for companies 

delivering transportation systems: costs associated to different lifecycle phases are 

strongly interrelated and, even if a large portion of costs is the direct result of activities 

pertaining to systems operation and support, the commitment of these costs depends on 

decisions made during conceptual/preliminary design (Fabrycky, Blanchard, 1991), 

(Wheatcroft, 1985).  

Lifecycle cost estimates are usually performed in the industry by analogy, on the 
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basis of costs actually born to design, build, operate and maintain comparable systems. 

However, the translation of costs born for a given system in costs to be born for a new 

system is largely subjective and empirical. Thus, it is not possible to properly address 

the problem of analyzing  the effects of reliability targets on the system lifecycle cost. 

In order to make this possible, it is necessary to develop a model that explains and 

explicitly accounts for costs related to systems reliability: failures during revenue 

operation, the acquisition of a given inherent reliability level and efforts required to 

reach the planned reliability target. From this point of view, modeling the failure rate 

behavior of a complex system during the whole lifecycle, from field testing to revenue 

operation, is very important since the development and support costs are strictly related 

to the reliability improvement process and to the steady-state reliability level. Thus, in 

order to formulate a Lifecycle cost – Reliability model, it is at first necessary to focus 

on the formulation and parameters estimation of an intensity model capable of fitting 

early and useful life failures. Once a model capable of explaining the failure rate 

behavior is found, relationships between reliability, acquisition costs, support costs and 

costs to be born to reach the desired reliability level can be identified. Following the 

above approach, a Lifecycle cost – Reliability model is formulated. Its main 

characteristic is the concept of inertia pertaining to the reliability improvement process, 

which largely explains costs to be born, during the testing phase and the early stages of 

operation of a given system, to reach the planned reliability target. 

5.2 Fitting Early And Useful Life Failures Via The Hyperbolic Model 

In the context of modelling/forecasting the Life Cycle Cost of a complex 
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repairable system, the need for an intensity function capable of explaining the system 

failure rate behavior during both early and useful life arises. The idea of modelling the 

failure rate behavior of complex repairable systems via a Non Homogeneous Poisson 

Process (NHPP) is not new. As an example, starting from Duane’s investigations, which 

led to the so called learning curve approach (Duane, 1964), Crow proposed to model the 

failure process of a complex repairable system during the testing phase (i.e. reliability 

growth) via a NHPP with a power law intensity (Crow, 1974). On the basis this idea, 

the Hyperbolic failure intensity model, which enables counting via a NHPP the failures 

that must be financially supported during the early stages of operation, including field 

testing, and the useful life of a complex repairable System, is presented. This three 

parameters model is characterized by a decreasing failure intensity approaching a non-

zero lower bound, which makes it suitable to model the failure rate behavior during the 

above lifecycle phases. A two parameters version of this failure intensity model has 

been introduced in (Erto, 1988). Moreover, the functional form proposed in (Erto, 1988) 

has been used in (Erto, Palumbo, 2005) to characterize the hazard rate function of a 

reliability model for non-repairable systems. In addition, the proposed three parameters 

model is quite close to the functional form assumed by the Army Maturity Projection 

Model, used for reliability projections, when the number of B-mode failures (i.e. failure 

modes that receive corrective action during development and testing, see) tends to 

infinity (Ellner, Wald, 1995). Since reliability improvements of a complex repairable 

system are due to corrective actions implemented during testing, the counting process of 

failures experienced during system testing is not characterized by independent 

increments. So, a justification for the use of a NHPP to model the failure rate behavior 

of a complex repairable system during the early stages of operation, including testing, 
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and the useful life is necessary. To this aim, conditions in which reliability 

performances of a system can be, on average, explained by the considered NHPP are 

briefly outlined. Then, procedures to obtain the Maximum Likelihood and Minimum 

Chi - square estimates of model parameters, for grouped failure data, are outlined and 

discussed. Model suitability to fit the counting process of failures of complex repairable 

systems during both the early stages of operation and the useful life is checked fitting 

the model to the failure process experienced by the fleet of trains operated within the 

M1 and M2 lines of the Copenhagen Metro System during the first two years of 

operation. 

5.2.1 The Hyperbolic Model 

The proposed failure intensity, which generalizes the one proposed in (Erto, 1988), is: 

  0,0,0
1




 rba
bt

a
rt

 

which is strictly decreasing from the early maximum value a+r to the asymptotic 

minimum r.  

The parameter a is called limiting decrease of the failure intensity (Erto, 1988). It may 

be viewed as the overall failure rate, at the beginning of system testing and operation, 

due to B-mode failures. The parameter r is the steady state failure intensity. It may be 

viewed as the failure rate due to failure modes that not receive corrective action (i.e. A-

mode failures). The parameter b is a scale parameter, depending on the unit of 

measurement of the system age (e.g. calendar time, miles and so on), t. The application 

of such a model to count, via a NHPP, failures a complex repairable system undergoes 

during testing and operation is probabilistically justified in (Ellner et al., 1998). In fact, 

under the following assumptions: 
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 time to first occurrence of the generic B-mode failure is assumed to be an 

Exponential random variable (r.v.) with parameter λi; 

 the mode to mode variation in the initial B-mode failure rates is a Gamma r.v. 

with scale parameter b and shape parameter ab/k, being k the number of 

different B-mode failures; 

the stochastic process that counts the number of first occurrences of B-mode failures by 

time t converges, as k tends to infinity, to a NHPP with the following mean value 

function M1(t): 

 1ln)(1  bt
b

a
tM

 

so taking into account A mode failure rate, the following mean value function is 

obtained: 

   1ln  bt
b

a
rttM

 

whose first derivative with respect to t coincides with the proposed failure intensity 

model.  

5.2.2 Maximum Likelihood Estimation 

Given the number of failures a system faced in some (non-overlapping) operating 

windows, the Likelihood function L is: 

 
 

   1.5
1

1
lnexp

!

1

1
ln

,,, 1
1

1

0

1
1




























































 










i

i
ii

m

i i

n

i

i
ii

ii bt

bt

b

a
ttr

n

bt

bt

b

a
ttr

tnrbaL

i

 

Where: 

 m is the number of operating windows; 
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 ni is the number of observed failures within the ith operating window 

 iii ttt  1  is the amplitude of the ith operating window. 

Taking the logarithm of equation (5.1), it is possible to obtain: 
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It is possible to show that the ML estimate of the total number of failures at the end of 

the observation period coincides with the total number of observed failures. In fact, 

letting r
c

a
 , the mean value function can be expressed as    ln 1

a
M t c a t bt
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is the total observation time, we obtain: 
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If the first n times to failure of a given repairable system are known, the likelihood 

function is: 

   

      

   
  

1

1

1

1

exp

1
exp

1 ln 1

1
exp

ln 1

n

i

i

n

ii

n
in

i

L M z t

c
bt c b b

c bt

c b b




 

 
 









        

        
         

  
    

     







 



 Quality, Availability and Lifecycle cost of Transportation systems 

Quality vs Costs : The Lifecycle cost 
 

  

71 

 

   

The log-likelihood, l, can be expressed as follows: 
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Taking the first derivative of the log-likelihood with respect to    M  and 

equating it to zero it is possible to obtain: 
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The same result stands for the case of grouped data. Based on the above result, 

equation (5.2) can be expressed in terms of only 2 parameters, say b and r: 
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The function (5.3) can be maximized via Quasi-Newton methods, preferably 

providing the analytical expression of the gradient of (5.3) as input for the maximization 

routine: 
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In order to ensure convergence of the optimization routine, good starting values 
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should be chosen. A very simple and practical approach in finding starting values 

capable of ensuring a high chance of convergence consists in a-priori specifying the 

parameter b and then estimating parameters a and r via Ordinary Least Squares. 

Numerical experiments have shown that, in order to ensure convergence, it is only 

important to match the correct order of magnitude of the parameter b. So, the above 

procedure can be repeated many times, choosing as starting values the values b and r for 

which the highest r-square is obtained. The proposed numerical procedure has been 

tested on 100 replications of a NHPP with Hyperbolic intensity with parameters 

specified in Table 5-1 : 

a [failures/km] 3,00E-03  

b [km-1] 1,00E-04  

r [failures/km] 1,00E-03 

Table 5-1: model parameters for numerical experiments 

Different values for it and mT have been considered. More precisely: 

 Case 1: 230000 it km, 115000mT  km; 

 Case 2: 5750 it km, 115000mT  km; 

 Case 3: 230000 it km, 460000mT  km; 

 Case 4: 5750 it km, 460000mT  km. 

The proposed procedure in all cases converged to the solution. The performed 

numerical experiments revealed that, given the values of a and b, the m.l.e. of the 

parameter r can be strongly optimistic (or even negative). when the product mbT   is low. 

More in detail, for cases 1 and 2 optimistic results have been obtained 12 and 14 times 
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respectively, whereas for cases 3 and 4 only 0 and 1 optimistic estimates for r have been 

obtained. Thus, on the basis of the above results one may argue that when a system 

undergoes a reliability program aiming at a 75% failure rate reduction, the m.l.e. of r in 

almost 10% may be strongly optimistic (or even negative) when 10mbT  , whereas 

such a situation is quite unlikely when 40mbT  . Of course the above probabilities may 

decrease as the product mbT  increases and/or the failure rate reduction decreases.  

5.2.3 Minimum Chi-Square Estimation 

Minimum Chi-square estimation is a point estimation technique consisting in 

minimizing the Chi-square statistic. Even if the Chi-square statistic is widely used for 

goodness of fit testing, its use for point estimation purposes is quite unpopular. In fact, 

differently from Maximum Likelihood, Minimum Chi-square estimators are often 

unavailable in closed form. In addition, since Maximum Likelihood estimation leads to 

estimators that are asymptotically equivalent to those obtained minimizing the 

Pearson’s Chi-square statistic, at least for large samples one might concentrate on 

whichever procedure is easiest to undertake and this is usually Maximum Likelihood 

estimation. 

In this section, a procedure to obtain Minimum Chi-square estimators for the 

Hyperbolic model parameters is outlined. Also in this case, the grouped failure data 

setting is considered. 

In the considered setting, the Pearson’s chi square function is: 
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Where: 

 m is the number of operating windows; 

 ni is the number of observed failures within the ith operating window; 

 1i i it t t   is the amplitude of the ith operating window. 

The function in (5.4) can be minimized via Quasi-Newton methods, preferably 

providing the analytical expression of the gradient of (5.4) as input for the maximization 

routine. Differently from Maximum Likelihood estimation, in this case it is not express 

one of the three parameters as a function of the other two. In the following, the partial 

derivatives of the Chi-square function with respect to a, b, r are depicted: 
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In order to find good starting values for the optimization routine, it is possible to 

proceed as described in section 5.2.2.  



 Quality, Availability and Lifecycle cost of Transportation systems 

Quality vs Costs : The Lifecycle cost 
 

  

75 

 

   

5.2.4 Maximum Likelihood Vs Minimum Chi-Square 

In this section Maximum Likelihood and Minimum Chi-square estimators are 

compared. To this aim, 1000 replications of a NHPP with Hyperbolic failure intensity 

with the following parameters : 

a [failures/km] 1.68E-04  

b [km-1] 3.78E-06  

r [failures/km] 8.40E-07 

Table 5-2: First parameters set for Maximum Likelihood and Minimum Chi-square 

estimators comparison 

have been generated. 

Each process replication consists in the number of observed failures in 15 operating 

windows organized as follows: 

Operating window
Lower Bound

[km] 
Upper Bound 

[km] 

1 0 400000 

2 400000 800000 

3 800000 1200000 

4 1200000 1600000 

5 1600000 2300000 

6 2300000 3000000 

7 3000000 3700000 

8 3700000 4500000 

9 4500000 5300000 

10 5300000 6100000 

11 6100000 6900000 

12 6900000 7700000 

13 7700000 8570000 

14 8570000 9460000 

15 9460000 10350000 

Table 5-3: Operating windows for comparisons 
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In the following table, are summarized main characteristics pertaining to both 

Maximum Likelihood and Minimum Chi-square estimators: 

Model Parameters 
True 
Value 

Maximum Likelihood  Minimum Chi Square  

Mean Variance MSE Mean Variance MSE 

a [Failures/km] 1.68E-04 1.82E-04 3.32E-09 3.52E-09 1.79E-04 3.12E-09 3.24E-09 

b [1/km] 3.78E-06 4.49E-06 6.89E-12 7.39E-12 4.31E-06 6.75E-12 7.03E-12 

r [Failures/km] 8.40E-07 7.09E-07 3.98E-12 4.00E-12 1.03E-06 4.33E-12 4.36E-12 

Table 5-4: Mean Squared Errors for Maximum Likelihood an Minimum Chi-square 

estimators – first comparison 

It can be noted that Minimum Chi – square estimators for parameters a and b are 

characterized by a lower mean squared error if compared to Maximum Likelihood 

estimates. On the contrary, Maximum Likelihood estimates of r are characterized by a 

lower mean squared error if compared to the Minimum Chi – square estimate of r.  

In the considered setting, the product 8.7mbT  . Thus, as observed in section 5.2.2, 

some optimistic estimates of r could be expected. Such a situation occurred in 30% of 

cases for both Maximum Likelihood and Minimum Chi – square estimation. 

Other comparisons have been performed between Maximum Likelihood and 

Minimum Chi – square estimates on the basis of 1000 replications of a NHPP with the 

following parameters for the Hyperbolic failure intensity: 

a [failures/km] 1.00E-03  

b [km-1] 1.00E-05  

r [failures/km] 1.00E-05 

Table 5-5: Second parameters set for Maximum Likelihood and Minimum Chi-square 

estimators comparison 

Also in this case, each process replication consists in the number of observed failures 
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in 15 operating windows organized as in the previous case (see Table 5-3). 

In the following table, are summarized main characteristics pertaining to both 

Maximum Likelihood and Minimum Chi-square estimators: 

Model Parameters True Value 

Maximum Likelihood  Minimum Chi Square  

Mean Variance MSE Mean Variance MSE  

a [Failures/km] 1.00E-03 9.32E-04 2.39E-08 2.85E-08 9.24E-04 2.35E-08 2.93E-08

b [1/km] 1.00E-05 9.47E-06 7.16E-12 7.44E-12 9.33E-06 7.06E-12 7.51E-12

r [Failures/km] 1.00E-05 9.73E-06 8.12E-12 8.19E-12 1.01E-05 8.51E-12 8.54E-12

Table 5-6: Mean Squared Errors for Maximum Likelihood an Minimum Chi-square 

estimators – second comparison comparison 

In this case, Maximum Likelihood estimates for all parameters are characterized by 

the lowest Mean Squared Error. Moreover, being mbt higher than in the previous case 

no optimistic estimates for r have been obtained. 

Based on the analyses performed above, one may conclude that Maximum Likelihood 

and Minimum Chi – square estimators are substantially equivalent in terms of mean 

squared error. In addition, their behaviour with respect to mbt  is substantially the same. 

The only advantage of Maximum Likelihood is due to the fact that it is easier to 

implement. 

5.2.5 A third Case Study: the failure process of the Copenhagen Metro fleet 

In order to show model suitability to fit the counting process of failures of complex 

repairable systems, it is fitted to the failure process experienced by the fleet of trains 

operated within the M1 and M2 lines of the Copenhagen Metro System. Available data 

consist in 20 non overlapping operating windows, covering the period of time between 

February 2003 and January 2005. For each operating window the fleet revenue 

kilometers and the number of failures are specified (see attachments to chapter 5). More 
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in detail, a failure is meant as a technical problem to the vehicle and on board 

installations leading to train withdrawal from service, not necessarily by means of 

rescue procedures.  

Following the procedure outlined in the previous section, ML estimates of model 

parameters have been obtained: 

a [failures/km] 7,30E-04 

b [km-1] 2,57E-06 

r [failures/km] 4,67E-05 

Table 5-7: Maximum Likelihood estimates of model parameters 

In figure 5-1-a the observed realization of the cumulative number of train removals 

from service (asterisks) and the estimated mean value function of the considered 

counting process (solid line) are depicted, whereas in figure 5-1-b the estimated (smooth 

line) and empirical failure intensity functions are depicted: 
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Figure 5-1: Observed and fitted cumulative number of failures and failure intensity 
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It can be noted that the proposed model seems very suitable to fit the counting 

process of failures experienced by the fleet of vehicles during the considered period. 

This has been confirmed by a chi-square Goodness of fit test, whose results are 

summarized in the following table: 

χ2 statistic 21,22 

p-value (χ2, 16 degrees of freedom) 0,17 

Table 5-8: Chi-square goodness of fit test results 

Since log-likelihood generates nearly elliptical contours centered at the maximum 

likelihood estimates (see Figure 5-2), the “normal approximation” (Meeker, Escobar, 

1998) to obtain confidence intervals for the parameters seems to be suitable in this case. 

As an example, the 90% two sided confidence interval for r is [2.62E-05, 6.73E-05] 

failures/km and the 90% two sided confidence interval for b is [1.43E-06, 3.72E-06] 

km-1. 
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Figure 5- 2: Log-likelihood contour plot 
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5.3 The Cost Model 

It is well known in literature that the reliability level of a given system explains about 

66% of its Lifecycle Cost (Seger, 1983). More in detail, reliability affects costs to be 

born throughout all the main lifecycle phases, namely: 

 Research, Development and Testing; 

 Procurement; 

 Operation and support. 

In this section, a model capable of explaining the part of the Lifecycle cost depending 

on reliability investments is presented. The model is fully based on the failure intensity 

model introduced in section 5.2.1. Thus, it is capable of relating research, development, 

testing and maintenance costs to the reliability growth process. Moreover, the model 

allows to incorporate costs to be born to attain a given inherent reliability level. In 

addition, the number of model parameters is quite low and they are all characterized by 

a clear and precise operative meaning. The general formulation of the model is: 

     
 

2 2

4

1
, , , , , ln 1 1 (5.5)

2 1

a Ca b
LCC t a b r A B C A rt bt B f r

b bt

                  
 

Where : 

  CBArbatLCC ,,,,,  is the system life cycle cost up to t; 

 t is a relevant measure of the system age (calendar time, revenue kilometers 

and so on); 

 A is an economic constant, accounting for in-service failures; 

 B is an economic constant, accounting for the acquisition of a given inherent 

reliability level; 
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 C is an economic constant, accounting for engineering efforts to be sustained 

during development, testing and early stages of operation to reach the planned 

reliability target, r. 

It is possible to note that the model structure encompasses costs to be financially 

supported due to failures during revenue service (first term), investment costs (second 

term), engineering and design costs during testing and early stages of operation to reach 

the planned reliability target (third term). In the following section, each of the three 

terms is discussed in some detail. 

5.3.1 Costs due to failures during revenue service 

These costs mainly pertain to corrective maintenance and losses due to service 

interruptions. For example, if mass transit vehicles are considered, corrective 

maintenance costs include labour due to first and second line repair activities, spare 

parts and consumables, testing equipment and maintenance tools. Thus, in order to 

estimate the corrective maintenance cost per failure, information included in corrective 

maintenance analyses (MTTR, tools, materials) are of crucial importance. Other critical 

factors are the service level of the repair shop and, last but not least, the system mission 

profile. Losses due to service interruptions can be quantified on the basis of penalties 

for delays foreseen in service contracts, which are often set considering ridership 

demands and timetables.  

The above costs can be accounted for in the term A and the total cost of failures 

during revenue service up to t is given by: 

 














 1ln bt

b

a
rtA  
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5.3.2 Investment Costs 

These costs pertain to the acquisition of a specified inherent reliability level. They 

encompass engineering and design costs, research and development costs, factory 

acceptance tests and inspections/controls during production. The knowledge of a 

relationship between the above costs and reliability is of crucial importance to solve 

critical design problems, such as the reliability apportionment among assemblies 

constituting a complex system. In (Govil, Aggarwal, 1982) a complete overview of 

cost-reliability relationships is provided.  

From a practical standpoint, especially when dealing with complex systems such as 

mass transit vehicles, a typical and important question one should be able to respond is 

“how much does the acquisition cost increase if the planned reliability target is 10% 

higher than the target set for a previously developed and fielded system?”. 

In order to answer such a question, (Long et al., 2007) noted that when the ratio of 

reliability investment to average production unit cost (APUC) is plotted against the 

percentage improvement in reliability on a log-log scale, the result is a straight line. 

More in detail, the proposed cost estimating relationship is: 

81.0log343.0log 














APUC

Investment

MTBxOld

MTBxNew
 

From which it follows: 

 
1

0.343

exp 0.81 (5.6)
New MTBx

Investment APUC
Old MTBx

 
  
 

 

The above relationship has been calibrated on the basis of several programs 

concerning military systems. Since used data were from a disparate sampling of 
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systems, the above relationship is likely to be system and technology independent 

(Long et al., 2007). 

5.3.3 Costs during field testing and early stages of operation 

These costs relate to the development and implementation of measures aimed at 

mitigating failure modes not  adequately addressed during system design and 

development (e.g. effects of environmental conditions on specific components), with the 

aim of attaining the planned reliability levels. Among the three identified cost 

components, this is for sure the most difficult to evaluate, due to the complexity and 

variety of activities to be carried out to attain the planned reliability goals. However, in 

macroscopic terms, following the idea proposed in (Erto, 1998), one may argue that the 

above costs are somehow proportional to the inertia which leads the system failure 

process to remain on the current intensity level. Thus, the above costs, at a given point 

in time, are proportional to the “inertia force” FI(t) pertaining to the failure process: 

   
 

2 2

32

2

1

d t ab
FI t C C

dt bt


 


 

where C is an economic coefficient.  

Thus, in order to reduce the failure intensity from the starting value a+r to   t , the 

total cost to be sustained, K, is: 

   
 

   

2 3 2 2

4 4

0

2 1
1

21 1

t t

a r

a b C a b C
K FI t d t dt

bt bt






 
     

   
   

The above cost can be seen as the overall work from the start of field testing to time t, 

required to move the failure intensity from a+r to  t . 
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5.4 Model Application example 

In this section it is shown how the proposed Lifecycle cost – Reliability model can be 

used to define, for a given system, a reliability target such that the reliability-related 

Lifecycle cost is minimized. More in detail, the model is applied to identify, for a fleet 

of 28 light rail vehicles, the optimum reliability target (mean distance between train 

removals). 

The above fleet is expected to run 380.000 km per month, for 30 years. Based on the 

above mission profile, the cost per single service failure (A) is expected to be 3.000 

Euros. 

In order to evaluate the expected investment costs as a function of the steady state 

reliability objective via equation (5.6), it is known that the Average Production Unit 

Cost (APUC) of a light rail vehicle with a steady state mean distance between removals 

of 16.000 km is about 500.000 Euros. In addition, from estimates provided in Table 5-7, 

it is assumed that the initial distance from the steady state reliability target is about 15.6 

times the planned target and the parameter b is assumed to be equal to 2,57E-06 km-1. 

At last, in order to estimate the coefficient C, it is known that, for a similar project, the 

aggregate consolidation costs sustained to reach the planned reliability target were of 

about 1 million of Euros. 

Based on the above information, in the following figure is plotted the Reliability-

related Lifecycle cost for different steady state reliability levels. 
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Figure 5- 3: Lifecycle Cost vs Reliability 

Looking at the figure above, it is possible to conclude that for the considered fleet the 

minimum reliability-related Lifecycle cost can be obtained for a mean distance between 

train removals of about 20.000 km 

5.5 Conclusions 

A Lifecycle Cost – Reliability model, based on a three-parameters Hyperbolic 

failure intensity, has been defined. The model encompasses the relationships between 

reliability and the main cost components depending on reliability: costs due to service 

failures, investment costs required to reach a given inherent reliability level and efforts 

to be born to attain the planned reliability goals. For these costs, the innovative concept 

of inertia pertaining to the reliability improvement process has been used. Through an 

example, it has been shown that the model allows to set reliability targets such that 
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reliability-related Lifecycle cost is minimized. However, the proposed model constitutes 

a first attempt to support, on the basis of quantitative and objective data, the definition 

of reliability targets for which the reliability-related Lifecycle cost is minimized since 

the early design phases. Nevertheless, further refinements are needed, especially to 

model efforts to be born during field testing and early stages of operation to attain the 

planned reliability levels, since in a typical industrial environment such a kind of cost 

information is not available with the level of detail required for modeling purposes.  

 

 

 

 



 Quality, Availability and Lifecycle cost of Transportation systems 

Conclusions and future research 
 

  

87 

 

   

6 CONCLUSIONS AND FUTURE RESEARCH 

In this Thesis, a stochastic approach to manage Quality, Availability and 

Lifecycle Cost of Transportation systems has been outlined.  

More specifically, a methodology to evaluate transport service quality has been 

defined. The proposed methodology relies on a set of innovative quality indexes based 

on the generic customer’s waiting time. It allows to “on-line” monitor Quality of high 

frequency bus services by means of commonly available data, avoiding expensive data 

collection activities. In fact, a specific strategy has been formulated to obtain the 

waiting time distribution for a generic customer on the basis of commonly available 

data/information.  

The adequacy of the above strategy and of the main working hypotheses has 

been checked by means of real data concerning the route 181 operated by A.N.M. The 

considered case study also allowed to highlight that the proposed approach enables to 

quantify the effects of service frequency and service regularity on the customers’ 

waiting time. Moreover it allows to assess the current service quality level and to 

forecast how changes of the service frequency and/or regularity can affect quality 

perceived by customers. Since the proposed approach relies on the use of commonly 

available data, it can be successfully used by Transport Authorities as a self-assessment 

tool. 

Moreover, a simple approach to assess the effects of the inherent repair time 

distribution, number of spare vehicles and number of maintenance crews on the 

operational availability of a fleet of vehicles has been defined. The considered approach 

allowed to easily handle complex Non - Markovian stochastic processes,  and, in 



 Quality, Availability and Lifecycle cost of Transportation systems 

Conclusions and future research 
 

  

88 

 

   

accordance with results found in Queueing theory, revealed that fleet operational 

availability may be significantly influenced by the inherent repair time distribution in 

both transient and steady phase. In addition, it has been shown that the proposed 

approach leads to operational availability evaluations that are more accurate than those 

usually performed in the industrial practice and that it may overcome some issues 

arising when Monte Carlo Simulation is used. 

At last, a Lifecycle Cost – Reliability model, based on a three-parameters 

Hyperbolic failure intensity, has been formulated. Numerical procedures to obtain 

Maximum Likelihood and Minimum Chi-square estimates of the Hyperbolic model 

parameters have been developed as well. By means of reliability data concerning the 

first two years of operation of the Copenhagen Metro vehicles, it has been shown that 

the Hyperbolic model may be adequate to explain the failure rate behavior of complex 

repairable systems. Once identified a proper failure intensity model, a relationship 

between reliability and the main cost components depending on reliability has been 

developed. From this perspective, the innovative concept of inertia pertaining to the 

reliability improvement process has been used to model costs to be born, during the 

testing phase and the early stages of operation, to reach the planned reliability target. 

Through an example, it has been shown that the model allows to set reliability targets 

such that reliability-related Lifecycle cost is minimized. However, it has to be noted that 

the proposed model only represents a first attempt to explain, since the conceptual 

design stage, reliability-related Lifecycle cost. Of course, further refinements are needed 

and, under this perspective, availability of detailed operation, support and engineering 

cost data is of crucial importance. 
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ATTACHMENTS TO CHAPTER 3 

Bus Headways of the route 181 measured at Via Caravaggio stop (minutes) 

1st week 2nd week 3rd week 
22 18 1 7 9 12 14 17 7 10 10 36 8 11 17 
5 11 9 11 5 9 10 18 17 20 13 5 13 6 9 
12 39 24 4 12 15 6 9 12 21 11 11 11 11 12 
6 28 9 16 14 1 15 17 12 9 12 21 14 12 18 
27 12 11 13 7 12 8 7 19 11 11 34 7 18 6 
7 17 8 15 12 11 12 6 9 9 7 8 13 10 5 
9 18 16 12 9 13 33 5 25 11 8 27 7 5 15 
8 12 18 24 14 22 6 23 3 10 18 1 10 11 18 
12 15 10 9 8 14 15 6 13 10 20 13 8 11 15 
11  3 7 8 11 6 35 10 10 8 20 11 6 2 
7  27 10 9 13 5 16 10 10 5  8 12 8 
14  10 16 10 18  11 9 20 11  10 10 33 
10  15 18 14 4   29 10   13 10 8 
12    6 12       9 7  
12    8        11 11  
    23        9 15  
             9  
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Pairs used for composite Gamma Hypothesis Testing 

Pair No. U V Pair No. U V Pair No. U V 
1 28 13.333 34 25 12.727 67 64 12.857 
2 28 15.455 35 25 12.727 68 15 20.000 
3 27 12.500 36 29 16.364 69 36 20.000 
4 25 10.833 37 19 37.500 70 46 25.385 
5 43 43.750 38 24 11.818 71 32 14.615 
6 22 12.000 39 33 20.000 72 16 16.667 
7 36 30.000 40 19 17.143 73 18 10.000 
8 27 20.000 41 26 13.636 74 18 10.000 
9 25 21.250 42 27 17.000 75 28 83.333 
10 35 10.588 43 28 25.000 76 15 11.429 
11 18 12.500 44 19 28.000 77 26 13.636 
12 25 10.833 45 11 26.667 78 17 24.000 
13 22 10.000 46 27 12.500 79 25 15.000 
14 17 24.000 47 8 30.000 80 19 13.750 
15 27 14.545 48 45 30.909 81 39 22.500 
16 26 16.000 49 44 30.000 82 13 11.667 
17 28 46.000 50 19 17.143 83 19 21.667 
18 36 10.000 51 17 14.286 84 25 12.727 
19 31 21.000 52 21 20.000 85 30 20.000 
20 17 14.286 53 18 20.000 86 12 14.000 
21 12 110.000 54 24 16.667 87 24 10.000 
22 23 13.000 55 20 15.000 88 10 90.000 
23 24 30.000 56 20 18.571 89 24 50.000 
24 26 13.636 57 37 11.765 90 22 17.500 
25 15 20.000 58 16 16.667 91 19 11.111 
26 16 12.857 59 17 11.250 92 23 15.556 
27 27 14.545 60 14 13.333 93 37 36.250 
28 36 30.000 61 33 12.000 94 22 12.000 
29 26 22.500 62 32 19.091 95 28 18.000 
30 14 18.000 63 18 12.500 96 15 15.000 
31 19 17.143 64 21 11.000 97 45 65.000 
32 32 22.000 65 35 21.818 98 32 25.556 
33 22 14.444 66 19 180.000    
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MATLAB® code for composite Gamma hypothesis testing 

%%Locke's Test based on BKR test of independece- BKR 
statistic computation%% 
Data0=[ 
]; 

Data=Data0+0.5*ones(size(Data0)); 
y=randsample(197,1) %eliminate 1 datum since the sample is 
odd 
Data4Test=zeros(length(Data)-1,1); 
for i=1:y-1 
    Data4Test(i,1)=Data(i,1); 
end 
for i=y:size(Data4Test) 
    Data4Test(i,1)=Data(i+1,1); 
end 
Nums=[1:1:196]; 
K=randsample(Nums,length(Data4Test))'; 
Pairs=zeros(196/2,2); %make pairs 
for d=1:196/2 
    Pairs(d,1)=Data4Test(K(2*d-1,1),1); 
end 
for d=1:196/2 
    Pairs(d,2)=Data4Test(K(2*d,1),1); 
end 
UV=zeros(size(Pairs)); 
for i=1:196/2 
    UV(i,1)=Pairs(i,1)+Pairs(i,2); 
end 
for i=1:196/2 
    w=Pairs(i,1)/Pairs(i,2); 
    v=Pairs(i,2)/Pairs(i,1); 
    if v>w; 
        UV(i,2)=v; 
    else 
        UV(i,2)=w; 
    end 
end 
scatter(UV(:,1),UV(:,2)) 
UV(:,1) 
UV(:,2) 
N1=zeros(length(UV),1); 
for k=1:length(UV)     %For each pair the number of 

points in the 3rd orthant is quantified (axes pass for the 
considered pair) 
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    for i=1:length(UV) 
    if UV(i,1)<=UV(k,1) && UV(i,2)<=UV(k,2) 
        N1(k)=N1(k)+1; 
    end 
    end 
end 
N1; 
N2=zeros(length(UV),1);   %for each pair the number of 

points in the 4rd orthant is quantified (axes pass for the 
considered pair)  
for k=1:length(UV) 
    for i=1:length(UV) 
    if UV(i,1)>UV(k,1) && UV(i,2)<=UV(k,2) 
        N2(k)=N2(k)+1; 
    end 
    end 
end 
N2;    
N3=zeros(length(UV),1); %for each pair the number of 

points in the 2nd orthant is quantified (axes pass for the 
considered pair)  
for k=1:length(UV) 
    for i=1:length(UV) 
    if UV(i,1)<=UV(k,1) && UV(i,2)>UV(k,2) 
        N3(k)=N3(k)+1; 
    end 
    end 
end 
N3; 
N4=zeros(length(UV),1);  %for each pair the number of 

points in the 1st orthant is quantified (axes pass for the 
considered pair)  
for k=1:length(UV) 
    for i=1:length(UV) 
    if UV(i,1)>UV(k,1) && UV(i,2)>UV(k,2) 
        N4(k)=N4(k)+1; 
    end 
    end 
end 
N4; 
S=zeros(length(UV),1); 
for i=1:length(UV) 
    S(i,1)=(N1(i)*N4(i)-N2(i)*N3(i))^2; 
end 
nBn=(length(UV)^-4)*sum(S(:,1)) 
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ATTACHMENTS TO CHAPTER 4 

Stateflow chart for MCS 
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Simulink chart  for MCS 
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MATLAB® code for Device of stages application : 1 maintenance crew 

 
%Computes fleet availability with erlang inherent repair 

times 
stages=3; 
spares=1; 
dt=0.1; 
lambda=1/3000; 
MTTR=3; 
mu=stages/MTTR; 
Time=100; 
N=Time/dt; 
T=[0:dt:Time]; 
nmax=3; %maximum number of failed trams 
Q=zeros(stages*nmax+1,stages*nmax+1);  
Q(1,2)=20*lambda*dt; 
for i=2:stages*spares+1 
    Q(i,i+stages)=20*lambda*dt; 
end 
k=[1:1:(nmax-spares)]; 
K=zeros(nmax-spares,stages); 
for i=1:stages 
    K(:,i)=k'; 
end 
c=(nmax-spares)*stages; 
R=zeros(1,c); 
R(1:stages)=K(1,:);             
for i=2:max(k) 
R((i-1)*stages+1:i*stages)=K(i,:); 
end 
for s=stages*spares+2:stages:stages*nmax+1-(2*stages-1) 
    for j=1:stages 
        Q(s+j-1,s+j-1+stages)=(20-R(s)+spares)*lambda*dt; 
    end 
end 
for i=2:stages:stages*nmax 
  for j=1:stages-1 
        Q(i+j-1,i+j)=mu*dt; 
    end 
end  
Q(stages+1,1)=mu*dt; 
for i=2*stages+1:stages:stages*nmax+1 
        Q(i,i-2*stages+1)=mu*dt; 
end 
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for i=1:stages*nmax+1 
    Q(i,i)=1-sum(Q(i,:)); 
end 
p0=[1 zeros(1,stages*nmax)]; 
p=[p0;zeros(N-1,stages*nmax+1)]; 
for i=1:N 
    p(i+1,:)=p(i,:)*Q; 
end 
Availability=zeros(N,1) 
for i=1:N 
    for j=1:stages*spares+1 
    Availability(i)=Availability(i)+p(i,j); 
    end 
end 
plot(T(2:length(T)),Availability) 
Unavailability=ones(length(Availability),1)-Availability 
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MATLAB® code for Device of stages application : 2 maintenance crews 

%Computes the fleet availability of a fleet of 20 trams 
with two maintenance crews 
%and a maximum of two spares 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Variables%%%%%%%%%%%%%%%%%
%%% 
stages=3;                             %Erlang shape 

parameter 
spares=0;                              %Number of spare 

Trams 
dt=0.1; 
lambda=1/3000;                  %Single Tram Failure Rate 

1/h 
lambda1=(20+spares-1)*lambda; %Fleet failure rate with 1 

tram under repair 1/h 
lambda2=(20+spares-2)*lambda;%Fleet failure rate with 2 

Trams under repair 
MTTR=3;                %Inherent Time To Repair of a tram 

1/h 
mu=stages/MTTR;                       %Erlang Scale 

Parameter 
mu1=mu; 
Time=40;                                   %Simulation 

Time h 
N=Time/dt; 
T=[0:dt:Time];                                %Clock 

Variable 
nmax=3;                       %Maximum number of failed 

Trams 
Q=zeros(stages+1+0.5*stages*(stages+1)*2);            

%%%%%Transition Matrix%%%%% 
 
%%%%%%%%%%%Completed Repairs%%%%%%%%%%%%%%%%%%%%% 
Q(stages+1,1)=mu*dt; %From last stage of repair (1 Tram 

under Maintenance) 
K=zeros(stages,1); %This Matrix Contains "From--->To" 

states with 3 failed trams after repair completion 
K(1,2)=stages+1+(stages-1)*stages/2+1;                 
for i=1:stages 
    K(i,1)=1+stages+2*stages*(stages+1)/2-(i-1); 
end 
for i=2:stages 
    K(i,2)=K(i-1,2)-(stages-(i-1)); 
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end 
K; 
Q(K(1,1),K(1,2))=2*mu*dt; 
for i=2:stages 
    Q(K(i,1),K(i,2))=mu*dt; 
end 
for i=1:stages 
    Q(stages+1+(stages)*(stages+1)*0.5-(i-1),stages+1-(i-

1))=mu*dt; 
end 
Q(stages*(stages+1)*0.5+stages+1,stages+1)=2*mu*dt; 
 
%%%%%Transitions Between repair Stages%%%%%%%%%%%%%%%%%%% 

Doubles=[stages+2;zeros(stages-2,1)]; %This Matrix 
Calculates states with 2 trams under repair and repairs at 
same "stage" 
for i=2:stages-1 
    Doubles(i)=Doubles(i-1)+i; 
end 
Doubles; 
for i=2:stages-1 %Vertical Transitions 2 trams under 

Repair       
for j=stages+1+1:(stages-1)*stages*0.5+stages+1 

        if j==Doubles(i) 
            Q(j,j+i)=2*mu*dt; 
        else 
        Q(j,j+i)=mu*dt; 
        end 
    end 
end 
for r=2:stages-1   %Vertical Transitions  3 Trams under 

Repair 
    for 

s=stages+1+stages*(stages+1)*0.5+2:(stages)*(stages+1)*0.5*
2+stages+stages+1-2*stages 
        if s==Doubles(i)+stages*(stages+1)*0.5 
            Q(s,s+r)=2*mu*dt; 
        else 
        Q(s,s+r)=mu*dt; 
        end 
    end 
end 
for i=stages*(stages+1)*0.5+stages+1+1:-1:stages 

%Horizontal Transitions 2 Trams under repair 
    Q(i-1,i)=mu*dt; 
end 
Cancel=zeros(stages,1); %The Previous Cycle contains not 

allowed Tranitions. The matrix %contains states from which 
transitions have to be erased 
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Cancel(1,1)=stages+2; 
for i=2:stages 
    Cancel(i,1)=Cancel(i-1)+i; 
end 
for i=1:stages 
Q(Cancel(i),Cancel(i)+1)=0;    %Erase Not Allowed 

Transitions 
end 
Q(stages+2,stages+3)=2*mu*dt;                           

%Redefine the erased but allowed Transition (From stages 
1,1 to 2,1) 
 
For 
i=stages*(stages+1)+stages+1:1:stages+1+stages*(stages+1)

*0.5+2 
    Q(i-1,i)=mu*dt; 
end 
Q(stages+2,stages+4)=0; 
Cancel1=zeros(stages,1); %Same meaning of Cancel but for 

the state with 3 failed Trams  
Cancel1(1,1)=stages+1+stages*(stages+1)*0.5+1; 
for i=2:stages 
    Cancel1(i,1)=Cancel1(i-1)+i; 
end 
for i=2:stages-1 
Q(Cancel1(i),Cancel1(i)+1)=0;        
end 
Q(stages+1+stages*(stages+1)*0.5+1,stages+1+stages*(stage

s+1)*0.5+2)=2*mu*dt;         
Q(2,3)=mu*dt;                %From state with one failed 

tram 
for i=3:stages 
    Q(i,i+1)=mu*dt; 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Failures%%%%%%%%%%%%%%%%%%%%

%%% 
Q(1,2)=20*lambda*dt; 
L=zeros(stages,2); 
for i=1:stages 
    L(i,1)=i+1; 
end 
L(1,2)=stages+2; 
for i=2:stages 
    L(i,2)=L(i-1,2)+(i-1); 
end 
for i=1:stages 
    Q(L(i,1),L(i,2))=lambda1*dt; 
end 
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for i=1+stages+1:stages*(stages+1)*0.5+stages+1 
    Q(i,i+stages*(stages+1)*0.5)=lambda2*dt; 
end 
for i=1:stages+1+2*stages*(stages+1)*0.5 
    Q(i,i)=1-sum(Q(i,:)); 
End 
%%% State probability computation%%%%%%%%%%%%%%%% 
p0=[1 zeros(1,stages+1+2*stages*(stages+1)*0.5-1)]; 
p=[p0;zeros(N-1,stages+1+2*stages*(stages+1)*0.5)]; 
for i=2:N 
    p(i,:)=p(i-1,:)*Q; 
end 
Availability=zeros(N,1); 
if spares==0 
    Availability=p(:,1); 
elseif spares==1 
    for i=1:N 
        Availability(i)=p(i,1); 
    for j=2:stages+1 
        Availability(i)=Availability(i)+p(i,j); 
    end  
    end 
else    
for i=1:N 
        Availability(i)=p(i,1); 
    for j=2:stages*(stages+1)*0.5+stages+1 
        Availability(i)=Availability(i)+p(i,j); 
    end  
    end 
end 
plot(T(1:length(Availability)),Availability) 
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ATTACHMENTS TO CHAPTER 5 

Grouped Failure data of the Copenhagen Metro Fleet 

Km 
Vehicle removals 

from service 

106764 77 

238534 76 

404084 69 

592224 71 

793345 48 

964446 43 

2181895 250 

2449481 50 

2725183 37 

3065337 45 

3381437 49 

3712025 45 

4027063 27 

4365609 27 

4697897 45 

5026259 27 

5367903 28 

5697052 35 
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Km 
Vehicle removals 

from service 

6043436 27 

6385430 33 

MATLAB® code for grouped data likelihood calculation 

%computes -Loglikelihood and relative gradient of grouped 
Hyperbolic data. T=interval bounds, N=failures in interval 
% intensity=r+a/(bt+1) x(1)=asymptotic rate, r x(2)=b  
function [y,g]=Hypminusloglikebr(x,T,N)  
T1=[0;T];                                 
K=zeros(length(N),1); 
H=zeros(length(N),1); 
L=zeros(length(N),1); 
Ntm=sum(N(:,1)); 
tm=T1(length(N)+1); 
logfin=log(x(2)*tm+1); 
for i=2:length(N)+1 
    L(i-1)=real(log((x(2)*T1(i)+1)/(x(2)*T1(i-1)+1))); 
end 
for i=1:length(N) 
    H(i)=real(x(1)*(T1(i+1)-T1(i))+((Ntm-

x(1)*tm)/logfin)*L(i)); 
end 
for i=1:length(N) 
    K(i)=real(N(i)*log(H(i))); 
end 
y=-sum(K(:,1)); 
D1=zeros(length(N),1); 
for i=1:length(N) 
    D1(i)=real(-(N(i)/H(i))*((T1(i+1)-T1(i))-

(tm/logfin)*L(i))); 
end 
g(1)=sum(D1(:,1)); 
D2=zeros(length(N),1); 
for i=1:length(N) 
    D2(i)=real(-(N(i)/(H(i)*logfin))*(Ntm-

x(1)*tm)*(T1(i+1)/(x(2)*T1(i+1)+1)-T1(i)/(x(2)*T1(i)+1)-
tm/(logfin*exp(logfin))*L(i))); 
end 
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g(2)=sum(D2(:,1));    

MATLAB® code for grouped data Chi-square calculation 

%computes chisquare and relative gradient of grouped 
Hyperbolic data. T=interval bounds,N=failures in interval 
% intensity=r+a/(bt+1) x(1)=asymptotic rate, r x(2)=initial 
rate, a x(3)=b 
function [y,g]= Hypchisquare(x,T,N) 
T1=[0;T]; 
K=zeros(length(N),1); 
Nhat=zeros(length(N),1); 
for i=2:length(N)+1 
    Nhat(i-1)=(x(2)/x(3))*log((x(3)*T1(i)+1)/(x(3)*T1(i-

1)+1))+x(1)*(T1(i)-T1(i-1)); 
end 
Nhat; 
for i=1:length(K) 
    K(i)=((N(i)-Nhat(i))^2)/Nhat(i); 
end 
y=sum(K(:,1)); 
D1=zeros(length(N),1); 
for i=1:length(N) 
    D1(i)=(N(i)^2)*(T1(i)-T1(i+1))/(Nhat(i))^2+(T1(i+1)-

T1(i)); 
end 
g(1)=sum(D1(:,1)); 
D2=zeros(length(N),1); 
for i=1:length(N) 
    

D2(i)=(1/x(3)*log((x(3)*T1(i+1)+1)/(x(3)*T1(i)+1)))*(1-
(N(i)^2)/(Nhat(i)^2)); 
end 
g(2)=sum(D2(:,1)); 
D3=zeros(length(N),1); 
for i=1:length(N) 
    D3(i)=(-

((x(2)/(x(3)^2))*log((x(3)*T1(i+1)+1)/(x(3)*T1(i)+1)))+(x(2
)/x(3))*((x(3)*T1(i)+1)/(x(3)*T1(i+1)+1))*((T1(i+1)*(x(3)*T
1(i)+1)-T1(i)*(x(3)*T1(i+1)+1))/((x(3)*T1(i)+1)^2)))*(1-
(N(i)^2)/(Nhat(i)^2)); 
end 
g(3)=sum(D3(:,1)); 
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