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BACKGROUND AND AIM OF THE PROJECT

Celiac  Disease: definition and epidemiology

Celiac disease (CD) is an intolerance to wheat gliadin and prolamine present also in barley and rye. The in-

take of these cereals in the diet determines, in the small intestine, a cellular and humoral immune response 

in people genetically predisposed[1]. 

Diagnosis of celiac disease was based, in the past, mainly on the clinic manifestations and the prevalence 

of the disease, which was considered  rare, around 1:1000, with large differences in incidence in different 

geographical areas. Thanks to recent studies based on serological tests (EMA and tTG2 antibodies) it was 

found that celiac disease has a prevalence of around 1:100 [2,3], even in those European countries such 

as Denmark and the Netherlands, where the estimation of the disease was known to be very low, or in the 

United States, where it was believed that the disease almost did not exist [4]. This reversal of the situation 

can be explained by the “iceberg model”, originally introduced by R. Logan in 1991 [5], in which the 

visible part of the iceberg corresponds to the cases of celiac disease diagnosed because clinically evident, 

while the submerged part is represented by the cases not diagnosed because asymptomatic or “atypical”. 

Furthermore, a delayed introduction of gluten in the diet, instead of preventing the development of celiac 

disease, as it was thought at the beginning, did nothing but increase the “atypical” onset of disease [6]. 

Likely factors such as age of introduction of gluten in the diet and its quantity may influence the clinical 

presentation of celiac disease [7,8].

Celiac genetic background

The existence of a strong genetic component in CD is determined by a prevalence of about 10% of the 

disease among first-degree relatives of celiac patients [9] in addition to the high correlation, 75-80%, 

found between monozygotic twins [ 10]. Currently the only certain association is with the HLA genes that 

map on chromosome 6. The “ immunogenic peptide” of the gliadin are indeed processed and presented 

to T lymphocytes associated with molecules of major histocompatibility complex class II (MHCII). The 
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deamidation by the tissue- transglutaminases type 2 (tTG2) converts glutamine residues in glutamic acid 

residues, giving increased affinity of gluten peptides for HLA molecules, which are positively charged, and 

thus increasing their immunogenic power [11]. Inhibition studies with anti-HLA antibodies have shown 

that T lymphocytes derived from celiac mucosa  recognize gliadin peptides only when presented by DQ 

molecules [12]. Genetic studies highlight that about 90% of celiacs have a identical HLA, the DQ2 he-

terodimer, encoded by DQa1* 0501  and DQb1 * 0201 genes [13]. In many patients negative for this 

haplotype there is an association with two other class II alleles, the DQa1 * 0301 and DQb1 * 0302, 

encoding the DQ8 [1]. The presence of DQ2 and / or DQ8 alleles is therefore highly sensitive to the CD. 

HLA typing, can exclude the disease, presenting a high negative predictive value [13]. We can not say the 

same about the positive predictive value or about the specificity of these alleles for the disease, in fact,  not 

all individuals that have the DQ2 and / or DQ8 indeed develop the disease, if we consider that these alleles 

are present in approximately 20 -25% of the general population [14]. 

Clinical features and diagnosis 
The clinical manifestation of celiac disease can range from a”classical” presentation, characterized by typi-

cal gastrointestinal symptoms, to a total absence of symptoms (“silent” CD), passing through many clini-

cal conditions, some dominated by extraintestinal events (“ atypical “ CD), further characterized by a state 

of real emergency (crisis celiac). Currently, cases that present with the classic malabsorption syndrome 

characterized by chronic diarrhea, reduced growth, anorexia, apathy and irritability [15] are less frequent 

and among these few are in celiac crisis or with ipoprotidemia and edema for the severe malabsorption syn-

drome. Patients with less typical clinical manifestations are increasing, symptoms such as abdominal pain, 

meteorism and dyspepsia can be at the onset of CD.  More frequently extraintestinal symptoms ranging 

from abnormal haematological events to the manifestation of the central nervous system [16] and other 

organs and systems are the only clinical manifestation of CD.

  In relation to this strong clinical polymorphism, it is clear that the diagnosis of celiac disease should be 

based on other factors, first of all is the search in the serum of anti-endomysial (EMA) [17,18] and anti-

tissue-type transglutaminases 2 ( tTG2) antibodies. The latter in particular are highly sensitive and speci-
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fic for celiac disease [19,20] and in close relation with susceptibility HLA genes [21]. 

 However, the presence of one of these types of antibodies it is not enough to be confident  with the dia-

gnosis. The criteria set by the European Society of Gastroenterology, Hepatology and Pediatric Nutrition 

(ESPGHAN) for the diagnosis of celiac disease are two[22]:

 • histology of the intestinal mucosa compatible with the damage from gluten (villi

atrophy and crypts hypertrophy);

• remission of symptoms or negative serology antibodies after gluten-free diet.

Therapy 
Treatment of celiac patients is based mainly on exclusion of gluten from the diet (gluten free diet “-GFD) 

[23]. GFD is as a diet in which are excluded all products containing wheat, barley and rye. Even small 

amounts of these cereals may be harmful to the celiac. Oat toxicity is still debated, but it seems that this 

cereal is not harmful in most coeliacs [23]. Of fundamental importance is the role of an early diagnosis 

since the more prolonged exposure to gluten correlates with greater risk to develop serious complications 

of CD or autoimmune diseases [8].

Pathogenesis:  dual action of gliadin 

T-mediated effects of gliadin: the role of P57-68 in  adaptive immune response
The term “gluten” is referred in general to the protein mass of elastic consistency that remains after remo-

ving the starch by mixing with water the wheat flour. Gliadins are the main proteins  conteined in gluten. 

They are monomeric proteins of low nutritional value, constituted in high proportion by only two amino 

acids, proline (Pro) to 20% and Glutamine (GLN) 38%  that is why these proteins are named  “prolami-

ne”[24]. Recent studies indicate   that all four electrophoretic fractions of gliadin ( α , β   , γ ,ω) diffe-

rentiated according to their N-terminal sequence, are able to release peptides capable of triggering the 

immune reaction at the base of CD, when are digested by intestinal enzymes [25]. Among the gliadin pep-
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tides that have more immunogenic  power are recognized the fragment 33Mer, of which the peptide P57-

68 appears to be one of the dominant epitopes recognized by the celiac subject [26]. When genetically 

susceptible individuals are exposed to gliadin peptides,  there is the activation of specific T lymphocytes, 

as demonstrated by the activation marker CD25 [27]. An immune  cellular response is established, repre-

sented by the migration in lamina propria of a linfomonocitary infiltrate with an high prevalence of CD4 

+ cells and the migration of intraepithelial CD8 + T  lymphocytes. This reaction is supported by a subpo-

pulation of CD4 + T lymphocytes (type Th1)  which produce cytokines such as IFN γ, TNFα and IL2 

[28] and is belived to be mainly responsible for the maintenance of tissue damage, with the characteristic 

picture of villous atrophy and crypts hyperplasia. Of great importance is also a type of humoral immune 

response, represented by the secretion, at mucosal level, of type IgA, IgM and IgG immunoglobulin, and is 

supported by a subpopulation of T lymphocytes CD4 + (type Th2) which produce cytokines such as IL4, 

IL5 and IL10 [28]. Recently it was also shown a biological effect of anti-transglutaminases; particularly in 

isolated cells in culture, they can induce proliferation [29] and may interfere with differentiation [30]. In 

conclusion, although it is still not defined the role of these antibodies in tissue damage, they assume, as we 

have seen a  crucial role for diagnosis of the disease [17,18,19,20].

Not T-mediated (or “toxic”) effects of gliadin: the role of P31-43 
 in  innate immune response 
The “immunological” alteration of CD intestinal mucosa are able to explain much of the pathogenesis of 

CD and of  intestinal lesions that are observed. But they appear to present strong limitations since leaves 

unresolved what may be considered one of the pivotal questions of the pathogenesis of CD, as well as any 

other type of food intolerance: why the celiac not develop oral tolerance against gliadin? Oral tolerance 

is the tendency to develop immune tolerance to antigens encountered for the first time orally and is well 

known that among the main mechanisms for the development of this phenomenon is the presentation of 

antigen to T cell clone in absence of adjuvant substances. When a clone is stimulated by T cells presenting 

the antigen in the absence of adjuvant substances, it tends to go to anergy rather than clonal expansion, 

resulting in peripheral tolerance to that specific antigen [31].
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And it is partly in an attempt to understand how gliadin is able to deflect these mechanisms of oral tole-

rance, which, in the pathogenesis of CD, the so-called hypothesis of gliadin toxicity, could then find an 

area of interest [32]. It appears that upstream of T-mediated reaction at the base of the disease, there are 

a number of pathological interactions between toxic nature of the gliadin and intestinal structures which 

include various effects, also leading to the activation of innate immunity [13,24], able to interfere with the 

establishment of oral tolerance to gliadin [32].

The existence of toxic interaction between the gliadin and intestine was already assumed in the 80s when 

it was noted that the gliadin peptides were able to bind to glycoproteins of the brush-border [33] and that 

caused the agglutination of  K562 cells [34]. But it was only  with the identification of  P31-43 of α gliadin 

that has toxic effects in vitro [35] and in vivo [36], that the hypothesis of gliadin toxicity began to assume 

an increasing importance. This peptide does not show immunogens activity on T cells, but is capable of 

preventing the recovery of patients with atrophic intestinal mucosa [37] and activate the mechanisms of 

innate immunity in the mucosa from celiac subjects [13,37].

Innate Immunity
 Activation of innate immunity is a necessary condition for the induction of an immune adaptive response, 

it seems to be the cornerstone in the pathogenesis of CD. Therefore is logical to assume that any factor 

capable of inducing innate immunity may increase, in DQ2 or/and DQ8 subjects, the risk of breaking the  

oral tolerance to gliadin with subsequent development  of celiac enteropathy. 

Epithelial proliferation 
Beside induction of innate immunity, another key element in the pathogenesis of CD is, without doubt, 

the intestinal crypts proliferation. In previous studies conducted in our laboratory we have observed some 

biological actions of P31-43 which seem to mimic the actions of epidermal growth factor EGF [37]; they 

could therefore play a fundamental role in the phenomenon of  crypts proliferation . We have observed 

the ability of P31-43 to induce changes in the cytoskeleton of actin in cultured Caco2 cells, phenomena 
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similar to those induced by  EGF. We have shown an increase in proliferative activity in NIH3T3 cells, that 

can be prevented by anti-EGFR antibody. Further studies have indicated also that the EGF-like action of 

P31-43 is not expressed through a ligand activity, but rather through the ability of the peptide to cause a 

slowdown of the endocytosis and delay  of the endocytic maturation causing the decay of the downstream 

EGFR signal and amplify the actions induced  by endogenous EGF. Similar effects were also observed in 

cultures from intestinal celiac patient treated with P31-43.

Celiac disease and innate immunity: the emerging role of Interleukin 15 
Interleukin 15 (IL15) has a pivotal role in innate immunity mechanisms [38,39]. This stems from the si-

gnificant actions that this cytokine is able to elicit on many cells of many compartment of immunity. It has 

pleiotropic actions including antiapoptotic effects, induction of proliferation and activation on NK cells, 

neutrophils, eosinophils, mastocyte , monocytes / macrophages and dendritic cells [39]. Similar effects 

are induced by this cytokine also on typical cells of the adaptive responses, such as T lymphocytes (with an 

action IL2-like) and B lymphocytes [40]. It has been shown that many not immune cells respond to IL15 

inhibiting apoptosis and increasing proliferation. Among these include fibroblasts, osteoclasts, endothe-

lial cells, adipocytes, myocytes, glia and neuronal cells, keratinocytes and epithelial cells of various types 

[39]. Of great interest is the observation of Reinecker et al [41] that intestinal epithelial cells are able 

to express this cytokine as well as respond to it by increasing the proliferation. A possible relationship 

between activation of innate immunity and induction of proliferation may be hypnotized for IL15 activity.

 IL15 is constitutively expressed in many cell types (macrophages / monocytes, dendritic cells, kerati-

nocytes and epithelial cells of various types, fibroblasts, nerve cells) [39]. Two isoforms of IL15 are de-

scribed derived from an alternative “splicing” of mRNA, they differ on the length of the signal peptide 

capable of directing the protein along the secretory way of the cell [39,40] The isoform with the long 

signal peptide (LSP), is obtained from an mRNA containing 8 exons  and is found along the secretory way 

of the cell (ER, Golgi and plasma membrane); the isoform with short signal peptide (SSP), is obtained from 

an mRNA of higher molecular weight, which has an extra exon, the 4a, which is inserted in such a way as 

to interrupt the sequence of the signal peptide. This isoform is localized in the cytoplasm and is not found 
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along the secretory way of the cell. In any case, it was found that in physiological conditions this cytokine 

is not secreted but remains anchored to the cell membrane, carrying out his action of “signaling” through 

a juxtacrine mechanism [42,43]. An increase in the amount of cytokine in the serum was found only in 

certain autoimmune diseases such as rheumatoid arthritis, chronic inflammatory bowel disease, systemic 

lupus, type I diabetes mellitus, vasculitis [39].

The regulation of IL15 expression on the membrane may be  in the cell at three main levels[39]:

1. At the level of transcription: through a mechanism of alternative “splicing”  the cell may express two 

different isoforms of IL15, only one LSP is sent to the cell

membrane and is functionally active. 

2. At the level of translation of mRNA to protein.

3. At the level of intracellular trafficking of recycling vesicles carrying the cytokine. 

IL15 receptor consists of three chains: two of these form βγc complex, constitutively expressed, which is 

capable of binding to the low affinity IL15 and

IL2 (thus explaining the redundancy of the two cytokines as concerning the effects on T cells and NK cells) 

and is sufficient to trasduct the signal phosphorylating downstream effectors of the via JAK / STAT. The 

chain alpha, inducible, is able to binds with the complex  βγc to  increased activity; it bind to high affinity 

only IL15, becoming responsible for the specific activity of this cytokine compared to IL2 [39].

P31-43 and Interleukin 15 
Based on the previous report about the ability of P31-43 to delay the maturation of endosomes [37],  it is 

feasible to assume that a generic block  of the endocytosis, besides being able to amplify the EGF signal, 

could more generally extend the downstream signal of several other receptors. Several authors have shown 

an IL15 overexpression in the lamina propria and in intestinal epithelium of celiac patients, which mani-

fests itself mainly at the cell surface [42,43]. Ciccocioppo et al [43] have observed an active role by the 

enterocytes of celiac patients in the secretion of the cytokine. It was also demonstrated  that  the gliadin 

and P31-49 are capable of increasing in vitro the expression of MIC-A on the surface of epithelial cells of 

celiac patients in active phase, an effect correlated with IL15 activity [44]. Finally, of considerable impor-
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tance is the observation of Maiuri et al [45] that IL15 blocking antibodies can prevent epithelial apoptosis 

induced by P31-43, which for the first time draws attention to the possibility that some of effects of P31-

43 may be mediated by IL15. 

My PhD program has been focused to the study some of these aspects in order to clarify “Relationship 

between proliferative effects and activation of innate immunity induced by gliadin”.

This thesis reports the result I obtained during my PhD course in “Human, Reproduction, Development 

and Growth” (XXIV cycle) from 2008 to 2011.

During the past 3 years, my research has been focused in the study of  the following  lines of research:

•	 Gliadin peptide P31-43 localises to endocytic vesicles and interferes with their maturation.

•	 Gliadin-mediated proliferation and innate immune activation in celiac disease are due to alterations in 

vesicular trafficking.

•	 IL-15 interferes with functionally suppressive  Foxp3+ regulatory T cells expanded in the celiac small 

intestine.
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CHAPTER 1
Gliadin peptide P31-43 localises to endocytic 
vesicles and interferes with their maturation

Project
Celiac disease (CD) is characterised by a derangement of both the adaptive and the innate immune re-

sponse to gliadin. Some gliadin peptides that are deamidated by tissue transglutaminase (e.g., A-gliadin 

P57-68) bind to HLA DQ2 and/or DQ8 molecules [1]  and induce an adaptive Th1 proinflammatory 

response. In the case of the innate immune response, [2] A-gliadin P31-43, which is not recognised by 

T cells, [3,4] induces IL15 production, which in turn is thought to cause expansion of intra¬epithelial 

lymphocytes (IEL) in CD and epithelial apoptosis. [5-6-7]  Furthermore, IL15 has been implicated in the 

increased expression of NKG2D on lymphocytes. The interaction between the major histocompatibility 

complex (MHC) class I chain-related gene A (MICA), and NKG2D is at least in part responsible for IEL-

induced enterocyte apoptosis and villous atrophy. [8-9]

Many biological activities have been associated with gliadin peptides in several cell types [10-11-12-13-

14] including reorganisation of actin and increased permeability in the intestinal epithelium. [15-16] 

Other effects are specific to celiac tissues. In untreated celiac patients, P31-43 prevented the restitution 

of enterocyte height, which normally occurs after 24-48 h of culturing mucosal explants with medium 

alone. [17] P31-43 damaging activity has been demonstrated in organ culture of treated celiac biopsies, 

[18] and in in vivo feeding studies. [19] Similar results have been obtained in vivo on small intestinal and 

oral mucosa with the A-gliadin peptide 31-49. [20-21]

It has yet to be established to what extent these properties relate to the ability of these A-gliadin peptides to 

activate innate immunity mechanisms. Virtually nothing is known about the mechanisms underlying the bio-

logical properties of P31-43 or about the metabolic pathways involved in the activation of innate immunity 

in CD. Similarly, it is not known why celiac patients are particularly sensitive to these biological activities. 

We recently investigated the molecular basis of the non-T cell-mediated properties of the gliadin peptides 

most likely to play an important role in the very early phases of CD, and we found that P31-43 causes 
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actin alterations and cell proliferation, both of which depend on activation of the epidermal growth factor 

receptor (EGFR), in several cell types, and in the organ culture of celiac mucosa. [22-23] In this system 

P31-43 interferes with EGFR decay and prolongs EGFR activation. We also showed that P31-43 increa-

ses IL15 on the cell surface, by interfering with its trafficking (MV Barone, submitted). These data suggest 

that enhancement of EGFR and IL15 signalling may be important biological contributors to the patho-

genesis of CD. Here we demonstrate that both P31-43 and P57-68 enter CaCo 2 cells and interact with 

endocytic compartment, but only P31-43 interferes with the endocytic pathway by delaying maturation 

of early endosomes to late endosomes. We also show that the P31-43 sequence is similar to hepatocyte 

growth factor-regulated tyrosine kinase substrate (Hrs), which is a key protein of endocytic maturation. 

[24] P31-43 is localised at the vesicles membranes and interferes with the correct localisation of Hrs to 

endocytic vesicles thus delaying the maturation of early endosomes to late endosomes. Consequently the 

activation of EGFR and other receptors is expanded with multiple effects on various metabolic pathways 

and cellular functions.

These data have been published on PloS ONE, for the manuscripts see below. 	
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Conclusive remarks

In this paper we demonstrate that A gliadin peptides P31-43 and P57-68 enter CaCo2 cells. P31-43 

localises on the endocytic membranes and delays vesicle trafficking by interfering with Hrs-mediated ma-

turation of early endosomes in cells and enterocytes. Consequently, EGFR and possibly other receptors 

activation is extended with multiple effects on various metabolic pathways and cellular functions. 

Although little is known about the processing of gliadin peptides, there is evidence that they enter ente-

rocytes. [25-26-27]. Recently two papers [28-29] have described entrance and localization of P31-43 

and P57-68 gliadin peptides, one localising P31-43 to the level of early endocytic vesicles using electro-

microscopy, (which is consistent with our findings), and the other localising it to the level of the late ve-

sicles using light microscopy of biotinylated peptides. Zimmer et al have shown, that P31-43, which is 

found in early vesicles, is not presented to stimulate gluten sensitive T-cells, in contrast P57-68 is found 

in late vesicles and can be presented in this manner. [28] The results of our experiments show that both 

P31-43 and P57-68 enter CaCo-2 cells and interact with the vesicular compartment. Their entrance is 

an active process that requires a temperature of 37C and Ca++ in the media. Methyl-Beta-Cyclodextrin, 

an inhibitor of endocytosis, prevents the entrance of both peptides indicating that they enter the cells by 

endocytosis. [30-31] 

We mapped the distribution of P31-43 and P57-68 along the endocytic pathway using markers of early 

endosomes (EEA1; RAB5-EGFP) and late endosomes (LAMP 2; RAB7-EGFP). P57-68 could progress 

from the early, EEA1 positive, endocytic compartment to the late, LAMP2 positive, compartment after a 3 

h chase. P31-43 instead interacted both at 30 minutes and 3 hours with the early endocytic compartment. 

Vesicular dynamic correlates with proper maturation of early endocytic vesicles [32] and can be altered 

by proline/glutamine rich proteins such as Huntingtin. [33] We therefore, investigated the motility of 

vesicles carrying P31-43-liss and P57-68-liss. Live observation of cells treated with fluorescent peptides 

(time lapse) indicated that the P31-43-carrying vesicles are slower than those carrying P57-68 at both 30 

minutes and 3 hours. Taken together, these results suggest that P31-43 remains in the early endocytic 

vesicles, thereby delaying maturation of these vesicles into late endosomes by affecting endocytic motility. 
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Moreover P31-43, but not P57-68 was able to delay endocytic vesicles containing EGF-Alexa [22] and 

dextran indicating that P31-43 interferes with vesicular dynamics no matter what cargo they are carrying. 

Consequently EGFR and other receptors can stay longer activated. There is in fact compelling evidence 

that endocytic membrane trafficking regulates signalling by extra cellular ligands. [34]

The delay of decay of the EGF receptor may have different consequences in different cell types because 

it affects several pathways and different functions (cell reproduction and survival, permeability, motility, 

endocytosis etc.). [35-36]. We previously showed that gliadin peptides, and in particular P31-43, induce 

actin rearrangements and cell proliferation in various cell types, thereby mimicking the effect of EGF. 

Peptide 31-43 induces phosphorylation of EGFR and of the downstream effector signalling molecule 

ERK [22] which indicates activation of the EGFR pathway. Enhancement of the EGF pathway by gliadin 

and P31-43 is due to delayed inactivation of EGFR. [22]

It is likely that endocytic delay could also affect the innate immune response and cytokine metabolism. 

We have shown (MV Barone, unpublished data) that in CaCo2 cells gliadin peptide P31-43 can enhance 

the recycling endocytic compartment. As a consequence of this process, more transferrin receptor and 

IL15 accumulates on the cell surface. Recently, the recycling transferrin receptor has been implicated in 

the pathogenesis of CD. In fact, transferrin receptors are increased in celiac intestine and also function 

as IgA receptors that retrotranscytose P31-49 linked to IgA. [37] Taken together these data suggest that 

an important pathogenetic event in CD is the interference of gliadin peptide P31-43 with the endocytic 

compartment.

A data bank search using P31-43 as the query sequence, revealed strong sequence similarity with a region 

of Hrs, which is an important regulator of endocytic trafficking. Hrs is the main coordinator of endocytosis 

and signalling. It is part of a large complex, located to early endocytic vesicles and the multivesicular body, 

that is involved in the ubiquitination of proteins destined to lysosomes. It can be phosphorylated in cells 

treated with growth factors and cytokines [32] and is itself ubiquitinated. These post-translational modi-

fications are needed for efficient sorting by Hrs of ubiquitinated membrane proteins to the degradation 

pathway. In cells where Hrs has been silenced, mutated or dislocated from the endosomes, EGFR and 

other receptor tyrosine kinases stay activated longer [38] and are recycled back to the cell surface. [39]

The sequence similarity between gliadin peptide P31-43 and Hrs involves a small area of the proline/
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glutamine-rich domain of the latter. Although gliadin is a well known proline/glutamine-rich protein, the 

homology of P31-43 with this Hrs domain is specific because the rest of the gliadin proline/glutamine-

rich sequence does not share the same degree of similarity with Hrs. Moreover, P57-68, another glia-

din peptide with a similar amino acid composition, does not produce the same effects in cells. This Hrs 

domain, at its COOH end, contains the clathrin-binding domain that brings clathrin to clathrin ¬coated 

vesicles, [40] and is one of the domains needed to localise Hrs to the vesicle membranes. [41-42-43]

We have demonstrated in Hrs-EGFP transfected CaCo2 cells that P31-43, but not P57-68 co-localises 

with Hrs on the membrane of endocytic vesicles after 15 minutes of treatment, suggesting that the two 

peptides may have a different route to enter endocytic vesicles. Up to now no receptor has been found 

for P31-43 uptake. (Barone et al. unpublished results). Vilasi et al. [44] have proposed an alternative 

possibility investigating the interaction of the gliadin peptides with a very simple model of lipids micellae. 

They showed that P31-43 but not P57-68 can directly interact with the micellae, a good indication that 

it is possible for P31-43 to travel through the membranes and possibly reach the HRS molecules on the 

surface of the vesicles. We next evaluated whether P31-43 could interfere with Hrs localisation to the 

endocytic vesicles.

Western blot analysis of proteins extracted from the cell cytosol and membranes, together with immuno-

fluorescence, showed that P31-43 treatment for 3 h, moved HRS from the vesicles to the cytosol. Further-

more, if P31-43 interferes with Hrs localization, it follows that a large excess of Hrs should prevent the 

proliferative activity of the gliadin peptide on cells. In fact, over¬expression of Hrs-EGFP prevented the 

effect of P31-43 on CaCo-2 proliferation. Taken together these results suggest that P31-43 interferes 

with Hrs-mediated maturation of early endosomes.  

We also examined P31-43 trafficking in cultured intestinal biopsies from CD patients and controls using 

pulse and chase experiments. We show that P31-43 enters the enterocytes of cultured intestinal biopsies 

and localise, after a 3 h pulse, in early endocytic vesicles of enterocytes of intestinal biopsies from normal 

control subjects and non-treated celiac patients. However, after a 24-h chase, the peptide was still in the 

early endosomes of celiac enterocytes, but not in those of controls. This suggests that celiac patients are 

particularly susceptible to the effect of P31-43. We previously reported that endocytosis of EGF is delay-

ed in enterocytes of atrophic celiac mucosa cultured in vitro with P31-43. [22] In the same context, P31-
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43 increased proliferation of crypts enterocytes – an effect that was prevented by EGFR inhibitors. [22]. 

Similar to the effects we observed in CaCo-2 cells, P31-43 probably delayed maturation of early endocytic 

vesicles also in cultured biopsies. This process prolongs EGFR activation and culminates in increased 

EGFR-dependent proliferation of crypt enterocytes as we have previously shown. [22] These observations 

suggest that the EGF pathway plays a central role in initiating and maintaining the high proliferation rates 

observed in the crypts of celiac patients. [45-46] This finding explains at least in part the role played by 

gliadin in remodelling of the celiac mucosa. 

From a general point of view it is interesting to note that peptides from a very common alimentary protein, 

the gliadin, can have several metabolic effects due to the interference with important cellular functions, 

such as those regulated by the endocytic pathway. It remains to be established why P31-43 has a peculiar 

effect on the celiac intestinal mucosa. Celiac patients may have an alteration of the endocytic pathway 

(or some other related metabolic pathway) that renders cells more sensitive to the effect of P31-43 on 

endocytic maturation. 
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CHAPTER 2
Gliadin-mediated proliferation and innate immune activation in celiac disease are 
due to alterations in vesicular trafficking

Project
Celiac disease (CD) is characterised by derangement of both the adaptive and the innate immune respon-

ses to gliadin. Some gliadin peptides that are deamidated by tissue transglutaminase (e.g., A-gliadin P57-

68) bind to HLA DQ2 and/or DQ8 molecules and induce an adaptive Th1 pro-inflammatory response. 

[1] There is also evidence that gliadin contains other peptides (i.e., P31-43) able to initiate a response 

involving innate immune.[2,3] 

Damage to the intestinal mucosa in CD is mediated both by inflammation due to the adaptive and innate 

immune responses (with IL-15 as a major mediator of the innate immune response) and by proliferation of 

crypt enterocytes as an early alteration of CD mucosa causing crypt hyperplasia.[4-6] The celiac intestine 

is characterised, in fact, by an inversion of the differentiation/proliferation program of the tissue with a re-

duction in the differentiated compartment, up to complete villi atrophy, and an increase of the proliferative 

compartment, with crypt hyperplasia.[7,8]

We previously investigated the early events of celiac disease and in particular the interaction between 

gliadin peptides and intestinal epithelial cells. We found that the so-called gliadin toxic peptide (P31-43) 

delays endocytic vesicle maturation and consequently reduces epidermal growth factor receptor (EGFR) 

degradation and prolongs EGFR activation, which in turn results in increased cell proliferation and actin 

modifications in celiac crypt enterocytes and in various cells lines.[9] P31-43 enters CaCo2 cells and in-

testinal enterocytes, interacts with early endocytic vesicles,[10,11] reduces their motility and delays their 

maturation to late endosomes. [10] Taken together, this information points toward an effect of certain 

gliadin peptides, i.e., P31-43, on endocytic function and indicates epidermal growth factor (EGF) signal-

ling as one of the major pathways in the celiac intestine.

The pro-inflammatory cytokine IL-15 is a major mediator of innate immune in CD. In fact, IL-15 is higher 

in the lamina propria and the intestinal epithelium of untreated celiac patients as compared with treated 
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patients and controls.[3,12,13] It induces differentiation of dendritic cells[14] and is also secreted by the 

intestinal epithelium.[15] Moreover, IL-15 affects the proliferation, localisation and function of intraepi-

thelial lymphocytes (IELs) in the intestinal mucosa of CD patients.[16-19] 

Gliadin peptides 31-43 and 31-49 are not recognized by T cells and induce an innate immune response 

in the celiac mucosa.[2] P31-43-induced activation of various markers of the innate immune response 

is inhibited by neutralising anti-IL-15 antibodies.[2] IL-15 mediates P31-43-induced expression of the 

stress molecule MIC-A in enterocytes[3] and reproduces most of the epithelial modifications caused by 

gliadin in CD patients, including IEL migration.[12-14] IL-15 also exerts pleiotropic activity that ulti-

mately results in immunoregulatory cross-talk between cells of the innate and adaptive branches of the 

immune response.[20] Moreover, IL-15 can induce proliferation in intestinal epithelial cells21. 

IL-15 expression is tightly regulated at both the transcriptional and post-transcriptional levels.[22-24] 

Although IL-15 transcripts are widely expressed, the IL-15 protein is seldom detected in the supernatants 

of cells that display mRNA for this interleukin.[22,24] IL-15 has been found in the Golgi complex and 

in transferrin-carrying endocytic vesicles.[25,26] Trafficking of the IL-15/IL-15R alpha complex in the 

endocytic pathway plays a central role in the regulation of IL-15 expression at the post-transcriptional 

level. IL-15 is chaperoned through the secretory pathway by complexing with IL-15 R alpha, as this com-

plex forms in the Golgi and is transported to the membrane where it recycles and is trans-presented to 

neighbouring cells.[27-31] Interestingly, in the intestine, IL-15 is present on the surface of enterocytes, 

which suggests that cell-to-cell contact could play a role in IEL regulation.[13] 

The aims of this study were to determine if the proliferative activity of P31-43 on celiac enterocytes and 

cells is not only EGFR-dependent but also mediated by IL-15. We also investigated whether P31-43 in-

creases IL-15 in an intestinal epithelial cell line (CaCo2 cells) and the molecular and cellular bases of this 

phenomenon in relation to the derangement of the vesicular function induced by P31-43.
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APPENDIX I: SUPPLEMENTARy FIGURE  

Supplementary Figure 1
Dose-response effect of P31-43 treatment on IL-15 expression on CaCo-2 cell surfaces. FACS analysis 

of IL-15 on Caco-2 cells surfaces after O/N treatment with varying concentrations of P31-43 peptide. 

UN=untreated. Columns indicate percentage of positive cells (mean and standard deviation of three inde-

pendent experiments). *p< 0.05 (Student’s t-test). Optimised concentration of P31-43 for IL-15 expres-

sion on cell surface was 100 µg/ml. 
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Supplementary Figure 2
Overnight treatment with gliadin peptide P31-43 does not increase intracellular IL-15 expression. FACS 

analysis of IL-15 in the cytoplasm of CaCo-2 cells. Columns indicate percentage of positive cells (mean 

and standard deviation of four independent experiments).
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Supplementary Figure 3
Overnight treatment with gliadin peptide P31-43 does not increase secreted IL-15. ELISA assay of IL-

15 in medium of cultured CaCo-2 cells. Columns indicate pg/ml (mean and standard deviation of three 

independent experiments).
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Supplementary Figure 4
siRNA IL-15R alpha reduces IL-15R alpha protein expression. (A) CaCo-2 cells were transfected with IL-

15R alpha siRNA, lysed and immunoblotted for IL-15R alpha expression. β-Tubulin was used as an inter-

nal control. (B) Densitometric analysis of IL-15R alpha expression compared to alpha-tubulin expression. 

The decrease (d) of IL-15R alpha was calculated as follows: dIL-15R = (IL-15R [t]/ IL-15R [un])/(Tu-

bulin [T]/ Tubulin [UT]). Shown is one representative experiment out of three independent experiments.  
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Appendix II: supplementary material

Supplementary material 1
Organ Culture Study
The intestinal samples were cultured for 24 h with medium alone or with P31-43 (100 μg/ml) or with 

peptic-tryptic gliadin peptides (PTG) (0.5 mg/ml) with or without blocking anti-IL-15 antibody (50 ng/

ml) or blocking anti-EGFR antibody (2 mg/ml). All medium cultures were enriched with BrdU 10 μM 

(Sigma-Aldrich, Milan, Italy). Specimens were harvested, snap-frozen in liquid nitrogen, embedded in 

OCT and stored at –80°C until required. 

We used double immunofluorescence to evaluate crypt proliferation in 5 µm cryoStat sections from cul-

tured biopsies. After a short (3 min) treatment with 1.5 N HCl, the sections were incubated with mouse 

monoclonal anti-BrdU 1:150 (GE Healthcare Amersham, Buckinghamshire, UK) for 1 h, followed by 30 

min with secondary Alexa488-labelled anti-mouse IgG 1:150 (Invitrogen, San Giuliano Milanese, Italy) 

to identify BrdU-positive cells. After several washes in PBS, specimens were fixed with 3% paraformal-

dehyde (Sigma-Aldrich, Milan, Italy) for 5 min and incubated for 1 h with polyclonal rabbit anti-cow cyto-

keratin 1:50 (Dako, Glostrup Denmark) to stain epithelial cells. Slides were then covered for 30 min with 

Alexa633-labelled goat anti-rabbit immunoglobulins 1:200 (Invitrogen, San Giuliano Milanese, Italy), 

contrasted with Hoechst staining (Sigma-Aldrich, Milan, Italy) and then mounted in Mowiol4-88. All in-

cubations were carried out at room temperature in a dark humid chamber. The number of BrdU-positive 

cells divided by the total number of cytokeratin-positive cells gave the percentage of BrdU-positive cells. 

Supplementary material 2
RNA Extraction and Real-Time PCR 
cDNAs were generated from total RNA using the High Capacity cDNA Reverse Transcription Kit (Ap-

plied Biosystems, Foster City, CA). The resulting cDNA samples were subjected to a 10-cycle PCR am-

plification protocol followed by real-time PCR using TaqMan® PreAmp Master Mix Kit Protocol (Applied 
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Biosystems, PN 4366127). Each TaqMan Gene Expression Assay consisted of two sequence-specific 

PCR primers and a TaqMan assay-FAM dye-labelled MGB probe. Eighty ng of total cDNA (as total input 

RNA) was used for each replicate assay. Three replicates were run for each sample in a 96-well plate for-

mat. The endogenous control gene used was beta-2-microglobulin (B2M). Assays were run with 2× Uni-

versal PCR Master Mix without UNG (uracil-N-glycosylase) on Applied Biosystems 7300 Real-Time PCR 

System using universal cycling conditions (10 min at 95°C; 15 sec at 95°C, 1 min 60°C, 40 cycles).

Supplementary material 3
CTLL2 Proliferation Assays 
Cytotoxic T-cell line 2 (CTLL2) cells were analysed for proliferation in response to CaCo-2 cells treated 

with gliadin peptides. CTLL 2 cells were plated at a density of 0.3 x 105 in 96-well round bottom plates 

together with 0.6 x 105 (ratio 1:2) gamma-irradiated CaCo-2 cells, which had been previously pulsed 

overnight with medium alone, P31-43 (100 µg/ml), P31-43 and blocking anti-IL-15 (5 µg/ml) or P57-

68 in 200 µl of complete medium. 

After 24 h of incubation, the cells were pulsed for 16 h with 1 µCi/well 3H-thymidine (Amersham-Phar-

macia, Uppsala, Sweden). Radioactivity was assessed with a β counter (1600 TP, Hewlett Packard  Cali-

fornia, San Francisco, USA).

Supplementary material 4
Transferrin and Transferrin Receptor Analysis
Texas Red-conjugated biferric-Transferrin (Molecular Probes) was used for pulse and chase experiments 

to highlight transferrin-positive vesicles and investigate colocalisation with IL-15-EGFP (42). CaCo 2 

cells were  seeded on coverslips for 48 h and then transfected with IL-15-EGFP. After 48 h of transfec-

tion, they were pulsed for 15 min with Texas Red-conjugated biferric-transferrin (pulse phase). Cover-

slips were than washed and reincubated in growing media for 90 min (chase phase) in the presence of 

P31-43. The cells were than fixed and observed via microscopy after mounting (Zeiss LSM 510). 
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For colocalisation analysis, the samples were examined with a Zeiss LSM 510 laser scanning confocal 

microscope. We used Argon/2 (458, 477, 488, 514 nm) and HeNe1 (543 nm) excitation lasers, which 

were switched ¬on separately to reduce cross-talk of the two fluorochromes. The green and red emissions 

were separated by a dichroic splitter (FT 560) and filtered (515-to 540-nm band-pass filter for green and 

> 610-nm long pass filter for red emission). A threshold was applied to exclude approximately 99% of the 

signal found in control images. The weighted co-localisation coefficient represents the sum of intensities 

of the co-localising pixels in channels 1 and 2 as compared to the overall sum of pixel intensities above the 

threshold. This value could be 0 (no co-localisation) or 1 (all pixels co-localise). Bright pixels contributed 

more than faint pixels. The co-localisation coefficient represents the weighted co-localisation coefficients 

of Ch1 (red) with respect to Ch2(green) for each experiment.[43] 

  

Transferrin receptor expression on CaCo2 cells was analysed by FACS analysis and immuno-fluorescence. 

For Facs analysis, CaCo-2 cells were plated in tissue culture dishes (35 x 10 mm) in 1.5 ml DMEM and 

0.1% fetal calf serum and stimulated overnight at 37°C with 100 µg/ml P31-43, 100 µg/ml P57-68 

or medium alone. After 24 h, cells were scraped from the dishes at 4°C and transferred to a 96-well V-

bottom plates (Costar Celbio, Milan, Italy). Flow cytometry analysis was performed as follows: after sti-

mulation, 3-5x104 cells were washed with PBS and labelled with unconjugated anti-Transferrin Receptor 

(Calbiochem, clone T56/14) mouse monoclonal antibody. Cells were incubated with the primary antibo-

dies for 30 min at 4°C. After two washes with PBS, the cells were labelled with anti-mouse PE-conjugated 

secondary polyclonal antibody (Dako, Denmark, Polyclonal Rabbit anti-Mouse Immunoglobulins/PE) for 

20 min at 4°C. After washing, the labelled cells were analysed on a FACSCalibur flow cytometer using 

CellQuestPro software (BD Bioscience, San Diego, California).

Transferrin receptor was stained on CaCo2 cells with anti-Transferrin Receptor (Calbiochem, clone 

T56/14) mouse monoclonal antibody followed by secondary anti-mouse-Alexa-488 conjugated (Mole-

cular probes, San Giuliano Milanese, Italy). The cells were seeded on coverslips and treated at 4°C, to 

block endocytosis, with anti-transferrin primary antibody for 45 min followed by staining for 45 min with 

secondary anti-mouse-Alexa-488. The cells were than fixed for 5 min with paraformaldehyde, mounted 

and observ.
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CHAPTER 3
IL-15 interferes with suppressive activity of 
intestinal regulatory T cells expanded in celiac 
disease

Introduction
Celiac disease (CD) is a chronic disorder caused by the ingestion of the gluten prolamines of wheat, rye, 

and barley in genetically predisposed individuals [1]. Although the pathogenesis of CD is not fully under-

stood, it has been clearly shown that in the CD mucosa gluten peptides deamidated by tissue transglu-

taminase trigger CD4+ T cells to produce large amounts of interferon gamma IFN [2-3]. This mucosal 

inflammatory response leads to a profound remodeling of the intestinal mucosa, up to complete villous 

atrophy. However, the spectrum of histological changes is quite wide and there are CD patients, indicated 

as potential CD, who present the genetic and immunological features of CD, but whose small-bowel mu-

cosa is architecturally normal [4, 5].

Beside the Th1 response, it has been highlighted the fundamental role of other pro-inflammatory cyto-

kines, such as IL15 [6]. More recently also other cytokines, such as IL21, bridging innate and adaptive 

immunity, have been found to play an important role [6]. In these studies an important contribution to the 

comprehension of the mechanisms leading to disease has come from in vitro studies based on ex vivo organ 

cultures of intestinal biopsies taken from CD patients on a gluten-free diet (GFD) [6]. 

CD can be seen as the result of a break of tolerance where the regulation of the mucosal immune response 

to dietary gliadin might be altered. Several Tregs subsets are involved in immune tolerance [7]. These 

subsets include natural Treg cells expressing the forkhead box P3 (Foxp3) transcription factor able to 

maintain tolerance to self components and antigen-induced Foxp3+ cells able to contain the activity of Th1 

and Th17 cells [8]. Tr1 cells which down-regulate naive and memory T cell responses upon local secretion 

of IL-10 and TGF-β [9], and TGFβ-producing Treg cells (Th3) [10]  are other important subsets with 

regulatory properties. Many factors may interfere with Treg cells function. For CD it is relevant to know 
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that IL15, largely expressed in the CD mucosa, interferes with immune regulation, acting on TGF-β1 

activity, thus contributing to the loss of intestinal homeostasis and promoting chronic inflammation [11]. 

Nevertheless, concomitantly with this pro-inflammatory response, high amount of the anti-inflammatory 

cytokines IL-10 and IL-4 are also produced in the untreated CD intestinal mucosa [12]. This apparent 

paradoxical milieu of both pro-inflammatory and suppressive cytokines strongly suggests that regulatory 

mechanisms might operate to counterbalance the gliadin-triggered, abnormal immune activation in untre-

ated mucosa [13]. Our recent studies have revealed that the treatment with IL-10 of small intestinal mu-

cosa from CD patients in remission prevents the massive immune activation induced by gliadin challenge 

[14]. Moreover, we have observed that celiac intestinal mucosa harbors a subset of Treg, Tr1 cells, that 

through the release of both IL-10 and TGF-β, inhibit the pathogenic response to in vitro gliadin challenge 

[15]. Although Tr1 cells, identified in CD,  have some similar properties to Treg cells, they do not express 

Foxp3 [16]. This suggests that they are functionally distinct and may represent another level of regulation 

of the inflammatory response. Several studies have found that the number of Foxp3+ T cells are significan-

tly increased in the small intestinal mucosa with active CD [17-19]. Futhermore, whereas the functional 

activity of circulating CD4+CD25+ T cells from CD patients has been recently investigated [20-22], the 

suppressive capacity relative to their intestinal counterparts has never been reported.

The aim of our study was to investigate the presence of Foxp3 cells in the celiac small intestinal mucosa 

and their correlation with disease state by combined immunochemistry (IHC) and flow cytometry (FACS) 

ex vivo analysis. Furthermore, we used an in vitro organ culture to investigate the induction of Foxp3 by 

gluten. Finally, we evaluated the functional capacity of intestinal Treg cells from celiac patients and the 

effects that IL-15 exerts on their suppressive function.

These data have been published on The American Journal of Gastroenterology, for the manuscripts see 

below.
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Conclusive remarks

In this study we found, by two complementary methods, immunohistochemistry and flow cytometry ex vivo 

analysis, an increased number of Foxp3+ cells in the intestinal mucosa of patients with active CD compa-

red with both treated CD and non-CD controls. These cells were not found in the epithelium layer, but 

were mainly localized in the subepithelial layer of the lamina propria. The data obtained in biopsies from 

active celiac patients are in agreement with recent observations [17-19 ] indicating an increased density 

of Foxp3+ cells by immunohistochemistry. In our study, we have confirmed this results also by flow cyto-

metry ex vivo analysis.  

In general, these data suggest that Foxp3 expression is linked to the Th1 driven mucosal immune re-

sponse to gliadin. In fact, the expansion of this subset proportional to the intensity of local inflammation, 

could play a role in the negative feedback loop of T cell activation. In support of this hypothesis, we found 

in three CD  with a partially healed mucosal tissue, an increased number of Foxp3+ cells when compared 

to the normal mucosa of both treated CD and non-CD controls, but lower in respect to the density found 

in the mucosa of untreated CD (data not shown). Moreover, data we are collecting on duodenal biopsies 

from “potential” CD patients (patients with positive CD serology, and low local inflammation) point in the 

same direction. Thus, the increased density of Foxp3+ cells seems to be correlated with the histological 

lesion suggesting that the immune system is actively trying to downregulate ongoing inflammation either 

through the rapid redistribution of Treg cells from the circulation to the inflamed site, or through the local 

proliferation of these regulatory cells.

In humans the correlation between Foxp3 expression and suppressive capacity is not as clear as in the 

murine system. In fact, recently it has been shown that expression of Foxp3 does not exclusively occur in 

CD4+CD25+ Treg since in humans it can also be transiently induced in activated CD4+CD25- T effec-

tor cells, which do not express Foxp3 in the resting state [24, 25]. Therefore, the statement that CD pa-

tients are characterized by accumulation of suppressive cells in the intestinal mucosa must be considered 
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carefully, in the absence of a functional suppressive assay.  While the functional activity of CD4+CD25+ T 

cells isolated from peripheral blood of untreated CD patients was recently investigated [20-22], the sup-

pressive capacity of such T cells in the intestinal mucosa of CD patients has never been reported. To this 

aim and to ascertain if the observed Treg cells are indeed suppressive, we isolated cells CD4+CD25+ cells 

from biopsies of active CD and tested their suppressive capacity in an in vitro coculture assays. Our data 

show that intestinal CD4+CD25+ T  cells of CD patients are able to exert their regulatory effects in vitro 

in terms of inhibition of proliferation and  IFN-γ secretion of Tresp cells. Moreover, in line with recent 

report [21],  we confirm the suppressive activity of peripheral blood CD4+CD25+ T cells of CD patients. 

Therefore, our current results suggest that intestinal and peripheral blood Treg cells of untreated CD 

patients are not functionally deficient and could be able to control the ongoing immune response to gluten 

and the consequent inflammation.

On the contrary, despite the increased frequency and suppressive activity in vitro, Treg cells fail to con-

trol the development of the inflammation in the small intestinal mucosa with active CD. It is possible that 

the suppressor capacity of these cells may be abrogated in vivo or it is unsufficient to counterbalance the 

strong proinflammatory response. Recently, it has been shown that IL-15 not only plays a pleiotropic role 

at the interface between innate and adaptive immunity in CD, but also exerts effects interfering with anti-

inflammatory pathways that are normally activated in the small intestinal mucosa by the cytokine transfor-

ming growth factor (TGF-β1) [11]. The massive increase of the proinflammatory cytokine IL-15 in CD 

led us to investigate whether IL-15 might interfere with the suppressive activity of intestinal Treg cells. 

We have shown in active CD patients, that IL-15 impairs the functions of Treg cells making Tresp cells 

refractory to the regulatory  effects of CD4+CD25+ T cells,  in terms of proliferation and production of 

IFN-γ. This phenomenon was non specific for CD patients  as in non-CD controls the addition of IL-15 

to cocultures Treg/Tresp cells prevented  the inhibition of IFN-γ  secretion. Nevertheless, this effect was 

less marked than in CD. The greater sensitivity to IL-15 of CD patients is likely to be due to their ex-

pression of IL-15 receptor. Recently, it has been observed  that IL-15 receptor α  mRNA expression was 

increased in duodenal biopsies of untreated CD patients as compared with controls [26].  How IL-15 can 

impair the suppressive activity ot Treg cells in vitro remains to be defined. Previous data indicated that, 
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in active CD, IL-15 was involved in the local down-regulation of TGF-β signaling [11], signaling that is 

required to maintain regulatory function of Treg cells [27]. Studies are now in progress to address in our 

system whether and how IL-15 might interfere with the regulatory function of TGF-β.

Aside from evidence that natural Foxp3+ Treg cells arise and mature in the thymus, there is mounting 

evidence that Foxp3+ Treg cells can develop extrathymically under certain conditions. As a consequence 

of this expansion, Treg cells cause downmodulation of inflammation associated with pathogen-specific 

immune responses. Recently, it was observed that small intestine lamina propria dendritic cells promote 

de novo generation of Foxp3 Treg cells via retinoic acid, which is a vitamin A metabolite highly expres-

sed in GALT [28]. Together, these data demonstrate that the intestinal immune system has evolved a 

self-contained strategy to promote Treg cell induction. The in vitro gliadin challenge system reproduces 

many features of the mucosal immune response which occur in the established celiac lesion [29, 30]. In 

such system we provide evidence that in CD intestinal mucosa Foxp3 + Treg cell can be expanded locally 

during gliadin-specific stimulation, as a likely attempt to curtail the mucosal immune response. In fact, 

in the lamina propria of celiac biopsy samples cultured in the presence of a PT-gliadin, but not in those 

from controls, the number of cells expressing Foxp3 were significantly higher, particularly in the sube-

pithelial compartment, than in samples cultured in medium alone. The FACS analysis of the frequency 

of Foxp3+CD25+ cells before and after challenge with PT-gliadin in CD4+ population confirmed the 

immunohistochemical data. 

In conclusion, we have shown that in CD untreated intestinal mucosa, the expanded CD4+CD25+Foxp3+ 

T cells are regulatory cells. We proved they are induced in situ by gliadin. However, they can be impaired 

in vivo in their suppressor capacity by IL-15. Their sensitivity to the IL15 action is likely due to enhanced 

expression of IL15 receptor alpha.

Based on these results and on the finding that IL-15 is over-expressed in intestinal mucosa of patients with 

active CD, we suggest that in target tissues the function of regulatory T cells may be substantially limited 

by these cytokines and that therapies that aim at neutralizing such cytokines may not only decrease bystan-

der T cell activation but also reconstitute the suppressor function of regulatory T cells.
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CHAPTER 4
Endocytic trafficking is constitutively altered 
in celiac disease

Background and aims
Celiac disease (CD) occurs frequently, and is caused by ingestion of prolamins from cereals in subjects 

with a genetic predisposition. The small intestinal damage depends on an intestinal stress/ innate immune 

response to certain gliadin peptides (e.g., A-gliadin P31-43) in association with an adaptive immune re-

sponse to other gliadin peptides (e.g., A-gliadin P57-68). P31-43 has an effect on the maturation and fun-

ction of early endocytic vesicles and consequently on epithelial growth factor receptor (EGFR) signaling 

and CD enterocyte proliferation. The reason that the stress/innate immune and proliferative responses to 

certain gliadin peptides are disruptive in CD and not in control intestine is so far unknown.

The aim of this work is to demonstrate that, in CD cells, a constitutive alteration of the endocytic com-

partment exists that may represent a predisposing condition to the damaging effects of gliadin in CD pa-

tients.

Methods
Immunofluorescence and pulse-chase experiments were used to study endocytic morphology and fun-

ction in CD fibroblasts and intestinal biopsies. Western blot (WB) analysis, immunoprecipitation, immu-

nostaining and quantitative PCR were also used. 

Results. 

We found morphological and functional alterations of the endocytic compartment in fibroblasts and ente-

rocytes from biopsies of CD patients. These changes included an increase in the number of early endoso-

mes, delayed EGF endocytic trafficking, an increase in total phosphorylated proteins including EGFR and 
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the downstream signaling molecule ERK (extracellular signal regulated kinase) and increased EGF mRNA 

and enterocyte proliferation. 

Conclusions
The same pathway with which gliadin peptide P31-43 can interfere is constitutively altered in CD cells. 

This observation potentially explains the specificity of the damaging effects of certain gliadin peptides on 

CD intestine.

Key words
Endocytosis; Celiac Disease; Enterocytes Signaling; EGFR; ERK.
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Introduction

Celiac disease (CD) is characterized by derangement of adaptive and innate immune responses to wheat 

gliadins. Some gliadin peptides that are deamidated by tissue transglutaminase (e.g., A-gliadin P57-68) 

bind to HLA DQ2 and/or DQ8 molecules and induce an adaptive Th1 pro-inflammatory response.1 Other 

gliadin peptides (e.g., P31-43) are able to initiate both a stress 2,3 and an innate immune response. 4,5 

In CD, damage to the intestinal mucosa is mediated by inflammation due to both the adaptive and the innate 

immune responses (IL-15 is a major mediator of the innate immune response) and by proliferation of crypt 

enterocytes, which causes crypt hyperplasia and mucosal remodeling, both of which are hallmarks of CD 

mucosa. 6,7,8 In the celiac intestine, there is an inversion of the differentiation/proliferation program of the 

tissue. This inversion involves a reduction in the differentiated compartment that can result in complete 

villus atrophy and an increase in the proliferative compartment, with resultant crypt hyperplasia. 9,10

Recent observations 11,12,13,14 from our laboratory and by others point to an effect of certain gliadin pepti-

des (e.g. P31-43) on the maturation and function of early endocytic vesicles in cell lines and in intestinal 

biopsies. Endocytosis has many effects on signaling; in fact, signaling pathways and endocytic pathways 

are regulated in a reciprocal manner. Consequently, endocytosis affects several cell functions ranging 

from proliferation to cell motility. 15  

We have previously investigated the interaction between gliadin peptides and intestinal epithelial cells in 

CaCo2 cells and in biopsies from CD patients. We found that by interfering with the localization to the 

endocytic membranes of Hrs (hepatocyte growth factor-regulated kinase), a key molecule in the matura-

tion of early endocytic vesicles, P31-43 induces two important effects: a) it delays endocytic maturation, 

and b) it alters the recycling pathway. By delaying the maturation of endocytic vesicles, P31-43 reduces 

the degradation of EGFR and other receptor tyrosine kinases (RTK) and prolongs their activation, which 

in turn results in actin modification, increased cell proliferation and other biological effects.11,14 The alte-

ration of the recycling pathway is able to direct more IL15 to the cell surface. Gliadin peptide P31-43 also 

increases the levels of IL15 mRNA.16 By increasing the synthesis of IL15 and the amount of the cytokine 

that is presented to neighboring cells, P31-43 affects both enterocyte proliferation, which is EGFR- and 
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IL15-dependent, and the activation of innate immunity.16 The reason the effects of these peptides on the 

endocytic compartment are extremely disruptive to the CD mucosa is not clear. Our hypothesis is that, in 

CD mucosa, an alteration exists that may represent a predisposing condition to the damaging effects of 

gliadin. According to this hypothesis, in the present work we have attempted to determine whether con-

stitutive morphological and functional alterations occur in the endocytic compartment of CD enterocytes 

and skin-derived fibroblasts of CD patients on gluten-free diet (GFD). The alterations found are indepen-

dent of the presence of gluten in the diet and of the inflammation site.

METHODS
Cell culture 
Fibroblast cell lines were cultured from skin biopsies from patients, all of whom gave informed consent to 

use of biopsy tissue in the study. We obtained fibroblasts from five celiac patients on gluten-free diet and 

from four HLA DQ2/8 negative healthy controls. Detailed description of fibroblasts and CaCo-2 cells 

culture is in the supplementary material.

Pulse-chase experiments on fibroblasts

Pulse-chase experiments were performed as described previously14 and are reported in detail in the sup-

plementary material. 

EEA1 and phosphotyrosine staining
EEA1 and phosphotyrosine staining in fibroblasts and in biopsies from CD patients and controls is de-

cribed in the supplementary material. Briefly acetone-fixed (10 min, Sigma-Aldrich, Milan, Italy) 5-μm 

frozen sections from CD biopsies and controls and, fibroblasts seeded on glass coverslips fixed with 3% 

paraformaldehyde, were examined by immunofluorescence, after staining with antibody against EEA1 (C-

15) (Santa Cruz, DBA, Milan, Italy), with anti-pTyr antibody (Santa Cruz Biotechnology, CA, USA) and 

realative fluorescinated secondary antibodies. Fluorescence intensity (Fi) analysis of the samples respect 

to the background was carried out using AIS Zeiss software. 
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Immunohistochemistry of pY-ERK in biopsies
For the immunohistochemical study, 4-μm biopsy sections from CD patients and controls were fixed in 

3% paraformaldehyde (Sigma-Aldrich, Milan, Italy) and stained as reported in the supplementary material.

Immunoprecipitation and Western blotting

Immunoprecipitation and Western blotting were performed as described previously, 11,16 and detailed in 

the supplementary material.

Organ culture studies 
For organ culture studies, biopsy fragments from duodenum were obtained from 8 CD patients with villus 

atrophy, 8 controls (affected by gastroesophageal reflux), 11 CD patients on GFD and 11 potential CD 

patients. Informed written permission was obtained from all patients. The biopsy fragments were cultiva-

ted as reported elsewhere 11,17 and detailed in the supplementary material.

 Pulse-chase experiments on biopsies

To examine endocytosis of EGF, all biopsies were treated as described previously11  and detailed in the 

supplementary material. 

Ethical approval
 The protocol of the study was approved by the Ethical Committee of the University “Federico II”, Naples, 

Italy (ethical approval certification C.E. n. 230/05).
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RESULTS

The morphology of the early endocytic compartment is altered in CD mucosa
It has previously been shown that gliadin peptide P31-43 can interfere with endocytic trafficking in CaCo2 

cells.11,14 We therefore analyzed the endocytic compartment in enterocytes of CD mucosa to determine whether 

an alteration in this compartment represents a predisposing condition to the damaging effects of gliadin pepti-

des in CD patients. EEA1 and LAMP 2 were used as markers of the early and late endocytic compartments, re-

spectively, in duodenal biopsies from controls and from CD patients in the active phase of the disease with villus 

atrophy, on a GFD and also from potential CD patients. Potential CD patients are those on a gluten-containing 

diet with predisposing HLA DQ2 or DQ8 who are positive for anti-TTG antibodies in the serum but who do not 

show intestinal alterations. As shown in figure 1A, EEA1- positive vesicles are increased in crypts and villi of CD 

enterocytes compared to controls. Interestingly, the enterocytes of potential CD patients also display increased 

EEA1-positive vesicles, indicating that alteration of the endocytic compartment is a marker of the disease in the 

absence of intestinal atrophy. In CD patients on GFD, the amount of EEA1-positive vesicles is also increased, 

suggesting that an alteration of the endocytic compartment could be present in CD intestinal mucosa indepen-

dent of the gluten content of the diet. As shown in figure 1B, the fluorescence intensity of EEA1 is increased 

in all CD patients with respect to controls both in villi (CD with villus atrophy 1123 ± 507.4, GFD 698.3 ± 

377.7, potential 750.7 ± 339.5, controls 511.1 ± 255.6 ) and in crypt enterocytes (CD with villus atrophy 

1207 ± 166.3, GFD 1426 ± 144.2, potential 1594 ± 365.5, controls 884.4 ± 185.3). Increased EEA1 stai-

ning is also present in the lamina propria cells of CD patients. Nevertheless, we focused our study on the ente-

rocytes because this cell type represents a homogeneous cell population and is the first cellular compartment to 

meet gliadin and the compartment in which cellular stress has been described.

Because EEA1 is a structural marker of early vesicles, 18 we measured the levels of EEA1 protein in intesti-

nal mucosa from CD patients and controls. Western blotting revealed that the EEA1 protein is increased 

by 5- to 8-fold in intestinal biopsies from CD patients compared to controls (figure 1C). Staining of Lamp 

2, a marker of late vesicles, shows a slight increase only in the surface epithelium of CD with villus atrophy 

(supplementary figure 1). 
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Endocytic trafficking is altered in CD mucosa
EEA1 staining and Western blotting highlighted a morphological alteration in the endocytic compartment 

in CD enterocytes that occurs even in the absence of  gluten from the diet. We next investigated endocytic 

trafficking in CD mucosa using EGF as a marker of endocytosis. Intestinal biopsies from controls and 

CD patients were treated with EGF labeled with the fluorescent marker Alexa 488. Biopsy cultures were 

pulsed for 3 h with EGF-Alexa 488 and chased for 24 h in media alone. As shown in figure 2, EGF-Alexa 

488 can be seen in the crypt enterocytes from CD patients, whether on gluten-containing or gluten-free 

diets, after 24 h of chase, whereas in the control biopsies EGF-Alexa 488 is no longer visible after 24 h. 

This indicates that the trafficking of EGF in endocytic vesicles is delayed in CD.

In CD fibroblasts both the morphology and the trafficking of the early endocytic compartment are altered 

The previously described alterations in endocytic trafficking in CD enterocytes could result, in the GFD pa-

tients, from residual inflammation and not from a constitutional defect of the celiac cells. We therefore inve-

stigated the endocytic compartment in skin-derived fibroblasts of CD patients. These cells represent a cel-

lular compartment that is located far from the inflammation site. We measured the fluorescence intensity of 

EEA1-positive early endocytic vesicles (figure 3A), the levels of EEA1 protein (figure 3B) and EGF-Alexa 

488 trafficking in these cells (figure 3C). The fluorescence intensity of EEA1-positive vesicles is increased 

in fibroblasts from CD patients (2104 ± 905.4) in comparison to controls (1272 ± 673.6) (figure 3Ac). As 

expected from the increase of EEA1-positive vesicles in fibroblasts from CD patients, we found that the level 

of EEA1 protein also increased in CD fibroblasts. This is shown in the Western blot in figure 3B. To measure 

endocytic trafficking in these cells, we loaded early vesicles with EGF-Alexa 488 in pulse-chase experiments. 

Fibroblasts were pulsed for 30 min with EGF-Alexa 488 and, after intensive washing, were chased for 3 hours 

in medium alone. As shown in figure 3C, after 3 h chase EGF-Alexa 488 fluorescence is strongly reduced in 

fibroblasts from controls but is still present in those from CD patients. Statistically significant differences were 

found in the fluorescence intensity/cell of EGF-Alexa 488; after 3 h chase, the fluorescence intensity was 225 

± 189 in controls and 2350 ± 208 in GFD CD fibroblasts. 

The results with CD mucosa and skin-derived fibroblasts suggest that there is a morphological and functional 

alteration of the endocytic compartment in CD patients. This is constitutive and independent of the inflam-

mation site, because it can be found in a cellular compartment far from the intestine. Interestingly, we have 
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obtained similar results with dendritic cells derived from blood mononuclear cells (supplementary figure 2). 

Signaling is altered in CD cells
The alterations of the endocytic pathway we have described in CD cells might be expected to delay the 

decay of signaling molecules, allowing them to continue to signal downstream from the endocytic com-

partment. We found that total phosphorylated proteins are increased in crypt and villus enterocytes of CD 

patients, both those on a gluten- containing diet (CD patients with villus atrophy and potential CD with 

normal mucosa) as well as patients on a GFD (figure 4, A and B). This suggests that there is a constitutive 

activation of signaling molecules in CD patients that is independent of diet. Villi present more positive 

staining for phosphotyrosine when patients are on a gluten-containing diet (CD with villus atrophy and 

potential) (figure 4B, villi).

Some of the increased phosphorylation that we observed is due to an increase in the phosphorylation of 

the downstream effector of EGFR signaling, ERK1/2 (figure 4, C/D). When ERK1/2 is activated, it 

migrates to the nucleus. Using an antibody against the phosphorylated form of ERK (pY-ERK), we stained 

biopsies from CD in the active phase of the disease (both CD with villus atrophy and potential CD) and 

from patients on a GFD, in the remission state of the disease. The percentage of nuclei positive for the 

activated form of ERK 1/2 are increased in crypt enterocytes from all CD mucosas (CD with villus atro-

phy 59.58%+/-18.86%, GFD CD 77.28%+/-9.97%, potential 69%+/-16.45%) compared to controls 

(38.75%+/-17.66%). In villi enterocytes, a similar trend is present but reaches statistical significance 

only in cells derived from patients with CD with villus atrophy. Biochemical analysis of pY-ERK in biop-

sies from CD patients and controls confirms the immunohistochemical analysis. As shown in figure 4E, 

blotting of proteins from lysates of biopsies from CD patients and controls indicates that there is a signi-

ficant increase of pY-ERK not only in CD with villus atrophy and potential CD but also in CD patients 

on GFD. Taken together, these results indicate that signaling molecules are activated in CD mucosas of 

patients whether they are on GFD or gluten containing diet (GCD).

To analyze whether similar alterations are present in cells outside the intestine, we investigated the level 

of phosphorylation of total proteins and of ERK and EGFR in skin fibroblasts from GFD CD patients and 
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controls (figure 5 A, B). Figure 5A shows staining for total phosphorylated proteins in fibroblasts. The 

fluorescence intensity/cell indicates that there are more phosphorylated proteins in fibroblasts from GFD 

CD patients (655.2 ± 229.1) than in controls (510.0 ± 164.1). To confirm the increment in phosphory-

lated proteins in CD fibroblasts, we immunoprecipitated total phosphoproteins from the cell lysate using 

an anti-phosphotyrosine antibody. The results, which are shown in supplementary figure 3, demonstrate 

that there is an increase in the total amount of phosphorylated proteins in CD fibroblasts compared to 

control fibroblasts. Using specific antibodies, two of the proteins that showed increased phosphorylation 

were identified as ERK and EGFR.

To further confirm the increased phosphorylation of the active signaling molecules ERK and EGFR in 

these cells, we used Western blotting to specifically analyze their phosphorylated state. As shown in figure 

5B, pY-ERK was identified in total cell lysates of CD and control fibroblasts using specific antibodies 

that recognize the phosphorylated form of ERK. Densitometric analysis (figure 5Bb) shows a significant 

increase in the phosphorylated form of ERK in CD fibroblasts. Phosphorylated EGFR was identified by 

immunoprecipitating EGFR with a specific antibody and then staining the immunoprecipitated proteins 

with an anti-phosphotyrosine antibody (figure 5Bc). Densitometric analysis (figure 5Bd) shows an increa-

se of almost 6-fold in the phosphorylated form of EGFR in CD fibroblasts.

Taken together, the data presented here imply that, in CD cells, alterations occur in the phosphorylation 

of signaling proteins such as EGFR and the downstream effector ERK. These alterations are present even 

in patients on GFD, and they are independent of the site of inflammation.

Proliferation of crypt enterocytes is increased in CD
We have shown that EGF-Alexa remains in enterocytes of CD patients longer than in controls, indicating 

that the decay of this potent mitogen is delayed in CD cells. Furthermore, an increase in EGF mRNA is 

found not only in enterocytes isolated by laser microdissection from biopsies of patients with CD with 

villus atrophy but also in enterocytes from patients in remission on GFD. This finding indicates that a 

positive autocrine loop19 occurs between EGFR activation and EGF production, independently of gluten 

intake and crypt hyperplasia (supplementary figure 4). We therefore considered the possibility that proli-
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feration of crypt enterocytes might be a possible consequence of the alterations shown above.

We studied the proliferation of crypt enterocytes by measuring BrdU incorporation in cultured biopsies 

from CD patients and controls. We found that proliferation of crypt enterocytes is increased in CD pa-

tients compared to controls (figure 6 A-B). This proliferation is increased in enterocytes from patients with 

CD with villus atrophy (17.0%±3.5%), potential patients (10.8%±2.7%) and in CD patients in remission 

on a gluten-free diet (15.9%±9.1%) with respect to controls (7.7%±2.5%). This finding indicates that the 

increased proliferation of crypt enterocytes seen in CD is partially independent of the crypt hyperplasia 

(that does not occurs in potential CD) and of the presence of gluten in the diet. As expected, the increased 

proliferation of crypt enterocytes in cells from patients with CD with villus atrophy is dependent both on 

EGFR and IL15 signaling; this is shown by the fact that it can be prevented by anti-EGFR and anti-IL15 

antibodies (data not shown).
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Discussion

In this paper, we describe a constitutive alteration of the endocytic pathway in  enterocytes and fibroblasts of patients 

with celiac disease. This alteration consists of an increase in EEA1-positive vesicles (early endosomes) and a delay of 

EGF endocytic trafficking at this level. In biopsies from these patients, we also found an increase in total phosphory-

lated proteins including EGFR and the downstream signaling molecule ERK, an increase in EGF mRNA and incre-

ased proliferation of enterocytes. These alterations are present in patients on GFD as well as those on regular diets 

and, as shown by their presence in skin fibroblasts, are independent of the inflammation site. We have studied the en-

docytic pathway both morphologically and functionally. The fluorescence intensity of early endocytic vesicles stained 

with EEA1 was increased in intestinal crypt enterocytes and in skin fibroblasts from CD patients. An increase in EEA1 

protein levels was also demonstrated, suggesting that there is a net increase in the early endocytic compartment in CD 

cells. The increase in EEA1-positive vesicles in intestinal biopsies from CD patients was found mainly in crypt ente-

rocytes and was present not only in tissue from active CD patients but also in tissue from CD patients in the remission 

state of the disease and in potential CD patients (those with normal intestinal mucosa, positive serology for CD and 

on a GCD). This alteration therefore occurs in the absence of gluten in the diet and in the normal mucosa of potential 

CD patients. Other endocytic compartments, such as the compartment that includes Lamp2-containing vesicles (late 

vesicles), appeared altered mainly in mucosa from CD patients with villus atrophy.

To test the function of endocytic trafficking in CD cells, we performed pulse-chase experiments in which we loaded 

early vesicles with EGF-Alexa 488.11,14 The retention of EGF-Alexa 488 in the endocytic compartment of fibroblasts 

and enterocytes from patients in the acute or the remission phase of the disease was found to be delayed compared 

to the retention of the compound in cells from control patients. This shows that the endocytic pathway is not only 

morphologically altered, as demonstrated by EEA1 accumulation, but is also functionally impaired in CD cells.  

Morphological and functional alteration of the endocytic pathway can have several biological consequences, including 

delay in the decay of signaling molecules that can continue to signal downstream from the endocytic compartment.20 

In particular, interference with endocytic vesicle maturation results in delay of the decay of tyrosine kinase receptors 

such as EGFR and a consequent increase in the level of phosphorylated proteins.21,22,23 In the present work, we found 

that total phosphorylated proteins were increased in the enterocytes of CD patients both on gluten-containing diets 
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(including patients with atrophic mucosa and potential CD patients with normal mucosa) as well as in the enterocytes 

of patients on GFD. We found that ERK phosphorylation was increased in biopsies from CD patients and showed 

by immunohistochemistry that the increase in pY-ERK mainly occurs in crypt enterocytes, strongly suggesting that 

signal activity is increased in enterocytes from CD patients. An increase was also found in total phosphorylated pro-

teins in fibroblasts from CD patients, and some of the phosphorylated proteins whose phosphorylation is increased 

were identified. In particular, phosphorylated EGFR and ERK are increased in fibroblasts from CD patients.  Proli-

feration of enterocytes is a hallmark of CD.11,16 In this paper, we have shown that EGF-Alexa remains in enterocytes 

of CD patients longer than in controls, indicating that, in these cells, the decay of a potent mitogen such as EGF is 

delayed independently from gliadin treatment. EGFR can still signal downstream after internalization.11 Consistent 

with this idea, we found increased activation of ERK, an EGFR downstream effector,23,24 in fibroblasts and intestinal 

mucosa of CD patients. Moreover, in CD fibroblasts, there was increased activation of EGFR. As a readout of EG-

FR-ERK pathway activation, we measured crypt enterocyte proliferation by measuring BrdU incorporation in organ 

culture experiments. As expected, crypt enterocyte proliferation was found to be increased in active CD patients 

with crypt hyperplasia. In potential CD patients, crypt enterocyte proliferation was also increased, although the small 

intestine apparently had a normal architecture in these patients. Interestingly, increased proliferation was also found 

in the absence of gluten from the diet. Moreover, increased levels of EGF mRNA occurred not only in enterocytes of 

CD patients with villus atrophy but also in patients in remission on GFD, indicating that there is a positive autocrine 

loop 19  between EGFR activation and EGF production in enterocytes that is independent of gluten intake and crypt 

hyperplasia. Taken together, these results show that increased proliferation, together with increased phosphoryla-

tion of several proteins including EGFR and ERK, is an intrinsic characteristic of CD cells. The MAPK-ERK 1-2, 

like all mitogen-activated-kinases (MAPKs), is one of the essential signaling molecules that converts environmental 

inputs into influences on a plethora of cellular programs. 25 Moreover, most of the MAPK, including ERK, are stress 

sensors that can be activated by different inputs. 26 . Taken as a whole, our data suggest that in CD there is a constitu-

tive derangement of the endocytic pathway that can also be found outside the intestine and is independent of gluten 

intake. We also found an increase in protein phosphorylation, with EGFR and ERK activation, and an increase in 

enterocyte proliferation.  Emerging evidence connects endocytosis to complex cellular programs that control proli-

feration, apoptosis, cell motility, cell fate determination, and immunologic response to infections and other agents.15  

Alteration of vesicular trafficking has been demonstrated to play a role in the pathogenesis of another intestinal in-
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flammatory disease, Crohn’s disease, in which defective vesicular transport results in impaired macrophage function, 

reduced cytokine secretion and decreased autophagy.27 Thus, vesicular trafficking seems to represent an important 

aspect of cell regulation, and the disruption of this pathway is predicted to play an important role in human disease. 

It has been proposed that to develop villus atrophy, patients must have an intestinal stress/innate immune response 

to certain gliadin peptides in association with adaptive anti-gluten immunity. 2,3 In CD enterocytes, signs of distress 

such as an increase in heat shock proteins and in the non-classical MHC class 1 molecules HLA E and MIC-A, as well 

as signs of innate immunity activation such as an increase in IL15 levels, have been reported.3. Increasing evidence 

from our laboratory and those of others 11-14,16 suggests an effect of certain gliadin peptides (e.g., P31-43) on the 

function of early endocytic vesicles and implicates EGFR signaling as an important pathway in celiac intestine. The 

so-called gliadin toxic peptide P31-43 enters early endocytic vesicles of CaCo-2 cells and intestinal enterocytes 11,14, 

delays endocytic vesicle maturation and consequently reduces epidermal growth factor receptor (EGFR) degrada-

tion and prolongs EGFR activation, which in turn results in actin modification and increased cellular proliferation in 

celiac crypt enterocytes. 11,14,16 In normal subjects, gliadin peptide P31-43 does not induce a significant increase of 

proliferation in crypt enterocytes, 11,16 although it is able to cause short-term effects on the endocytic compartment 

such as accumulation of EEA1 vesicles and protein, delay of EGF-Alexa 488 trafficking and ERK activation (manu-

script in preparation). This shows that gliadin is an activator of various stress signals at the cellular level independent 

of the celiac background but that only in the celiac background  it is able to produce long-term damage including 

overproliferation and stress/innate immune response activation.The reason the stress/innate immune and prolife-

rative responses to certain gliadin peptides are so disruptive in celiac and not in control intestine is unknown. It has 

been shown that a stress/innate immune response to gliadin exists in family members of CD patients in the absence 

of anti-gluten T-cell-mediated immunity. 3 We looked for the presence in CD mucosa of a constitutive alteration that 

may represent a predisposing condition to the damaging effects of gliadin. In accord with this hypothesis, we show in 

this paper that the endocytic compartment is altered in CD cells and that this alteration implies an increase in signa-

ling, with increases in the level of stress molecules such as pY-ERK. We know from previous work that the endocytic 

compartment is also the target of the P31-43 peptide. Thus, the same pathway that gliadin peptides (e.g., P31-43) 

can interfere with is constitutively altered in CD cells, potentially explaining the specificity of the damaging effects of 

certain gliadin peptides on CD mucosa.

These data are currently submitted .
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Figure 1. EEA1-positive vesicles are increased in CD enterocytes.

A. EEA1 staining of duodenal biopsies from controls, from CD patients with villus atrophy, from potential 

CD  and from CD patients on GFD. 63x objective (2x digital zoom) images from villi and crypts are shown. 

The white lines indicate the height of the epithelium. Of 5 independent experiments, one representative 

experiment is shown. 

B. Statistical analysis of fluorescence intensity in selected epithelial areas. For each group of patients and 

controls, 5 subjects were examined. For each subject, 3 independent experiments were performed to me-

asure the fluorescence intensity of the selected epithelial areas. Columns represent mean values, and bars 

represent the standard deviation.  * = P<0.05, **p< 0.001, ***= P<0.0001  

C (a) Western blot analysis of EEA1 levels in biopsies from CD patients and controls.  Alpha-tubulin was 

used as a loading control. (b) Densitometric analysis of Western blots shown in (a). The fold increase in 

EEA1 (iEEA1) signal intensity in CD patients respect to the control for each sample was calculated as 

follows: iEEA1 = [CD patients (EEA1)/control (EEA1)]/[CD patients (alpha-tubulin)/control (alpha-

tubulin)]. For each group, similar results were obtained in 5 subjects.
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Figure 2. EGF-Alexa-488 is delayed in endocytic compartments of CD enterocytes in both the acute 

and remission phases of the disease.

Biopsies from CD patients with villus atrophy who were on a gluten-containing diet and from GFD CD pa-

tients were cultured for 24 h after a 3 h pulse with EGF-Alexa-488. Images of crypts obtained with a 63x 

objective (2x digital zoom). One representative experiment out of 5 independent ones are shown. White 

arrows indicate EGF-Alexa-488 accumulation in vesicles of the apical portions of the crypt enterocytes.
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Figure 3C
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Figure 3. Morphological and functional alterations of the early endocytic compartment in skin fi-

broblasts from CD patients. 

A. EEA1 staining of early endocytic vesicles is increased in skin-derived fibroblasts from CD patients on 

GFD in comparison to controls. (a, b) Immunofluorescence images of EEA1 staining (63x objective, 2x 

digital zoom). White lines indicate single cells in a representative field. (c) Statistical analysis of fluore-

scence intensity/cell. Three independent experiments were carried out for each of 5 patients and 4 con-

trols; in each experiment, the fluorescence intensity of 10 cells in random fields was measured. Columns 

represent means; bars represent standard deviation. **p< 0.001 (Student t-test). 

 B. EEA1 protein is increased in fibroblasts of CD patients in comparison to controls. (a) Western blot 

analysis of EEA1 levels in fibroblasts from CD patients and controls. Alpha-tubulin was used as a loading 

control. (b) Densitometric analysis of Western blots shown in (a). The fold increase in EEA1 (iEEA1) in 

CD fibroblasts with respect to control in each sample was calculated as follows: iEEA1 = [Fibroblasts GFD 

CD (EEA1)/control (EEA1)]/ [Fibroblasts GFD CD (alpha-tubulin)/ control (alpha-tubulin)]. Similar 

results were obtained in 5 patients and 4 controls.

C. EGF-Alexa-488 is delayed in the endocytic compartment of CD skin fibroblasts.

(a) Skin fibroblasts from CD patients on GFD and controls were pulsed for 30 min with EGF-Alexa-488 

and chased for 3 h with medium alone. The area showing the cells is highlighted by a white line. Repre-

sentative fields obtained using a 63x objective, 2x digital zoom are shown. (b) Statistical analysis of the 

fluorescence intensity/cell at indicated time points. For each of 5 patients and 4 controls, 3 independent 

experiments were done; in each experiment, 10 cells in random fields were counted. Columns represent 

means and bars standard deviations. * = P<0.05, ***= P<0.0001
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Figure 4. Phosphorylation of proteins is increased in enterocytes of CD patients.

A. Duodenal biopsies from CD patients with villus atrophy and potential CD patients, both on a gluten-

containing diet and from GFD CD or from controls were stained with anti-phosphotyrosine antibody. 63x 

objective (2x digital zoom) images from villi and crypts obtained in one representative experiment out of 5 

independent ones are shown. White lines indicate the height of the epithelium. 

B. Statistical analysis of fluorescence intensity/selected epithelial area. For each group of patients and 

controls, 5 subjects were examined. For each subject, 5 independent experiments in which the fluore-

scence intensity of the selected epithelial areas was measured were performed. Columns represent means 

and bars standard deviation. * = P<0.05, **= P<0.001, ***= P<0.0001

C. Immunohistochemical images of crypts and villi of intestinal biopsies from CD patients and controls 

stained with an antibody that recognizes the phosphorylated form of ERK 1/2 (pY-ERK) and with hema-

toxylin/eosin. One representative experiment out of 5 independent experiments is shown.

D. Statistical analysis of pY-ERK positive nuclei with respect to total nuclei in the enterocytes of the crypts 

and villi of 5 CD patients for each group and 5 controls. More than 300 pY-ERK- positive nuclei were 

counted in several fields in each sample on several slides. Columns represent means and bars standard 

deviation. * = P<0.05; ***= P<0.0001 (Student’s t-test).

E. (a) Western blot analysis of biopsies from CD patients and controls stained with anti-pY-ERK and anti-

ERK antibodies. (b) Densitometric analysis of Western blots shown in (a). The fold increase in pY-ERK (i 

pY-ERK) in CD patients with respect to controls was calculated as follows: ipY-ERK = [CD patients (pY-

ERK)/control (pY-ERK)]/ [CD patients (total ERK)/control (total ERK)]. Similar results were obtained 

in 5 subjects in each group.
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Figure 5. Phosphorylation of proteins is increased in skin fibroblasts of CD patients.

A. Staining of total phosphorylated proteins in CD fibroblasts. a. Immunofluorescence of total phosphory-

lated proteins in single cells. Images obtained using a 63x objective (2x digital zoom) are shown; white 

lines indicate single cells in a representative field. b. Statistical analysis of fluorescence intensity/cell. For 

5 patients and 4 controls, 3 independent experiments were done; in each experiment, the fluorescence in-

tensity of 10 cells in random fields was measured. Columns represent means and bars standard deviation. 

* = P<0.05 (Student’s t-test). 

B. Western blot analysis of phosphorylated ERK and EGFR in skin fibroblasts from CD patients on a GFD 

and from controls.

(a) Western blot analysis of skin fibroblasts from CD patients and controls stained with anti-pY-ERK and 

anti-ERK antibodies.

(b) Densitometric analysis of Western blots shown in (a). The fold increase in pY-ERK (ipY-ERK) with 

respect to total ERK in GFD CD fibroblasts was calculated as follows: ipY-ERK = [Fibroblasts GFD CD 

(pY-ERK)/control (pY-ERK)]/ [Fibroblasts GFD CD (total ERK)/control (total ERK)]. Similar results 

were obtained in 5 CD patients and 4 controls.

(c) Western blot analysis of EGFR immunoprecipitated from skin fibroblasts and stained with anti-pY 

antibody. (d) Densitometric analysis of Western blots shown in (c). The fold increase of pY-EGFR (i pY-

EGFR) with respect to total EGFR in GFD CD fibroblasts was calculated as follows: ipY-EGFR = [Fi-

broblasts GFD CD (pY-EGFR)/control (pY-EGFR)]/[ Fibroblasts GFD CD (EGFR)/control (EGFR)]. 

Similar results were obtained in 5 CD patients and 4 controls.
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Figure 6.: Proliferation of crypt enterocytes is increased in CD. 

A. Immunofluorescence images of duodenal biopsies from a control, from a CD patient with villus atro-

phy, from a potential CD patient who were on a gluten-containing diet and from a GFD CD patient. Biop-

sies were cultured for 24 h with BrdU and then stained for cytokeratin to identify epithelial cells (red) and 

for BrdU (green) to identify proliferating cells. One representative experiment is shown. B. Quantitation 

of BrdU incorporation by intestinal biopsies. More than 300 cytokeratin-positive cells were counted in 

several fields in each sample; the number of BrdU- positive cells was expressed as a proportion of the total 

cytokeratin-positive cells. Bars represent mean and standard deviation; each dot represents a single CD 

patient or control. * = P<0.05; ***= P<0.0001 (Student’s t-test). 
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Supplementary Figure 1. LAMP2-positive vesicles are increased in surface enterocytes of mucosa 

from CD patients with villus atrophy.

Lamp2 staining of duodenal biopsies from controls, from CD patients in the active phase of the disease on 

a gluten-containing diet with villus atrophy and crypt hyperplasia (CD with villus atrophy), from patients 

with normal mucosa (potential CD) and from CD patients on a gluten-free diet with normal mucosa (GFD 

CD). 63x objective (2x digital zoom) images from villi and crypts are shown. White lines indicate the 

height of the epithelium. One representative experiment out of 5 independent ones is shown. 
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Supplementary Figure 2. EGF-Alexa 488 is delayed in the endocytic compartment of CD dendritic cells.

a) Dendritic cells from CD patients on GFD and from controls were seeded on fibronectin and pulsed for 

30 min with EGF-Alexa 488, then chased for 3 h with medium alone. After fixation with 3% paraformal-

dehyde, they were mounted with Mowiol and observed by confocal microscopy (LSM Zeiss 510). The area 

of the cells is highlighted by a white line. Representative fields obtained using a 63x objective (2x digital 

zoom) are shown. Seven patients and seven controls were tested with similar results. 

 (b) Statistical analysis of fluorescence intensity/cell at indicated time points. For all patients and controls, 

3 independent experiments were done; in each experiment, 10 cells in random fields were counted. Co-

lumns represent means and bars standard deviation.  * = P<0.05, ***= P<0.0001.

Method for dendritic cells differentiation:

Peripheral blood mononuclear cells were isolated from heparinized peripheral blood by density gradient 

centrifugation on lymphocyte separation medium (MP Biomedicals, LLC, Ohio). After 1 hour of incuba-

tion at 37˚C, the nonadherent cells were removed with a gentle rinse and discarded.

The adherent monocytes were used to generate dendritic cells (DCs) cells. Briefly, 5x105 monocytes/
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ml were cultured in 24-well plates with RPMI 1640/10% FCS (Cambrex, Charles City, IA, USA) for 7 

days; recombinant human IL-4 and recombinant human granulocyte macrophage colony-stimulating fac-

tor (GM-CSF) (Invitrogen, San Giuliano Milanese, Italy) were added to final concentrations of 1000 U/

ml and 800 U/ml, respectively, on days 0 and 4.
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Supplementary Figure 3. Western blot analysis of total phosphorylated proteins.  

Skin fibroblasts from CD patients on GFD and from controls were lysed, and phosphoproteins in the 

lysates were immunoprecipitated, blotted and stained with anti-phosphotyrosine antibodies. The blots 

were stained again with anti-EGFR and anti-ERK antibodies to identify the corresponding phosphorylated 

proteins. One representative experiment of 3 independent ones is shown for each subject (4 controls and 

5 patients).
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Supplementary Figure 4. EGF mRNA levels are increased in intestinal mucosa of CD patients with 

villus atrophy who are on gluten-containing diet and in GFD CD patients.

a) Example of selected crypt enterocytes from 5-micron sections of intestinal biopsies frozen and air dried 

before capture. For each sample, 300 crypt epithelial cells were captured.

b) Semiquantitative PCR analysis of a biopsy from a CD patient and a biopsy from a control. A represen-

tative experiment is shown. Similar results were obtained in 3 CD patients on gluten- containing diet 

(GCD), 3 CD patients on gluten-free diet (GFD) and 3 controls with gastro-esophageal reflux. 

Methods:

The laser capture microdissection (LCM) method allows the selection of individual or clustered cells from 

intact tissues. Total RNA was extracted from 300 captured crypt epithelial cells from biopsies from 3 CD 

patients on gluten-containing diet (GCD), 3 CD patients on gluten-free diets (GFD) and 3 controls with 

gastroesophageal reflux. For each sample, cDNAs were transcribed using AmpliTaq Gold (Applied Biosy-

stems, Foster City, CA). Semiquantitative PCR was carried out using oligonucleotide primers that reco-
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gnize the EGF sequence: EGF, 5′-GCCAACAAACACACTGGAAA-3′ (forward) and 5′-CATGCACA-

AGTGTGACTGGA-3′ (reverse). The GAPDH gene was used as an example of a housekeeping gene, with 

the following primers: 5′-CGGAGTCAACGGATTTGGTCGTAT-3′(forward) and 5′-AGCCTTCTC-

CATGGTGGTGAAGAC -3′ (reverse). The PCR conditions were as follows: 1 cycle of 95°C for 10 mi-

nutes, 40 cycles of 95°C for 1 min, 60°C for 1 minute, and 72°C for 1 minute followed by 1 cycle of 

72°C for 4 minutes. 
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Supplentary material 

Cell culture
The skin explants were immediately placed in Dulbecco’s Modified Eagle’s Medium (DMEM) (GIBCO, 

San Giuliano Milanese, Italy), 20% fetal bovine serum (FBS) (GIBCO, San Giuliano Milanese, Italy), 100 

units/ml penicillin-streptomycin (GIBCO, San Giuliano Milanese, Italy), and 1 mM glutamine (GIBCO, 

San Giuliano Milanese, Italy) and incubated for 24 hours. Subsequently, each skin explant was divided 

into about 50 small fragments; these fragments were plated on Petri dishes and incubated in the presen-

ce of 95% oxygen and 5% CO2 at a temperature of 37° C to allow adhesion and subsequent release of 

fibroblasts. Seven-ten days later, fibroblasts began to emerge from the fragments. When fibroblasts had 

reached confluence, they were harvested with trypsin and frozen. In all experiments, the fibroblasts were 

used between the 2nd and the 4th passage.

CaCo-2 cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) (GIBCO, San Giuliano Mi-

lanese, Italy), with the same additions as described above except that 10% instead of 20% fetal calf serum 

was used.

Pulse-chase experiments on fibroblasts
Fibroblasts were seeded on glass coverslips and pulsed for 30 minutes at 37° C with 20 nanograms/ml of EGF-

Alexa-488 (Molecular Probes, San Giuliano Milanese, Italy), then washed several times and incubated for 3 h 

with unlabeled EGF at 37°C (chase). The coverslips were then mounted on glass slides and observed using a 

confocal microscope (LSM 510 Zeiss).

Pulse-chase experiments on biopsies

Briefly, 5 intestinal biopsies from CD patients with villus atrohy, from patients on a GFD and from control 

subjects affected by gastroesophageal reflux were cultured for 3 hours with Alexa-488 fluorochrome-labeled 

EGF (pulse). After careful washing to eliminate the EGF-Alexa-488, all samples were chased for 24 h and pre-

pared for cryo-sectioning; air-dried 5-µm sections were analyzed using a confocal microscope (LSM 510 Zeiss).
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EEA1 and phosphotyrosine staining
Acetone-fixed (10 min, Sigma-Aldrich, Milan, Italy) 5-μm frozen sections from CD biopsies and controls 

were examined by immunofluorescence. After a 15-min pre-incubation with normal goat serum (1:100; 

Dako Milan, Italy), the sections were incubated with a polyclonal IgG goat antibody against early endocytic 

antigen 1 (EEA1) (1:100; Santa Cruz Biotechnology, CA, USA) for 1 h at room temperature and with 

mouse monoclonal antibody against anti-pTyr (1:300; Santa Cruz Biotechnology, CA, USA ) overnight 

in a humidified chamber. The sections were then washed with PBS (phosphate buffer solution) containing 

BSA (bovine serum albumin, Sigma Aldrich, Milan, Italy) for 10 min and incubated with a secondary an-

tibody, donkey anti-mouse Alexa 488 (1:100), for 30 min in a dark humid chamber. Finally, the sections 

were washed in PBS and mounted with glycerol/PBS (1:10). The preparations were analyzed by confocal 

microscopy (LSM510; Zeiss). 

Fibroblasts seeded on glass coverslips were fixed with 3% paraformaldehyde (Sigma Chemical Co., Milan, 

Italy) for 5 min at room temperature, permeabilized with 0.2% Triton (Biorad, Milan, Italy) for 3 min at 

room temperature and stained14 for 1 h at room temperature with goat polyclonal antibody against EEA1 

(C-15) (Santa Cruz, DBA, Milan, Italy) or with mouse monoclonal antibody against LAMP2 (H4B4) (San-

ta Cruz, DBA, Milan, Italy) or with anti-pTyr antibody (Santa Cruz Biotechnology, CA, USA) all of them 

at 2 μg /ml. Alexa-488-conjugated secondary antibodies (Invitrogen, San Giuliano Milanese, Italy) at a 

dilution of 1:100 were added to the coverslips for 1 h at room temperature. The coverslips were then 

mounted on glass slides and observed by confocal microscopy (LSM 510 Zeiss). A total of 40 to 50 cells 

were observed in each sample, and all images were generated with the same confocal microscope. Fluo-

rescence intensity (Fi) analysis of the samples respect to the background was carried out using AIS Zeiss 

software. Magnification of the micrographs is the same for all figures shown (63x objective) unless stated 

differently in the legends.

Immunohistochemistry of pY-ERK in biopsies
For the immunohistochemical study, 4-μm biopsy sections were fixed in 3% paraformaldehyde (Sigma-

Aldrich, Milan, Italy) for 10 min. After incubation with normal rabbit serum (1:200, Dako, Copenha-
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gen, Denmark) for 20 min, sections were covered with pY-ERK polyclonal rabbit antibodies (1:80, Cell 

Signaling, Euroclone Milan, Italy) overnight. All incubations were carried out at room temperature in 

a humid chamber. As a negative control, some sections were not treated with the primary antibody but 

with buffer solution instead. After washing with TBS (Tris- buffered solution, 0.15 M, pH 7.36, Sig-

ma-Aldrich, Milan, Italy) + saponin (0.1%, Carlo Erba, Milan, Italy), the sections were incubated for 30 

min with biotinylated goat anti-rabbit antibody (1:300; Dako, Milan, Italy) and then with streptavidin AP 

(1:400; Dako, Milan, Italy) for 30 min. New fuchsin was used as the peroxidase substrate. Finally, sec-

tions were counterstained with Mayer’s hematoxylin (Sigma Diagnostic, St Louis, USA) and mounted with 

Aquamount (BDH, Poole, England). The preparations were analyzed using transmitted light microscopy 

(Nikon Eclipse 80, Nikon instruments, USA)

Immunoprecipitation
Cells lysates were prepared as described previously, 11,16 and protein concentration was measured using a 

Bio-Rad protein assay kit (Hercules, CA, USA). Equal amounts of cell lysates (2 mg protein/ml) were used 

for immunoprecipitation. EGFR was immunoprecipitated using anti-EGFR (Cell Signalling, Euroclone 

Milan, Italy). Proteins were immunoblotted with specific antibodies as described below. 

Western blotting
Briefly, fibroblast cells cultured in DMEM containing 20% FBS at 37° C were washed twice with PBS and 

resuspended in lysis buffer. Cell lysates were analyzed by SDS-PAGE and transferred to nitrocellulose 

membranes (Whatman Gmbh, Dassel, Germany). The membranes were blocked with 5% nonfat dry milk 

and probed with anti p-Tyr(P99), anti pY-ERK, anti ERK, anti EEA1 (Santa Cruz Biotechnology, Santa 

Cruz, CA, USA), anti tubulin (Sigma-Aldrich, Milan, Italy), and anti-EGFR (Cell Signaling EuroClone 

Celbio, Milan, Italy). Bands were visualized using the ECL system (GE Healthcare, Amersham, Bucking-

hamshire, UK). Band intensity was evaluated by integrating all the pixels of the immunostained band wi-

thout the background, which was calculated as the average of the pixels surrounding the band. 11,16
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Biopsy fragments (5 mg wet weight each) from duodenum obtained from 5 CD with villus atrophy, 5 con-

trols (affected by gastroesophageal reflux), 5 patients in remission and 5 potential CD patients were ho-

mogenized in 100 µL homogenization buffer (50 mM Tris [pH 7.4], 150 mM NaCl, 1 mM EDTA, 1 mM 

EGTA, 5 mM MgCl2, 1% TritonX100, and protease inhibitors) using a 2-mL conical Wheaton glass tube 

with a Teflon pestle. 

Organ culture studies 
For organ culture studies, biopsy fragments from duodenum were obtained from 8 CD patients with villus 

atrophy, 8 controls (affected by gastroesophageal reflux), 11 CD patients on GFD and 11 potential CD 

patients. Informed written permission was obtained from all patients. The biopsy fragments were cultiva-

ted as reported elsewhere. 11,17 The intestinal samples were cultured for 24 h with medium alone. All cultu-

res were enriched with 10 μM BrdU (Sigma-Aldrich, Milan, Italy). Specimens were harvested, snap-frozen 

in liquid nitrogen, embedded in OCT and stored at –80°C until required. 

We used double immunofluorescence to evaluate crypt proliferation in 5-µm cryostat sections from cultu-

red biopsies.11,17 After a short (3 min) treatment with 1.5 N HCl, the sections were incubated with mouse 

monoclonal anti-BrdU (1:150, GE Healthcare Amersham, Buckinghamshire, UK) for 1 h followed by 30 

min incubation with Alexa488-conjugated anti-mouse IgG (1:150, Invitrogen, San Giuliano Milanese, 

Italy) to identify BrdU-positive cells. After several washes in phosphate buffer solution, specimens were fi-

xed with 3% paraformaldehyde (Sigma-Aldrich, Milan, Italy) for 5 min and incubated for 1 h with polyclo-

nal rabbit anti-cow cytokeratin (1:50, Dako, Milan, Italy) to stain epithelial cells. Slides were then covered 

for 30 min with Alexa-633-labeled goat anti-rabbit immunoglobulin (1:200, Invitrogen, San Giuliano 

Milanese, Italy), contrasted with Hoechst (Sigma-Aldrich, Milan, Italy) and mounted in Mowiol 4-88. All 

incubations were carried out at room temperature in a dark humid chamber. The number of BrdU-positive 

cells divided by the total number of cytokeratin-positive cells gave the percentage of BrdU-positive cells.
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Summary

Celiac Disease  is an interesting model of a disease induced by food. It consists in an immunogenic reac-

tion to wheat gluten and glutenins that has been found to arise in a specific genetic background; however, 

this reaction is still only partially understood. Damage to the intestinal mucosa in celiac disease (CD) is 

mediated both by inflammation due to the adaptive and innate immune responses, with IL-15 as a major 

mediator of the innate immune response, and by proliferation of crypt enterocytes as an early alteration of 

CD mucosa causing crypts hyperplasia. Activation of innate immunity by gliadin peptides is an important 

component of the early events of the disease. In particular the so-called “toxic” A-gliadin peptide P31-43 

induces several pleiotropic effects including Epidermal Growth Factor Receptor (EGFR)-dependent actin 

remodelling and proliferation in cultured cell lines and in enterocytes from CD patients. These effects are 

mediated by delayed EGFR degradation and prolonged EGFR activation in endocytic vesicles. 

Many biological activities have been associated with gliadin peptides in several cell types including reor-

ganisation of actin and increased permeability in the intestinal epithelium. It has yet to be established to 

what extent these properties relate to the ability of these A-gliadin peptides to activate innate immunity 

mechanisms. Virtually nothing is known about the mechanisms underlying the biological properties of 

P31-43 or about the metabolic pathways involved in the activation of innate immunity in CD. Similarly, it 

is not known why celiac patients are particularly sensitive to these biological activities. 

During the three years of my PhD program I have contribuited in same measure to clarify the “Relationship 

between proliferative effects and activation of innate immunity induced by gliadin”, through the combina-

tion of cellular, functional and molecular approaches.

In particular, in the first chapter of my  thesis it has been shown that both P31-43 and P57-68 enter CaCo 

2 cells and interact with endocytic compartment, but only P31-43 interferes with the endocytic pathway 

by delaying maturation of early endosomes to late endosomes. We also show that the P31-43 sequence is 

similar to hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), a key protein necessary for 

endocytic maturation. P31-43 is localised at the vesicles membranes and interferes with the correct loca-

lisation of Hrs to endocytic vesicles thus delaying the maturation of early endosomes to late endosomes. 
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Consequently the activation of EGFR and other receptors is expanded with multiple effects on various 

metabolic pathways and cellular functions.

Moreover, during my PhD I have tried to better characterize  the role of P31-43 in the induction of cellular 

proliferation and innate immune activation on celiac enterocytes and cells.    In particular, in the second 

chapter of my thesis  has been shown that P31-43 induces at least two main effects by interfering with the 

trafficking of cell vesicular compartments. This leads to overexpression of the trans-presented IL-15/

IL5R alpha complex, an activator of innate immunity, and, due to cooperation of IL-15 and EGFR, the 

proliferation of crypt enterocytes with consequent remodelling of the CD mucosa.

These observations are relevant to our understanding of the early events occurring in the celiac mucosa 

exposed to gliadin because the increase of IL-15 and IL-15R alpha is a major event in the initial phases of 

CD. Our observation that in the celiac intestine IL-15 plays a major role in the gliadin-induced prolifera-

tion of epithelial cells, one of the hallmarks of CD, increasing our  understanding of the pathogenesis of 

CD. Why the celiac mucosa seems to be particularly sensitive to the effects of some gliadin peptides, such 

as peptide P31-43, remains to be elucidated. Preliminary data suggest that in CD cells, the endocytic com-

partment is morphologically and functionally altered. We hypothesize that in CD mucosa, an alteration of 

the vesicular compartment renders the tissue more sensitive to the effects of gliadin. 

Endocytosis has many effects on signalling: in fact, signalling pathways and endocytic pathways are regu-

lated in a reciprocal manner. It is now widely accepted that the “Endocytic Matrix” is a master organiser of 

signalling, governing the resolution of signals in space and time. Consequently endocytosis affects several 

cell functions that range from proliferation to cell motility (Scita, Di Fiore 2010). Growing evidences 

point to an effect of certain gliadin peptides (i.e. P31-43) on the endocytic compartment.

In conclusion, we can say that by interfering with Hrs localisation to the endocytic membranes, P31-43 

induces two important effects: 

a) it delays endocytic maturation, as observed by the data produced in the first year of my PhD

b) it alters the recycling pathway, as observed by the data produced in the second year of my PhD

By delaying the maturation of endocytic vesicles P31-43 reduces EGFR and other RTK degradation and 

prolongs their activation.  The biological consequeces of the delay of the vesicles maturation are increased 

proliferation, actin modification and other biological effects. In addition, the alteration of the recycling 
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pathway is able to direct more transferrin receptor and likely other recycling receptors such as IL15 to 

the membranes, this leads to an increase of proliferation of epithelial cells and activation of the innate 

immunity.

During my PhD I also paid a particular attention to investigate the presence and the suppressive function 

of Treg cells in the celiac small intestinal mucosa, their correlation with the state of the disease and the 

inducibility by gliadin stimulation in an organ culture system; moreover, we tried to define whether inter-

leukin 15, that is overexpressed in CD, could influence the regulatory activity of such cells.

In Celiac Disease, beside the Th1 response, it has been highlighted the fundamental role of other pro-in-

flammatory cytokines, such as IL15. More recently also other cytokines, such as IL21, bridging innate and 

adaptive immunity, have been found to play an important role. In these studies an important contribution 

to the comprehension of the mechanisms leading to the disease has come from in vitro studies based on ex 

vivo organ cultures of intestinal biopsies taken from CD patients on a gluten-free diet (GFD).

In particular in this study we observed a higher density of CD4+CD25+Foxp3+ T cells (Treg) in duodenal 

biopsies from active CD patients in comparison to treated CD and controls. In co-culture CD4+CD25+ T 

cells were functionally suppressive, but their activity was impaired by IL-15. Furthermore, we demonstra-

ted an expansion of Foxp3 in treated CD mucosa following in vitro challenge with gliadin.

These data suggest that CD4+CD25+Foxp3+ T cells are induced in situ by gliadin. However, their sup-

pressor capacity might be impaired in vivo by IL-15, this phenomenon contributing to maintain and ex-

pand the local inflammatory response in CD.
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