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Abstract

Uncertainty quanti�cation of numerical simulations has raised signi�cant

interest in recent years and, as a consequence, the interest in a procedure of

optimization under uncertainty. One of the main challenges in this �eld is

the e�ciency in propagating uncertainties from the sources to the quantities

of interest, especially when there are many sources of uncertainties. Other

important challenges are the coupling of the optimization procedure with

the uncertainty quanti�cation routines, usually approached as two indepen-

dent problems, and the necessity to perform e�ciently a massive ensemble

of numerical simulations.

The primary goals of this work are to develop algorithms for e�cient un-

certainty quanti�cation and optimization under uncertainty and to use them

in industrial applications. We �rst introduce the a novel way to perform un-

certainty quanti�cation based on simplex elements on the probability space

and we prove its e�ectiveness in real life problems. We prove that this al-

gorithm requires a fewer number of evaluations of the quantity of interest

with respect to widely used approach adopted in this �eld of study. This is

particular important in a process of optimization under uncertainty where

the cost of the deterministic optimization is raised up by the presence of a
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nested uncertainty quanti�cation algorithm.

We will review the state of the art for optimization under uncertainty in

order to introduce novel methodologies that overcome the limitations of the

actual framework. These novel formulations contemplate the full identity

card of a system analyzed under uncertainty - the Cumulative Distribution

Function. A methodology to approach single-objective problems with an a

posteriori selection of the candidate design based on risk/opportunity crite-

ria of the designer will be presented and assessed. Therefore multi-objective

problems will be considered and a novel algorithm will be presented, the P-

NSGA (Probabilistic Non-dominated sorted Genetic Algorithm), that gener-

alize the NSGA-II, a widely adopted algorithm for multi-objective determin-

istic optimization.

Furthermore the cost of optimization under uncertainty motivates the ef-

fort that will be given to High Performance Computing in order to obtain

the most e�cient solution to perform automatically a large ensemble of com-

putations. We will present Leland, a simulation environment that has been

developed to dynamically schedule, monitor and stir the calculation ensemble

and extract runtime information as well as simulation results and statistics.

Leland is equipped with an auto-tuning strategy for optimal load balancing

and fault tolerance checks to avoid failures in the ensemble � features that

will be proven to be a necessity in optimization under uncertainty.

Game Theory will be investigated and proven to be a possible solution in

handling problems of optimization under uncertainty where a lack of knowl-

edge about the variability of several uncertain parameters is taken in account.
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Two industrial applications will be presented in the development of this

thesis: the optimization of the shape of wind turbine blades and the optimiza-

tion of a Formula 1 tire brake intake. Both problems are multi-objective and

the presence of uncertainties signi�cantly impact on the estimation of their

responses, hence them are well-suited to assess the theoretical framework and

the algorithms that will be presented in this thesis.
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Introduction

Planning under uncertainty. This, I feel, is the real �eld we should all be

working on.

� G. B. Dantzig

Beginning with the seminal works of Beale [1], Bellman [2], Bellman and

Zadeh [3], Charnes and Cooper [4], Dantzig [5], and Tintner [6], analysis,

decision making and optimization under uncertainty have experienced rapid

development in both theory and algorithms. Today, Dantzig still considers

planning under uncertainty as one of the most important open problems in

optimization (Horner [7]).

This thesis begins with the research of e�cient methods for uncertainty

quanti�cation, then focuses on introducing them in the optimization proce-

dure trough novel approaches. Therefore Game Theory is used to de�ne a

process of optimization under uncertainty as a con�ict between player when

a lack of knowledge about the system is present. In industrial applications

the response of a system is usually represented by complex multi-disciplinary

simulations. Two industrial applications will be presented in the development

1



of this thesis to support the theoretical framework: the optimization under

uncertainty of wind turbine blades and the optimization under uncertainty

of a Formula 1 brake intake. High Performance Computing will be proven to

be an important aspect in optimization under uncertainty due to the cost of

these procedures.

In chapter 1, after introducing the basic concepts of uncertainty quanti�-

cation, a novel methodology � the Simplex Stochastic Collocation � will be

proven to be a suitable technique to be coupled with an optimization pro-

cess. As an example of real life applications, this methodology will be used

to assess the impact of di�erent sources of uncertainty (e.g. uncertain me-

teorological conditions, insect contamination, manufacturing errors) on the

performance and noise of a wind turbine, in order to prove the importance to

take in account the variability of these conditions on the analysis of complex

multi-disciplinary systems.

In chapter 2, after introducing the basic concepts of deterministic opti-

mization, it will be shown the necessity of take in account uncertainty since

the beginning of the design process. As an example of real life applica-

tions, the design of a F1 tire brake intake to maximize cooling e�ciency and

minimize aerodynamic resistance will be considered. It will be shown how

the use of sophisticated and expensive techniques, such as three-dimensional

Reynolds-Averaged Navier-Stokes simulations on a high performance com-

puting cluster, could result meaningless due to the presence of uncertainties.

In chapter 3 the current framework for optimization under uncertainty is

reviewed and a new methodology introduced. This novel formulation does

2



not rely on few statistical informations about the designs, but contemplate

the full identity card of a system analyzed under uncertainty - the Cumula-

tive Distribution Function. A metric will be introduced in order to guide a

process of single-objective optimization under uncertainty, leading to an in-

novative approach for the a posteriori selection of the candidate design based

on risk/opportunity criteria of the designer.

In chapter 4 the previously introduced methodologies will be extended to

multi-objective optimization. Furthermore a novel probabilistic algorithm,

the P-NSGA (Probabilistic Non-dominated sorted Genetic Algorithm), will

be presented as generalization of the NSGA-II, a widely adopted algorithm for

multi-objective deterministic optimization. The uncertainty quanti�cation of

wind turbine performance proposed in chapter 1 will be now embedded in

an optimization process used to design blades less sensitive to environmental

changes.

The industrial applications considered in this thesis clearly show that the

computational resources needed to consider the uncertainty quanti�cation in

an optimization procedure require at least an increase in an order of magni-

tude in the number of evaluations of the response of the system with respect

to deterministic optimization. Therefore it appears evident the need to per-

form extreme ensemble calculation in the most e�cient way. This motivate

the e�ort spent on High Performance Computing (HPC) in chapter 5. An

HPC environment called Leland will be presented in details together with

the features that have made it a well suited meta-scheduler for uncertainty

quanti�cation and optimization under uncertainty. Leland aims to a com-

3



plete fault tolerance in performing an ensemble of computation on clusters

of CPUs.

The last chapter of this thesis focuses on Game Theory. The process of

optimization under uncertainty will be seen as a con�ict between players.

This led to a new approach that could be particularly useful in presence of

a lack of knowledge about the system. The classic concepts of Nash and

Stackelberg equilibria are formulated in terms of entropy, a concept that

comes from information theory and measures the content of informations of

a probabilistic distribution. A the end of this chapter several generalization

will be proposed to handle multiple uncertainties and the non-uniqueness of

the solution.
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Chapter 1

Uncertainty Quanti�cation

If a man will begin with certainties, he shall end in doubts; but if he will

be content to begin with doubts he shall end in certainties.

� Francis Bacon

Several theories address the de�nition of uncertainty. These theories in-

clude probability theory (Green et al.[8]) (Helton et Oberkampf [9]), fussy set

theory (Zimmermann [10]) and evidence theory (Bae et al. [11]) (Mourelatos

et Zhou [12]). In this thesis, we work under the framework of probability

theory, which provides a solid and comprehensive theoretical foundation and

o�ers the most versatile statistical tools. In contrast to the traditional, de-

terministic simulations, we describe uncertainties as randomness, and model

the sources of uncertainties as random variables, random processes and ran-

dom �elds. To quantify the sources of uncertainties, we must specify the

joint probability density function of all these random variables, processes

and �elds. This step is usually very problem-dependent. The methods in-
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CHAPTER 1. UNCERTAINTY QUANTIFICATION

volved in this step include statistical analysis, experimental error analysis

and often expert judgment (Ellison et al. [13]). Although how to quantify

model uncertainties and numerical uncertainties is still a topic of current

research (Wojtkiewicz et al. [14]) (Draper [15]), successful examples exist

of quantifying the uncertainty sources for very complex engineering systems.

For example, Bose et Wright [16] were very successful in quantifying the

uncertainties in the Martian atmosphere entry of the NASA Phoenix space-

craft. Once the sources of uncertainties are quanti�ed, we need to calculate

how these uncertainties propagate through the simulation to the quantities

of interest. These, also known as objective functions, are the main quantities

to be predicted. They are functions of all the random variables that describe

the sources of uncertainty.

The �nal product of the uncertainty quali�cation process is a quantita-

tive description of the likelihood in the values of the quantities of interest.

It can only be obtained by combining our knowledge of the sources of un-

certainties and the behavior of the objective functions with respect to these

sources. In the probability theoretic framework, this quantitative description

is a joint probability density function of the objective functions. The support

of this joint probability density function, i.e., the space where the function is

positive, describes all possible scenarios predicted by the computational sim-

ulation; in addition, the value of the probability density function indicates

how likely each scenario is. This joint probability density function enables

decision making based on risk analysis, removing the important limitations

of deterministic computational simulations.
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This chapter starts by de�ning precisely the basic concepts related to

uncertainties; then the di�erent phases of uncertainty quanti�cation are in-

troduced. Di�erent methodologies will be presented in Section 1.4 but the

focus of this thesis will be given to stochastic collocation in a novel implemen-

tation characterized by the use of simplex elements in the probability space,

as shown in Section 1.5. An application to wind turbine analysis under uncer-

tainty will be presented at the end of this chapter to prove the e�ectiveness

of these novel methodologies in a complex multi-disciplinary framework. In

chapter 4 we will de�ne mathematical instruments to embed the presented

process of uncertainty quanti�cation in an optimization procedure, de�ning

a novel way to design wind turbine blades in presence of uncertainties.

1.1 De�nitions and basic concepts

The uncertainty quanti�cation community has introduced precise de�ni-

tions to characterize various types of uncertainties.

1.2 Errors vs. uncertainties

The American Institute of Aeronautics and Astronautics (AIAA) Guide

for the Veri�cation and Validation of CFD Simulations de�nes errors as rec-

ognizable de�ciencies of the models or the algorithms employed and uncer-

tainties as a potential de�ciency that is due to lack of knowledge. This

de�nition is not completely satisfactory because does not precisely distin-

guish between the mathematics and the physics. It is more useful to de�ne

errors as associated to the translation of a mathematical formulation into a

7
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numerical algorithm (and a computational code). Errors are typically also

further classi�ed in two categories: acknowledged errors are known to be

present but their e�ect on the results is deemed negligible. Examples are

round-o� errors and limited convergence of certain iterative algorithms. On

the other end, unacknowledged errors are not recognizable [17] but might be

present; implementation mistakes (bugs) or usage errors can only be charac-

terized by comprehensive veri�cation tests and procedures. Using the present

de�nition of errors, the uncertainties are naturally associated to the choice of

the physical models and to the speci�cation of the input parameters required

for performing the analysis. As an example, numerical simulations require

the precise speci�cation of boundary conditions and typically only limited

information are available from corresponding experiments and observations.

Therefore variability, vagueness, ambiguity and confusion are all factors that

introduce uncertainties in the simulations. A more precise characterization

is based on the distinction in aleatory and epistemic uncertainties.

1.2.1 Aleatory uncertainty

Aleatory uncertainty [18] is the physical variability present in the system

being analyzed or its environment. It is not strictly due to a lack of knowl-

edge and cannot be reduced. The determination of material properties or

operating conditions of a physical system typically leads to aleatory uncer-

tainties; additional experimental characterization might provide more conclu-

sive evidence of the variability but cannot eliminate it completely. Aleatory

uncertainty is normally characterized using probabilistic approaches.

8
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1.2.2 Epistemic uncertainty

Epistemic uncertainty[19] is what is indicated in the AIAA Guide (AIAA

1998) as uncertainty [19], i.e. a potential de�ciency that is due to a lack of

knowledge. It can arise from assumptions introduced in the derivation of the

mathematical model used or simpli�cations related to the correlation or de-

pendence between physical processes. It is obviously possible to reduce the

epistemic uncertainty by using, for example, a combination of calibration,

inference from experimental observations and improvement of the physical

models. Epistemic uncertainty is not well characterized by probabilistic ap-

proaches because it might be di�cult to infer any statistical information

due to the nominal lack of knowledge. A variety of approaches have been

introduced to provide a more suitable framework for these analysis. Typi-

cal examples of sources of epistemic uncertainties are turbulence modeling

assumptions and surrogate chemical kinetics models.

1.2.3 Sensitivity vs. uncertainty analysis

Sensitivity analysis (SA) investigates the connection between inputs and

outputs of a (computational) model; more speci�cally, it allows to identify

how the variability in an output quantity of interest is connected to an input

in the model and which input sources will dominate the response of the

system. On the other hand, uncertainty analysis aims at identifying the

overall output uncertainty in a given system. The main di�erence is that

sensitivity analysis does not require input data uncertainty characterization

from a real device; it can be conducted purely based on the mathematical
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form of the model. As a conclusion large output sensitivities (identi�ed using

SA) do not necessarily translate in important uncertainties because the input

uncertainty might be very small in a device of interest. SA is often based on

the concept of sensitivity derivatives, the gradient of the output of interest

with respect to input variables. The overall sensitivity is then evaluated

using a Taylor series expansion, which, to �rst order, would be equivalent to

a linear relationship between inputs and outputs.

1.3 Analysis under Uncertainty

Computer simulations of an engineering device are performed following a

sequence of steps. Initially the system of interest and desired performance

measures are de�ned. The geometrical characterization of the device, its

operating conditions, the physical processes involved are identi�ed and their

relative importance must be quanti�ed. It is worthwhile to point out that the

de�nition of the system response of interest is a fundamental aspect of this

phase. The next step is the formulation of a mathematical representation

of the system. The governing equations and the phenomenological models

required to capture the relevant physical processes need to be de�ned. In

addition, the precise geometrical de�nition of the device is introduced. This

step introduces simpli�cation with respect to the real system; for example

small geometrical components are eliminated, or arti�cial boundaries are in-

troduced to reduce the scope of the analysis. With a well de�ned mathemat-

ical representation of the system, the next step if to formulate a discretized

representation. Numerical methods are devised to convert the continuous
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form of the governing equations into an algorithm that produces the solu-

tion. This step typically requires, for example, the generation computational

grid, which is a tessellation of the physical domain. Finally the analysis can

be carried out. The introduction of uncertainty in numerical simulations

does not alter this process but introduces considerable di�culties in each

phase. It is useful to distinguish three steps: data assimilation, uncertainty

propagation and certi�cation.

1.3.1 Data assimilation

Data assimilation consists of a study of the system of interest that aims

at identifying the properties, physical processes and other factors required

to fully characterize it. The analysis is typically focused on the speci�c in-

puts required by the mathematical framework that will be applied in the

simulations. As an example, the boundary conditions required in numeri-

cal simulations should be inferred from observation of the device of interest

or speci�c experiments. Given the limited degree of reproducibility of ex-

perimental measurements and the errors associated to the measurement [20]

techniques, these quantity are known with a certain degree of uncertainty.

Probabilistic approaches treat these quantities, that overall characterize the

aleatory uncertainty, as random variables assuming values within speci�ed

intervals. In mathematical terms this is equivalent to de�ne random variables

with a speci�ed probability distribution functions (PDF). The obvious choice

is to use random variables de�ned using analytical distributions (Gaussian,

uniform, etc.). It is di�cult to justify this choice [21] solely from experimen-
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tal evidence be- cause of the limited amount of data typically available6; in

many situation the only data available are obtained from expert opinions and

can lead to ambiguous or con�icting estimates. Alternative approaches have

been devised to provide a more �exible framework to handle this situation,

evidence theory is one such approach [22]. In the context of probabilistic

approaches, the objective of data assimilation is to de�ne PDFs of each of

the input quantity used in the computational tool.

1.3.2 Uncertainty propagation

Once probability distributions are available for all the input quantities

in the computational algorithm, the objective is to compute the PDFs of

the output quantities of interest. This step is usually the most complex and

computationally intensive for realistic engineering simulations. A variety of

methods are available in the literature, from sampling based approaches (e.g.

Monte Carlo) to more sophisticated stochastic spectral Galerkin approaches.

1.3.3 Certi�cation

Once the statistics of the quantity of interest have been computed, var-

ious metrics can be used to characterize the system output, depending on

the speci�c application. The most common use of such statistical informa-

tion is a reliability assessments, where the likelihood of a certain outcome is

estimated and compared to operating margins. In a validation context, the

PDF (or more typically the cumulative distribution function) is compared to

experimental observation to extract a measure of the con�dence in the nu-
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merical results. The characterization of these measures, so-called validation

metrics, is an active area of research [23].

1.4 Non-intrusive propagation methods

Within a probabilistic framework, the problem of uncertainty propagation

consists of the generation of PDFs of the outcomes given (known) distribution

of all the input parameters. Several classes of methods have been developed

to solve this problems; in this section three popular approaches are described.

Consider the vector ξ = [ξ1, ..., ξN ] containing the input quantities to the

computational model; assume that f(ξi) is the output of interest; f is possibly

the result of a complex �uid dynamic simulation. In probabilistic uncertainty

quanti�cation approaches the stochastic, input quantities x are represented

as independent continuous random variables ξ mapping the sample space Ωi

to real numbers ξi : Ωi → R. This assumption in practical terms increases

the dimensionality of the problem: the original deterministic outcome y =

f(ξ1, ..., ξN) becomes a stochastic quantity. The objective is to compute the

PDF of y in order to evaluate the likelihood of a certain outcome, or, in

general, statistics of y. The expected value of y is de�ned as

µ(y) =

∫ ∞
−∞

yΨydy (1.1)

where Ψy is the probability density function of y. Note that y is a stochastic

variable while the expected value is deterministic quantities. Propagation

method for uncertainty quanti�cation can be classi�ed in intrusive methods

and non intrusive methods. A class of methods for uncertainty propagation
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is based on spectral methods in which the solution is expressed using a suit-

able series expansion. These approaches are intrusive in the sense that the

mathematical formulation requires modi�cation of the existing deterministic

codes. Despite these methodologies, in this thesis we focus on non-intrusive

methods, namely the sampling approaches and the stochastic collocation

methods.

1.4.1 Sampling techniques

Sampling-based techniques are the simplest approaches to propagate un-

certainty in numerical simulations: they involve repeated simulations (also

called realizations) with a proper selection of the input values. All the results

are then collected to generate a statistical characterization of the outcome.

The Monte Carlo method

The Monte Carlo method (MC) [24] is the oldest and most popular sam-

pling approach. It involves random sampling from the space of the random

variables ξ according to the given PDFs. The outcome is typically organized

as a histogram and the statistics are readily computed from the statistical

moments by replacing the integrals in Equation 1.1 with sums over the num-

ber of samples. The method has the advantage that it is simple, universally

applicable and does not require any modi�cation to the available (determin-

istic) computational tools. It is important to note that while the method

converges to the exact stochastic solution as the number of samples goes to

in�nity, the convergence of the mean error estimate is slow. Hence thousands

or millions of data samples may be required to obtained accurate estimations.

14



CHAPTER 1. UNCERTAINTY QUANTIFICATION

However, the convergence does not directly depend on the number of random

variables in the problem. In this form the Monte Carlo methods always give

the correct answer, but a prohibitively large number of realizations may be

required to accurately estimate responses that have a small probability of

occurrence. On the other hand, the convergence of the low order statistics

(expected value and variance) require much smaller number of samples.

Latin Hypercube Sampling (LHS)

Several methods have been developed to accelerate the MC approach.

One of the most successful is the Latin Hypercube sampling (LHS) approach.

LHS is a strati�ed-random procedure which provides an e�cient way of sam-

pling variables from their distributions[25]. The cumulative distribution for

each input variable is divided into N equi-probable intervals. A value is

selected randomly from each i − th interval and the sampled cumulative

probability can be written as[26]:

pi =
1

N
ru + (i− 1)N (1.2)

where ru is a uniformly distributed random number ranging from 0 to 1.

The N values obtained for each variable are paired randomly with the other

variables to construct a sample point in the parameter space. Unlike simple

random sampling, this method ensures full coverage of each variable range

by optimally stratifying each marginal distribution.
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Figure 1.1: Sampling based techniques with two uncertain inputs.(left) Monte
Carlo; (center) Latin Hypercube; (right) Lattice based

1.4.2 Quadrature methods

One of the objective of UQ propagation methods is the computation of the

statistics of an outcome of interest, such as its expectation and the variance.

As shown earlier, these require the evaluation of integrals (over the parameter

space) and it is therefore natural to employ conventional numerical integra-

tion techniques [27]. Let's consider a problem with one uncertain parameter

ξ; the objective is to compute integrals of y(ξ). A class of quadrature rules

are based on interpolating basis functions that are easy to integrate, typically

polynomials. The integral is expressed as a weighted sum of the integrand y

evaluated in a �nite number of locations on the ξ-axis (abscissas). The choice

of the polynomial basis de�nes the weights and the corresponding abscissas.

The simplest example is the midpoint rule while quadratures based on equally

spaced abscissas include the commonly used trapezoidal and Simpson rules

and are, in general, referred to as Newton-Cotes formulas.
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Stochastic collocation

Stochastic collocation refers to quadrature methods used to compute in-

tegrands of random variables, thus over a stochastic domain. Although

Newton-Cotes formulas are applicable in this context, it is usually prefer-

able to consider more general approaches, in which the abscissas are not

equally spaced. Gaussian quadratures are popular in the �eld of uncertainty

analysis because of their high accuracy [28]. The most commonly used form

of Gaussian quadrature is the Gauss-Legendre integration formula which is

based on Legendre polynomials (see Figure 1.2).

Figure 1.2: Legendre (left) and Hermite (right) polynomials

In practical terms, collocation methods for uncertainty propagation re-

quire the evaluation of zeros and weights for a family of orthogonal basis

functions; these can be computed and stored in advance. A set of indepen-

dent computations are performed and the results are combined to obtain the

statistics of the output of interest. Collocation can therefore be interpreted

as a sampling technique; it retains the main advantage of the Monte Carlo

method because it does not require modi�cations to the existing computa-

tional tool. The evaluation of the PDF of the output quantities is somewhat
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more complicated for stochastic collocation methods than the computations

of the output statistics. The �rst step is the construction of the polynomial

interpolant of the solution in the parameter space. At this point, the inter-

polant is used as a replacement for the original function [29] and Monte Carlo

sampling is used. In the next section we will focus on a particular stochastic

collocation techniques based on simplex elements.

1.4.3 The other approaches

In addition to the methods presented here several other methods have

been applied especially in the �eld of structural mechanics. It is also worth

mentioning that alternative approaches not based on probabilistic reason-

ing have been proposed and used with some success. It is not generally

clear when probabilistic methods fail or are insu�cient; the treatment of

epistemic uncertainty remains di�cult and possibly the greatest challenge in

uncertainty quanti�cation. The choice of the appropriate method to use for

a speci�c application is not obvious. For typical �uid mechanics simulations

some common considerations are:

1. expensive function evaluation: sampling based methods are typically

not appropriate because they might require several thousand full com-

putations to build the statistics of the outputs;

2. large number of uncertainties: boundary conditions, material proper-

ties, geometry speci�cation, etc. introduce many independent input

parameters that have to be characterize. Methods that su�er from

curse of dimensionality[30] quickly become unfeasible;
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3. non-linear system responses: transitions and bifurcations are typical

of �uid mechanics, especially for compressible �ows. Methods that

strictly require a smooth dependency between inputs and outputs can

be ine�ective.

1.5 Simplex Stochastic Collocation (SSC)

Due to the relatively slow convergence rate of Monte Carlo simulations,

other uncertainty quanti�cation methods have been developed based on a

polynomial approximation of the response. Stochastic Collocation (SC) is a

widely used example of such a method, which is based on sampling Gauss

quadrature points and using Lagrangian polynomial interpolation in proba-

bility space. However, due to the structured grid of the quadrature points

in multiple random dimensions, the spectral convergence of the Stochastic

Collocation method reduces signi�cantly with an increasing number of un-

certainties.

Here, the Simplex Stochastic Collocation (SSC) method [30, 31] is pre-

sented that combines the e�ectiveness of random sampling in higher dimen-

sions with the accuracy of polynomial interpolation. It also leads to the

superlinear convergence behavior of Stochastic Collocation methods and the

robustness of Monte Carlo approaches. SSC discretizes the parameter space

Ξ using non-overlapping simplex elements Ξj from a Delaunay triangulation

of sampling points, with Ξ =
⋃ne

j=1 Ξj, where ne is the number of elements.

In each of the simplexes Ξj, the response surface of the quantity of interest,

u(ξ) as function of the random parameters ξ ∈ Ξ, is approximated by a
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polynomial wj(ξ)

wj(ξ) =
P∑

m=0

cj,mΨj,m(ξ), (1.3)

with P + 1 coe�cients cj,m and basis polynomials Ψj,m(ξ). The polynomials

are found by interpolation of the samples vk = u(ξk) at the vertexes ξk of the

simplex elements, with k = 1, . . . , ns, where ns is the number of samples. For

higher degree interpolation a stencil of sampling points vkj,l at the vertexes

ξkj,l of surrounding simplexes is constructed, with l = 0, . . . , N and kj,l ∈
{1, . . . , ns}. The polynomial coe�cients cj,m are then given by

Ψj,0(ξkj,0) Ψj,1(ξkj,0) · · · Ψj,P (ξkj,0)

Ψj,0(ξkj,1) Ψj,1(ξkj,1) · · · Ψj,P (ξkj,1)
...

...
. . .

...
Ψj,0(ξkj,N ) Ψj,1(ξkj,N ) · · · Ψj,P (ξkj,N )




cj,0
cj,1
...
cj,P

 =


vkj,0
vkj,1
...

vkj,N

 ,

(1.4)

with N ≥ P. The robustness of the approximation is guaranteed by using a

limiter approach for the local polynomial degree pj, based on the extension of

the Local Extremum Diminishing (LED) concept to probability space. This

ensures that no overshoots are present in the response interpolation in each

of the elements Ξj

min
Ξj

(wj(ξ)) ≥ min
Ξj

(u(ξ)) ∧ max
ΞJ

(wj(ξ)) ≤ max
Ξj

(u(ξ)), (1.5)

for j = 1, . . . , ne. The initial samples consist are located at the parameter

range extrema and one at the nominal conditions, see Figure 1.3a for a two-

dimensional example. The discretization is adaptively re�ned by calculating

a re�nement measure based on a local error estimate in each of the simplex

elements. A new sampling point is then added randomly in the simplex
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(a) Re�nement of the initial mesh
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(b) Re�ned mesh for 17 samples

Figure 1.3: Simplex Stochastic Collocation discretization of a two�
dimensional probability space.

with the highest measure and the Delaunay triangulation is updated. The

sample is con�ned to a sub-domain of the simplex to ensure a good spread

of the sampling points, see Figure 1.3a. The re�nement to ns = 17 samples,

shown in Figure 1.3, leads to a super-linear convergence by increasing the

polynomial degree pj with the increasing number of available samples ns.

The sampling procedure is stopped when a global error estimate reaches an

accuracy threshold.

In the wind turbine simulations and other large-scale problems, it is pos-

sible that one of the deterministic computations for a speci�c sample of the

random parameters does not converge or gives an unrealistic result. For the

Stochastic Collocation method such a failure of one of the quadrature sam-

ples would be a serious problem in computing statistical moments. On the

other hand, this situation forms no obstacle for SSC owing to the �exibility

of the randomized sampling. It is handled by introducing a check of the cor-

rect execution of the samples into the algorithm. If an unconverged sample

is detected, then the failed sample computation is automatically restarted

for another randomly sampled point in the re�ned simplex element. In the
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analysis performed in this paper, this has proven to be an e�ective approach

for dealing with erroneous samples, which shows the �exibility of the SSC

method in complex computational problems.

1.6 Case study: Analysis under Uncertainty of

a Wind Turbine

Wind turbine reliability plays a critical role in the long-term evolution of

wind-based energy generation. The computational assessment of failure prob-

ability or life expectancy of turbine components is fundamentally hindered

by the presence of large uncertainties in both the environmental conditions

and blade geometry and structure. Rigorous quanti�cation of the impact of

such uncertainties can fundamentally improve the state-of-the-art in com-

putational predictions and, as a result, provide aid in the design of more

cost-e�ective devices.

The present study is the �rst step of a comprehensive analysis of wind tur-

bine performance under uncertainty. It will be constructed a multi-physics

low-order model EOLO that includes aerodynamic predictions, comprehensive

structural analysis and acoustic estimation. There will be identi�ed three

sources of uncertainty, namely wind condition, insect contamination and

manufacturing tolerances, and it will be estimated their e�ect on aerody-

namic performance and noise. Speci�cally, we demonstrate how the present

uncertainties lead to a general decrease in performance with respect to the

nominal (design) scenario. This penalization is also compounded with a likely

variation in noise. These results indicate that design and optimization steps
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should include a comprehensive estimation of the uncertainties in order to

achieve robust performance, this framework will be presented in chapter 4.

An additional objective of this section is to compare Latin Hyperbube Sam-

pling and Stochastic Simplex Collocation for propagating uncertainties in

complex computational models. Both methods outperform classical Monte

Carlo but it will be shown that the SSC approach leads to stable statistics

requiring only a few dozen EOLO simulations.

1.6.1 EOLO: a multi-physics low-order model for wind
turbines

Wind turbines are multi-physics devices in which the aerodynamic perfor-

mance, the structural integrity of the blades, the energy conversion toolbox

and the acoustic impact have to be carefully examined to achieve an e�ec-

tive design. Each one of these aspects introduces considerable hurdles for

detailed simulations. The aerodynamic performance is dominated by the

design of the blade cross-sections. The sections are typically laminar-�ow

airfoils use to reduce the overall drag. The �ow characterization is compli-

cated by the need to predict laminar/turbulent transition under a variety of

clean and perturbed wind conditions, the inherent angle of attack variabil-

ity associated to rotation, the presence of dynamic stall, aeroelasticity, etc.

In spite of the development of advanced computational �uid dynamic tools

that can predict with reasonable accuracy the aerodynamic performance of

rotors [32], the computations remain extremely expensive and often rely on

simple models to capture important e�ects, such as transition, and are gen-
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erally not considered to be predictive for extreme events such as stall. In

this work, we focus on building a �exible computational infrastructure based

on low-�delity models that are connected together in a matlab environment

called EOLO. There are two main advantages resulting from this choice: i)

control and �exibility in using di�erent models developed for capturing com-

plex phenomena, ii) low computational cost. It is the second aspect that

fundamentally enables us to perform analysis under uncertainty.

In the following we introduce the various computational tools that are

used to perform the deterministic analysis. The uncertainty quanti�cation

methodologies are described in the next section.

Aerodynamic analysis

The geometrical description of the turbine blades are based on the spec-

i�cation of three airfoils at the root, mid-span and tip. Simple linear inter-

polation is used to construct the geometry at the other cross-sections and

the local aerodynamic performance (two-dimensional analysis) is carried out

using a potential �ow method with interactive viscous correction. The tool

we used is Xfoil [33] which includes a model for boundary layer transition

based on the eN method. Xfoil is used to determine the aerodynamic force

coe�cients polars in a range of angle of attacks from −15◦ to 25◦ to cover

the range of incident angles experienced during a full rotation. Xfoil is not

expected to be accurate in the prediction of stall, because of the presence of

extensive �ow separation and possibly unsteady e�ects.

Hence a correction to the polar curve is introduced, based on Viterna[34]
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Figure 1.4: NREL s827: M=0.1, Re=3e6, free transition

and Corrigan models which provide a correction of the lift and drag coe�cient

at high angle of attack. A �nal correction to the aerodynamic coe�cients is

employed due to the presence of �nite-span e�ects. Here we use a modi�ca-

tion based on the Lanchester- Prandtl theory

CL = C
′

L; CD = C
′

D +
Cl2

πAR
; α = α

′
+

Cl

πAR
(1.6)

where CL and C
′
L, CD and C

′
D, α and α

′
are the �nite and in�nite span airfoil

lift coe�cients, drag coe�cients and angles of attack respectively and AR is

the aspect ratio of the wind blade.

The Viterna model estimates the lift and drag coe�cients (when α>αs)

as follows

CL =
CDmax

2
sin 2α +KL

cosα2

sinα
; CD = CDmax sinα2 +KD cosα (1.7)

KL = (CLS−CDmax sinαs cosαs)
sinαs
cosα2

s

; KD =
CDS − CDmax sinα2

s

cosαs
(1.8)
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where αs is the �nite span airfoil stall angle, CLS and CDS are the �nite span

airfoil lift and drag coe�cient at stall angle and CDmax is the �nite span

airfoil maximum drag coe�cient

CDmax = 1.11 + 0.018AR AR ≤ 50
CDmax = 2.01 AR > 50

(1.9)

The models described above are included in a tool called Viterna which

collects the polars from Xfoil and introduces stall and �nite-span correc-

tions. The present predictions of the lift curve are reported for the NREL

S827 airfoil in Fig.1.4.

Structural analysis

Fluid structure interactions play an important role in the determination of

the structural integrity of the turbine blades and in the overall aerodynamic

performance.

The geometrical description of the blade is used as a starting point to

de�ne span-varying properties relevant to its composite structure. The NREL

PreComp [35] computes cross-coupled sti�ness, inertia and o�sets of the blade

shear center, tension center, and center of mass with respect to the blade

pitch axis. These quantities are then used to determine a low-order model

for the rotor, tower and drivetrain shaft. Speci�cally, the characteristics of

a rotating-beam equivalent to the blade are computed using NREL BModes

[36], a �nite-element code that evaluates the deformation modes.
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Performance analysis

The Viterna corrected polars at certain nodes along the span, the �apwise

and edgewise Bmodes modal shapes and the PreComp properties are then used

as input to NREL FAST [37] (Fatigue, Aerodynamics, Structures, and Turbu-

lence) which is a comprehensive aeroelastic simulator capable of predicting

both the extreme and fatigue loads of two- and three-bladed horizontal-axis

wind turbines.

This code is based on the NREL AeroDyn [38] solver, an element-level

wind-turbine aerodynamic analysis routine. It requires information on the

status of a wind turbine from the dynamics analysis routine and a wind �le

describing the atmospheric conditions. It returns the aerodynamic loads for

each blade element to the dynamics routines.

Wind conditions

The aerodynamic performance of wind turbines is dominated by the wind

conditions. Atmospheric boundary layers are subject to large variability

in wind direction and intensity with largely unsteady dynamics and fre-

quent gusts. In EOLO we generate realistic wind conditions using the NREL

TurbSim[39] tool, which constructs a stochastic in�ow with a precisely spe-

ci�c velocity �uctuation spectrum.

Acoustic analysis

The NREL prediction of aeroacoustic noise is based on six di�erent noise

sources (Fig. 1.5) that are assumed to independently generate their own noise
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Figure 1.5: Breakdown of the noise generated by a 50kw wind turbine at a
microphone located at (x,y,z)=(-20m,0m,0m)

signature. The assumption of independence is based on the idea that the

mechanisms for each noise source(namely turbulent boundary layer trailing

edge, separating �ow, laminar boundary layer vortex shedding, trailing edge

bluntness vortex shedding, and tip vortex formation[40, 41]) are fundamen-

tally di�erent from each other or occur in di�erent locations along a turbine

blade, such that they do not interfere with one another.

the EOLO matlab script

The various tools brie�y described in the previous subsections are glued

together in a multi-physics simulation process using matlab. The overall

driver script, EOLO handles the transfer of information between the various

tools and then collects the �nal outputs and computes statistics.

A �owchart of the process is reported in Fig. 1.6; it is clear that mod-
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Figure 1.6: EOLO �owchart

i�cations to the framework can be handled in a simple way, for example

substituting the aerodynamic performance evaluation module (Xfoil and

Viterna) with a computational �uid dynamic solver. EOLO also provides a

unique interface for the entire process (from inputs to outputs) that is directly

connected to the uncertainty quanti�cation tools.
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1.6.2 The AOC 15/50

The AOC 15/50 is a downwind turbine, i.e. its blades rotate downwind

of the drive train assembly. Furthermore, it has no active yaw control and

depends on its blades to track the wind. This wind turbine is the evolution

of the rugged and reliable Enertech E44, many of which were installed in

the 1980's and are still running today. Independent analysis and testing at

NREL, the Netherlands Energy Research Foundation (ECN), RISO Labora-

tory in Denmark, the Atlantic Wind Test Site (AWTS) on Prince Edward

Island and other sites around the world verify that the AOC 15/50 wind

turbine generators are very reliable in even the harshest weather conditions.

The AOC 15/50 is designed for simplicity to minimize maintenance require-

ments and to be able to safely operate in normal and extreme conditions.

The principal characteristics of the AOC 15/50 can be found in Table 1.1.

1.6.3 Analysis under Uncertainty

EOLO is essentially deterministic: once the wind-turbine con�guration and

other input conditions are speci�ed, the solution is uniquely determined with-

out vagueness. On the other hand, when uncertainties are present, the results

have to be expressed in a non-deterministic fashion either probabilistically

or as ranges of possible outcomes. In this work we focus on the former, and

describe the uncertainties as random variables. At this point the compu-

tations become probabilistic in nature and it is necessary to propagate the

input variability into the output of interest (quantity of interest, QoI). The
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Table 1.1: AOC 15/50 wind turbine, principal characteristics

Type Grid Connected
Con�guration Horizontal Axis
Axis Rotor Diameter 15 m
Centerline Hub Height 25 m
Rated Electrical Power 50 kW @ 11.3 m/s
Cut in [-] 4.6 m/s
Shut down (high wind) 22.4 m/s
Type of Hub Fixed Pitch Rotor
Diameter 15 m
Swept Area 177 m2

Number of Blades 3
Rotor Solidity 0.077
Rotor Speed @ rated wind speed 65 rpm
Location Relative to Tower Downwind
Cone Angle 6o

Tilt Angle 0o

Rotor Tip Speed 51 m/s @ 60 Hz
Design Tip Speed 6.1
Length 7.2 m
Material Epoxy /glass �bre
Airfoil (type) NREL, Thick Series, modi�ed
Twist 7o

Blade Weight 150 kg approximate
Yaw Free, rotates 360 degrees

approach we follow here is strictly non-intrusive and the existing tools are

used without modi�cations, but the solution - or more precisely, their proba-

bility distributions - are constructed performing an ensemble of deterministic

analysis. It is important to note that the �rst step in any uncertainty quan-

ti�cation procedure is the identi�cation of the sources of uncertainties. We

focus on wind conditions, blade manufacturing tolerances and insect contam-
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ination. Indeed we gather information from literature regarding each one of

these sources and perform analysis that assesses their impact on both aero-

dynamic performance and noise. In order to assess the performance of the

uncertainty propagation process we compare two methodologies that aim at

characterizing statistically the QoIs using a low number of deterministic so-

lutions compared to classical Monte Carlo schemes. The two approaches are

the Latin Hypercube Sampling (LHS) and the Stochastic Simplex Collocation

(SSC), described in the previous sections.

Data assimilation: uncertain meteorological conditions

The energy produced by a wind turbine is usually expressed as an annual

average. Since production falls o� dramatically as the wind speed drops,

most of the time the wind turbine is producing well below its expected rate

[42]. It is important to characterize the wind turbine behavior resulting from

the measured wind variability to assess the e�ective performance.

For land based turbines, the wind speed distribution is usually approx-

imated by a Weibull � t[43]. As an example, Downey [44] extracted data

from the database http://winddata.com of eight sites that have wind speed

measurements above 60 m in height.

Following the same approach we extracted nominal wind speed, turbu-

lence intensity and direction data at a site (Acqua Spruzza, Italy) where a

wind turbine farm was built by ENEL S.p.A. to evaluate the performance

of commercial medium-sized turbines operating in complex terrain and very

hostile climate. A large collection of wind measurements is summarized in
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Figure 1.7: Wind speed, direction and turbulence intensity at the Acqua
Spruzza, Italy site. The data is reported in terms of empirical probability
distributions scaled from 40 to 24 meters.

Fig. 1.7 in terms of wind speed and direction and turbulence intensity. The

histograms of these three random variables are used directly as input for the

uncertainty propagation methods described previously, after being converted

into continuous probability density functions (for each of the input variables)

via linear interpolation. Note that no information regarding the correlation

of the three random variables is available, and therefore we assume that the

inputs are independent.

The wind data readily available provide an estimate of the wind speed at

a certain height. To construct the wind conditions at the actual rotor hub
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height ( ≈ 24 meters) we use a classical [45] scaling law:

U(z2)

U(z1)
=
ln(z2/z0)−Ψ(Z2/L)

ln(z1/z0)−Ψ(Z1/L)
(1.10)

where L is the Monin-Obukhov length [m], U is the wind speed [m/s], z is the

height [m], z0 is the terrain roughness [m] and Ψ is the stability function [42].

Eq. (9) uses a logarithmic velocity pro�le dependent on terrain roughness z0

plus an atmospheric stability correction Ψ dependent on the ratio of height,

z, and Monin Obukhov length, L. Turbulence may be produced by shear

(speed di�erences) or by buoyancy (density di�erences); the length L is the

height at which shear and buoyancy produce the same amount of turbulent

kinetic energy. The Monin-Obukhov length L must be estimated. When the

wind speed is su�ciently high (above 6m/s ) thermal e�ects play no role

above land, and neutrality may be assumed [46], Ψ = 0. In this case the

wind speed follows a logarithmic pro�le determined by terrain roughness z0

and Eq. (9) reduces to
U(z2)

U(z1)
=
ln(z2/z0)

ln(z1/z0)
(1.11)

The roughness of the terrain z0 may be estimated with the Petersen classi-

�cation [47] or from measurements of turbulence intensity I at some reference

height zr , using:

z0 = zrexp(
−1

I(zr)
) (1.12)

Data assimilation: insect contamination

Several studies on wind turbines [48, 49, 50, 51] and �xed wings [52, 53]

illustrate the e�ect of insect and dirt contamination on the overall aerody-

namic performance. Insects are present in the lower layer of the atmosphere,
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with a density rapidly decreasing from ground level to 500 ft. Hardy and Mil-

necite [54] found that the morphology of insects is a function of the altitude

and that estimation of the actual contamination depends on the operating

conditions. In wind-turbines the e�ect of contamination can be particularly

strong when the blade cross-sections are designed to support mostly laminar

�ows. The presence of insect contamination produces boundary layer distur-

bances that can lead to early transition to turbulence with a deterioration

of the aerodynamic performance. This is the motivation for including in-

sect contamination as a leading cause of uncertainty in the analysis of wind

turbines.

Crouch et al [55] studied experimentally the e�ects of surface protrusions

(steps) on the transition to turbulence in boundary layers. They also mod-

i�ed the eN method to capture the observed transition modi�cations, via a

reduction of the critical N-factor:

Ncrit = Ncrit0 −∆Ncrit(
h

δ∗
) (1.13)

where h is the height of the step (i.e. the accumulated insect height)[m], δ∗

is the boundary layer displacement thickness at the step location [m], ∆Ncrit

accounts for the local change in the stability characteristics at the step[-] and

Ncrit0 is the clean value of the critical n-factor[-].

In this work we assume that the insect impact produces a roughness

that leads to a possible modi�cation of the N-factor. We consider three

independent variables describing the N-factor ranging from clean conditions

(Ncrit = 9) to transition bypass (Ncrit = 1) at the root, midspan and tip
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sections.

Data assimilation: manufacturing errors

There is a general agreement that airfoil shape, twist and chord length

imperfections are detrimental to aerodynamic performance, but only limited

quantitative data is available in the open literature about their origin and

quantitative e�ects. Loeven and Bijl [56] used a Polynomial Chaos Frame-

work for the quanti�cation of airfoil geometrical uncertainties. Ilinca, Hay,

and Pelletier [57] treat shape sensitivities of unsteady laminar �ow around

a cylinder in ground proximity. Etienneet al [58] investigated shape sensi-

tivities of �exible plates in a �ow domain. Gumber, Newman, and Hou [59]

included �rst order moments in robust design optimization of a 3D �exible

wing with uncertain wing geometry. The geometry of a manufactured wind

turbine airfoil is generally di�erent from the nominal design mainly because of

manufacturing tolerances. It is generally di�cult to characterize probabilisti-

cally the e�ect of these tolerances; in this work we focus on errors associated

with the protusion process, where the blade is constructed as a sequence of

cross-section. We assume that the twist of the blade (the section orientation

with respect to a nominal plane) is imprecise. As before, we assume that

we can describe the uncertainty using three independent parameters (with

uniform probability distributions ranging from −2◦ to 2◦) associated to the

twist at the root, the midspan and the tip section.
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Certi�cation: uncertain meteorological conditions

The AOC 15/50 has been investigated using the uncertain meteorological

conditions of Figure 1.7. In this case EOLO is driven by the SSC routines and

the uncertainties are injected trough Turbsim; the statistics are constructed

performing an ensemble of deterministic analysis [60]. For reasons of econ-

omy, the wind history during the turbine's approximately twenty year life is

reduced to 10 minute periods (or load cases) at each wind speed [42]. The

latitude chosen for the turbulence model is 41 degrees, matching the data

extracted from the Acqua Spruzza site. The Von Karman spectral model

for the meteorological boundary conditions has been chosen in this appli-

cation, assuming neutral atmospheric condition [61, 62]. The AOC 15/50

deterministic conditions chosen as reference in this work are illustrated in

Table 1.2.

Table 1.2: AOC 15/50 wind turbine, deterministic conditions

Wind speed 6 m/s
Turbulence intensity 5%
Wind direction 0o

Latitude 41o

Working time 10 min
Rotor speed 55 rpm

The Monte Carlo samples on the response surface obtained by the simplex

reconstruction are shown in Figure 1.8; the reader can notice that the samples

follow the input distribution of Figure 1.7.

A three color (red to blue) map has been introduced to relate the samples

to the e�ective value of the power coe�cient in the domain: the red points
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correspond to high power extracted by the wind turbine. The map reveals

that improved e�ciency is achieved for moderate wind speeds (5-12 m/s) and

low turbulence levels (2-10 percent), while other conditions lead to decreased

performance.
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Figure 1.8: Monte Carlo samples for meteorological conditions.

Since the cut-o� speed of the AOC 15/50 is 22.4 m/s, placing the wind

turbine in the site of interest would likely lead to o�-design operating condi-

tions: the average power coe�cient drops from 0.4596 to 0.2776.

The resulting cumulative probability distribution functions (CDF) for

the power coe�cient and the sound pressure level as a result of the varying
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Figure 1.9: Meteorological conditions: cumulative density function of the
power coe�cient and Sound Pressure Level. The red lines represent the
deterministic conditions.

meteorological conditions are shown in Figure 1.9. The output CDFs show

approximately uniform distributions, in contrast with the input density for

the meteorological conditions of Figure 1.7. The probability distributions

fall completely below the deterministic characteristics of the wind turbine

(Table 1.2) given by the vertical lines. The uncertain output for the power

coe�cient ranges from approximately 0 to the deterministic value of approx-

imately 0.45. The sound pressure level varies uniformly between 34 to 45 dB.

These results show that the realistic uncertainty in the wind speed, direction,

and turbulence intensity has a large impact on the wind turbine performance.

The convergence of the mean and standard deviation of the power coef-

�cient and sound pressure level is shown in Figures 1.10 and 1.11 up to 70

samples in the SSC discretization. The mean values of the two outputs show

fast convergence in the �rst 20 samples to a value signi�cantly lower than the

deterministic value. Increasing the number of deterministic solves to 70 does

not signi�cantly change the mean value. This is con�rmed by the decreasing
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error estimate intervals with an increasing number of samples. The higher

moment of the standard deviation shows, as expected, a slower convergence

up to 40 samples with a relatively larger error estimate margin.
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Figure 1.10: Meteorological conditions: convergence histories of the
mean,variance and error of the power coe�cient
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Figure 1.11: Meteorological conditions: convergence histories of the
mean,variance and error of the Sound Pressure Level

The values for the mean and standard deviation at 70 samples are also

compared to the nominal clean con�guration in Table 1.3. Due to the un-

certainty the mean power output almost halves, while the sound level is only

moderately lower than the deterministic values. This demonstrates that the
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uncertain meteorological conditions result in a signi�cant reduction of the

power performance of the wind turbine, which shows the need to optimize

the wind turbine design under uncertain operating conditions. The relatively

large coe�cients of variation in the power coe�cient and the sound pressure

level up to 42.8% and 8.1%, respectively, are also reported.

Table 1.3: Analysis under uncertain meteorological conditions

Objective Mean Standard deviation Coe�cient of variation Clean con�guration

# Power Coe�cient [-] 0.2776 0.1189 0.4283 0.4596
# Sound Pressure Level [db] 40.4530 3.2853 0.0812 44.711

Certi�cation: insect contamination

The AOC 15/50 is investigated using the uniform distributions of sec-

tion 1.6.3. In this case EOLO is driven by the SSC routines and the uncertain-

ties are injected through the aerodynamic coe�cients computed in Xfoil.

The Monte Carlo samples on the response surface obtained by the simplex

reconstruction are shown in Figure 1.12; the output samples have a rather

uniform distribution in the probability space.

The colormap reveals that higher values of the n-critical factor (e.g. lower

contamination) at tip region, ξ3 primarly, as well as at mid-span region,ξ2,

lead to better performance: this can be justi�ed due to the highest contri-

bution of the outer airfoils to the mechanical torque at the shaft.

This analysis illustrates a reduction of up to 16% in the power coe�cient

(Figure 1.13) due to the insect contamination, while in the literature an e�ect

of up to 50% has been reported [48, 49]. This di�erence might be due to the

present approach used to characterize the e�ect of the insect contamination.
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Figure 1.12: Monte Carlo samples for insect contamination
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Figure 1.13: Insect contamination: cumulative density function of the power
coe�cient and Sound Pressure Level
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The variation of the perceived level of noise due to this source of uncertainty

can be neglected.
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Figure 1.14: Insect contamination: convergence histories of the
mean,variance and error of the power coe�cient

Figure 1.15 and Figure 1.16 show the SSC convergence of the mean and

the standard deviation of the output of interest. The error estimate is lower

under uncertain meteorological conditions, therefore a smaller number of

simplex points could have been used.
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Figure 1.15: Insect contamination: convergence histories of the
mean,variance and error of the Sound Pressure Level

The mean, standard deviation and coe�cient of variation of the analysis
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under insect contamination are summarized in Table 1.4.

Table 1.4: Analysis under insect contamination

Objective Mean Standard deviation Coe�cient of variation Clean con�guration

# Power Coe�cient[-] 0.4340 0.0162 0.0373 0.4596
# Sound Pressure Level[db] 44.6505 0.0738 0.0017 44.711

Certi�cation: manufacturing errors

The AOC 15/50 is investigated using the uniform distributions of sec-

tion 1.6.3.C. In this case EOLO is driven by the SSC routines and the uncer-

tainties are injected through the geometry pre-processor. The Monte Carlo

samples on the response surface obtained by the simplex reconstruction are

shown in Figure 1.12; similar to the insect contamination case, the samples

have a uniform distribution in the probability space. The colormap reveals

that decreasing the twist in the mid-span region, ξ2, leads to better perfor-

mance: this can justify a novel robust shape optimization involving the twist

distribution.

In this framework we were able to reduce the power coe�cient by up to

7% (Figure 1.17) with negligible change in the perceived noise.

Figure 1.18 and Figure 1.19 show the SSC convergence of the mean and

standard deviation of the output of interest, revealing that 30 simplex points

would have been enough for this analysis.

The mean, standard deviation and coe�cient of variation of the analysis

under manufacturing errors are summarized in Table 1.5.
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Figure 1.18: Manufacturing errors: convergence histories of the
mean,variance and error of the power coe�cient
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Figure 1.19: Manufacturing errors: convergence histories of the
mean,variance and error of the Sound Pressure Level

Table 1.5: Analysis under manufacturing errors

Objective Mean Standard deviation Coe�cient of variation Clean con�guration

# Power Coe�cient[-] 0.4560 0.0071 0.0156 0.4596
# Sound Pressure Level[db] 44.7189 0.2216 0.0050 44.711

Uncertainty propagation: SSC vs LHS

In this last part of the analysis under uncertainty we want to quantify the

e�ect of the uncertainty propagation process by comparing SSC and LHS.

The convergence histories for the mean and standard deviation of the power
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coe�cient and sound level are more closely examined in Figures 1.20 and 1.21.
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Figure 1.20: Meteorological conditions: comparison of the mean and variance
of the power coe�cient for two di�erent SSC and two di�erent LHS
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Figure 1.21: Meteorological conditions: comparison of the mean and variance
of the Sound Pressure Level for two di�erent SSC and two di�erent LHS

The results of SSC and LHS are shown for two independent ensembles to

illustrate the relative sensitivity as both methods rely on random sampling.

This is clearly visible in the LHS results for the power in Figure 1.20 given

a small number of samples (up to 40). For a larger sample size the two LHS

results show improved agreement. The variations in the SSC results for the

power coe�cient are smaller than for LHS.
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For the mean power output, the two methods show good agreement. The

prediction of the standard deviation by LHS and SSC show a slightly di�erent

value, because we hypothesize that more than 60 samples are required to

obtain convergence. The results for the sound level in Figure 1.21 show

a relatively larger variation between the SSC runs and also gives a larger

standard deviation output for LHS than for SSC.

1.7 Lessons learned

In this chapter it was shown that stochastic collocation methods, in par-

ticular the Simplex Stochastic Collocation, could be particularly useful in

the case of engineering analysis under uncertainty. Indeed the capability

to obtain an error estimate on the prediction of the statistics of the objec-

tive functions, the relative use of a fewer number of samples with respect

to Monte Carlo and Latin Hypercube Sampling and the capability to han-

dle unconverged simulations at a sample locations are desired proprieties in

handling the problem of optimization under uncertainty. The use of uncer-

tainty quanti�cation in combination with optimization methodologies will be

discussed in chapter 3, while in the next chapter we introduce the mathe-

matical formulation of deterministic optimization and we quantify the e�ect

of uncertainties on the results.
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Chapter 2

Optimization and Uncertainty

It is not the strongest of the species that survives, nor the most intelligent

that survives. It is the one that is the most adaptable to change.

� Charles Darwin

Premature optimization is the root of all evil (or at least most of it) in

programming.

� Donald Knuth

The concept of optimization is basic to much of what we do in our daily

lives: a desire to do better or be the best in one �eld or another. In engineer-

ing we wish to produce the best possible result with the available resources.

In a highly competitive modern world it is no longer su�cient to design a

system whose performance of the required task is just satisfactory. It is essen-

tial to design the best system. Thus in designing new products in any �eld:

aerospace, automotive, chemical, electrical, biomedical, agricultural, etc, we
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must use design tools which provide the desired results in a timely and eco-

nomical fashion. Numerical optimization is one of the tools at our disposal.

Optimization is a very general automated design technique. In studying this

technique it is important to distinguish between analysis and design. Anal-

ysis is the process of determining the response of the speci�ed system to the

certain combination of input parameters. For example, calculation stresses

in the structure as a result of certain loads. Design on the other hand, means

the process of de�ning a system. For example, designing a structure would

mean selecting speci�c dimensions and location of the structural members

that will allow the structure to withstand the speci�ed load. Much of the de-

sign task in engineering is quanti�able, and so we are able to use computers

to analyze alternative designs rapidly. The purpose of numerical optimiza-

tion is to aid us in rationally searching among alternative designs for the best

design to meet our needs. The alternative designs of the same system di�er

from each other because some parameters of the system are not the same.

The parameters that could be changed in the system while searching for the

best design are called design variables. Although we may not always think

of it this way, design process may be de�ned as the process of �nding the

minimum or maximum of some characteristic, which may be called the ob-

jective function. For the design to be acceptable it must also satisfy certain

requirements. These requirements are called design constraints. Optimiza-

tion automatically changes the design variables to help us �nd the minimum

or maximum of the objective function, while satisfying all the required de-

sign constraints. The desire to account for realistic and naturally varying
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operating conditions leads to the formulation of the optimization problems

in the presence of uncertainty. Engineering examples range from the inclu-

sion of manufacturing tolerances in turbo-machinery design to the design of

wind turbines under stochastically de�ned wind scenarios, from combustion

stability control in the presence of fuel impurities to optimization of the op-

erations of green buildings under variable occupancy and external conditions,

and many others.

This chapter starts with a review of the mathematical formulation of the

deterministic optimization problem (i.e. the objectives are deterministic),

hence the focus is given to genetic algorithms in order to de�ne the operators

that will be generalized in chapter 4 to extend their usage to the framework

of optimization under uncertainty.

A multi-objective application is then considered in a problem of the For-

mula 1 industry: the optimization of a F1 tire brake intake to maximize cool-

ing e�ciency and minimize aerodynamic resistance. It will be shown that

considering the e�ect of uncertainties on the result of the deterministic op-

timization process could totally make meaningless a massive computational

e�ort (e.g. large-scale, three-dimensional Reynolds-Averaged Navier-Stokes

simulations on a high performance computing cluster) and that uncertainty

need to be taken in account since the beginning of the design process.

2.1 The mathematical formulation

Problem formulation is normally the most di�cult part of the process. It

is the selection of design variables, constraints, objectives, and models of the
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disciplines.

2.1.1 Design variables

A design variable is a speci�cation that is controllable from the point of

view of the designer. For instance, the thickness of a structural member can

be considered a design variable. Another might be the choice of material.

Design variables can be continuous (such as a wing span), discrete (such

as the number of ribs in a wing), or boolean (such as whether to build a

monoplane or a biplane). Design problems with continuous variables are

normally solved more easily. Design variables are often bounded, that is,

they often have maximum and minimum values. Depending on the solution

method, these bounds can be treated as constraints or separately.

2.1.2 Constraints

A constraint is a condition that must be satis�ed to make the design

feasible. An example of a constraint in aircraft design is that the lift gener-

ated by a wing must be equal to the weight of the aircraft. In addition to

physical laws, constraints can re�ect resource limitations, user requirements,

or bounds on the validity of the analysis models. Constraints can be used

explicitly by the solution algorithm or can be incorporated into the objective

using Lagrange multipliers or penalties.

2.1.3 Objectives

An objective is a numerical value that is to be maximized or minimized.

For example, a designer may wish to maximize pro�t or minimize weight.
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Many solution methods work only with single objectives. When using these

methods, the designer normally weights the various objectives and sums them

to form a single objective. Other methods allow multi-objective optimization,

such as the calculation of a Pareto front, which will be de�ned in Section 2.3.

2.1.4 Models

The designer must also choose models to relate the constraints and the

objectives to the design variables. These models are dependent on the disci-

pline involved. They may be empirical models, such as a regression analysis

of aircraft prices, theoretical models, such as from computational �uid dy-

namics, or reduced-order models of either of these. In choosing the models

the designer must trade o� �delity with analysis time. The multidisciplinary

nature of most design problems complicates model choice and implementa-

tion. Often several iterations are necessary between the disciplines in order

to �nd the values of the objectives and constraints. As an example, the

aerodynamic loads on a wing a�ect the structural deformation of the wing.

The structural deformation in turn changes the shape of the wing and the

aerodynamic loads. Therefore, in analyzing a wing, the aerodynamic and

structural analyses must be run a number of times in turn until the loads

and deformation converge.

2.1.5 Standard form

Once the design variables, constraints, objectives, and the relationships

between them have been chosen, the problem can be expressed in a standard
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form. Let's consider an objective function f(z) where z ∈ Z represents a

design variable. A minimization problem is formulated in general as:

{
f(z) ≤ f(z) ∀z ∈ Z
s.to: g(z) ≤ 0, h(z) = 0

(2.1)

where g(z) is a vector of inequality constraints, h(z) is a vector of equality

constraints.

2.2 Problem solution methods

The previous problem is normally solved using appropriate techniques

from the �eld of optimization. These include gradient-based algorithms,

population-based algorithms, or others. Very simple problems can sometimes

be expressed linearly; in that case the techniques of linear programming are

applicable. Most of the optimization techniques require large numbers of

evaluations of the objectives and the constraints. The disciplinary models

are often very complex and can take signi�cant amounts of time for a single

evaluation. The solution can therefore be extremely time-consuming. Many

of the optimization techniques are adaptable to parallel computing. Much

current research is focused on methods of decreasing the required time. Also,

no existing solution method is guaranteed to �nd the global optimum of a gen-

eral problem. Gradient-based methods �nd local optima with high reliability

but are normally unable to escape a local optimum. Stochastic methods, like

simulated annealing and genetic algorithms, will �nd a good solution with

high probability, but very little can be said about the mathematical proper-

ties of the solution. It is not guaranteed to even be a local optimum. These
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methods often �nd a di�erent design each time they are run.

All the theoretical procedures presented in this thesis are general and not

dependent on the problem solution but genetic algorithms will be used in the

following to present the implementations of these concepts. Hence here it's

presented a brief description of these class of algorithms.

2.2.1 Genetic algorithms

A genetic algorithm (GA) is a search heuristic that mimics the process

of natural evolution. This heuristic is routinely used to generate useful solu-

tions to optimization and search problems. Genetic algorithms belong to the

larger class of evolutionary algorithms (EA), which generate solutions to op-

timization problems using techniques inspired by natural evolution, such as

inheritance, mutation, selection, and crossover. In a genetic algorithm, a pop-

ulation of strings (called chromosomes or the genotype of the genome), which

encode candidate solutions (called individuals, creatures, or phenotypes) to

an optimization problem, evolves toward better solutions. Traditionally, so-

lutions are represented in binary as strings of 0s and 1s, but other encodings

are also possible. The evolution usually starts from a population of randomly

generated individuals and happens in generations. In each generation, the

�tness of every individual in the population is evaluated, multiple individ-

uals are stochastically selected from the current population (based on their

�tness- a way to measure how them �t with the environment, represented by

the objectives), and modi�ed (recombined and possibly randomly mutated)

to form a new population. The new population is then used in the next iter-
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ation of the algorithm. Commonly, the algorithm terminates when either a

maximum number of generations has been produced, or a satisfactory �tness

level has been reached for the population. If the algorithm has terminated

due to a maximum number of generations, a satisfactory solution may or

may not have been reached.

2.3 The Pareto front

Having M objective functions, the notion of optimum changes, because

in multi-objective problems, we are really trying to �nd good compromises

(or trade-o�s) rather than a single solution as in global optimization. The

notion of optimum that is most commonly adopted is that originally proposed

by Francis Ysidro Edgeworth in 1881. This notion was later generalized by

Vilfredo Pareto (in 1896). Although some authors call Edgeworth-Pareto

optimum to this notion, we will use the most commonly accepted term:

Pareto optimum.

De�nition 2.1

We say that a vector of decision variables z ∈ Z̃ is Pareto optimal if there

does not exist another z ∈ Z̃ such that fi(z) ≤ fi(z),∀i ∈ [1, ...,M ] and

fi(z) < fi(z) for at least the one i-th objective.

Here Z̃ denotes the feasible region of the problem (i.e., where the con-

straints are satis�ed).In words, this de�nition says that z is Pareto optimal

if there exists no feasible vector of decision variables z ∈ Z̃ which would

decrease some objective without causing a simultaneous increase in at least
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Figure 2.1: Pareto Front and non-domination illustration

one other objective. Unfortunately, this concept almost always gives not a

single solution, but rather a set of solutions called the Pareto optimal set.

The vectors z corresponding to the solutions included in the Pareto optimal

set are called non-dominated. The plot of the objective functions whose non-

dominated vectors are in the Pareto optimal set is called the Pareto front,

see Figure 2.1.

2.4 The NSGA-II algorithm

NSGA is a popular non-domination based genetic algorithm for multi-

objective optimization. It is a very e�ective algorithm but has been generally

criticized for its computational complexity, lack of elitism and for choosing

the optimal parameter value for sharing parameter σshare. A modi�ed ver-

sion, NSGA-II [63] was developed, which has a better sorting algorithm ,
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incorporates elitism and no sharing parameter needs to be chosen a priori.

The population is initialized based on the problem range and constraints, if

any. Once initialized, the population is sorted based on non-domination and

collected into a set of fronts: the �rst front being completely non-dominant

set in the current population and the second front being dominated by the

individuals in the �rst front only and so on. To each individual is assigned

a rank (�tness) value based on front in which it belong to. Individuals in

the �rst front are given a �tness value of 1 and individuals in second are

assigned �tness value as 2 and so on. In addition to �tness value a second

parameter called crowding distance is calculated for each individual. The

crowding distance is a measure of how close an individual is to its neighbors.

Large average crowding distance will result in better diversity in the popula-

tion. Parents are selected from the population by using binary tournament

selection based on the rank and crowding distance. An individual is selected

if the rank is lesser than the other or if crowding distance is greater than the

other. The population with the current population and current o�springs

is sorted again based on non-domination and only the best N individuals

are selected, where N is the population size. The selection is based on rank

and the on crowding distance on the last front. The Non-dominated Sorted

Genetic Algorithm (NSGA-II) is organized in several steps that consist of:

1. Initialization of the population The population is initialized based

on the problem range and constraints if any. Usually the initial pop-

ulation is provided with a random seeding in the subset of the design

space, Z;
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2. Non-Dominated sort. The initialized population is sorted based

on non-domination: an individual is said to dominate another if the

objective functions of it is no worse than the other and at least in one

of its objective functions it is better than the other. This algorithm is

better than the original NSGA since it utilize the information about

the set that an individual dominate and number of individuals that

dominate the individual. Once the non-dominated sort is complete the

crowding distance is assigned. Since the individuals are selected based

on rank and crowding distance all the individuals in the population are

assigned a crowding distance value. Crowding distance is assigned front

wise and comparing the crowding distance between two individuals

in di�erent front is meaning less. The basic idea behind the crowing

distance is �nding the euclidian distance between each individual in a

front based on their M objectives in the M dimensional hyper space.

The individuals in the boundary are always selected since they have

in�nite distance assignment. Further details can be found in [63];

Start of the evolution process (the following actions are per-

formed in each generation)

3. Selection of the parents. Parents are selected for reproduction to

generate o�spring. The NSGA-II uses a binary tournament selection

based on the crowded-comparison operator [63]. Tournament selection

is carried out until the pool (i.e. the number of parents to be selected)

size is �lled,
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4. Crossover and mutation. The selected population generates o�-

springs from crossover and mutation operators (e.g. Simulated Binary

Crossover (SBX) and Polynomial mutation);

5. Recombination and Selection. Recombination and Selection. The

o�spring population is combined with the current generation popula-

tion and selection is performed to set the individuals of the next gen-

eration. Since all the previous and current best individuals are added

in the population, elitism is ensured. Population is now sorted based

on non-domination. The new generation is �lled by each front subse-

quently until the population size exceeds the current population size. If

by adding all the individuals in front Fj the population exceeds N then

individuals in front Fj are selected based on their crowding distance in

the descending order until the population size is N ;

End of the evolution process

6. Post-processing of the Pareto Front

2.5 Case study: Optimization of a F1 wheel

assembly

Formula 1 engineers are interested in primarily three factors related to

tire aerodynamics i) overall tire lift and drag ii) cooling performance of the

brakes and iii) how the tire air�ow a�ects downstream components (wake

characteristics). All three factors are tightly coupled which makes design

quite complicated, especially when uncertainty in the �exible tire walls and
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upstream conditions can negatively e�ect the car performance.

Figure 2.2 shows the wake sensitivity caused by �ow traveling through

the tire hub and exiting from the outboard side of the tire. If the �ow of

air is not allowed to pass through the tire hub (the top left and bottom left

images in Figure 2.2), there is no mass e�ux from the outboard side of the

tire and the wake is quite symmetric about the wheel centerline. The wake

is dominated by a counter-rotating vortex pair and both the inboard (left)

and outboard (right) vortex are of similar size. Alternatively, if the �ow of

air is allowed to pass through the tire hub the inboard (left) vortex becomes

larger than the outboard (right) vortex causing wake asymmetry (the top

right and bottom right images in Figure 2.2).

The results of the single parameter perturbations indicated previously

show the mass �ow rate through the brake duct and tire drag force are more

sensitive to the brake duct width than the brake duct height or length (in

the range of deformation between ± 1cm). The physical explanation of this

result becomes evident when visualizing iso-contours of turbulent kinetic en-

ergy around the tire. Figure 2.2 shows the di�erence between a low width

con�guration (top) and high width con�guration (bottom). The larger width

of the brake duct causes a larger separation region immediately behind the

brake duct in addition to higher turbulence levels in the shear layer immedi-

ately behind the inboard back edge of the tire.

In the next we analyze a nontrivial multi-objective problem in which it

is not possible to �nd a unique solution that simultaneously optimizes each

objective: when attempting to improve an objective further, other objec-
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Figure 2.2: Wake sensitivity (shown by streamwise x-velocity contours for a
plane located 1.12 wheel diameters downstream from the center of the tire)
for a simpli�ed tire with wheel fairings (top left), baseline F1 tire (top right),
baseline F1 tire with blocked hub passages (bottom left), and simpli�ed tire
with arti�cial mass e�ux from blue segment (bottom right)
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Figure 2.3: Turbulent kinetic energy contours for the minimum drag con�g-
uration (top) and maximum cooling con�guration (bottom)
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tives su�er as a result. A tentative solution is called non-dominated, Pareto

optimal, or Pareto e�cient if an improvement in one objective requires a

degradation of another. We use the NSGA-II algorithm [63, 64] to obtain

the non-dominated solutions, therefore we analyze the more interesting so-

lutions on the deterministic Pareto set in presence of uncertainty. This is

done in order to prove the importance of taking in account the variability of

several input conditions in the design process.

2.5.1 The physics

Waschle [66] performed laser Doppler anemometry measurements in the

wake of a stationary and rotating Formula 1 tire and compared the data to

di�erent numerical codes. In his experiments he was able to show reversed

�ow regions in the near wake, but the two main counter rotating vortices

(CVP) near the ground were poorly captured due to low resolution. Mears

[67] conducted a very elaborate study on stationary and rotating wheels with

spokes. He used wheel pressure measurements, PIV, and steady RANS to

show the near �eld as well as far �eld CVP structure. The results of this

work highlights the need to investigate transient methodologies (both exper-

imental and computational) in order to truly understand the intrinsically un-

steady wake. RANS has been the most widely used computational method

to compute the �ow �eld around the tire. Skea [68] compared non-linear

and standard turbulence models as well as various di�erencing schemes, and

showed that the in�uence of the di�erent models and schemes was signi�cant.

Recently, other approaches have become popular due to the well known issues
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of RANS modeling. Waschle showed that improved predictions were possible

using the Lattice-Boltzmann approach compared to RANS. McManus et al.

[69] performed a computational study of both stationary and rotating wheels

using the unsteady RANS (URANS) method and compared these to the Fack-

rell and Harvey [70] �ow measurements. They showed good agreement with

the experiments and gave a general schematic of the �ow, including details of

coherent structures that were not shown previously using RANS.Many com-

putational studies have compared pressure contours around the surface of

the tire using various turbulence models, but wake velocities and structures

are more sensitive to turbulence treatment than forces on the tire (as shown

in the results section). Axerio-Cilies [71, 65] shew that the wake behind a

rotating simpli�ed isolated tire is primarily dominated by a counter rotating

vortex pair (CVP). The CVP is created by the downwash region behind the

tire.The downwash is created by the side �ow of the tire transferring energy

to the top aft �ow of the tire, causing the entrainment of �ow from the top of

the tire downwards. This downwards movement creates a downwash region

which fuels the formation of the counterrotating ground vortex pair (CVP).

2.5.2 The cost

For such a study, there are approximately 400 simulations to perform

per optimization cycle (i.e. generation). When the results of those 400

simulations are analyzed, an additional list of 400 simulations, each with a

unique range of input parameters, are generated for the next generation in

the optimization process. The values of the the input parameters for the
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next generation are not known a priori. The optimization procedure needs

to account for uncertainties arising from variable in�ow conditions as well

as variability in the �exible tire geometry. This complex baseline geometry

consists of 30 million mesh cells. In order to generate an optimal design under

uncertainty the mesh is deformed locally, creating 5000 unique simulations to

perform. Each simulation (or realization) will be run on our in-house cluster

using 2400 cores; the full design process should take approximately 2 weeks

to complete.

2.5.3 The objectives

In this section the shape of a F1 brake duct is optimized, taking into

account the geometrical uncertainties associated with the rotating rubber

tire and uncertain in�ow conditions. The objectives are to minimize the tire

drag [N] while maximizing the captured mass �ow (kg/s) needed to cool the

brake assembly. A computational mesh consisting of 30 million elements is

considered for a fully detailed 3D wheel model (Figure 2.5). Each simulations

is based on a parallel CFD solver but the presence of geometrical uncertainties

require the use of a local mesh deformation software.

2.5.4 Optimization Variables

A local mesh morphing software, Sculptor, was used to deform the base-

line brake duct originally provided by Toyota Formula 1 (Figure 2.4). Spe-

ci�c control volumes were used to deform the brake duct in three dimensions,

namely i) width of opening ii) height of opening and iii) protrusion length.
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(a) Outer view of tire (b) Inner view of tire

Figure 2.4: Front right tire of the Formula 1 race car used in this study
showing green airfoil strut used to secure tire to the experimental wind tunnel
facility and the outer brake duct (magenta) used to cool the brake assembly

Each design variable was allowed to change by ± 1cm.

2.5.5 Uncertain Variables

Multiple uncertain variables were tested to determine their sensitivity to

output quantities of interest using a DOE (design of experiments) approach.

Some of the uncertain variables were based on the in�ow conditions (i.e. yaw

angle, turbulent intensity, turbulent length scale) while others were based

on geometric characteristics of the tire (i.e. contact patch details, tire bulge

radius, camber angle). Figure 2.7 shows 9 geometric modi�cations that were

performed. Each sub�gure shows the minimum, baseline F1 tire geometry,

and maximum deformation for each uncertain variable.

From the results of purely a one-dimensional perturbation analysis the

turbulence length scale (on the order of 0m ∼ 2m) results in less than a 0.1%
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(a) Isometric view of ground plane show-
ing contact patch

(b) Streamwise cut plane showing mesh
inside rotor passages

(c) Spanwise cut plane showing full
brake assembly

(d) Top view of plane cutting through
the center of the tire

Figure 2.5: Four di�erent views showing the Formula 1 tire mesh

(a) Brake duct width (b) Brake duct height (c) Brake duct length

Figure 2.6: Brake duct optimization variables
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(a) Contact patch width (b) Contact patch height (c) Contact patch stream-
wise location

(d) Contact patch span-
wise location

(e) Contact patch yaw an-
gle

(f) Tire bulge radius

(g) Contact patch plat-
form height

(h) Tire compression (i) Tire yaw angle

Figure 2.7: Subset of uncertain variables tested for sensitivity in output
quantities of interest
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di�erence in both the mass �ow rate through the brake duct and overall

drag on the tire. Conversely, both the mass �ow rate and tire drag are very

sensitive to the turbulence intensity. The mass �ow rate decreased by 7.8%

compared to the baseline (less cooling) with 40% turbulence intensity, and

the tire drag increased by 7.2% with 40% turbulence intensity. This analysis

con�rms that the car performance decreases with `dirty' air compared to

`clean' air. The sensitivity of the output quantities of interest caused by the

tire yaw angle is shown in the �rst row of Table 2.1. The remaining rows in

Table 2.1 show the sensitivity of mass �ow rate and drag force to geometric

characteristics, speci�cally contact patch, tire bulge radius, tire compression,

and brake duct dimensions.

In the end, the three most sensitive uncertain variables, namely the tire

contact patch width, tire yaw angle, and turbulence intensity were selected

for the optimization under uncertainty study. The tire contact patch width

was able to expand and contract up to 1cm, the tire yaw angle varied between

± 3◦, and the turbulence intensity varied between 0% ∼ 5%.

2.5.6 Deterministic Pareto Front

The Pareto frontier showing the optimal brake duct designs under no un-

certainty are shown in Figure 2.8. Ten generations, which equates to 450

simulations, were needed to eventually construct the Pareto frontier. Fur-

ther details about the optimization strategy can be found in Table 2.2. This

table reports the settings of the NSGA-II algorithm adopted to drive the

main phases of the genetic algorithm: selection (e.g. mating pool, parent

70



CHAPTER 2. OPTIMIZATION AND UNCERTAINTY

Table 2.1: Mass �ow rate into the brake duct and drag force on the tire
sensitivity for 9 uncertain variables and 3 design variables

Deformation Mass Flow Rate Change Drag Force Change

Contact Patch Width [cm]

-2 -0.65% 3.65%
-1 -0.34% 1.87%
1 0.39% -2.10%
1.5 0.72% -4.24%

Contact Patch Height [cm]

-3 -0.28% -1.79%
-2 -0.21% -1.11%
-1 -0.12% -0.47%
0.5 0.08% 0.18%

Contact Patch Streamwise Location [cm]
-3 0.78% -4.73%
-2 0.40% -1.92%
1 -0.13% 0.57%

Contact Patch Spanwise Location [cm]
-2 0.22% -1.34%
-1 0.04% -0.20%
1 0.12% -0.41%

Contact Patch Yaw Angle [◦]

-15 0.66% -6.08%
-10 0.31% -2.50%
10 -0.02% 0.02%
15 0.24% -1.99%

Tire Bulge Radius [cm]
-2 0.08% 0.38%
-1.5 0.06% 0.39%
1 0.01% -0.51%

Contact Patch Platform Height [cm]

-0.15 0.49% -3.28%
-0.13 0.46% -3.12%
-0.11 0.41% -2.72%
-0.09 0.35% -2.44%
-0.07 0.29% -1.90%
-0.05 0.22% -1.31%
-0.03 0.17% -0.98%
0.3 -0.21% 0.88%

Tire Compression [cm] -1 -2.06% -6.44%

Tire Yaw Angle [◦]
-10 1.93% -1.03%
10 -4.48% 6.12%

Brake Duct Width [cm]
-1 4.14% 1.46%
1 -13.66% -0.43%

Brake Duct Height [cm]
-1 -5.32% 0.98%
1 3.33% 0.12%

Brake Duct Length [cm]
-1 -1.83% -0.11%
1 -2.85% 0.13%
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Figure 2.8: Deterministic Pareto front (left); the green, blue, magenta, and
gray brake ducts in the sub�gure on the right correspond to the trade-o�,
max cooling, minimum drag, and baseline con�gurations respectively

sorting)[63] and reproduction (e.g. crossover and mutation)[63, 64]. Leland

(see chapter 5) was used to handle the job scheduling and management and

as a result the time required to complete the 450 simulations was 2 days com-

pared to about 4 days without using Leland, which requires submitting jobs

manually to the job queuing system using a constant number of processors.

Among the Pareto set (see Figure 2.8), the design that achieves the high-

est mass �ow rate is shown in blue and the design that achieves the lowest

overall drag on the tire is shown in magenta. The green design is labeled as

the trade-o� design since this design tries to achieve the highest mass �ow

through the inlet of the brake duct while minimizing the total drag on the

tire. The baseline geometry, reported in red, was shown not to be on the

Pareto front in the deterministic setting.
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Table 2.2: Multi-objective optimization strategy

Parameter Value

Population size [-] 50
Crossover fraction [-] 0.90
Mutation fraction [-] 0.10
Parent sorting Tournament between couples
Mating Pool [%] 50
Crossover mode Simulated Binary Crossover (SBX)
Generations [-] 10

2.5.7 Analysis under Uncertainty of Pareto Front

In the previous results once the tire con�guration and other input con-

ditions are speci�ed, the solution is uniquely determined without vagueness.

On the other hand, when uncertainties are present, the results have to be ex-

pressed in a non-deterministic fashion either probabilistically or as ranges of

possible outcomes. The approach we followed here using the SSC is strictly

non-intrusive, in the sense that the existing tools are used without modi�-

cations, but the solution - or more precisely, their probability distributions

- are constructed performing an ensemble of deterministic analyses. Fur-

ther details about the uncertainty quanti�cation strategy can be found in

Table 2.3.

The variability of the four geometries described above (namely trade-o�,

highest mass �ow, lowest drag, and baseline) as a result of the uncertainties

in the the tire yaw angle, turbulence intensity, and contact patch width are

shown in Figure 2.9. The variability of the minimum drag design is highest

shown by the spread of magenta dots, followed by the maximum mass �ow
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Table 2.3: Uncertainty quanti�cation strategy

Parameter Value

UQ algorithm[-] SSC
Maximum number of SSC samples[-] 30
Convergence Threshold on re�nement [-] 1e−3

Number of Monte Carlo samples [-] 1e3

Polynomial order of interpolation [-] automatic up to 6

design shown by blue dots, trade-o� design shown by green dots and baseline

design shown by red dots. The colored dots in this �gure represent the mean

probabilistic values and the black lines represent ± 1 standard deviation of

the probabilistic distribution. It is evident in this �gure that the optimal

designs, on average, move away from Pareto frontier, decreasing the overall

performance of the race car.

A similar conclusion can be drawn by looking at the probability density of

the drag force and the brake mass �ow (Figure 2.10). The latter shows a large

excursion of both the position of the peak and the support, while the former

is only marginally a�ected. This directional sensitivity under uncertainty

with respect to brake duct mass �ow might suggest that only the brake

duct mass �ow maximization could be treated as a probabilistic objective,

while the drag reduction optimization can be handled using conventional

(deterministic) optimization.

The variability of the four geometries described above (namely trade-o�,

highest mass �ow, lowest drag, and baseline) to uncertainties in the the tire

yaw angle and contact patch width are shown in Figure 2.9. The variability

of the minimum drag design is highest shown by the spread of magenta dots,
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Figure 2.9: Pareto frontier for F1 wheel assembly showing the variability of
the minimum drag (magenta), baseline (red), trade-o� (green), and maxi-
mum cooling (blue) designs to uncertainty in the in�ow conditions and �ex-
ible tire geometry.
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Figure 2.10: PDF's of the output quantities of interest used for this study
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followed by the maximum mass �ow design shown by blue dots, trade-o�

design shown by green dots and baseline design shown by red dots. It is

evident in this �gure that the optimal designs, on average, move away from

Pareto frontier, decreasing the overall performance of the race car.

2.6 Lessons learned

The analyzed F1 optimization problem proved that the optimization pro-

cess cannot be decoupled from the uncertainty quanti�cation process since

the solutions identi�ed above move away from the deterministic Pareto in

presence of uncertainty. The cost of performing complex CFD simulation

on high performance computing is totally vanished when the natural vari-

ability of several parameters is considered. This is the main point on which

we focus in the rest of this thesis: the coupling between uncertainty quan-

ti�cation and optimization. Since all the information that can be obtained

from the propagation of the uncertainties can be summarized in the PDFs

(or the CDFs) of the objectives, the use of these informations to build a tight

coupling with optimization will be explored and novel algorithms presented

with respect to the classical frameworks. Indeed we move apart from the

classical approaches for optimization under uncertainty that adopt the same

deterministic procedures and algorithms while using the statistical moments

of the targets as deterministic objectives. In the next chapter we consider

the single-objective formulation of the problem of optimization under uncer-

tainty, while in chapter 4 we will extend the proposed methodologies to the

multi-objective framework.
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Chapter 3

Single-Objective Optimization

under Uncertainty

Optimization under uncertainty is an extension of conventional optimiza-

tion procedures and aims at taking in account uncertainty in the design

procedure. In this chapter it will be introduced a new framework character-

ized by the use of all the possible informations in the probabilistic domain,

namely the Cumulative Distribution Function (CDF), which represents the

identity card of a design analyzed under uncertainty. Due to this peculiarity

this approach sets itself apart from the conventional methods which rely on

the use of few statistical moments as deterministic attributes in replacing the

objectives of the optimization process. Additionally the use of an area metric

leads to a multi-objective methodology which allows an a posteriori selection

of the candidate design based on risk/opportunity criteria of the designer.
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3.1 The mathematical formulation

The concept of robust optimization is intuitively connected to the idea

that in the presence of (input) uncertainty the optimal design should be rel-

atively insensitive (small output uncertainty). We will review the commonly

used robustness principles before introducing a novel, and more general, def-

inition.

Let's consider an objective function f(z, ξ) where z ∈ Z represents a

design variable and ξ ∈ Ω a random variable (which can be either a design

variable or another parameter in the problem). A minimization problem is

formulated in general as: �nd z ∈ Z such that

f(z, ξ) ≤ f(z, ξ) ∀z ∈ Z, ∀ξ ∈ Ω (3.1)

In a probabilistic framework for uncertainty analysis (such as the one

introduced earlier) the problem is that f(z, ξ) is a random quantity induced

by ξ. It is possible to introduce an operator Φ, applied to f(z, ξ) in order to

obtain a deterministic attribute of it, reducing the problem to �nding z ∈ Z
such that

Φ(f(z, ξ)) ≤ Φ(f(z, ξ)) ∀z ∈ Z (3.2)

Di�erent de�nition for Φ might be used, for example Φ(f(z, ξ)) are the

statistical moments of f . The simplest choice is obviously the expected value

of f (referred to as Mean Value Optimization [72] ):

Φ (f(z, ξ)) =

∫
Ω

f(z, ξ)Ψξdξ = µ(z) (3.3)
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where Ψξ is the probability density function of ξ. The main advantage of this

approach is that the mean is the fastest converging statistical moment, mean-

ing that relatively few samples (e.g. Latin Hypercube Sampling, Stochastic

Collocation, etc.) are required to obtain an accurate prediction. On the

other hand, the mean is not a su�cient representation of a complete proba-

bility distribution. Indeed other (higher order) moments can be used (Mean

Value Penalty Optimization [73, 74]):

Φ (f(z, ξ)) = w1µ(z) +

(
N∑
k=2

wkm
k (f(z, ξ))

)1/2

(3.4)

where w1, ..., wN are (tunable) weights, N is the maximum order of statistical

moments considered and mk (f(z, ξ)) is the k-th order moment of f(z, ξ)

mk (f(z, ξ)) =

∫
Ω

(f(z, ξ)− µ(z))kΨξdξ (3.5)

which leads to (for w1 = w2 = 1 and N = 2)

Φ (f(z, ξ)) = µ(z) + σ(z) (3.6)

where σ2 (z) is the variance of f(z, ξ). In this case the optimization under

uncertainty seeks to minimize the mean plus standard deviation, giving a

formal and mathematically sound construction for the idea of insensitive

design. The main advantage of this methodology is that additional (but still

not su�cient) informations about the probability distribution could be used

to shape an appropriate objective function while, on the other hand, the

weights required could be not known precisely.
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A di�erent, extremely conservative, approach is theMinimax Principle

[72] where the problem is �nding z ∈ Z such that

sup
Ω
f(z, ξ) ≤ sup

Ω
f(z, ξ) ∀z ∈ Z (3.7)

This approach seeks to protect against the worst-case scenario and the main

drawback is the related excess of conservatism.

Despite these fundamental approaches, the widely adopted methods in

practical applications come from the concepts of i) constrained optimiza-

tion and ii) multi-objective optimization. In the �rst case, interpreted as a

Constrained Optimization [74], the problem is to �nd z ∈ Z such that{
µ(z) ≤ µ(z) ∀z ∈ Z
s.to: mk (f(z, ξ)) ≤ Ck ∀k ∈ 2, N

(3.8)

where Ck is a constraint on the order k central moment of f(z, ξ). Again for

N=2 this procedure reduces in �nding z ∈ Z such that{
µ(z) ≤ µ(z) ∀z ∈ Z
s.to: σ2 (z) ≤ σ2∗ (3.9)

where σ∗ is the maximum value allowed for the variance. The main advantage

of this methodology is to inject additional informations about the probability

distribution trough a constraint based on higher order statistical moments.

It easy to notice, as drawbacks, that i) the constraint could not be feasible

or ii) the constraint may lead to skip a design superior to the others for

any realization of the random variable. As �nal strategy it is possible to

formulate the problem as a Multi-objective Approach[73] in the form{
min
Z
µ(z)

min
Z
mk (f(z, ξ)) ∀k ∈ 2, N

(3.10)
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which for N=2 becomes {
min
Z
µ(z)

min
Z
σ2 (z)

(3.11)

The main advantage of this approach is an a posteriori decision making

of the candidate design, indeed di�erent statistical moments are used as

independent trade-o� objectives. In this case a challenge is posed by the

increase in dimensionality since an original M multi-objective problem turns

into aM×N multi-objective problem, where N is the number of the statistical

moments used in this formulation. Even in this case few statistical moments

could not be representative of the full probability distribution. Additionally

this methodology requires decision making criteria on the Pareto Front to

select the candidate design. The presence of correlations between statistical

moments could violate the underlying hypotheses of independence of the

objectives.

Figure 3.1: Literature review of Optimization under Uncertainty
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3.2 A novel CDF based approach

In the approaches described above the objective function is transformed

into a di�erent form in order to eliminate its random character (reduce the

dependency on ξ). One of the consequences is that typically only the mean

and the variance of the objective function are considered in the process, thus

potentially eliminating important characteristics of its probabilistic descrip-

tion (only in special, simple cases, the mean and the variance completely

describe the overall distribution, e.g Gaussian). The goal of the approach

proposed here [82] is to i) avoid any assumptions on the type of the objec-

tive function i.e. Gaussianity and ii) avoid increasing the dimensionality of

problem (as in the multiobjective robust optimization).

Given the expectations of the designer a desired template probabilistic

distribution, τ(z), can be de�ned a priori in order to guide the optimization

process. Every actual design, being subject to uncertainty, will be repre-

sented by a distribution with a non-zero support. The main concept we

introduce is to identify a measure of the di�erence between the CDFs of the

template and any other design to direct the optimization process. Many

possible measures of distance between distributions can be considered; here

we use the area metric [23], also referred to as the Minkowski L1 metric; the

area between the CDF of the template and the CDF of the candidate design,

F(z), is the measure of the mismatch between them and gives information

about the robustness of the candidate design (RI - Robustness Index)

RI(z) =

∫
Ω

|F (z)− τ(z)| dξ (3.12)
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The robust optimum can be formulated as to �nd z ∈ Z such that

RI(z) ≤ RI(z) ∀z ∈ Z (3.13)

which for RI(z)=0 returns the ideal design corresponding to the assumed

template.

The RI generalizes the deterministic comparison of scalar values that have

no uncertainty or the di�erence between statistical moments (as used in many

robust optimization algorithms); if both the template and the candidate

design are deterministic, the CDFs are Dirac functions and in this case the

area is equal to the di�erence between two scalar values. The RI will not to

be overly sensitive to minor discrepancies in the distribution tails (assuming

the area is �nite), because it re�ects the full distribution of the scalar point

values. In particular, it is clearly not merely a measure of the di�erence

in the means and/or variances, but takes into account the overall di�erence

between distributions. Another useful property of this measure, is that its

units are are identical to the objective function units[23].

In Figure 3.2 a uniform distribution is assumed as template of the robust

optimization process. Using the area metric it is possible to state that the

candidate Beta distribution is closer to the template than the candidate LogN

distribution.

The previous de�nition can be used in solving the problem in Equation

3.1. Let's assume a reference solution, namely the RAO (Reference Absolute

Optimum), which we de�ne as the inferior limit of the objective function and

which corresponds to an ideal deterministic optimum
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RAO = inf
Z×Ω

f(z, ξ) (3.14)

The ideal solution of a problem of optimization under uncertainty is a

design that ensures the lowest possible value of the objective function (the

RAO) with no sensitivity on the uncertain quantities.

In terms of the Cumulative Density Function (CDF) the RAO is rep-

resented by a vertical line and assumed to be a reference for the proposed

method, hence the Equation 3.12 becomes

RI(z) =

∫
Ω

|F (z)− δz(RAO)| dξ = µ(f(z, ξ))−RAO (3.15)

where δz is the Dirac delta function.

Using the concept of area measure, the robust optimum can be formulated

to �nding z ∈ Z such that

RI(z) ≤ RI(z) ∀z ∈ Z (3.16)

which for RI(z)=0 returns the ideal design corresponding to the RAO.

3.3 Global and local robustness

In a large number of applications the minimization problem in (3.1) could

have no global solution ∀ξ ∈ Ω. If we restrict the global problem to a subspace

Ω ∈ Ω it could be possible to �nd a solution for the local problem: �nd z ∈ Z
such that

f(z, ξ) ≤ f(z, ξ) ∀z ∈ Z, ∀ξ ∈ Ω (3.17)
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Due to this consideration it is possible to generalize the concept of Robustness

Index introduced in Section 3.2. We introduce a local Robusteness Index,

RIba(z)

RIba(z) =

∫ b

a

|F (z)− δz(RAO)| dξ (3.18)

where a, b ∈ [0, 1] are two probability thresholds on the Cumulative Dis-

tribution Function. Considering N non overlapping partitions Ωi of Ω such

that
∑N

1 Ωi = Ω, due to the additive propriety of the area measure

N∑
1

RIΩi(z) = RI(z) (3.19)

Considering the partition of Ω = [0, 1] in Ω1 = [0, 0.2], Ω2 = [0.2, 0.8] and

Ω3 = [0.8, 1] of Figure 3.4, due to the previous considerations

RI0.2
0 (z) +RI0.8

0.2 (z) +RI1
0.8(z) = RI(z) (3.20)

Considering the �rst partition of Ω it is possible to deduct that

RI0.2
0 (U(0, 1)) < RI0.2

0 (β(2, 2)) < RI0.2
0 (β(4, 4)) (3.21)

A RIp10 (z) based optimization could be interpreted as an optimization strat-

egy in which we distinguish the candidate designs based on the favorable tail

of the distribution: in this example the uniform distribution provides the

greatest probability to manifest a behavior closer to the RAO in Ω1. Indeed

in several contexts ensuring at least a certain probability of excellent designs

could be the design goal of a technological process. Similarly it is possi-

ble to follow a strategy that includes the minimization of the probability of

extremely poor realizations - a typical goal in reliability-based optimization.
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Considering the second partition of Ω it is possible to deduct that

RI0.8
0.2 (U(0, 1)) = RI0.8

0.2 (β(2, 2)) = RI0.8
0.2 (β(4, 4)) (3.22)

A RIp2p1 (z) based optimization could be interpreted as percentile based strat-

egy in which the tails of the distributions are not considered due to di�culties

in convergence or admissible tolerances : in this example all the distributions

have the same behavior in Ω2 due to symmetry.

Considering the last partition of Ω it is possible to deduct that

RI1
0.8(U(0, 1)) > RI1

0.8(β(2, 2)) > RI1
0.8(β(4, 4)) (3.23)

A RI1
p2

(z) based optimization could be interpreted as a generalization of the

Minimax Principle in which the worst case scenario is replaced by the

unfavorable tail of the distribution: in this example the β(4, 4) distribution

present the greatest probability to manifest a behavior closer to the RAO in

Ω3.

The additive propriety of the RI leads to the multi-objective approach

that will be introduced in the next Section.

3.4 A CDF partition based approach

In nontrivial multi-objective problems it is not possible to �nd a unique

solution that simultaneously optimizes each objective: when attempting to

improve an objective further, other objectives su�er as a result. A tentative

solution is called non-dominated, Pareto optimal, or Pareto e�cient if an

improvement in one objective requires a degradation of another. Given the
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N non overlapping partitions Ωi of Ω such that
∑N

1 Ωi = Ω, it is possible to

de�ne in mathematical terms the multi-objective problem as

min
Z

[RIΩ1
(z), RIΩ2

(z), ..., RIΩN
(z)]T (3.24)

where [RIΩ1
(z), RIΩ2

(z), ..., RIΩN
(z)]T is a vector of independent objec-

tives.

Finding such non-dominated solutions, and quantifying the trade-o�s in sat-

isfying the di�erent objectives, is the goal when setting up and solving the

multi-objective optimization problem. Due to the additive property of the

area metric it is interesting to notice an important consequence on the a

posteriori choice of the candidate design from the Pareto Front: the Best

E�cient Point on the Pareto Front, characterized by a minimum value of∑N
1 RIΩi

(z), corresponds to a single objective optimization in Ω.

3.5 Single-objective analytic test functions

In this section the e�ectiveness of the CDF partition based multi-objective

approach introduced in Section 3.4 is veri�ed on two analytic test cases,

namely the Rosenbrock [76, 77] and the Goldstein-Pricek [78] functions.

These functions are well-know test cases for deterministic optimization al-

gorithms. In the follow we extend these deterministic problems to robust

optimization test cases by considering a subset of the design variables as

uncertainties characterized by assigned distributions of probability.
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3.5.1 Rosenbrock function

The two-dimensional Rosenbrock function is a popular test problem for

optimization algorithms due to the presence of several local minima. In

Eldred [79] it was shown to be a challenging problem for certain UQ meth-

ods (especially local reliability methods), because a particular response level

contour involves a highly nonlinear curve that may encircle the mean point

(leading to multiple most probable points of failure in local reliability meth-

ods).

The function is a fourth-order polynomial

f(x1, x2) = 100(x2 − x2
1)2 + (1− x1)2 (3.25)

A three-dimensional plot of this function is shown in Figure 3.5. Taking x1

to be a design variable with bounds [-2,2] and taking x2 to be a standard

normal random variableN (µ = 0;σ = 0.2) it is possible to state the e�ective-

ness of the multi-objective approach. Considering the three non overlapping

partitions Ω1 = [0, 0.1], Ω2 = [0.1, 0.9] and Ω1 = [0, 1] in Ω = [0, 1] such that∑N
1 Ωi = Ω, it is possible to de�ne in mathematical terms the multi-objective

problem as

min
Z

[RI0.1
0 (z), RI0.9

0.1 (z), ..., RI1
0.9(z)]T (3.26)

The NSGA-2 algorithm[63] has been used to obtain the non dominated

solutions shown in Figure 3.7.a when x2 = N (µ = 0;σ = 0.2) . Further

details about the optimization strategy can be found in Table 3.1.
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Table 3.1: Single-objective optimization strategy

Parameter Value

Population size [-] 50
Crossover fraction [-] 0.90
Mutation fraction [-] 0.10
Parent sorting Tournament between couples
Mating Pool [%] 50
Crossover mode Simulated Binary Crossover (SBX)[64]
Generations [-] 1000
Uncertainty Quanti�cation Monte Carlo
Number of samples [-] 5× 103

The projections of the Pareto Front on the three Cartesian planes have

been reported in Figures 3.7.b-d.

The Pareto Front reveals that, due to the separation of the di�erent ob-

jectives, di�erent optimal solutions can be found in the restrictions of the

probability space Ω. Among the non-dominated solutions the more interest-

ing ones, corresponding to the minimum values assumed by the objectives

have been marked on the Pareto Front. As mentioned in Section 3.4, the

single-objective optimization strategy in Ω is obtained as a free result of the

multi-objective optimization strategy and corresponds to the Best E�cient

Point (BEP) [80] identi�ed by the min RI solution.

The CDFs in all the partitions of Ω have been reported in Figures 3.8.a-

d. It is evident the superiority of a candidate CDF in the corresponding

probability restriction in which it was optimized. According to the optimiza-

tion goal it will be possible to state a posteriori the optimal solution of the

problem. In the case in which a 10% of events closer to RAO want to be
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ensured by the technological process, the design corresponding to min RI0.1
0

would be the one preferred by the designer. In the case in which the priority

is to reduce the unfavorable tail of the distribution corresponding to under

performing designs the solution corresponding to min RI1
0.9 would be the one

adopted by the designer. If the tails of the distributions are not important

to the designer the solution corresponding to min RI0.9
0.1 would be the best

trade-o� solution to this purpose.

3.5.2 Goldstein-Price function

The Goldstein-Price function is a global optimization test function. It

has only two independent variables and the following de�nition

f(x1, x2) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2]·

[30 + (2x1 − 3x2)2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2]

(3.27)

A three-dimensional plot of this function is shown in Figure 3.6, where both

x1 and x2 range in value in [-2,2].

The Goldstein-Price global minimum equal to f(z, ξ) = 3 is obtainable

for (x1, x2) = (0,−1). Taking x1 to be a design variable with bounds [-2,2]

and taking x2 to be a standard normal random variable N (µ = 0;σ = 0.2),

it is possible to challenge the multi-objective approach in the same fashion

we did for the Rosenbrock function. The non dominated solutions are shown

in Figure 3.9.a. The projections of the Pareto Front on the three Cartesian

planes have been reported in Figures 3.9.b-d. The structure of the Pareto

Front is more complex with respect to the Rosenbrock test function and in
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this example the result of a single objective optimization in Ω equals the

solution of the problem restriction in Ω3 as reported in Table 3.2.

The CDFs in all the partitions of Ω have been reported in Figures 3.10.a-

d. It is interesting to notice that the candidate design corresponding to

RI0.1
0 highly over-perform all the others in Ω1 but shows a very long under-

performing tail. On the other end the design corresponding to min RI is

characterized by the shortest under-performing tail (e.g. the worst perfor-

mance is 4 times smaller than the previous design). In this example it is

clearly evident that the multi-objective approach, giving the possibility of an

'a-posteriori' selection of the candidate design, allows to choose among very

di�erent solutions according to the designer's goal.

The relevant solutions corresponding to the previous analyzed problems

of design under uncertainty have been summarized in Table 3.2.

Table 3.2: Relevant candidate designs

candidate design Rosenbrock function Goldstein Price's function

min RI0.1
0 x1 = 0.5139 x1 = −0.6474

min RI0.9
0.1 x1 = 0.2130 x1 = 1.4548

min RI1
0.9 x1 = 0.0732 x1 = 1.1918

min RI x1 = 0.1798 x1 = 1.1918

3.6 Lessons learned

In this chapter a novel de�nition has been proposed to optimize in pres-

ence of uncertainty based on the use of a desired template distribution. The

main advantage of this approach is the use of all possible information in the
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probabilistic domain, summarized in the CDFs of the designs. The capabil-

ity to handle as single-objective problem with tools of the multi-objective

framework ( e.g. the NSGA-II algorithm) appeared very promising. Indeed

the multi-objective approach was proven to o�er an 'a-posteriori' selection

of the candidate design based on the way in which the designer contemplate

uncertainty in his vision of the optimization problem. In future works it will

be assessed the robustness of this method when the CDF of the objective

function is poorly resolved.

The concepts introduced here will be extended to multi-objective opti-

mization in the next chapter.
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(a) The shaded area is the RI for Beta

(b) The shaded area is the RI for LogN

Figure 3.2: Probabilistic distance from a Uniform template
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(b) The shaded area is the RI for candidate design B

Figure 3.3: CDF based measure of robustness
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Figure 3.6: The Goldstein-Price test function
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Figure 3.7: Rosenbrock function. Pareto Front for x2 = N (µ = 0;σ = 0.2)
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(c) CDFs in Ω2 ∈ Ω
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Figure 3.8: Rosenbrock function. CDFs for x2 = N (µ = 0;σ = 0.2)
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Figure 3.9: Goldstein-Price function. Pareto Front for x2 =
N (µ = 0;σ = 0.2)
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Figure 3.10: Goldstein-Price function. CDFs for x2 = N (µ = 0;σ = 0.2)
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Chapter 4

Multi-Objective Optimization

under Uncertainty

The de�nitions introduced in the previous chapter for single-objective

problems are now extended to multi-objective optimization problems. Fur-

thermore the NSGA-II algorithm, described in chapter 2, is generalized to

work in tight coupling with uncertainty quanti�cation algorithms. A process

of blade design in presence of insect contamination on the AOC 15/50 wind

turbine is presented as an application of this multi-objective framework.

4.1 The mathematical formulation

Let's consider a set of objective functions [f1(z, ξ), f2(z, ξ), ..., fM(z, ξ)]

where z ∈ Z represents a vector of design variables and ξ ∈ Ω a vector of

random variables. In nontrivial multi-objective problems it is not possible to

�nd a unique solution that simultaneously optimizes each objective: when

attempting to improve an objective further, other objectives su�er as a re-

sult. A tentative solution is called non-dominated, Pareto optimal, or Pareto
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e�cient if an improvement in one objective requires a degradation of another.

It is possible to de�ne in mathematical terms the multi-objective problem as

min
Z

[f1(z, ξ), f2(z, ξ), ..., fM(z, ξ)]T (4.1)

where [f1(z, ξ), f2(z, ξ), ..., fM(z, ξ)]T is a vector of M independent objectives.

Finding such non-dominated solutions, and quantifying the trade-o�s in sat-

isfying the di�erent objectives, is the goal when setting up and solving the

multi-objective optimization problem.

In a probabilistic framework for uncertainty analysis the problem is that

each fi(z, ξ) is a random quantity induced by ξ. It is possible to introduce

an operator Φ, applied to fi(z, ξ) in order to obtain a deterministic attribute

of it, reducing the problem as

min
Z

[Φ(f1(z, ξ)),Φ(f2(z, ξ)), ...,Φ(fM(z, ξ))]T (4.2)

Di�erent de�nition for Φ might be used, for example Φ(fi(z, ξ)) can be

the statistical moments of fi. The simplest choice is obviously the expected

value of fi (referred to as Mean Value Optimization [72] ):

Φ(fi(z, ξ)) = µi(z) =

∫
Ω

fi(z, ξ)Ψξdξ (4.3)

where Ψξ is the probability density function of ξ. Using this approach the

optimization problem can be formulated as

min
Z

[µ1(z), µ2(z), ..., µM(z)]T (4.4)
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and the resulting non-dominated solutions will be referred to as Mean

Value Pareto Front.

The main advantage of this approach is that the mean is the fastest con-

verging statistical moment, meaning that relatively few samples (e.g. Latin

Hypercube Sampling, Stochastic Collocation, etc.) are required to obtain

an accurate prediction. On the other hand, the mean is not a su�cient

representation of a complete probability distribution.

Indeed other (higher order) moments can be used (Mean Value Penalty

Optimization [73, 74]):

Φ (fi(z, ξ)) = wi1µi(z)) +

(
NM∑
k=2

wikm
k (fi(z, ξ))

)1/2

(4.5)

where wi1, ..., w
i
NM

are (tunable) weights, NM is the maximum order of sta-

tistical moments considered and mk (fi(z, ξ)) is the k-th order moment of

fi(z, ξ)

mk (fi(z, ξ)) =

∫
Ω

(fi(z, ξ)− µi(z)k)Ψξdξ (4.6)

which leads to (for wi1 = wi2 = 1 and NM = 2)

Φ (fi(z, ξ)) = µi(z) + σi(z) (4.7)

where σi (z) is the standard deviation of fi(z, ξ). In this case the optimization

under uncertainty seeks to minimize the mean plus standard deviation, giving

a formal and mathematically sound construction for the idea of insensitive

design.

Using this approach the optimization problem can be formulated as
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min
Z

[µ1(z) + σ1(z), µ2(z) + σ2(z), ..., µM(z) + σM(z)]T (4.8)

and the resulting non-dominated solutions will be referred to as Mean

Value Penalty Pareto Front.

The main advantage of this methodology is that additional (but still not

su�cient) informations about the probability distribution could be used to

shape an appropriate objective function while, on the other hand, the weights

required could be not known precisely.

A di�erent, extremely conservative, approach is theMinimax Principle

[72]. Using this approach the optimization problem can be formulated as

min
Z

[sup
Ω
f1(z, ξ), sup

Ω
f2(z, ξ), ..., sup

Ω
fM(z, ξ)]T (4.9)

and the resulting non-dominated solutions will be referred to asMinimax

Pareto Front.

This approach seeks to protect against the worst-case scenario and the main

drawback is the related excess of conservatism.

Despite these fundamental approaches a widely adopted method in prac-

tical applications come from the concepts of constrained optimization [74].

Using this approach the optimization problem can be formulated as

{
minZ [µ1(z), µ2(z), ..., µN(z)]T

s.to: mk (fi(z, ξ)) ≤ Ci
k ∀k ∈ [2, NM ],∀i ∈ [1,M ]

(4.10)

where Ci
k is a constraint on the order k central moment of fi(z, ξ). The

resulting non-dominated solutions will be referred to as Constrained Mean
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Value Pareto Front.

The main advantage of this methodology is to inject additional informations

about the probability distribution trough a constraint based on higher order

statistical moments. It easy to notice, as drawbacks, that i) the constraint

could not be feasible or ii) the constraint may lead to skip a design superior

to the others for any realization of the random variable.

While for a single objective problem it is widely adopted the Multi-

objective Approach [73], where di�erent statistical moments are used as

independent trade-o� objectives, in this case a challenge is posed by the

increase in dimensionality since an original M multi-objective problem turns

into a M × NM multi-objective problem. Indeed a M × NM dimensional

Pareto Front is di�cult to handle in practical applications.

A straightforward extension of the CDF partition based approach (see

Section 3.4) is directly obtained considering a vectorial counterpart Φ(·) =

(Φ1(·), ...,ΦNP (·)) of the operator Φ(·) where the NP are non overlapping

partitions used to evaluate the Robustness Index (see Section 3.3).

4.2 The generalization of the NSGA-II sorting

operators

In this section we extend the concept of Robustness Index of Section

3.2 to multi-objective optimization problems using the concept of Pareto

dominance, speci�cally in the context of Genetic Algorithms (GAs) [81]. In

the NSGA-II algorithm [63] each individual in the population is assigned a

numerical rank based on �tness, which is used together with a crowding
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distance (e.g. a measure of how close an individual is to its neighbors) in

the sorting procedure. Hence in this section we want to obtain probabilistic

counterparts of these mechanisms that would generalize the GA for robust

optimization while reverting to the original operators when the objective

functions are deterministic [82].

4.2.1 A probabilistic de�nition of the rank

We recall that the RI is a measure of the di�erence between the CDFs

of the desired target of the optimization under uncertainty process and any

other design (see Section 3.2).

1. For each generation we assume the reference solution to be the one that

dominates all others in the sense of Pareto (i.e. rank equal to 1) and

assume its CDF to be deterministic.

2. Assuming an ensemble of realizations of each fi(z, ξ) obtained by sam-

pling the uncertainties in Ω, for each design it is possible to rank the

N individuals in a candidate population z1, z2, ..., zj, ..., zN using the

concept of Pareto dominance.

3. Repeating the same procedure for each realization of the uncertain

variables, ξ ∈ Ω, we can construct the CDF of the rank, R(z), for each

one of the candidate designs.

4. Using the RI is possible to obtain a measure of the probabilistic distance

of R(z) from the complete probabilistic domination in the sense of
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Pareto as follows

RI(z) =

∫ 1

0

|R(z)− δz(1)| dξ = µ(R(z))− 1

where δz(1) is the Dirac delta function centered on the complete prob-

abilistic domination in the sense of Pareto.

5. The previous measure can be used to rank the j-th candidate design

(i.e. probabilistic rank)

jPrank = 1 +RIj

The probabilistic rank likely results in a real number if the distribution of

R(z) is not deterministic. The use of real numbers instead of integer numbers

in the ranking procedure allows to inject additional information about the

uncertainties inside the genetic algorithm, leading to a tight coupling with

the uncertainty quanti�cation process.

4.2.2 A probabilistic de�nition of the crowding distance

The basic idea behind the crowing distance is �nding the euclidean dis-

tance between each individual in a front based on their M objectives in the

M -dimensional hyper space. The crowding-distance computation requires

sorting the population according to each objective function value in ascend-

ing order of magnitude. Thereafter, for each i-th objective function, the

boundary solutions (solutions with smallest and largest function values) are

assigned an in�nite distance value. All other j-th intermediate solutions are

assigned a distance value, jdistance, equal to the absolute normalized di�erence

in the function values of two adjacent solutions
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(a) The RI of design1 is 2.35

(b) The RI of design2 is 2

Figure 4.1: The use of Robustness Index as probabilistic rank
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jdistance =
M∑
i=1

f ij+1 − f ij−1

f imax − f imin
(4.11)

where f ij+1 and f ij−1 are the i-th objectives for the solutions which re-

spectively follow and precede the j-th after the sorting procedure and f imax

and f imin are respectively the maximum and the minimum values of the i-th

objective in the current population.

While in the deterministic case a solution is represented by a point in

the M dimensional hyper space of the objectives, in the probabilistic case

a solution is fully characterized by the probability distribution of the ob-

jectives and represented by a cloud of realizations. Hence we can de�ne a

probabilistic crowding distance as follows

1. For each i-th objective we sort the population z1, z2, ..., zj, ..., zN ac-

cording to the mean of fi(z, ξ)

2. We compute the distance

jPdistance
i

=
µ(f ij+1)− µ(f ij−1)

µ(f imax)− µ(f imin)

3. Repeating the same procedure for each objective we can estimate the

probabilistic crowding distance

jPdistance =
M∑
i=1

jPdistance
i

=
M∑
i=1

µ(f ij+1)− µ(f ij−1)

µ(f imax)− µ(f imin)

4.2.3 A probabilistic Crowded-Comparison Operator

Using the previously described mechanisms we want to generalize the

crowded-comparison operator (≺n) which guides the selection process at the
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various stages of the algorithm toward a Pareto optimal front. Assume that

every j-th individual in the population has three attributes:

1. integer part of the probabilistic rank, (
⌊
jPrank

⌋
);

2. non integer part of the probabilistic rank, (jPrank −
⌊
jPrank

⌋
);

3. probabilistic crowding distance, (jPdistance).

It was noticed that selecting two out of these three informations to create a

partial order (crowded-comparison-operator,(≺n) ) similar to the one of the

NSGA-II algorithm, would have led to the following problems

1. using the integer part of the probabilistic rank as �rs selection criterion

and the non integer part of the probabilistic rank as second selection

criterion leads to a clustering of solution around the one characterized

by the highest value of the probabilistic rank (i.e. absence of diversity

preservation)

2. using the integer part of the probabilistic rank as �rs selection criterion

and the non integer part of the probabilistic rank as second selection

criterion leads to a partial order that does not turn back to its deter-

ministic counterpart when designs are deterministic (i.e. absence of

consistency)

3. using the integer part of the probabilistic rank as �rs selection criterion

and the probabilistic crowding distance as second selection criteria en-

sures an uniform spread of solutions but leads to a loss of part of the
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informations obtained from uncertainty quanti�cation (i.e. absence of

tight coupling between optimization and uncertainty quanti�cation)

In the same fashion Deb used the rank to distinguish the solutions among

fronts, we use here the integer part of the probabilistic rank to this purpose

while we use the non integer part of the probabilistic rank and the proba-

bilistic crowding distance to de�ne a secondary classi�cation criterion. In

a particular front, the probabilistic sub-rank is obtained considering the

non integer part of the probabilistic rank and the probabilistic crowding dis-

tance as two trade-o� requirements and performing a sorting based on the

Pareto dominance among them.

Considering the j-th and the j-th individuals, we now de�ne a probabilis-

tic partial order (≺Pn ) as

j ≺Pn j if (
⌊
j
P

rank

⌋
<
⌊
j
P

rank

⌋
)

or ((
⌊
j
P

rank

⌋
= (
⌊
j
P

rank

⌋
) and (j

P

sub−rank < j
P

sub−rank))
(4.12)

In this way we cluster the points according to the probabilistic crowding

distance (i.e. preserving diversity) while ensuring the use of the additional

informations obtained from uncertainty quanti�cation (i.e. tight coupling).

Deterministic consistency: as we mentioned earlier, when all the prob-

ability distributions are deterministic the probabilistic partial order turns in

the deterministic partial order

≺Pn
∂f(z,ξ)
∂ξ

=0, ∀ξ∈Ω

→ ≺n (4.13)
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where

j ≺n j if (jrank < jrank)

or ((jrank = jrank) and (jdistance < jdistance))
(4.14)

considering the original deterministic de�nitions of the rank, jrank, and the

crowding distance, jdistance.

4.3 The algorithm

The presented probabilistic non dominated sorted genetic algorithm (P-

NSGA) is organized in several steps that consist of:

1. Initialization of the population. The initial population is provided

with a random seeding in the subset of the design space, Z;

2. Sampling and objective evaluations in the initial population.

For each candidate design an ensemble of calculations is obtained by

sampling the probability space, Ω, using an uncertainty quanti�cation

methodology (e.g. Monte Carlo). The evaluations of the objective

functions or the corresponding estimations using the di�erent method-

ologies (e.g. Simplex Stochastic Collocation) are stored for each candi-

date design. It is interesting to notice that these samples are generally

used to approximate the statistical moments (i.e. compute integrals)

in all the approaches described in Section 4.1 and then erased, while in

the present methodology them are stored by the algorithm and used in

the sorting procedure;
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3. Probabilistic non-dominated sorting (initial population).The

probabilistic rank and the probabilistic sub-rank are used to sort the

parent population using the objective evaluations at the samples;

Start of the evolution process (the following actions are per-

formed in each generation)

4. Selection of the parents. Parents are selected for reproduction to

generate o�spring. In the same fashion of the original NSGA-II we

uses a binary tournament selection based on the probabilistic crowded-

comparison operator. Tournament selection is carried out until the

pool (i.e. the number of parents to be selected) size is �lled,

5. Crossover and mutation. The selected population generates o�-

springs from crossover and mutation operators (e.g. the original NSGA-

II algorithm uses Simulated Binary Crossover (SBX) and Polynomial

mutation);

6. Sampling and objective evaluations (o�spring population). As

in step 2 but using the o�spring population;

7. Probabilistic non-dominated sorting (intermediate population).The

o�spring population is combined with the current generation popula-

tion. The probabilistic rank and the probabilistic sub-rank are used to

sort this intermediate population using the objective evaluations at the

samples;

8. Selection of the novel population. The new generation is �lled by
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each front subsequently until the population size exceeds the current

population size using the probabilistic crowded-comparison operator.

If an individual does not survive from a generation to the next one its

evaluations of the objective functions at the samples are overwritten

and the corresponding memory reallocated;

End of the evolution process

9. Post-processing of the Pareto Front

4.4 Multi-objective analytic test function

In this section the e�ectiveness of the e�ectiveness of the probabilistic

Crowded-Comparison Operator introduced in Section 4.2.3 is veri�ed on an

analytic multi-objective test case, namely the Fonseca-Fleming function [84].

The Fonseca's two-objectives minimization problem is characterized by a

non-convex Pareto optimal front and a large and non-linear trade-o� curve.

The two-objective functions, f1(~x) and f2(~x), to be minimized are given as

f1(~x) = 1− exp(−∑N
i=1(xi − 1√

n
)2)

f2(~x) = 1− exp(−∑N
i=1(xi + 1√

n
)2)

(4.15)

where taking x1 and x2 to be design variables with bounds [−4, 4] and taking

x3 to be a standard normal random variable N (µ = 0;σ = 0.2) it is possible

to solve the multi-objective problem in presence of uncertainty.

The proposed P-NSGA has been used to obtain the probabilistically non-

dominated shown in Figure 4.2 while the original NSGA-II algorithm has

been used to obtain the deterministic Pareto front, used as reference solution.
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Figure 4.2: Non dominated solutions obtained with P-NSGA in comparison
with deterministic Pareto.

It is interesting to notice that since all the informations about the non-

dominated solutions are stored by the algorithm all the Pareto fronts (e.g.

Mean Value Pareto, Mean Value Penalty Pareto, etc.) can be generated a-

posteriori, while the other methods in Section 4.1 use only partial integral

informations (e.g. several statistical moments, etc.).

The non-dominated solutions have been colored by the probabilistic rank,

which could be either used as an additional selection criterion on the various

Pareto fronts.
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The ensemble of solutions of the individual characterized by the lowest

probabilistic rank (e.g. the closest to the Pareto dominance for each value of

the uncertain variable) has been scattered in the same �gure

In Figure 4.2 it is possible to show that the Pareto fronts generated a-

posteriori with P-NSGA fall on the corresponding fronts obtained using the

NSGA-II algorithm with the mean (Mean Value Pareto) or the mean plus the

standard deviation (Mean Value Penalty) as objectives. The same random

state (e.g. generation of random numbers) has been supposed in the sampling

procedure to give sense to the comparison among the di�erent Pareto fronts,

hence the di�erence among the fronts is only due to the selection process or

objective evaluation and doesn't rely on randomness.

In Figure 4.4 we reported the cumulative distribution functions with error

bounds calculated using Greenwood's formula. Further details about the

optimization strategy can be found in Table 4.1.

Table 4.1: Multi-objective optimization strategy

Parameter Value

Population size [-] 50
Crossover fraction [-] 0.90
Mutation fraction [-] 0.10
Parent sorting Tournament between couples
Mating Pool [%] 50
Crossover mode Simulated Binary Crossover (SBX)
Generations [-] 300
Uncertainty Quanti�cation LHS
Number of samples [-] 200
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Figure 4.3: Non dominated solutions obtained with P-NSGA in comparison
with Mean Value Pareto and Mean Value Penalty Pareto.

4.5 Case study: Multi-Objective Optimization

under Uncertainty of a Wind Turbine

In this section we consider the AOC 15/50 wind turbine that was analyzed

in presence of uncertainties in chapter 1. The insect contamination is con-

sidered as unique source of uncertainty, while the shape of the cross-sections

and the twist and chord distributions are optimized under uncertainty using

the framework presented in the previous sections.
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Figure 4.4: CDFs of the objectives for the solution closest to probabilistic
Pareto dominance.

4.5.1 De�nition of the shape optimization problem

We follow Zhong and Qiao's work [85] and use B-splines to parameterize

the geometry. Speci�cally, we consider �fth order B-splines with a nominal

uniform knot set to represent both the cross-sections of the turbine blades

and the distribution of the chord and twist along the span. The geometry of

the base airfoils is given by the following equations

f = f0 +

nf∑
1

PiNi(X) (4.16)
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g = g0 +

nf+ng∑
nf+1

PiNi(X) (4.17)

where f and g are the upper and bottom surface, f0 and g0 are the initial

bottom and upper surface, Pi are the control points of the B-splines and

Ni(X) are the B-spline basis functions. Three geometrical constraints are

enforced: the �rst is to avoid intersections of the upper and lower airfoil

surfaces, the second is to reduce the changes in curvature in either the upper

or lower surface of the airfoil, and the third is for to enforce a maximum

thickness of the airfoils.

The chord and twist distributions are also parametrized similarly using

B-splines:

θ = θ0 +

nθ∑
1

PiNi(X) (4.18)

chord = chord0 +

nchord∑
1

PiNi(X) (4.19)

where θ and chord are the distribution of twist and chords after optimiza-

tion, θ0 and chord0 are the initial distribution of twist and chords, Pi are

the control points of the B-splines and Ni(X) are the B-spline basis func-

tions. The degree of the B-splines chosen for twist and chord optimization

is three. It should be noted that when all the control points of the airfoil

parametrization and of the chord and twist distribution have zero values the

original shape is returned.

The optimization process (in the absence of uncertainties) uses the NSGA-

II algorithm that considers as objectives the maximization of the averaged

power coe�cient over the last minute of the simulation [-] and the minimiza-
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tion of the Overall Sound Pressure Level [dB] at the observer location.

4.5.2 Deterministic optimization

An initial multi-objective optimization (maximize the power coe�cient

while minimizing the noise) has been carried out ignoring the insect contam-

ination and the resulting Pareto front is shown in Figure 4.5. The baseline

blade was already optimized by the manufacturer but due to the steep char-

acteristics of the Pareto at high power coe�cient it was possible to �nd a

trade-o� design with considerable less noise. The population of the GA con-

tained 40 individuals, which evolved for 50 generations.

Successive simulations were performed accounting for uncertainties due

to insect contamination.

4.5.3 Optimization under Uncertainty

The deterministic Pareto front was used as initialization for the procedure

proposed in the previous section. In Figure 4.6 a close-up of the design space

close to the previous trade-o� design is shown. It is important to notice that

in the presence of uncertainty each new design is actually stochastic and

characterized by a number (cloud) of probable results. We refer to the Best

E�cient Point (BEP)[80] (i.e. the knee of the Pareto Front) in the presence

of uncertainty as the ROpt (Robust Optimum) design.

It is interesting to note that the ROpt design does not lie on the deter-

ministic Pareto front and conversely that the deterministic trade-o� design

does not lie on the probabilistic Pareto front. The RI for the ROpt design
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assumes the lowest value in the population and has been chosen as a decision

making criterion for the probabilistic Pareto front, see Figure 4.6. More-

over, the deterministic trade-o� design has been chosen as the BEP of the

deterministic Pareto front.

The spread of the ROpt designs suggests a stable solution in the presence

of uncertainty since it is more probable that a design is located at higher val-

ues of the averaged power coe�cient and the distribution is rather uniform

compared to the trade-o� spread, as shown in Figure 4.7.a. Additionally,

the spread of Overall Sound Pressure Level of the ROpt design is clearly

dominating the deterministic trade-o�, as shown in Figure 4.7.b. It is in-

teresting to notice that the presented novel method returns as result of the

process of robust optimization the optimal design variables and the CDFs

of the objective functions: the CDF represents a complete information in

probability about the behavior of the candidate design rather than few real

value attributes given by the other methods discussed in Section 4.1.

The optimized design (red) reveals a signi�cant increase in the length of

the chords at the inner part of the blade, while its twist follows a smoother

distribution than the baseline (black) showing higher torsion closer to the

root and tip sections, as shown in Figure 4.8.b. The optimized airfoils for

the ROpt design are shown in Figure 4.9 in order to compare them with

the baseline solution. It is interesting to notice the change in the trailing

edge at the root section of the blade, which could be related to the noise

reduction and the signi�cant change in curvature of the mid-span airfoil.

The tip airfoil reveals a signi�cant increase in thickness up to 60% of the
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chord, with a trailing edge very similar to the baseline solution.

4.6 Lessons learned

In this chapter it was proposed a novel intrusive approach to couple multi-

objective optimization and uncertainty quanti�cation in order to let the latter

be a driver in the shifting of the Pareto Front due to uncertainties. The pro-

posed approach is based on the full probabilistic description of the objective

function under uncertainty and appears promising at overcoming the main

drawbacks of other methods found in literature, even if further benchmarks

are required. The deterministic NSGA-II algorithm was generalized and a

probabilistic counterpart, the P-NSGA, was obtained. It was shown that,

since all the informations about the non-dominated solutions are stored by

this algorithm, all the Pareto fronts (e.g. Mean Value Pareto, Mean Value

Penalty Pareto, etc.) can be generated a-posteriori.

In the end of the chapter a novel process of optimization of wind turbine

blades under uncertainty was presented. The design obtained with the novel

procedure appears to be more stable in the presence of uncertainty than its

deterministic counterpart, hence the main goal of this case study has been

successfully achieved.

All the objective evaluations concerning the wind turbines and the F1

wheel assembly (see chapter 2) were carried out on an high performance

cluster (Certainty, Stanford University). When we're in presence of computer

intensive extreme ensemble computations for uncertainty quanti�cation and

optimization under uncertainty, we need to perform them in the most e�cient
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way. Indeed the computational resources needed to consider the uncertainty

quanti�cation in an optimization procedure require at least an increase in

an order of magnitude in the number of evaluations of the response of the

system with respect to deterministic optimization. This motivate the e�ort

spent on High Performance Computing in the next chapter of this thesis.
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Figure 4.5: Deterministic Pareto front

124



CHAPTER 4. MULTI-OBJECTIVE OPTIMIZATION UNDER UNCERTAINTY

(a) ROpt design
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Figure 4.6: Probabilistic Pareto front
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Figure 4.7: Probabilistic and deterministic trade-o� designs
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Figure 4.8: Chord and twist distributions
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Chapter 5

Extreme Ensemble Computations

In the previous chapters it was shown that the development of robust

design strategies coupled with detailed simulation models require the intro-

duction of advanced algorithms and computing resource management tools.

A simulations environment � Leland � has been developed to dynamically

schedule, monitor and stir the calculation ensemble and extract runtime in-

formation as well as simulation results and statistics. Leland is equipped

with an auto-tuning strategy for optimal load balancing and fault tolerance

checks to avoid failures in the ensemble.

5.1 The need of High Performance Computing

E�cient algorithms to tackle optimization and uncertainty of computa-

tionally intensive simulations are becoming increasingly important due to the

availability of high-performance computing clusters. In the last few years,

clusters with 10,000 CPUs have become available, and it is now feasible to

design complex engineering systems in such an environment. This develop-
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ment highlights the need to create robust algorithms and to design resource

managers that deliver cost-e�ective utilization with fault tolerance. The

BlueGene/L cluster with 65,536 nodes was designed to have less than one

failure every ten days. In fact, this cluster and others like it experience an

average of one processor failure every hour [86]. In light of this, it is necessary

to study, develop, and continually improve strategies for e�cient completion

of large applications. Theoretical work has been published in the literature

that suggests that advanced algorithms need to be implemented [87]. But a

majority of this work deals with test functions on a small number of compute

nodes.

The design process could involve running an extreme number of large

computations or 'extreme ensemble' (on the order of thousands) in order to

create a robust solution that will remain optimal under conditions that can-

not be controlled ('uncertainties'). The ensemble is a list of runs generated

by the optimization and uncertainty algorithms that is dynamic in nature

and is not deterministic. This means that the number of additional simu-

lations is dependent on the results of the prior converged simulations. For

the study shown in chapter 2, there are approximately 400 simulations to

perform per optimization cycle (i.e. generation). When the results of those

400 simulations are analyzed, an additional list of 400 simulations, each with

a unique range of input parameters, are generated for the next generation

in the optimization process. The values of the the input parameters for the

next generation cannot be known a priori.
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5.2 Leland

It was developed a simulations environment, hereafter referred to as Le-

land, that allows us to monitor the calculation ensemble and extract runtime

information as well as simulations results and statistics on the �y. Leland is

equipped with an auto-tuning strategy for optimal processor count selection

and fault tolerance to ensure that a simulation or a processor stall is detected

and does not impact the overall ensemble �nish time. The structure of Leland

is based on a work�ow through I/O sub-systems that represent the software

applications (i.e. Sculptor, Fluent, Tecplot, Matlab etc.) involved in the pro-

cess. This environment is designed to run natively on any high-performance

computing (HPC) system, by integrating with the job-submission/queuing

system (e.g. Torque). Moreover, it does not require administrator permis-

sions: once the analysis is initiated multiple simulations are submitted and

monitored automatically. In Leland, a job is an instance of the entire multi-

physics simulations, which might include grid generation, mesh morphing,

�ow solution and post-processing.

The main objective of Leland is to set-up a candidate design as a job

and to manage it until it is completed and to gather relevant results that are

used to inform the robust optimization process. ROpt (robust optimization),

shown in �gure 5.1a, is the engine behind this design environment. Given the

design and/or uncertain input variables, ROpt continuously generates new

design proposals (samples) based on the evolutionary strategy and/or anal-

ysis of the uncertainty space, until a convergence criterion is met. The Job

Liaison, shown in Figure 5.1b, de�nes the characteristics of each single job
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Figure 5.1: Leland �owchart

and continuously monitors the progress of the simulations until completion in

order to communicate the objective evaluations back to ROpt. It is the job of

this module to continuously monitor for faults, stalls, or errors to ensure that

the total runtime is not detrimentally a�ected by processor/memory failure.

The Job Submission engine, shown in Figure 5.1c, ensures that the correct

number of jobs is always running on the cluster. The variables (number of

cores, number of jobs, etc.) from the input �le that are used to initialize the

runs are dynamic, meaning they can be edited on the �y and the system will

respond accordingly.

Leland has the ability to dynamically select the optimal number of pro-

cessors to run per realization. This is achieved by auto-tuning. The user

selects an optimal window of cores to use per realization prior to launch-

ing the full ensemble. The auto-tuning algorithm then samples the space

by using a unique number of cores per realization in the ensemble. Once
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two or more realizations are complete the auto-tuning algorithm can start

to construct an application speci�c speed-up curve (Figure 5.2). Speed-up is

de�ned as the total time required to �nish the simulation using 1 processor

divided by the total time required to �nish the simulation using p processors

Speedup(p) =
ttotal(1)

ttotal(p)
(5.1)

The speed-up curve in Figure 5.2 was generated by arti�cially replicating

an HPC simulation. The time required to complete an HPC simulation is

primarily a function of three factors i) portion of the code that is not paral-

lelizable (tserial in Equation 5.2) ii) portion of the code that is parallelizable

(tparallel in Equation 5.2) and iii) the communication time between CPUs

(tcomm in Equation 5.2)

ttotal = tserial + tparallel + tcomm = (5.2a)

= 5000 +
5× 106

p
+ 40p (5.2b)

The serial portion of code in the example shown in Figure 5.2 is constant

(5000 seconds) and not a function of the number of processors allocated to

the job. The length of time required to complete the parallel portion of

code in the example shown in the same �gure is 5 million seconds divided

by the number of processors used. Finally, there will always be some latency

between CPUs and this is characterized by the communication time between

nodes. The linear penalization we used in this example is 40 seconds per

processor, but the latency slowdown could also be a more complex function

related to the speci�c application.
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Figure 5.2: Sample HPC simulation diagnostics

Linear speed-up, also referred to as ideal speed-up, is shown as the green

dotted line in the middle plot of Figure 5.2. An algorithm has linear speed-up

if the time required to �nish the simulation halves when the number of pro-

cessors is doubled. It is common for �uid dynamic simulations to experience

speed-down; this occurs when the total time required to �nish the simulation

actually increases with increasing processors. Leland has the ability to recog-

nize the point at which speed-down occurs (at about 400 processors in Figure

5.2) and never use more than this number of processors. The rightmost plot

in Figure 5.2 shows the e�ciency (de�ned by Equation 5.3) curve for this

arti�cial HPC simulation. The e�ciency typically ranges between values of

0 ∼ 1 estimating how well utilized the processors are compared to the e�ort
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wasted in synchronization and communication

E�ciency(p) =
Speedup(p)

p
(5.3)

It is clear from the previous plot that the highest e�ciency occurs with the

lowest number of processors. This speed-up curve will guide Leland's auto-

tuning algorithm in assigning the optimal number of cores per realization

(which may not be in the users original window). Since an ensemble of this

size takes more than a few weeks on a large cluster, multiple job submissions

need to be submitted to the local queuing system. These jobs are typically

limited to 24 hour run times (or a wall clock time of 24 hours). Thus, it is

essential that the auto-tuning algorithm recognizes how many hours remain

prior to the job terminating due to the wall clock time and tries to increase

the number of cores to �nish as many realizations as possible within a speci�c

time frame.

5.3 The input �le

Leland is totally driven by a unique input �le in which is possible to

de�ne all the variables needed by the queue manager, the job liaison and the

optimization and/or uncertainty quanti�cation algorithm. In Figure 5.3 it is

reported the input �le used to perform uncertainty quanti�cation using EOLO

as executable (see chapter 1).

The input �le requires di�erent informations to perform a calculation

using the Leland platform. There is the need to specify an user name that

will be used to create a process on the cluster (e.g. gpetrone).
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Figure 5.3: Sample input �le for Uncertainty Quanti�cation

Several inputs of Leland are dynamic in nature, this means that they

can be changed on the �y and the whole system will respond accordingly, as

shown in Figure 5.4.

Figure 5.4: Web interface for dynamic inputs
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The name of the job is used to create a job on the cluster, while the core

name will be the identi�er associated to that job. It is important to point

to the executable � a script containing all the actions needed to perform a

simulation. For example a script can be made of a process of grid generation,

mesh morphing and CFD analysis; in this case two or more softwares are

invoked.

The logic behind Leland is based on having a journal template, where

the variables are bounded by exclamation points (e.g. !variable!) and which

will be replaced with the samples given by the optimization or uncertainty

quanti�cation algorithm. This process allows the creation of an ensemble of

runs on the cluster, as shown in Figure 5.5.

Figure 5.5: The job liaison
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The second part of the input �le is totally dedicated to the algorithms used

to generate the samples. Leland searches the output directory looking for

the objectives speci�ed (e.g. power coe�cient, noise, etc.). The algorithms

actually codi�ed are able to perform uncertainty quanti�cation, deterministic

optimization or optimization under uncertainty by using the methods given

by the entries UQ and optimization. In this example the SSC algorithm

is used to sample up to 90 samples (using a 15 by 15 parallel re�nement)

until an accuracy of 1e-3 is obtained in the error estimate. The uncertain

variables are speci�ed as uniform distribution ranging from 1 to 9 (insect

contamination).

The web interface for the power coe�cient is reported in Figure 5.6, where

a negative sign is used according to an optimization convention.

Figure 5.6: Web interface for objective functions

137



CHAPTER 5. EXTREME ENSEMBLE COMPUTATIONS

In Figure 5.7 we reported the input �le used to perform Optimization

Under Uncertainty using the commercial softwares Sculptor (Optimal So-

lutions) and Fluent (Ansys) as executables. In this case 24 processors are

reserved to each simulation, while in the case of EOLO each simulation was

carried out on a single processor. The optimization algorithm (NSGA-II

with 22 individuals evolving for 15 generations) uses deterministic attributes

of the objective functions as objectives. Indeed the entries labeled as cou-

pling de�ne the way in which the optimization algorithm is coupled with the

uncertainty quanti�cation algorithm (LHS with 11 samples). In this case the

mean plus the standard deviation (e.g. PENALTY+) has been used as deter-

ministic attribute of any objective. The label P-NSGA would have activated

the coupling between optimization and uncertainty quanti�cation introduced

in chapter 4.

Figure 5.7: Sample input �le for Optimization under Uncertainty
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5.4 The future of Leland

Leland is actually used to perform extreme ensemble computations at the

Mechanical Engineering and Institute for Computational Mathematical En-

gineering and the Center for Turbulence Research (CTR) located at Stanford

University (CA, United States). There are several users which use Leland

with di�erent focuses, spacing from chemistry to hypersonic simulations and

from wind turbines design to intensive CFD simulations of Formula 1 subsys-

tems. In the next years Leland will be adopted as meta-scheduler in several

national laboratories in US and on the platform S.C.O.P.E. of the University

Federico II of Naples.

139



Chapter 6

A bridge with games

The language of Game Theory � coalitions, payo�s, markets, votes � sug-

gests that it is not a branch of abstract mathematics; that it is motivated

by and related to the world around us; and that it should be able to tell us

something about that world.

� R.Aumann

In the previous chapter it was introduced a methodology to optimize in

presence of uncertainties. In this chapter Game Theory is used to de�ne a

process of optimization under uncertainty as a con�ict between players. This

novel approach could be particularly useful in presence of incomplete infor-

mations about the aleatory uncertainties or as a particular way to handle

epistemic uncertainties. Indeed the classic concepts of Nash and Stackelberg

equilibria are formulated in terms of entropy, a concept that comes from in-

formation theory and measures the content of informations of a probabilistic

distribution. The chapter starts with a brief review of the concepts of Game
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Theory, Section 6.1, then the novel procedure is presented in Section 6.2. An

extension of the present model to multiple leaders and/or multiple followers

is presented in Section 6.3 while the algorithms are presented in Section 6.4.

A further extension to challenge the non-uniqueness of the solution of the

game is presented in Section 6.5.

6.1 Game Theory

Game Theory is the formal study of con�icts and cooperation. Game

theoretic concepts apply whenever the actions of several agents are interde-

pendent. These agents maybe individuals, groups, �rms, or any combination

of these. The concepts of game theory provide a language to formulate, struc-

ture, analyze, and understand strategic scenarios. As a mathematical tool for

the decision-maker the strength of Game Theory is the methodology it pro-

vides for structuring and analyzing problems of strategic choice. The process

of formally modeling a situation as a game requires the decision-maker to

enumerate explicitly the players and their strategic options, and to consider

their preferences and reactions.

6.1.1 De�nition of game

A game is a situation that involves two or more decision makers, the

players, where each player tries to minimize or maximize his objective (cost

or pro�t) and each objective depends not only on the option that he chooses

but also on the options chosen by the other players. We speak about strategic

interaction. Let Γ =< n;X1, X2, ..., Xn; f1, f2, ..., fn > be an n-person normal
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form game with player set I = 1, 2, ..., n, with strategy space Xi for each

player i ∈ I and where fi : X1× ...×Xn→Rn is the payo� function of player

player i ∈ I. If player i chooses xi ∈ X, then he obtains a cost fi(x1, ..., xn).

6.1.2 The Nash equilibrium

A desirable game-theoretic solution is one in which individual players

act in accordance with their incentives, minimizing or maximizing their own

payo� [88, 89, 90]. This idea is captured by the notion of Nash equilib-

rium strategy [91]: each player optimizes his payo� and no single player can

individually improve his welfare by deviating. So, the Nash equilibrium strat-

egy acquires the notion of a stable solution. We denote by x−i the vector

(x1, ..., xi−1, xi+1, ..., xn). If non-cooperative behavior is assumed between the

n players, the equilibrium solution considered is the well known concept of

Nash equilibrium. A Nash equilibrium is a vector(xN1 , ..., x
N
n ) such that for

each i ∈ I

f(xN1 , ..., x
N
n ) = inf

y∈Xi
f(xN1 , ..., x

N
i−1, y, x

N
i+1, ..., x

N
n ) (6.1)

Unfortunately, a Nash equilibrium may not exists, may not be unique and

also may not be optimal for the players. It turns out to be very hard some-

times to check if the game has a Nash equilibrium and in this case to compute

it as suggested in the Nash's theorem proof by using a �xed point theorem.

6.1.3 The Stackelberg equilibrium

We deal with a two-person normal form game Γ =< 2;X, Y ; l, f >. One

of the players called leader has the leadership in playing the game because he
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is informed on the opponent's best reply to any possible his decision. This

opponent is called follower. X, Y are subsets of metric spaces, and represents

respectively the leader's and the follower's strategy set. l, f are real valued

functions de�ned on X × Y and represent respectively the leader's and the

follower's cost functions. Both players are cost minimizing. The concept of

Stackelberg equilibrium goes back to von Stackelberg [92] who introduced it

in the context of duopolistic competitions. Here we recall the de�nition.

Let x ∈ X be the leader's announced choice. For any x ∈ X, the follower

solves the following lower level problem, P(x)

{
find ȳ ∈ Y such that

f(x, ȳ) = inf
y∈Y

f(x, y)
(6.2)

The solution to this problem is supposed to be unique and denoted by

ỹ(x). The function x ∈ X → ỹ(x) ∈ Y is called follower's best reply or best

response. The leader knows this best reply and optimizes his own updated

cost function l(x, ỹ(x)), just considering the follower's response and solves

the following upper level problem, S

{
find x̄ ∈ X such that

l(x̄, ỹ(x̄)) = inf
x∈X

l(x, ỹ(x))
(6.3)

De�nition 6.1

Any solution x̄ ∈ X to the problem S is called a Stackelberg strategy for the

leader.

In the game Γ, once the leader chooses a Stackelberg strategy x̄ ∈ X, the

optimal choice the follower will take is ȳ = ỹ(x). Such a pair is called also a

143



CHAPTER 6. A BRIDGE WITH GAMES

Stackelberg equilibrium. Several applications of this problem can be found

in the literature: for example in Economics ([93], [94]), in Telecommunica-

tions ([95]), in Transportation ([96]). The concept of Stackelberg strategy

describes situations where there is asymmetric information between the in-

volved agents: there is one agent - the leader - who knows the best reply of

the opponent - the follower - and it has been extended to the case of multi-

ple followers situations, where the followers react to the leader's decision by

solving a Nash equilibrium problem (see, for example, [95], [97], [98], [99]).

6.2 A novel entropy-based model

In this section we introduce a process of optimization under uncertainty

as a con�ict between players. In presence of incomplete informations about

the aleatory uncertainties or when we consider epistemic uncertainties, it is

still possible to identify a probability distribution which represents the least

biased estimate possible on the given information. A concept which comes

from information theory, the entropy, will be adopted to obtain this esti-

mate. Hence we can imagine a Stackelberg game where the leader handles

the optimization problem in presence of aleatory uncertainties with one of

the methodologies described in chapter 3, while the follower provides this

particular least biased distribution of the given information about uncertain-

ties.
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6.2.1 The maximum entropy principle

Historically, the �rst method of assigning probabilities to the outcomes of

a random event was this: when there is no reason to do otherwise, assign all

outcomes equal probability. This is called the principle of insu�cient reason,

or principle of indi�erence. It corresponds to a decision to use a uniform

probability distribution. How do we select a probability distribution to use

if we do know something about the non-uniformity of the outcomes? There

is an extension of the principle of insu�cient reason which suggests what to

do. It is the principle of maximum entropy.

Principle 6.1

The maximum entropy estimate is the least biased estimate possible on the

given information; i.e., it is the maximally noncommittal with regard to the

missing information [100].

6.2.2 Entropy of a probability distribution

For a continuous probability density function p(ξ) on Ω, its entropy is

de�ned to

H(p) = −
∫

Ω

p(ξ)log(p(ξ))dξ (6.4)

If the variable ξ assumes the discrete values (ξ1, ξ2, ..., ξN), our partial under-

standing of the process which determine the value of ξ can be represented

by assigning corresponding probabilities (p1, p2, ..., pN). [100] Hence for a
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discrete probability distribution the entropy of p is de�ned to be

H(p) = −
N∑
1

pilog(pi) (6.5)

This de�nition of entropy, introduced by Shannon [101], resembles a formula

for a thermodynamic notion of entropy. Physically, systems are expected

to evolve into states with higher entropy as they approach equilibrium. In

our probabilistic context, H(p) is viewed as a measure of the information

carried by p, with higher entropy corresponding to less information (more

uncertainty, or more of a lack of information).

6.2.3 Optimization under Uncertainty

In chapter 3 it was introduced an objective function f(z, ξ) where z ∈ Z
represented a design variable and ξ ∈ Ω a random variable. Let's now assume

a given set (ξ1, ξ2, ..., ξi, ..., ξN) of values assumed by the uncertain variable,

the corresponding discrete Probability Density Function, Pξ , is de�ned by

the set pξ = (pξ1, p
ξ
2, ..., p

ξ
i , ..., p

ξ
N) ∈ [0, 1]N such that{

pξi = Pξ(ξi), i ∈ [1, ..., N ]∑N
1 p

ξ
i = 1

(6.6)

Therefore it is possible to de�ne the leader's and the follower's problem of

the proposed Stackelberg game.

6.2.4 The follower

Let's assume that we want to �nd the least biased estimate possible of

the objective function, f(z, pξ), given the optimal pξ that solves a maximum
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entropy problem. Given z ∈ Z, the strategy of the follower represents the

discrete PDF, pξ, of the given uncertainty, ξ. The payo� of the follower is

represented by the entropy of the objective function, that can be written in

the following form

H(z, pξ) = −
N∑
1

pfi log(pfi ) (6.7)

considering

{
fi = f(z, ξi)

(f, pf ) = Ξz(ξ, p
ξ)

(6.8)

where the operator Ξz : {ξ, pξ} ∈ Ω × RN→{f, pf} ∈ RN × RN is the

propagation process of the input uncertainty in the quantity of interest (QoI)

and it could represented by di�erent methodologies (e.g. Monte Carlo). It

is important to notice that the operator Ξz depends on the design variable

chosen by the leader, z.

6.2.5 The leader

Let's assume that the leader of the Stackelberg game considers as payo�

a deterministic attribute, Φ, of the objective function, f(·), which is proba-

bilistic in nature. Hence the leader looks for z in the design set Z, minimizing

Φ(f(·)) given the optimal input PDF of the uncertainty found by the follower

that is supposed to be unique ∀z ∈ Z. This unique solution is denoted as

p̃ξ(z). As an example the deterministic attribute of the objective function

could be the mean of the objective function itself, hence
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Figure 6.1: Probability distribution function of the input uncertainty

Figure 6.2: Probability distribution function of the output

Φ(f(z, pξ)) = µ(f(z, pξ)) =
N∑
1

pfi f(z, xi) (6.9)
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6.2.6 The game

Let z ∈ Z be the leader's announced choice. For any z ∈ Z, the follower
solves the following lower level problem, P(z)

find p̄ξ ∈ RN such that

H(z, p̄ξ) = inf
pξ∈RN

−H(z, pξ)
(6.10)

The solution to this problem is supposed to be unique and denoted by

p̃ξ(z). The function z ∈ Z → p̃ξ(z) ∈ RN is called follower's best reply

or best response. The leader knows this best reply and optimizes his own

updated cost function just considering the follower's response and solves the

following upper level problem, S

{
find z̄ ∈ Z such that

Φ(f(z̄, p̃ξ(z̄))) = inf
z∈Z

Φ(f(z, p̃ξ(z)))
(6.11)

A summary of the entropy-based game is reported in Table 6.1.

Table 6.1: The entropy-based game

strategy payo�

leader z Φ(f(z, pξ))
follower pξ −H(z, pξ)

6.3 The Stackelberg-Nash model

We deal with a 2+n player game Γ, where two players are the leaders

and the rest of them are followers in a two-level Stackelberg game[102]. Any

player is assumed to minimize his own payo� function called cost function.
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The followers, as well as the leaders, act themselves in a noncooperative way

and play a Nash equilibrium game[102]. The leaders take into account the

followers Nash equilibrium, that we assume to be unique, and solve a Nash

equilibrium problem in a backward induction scheme.

Let X1, X2, Y1, ..., Yn be the leaders' and the followers' strategy sets, re-

spectively. Let l1, l2, f1, ..., fn be real valued functions de�ned on X1 ×X2 ×
Y1 × .... × Yn representing the leaders' and the followers' cost functions.

The leaders announce (x1, x2) ∈ X1 × X2 and the lower level problem, i.e.

the followers problem, is a n person non-cooperative game Γn(x1, x2) =<

n;Y1, ..., Yn; f1, ..., fn >.

For each (x1, x2) ∈ X1 × X2, that is the leaders' decisions, the followers

solve the following lower level Nash equilibrium problem N (x1, x2):



find (ȳ1, ..., ȳn) ∈ Y1 × ....× Yn such that

f1(x1, x2, ȳ1, ...., ȳn) = inf
y1∈Y1

f1(x1, x2, y1, ȳ2, ..., ȳn)

....

fn(x1, x2, ȳ1, ...., ȳn) = inf
yn∈Yn

fn(x1, x2, ȳ1, ..., ȳn−1, yn).

(6.12)

Let (ỹ1(x1, x2), ...., ỹn(x1, x2)) ∈ Y1 × .... × Yn be the unique solution of the

problem N (x1, x2). The leaders take into account the followers' decision

and solve a Nash equilibrium problem corresponding to a 2 persons non-

cooperative game Γ2 =< 2;X1, X2; l1, l2 >. They compute a solution of the

following upper level Nash equilibrium problem SN :
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find (x̄1, x̄2) ∈ X1 ×X2 such that

l1(x̄1, x̄2, ỹ1(x̄1, x̄2), ...., ỹn(x̄1, x̄2)) = inf
x1∈X1

l1(x1, x̄2, ỹ1(x1, x̄2), ...., ỹn(x1, x̄2))

l2(x̄1, x̄2, ỹ1(x̄1, x̄2), ...., ỹn(x̄1, x̄2)) = inf
x2∈X2

l2(x̄1, x2, ỹ1(x̄1, x2), ...., ỹn(x̄1, x2))

(6.13)

De�nition 6.2

Any solution (x̄1, x̄2) ∈ X1 ×X2 to the problem SN is called a Stackelberg-

Nash strategy, while any vector (x̄1, x̄2, ỹ1(x̄1, x̄2), ...., ỹn(x̄1, x̄2)) ∈ X1×X2×
Y1 × ....× Yn is called a Stackelberg-Nash equilibrium of the game Γ.

This model has been intensively studied and used in di�erent applicative

contexts [111, 104, 96, 99].

To ensure the uniqueness of the Nash equilibrium of the lower level, the

well known dominant diagonal condition [105] for smooth games can be ap-

plied. Recall that special classes of games admit a unique Nash equilibrium

point, provided suitable assumptions on the data: for example quadratic

games[102] or some oligopolistic games[106].

6.4 Algorithmic Game Theory

Several papers dealing with algorithmic Game Theory can be found in

the literature. Particularly, as done in [63], [107], [108], [81], some numerical

results have been obtained for game-theoretical models by using the genetic

algorithmic approach. A computational procedure to compute Stackelberg

strategies based on a GA has been given in [109]. The proposed algorithm
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considers the uniqueness of the follower's best response and the classical

cross-over tournament procedures.

In this section a GA algorithm to compute the Nash equilibrium, the

Stackelberg strategy and the Stackelberg-Nash strategy is presented . In

Section 6.5.2 an algorithm to evaluate Stackelberg strategy in the case where

the follower's response is not unique is presented. We assume an optimistic

leader's behavior and consider the so-called strong Stackelberg solution: the

leader can force the follower's choice in the best reply set. The multi-modal

approach presented in [98] will be used to manage the follower's multiple

response, i.e. the multiplicity of solutions to the problem P(x), ∀x ∈ X.

The algorithm proposed considers also the possibility of multiple leader's

solutions: the multi-modal approach is again used in the upper level problem.

6.4.1 GA for a Nash equilibrium problem

In this subsection we illustrate the genetic algorithm to compute a Nash

equilibrium. For simplicity we consider a 2 person game. Let Y1, Y2 be

compact subsets of metric spaces that are the players' strategy sets. Let

f1, f2 be two real valued functions de�ned on Y1×Y2 representing the players'

cost functions. A Nash equilibrium problem is solved by the two players.

Let ~s = u, v be the string (or individual, or chromosome) representing

the potential solution for a 2 person Nash problem.

Then u denotes the subset of variables handled by player 1, belonging to

a metric space Y1, and optimized under an objective function always denoted

by f1. Similarly v indicates the subset of variables handled by player 2,
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belonging to metric space Y2, and optimized along another objective function

denoted by f2. Thus, as advocated by Nash theory[91], player 1 optimizes the

chromosome with respect to the �rst objective function by modifying u while

v is �xed by player 2; symmetrically, player 2 optimizes the chromosome with

respect to the second criterion by modifying v , while u is �xed by player 1.

Let uk−1, vk−1 be the best value found by player 1, player 2 respectively

at generation k − 1. At next generation k, player 1 optimizes uk using vk−1

in order to build its chromosome (now ~s = uk, vk−1). At the same time

player 2 optimizes vk using uk−1 to evaluate his chromosome (in this case

~s = uk−l, vk).

The algorithm is organized in several steps (as shown in Figure 6.9) that

consist of:

1. Creating two di�erent random populations, one for each player only

at the �rst generation. Player 1's optimization task is performed by

population 1 and vice versa;

2. The classi�cation is made on the basis of the evaluation of a �tness

function, typical of GAs, that counts the results of matches between

each individual of population 1 with all individuals of population 2,

scoring 1 or -1 for a win or loss, and 0 for a draw.


if f1(uki , v

k−1) > f1(uk−1, vki ), fitness1 = 1

if f1(uki , v
k−1) < f1(uk−1, vki ), fitness1 = −1

if f1(uki , v
k−1) = f1(uk−1, vki ), fitness1 = 0

The same is made for player 2:

153



CHAPTER 6. A BRIDGE WITH GAMES


if f2(uk−1

i , vk−1) < f2(uk−1, vki ), fitness2 = 1

if f2(uki , v
k−1) > f2(uk−1, vki ), fitness2 = −1

if f2(uki , v
k−1) = f2(uk−1, vki ), fitness2 = 0

In this way a simple sorting criterion could be established. For equal �t-

ness value individual are sorted on objective function f1 for population

1 (player 1) and on objective function f2 for player 2;

3. A mating pool for parent chromosome is generated and common GA

techniques as crossover and mutation are performed on each player

population. A second sorting procedure is needed after this evolution

process.

4. At the end of k−th generation optimization procedure player 1 commu-
nicates his own best value uk to player 2 who will use it at generation

k + 1 to generate its entire chromosome with a unique value for its

�rst part, i.e. the one depending on player 1, while on the second part

comes from common GAs crossover and mutation procedure. Con-

versely, player 2 communicates its own best value vk to player 1 who

will use it at generation k + 1, generating a population with a unique

value for the second part of chromosome, i.e. the one depending on

player 2;

5. A Nash equilibrium is reached when a generation number limit is

reached or an exit criterion on the di�erence between objective func-

tions from two subsequent generations is met within the steps 2-4.
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This kind of structure for the algorithm is similar to those used by other

researchers, with a major emphasis on �tness function consistency[108, 81].

6.4.2 GA for a Stackelberg-Nash equilibrium problem

Here the algorithm is presented for a 2+n person hierarchical game or

Stackelberg-Nash game with two leaders and n followers. LetX1, X2, Y1, ..., Yn

be compact subsets of metric spaces that are the players' strategy sets. Let

l1, l2, f1, ..., fn be real valued functions representing the players' cost func-

tions. The algorithm is organized in several steps (as shown in Figure 6.10)

that consist of:

1. The initial population is provided with a random seeding in the subset

of a metric space, X1 ×X2, i.e. that of the leaders. This is made only

at the �rst generation;

2. For each individual (or chromosome) of the leaders population, say

u1,i, u2,i, a random population for each follower player is generated, i.e.

providing v1,i, ..., vn,i;

3. At this step a typical Nash equilibrium search for the followers is made

until is reached a limit in generation number in a similar manner to

that shown in subsection 6.4.1;

4. As a result of the previous step we have determined the followers player

best reply, i.e. the unique Nash equilibrium. This is now ready to be

passed to the leader players in order to evaluate their Nash equilibrium

by sorting the population under �tness criterion;
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5. The results of sorting procedure is a classi�cation of leaders population

with best individual denoted by uk1 for leader 1 and u
k
2 for leader 2. Now

a common crossover and mutation operations on the leaders population

are performed only on u1 for leader 1 with a unique value of u2 equal to

uk2 for each individual in leader 1 population, such that the chromosome

could be represented as ~s = u1, u
k
2, v1, . . . , vn. The same operation is

made on leader 2 population with switched variables;

6. This new population need to be sorted again by �tness criterion in

order to give the uk+1
1 , uk+1

2 from which starts the following generation;

7. A Stackelberg-Nash solution is determined when a generation limit for

leader players population is reached or an exit criterion on di�erence

between objective functions from two subsequent generations is met

within step 2-6.

6.4.3 Algorithm validation

For the algorithm validation a test case is considered with two leaders

and two followers. Let X1 = X2 = Y1 = Y2 = [0, 1] be the strategy sets

of the two leaders and the two followers. The players' cost functions

are, respectively, the following:
l1(x1, x2, y1, y2) = 2x1y2 − 2x2y1 − x1x2

l2(x1, x2, y1, y2) = 2(y1 + y2)(x1 + x2)− 4x1x2 − x2

f1(x1, x2, y1, y2) = (y2 − y1 − x1)2 + (2y1 − x2 − x1)2

f2(x1, x2, y1, y2) = 4(y1 − y2 − x1)2 + (2y2 − x2 − 2x1)2

(6.14)
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In this case (ỹ1(x1, x2), ỹ2(x1, x2)) = (x2/2+2x1/9, x2/2+x1/9) for any

(x1, x2) ∈ [0, 1]2 and

l1(x1, x2, ỹ1(x1, x2), ỹ2(x1, x2)) = 2x2
1/9− x2

2 − 4/9x1x2

l2(x1, x2, ỹ1(x1, x2), ỹ2(x1, x2)) = 2x2
1/3 + 2x2

2 − 4/3x1x2 − x2

The analytical Stackelberg-Nash solution is

(x̄1, x̄2, ȳ1, ȳ2) =

(
3/8, 3/8, 13/48, 11/48

)
where ȳi = ỹi(x̄1, x̄2), i = 1, 2, while the numerical solution is

(ū1, ū2, v̄1, v̄2) =

(
0.3962, 0.3828, 0.2745, 0.2319

)
.

In �gure 6.3 are shown, respectively, the variables average value and the

variables best value through the generation number k. These numerical

solutions are indicated with u1, u2 for the leader's variables and v1, v2

for the follower's variables.

In the above test case the characteristics of GAs algorithm could be

summarized in Table 6.2.

Finally we would like to point out the sensitivity of our algorithm with

respect to the number of players considered in the game. In �gure 6.4

the non dimensional times needed to complete each generation k (up to

20), for several leader follower arrangements, are shown. In particular,

we refer all the times to the 1l+ 1f situation, indicating with a dashed

line the average on generations number. We have limited this sensitivity

analysis to a 2 leaders - 2 followers problem, thet is the situation faced

during the test case.
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(a) variable average value

(b) variable best value

Figure 6.3: Average and best variables value through generation
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Table 6.2: GA details

Parameter Value

Population size [-] 50
Crossover fraction [-] 0.90
Mutation fraction [-] 0.10
Parent sorting Tournament between couple
Mating Pool [%] 50
Elitism no
Crossover mode Simulated Binary Crossover (SBX)
Mutation mode Polynomial
Generation Limit on Leader 50
Tolerance on objective functions 10−5

Figure 6.4: Non dimensional time ratio through generation

6.4.4 Applications to real life problems

The methodology and the computational algorithm developed in this

chapter could be very useful in many engineering problems, like optimization
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tool alternative to classical gradient methods (see also [107], [108], [81]). In

particular the hierarchical Stackelberg-Nash model would be very attractive

for real engineering problems like the optimization of the position of a multi

element airfoil or wing: in these cases important targets for all the movable

surfaces that constitute the airfoil (like slats and �aps) or wing (aileron, rud-

der, elevator, etc.) are present. This kind of methodology (leader-follower)

would avoid the traditional troubles faced in multi-objective optimization

problem where a scalarization approach is needed to weight every request

(objective function) to form a �new� scalar function to optimize. Among

others, it would be also very useful in a classic aircraft preliminary design

where some speci�cations appear to be dominant (leader) with respect to

others (followers) in determining aircraft shape and dimensions.

Applications in other contexts must be mentioned too: the hierarchical

Stackelberg-Nash model has been used, for example, in oligopolies as in [99]

or in Transportation problems as in [96].

6.5 The non-uniqueness

As it happens in many cases, the lower level problem may have more

than one solution for at least one x ∈ X. Let us de�ne for any x ∈ X the

set R(x) of the solution to the problem P(x). The correspondence de�ned

on X and valued in Y mapping to any x ∈ X the subset R(x) ⊆ Y of all

possible solutions to the problem P(x), is called follower's best reply or best

response. In this case the best reply is a multi-valued function and the upper

level problem has to be formulated depending on the leader's behavior. The
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leader has to optimize the updated cost function, but he does not know what

is the follower'choice in the set R(x). So, a possible approach is that the

leader suppose that the follower's choice is the best for himself and solve the

following upper level problem, Ss

find x̄ ∈ X such that

inf
y∈R(x̄)

l(x̄, y) = inf
x∈X

inf
y∈R(x)

l(x, y)
(6.15)

De�nition 5.3

Any solution x̄ to the problem Ss is called a strong Stackelberg strategy for

the leader.

This solution concept corresponds to an optimistic leader's point of view

([110], [111]) and it is also known as generalized Stackelberg strategy ([112]).

This is not the only possibility to de�ne a Stackelberg strategy in the case of

multiple follower's best reply, in the concluding section we address to some

other de�nition. In the following we deal with strong Stackelberg strategies.

Remark 5.1

Let us de�ne for any x ∈ X the following marginal function

v(x) = inf
y∈R(x)

l(x, y).

Note that if x̄ ∈ X is a strong Stackelberg strategy for the leader, any pair

(x̄, y) with y ∈ R(x̄) is a possible exit for the game. Any choice y ∈ R(x̄) is

equivalent for the follower, since R(x̄) = argminy∈Y f(x̄, y). For the leader,

the situation is di�erent and if there exists a yb ∈ R(x̄) such that v(x̄) =

l(x̄, yb), the choice (x̄, yb) will be the best for him.
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De�nition 5.4

Any pair (x̄, ȳ) ∈ X × Y such that x̄ is a solution to the problem Ss and

ȳ ∈ argminy∈R(x̄)l(x̄, y) is called a strong hierarchical equilibrium.

In the following we will assume that:

(i) X, Y are compact subsets of metric spaces;

(ii) l, f are continuous functions on X × Y .
Under assumptions (i), (ii) the marginal function v(x) turns out to be

a continuous function on X, then there exists at least a strong hierarchical

equilibrium ([113]).

6.5.1 Multi-modal optimization

The multi-modal optimization is a technique used to �nd all relative max-

ima or minima of an objective function. A GA procedure is implementable

to reach this aim by introducing a so-called �sharing function", i.e. a penalty

function that grows as well as increases the density of points close to relative

maximum or minimum for the objective function. For each individual of the

population we compute a relative distance based e.g. on chromosome s for a

simple case of two design variables

di,j =

√√√√ r∑
k=1

(si,k − sj,k)2, ∀i, j = 1, . . . , n (6.16)

where r is the number of design variables (or genes, at least one for each

player as written for s above), n the population size and di,j the distance

between individuals i and j. The �sharing function" is de�ned as follows
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pi,j = 1 + log(
di,j
dmin

),

{
pi,j ≥ 1⇒ p = 1

pi,j ≤ 0.01⇒ p = 0.01
(6.17)

where dmin is the minimum distance allowed between di�erent individual in

the same population and is based usually on domain extent. At this point

a multi-modal �tness function for each individual i in population can be

evaluated from previous �tness function

fitnessmmi = fitnessi ·
n∏
j=1

pi,j (6.18)

We will use this function to approach the multi-modal case in the lower

level problem as well as in the upper one.

6.5.2 Algorithm modi�cations for the non-uniqueness

We present here the algorithm for a two player Stackelberg equilibrium

game with non unique follower's best response. Let X, Y be compact subsets

denoted by players' strategy sets. Let l, f be two real valued functions de�ned

on X × Y representing the players' cost functions.

The algorithm is organized in several steps that consist of:

1. The initial population is provided with a random seeding in the subset

of a metric space, X, i.e. that of the leader. This is made only at the

�rst generation;

2. For each individual (or chromosome) of the leader population, say ui,

a random population for the follower player is generated, i.e. providing

v1,i, ..., vn,i;
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3. At this step a best reply research for the follower is made until is reached

a limit in generation number;

4. Among the best replies a strong Stackelberg solution is chosen by the

leader in order to evaluate his payo� by sorting the population under

�tness criterion;

5. The results of sorting procedure is a classi�cation of leaders population

with best individual denoted by uk. Now a common crossover and

mutation operation on the leaders population is performed;

6. A strong Stackelberg solution is determined when a generation limit for

leader players population is reached or an exit criterion on di�erence

between objective functions from two subsequent generations is met

within steps 2-5.

This kind of structure for the algorithm is similar to those used by other

researchers, with a major emphasis on �tness function consistency ([81]).

The algorithm considers all the possible solutions of the lower level prob-

lem (step 3), then selects between all these values for the follower only those

minimizing the leader's cost function (steps 4-5) then there is an optimiza-

tion problem solved for the leader (step 6). Assumptions (i), (ii) give the

existence of at least a strong hierarchical equilibrium, and because of the

algorithm construction the follower chooses at every step his best reply, the

leader ends up to any value in

argminx∈X min
y∈R(x)

l(x, y).
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The convergence result is given in the following proposition.

Proposition 6.1

Under assumptions (i), (ii) the GA algorithm converges to strong hierarchical

equilibrium pairs (x̄, ȳ) ∈ X × Y .

6.5.3 A �rst numerical example

Let us consider the 2-person game with strategy sets X = Y = [0, 1] and

cost functions {
l(x, y) = −xy
f(x, y) = −y(y − x)

(6.19)

We have

R(x) =

{
1 if x < 1

{0, 1} if x = 1
(6.20)

so the follower's best reply is not single-valued at x = 1. The leader, supposed

to be optimistic, has to minimize the function

inf
y∈R(x)

−xy = −x

and a strong Stackelberg solution is x̄ = 1. Let us remark that the follower

may react to this solution with y = 0 or y = 1, and since f(1, 0) = f(1, 1) for

him it is equivalent. Not the same happens for the leader because l(1, 0) = 0

and l(1, 1) = −1 that is better for him.

For the algorithm validation we consider the parameters speci�ed in Table

6.2 with a value of dmin = 0.2 for multi-modal optimization.

Our algorithmic procedure gives the following numerical results

x̂ = 1.000, ŷ = 1.000.
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We point out that the algorithm selects the best result from the leader

point of view, as discussed in Remark 5.1. In this example, the multi-modal

approach as been used in the lower level problem.

6.5.4 A second numerical example

Let us consider the 2-person game with strategy sets X = Y = [−1, 1]

and cost functions {
l(x, y) = −xy
f(x, y) = (y2 − x2)2

(6.21)

We have

R(x) = {x,−x} (6.22)

so the follower's best reply is not single-valued at any x 6= 0. The leader,

supposed to be optimistic, has to minimize the function

inf
y∈R(x)

−xy = −x2

and we �nd two strong Stackelberg strategies x̄1 = −1 and x̄2 = 1. Analyti-

cally, we have

x̄1 = −1, ȳ1 ∈ {−1, 1}

x̄2 = 1, ȳ2 ∈ {−1, 1}

l(−1,−1) = l(1, 1) = −1.

By considering the multi-modal approach in the lower level problem as

well as in the upper one, our algorithmic procedure gives the following nu-

merical results

x̂1 = −0.999, ŷ1 = −0.968
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x̂2 = 1.000, ŷ2 = 1.000.

Remark that in this example, the selection yb = x in the best reply set

gives the best value for the leader.

Figure 6.5: Follower's objective function towards generations with multi-
modal approach
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Figure 6.6: Follower's objective function towards generations with an inter-
mediate �lter operation on multi-modal approach

Figure 6.7: Follower's objective function towards generations after �ltering
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Figure 6.8: Leader's objective function
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Figure 6.9: Nash equilibrium GA structure
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Figure 6.11: Stackelberg-GAs algorithm structure with non-uniqueness
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Chapter 7

Conclusions

The primary goals of this work were to develop algorithms for e�cient

uncertainty quanti�cation and optimization under uncertainty and to use

them in industrial applications. Both goals have been achieved since the

e�ectiveness of the Simplex Stochastic Collocation for analysis under uncer-

tainty has been proven and a novel theoretical formulation that allows a tight

coupling with the optimization procedure has been presented and assessed.

Indeed it has been shown the necessity of take in account uncertainty since

the beginning of the design process.

Two industrial applications have been presented in the development of

this thesis and the current framework has been used to optimize the shape

of wind turbine blades and of a Formula 1 tire brake intake. The designs

obtained with the proposed procedure appeared to be more stable in the

presence of uncertainty than their deterministic counterpart.

Game Theory has been proven to be a possible solution in handling prob-

lems of optimization under uncertainty where a lack of knowledge about the

variability of several uncertain parameters is taken in account.
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We also developed Leland, the key-product of this research, o�ering to its

actual users all the algorithms that have been presented in this work. The

importance of having a meta-scheduler with complete fault tolerance has been

proven to be a necessity in performing the extreme ensemble computations

needed for optimization under uncertainty.

Four important areas of future work are the quanti�cation of the sen-

sitivity of the CDF-based approaches, in order to assess the impact of the

quality of the CDF estimation of the objectives on the prediction of the op-

timal solutions. To further prove the robustness of these methodologies an

assessment of the quality of the solutions with respect to the sampling tech-

nique adopted, the dimensionality of the probability space and the size of

the ensemble is required.

The second area of future work is the investigation of the performance of

these CDF-based approaches in problems where the solution is know to have

good mathematical properties (e.g. Gaussianity) and few statistical moments

are representative of the problem. In this case the comparisons with the

classic techniques to obtain the probabilistic Pareto front are meaningful for

the validation of the methodology.

Furthermore a third area of future work is represented by the improve-

ments of the meta-scheduler Leland and its application to a great variety of

problems of the industry and the research community that require an high

computational e�orts. The contribution of researchers from computer science

disciplines is actually improving the e�ciency of the algorithms proposed in

this work.
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The last area of future research concerns the opportunities to create a

unifying framework of Game Theory, uncertainty quanti�cation and opti-

mization. Indeed the entropy-based Stackelberg game for optimization under

uncertainty will be further developed and assessed in frameworks character-

ized by the presence of both epistemic and aleatory uncertainties.
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