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ABSTRACT

The calcium-calmodulin dependent kinase II (CaMKII) is an ubiquitous serine/threonine 

protein  kinase  involved  in  multiple  signalings  and  biological  functions.  It  has  been 

demonstrated that in epithelial and mesenchimal cells CaMKII participates with Ras to 

Raf-1 activation and that it is necessary for ERK activation by diverse factors. Raf-1 

activation is complex. Maximal Raf-1 activation is reached by phosphorylation at Y341 

by Src  and at  S338.  Although early data proposed the involvement of p21-activated 

kinase 3 (Pak3), the kinase phosphorylating S338 is not definitively identified. 

Aim of my thesis is to go more insight into the molecular mechanisms of CaMKII/Raf-1 

interaction and to verify the hypothesis that CaMKII phosphorylates Raf-1 at Ser338. To 

this  purpose,  I  investigated  the  role  of  CaMKII  in  Raf-1  and  ERK  activation  by 

oncogenic Ras and other  factors,  in  COS-7 and NIH3T3 cells. Serum, SrcY527 and 

RasV12 activated CaMKII. CaMKII was necessary for Raf-1 and ERK activation by all 

these factors. CaMKII was necessary to the phosphorylation of S338 Raf-1 by serum, 

fibronectin  or  oncogenic  Ras.  Conversely,  the  inhibition  of  phosphatidylinositol  3-

kinase,  which  in  turn  activates  Pak3,  was  ineffective.  The  direct  kinase  activity  of 

CaMKII on the serine 338 residue, was demonstrated in vitro by interaction of purified 

kinases.

These results demonstrate that CaMKII phosphorylates Raf-1 at S338 and partecipates to 

ERK activation upon different physiologic and pathologic stimuli in the MAPK cascade. 

This kinase, might have a role in cancers harbouring oncogenic Ras and could represent 

a new therapeutic target for pharmacological intervention in these tumors. 
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1.  INTRODUCTION

1.1 Raf family

The Raf protein, named for Rapidly Accelerated Fibrosarcoma, was discovered over two 

decades ago as a retroviral  oncogene,  v-Raf or  v-MIL, possessing a serine/threonine 

kinase activity (Moelling, et al., 1984; Rapp, et al., 1983). v-Raf correlated genes were 

identified later. In mammalian cells there are three known Raf isoforms: A- Raf, B- Raf 

and C- Raf, also called Raf-1. Studies in Drosophila and in C. Elegans have defined D-

Raf  and  lin45  respectively,  demonstrating  that  all  these  proteins  share  common 

architecture and that they are subject to complex and conserved regulation, represented 

by the presence of a large number of phosphorylation sites distributed along the proteins 

(Fig. 1). Raf proteins have a key role in the mitogen-activated protein-kinase (MAPK) 

pathway,  a  linear  and  conserved  cellular  pathway  that  transduces  signals  from  the 

membrane  to  the  nucleus.  Binding  of  extracellular  ligands  such  as  growth  factors, 

cytokines and hormones to cell-surface receptors activates Ras, a small GTP-binding 

protein, that initiates Raf activation. This binding leads to activation and phosphorylation 

of the dual-specificity mitogen activated kinase-1 and -2 (MEK1 and MEK2) which in 

turn activate and phosphorylate the extracellular signal-regulated kinas-1 and -2 (ERK1 

and ERK2) (Wellbrock, et al., 2004). The Ras-ERK pathway can mediate differentiation, 

proliferation  or  oncogenic  transformation,  depending  on  cellular  context  (Marshall, 

1995). Knock out studies of individual Raf isoforms in mice, seem to demonstrate their 

essential and non-overlapping roles in embryo- and organogenesis. In general, knockout 

mice  display  severe  growth  retardation  in  size  and  weight  and  abnormal  organs 

development,  demonstrating  that  Raf  isoforms  are  required  for  normal  development 

beyond the blastocyst stage and for sustaining life (Wojnowski, et al., 1998)
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1.1.1 Raf-1 kinase structure

Each of the Raf kinases shares three conserved regions (CR) :  CR1 and CR2 in N- 

terminus and CR3 in the C-terminus (Fig. 1). CR1 contains elements required for Raf 

membrane recruitment: in particular, it is composed of a Ras-binding domain (RBD) that 

binds active GTP-Ras, and a cysteine-rich domain (CRD), which can bind two zinc ions 

and stabilizes the association with Ras. CR2 is a serine/threonine rich domain and it 

holds a conserved phosphorylation site at S259 for 14-3-3, a regulatory protein. Binding 

of 14-3-3 to this phosphorylated serine is inhibitory. CR3 contains the catalytic portion 

holding the Raf kinase domain and a conserved serine at S621 that is a stimulatory 14-3-

3 binding site. The Raf protein kinase domain has the characteristic small N-terminal 

lobe  and  large  C-terminal  lobe  typical  of  all  protein  kinases.  The  small  lobe  has  a 

predominantly antiparallel β-sheet structure and anchors and orients ATP. The large lobe 

is mainly α-helical and binds MEK1/2 . The two lobes move relative to each other and 

can open or close the cleft. The open form allows access of ATP and represents the 

active form; in the closed conformation the catalytic domain of Raf is folded and binds 

the N-terminal regulatory domain (Leicht, et al., 2007; Roskoski).
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Fig. 1.1 |  Structure of the Raf proteins. The Raf mammals isoforms are: A-Raf, B-Raf and C-

Raf. They share three conserved region: CR1 (yellow), CR2 (orange), CR3 (red) which contains several  

phosphorylation sites. RBD and CRD, within CR1, are required for membrane recruitment. (Wellbrock,  

et al., 2004) 

            

      1.1.2  Raf kinase regulation

Raf -1 activation is a multistep and highly complex process that involves:

- membrane recruitment

- several phosphorylation sites

- protein-protein interaction (dimerization and oligomerization with B-Raf)

- conformational changes

Most of our understanding of Raf regulation comes from studies using Raf-1; although 

many of these regulation events seem to be conserved for A-Raf and B-Raf, there are 

several crucial differences. 

The initiating event in Raf-1 activation is Ras-mediated membrane recruitment, due to 

directly binding of Ras to the N-terminal regulatory domain of Raf-1 (Wellbrock, et al., 

2004).  Ras-GTP,  in  its  active  form  and  attached  to  the  inner  leaflet  of  the  plasma 

membrane, binds to RBD of Raf-1, but forms also secondary interactions with CRD. 
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This binding recruits Raf-1 to the cellular membrane, but it is insufficient for the full 

activation of Raf-1. There are four Ras proteins in humans (H-Ras, N-Ras, K-RasA and 

K-RasB) and there are clear differences in their binding affinities to the RBDs:  transient 

transfection of oncogenic Ha-Ras leads to a preferential activation of endogenous c-Raf 

in HEK 293 cells as opposed to A-Raf (Weber, et al., 2000). CR1 and CR2-deleted Raf-

1 resulted in a costitutively active form of the kinase, demonstrating that in the absence 

of stimuli inactive Raf-1 has the catalytic domain folded and bound to the N-terminal 

half  regulatory  domain  (Stanton,  et  al.,  1989).  This  interaction  is  stabilized  by  the 

binding of a 14-3-3, a dimeric adaptor/scaffold protein, to CR2 of Raf-1 when S259 and 

S621  are  phosphorylated,  interfering  with  binding  to  Ras.  Following  growth-factor 

stimulation,  Ras-GTP interferes  with 14-3-3 and enforces  conformational  changes  in 

Raf-1 necessary for its stable activation and for exposing docking site to MEK (Terai 

and Matsuda, 2005; Tzivion and Avruch, 2002; Wellbrock, et al., 2004). Although Ras-

GTP can distrupt 14-3-3 binding in vitro, 14-3-3 displacement needs dephosphorylation 

of S259 by protein phosphatase-2A (PP2A) in the cells (Jaumot and Hancock, 2001).

Is  a  common  thinking  that  Raf-1  undergoes  a  series  of  phosphorylation  and 

dephosphorylation events after Ras recruitment that results in an stably active form, in a 

B-Raf different  manner (Wellbrock,  et  al.,  2004).  In Raf-1 are known both negative 

phosphorylation, that suppress Raf-1 activity, and positive phosphorylation that maintain 

the active Raf-1 conformation. In resting cells, inactive C-Raf is phosphorylated at S43, 

S259, S621 but several other sites remain to be identified (Leicht, et al., 2007).

As noted above, S259 and S621 phosphorylation serve to bind 14-3-3, stabilizing the 

basal inactive Raf-1 conformation; S43, S233 and S259 are thought to be a negative 

regulatory  site  targeted  by  PKA,  a  cyclic-AMP-dependent  kinase;  S259  is  also 

phosphorylated  by  AKT/protein  kinase  B  (AKT/PKB)  (Dumaz  and  Marais,  2003; 

Tzivion,  et  al.,  1998).  Accordingly,  phosphorylation  of  S259  by  AKT or  PKA was 

shown  to  negatively  regulated  Raf-1,  whereas  its  dephosphorylation  by  protein 

phosphatase 2A has been reported to be part of the Raf-1 activation mechanism (Balan, 

et al.,  2006).  Also S43 phosphorylation seems to sterically hinder binding of the N-

terminus of Raf-1 to Ras, but the regulation of Raf-1 by PKA is highly complex and not 

fully understood: what is sure is that cells are determined to inhibit Raf-1 when cAMP 

levels are elevated.
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Following  cell  stimulation  by  growth  factors,  Raf-1  goes  through  an  activation 

intermediated state that is stabilized by several positive phosphorylation. To date, the 

major identified catalytically significant, growth factor-induced C-Raf phosphorylation 

sites are S338/339 and Y340/341, located at the N-terminal side of CR3 in a subdomain 

called N-region for  several  negative  charges.  SRC and SRC-family  kinases  seem to 

phosphorylate Y341 in vitro and in cell culture while there is disagreement about the 

kinase  or  kinases  that  phosphorylate  S338  (Marais,  et  al.,  1995).  Interestingly,  the 

S338/339 sites are conserved among the Raf proteins (Fig.1), with the exception of A-

Raf that has a Glycine at corresponding S339 and Lin-45 that has two Hystidines. In B-

Raf  the  phosphorylation  of  S445,  which  corresponds  to  S338  in  Raf-1,  is  largely 

constitutive  and  so  does  not  actively  contribute  to  relief  from autoinhibition  of  the 

kinase. The YY340/341 are more variable residues among the Raf isoforms: B-Raf, D-

Raf and Lin-45, have charged residues as Glu and Asp at their corresponding sites ( in  

B-Raf  is  D448).  For  this  reason,  these  kinases  require  less  activation-related 

modification for full activation respect to Raf-1 and A-Raf (Tran, et al., 2005). It means 

that B-Raf has strongly elevated basal kinase activity compared to Raf-1 and for its full 

activation requires only Ras-mediated membrane recruitment.

In literature there is a strongly disagree about the kinase that phosphorylates S338 in 

Raf-1. One of the suggestions is that it is mediated by Pak3 (King, et al., 1998). Pak 

proteins are serine/threonine specific kinases that bind and are activated by a membrane-

bound  Ras-related  GTPases  Cdc42  and  by  RAC;  has  been  proposed  that  Pak3 

phosphorylated  Raf-1  at  S338  and  stimulated  its  activation  in  a  RAC/Cdc42  and 

phosphatidylinositol-3 kinase (PI3K)-dependent manner (Sun, et al., 2000). Effectively, 

Pak  kinases  can  phosphorylate  Raf-1  at  S338  in  vitro,  but  experiments  using  PI3K 

inhibitors in vivo (Ly294002 and Wortmannin), did not block S338 phosphorylation in 

COS-7  cells  stimulated  by  EGF.  Importantly,  it  is  well  established  that  S338 

phosphorylation Ras-  and growth factor-mediated occurs at the plasma membrane in a 

Ras/Src  dependent  manner,  whereas  Pak3  phosphorylates  Raf-1  in  the  cytosol  and 

recruits Raf-1 to the membrane in a Ras independent manner. Furthermore, dominat-

negative vectors of Pak3 and Cdc42, that are catalitically inactive, do not block S338 

phosphorylation and C-Raf activation EGF-mediated (Chiloeches, et al., 2001).
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Taken together,  these data strongly oppose the model that Pak kinases can stimulate 

S338 phosphorylation in a growth factor- or Ras- dependent manner and it is a common 

view that  the  Ras-dependent  S338 kinase  is  still  to  be  identified (Wellbrock,  et  al., 

2004).

Importantly, the dephosphorylation of S259 is a prerequisite for the further activation of 

Raf-1,  and the phosphorylation of the key activating residue S338 occurs after S259 

dephosphorylation. These two residues are mutually exclusive, as upon stimulation by 

EGF, S259 phosphorylation decreases and S338 phosphorylation appears (Dhillon, et al., 

2007). 

Other two phosphorylation are essential for Raf-1 activation: T491 and T494 that are 

within the kinase domain in a region called activation segment. Their mutation blocked 

Raf-1  activation,  but  the  kinases  that  mediate  their  phosphorylation  are  still  to  be 

identified  (Wellbrock,  et  al.,  2004).  All  the  principal  phosphorylation  sites  and 

respectively kinases targeting Raf-1 are schematized in Fig. 1.2.

Interestingly, Raf kinase form both omodimers and heterodimers and it is also regulated 

through association with chaperones such as HSP-90/p50 and HSP/HSP-70 and with 

various scaffold proteins such as RKIP (Raf kinases inhibitory protein) (Leicht, et al., 

2007). MEK 1/2 is not the only one Raf target: mammalian Raf proteins might have 

other effectors. One of these is the transcription factor nuclear factor (NF)-kB: C-Raf 

seems to be able to activate NF-kB but the mechanism is unclear (Wellbrock, et al., 

2004).

The mechanism(s) responsible for Raf-1 inactivation is much less understood, although 

the common view is that Raf-1 dephosphorylation should play a key role in this process 

(Balan, et al., 2006). The inactivated state of Raf-1 is re-established by the coordinated 

action of Pin1, a prolyl isomerise that converts pSer and pThr residues from the cis to the 

trans conformation, which is preferentially recognized and dephosphorylated by PP2A 

(Baccarini, 2005).

 

Raf  isoforms  have  also  different  cellular  expression  and  different  sub  cellular 

localization. Morice et al showed that B-Raf and Raf-1 proteins are present in most brain 

areas, whereas A-Raf is not detected: Raf-1 is localized mainly in the cytosolic fraction 

around the nucleus, whereas B-Raf is widely distributed in the cell bodies and in the 
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neuritic processes (Morice, et al., 1999). Finally, Raf-1 translocates to mitochondria and 

phosphorylates BAD and inhibits  BAD-Bcl-2 complex in a Pak1 dependent manner, 

demonstrating that Raf-1 has also an antiapoptotic role (Jin, et al., 2005).

Fig. 1.2  |  Structure and known Raf-1 phosphorylation sites.
Diagram  depicting  known  Raf-1  phosphorylation  sites  and  potential  kinases  reported  to 
phosphorylation these sites. RBD: Ras binding domain; CRD: cysteine-rich domain; CR1-3: 
conserved region 1-3 in Raf family: K375: ATP binding site (Balan, et al., 2006).
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      1.2  The Ca2+/Calmodulin dependent Kinases (CaMKs)

Calcium (Ca2+) is an important intracellular second messenger in several processes, such 

as  growth  factor  and  hormone  signalling,  cell  cycle  regulation,  gene  expression  and 

apoptosis.  Resting cells have an intracellular Ca2+  level of 10-7  M, which is 104 times 

lower  than the  level  outside  the  cells.  The  cells  have  an intricate  network  by which 

control  the  cytoplasmatic  Ca2+ levels:  ATP-dependent  Ca2+ pumps,  the  endoplasmic 

reticulum  (ER)  and  the  extracellular  space.  Various  signals  can  stimulate  Ca 2+ 

intracellular  increase.  Receptors  tyrosine  kinase  and  G-protein-coupled  receptors  can 

induce Ca2+ release from the ER by producing IP3, while ligand gated ion channels and 

voltage-dependent ion channels  in  the  plasma membrane can initiate Ca2+ entry  from 

extracellular stores (Hook and Means, 2001).

One of the key proteins that binds Ca2+ in the cells is Calmodulin (CaM). CaM is a small, 

highly conserved Ca2+ sensor ubiquitously expressed in mammalian cells (Bito, 1998). 

Ca2+ ions bind to CaM by each of the 4 helix-loop-helix protein folding motifs called EF 

hands. When the four binding sites are filled, CaM undergoes to a conformational change 

that  leads  to  the  exposition  of  a  flexible  eight-turn  α  helix,  which  separates  the 

hydrophobic pockets present at each globural end of the protein. In this way, CaM is 

activated and capable to interact with one of its many target protein in the cells. CaM-

substrate binding is at highly affinity and reversible when Ca2+  concentration return to 

basal level (Means, 2000).

One  action  of  CaM is  to  activate  members  of  a  family  of  Serine/Threonine  protein 

kinases  called  Ca2+/CaM-dependent  kinases  or  CaMKs.  This  family  includes  kinases 

having a single substrate, such as myosin-light chain kinase (MLCK), or kinases having 

multiple substrate.  These proteins are:  CaMKI,  CaMKII and CaMKIV,   kinases with 

similar domain structures and properties (Braun and Schulman, 1995).

The  multifunctional  CaMKs  differ  for  :  tissue  distribution,  subcellular  localization, 

subunit composition and known requirements for complete activation. Thus, CaMKI and 

CaMKII  are  both  ubiquitous  expressed,  while  CaMKIV is  tissue-specific,  expressed 

mainly in brain, T-cells, timus, testis, ovary, bone marrow and adrenal gland (Wang, et 

al., 2001). While CaMKI and CaMKII seem to be predominantly cytoplasmic, except 

some  isoforms  of  CaMKII  that  can  be  nuclear,  CaMKIV  should  be  nuclear  and 
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cytoplasmic (Hook and Means, 2001). About the structure, CaMKI and CaMKIV are 

monomeric enzyme, while  CaMKII is composed by more subunits and it is the most 

well characterized and interesting of the multifunctional CaMKs.

1.2.1 CaMKII regulation

CaMKII is encoded by 4 separate genes that for alternate splicing produce 4 isoforms of 

CaMKII:  α, β, γ and δ. Every cell type has at least one isoform of CaMKII. It is a 

holoenzyme complex composed of 10-12 subunits : every subunit is assembled to each 

other thanks to a C-terminal association domain forming a pair of hexameric stacked 

rings. (See Fig. 1.3) (Anderson, et al.).  The general structure of every subunit of the 

CaMKs is a 50/60 KDa polypeptide characterized by: an N-terminal catalytic domain, 

followed by an autoinhibitory domain containing the binding site for Ca2+/CaM complex 

and finally, in the case of CaMKII, a C-terminal association region (Fig. 1.3). Studied of 

mutated or truncated enzymes, indentified the minimum autoinhibitory domain of the 

CaMKs.  The  truncation  at  residue  294  of  CaMKI  produces  a  protein  that  is 

constitutively active:  thus removing 295-299 of  CaMKI generates an active enzyme, 

indicating that  these  few aminoacids are sufficient  for  the  autoregolation (Hook and 

Means,  2001).  At  resting calcium levels,  the  autoinhibitory  portion  interact  with the 

catalytic domain keeping the enzyme inactive (Cruzalegui, et al., 1992).  CaMKs can 

rapidly  sense  elevation  of  intracellular  Ca2+ levels  binding  Ca2+/CaM  complex:  this 

binding causes a conformational change that allows access of substrate and ATP to the 

catalytic domain. CaMKII activation requires that Ca2+/CaM binds to regulatory domains 

of two neighbour subunits.  These interactions,  lead to the activation of one catalytic 

domain and to the phosphorylation of residue Thr 286/287 (the precise numbering varies 

according to isoform) of the adjacent regulatory domain, until each of 12 subunits are 

activated (Miller and Kennedy, 1986).
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Fig. 1.3  |  Ca2+/CaM-dependent Kinase II structural domains and activation.
CaMKII  monomers  consist  of  an  N  terminal  catalytic  domain  and  a  C  terminal  association 
domain  that  bound a  regulatory  domain  (top).  The  association  domains  (maroon  circles)  are 
required for assembly of the CaMKII monomers into the holoenzyme (middle panels).  Under 
resting conditions the catalytic domain is constrained by the regulatory domain (left middle and 
bottom  panels).  After  intracellular  Ca2+  rises  and  complexes  with  calmodulin  (CaM)  the 
Ca2+/CaM binds to the C terminal portion of the CaMKII regulatory domain (mid portion of the 
top, middle and bottom panels) to prevent autoinhibition of the regulatory domain on the catalytic  
domain,  activating  CaMKII.  With  sustained  Ca2+/CaM  or  increased  oxidation,  CaMKII 
transitions into a Ca2+/CaM-autonomous active enzyme after autophosphorylation (at Thr 287) or 
oxidation (at Met281/282) of amino acids in the regulatory domain (Anderson, et al.).
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The  event  of  autotransphosphorylation  has  two  important  consequences:  first,  the 

affinity of the enzyme for Ca2+/CaM is increased by a factor of 105 in a process called 

“CaM trapping”, because CaM remains “trapped” by the phosphorylation and delays 

dissociating.  Second,  the autoinhibitory domain is  further disrupted making CaMKII 

partially independent of  Ca2+/CaM and “autonomous” (Hudmon and Schulman, 2002). 

This means that CaMKII is able to prolong its activity after  Ca2+  levels have dropped 

below the  activation  threshold.  To  return  to  an  inactive  state,  dephosphorylation  of 

CaM-KII  must  occur.  Both  protein  phosphatases  1  and  2A  (PP1  and  PP2A)  can 

effectively  dephosphorylate  CaMKII  in  vitro,  and  both  enzymes  appear  to  play 

important physiological roles in a subcellular localization of CaMKII-dependent manner 

(Means, 2000).

The activity of CaMKI and CaMKIV is also modulated by phosphorylation. However, in 

contrast of CaMKII, the regulatory phosphorylation events are catalysed by a distinct 

group of kinases called CaM kinases kinases (CaMKKs) (Soderling, 1999). CaMKKs 

themselves  are  Ca2+/CaM  dependent  enzymes.  They  phosphorylate  Ca2+/CaM-bound 

CaMKI  and  CaMKIV  on  a  Thr  residue  located  within  the  activation  loop.  These 

phosphorylation events cause the activity of CaMKI and CaMKIV to increase several 

folds (Chatila, et al., 1996). 

CaMKII has a broad range of biological cellular functions: neuronal functions but also 

regulation of gene expression, regulation of cell cycle and proliferation.

CaMKII is one of the most abundant proteins in the brain, comprising 1% of the total 

proteins in the forebrain and 2% in the hippocampus, a region associated to memory 

(Cruzalegui  and  Bading,  2000).  Some  studies  evidenced  that  CaMKII  autonomous 

activity is  important in such neuronal processes as long-term potentiation (LTP) and 

long-term depression (LTD). CaMKII seems to be implicated in several pre- and post-

synaptic  events.  Among  the  presynaptic  functions:  neurotransmitters  synthesis, 

neurotransmitters  secretion,  microtubule  disassembly;  and  for  the  post-synaptic, 

phosphorylation of a number of  proteins  and kinases in the  post-synaptic  density  of 

downstream neurons  (Hook and Means, 2001). CaMKIIα, the first isoform identified, is 

a major component of the postsynaptic membrane (PSD) in pyramidal neurons. In PSD, 

CaMKII is thought to increase synaptic strength by phosphorylating ion channels and 
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signalling  proteins  such  as  glutamate  receptors  and  N-methyl  D-aspartate  (NMDA) 

receptors (Cruzalegui and Bading, 2000).

The literature reveals that CaMKI is predominantly cytoplasmatic while some isoforms 

of CaMKII and CaMKIV could have also a nuclear localization, owing to a nuclear 

localization signal (NLS) within their association domain. Because all the CaMKs have 

quite similar substrate specificity determinants, it is not surprising that they sometimes 

phosphorylate the same proteins. One of these is the cAMP-response element binding 

protein, CREB (Sheng, et al., 1991). Thus, CaMKII and CaMKIV can phosphorylate the 

trascriptor factor CREB in the nucleus and can mediate the expression of genes regulated 

by CRE such as c-fos. Phosphorylation of CREB on Ser133 is essential for its activation 

because it  is required for binding of CREB binding protein (CBO) and p300, which 

function is transcriptional integrator (De Cesare, et al., 1999). Protein kinase A (PKA) 

was originally identified as the kinase that phosphorylates CREB in Ser 133; however 

also CaMKII can phosphorylate CREB on Ser 133, but it does not induce CRE-mediated 

transcription.  In  addiction,  CaMKII  seems  to  inhibit  CREB  in  some  cell  types, 

phosphorylating the transcriptor  factor  on a second site,  Ser 142.  the  mechanism by 

which phosphorylation on Ser 142 inhibits CREB-mediated transcription seems to be by 

destabilizing  the  association  between  CREB  and  CBP  (Parker,  et  al.,  1998). 

Interestingly,  CaMKIV can  phosphorylate  CREB on Ser  133  and  consequently,  can 

markedly stimulate CRE-mediated transcription; while has been demonstrated that also 

CaMKI  is  able  to  phosphorylate  Ser  133  in  vitro,  but  its  phosphorylation  remains 

controversial  in  vivo because CaMKI has never  be  found in the  nucleus  (Hook and 

Means, 2001).

The role of CaMKII in the regulation of cell cycle mechanisms and in cell proliferation, 

has  been  well  demonstrated.  In  mammalian  fibroblast,  CaMKII  mediates  G1  phase 

progression in a Ca2+/CaM dependent manner, mediating Cyclin D1 levels (Morris, et 

al., 1998). More recent works, show that CaMKII regulates cell proliferation in different 

cell types.
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1.2.2 CaMKII in the MAPK pathway

Recent works demonstrated that Ras-ERK pathway, activated upon several stimuli,  is 

controlled by CaMKII-mediated Ca2+ signalling through the regulation of Raf-1 activity. 

Illario et al. showed that Fibronectin (FN) binding to integrin in thyroid cells TAD-2, 

activates  the  Ras/Raf/MEK/ERK pathway,  through  the  formation  of  FAK/Grb-2/Sos 

complex,  and  also  generates  an  increase  of  Ca2+  intracellular  level  that  leads  to  a 

Ca2+/CaMKII  signal.  Binding  to  FN  induced  Raf-1  and  CaMKII  to  form  a  protein 

complex,  indicating  that  intersection  between  Ras/Raf/Mek/Erk  and  Ca2+/CaMKII 

signalling  pathways  occurred  at  Raf-1  level.  Immunoprecipitation  experiments 

demonstrated that Ca2+/CaMKII signal is necessary for ERK activation and interruption 

of the pathway using pharmacological inhibitors of CaMKII (KN-93 and ant-CaNtide), 

arrested cell proliferation induced by FN in thyroid cells (Illario, et al., 2003; Illario, et 

al.,  2005).  The  cross  talk between CaMKII  and  MAPK  pathway,  has  been  well 

demonstrated also in L6 skeletal  muscle cells,  following insulin stimulation.  Insulin-

activated  CaMKII  associates  to  Raf-1  and  it  is  necessary  for  DNA  synthesis-ERK 

dependent and for the attenuation of AKT activation, demonstrating the role of CaMKII 

also in the selective control of insulin signalling (Illario, et al., 2009).

Moreover, CaMKII has been found constitutively activated in absence of any stimulation 

in  primary  cultures  of  papillary  thyroid  carcinomas  (PTC)  and  in  PTC  cell  lines 

harboring the oncogenes RET/PTC-1 or BRafV600E. Rusciano et al. showed that the 

expression of recombinant RET/PTC-3, BRafV600E or RasV12  in COS-7 cells, induced 

CaMKII activation, in a Phospholipase C/Ca2+  dependent manner. In the PTC cell line 

TPC-1, harboring RET/PTC-1, CaMKII inhibitors attenuated ERK activation and DNA 

synthesis, suggesting that CaMKII is a component of the ERK signal cascade in this cell 

line. Taken together, these data demonstrate a new role of CaMKII in the modulation of 

tumor  cell  proliferation  and  that  the  PLC/CaMKII  pathway  could  therefore  provide 

appropriate targets for therapeutic intervention of tumors harboring RET/PTC.
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Fig. 1.4  |  Integrin-mediated signalling pathways.
Integrin activation promotes three signaling pathways: Ras/Raf-1/Mek/Erk, PI3-K/Akt,       and 
Ca2+/CaMKII. The last is necessary to Raf-1 to activate Mek, thus inducing ERK activation. 
Ca2+/CaMKII signal is necessary but not sufficient for Raf-1 activation (Illario, et al., 2003).
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Fig. 1.5  |  Schematic diagram of the insulin receptor signalling in L6 cells. 

Activation of the insulin receptor generates the IRS-1/2→PI3-K→Akt signalling pathway and 
promotes glucose  uptake.  Insulin  receptor  activation  generates  two  other  signals: 
[Ca2+]i→CaMKII and IRS-1/2→Erk-1/2. They both participate to Raf-1 activation, leading to 
stimulation of cell proliferation (Illario, et al., 2009).

19



1.3  Phosphorylation of Raf-1 at Serine 338 and Tyrosine 341 

As described above, Raf-1 is normally located in the cytosol in an inactive state and its 

activation counts a complex series of events. Ras-dependent recruitment to the plasma 

membrane is the first event that leads to Raf activation. EGF treatment or oncogenic Ras 

expression by plasmid transfection can induce the formation of the Ras/Raf complex in 

several  cellular  models.  In  order  to  complete  Raf-1  activation,  following  Ras/Raf 

association,  two  sequential  important  modifications  have  to  occur  at  the  plasma 

membrane. The first modification is the phosphorylation of Tyr341 by membrane-bound 

Tyr341 kinases, whose activities are induced by EGF and/or Ras. This phosphorylation 

may relocalize the Ras/Raf complex within specialized plasma membrane microdomains 

where  the  second  event  of  phosphorylation,  on  Ser338,  can  occur.  Ser338 

phosphorylation  leads  Raf-1  competent  to  phosphorylate  downstream  effectors  like 

MEK/ERK (Carey, et al., 2003).

Mason et al. demonstrated three topic events for Raf-1 activation: phosphorylation on 

Ser338 and Tyr341 are both necessary to full Raf-1 activity by EGF stimulation; both 

phosphorylations  require  Ras/Raf-1  interaction  and  its  membrane  localization;  Ras 

mediates  predominantly  S338  phosphorylation  and  Src  gives  predominantly  Tyr341 

phosphorylation. Both sites must be phosphorylated for Raf-1 full activity, because they 

cooperate to activate the kinase. In contrast, the regulation of B-Raf is rather different. 

S445  (the  B-Raf  equivalent  of  Ser338)  is  constitutively  phosphorylated  and  this 

phosphorylation  with  the  aspartic  acids  at  447/448  (the  equivalent  of  Tyr340/341) 

contributes to the high basal kinase activity of B-Raf (Mason, et al., 1999).

Many studies have demonstrated that members of the Pak family (p21 activated kinase) 

act as molecular linkers that couple signalling events between Ras and the Rho GTPase 

family. Pak1, -2 and -3 are cytosolic serine/threonine-specific protein kinases that are 

activated  by  direct  binding  to  the  small  G  proteins  Cdc42  and  Rac.  Like  Raf-1 

activation,  Pak  activation  is  very  complex  and  involves  membrane  recruitment, 

phosphorylation  and  dimerization.  Paks  are  implicated  in  a  number  of  biological 

processes  such  as  cytosckeletal  reorganization,  cell  cycle  progression  and  apoptosis 

(Chiloeches, et al., 2001). Evidences suggestes that Pak1 mediates RasV12-induced cell 

transformation in Rat-1 cell lines (Tang, et al., 1997). King et al. first identified Pak2 as 
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an important kinase responsible for the phosphorylation of Ser338, thus involved in Raf 

activation. Pak1 and 2 have also been shown to be necessary for the activation of Raf-1 

by RasV12 (King, et al.,  1998), by an active mutant of phosphatidylinositol 3-kinase 

(Sun, et al., 2000) and by integrins (Chaudhary, et al., 2000). Nocodazole activates Pak 

and consequently causes Ser338 phosphorylation and Raf-1 activation, suggesting the 

existence of a signal generated by changes in microtubule dynamics (Zang, et al., 2001). 

Another  study  by  Li et  al. has  also  positioned  Rac/Cdc42  and  Pak  in  the  RasV12-

induced Raf activation pathway (Li, et al., 2001).

Although  an  increasing  number  of  studies  support  that  Pak  regulates  Ser338 

phosphorylation  in  a Rac/Cdc42/PI3K-regulated manner,  a  dissenting study does  not 

agree with this notion (Zang, et al., 2002). This careful study demonstrated that the PI3K 

inhibitors LY294002 and Wortmannin, at concentrations that block PI3K activity, do not 

suppress the EGF-mediated Ser338 phosphorylation (Chiloeches, et al.,  2001).  In the 

same study, at higher concentrations, Ser338 phosphorylation was suppressed, but so 

was  also  Ras  activity.  Moreover,  Pak3  activated  mutant  could  induce  Ser338 

phosphorylation but not Raf-1 activity and this phosphorylation occurred in the cytosol 

and  not  at  the  plasma  membrane.  Thus,  taking  together  these  data,  the  authors 

conclusion was that the role of PI3K and Pak3 in mediating Ser338 phosphorylation by 

Ras  is  not  physiological  and  the  kinase  that  phosphorylates  Raf-1  on  Ser338  and 

participates to ERK activation remained to be indentified (Chiloeches, et al., 2001).

Phosphorylation of S338 serves multiple roles. It maintains Raf-1 in its activated state 

and regulate the translocation of Raf-1 to the mitocondria. In addition has been reported 

that S338 phosphorylation regulates the binding of two negative regulators as RKIP and 

protein  phosphatise  5  (PP5).  Unlike  most  other  serine/threonine  phosphatises,  PP5 

showed remarkable substrate specificity in regard to Raf-1; in fact, both in vivo and in  

vitro,  PP5  only  dephosphorylates  S338  but  not  other  Raf-1  phosphorylation  sites 

(Dhillon, et al., 2007).
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2.  AIMS OF THE STUDY

It has been previously demonstrated that several factors, such as integrin activation and 

insulin stimulation, activate CaMKII in different cell types including thyroid cells, rat 

mioblasts  (L6) or human fibroblasts.  In  primary PTC cultures and in PTC cell  lines 

harboring the oncogenes RET/PTC-1, CaMKII has been found activated in a PLC/Ca2+ 

dependent manner,  also in the absence of external stimuli.  In these models,  CaMKII 

binds  Raf-1  and  this  complex  is  necessary  for  ERK  activation  and  modulates 

Ras/Raf/MEK/ERK pathway and cellular proliferation (Illario, et al., 2003; Illario, et al., 

2005; Illario, et al., 2009; Rusciano, et al.).

The aim of this doctoral thesis is to go more insight into the molecular mechanisms 

of  CaMKII/Raf-1  interaction  and  to  verify  the  hypothesis  that  CaMKII 

phosphorylates Raf-1 at Ser338.

I asked few specific questions: 

1) how the role of CaMKII in Raf-1/ERK signal is extended or is restricted to some cell  

contexts;

2) which is the role of CaMKII in Raf-1 activation by oncogenic Ras; 

3) if CaMKII phosphorylates Raf-1 at Ser338 upon oncogenic Ras and other stimuli.
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3.  RESULTS

3.1   CaMKII  is  phosphorylated  at  Thr286  by  RasV12  in  a  Ca2+/CaM 

dependent manner

To  evaluate  whether  oncogenic  Ras  stimulates  CaMKII  phosphorylation  at  Thr286, 

NIH3T3 cells were transiently transfected with 2 µg of vectors encoding oncogenic H-

RasV12  and  K-RasV12  isoforms.  After  24  hours  from  transfection,  the  cells  were 

starved  from  serum  for  24  hours  and  treated  for  30  minutes  with  the  calmodulin 

inhibitors W7 or TFP. CaMKII phosphorylation at Thr286 was visualized by Western 

Blotting using phospho-specific antibody. Ionomycin,  a potent calcium ionofore, and 

fetal calf serum (FCS) treatment were used as controls for maximal CaMKII activation. 

In  starved  or  not  transfected  NIH3T3,  pT286-CaMKII  was  not  visible.  Both  the 

oncogenic Ras isoforms induced CaMKII phosphorylation at Thr286 and treatment with 

W7  or  TFP  reduced  this  phosphorylation,  demonstrating  that  CaMKII  was 

phosphorylated by oncogenic Ras by a Ca2+/CaM signal (Fig. 3.1).
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Fig. 3.1 |  CaMKII is phosphorylated by RasV12 in a Ca2+/CaM dependent manner

NIH3T3 cells  were  starved  from serum for  24  hours  and  treated  with  Ionomycin,  FCS or 
transiently transfected with 2 µg of plasmid encoding oncogenic Ras isoforms, HRasV12 and 
KRasV12. Where indicated the cells were treated for 30 minutes with  30 µM W7 or 50 nM 
TFP; pT286-CaMKII and total CaMKII were visualized by Western Blotting.
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     3.2  CaMKII is activated by RasV12

To  determine  whether  oncogenic  Ras  stimulates  CaMKII  activation,  I  performed  a 

CaMKII activity assay in vitro in NIH3T3 stably transfected with KRasV12 vector. In a 

first reaction step, immunoprecipitated CaMKII was incubated with CaCl2, CaM and 

cold ATP. In a second reaction step an aliquot from the first reaction  was incubated with 

CaMKII peptidic substrate Autocamtide, EGTA and [γ32P]ATP. The reaction mixture 

was spotted onto p81 phosphocellulose filters and the level of [32P] incorporation into 

Autocamtide was determined by liquid scintillation counting. 

NIH3T3 were starved and then treated with ionomycin 2 µM for 15 minutes as positive 

control; stably clones expressing KRasV12, were starved for 24 hours and treated with 

CaMKs inhibitor (KN93) 10 µM for 30 minutes and with Ras inhibitor (Lovastatin) 5 

µM for 24 hours. Stimulation of  CaMKII activity by ionomicin was evident in NIH3T3 

cells (Fig. 3.2). Stable RasV12 expression induced a comparable CaMKII activity. The 

specificity of stimulation was demonstrated by the inhibitory effect of both KN93 and 

lovastatin. This experiment demonstrates that KRasV12 is able to fully activate CaMKII.
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Fig. 3.2  |  RasV12 activates CaMKII.

NIH3T3 cells and NIH3T3 stably expressing KRasV12 were starved and treated with 2 
µM ionomycin, 10  µM KN93 and 5 µM lovastatin as indicated. CaMKII activity were 
evaluated by in vitro kinase activity assay. The reactions were performed as described in 
Materials and methods section. The results are presented as fold increase of incorporated 
cpm. Data are reported as the mean +/- standard deviation from duplicate experimental 
points.
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3.3  CaMKII is necessary for ERK phosphorylation by RasV12

A  cross-talk  between  the  Ca2+/CaMKII  and  ERK-1/2  pathways  was  previously 

demonstrated in epithelial cells (thyroid cells) and in mesenchimal cells (myotubes and 

fibroblasts)  stimulated by diverse factors (integrins and insulin) (Illario,  et  al.,  2003; 

Illario, et al., 2005; Illario, et al., 2009). In order to investigate the possible existence of a 

similar cross-talk when the MAPK pathway is triggered by oncogenic Ras, I tested the 

effects of CaMKII specific inhibitory peptide, AntCaNtide, on ERK-1/2 phosphorylation 

in NIH3T3 transiently transfected with K-RasV12. 

NIH3T3 cells were starved from serum,  pretreated with AntCaNtide and then stimulated 

by FCS. Pretreatment with AntCaNtide was performed at increasing concentration (1-2-

5 µM) for 30 minutes, and the levels of ERK-1/2 phosphorylation were evaluated by 

Western Blotting after additional 30 min of FCS stimulation.

As  it  shown  in  Fig.  3.3,  AntCaNtide  (ant)  treatment  reduced  FCS-induced  ERK 

phosphorylation  in  a  dose  dependent  manner.  In  parallel,  RasV12  expression  was 

induced by plasmid transfection in NIH3T3 cells,  and treated as above. Inhibition of 

ERK phosphorylation upon AntCaNtide treatment was evident. These data demonstrate 

that ERK-1/2 activation by FCS and oncogenic Ras, requires active CaMKII in NIH3T3 

and that the cross-talk between Ca2+/CaMKII and ERK-1/2 pathway may be considered a 

general  mechanism  as  it  is  present  in  diverse  cell  types  (thyroid  cells,  fibroblasts,  

myocites,  NIH3T3  cells)  stimulated  by  diverse  factors  (serum,  fibronectin,  insulin, 

RasV12).
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Fig. 3.3  |  CaMKII is necessary for ERK phosphorylation by RasV12

Serum starved NIH3T3 were pretreated with AntCaNtide at indicated concentration and then 
stimulated with FCS for 30 min (left). Alternatively, the cells were transiently transfected with a 
RasV12 expressing plasmid and the treated with AntCaNtide for 30 min. The amount of total 
ERK1/2  (ERK1/2)  and  phosphorylated  ERK1/2  (p-ERK1/2)  was  determined  by  Western 
Blotting.
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3.4  Raf-1 activation by RasV12 is CaMKII mediated

It has previously been demonstrated that Raf-1 activation by fibronectin (FN) and insulin 

is Ras- and CaMKII- mediated. I ment now to investigate whether CaMKII is necessary 

for Raf-1 activation by oncogenic Ras. Because most of the studies on Raf-1 activation 

mechanisms have been performed in COS-7 cells, all experiments have been performed 

in this cell line. I first evaluated the ability of oncogenic Ras and Src to activate CaMKII 

in  COS-7  cells.  The  cells  were  transiently  transfected  with  expression  vectors  for 

RasV12 and SrcY527. CaMKII activity was determined by  in vitro activity assay of 

immunoprecipitated CaMKII, as described in material and methods. Oncogenic Ras and 

Src  both  activate  CaMKII,  with  similar  intensity  (Fig.  3.4A).  Ionomycin  2  µM and 

KN93 10 µM treatments, were used as positive and negative controls. 

In the literature it has been reported that oncogenic Ras and oncogenic Src cooperate for 

serine and tyrosine phosphoryations of Raf-1 and mediate its full activation (Mason, et 

al., 1999). I determined whether activated Ras and Src stimulated Raf-1 activation in a 

CaMKII dependent manner (Fig. 3.4B).  COS-7 cells were transiently transfected with 

expression  vectors  for  RasV12,  SrcY527  and  CaMKII  dominant  negative  mutant 

(CaMKIIdn). CaMKIIdn is mutated in K42M that leads to a catalytically inactive kinase 

that competes with the wild-type kinase for auto-activation and with substrate.  Raf-1 

activation was determined by immunoprecipation of Raf-1 and in vitro kinase assay. A 

modest Raf-1 activation was induced by SrcY527 alone, while RasV12 alone was more 

efficient.  Maximal Raf-1 activation was achieved by oncogenic cooperation. CaMKII 

inhibition by CaMKIIdn reduced of  about  50% Raf-1 activation by oncogenes,  both 

RasV12 alone and RasV12 plus SrcY527. 

These data confirmed that both RasV12 and SrcY527 activate Raf-1 and cooperate to the 

maximal  stimulation.  Inhibition  experiments  demonstrated  that  Raf-1  activation  is 

CaMKII dependent.
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Fig. 3.4  |  Raf-1 activation by RasV12 is CaMKII mediated.

A) CaMKII activity  assay.  COS-7 cells  were transiently  transfected  with  SrcY527 5 µg or 
RasV12 2 µg for 48 hours and starved from the serum for 24 hours. CaMKII activity was 
determined  by  kinase  activity  assay,  as  described  in  Material  and  methods  section. 
Ionomycin  2 µM 10 minutes  and KN93 10 µM 30 minutes,  were used as  positive  and 
negative control. 

B) Raf-1 activity assay.  RasV12 2 µg, SrcY527 5 µg and CaMKIIdn 5 µg were transiently 
expressed  for  48  hours  in  COS-7  cells,  as  indicated.  Raf-1  activity  was  measured  as 
described in Material and methods section. The results are presented as fold increase of 
incorporated  cpm.  Data  are  reported  as  the  mean  +/-  standard  deviation  from duplicate 
experimental point. All differences were significant with the only exception of Src vs. Src + 
CaMKIIdn.

30



3.5  Phosphorylation of Raf-1 at Ser 338 by FCS and FN is CaMKII mediated

It was previously proposed that RasV12 induces S338 Raf-1 phosphorylation by PAKs 

protein  in a Rac/Cdc42/PI3K-regulated manner. A  careful study demonstrated that the 

PI3K inhibitors do not suppress Ser338 phosphorylation EGF-mediated at concentrations 

that block PI3K activity (10 µM). The authors conclusion was that the role of PI3K and 

Pak3 in mediating Ser338 phosphorylation by Ras was not physiological and lacked of 

direct  evidences.  In  conclusion,  the kinase that  phosphorylates Raf-1 on Ser338 and 

participates to ERK activation by growth factors or by oncogenic Ras remained to be 

indentified (Chiloeches, et al., 2001).

Seven CaMKII consensus sequence (R/KXXS/T) are present along Raf-1 aminoacidic 

sequence and one of these contains S338 (Fig. 3.5).

According  to  previous  experiments  involving  PAK,  I  determined  whether 

phosphorylation of Raf-1 at S338 was CaMKII mediated. To this aim, starved TAD-2 

cells  were  stimulated  by  serum  (FCS)  or  fibronectin  (FN)  for  30  minutes  upon 

pretreatment with CaMKII inhibitors  (KN93 or AntCaNtide)  5-10 µM or with PI3K 

inhibitors  (Ly-294002)  10  µM.  Raf-1  phosphorylation  at  S338  was  visualized  by 

immunoprecipitation of the kinase and Western Blotting. Both FCS and FN stimulated 

S338 phosphorylation respect  to  basal  condition.  The  inhibition  of  CaMKII  reduced 

S338 phosphorylation by FCS and FN, in a dose dependent manner. Conversely, PI3K 

inhibition was ineffective on S338 phosphorylation (Fig. 3.6A-B). 

These data demonstrated that Raf-1 phosphorylation at S338 by FCS or FN is CaMKII 

dependent and not PI3K/PAK dependent.
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Fig. 3.5  |  Raf-1 aminoacidic sequence and canonical consensus sequence for
                 CaMKII.                                                   

The canonical consensus sequence for CaMKII along Raf-1 aminoacidic sequence are indicated 
in bold font. The canonical consensus sequence for CaMKII that contain S338 is indicated in 
red.
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                      Raf-1 aa sequence 
 
1 MEHIQGAWKT ISNGFGFKDA VFDGSSCISP TIVQQFGYQR RASSSDDGKLTD PSKTSNTIRV 
61  FLPNKQRTVV NVRNGMSLHD CLMKALKVRG LQPECCAVFR LLHEHKGKKA RLDWNTDAAS 
121  LIGEELQVDF LDHVPLTTHN FARKTFLKLA FCDICQKFLL NGFRCQTCGY KFHEHCSTKV 
181  PTMCVDWSNI RQLLLFPNST IGDSGVPALP SLTMRRMRES VSRMPVSSQH RYSTPHAFTF 
241  NTSSPSSEGS LSQRQRSTSSST PNVHMVSTTTTTTL PVDSRMIEDA IRSHSESASP SALSSSPNNL 
301  SPTGWSQPKT PVPAQRERAP VSGTQEKNKI RPRGQRDSSY YWEIEASEVM LSTRIGSGSF 
361  GTVYKGKWHG DVAVKILKVV DPTPEQFQAF RNEVAVLRKT RHVNILLFMG YMTKDNLAIV 
421  TQWCEGSSLY KHLHVQETKF QMFQLIDIAR QTAQGMDYLH AKNIIHRDMK SNNIFLHEGL 
481  TVKIGDFGLA TVKSRWSSSGSSSQ QVEQPTGSVL WMAPEVIRMQ DNNPFSFQSD VYSYGIVLYE 
541  LMTGELPYSH INNRDQIIFM VGRGYASPDL SKLYKNCPKA MKRLVADCVK KVKEERPLFP 
601 QILSSIELLQ HSLPKINRSA SSSEPSLHRAAH TEDINACTLT TSPRLPVF 

Canonical consensus sequence for CaMKII is R/KXXS/T: 



                            A

    
                      B

Fig. 3.6  |  Phosphorylation of Raf-1 at Ser 338 by FCS and FN is CaMKII
                 mediated.

A) TAD-2 cells were starved for 24 hours, stimulated with FCS, upon treatment with CaMKII 
inhibitors, KN93 or  AntCaNtide 5  µM. Raf-1 was immunoprecipitated from the cells and 
pS338 and total Raf-1 analyzed by Western Blotting using specific antibodies. 

B) TAD-2 cells were starved for 24 hours, stimulated with FN for 30 minutes, upon treatment 
with KN93 5 µM or 10 µM, or PI3K inhibitor (Ly-294002) 10 µM for 30 minutes. Raf-1 
was mmunoprecipitated  and pS338 and total  Raf-1 analyzed by Western Blotting  using 
specific antibodies. 
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     3.6  Phosphorylation of Raf-1 at S338 by RasV12 is CaMKII mediated

To determine  whether  CaMKII  mediated  RasV12-dependent  Raf-1  phosphorylation  at 

S338,  COS-7  cells  were  transiently  transfected  with  expression  vectors  for  RasV12, 

SrcY527 with or without CaMKIIdn.  Raf-1phosphorylation at  S338 was visualized by 

WB after  Raf-1  immunoprecipitation  in  serum starved  cells.  EGF  stimulation  for  10 

minutes  (used  as  a  positive  control  of  Raf-1  phosphorylation),  oncogenic  Ras  or  Src 

induced  S338  phosphorylation.  Coexpression  of  RasV12  and  SrcY527  produced  a 

maximal S338 phosphorylation, according to previous study (Mason, et al., 1999). 

Cotransfection  of  CaMKIIdn  together  with  RasV12  and  SrcY527  resulted  in  a  60% 

reduction  of  pS338  phosphorylation  induced  in  the  absence  of  CaMKIIdn.  Also  the 

expression of the costitutively activated CaMKII mutant (CaMKIIac), induced a striking 

S338 phosphorylation with respect to control cells.

These data (Fig. 3.7) demonstrated that Ras-dependent Raf-1 phosphorylation at S338 is 

CaMKII mediated and that CaMKII by itself is able to phosphorylate Raf-1 at the same 

aminoacidic residue.
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Fig. 3.7  |  Phosphorylation of Raf-1 at S338 by RasV12 is CaMKII mediated.

COS-7 cells were transiently transfected with RasV12 2 µg, SrcY527 5 µg, CaMKIIdn 5 µg, 
CaMKIIac  5  µg  for  48  hours  or  treated  with  EGF  10  ng/mL  for  10  minutes.  Raf-1  was 
immunoprecipitated from the cells and pS338 and total Raf-1 analyzed by Western Blotting 
using specific antibodies. 
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3.7  CaMKII directly interact with Raf-1 and phosphorylates Raf-1 at S338 in 
vitro

To determine whether CaMKII and Raf-1 directly interact in vitro and whether CaMKII 

phosphorylates Raf-1 at S338 in vitro, I performed a Raf-1 activity in vitro as described 

in Material and methods. Raf-1 was immunoprecipitated from unstimulated TAD-2 cells 

and incubated in vitro for 30 minutes with active recombinant CaMKII. Phosphorylated 

S338 was visualized by WB with specific antibody. In the absence of calcium (EGTA), 

CaMKII is inactive, while it  is  maximally activated in the presence of calcium. The 

experiment  clearly  demonstrated  that  S338  was  phosphorylated  in  the  presence  of 

calcium and in the absence of AntCaNtide (Fig. 3.8).  As expected, KN93 treatment was 

ineffective  on S338 phosphorylation,  because  this  drug interferes  competitively  with 

CaMKII/CaM binding and thus it is ineffective on the autonomous activity of the kinase 

(Vest, et al., 2007).
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Fig. 3.8  |  CaMKII directly interact with Raf-1 and phosphorylates Raf-1 at S338 in 
vitro.

Raf-1  was  immunoprecipitated  from  unstimulated  TAD-2  cells,  incubated  in  vitro  for  30 
minutes  with active  CaMKII in  presence  (Ca2+)  and absence  (EGTA) of  calcium and upon 
antCaNtide  5  µM and KN93 10 µM pre  treatment  for  30  minutes.  pS338 and total  Raf-1 
visualized by WB. 
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 4.  CONCLUSIONS AND DISCUSSION

CaMKII is  an ubiquitous  kinase  with a  broad range of  biological  cellular  functions, 

including regulation of gene expression, cell cycle and proliferation.

This kinase is one of the most abundant protein in the brain, where it is associated to 

neuronal functions such as memory. The role of CaMKII in the regulation of cell cycle 

mechanisms  and  in  cell  proliferation,  has  been  well  demonstrated.  In  mammalian 

fibroblast, CaMKII mediates G1 phase progression in a Ca2+/CaM dependent manner, 

mediating  Cyclin  D1  levels.  More  recent  works,  show  that  CaMKII  regulates  cell 

proliferation in different cell types, including epithelial cells. In the laboratory where I 

performed  my  thesis,  it  has  been  demonstrated  for  the  first  time  that  the  Ras/ERK 

pathway, activated upon several stimuli, is controlled by CaMKII through the regulation 

of  Raf-1  activity.  Illario  et  al.  showed that  Fibronectin (FN) binding to  integrins  in 

thyroid cells TAD-2, activates the Ras/Raf/MEK/ERK pathway, through the formation 

of FAK/Grb-2/Sos complex, and also generates an increase of Ca2+ intracellular level 

that leads to a Ca2+/CaMKII signal. Binding to FN induces Raf-1 and CaMKII to form a 

protein  complex,  indicating  that  intersection  between  Ras/Raf/Mek/Erk  and 

Ca2+/CaMKII  signalling  pathways  occurs  at  Raf-1  level.  Immunoprecipitation 

experiments demonstrated that Ca2+/CaMKII signal is necessary for ERK activation and 

interruption of the pathway using pharmacological inhibitors of CaMKII, arrested cell 

proliferation induced by FN in thyroid cells (Illario, et al., 2003; Illario, et al., 2005). 

The cross talk between CaMKII and MAPK pathway, has been demonstrated also in L6 

skeletal  myoblasts  and  human  fibroblasts,  following  insulin  stimulation.  Insulin-

activated CaMKII associates to Raf-1 and it is necessary for DNA synthesis and for the 

attenuation of AKT activation, demonstrating the role of CaMKII also in the selective 

control of insulin signalling (Illario, et al., 2009). A role for CaMKII was demonstrated 

not only in the physiology of certain cells, but also in cancer. In the study of Rusciano et 

al., I contributed to demonstrate that CaMKII is activated by the oncogenes RET/PTC-1 

and BRafV600E and that it is necessary for ERK activation by RET/PTC (Rusciano, et 

al.).
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These evidences support a pivotal role for CaMKII in the modulation of ERK activation 

in  a  number  of  models.  Personal  unpublished  data  are  in  favour  for  a  constitutive 

activation  of  CaMKII  in  tumors  with  different  oncogenes.  In  medullary  thyroid 

carcinoma harbouring RET mutations (an oncogene that recognizes Ras as a downstream 

substrate)  and in  colorectal  carcinoma cell  lines  harbouring  oncogenic  Ras,  CaMKII 

resulted constitutively activated, suggesting that Ras is a CaMKII activator. 

In the first part of my study, I provide direct evidences that CaMKII is activated by 

RasV12  in  NIH3T3  and  that  it  is  necessary  for  ERK  phosphorylation  in  the  Ras-

dependent signal. This, together with the other observations obtained in my laboratory, 

indicate that the role of CaMKII in the MAPK signalling is a general mechanism, hence 

it is important in the physio-pathology of many cell systems and might represent a target 

for therapy of proliferating diseases. 

Raf-1 activation is a complex process involving multiple converging signalings, protein-

protein  interactions  and  Raf-1  phosphorylation  at  multiple  sites.  Maximal  Raf-1 

activation is reached by phosphorylation at Y341 by Src and at S338 (Mason, et al., 

1999).  Although  some  studies  proposed  PAK  family  proteins  as  the  kinases 

phosphorylating  Raf-1  at  S338,  which  is  the  kinase  involved   was  not  definitively 

identified.  In  the  second  part  of  my  study,  I  investigated  the  mechanism by  which 

CaMKII modulates Raf-1. Seven CaMKII consensus sequence (R/KXXS/T) are present 

along Raf-1 aminoacidic sequence and one of these contains S338 (Fig. 3.5). Previous 

co-immunoprecipitation  experiments,  reported  that  CaMKII  associates  with  Raf-1  in 

vivo in L6 cells stimulated by insulin (Illario, et al., 2009). Using a phospho-specific 

antibody against the residue of Ser338, I demonstrated that CaMKII has a role in the 

phosphorylation  at  S338  of  Raf-1  in  thyroid  cells  by  diverse  factors  (FCS,  FN and 

RasV12).  Conversely, the inhibition of phosphatidylinositol  3-kinase, which activates 

PAK3 was ineffective, demonstrating that, in this cell system, PAK has no role in Raf-1 

phosphorylation at S338. The role for this kinase in Raf-1 activation was first sustained 

and then questioned. My data do not exclude that in other cell types and upon different 

stimuli, PAK may play the role that was first hypothesized. It is still possible that both 

PAK  and  CaMKII  compete  for  Raf-1  and  cooperate  to  its  activation.  Indeed,  in 
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inhibition  experiments  in  which  Raf-1  activation  was  determined,  a  residual  Raf-1 

stimulation was evident,  thus leaving the possibility  that  other kinases than CaMKII 

participate to the modulation of Raf-1 activation. 

My experiments  are  focused on few aspects  of  the  CaMKII/Raf-1 interaction,  while 

many other are left unsolved. Although constitutively active CaMKII alone was able to 

phosphorylate Raf-1 at S338, it was not able to activate neither Raf-1 nor ERK (not 

shown). This observation is in agreement with the large body of data that demonstrate 

the complex mechanism of events that leads to Raf-1 activation and that require multiple 

factors. We have no evidence whether CaMKII is involved in the Raf-1 translocation 

from  the  cytosol  to  the  plasma  membrane,  as  it  is  unknown  whether  CaMKII 

phosphorylates Raf-1 also in sites other than S338. 

Based upon my data, CaMKII can be considered as a new factor in the Ras signaling,  

involved in  the  regulation  of  the  important  effects  of  oncogenic  Ras  action  such as 

aberrant cell proliferation and tumorigenesis. This kinase, by modulating the activated 

Ras/ERK  signal  by  oncogenes,  might  have  a  role  in  several  cancers  harbouring 

oncogenic RasV12 and could represent a  new therapeutic target  for pharmacological 

intervention in these kind of tumors. 

In conclusion, I gained more insight into the molecular mechanism by which  CaMKII 

modulates Raf-1 activation and I demonstrated that CaMKII is the kinase or is one of the 

kinases that phosphorylate Raf-1 at S338. 
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5.  MATERIALS AND METHODS

     5.1  Cell culture, vectors transfection and fibronectin stimulation 

NIH3T3, TAD-2 and COS-7 cells were grown in Dulbecco Modified Eagle Medium 

(DMEM) (Life Technologies, Inc, Grand Island, NY) supplemented with 10% fetal calf 

serum  (Sigma,  St.  Louis,  MO),  2  mM  L-glutamine  and  100  units/ml  penicillin-

streptomycin (GIBCO) and the plates were incubated at 37°C in the presence of 5% 

CO2.

The cDNAs for oncogenic Ras, H-RasV12 and K-RasV12, were subcloned in expression 

vector  pBABE and pcDNA3 respectively;  activated Src,  SrcY527,  was subcloned in 

expression vector pEF; catalitically inactive form of CaMKIIα (K42M) was subcloned in 

pSP72;  CaMKIICA is a truncated sequence of CaMKII (from 1 to 290 aminoacids) that 

leads the enzyme constitutively active (both the vectors CaMKIIDN and CaMKIICA are 

a  generous  gift  from Dr.  A.R.Means,  Duke  University,  Durham,  NC).  NIH3T3 and 

COS-7 cells were transiently or stably transfected with Lipofectamine 2000 according to 

the manufacturer’s recommendations (Gibco Invitrogen). Briefly, cells were transfected 

at  80%  confluence  with  appropriate  μg  of  DNA  for  each  100mm  dish.  The 

Lipofectamine was used 2 μL for each μg of DNA. The mix DNA Lipofectamine was 

incubated 20 minutes at room temperature to allow the formation of the precipitates. 

Before adding the mixture, cells were washed with PBS and the growing medium was 

replaced with medium without antibiotics. For transiently transfection cells were lysate 

after  48  hours.  For  stably  transfection,  after  48  hours  from transfection,  cells  were 

splitted in appropriate dilutions (1:20, 1:40, 1:80, 1:160, 1:320); after 3 days, G418 or 

Puromicine were added in the wells (1 µg/mL per plate) and after 3 weeks of continuous 

selection,  single  clones  were  picked,  screened  for  expression  of  the  transgene,  and 

amplified individually in DMEM 10% FCS supplemented with the opportune antibiotic.

The TAD-2 cell line was obtained by simian virus 40 infection of human fetal thyroid 

cells and was donated by Dr. T. F. Davies, Mount Sinai Hospital (New York, NY). The 

plates  of  FN were prepared as  described:  the  wells  were  filled with PBS,  1% heat-

denatured BSA (SIGMA) or 100 g/mL of human FN (Collaborative Research, Bedford, 
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MA) and after overnight incubation at 4 °C, the plates were washed with PBS and the 

cells lysated as described in Vitale et al. (Vitale, et al., 1998).

     5.2  Western Blotting and immunoprecipitation procedures

Cells were washed in PBS buffer and lysed on ice for 30 min in RIPA buffer (50 mM 

Tris-HCl,  pH  7.4,150  mM  NaCl,  1%  NP-40,2  mM  EDTA,2  mM  PMSF,  5  ug/mL 

leupeptin, 5 ug/mL pepstatin).The lysate were quantified by Biorad DC protein assay. An 

equal amount of proteins from each sample was loaded with laemly buffer. Protein were 

resolved  by  SDS-PAGE  and  transferred  to  an  Immobilion  P  membrane  (Millipore 

Corporation,  Bedford,  MA).  Membranes  were  blocked by incubation  with PBS 0,2% 

tween , 5% nonfat dry milk for one hour at room temperature. The membranes were then

incubated overnight  with primary  antibodies  at  4°C (dilution 1:1000),  washed for  40 

minutes with PBS 0,2% tween and incubated for 1 hour with a horseradish peroxidase - 

conjugated secondary antibodies (dilution 1:2000). Finally, protein bands were detected 

by an enhanced chemiluminescence system (ECL, Amersham Bioscience).  Computer-

acquired images were quantified using ImageQuant software (Amersham Bio-sciences).

For the  immunoprecipitation procedures,  the  cells  were  lysed in  immunoprecipitation 

buffer (50mM Tris-HCl, pH 8.0, 5 mM EDTA, 150 mM NaCl, 1% Nonidet P-40, 0.5% 

sodium  deoxycolate,  0.1%  SDS,  10  mM  NaF,  5  mM  EGTA,  10  mM  sodium 

pyrophosphate, and 1 mM phenylmethylsulfonylfluoride). Primary polyclonal antibody 

against all CaMKII isoforms (SANTA CRUZ BIOTECHNOLOGY, Santa Cruz, CA) or 

primary  purified  mouse  antibody  against  c-Raf  (BD  Bioscences  Pharmingen)  was 

incubated with the lysate for 1 h at 4 °C. Successively, Protein G plus/protein A agarose 

beads (Oncogene Science, Boston, MA) were incubated with the immunocomplexes for 2 

h at 4 °C and used to immunoprecipitate corresponding proteins from 1 mg of total lysate 

after centrifugations.

Mouse monoclonal antibodies to p44/p42 MAPK, phospho-p44/p42 MAPK , Raf1 and 

CaMKII  were  from  Santa  Cruz  Biotechnology.  Polyclonal  anti-phospho-CaMKII 

antibody  (pT286-CaMKII)  was  from  Promega  (Madison,  WI).  Anti-phospho-Raf-1 

(Ser338) rat monoclonal was from UPSTATE.
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5.3  CaMKII activity and inhibitors

To  inhibit  CaMKII  activity  two  different  inhibitors  have  been  used:  KN93  and 

AntCaNtide. KN93 is a potent, selective and cell permeant pharmacological inhibitor of 

the CaMKs (IC50=370 nM). This drug is an isoquinolonesulfonamides and it  has the 

effect of a competitive ATP antagonist (Tokumitsu, et al., 1990). The CaMKII specific 

peptidic inhibitor Ant-CaNtide is derived from the endogenous CaMKII inhibitor protein 

CaMKIIN (Chang, et al., 1998) and was made cell permeable by Nterminal addition of an 

antennapedia-derived  sequence  (Ant-CaNtide:  RQIKIWFQNRRMKWKKR  PPKLG 

QIGRSKRVVIEDDRIDDVLK ). Catalitically inactive form of CaMKIIα (K42M) was 

subcloned  in  pSP72.  Calmodulin  inhibitors,  trifluoperazine  (TFP)  e  N-(6-123 

aminohexyl)-5-chloro-1-nafthalene-sulfonamide (W7), were from Sigma.

CaMKII  activity  assay  was  performed  as  described.  In  a  first  reaction  step 

immunoprecipitated CaMKII was incubated for 30 minutes at 30 °C with 5 mM CaCl2 

and 5μM CaM in 50 μl of reaction mixture consisting of 50 mM HEPES pH 7.5, 10 mM 

MgCl2, 0,5 mM dithiothreitol (DTT), 2μM CaM, 100 nM microcystin, 0,5mM cold ATP. 

A 10 μl aliquot from the first reaction was than incubated with 25mM EGTA, 0,5 mM 

Autocamtide (Hanson, et al., 1989) and 50  μM ATP (1500 cpm/pmol [γ-32P]ATP) in 

order to determine CaMKII autonomous activity on its peptide substrate Autocamtide. 

The reaction was carried out for 30 minutes at 30 °C and 20 μl aliquots of the reaction 

mixture  were  spotted  on  p81 phosphocellulose  filters  (Upstate  Biothechnology,  Lake 

placid, NY). The level of [32P] incorporation into Autocamtide was determined by liquid 

scintillation counting.  Purified CaM and Autocamtide were a kind gift  from Dr.  AR. 

Means, (Duke University,  Durham, NC). Ionomycin (Sigma) 500 ng/mL was used as 

positive control of CaMKII activation.
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5.4  Raf-1 activity

Raf-1 activity was evaluated by a Raf-1 immunoprecipitation-kinase cascade assay kit 

(Upstate  Biotechnology).  Briefly,  Raf-1  was  immunoprecipitated  from 1  mg of  cell 

extracts.  The  immunocomplexes  were  washed  and  incubated  in  the  presence  of 

magnesium/ATP and Mek-1 unactive (0,4 µg/assay) for 30 min at 30 °C in 50  μl of 

reaction  mixture  ADBI  (consisting  of  20  mM  MOPS  pH  7,2,  25  mM  β-

glycerophosphate, 5 mM EGTA, 1 mM sodium orthovanadate, 1 mM dithiothreitol) . An 

aliquot of the mixture was then incubated with ERK-2 unactive (1 µg/assay), 20 μg of 

myelin basic protein (MBP) in the presence of [γ-32P]ATP for 30 min at 30 °C and 20 μl 

aliquots of the reaction mixture were spotted on p81 phosphocellulose filters (Upstate 

Biothechnology,  Lake  placid,  NY).  The  level  of  [32P]  incorporation  into  MBP was 

determined by liquid scintillation counting.

5.5  Raf-1 activity in vitro

Raf-1 was immunoprecipitated from 1 mg of cells extract. The immunocomplexes and 

active CaMKII were incubated in the presence of EGTA or Calcium for 30 min at 30 °C 

in 50  μl of reaction mixture ADBI (consisting of 20 mM MOPS pH 7,2, 25 mM β-

glycerophosphate, 5 mM EGTA, 1 mM sodium orthovanadate, 1 mM dithiothreitol). The 

reaction was quenched with Laemmli buffer,  proteins were separated through a 10% 

polyacrylamide/tris  glycine  gel  and  phosphorylation  visualized  by  phosphospecific 

antibody. 

5.6  Statistical analysis

Results are presented as the mean ± SD. Statistical analysis was performed by using the t  

test. The level of significance was set at p less than 0.05.
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