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”Immortale é chi accetta l’istante.
Chi non conosce piú un domani.”

Cesare Pavese

”L’essentiel est invisible
pour le yeux.”

Antoine de Saint Exupéry
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A mio zio Angelo,
modello ineguagliabile di

umanitá e cultura,
che ancora vive...

A Chi ha aperto i miei occhi
e l’ anima alla vita...

donandomi istanti di immortalitá.
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Preface

”The Bishop, with the reliquary in his hand, walked slowly backward and
forward in front of the alter, with rhythmical movements he raised the co-
agulated blood up high, between the two gold framed glass panels, as if he
were cradling a child, a terrible new born fetish. The deacon shadowed the
bishop’s movements and with the light from candle illuminated the contents
of the reliquary, the dry coagulated blood from behind. The bishop turned
the reliquary slowly to the right and to the left, to show that the blood had
not yet liquefied...then something happened that went beyond that party
decorated fetish, and the wining women, and the blood that in the end be-
gun to liquefy inside the reliquary, so that the bishop triumphantly raised
it with a undulating and rhythmical movement, showing that the vial had
filled with liquefied blood...something different. In the chapel, the women
that awaited he miracle had begun to shout, then suddenly to clamour and
applaud, because the show had succeeded...But apart from that something
very different had happened inside us kneeling in front of the altar staring at
the glass panel in which the liquefied blood re-boiled. Within us...Something
real beyond resistance, suspicions and superstitions...We had understood that
not only that which can be controlled exists. There is also that which cannot
be proven, that cannot be checked...There is still another possibility.”

In this piece from his romance ’Saint Januarius blood’, the great hungar-
ian writer Sandor Marai vividly describes a dramatic and ancient rite which
takes place in Naples twice a year, in honour of the patron saint.

In scientific terms, the liquefaction of the blood, under the oscillations
of bishop, is an example of a transition known as Jamming (more precisely
Unjamming transition, as the first name is referred to the inverse, liquid-
solid, transformation). The fact that this is associated to a miracle by the
popular culture may sound as consolatory for many researchers working in
this field. At the same time, the scientific appeal produced by this intriguing
phenomenon, in its wide occurrence, resembles the feeling of believers toward
the Saint’s relic... Indeed, despite a great deal of efforts, the Jamming is still
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source of several open questions.
Fortunately, not all material samples are so special as the blood of a Saint,

and jamming systems usually exhibit a more reproducible phenomenology...
This thesis try to shed some light on the ’mysterious’ nature of this phe-

nomenon.
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Chapter 1

Introduction

Liquid-Solid transitions are usually associated to crystallization and onset of
order in the structure of a material. However, crystallization is not the only
mechanism to pass from a liquid to a solid state, and probably it is not the
most widespread. Indeed, many physical systems are able to transform from
a fluid-like state to a solid-like state, both having a disordered internal struc-
ture. For instance, this transition occurs in molecular liquids and colloids
upon varying thermodynamic variables, such as temperature and density, or
in granular materials and foams when the applied stress is lowered, or when
internal variables, such as the inter-particle friction, are changed.

These are some of the many faces of a very general paradigm, known as
Jamming. The present framework in this field has been mainly developed
along two lines, which concern thermal and non-thermal systems, respec-
tively. These systems represent opposite but complementary aspects of the
transition: in one case we are dealing with molecular systems, where the
temperature plays a central role, in the other case, instead, constituents par-
ticles are object so large to be insensitive to thermal effects. In this Thesis we
focus on two topics which are representative of the thermal and non-thermal
case, respectively Jamming of simple liquids, also known as glass transition,
and Jamming of granular materials.

Glass transition is a long debated question in condensed matter physics.
In the last decades several models has been proposed, also inspired by previ-
ous advances in theory of critical phenomena and mean-field systems. How-
ever, a global understanding of this phenomenon is still far to reach.

In particular, when a liquid is cooled below the melting temperature fast
enough to avoid crystallization, its relaxation time increases by many orders
of magnitude, until it overcomes any experimentally available time-scale:
then we get a glass. Understanding such a dramatic growth of relaxation
time, when the temperature is lowered, is the main challenge in this field.

11



12 CHAPTER 1. INTRODUCTION

Experimental evidences and theoretical models predict the emergence of Dy-
namic Heterogeneities (DHs), i.e. clusters of particles dynamically correlated
during times and over lengths, whose typical size grows on approaching the
glassy phase. It is largely accepted that large relaxation time and large clus-
ter life-times are not juxtaposed phenomena, but they are strictly related in
glass forming liquids. However, this point is still elusive and structure and
dynamics of DHs need to be investigated to clarify their relation with the
structural relaxation process. Thus, in this work we will study:

- structure and evolution of dynamical clusters

- to what extent DHs are tangled with structural relaxation

To this aim, we have investigated via Monte Carlo simulations the ’Kob-
Andersen model’. This is a popular glass former model, implemented on a
cubic lattice, and based on the idea that glassy dynamics essentially results
from a frustrated kinetics.

We find that, contrary to current expectations, relaxation process and
DHs are characterized by different time-scales. This implies that they have
a distinct physical origin. We provide a geometrical interpretation of the
relaxation processes, and of the different observed time-scales. Indeed, we
show that the relaxation time is related to a reverse percolation transition,
whereas the emergence of dynamical clusters is related to the spatial corre-
lation created by the motion of diffusing defects.

With respect to glasses, granular materials are a recent challenge in con-
densed matter physics. In this systems, the temperature plays no role and
the particle interactions are strongly dissipative. These peculiarities make
the problem completely different from those provided by classical statistical
mechanics, so that the present understanding in this field still holds at a
phenomenological level.

In granular materials Jamming essentially arises as a rheological effect. In
response to an external stress, loose granular systems flow as a liquid, while,
at high density, they deform as an elastic solid. Jamming marks the edge
between this two limiting regimes, and systems near the transition exhibit
very peculiar mechanical properties. For systems of soft frictionless spheres,
in the limit of small applied stress, the transition is sharply defined: the
system is found in a liquid-like or solid-like depending on the density and
stress values. For more realistic system, the onset of Jamming may be no
more sharp and different time-scales possibly affect the state of the systems,
inducing transient regimes. In this case, the phenomenology is much more
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complex and still poorly investigated. In particular, here we ask in which
way the presence of inter-particle friction influences the transition.

To this aim, we have investigated, via molecular dynamic simulations, a
system of soft frictional spheres at constant volume and subject to a constant
external shear stress.

We find that, in the presence of friction, new rheological regimes appear,
where the systems transiently flow before jamming. We describe this rich phe-
nomenology introducing a jamming phase diagram with axes density, shear
stress, and friction coefficient. We show that the resulting jammed states
are characterized by different mechanical and structural properties. Between
the observed regimes, a particularly intriguing case stands out: it is char-
acterized by extremely long processes, with a diverging timescale, whereby
a suspension first flows but then suddenly jams. We described a possible
dynamical mechanism able to explain the observed behaviour.

1.1 Plan of the work

The work is organized as follow.
Chapter 2: Here we provide a preliminary discussion of the Jamming,

where we define the transition in its generality. In Sec. 2.1 we introduce
the jamming phase diagram as an useful tools to describe the behaviour of
different systems, and we discuss the concept of Universality, according to
which Jamming transition has general aspects that are insensitive to system
details. In Sec. 2.2 we briefly describe the basic phenomenology of several
jamming materials.

Chapter 3: We focus on the main topics of this work, namely glass
transition and jamming of granular materials. Sec. 3.1 describes the main
experimental and numerical facts regarding the behaviour of glass forming
liquids. Sec. 3.2 is devoted to granular materials, starting from the simplest
case of soft frictionless sphere at zero stress, where the jamming transition
is well defined, and extending the discussion to the case of more realistic
systems. Finally we illustrates the concept of ’fragile matter’, which has
been claimed to capture the peculiarity of mechanical properties observed in
jammed granular materials

Chapter 4: Here we review the present understanding of glass transition.
Sec. 4.1 describe experimental and numerical evidences supporting the exis-
tence of Dynamic Heterogeneities and describe a largely accepted scenario for
their role in glassy dynamics. In Sec. 4.2 we describe the most quoted theo-
retical model for Jamming, particularly focusing on Mode Coupling Theory,
Random First Order Theory and Facilitation.
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Chapter 5: Here we illustrate our results on the Kob-Andersen Model.
In Sec. 5.1 we describe the investigated model. Sec. 5.2 focuses on the
dynamic correlation function we use to monitor the relaxation, namely the
persistence. Sec. 5.3 is devoted to the behaviour of Dynamic Heterogeneities.
In Sec. 5.4 we give a geometrical interpretation of Dynamic Heterogeneities
and relaxation processes in terms of diffusing defects and of a reverse dy-
namical percolation.
This chapter is based on Ref. (a) and (b).

Chapter 6: Here we illustrate our results on the Jamming transition of
frictional granular material. In Sec. 6.1 we describe the investigated system
and the numerical procedures. Sec. 6.2 illustrates the different dynamical
regimes observed. This phenomenology is conveniently described by the 3-
dimensional jamming phase diagram presented in Sec. 6.3. In Sec. 6.4
we discuss the mechanical properties of the jammed states obtained in the
different regimes. In Sec. 6.5 we focus on an intriguing regime which is
present in the jamming phase diagram, we named as ’Flow & Jam’ regime.
This chapter is based on Ref. (c), (d) and (e).

Chapter 7: Finally, we summarizes our results and sketch some possible
future developments of this work.

The results presented in this Thesis have been published in the following
papers:

(a) R. Pastore, M. Pica Ciamarra, A. de Candia and A. Coniglio, Dynam-
ical Correlation Length and Relaxation Processes in a Glass Former, Physical
Review Letters 107, 065703 (2011).

(b) A. Coniglio, T. Abete, A. de Candia, E. Del Gado, A. Fierro, R.
Pastore and M. Pica Ciamarra, Geometrical characterization of dynamical
heteorgeneities in chemical gels, colloidal gels and colloidal glasses, accepted
in Proceedings of the International School of Physics ’E. Fermi’, Course
CLXXVI - ’Complex materials in physics and biology’.

(c) M. Pica Ciamarra, R. Pastore, M. Nicodemi and A. Coniglio, Jam-
ming phase diagram for frictional particles, Physical Review E 84, 041308
(2011).

(d) R. Pastore, M. Pica Ciamarra and A. Coniglio, ’Flow & Jam’ of fric-
tional athermal systems under shear stress, Philosophical Magazine 91,13,
2006 (2011).
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(e) R. Pastore, M. Pica Ciamarra and A. Coniglio, Mechanical response
of jammed granular materials and the question of ’fragility’, to appear in
Granular Matter.
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Chapter 2

Jamming

The Jamming is a non-equilibrium transition form a fluid-like to a disorder
solid-like state, occurring in many materials by varying the system control
parameters.

This is a general definition, but the world ”Jamming” may be found in
literature with different meanings. In facts, historically it has been first used
mainly to indicate the zero temperature limit of the glass transition; only
later the term gets the wider significance we adopt here and which includes
the glass transition as a particular case. We will stress this topic in the next
section dealing with the concept of universality and jamming phase diagram.

A fundamental precursor of the transition is represented by a slowing-
down of the dynamics, where relaxation time and viscosity dramatically in-
crease. In general, jammed systems show special mechanical properties, that
are distinctive in respect of ordinary solids.

In order to avoid confusion, we want to point out that the Jamming
strongly differs from the thermodynamic liquid-crystal transition. In fact,
one mainly observes a dynamical phenomenon where the system gets trapped
in a small region of phase space without chance to escape, at least for times
comparable with typical experimental time-scales.

Understanding the Jamming transition is a fundamental challenge in
many different fields including soft matter physics, processing advanced ma-
terials, transport processes of industrial nature and geophysics, where, for
example, the Jamming is involved in mechanisms of faults generating earth-
quakes. This wide interest is motivated by the fact that Jamming occurs in
material as different as simple liquids, colloids, granular materials, emulsions
and bubbles. These materials, when jammed, give rise for example to glasses,
gels, jammed grains, compressed emulsions and foams. Fig. 2.1 makes this
concept more concrete by showing several examples of jamming materials
usually met in the everyday life.

17



18 CHAPTER 2. JAMMING

Figure 2.1: Examples of common jammed materials: (a) Granular media,
consisting of solid grains in gas or vacuum. (b) Toothpaste, a dense packing
of (colloidal) particles in fluid. (c) Mayonnaise, an emulsion consisting of a
dense packing of (oil) droplets in an immiscible fluid. (d) Shaving foam, a
dense packing of gas bubbles in fluid (from Ref. [2]).

2.1 Universality and jamming phase diagram

Now one may ask in which way these systems can pass from a liquid to a
jammed phase: in general the relevant control parameters of the transition
are the temperature, the density, and the intensity of an external stress (or
”load” more in general). Interestingly, the properties observed on varying
the control parameters suggest that Jamming transitions share an universal
nature not strongly dependendent on microscopic details of specific materials.
Inspired by this idea, Liu and Nagel sketched a 3-dimensional jamming phase
diagram, reproduced in Fig. 2.2 which has on its axes the main control
parameters. Such a diagram is just of a speculative kind and all its suggestion
cannot be taken in a strictly quantitative sense, but, citing the authors, it
has the merit of ”bring together several different types of behaviour under
one rubric”. The diagram stresses that for high density, low temperature
and small external stress, a volume exists where systems are in a jammed
state. The surface of this volume represents the boundaries of the transition.
Note that the zero-load plane coincides with the domain investigated for
simple liquids, and the intersection of the jamming surface with this plane
represents the glass transition line. Analogously, in the zero-temperature
plane we recover the case of non-thermal systems, i.e. whose constituent
particles are too large to be sensitive to the temperature: this is the case, for



2.1. UNIVERSALITY AND JAMMING PHASE DIAGRAM 19

Figure 2.2: Speculative jamming phase diagram proposed by Liu and Nagel
(from Ref. [2]).

example, of frictionless granular materials and foams. Here the intersection
with the jamming surface is the yield stress line in the zero-temperature limit.
By increasing the stress, the threshold density also increases. More in general,
the shape of the jamming surface provides a reciprocal dependence for the
threshold values of temperature, density and stress. This suggests that, for
example, a glass may have a lower glass transition temperature under high
shear stress and a jammed granular material may have a lower yield stress
when forced in random motions, able to mimic thermal fluctuations.

2.1.1 Universality: ”pro” and ”contra”

After Liu and Nagel, the use of phase diagrams has become widespread in
the community working on the jamming transition and their proposal has
been intensively investigated.

In particular Trappe et al. [3] obtained a jamming phase diagram for
attractive colloids, based on experimental measurements: a liquid colloid is
transformed into a jammed solid by increasing the volume fraction, increasing
the attractive energy (we will see in Sec. 2.2.2 that for attractive systems
it corresponds to lower T ), or decreasing the external shear stress. In each
case, an almost identical phase transition has been reached and the structures
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optically observed appear very similar, both on the fluid and solid side. This
jamming phase diagram confirms that the concept of jamming may be fairly
extended to the behaviour of different systems, highlighting the similarity
between gelation and glass transition.

O’Hern et al. [24] identified a special point on the density axis where,
in the zero-load and zero-temperature limit, frictionless jamming materials
behaves in the same way. This point, known as point-J, seems to be really
universal and it seems to control the location of the jamming surface. Near
point-J, frictionless system may be modeled as a spheres system, no matter if
hard or soft. In fact, in the limit of low temperature and stress, the involved
energy are so small that hard and soft spheres are indistinguishable, although
a particular choose may be motivated by computational chances. Under this
condition, spheres models jam near the value already known for the random
close packing (rcp). In reality, it should be more correct to say that point-
J provides a precise definition for the elusive concept of rcp and not the
opposite: we will clarify this point later when we deal with the behaviour at
point-J in more details.

However, the experimental jamming surface of Ref.[3] shows everywhere
a curvature which is opposite respect the one originally provided by Liu and
Nagel and diverges at each corner as a consequence of particular details of
attractive colloids. In general, now it seems to be clear that the shape of
the entire jamming surface depends, at least quantitatively, by the specific
system. A precise experimental location of the surface may be hard to de-
fine, particularly in the context of glasses, where, approaching the jamming
transition, the relaxation time may increase too rapid for providing a reliable
extrapolation of the divergence. Moreover, beyond temperature, density and
stress, other parameters can in some case influence the transition: for exam-
ple, for non-thermal systems, the presence of inter-particle friction plays an
important role.

Summarizing, we can conclude that the jamming transition is a powerful
concept in the understanding of apparently diverse fluid to solid transforma-
tion found in very different systems. For concrete applications, the use of
jamming phase diagram is generally able to highlight the parameters that
should be changed to get a desired response.

2.2 Jamming materials

Jamming occurs in wide variety of physical systems in response to the vari-
ation of some control parameters. In this section we will briefly review the
main categories of jamming materials introducing a little bit of phenomenol-
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ogy and focusing on control parameters and protocols used to get the tran-
sition.

2.2.1 Simple Liquids

Between jamming systems, a special case is represented by simple liquids.
Unlike the other jamming materials, here we are dealing with monophase
systems whose elemental constituents are molecules, so that, they are homo-
geneous also at scales smaller than nanometers. Because of these peculiari-
ties, jamming of simple liquids is rather known as glass transition and in the
past it has been perceived as a independent enough research field.

Glasses, the jammed states of simple liquids, are amorphous solids lacking
the periodicity of crystals [4]. The most relevant control parameter to get
a glass from a simple liquids are the temperature and the cooling rate. As
any student book of physics teaches, lowering the temperature of a liquid
below a certain value Tm , a first order phase transition to the crystal occurs:
Tm is the melting temperature and the crystal represents the stable phase
below it. Nevertheless in practice the situation is more complex: in fact, by
cooling the liquid fast enough, it is possible to get the liquid phase also below
Tm, avoiding crystallization. Such protocol is known as supercooling, and the
liquid phase obtained below Tm as supercooled liquid or glass-former liquid.

Upon supercooling below Tm, the dynamics rapidly slows down as molecules
rearrange so slowly that they are not able to explore phase space in the time
allowed by the cooling rates[6]. Accordingly the structure of the liquid ap-
pears frozen on time scales which are larger and larger as the temperature is
lowered; as a consequence longer and longer experiments are needed to un-
derstand whether the sample is really a liquid. In more quantitative terms,
in a small range of temperature relaxation times and viscosities are found to
increase of several orders of magnitude, a growth which seems dramatic if
compared with the small increase occurring above Tm. In particular, by low-
ering the temperature below a value Tg, as much as one can wait, it becomes
not possible to observe the liquid flowing, ...then, a glass has been obtained.

Tg is known as the glass temperature and it has been operatively defined as
the point where the relaxation time exceeds any realistic experimental time-
scales. The value of Tg depends on the material and it is found to slightly
increase for slower cooling rate. However as general rule we can state that
Tg ' Tm. Here we have introduced some basics about the phenomenology
of the glass transition, although these topics will be extensively discussed in
Chap. 3.1.
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2.2.2 Colloids

Colloidal systems are widespread in their occurrence and have a fundamental
importance in many fields from the biological to the technological ones. Like
the term ”Jamming”, also the term colloids is used in literature with a large
range of meanings. In its wider definition a colloid consists in a disperse
phase distributed uniformly inside a continuous medium. No matter the
nature of the disperse phase and of the dispersion medium, which may be
gas, liquid or solid. The only constraint concern with the dispersed particles
sizes, which must range between the nm and the µm, i.e larger than the
molecular scale but typically small enough to feel brownian effects. Using
this definition, almost all materials, we will treat in the following paragraphs,
may be classified as colloids. While we will devote to other types of dispersion
later, here we refer to colloid in its narrow sense of a dispersion of compact
and solid particles in a liquid medium, i.e. materials which can be modeled
as systems of brownian spheres in a liquid.

The most relevant control parameter of colloidal systems is the density
of the disperse phase, which is set explicitly by its volume fraction φ. At
low volume fraction colloids behaves like liquids, but increasing the volume
fraction they jam in gels, if attractive interaction are present, or in colloidal
glasses. A gel just forms at small volume fraction of the order of 10−1: in
facts, its weight is mainly due to a liquid matrix, while its rigidity arises from
a stress-bearing backbone of colloidal particles. In particular, in this section
we will deal with a physical gels, to distinguish it from the chemical gels,
where the bonds are irreversible due to their chemical origin. If able to remain
liquid at higher volume fraction (about φ = 0.5), colloids mimic the behaviour
of atomic systems [9], whereby colloidal particles are the counterparts of
atoms on a larger scale (and interestingly optically observable): eventually
they may order in colloidal crystal, but, if crystallization is avoided, colloidal
glasses are formed.

Let we do a slightly more detailed discussion: the difference between gel-
forming and glass-forming colloids consists in the interaction between parti-
cles. Repulsive forces always dominate at very short inter-particle distance.
When short-ranged attraction, set by a potential U , is also present, the par-
ticles will form clusters. As bonds between particles have a physical origin,
the clusters are of a dynamical kind, i.e. they are formed and destroyed con-
tinuously, but their life-time rapidly grows with φ. As the volume fraction
reaches a critical threshold φj a percolating cluster forms, whose relaxation
time exceeds the experimental time-scales [8]. At this point we get a gel:
it is solid as the percolating cluster behaves as a stress-bearing backbone .
The critical volume fraction φj decreases as the energy U increases and the
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temperature decreases. From this point of view, what is really important be-
comes the competition between the potential which tends to aggregate and
the brownian motion which instead tends to restore fluidity. Consequently,
the relevant control parameter is the ratio KBT

U
. Also the presence of an

external shear stress σ affects the formation of a solid cluster, shifting φj to
higher values with increasing σ. In general, a sufficient large stress will cause
the gel to yield and flow; thus the yield stress, σy may be considered the
third control parameters for jamming of attractive colloids, together with φj
and U

KBT
[3].

If U is set to zero, gels cannot exist and solid response arises only as a
consequence of more compact structures. If the volume fraction is slowly
increased crystal forms and progressively grows in phase coexistence with
liquid, until that the sample is completely crystallized [9]. However, rapidly
increasing φ and high polydispersity (which may be defined as the standard
deviation of the particle size distribution divided by its mean) slow down crys-
tal nucleation. Then, if crystallization is avoided, the particles remain frozen
in a glass, very similar to molecular glasses except for the larger length scales
and the weaker energy involved. Such systems are very well approximated by
a hard-spheres system [11] which jams at the rcp, φc = φrcp = 0.63. In this
case T just rescales the typical relaxation times, thus becoming marginal,
while the volume fraction remains the only relevant control parameter for
colloidal glass forming.

2.2.3 Polymers

In this paragraph, we are dealing with the case of polymers solved in liquids:
polymers may link each other via chemical bonds, which can be consider
as permanent or irreversible, as their bonding energy is larger than thermal
KBT and stress energies typically involved. Jamming of such materials,
known as chemical gelation or sol-gel transition, transforms a solution of
polymeric molecules, the sol, from a viscous liquid to an elastic disordered
solid, the gel [10].

Increasing the density of the solved phase, polymers aggregate to form
macropolymers, which can be considered statical clusters, as the nature of
the bonds does not allow for a dynamic rearrangement. This results in a
critical increase of the viscosity accompanied by a slowing down of the re-
laxation dynamics. When a critical value for the density φj is reached, the
onset of the elastic response corresponds to the constitution inside the sol
of a macroscopic polymeric structure [12, 13] which spans the whole sys-
tem. Percolation is considered as the basic model for the transition [14] and
the macromolecular stress-bearing structure in these systems is a percolating
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network of permanent bonds.
As thermal effects are not able to inhibit chemical bonding, temperature

is not a relevant control parameters but only rescales the typical relaxation
times as in the case of hard spheres glasses. Also the intensity of the applied
stress does not play an important role. Thus, also in this case, the density
is the only important control parameter: from this point of view chemical
gels and hard spheres systems represent two opposite limits. In the former
Jamming already occurs at very small density of the order of φj = 10−2

as a results of the strong chemical attractions, while in the latter the tran-
sition occurs at very high density, just due to geometrical constraints and
repulsions. Finally, the case of attractive colloids, where bonds have a finite
life-time, is in between these two extremes.

We want only mention that chemical bonds is not an essential ingredient
to get Jamming in polymeric materials as very different mechanisms may be
involved. For instance, long polymers in the state of melt or of concentrated
solution tend to geometrically entangle [15] in a network whose relaxation
time becomes increasingly larger.

2.2.4 Emulsion and Foams

Here we consider both emulsions consisting of droplets of one liquid dispersed
in another immiscible liquid, and, foams, which are dispersions of gas bub-
bles in a liquid. In spite of their different phase composition, these materials
present large similarities in the basic properties and have a very rich rheol-
ogy, useful for industrial applications. First, the droplets/bubbles sizes are
such that thermal effects can be typically neglected (except for the case of
microemulsions not considered here). On the one hand, dissipative effects
are important. On the other hand, here we are dealing with system which are
not conservative: number and volume fraction of the droplets/bubbles may
spontaneously evolve in time due to processes, such as coalescence, Ostwald
ripening and water drainage [16], which can be neglected only on small time
scales.

Composition, microscopic structure, interfacial interactions and polydis-
persity are fundamental in determining the rheology of these materials [17].
The volume fraction φ of droplets/bubbles and the yield stress σy of the
jammed states are the more relevant control parameters. By increasing φ,
the liquid layers that separates nearby droplets/bubbles are thinner and thin-
ner, until that they become a film . During the flow, high local shear rates
are created in these films, which results in relatively high viscous dissipation
of energy. The bubble/droplet deformability leads to non-linear dependences
of the film thickness and of the resulting flow characteristics of foams and
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emulsions on the applied shear stress [18].
A jamming transition is found from a simple viscous liquid to an elastic

solid when the volume fraction increases up to a threshold φj, which, in
the limit of low stress, is very close to the random close packing of hard
spheres [19]. In general, foam bubbles, as well as emulsion droplets may be
rather approximated as soft spheres, a system which is paradigmatic in the
fields of the Jamming transition. In facts, the elastic interaction between
droplets/bubbles are suitably modeled as a linear spring, while static friction
is absent and only a velocity dependent viscous friction is present under flow
[20].

2.2.5 Granular materials

Granular materials, like sands and powder, are ubiquitous in nature and rep-
resent the most treated materials in industrial processes. They are becoming
a paradigmatic example of complex systems. We devote to the Jamming of
granular materials the second part of Chap. 3.2. In this paragraph we just
mention some basic and general aspects (see [21] [22] for a nice reviews).

Granular materials are assemblies of solid particles eventually dispersed in
a liquid (wet) or in a gas (dry) phase. The typical particle size d larger than
one µm is the main characteristic, which sets a sharp distinction with col-
loids and makes granular media the most representative case of non-thermal
system. In facts, the thermal energy KBT is always smaller than the charac-
teristic energy scale mgd, i.e. the work needed to shift a particle of an height
equal to its linear size under the effect of its weight. This implies that tem-
perature and brownian motions play no role. Usually, the interactions are
limited to contact forces, such as non-elastic collisions and frictions. From
the non conservative nature of these forces, an other important property
arises: granular materials are dissipative systems, i.e. they tend to dissipate
in time the kinetic energy they have at disposal. Thus, in order to actively
investigate the dynamics, energy must be continuously introduced from the
outside, for example by means of vibrations or stresses. This is why the
intensity of the external load together with the volume fraction φ are the
main control parameters of the rheology of granular media. In particular
at low volume fraction (well below the rcp) and in absence of gravitation
(g = 0), granular materials behave as a fluid, although very special, also in
the limit of zero stress. Increasing φ until a critical value φj, the system
jams in a solid-like state: in these conditions, crowding of grains results in
a network of contact forces which balances the external stress. The critical
value for the volume fraction depends on the stress, φj = φj(σ), as clarified
by the zero temperature plane of the jamming phase diagram of Fig.2.2. In
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facts, increasing the stress favors the flow, shifting φj to larger values. Other
characteristics, such as polydispersity and particle shape, may play a role
in the rheology. In this work, we will show that also friction influences the
Jamming of granular media, as a further control parameter.

In the case frictionless particles, in the limit of zero applied stress, gran-
ular systems jams at the rcp of hard spheres [24].

Moreover, simple models of chains of hard spheres have inspired the idea
that jammed granular media represents a new class of solids, known as fragile
matter [23], that cannot be considered as an elastic body also for small
stresses. In facts, based on these models, jammed grains can support also a
large applied stress in the direction of the force which has driven the system
to jam, but the chains break and the system restarts flowing, if even an
infinitesimal force is applied in a different direction. In order to avoid such
a paradoxical consequence, it has been suggested that soft spheres are more
suitable to model the behaviour of granular materials: allowing the particles
to deform, in facts, give raise to a macroscopic elastic response, at least for
small enough stresses [1]. Although the idea of fragility is able to capture
some of the physics of this materials, such as strong anisotropy, in this work,
we will show that for realistic granular systems it clearly fails.



Chapter 3

Supercooled liquids and
Granular materials

In this chapter we describe in more details the phenomenology and some
basics questions concerning glass formers and dense granular materials.

3.1 Supercooled liquids at equilibrium

A wide variety of liquids, supercooled below the glass transition temperature
Tg , form glasses. Tg is operatively defined as the temperature where the
relaxation times exceeds the experimental time. Typical values of cooling
rate used in laboratory experiments are 0.1 − 100 K/min and, as a general
rule, the cooling rate must be large enough to avoid crystallization; we remind
to Chap. 3 of Ref. [6] for a discussion on the mechanisms and the conditions
that allow to avoid nucleation and growth of crystals. Here we only remark
that for temperature below the melting temperature Tm the typical time for
crystallization may be sensibly larger than relaxation times. In this case,
between Tm and Tg, the system can equilibrate in an equilibrium supercooled
liquid. The distinct nature of glass and supercooled liquid phases need to be
clarified also to avoid confusion in the terminology.

Below Tm we are always dealing with a metastable phase: for time long
enough the system crystallizes. Nevertheless, on shorter time-scales, we refer
to supercooled liquid or to glass-forming liquids to indicate a liquid phase
which is at equilibrium, not in the thermodynamic meaning, but in the sense
that time-translation invariance (TTI) (and thus the dynamical fluctuation
dissipation theorem) holds. Under these conditions the only observable ac-
counting for metastability is the explicit crystallization of the sample.

Below Tg relaxation times are too large to equilibrate the system and TTI

27
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is broken: the word glass indicates the resulting out of equilibrium material.

Summarizing, in the equilibrium metastable phase the typical time for
crystallization is larger than our experimental time but the relaxation time
is still shorter , whereas in an off-equilibrium glass also the relaxation time
of the substance is too large compared to our experimental time. Here we
suppose that above Tg is always possible to equilibrate our liquid on super-
cooling and we will focus on the equilibrium case disregarding the topics
strictly related with the field of glasses.

3.1.1 A more precise definition of Tg

The operative definition of glass transition temperature, Tg, introduces a de-
pendence on the available experimental time texp, and thus on the cooling
rate. Indeed, Tg decreases with the cooling rate. However, as we will see in
the next section, the relaxation time is extremely sensitive to the tempera-
ture, so that changes in the cooling rate causes a negligible variation of Tg.
Thus, Tg can be defined as the temperature where the relaxation time τ over-
comes a conventional threshold, of the order of the experimental time-scales.
Say [25]:

τ(Tg) ' 102 − 103Sec. (3.1)

τ can be extracted from the temporal decay of density fluctuations.

The Maxwell relation, η = G∞τ , which relates the viscosity η to the
relaxation time τ via the insatntaneous shear modulus G∞, allows for an
alternative definition of Tg. Indeed, since G∞ ' 1010 − 1011dyne/cm2 and
its value does not vary considerably in the supercooling regimes, η and τ are
proportional and we can define Tg as the temperature where :

η(Tg) ' 1013Poise. (3.2)

Note that around the melting temperature typical values are τ ' 10−12Sec.
and η ' 10−2Poise. This means that at the glass transition Tg ' 2/3Tm these
quantities grow about of 14 orders of magnitude!

While we can do almost nothing to get equilibrium liquids below Tg, by
contrast, in some circumstances the system fall out of equilibrium well above
Tg due to limited experimental time. This occurs, for example, in numerical
simulations of liquids, that, compared to real experiments, can cover a much
smaller time intervals. In this case, in facts, the fundamental constraint is
imposed by the CPU time, rather than by the simulated ’real’ time of the
liquid.
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Figure 3.1: Angell’s plot. Logarithm of the viscosity vs. rescaled inverse
temperature for different liquids. The extreme case of purely Arrhenius be-
haviour and strongly super-Arrhenius behaviour corresponds to strong and
fragile liquids respectively. From Ref. [4].

3.1.2 Behaviour of the viscosity: the Angell’s plot

Given the definition of Eq. 3.2 of Tg, Angell [26] proposed a plot for report-
ing in a compact way viscosities data of different supercooled liquids: He
suggested to plot the logarithm of the viscosity as a function of Tg/T . In this
way all viscosity curves will have the same value (that is 1013Poise) at the
point Tg/T = 1.

The Angel’s plot of Fig. 3.1 clarifies that different liquids display two
different behaviours. The simplest case consists in a straight line indicating
an ’Arrhenius behaviour’:

η = Ae
∆E
kBT (3.3)

where A and ∆E are temperature independent and kB is the Boltzmann’s
constant. Glass-formers of this kind are usually known as strong liquids [27].
The behaviour of Eq. 3.3 suggests a simple relaxation mechanism, when ∆E
is interpreted as the energy barrier to break locally a chemical bond. Thus,
the value of the energy is insensitive to the temperature and may be easily
estimated by measuring the slope of the straight lines in Fig. 3.1. Typical
examples of strong liquids are SiO2 (window glass) and GeO2.

Other substances, instead, deviate substantially from the Arrhenius be-
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haviour, their viscosities increasing steeply as the temperature is lowered.
These systems are known as fragile liquids [27] and include o-terphenyl and
toluene.

For strong systems it seems that at Tg really nothing particular happens,
apart the viscosity hitting 1013 Poise; in this case, one may argue that the
definition of Tg has purely practical implications, and nothing more. On the
other hand, in fragile liquids the viscosity increases sharper on approaching
Tg, suggesting relevant changes in the dynamics. For this reason, fragile liq-
uids are the most interesting glass-formers, and many of the questions about
glassy systems concern their properties. If a strong glass-former may be in-
terpreted simply as a very viscous liquid, this seems to be inappropriate for
fragile liquids, which seems to require a deeper explanation. For instance,
if one tries to define an effective energy barrier ∆E for fragile glass-formers
using the slope of the curves in Fig. 3.1 , then one finds that this ∆E is not
constant (as for strong liquids) but it increases when the temperature de-
creases. Accordingly this behaviour is known as super-Arrhenius behaviour.
It seems that the slowing down is not only due to the decreasing thermal en-
ergy (as in strong liquids), but also some structural change seems to occur,
which make the energy barrier higher and higher. This suggests that the
glass formation for fragile liquids is a collective phenomenon involving more
and more particles as the temperature decreases . This interpretation is also
supported by the fact that a good fit to the relaxation time or the viscosity
is given by the Vogel-Fulcher-Tamman law (VFT):

η = A exp[B/(T − T0)] (3.4)

where A, B and T0 are temperature independent. This law suggests a diver-
gence of the relaxation time, where a phase transition takes place at a finite
temperature T0 < Tg. Moreover other comparably good fits have been pro-
posed as alternative to Eq. 3.4 . However note that although the relaxation
time increases by 14 orders of magnitude, the increase of its logarithm (and
therefore of the effective activation energy) is very modest, and experimental
data do not allow to unambiguously determine the true underlying functional
law without any reasonable doubt [28].

3.1.3 The temperature and entropy crisis

The previous arguments suggest that a thermodynamic phase transition may
occur at a finite temperature T0, although it is inhibited by a kinetic tran-
sition located at the higher temperature Tg. In other words, the experimen-
tally observed glass transition should be interpreted as the signature of an
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Figure 3.2: For different supercooled liquids, dependence of the excess en-
tropy as a function of the temperature normalized by their value at the
melting point. For a typical example of strong and fragile liquids data are
extrapolated below the glass transition. From Ref. [4].

underlying ideal glass transition, which, in facts, is not observable. Some
thermodynamic hints support this scenario. The crystal represents the sta-
ble phase below Tm as it has a free energy density lower than the liquid.
But what about the entropy? At Tm the entropy of the liquid is larger than
that of the crystal, but it decreases faster on cooling. The derivative of the
entropy, the specific heat, is , in fact, larger in the liquid phase. Let us define
the excess entropy ∆S(T ),

∆S(T ) = Sliq(T )− Scry(T ), (3.5)

as the difference between the liquid and the crystal entropy at temperature
T . Then, ∆S(T ) is expected to decrease as the temperature decreases.

To compare the behaviours of different liquids, proposed [] to normalize
the data plotting ∆S(T )/S(Tm) vs T/Tm.

Fig. 3.2 shows that at the glass transition Tg/Tm ' 2/3, ∆S does not
vanishes. However, suggested to extrapolate equilibrium data at lower tem-
perature. Using this extrapolation, it is found that in many systems the
curves vanish at a finite temperature
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∆S(Tk) = 0, (3.6)

where Tk is called the temperature. In particular, as Fig. 3.2 demonstrates,
Tk ' 0 for strong glasses and, Tk > 0 for fragile glasses. In addition, one finds
Tk to be very close to T0, the temperature at which a VFT fit (see Eq. 3.4)
diverges. The extrapolation leads to the conclusion that Sliq(T ) < Scry(T )
for T < Tk. This phenomenon is known as entropy crisis or ’s paradox. From
these observations, immediately ruled out the most naive interpretation of
Tk , i.e. that it could be the locus of a continuous transition from the liquid
to the crystal phase. Additionally, the quantity ∆S may be identified with
the the so-called configurational entropy, Sc, which quantifies the number
of metastable states. A popular physical picture due to Goldstein [30] (see
Sec. 4.2.1)is that close to Tg the system explores a part of the energy land-
scape (or configuration space) which is full of minima separated by barriers
that increase when temperature decreases. The dynamic evolution in the
energy landscape would then consist in a rather short equilibration inside
the minima followed by jumps between different minima. At Tg the barri-
ers have become so large that the system remains trapped in one minimum,
identified as one of the possible microscopic amorphous configurations of a
glass. Following this interpretation, one can split the entropy into two parts.
A first contribution is due to the fast relaxation inside one minimum: this
may be interpreted as a vibrational term of the entropy, thus expected to be
similar to the entropy of the crystal. On the other hand, The second contri-
bution is the configurational entropy, i.e. the term that counts the number
of metastable states, Sc = log(Nmetastable), and is expected to be similar to
the excess entropy ∆S ' Sc. Within this approximation TK corresponds
to the temperature at which the configurational entropy vanishes and where
just a single non-crystalline state exists. This would lead to a discontinuity
(a downward jump) of the specific heat and would truly correspond to a
thermodynamic phase transition.

However the interpretation suffers of several contraddictions. First, we
must stress that there is no reason why the entropy of the liquid should
be larger than that of the crystal. As a matter of fact, the crystallization
transition for hard spheres takes place precisely because the crystal becomes
the state with the largest entropy at sufficiently high density [33]. Moreover,
the liquid-crystal free-energy difference does not decrease when lowering the
temperature [], so that any (reasonable) extrapolation does not indicate that
the free energies of the two phases converges to each other. This seems to
strongly invalidate the ’s hypotesys, which would require converging free-
energies and similar values of Tk for different observables, which is not the
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case.

3.1.4 Static correlation

At this stage two remarks seems to be appropriate: First, all the distinctive
properties of glass formers we discussed so far are essentially quantitative,
such as the sharp increase of viscosities and relaxation times. Now we ask
if there is any qualitative characteristic which allows a clear identification
of glass-formers. In other words, taking a snapshot of a sample and looking
at it, can we easily understand whether our sample is a deeply supercooled
liquid rather than a usual liquid? Second, the presence of a sharply in-
creasing relaxation time, and, may be, of a singularity in the specific heat,
should suggest a similarity between the glass transition and the theory of
critical phenomena, where a diverging relaxation time and a singularity in
the thermodynamics is accompanied by a diverging correlation length. Un-
der this perspective, a likely candidate providing a qualitative feature of the
glass transition, should be the presence of a correlation length which rapidly
increases as the temperature is lowered.

The simplest way to characterize a liquid is to consider the radial distri-
bution function, g(r) [31, 32]. The radial distribution function g(r) allows
to easily distinguish different phases (gas, liquid, crystal) of a particle sys-
tem: the higher the degree of order in the system, the more structured in
term of peaks is the g(r). For instance, in a gas there is only the drop of
probability at very low r due to the hard core of the particles, and no peaks
at all, since there is no structure. In a liquid g(r) is also zero at small r
whereas at larger r the function steeply rises in correspondence to the first
layer (or shell) of particles around the focal one; at even larger r there are
some weaker, although still well defined, peaks corresponding to the various
shells around the focal particle. In the liquid there is no long range order,
so that the height of the peaks decreases as r increases. In a crystal, by
contrast, there are not decaying sharp peaks because long range order sets
in. Typically g(r) is not directly accessible in experiments, whereas it can be
extracted by the static structure factor S(k). S(k), in fact, can be measured
by inelastic scattering and is related to the radial distribution function by a
simple Fourier integral [31, 32],

S(k) = 1 + 4πρ

∫ ∞
0

drr2 sin(kr)

kr
(g(r)− 1), (3.7)

and it provides in momentum space k the same kind of structural infor-
mation as g(r).
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Figure 3.3: Structure factor in a Lennard-Jones liquid at three different tem-
peratures. The relaxation time increases by almost 4 orders of magnitude,
while the structure factor shows no particular change. From Ref. [34].

Results for the temperature dependence of S(k) in the liquid and super-
cooled regime are shown in Fig. 3.3.

As the temperature is lowered, S(k) exhibits very small changes in the
shape of the peaks, whereby the relaxation time increases of orders of mag-
nitude [35]. Other usual correlation function behaves in the same way, so
that we can conclude that standard structural quantities do not allow to
distinguish whether a sample is a supercooled liquid or not.

Nevertheless it has been proposed that the central point is not the real
lack of a diverging length but consists in the choose of a suitable correlation
function. Indeed, there is the debated possibility that a different correlation
function may allow to extract a correlation length growing on approaching
the transition [36, 6].

3.1.5 Non-exponential relaxation of dynamical corre-
lation function

The glass transition we actually observe is a purely dynamical transition, and
therefore if something new happens approaching Tg, the dynamics should
detect it. On the other hand, the quest for finding a statical signature is
motivated by the idea that dynamic and static observables are expected to
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be related, as it occurs in critical phenomena of slowing-down. However, we
have seen that for glass formers, this seems not to be a trivial syllogism.

For this reason, it is natural to search a quantitative signature of glassi-
ness looking directly at the dynamics. Going back to the previous metaphor,
one expects that a collection of at least two snapshots at two different times
are necessaries to individuate a glass former sample, whereas a single snap-
shot is not enough. Instead of considering static correlation functions, one
needs to investigate dynamic or two-times correlation functions. It is not
a case, in facts, that the viscosity, which marks the onset of glassiness, is
the integral over time of a dynamic correlation functions, namely the shear
relaxation function. The same is true for the diffusion coefficient, related to
the time integral of the velocity-velocity correlation function. However, an
integral encloses an entire function into a single number, thus loosing a lot
of informations. Hence, it seems a good idea to study the dynamic corre-
lation functions, rather than their integrals, to see whether they show some
qualitative signature of Tg. In general a correlation function is given by:

C(t1, t2) = 〈o(r, t1)o(r, t2)〉, (3.8)

where o(r, t) is a quantity, observed at time t and in the position r. Here we
are assuming the system to be homogeneous, so that C(t) does not depend
on r. Moreover, in equilibrium system, time translation invariance holds and
the correlation function only depends on t = t1 − t2 so that C(t1, t2) = C(t)
and Eq. 3.8 becomes:

C(t) = 〈o(r, 0)o(r, t)〉. (3.9)

In liquids, a typical choice for C(t) is the intermediate scattering function
F (k, t) [31], which is experimentally accessible and represents the dynamical
counterpart of the structure factor S(k). In this case, o(r, t) is the Fourier
transform of the density fluctuation, δρ(r, t) = exp[−ik · rt]), at fixed mo-
mentum k. Here k = 2π/λ fixes the probing length-scale at values of the
order of the wave-length λ. In general o(r, t) can be any meaningful observ-
able which depends both on space and time, and the decay of C(t) allow to
estimate the time-scale over which correlations within the system relax. In
high temperature liquids, after a very short-time ballistic regime (for New-
tonian dynamics) where particles move freely with no mutual interactions,
the decays takes an exponential form, which is representative of a dissipative
regime:

C(t) = C0exp[−t/τ ]. (3.10)
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Figure 3.4: The dynamic correlation function C(t) in a Lennard-Jones sys-
tem. In this case, C(t) is the self part of the intermediate scattering function
Fs(q, t) (see Sec. 4.1.2), evaluated at the value of q where the static structure
factor has the main peak. At high temperatures the decay is exponential,
but when the temperature get close to Tg a plateau is formed and relaxation
proceeds in two steps. From Ref. [39].

Here τ is a relaxation time which in principle depends on the particular ob-
servable o. However, it is natural to expect that at high T there is only one
intrinsic time scale in the system, for example the shear relaxation time, and
that all the other time scales are a simple rescaling of it. In supercooled liq-
uids, the typical relaxation time grows very sharply by lowering the temper-
ature, so that the decay of C(t) becomes increasingly slower on approaching
Tg. Therefore, from a quantitative point of view, the dynamic correlation
function differs significantly from the structural correlation function, which
shows no dramatic temperature dependence close to Tg.

Indeed, Fig. 3.4 shows that also the qualitative shape of C(t) exhibits a
clear change approaching Tg: in a log-time representation a plateau emerges
at low temperature, where the decay is no longer purely exponential [38, 39].
This type of decay is known as two steps relaxation, and it is the qualitative
fingerprint of glassy systems.

Let us describe more carefully the shape of the correlation function at low
T (Fig. 3.4): the time-scale over which the correlation function reaches the
plateau is almost insensitive to T , whereas the length of the plateau, i.e. the
time needed to leave the plateau, becomes larger the lower the temperature.
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In the presence of such two steps relaxation process, the relaxation time , τ is
defined as that where C(t) reaches a conventional small threshold value, as

C(τ) = 1/e. (3.11)

The shape of C(t), however, clearly shows that two times are necessary for
describing the decay. Roughly speaking, we can say that there is a fast
process related to the approach to the plateau, and a slow process related
to the decay from the plateau. The fast process is weakly dependent on T ,
while the slow process depends strongly on the temperature. Conventionally,
these two processes are called, respectively, β (fast) and α (slow) relaxation.
The relaxation time τ characteristic of glass formers relaxation is the one of
the α relaxation, i.e. the time of the longest relaxation processes. Moreover,
it is evident a separation between the two timescales, which is sharper the
lower the temperature. This separation of times scales is the qualitative
landmark of glassiness.

The value of C(t) accounts for the degree of relaxation reached by the
system at time t. In this sense, C(t) may be considered as the dynamical
order parameter of the relaxation process. To formalize this point, one can
introduce a time-dependent scalar field:

φ(r, t) = o(r, 0)o(r, t). (3.12)

Using Eq. 3.12 in Eq. 3.9, C(t) can be written as the average of such field,

C(t) = 〈φ(r, t)〉. (3.13)

In this form, C(t), looks indeed like an ordered parameter. Moreover, we can
introduce the function Φ(t),

Φ(t) =
1

V

∫
V

d3rφ(r, t), (3.14)

which is clearly the bulk observable correspondent to the scalar field φ. Note
that the average of Φ(t) is equal to the dynamical correlation function C(t),
indeed:

〈Φ(r, t)〉 =
1

V

∫
V

d3r〈φ(r, t)〉 =
1

V

∫
V

d3rC(t) = C(t). (3.15)

These results will be useful in the next chapter, to deal with four-point
correlation functions (Sec. 4.1.2).
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3.1.6 Mean squared displacement and Violation of the
Stokes-Einstein relation

Until now we approach the glass transition mainly dealing with macroscopic
quantities, such as viscosity, relaxation time and entropy, which are easily ac-
cessible in experiments. In principle should be easier focus on a microscopic
level. In this perspective, i.e. following the motion of single molecules, the
question of the glass transition simply consists in understanding how the
particles move in a liquid near to Tg. In practice, this underlies complicated
experimental tasks: one should be able to resolve the dynamics of small
objects (few Angstroms) on timescales of tens or hundreds of seconds, i.e.
an enormous interval if compared to the typical time of molecular dynamics
(picoseconds). On the one hand important insights can be inferred by experi-
ment performed on systems with larger constituents, such as colloidal glasses
and granular materials. On the other hand, computers furnish fundamental
contributions, although numerical experiments are strongly constrained by
the CPU times. Thus, if we were satisfied to stay in the moderately su-
percooled regime, numerical simulations allow to follow by construction the
trajectory of each particle in the system. In this way, it is possible to inves-
tigate single particle dynamics, and to obtain new insights on the nature of
the glass transition.

Consider, for example, the mean squared displacement (MSD) ∆r(t) of a
tagged particle at time t:

〈∆r2(t)〉 = 〈 1

N

N∑
1

|ri(t)− ri(0)|2〉, (3.16)

where ri(t) represents the position of particle i at time t in a system composed
of N particles; the brackets indicate an ensemble average over initial condi-
tions weighted with the Boltzmann distribution. For a liquid 〈∆r2(t)〉 can be
obtained by the diffusion equation for the density of a tagged particle. As a
function of the time < ∆r2(t) > is expected to vary ballistically 〈∆r2(t)〉 ∝ t2

for the early times where the particle experiments few collisions, and diffu-
sively 〈∆r2(t)〉 ∝ Dst at long times. Here Ds is the self-diffusion coefficient
of the tagged particle. For liquids Ds may be directly linked to a macroscopic
quantity such as the viscosity by using the Stokes-Einstein (SE) relation:

Ds '
T

η
, (3.17)

which predicts that the self-diffusion constant and the viscosity are inversely
proportional at fixed temperature.
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Figure 3.5: The mean square displacement (MSD) as a function of the log-
arithm of time in a Lennard-Jones system. At high temperature there is
a crossover from ballistic transport to diffusion. At low temperatures the
asymptotic behaviors are separated by a plateau. From Ref. [46].

Fig. 3.5 shows that the MSD also in supercooled liquids grows asymp-
totically linearly in time. However, the ballistic and the diffusive regime are
separated by an intermediate plateau whose length increases by lowering the
temperature.

This plateau is related to the behaviour of dynamic correlation function.
In the time region of the plateau of the MSD, the tagged particle is defi-
nitely beyond the ballistic regime, but despite its many collisions with the
other particles something prevents it from a standard diffusive motion, and
the particle remains confined in a small region of space. If we look at the
actual value of the MSD in correspondence of the plateau, we discover that
it is quite small, well below the (square) inter-particle distance [46]. A nice
interpretation uses the concept of a cage. The tagged particle is trapped in a
cage formed by its neighboors: the plateau corresponds to the vibrations of
the particle within the cage and diffusion is restored only when the particle
escapes the cage. Note that, as we are watching things in log-time, after
the particle has got out of the cage, it is effectively out of any cage. The
time needed to get out of the cage corresponds to the α relaxation process,
whereas the β relaxation is given by the particle vibrations within their local
cages.

The concept of cage, although very useful, needs several remarks. First,
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particles have neighbouring particles at all temperatures; what we would like
to understand is why below a certain temperature, i.e. close to glassiness,
the cage suddenly becomes stiff. Moreover, how the particle gets out of the
cage after a certain time, and why this time increases by decreasing the
temperature? In order to break a stiff cage, and thus to exit the plateau and
to restore ergodicity, particles must rearrange. This can be done by either
finding a rare ’hole’ through the many energy barriers giving rise to the cage
(a process that may be entropically costly, but energetically harmless), or by
climbing up these barriers (energetically costly, but entropically harmless).

The cage description purely lives in real space. On the other hand, there
are mean-field systems that have no real space structure at all, but where
the plateau of the dynamical correlation function is anyway present at low
temperatures. In these cases the cage effect cannot be the right interpreta-
tion, and the plateau is rather related to the persistence of the system in a
local energy minimum.

Finally, note that although we described the escape from the cage as
a single particle event, this is a simplistic view. As we shall see later on,
dynamical relaxation is achieved through cooperative behaviour. Many par-
ticles must be dynamically correlated in order to unstuck from their local
vibrational positions. Hence, one should rather say that it is the cage that
collectively breaks up to free the particles, before another cage is formed. Un-
derstanding the nature of this collective rearrangement is one of the central
questions related with the glass transition.

Now we turn to the diffusive behaviour. At relatively high temperature,
it is found that Ds decreases by orders of magnitude when temperature de-
creases, and thus mirrors the behaviour of the (inverse ) viscosity for real
systems as provided by the SE relation 3.17. Closer to the glass transition,
by contrast, the SE relation break down and Ds becomes several orders of
magnitude larger than T

η
[42, 43, 44, 45]. In particular, the ratio T

Dsη
decreases

sharply when the temperature is lowered close to Tg [42, 43]. This means
that self diffusion coefficient and inverse viscosity have different functional
dependence on T . So why structural relaxation are so sluggish, whereby
self-diffusion is still relatively vital? We will try to give an answer in the
next chapter, after we have introduced Dynamic Heterogeneities (see Sec.
4.1.1).
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3.2 Jamming transition in granular materials

In this section we describe the Jamming transition of non-thermal systems,
focusing on the behaviour of granular materials (see Sec.2.2.5).

First, we will discuss in detail the simplest case of soft frictionless spheres
in the limit of zero applied stress. The seminal work of O’Hern et al. [24] laid
the groundwork for much of what we understand about Jamming of these
systems and it defines the point-J in the Jamming Phase Diagram of Fig.
2.2. Here the transition exhibits peculiar and well defined properties which
seems to also control the region around it.

Then, we turn to describe the phenomenology of realistic granular mate-
rials, whereby Jamming occurs under finite applied stress and in the presence
of friction.

Finally we will introduce the concept of ’fragile matter’ [23], a central ideal
for understanding the peculiar mechanical properties exhibited by jammed
granular materials.

3.2.1 Point-J

The previous discussion about supercooled liquids clarifies that theories for
jamming phenomena must explain the anomalous increase of the relaxation
time observed on approaching the glass transition. At the same time, we
have seen that the slow down itself poses experimental problems and makes
it difficult to study the very phenomena being investigated.

For supercooled liquid the observed dynamical transition at Tg is related
to the experimental time-scales: it is, in facts, not possible to go beyond
Tg in order to investigate whether a transition with a ’self-defined’ signature
takes place at any finite temperature. Similar circumstances occur, for ex-
ample, measuring the value of the yield stress, σy, in driven systems such
as a foam: longer observations allow to detect the onset of flow at smaller
applied stresses, thus returning a lower value of σy.

Summarizing, these transitions are therefore not sharp: the transition
point depends on experimental time-scale and there is not a discontinuous
jump as in first-order transition nor a clear divergence as in critical phe-
nomena. Moreover, experiments have not been able to verify or refute the
possibility that there is a underlying sharp transition.

One important advance in the study of Jamming is that, at least at
point-J, the transition is sharp. In this simplified case the Jamming shows
well defined properties, that are not only extension of previous results but
contains new elements.
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It is presently a subject of considerable controversy whether these insights
will be relevant to more realistic systems and whether it will be useful to
deal with the complexities of glass formation. However, the solid framework
developed at point-J offers the hope that this understanding can be enlarged
at least to the region around it [47].

The model

The framework of point-J has been developed for systems of soft frictionless
spheres. In these model, temperature, gravity, and shear stress are set to
zero. The interaction can be expressed as a function of a dimensionless
penetration length, δij, between two particles i and j:

δij = 1− rij
Ri +Rj

. (3.18)

Here Ri and Rj denote the radii of the undeformed particles, while rij is
their center-to-center distance, so that the two particles are in contact only
if δij ≥ 0. The particles interact via the following pairwise potentials:

Vij = δαij δij >= 0,

Vij = 0 δij <= 0.
(3.19)

The exponent α set the type of contact interaction: for example, α = 2
corresponds to harmonic repulsions, while α = 5/2 give raise to ’Hertzian’
repulsion, where contacts becomes stiffer for larger compressions.

Once the contact laws are given, one can generate packings using various
different protocols, such as Molecular dynamics (MD) or Conjugate Gradient
(CG). In particular CG, used in Ref. [24], is based on the fact that for
frictionless particles, the interaction are conservative and stable packings
correspond to minima of the elastic energy. This protocol aims to create
configuration at T = 0 and a given volume fraction φ. To obtain such
states, simulations start with a fixed number of particles, N , with the particle
positions chosen completely at random (this corresponds to T = ∞) within
a square or cubic box with side length L and periodic boundary conditions.
Starting with randomly generated T = ∞ states guarantees that all phase
space is equally sampled. Then CG allows to bring the system to the nearest
potential-energy minimum by constantly moving downward on the potential
energy surface. Each conjugate gradient energy minimization is terminated
if, by successive iterations, the potential energy per particle deviates in a fixed
small range. This procedure brings the system extremely close to T = 0.
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Figure 3.6: Typical packings of soft frictionless spheres as a function of vol-
ume fraction φ, below, at and above the threshold value, φc for the onset of
Jamming. Left: unjammed system at low volume fraction -pressure is zero
and there are no contacts. Middle: jammed system near φc: undeformed
frictionless spheres just touching. Right: jammed system at high volume
fraction -pressure has a finite value. From Ref. [2].

The properties of the resulting state are investigated slightly perturbing
the system via compression, decompression or by applying a shear strain.
After each infinitesimal perturbation, the CG is again used. Since this tech-
nique takes the system to the bottom of its local potential well, the quantities
so measured are related to the static, or infinite-time (t = ∞) response of
the configurations. By contrast, instantaneous responses can be investigated
by measuring the response to a perturbation immediately after it has been
applied (before minimizing the energy by the conjugate gradient technique).

Finally we note that, to avoid crystallization, two-dimensional packings
are usually made polydisperse, and a popular choice is bidisperse packings
where particles of radii 1 and 1.4 are mixed in equal amounts. In three
dimensions, this is not necessary as monodisperse spheres then do not appear
to order or crystallize for typically employed numerical packing generation
techniques [2].

Evidence for sharp transition

Figure 3.6 shows typical configurations of soft frictionless particles for differ-
ent values of the volume fraction, φ. At low density no contacts are present
and particles are undeformed so that the potential energy, V , and the pres-
sure, P are both zero. In response to an external stress, the systems behaves
like a fluid, as each particle can move avoiding easily its neighbours.

By contrasts, at high volume fraction, particles experiments a large num-
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ber of contacts which compress them and warrants mechanical stability in
response to finite stresses: the system behaviour is elastic, as particles can
deform but not move, due to the crowding around them. In this case, jammed
granular materials can be treated as amorphous but well connected solids,
where disorder essentially acts as a perturbation on the responses computed
on a referencial ordered configuration. Accordingly one may use the approach
of effective medium theory based on the affine assumption: particles locally
follow the globally applied deformation field. More precisely, the strict def-
inition of affine transformations states that three collinear particles remain
collinear and that the ratio of their distances is preserved and affine trans-
formations are, apart from rotations and translations, composed of uniform
shear and compression or dilatation.

Nevertheless, the more interesting phenomenology occurs in between these
two limiting cases. Indeed, an intermediate volume fraction, φc, which marks
the onset of Jamming: at φc, particles are in contact (except for a few rat-
tlers), but in a way that they just touch without deforming. Close to φc,
effective medium theories clearly fails as affine assumptions no more hold
[2]: in facts, the packing geometry is such that disorder cannot be treated
as a small perturbation, but it is rather the ’essential’. In this ’ambiguous
conditions’, it becomes difficult to point out any ’a-priori’ expectation about
the mechanical properties of the system, and even to estimate whether the
system is jammed or not.

Using the numerical protocols described above 1, O’Hern et al. [24] fix
the jamming threshold φc as the volume fraction value where the static shear
and bulk moduli simultaneously become nonzero. Although the value of
φc changes on different realizations, its distribution becomes narrower as
the system size increases. In particular, the width of the distribution, W ,
vanishes with the number of particles, N , as W ∝ N1/2.

Thus, in the thermodynamic limit, φc has a well defined value, which de-
fines point-J. Moreover, this value corresponds to the volume fraction previ-
ously measured for the ’random close packing’ (rcp). As the original concept
of rcp is elusive and not suitable for mathematical definitions, the authors
suggest that the framework developed at point-J represents a robust and
highly reproducible possibility to fix the rcp value.

In addition, for all initial configurations, the properties of the jammed
states behaves in the same way , when measured as a function of φ− φc. As
we will discuss below, these behaviours includes scaling laws, discontinuous
jumps and diverging length scales, suggesting that φ − φc is a good control

1by using different protocols, such as molecular dynamics simulations, only negligible
deviations on the value of φc have been measured [48, 49, 50, 51].
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Figure 3.7: Panel a: excess number of contacts per particle Z − Zc for 3-
dimensional (upper curve) and 2-dimensional systems with different poten-
tials and polidispersity. Panel b: Schematic representation of the excess
number of contacts as a function of the volume fraction φ. From Ref. [24, 2].

parameter. 2

All these facts clarifies that Jamming at point-J takes the form of a sharp
transition.

Contact number and Isostacity

Locking at Fig. 3.6 one can realize that a key parameter for packing is the
average contact number per particle, Z. In fact, it is generally found that
most mechanical properties of jammed granular materials depend sensitively
on Z [2].

At point-J, Z exhibits a very peculiar behaviour: as schematically showed
in Fig. 3.7b, at low volume fraction Z = 0, and it discontinuously jumps to
a precise value at φc, Zc = 2d, then increasing as the system is compressed.
Fig. 3.7a shows that this increase gives raise to a power law scaling when the
excess contact number, Z−Zc, is plotted as a function of φ−φc [170, 24, 2],

Z − Zc = Z0(φ− φc)ζ , ζ = 1/2 (3.20)

where the value of ζ is insensitive to potentials, dimensionality and polydis-
persity, while the prefactor Z0 depends on the dimensionality, and weakly on
the degree of polydispersity . It is worth to mention that Z is computed by
ignoring the rattlers particles with no contacts at all. The fraction of rattlers

2Other good parameter controlling the distance from the Jamming, may be the pressure
P and the average overlap δ, which are both zero at the transition. They are found to be
related by power law scaling, P ∝ δα−1 ∝ (φ− φc)α−1 [2].
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in the system is typically ' 5% near φc and do not depend on the system
size, whereas it is found to decrease for increasing volume fraction.

The discontinuous jump in Z(φ) can be rationalized using the concept of
Isostacity : at low density, Z = 0 since if particles are not forced to be in
contact, they will push each other apart. In order to have any contact, a
particle must be held in place by neighbors on all sides, so touching particles
must belong to a cluster spanning the entire system. Accordingly, Z must
jump discontinuously from Z = 0 to a nonzero value, Zc, at the transition
volume fraction, φc. For frictionless spheres, Zc turns out to be the isostatic
vale, i.e. the minimum possible value needed for mechanical stability. In fact,
a mechanically stable system must have force balance on every particle, so
that, for N spheres in the connected backbone in d dimensions, the number
of equations that must be satisfied by the inter-particle forces is Nd. The
number of these forces equals the total number of contact, which is NZ/2,
since each contact is shared by two particles. The condition for mechanical
equilibrium requires that the number of forces is at least equal to the number
of equation, that is NZ/2 ≥ Nd. The minimum contact number to have
mechanical stability, Zc = 2d, is by definition the isostatic number.

Moreover, we can consider that the amount of overlap between soft par-
ticle must vanish at the onset of Jamming. This introduces NZ/2 equations
that must be satisfied by the dN particle coordinates. The only trivial so-
lutions are when d ≥ Z/2. Combining these two inequalities implies that
at point-J , the contact number precisely equals 2d in agreement with the
numerical results [47].

Mechanical responses

In Ref. [24] the nature of the static mechanical response are investigated and
compared with those predicted by the effective medium theory. The static
bulk and shear moduli and the pressure are found to scale as a power-law of
φ−φc with exponents that depend on the potential but not on dimensionality
and polydispersity.

When φ→ φ+
c , the pressure vanishes as:

p ∝ (φ− φc)ψ, ψ = α− 1, (3.21)

where α is the exponent characterizing the potential in Eq. 3.19. The bulk
modulus, K, is related to the derivative of pressure with respect to volume
fraction. Thus, it is expected to behaves as:

K ∝ (φ− φc)β, β = α− 2, (3.22)
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Figure 3.8: Bulk modulus K (panel a) and shear modulus G (panel b) as
a function of φ − φc for 2-dimensional bidisperse systems, with interaction
potential Vij ∝ δαij (see Eq. 3.19). The closed symbols denote moduli com-
puted by imposing affine deformations, and the open symbols to the moduli
calculated after the system has relaxed via CG. From Ref. [2] (adapted from
[24]).

which is in very good agreement with the numerical results, as illustrated in
Fig. 3.8a These power-laws are also provided by effective medium theory,
suggesting that, under compression, systems at point-J do not strongly vi-
olates the affine assumptions. However, measuring the instantaneous bulk
modulus, K0, obtained by imposing an affine compression, it is found that
K < K0, as Fig.3.8a evidences.

By contrast under shear the response of the system deviates strongly by
the effective medium behaviour. As shown in Fig.3.8b, the shear modulus G
scale as:

G ∝ (φ− φc)γ, γ = α− 3/2, (3.23)

whereas for affine deformation γ = α − 2 is expected. This discrepancy is
confirmed by directly measuring the instantaneous shear modulus G0 when
an affine deformation is imposed. Indeed, Fig. 3.8b shows that G0 ∝ (φ −
φc)

α−2 and G < G0.

Diverging length-scales

The signature of a diverging length-scale has been first grasped by O’Hern
et al. [24], observing lack of self averaging near point-J, i.e. the average
properties of a very large system are not the same as the average over an
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Figure 3.9: In response to the movement under a constant drive of a single
probe disk trough a system of soft disks, total number of moving disks, nmov
as a function of φc − φ. The solid line is a power-law fit. From Ref. [53].

ensemble of many smaller system at the same volume fraction.

Later, several static length-scales has been recognized, which diverge by
approaching point-J, although each one is defined only one side of the transi-
tion. Here we will introduce some of these lengths. We will use the notation
ξ+ and ξ− to indicate a length-scale which diverges as φ→ φ+

c and φ→ φ−c
respectively.

Drocco et al. [53] investigated the jamming transition at point-J as a func-
tion of increasing volume fraction, φ → φc, in a disordered two-dimensional
assembly of disks (d=2). In particular, they measure the total number of
moving disks, nmov, and the transverse length of the moving region, ξ−,
when a single probe disk is pushed through the other disks. Upon increas-
ing the packing density toward φc, power law divergences are found in the
number of moving disks, nmov ∝ (φc − φ)τ (see Fig. 3.9), with τ ' 1.3, and
in the spatial correlation length ξ− ∝ (φc − φ)ν , with ν ' 0.65. Note that
the values of the exponents are consistent with τ = dν, which suggests that
cluster of moving particles are compact object in 2-dimension. We also men-
tion that Olsson and Teitel [54] have found a similar value for the exponent
ν, although they investigated a different correlation length and a different
numerical experiment: a 2-dimensional system flows in a steady state due
to an external shear stress σxy, and ξ− is extracted by the velocity-velocity
correlation function, g(x) = 〈vy(xi, yi)vy(xi + x, yi)〉, where vy(xi, yi) is the
velocity along the y-axis for a particle in position (xi, yi). In this case, point-
J is approached as a function both of the volume fraction, φ → φc and the
shear stress, σ → 0.
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Wyart et al. [55] suggested that the existence of isostacity at point-J
implies the presence of a length-scale which diverges as point-J is approached
from above. This idea is supported by the following theoretical arguments:
if we cut a circular blob of radius l from a rigid material, the bubble should
remain rigid. However for jammed granular materials, the rigidity (given by
the shear modulus) is proportional to Z − Zc. Thus, the circular blob has
of the order of ld(Z − Zc) excess contacts. By cutting it out, one breaks the
contacts at the perimeter, which are of the order of ld−1Z. If the number
of broken contacts at the edge is larger than the number of excess contacts
in the bulk, isostacity is violated and the resulting blob is not rigid but
floppy: it can be deformed without energy cost. The smallest blob one can
cut out without it being floppy is obtained when these numbers are equal,
and represents the characteristic length-scale, ξ− ' Z/(Z − Zc) . Close to
the jamming transition, Z ' Zc is essentially constant and so one obtains
as a scaling relation that ξ− ∝ (Z − Zc)−1, which, as provided by Eq. 3.20,
diverges at the transition as (φ− φc)−ζ .

Above point-J, the presence of large correlations clearly emerges when
one focus on the forces between contacting particles. In particular, Fig.
3.10 evidences the presence of a characteristic length-scale in the response
of the contact force networks: close to point-J, the scale up to which the
response looks disordered becomes large. By studying the radial decay of
fluctuations in response to the inflation of a single central particle, one extract
a length ξ+ which, as the theoretically derived length-scale, varies as ξ+ ∝
(Z − Zc)−1 ∝ (φ− φc)−ζ [56]. This length-scale seems to be crucial in order
to address a central question concerning the behaviour of granular materials,
i.e. whether elasticity can describe a system response to, for example, point
forcing. Indeed, observations by Ellenbroeck et al. [56] suggest that below
ξ− the response is dominated by fluctuations, and the deformation field can
be seen as a distorted floppy mode, while at larger length-scales the response
crosses over to elasticity.

Jamming at point-J as a mixed transition

Fig. 3.11 schematically summarizes the behaviour observed at point-J. As
one can note, we are dealing with a sharp transition which exhibits very
unusual properties with respect to both first-order and second-order phase
transitions.

From the one hand, there is evidence of diverging length-scale and power-
law scaling which resembles critical phenomena. On the other hand, the
average number of contacts Z exhibits a discontinuous jump, as occurs in
first order transitions. In addition, the values of the exponent in the power-
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Figure 3.10: Divergence of a characteristic length-scale near jamming as
observed in the fluctuations of contact forces of a system of soft disks. Blue
(red) bonds correspond to increased (decreased) force in response to inflate
a single particle in the center of the packing. Left: the system is very close
to φc. Right: the system is strongly compressed above φc. From Ref. [56].

Figure 3.11: Schematic behaviour at point-J: there are diverging length-scales
(upper panel), the number of contacts has a discontinuous jump at φc then
increasing as a power-law of φ − φc (central panel), while the mechanical
responses continuously increase from zero as a power-law of φ − φc (lower
panel).
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law scaling do not depend on the dimensionality, as in critical phenomena,
but they can be sensitive to the interaction potential between grains.

Due to this nature, which joins properties of first and second order tran-
sition, Jamming at point-J has been classified as a mixed transition. Similar
transitions, although rare, have been observed in other models. Remark-
ably, all of these models have been proposed for the glass transition or, more
in general, in order to capture glassy dynamics [57, 58], in the mean-field
limit. Also a particular percolation model, known as k−corepercolation [59]
displays the same behavior when implemented on the Bethe lattice (which
correspond to the infinite-dimensional or mean field limit) [60]. A character-
istic of k-core percolation is that it can be mapped on one class of models
with glassy dynamics, namely kinetically constrained models (see Sec. 4.2.2).
Thus, this percolation yield some insight into the connection kinetically con-
strained models and the Jamming transition [47].

3.2.2 Realistic granular systems

The development of a robust framework for the Jamming transition at point-
J was possible because systems of frictionless soft spheres can be investigated
cleanly at zero temperature and zero external stress. However realistic gran-
ular material are typically far enough from these ’asymptotic’ systems and
experiments are inevitably performed with frictional grains and under finite
applied stresses. As anticipated in Sec.2.2.5, the action of a finite applied
shear stress, σ, favors the fluid phase, shifting the onset of Jamming to higher
values of the volume fraction, φj(σ) > φc. In other worlds, for volume frac-
tion φ > φc, granular materials develop an yield stress σy, such that for
σ < σy the system responds as a solid, while it flows when σ > σy. By
contrast, the presence of friction favors the solid phase, because it makes
possible the existence of stable packing at volume fraction φ < φc.

Apart these very general facts, experiments reveal a complex and very rich
phenomenology often characterized by transient regimes and different time
and length scales. Many of these experiments are performed in a Couette
cell, i.e. an annular shear cell submitted to a external shear stress and,
possibly, to vibrations [61, 62, 63]. The rheology observed in the fluid phase
comprises non-linear velocity profiles, shear bands, stick-slip behaviour, an
ordering transition, possibly affected by hysteretic effects [62, 63]. As the
volume fraction is increased, Jamming may suddenly occurs after the system
flow for a finite time [61].

In this context, numerical simulations are still fundamental in order to
stepwise increase the level of complexity, and focus on different emerging
aspects of the rheology. Below we point out the main effect of friction and
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stress close to the Jamming transition of soft spheres at zero temperature.

Jamming of frictional spheres

The crucial difference with the frictionless case is that both the threshold
volume fraction φj and contact number Zj are not sharply defined at the
transtion. Indeed, both values depend on the friction coefficient, µ and on
the preparation protocol, and are lower than for frictionless spheres [64, 65,
66, 190].

In the presence of friction, Jamming and isostaticity are not strictly en-
tangled In the limit of zero stress, the contact number at Jamming, Zj, can
range from d+ 1 to 2d, where Ziso

µ = d+ 1 is the isostatic value for frictional
spheres. It is found that Zj approaches Ziso

µ in the limit of infinite friction
and very slow equilibration of the packings [66, 190]. In all other cases, the
number of contacts at Jamming is larger than the minimal number needed for
force balance and rigidity, so that frictional packings of soft spheres at jam-
ming are hyperstatic: Zj > Ziso

µ . Hyperstaticity implies that, for packings
of rigid, frictional spheres, the contact forces are not uniquely determined
by the packing geometry, as was the case for the isostatic packings of rigid,
frictionless spheres [2].

Effect of stress on the Jamming transition

For frictionless spheres and small shear stresses the transition at point-J still
governs the behaviour of the viscosity. Indeed, quasistatic simulations at
constant volume, show that for small shear stress the viscosity η seems to
critically diverges at φc [54].

The scenario clearly changes at larger shear stress: MD simulations of 3-
dimensional systems [68] show that the volume fraction where the viscosity
diverges increase with the applied stress. In addition, hysteretic effects ap-
pears: a flowing or a jammed state can be found, depending on whether the
system is prepared coming from the fluid or the jammed phase. In particular
the volume fraction when the system unjams coming from the jammed phase,
φu(σ), is larger than the volume fraction φj(σ) where the system jams com-
ing from the fluid phase. However the deviation decrease when σ is lowered
and becomes negligible at small stresses, where φj ' φu ' φc, in agreement
with the results of Ref. [54].

In the case of frictional spheres, MD simulations return much of the phe-
nomenology observed in experiments: in particular, at finite shear stress, the
system may flow for a long time in a steady state, but then suddenly jams
[69].
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3.2.3 Fragile matter

As we have mentioned, under the action of an anisotropic stress, granular
systems may suddenly jam after a transient flow. Some years ago, Cates et
al. [23] introduced the concept of ’fragile matter’ to describe the mechanical
properties of these jammed systems. Simple geometries of hard spheres have
been proposed to capture the essential of this behaviour [70, 71]: under the
effect of an an anisotropic stress, such as a shear stress, particles rearrange
until they found a microscopic configuration able to sustain the stress itself. If
the applied stress increases in modulus, then the system may possibly behave
elastically, while flow is restored if even an infinitesimal force is applied in a
different direction. In this sense, the systems are ”fragile” and strongly differ
from any ordinary visco-elastic or elasto-plastic materials.

The authors expect that slight particles deformability allow a macroscopic
elastic response at least for small stresses, although they suggest that realistic
granular materials may be very close to the fragile limit. However, this is
still an open question.

Simulations of frictionless soft spheres under shear stress find that the
system do not show transient flows which should give raise to fragile response:
the system is either flowing in a steady state or jammed depending on the
control parameters [68]. However transient flow appears in the presence of
friction, leading to a rheology which seems to resemble previsions of sheared
hard spheres models which originally contributed to inspire the idea of fragile
matter [72]. Under these conditions, the solid response of granular material
is still an open question. In particular it is not clear to what extent the
concept of fragility may capture the properties of realistic system and whether
these mechanical properties are peculiar to granular systems, or also found
in different amorphous materials.
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Chapter 4

Dynamical Heterogeneities and
theoretical models

The presence of spatio-temporal fluctuations in the dynamics, known as Dy-
namical Heterogeneities (DHs), has been recently considered as a central as-
pect of the dynamics of jamming systems. Their existence has been inferred
from experiments in liquids [74, 75], while clearer observation has been avail-
able on systems with larger constituents, such as colloids and granular media
[77, 76, 78]. Computer simulations of spherical particles with simple pair
potentials have been used as models for both colloidal and molecular sys-
tems, with dynamically heterogeneous behaviour clearly present in a variety
of models. DH has also been investigated in a large number of more schematic
lattice models, such as kinetically constrained or lattice glass models [147].
Finally in the last years, the concept of DH has been used beyond the field of
the jamming transition, as a tool to characterize deformations and fracture
in disordered media [80, 81].

Here we will mainly focus on the case of glass formers liquids: we begin
the first section of this chapter, describing earlier numerical and experimental
facts supporting the existence of DHs. This allows to clarify some intriguing
general aspects of glass formers such as the non-exponential relaxation and
the violation of the Stokes-Einstein (SE) relation (see Sec. 3.1.6). Later we
will discuss the role of the dynamical correlation function, as a fundamental
tool for a quantitative investigation of DH . As the concept of DH seems
very promising to distinguish between competing theories, in the last section
of this chapter we will introduce some theoretical models for the Jamming
transition .

55
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4.1 Dynamical Heterogeneities

A central problem in understanding the physics of glass formers arises from
the importance of fluctuations in glassy systems. Liquid have disordered
structure, where identical molecules are instantly immersed in different lo-
cal environments. At high temperatures, these differences can be neglected,
as different configurations are rapidly sampled: thus, the behaviour of the
system may be derived by choosing a typical environment, which may be con-
sidered as the result of a time average. By contrasts, in the supercooled phase
fluctuations slowly relax, making difficult to select a typical environment as
a variety of different behaviors emerges.

The presence of such spatio-temporal fluctuations is generally known as
Dynamical Heterogeneities, and is now considered as a central aspect of struc-
tural relaxation in disordered materials with slow dynamics.

A recent advance in this field points that the DHs play here the same
role as the critical fluctuations in ordinary critical phenomena. However,
the application of this idea to glassy systems has required substantial new
insight into the nature of relevant fluctuations and observables. The reason
is that here we are dealing with a dynamical problem, whereas the theory
of usual critical phenomena has a thermodynamic nature as we discussed in
the the previous chapter. If one analyses static snapshots of viscous liquids,
there is little evidence of increasing fluctuations or heterogeneity, at least
when analyzed using standard liquid state correlation functions. Instead of
an ensemble of snapshots, one must apply the methods of critical phenomena
to an ensemble of ”collection of snapshots taken at different times” [121].

4.1.1 Earlier evidences

Our discussion on DH may surely begin with the deepening of a ques-
tion which we have already mentioned in the previous section: the non-
exponential relaxation of dynamical correlation functions (see Sec. 3.1.5).
The deviation from exponential relaxation, in facts, is not only represented
by the break-up of the decay into two steps (see Fig. 3.4); even the late
relaxation is non-exponential. In particular, it is found that the Kohlraush-
Williams-Watts stretched exponential form [135, 83],

C(t) = C0exp[−(t/τ)β], β < 1 (4.1)

fits reasonably well the data. Here the exponent β decreases when the tem-
perature is decreased, marking a larger and larger deviation from a stan-
dard exponential relaxation [84] . Moreover, two-step relaxation and the
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stretchted exponential relaxation seem to be related: at higher T the expo-
nent β approaches 1, and at the same time the whole two steps structure of
the dynamical correlation function disappears, and the relaxation goes back
to simple exponential.

Two natural, but fundamentally different, explanations has been pro-
posed, i.e. (1) the heterogeneous and (2) the homogeneous hipotesys.

1) The relaxation is locally exponential, but different regions have dif-
ferent relaxation times. As global correlation or response functions are es-
sentially an average over this spatial distribution of relaxation times, they
results non-exponential.

2) The relaxation is essentially non-exponential , even at a local scale.
Although the two scenarios are not necessarily contradictory, it is now

well established both numerically [85, 86, 107, 88] and experimentally [89, 75]
that close to the glass transition the dynamics of real supercooled liquids is
heterogeneous. It is possible to directly observe domains few nanometers
away from each other with significantly different mobility and relaxation
times.

Let us still consider two subsequent snapshots, taken at two instants of
time separated by an interval t. We can now measure how much each particle
moved in this time interval by computing the Van Hove correlation function
G(r, t). If t is very short, i.e. in the ballistic regime, we do not expect
great variations of the particles mobility, because interaction with environ-
ment are still unimportant; similarly, if t is very large, much larger than the
structural relaxation time τ , then we are averaging over a temporal window
so large that ergodicity is restored; and we cannot observe differences once
we take the ensemble average, and thus each particle will again have a sim-
ilar mobility. By contrast, if t has an intermediate value, long enough to
monitor particles interaction, but short enough not to restore statistical ho-
mogeneity, we see something very different: there are particles with mobility
significantly higher, and lower, than the average. We will see later that the
dynamics itself is able to select the time of maximum heterogeneity, which
in general is close to the plateau regime of the dynamic relaxation function
C(t) [85, 86, 107, 88].

When we raise the temperature, the dynamical correlation function and,
simultaneously, the MSD loose their plateau structure and dynamics becomes
homogeneous, irrespective of the value t has.

This observation strongly suggests that the non-exponential relaxation
of the dynamical correlation function is linked to heterogeneous dynamics.
A clear and more direct confirmation of the heterogeneous character of the
dynamics also stems from simulation studies. where single particle dynamics
is resolved both in space and time [90]. Fig 4.1 shows that particle trajecto-
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Figure 4.1: Time resolved squared displacements of individual particles in a
Lennard-Jones systems. The time on the x-axis is rescaled by the structural
relaxation time. The average is shown as a smooth full line. Trajectories
are composed of long periods of time during which particles vibrate around
fixed positions, separated by rapid jumps that are widely distributed in time,
underlying the importance of dynamic fluctuations. From Ref. [90].

ries are strongly intermittent. Vibrations were previously suggested by the
plateau observed at intermediate times in the mean-squared displacements
of Fig. 3.5, but the existence of jumps that are clearly statistically widely
distributed in time cannot be obtained from averaged quantities only. The
fluctuations in Fig. 4.1 suggest, and direct measurements confirm, the im-
portance played by fluctuations around the averaged dynamical behaviour.

The phenomena described above, clearly show that the dynamics is spa-
tially heterogeneous. However, they in principle do not clarify whether this
is related to purely local fluctuations or, instead, there are clusters of par-
ticle dynamically correlated over increasingly large regions. This point can
be unveiled trough spatially resolved measurement, where one tries to probe
a small enough number of dynamically correlated regions, and detect their
dynamics. For instance, using Atomic Force Microscopy techniques, the po-
larization fluctuations in a volume of size of few tens of nanometers has been
measured close to Tg[91] in a supercooled polymeric liquid (PVAc). Indeed,
the signals reveal that the dynamics is very intermittent in time: it switches
between moments with intense activity, and moments with no dynamics at
all, suggesting that extended regions of space indeed transiently behave as
fast and slow regions. A much smoother signal would have been measured if
particles with similar mobility were not clustered.

In general experiments of this kind are quite difficult: while important
information are reached about the typical life-time of the dynamic hetero-



4.1. DYNAMICAL HETEROGENEITIES 59

Figure 4.2: Three examples of dynamical heterogeneity. In all cases, the
figures highlights the clustering of particles with similar mobility. (Left,
from Ref. [76]) Granular fluid of ball bearings, with a colour scale showing
a range of mobility increasing from blue to red. (Centre, from Ref. [77])
Colloidal hard sphere suspension, with most mobile particles highlighted.
(Right, from Ref. [92]) Computer simulation of a two-dimensional system
of repulsive disks. The color scheme indicates the presence of particles for
which motion is reproducibly immobile or mobile, respectively from blue to
red.

geneity, by contrast, the determination of a dynamic correlation length-scale
is rather indirect and partial. Nevertheless, the outcome is that a non-trivial
dynamic correlation length emerges at the glass transition, where it reaches
a value of the order of about ' 10 molecule diameters [74].

In order to make more concrete such ideas in Fig. 4.2 we show several
jamming systems [76, 77, 92] in which mobile and immobile particles can
be identified in particular trajectories using different methods. Via a color
scale we clearly see that particles with different mobilities do not appear
randomly in space but are clustered. This observation suggests that struc-
tural relaxation is a cooperative dynamical process. Indeed, in its narrow
definition DHs are clusters of particle dinamically correlareted. We must
not forget that these clusters in glass-formers, are dynamical, not structural!
They continuously form over a length-scale and relax after a life-time, whose
typical values are found to increase by approaching the dynamical transition.

If we accept the evidences for spatio-temporal heterogeneities in the dy-
namics of glass former, we can try to answer to a previous question concerning
with the decouplings between viscosity and diffusion coefficient: why close
to Tg structural relaxation are so sluggish, whereby self-diffusion is still rela-
tively vital? A natural explanation of this effect is that different observables
probe differently the distribution of relaxation times [74]. In particular, dif-
fusion is dominated by the fastest clusters whereas structural relaxation is
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dominated by the slowest one. An unrealistic but instructive example is a
model where there is a small, non-percolative subset of particles that are
blocked forever, coexisting with a majority of mobile particles. In this case,
the structure never relaxes but the self-diffusion coefficient is non-zero be-
cause of the mobile particles. Of course, in reality all particles will eventually
diffuse. A slightly more realistic model was proposed in [45]. Suppose that
there are just two kinds of clusters equally numerous, fast and slow ones,
with relaxation time and diffusion coefficient respectively τfast << τslow and
Dfast >> Dslow. Note that in general η ' τ where τ is the (global) structural
relaxation time. So, at fixed temperature T the SE relation 3.17 reduces to,

D ' 1

τ
. (4.2)

Thus, it is evident that the violation of SE relation corresponds also to a
decoupling between diffusion coefficient and relaxation time. Let us sup-
posed that in this case the SE relation is obeyed in each cluster, so that
Dfast ' 1/τfast and Dslow ' 1/τslow. Under these hypotheses, we have that
the (global) observable relaxation time is τ ' τfast+τslow

2
' τslow/2, whereas a

measurement of the diffusion coefficient returns D ' Dfast+Dslow
2

' Dslow/2.
Thus, D >> 1

τ
and the SE relation results violated as expected. In general,

decouplings of this kind may be explained considering that different observ-
ables are likely to probe different moments of the distribution of timescales.
To conclude this point, we also mention that it has been shown that the SE
equation 3.17 is restored when the diameter of the probe used to measure
the diffusion coefficient increases [45]. This makes sense in terms of hetero-
geneous dynamics: when the probe is larger that the typical cluster size at a
fixed temperature, we are averaging over many heterogeneities, thus washing
out their influence.

4.1.2 Dynamical correlation functions

Until now we reported some basic facts supporting the existence and the
fundamental role played by DHs in glassy systems. To go further, it has
been necessary to develop tools allowing for the quantitative characterization
and measure of spatio-temporal dynamical fluctuations. Recently, substan-
tial progress in this direction was obtained trough the use of four-point, or,
two-time two-point correlation functions. This type of dynamical correlation
functions has been inspired by ideas previously introduced for spin glasses
[93, 94].

The existence of clusters of highly mobile (or immobile) particles of size r
suggests that the movement of particle i over the time interval t is correlated
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to the movement of particle j at distance r from i, over the same time interval
(provided that i and j belong to the same dynamical cluster, and t is smaller
than the typical cluster life-time). For example, it may be that the only way
for particle i to escape its ’cage’ over a time t is to cooperate to a synchronous
collective movement involving a certain number of particles; if particle j, at
distance r from i participates to the same collective movement, there will
be a correlation between the displacements of i and j. Hence, we need to
measure the correlation between the displacements over a time interval t of
particles at mutual distance r.

The concept of mobility connects directly to the physical picture of DHs
and it is thus quite illuminating. However, the essential ingredient to measure
spatio-temporal fluctuations in the dynamics is not really the mobility, but
rather the fact that we are calculating a two-time two-point correlation func-
tion, in contrast with standard two-point functions, as g(r). The two-time
two-point nature simply derives from the fact that, to unveil cooperative dy-
namics, we must check what happens in two spatial locations, separated by
r, at two different instants of time, separated by t. The correlation function
can thus be defined using any reasonable observable o(r, t), provided that we
keep the four-point structure:

g4(r, t) ∝ 〈o(0, 0)o(0, t)o(r, 0)o(r, t)〉 − 〈o(0, 0)o(0, t)〉〈o(r, 0)o(r, t)〉, (4.3)

where we assumed that TTI holds and the system is homogeneous . The
correlation function g4 depends both on space and time: it is expected to
become increasingly long-ranged as the temperature is lowered, allowing to
extract a time-dependent correlation length ξ4(t). ξ4(t) is provided to account
for the typical linear extension of dynamical clusters at time t.

Alternatively, in order to characterize correlations, we can focus the space
integral of g4(r, t). The dynamic susceptibility, χ4(t), is by definition propor-
tional to such integral:

χ4(t) ∝
∫
V

d3rg4(r, t). (4.4)

Eq. 4.4 suggests that χ4(t) represents an estimation for the volume of dynam-
ical clusters at time t, i.e. the typical number Ncorr(t) of particles cooperating
over the time scale t.

Four-point correlation functions and the order parameter

A clearer physical interpretation of g4 and χ4 is obtained by relating them
to the two-time correlation function C(t). As we point out in Sec. 3.1.5, the
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most remarkable dynamical signature of the glass transition is indeed the
non-exponential relaxation of C(t): the lower the temperature, the longer
C(t) remains at the plateau.

To this aim, Let us recall the scalar field φ(x, t) and its bulk correspondent
Φ(t) defined in Eq. 3.12 and Eq. 3.14 respectively, that by averaging directly
return C(t) ( Eq. 3.13, Eq. 3.15). In particular by using Eq. 3.13 in Eq.
4.3, g4 takes the form of the spatial correlation of the field φ,

g4 ∝ 〈φ(0, t)φ(r, t)〉 − 〈φ(0, t)〉〈φ(r, t)〉. (4.5)

Therefore, g4 formally mimics a two-point (spatial) correlation function as-
sociated with the order parameter, while the very four-point nature lies in
the definition (3.12) of φ(t), which is itself a two-time function.

Similarly, by using Eq. 3.15, we can express χ4(t) in term of the fluctua-
tion of Φ(t), indeed

χ4 ∝=

∫
V

d3rg4(r, t)

=

∫
V

d3r〈φ(0, t)φ(r, t)〉 − 〈φ(0, t)〉〈φ(r, t)〉 =

=
1

V

∫
V

d3y

∫
V

d3x〈φ(x, t)φ(y, t)〉 − 〈φ(x, t)〉〈φ(y, t)〉 =

= V (〈Φ(t)2〉 − 〈Φ(t)〉2).

(4.6)

Therefore, the dynamical susceptibility χ4(t) measures the fluctuations of the
dynamical order parameter.

Four-point functions in discrete space

In order to construct dynamical correlation function, it is often more conve-
nient to focus on particle observables oi(t) that are discretely labelled trough
a particle index i. In this case we get for the two-time correlation function
C(t):

C(t) =
1

N

N∑
i=1

< oi(0)oi(t) >, (4.7)

which is the discrete analogous of eq 3.1.5, being N the total number of
particles in the system. Similarly Eq. 3.12 and Eq. 3.14 become respectively:

φi(t) = oi(0)oi(t), (4.8)
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Φ(t) =
1

N

N∑
i=1

φi(t), (4.9)

so that, for the four point correlation function we have:

g4(r = |i− j|, t)〈φi(t)φj(t)〉 − 〈φi(t)〉〈φj(t)〉. (4.10)

The volume integrals, wich in Eq. 4.4 relate g4 and χ4, is now substituted
by a sum over particles:

χ4(t) ∝ 1

N

N∑
i=1

N∑
j=1

g4(|i− j|, t) (4.11)

Finally, using Eq.s 4.11, 4.10 and 4.9, the relation 4.6 becomes:

χ4(t) ∝ N(〈Φ(t)2〉 − 〈Φ(t)〉2), (4.12)

whereas all the other relations of the previous section still holds in the discrete
case.

Note that where the space is discretized, such as in lattice glass model,
correlation functions can be expressed in therms of both a particle index, or
a site index. In the last case sums run over the V sites of the system.

General behaviours

The four-point correlation function in glass formers have been the object of
intense research effort, both experimental and numerical. Here we briefly
summarize the main general results, that have an almost universal validity.
We focus on the role played by the temperature, which is central for glass
formers; However similar behaviours are found in other systems as response
to other relevant control parameters such as the density.

g4(r, t) is expected increasingly long-ranged when the temperature is low-
ered. This is consistent with the behaviour of χ4(t) shown in Fig. 4.3: it
first grows, when t is in the ballistic and early β-regime, then it reaches a
maximum at t = t∗, decreasing for larger times. The peak χ4(t∗) = χ∗4 con-
firms what we anticipated in the discussion on DH (cfr. 4.1.1). Clusters of
dynamically correlated particles are transient in time. For times too short,
correlation has still not formed because of the lacking of interactions among
the particles; for times too long, by contrast, the time average equals the en-
semble average restoring statistical homogeneity. It is only at intermediate
times that dynamical correlations are relevant. The behaviour of χ4(t) clar-
ifies that there is a time t∗ where the dynamics is maximally heterogeneous.
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As expected from our previous discussion, one finds that t∗ ' τ , i.e. the
order parameter fluctuations are largest when computed over a time window
of the order of the relaxation time.

Now let us discuss in more details the expected relation between χ4 and
g4. The susceptibility χ4(t) is proportional to the space integral of the cor-
relation function g4(r, t) (see Eq. 4.4). By analogy with critical phenomena,
if the behaviour of g4 is dominated by a dominant length-scale ξ4, for r large
enough, one may suppose a scaling form such as:

g4(r, t) =
A(t)F (r/ξ4(t))

rd−2+η
, (4.13)

where d is the dimensionality of the system, η ia an exponent characterizing
the long-range decay, and A(t) is an amplitude factor. Using this scaling for
g4 in Eq.4.4, one finds that:

χ4(t) ' A(t)ξ4(t)d−η. (4.14)

Moreover, if g4(r, t) monotonically decreases in space, one expect to estimate
A(t) ' g4(0, t) which is simply the variance of the scalar field φ(0, t). Finally,
if the order of magnitude of the amplitude does not vary, Eq. 4.14 states
that:

χ4(t) ' Ncorr(t) ∝ ξ4(t)d−η, (4.15)

where d−η = 3 is expected for compact clusters. Thus, a large susceptibility
implies a slower spatial decay of g4(r, t). This means that g∗4(r) = g4(r, t∗)
should be the slowest decaying correlation function, allowing to extract a
value for the correlation length ξ∗4 = ξ4(t∗) which is the largest one at that
temperature. In particular, as χ∗4 increases when the temperature decreases,
one expects that the correlation function g∗4(r) is more long-ranged and that
the maximum dynamical correlation length ξ∗4 increases by approaching the
dynamical transition.

Numerical and experimental results

Direct measurements of χ4(t) have been performed in colloids [95] and gran-
ular materials [76, 78] close to the colloidal and granular glass transitions,
and in foams [96] and gels [97], where the dynamics is more easily spa-
tially and temporally resolved. A major issue is that obtaining information
on the behaviour of χ4(t) and g4(r, t) from experiments on molecular sys-
tems is difficult. In molecular liquids, it remains a difficult task to resolve
temporally the dynamics at the nanometer scale. Such measurements are
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Figure 4.3: Time dependence of χ4(t) computed from the fluctuations of
the self part of the intermediate scattering function in a molecular dynamics
simulation of a Lennard-Jones supercooled liquid. For each temperature,
χ4(t) has a maximum, which shifts to larger times and has a larger value when
T is decreased, revealing the increasing length-scale of dynamic heterogeneity
in supercooled liquids approaching the glass transition.From Ref. [102].

however important because numerical simulations and experiments on col-
loidal and granular systems can typically only be performed for relaxation
times spanning at most 5−6 decades. The function χ4(t) has been measured
by Molecular Dynamics, Brownian and Monte Carlo simulations in different
liquids [98, 99, 100, 101, 102, 103, 105]. Moreover, its behaviour has been
theoretically investigated using various theoretical perspectives, as described
below in Sec. 4.2. A typical example is shown in Fig. 4.4, taken from Monte
Carlo simulations of a simple Lennard-Jones supercooled liquid.

Fig. 4.4 clarifies that the time and temperature behaviour of χ4(t) is very
rich: the growth towards its peak value is composed of several time regimes,
closely reflecting the broad spectrum of relaxation processes characterizing
time correlation functions. An analogous behaviour is found in nearly all
cases, as detailed in [106].

Similarly, the temperature evolution of χ4, and in particular the peak
height, can be quantitatively studied. In numerical simulations χ∗4 increases
by at most 2 orders of magnitude from a high temperature value up to the
lowest temperature at which the system can be equilibrated. In this range
of temperature data seem to be compatible with a power law divergence of
χ∗4 and t∗ at a finite temperature close to the value provided by the mode
coupling theory, which we will discuss in Sec. 4.2.1 [107, 99, 108, 100].

It is worth to mention that the behaviour of χ∗4 has been investigated in
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Figure 4.4: Time and temperature evolution of χ4(t) computed by the spon-
taneous fluctuations of the intermediate scattering function in a Lennard-
Jones supercooled liquid in Monte Carlo simulations. The growth of χ4(t) is
characterized by several distinct time regimes, mirroring the complexity of
time correlation functions. Here τβ and τα = τ indicate the time-boundary
of the β-regimes and α-regimes respectively. Moreover, as the temperature
is lowered, the peaks χ∗4 appear to increase as a power-law of the relaxation
time τα = τ . From Ref. [121].

a recent experiment very close to the jamming transition of colloids [109].
Surprisingly, these results show that the well known increase χ∗4 is followed
by a sharp drop when the volume fraction is very close to the critical value.

As we anticipate, χ∗4 should provide a measure for the volume over which
the dynamical processes relevant to structural relaxation at t ' τ , are cor-
related. More direct evidences of a growing dynamical correlation length
can be obtained by measuring directly g4(r, t). Indeed, the form of g4(r, t)
has been checked to be roughly compatible with the scaling proposed in Eq.
4.13, so that the increase of the peak of χ4(t) corresponds to a growing dy-
namic length-scale [99, 110, 100, 112, 111], as provided by Eq.4.15 . However,
these measurements are difficult in computer simulations, because very large
systems need to be simulated to determine ξ4 unambiguously [113, 114].

Choosing observables and probing length-scales

As discussed above, one may define four-point correlation functions starting
from any suitable observable. Indeed, many candidates have been considered.

For instance, a natural choice is to start from Eq. 3.12 and to take
φ(k, r, t) = δρk(t)δρ−k(0) as the autocorrelation of a single Fourier component
of the density. In this case, C(t) is just the intermediate scattering function
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F (k, t) (cfr 3.1.5).

Instead in computational studies, is more convenient to use φi(k, t) =
eik·(ri(t)−ri(0). As we will explain in the next chapter, in this case C(t) becomes
the self part Fs(q, t) of F (q, t). The definition of g4 and χ4 obtained in these
ways are not equivalent. Differences between them were discussed in Ref.
[100], where, anyway, it was concluded that they contain similar informations.
From a physical point of view, what count is that as particle i moves away
from its initial position ri(0), the function φi(q, t) decays from a value of
unity, approaching zero when the particle has moved a distance a, which is
the probing length scale of the used observable, (in the case of scattering
functions a is of the order of the wave-length λ = 2π/k associated to k).

Based on this physical interpretation, other choices for φi(t), including
step functions, or smoothly decaying functions were used [98, 99, 100, 102].
As expected on physical grounds, constructing four-point correlation func-
tions based on these choices again leads to qualitatively similar behaviours.

Yet another choice is to use a function φi(t) that depends not just on the
positions at time zero and time t, but also on the whole history of the particle
between these times. In particular, as we will do in the next chapter, one
may use a ”persistence” function which takes a value of unity if the particle
remains in its initial position for all times between 0 and t; otherwise it takes
the value zero. Again, one observes a broadly similar behaviour [115].

By contrast, the quantitative results strongly depend on the probe length
scale a. Typically, if the probes length scale a is of the order of the particle
diameter, φ(r, t)measures local motion, and this is often the scale on which
heterogeneity is most apparent. On the one hand, if the probes length scale
increases, contributions to χ4(t) come from pairs of particles that remain
correlated over distances comparable to a and, typically, such correlations
weaken as a increases, reducing χ4(t) [115] . On the other hand, also if a is
much smaller than the particle s size, χ4(t) decreases, as short-scale motion
corresponding to thermal vibrations are uncorrelated.

Therefore, χ4(t) is usually maximal for a probe length scale comparable
to the particle size, and it is fixed to a constant when comparing data at
different temperatures or densities. An alternative choice is to adjust the
probe length-scale a at different state points such that χ4(t, a) reaches its
absolute maximum, this can be very important for some systems like granular
media close to the jamming/rigidity transition where the maximum is reached
for values of a of order of fractions of the particle diameter [116, 117, 182].



68CHAPTER 4. DYNAMICAL HETEROGENEITIES AND THEORETICALMODELS

Geometrical structure of dynamical clusters

We could conclude that a growing peak in χ4 stands for the growth of a
dynamic correlation length, as the glass transition is approached. Eq. 4.15
clarifies that, at time t, χ4(t) can be interpreted as an estimate of the volume
of dynamical clusters, while ξ4 accounts for their linear dimensions. Similarly,
the time t∗, where correlations become maxima, is interpreted as the typical
cluster life-time. Accordingly, χ4∗ and ξ∗4 represents the maximum volume
and linear extension of these clusters.

However, this interpretation can be actually correct only if g4 has a scal-
ing form of the type provided by Eq. 4.13 where the amplitude A(t) stays
approximatively constant. However, it is not simple to check whether this is
true, both in experiments and simulations. In contrast to χ4, in fact, detailed
measurements of g4 are not easy , as dynamic correlations must be resolved
in space over large distances. From the point of view of numerical simula-
tions, where many measurements of χ4 were reported, the main limitation to
properly measure g4 is the system size. Indeed, typical numbers extracted for
the correlation length ξ4 are modest, growing, say, from 1 to at most 5− 10.
However such a small increase hides the fact that correlation functions only
decays to zero for distances r that are several times larger than ξ4. 1

Some significative data has been obtained for lattice glass model, where
measurements of g4(r, t) are somewhat easier than in molecular dynamics
simulations. As we anticipated, often, one estimates the amplitude A(t) in
Eq. 4.13 to be equal to g4(0, t) In general, the work in this domain is broadly
consistent with χ4(t)/g4(0, t) representing the number of particles involved
in heterogeneous relaxation. In other words, ’direct’ measurements seems to
confirm that the increase of the peak of χ4(t) corresponds, as expected, to a
growing dynamic lengthscale ξ4(t) [110, 99, 102, 111].

Nevertheless the mentioned results of Ref. [109], showing a drop of the
susceptibility very close to the Jamming, suggests that the relation between
ξ4(t) and χ4(t) shuould be more complex.

Finally we note, that the exponent 2−η in Eq. 4.15 may have more than
one interpretation. If one assumes that a typical cluster has size ξ4(t) and
contains ξ4(t)2−η particles, then 2 − η is interpreted as a fractal dimension.

1Given that g4 is accurately measured up to r = L/2 in a periodic system of linear
size L, going to few ξ4 (say, five times), when ξ4 ' 5 requires systems containing at least
N ' L3 ' (2 · 5 · 5)3 ' 125000 particles in three dimensions, assuming the density is near
ρ = 1. Such large system sizes are not easily studied at low temperatures when relaxation
times get very large, even with present day computers. However, these studies are of vital
importance in that they allow the dynamical length scale ξ4(t) to be measured directly.
Moreover, insights from such studies can then be used when inferring the behaviour of
ξ4(t) from measurements of χ4(t).
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However, an alternative would be that clusters are all compact, but that the
distribution of their sizes is rather broad. This uncertainty reflects the fact
that four-point correlation functions involve averages over many clusters, so
that they do not resolve details of cluster structure.

Until now, an exhaustive geometrical characterization of such dynamical
clusters is still an open question in understanding the glass transition.

Final remarks

Concerning the role of DHs in the glassy physics, several key questions are
still unanswered.

We have seen how direct measurements of growing dynamic correlation
lengths have provided evidences in favor of the collective nature of the glass
transition itself. This fact being now established, it remains to understand
more quantitatively the connection between these growing correlation lengths
and the increasing viscosity of liquids approaching the glass transition. In
particular, it is not clear to what extent DHs and structural relaxation are
related. For instance, the surprising drop of the susceptibility found in Ref.
[109] could be addressed to a decoupling between DH and relaxation pro-
cesses.

As we anticipated, direct experimental measurements of dynamic length-
scales are still not available for molecular glass-formers, and are scarce even
for colloidal materials. Thus, it would be useful to develop new experimental
tools to resolve the dynamics of molecular glass-formers, while it is not yet
clear whether molecular dynamics simulations of model systems have cov-
ered a broad enough range of timescales and are thus relevant to understand
the physics of real glass-formers near the experimental glass transition tem-
perature. We also have already pointed out that further work should be
devoted to a better characterization of the geometry (and not only typical
length-scale) of the dynamically heterogeneous regions.

4.2 Theories and predictions

In this section we provide an overview of several theoretical models for the
glass transition. On the one hand a satisfactory and complete framework
explaining the wide phenomenology of glass formers is still lacking. On the
other hand, a variety of theoretical approaches have been proposed, providing
fundamental contributions to understand different , although not resolutive,
aspects.

Here we will deal with models able to furnish quantitative predictions
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that can be easily compared with the experimental data. Moreover we don’t
discuss in great detail developments, limitations, and fails of the theories, but
we will focus on the keystone ideas and on the predictions, specially when
related with the topic of DHs, as they are propaedeutic for the results we
will discuss in the next chapter.

The section is divided in two part: we first deal with model based on
thermodynamics. In particular we will mention some earlier models that
first introduced new concepts, resulting fundamental in designing the present
scenario. Then we will focus, in fact, on the Mode Coupling Theory (MCT)
and on the Random First Order Theory (RFOT) that are now considered
the most quoted theories for describing the behaviour of glass formers in the
moderately and deeply supercooled phase respectively.

We anticipate that many of these models assume the existence of a static
length-scale ξ which grows approaching the glass transition. This may be
surprising: we have stressed in the previous chapter that a length-scale of
this kind is never been observed using standard correlation functions, and
one may asks why these models are based on a fact which seems to disagree
with the experimental evidences. Actually, the idea which leads this route
is that a growing correlation length effectively exists in supercooled liquids,
although it is not measurable with standard methods. Thus, this theories
aim to understand what is the nature of this hipotetyc static correlation
length in order to develop non-standard tools able to detect it.

In the second part of the present section, we will deal with models that
conceive the glass transition as a purely dynamical phenomenon: here we
will focus on the so called Kinetically Constrained models (KCM), and, we
will discuss the diffusing defects paradigm.

4.2.1 Thermodynamic approach to the glass transition

Goldstein’s scenario
In 1969 Goldstein [30] elaborated the first theoretical description for the equi-
librium dynamics of supercooled liquids. The Goldstein’s work introduced
seminal ideas about the deeply supercooled phase, where activated processes
are now recognized as the main mechanism for relaxation. Goldstein focuses
on the evolution of the system in phase space. Over this space it is defined the
total potential energy of the system, and the surface of this function is often
called potential energy landscape. Each different configuration is represented
by a point in the phase space, and the dynamics of the system may be viewed
as the motion of this point over the potential energy landscape. The local
minima of the potential energy corresponds to locally stable configurations
of the particle system. We are interested in the local minima corresponding
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to particles arrangement that are completely lacking long-range crystalline
order. These are amorphous, or glassy, minima, and have a potential energy
that is larger than the crystal one. Goldstein’s idea is that at low enough
temperatures a supercooled liquid explores the phase space mainly through
’activated jumps’ between different amorphous minima, separated by poten-
tial energy barriers. In real space, the jump may be interpreted as the local
rearrangement of a relatively small number n of particles localized in a lim-
ited region of space of linear size ξ, whereas the other particles are almost
untouched by this process. In activation dominated dynamics, the relaxation
time is expected to scale as :

τ ∝ exp

[
ξψ

KBT

]
, (4.16)

where it is assumed that the energy barriers ∆E scales as some power of ξ,

∆E ∝ ξψ. (4.17)

Note that the local nature of rearrangements is one of the central idea in
the Goldstein’s scenario: the number n of particles participating in the re-
arrangement sets the potential energy barrier separating two minima, and
thus it scales as some power of n. It is natural to expect that the typical
value of n increase by decreasing the temperature, so explaining the non-
Arrhenius behaviour of the viscosity. Nevertheless, due to the local nature
of the process, n remains always negligible compared to the size N of the
entire system, so that barriers can be surpassed by means of the thermal
energy fluctuations that are of the order of KBT . When the temperature is
increased, activation itself is a bad approximation of the true dynamics, as
thermal energy becomes comparable and even higher than the typical poten-
tial energy barriers [122]. In this case it is clear that Goldstein’s scenario
must break down. Therefore, the break down of Goldstein’s scenario marks
a conceptually useful border, that is the temperature, say Tx, separating a
low-T activated and viscous regime, from a high-T non-activated and fluid
regime. Goldstein [30] estimated the value of the shear relaxation time at
Tx, concluding that τ(Tx) ' 10−9 − 108Sec., which return a value for Tx
intermediate between the glass and the melting temperature: Tg < Tx < Tm.
Summarizing, the Goldstein’s scenario introduces at least three important
points:

1) The importance of the energy landscape for the dynamics of the system
in phase space.

2) The local nature of activated processes.
3) The definition of a temperature above which activated dynamics no
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more holds and any other relaxation mechanisms should dominate.

Adam-Gibbs-Di Marzio Theory
The first successful attempt to connect at the theoretical level the glass
phenomenology to a thermodynamic transition is due to a series of pa-
pers published by Adam, Gibbs and Di Marzio between 1956 and 1965
[123, 124, 125]. Activation plays still a central role in the Adam-Gibbs-Di
Marzio Theory(AGDM), which clearly relates some important topics of the
glassy dynamics: energy barriers, the relaxation time the existence of static
correlation length and the number of local minima in the energy landscape,
i.e. the configurational entropy Sc.

The key idea is that at low temperature relaxation proceeds through the
rearrangement of larger and larger regions of correlated particles, which the
authors called Cooperative Rearranging Regions (CRR). The typical CRR is
defined as the smallest region that can be rearranged independently from its
surrounding. This means that different portions of one CRR cannot choose
their own configuration independently from each other, and thus cannot con-
tribute to the proliferation of the number of states available to the entire
CRR.

How many states W the global system can be found in? Given that, by
definition, different CRRs are weakly interacting with each other, the answer
to this question is very simple, W = ΩN/n, where where N is the total number
of particles in the system, and n the typical number of particles in each CRR.
Thus, N/n is the total number of independent CRRs. The configurational
entropy Sc is then the logarithmic density of the number of locally stable
states Sc = 1

N
log(W ) = log(Ω/N). Inverting this relation we finally obtain

the behaviour of n as a function of the temperature: n(T ) = log(Ω)
Sc(T )

. Now,

supposed that n ' ξd and that typical energy barriers ∆E are proportional
n (ψ = 1 in Eq. 4.17), we have: ∆E ' ξ ' n ' 1/Sc. Moreover for
the relaxation time is expected: τ ' exp( ∆E

KBT
). Thus, we can write that

τ ' exp( B
TSc(T )

), where B contains all the constant factors. It is clear that
in this case the explicit dependence of τ on the temperature is set by the
functional form of Sc(T ). Further developments of the AGDM theory, in
fact, predicts that at low temperature the configurational entropy behaves
as

Sc ∝
TK − T
TK

, (4.18)

which leads to the fragile behaviour of the relaxation time, in the form
of a VFT law which diverge at the Kauzmann temperature TK . Hence, in
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AGDM view, the dynamic glass transition at Tg is nothing more than a mere
precursor of the thermodynamic transition at TK , which is, in this frame-
work, the only relevant physical phenomenon.

p-spin model
A different thermodynamic scenario is provided by Fully Connected Mean-
Field Models [126]: here each particle (or spin, or any other degree of free-
dom) interacts with all other particles, so that exiting a local energy minimum
requires changing N degrees of freedom. In this case activation processes and
local rearrangements are forbidden as thermal fluctuations cannot surpass the
barrier .

Nevertheless there exists a class of spin glass models that shows a phe-
nomenology strikingly similar to that of supercooled liquids. The p-spin
model is the paradigm of such class [127]. It was proved that this particular
model was described by a set of dynamical equations formally identical to
those we will meet for MCT. This is a model where there is no underlying
lattice, nor space structure at all, where each spin is equally close (or dis-
tant) to every other spin (this is at the origin of the name ’fully connected’
or ’infinite dimensional’ attributed to these models; by contrast, for the same
reason, normal, non-mean-field systems are sometimes called ’finite dimen-
sional’ systems).

The correlation function of the p-spin model develops a plateau, giving
rise to the two steps relaxation pattern, as in real liquids and in MCT. Unlike
real liquids, however, but similar to MCT, the length of the plateau (and thus
the relaxation time τ) diverges as a power law at a finite temperature Tc,
called the dynamical transition in the spin-glass literature. The interesting
thing is that no thermodynamic (static) divergence, nor anomaly takes place
at Tc. What happens at Tc is that the system remains dynamically trapped
within metastable states surrounded by infinite free energy barriers that the
system cannot overcome by thermal activation . For this reason, in mean-
field model metastable states have an infinite life-time and can be sharply
defined. The system is therefore forbidden to restore ergodicity, and a true
dynamical divergence occurs.

Mode Coupling Theory

MCT was formulated [129, 130] in the attempt to quantitatively describe the
dynamical properties of supercooled liquids by determining the equations of
motion for the dynamical correlation function of the density fluctuations.

The starting point of the method is the derivation of the following equa-
tion for the dynamical structure factor F (k, t):
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Figure 4.5: Schematic behavior of the Intermediate Scattering Function,
F (k, t), in the Mode Coupling Theory. From Ref. [131]

d2F (k, t)

dt2
+
k2KBT

mS(k)
F (k, t) +

∫ t

0

dt
′
M(k, t

′
)
d

dt
F (k, t− t′) = 0. (4.19)

Here M(k, t) is the memory kernel of a particle of mass m at temperature
T , which is shown to corresponde to the variance of the random force acting
on the density field [134]. Thus, M(k, t) captures the effect of all degrees of
freedom other than the density field on the density field itself. The physical
idea motivating MCT is to focus on the slow part of the random force, so
that only the bilinear density products contribute to M(k, t)and it can be
expressed in terms of a four-point function. In a final approximation, this
function is factorized as the product of two-point density functions F (k, t),
turning Eq. 4.19 into a self-consistent equation.

In this way, the only input of Eq. 4.19 is the static structure factor
S(k) = F (k, 0) [135]. This may appear surprising, since we have seen that
structural quantities do not show anything peculiar close to Tg. The central
point here consists in the very nonlinear form of the the MCT equations:
even a tiny change in the structural properties may cause a steep slow down
of the dynamical relaxation.

At low temperature the MCT predicts correctly the two steps relaxation
of the dynamical correlation function, developing a plateau whose length
increases when the temperature is decreased. The theory provides the two
step relaxation not only as a qualitative signature, but furnish a precise
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quantitative prediction of the way the correlation function should arrive to
and depart from the plateau, and thus it gives a precise description of both
the β (fast) and α (slow) relaxation. These prediction agrees rather well with
t experimental and numerical evidences [38, 39, 46, 133]. In particular, the
decay to the plateau and the departure from it are characterized by power
law behaviours. The exponent 0 < a < 0.5 fixes the short time behavior,
F (k, t) ' f0 +At−a, whereas the departure from the plateau is characterized
by the so called von Schweidler law, F (k, t) ' f0 − Bt−b, where 0 < b < 1.

These exponents are related via the equation, Γ2(1−a)
Γ(1−2a)

= Γ2(1−b)
Γ(1−2b)

.
However the theory fails as the deeply supercooled phase is approached.

MCT, in fact, predicts that the relaxation time diverges at a finite tempera-
ture, Tc in the form of a power-law:

τ =
1

(T − Tc)γ
, (4.20)

with γ = 1
2a

+ 1
2b

. If the divergence located by MCT were at very low temper-
ature, well below Tg, we could not completely exclude its existence. However,
this is not the case, and there is in fact evidence that such divergence is not
present in experimental data, but it is rather an artifact of the theory.

Understanding why the MCT predicts an inexistent divergence is not
easy, due to the fact that the theory has not a clear physical interpretation
and that many of the approximation used are uncontrolled. However, in-
spired by the similarity with mentioned p-spin model, there is a common
consensus that this happens because MCT does not take into account ac-
tivated barrier crossings. The relaxation mechanism of MCT is something
different from activation, even though it is not easy to understand its nature
by a mere inspection of the MCT equations. As in the p-spin case, below
Tc the MCT dynamical mechanism is completely stuck, so that the theory
cannot go beyond Tc and it therefore locates a divergence here. A real liq-
uid, by contrast, can switch from the MCT mechanism to activated barrier
crossing, thus keeping the relaxation time finite, although sharply increasing
with lowering the temperature.

Note that we have seen the Goldstein’s scenario begins to hold at a tem-
perature Tx where activation dominates the dynamics, whereas MCT works
until a temperature Tc where activated precess are unimportant. This inter-
esting consideration suggests:

Tx ' Tc, (4.21)

meaning that Goldstein’s and MCT scenario joins at this temperature, as
they are based on complementary relaxation mechanisms. In fact, relation
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in Eq. 4.21 has been verified by several investigations [136, 137]. The identi-
fication of the MCT transition temperature with Goldstein’s crossover tem-
perature has an important implication: even though one knows there is no
real divergence, it is nevertheless very useful to extract Tc (typically via a
power law fit of the data) as a reference temperature for a system approach-
ing glassiness. In fact, from what we have discussed above one may conclude
that the definition of Tx ' Tc is more fundamental than that of Tg, which
depends on an arbitrarily fixed time or viscosity scale (see Sec. 3.1.1).

In fact, it is now recognized that the MCT transition must be interpreted
as an approximate theory of a crossover taking place in the dynamics. This
clear limitation, together with its precise predictions, makes the MCT an
useful starting point for investigation of the dynamics of moderately super-
cooled liquids.

Dynamic Heterogeneities in MCT
MCT has been introduced as a dynamical theory for two-time correlation
functions. However, the recent surge of interest on DHs suggests that it could
be interesting to develop an MCT approach also for four-point correlation
functions. This developments allows for an impressive set of very detailed
predictions starting from the form of the microscopic interaction between the
particles.

χ4(t) is predicted to grow with time with two distinct power laws, χ4(t) '
ta and χ4(t) ' tb in the time regimes respectively corresponding to the ap-
proach to, and departure from, the plateau. Here, a and b are the exponents
found for the decay of the dynamical correlation function in the same regimes.
These two power law regimes have been successfully identified in numerical
works, with numerical values for the exponents a and b that are in reasonable
agreement with numbers predicted by MCT [138, 105, 90]. At a times t∗ ' τ ,
the susceptibility is provided to reach its maximum χ∗4, whose height diverges
at Tc as (T − Tc)−1. So that, using Eq. 4.20, one finally finds χ∗4 ' τ−1/γ.

Thus, in MCT scenario, the divergence of relaxation time is accompanied
by simultaneously diverging dynamical fluctuations. As occurs for the relax-
ation time, data obtained in the moderately supercooled regime are found
to approximately follow an initial growth which is consistent with the MCT
prediction, which break down at lower temperatures.

Random First Order Theory

The original version of the Random First Order Theory (RFOT), was for-
mulated by Kirkpatrick, Thirumalai and Wolynes in the late 80s, in order to
investigate the potential relationships between supercooled liquids and the
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p-spin class of mean-field spin-glasses [139]. Later it was presented [140]. as a
thermodynamic description of metastable states in supercooled liquids. This
real space version of the theory is also known as the Mosaic Theory. The
theory was strongly influenced by ideas proposed in the AGDM scenario, but
it contains a key ingredients which promoted new important advances.

This is the idea of a surface tension which in a finite dimensional system
marks the interfaces between two local configurations. In fact, if a finite
dimensional system has many states, then different regions may be found
in different states, the world ’states’ means for local configurations which
have the same bulk free-energy. Thus, it is reasonable that an energy cost
is associated to the creation of the interface, due to the mismatch along the
edge of the two such states. In particular, the free energy cost, ∆Fcost, to
rearrange a surface of linear size R is

∆Fcost = Y Rθ, (4.22)

where in RFOT theta ≤ d − 1 is supposed, and consequently Y means for
a ”generalized” surface tension. In fact, while the usual definition of surface
tension assumes that ∆F scales as Rd−1, this ”a-priori” assumption seems to
be too strong in the case of supercooled liquids.

The system dynamics is ruled by the competition between the surface
tension, which tends to keep the system in its original state, and a drive to
different state. In RFOT the thermodynamic drive to rearrange a droplet
of linear size R is provided by the fact that such a region has an exponen-
tially large number of available configurations. There is an entropic price
that must be paid by the region to stay in just one of these many states,
and this entropic price can be released if the rearrangement takes place by
means of thermal fluctuations. In particular, the free energy gain, ∆Fgain is
proportional to the total configuration entropy available for that region:

∆Fgain = TSc(T )Rd. (4.23)

For small R the cost dominates and there is no net thermodynamic gain in
the formation of a droplet. Instead, for large R the entropic drive dominates;
this occurs for any size R larger than a critical value ξ fixed by the balance
of Eq. 4.22 and Eq. 4.23:

ξ(T ) =

(
Y

TSc(T )

) 1
d−θ

. (4.24)

Here ξ is the typical size of the rearranging regions and thus may be inter-
preted as a static correlation length. This size is inversely proportional to
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the configurational entropy, although with a non trivial exponent, and in this
respect we recover the most important result of the AGDM theory. More-
over, ξ is also proportional to the surface tension, and this is an ingredient
that is completely absent in AGDM.

Further developments lead to the following expression for the relaxation
time:

τ =∝ exp

(
Y

d
(d−θ)

T [TSc(T )]
θ

(d−θ)

)
. (4.25)

Therefore the RFOT does not provide directly the VFT law 3.4, because the
precise dependence on Sc, and thus on Tk (see Eq. 4.18), is related to the
exponent θ. In [140], however, it was claimed, using renormalization group
arguments, that θ = d/2 . In this case, we recover the VFT behaviour. It
is hard to say whether the claim θ = d/2 is correct or not. However, as a
matter of fact, different fits, obtained by Eq. 4.25, may work even better
than VFT law.

As a remark, we want note that until now we have neglected a possible
dependence of the surface tension Y on the temperature. In fact, at very low
temperature it is reasonable to believe that Y does not vary strongly with
T , and that it levels to some finite value. By contrast, at higher tempera-
tures this assumption does not hold, and it is fair to consider Y = Y (T ). In
particular, from the discussion in sec 4.2.1, we do not expect the multi-state
scenario, we are adopting here, to hold also at high temperatures and we al-
ready suggested that states (whatever they are) become ill-defined above the
Goldstein temperature Tx = Tc, whereby the MCT scenario appears more
suitable. Thus, it is reasonable to suppose that the surface tension vanishes
close to this crossover Y (Tx) ' 0. Finally, we mention that recent versions
of RFOT suggests that, at fixed temperature, Y is not single-valued, but
characterized by a continous distribution. This allows to overcome some dis-
agreement between theory and observed phenomenology.

Dynamic Heterogeneities in RFOT
How do DHs emerge in thermodynamic picture designed by RFOT?

The basic idea in RFOT consists in the fact that regions of size smaller
than ξ(T ) are ideal glasses: they cannot relax, as their state is, in fact, the
only one allowed at that length-scale. Regions of size greater than ξ(T ) are
liquid in the sense that they explore with time an exponentially large number
of unrelated configurations.

Moreover, when a rearrangement takes place within one of this region,
also know as glassite, the boundary conditions of the nearby region changes.
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Thus, there is a substantial probability that a local rearrangement triggers, or
facilitates, a similar event in a close region, possibly inducing an ’avalanche’
process that extends over a dynamic correlation length ξ4(t) > ξ. This is
at the origin of DHs in RFOT. Note that in this case the static correlation
length acts as a lower bound for the dynamical one. The dynamics on length
scale less than ξ is, within RFOT, inherently cooperative, but the relation
between the dynamic correlation length ξ4, defined trough four-point corre-
lation function, and the mosaic length ξ is not yet clear [141, 142].

If ξ4 is of the order of a few glassites lengths ξ, then one expects that
χ4(τ) should grow as some power of ξ. Assuming activated scaling (see Eq.
4.16), log(τ) ' ξψ, finally leads to χ4(τ) = log(τ) ' ξz, instead of a power-
law relation predicted by MCT or other models. The crossover towards this
logarithmic behaviour is not incompatible with the data [143]. However, the
details of the crossover between the MCT and the RFOT regime are still
very mysterious [144]. Despite of this, some claims have been made about
the evolution of the shape of the dynamically correlated regions, that should
change from stringy, fractal objects in the MCT regime to compact blobs at
lower temperatures [145].

4.2.2 Facilitation: Kinetically constrained model and
diffusing defects

The concept of Facilitation represents another approach to the glass tran-
sition, which has been extensively discussed in a recent review [146]. The
underlying central idea is that, as very viscous liquids may be considered as
almost solid, mobility is so sparse at any given time that any local relaxation
event is likely to trigger, or ’facilitate’ the relaxation of nearby regions af-
ter a time which is short compared to the macroscopic relaxation time but
large compared to the microscopic one. Some degree of facilitation is surely
present near the jamming transition, but the theoretical approach described
in this section goes well beyond this simple observation and assumes that
the system dynamics is mainly due to facilitation effects. This means that
mobility cannot spontaneously arise in an immobile region of space, nor can
it spontaneously disappear, but it is rather thought as a propagating entity.

KCMs are the result of implementing this concepts on lattice gas mod-
els and research on the facilitation approach to glassy dynamics has mainly
consisted in the analysis of the physical behavior of these models. Moti-
vation for this work largely stems from the observation that, despite their
simplicity, KCMs are able to reproduce very well the phenomenology of real
glass-formers, also concerning with the onset of DHs. Therefore, KCMs pro-
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vide a simplified context to investigate glassy phenomena in details, or at
least study one of their possible explanations.

At a theoretical level, KCMs and facilitated mechanisms have been ra-
tionalized in the diffusing defects picture, where defects generally represents
the mobile regions that facilitate relaxation. Now this represents a very sim-
ple theoretical scenario for the glass transition, which is still able to furnish
important quantitative or semi-quantitative predictions.

KCMs

All the theoretical scenarios we have discussed until now deal with a com-
plex energy landscape. In MCT and p-spin models the many local energy
stationary points directly lead to vitrification, whereas the sharp transition
seems to be substituted by a smooth crossover when activated dynamics is
taken into account.

However, an alternative view of the glass transition was sustained, stating
that a complex energy landscape is not a necessary ingredient to have glassy
phenomena. This is proven by the behaviour observed in KCMs [147]. These
models typically consists in lattice gas filled with particles experimenting
no other interaction apart from an hard-core repulsion which forbids the
overlap. The system evolves following a given set of dynamical rules based
on the local geometrical constraints of a single particle. In the most of KCMs
the only control parameter is the density, which plays the role of an inverse
temperature. This model is an attempt to capture the physics of a hard
sphere system, and the fact that dynamics becomes slow at high density
because the environment of each particle is very crowded.

The energy landscape doesn’t represent a central ingredient at all, and it
may be also trivial, i.e. with all the configuration allowed and available. As
a consequence no thermodynamic transition can take place and the glassy
behaviour is exclusively due to dynamical effects.

As a matter of fact, numerical simulations show that, as the density is in-
creased, the dynamics becomes sluggish and heterogeneous, leading, in some
cases, to a sharp dynamical transition of structural arrest. Although KCMs
cannot approximate the behavior of glass-forming liquids in all regimes, they
might still capture, at least on some range of time scales, the key dynamical
aspects of real glass transitions.

In particular, KCMs may be divided in two classes. Non-Cooperative
models display Arrhenius dynamic slowing down and are thus reminiscent of
strong glass-formers. On the contrary, Cooperative models are able to repro-
duce the behaviour of fragile supercooled liquids, as they display a super-
Arrhenius dependence of the structural relaxation time.
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Diffusing Defects picture

A common feature of all KCMs is that their relaxation can be accurately
described in terms of the motion of sparse defects. In Non-Cooperative mod-
els, such defects simply consist in empty sites able to diffuse, whereas in
Cooperative models they can be formed by extended clusters moving in a
cooperative manner, whose structure may be complex and nebulous.

As in facilitated systems, local relaxation at a given site occurs when it is
visited by one such ”defect”, explaining structural relaxation is equivalent to
explaining the defect dynamics. The amount of defects in a system may be
characterized by their density ρd [106]. This quantity decreases as the density
is increased: obviously the specific form of ρd(ρ) will depend on the typical
defect structure, which in turn depends on the dynamical rules. In the trivial
case of freely diffusing lattice gas ρd = 1− ρ, while for more complex KCMs
ρd is provided to decrease as a faster law, possibly vanishing ρ < 1.

Defects diffuse anomalously with an exponent 1/x and a given diffusion
coefficient Dd, which is also expected to be density dependent. Thus, nv(t) =
(Ddt)

df/x is the number of distinct sites visited by a given defect at time t,
and df is the fractal dimension of the walk. In the case of a 3-dimensional
standard random walk, for example, we have df = x = 2 and nv(t) = Ddt.

The relaxation time of the system can be reasonably defined as the time
over which a finite fraction of the system, say 1/e, has been visited by at
least one defect. Supposeing that defect motions are weakly interacting, we
can write ρdnv(τ) = ρd(Ddτ)df/x = 1/e, from which we find the following
expression for the relaxation time:

τ ∝ 1

Dd(ρ)
ρd(ρ)−x/df . (4.26)

This expression suggests that when the density increases both the density of
defects becomes small and their dynamics (captured by the diffusion coef-
ficient) slows down dramatically, implying that the overall relaxation slows
down in an activated, possibly super-Arrhenius manner.

Dynamic heterogeneities in KCMs
Another useful aspect of KCMs is that four-point spatial correlation functions
can be studied in much greater detail than in molecular systems, to the
point that scaling relations between timescales, lengthscales, and dynamic
susceptibilities can be sometimes established [112, 106, 115, 138] . The type
of scaling behaviour depends on the details of the model at hand. However,
this behaviour may be still rationalized, at least at a qualitative level, in the
diffusing defect paradigm.
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In this scenario, the onset of DHs arise from the fact that a given defect
creates a dynamical correlation between the sites that it progressively visits.
As a consequence, the dynamical correlation length is expected to estimates
the linear extension of the region visited after a time t, ξ4(t) ' (Ddt)

1/x.
This regime is provided to hold until regions explored by different defects
interpenetrate. When this occurs the uncorrelated motion of the different
defects destroys the correlation and ξ4 starts to decrease. It is generally
assumed that the time where the two regimes alternates should scale as the
relaxation time τ .

Similarly, in the short times regime, the four-point susceptibility associ-
ated with ξ4, is found to be the square of the volume visited by the same
defect times the defect density, χ4(t) ' ρdnv(t)

2 = (Ddt)
2df/x . When t is

comparable to the relaxation time τ , the susceptibility reaches its maximum
χ∗4, and using Eq. 4.26 one finds χ4(τ) ' 1/ρd which, as expected, increases
when increasing the density.



Chapter 5

Glassy dynamics in
Kob-Andersen model

The main challenge in the field of supercooled liquids is the understanding
of the rapid increase of the relaxation time and of the viscosity as the tem-
perature decreases. Experimental evidences and theoretical models predicts
the simultaneous emergence of DHs. Actually, the great interest for DHs
is mainly motivated by the idea that large structural relaxation time and
large spatio-temporal fluctuations of the dynamics are not only juxtaposed
phenomena, but they are strictly related.

Summarizing the most quoted physical picture discussed in the previous
chapter, such spatio-temporal fluctuations are interpreted as dynamically
correlated clusters. By lowering the temperature the extension of these clus-
ters grow and their cooperative rearrangement becomes more complicated.
This results in a rapid increase of typical cluster life-time, which is in turn
related to the structural relaxation time, at a macroscopic level.

From a quantitative point of view, the dynamical susceptibility χ4(t),
estimates the volume of dynamical clusters. Thus, χ4 is expected to grow as
some power of the dynamical correlation length; in particular χ4(t) ∝ ξ4(t)d

for compact clusters in d dimensions, whereas a smaller exponent is expected
if clusters have a fractal structure. This imply that the four-point correlation
function g4(r, t) becomes progressively long-ranged as χ4(t) grows. The time
t∗ where χ4(t) reaches its maximum is also the time where correlations starts
to decrease, and thus it is interpreted as an estimate of the typical cluster
life-time. Then, the starting hipotesys is that DHs and relaxation are related,
and one expects t∗ ∝ τ .

We have seen that several experimental and numerical results seem to
support this picture. However we must also warn that typically these results
concern a limited range of temperatures and they often suffer of scarce statis-
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tics. For this reasons, the relation between dynamical susceptibility and the
cluster structure and, more in general, between relaxation processes and DHs
remains elusive. For example, in order to unveil the precise relation between
χ4 and ξ4 one needs to know the explicit form of g4(r, t), which is not an easy
experimental task.

Such a state of the art motivates our work [131, 148]. In particular, we
investigate via Monte Carlo simulation an andy glass former model, the pop-
ular ’Kob-Andersen model’ (KA) , in order to:
- Perform a detailed study of DHs which comprises a direct inspection of
g4(r, t) and ξ4(t).
- Provide a geometrical characterization of relaxation processes and DHs.

In this way we aim to clarify:
- In which way correlations and the dynamical susceptibility are related.
- To what extent DHs are tangled with relaxation.

This chapter is organized as follows. Sec. ?? is an introduction to the
investigated system, where we discuss dynamical rules, numerical procedures
and some previous results for glassy dynamics in the KA model. Results
on the behviours of dynamical correlation function and DHs are described
in Sec. ??. In Sec.5.4 we provide a geometrical interpretation for DHs and
relaxation processes.

5.1 Investigated system

5.1.1 Model

The Kob-Andersen model [149] is a kinetically constrained model (see Sec.
4.2.2), which consists in a cubic lattice of volume V = L3 containing N par-
ticles. Periodic boundary conditions are imposed along the three x, y and z
directions. The global density ρ = N/V is the only control parameter and
it plays the role of an inverse temperature in determining the glassy dynam-
ics. No interactions between particles are present apart from an hard-core
repulsion which prevents more than one particle to occupy the same lat-
tice site: all microscopic configurations where the particles occupy N among
the V available sites are allowed, isoenergetic and equiprobable. Thus, the
model is characterized by a trivial energy landscape, where no thermody-
namic transition is available and time translational invariance (TTI) holds
in the dynamics.

These properties simplified numerical simulations, as no equilibration is
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Figure 5.1: Diffusion coefficient D for three system sizes L = 10, 14, 20 as a
function of (ρka − ρ). The straight line is a power law fit D ∝ (ρka − ρ)3.1.
From Ref. [149].

needed, allowing to investigate time-scales typically precluded to more com-
plex glassy models. In fact, after generating a random initial configuration,
we can immediately start the dynamics. The evolution of the system is set
by the following dynamical rules:

1)Pick randomly a particle placed in a site ri
2)Pick at random a site rj between the six nearest neighbours of ri
3) Check whether:a) rj is empty. b) ri has less than m = 4 occupied

nearest neighbours. c) rj has less than m+ 1 occupied nearest neighbours.
4) If this three conditions are fulfilled, then let the particle in the site ri

moves in the site rj. Otherwise, the particle remain in the site ri.
5) Advance the clock of 1/N time unit and go back to 1).

This protocol may be thought as a trivial Monte Carlo simulation in
which every configuration is equally probable, as it has the same energy.

The model we investigate and discuss so far is the original version intro-
duced in [149], and also known as Standard KA model. However by changing
the value of m, the dimensionality and the geometry of the lattice, several
variations of the standard model have been introduced in literature [150].

5.1.2 Main previous results

Since its introduction in 1993, the KA model has been object of intense
research. Here we mention the basic phenomenology and the results relevant
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Figure 5.2: Intermediate self scattering function Fs(k, t) as a function of
time, for L = 20 and k = 10 and different values of the density ranging form
ρ = 0.1 to ρ = 0.86. From Ref. [149].

Figure 5.3: Dynamical susceptibilities in the KA model as a function of time
for different densities. From to to bottom ρ = 0.86, 0.85, 0.84, 0.83. The
inset shows the maximum values for the susceptibility and the relative time
close to the transition of structural arrest; the lines are power laws fit with
exponents 4 and 2 respectively. From Ref. [151].

for our work.

As the density increases, the dynamics rapidly slows down becoming slug-
gish and heterogeneous. In particular the self diffusion coefficient D, extrap-
olated by the long time behaviour of the mean squared displacement, is
found to vanish in a critical way as the density approaches a threshold value,
ρka ' 0.881, which seems to depend weakly on the system size [149]. Fig.
5.1, where D is plotted as a function of (ρka−ρ), clarifies that at high density
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data are well fitted by a power law: D ∝ (ρka − ρ)δ with δ ' 3.1

Fig. 5.2 shows the self-intermediate scattering function Fs(k, t) as a func-
tion of time at a fixed value of k. Note that the dynamical correlation
function does not show the two-step relaxation which is typical of glassy sys-
tems. The lack of the β relaxation was ascribed to the absence of particle
rattling around their original position: in KA model all caged particles seems
to be completely immobile until their cage fall apart [149]. However Fs(k, t)
markedly shows a non-exponential relaxation with a plateau which becomes
longer and longer as the density increases. Rather than the β-relaxation, this
plateau ( which coincides with the intermediate or α-plateau in system with
two step relaxation) is the very essential property of glass formers since it
sets the time-scale for structural relaxation (see Sec. 3.1.5). In fact, from the
time evolution of the self intermediate scattering function, Kob and Ander-
sen extrapolated the relaxation time τ as the time such that Fs(k, τ) = 1/e.
As result, τ(ρ) also is found to diverge at a critical value compatible with
ρka: at high density τ behaves as (ρka−ρ)−λ where the exponent λ is roughly
comprised between 4 and 5 depending on the value of k. Thus, the behaviour
of D and τ strongly suggests that ρka is the locus of a dynamical transition
of structural arrest of the kind provided by MCT.

Later it was proved [150] that for finite-dimensional KA models a true
dynamical transition cannot exist in the thermodynamic limit , while it is
actually present on Bethe lattice (d =∞). In the standard KA model, what
was confused with a transition at ρka is just a sharp crossover interpretable
as the Ghost of the infinite-dimensional transition. It was shown that this
crossover is related to the emergence of a length-scale Ξ which sharply in-
creases with the density. The phase space of systems with linear size L > Ξ
is ergodic, while for L < Ξ the phase space is non-ergodic, resulting decom-
posed in many disjoints parts. It is predicted that for the standard KA Ξ
diverges at the trivial density value ρ = 1 as a double exponential function,
Ξ(ρ) ∝ exp[exp[c(1 − ρ)]−1]. Similar fits work well also for D(ρ) and τ(ρ)
in the thermodynamic limit, i.e. provided L > Ξ(ρ). Such a rapid increase
explains why numerical investigations of ergodic system (ρ > ρka) are not
available at high density due to computational limitations.

As a matter of fact, the observed phenomenology is compatible with a
glass transition at ρka, making investigations of KA model a very intriguing
task. In particular, several works [151, 152] have shown the presence of DHs,
whose behaviour strongly resembles those found in real supercooled liquids.
This is proven in Fig. 5.3 for the case of the dynamical susceptibility studied
in Ref.[151] : χ∗4 and t∗ are compatible with power law fits diverging at ρka
with exponents about 2 and 4 respectively.
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Figure 5.4: Persistent particles in a numerical simulations of the Kob–
Andersen model at ρ = 0.85, at times t1 = 3.5·105, t2 = 7.5·105, t3 = 1.6·106,
and t4 = 2.1 · 106.

5.1.3 Simulation details

Our simulations of the KA model spans a set of density values ranging over
up ρ = 0.87. We have investigated a wide range of system size from L = 8
up to L = 50. Data reported in the following concerns a system size L = 30,
where we have performed the largest statistics: for each density values, the
results are averaged on at least 102 over up 104 runs. The runs at higher
density values lasts up 108 Monte Carlo sweeps.

5.2 Dynamical correlation function

In order to monitor the dynamics of our system, we must chose an observable
field φi(t) (see Sec. 3.1.5). We focus on the lattice site observable

φi(t) =
ni(t)

ρ
, (5.1)

where ni(t) is known as ’persistence’, and it is ni(t) = 1(0) if site i is (is not)
persistently occupied by a particle in the interval of time [0, t]. Note that
formally φi(t) does not explicitly show the two-time structure of Eq. 4.8 .
By contrast, it is even more than a two-time function, since it keeps trace of
the whole history in the interval [0, t]: in fact, it can be written as multi-time
function, ni(t) = Πt′=t

t′=0mi(t), where mi(t) is the usual occupation number of
site i at time t. The bulk quantity Φ defined in Eq.4.9 can be written as the
fraction of persistent particles:
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Φ(t) =
p(t)

ρ
(5.2)

where p(t) = 1
V

∑V
i=1 ni(t) is the global density of persistent particles at time

t.
The quantity p(t) describes the relaxation of the system in a very direct

way: initially p(0) = ρ but as time proceeds, particles eventually move from
their original positions and p(t) decreases. This process is represented in Fig.
5.4 which shows the persistent particles in the system at different times of
the same run. Note that as few and few persistent particles remain, spatial
correlations between them seems to emerge. The normalized average value
of p(t) is our control parameter for relaxation, C(t) = 〈p(t)〉

ρ
. Fig. 5.5a shows

that 〈p(t)〉
ρ

has the same qualitative behaviour found for Fs(k, t) in Ref. [149]

(Fig.??). In a large time window and for ρ ≤ 0.85, the decay of the dynamical
correlation function is well described by the von Schweidler law:

〈p(t)〉
ρ

= f0 − (t/τ), (5.3)

with b ' 0.3 and f0 ' 1, whereas for larger time a stretched exponential fit
works better. The relaxation time τ is still defined such that 〈p(t)〉

ρ
= 1/e.

Fig. 5.8b shows τ to diverge approaching the transition of structural arrest,
τ(ρ) ∝ (ρka − ρ)−λτ , with λτ ' 4.7 consistent with the result of Ref. [151].

5.2.1 Persistance, overlap and scattering functions

Another advantage which motivates the use of 〈p(t)〉
ρ

as dynamical correlation
function is that it may be related to the self intermediate scattering function
Fs(k, t) by an approximated expression which works very well for our model.

We start by illuminating the relation between the (total) experimentally
measured intermediate scattering function (see. Sec. 3.1.5), F (k, t),

F (k, t) =
1

N
〈Φ(k, t)〉, (5.4)

where,

Φ(k, t) =
N∑

i,j=1

eik·[ri(t)−rj(0)]. (5.5)

and a different dynamical correlation function known as overlap function,
q(t),
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Figure 5.5: Normalized density of persistent particles 〈p〉/ρ (panel a), and
dynamical susceptibility χ4 (panel b), for different values of the density, as
indicated. For ρ ≤ 0.85, 〈p〉/ρ is well described by the von Schweidler law,
〈p〉/ρ = f0 − (t/τ)b, with f0 = 1 and b ' 0.3. At short times, the dynamical
susceptibility grows as tp, with p ' 0.61.

q(t) =
1

N

N∑
i,j=1

δ[ri(t)− rj(0)]. (5.6)

Here the sum runs over the N particles of the system. The average of q(t) is
often used as dynamical order parameter to monitor the dynamics of glassy
systems. Indeed, q(t) has simple physical interpretation: suppose to take two
snapshots of the same system at time 0 and time t respectively. q(t) accounts
for the number of pair of particles that overlap when the two snapshots are
themselves overlapped, i.e. this occurs whenever a particle occupy at time t
the same position occupied at time 0 by itself or by any other particle.

The average 〈q(t)〉 can be easily related to F (k, t). In fact, q(t) is the
integral over the wave vectors k of the function Φ(k, t) defined in 5.5, as we
show below:
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q(t) =
1

N

N∑
i,j=1

δ[ri(t)− rj(0)] = =
1

N

N∑
i,j=1

∫
dkeik·[ri(t)−rj(0)]

=
1

N

∫
dk

N∑
i,j=1

eik·[ri(t)−rj(0)] =
1

N

∫
dkΦ(k, t).

(5.7)

Thus, by averaging, we obtain:

〈q(t)〉 =

∫
dkF (k, t) (5.8)

Moreover, for discrete systems, where particles overlap is forbidden, q(t)
may be easily expressed as a function of lattice site variables. In this case
δ[ri(t) − rj(0)] = 1 only if the particle i is a time t in the same lattice site
h the particle j occupied at time 0, i.e. if mh(t)mh(0) = 1, where mh is the
usual occupation number. Then, we can turn the sum over particles in a sum
over sites to obtain:

q(t) =
1

N

V∑
h=1

mh(t)mh(0). (5.9)

More interesting for our scopes, it is that analogous considerations hold
for the self part of the overlap qs(t)

qs(t) =
1

N

N∑
i

δ[ri(t)− ri(0)], (5.10)

also called self-overlap. qs(t) only gets contribution by the particles that
at time t occupy the same position they occupied at time 0. Performing a
calculation analogous to Eq. 5.7 it is found that:

〈qs(t)〉 =

∫
dkFs(k, t), (5.11)

where the self intermediate scattering function Fs(k, t) = 1
N

∑N
i=1 e

ik·[ri(t)−rj(0)].
For discrete systems qs(t) may be written as:

qs(t) =
1

N

V∑
h=1

[
N∑
i=1

mi
h(t)m

i
h(0)

]
, (5.12)

where we have introduced the V N occupation numbers mi
h(t) = 1(0) if (if

not) the particle i stays in the site h at time t. Note that mi
h(t)m

i
h(0) = 1
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Figure 5.6: Fraction of persistent particle p (red) and self overlap qs (black),
and the dynamical susceptibilities computed by their respective fluctuations.

only if 1) the particle i has never moved from the site h until time t, i.e. if
i is a persistent particle or if 2) the particle i starting from the site h has
explored the system and then goes back at the initial position just at time
t. The first contribution coincides with the persistence, while the latter is
expected equal 1 with probability of the order o(1/V ), if rattlers are negligible
and the system is ergodic. Then we can write:

qs(t) ' 1/N
V∑
h=1

nh(t) =
p(t)

ρ
, (5.13)

which finally states that the self-overlap is approximated by the fraction of
persistent particles. We have explicitly computed qs(t) in order to check
to what extent this approximation works for our model. Fig. 5.6 clearly
confirms that qs(t) and p(t)/ρ have a very similar behaviour at any time-
scale. The same holds for their fluctuations as evidenced by the dynamical
susceptibilities. In conclusion, we can state that 〈p(t)〉

ρ
=
∫
dkFs(k, t) and

that qs(t) and p(t)/ρ gives essentially the same results if used to investigate
DHs [131].

5.3 Dynamical Heterogeneities

In order to quantify the correlation emerging in Fig. 5.4, we investigate the
behaviour of DHs as defined by the persistence. In particular, we compute
the correlation function between persistent particles,
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g4(r, t) = 〈ni(t)nj(t)〉 − 〈ni(t)〉〈nj(t)〉, r = |ri − rj|, (5.14)

which represents our four-point correlation function, and, the dynamical sus-
ceptibility,

χ4(t) =
V

ρ

(
〈p(t)2〉 − 〈p(t)〉2

)
. (5.15)

g4(t) and χ4(t) are related by the following expression (see Sec. 4.1.2):

χ4(t) =
1

ρV

V∑
i,j

g4(r, t). (5.16)

From the data obtained for g4(r, t) we can estimate the dynamical corre-
lation length ξ4(t).

Then, we are able to directly measure the time where ξ4(t) is maximum
and we will use the notation t∗ξ and t∗χ in order to distinguish the times where
ξ4(t) and χ4(t) have their respective maxima.

Four-point correlation function

In Fig. 5.7a we show g4(r, t) at different times as a function of r. It is
evident that the spatial extension of the correlation function grows until an
intermediate time then decreasing at larger time, while its r = 0 value goes
as g4(0, t) = 〈p(t)〉(1−〉p(t)〈), as determined by Eq. 5.14 .

Even though we find difficult to determine a precise functional form, the
behaviour of g4(r, t) is consistent with a scaling form such as:

g4(r, t) = A(t)
er/ξ4(t)

rd−2+η
, (5.17)

where ξ4(t) is the dynamical correlation length (whose behaviour will be
discussed in the next session) and A(t) is the amplitude.

Fig. 5.7b shows g4(r, t) normalized by its value at r = 0 as a function
of r for different densities and at intermediate time (roughly of the order of
t∗χ). As expected, g4 becomes increasingly long ranged when the transition
of structural arrest is approached.

5.3.1 Dynamical correlation length

From the data relative to g4(r, t), we have extracted the correlation length
ξ4(t) via an exponential fit of the initial decay.
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Figure 5.7: (Color online) Panel a: Correlation function between persistent
particles g4r, t as a function of the distance r at ρ = 0.85 amd for different
times t1 = 102, t2 = 5.3 · 103, t3 = t∗χ = 5.6 · 105 , t4 = 2.8 · 106, t5 = 4.6 · 106

. Panel b: g4(r, t ' t∗χ as a function of the distance r at different values of
the density.

The behaviour of ξ4(t) is illustrated in Fig. 5.8a for different values of the
density, and is well described by

ξ4(t) ∝ ta exp
(
−at/t∗ξ

)
. (5.18)

Accordingly, at short times ξ(t) grows as ta with a ' 0.156 , and then it de-
creases after reaching its maximum value ξ∗4 at time t∗ξ . We find that the time

diverges as t∗ξ ∝ (ρka − ρ)
−λt∗

ξ , with λt∗ξ = 3.8± 0.1. Then Eq. 5.18 predicts

that the maximum dynamical correlation diverges as ξ∗4 ∝ t∗ξ
a ∝ (ρka− ρ)−ν ,

with ν = aλt∗ξ ' 0.54, in very good agreement with the data(Fig. 5.9) . Note
here a very important result: contrary to what is expected, we find that, τ
and t∗ξ are not proportional but diverge with different exponents, λτ > λt∗ξ ,
approaching the transition of structural arrest. Moreover, as matter of fact,
we find that at low density t∗ξ >> τ , but increasing the density τ grows
faster then t∗ξ , so that the two time-scales cross at intermediate density, and
t∗ξ << τ in the high density limit.
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Figure 5.8: Panel a: dynamical correlation length for different values of the
density. Panel b: divergence of the relaxation time τ , of the time where
the correlation length acquires its maximum value t∗ξ , and of the time where
the dynamical susceptibility acquires its maximum value, t∗χ. At low density,
t∗χ ∝ τ , while at high density t∗χ ∝ t∗ξ . Errors on t∗ξ and t∗χ are of the order of
5%.

5.3.2 Dynamical Susceptibility

The emergence of an increasingly heterogeneous dynamics is clearly signaled
by the dynamical susceptibility χ4(t), shown in Fig. 5.5b for different values
of the density. Qualitatively the behaviour of χ4(t) appears similar to the
one observed for ξ4(t), initially growing as χ4(t) ∝ tp, with p ' 0.6 and then
decreasing after reaching its maximum value χ∗4 at a time t∗χ.

The decoupling between t∗ξ and τ strongly influences χ∗4(ρ) and the time
t∗χ(ρ), leading to a complex behaviour. In fact, inspired by Eq. 5.16 and Eq.
5.17 we find that χ4(t) is well approximated by the expression:

χ4(t) ∝ A(t)ξ(t)2−η = [〈p(t)〉(1− 〈p(t)〉)] ξ(t)2−η, (5.19)

where we have estimated A(t) = g4(0, t) and η ' 0 consistent with [153].
Accordingly, the behaviour of the susceptibility is essentially given by the
product of two competitive factors, the amplitude and the correlation length.
Indeed, at low densities t∗ξ � τ , the amplitude dominates and Eq. 5.19
predicts t∗χ ∝ τ . By contrast, at high density t∗ξ � τ , and the maximum of
the susceptibility χ∗4 occurs at t∗χ ∝ t∗ξ . Such behavior of t∗χ is apparent in
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Figure 5.9: Dynamical correlation length at t = t∗, and prediction of the
diffusing defect picture, ξ∗ ∝ t∗a ∝ τ q, q = aλτ/λt∗ξ . The full line is a

(ρka − ρ)−ν , ν ' 0.54 (we find ρka = 0.881 as estimated from the divergence
of the relaxation time).

Fig. 5.8: at intermediate density t∗χ shows a clear crossover separating the
two asymptotic regimes, where t∗χ scales as τ in the limit of low-density and
as t∗ξ in the limit of high density.

In addition, when t∗χ ∝ τ , the maximum of the susceptibility scales as
χ∗4 ∝ τ 2a ∝ (ρka − ρ)−γ, with γ = 2aλτ , in agreement with our results.
Conversely, when t∗χ ∝ t∗ξ , we have χ∗4 ∝ t∗ξ

2a ∝ ξ∗4
a ∝ (ρka − ρ)−q, with

q = 2aλt∗ξ .

5.4 Geometrical interpretation

5.4.1 Diffusing defects

The results described so far are rationalized in the diffusing defects paradigm [106,
153, 157], where the relaxation is ascribed to the presence of possibly ex-
tended diffusing defects, with density ρd. since the KA model exhibits the
typical handmark of cooperative KCMs, defects are expected to become ex-
tended and complex objects as much as the density is increased . As explained
in Sec. 4.2.2, at short times the correlation length grow as ξ4(t) ∝ t1/x,
where df and 1/x are the fractal dimension and the diffusion exponent char-
acterizing the defect walk. The number of distinct sites visited by a defect
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grows as nv(t) ∝ tdf/x, so that the total number of distinct sites visited by
the defects at time t is proportional to ρdnv(t). These assumption are ex-
pected to hold at least at short times, i.e. before defects interact. Under
this condition, each site visited by a defect corresponds to a particle which
first moves from its original position. Thus, we expect that at short times
the the total number of distinct visited sites scale as the density of particles
which have already relaxed at that time(the non-persitent particles), 1− 〈p(t)〉

ρ
.

From the decay observed for the density of persistent particles, we can infer
1− p(t)/ρ = (1/τ)btb ∝ ρdnv(t) ∝ ρdt

df/x. Therefore this picture reproduces
the von Schweidler law, and relates the density of defects ρd with relaxation
time 1, ρd ∝ τ−b. By comparing the correlation length scaling provided by
diffusing defect picture with the observed short time grows ξ4(t) ∝ ta (Fig.
5.9), we can conclude 1/x = a and df = b/a ' 2 Then we find that de-
fects have a sub–diffusive nature, although they conserve the same fractal
dimension of usual random walkers. We suggests this may be ascribed to
defects that behave as random walkers, although characterized by a fat–tail
waiting time distribution and, possibly, by weak spatial correlations which
slows down the diffusion. In fact, it has been proved that these factors do
not affect the fractal dimensions of the walks [158, 159].

Concerning with the susceptibility, the diffusing defect picture predicts
that at short times, χ4(t) ∝ ρbnv(t)

2 ∝ t2b, which compared with our result
allows to correctly estimate p = 2b.

5.4.2 Reverse dynamical percolation of persistent par-
ticles

Looking for a geometrical interpretation of the relaxation process, we were
inspired by the analogy with chemical gels. The mechanical rigidity of chem-
ical gels, in fact, arises from a percolating network of polymers which acts
as a backbone in a liquid media (cfr Sec. 2.2.3). Since the bond of such
network are of a chemical nature, relaxation cannot spontaneously occur and
the system is solid at any time-scale. However relaxation may be induced by
external factors, such as diffusing enzymes able to cut the bonds they meet
[160, 161]: in this case, the system stays solid until the network survives,
but it relaxes and becomes liquid at larger time-scale, when the network
disappears.

In our case the glass former may be though as rigid on time scale smaller
than the relaxation time τ . We suppose that during this time a percolating

1We are assuming that the diffusion coefficient of defects Dd(ρ) varies slowly in the
range of density we are dealing with
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cluster of persistent particles plays the role of the physical backbone in gels;
here the bonds are of a dynamical kind, i.e. we consider that two particles
i and j are bonded in the interval [0, t] if they are nearest neighbours and
ni(t) = nj(t) = 1. Defects, instead, play the role of enzymes and progressively
destroy the cluster. A reverse dynamical percolation transition is expected
for time-scales of the order of the relaxation time. In fact, as the absence
of the percolating cluster leads to the loss of rigidity, we expect that this
transition is related to the relaxation process.

Data shown in Fig. 5.10 confirm our hipotesys. For density high enough
to make glassy phenomena sensible, a cluster of persistent particles always
spans the system at short times. We indicate with P (t) its strength, i.e. the
density of persistent particles belonging to such cluster. 〈P (t)〉 vanishes at a
time tper which is found to scale with the relaxation times τ as the density
increases (Fig. 5.10 inset) .

The figure also reveals that the cluster strength overlaps with the total
density of persistent particles, 〈P (t)〉 ' 〈p(t)〉, for a long time. This means
that in this interval the percolating cluster is the only cluster present. At
larger time p(t) slowly decays, while P (t) vanishes. This is due to the onset of
finite clusters with a broad size distribution, that give contributions to p(t),
but not to P (t). This circumstance may explain the crossover observed for
the dynamical correlation function (see Fig. 5.5a): at short time, the decay
of 〈p(t)〉/ρ is characterized by a single relaxation time, which is the life-time
of the percolating cluster, and this leads to the von Schweidler law. By
contrast, the broad spectra of finite cluster life-time determine the stretched
exponential decay at large times.

To better understand the geometrical properties of this process, we inves-
tigate the behaviour of the length-scale ξper(t) which characterizes percolation
phenomena [162]. ξper(t) is defined by the percolative correlation function
gper(r, t):

gper(r, t) = gpc(r, t)−〈P (t)〉2 = 〈ni(t)nj(t)〉−〈P (t)〉2, r = |ri−rj| i, j connected,
(5.20)

where the pair-connected correlation function gpc(r, t) is limited to the pairs
of particles that belong to the same dynamical cluster. gpc(r, t) can be also

expressed as gpc(r, t) = P f
i,j(r, t) + P∞i,j (r, t) where P f

i,j(r, t) and P∞i,j (r, t) are
the probabilities that two sites i and j belong to the same finite cluster,
or to the percolating cluster (also called ”infinite” cluster, inspired by the
thermodynamic limit) respectively. Accordingly, if the percolating cluster
is absent gper(r, t) = P f

i,j(r, t) and ξper(t) measures the typical size of finite
clusters. Conversely, if finite clusters are negligible, then
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Figure 5.10: Percolation transition at ρ = 0.87. Left axis: dynamical cor-
relation length ξ4 (empty diamonds) and percolation correlation length ξper
(full diamonds). Right axis: density of persistent particles 〈p〉 (full line) and
strength of the percolating cluster 〈P 〉 (squares). The vertical dashed lines
mark t∗ξ and tper, which is proportional to τ (inset).

gper(r, t) = P∞i,j (r, t)− 〈P (t)〉2 (5.21)

measures the extension of the density fluctuations within the infinite cluster.

In our case, at short time, 〈P (t)〉 ' 〈p(t)〉 and P∞i,j (r, t) ' 〈ni(t)nj(t)〉|i−j|=r,
because almost all persistent particles belong to the percolating cluster, mak-
ing the connectedness condition negligible [163]. Inserting these equalities in
Eq. 5.21 and comparing with the definiton of the four point correlation func-
tion g4(r, t) of Eq. 5.14, we find that gper(r, t) ' g4(r, t), and consequently
ξper(t) ' ξ4(t)

Fig. 5.10 confirms this prediction, showing that the dynamical and the
percolative correlation length coincides in the same time interval where 〈P (t)〉
and 〈p(t)〉 overlap. The figure also indicates that we are dealing with an
unusual percolation characterized by a non-monotonic percolative length.
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In fact ξper(t) is affected by the two time scales characterizing the glassy
dynamics, the time t∗ξ , where it has a relative maximum corresponding to
the peak of the dynamical length, and the percolating time tper ∝ τ , where
it diverges in the thermodynamic limit as provided by standard percolation
theory.

5.4.3 Some remarks

We have shown that in the KA model the relaxation process and the dy-
namical heterogeneities are characterized by two different timescales τ and
t∗ξ , which implies that they are less tangled than expected. We explain this
feature in the diffusing defect picture, where we relate the relaxation process
to a reverse percolation transition, and obtain a geometrical interpretation
of the relaxation process and of the different timescales. Accordingly to their
definitions, τ occurs when a given large fraction of all sites has relaxed, while
t∗ξ occurs when the correlations between the persistent particles decreases.
Note that in principle our finding is not surprising: in facts, nothing forbids
that these correlations may decrease before a large fraction of all sites has
relaxed, t∗ξ < τ .

In models of defects behaving as perfectly random walkers, one finds
that τ ∝ t∗ξ [106]. Therefore, one may speculate that, in our case, the
decoupling between the two timescales is due to a complex nature of defects.
For instance, they may be non conservative and characterized by birth and
death rate with a constant average number, or they may not diffuse as random
walkers.



Chapter 6

Jamming of sheared frictional
grains

Friction, which characterize macroscopic particles such as granular materials,
is also known to influence the jamming transition [23, 65, 66, 69, 167, 168,
169]. Its role has been deeply investigated at zero applied shear stress, σ = 0,
where it changes the features of the jamming which occurs on compression.
Indeed, studies of frictionless systems showed that these jam at a reasonably
operatively well defined density value φc, the J-point (see Sec. 3.2.1), iden-
tified with the random close packing volume fraction φrcp. and only recently
demonstrated to be weakly protocol dependent [48, 49, 50, 51]. Frictional
systems, on the contrary, may jam at a volume fraction which may vary in a
relatively large range [65, 66, 167, 168]. In presence of friction, the jamming
density depends both on the compression protocol and on the friction coeffi-
cient (see Sec. 3.2.2). At finite shear stress, σ > 0, the jamming transition of
frictional systems has been investigated to a much smaller extent, but for the
case of granular particles on an inclined plane, where both the normal and
the shear stress change with the angle of inclination, and where hysteretic
effects have been reported [170]. However, there is not a systematic study
of the jamming transition of frictional systems in the paradigmatic constant
volume and constant shear stress ‘ensemble’ [1, 3].

Here, we report a comprehensive numerical investigation of the jamming
transition of frictional systems at constant volume and constant applied
shear stress, and show that friction controls the emergence of new dynami-
cal regimes. Indeed, while in absence of friction a system is either fluid-like
or jammed, in the presence of friction a system may reach a steady flowing
state (‘Flow’ regime), may jam after flowing with a constant velocity for a
long time (‘Flow & Jam’ regime), may jam after a small slip (‘Slip & Jam’
regime), or may respond as a solid (‘Jam’ regime). These features lead to the

101
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jamming phase diagram illustrated in Fig. 6.8, where we introduce friction
as a relevant control parameter [164]. We characterize the structural changes
across the different jamming transition lines, and consider the possibility that
granular systems jammed at finite shear stresses display a fragile behaviour
[165].

This chapter is organized as follows. We start describing the investi-
gated systems and the numerical procedure in Sec. 6.1. Then we illustrate in
Sec. 6.2 the different dynamical regimes, and show how to define their tran-
sition lines. The dependence of these lines on the friction coefficient leads to
the jamming three-dimensional jamming phase diagram described in Sec. 6.3.
The mechanical properties of the jammed states and the concept of fragile
matter are investigated in Sec. 6.4, and used to characterize the structural
changes occurring across the transition lines in Sec. 6.4.3. Concerning the
intriguing dynamical regimes present in the phase diagram, we named ‘Flow
& Jam’ behavior, we discuss dynamical mechanism based on the concept of
impeded dilatancy [166]. In Sec. 6.6 we describe finite size effects and the
role of the numerical protocol.

6.1 Model system and numerical details

6.1.1 Investigated system

Our analysis is based on Molecular Dynamics (MD) simulations of soft-core
spherical grains of mass M and diameter D, enclosed between two rough
plates of size lx = ly = 16D, and lz = 8D, as illustrated in Fig. 6.1. Each
plate is made by a collection of particles that move as a rigid object. The
bottom plate is fix (infinite mass). The top plate has a mass equal to the
sum of the masses of the constituent particles. Periodic boundary conditions
are used along x and y. The system is subject to a constant shear stress,
σ = σxz, imposed by a shear force acting on the top plate, in absence of
gravity. Periodic boundary conditions are used in the other directions.

The size of the vertical dimension lz is chosen to be comparable to that of
recent experiments [61, 62, 63]. We have investigated the effect of the finite
size considering values of lz up to 32D, as described in Sec. 6.6.1.

6.1.2 Numerical model

We have used a standard model for the grain–grain interaction [171]. Two
particles i and j, in positions ri and rj, with linear velocities vi and vj,
and angular velocities ωi and ωj, interact when their separation distance
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Figure 6.1: The investigated system. Grains are confined between two rough
plates (red/dark particles) at a fixed vertical distance. A shear stress is fixed
applying a force to the top plate; the bottom plate is fixed.

rij = ri − rj is smaller than their diameter, i.e. when the penetration length
δij = D − |rij| ≥ 0. The interaction force has a normal and a tangential
component, both having an elastic and a dissipative component.

The normal component is given by:

Fnij = −knδijnij − γnmeffvnij ,

where kn is the elastic modulus of the particles, nij = rij/|rij|, vnij = [(vi −
vj) · nij]nij. The effective mass is meff = MiMj/2(Mi +Mj).

The tangential component is given by:

Ftij = −ktutij − γtmeffvtij ,

where utij is the elastic tangential displacement, and vtij = vij − vnij . utij ,
set to zero at the beginning of a contact, measures the shear displacement
during the lifetime of a contact. Its time evolution is fixed by vtij , ωi and
ωj, as described in Ref. [172]. Torques are given by τij = −1/2rij × Ftij .
The shear displacement is set zero at the beginning of each contact, and is
truncated to enforce the Coulomb condition |Ftij | ≤ |µFtij | if needed. Here
µ is the coefficient of static friction.

We use the value of the parameters of Ref. [172]: kn = 2 × 105, kt/kn =
2/7, γn = 50, γt/γn = 0. Different values of the friction coefficient are
investigated. Lengths, masses, times and stresses are measured in units of
d0 = D, m0 = M , t0 =

√
M/kn, σ0 = kn/D. We solve the equations of
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motion of the system, mr̈i =
∑

j Fnij + Ftij and Iω̇i =
∑

j τij via a velocity

Verlet scheme, with an integration timestep δt = 10−4.
When the applied shear stress is σ ≥ 2 × 10−3 (the minimum value we

have considered), the system reaches its steady state after a time of the order
of T = 106 timesteps in all regions of the phase diagram, but for the ‘Flow
& Jam’ regime (see below). In this regime, simulations with T = 5 × 108

integration timesteps are needed. In 24h, we simulate approximately a time
103, depending on the number of particles. We have performed simulations
lasting up to 50 days. For each considered φ, σ, µ point, data are averaged
at least over 10 independent runs. In the ‘Flow & Jam’ regime we have
performed 100 runs for each considered φ, σ, µ point to properly evaluate the
mean jamming time.

6.1.3 Volume fraction

The volume fraction φ is equal to the volume occupied by the grains divided
by the volume of the container. Here, we have defined the volume fraction
introducing a term which takes into account the effect of the rough plates
protruding into the system. Due to the boundaries, the volume accessible to
the grains is not V0 = lxlylz, but V = V0 − ∆V , where ∆V is an unknown
corrective term. Since ∆V is much smaller than V0, we have:

φ(N) =
Nv0

V0 −∆V
' Nv0

V0

(
1 +

∆V

V0

)
, (6.1)

where N is the number of enclosed grains, we change to control the value of
φ, and v0 = π/6D3 is the volume occupied by a single grain.

We have estimated ∆V evaluating the number of grains Nrcp correspond-
ing to the jamming transition, i.e. such that the generated configurations
have a finite pressure for N > Nrcp. Imposing φ(Nrcp) = φrcp, we have
determined ∆V using Eq. 6.1.

6.1.4 Preparation protocol

We prepare the initial state using the protocol of Ref. [168]: randomly placed
small particles are grown to their final size via molecular dynamics friction-
less simulations, in the presence of a small viscous damping force. After
inflating the particles, the system is allowed to relax until the kinetic energy
vanishes. With this protocol, the jamming volume fraction at zero applied
shear stress results to be φrcp ' 0.645 [66]. Friction is introduced after these
steps. Introducing friction after the inflation procedure allows for the gen-
eration of dense packings of frictional systems. Experimentally, these high
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density states can be generated via more complex procedures such as verti-
cal tapping, continuous high-frequency small amplitude vibrations [173], or
thermal cycling [174]. The effect of different preparation protocols on the
reported phenomenology is described in Sec. 6.6.2.

6.2 Dynamical regimes

6.2.1 Overview

When the Coulomb friction coefficient µ is set to zero, our system reduces
to an assembly of frictionless particles which either flow, or responds as a
solid to an applied external stress. The transition between these two regimes
is assumed to occur along a well defined jamming line, φJ(σ). In making
this assumption, one is considering the system large enough for finite size
effects to be negligible [24], and neglects the recently observed dependence
of φJ(0) on the protocol [48, 49, 50]. In our investigation these assumptions
are reasonable, as we report a phenomenology occurring on volume fraction
ranges which are greater than those of the intederminacy of φJ(0) due to
finite size effects, and to the protocol dependence. At finite applied shear
stress σ > 0, assuming the presence of a single jamming line φJ(σ) means to
neglect hysteretic inertial effects [68].

Our simulations at constant volume and constant shear stress show that
this scenario drastically changes in the presence of friction. Indeed, we have
found four different dynamical regimes, ‘Flow’, ‘Flow & Jam’, ‘Slip & Jam’
and ’Jam’ 1 , which are easily identified in Fig. 6.2, where we illustrate the
time evolution of the top plate position (upper panel) and velocity (lower
panel).

The behavior of the system in the different regimes can be summarized
as follows. At low density, in the ‘Flow’ regime, the system flows and reaches
a stationary velocity. For φ larger than a threshold φJ1 = φJ1(σ, µ), the
system enters the ‘Flow & Jam’ regime. Here the system first flows with
a stationary velocity (reached after a transient), but eventually enters by
chance a microscopic configuration which is able to sustain the applied shear
stress, and jams. The ‘Flow & Jam’ region is limited by a jamming line
φJ2 = φJ2(σ, µ). Above φJ2 steady flow is never observed, and the system
jams after a small slip. This ‘Slip & Jam’ region is limited by the line φJ3(σ, µ)

1Another regime may be found at very high shear stresses, characterized by the ordering
of the particles in planes parallel to the shearing direction [175, 176, 69, 177], causing a
reduction of the shear viscosity. We do not describe this ordering transition in our diagram
as it occurs at shear stresses which are higher than the ones we consider.
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Figure 6.2: Position (upper panel) and velocity (lower panel) of the shearing
top plate for σ = 0.5 and µ = 0.8, and different volume fractions representa-
tive of the different flow regimes: φ = 0.578 (‘Flow’), 0.596 (‘Flow & Jam’),
0.629 (‘Slip & Jam’) and 0.655 (‘Jam’). In the ‘Flow’ regime the system
flows with a steady velocity; in the ‘Flow & Jam’ regime the system first
flows with a steady velocity, but then jams after a time tjam; in the ‘Slip
& Jam’ regime the system slips of a distance ∆L, never reaching a steady
velocity, and then jams. In the ‘Jam’ regime the system responds as a solid
to the applied shear stress.

above which the system does not slip, but responds as a solid to an applied
external stress.

In the following, we describe how to quantitatively define the different
transition lines.

6.2.2 Jamming line φJ1

The line φJ1 marks the transition between the ‘Flow’ and the ‘Flow & Jam’
regime. In the ‘Flow & Jam’ regime, the system stops flowing when a jam-
ming configuration has been selected, after an average time tjam. We find



6.2. DYNAMICAL REGIMES 107

Figure 6.3: The jamming time tjam and the viscosity η have been fitted by
power laws, tjam ∼ (φ−φJ1)−α, η ∼ (φJ2−φ)−γ, for any given value of σ and
µ. Panel a) and b) show data corresponding to σ = 2 × 10−3 and µ = 0.1,
where α = 1.75, φJ1 = 0.622, γ = 0.75 and φJ2 = 0.625. Panel c) and d)
show the same quantities for σ = 5× 10−3 and µ = 0.8. In this case α = 2.4,
φJ1 = 0.598, γ = 2.1 and φJ2 = 0.612.

this jamming time to grow as the volume fraction decreases, in agreement
with the expectation that, the lower the volume fraction, the smaller the
number of configurations able to sustain the applied stress. Indeed, when
the volume fraction is too small, no such configuration exists, and tjam is
infinite, as in the ‘Flow’ regime. We therefore define φJ1 as the volume frac-
tion where tjam diverges on decreasing the volume fraction, and determine
it via a numerical extrapolation. Our numerical data, shown in Fig. 6.3a,c
for different values of the parameters, suggest a power law divergence of the
jamming time, tjam ∼ (φ− φJ1)−α, with α not universal.

6.2.3 Jamming line φJ2

When the system reaches a steady flowing state, in the ‘Flow’ regime, it is
possible to define the shear viscosity η(φ, σ, µ), as the ratio between shear
stress σ and shear rate vs/h, where h is the distance between the two plates,
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and vs(φ, σ, µ) the velocity of the shearing plate. This definition is meaningful
as we observe a linear velocity profile. The viscosity increases on increasing
the volume fraction. We define φJ2 as the volume fraction where the extrapo-
lated viscosity diverges. We find η to diverge as a power law, η ∼ (φJ2−φ)−γ,
with an exponent γ which appears not to depend on the shear stress, but
to depend the friction coefficient. Results for the divergence of tjam and of
η are shown in Fig. 6.3. We always find φJ2 > φJ1 , as expected considering
that the system flows with a finite shear rate at φ = φJ1 .

Note that it is also possible to measure the shear viscosity in the ‘Flow &
Jam’ regime, as for t < tjam the system flows in an apparently steady state.
We have used values of the viscosity in this regime to reduce the error on the
estimation of φJ2 .

6.2.4 Jamming line φJ3

The line φJ3 marks the end of the ‘Slip & Jam’ regime, where the system
slips a distance ∆L(φ, σ) before jamming. We therefore define φJ3 as the
volume fraction where ∆L vanishes. To measure ∆L one needs to consider
that the total displacement of the top plate in a jammed configuration of the
‘Slip & Jam’ regime includes, beside the slip distance ∆L, a contribution due
to the deformation induced by the shear stress. This additional deformation
disappears when the shear stress is set back to zero. We have therefore
defined the slip ∆L as the residual displacement of the top plate in a stress
cycle: after preparing the system we slowly increase the stress to its final
value σ, and then decrease it to zero. Figure 6.4 (top panel) shows the
displacement of the top plate position as a function of the shear stress for
σ = 5 × 10−3 and µ = 0.8. Different curves refer to different values of the
volume fraction, as indicated. At small φ, the initial and final positions of
the top plate do not coincide, and the residual displacement is ∆L > 0, while
at high φ we find ∆L ' 0.

Precisely, when the shear stress is small, the residual displacement de-
creases as a power law as the volume fraction increases, which allows to
estimate φJ3 via a numerical fit of ∆L(φ) at each σ and µ, as illustrated in
Fig. 6.4 (bottom panel). At high values of the shear stress, ∆L does not
vanish on increasing the volume fraction, as the system deforms plastically
in a stress cycle. When this is the case the dependence of ∆L on φ shows a
clear crossover from a slip-dominated regime to a plastic-dominated regime,
as shown in Fig. 6.5. When such a crossover is seen, we define φJ3 as the
inflection point of ∆L(φ).

The crossover from the elastic to the plastic regime is due to the increase
of the number of contacts that break as the strain increases. At small σ,
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Figure 6.4: Top: displacement of the top plate in a stress cycle. The stress is
first increased to its final value σ, and then decreased to zero. The residual
displacement is our definition of the slip ∆L. From left to right, φ = 0.6488,
0.6482, 0.6480, 0.6477, 0.6475. Bottom: for a fixed value of the shear stress
(σ = 5 × 10−3), the slip decreases on increasing the volume fraction, and
vanishes at a volume fraction φJ3 , which depends on σ and µ. The straight
line is a power law ∆L = a(φ− φJ3)b, b ' 1.2 and φJ3 ' 0.6495.

the strain of the system is small, and contacts do not break. At higher
σ, the strain of the system is large, and contacts break. Contact breaking
appears therefore to be the microscopic origin of the plastic response. Indeed,
memory of the tangential force between two grains is lost when the Coulomb
threshold is reached.

The line φJ3 can also be defined as that where the jamming time tjam
vanishes on increasing the density. Within numerical errors, the resulting
estimate coincides with the one obtained investigating the residual slip.

6.3 Jamming phase diagram

The location of the jamming lines depends on the model parameters. Their
dependence on the applied shear stress is illustrated in Fig. 6.6, for two
different values of the friction coefficient. As the shear stress increases, all
transitions move to higher volume fractions. The dependence on the friction
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Figure 6.5: Dependence of the slip ∆L on the volume fraction φ, for different
values of σ, at µ = 0.8. When σ is small, ∆L decreases on increasing φ, and
φJ3 is defined as the volume fraction where ∆L vanishes, as illustrated in
Fig. 6.4. Conversely, at high σ, ∆L does not vanishes, but shows a crossover
from a slip-dominated regime to a plastic-dominated regime. In this case φJ3

is defined as the inflection point of ∆L(φ).

coefficient of φJ1 , φJ2 and φJ3 is illustrated in Fig. 6.7, for σ = 2 × 10−3.
The dependence of φJ3 on µ is very small, and only appears at high φ or
σ, where the system behaves plastically due to the breaking of frictional
contacts. The dependence of φJ1 and φJ2 on µ is similar to that of different
jamming thresholds found via particle inflating algorithms [66, 167], or via
experiments [178] and simulations [64] of sedimentation.

Extrapolating our high friction estimate of φJ1 to the limit of zero applied
shear stress, we found limσ→0 φJ1(σ) ' 0.585. This estimate is close to
the smallest volume fraction at which jammed states have been found via
particle inflating protocols in no gravity [66]. Looser states have been found
experimentally in the presence of gravity [179, 178], as well as numerically
in no gravity via particle deflating procedures [180]. We prefer not to link
this loose density state with the random loose packing volume fraction, as
this lacks an accepted theoretical definition, and is operatively defined via a
different protocol (sedimentation) [179, 178, 181].

The dependence of the jamming lines on friction finally leads to the
schematic jamming phase diagram for frictional particles of Fig. 6.8, charac-
terized by three axis: the inverse density, the shear stress and the friction co-
efficient. In this phase diagram, the surfaces φJ1(σ, µ), φJ2(σ, µ) and φJ3(σ, µ)
enclose regions of different flow properties. In this diagram, we have assumed
the jamming surfaces to meet in the µ = 0 plane along a well defined jamming
transition line, φJ(σ), in agreement with the absence of results showing the
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Figure 6.6: (Color online) Location of the different flow regimes in the inverse
density, applied stress space, for µ = 0.1 (panel a) and µ = 0.8 (panel b).

presence of the ‘Flow & Jam’ phenomenology in frictionless systems. How-
ever, as already mentioned, at zero friction neither the J–point [48, 49, 50]
nor the jamming transition line [68, 182] are uniquely defined, which suggests
the possible existence of an extremely small volume fraction range where the
‘Flow & Jam’ and the ‘Slip & Jam’ regime persist [183].

The phase diagram of Fig. 6.8 clarifies the intuitive expectation that,
when a frictional system jams after flowing, then it is possible to unjam it
not only varying the density or the shear stress, but also by changing its fric-
tion coefficient, for instance changing humidity, temperature, or introducing
lubricants [184, 185].

Figure 6.7: (Color online) Friction dependence of the different jamming lines,
for σ = 2× 10−3. Lines are a guide to the eyes.
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Figure 6.8: The jamming properties of frictional systems are illustrated in
a diagram with axis the inverse density, the shear stress and the friction
coefficient. At zero friction the jamming phase diagram is characterized by
a ‘Flow’ and by a ‘Jam’ region, while in the presence of friction two new
regions appear: the ‘Flow & Jam’ region and the ‘Slip & Jam’ region.

6.4 Mechanical Response and Fragility

The concept of fragile matter has been introduced by Cates et al. [23],
following earlier numerical results concerning the shear viscosity of parti-
cle suspensions [72], and concerns systems jammed under the action of a
shear stress (see Sec. 3.2.3). In these systems, the stress is supported by
an anisotropic structure. It was speculated that this anisotropy influences
the mechanical properties of the system, which may depend on the relation
between the perturbing stress and the pre–existing one. In particular, the
system is expected to behave as a solid in response to compatible pertur-
bations, which are those not changing the principal stress axis. Conversely,
perturbations changing the principal stress axis are expected to unjam the
system.
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Figure 6.9: Panel a) Network of contact forces in a system jammed under
the effect of a constant shear stress. Each segments marks the direction of
the force acting between a pair of grains in contact. A color scale is used to
represent the force intensities. Panel b) The picture only shows the strongest
contacts (10% of all contacts) of the network.

6.4.1 Network of contact force

A simple model for a fragile system [23] consists in a series of force chains di-
rected along the principal stress axis, supporting the applied stress and living
in a sea of spectators. In our system, one does observe force chains preferen-
tially aligned along the principal stress axis, as illustrated in Fig. 6.9a. These
force chains belong to a percolating cluster of particles, which comprehends
all of the particles but for a few rattlers. Indeed, due to the repulsive force
acting between contacting particles, two particles can be in contact only if
they both belong to a percolating cluster. This cluster provides the sup-
port for a network of force chains. Finite clusters, except single particles,
called rattlers, are not allowed, since, due to repulsive force acting between
contacting particles, a cluster not hold by the confining plates breaks.

Between all contact forces, it may be interesting to localize the stronger
ones and to study the structure of their resulting network. The network of
course will depend on how one defines a bond between two neighbours par-
ticles. So far we have considered two particles being connected if in contact,
namely if the penetration length is positive. By introducing a threshold one
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can consider two particles bonded if the penetration length is larger than a
given threshold. Higher thresholds select larger stressed bonds. In Fig. 6.9b
we show that the network found for high values of the threshold, although
more complex and branched, strongly resembles the minimal model by Cates
et al., as it appears highly anisotropic, with the stronger forces being directed
along the principal stress axis. By contrast, the largest network (Fig. 6.9a),
where all the stressed bonds are taken into account, are more isotropic and
less ’fragile’. Thus, we could expect that the response to stress applied in
different direction share the same anisotropy, reflecting the structure of the
underlying network of contact forces. However the ’fragility’ property is ex-
pected to stem not only by the large stressed bonds but by the entire network,
with an appropriate weight for each bond.

A more quantitative inspection of this point can be achieved by measuring
the shear modulus of the system, as we discuss in the next section.

6.4.2 Shear modulus

Here we describe the measure of the shear modulus G. This is a quantity of
interest both to characterize the jamming transitions, as well as to investi-
gate whereas granular systems jammed at a finite value of the shear stress
are fragile as speculated [23]. To measure the shear modulus G of a system
jammed under the action of an existing shear stress σxz, we have introduced
a perturbing shear stress. The non-zero components of this perturbing stress
are δσxz and δσyz, we fix in such a way that δσ2

xz + δσ2
yz = δσ2. The per-

turbing shear stress is therefore conveniently expressed in terms δσ and of
θ = arctan (δσyz/δσxz).

Fig. 6.10 shows the displacement δr = (δx, δy) of the top plate position
for different values of φ at fixed σ and δσ (left), and for different values
of δσ at fixed σ and φ (right). Each curve is obtained by first applying a
perturbing shear stress at θ = 0, and then increasing θ from 0 to 2π. The
figure clarifies that systems jammed under shear are elastic, as each curve
describes a close path. Accordingly, even though their mechanical rigidity
originates from an underlying force network which is highly anisotropic, these
systems are not fragile as speculated [23], at least in their response to the
small stress perturbations we have considered.

The absence of fragility can be rationalized in terms of the properties
of the energy landscape of the system. Indeed, fragile jammed systems can
be associated with saddle points, as their elastic energy may increase or
decrease, depending on the direction of the perturbation, respectively leading
to an elastic response, or to an instability. Since dissipative systems do
not spontaneously arrest in an unstable point of their energy landscape, we
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Figure 6.10: Response of a jammed system to a small perturbing shear stress.
Panel (a) shows the response of systems jammed under the action of a stress
σ = 10−2, to a perturbing stress δσ = 10−4, for different values of the volume
fraction (from the inside, φ = 0.655, 0.630, 0.617, 0.613 and 0.610). Panel
(b) shows the response of system with volume fraction φ = 0.617, jammed
under the action of a shear stress σ = 10−2, to different perturbing stresses
(from the inside, δσ = 10−3, 5× 10−3, 10−2, 2.5× 10−2, 5× 10−2, 7.5× 10−2,
10−1). The friction coefficient is µ = 0.8.

expect them to arrest in a true energy minimum. Systems that jam under the
action of an applied stress are therefore not expected to be fragile. Of course,
a fragile behavior may appear in the response to large stress variations.

The curves of Fig. 6.10 resemble perfect circles, suggesting the presence
of an isotropic response. We have verified that this is the case investigating
the parameter

ξ(θ) =
[δx2(θ) + δy2(θ)]

1/2 − δr
δr

, (6.2)

where δr = 〈[δx2(θ) + δy2(θ)]
1/2〉θ. As illustrated in Fig. 6.11, the anisotropy

of the system is small, being |ξ(θ)| < 4%.
Due to the elastic and isotropic response of the system, we are allowed to

defined the shear modulus as G = limδσ→0 δσ/ε, where ε is the shear strain
induced by δσ. Its behavior is described in the next section.

6.4.3 Structural changes across the jamming lines

Here we consider how the structural properties of the system change across
the jamming transitions. In particular, we focus on the variation of the mean
contact number Z, of the normal pressure on the confining walls P , and of the
shear modulus G. In Fig. 6.12, we illustrate their volume fraction dependence
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Figure 6.11: Anisotropy in the response to a small perturbing shear stress of
a system jammed under the action of a large shear stress. Different curves
refer to different values of the volume fraction.

for µ = 0.8 and σ = 5 × 10−3. In the flowing regime (full circles) Z and P
increase with φ, while G is zero. In the jammed regime (full diamonds) Z,
P and G are roughly constant for φ < φJ3 , while they increase as power
laws for φ > φJ3 , where a continuous transition occurs. Measures in the
flowing state in the range φJ1–φJ2 (open circles) are taken for t < tjam(φ).
Compared to previous numerical studies [169, 66, 167] conducted at σ = 0,
our findings show that there is a whole volume fraction range where frictional
granular systems may have the same mechanical properties. This volume
fraction range can be identified with a constant Z line of the Z-φ diagram of
Ref. [169].

6.5 ‘Flow & Jam’ regime

In the ‘Flow & Jam’ region the system exhibits a very intriguing phenomenol-
ogy, whereby it first flows with a constant velocity as in a steady flowing
phase, but then suddenly jams(see Fig. 6.2 ). As we discuss in Sec. 6.2
this occurs after an average time tj, which diverges as a power-law by ap-
proaching the line φJ1 , as shown in Fig.6.3. In this section we focus on the
dynamics of this regime in order to clarifies the mechanisms originating such
a complex behaviour.

6.5.1 Jamming times

Fig. 6.13 compares the velocity vs(t) of the upper plate as a function of
time for three simulations at φ = 0.627 and σ = 2 10−3, clarifying that the
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Figure 6.12: Mean contact number Z (a), normal pressure on the shearing
plate P (b), and shear modulus G (c) as a function of φ, for σ = 5 × 10−3

and µ = 0.8. The vertical lines mark φJ1 , φJ2 , and φJ3 , as indicated. Full
circles are measures taken when the system flows, while full diamonds are
measure taken in jammed configurations. Open circles in the range φJ1–φJ2

are measures taken in the flowing regime for t < tjam(φ), before the system
jams.
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Figure 6.13: Velocity of the upper plate vs as a function of time for three
simulations at φ ' 0.627 and σ = 2 · 10−3. We marked the values of the
jamming times, tjam, which differ by more than three decades.

Figure 6.14: Probability distribution P (tjam) of the jamming time for σ =
2 · 10−3 and different values of the volume fraction, as indicated.

jamming time is subject to large fluctuations. In facts, the three simulations
shown in Fig. 6.13 jam at very different times, even though they differ only
in the initial configuration. Such an observation suggested to study the
sample fluctuations of the jamming time, which we show in Fig. 6.14 for
σ = 2 · 10−3 and four different values of the volume fraction. While at high
volume fractions P (tjam) is peaked, meaning that the jamming time is well
defined, on decreasing the volume fraction the distribution moves to larger
times, and at the same times changes shape, becoming well described by a
power law.
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Figure 6.15: Mean number of contacts per grain Z as a function of time,
for the simulations shown in Fig.6.13. The system jams when Z reaches a
critical value Zc.

Figure 6.16: Parametric plot of the velocity of the top plate versus the mean
number of contacts, obtained from the data shown in Fig.s 6.13 and 6.15.
The collapse indicates the existence of a correlation between Z and vs: the
higher Z, the slower the system.

6.5.2 Fluctuations of the micro-structure of the system

Figure 6.15 illustrates the time evolution of the mean number of contacts
per grain, Z(t), for the same simulations considered in Fig. 6.13. At the
beginning of the simulations, as a consequence of the considered preparation
protocol, Z(t = 0) = 0. Z(t) rapidly increases as the system start flowing,
and then fluctuates around a constant value in the following steady flowing
phase. A comparison between Fig. 6.13 and Fig. 6.15 suggests the presence of
a correlation between the shear velocity vs(t) and the mean contact number
Z(t), whereby large values of Z occurs when the shear velocity is small, and
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Figure 6.17: Dependence of the average shear velocity 〈vs〉 as a function of
the mean number of contacts per grain at σ = 2 · 10−3, for the indicated
values of the volume fraction.

conversely. An analogous correlation is found between vs(t) and the pressure
on the confining walls (not shown).

These correlation are evidenced in Fig. 6.16, which shows a parametric
plot of vs(t) versus Z(t) for the same simulations considered in Fig. 6.13 and
Fig. 6.15. In such a representation, data sets characterized by very different
jamming times display a very similar behaviour. Note that the fluctuations
of the shear velocity decreases as the mean number of contacts increases,
suggesting the presence of a well defined critical mean number of contacts Zc
at which jamming occurs, in agreement with the results of Fig. 6.15.

We plot in Fig. 6.17 the averaged shear velocity as a function of the
mean number of contacts, 〈vs(Z)〉 for the indicated values of the volume
fraction. The figure suggests that Zc is almost independent on the volume
fraction, consistently with the previous finding (see Sec. 6.4.3) of a volume
fraction range where granular systems with equal mechanical properties can
be prepared.

On the contrary, as shown in Fig.s 6.18a,b Zc increases with the applied
shear stress. Considering that the shear modulus is expected to increase with
the mean contact number [24], this result suggests that the shear modulus
of frictional jammed systems does not simply depend on its volume fraction,
but also on the applied stresses which caused jamming, i.e. on the history of
the system.
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Figure 6.18: At φ = 0.629, a): average shear velocity 〈vs〉 versus mean
number of contacts per grain for the indicated values of the shear stress, and
b): jamming critical mean contact number Zc as a function of the applied
shear stress.

6.5.3 Jamming mechanism

Here we propose a qualitative mechanism to explain the origin of the ‘Flow
& Jam’ phenomenology, based on the behavior of the shear velocity 〈vs(t)〉
and of the mean contact number Z(t), as well as on the dependence of tjam
and Zc on the control parameters.

The starting point is the well known dilatancy phenomenon [186, 187,
188]. , which is the tendency of a particulate system to expand when flowing.
Dilatancy has been mainly investigated at constant pressure and constant
shear strain rate, whereby a dilation is actually observed, the larger the
greater the shear velocity [189]. By contrast, at constant volume, which is
the case considered here, dilation is by definition forbidden and we speculate
that such an impeded dilatancy could be at the origin of the phenomenology
observed in the ‘Flow & Jam’ region.

While flowing, the system visits different microscopic configurations, each
one having a typical mean number of contact Z. When Z is small, particles
exert a small resistance to the applied stress, the shear rate increases and
the system tends to dilate. This leads to a configuration with a larger mean
number of contacts, exerting a larger resistance, which causes the system to
decelerate: this is the constant volume counterpart of the dilation observed
at constant pressure.

The existence of such a feedback mechanism is suggested by the cor-
relations between Z and vs illustrated in Fig. 6.16. The impeded dilatancy
appears therefore responsible for the fluctuations of the mean number of con-
tacts. The flowing system jams as a result of a large fluctuation of the mean
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number of contacts Z, which reaches the critical value Zc corresponding to
configurations able to sustain the applied stress.

How frequent are these fluctuations? We expect these fluctuations to be
more rare when the volume fraction is small, simply because there are fewer
configurations able to sustain the applied stress (i.e. with Z = Zc): this
explains why the jamming time increases as the volume fraction decreases.
Also, one expects that when the volume fraction is smaller than a threshold
value, there are no configurations with Z = Zc, which explains why the
jamming time diverges decreasing the volume fraction.

6.6 Checking the robustness of the results

6.6.1 Finite size effects

In this section, we discuss the robustness of the jamming phase diagram on
the system size. We have performed this investigation keeping the size of
the system in the transverse directions fixed, lx = ly = 16D, and varying the
vertical size lz. We compare the results for lz = 8, described in Sec. ??, with
results obtained with lz = 16 and lz = 32. Data refer to σ = 5 · 10−3 and
µ = 0.8.

Finite size effects at φJ1

The jamming volume fraction φJ1 is that where the time tjam a system flows
in a steady state before jamming diverges on decreasing the volume fraction.
The numerical identification of φJ1 is difficult because it involves a diverging
timescale, and because tjam widely fluctuates from run to run. This implies
that a large number of runs are required to reliably estimate tjam at each
value of σ, φ and µ. The computational cost required to assess the pres-
ence/absence of finite size effects at φJ1 is therefore prohibitive; accordingly,
while we have observed the phenomenology at all values of the system size
we have considered, and also when lz = 64D, we cannot exclude that this
phenomenology disappears in the infinite system size limit (where it could
be that φJ1 = φJ2).

Nevertheless, here we show data clarifying that φJ1 < φJ2 in very large
systems, even larger than those considered in many experiments of sheared
granular particles [61, 62, 63]. This clarifies that the reported phenomenology
is experimentally relevant.

Practically, we have determined the probability p that a simulation jams
in a given time T as a function of φ, for different values of lz. The probability
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Figure 6.19: Volume fraction dependence of the fraction of simulations (over
100) jamming in a time T = 100, for different values of lz.

is computed over 100 runs with different initial conditions, while the simu-
lation time is fixed to T = 100. The results, which are shown in Fig. 6.19,
clarify that the ‘Flow & Jam’ phenomenology is observed up to lz = 32.
Note that this data cannot be used to infer the fate of the φJ1 line in the
thermodynamic limit, as one should also consider the T →∞ limit.

Finite size effects at φJ2

For each value of lz, we have measured the shear viscosity η in the steady
state, which is found to diverge as a power law at a size independent φJ2

value, as shown in Fig. 6.20. Data of different system sizes can be reasonably
scaled on the same curve, which indicates that our system is large enough
for finite size effects at φJ2 to be negligible.

Finite size effects at φJ3

At the jamming line φJ3 , defined as the volume fraction at which the ‘slip’
vanishes, structural quantities have cusps, as shown in Fig. 6.12. To inves-
tigate the dependence of the line φJ3 on the system size, we have studied
the size dependence of the location of the cusp in the pressure. As shown
in Fig. 6.21, the cusp occurs at the same volume fraction regardless of the
system size, implying that the line φJ3 is not affected by finite size effects.

6.6.2 Preparation protocols

Due to the presence of frictional forces, the response of granular systems to
applied perturbations may depend on the particular protocol used to pre-
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Figure 6.20: Log-log plot of the inverse shear viscosity η−1 versus φJ2−φ, for
different system sizes. The data collapse on the same curve (η−1 ' (φJ2−φ)γ,
γ ' 1.1), indicating that finite-size effects are negligible.

Figure 6.21: Normal pressure acting on the top confining plate as a function
of the volume fraction, for different system sizes.

pare the initial state. The phenomenology described so-far is observed when
frictional forces are introduced after the system has reached a state of zero
kinetic energy at the desired volume fraction. This memoryless protocol give
access to the whole zero pressure jamming phase diagram [169].

Here, we consider how our findings change when the initial packing is
prepared using a different and popular protocol (see, for instance, Ref.s [66,
190]), where friction is always taken into account. Frictional grains, initially
placed in random positions with small radii, are inflated until they reach their
final size. We use the same inflation rate Γ both when using the protocol
considered in the manuscript (‘no friction protocol’), as well as when using
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Figure 6.22: (Color online) Location of the jamming transition lines as found
using different protocols to prepare the initial state. φJ1 and φJ2 are protocol
independent, while the line φJ3 depends on the protocol. Our estimate for
φJ3 is an upper bound for all possible estimations obtained using different
protocols.

the modified protocol (‘friction protocol’). In Fig. 6.22 we compare, for
σ = 5 · 10−3 and µ = 0.8, the velocity of the shear plate (upper panel), and
the pressure (lower panel) obtained using the two protocols. The pressure is
normal force acting on the top plate divided by its surface.

The shear velocity is the same regardless of the initial protocol, in agree-
ment with the expectation that flowing systems do not remember their initial
state. Accordingly, the line φJ2 , where the viscosity diverges (the velocity
vanishes), is protocol independent. The same is true for the line φJ1 (not
show), which is determined from the divergence of the jamming time, also
measured when the system flows.

The pressure, which is shown in the bottom panel, has a cusp at φJ3 (at
small σ). Fig. 6.22 clarifies that the line φJ3 depends on the preparation
protocol. The line obtained with the ‘no friction’ protocol used in this work
is an upper bound with respect to the lines obtained using other preparation
protocols.
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Chapter 7

Conclusions

In this Thesis we have studied two different aspects of the Jamming transi-
tion, the glassy dynamics in a model of supercooled liquid and the rheology
of a frictional granular material under shear stress.

In supercooled liquids, upon lowering temperature, the relaxation time
dramatically increases and clusters of particles dynamically correlated, known
as Dynamical Heterogeneities (DHs), appear. We are interested to clarify
structure and dynamics of DHs and their relation with the the structural
relaxation process.

To this aim, we have investigated, via Monte Carlo simulations, the ’Kob-
Andersen model’. In this kinetic constrained model for glassy dynamics, the
density plays the role of an inverse temperature, and a transition of structural
arrest appears to occur to at density ρka ' 0.88. The simple properties of
the Kob-Andersen model allows us a detailed inspection of DHs, which is
more difficult in other models.

We find that:

- Contrary to common belief, structural relaxation and DHs are charac-
terized by different time-scales and therefore they appear less tangled than
expected.

- On the one hand, the emergence of DHs is well described by the dif-
fusion of mobile elements, the defects, which allow the relaxation of nearby
regions. In particular, the diffusing defects scenario correctly predicts the
exponents we find to characterize the behaviour of DHs in our systems. On
the other hand, the structural relaxation process can be interpreted in terms
of a reverse dynamical percolation transition. This geometrical interpreta-
tion clarifies that the system relaxes when the percolating cluster disappears,
while DH is maximum when spatial correlations between persistent particles
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start to decrease: in our case this events are characterizd by different time-
scales.

For systems of soft frictional spheres at zero temperature and zero applied
stress, the Jamming transition is sharply defined and it has well defined
signatures in mechanical and geometrical properties. Moreover, if a finite
(but small) shear stress is applied the system behaves as a solid or as liquid,
depending on the value of the control parameters. The introduction of inter-
particle friction, which is an essential feature of real-world granular materials,
makes the jamming phenomenology much more complex. In particular, the
state of the system may depend on the time-scale of observation.

Via molecular dynamic simulations of a system of soft frictional spheres,
we have investigated the effect of friction on the Jamming transition in the
constant volume and constant shear stress ensemble.

We find that:

- The presence of friction leads to the onset of complex regimes character-
ized by novel dynamical and structural properties. In particular, frictional
granular systems may flow in an apparently steady state for a long time,
before they suddenly jam. We have proposed a mechanism to describe this
dynamical jamming transition, using the concept of impeded dilatancy.

- The rich observed rheology is conveniently described in terms of a 3-
dimensional jamming phase diagram with axes volume fraction, shear stress
and friction coefficient. This diagram comprises four different regions dived
by three transition line. These lines coincide at zero friction, where only two
regions exist.

- The observed dynamical regimes have a clear counterpart in geometrical
and mechanical properties of jammed states. In particular, when a system
jams after flowing, the resulting mean contact number, pressure and shear
modulus appear to depend on the applied shear stress, and not on the volume
fraction. Moreover, we do not observe ’fragile’ behavior in response to small
perturbations, contrary to previous suggestions found in the literature.

Perspectives

In model of defects behaving as perfectly random walkers, one finds that the
relaxation time and time of maximum dynamical correlation length scale in
the same way, τ ∝ t∗ξ . However in cooperative kinetic constrained model, such
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as Kob-Andersen model, defects are expected to have a complex structure.
A problem ahead is to unveil the structure of these defects and how this
structure changes on approaching the transition of structural arrest. In fact,
one may speculate that the decoupling between τ and t∗ξ may be due to
a more complex nature of defects, such as the non-conservation of defects
characterized by birth and death rates with a constant average number, or
the presence of heterogeneous defects. A second open question is to check
whether the insights found for the Kob-Andersen model can be extended to
continuous model of glass former.

Concerning granular materials, open questions ahead include the relation
of the observed jamming transitions with phenomena seen at constant shear
rate, where Jamming is by definition precluded. In addition, the role of other
parameters which are expected to control the jamming transition of frictional
systems, as the confining pressure, should be investigated. Future plans
also include the investigation of the role of temperature in the jamming of
frictional thermal particles. For example, large colloidal particles, with a size
of roughly 1µm, are in fact at the same time small enough for temperature to
influence their dynamics, and large enough to be characterized by frictional
forces.
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