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SUMMARY 

 

Ischemic heart disease, the main cause of mortality and morbidity in industrialized 

countries, is a metabolic phenomenon due to an inadequate oxygenation of heart 

tissue caused by the closing or narrowing of the coronary arteries. However, the 

ischemic condition and the subsequent tissue reperfusion, lead to several functional 

and metabolic changes that globally define the so-called “ischemia/reperfusion 

injury”. This injury leads to metabolic and functional alterations, in particular due to 

the production of the Oxygen Reactive Species (ROS) that are able to promote cell 

damage. Because iron is involved in the ROS production by the Haber-Weiss-Fenton 

reaction, the aim of this study was to elucidate the molecular mechanisms underlying 

the iron metabolism during the cardiac ischemia/reperfusion. To this aim it has been 

analyzed the activity and the expression of the main proteins involved in iron 

homeostasis, such as the Iron Regulatory Proteins, Transferrin Receptor 1 (TfR1), 

and ferritin in an in vivo model of cardiac ischemia/reperfusion. 

The results show that in rats hearts subjected to the ischemic/reperfusion injury, the 

activity of IRP1 was altered without changing its cellular content. The evaluation of 

the TfR1 levels showed an evident decrease of the expression of this protein during 

ischemia followed by a marked increase after the reperfusion phase, while regarding 

the ferritin expression it was observed a considerable decrease of the cytosolic levels 

of this protein only after the reperfusion phase. 

Moreover, using rat cardyomyoblasts (H9c2 cell line) in an in vitro model of hypoxia 

and reoxygenation, it was evaluated the cellular levels of the “Labile Iron Pool” 

(LIP), showing a “free iron” increase after the reoxygenation phase, in accordance 

with the observed changes of the TfR1 and ferritin expression.  
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In addition, it was observed an increased ROS production after the 

hypoxia/reoxygenation damage and, using the iron chelator SIH (Salicylaldehyde 

Isonicotinoyl Hydrazone), it was showed that a significant part of these ROS depend 

by the higher levels of the LIP, strongly suggesting that iron is involved in the 

development of the cardiac damage induced by ischemia/reperfusion conditions. 

Other aim of this study has been to evaluate the cytoprotective role of the 

cholesterol-lowering drug Simvastatin, during the ischemic/reperfusion injury, 

because of its anti-inflammatory and antioxidant effects (“pleiotropic effects”). 

Simvastatin, at concentration of 0,01µM, reduced the reactive nitrogen species  

levels and ROS productions in rat cardyomyoblasts (H9c2 cell line) subjected to 

hypoxia/reoxygenation conditions and also was able to reduce the cellular levels of 

the “Labile Iron Pool”, justifying the reduced production of the ROS and the 

resulting increased cell viability, observed after the drug treatment.  

Moreover, Simvastatin increased the ferritin levels, in particular during hypoxia 

conditions, thus explaining the LIP reduction after treatment with this drug. 

In conclusion, these results not only clarify the crucial role that iron plays in the 

progression of ischemic damage, but also show that proteins regulating the 

homeostasis of this metal, such as ferritin, may be a target of the Simvastatin, which 

could be used for the prevention of oxidative damage induced by cardiac ischemic 

conditions. Should this be the case, a new horizon as an antioxiodant opens for 

Simvastatin. 
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1. INTRODUCTION 

 

1.1 Anatomy of the Heart 

The heart is a myogenic muscular organ that is responsible for pumping blood

throughout the blood vessels by repeated, rhythmic contractions. The heart is 

composed of cardiac muscle, which is an involuntary striated muscle tissue found 

only in this organ, and connective tissue. The average human heart, beating at 72 

beats per minute, will beat approximately three billion times [Hamacher-Brady et al., 

2006] during an average 66 year lifespan, and weighs approximately 250 to 300 

grams in females and 300 to 350 grams in males. 

 

 

Figure 1. Human heart, anterior view. 
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The mammalian heart (figure 1) is derived from embryonic mesoderm germ-layer 

cells that differentiate after gastrulation into mesothelium, endothelium, and 

myocardium. Mesothelial pericardium forms the outer lining of the heart. The inner 

lining of the heart, lymphatic and blood vessels, develop from endothelium. Heart 

muscle is termed myocardium. In the human body, the heart is usually located in the 

mediastinum, situated in the middle of the thoracic cavity (figure 2), with the largest 

part of the heart slightly offset to the left, underneath the sternum. The heart is 

usually felt to be on the left side because the left heart (left ventricle) is stronger (it 

pumps to all body parts). The left lung is smaller than the right lung because the heart 

occupies more of the left hemithorax. The heart is fed by the coronary circulation and 

is enclosed by a sac known as the pericardium; it is also surrounded by the lungs. 

The pericardium comprises two parts: the fibrous pericardium, made of dense fibrous 

connective tissue, and a double membrane structure (parietal and visceral 

pericardium) containing a serous fluid to reduce friction during heart contractions. 

 

 

Figure 2. Position of the heart. 
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The outer wall of the human heart is composed of three layers. The outer layer is 

called the epicardium, or visceral pericardium since it is also the inner wall of the 

pericardium. The middle layer is called the myocardium and is composed of muscle 

which contracts. The inner layer is called the endocardium and is in contact with the 

blood that the heart pumps. Also, it merges with the inner lining (endothelium) of 

blood vessels and covers heart valves. The human heart is composed of four 

chambers, two superior atria and two inferior ventricles. The atria are the receiving 

chambers and the ventricles are the discharging chambers. The right ventricle 

discharges into the lungs to oxygenate the blood. The left ventricle discharges its 

blood toward the rest of the body via the aorta. The pathway of blood through the 

human heart consists of a pulmonary circuit and a systemic circuit. Blood flows 

through the heart in one direction, from the atria to the ventricles, and out of the great 

arteries, or the aorta for example. This is done by four valves (figure 3) which are the 

tricuspid valve, the mitral valve, the aortic valve, and the pulmonary valve. 

 

 

Figure 3. The valves of the heart viewed from above.  
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1.2 Heart functioning 

In mammals, the function of the right side of the heart is to collect de-oxygenated 

blood, in the right atrium, from the body (via superior and inferior vena cavae) and 

pump it, through the tricuspid valve, via the right ventricle, into the lungs 

(pulmonary circulation) so that carbon dioxide can be dropped off and oxygen picked 

up (gas exchange). This happens through the passive process of diffusion. The left 

side, instead, collects oxygenated blood from the lungs into the left atrium. From the 

left atrium the blood moves to the left ventricle, through the bicuspid valve, which 

pumps it out to the body, via the aorta. In detail, starting in the right atrium, the blood 

flows through the tricuspid valve to the right ventricle. Here, it is pumped out the 

pulmonary semilunar valve and travels through the pulmonary artery to the lungs. 

From there, oxygenated blood flows back through the pulmonary vein to the left 

atrium. It then travels through the mitral valve to the left ventricle, from where it is 

pumped through the aortic semilunar valve to the aorta. The aorta forks and the blood 

is divided between major arteries which supply the upper and lower body. The blood 

travels in the arteries to the smaller arterioles and then, finally, to the tiny capillaries 

which feed each cell. The deoxygenated blood then travels to the venules, which 

coalesce into veins, then to the inferior and superior venae cavae and finally back to 

the right atrium where the process began (figure 4).  

The heart is effectively a syncytium, a meshwork of cardiac muscle cells 

interconnected by contiguous cytoplasmic bridges. This relates to electrical 

stimulation of one cell spreading to neighboring cells. Some cardiac cells are self-

excitable, contracting without any signal from the nervous system. Each of these 

cells have their own intrinsic contraction rhythm. 
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Figure 4. Illustration of normal blood flow through the heart. 

 

A region of the human heart called the sinoatrial node, or pacemaker, sets the rate 

and timing at which all cardiac muscle cells contract. The SA node generates 

electrical impulses, much like those produced by nerve cells. Because cardiac muscle 

cells are electrically coupled by inter-calated disks between adjacent cells, impulses 

from the SA node spread rapidly through the walls of the artria, causing both artria to 

contract in unison. The impulses also pass to another region of specialized cardiac 

muscle tissue, a relay point called the atrioventricular node, located in the wall 

between the right atrium and the right ventricle. Here, the impulses are delayed for 

about 0.1s before spreading to the walls of the ventricle. The delay ensures that the 

artria empty completely before the ventricles contract. Specialized muscle fibers 

called Purkinje fibers then conduct the signals to the apex of the heart along and 

throughout the ventricular walls. The Purkinje fibres form conducting pathways 

called bundle branches (figure 5). 



                                                                                                     

 

Figure 5. The conduction system of the heart

 

This entire cycle, a single heart beat, lasts about 0.8 seconds. The impulses generated 

during the heart cycle produce electrical currents, which are conducted through body 

fluids to the skin, where they can be detected by electrodes and recorded as an 

electrocardiogram (ECG or EKG). 

The events related to the flow or 

one heartbeat to the beginning of the next can be referred to a 

et al., Human Anatomy, 6

 

1.3 Cardiac muscle t

Cardiac muscle cells

10–20 µm in diameter and 50

(figure 6) has a single, centrally placed nucleus, although a few may have two or 

more. As the name implies, cardiac 

As the skeletal muscle fibers, each cardiac muscle cell contains organized myofibrils, and the 

presence of many aligned sarcomeres gives it striations.
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This entire cycle, a single heart beat, lasts about 0.8 seconds. The impulses generated 

during the heart cycle produce electrical currents, which are conducted through body 

fluids to the skin, where they can be detected by electrodes and recorded as an 

that occurs from the beginning of 

to the beginning of the next can be referred to a cardiac cycle [Martini 

are relatively small, averaging 

100 µm in length. A typical cardiac muscle cell 

) has a single, centrally placed nucleus, although a few may have two or 

muscle tissue is found only in the heart. 

As the skeletal muscle fibers, each cardiac muscle cell contains organized myofibrils, and the 
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Figure 6. Schematic structure of cardiac muscle cell. 

 

However, cardiac muscle cells are much smaller than skeletal muscle fibers, and 

significant structural and functional differences exist between the two types of 

cells. 

 

Structural Differences: 

• The T tubules in a cardiac muscle cell are short and broad, and there are no 

triads. The T tubules encircle the sarcomeres at the Z lines rather than at the 

zone of overlap. 

• The SR of a cardiac muscle cell lacks terminal cisternae, and its tubules contact 

the cell membrane as well as the T tubules. As in skeletal muscle fibers, the 

appearance of an action potential triggers calcium release from the SR and the 

contraction of sarcomeres; it also increases the permeability of the sarcolemma 

to extracellular calcium ions. 

• Cardiac muscle cells are almost totally dependent on aerobic metabolism to 

obtain the energy needed to continue contracting. The sarcoplasm of a cardiac 
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muscle cell thus contains large numbers of mitochondria and abundant reserves 

of myoglobin (to store oxygen). Energy reserves are maintained in the form of 

glycogen and lipid inclusions. 

• Each cardiac muscle cell contacts several others at specialized sites known 

as intercalated discs that plays a vital role in the function of cardiac muscle. At 

an intercalated disc, the cell membranes of two adjacent cardiac muscle cells are 

extensively intertwined and bound together by gap junctions and desmosomes. 

These connections help stabilize the relative positions of adjacent cells and 

maintain the three-dimensional structure of the tissue. The gap junctions allow 

ions and small molecules to move from one cell to another. This arrangement 

creates a direct electrical connection between the two muscle cells. An action 

potential can travel across an intercalated disc, moving quickly from one cardiac 

muscle cell to another.  

 

Functional Differences: 

• Cardiac muscle tissue contracts without neural stimulation. This property is 

called automaticity.  

• The timing of contractions is normally determined by specialized cardiac 

muscle cells called pacemaker cells. 

• Innervation by the nervous system can alter the pace established by the 

pacemaker cells and adjust the amount of tension produced during a contraction. 

• Cardiac muscle cell contractions last roughly 10 times longer than do those of 

skeletal muscle fibers. Myofibrils in the two interlocking muscle cells are firmly 

anchored to the membrane at the intercalated disc. Because their myofibrils are 

essentially locked together, the two muscle cells can "pull together" with 
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maximum efficiency. Because the cardiac muscle cells are mechanically, 

chemically, and electrically connected to one another, the entire tissue 

resembles a single, enormous muscle cell. For this reason, cardiac muscle has 

been called a functional syncytium. 

 

1.4 The coronary circulation 

The heart works continuously, and cardiac muscle cells require reliable supplies 

of oxygen and nutrients. The coronary circulation supplies blood to the muscle 

tissue of the heart. During maximum exertion, the demand for oxygen rises 

considerably. The blood flow to the myocardium may then increase to nine 

times that of resting levels. The coronary circulation includes an extensive 

network of coronary blood vessels. The left and right coronary arteries originate 

at the base of the ascending aorta, at the aortic sinuses. Blood pressure here is 

the highest in the systemic circuit. Each time the left ventricle contracts, it 

forces blood into the aorta. The arrival of additional blood at elevated pressures 

stretches the elastic walls of the aorta, and when the left ventricle relaxes, blood 

no longer flows into the aorta, pressure declines, and the walls of the aorta 

recoil. This recoil, called elastic rebound , pushes blood both forward, into the 

systemic circuit, and backward, through the aortic sinus and then into the 

coronary arteries. Thus, the combination of elevated blood pressure and elastic 

rebound ensures a continuous flow of blood to meet the demands of active 

cardiac muscle tissue.  

The right coronary artery , which follows the coronary sulcus around the heart, 

supplies blood to the right atrium, portions of both ventricles, and portions of 
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the conducting system of the heart, including the sinoatrial (SA) and 

atrioventricular (AV) nodes . The cells of these nodes are essential to 

establishing the normal heart rate. Inferior to the right atrium, the right coronary 

artery generally gives rise to one or more marginal arteries , which extend 

across the surface of the right ventricle. 

The left coronary artery supplies blood to the left ventricle, left atrium, and 

interventricular septum. As it reaches the anterior surface of the heart, it gives 

rise to a circumflex branch and an anterior interventricular branch. 

The circumflex artery curves to the left around the coronary sulcus, eventually 

meeting and fusing with small branches of the right coronary artery. The much 

larger anterior interventricular artery, or left anterior descending artery, swings 

around the pulmonary trunk and runs along the surface within the anterior 

interventricular sulcus. The anterior interventricular artery supplies small 

tributaries continuous with those of the posterior interventricular artery.   Such 

interconnections between arteries are called arterial anastomoses. 

Because the arteries (figure 7) are interconnected in this way, the blood supply 

to the cardiac muscle remains relatively constant despite pressure fluctuations in 

the left and right coronary arteries as the heart beats. 
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Figure 7. Coronary arteries. (a) anterior view; (b) posterior view. 

 

1.5 The Coronary Artery Disease (CAD) 

The Coronary Artery Disease (CAD) is the most common type of heart disease 

[Kumar, Abbas, Fausto: Robbins and Cotran Pathologic Basis of Disease, 7th 

Ed.]. It's the principal cause of death in the developed Countries. Only in the 

United States, each year, more than half a million Americans die from CAD. 

The term coronary artery disease refers to areas of partial or complete 

blockage of coronary circulation. Such reduced circulatory supply, known as 

coronary ischemia, generally results from partial or complete blockage of the 

coronary arteries that supply the heart muscle with oxygen-rich blood. The 

usual cause is the formation of a fatty deposit, or plaque , in the wall of a 

coronary vessel. The plaque (that is made up of fat, cholesterol, calcium, and 

other substances found in the blood) or an associated thrombus (clot), then 
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narrows the passageway and reduces blood flow to the heart muscle. Blood clots 

can partially or completely block blood flow. When the coronary arteries are 

narrowed or blocked, oxygen-rich blood can't reach the heart muscle, 

causing angina or a heart attack (figure 8). 

 

Figure 8. A is an overview of a heart and coronary artery showing damage 
(dead heart muscle) caused by a heart attack. B is a cross-section of the 
coronary artery with plaque buildup and a blood clot. 

 

1.6 Risk factors 

Many factors raise the risk of developing CAD. [Bhalli et al., 2011; Poulter, 

2003] 

• Blood cholesterol levels. The ATP III study indicates as high a level of 

cholesterol > 240 mg/dL and such as high a level LDL cholesterol > 160 

mg/dL. 

• High blood pressure. Blood pressure is considered high if it stays at or above 

140/90 mmHg over a period of time. 
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• Smoking. This can damage and tighten blood vessels, raise cholesterol 

levels, and raise blood pressure. 

• Insulin resistance. This condition occurs when the body can't use its own 

insulin properly. Insulin is a hormone that helps move blood sugar into cells 

where it's used. 

• Diabetes. 

• Overweight or obesity. 

• Metabolic syndrome. Metabolic syndrome is the name for a group of risk 

factors linked to overweight and obesity that raise your chance for heart 

disease and other health problems, such as diabetes and stroke. 

• Lack of physical activity. Lack of activity can worsen other risk factors for 

CAD. 

• Genetic or lifestyle factors cause plaque to build in the arteries as the age. 

o In men, the risk for CAD increases after age 45. 

o In women, the risk for CAD risk increases after age 55. 

• Family history of early heart disease. The risk increases if the father or a 

brother was diagnosed with CAD before 55 years of age, or if the mother or a 

sister was diagnosed with CAD before 65 years of age. 

• High levels of a protein called C-reactive protein (CRP) in the blood may 

raise the risk for CAD and heart attack. High levels of CRP are proof of 

inflammation in the body. Inflammation is the body's response to injury or 

infection. Damage to the arteries inner walls seems to trigger inflammation 

and help plaque grow. [Abd et al., 2011] 
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1.7 Biochemical dysfunction in heart exposed to 
ischemia and reperfusion injury 

Heart tissue is remarkably sensitive to oxygen deprivation. Although heart cells, 

like those of most tissues, rapidly adapt to anoxic conditions, the ischemia and 

subsequent reperfusion lead to extensive tissue death during cardiac infarction 

[Solaini and Harris, 2005].  

Two distinct types of damage occur to the heart: ischemic injury and 

reperfusion injury. The first results from the initial loss of blood flow and the 

second upon the restoration of oxygenated blood flow.  

The heart can tolerate a brief exposure to ischemia as the inherent mechanisms 

to preserve energy levels prevent injury. These include switching the 

metabolism to anaerobic glycolysis and fatty acid utilization, increasing glucose 

uptake, and decreasing contractility.  

If ischemia persists, the myocardium can develop a severe ATP deficit, which 

results in irreversible injury and culminates in cell death (ischemia/reperfusion 

injury) [Budas et al., 2007]. 

 

1.8 Metabolic changes in ischemia and repefusion 

Cardiac muscle, under normal conditions, obtains virtually all its energy from 

oxidative metabolism, showed in figure 9A.  
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Figure 9 A. Schematic aerobic metabolism. 
 

During hypoxia or ischaemia, the supply of O2 to the respiratory chain fails. 

Non-esterified fatty acid levels rise, probably as a result of lipid breakdown 

rather than the concomitant cessation of fatty acid oxidation. The tricarboxylic 

acid cycle is blocked, and no energy is available from oxidative 

phosphorylation. This leads to an accumulation of cytoplasmic NADH, with the 

NADH/NAD+ ratio increasing several fold. In anoxia, ATP levels can still be 

maintained by glycolysis, but in ischaemia this is accompanied by an 

accumulation of lactate and a decrease in cytoplasmic pH (5.5–6 after 30 min of 

ischaemia), and glycolysis is also inhibited. The energy charge of the 

cardiomyocyte during ischaemia has been well investigated. Typically, creatine 

phosphate concentration falls precipitately (to less than 10% after 10 min of 

ischaemia), reflecting a sharp increase in free [ADP]. ATP levels fall rather 

more slowly, with 40–50% of [ATP] remaining after 30 min of ischemia (figure 

9B). 
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Figure 9 B. Schematic microaerobic metabolism (hypoxia). 
 

During ischemia, the levels of total pyridine nucleotides seem to be roughly 

maintained, although there have been reports of significant loss (up to 30%) of 

total nucleotides from the cell. Their redox state, however, changes markedly, 

with [NADH] increasing sharply (as described above) [Ceconi et al., 2000]. The 

cytoplasmic [NADPH], in contrast, declines by approx. 30%, resulting in a 

significant decrease in the NADPH/NADP+ ratio. While at first this may appear 

surprising, the fall in [NADPH] could be due to the action of glutathione 

reductase, which is particularly active under conditions of oxidative stress. In 

addition, a contributory effect may come from the activation of aldose 

reductase, a member of the aldo-keto reductase family that utilizes NADPH to 

reduce carbonyl compounds, including glucose, in the metabolism of polyols. 

Inhibition of this enzyme promotes glycolysis and improves recovery from 

ischemia.  

The ionic content of the sarcoplasm also changes markedly in ischemia. Owing 
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to low [ATP], the sarcolemmal Na+/K+-ATPase and the sarcoplasmic reticulum 

Ca2+-ATPase become ineffective, and cytoplasmic [Na+] and [Ca2+] rise [Piper 

et al., 2004]. Prolonged lack of mitochondrial oxidation will lead to abolition of 

∆µH
+, and this leads to (i) a decreased activity of the mitochondrial Ca2+ uniport, 

with decreased uptake of Ca2+ into mitochondria, and (ii) the operation of the 

ATP synthase, in reverse, as an ATPase. This ATPase activity is thought to 

contribute significantly (35–50%) to ATP loss in ischemia.  

Over longer periods of ischemia, DNA and protein synthesis are suppressed 

[Casey et al., 2002], although some specific proteins e.g. HSP (heat-shock 

protein) 70, PKC (protein kinase C) ε, and iNOS (inducible nitric oxide 

synthase) may be induced [Damy et al., 2003; Ping et al., 2002]. 

On reperfusion, electron transfer and ATP synthesis restart, and the internal 

cytoplasmic pH is restored to 7. However, this leads in some way to a further 

deterioration of cell function. While ATP and creative phosphate levels recover 

to some extent, the myocytes undergo further shortening (hypercontracture) and 

membrane damage, followed by cell death [Piper et al., 2004]. Many 

explanations for this deterioration are linked to abnormal Ca2+ movements. 

[Ca2+]c rises further, as indicated by hypercontracture probably because of the 

reverse of the normal direction of the sarcolemmal Na+/Ca2+ exchanger. This 

increased cytoplasmic Ca2+, coupled with the restoration of mitochondrial 

membrane potential, leads to the accumulation of mitochondrial Ca2+ via the 

electrophoretic uniport, which has highly deleterious effects on mitochondrial 

function [Solaini and Harris, 2005]. However it is widely accepted that in the 

ischemia/reperfusion injury the overproduction of ROS is the main source of 

cell damage. It might be expected that ischemia, caused by low partial pressure 
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of O2, would decrease ROS production, but this is paradoxically increased, with 

a further increase occurring on reperfusion. Cardiac ischemia, therefore, induces 

ROS production and subsequent reperfusion can result in toxic ROS 

overproduction that damages mitochondrial function and thus impaired recovery 

of physiological function and cell death [Misra et al., 2009]. 

 

1.9 The Reactive Oxygen Species (ROS) 

Oxidative stress induced by Reactive Oxygen Species (ROS) is considered to 

play an important role not only in the etiology of stroke, but also in the onset 

and development of cardiac damage following ischemia and reperfusion 

[Bordoni et al., 2005]. ROS activity in the vessel wall, for example, is thought 

to contribute to the formation of oxidized LDL, a major contributor to the 

pathogenesis of atherosclerosis and is also involved in vessel plaque rupture, 

initiating coronary thrombosis and occlusion [Giordano, 2005]. Cell damage, 

instead, can occur through mechanisms involving: 

• DNA alterations. ROS can contribute to mutagenesis of DNA by 

inducing strand breaks, purine oxidation, and inducing alterations in 

chromatin structure that may significantly affect gene expression; 

• covalent modification of protein (particularly on –SH groups);  

• lipid peroxidation, that damages membranes and profoundly affects   

membrane-associated proteins, including enzymes, receptors, and 

transporters,  altering cell membrane properties. 

These events may lead to the oxidative destruction of the cell. 
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1.10 The chemistry of ROS 

Free radicals can be formed in a molecule by gaining an additional electron, for 

example in the reduction of molecular oxygen (O2) to the superoxide anion 

radical (O2
•–): 

O2 + e– � O2
•– 

 

The superoxide (O2
•–) produced during the first reaction is a short-lived ROS 

(~2–4 µs) and readily diffusible. In the cellular environment, O2
•– may cause 

lipid peroxidation, thus weakening cell membrane. The most important free 

radicals in biological systems are derivatives of oxygen. The complete reduction 

of O2 by the univalent pathway results in the formation of superoxide, anion 

hydrogen peroxide (a relatively long-lived and stable form of ROS) and other 

products such as triplet O2 (3O2), singlet O2, hydroxyl radical (•OH), and 

hydrogen radical (H•), as shown below: 

 

SOD 

2O2
•– + 2H+ � H2O2 + 3O2 

Spontaneous 

2O2
•– + 2H+ � H2O2 + O2 

Metal catalyst 

2O2
•– + H2O2 + H+ � O2 + H2O + •OH 

2O2
•– + •OH + H+ � O2 + H2O 

 

Hydrogen peroxide is an oxidizing agent, but not especially reactive. It can 

diffuse through membranes and can therefore reach cellular components distant 
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from its site of synthesis. Its main significance lies in its being a source of 

hydroxyl radicals. In the absence of metal catalysts, superoxide and hydrogen 

peroxide are readily removed and are virtually harmless.  

The hydroxyl radical is an extremely reactive oxidizing radical that will react 

with most biomolecules at diffusion-controlled rates and is therefore the most 

harmful form of ROS [Misra et al., 2009]. 

 

1.11 ROS and antioxidant defense mechanisms 

In the heart, mitochondria are the principal source of ROS, as the respiratory 

chain deals with most of the electrons potentially capable of reducing O2.  

The redox components of the respiratory chain have also been shown to produce 

ROS. Complexes I, and III are impaired during ischemia/reperfusion and may 

be considered as a major site of ROS production during ischemia [Gao et al., 

2008].  

Cells are equipped with excellent antioxidant defense mechanisms to detoxify 

the harmful effects of ROS, i.e. superoxide (O2
•–), H2O2, and hydroxyl radical 

(•OH). The antioxidant defenses can be non-enzymatic (e.g. glutathione, 

vitamins C, A, E, and thioredoxin) or enzymatic (e.g. superoxide dismutase, 

catalase glutathione peroxidase, and glutathione reductase).  

In the mitochondrial matrix, most O2
•– is dismutated by manganese-superoxide 

dismutase (MnSOD) to H2O2, which readily diffuses through mitochondrial 

membranes. Some of the O2
•– goes to the cytoplasm and is converted into H2O2 

by itself or after interaction with copper superoxide dismutase (CuSOD). The 

resultant H2O2 is removed by catalase, glutathione peroxidase and 

peroxiredoxin. 
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Overall, oxidative damage will occur only in situations in which the defense 

mechanisms are deficient or the production of ROS exceeds the capability of the 

defense mechanisms to handle them or a combination of both, than a fine 

balance between oxygen free radicals and a variety of endogenous antioxidants 

is crucial for avoiding myocardial injury [Misra et al., 2009]. 

 

1.12 NO and Reactive Nitrogen Species (RNS) 

An important role in the ischemia/reperfusion injury is played by nitric oxide. 

NO, by virtue of its unpaired outer shell electron, is a reactive molecule. This 

molecule is an endogenous mediator of several important physiological 

processes, and it is very important in the heart tissue.  

NO, indeed, does react and interact with ROS, and this crosstalk can also have 

significant effects on cardiac function.  

NO can mediate the S-nitrosylation of proteins at specific cysteine residues. 

This process also occurs in the heart and has significant functional implications, 

especially with regard to calcium flux and excitation-contraction coupling.  

S-nitrosylation is facilitated by O2
•– when O2

•– is present at “physiologic” levels. 

When levels of O2
•– increase, however, it becomes inhibitory to normal S-

nitrosylation. Increased O2
•– levels also facilitate interaction of O2

•– with NO to 

form deleterious reactive molecules, including peroxynitrite (ONO2
–).  

Thus, at an optimal NO/O2
•– stoichiometry, the crosstalk between these two 

reactive species facilitates essential cellular processes, a relationship termed 

nitroso-redox balance. In the African American Heart Failure Trial, combined 

therapy with hydralazine, a vasodilator that inhibits generation of O2
•– and 

isosorbide dinitrate improved quality-of life scores and decreased mortality by 
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approximately 45% in African Americans with severe heart failure.  

A compelling argument has been made that the effectiveness of this therapy is 

due in part to restoration of nitroso-redox balance [Taylor et al., 2004]. 

 

1.13 NO synthases and NO synthesis 

Nitric oxide (NO) plays an important role in maintaining cardiovascular 

homeostasis through multiple biological actions [Tsutsui et al., 2009].  

NO is formed from its precursor L-arginine by a family of NO synthases 

(NOSs) with stoichiometric production of L-citrulline, as shown in the figure 

10.  

 

 

Figure 10. NO synthesis by Nitric Oxide Synthase (NOS). 
 

 
The NOS system consists of three distinct isoforms, including neuronal (nNOS 

or NOS-1), inducible (iNOS or NOS-2), and endothelial NOS (eNOS or NOS-3) 

[Shimokawa and Tsutsui, 2010]. The NOS enzymes contain a NADPH-

dependent cytochrome P-450 reductase motif at the C-terminus. The NOS C-

terminus shuttles electrons from NADPH to FAD, FMN and then to a heme-
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coordinated iron (Fe3+) within the NOS N-terminal oxygenase domain. While 

the activities of the C and N-terminals may be functionally independent, the 

conversion of L-arginine to NO requires both domains and homodimerization 

through a N-terminal interface, requiring heme and stabilized by BH4 

(tetrahydrobiopterin), L-arginine, and Zinc. The reaction catalyzed by the N-

terminus proceeds via a stable intermediate, and thus consists of at least two 

steps. The first step involves binding of oxygen (O2) to the heme moiety, and 

oxidation of a guanido N molecule of L-arginine to form NG-hydroxy-L-

arginine. A second O2 molecule is then combined with this intermediate leading 

to the production of NO and citrulline [Mungrue et al., 2002 ]. 

 

1.14 Role of NO and NOS system in Ischemia 

It was demonstrated that nNOS and eNOS are constitutively expressed mainly 

in the nervous system and the vascular endothelium, respectively, synthesizing a 

small and physiological amount of NO in a calcium-dependent manner both 

under basal conditions and upon stimulation, whereas iNOS is induced by 

several proinflammatory stimuli, producing  a greater  amount of NO  in  a  

calcium independent manner [Shimokawa and Tsutsui, 2010]. 

Several data show a decreased expression of eNOS during ischemia in contrast 

to an increased iNOS expression in cardiomyocytes in several heart disease, as 

ischemia, and in the development of heart failure [Di Napoli et al., 2001]. 

The high levels of NO producted by iNOS, indeed, can interact with O2
•–  to 

form peroxynitrite, a potent mediator of cell damage [Pacher et al., 2007]. 
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1.15 Cell death: necrosis and apoptosis 

Depending on the extent and duration of the ischemic loss, cardiomyocytes may 

die by necrosis or apoptosis [Vohra et al., 2005]. Necrosis and apoptosis are 

characterized by distinct biochemical, morphological and functional changes, 

shown in figure 11.  

 

 

Figure 11. Difference between Necrosis and Apoptosis. 

 

Necrosis is a rapid process that leads to destruction of subcellular and nuclear 

components. In particular, necrosis causes the loss of the cell membranes and 

nucleus integrity, with consequent release of their contents, up to cell lysis and 

nonspecific degradation of DNA and provokes an inflammatory response with 

cytokine release by macrophages. Morphologically nucleus and cytoplasm of 

necrotic cell are darkest and more wrinkled, and plasma and nuclear membranes 

are irregular. During necrosis the cell dimensions are significantly increased for 
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the presence in the cytoplasm of large vacuoles, some of which are swollen 

mitochondria. In contrast, apoptosis (also termed programmed cell death) is a 

highly regulated, genetically determined mechanism that does not provoke an 

inflammatory response. Apoptosis plays a role in pathophysiological conditions 

but is also essential in normal tissue homeostasis, allowing the organ or tissue to 

rid itself of cells which are dysfunctional or no longer needed. Apoptotic cell 

death is characterized by cell shrinkage, membrane blebbing, and nuclear 

condensation and degradation. The cell is eventually broken into small 

membrane-enclosed pieces (apoptotic bodies), which in vivo are removed by 

macrophages, or taken up by neighboring cells. This prevents the release of 

cellular compounds and thus ensures that an inflammatory response is not 

provoked [Hamacher-Brady et al., 2006]. Apoptosis is mediated by two central 

pathways, the receptor-mediated (extrinsic) and the mitochondrial (intrinsic) 

pathway [Crow et al., 2004] both of which are depicted in figure 12.  

 

 

 
Figure 12. Schematic representation of extrinsic and intrinsic apoptotic 
pathways. 
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So-called caspases, a family of cysteine aspartate proteases, are the main 

effectors of, and allow for crosstalk between, both pathways [Stennicke and 

Salvesen, 2000]. Caspases are synthesized as inactive precursors and generally 

activated by proteolytic cleavage of the procaspase form to the catalytically 

active heterotetramer [Shi, 2002]. 

 

1.15.1 Receptor-mediated and mitochondrial death 
pathways 
 
The receptor-mediated (extrinsic) pathway is initiated by the binding of a death 

ligand (e.g., CD95/Fas ligand, TNF-a) to its cognate cell surface death receptor 

(e.g., CD95/Fas, TNF-a receptor) [Schmitz et al., 2000]. Consequently, death 

adapter molecules such as FADD (Fas-associated death domain) and TRADD 

(TNF receptor-associated death domain) form homotrimers which are recruited 

to the cytoplasmic tail of the death receptor through interactions between “death 

domains” present in both proteins. Subsequently, procaspase 8 is recruited to the 

complex, resulting in proximity-induced processing. Once activated, caspase 8 

initiates the apoptotic cascade via processing of downstream effector caspases 

such as caspase 3, as well as the proapoptotic Bcl-2 family member, Bid, 

leading to the death of the cell [Hamacher-Brady et al., 2006]. 

Under pathophysiological conditions (e.g., enhanced oxidative stress and/or 

calcium overload) mitochondria participate in the apoptotic pathway [Desagher 

and Martinou, 2000]. Death signals transmitted to the mitochondria lead to the 

release of pro-apoptotic proteins from the mitochondrial intermembrane space 

to the cytosol, through pathways which are still subject to investigation.  

The majority of studies focused on the release of cytochrome c, which normally 
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functions as part of the mitochondrial electron transport chain. Two main 

models have been proposed to describe the mechanism(s) of cytochrome c 

release to the cytosol. The first model describes a non-specific mode of release 

in which opening of the mitochondrial permeability transition pore (MPTP) 

leads to the swelling of mitochondria due to the osmotic influx of water into the 

protein- and metabolite-dense mitochondrial matrix. The highly convoluted 

inner mitochondrial membrane is able to expand while the outer mitochondrial 

membrane ruptures, releasing cytochrome c into the cytosol [Hamacher-Brady 

et al., 2006].  

The second model describes specific modes of release, where Bcl-2 family 

proteins form pores either directly via oligomerization, regulate the pore size of 

pre-existing pores, or indirectly by causing membrane instability which gives 

rise to lipidic pores. In the cytosol, cytochrome c binds to Apaf1 (apoptotic 

protease activating factor 1) and in the presence of dATP, procaspase 9 is 

recruited to the complex, now termed the apoptosome, leading to the activation 

of procaspase 9 [Acehan et al., 2002]. Activated caspase 9 can activate 

downstream effector caspases, and thus determine the cell to death. Cytochrome 

c-dependent activation of caspase 9 is supported by Smac/DIABLO which is 

likewise released from the mitochondrial intermembrane space and removes the 

anti-apoptotic activity of IAPs (inhibitor of apoptosis proteins) [Verhagen et al., 

2000]. In addition, mitochondria release endonuclease G and AIF (apoptosis-

inducing factor) which translocate to the nucleus and promote chromatin 

condensation and large-scale DNA fragmentation [Sharpe et al., 2004]. 
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1.16 Cell response to ischemic injury: HIF-1α 

In mammalian cells, many compensatory mechanisms occur in response to 

changes in oxygen tension. Until recently, the means by which cells sense 

alterations in oxygen tension remained relatively obscure.  

The first insight into an oxygen-sensing pathway in higher organisms came with 

the discovery of a family of oxygen-dependent enzymes responsible for the 

regulation of the hypoxia-inducible transcription factors (HIFs), that are 

activated by hypoxia. The HIF transcription factors are composed of two 

subunits: the hypoxia-regulated alpha subunit HIF-1α (or its homologs, HIF-2α 

and HIF-3α), and the oxygen insensitive HIF-1β subunit (also known as the 

aryl-hydrocarbon receptor nuclear translocator, or ARNT). Under normal 

oxygen conditions (normoxia), HIF-1α is constitutively expressed. However, 

this subunit is rapidly targeted for proteasome-mediated degradation through a 

protein–ubiquitin ligase complex containing the product of then von Hippel 

Lindau tumor suppressor protein (pVHL). Recently, it has been reported that 

degradation of HIF-1α under nomoxic conditions is triggered by post-

translational hydroxylation of conserved proline residues within a polypeptide 

region known as the oxygen-dependent degradation domain (ODD). The 

hydroxylated proline residues in this sequence are recognized by pVHL, leading 

to subsequent HIF-1α degradation via the ubiquitin ligase pathway (figure 12). 

This modification is inherently oxygen-dependent, because the oxygen atom of 

the hydroxyl group is derived from molecular oxygen. Moreover, this reaction 

requires cofactors such as vitamin C, 2-oxoglutarate, and iron. The requirement 

of this last cofactor suggests that the oxygen-sensing factor is iron-dependent. 

Thus, this critical regulatory event is carried out by a family of iron (II)-
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dependent dioxygenase prolyl hydroxylase enzymes that use O2 as a substrate to 

catalyze hydroxylation of the target proline residues. Under hypoxic conditions, 

degradation of HIF-1α is prevented, and thus HIF-1α is able to accumulate 

within the nucleus allowing it to bind with its partner HIF-1β. In addition to the 

ODD domain, the HIF-1α subunit isoforms contain two transactivation domains 

responsible for recruiting transcriptional coactivators essential for gene 

expression, the N-terminal transactivation domain (NTAD), which overlaps the 

ODD and the C-terminal transactivation domain (C-TAD), which is able to 

recruit coactivator complexes such as p300/CBP only under hypoxic conditions 

(figure 13).  

 

 

 

 
Figure 13. The scheme shows the HIF-1α activation during hypoxia and the 
degradation pathway in normoxic conditions. 
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The C-TAD activity is also regulated by an oxygen-dependent hydroxylation 

event; however, in this case, the targeted residue appears not to be a proline but 

rather a conserved asparagine residue. 

The heterodimeric complex thus formed, is able to recognize HIF-responsive 

elements (HREs) transactivating downstream target genes involved in the 

longer-term response to hypoxia. In particular is activated the transcription of 

erythropoietin (EPO), involved in erythropoiesis, and VEGF (vascular 

endothelial growth factor), implicated in angiogenesis/vasculogenesis, allowing 

an increase of oxygen delivery; on the other side, the HIF-1 pathway leads to 

transcription of IGF2 (insulin growth factor 2) and glucose transporter (GLUT) 

that promote adaptive prosurvival responses by metabolic adaptations and 

inhibition of apoptosis [Chi and Karliner, 2004]. 

 

1.17 Role and pleiotropic effects of statins  

As explained above, the major mediators of ischemic damage are represented by 

ROS, RSN and inflammatory mediators, such as pro-inflammatory cytokines, 

cell adhesion molecules and C-reactive protein. In the last years many studies 

were conducted on the preventive  effects of some drugs on the 

ischemia/reperfusion injury. Our attention was focused, in particular, on 

cardioprotective effects of statins. Several clinical trials, such as Scandinavian 

Simvastatin  Survival Study (4S), Long-term Interventation with Pravastatin in 

Ischemia Disease (LIPID), and Heart Protection Study (HPS), have 

demonstrated the beneficial effects of statin therapy for primary and secondary 

prevention of cardiovascular disease. 

The 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, or statins, are 
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principal therapeutic agents for the treatment of hypercholesterolemia. This 

drugs, indeed, inhibit 3-hydroxy-3-methylglutaryl-CoA(HMG-CoA) reductase, 

the enzyme that converts HMG-CoA in mevalonic acid, a cholesterol precursor. 

The inhibition of this enzyme by statins results in a dramatic reduction in 

circulating low density lipoprotein (LDL)-cholesterol. In addition, reduction of 

LDL-cholesterol leads to up-regulation of the LDL receptor and increased  LDL 

clearance. The lowering of serum cholesterol levels is therefore the primary 

mechanism underlying the therapeutic benefits of statin therapy in 

cardiovascular disease [Wang et al., 2008]. 

However, in relation to ischemia/reperfusion injury, more interesting are the 

cholesterol-independent effects of statins, also called “pleiotropic effects”. 

In detail, it was shown that statins can: 

• reduce oxidative stress, decreasing ROS production. In part this effect, 

induced by statins, is associated with a reduction of NAPDH oxidase 

activity, since NAPDH oxidase is an important source of ROS.  

Importantly, it was shown that simvastatin can reduce the levels of 

superoxide anion, one of the key molecules involved in oxidative stress 

damage [Adam and Laufs, 2008; Mathur et al., 2008]; 

• interfere with nitric oxide metabolism. During ischemia, the lower NO 

levels (< 100 nM) produced by the endothelial isoform of nitric oxide 

synthase (eNOS) exert a vasodilatatory effect, whereas the higher NO 

levels (> 1 µM) produced by the inducible isoform (iNOS) cause cell 

damage [Schulz et al., 2004] by free radical production, such as 

peroxinitrite. It has been  that statin administration during ischemia 

causes a decrease of iNOS expression, accompanied by a reduction of 
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the dangerous peroxinitrite, and an increase in eNOS expression, which 

is associated with an increase in blood flow and a decrease in infarct 

volume [Kirmizis and Chatzidimitriou, 2009]; 

• have an anti-inflammatory effect. Several studies have found that statins 

decrease the expression of inflammatory mediators such as C-reactive 

protein, IL-1, IL-6 and TNF-α. It has been also observed that statins 

reduce inflammatory mechanisms through a decrease in NFkB activation 

[Holschermann et al., 2006] and modulation of cytochine production.  

On this basis, further studies are needed to evaluate the potential role of this 

drugs in the treatment and/or prevention of ischemia/reperfusion damages. 

 

1.18 The iron-heart disease connection 

A possible connection between body iron stores and the risk of heart disease 

was first put forward as a theory in 1981 by Dr. Jerome Sullivan (1981) to 

explain the differences in Cardiac Heart Disease (CHD) incidence and mortality 

between men and women. According to this theory, the lower iron stores of 

females protect them for developing CHD during the premenopausal years. This 

protection is diminished once the menopause sets in and body iron stores begin 

to rise. In 1992, Finnish investigators from the Kupio Ischemic Heart Disease 

Risk Factor (KIHD) Study presented some intriguing data indicating that in men 

with an elevated, but still apparently normal, serum ferritin (SF>200 µg/L) were 

at a two-fold risk of developing a myocardial infarction. During the last years, 

the question of the importance of iron stores in the development of CHD has 

been hotly debated and still remains a topic of investigation [Wood 2004]. 
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1.19 Iron toxicity  

Iron is an essential nutrient playing a critical role in the body in terms of oxygen 

transport via hemoglobin and myoglobin, electron transport via iron-containing 

cytochromes, thus it is involved in cellular respiration; and it is implicated in 

DNA synthesis and other various critical enzymatic reactions where iron is a 

constituent of metallo-enzymes (figure 14). 

 

 

 
Figure 14. Representation of the main processes in which iron is involved: 
DNA synthesis, oxygen transport and cellular respiration. 
  
 

On the other hand, potential harmful effects wrought by iron in the body have 

led to its consideration as the proverbial two-edged sword. The redox capability 

of iron is the basis of potential toxicity resulting from the Haber Weiss–Fenton 

sequence. 
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Haber–Weiss–Fenton reactions 

Fe2+ + O2 → Fe3+ + O2
•− 

2O2
•− + 2H+ → H2O2 + O2 

Fe2+ + H2O2 → OH• + OH− + Fe3+ 

that lead to the generation of hydroxyl radical (OH•) subsequent to the 

formation of superoxide (O2
•−) following the one-electron reduction of dioxygen 

(O2) by ferrous (Fe2+) iron. The hydroxyl radical can attack proteins, nucleic 

acids, and carbohydrates and initiate chain-propagating lipid peroxidation. 

Therefore, there is a biological imperative to balance the potential deleterious 

effects of free iron and the importance of maintaining a ready, but controlled, 

supply of this essential mineral nutrient. To achieve this needed equilibrium, 

various cellular mechanisms have evolved in organisms to control free iron 

concentrations in cells. One of the important biochemical modes of control 

relevant to this discussion is the iron-dependent translational control of ferritin 

protein production. Cellular ferritin is a cytosolic protein that acts to oxidize and 

sequester within its core excess cellular ferrous (Fe2+) iron.  

The relative concentration of ‘chelatable’ iron in the cytosol is sensed by an 

iron–sulfur cluster found in the cytosolic iron regulatory protein (IRP). High 

iron conditions promote the transition of the iron–sulfur cluster to a cubane 

Fe4–S4 configuration that reduces the affinity of IRP for a regulatory binding 

site on the ferritin mRNA allowing more ferritin to be synthesized, thereby 

lowering the potentially harmful cytosolic Fe2+ concentration. Outside of the 

cell, iron is maintained in the less chemically reactive oxidized state as ferric 

iron (Fe3+) by the plasma ferroxidase activity of ceruloplasmin, a copper-

dependent metalloenzyme. Ferric iron is carried in the extracellular space bound 
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to the protein transferrin. Interestingly, iron remains bound to transferrin until it 

is transported along with transferrin into cells by the cell surface transferrin 

receptor. Once safely compartmentalized inside endosomal vesicles, iron is then 

freed from transferrin and presumably reduced to Fe2+ prior to transport out of 

the endosome where it can enter the cytosolic iron pool and be available for free 

radical-generating Fenton reactions, or ‘deactivated’ by incorporation into iron-

containing proteins or sequestered within the ferritin core. When iron is bound 

to either ferritin or transferrin it is catalytically inactive and will not participate 

in Fenton chemistry reactions. The regulation of iron movement and reactivity 

is an elegantly evolved metabolic system that allows for the harnessing of the 

redox power of iron and the minimization of iron’s potentially harmful effects. 

In large part, the iron heart disease hypothesis rests on the supposition that high 

body iron burdens are a risk factor for increase oxidative stress, and oxidative 

stress is a risk factor for chronic disease, including heart disease. The root of 

this logical supposition appears to have merit given the capacity of free iron to 

act as an oxidant under physiological conditions. It is the presumed underlying 

supposition of the iron–heart disease hypothesis that there is some ‘leakage’ in 

the iron control system that allows iron-dependent damage that increases the 

susceptibility to or rate of pathological progression of coronary heart disease. 

This leakage-induced damage can be due presumably to some inefficiency of 

the iron control system [Wood, 2004]. 

 

1.20 Biochemistry and physiology of iron 

With minor exceptions, almost all cells employ iron as a cofactor for 

fundamental biochemical activities, such as oxygen transport, energy 
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metabolism and DNA synthesis. This is due to the flexible coordination 

chemistry and redox reactivity of iron, which allow it to associate with proteins 

and bind to oxygen, transfer electrons or mediate catalytic reactions. However, 

as previously described, iron is also potentially toxic because it catalyses the 

propagation of ROS and the generation of highly reactive radicals (such as the 

hydroxyl radical) through Fenton chemistry, inducing damage of cellular 

macromolecules, tissue injury and disease. Thus the acquisition, usage and 

detoxification of iron pose a considerable challenge to cells and organisms, 

which have evolved sophisticated mechanisms to satisfy their metabolic needs 

and concomitantly minimize the risk of toxicity [De Domenico et al., 2008; 

Hentze et al., 2010]. The vast majority of body iron (at least 2.1 g in humans) is 

distributed in the hemoglobin of red blood cells and developing erythroid cells 

and serves in oxygen transport. Significant amounts of iron are also present in 

macrophages (up to 600 mg) and in the myoglobin of muscles (~300 mg), 

whereas excess body iron (~1 g) is stored in the liver. Other tissues contain 

lower, but not negligible, quantities of iron. Mammals lose iron from sloughing 

of mucosal and skin cells or during bleeding, but do not possess any regulated 

mechanism for iron excretion from the body. Therefore balance is maintained 

by the tight control of dietary iron absorption in the duodenum [Wang and 

Pantopoulos, 2011]. 

 

1.21 Dietary iron absorption 

The uptake of nutritional iron involves reduction of Fe3+ in the intestinal lumen 

by ferric reductases such as Dcytb (duodenal cytochrome b) and the subsequent 

transport of Fe2+ across the apical membrane of enterocytes by DMT1 (divalent 
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metal transporter 1), a member of the SLC (solute carrier) group of membrane 

transport proteins, also known as SLC11A2 [Wallander et al., 2006]. 

Dietary haem can also be transported across the apical membrane by a yet 

unknown mechanism and subsequently metabolized in the enterocytes by HO-1 

(haem oxygenase 1) to liberate Fe2+ (figure 15).  

 

 

Figure 15. Mechanisms of dietary iron absorption.  
 
 

Directly internalized or haem-derived Fe2+ is processed by the enterocytes and 

eventually exported across the basolateral membrane into the bloodstream via 

the solute carrier and Fe2+ transporter ferroportin (also known as SLC11A3). 

The ferroportin-mediated efflux of Fe2+ is coupled by its re-oxidation to Fe3+, 

catalysed by the membrane-bound ferroxidase hephaestin that physically 

interacts with ferroportin, and possibly also by its plasma homologue 

ceruloplasmin. Exported iron is scavenged by transferrin (Tf), which maintains 
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Fe3+ in a redox-inert state and delivers it into tissues [Yeh et al., 2009]. The 

vertebrate transferrin is an 80-KDa glycoprotein with homologous N-terminal 

and C-terminal iron-binding domains that is synthesized in the liver, retina, 

testis and brain. At the neutral pH of blood, transferrin can bind two atoms of 

Fe3+, but only in the presence of an anion, usually carbonate, that bridges iron to 

transferring [De Domenico et al., 2008]. The Tf iron pool is replenished mostly 

by iron recycled from effete red blood cells and, to a lesser extent, by newly 

absorbed dietary iron.  

Senescent red blood cells are cleared by reticuloendothelial macrophages, which 

metabolize haemoglobin and haem, and release iron into the bloodstream. By 

analogy to intestinal enterocytes, macrophages export Fe2+ from their plasma 

membrane via ferroportin, in a process coupled by re-oxidation of Fe2+ to Fe3+ 

by ceruloplasmin and followed by the loading of Fe3+ to transferrin [Wang and 

Pantopoulos, 2011]. 

 

1.22 Regulation of systemic iron traffic: the role of 
hepcidin 
 
The ferroportin-mediated efflux of Fe2+ from enterocytes and macrophages into 

the plasma is critical for systemic iron homoeostasis. This process is negatively 

regulated by hepcidin, a liver-derived peptide hormone that binds to ferroportin 

and promotes its phosphorylation, internalization and lysosomal degradation 

[Nemeth and Ganz, 2009]. Hepcidin is primarily expressed in hepatocytes as a 

precursor pro-peptide. Pro-hepcidin undergoes proteolytic processing to yield a 

bioactive molecule of 25 amino acids that is secreted into the bloodstream. 

Recently it was found that hepcidin is also expressed in the heart and, in 
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contrast to what happens in the liver, cardiac hepcidin expression is 

significantly up-regulated in response to hypoxia [Merle et al., 2007]. 

Hepcidin accumulates following iron intake and under inflammatory conditions, 

resulting in decreased dietary-iron absorption and iron retention in 

macrophages. Conversely, hepcidin levels drop in iron deficiency or 

phlebotomy-induced anaemia, and this response promotes intestinal iron 

absorption and iron release from macrophages.  

The disruption of hepcidin is associated with systemic iron overload 

(haemochromatosis) [Lee and Beutler, 2009], whereas pathological elevation of 

hepcidin levels contributes to the development of the anaemia of chronic disease 

[Weiss and Goodnough, 2005]. The expression of hepcidin is controlled 

transcriptionally by several mechanisms. Basal hepcidin transcription requires 

C/EBPα (CCAAT/enhancerbinding protein α) [Courselaud et al., 2002].  

Iron-dependent induction of hepcidin requires BMP (bone morphogenetic 

protein) signalling. Iron triggers the expression of BMP6 in the liver [Kautz et 

al., 2008] and the intestine [Arndt et al., 2010], which is thought to be secreted 

into the plasma for binding to a BMP receptor on the surface of hepatocytes. 

BMP6 signalling leads to phosphorylation of SMAD1/5/8 and translocation of 

SMAD4 to the nucleus, where it promotes hepcidin transcription upon binding 

to proximal and distal sites on its promoter [Meynard et al., 2009; Andriopoulos 

et al., 2009]. It has also been proposed that hepcidin responds to increased Tf 

saturation [Gao et al., 2009], possibly by a mechanism requiring a cross-talk 

between BMP and MAP (mitogen-activated protein kinase) signalling [Ramey 

et al., 2009]. Further cofactors are required for iron-dependent activation of 

hepcidin, even though their exact mode of action is not yet clear. These include 
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the haemochromatosis protein HFE, TfR2 (Transferrin receptor 2) and the BMP 

co-receptor HJV (haemojuvelin). Mutations in these proteins impair hepcidin 

expression and lead to hereditary haemochromatosis [Lee and Beutler, 2009]. 

The pro-inflammatory cytokine IL-6 (interleukin-6) induces hepcidin 

transcription via STAT3 (signal transducer and activator of transcription 3) 

phosphorylation and translocation to the nucleus for binding to a proximal 

promoter element [Fleming, 2008] whereas, IL-1β activates hepcidin via the 

C/EBPα and BMP/SMAD pathways [Matak et al., 2009]. Hepcidin 

transcription, instead, is suppressed by hypoxia and oxidative stress. The role of 

HIFs (hypoxia-inducible factors) in the hypoxic pathway of hepcidin is 

debatable [Volke et al., 2009], whereas oxidative stress promotes histone 

deacetylation and decreases binding of C/EBPα and STAT3 to the hepcidin 

promoter [Miura et al., 2008]. There is no doubt that hormonal regulation of 

iron efflux from cells via the hepcidin/ferroportin axis is of paramount 

importance for systemic iron homoeostasis. However, it should be noted that the 

expression of ferroportin is also subjected to transcriptional [Ludwiczek et al., 

2003] and post-transcriptional control. 

 

1.23 Cellular iron up-take and the role of transferrin 
receptor-1 
 

The transferrin–(Fe3+) complex in plasma is transported into cells through one 

of two cell-surface transferring receptors. Transferrin receptor-1 (TfR1) is 

expressed on all cells, including cardiomyocytes, and is particularly enriched on 

precursors of the erythron because these cells show the highest demand for iron 

[Matak et al., 2009]. Transferrin receptor-2 (TfR2) is expressed primarily in the 
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liver and binds the transferrin–(Fe3+) complex at a much lower affinity than 

TfR1 does [De Domenico et al., 2008]. Transferrin receptor 1 is a membrane 

protein of ~90 KDa. It is a homodimer of two identical transmembrane subunits 

linked by disulphide bonds. Each subunit consists of a large extracellular 

C‑terminal domain, an hydrophobic membrane-spanning domain and a small 

cytoplasmic N‑terminal domain (figure 16). 

 
 
Figure 16. Crystal structure of the Transferrin Receptor. 
 

 

Human TfR1 bears one O-linked and three N-linked oligosaccharides; N-linked 

glycosylation is particularly important for proper folding and transport of the 

protein to the cell surface. The extracellular domain binds one molecule of 

transferrin per subunit, forming the multimeric Tf-TfR1 complex. TfR1 

knockout mice display embryonic lethality, showing the importance of this 

protein in iron metabolism [Aisen et al., 2004]. The Tf–TfR1 complex is the 

main process by which the uptake of transferrin bound iron from plasma to cells 

of peripheral tissues is mediated (figure 17). 
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Figure 17. Representation of cellular iron up-take. 

 

After binding to its receptor, the complex of (Fe3+)–(Tf–TfR1) is rapidly 

internalized by receptor-mediated endocytosis through clathrin-coated pits.   

Inside the cells, the internalized complex localizes to an endosome that is 

acidified by an ATP-dependent proton pump that lowers the luminal pH to ~5.5. 

Acidification produces a conformational change in both transferrin–(Fe3+) and 

TfR1 with the consequent release of iron. The endosomal (Fe3+) is converted 

into (Fe2+) by a ferrireductase that has been identified as STEAP3, and then the 

endosomal DMT1 transports the product of the STEAP3-catalysed reaction 

from the endosome to the cytosol.  

At acidic pH, apotransferrin remains bound to TfR1 and the complex is recycled 

to the cell surface. At the more neutral pH of plasma (pH 7,4), apotransferrin 

dissociates from TfR1 and is free to bind iron and initiate further rounds of 

receptor-mediated endocytosis [De Domenico, 2008]. 



                                                                                                     

 

1.24 Iron storage

Cells may eliminate excess intracellular iron by secretion of Fe

or by secretion of haem through the putative haem

leukaemia virus, subgroup C, receptor)

store and detoxify excess intracellular iron

conserved protein 

(figure 18). 

 

Figure 18. Cristal structure of ferritin.
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hydroxide phosphate. Iron may enter ferritin with the aid of PCBP1 [poly(rC)-

binding protein 1], which appears to function as an iron chaperone [Shi et al., 

2008]. The incorporation of iron into holo-ferritin also requires the ferroxidase 

activity of H-ferritin, whereas L-ferritin chains are associated with iron 

nucleation, mineralization and long-term iron storage. Since H-ferritin can bind 

to and release iron more easily than L-ferritin, it plays a key role in rapid 

detoxication of iron and intracellular iron transport. [You and Wang, 2005]. 

A secreted glycosylated isoform of predominantly L-ferritin circulates in the 

bloodstream. It contains very low amounts of iron, suggesting that it does not 

play an essential role in iron storage or traffic, but it is used as a clinical marker 

for body iron stores [Cohen et al., 2010]. 

Intracellular iron deposits may also be detected within haemosiderin, a structure 

consisting of ferritin degradation products and iron oxide clusters. Iron stored 

within ferritin is considered to be bioavailable and may be mobilized for 

metabolic purposes during its lysosomal turnover [Zhang et al., 2010] and, 

possibly, also following dynamic structural rearrangements of the ferritin 

subunits. The induction of ferroportin promotes mobilization and export of 

ferritin-derived iron, followed by mono-ubiquitination and degradation of 

apoferritin by the proteasome [De Domenico et al., 2006]. Thus ferritin can be 

degraded by two different pathways, the lysosomal and the proteasomal 

pathways, which appears to require prior depletion of its iron [De Domenico et 

al., 2009]. The iron-storage function of ferritin is crucial for health. Ferritin can 

act as a critical anti-oxidant by sequestering unbound or “free” iron, thereby 

limiting its participation in oxidative reactions. The conditional disruption of 

this gene, indeed, promotes damages due to oxidative stress [Darshan et al., 
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2009]. Recently an isoform of ferritin was found in the mitochondria [Levi and 

Arosio, 2004]. Mitochondrial ferritin derives from an unusual intronless gene 

and is synthesized in the cytosol as a precursor polypeptide that is targeted to 

mitochondria by an N-terminal leader sequence. The mature protein possesses 

ferroxidase activity and assembles into functional ferritin nanocages. 

Mitochondrial ferritin is normally expressed at low levels and does not appear 

to have any major function in normal mitochondrial iron utilization. Its 

expression, however, is significantly induced in iron-loaded ring erythroblasts 

(sideroblasts) of sideroblastic anaemia patients and may serve as a sink for iron 

deposition [Cazzola et al., 2003]. 

 

1.25 The “Labile Iron Pool” (LIP) 

The amount (< 5%) of iron that is not bound to ferritin or other proteins form a 

transient cytosolic pool, named “Labile Iron Pool” (LIP). This LIP is redox-

active and comprises both ionic forms of iron (Fe2+ and Fe3+), presumably 

associated to low-molecular mass intracellular chelates, such as citrate, various 

peptides, ATP, AMP or pyrophosphate [Kaklon and Cabantchik, 2002]. 

The cytosolic LIP reflects the cellular iron content and its fluctuations trigger 

homeostatic adaptive responses. In particular, LIP levels are maintained 

homeostatically for cells, not only to meet the metabolic demands for iron, but 

especially to minimize its potential engagement in ROS formation [Breuer et 

al., 2008]. On these bases, a critical aspect of the maintenance of cellular iron 

homeostasis is the control of the expression of genes encoding proteins required 

for the uptake (TfR1, DMT1), storage (H and L ferritin) or export (FPN) of iron 

[Goforth et al., 2010]. Iron regulatory proteins (IRPs) are central components of 
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a sensory and regulatory system required for the maintenance of iron 

homeostasis in vertebrates. 

 

1.26 The IRE/IRP regulatory sistem 

1.26.1 Regulation of TfR and ferritin expression by IRPs 

The expression of TfR1 and ferritin are co-ordinately regulated post-

transcriptionally upon binding of IRP1 or IRP2 to IREs in the UTRs 

(untranslated regions) of their respective mRNAs [Recalcati et al., 2010]. IREs 

are evolutionarily conserved hairpin structures of 25–30 nt [Piccinelli and 

Samuelsson, 2007]. A typical IRE stem consists of variable sequences that form 

base pairs of moderate stability (∆G ≈−7 kcal/mol), and folds into an α-helix 

that is slightly distorted by the presence of a small bulge in the middle (an 

unpaired C residue or an asymmetric UGC/C bulge/loop commonly found in the 

ferritin IRE). The loop contains a conserved 5’-CAGUGH-3’ sequence (H 

denotes A, C or U), where the underlined C and G residues form a base pair 

[Wallander et al., 2006], as shown in figure 19.  

 

 
 
Figure 19. Representation of a typical IRE motif. 
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TfR1 mRNA contains multiple IREs within its long 3’-UTR, whereas the 

mRNAs encoding H and L ferritin contain a single IRE in their 5’-UTRs.  

In iron-starved cells, IRPs bind with high affinity to cognate IREs. The IRE–

IRP interactions stabilize TfR1 mRNA and, moreover, impose a steric blockade 

to ferritin mRNA translation. As a result, increased TfR1 levels stimulate 

acquisition of iron from plasma Tf to counteract iron deficiency. The inhibition 

of de novo ferritin synthesis leads to decreased abundance of this protein, as 

iron storage becomes obsolete under these conditions.  

Conversely, in cells with high iron content, both IRP1 and IRP2 become 

unavailable for IRE binding, allowing TfR1 mRNA degradation and ferritin 

mRNA translation. Thus when iron supply exceeds cellular needs, the IRE–IRP 

switch minimizes further iron uptake via TfR1, and favours the storage of 

excess iron in newly synthesized ferritin.  

The IRE–IRP system was initially defined as a relatively simple and ubiquitous 

post-transcriptional regulatory circuit that maintains cellular iron homoeostasis 

in vertebrates by orchestrating co-ordinated iron uptake by TfR1 and storage in 

ferritin. The identification of additional IRE-containing mRNAs and the 

ongoing biochemical and physiological characterization of IRPs added 

considerable complexity and uncovered a functional significance for the IRE–

IRP system that exceeds the narrow boundaries of cellular iron uptake and 

storage [Wang and Pantopoulos 2011]. 
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1.26.2 Expression of DMT1 and ferroportin is regulated  
by IRPs  
 

The mRNAs encoding the iron transporters DMT1 and ferroportin are expressed 

in alternatively spliced isoforms, some of which are furnished with a 

translation-type IRE. Two out of four DMT1 transcripts contain a single IRE in 

their 3’-UTR that presumably operates as a stability control element and 

accounts for the higher DMT1 expression in iron-deficient conditions [Hubert 

and Hentze, 2002]. Ferroportin mRNA is expressed in two alternatively spliced 

transcripts, one of which contains a single translation-type IRE in its 5’-UTR 

[Zhang et al., 2009] that is consistently associated with high ferroportin 

expression in iron-sufficient state [Abboud and Hail, 2000]. Conversely, the 

lack of IRE in the alternative ferroportin transcript, which is enriched in 

duodenal enterocytes and erythroid precursor cells, allows the accumulation of 

ferroportin in these tissues during iron deficiency [Mckie et al., 2000] by 

evading the translational blockade imposed by active IRPs. In an iron-deficient 

state, the bypass of the IRE–IRP system contributes to homoeostatic adaptation 

by (i) probably facilitating dietary-iron absorption in the duodenum, and (ii) 

possibly also permitting efflux of iron from erythroid cells in the bloodstream to 

restrict erythropoiesis and to make the metal available to iron-starved non-

erythroid cells.  

 

1.26.3 Other IRE-containing mRNAs 

The biochemical characterization of IREs and the establishment of a canonical 

IRE motif prepared the way for the discovery of further IRE-containing 
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mRNAs, some of them bearing atypical, yet functional, IREs [Rouault, 2006].  

A functional IRE (an IRE that confers translational regulation) was found in the 

5’-UTR of ALAS2 mRNA. Considering that ALAS2 (δ-aminolevulinate 

synthase) catalyses the initial reaction for heam biosynthesis in erythroid cells, 

the translational repression of its mRNA by IRPs associates the IRE-IRP system 

with systemic iron utilization and homeostasis [Cairo and Recalcati, 2007]. 

A single IRE was also found in the 5’-UTR of the mRNAs encoding 

mammalian m-aconitases (mitochondrial aconitases) and the Drosophila iron-

containing protein succinate dehydrogenase subunit b (SDHb), which are both 

iron–sulfur enzymes of the citric acid cycle, and then link the IRE-IRP system 

with energy metabolism [Cairo and Recalcati, 2007]. 

More recently, a high-throughput biochemical screen revealed an atypical IRE 

in the 5’-UTR of HIF-2α mRNA that functions as a translational control 

element [Sanchez et al., 2007]. The Hypoxia-Inducible Factor, (HIF)-2α, is a 

transcription factor that is activated by lack of oxygen or iron. This finding 

represents a new link between iron and oxygen homeostasis. 

A single IRE motif was found also in the 3’-UTR of mRNA splice variants 

encoding MRCKα [myotonic dystrophy kinase-related Cdc42 (cell division 

cycle 42)-binding kinase α] [Cmejla et al., 2006] and human Cdc14A 

phosphatase [Sanchez et al., 2006]. Preliminary biochemical characterization 

suggests that these IRE motifs contribute to the regulation of mRNA stability, 

linking the IRE–IRP system with cytoskeletal remodelling and the cell cycle. 

The mRNA encoding β-APP harbours a non-canonical IRE motif with a 

conserved 5’-CAGAG-3’ sequence (the underlined C and G residues form a 

base pair) as part of an extended loop in its 5’UTR, which preferentially 
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interacts with IRP1 and functions as a translational control element [Cho et al., 

2010]. Interestingly, α-synuclein mRNA also contains a predicted IRE-like 

motif [Friedlich et al., 2007] that awaits functional characterization. Aberrant 

expression of β-APP and α-synuclein is associated with Alzheimer’s and 

Parkinson’s diseases respectively; thus validation of the regulatory function of 

their IREs may couple the IRE–IRP system with human neurodegenerative 

conditions. 

Recently, Mayka Sanchez and colleagues (Sanchez et al., 2011) following a 

genome-wide strategy identified 35 novel mRNAs that bind both IRP1 and 

IRP2. Some of these mRNA are implicated in cancer progression and 

metastasis, including the chemokine CXCL16, that contains a predicted IRE 

motif at its 3’-UTR, and FXYD5, also named Dysadherin, which contains a 

predicted IRE in 5’-UTR. Further work is needed to elucidate if these proteins 

can alter iron homeostasis, but their abnormal expression in several human 

cancers, may represent a novel link between iron metabolism and cancer. 

Overall, as illustrated in the figure 20, functional IRE motifs have thus far been 

identified in mRNAs encoding proteins of iron uptake (TfR1), storage (H and L 

ferritin), erythroid utilization (ALAS2) and transport (DMT1 and ferroportin), 

as well as energy metabolism (m-aconitase and Drosophila SDH), hypoxic 

regulation (HIF-2α), cytoskeletal reorganization (MRCKα), cell cycle control 

(Cdc14A) and neuronal function (β-APP and α-synuclein).  
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Figure 20. Post-transcriptional control by the IRE-IRP regulatory system. 

 

The expanded list of IRE-containing mRNAs emphasizes the role of the IRE–

IRP system as a master post-transcriptional iron regulatory switch, but also 

implies further regulatory potential outside the context of iron metabolism in a 

strict sense. 

 

1.27 IRPs: functional and structural features 

IRP1 and IRP2 do not share sequence similarities with known RNA-binding 

proteins and do not contain any established RNA-binding motifs. They both 

belong to the family of Iron-Sulfur Cluster (ISC) isomerases, which includes m-

aconitase. This enzyme catalyses the isomerization of citrate to iso-citrate via 

the intermediate cis-aconitate during the citric acid cycle, and contains a cubane 

[4Fe–4S]2+ ISC in its active site. Three of the iron atoms are attached to cysteine 

residues of the polypeptide, whereas the fourth iron remains free and mediates 
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catalytic chemistry [Muckenthaler et al., 2008]. IRP1 assembles an analogous to 

m-aconitase ISC that converts it to a c-aconitase (cytosolic aconitase). However, 

in contrast with m-aconitase, IRP1 only retains its ISC and its enzymatic 

function in iron-replete cells. In iron deficiency, holo-IRP1 is converted into 

apo-protein that possesses IRE-binding activity. Thus IRP1 is bifunctional and 

its mutually exclusive activities are reversibly regulated by an unusual ISC 

switch. IRP1 probably evolved independently of m-aconitase following an early 

duplication event that allowed it to acquire IRE-binding activity. A second 

duplication event led to the evolution of IRP2 in higher eukaryotes [Wang and 

Pantopoulos, 2011]. IRP2 shares extensive homology with IRP1; however, it 

neither assembles an ISC nor retains aconitase active-site residues. 

Consequently, IRP2 only exhibits an IRE-binding activity and does not have 

any enzymatic function. A feature of IRP2 that distinguishes it from IRP1 is the 

presence of a conserved cysteine and proline-rich stretch of 73 amino acids 

close to its N-terminus. This sequence is encoded by a separate exon and 

appears to be unstructured [Dycke et al., 2007]. IRP2 is regulated in an 

irreversible manner, at the level of protein stability. The crystal structure of 

IRP1 has been solved in both the c-aconitase-binding and IRE-binding [Walden 

et al., 2006] forms (figure 21), although the structure of IRP2 has not yet been 

determined. It was shown that the site for catalysis and RNA-binding overlap, 

and the switch between the enzymatic and RNA-binding forms is associated 

with extensive conformational rearrangements. The folding of holo-IRP1 

follows the pattern of m-aconitase [Dupuy et al., 2006], despite relatively 

limited sequence identity (22%), but consistently with the conservation of 

active-site residues. The protein is composed of four globular domains. 
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Domains 1–3 are compact and join domain 4 through a surface linker. The ISC 

is located centrally at the interface of the four domains. 

 

 

 
Figure 21. Crystal structure of IRP1. On the right the c-Aconitase form; on the 
left the IRE-binding form. 
 

 

The topology of the ISC and the surrounding environment are fairly conserved 

between c- and m-aconitases. Nevertheless, the overall structure of holo-IRP1, a 

protein of 889 amino acids, (~98 KDa), also shows differences to that of m-

aconitase, which is smaller (780 amino acids). The short IRP1 fragments that do 

not superimpose with m-aconitase are exposed on the surface of the protein. As 

a result, the shapes and surface topologies of holo-IRP1 and m-aconitase 

diverge substantially, which may explain the fact that only the former can 

acquire IRE-binding activity. 

How do the IRPs recognize IREs? 

The structure of IRP1 in a complex with ferritin IRE uncovered the details of 

the protein reorganization upon loss of its ISC. The main features are a rotation 

of domain 4 by 32◦, but also an unpredicted extensive rearrangement of domain 
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3 by 52◦ that creates a hydrophilic cavity and allows access to the IRE. The 

RNA–protein interaction requires two crucial segments at the interface of 

domain 2 (residues 436–442) and domain 3 (residues 534–544). Thr438 and 

Asn439 make direct contacts with the IRE. The terminal residues of the IRE 

loop, A15, G16 and U17, interact with Ser371, Lys379 and Arg269 respectively 

within a cavity between domains 2 and 3. A second binding site is formed 

around the unpaired-C-bulge residue between the upper and lower stem, which 

occupies a pocket within domain 4, sandwiched between Arg713 and Arg780. The 

IRE–IRP1 complex is stabilized by additional bonds, ionic interactions and van 

der Waals contacts. This structural studies offered detailed insights into the dual 

function of IRP1 as a c-aconitase and an IRE-binding protein [Walden et al., 

2006].  

As regards IRP2, the resolution of its structure, especially in a complex with 

IRE, will be necessary to precisely map the RNA–protein interaction and to 

understand the topology of the IRP2-specific 73 amino acid insert and its 

possible role in IRE binding [Zumbrennen et al., 2009]. 

 

1.28 Regulation of IRP1 

The iron-sulfur cluster of IRP1 is the major site for its regulation. Within cells, 

the conversion of apo- to holo-IRP1 requires several cofactors, such as the 

mitochondrial proteins Nfs1 (ISCS) [Biederbick et al., 2006], frataxin [Seznec et 

al., 2005], ISCU [Tong and Rouault, 2006], Grx5 [Ye et al., 2010], ISD11 [Shi 

et al., 2009] or Abcb7 [Pondarre et al., 2006], showing an active role of 

mitochondria in the assembly of holo-IRP1. 

Many factors can interpose with the ISC of IRP1, in particular: 
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• The ISC of IRP1 exhibits also sensitivity to oxidants, in particular to 

superoxide anion and peroxynitrite that can attack the ISC of 

cytoplasmic aconitase, inducing its disassembly to form IRP1 [Zimmer 

et al., 2008], whereas hypoxia favours its stabilization, accompanied by 

a rise in aconitase activity [Deck et al., 2009]. 

• Iron starvation leads to conversion of holo-IRP1 (cytosolic aconitase) 

into an IRE-binding apo-protein following depletion of its ISC. This 

process is relatively lengthy (8–12 h) and does not require de novo 

protein synthesis. 

• In contrast, in iron-loaded state the apo-IRP1 is converted in holo-IRP1. 

IRP1 is a fairly stable protein (half-life of ~24 h) and, under normal 

circumstances, its stability remains unaffected by iron levels. However, when 

ISC biogenesis is impaired by either inactivation of ISC assembly cofactors or 

phosphorylation of IRP1 at Ser138, iron leads to ubiquitination and slow 

degradation of apo-IRP1 by the proteasome [Wang et al., 2007; Deck et al., 

2009]. IRP1 can be phosphorylated by PKC (protein kinase C) at the conserved 

Ser138 and Ser711 residues [Clarke et al., 2006]. Ser138 is located in proximity to 

the ISC and its phosphorylation appears to interfere with the ISC stability [Deck 

et al., 2009]. This backup mechanism prevents accumulation of excessive apo-

IRP1 that may disrupt iron homoeostasis by its unregulated IRE-binding 

activity.  

 

1.29 Regulation of IRP2 

IRP2 is synthesized de novo in response to low iron and remains stable under 

iron starvation or hypoxia. In iron replete cells, however, IRP2 becomes 
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destabilized and undergoes rapid ubiquitination and degradation by the 

proteasome [Wang and Pantopoulos, 2011].  

It was recently demonstrated that IRP2 are substrates of FBXL5 (F-box and 

leucine-rich repeat protein 5), a member of an E3 ubiquitin ligase complex that 

also includes Skp1 (S-phase kinase-associated protein 1), Cul1 (Cullin 1) and 

Rbx1 (Ring-box 1) [Vashisht et al., 2009; Salahudeen et al., 2009].  

FBXL5 contains an N-terminal haemerythrin domain with a characteristic Fe–

O–Fe centre. In iron-replete and oxygenated cells, FBXL5 accumulates and 

interacts with IRP2, mediating its ubiquitination and subsequent degradation 

(figure 22). In contrast, in iron-deficient or hypoxic cells, FBXL5 itself 

undergoes proteasomal degradation by a yet unknown mechanism upon the loss 

of its Fe–O–Fe centre, which allows the stabilization of IRP2.  

 

 

Figure 22. Iron and oxygen-dependent regulation of IRP2 stability by FBXL5 

 

Hence, FBXL5 senses iron and oxygen levels through the Fe–O–Fe centre of its 

haemerythrin domain and emerges as a novel regulator of cellular iron 

homoeostasis. 
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2. AIM OF THE STUDY 

 
Ischemic heart disease, the main cause of mortality and morbidity in 

industrialized countries, is a metabolic phenomenon due to an inadequate 

oxygenation of heart tissue caused by the closing or narrowing of the coronary 

arteries. 

Regardless of the cause that led to the ischemic conditions, there is an 

impairment of oxygen and oxidizable substrates to a part of myocardial tissue. 

The early reperfusion of ischemic myocardium restores cellular functions 

altered by ischemia and contrasts cell death. However, the ischemic condition 

and the subsequent tissue reperfusion, lead to several functional and metabolic 

changes that globally define the so-called “ischemia/reperfusion injury”. It is 

widely accepted that in the ischemia/reperfusion injury the overproduction of 

ROS is the main source of cell damage. The Reactive Oxygen Species (ROS), 

indeed, are highly reactive molecules that can cause lipid peroxidation, protein 

oxidation and nucleic acid alterations, playing an important role in the genesis 

and progression of ischemic damage. 

A pivotal role in the ROS production is played by iron. This metal, for its 

redox properties, can quickly give and accept electrons and thus promote the 

ROS production through the Haber-Weiss-Fenton reaction.  

It is well known that iron is an essential element for the growth and metabolism 

of all living organisms, because it is involved in many cellular functions, such 

as the synthesis of the DNA and cellular respiration. However, an excess of 

this metal can be toxic for all cell types, then the iron metabolism must be 

finely regulated to prevent dangerous excess or deficiencies of this essential 
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metal. At cellular level the main proteins involved in the regulation of iron 

metabolism are represented by the Transferrin Receptor 1 (TfR1) and the 

Divalent Metal Transporter (DMT1), that mediate the iron up-take, the 

ferroportin that is the only known cellular iron exporter in mammals and 

ferritin which is able to sequester iron in a non-toxic form. Other important 

proteins involved in the control of iron metabolism are the Iron Regulatory 

Proteins (IRPs), that are able to regulate at post-transcriptional level the 

expression of proteins such as Transferrin Receptor 1, DMT1, ferroportin and 

ferritin.  

On this basis, the aim of my study was to analyze, in both in vivo and in vitro 

models of ischemia/reperfusion injury (for the model details, see Materials and 

Methods section) the molecular mechanisms that regulate the cellular iron 

homeostasis, as well as assess the potential oxidative damages caused by this 

metal during the complex phenomenon of ischemic heart disease. In particular, 

it was investigated the effect of ischemia/reperfusion conditions on the cell 

viability and ROS production, and the effects on the activity and expression of 

the principal proteins implicated in the iron metabolism, such as IRPs, TfR1, 

and ferritin. My study was focused also on the so-called “pleiotropic” effects of 

statins, in particular on the anti-inflammatory and antioxidant activities, that 

could protect cardiac tissue from ischemia/reperfusion injury.  

In detail, it was investigated the cytoprotective effects of Simvastatin, one of 

the most common statins used in the treatment of hypercholesterolemia, on the 

expression of protein such as iNOS, (involved in the production of nitric oxide, 

that can interact with O2
•– to form peroxynitrite, a potent mediator of cell 

damage), on the ROS production and then on the cell viability in rat cardio-

myoblasts subjected to hypoxia and reoxigenation conditions.  
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Moreover, considering the close relationship between the ROS production and 

iron, it was also evaluated the effects of Simvastatin on the iron metabolism, in 

particular assessing the LIP extension and the expression of protein such as 

ferritin and Transferrin Receptor 1. 
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3. MATERIALS AND METHODS 

 

3.1 Animals and in vivo ischemia/reperfusion model  

All animal experiments complied with the Italian legislative decree (D.L.) 

no.116 of January 27, 1992 and associates guidelines in the European 

Communities Council Directive of November 24, 1986 (86/609/ECC).  

Male Wistar rats (250–280 g; Harlan Nossan, Correzzana, MI, Italy), were 

divided in different groups: (1) Sham group; animals underwent to the surgical 

intervention without the LAD ligation, (2) ischemic group; animals were 

subjected to ischemia 30-90 minutes, (3) reperfused group; animals subjected 

to 24 hours of reperfusion after ischemia. 

Animals were anaesthetized with an intraperitoneal injection of a solution of 

ketamine (100 mg/kg) and xylazine (10 mg/kg) placed on a surgical table and 

artificially ventilated through a tracheal cannula connected to a ventilation 

pump for small animals (Ugo Basile, Comerio, VA, Italy).  

Myocardial infarction  was produced by ligation of left anterior descending 

coronary artery (LAD), according to a method previously described in Wistar 

rats [Guerra et al., 2006]. Briefly, the left side of the thorax was opened 

between the fourth and fifth intercostal space. The heart was gently 

exteriorized and the pericardium dissected out. The LAD was occluded (figure 

23) near its anatomical origin by a 5.0 silk suture (Ethicon, Johnson-Johnson) 

at different times (30 and 90 minutes). At the end of the ischemia period, the 

ligature was removed to obtain the 24 hours reperfusion phase, and a blood 

sample was withdrawn from abdominal aorta. 
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In vivo model of cardiac ischemia. The figure shows the ligation of 
left anterior descending coronary artery. 

serum was obtained 24 hours thereafter, following centrifugation

rpm for 15 minutes and then kept at -80°C until the measurement day. 

after ischemia phases was placed into a Petri dish containing 

chloride and cut into 5–6-mm thick transverse slices from the

to the basis. Slices were incubated for 30 minutes at 37°C in a 1% solution of 

triphenyltetraziolium chloride in 1% phosphate-buffered solution (PBS) 

then washed with PBS and stored in PBS with 0.01% sodium azide (PBS
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Histological Analysis. To assess the model, morphological analysis of tissues 

obtained from sham and ischemic animals was performed. Heart slices 

fixed in 10% (vol/vol) buffered formalin for 48 hours. Sections were then 

embedded in paraffin and cut (10-mm thick) and stained with hematoxylin and 
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eosin for tissue morphological evaluation. The sections were analyzed by using 

a standard light microscope (320 objective) and photographed by a digital 

camera (Leica). 

Determination of Biochemical Parameters. Quantitative determinations of 

serum cardiac troponin I (cTpI) and myoglobin (MYO) were performed by 

immune enzymatic assays (AxSYM System; Abbott). 

 

3.2 Cell cultures and in vitro hypoxia/reoxygenation 
model 
 

The rat cardiomyoblasts line H9c2, obtained from European Collection of Cell 

Cultures, were grown in Dulbecco's modified Eagle's medium supplemented 

with 10% fetal bovine serum (Bio-Whittaker), penicillin (100 U/ml) and 

streptomycin (100 µg/ml). The cells were grown at 37°C in a humidified 5% 

CO2 atmosphere. 

Combined oxygen and glucose deprivation and reoxygenation. H9c2 cells 

were exposed to oxygen, glucose and serum deprivation (OGSD) for various 

times (0,5-12h) according to a previously reported protocol [Irace et al., 2005]. 

Briefly, the culture medium was replaced with deoxygenated (saturated for 20 

minutes with 95% N2 and 5% CO2), glucose- and serum-free medium 

containing NaCl 116 mM, KCl 5.4 mM, MgSO4 0.8 mM, NaHCO3 26.2 mM, 

NaH2PO4 1 mM, CaCl2 1.8 mM, glycine 0.01 mM and 0.001 % (w/v) phenol 

red. Cultures were then placed in an humidified 37°C incubator within an 

anaerobic chamber (Billups-Rothenberg, Inc., Del Mar, CA, USA) containing a 

gas mixture of 95% N2 and 5% CO2. The final oxygen concentration in the 

medium in these experimental conditions, measured by an oxygen-sensitive 
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electrode (OxyLite 2000, Oxford Optronix, Oxford, UK), was 5 mmHg. 

Reoxygenation was achieved by replacing the OGSD medium with oxygenated 

regular medium containing glucose, and returning cultures to normoxic 

conditions (37°C in a humidified 5% CO2 atmosphere) for 3 hours (brief period 

of reoxygenation) and 24 hours (long period of reoxygenation). 

 

3.3 Preparation of cytosolic extracts 

Heart tissues were homogenized through polytron system at 6000 rpm/min 

with lysis buffer containing 10 mM HEPES, pH 7.5, 3 mM MgCl2, 40 mM 

KCl, 5% glycerol, 1 mM DTT 10 mM EDTA, inhibitor proteases and 0.2% 

Nonidet P-40 at 4°C. Cell debris and nuclei were pelleted by centrifugation at 

13 000 x g for 15 min at 4°C, and supernatants were stored at -80°C. 

Cells were washed and detached with PBS containing 1 mM EDTA. To obtain 

cytosolic extracts for electrophoretic mobility shift assay (EMSA) and ferritin 

and IRP1 Western Blot analysis, cells were treated with lysis buffer containing 

of 10 mM HEPES, pH 7.5, 3 mM MgCl2, 40 mM KCl, 5% glycerol, 1 mM 

DTT and 0.2% Nonidet P-40 at 4°C. Cell debris and nuclei were pelleted by 

centrifugation at 13 000 x g for 15 min at 4°C, and supernatants were stored at 

-80°C. For Western blot analysis of TfR1, cell pellets were lysed in 20 mM 

Tris.HCl pH 7.4, 150 mM NaCl, 5 mM EDTA, 5% (v/v) glycerol, 10 mM NP-

40 and proteases inhibitors tablets (Roche, Mannheim, Germany) at 4°C. The 

supernatant fraction, obtained by centrifugation at 13000 x g for 15 min, was 

stored at −80°C [Mattace Raso et al., 2009]. The protein concentration was 

determined by the Bio-Rad protein assay according to the supplier's manual 

(Bio-Rad, Milan, Italy). 
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3.4 Western blot analysis 

Lysates aliquots containing 50-100 µg of proteins were denatured, separated on 

a 12% (for ferritin) or 8% (for IRP1, TfR1, iNOS) SDS-polyacrylamide gel and 

transferred onto a nitrocellulose membrane (Amersham Biosciences, Little 

Chalfont, Buckinghamshire, UK) using a Bio-Rad Transblot. Protein were 

visualized on the filters by reversible staining with Ponceau-S solution (Sigma 

Aldrich, St. Louis, MO, USA) and destained in PBS. Filters were blocked in 

milk buffer (1X TBS, 5% non fat dry milk, 0.1 % Tween 20) and incubated for 

2 hr at room temperature or overnight at 4°C with 1:1000 rabbit polyclonal 

antibody to human ferritin cross-reactive with rat protein (Dako Cytomation, 

Glostrup, Denmark), or with 1:1000 mouse antibody to human transferrin 

receptor 1 crossreactive with rat TfR1 (Zymed Laboratories Inc., CA, USA), or 

with 1:250 goat antibody to human IRP1 cross-reactive with rat IRP1 (Santa 

Cruz Biotechnology, Inc., Santa Cruz, CA, USA), or with 1:2000 mouse 

antibody to human iNOS crossreactive with rat iNOS (BD Transduction 

Laboratories). Subsequently, the membranes were incubated for 90 minutes at 

room temperature with peroxidase-conjugated goat anti-mouse IgG + IgM, or 

peroxidase-conjugated rabbit anti-goat IgG, or peroxidase-conjugated goat 

anti-rabbit IgG (all the secondary antibodies were purchased from Jackson 

ImmunoResearch Laboratories, Baltimore Pike, West Grove, PA). The 

resulting complex was visualized using chemioluminescence Western blotting 

detection reagents (ECL, Amersham) in an Image Quant (GE Healthcare). The 

optical density of the bands was determined by a GS-800 imaging densitometer 

(Bio-Rad). Normalization of results was ensured by incubating the 

nitrocellulose membrane in parallel with the α-tubulin and/or β-actin antibody.  
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3.5 Electrophoretic Mobility-Shift Assay (EMSA) 

Plasmid pSPT-fer, containing the sequence corresponding to the IRE of the H-

chain of human ferritin, was linearized at the Bam HI site and transcribed in 

vitro as previously described [Santamaria et al., 2011]. 

For band shift analysis, 5 µg of protein extracts were incubated for 30 min at 

room temperature with 0.2 ng of in vitro transcribed 
32

P-labelled IRE RNA. 

The reaction was performed in lysis buffer (10 mM Hepes, pH 7.5, 3 mM 

MgCl2, 40 mM, KCl, 5% (v/v) glycerol, 1 mM DTT and 0.07% (v/v) Nonidet 

P-40) in a final volume of 20 µl. To recover total IRP1 binding activity, 2-

mercaptoethanol was added to the binding reaction before the addition of 32P 

labelled IRE RNA. To degrade unbound probe, the reaction mixture was 

incubated with 1 unit of RNase T1 (Roche) for 10 min and non specific RNA-

protein interaction was displaced by the addition of 5 mg/ml heparin for 10 

min. After the addition of 10 µl of loading buffer containing 30 mM Tris-HCl, 

pH 7.5, 40 % (w/v) sucrose and 0.2 % bromophenol blue, the reaction mixtures 

were electrophoresed for 2 h at 200 V in a 6% non denaturing polyacrylamide 

gel. After electrophoresis the gel was dried and autoradiographed at -80°C. The 

IRP-IRE complexes were quantified with a GS-800 imaging densitometer (Bio 

Rad, Milan). The results are expressed as the percentage of IRP binding 

activity versus 2-mercaptoetanol-treated samples. 

 

3.6 Cell viability assay (MTT) 

Cell viability was assessed by measuring the level of mitochondrial 

dehydrogenase activity using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
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tetrazolium bromide (MTT) as substrate, as reported in Simeone et al. [2011, 

Epub. ahead of print]. The assay was based on the redox ability of living 

mitochondria to convert dissolved MTT into insoluble formazan (figure 24).  

 

 

Figure 24. The figure shows the dehydrogenase-mediated reaction that 
converts MTT into insoluble formazan salt. 
 
 

Briefly, after OGSD and OGSD/Reoxygenation, the medium was removed and 

the cells were incubated with the MTT solution (0.5 mg/mL) for 1 hour in a 

humidified 5% CO2 incubator at 37°C. The incubation was stopped by 

removing the MTT solution and adding 100µL/well of dimethylsulfoxide 

(DMSO) to solubilize the formazan. The absorbance was monitored at 550 nm 

by using an iMark microplate reader spectrophotometer (Bio-Rad, Milan, 

Italy). The data were expressed as the percentage of cell viability, compared to 

control cultures. 

 

3.7 Counting of viable and dead cells 

The counting of viable and dead cells after exposure to OGSD/Reoxygenation 

conditions, for the appointed times, was realized using the commercial kit 

MultiTox-Fluor Multiplex Citotoxicity Assay (Promega Corporation). This 

method simultaneously measures the relative number of live and dead cells in 
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cell populations. The MultiTox-Fluor Assay simultaneously measures two 

protease activities: one is a marker of cell viability, and the other is a marker of 

cytotoxicity. The live-cell protease activity is restricted to intact viable cells 

and is measured using a fluorogenic, cell-permeant peptide substrate (glycyl-

phenylalanylamino fluorocoumarin; GF-AFC). The substrate enters intact cells 

where it is cleaved by the live-cell protease activity to generate a fluorescent 

signal proportional to the number of living cells. This live-cell protease 

becomes inactive upon loss of cell membrane integrity and leakage into the 

surrounding culture medium. A second, fluorogenic, cell-impermeant peptide 

substrate (bisalanyl-alanyl-phenylalanyl-rhodamine 110; bis-AAF-R110) is 

used to measure dead-cell protease activity, which is released from cells that 

have lost membrane integrity. Because bis-AAF-R110 is not cell-permeant, 

essentially no signal from this substrate is generated by intact, viable cells 

(figure 25).  

CF-AFC 
substrate

Live-cell
protease

cell-permeant
GF-AFC substrate

+

Nucleus

Viable cell

cell-impermeant
Bis-AAF-R110 

substrate

Inactive
live-cell
protease

active
dead-cell
protease

Dead cell

 

Figure 25. Summary diagram of the MultiTox-Fluor Assay. 
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The live- and dead-cell proteases produce different products, AFC and R110, 

which have different excitation and emission spectra (viability: Excitation 400 

nm; Emission 505 nm - cytotoxicity: Excitation 485 nm; Emission 520 nm), 

allowing them to be detected simultaneously. The results were expressed as a 

percentage of live cells and dead cells, compared to contol cultures. 

 

3.8 Cellular energy status: dosage of ATP 

The intracellular levels of ATP were determined by using the Bioluminescent 

somatic cell assay kit (Sigma Aldrich, St. Louis, USA). This method uses the 

enzyme luciferase, which catalyzes the oxidative decarboxylation of luciferin 

in the presence of ATP, producing a luminous signal whose intensity is 

proportional to the concentration of ATP. 

In detail: 

ATP + Luciferin + O2 → Oxyluciferin + PPi + AMP + CO2 + light 

To perform this test, the cells were resuspended in PBS at a concentration of 

106 cells/mL. 50 µL of this suspension were added to 50 µL of sterilized water 

and 100 µL of a buffer (Somatic Cell Releasing Reagent) to allow the 

immediate release of ATP from the cells. Subsequently, 100 µL of sample 

were added to 100 µL of ATP Mix Assay. After shaking, the intensity of light 

emission was measured by luminometer (EG&G Berthold). 

The results were expressed as a percentage of control culture and were 

normalized for micrograms of protein and number of cells. 
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3.9 Dosage of lactate dehydrogenase (LDH) release 

The Cyto Tox-ONE Assay kit (Promega Corporation) permits a rapid, 

fluorescent measure of the release of lactate dehydrogenase (LDH) from cells 

with a damaged membrane. This method, used to evaluate the fraction of 

damaged and/or necrotic cells exposed to OGSD/Reoxygenation conditions, is 

based on a coupled enzymatic reaction that allows to measure the release of the 

LDH, an enzyme that catalyzes the conversion of lactate to pyruvate with the 

concomitant production of NADH.  

NADH in the presence of the diaphorase enzyme, permits the conversion of 

resazurin into the fluorescent substrate resorufin as shown in figure 26.  

Lactate

NAD+

LDH

Diaphorase

NADH

Pyruvate

ResazurinResofurin

 

Figure 26. The figure shows coupled enzymatic reaction that allows to 
measure the release of the LDH 

 

The fluorescence was monitored using an excitation wavelength of 560 nm and 

an emission wavelength of 590 nm in a Perkin-Elmer LS-55 Luminescence 

Spectrometer (Perkin-Elmer Ltd., Beaconsfield, England). The results were 

expressed as percentage of necrotic cells compared to control cultures. 
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3.10 Measurement of ROS 

The formation of ROS was evaluated by means of the probe 2’,7’-

dichlorofluorescin-diacetate (H2DCF-DA) as described in Santamaria et al. 

[2004]. Briefly, H9c2 cells were grown in DMEM containing 10% (v/v) fetal 

bovine serum, then were plated at a density of 10000 cells/well into 96-well 

dishes. Cells were allowed to grow for 48 hours and then incubated in the 

growth medium containing 50 µM of H2DCF-DA (Sigma-Aldrich) for 1 h at 

37 °C. H2DCF-DA is a non-fluorescent permeant molecule that passively 

diffuses into cells, where the acetates are cleaved by intracellular esterases to 

form H2DCF and thereby traps it within the cell. In the presence of intracellular 

ROS, H2DCF is rapidly oxidized to the highly fluorescent 2’,7’-

dichlorofluorescein (DCF), as showed in figure 27.  

H2DCF-DA

Esterases

DCF

H2DCF-DA

H2DCF

ROS

Oxidation
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Figure 27. Summary diagram of the ROS assay. 

 

Cells were washed twice with PBS buffer and were then subjected to 

hypoxia/reoxygenation conditions at different times. At the end of the 
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OGSD/reoxygenation experiments, ROS levels were measured in a fluorescent 

microplate reader (Perkin Elmer LS-55 Luminescence Spectrometer, Perkin-

Elmer Ltd., England). Fluorescence was monitored using an excitation 

wavelength of 485 nm and an emission wavelength of 538 nm. The data were 

expressed as the percentage of ROS production, compared to control cultures. 

 

3.11 Lipid peroxidation assay (TBARS’ test) 

Lipid peroxidation products from cells were measured by the thiobarbituric 

acid colorimetric assay. This method permits a quantitative evaluation of the 

lipid peroxidation of cell membranes by determining the malondialdehyde 

(MDA), one of the final products of oxidation of polyunsaturated fatty acids 

caused by the presence of free radicals, including ROS. The TBARS’test, 

therefore, is an indirect index of ROS production and cellular oxidative stress 

[Irace et al., 2005]. The MDA reacts with thiobarbituric acid (TBA) in acidic 

media and at a temperature of 90-95°C resulting in a pink adduct that has a 

maximum absorbition at a wavelength of 550 nm, and that is 

spectrophotometrically quantized.  

Briefly, after OGSD and OGSD/Reoxygenation, cells were washed and 

collected in PBS Ca2+/Mg2+-free medium containing 1 mM EDTA and 1.13 

mM butylated hydroxytoluene (BHT). Cells were broken up by sonication. 

Trichloroacetic acid, 10% (w/v), was added to the cellular lysate and, after 

centrifugation at 1000 x g for 10 min, the supernatant fluid was collected and 

incubated with 0.5% (w/v) thiobarbituric acid at 80-100°C for 30 min. After 

cooling, malondialdehyde (MDA) formation was recorded at 550 nm in the 

iMark microplate reader spectrophotometer (Bio-Rad, Milan, Italy). Samples 
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were scaled for protein concentration determined by the Bio-Rad protein assay, 

and a standard curve of MDA was used to quantify the MDA levels formed 

during the experiments. The results are presented as percentage of MDA 

production versus a control obtained in untreated cultures. 

 

3.12 Assessment of “Labile Iron Pool” (LIP) 

The cellular labile iron content was estimated by a fluorimetric assay using the 

metal-sensitive probe calcein (CA) [Santamaria et al., 2011] and the strong 

membrane-permeant iron chelator SIH (salicylaldehyde isonicotinoyl 

hydrazone), generously provided by Prof. Prem Ponka (McGill University, 

Montreal, QC, Canada). H9c2 cells, plated at a density of 10×103 cells/well, 

were subjected to OGSD and OGSD/Reoxygenation conditions and then were 

loaded with 0.5 µM CA-AM (calcein-acetomethoxy, Molecular Probes, 

Invitrogen, Eugene, OR) for 45 min at 37 °C in calcium- and bicarbonate-free 

modified Krebs Henseleit buffer (KHB), consisting of HEPES 20mM, pH 7.4, 

NaCl 119mM, KCl 4.9 mM, KH2PO4 0.96 mM and glucose 5 mM. CA-AM 

rapidly penetrates across the plasma membrane and is intracellularly 

hydrolysed to release free CA. After loading, the cultures were washed of 

excess CA-AM two times with KHB. Cellular CA fluorescence was recorded 

in a Perkin Elmer microplate reader (Perkin Elmer LS-55 Luminescence 

Spectrometer, Beaconsfield, UK) using a filter combination with an excitation 

wavelength of 485 nm and an emission wavelength of 530 nm (slits 5 nm). Cell 

cultures without CA-AM were used as blank to correct non-specific 

autofluorescence. Trypan blue was added in all experiments to eliminate 

extracellular fluorescence. Once hydrolyzed, calcein becomes trapped in the 
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cytoplasm and emits intense green fluorescence. The calcein-loaded cells have 

a fluorescence component (∆F) that is quenched by intracellular iron and can 

be revealed by addition of 100 µM SIH (figure 28). 

CA-AM

CA-AM
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Figure 28. Summary diagram of the LIP assay. 

 

The rise in fluorescence is equivalent to the change in calcein concentration or 

to the amount of cellular iron originally bound to CA. Thus, the changes in CA 

fluorescence intensity were directly proportional to the iron labile pool. To 

characterize the responsiveness of CA fluorescence toward different 

concentrations of intracellular iron, cells were preloaded with ferrous 

ammonium sulphate, ferric ammonium citrate or with the cell permeable 

ferrous iron chelator SIH. The data were expressed as the percentage of cellular 

labile iron pool, compared to control cultures. 
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3.13 Simvastatin activation by alkaline hydrolysis  

Simvastatin obtained from Sigma-Tau was activated to its active form by 

alkaline hydrolysis before use. Briefly, Simvastatin prodrug was dissolved in 

an 0.1 N NaOH and 0.154 mol/liter NaCl solution and then incubated at 50 °C 

for 2 h. The pH was brought to 7.0 by HCl. The stock solution was stored at -

20 °C [Madonna et al., 2005]. 

 

 

 
Figure 29. Molecular structure of Simvastatin. 

 

3.14 Nitrites measurement 

After release, NO reacts with O2 to form the stable metabolite nitrite. Nitrite 

concentrations were measured by the Griess reaction to estimate the total 

amounts of NO in the media released from H9c2 cells, treated or not with 

Simvastatin and subjected to OGSD/reoxygenation conditions. To measure the 

nitrite levels, 100 µl of the medium in duplicate were removed and mixed with 

100 µl of Griess reagent (1% sulfanilamide-0.1% naphthylethylenediamine-5% 

phosphoric acid; obtained by Sigma Aldrich) and incubated for 10 min at room 

temperature [Irace et al., 2007]. Absorbance was measured at 550 nm by using 
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using an iMark microplate reader spectrophotometer (Bio-Rad, Milan, Italy). 

Nitrite concentrations were determined by comparison with NaNO2 standards. 

 

3.15 Statistical analysis 

For the MTT assay, cell counting and ATP, LDH, ROS, MDA, LIP, nitrites 

determinations, results are expressed as mean of percentage ± SEM of n 

observations respect to control cells (100%), where n represents the number of 

experiments performed on different days. The results were analyzed by one-

way ANOVA followed by a Bonferroni post hoc test for multiple comparisons. 

A p-value ≤ 0.05 was considered significant.  

The densitometric data from EMSA and Western blot analysis are reported as 

percentage of controls ± SEM of n observations, where n represents the 

number of experiments performed on different days. Statistical significance 

among the results was determined by the ANOVA followed by the Newman–

Keuls test. A p-value less than 0.05 was considered statistically significant. 
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Treatment MYO 

(ng/ml)

cTnI 

(ng/ml)

SHAM 32.25 ± 11.02 1.25 ± 0.18

ISCHEMIA 46.86 ± 10.35 29.35 ± 12.32

* p < 0.05 vs sham

*** p < 0.001 vs sham
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Figure 31. Graphic of the cTpI and MYO release. Data are expressed as mean 
± SEM. * p < 0,05 vs sham; *** p < 0,001 vs sham. 
 

Further validation of our model of cardiac ischemia was given by the increased 

expression of the transcription factor HIF1-α that, as we know, is stable during 

a state of oxygen deficiency (figure 32). 

HIF-1α

α-tubulin

** p < 0.01 vs sham

 
Figure 32. Expression, evaluated by Western blotting, of HIF-1α after 
ischemia and subsequent reperfusion. Data are expressed as percentage 
compared to the sham. ** p < 0,01 vs sham.  
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4.2 In vivo cardiac damage and in vitro cardiomyoblasts 
viability 
 

2,3,5-Triphenyltetraziolium chloride staining showed that left anterior 

descending coronary artery (LAD) ligation, lasting 30 to 90 minutes, produced 

an intramural infarction of the anterior wall of the left ventricle. As described 

in the Table 1, the percentage of damage after 90 minutes of ischemia was 

greater than obtained after 30 minutes. Furthermore, the damage after ischemia 

increased in reperfusion (24 hours).  

 

 
TREATMENT 

 
% DAMAGE 

 
Sham - 

 
Ischemia 30 min. 4.41 ± 3.2 

 
Ischemia 30 min + Reperfused 6.24 ± 2.5 

 
Ischemia 90 min. 18.75 ± 2.8 *** 

 
Ischemia 90 min + Reperfused 24.63 ± 3.0  

 
 
Table 1. The tissue damage, induced at different times of ischemia and 
subsequent reperfusion, is expressed as percentage compared to the total tissue. 
Data are expressed as mean ± SEM; *** p < 0,001 vs sham. 
 

These in vivo results were confirmed by in vitro data on cell viability (MTT 

assay and count of live and dead cells), allowing us to clarify some aspects of 

the damage caused by ischemia/reperfusion conditions.  

The data obtained through hypoxia/reoxygenation experiments on 

cardiomyoblast (H9c2 cell line), that mimic ischemia/reperfusion conditions, 

shown that the cell viability was not affected during brief periods of OGSD (up 

to 3 hours), whereas 6 hours of OGSD reduced cell viability up to 50%.  
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However, these data have showed a recovery of cell viability in reoxygenation 

phase after the 6-hours OGSD. During long periods of OGSD (up to 12 hours), 

instead, the cell viability was dramatically reduced (up to 25%), and no 

recovery was observed during reoxygenation, as resumed in the Table 2. 

 

       

        

 

              

 
 
Table 2. Cell viability, evaluated by MTT assay, at different times of hypoxia. 
Data are expressed as percentage of the mitochondrial dehydrogenase activity 
compared to the control. ** p < 0.01 vs CTRL;  *** p< 0.001 vs CTRL; 
° p < 0.05 vs OGSD; °° p < 0.01 vs OGSD;      °°° p< 0.001 vs OGSD. 
 

These results were also confirmed by the assessment of ATP levels, and the 

release of the enzyme lactate dehydrogenase (LDH), a classical marker of the 

damage of cell membranes, during OGSD/reoxygenation experiments.  

Experiments for the evaluation of the cellular energy balance, conducted up to 

6 hours of OGSD and subsequent reoxygenation, showed a reduction in ATP 

levels during hypoxia, in accordance with the alteration of the respiratory 

chain, followed by a recovery to the control levels when normoxic conditions 

were restored.  

For long periods of OGSD (up to 12 hours), instead, the energy charge of the 

cardiomyocytes was nearly wiped during hypoxia and no recovery was 

observed during reoxygenation (Table 3). 

 

 

OGSD (time) OGSD Rx 3 h Rx 24 h 

1 h 95 ± 3.5% 92 ± 4.5% 98 ± 4% 

3 h 79 ± 2.1% **  88 ± 2.7% ° 97 ± 2.5% °° 

6 h 51 ± 3% ***  54 ± 3.5% 86 ± 3% °°° 

12 h 29 ± 3.26% ***  23 ± 4.5%  31 ± 4.12% 
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Table 3. Cellular energy balance evaluated as percentage of ATP levels at 
different times of hypoxia. Data are expressed as percentage compared to the 
control. * P < 0,05 vs CTRL; *** p< 0.001 vs CTRL; °° p < 0.01 vs OGSD;  
°°° p< 0.001 vs OGSD. 
 

The data on LDH release (Table 4), finally, showed a strongly increase of the 

LDH levels in the culture medium, both in hypoxia and reoxygenation 

condition, only for long period of OGSD (12 hours). 

 

 

                               

 
 
 
 
Table 4. Table of LDH release. Data are expressed as percentage compared to 
the control. *** p< 0.001 vs CTRL; °°° p< 0.001 vs OGSD. 
 

 

Overall these results show that relatively short periods of hypoxia (up to 6 

hours) and subsequent reoxygenation lead to a reversible damage, while for 

longer periods of hypoxia, up to 12 hours, the damage is irreversible, 

emphasizing (pointing out) that the 6 hours of hypoxia are the “no return 

point”, beyond which the damage sustained by cardiomyocytes is irreversible. 

 

OGSD (time) OGSD Rx 3 h Rx 24 h 

3 h 80 ± 2.5% *  126 ± 3% °° 135 ± 2.3% °°° 

6 h 49 ± 3% ***  96.3 ± 3.5% °°° 112 ± 3.2% °°° 

12 h 5 ± 2.96% ***  9 ± 4.5%  14 ± 4.62% 

OGSD (time) OGSD Rx 3 h Rx 24 h 

3 h 9.3 ± 2.5%  29.8 ± 3% °°° 29.4 ± 3% °°° 

6 h 6.5 ± 2.8%  24 ± 3% °°° 27.5 ± 2.9% °°° 

12 h 53.7 ± 2% ***  79.8 ± 3% °°° 94 ± 3.12% °°° 



                                                                                                     

 

4.3 Cellular death: 

The LDH enzyme, is a marker 

in the culture medium show

of the cardiomyocytes

confirming the in vivo

markers of necrosis, 

blot the activation of Caspasi

experiments, no activation of this protein was

death, during hypoxia/reoxygenation conditions

pathway. 

 

Figure 33. Western blot of the Caspasi
protein was detected after hypoxia and subsequent reoxygenation phases. 
 

 

4.4 Evaluation of o

As known, ROS

ischemia/reperfusion injury,

using for the in vivo

peroxidation, and for the 

dichlorofluorescein

                                                                                                      
 

Cellular death: necrosis or apoptosis? 

, is a marker of the damage of cell membranes and

in the culture medium shown that the hypoxic damage leads to a necrotic death 

of the cardiomyocytes subjected to OGSD/reoxygenation experiments

in vivo data regarding the release of cTpI and MYO, as a 

of necrosis, after ischemic injury. We have also evaluated by western 

the activation of Caspasi-3, as a marker of apoptotis (figure 33

experiments, no activation of this protein was observed confirming that the cell

during hypoxia/reoxygenation conditions, not involved the apoptotic 

Western blot of the Caspasi-3. No active forms (18
was detected after hypoxia and subsequent reoxygenation phases. 

valuation of oxidative stress 

ROS are involved in the pathogenesis and progression of 

ischemia/reperfusion injury, we have evaluated the levels of 

n vivo model an indirect method based on the assessment of lipid 

, and for the in vitro model the fluorescent probe

dichlorofluorescein that consent a direct dosage of the ROS. The obtained 
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of the damage of cell membranes and its release 

damage leads to a necrotic death 

subjected to OGSD/reoxygenation experiments, 

data regarding the release of cTpI and MYO, as a 

We have also evaluated by western 

(figure 33). In our 

nfirming that the cell 

not involved the apoptotic 
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was detected after hypoxia and subsequent reoxygenation phases.   
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the levels of oxidative stress 

based on the assessment of lipid 

model the fluorescent probe 2',7'-

he obtained data, 



                                                                                                      
 

 

90 

in accordance with the results on cell viability, showed a strong increase of 

lipid peroxidation after 90 minutes of ischemia and subsequent 24 hours of 

reperfusion, compared to the sham (4 and 5 folds respectively), whereas no 

significant variation was evidenced following 30 minutes of ischemia and 

successive reperfusion (figure 34). 
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Figure 34. Evaluation of the oxidative stress by assessment of MDA 
production. Data are expressed as percentage compared to the sham.  
*** p< 0.001 vs sham. 
 

 

These results were confirmed in the in vitro model which clearly showed an 

increase of ROS levels during OGSD and reoxygenation phases starting from 

long periods (6 hours) of hypoxia whereas no significant variation of ROS 

production were showed in cells subjected to short periods (up 3 hours) of 

hypoxia (figure 35). 
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Figure 35. Evaluation of ROS production by 2',7'-dichlorofluorescein. Data are 
expressed as percentage compared to the control.  
* p < 0.05 vs CTRL; *** p< 0.001 vs CTRL; °°° p< 0.001 vs OGSD. 
 

 

4.5 RNA-binding activity of IRPs  

As previously described, the iron is involved in the ROS production, and for 

this reason we evaluated the activity and the expression of the main proteins 

implicated in the homeostatsis of this metal, such as the Receptor of 

Transferrin 1 (TfR1), ferritin and the Iron Regulatory Proteins (IRPs). RNA-

band shift experiments, conducted on protein samples from rat hearts subjected 

to ischemia for 30 and 90 minutes and subsequent 24 hours of reperfusion, 

showed a significant decrease (~50%, compared to the sham) of RNA-binding 

activity of IRP1 after 90 minutes of ischemia, followed by a remarkable 
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increase (~ 4 folds, compared to the ischemic samples) during the reperfusion 

phase, whereas no significant variation was showed during 30 minutes of 

ischemia and subsequent reperfusion (figure 36).  
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Figure 36. The RNA-binding activity of IRPs evaluated by EMSA. Data are 
expressed as percentage compared to the sham.  
*** p < 0,001 vs sham; °°° p < 0,001 vs ischemia. 
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To determine the total amount of IRP1 RNA-binding activity, 2-

mercaptoethanol was added to the binding reaction before the addition of 32P-

labelled IRE to reveal ‘‘latent’’ IRP1 RNA-binding activity, thus giving the 

total amount of IRP1 activity (100% of IRE-binding). To evaluate whether the 

modulation of IRP1 RNA-binding activity was caused by a variation of IRP1 

protein content after ischemia/reperfusion injury, we also analysed the 

cytosolic levels of this protein. As shown in figure 37, immunoblot analysis did 

not show any appreciable variations in the amounts of IRP1 protein in all the 

examined samples, suggesting that the ischemia/reperfusion injury caused a 

regulation of RNA-binding activity of IRP1 without affecting the protein 

expression. 
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Figure 37. Expression, evaluated by Western blot, of IRP1 in heart rat samples 
exposed to 30 and 90 minutes of ischemia and subsequent 24 hours of 
reperfusion. Data are expressed as percentage compared to the control.  
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4.6 Ferritin and TfR1 expression  

Based on the results of RNA-binding activity of IRPs, we analyzed under the 

same experimental conditions, the expression of the main proteins regulated at 

post-transcriptional level by the Iron Regulatory Proteins (IRPs), such as 

ferritin and Transferrin Receptor 1 (TfR1), shown in figure 38. 
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Figure 38. Expression of TfR1 and ferritin after 30 minutes of ischemia and 
subsequent reperfused phase of 24 hours. Data are expressed as percentage 
compared to the sham. ** p < 0,01 vs sham; °°° p < 0,001 vs ischemia. 
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In rat hearts subjected to 30 minutes ischemia and subsequent 24 hours of 

reperfusion we observed slight decrease of TfR1 expression after ischemia, 

followed by a small increase during the reperfusion phase, whereas no 

alteration was shown in cytosolic levels of ferritin in both ischemic and 

reperfusion phases. 
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Figure 39. Expression of TfR1 and ferritin after 90 minutes of ischemia and 
subsequent 24 hours of reperfusion. Data are expressed as percentage 
compared to the sham. *** p < 0,001 vs sham; °°° p < 0,001 vs ischemia. 
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TfR1 levels after ischemia and a remarkable increase during reperfusion phase. 

Moreover, no variation was shown in cytosolic levels of ferritin after 90 

minutes of ischemia, whereas a significant 

during the subsequent 24 hours reperfusion.

consistent with changes in binding activity of IRP1 and suggest an increase in 

intracellular levels of iron, in particular during reperfusion after a period of 90 

minutes of ischemia. 

Moreover, in order to confirm that 

these proteins are effectively due to

alterations of the expression of TfR1, ferritin and IRP1 in the

normally sprinkled with the blood flow.

not reveal alterations in the expression of these proteins, thus demonstrating 

that the changes seen 

 

 
Figure 40. Evaluation of the TfR
blot in the right ventricle (no ischemic ventricle) after 30 and 90 minutes of 
ischemia. Data are expressed as percentage compared to the sham.
 

 

                                                                                                      
 

On the contrary, in rat hearts subjected to 90 minutes of 

subsequent reperfusion (figure 39), we observed a significant reduction of 

TfR1 levels after ischemia and a remarkable increase during reperfusion phase. 

o variation was shown in cytosolic levels of ferritin after 90 

minutes of ischemia, whereas a significant reduction of this protein was shown 

during the subsequent 24 hours reperfusion. These data are substantially 

consistent with changes in binding activity of IRP1 and suggest an increase in 

intracellular levels of iron, in particular during reperfusion after a period of 90 

tes of ischemia.  

n order to confirm that the possible changes in the expression of 

proteins are effectively due to ischemic injury, we also evaluated possible 

alterations of the expression of TfR1, ferritin and IRP1 in the

normally sprinkled with the blood flow. The results, shown in fi

not reveal alterations in the expression of these proteins, thus demonstrating 

that the changes seen in the left ventricle can be attributed to ischemic damage.

Evaluation of the TfR1, ferritin and IRP1 expression by Western 
blot in the right ventricle (no ischemic ventricle) after 30 and 90 minutes of 

Data are expressed as percentage compared to the sham.

96 

of ischemia and 

we observed a significant reduction of 

TfR1 levels after ischemia and a remarkable increase during reperfusion phase. 

o variation was shown in cytosolic levels of ferritin after 90 

otein was shown 

These data are substantially 

consistent with changes in binding activity of IRP1 and suggest an increase in 

intracellular levels of iron, in particular during reperfusion after a period of 90 

changes in the expression of 

ischemic injury, we also evaluated possible 

alterations of the expression of TfR1, ferritin and IRP1 in the right ventricle, 

The results, shown in figure 40, did 

not reveal alterations in the expression of these proteins, thus demonstrating 

ted to ischemic damage. 

 

and IRP1 expression by Western 
blot in the right ventricle (no ischemic ventricle) after 30 and 90 minutes of 

Data are expressed as percentage compared to the sham. 
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4.7 LIP evaluation in an in vitro model of hypoxia and 
reoxygenation conditions 
 

On the basis of this results it is possible to speculate that the altered expression 

of ferritin and TfR1, observed after a prolonged ischemia/reperfusion phase, 

could lead to an increase of intracellular iron content.  In order to confirm this 

hypothesis, using an in vitro model of hypoxia/reoxygenation, we evaluated the 

intracellular levels of the “Labile Iron Pool”. The data, depicted in the figure 

41, shown a strong increase of the cellular levels of iron, in particular after the 

reoxygenation phase.   
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Figure 41. LIP extension in H9c2 cell line exposed to 3 and 6 hours of 
hypoxia/reoxygenation phase. Data are expressed as percentage compared to 
the control.  
* p < 0.05 vs CTRL; **p < 0,01 vs CTRL; ° p< 0.05 vs OGSD;  
°° p < 0,01 vs OGSD; °°° p< 0.001 vs OGSD. 
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These results support the hypothesis of an increase in iron levels in cardiac 

cells, in particular during reperfusion subsequent to long periods of ischemia, 

and can explain the greatest damage suffered by cardiomyocytes after 

prolonged periods of ischemia. The increased availability of iron to participate 

in the Fenton reaction after long periods of ischemia/hypoxia, may explain the 

increased production of ROS, and the largest loss of cell viability observed in 

these conditions compared to that obtained after brief period of 

ischemia/hypoxia. In order to confirm the role of iron in the ROS production 

and then its role in the progress of hypoxic/ischemic injury, we conducted 

experiments in which H9c2 cells were treated with 100 µM SIH 

(Salicylaldehyde Isonicotinoyl Hydrazone), as a strong iron chelator, and then 

exposed to 6 hours of hypoxia and subsequent reoxigenation phases, because is 

at this time that we observed a strong ROS increase and a greater reduction of 

cell viability. For these experiments we chose the concentration of 100 µM, 

because it is the highest not toxic concentration of SIH, as it is evident through 

cell viability experiments conducted on H9c2 cells subjected for 1 hour to 

increasing concentrations of SIH shown in figure 42. 
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Figure 42. Evaluation of cell viability after treatment with different 
concentration of SIH. Data are expressed as percentage compared to the 
control. *** p < 0,001 vs CTRL. 
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As shown in the figure 43, we observed a significant reduction of ROS 

production in iron starved cells exposed to hypoxia/reoxigenation conditions, 

resulting in an improvement in cell viability (figure 44). 
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Figure 43. ROS production during hypoxia/reoxygenation conditions, with or 
without SIH 100 µM. Data are expressed as percentage compared to the 
control.  
*** p < 0,001 vs CTRL; °°° p < 0,001 vs OGSD;  
••• p< 0.001 vs Rx 3h; ++ p < 0,01 vs Rx 24h. 
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Figure 44. Cell viability after hypoxia and reoxygenation conditions, with or 
without SIH 100 µM. Data are expressed as percentage compared to the 
control.  
***p < 0,001 vs CTRL;  °°° p < 0,001 vs OGSD; ••• p < 0.001 vs Rx 3h. 
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These results demonstrate that a important portion of ROS, produced during 

hypoxia is iron-dependent, confirming still again that this metal is directly 

involved in the development of ischemia/reperfusion injury. 

 

4.8 In vitro Simvastatin effects on hypoxia/reoxigenation 
injury 
 

It has been suggested that statins may exert effects separate from their 

cholesterol-lowering actions, including promotion of endothelial NO synthesis 

(Vaughan et al., 1996).  

Therefore, we tested the hypothesis that a clinically relevant dose of a widely 

used statin could exert an ameliorating effect on reperfusion injury in our in 

vitro  model of myocardial ischemia-reperfusion.  

Based on the above considerations, it was evaluated the cytoprotective effects 

of Simvastatin on the expression of protein such as NOS, (involved in the 

production of nitric oxide, that can interact with O2
•– to form peroxynitrite, a 

potent mediator of cell damage), on the ROS production and then on the cell 

viability in rat cardio-myoblasts subjected to hypoxia and reoxigenation 

conditions, as described in the Material and Methods section.  

Considering the close relationship between the ROS production and iron, it was 

also evaluated the effects of Simvastatin on the iron metabolism, in particular 

assessing the LIP extension and the expression of protein such as Transferrin 

Receptor 1 and ferritin. 
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4.8.1. Simvastatin cytotoxicity  

As reported in literature [Medina et al., 2008], the treatment with Simvastatin 

induce a biphasic dose-related response. Medina and colleagues demonstrated 

that in retinal microvascular endothelial cells (RMECs) low concentrations 

(0,01-0,1µM) of Simvastatin, significantly promoting cell proliferation, 

whereas high concentration of Simvastatin (10 µM) had the opposite effect, 

and that Simvastatin induced cell death at concentrations higher than 1 µM. On 

these bases we evaluated the cytotoxic effect of Simvastatin on H9c2 cells, by 

MTT assay (figure 45).  
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Figure 45. Cell viability after treatment with different concentrations of 
Simvastatin, at 12, 24 and 48 hours. Data are expressed as percentage 
compared to the control.  
* p < 0.05 vs CTRL; **p < 0,01 vs CTRL; *** p< 0.001 vs CTRL. 
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We treated H9c2 cells with 0,01-10µM Simvastatin for 12, 24 and 48 hours. 

The results, shown a reduction of cell viability at concentrations higher than 1 

µM after 24 and 48 hours of exposition with Simvastatin, whereas after 48 

hours, Simvastatin was toxic at concentration higher than 0,1 µM. 

Therefore, to evaluate possible cytoprotective effects of Simvastatin during 

hypoxia and reoxygenation conditions, we chose to expose H9c2 cells with 

0,01 µM of Simvastatin for 24 hours, and then we subjected the same cells to 6 

hours of hypoxia and subsequent reoxygenations, keeping constant the dose of 

the drug during hypoxia and reoxygenation phases.  

 

4.8.2 Effects of Simvastatin on iNOS expression and NO  
production 
 

Regarding the nitric oxide (NO) metabolism, it was evaluated, during 

hypoxia/reoxigenation conditions and after treatment with Simvastatin, the 

expression of iNOS that is able to produce high levels of NO.  

The results shown that Simvastatin treatment strongly reduced the high levels 

of iNOS (figure 46), which expression, as reported in literature and confirmed 

in our conditions, is induced during hypoxia and the subsequent reoxigenation 

phases. 

This result was reflected by the nitrites level (figure 47) that was increased 

after hypoxia/reoxigenation phases, and that was significantly reduced after 

treatment with Simvastatin, in accordance with the iNOS expression. In this 

experiments the H9c2 cells were treated also with LPS 100 µM, as positive 

control,  in order to show the higher concentration of nitrites in this cell line. 
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Figure 46. iNOS expression, evaluated by Wester
reoxygenation conditions, with or without Simvastatin 0,01 µM. 
*** p < 0.001 vs CTRL;  °°° p < 0.001 vs OGSD;  ++ p < 0.01 vs Rx 24h.
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Figure 47. Nitrites dosage during hypoxia/reoxygenation 
without Simvastatin 0,01 µM. Data are expressed as µM of nitrites produced 
by the cells.  
*** p < 0.001 vs CTRL; °°° p < 0.001 vs OGSD; ••• p < 0.001 vs Rx 3h.
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blot, during hypoxia and 
reoxygenation conditions, with or without Simvastatin 0,01 µM.  
*** p < 0.001 vs CTRL;  °°° p < 0.001 vs OGSD;  ++ p < 0.01 vs Rx 24h. 

     

conditions, with or 
without Simvastatin 0,01 µM. Data are expressed as µM of nitrites produced 

*** p < 0.001 vs CTRL; °°° p < 0.001 vs OGSD; ••• p < 0.001 vs Rx 3h. 
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4.8.3 Simvastatin effects on ROS production during 
hypoxia/reoxygenation conditions 
 

Because statins shown a “pleiotropic” effect that could reduce the oxidative 

stress, we evaluated the ROS production in H9c2 cells treated with Simvastatin 

and then exposed to hypoxia/reoxigenation conditions.  

The obtained data shown a significant increase of ROS levels during hypoxia, 

as previously demonstrated,  levels that remained elevated in the following 

reoxygenation phases (see figure 48).  

Interestingly, the treatment with Simvastatin determined a decrease of ROS 

production, constantly observed either in hypoxia that in reoxigenation 

conditions. 
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Figure 48. Evaluation of   ROS production during hypoxia/reoxygenation 
condition, with or without Simvastatin 0,01 µM. Data are expressed as 
percentage compared to the control. 
 *** p < 0.001 vs CTRL;  °°° p < 0.001 vs OGSD;  ••• p < 0.001 vs Rx 3h;  
 ++ p < 0,01 vs Rx 24h. 
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4.8.4 Effect of Simvastatin on cell viability in the 
hypoxia/reoxygenation damage 
 

The results previously described, shown a reduction of the nitrites levels and 

ROS that are the principal mediators of the ischemic injury.  

In this contest it was evaluated also the effects of Simvastatin on the cell 

viability. The data, shown an improvement of cell viability (figure 49), in 

agreement with the reduced production of nitrites and ROS.  
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Figure 49. Cell viability during hypoxia and subsequent reoxygenation phase, 
with or without Simvastatin 0,01 µM. Data are expressed as percentage 
compared to the control.  
*** p < 0.001 vs CTRL; °°° p < 0.001 vs OGSD; •• p < 0.01 vs Rx 3h. 
 

 

In detail, it was observed a recovery of cell viability, in particular after hypoxia 

and during the 3 hours of reoxigenation phases, whereas a less evident 

recovery was observed during the 24 hours of reoxigenation phase. This result 

can be explained because during the 24 hours of reperfusion phase, subsequent 

to 6 hours of hypoxia, as previously described, the cells are still able to recover 

from the hypoxic damage. 



                                                                                                     

 

4.8.5 Effects of Simvastatin on iron homeostasis 

As demonstrated above, iron is involved in the progression of 

ischemia/reperfusion injury catalyzing the production of ROS. Because 

results demonstrated that Simvastatin can reduce the ROS production in H9c2 

cells subjected to hypoxia/
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Figure 50. TfR1 
without Simvastatin 0,01 µM. Data 
the control. 
** p < 0,01 vs CTRL; 
+++ p < 0,001 vs Rx 24h. 
 

                                                                                                      
 

Effects of Simvastatin on iron homeostasis 

As demonstrated above, iron is involved in the progression of 

chemia/reperfusion injury catalyzing the production of ROS. Because 

results demonstrated that Simvastatin can reduce the ROS production in H9c2 

cells subjected to hypoxia/reoxugenation conditions, we decided to investigate

whether Simvastatin can affect the cellular iron homeostasis. 

the effect of Simvastatin on the expression of protein such as ferritin 

and TfR1, and also on the LIP extension. The obtained results

changes in TfR1 expression (figure 50), while of great interest are 

the effects of Simvastatin on the expression of ferritin. 
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without Simvastatin 0,01 µM. Data are expressed as percentage compared to 
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Effects of Simvastatin on iron homeostasis  

As demonstrated above, iron is involved in the progression of 

chemia/reperfusion injury catalyzing the production of ROS. Because our 

results demonstrated that Simvastatin can reduce the ROS production in H9c2 

reoxugenation conditions, we decided to investigate 
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Figure 51. Ferritin expression after hypoxia/reoxygenation conditions, with or 
without Simvastatin 0,01 µM. Data are expressed as percentage compared to 
the control. *** p < 0.001 vs CTRL;  °°° p < 0.001 vs OGSD.
 

 

These results are in accordance with the 
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it was observed a strong increase of ferritin levels exclusively

treated with Simvastatin and then exposed to hypoxia, whereas no significant 

observed in all the other phases of the experiment 
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Ferritin expression after hypoxia/reoxygenation conditions, with or 
without Simvastatin 0,01 µM. Data are expressed as percentage compared to 
the control. *** p < 0.001 vs CTRL;  °°° p < 0.001 vs OGSD. 

e results are in accordance with the changes of the LIP extension,

a reduction of the Labile Iron Pool in H9c2 cells subjected to hypoxia and 

treated with Simvastatin (figure 52). 
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exclusively in cells 

ereas no significant 

all the other phases of the experiment (figure 51). 

 

 

Ferritin expression after hypoxia/reoxygenation conditions, with or 
without Simvastatin 0,01 µM. Data are expressed as percentage compared to 

changes of the LIP extension, showing 

in H9c2 cells subjected to hypoxia and 
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Figure 52. Dosage if LIP during hypoxia/reoxygenation damage, with or 
without Simvastatin 0,01 µM. Data are expressed as percentage compared to 
the control.  
** p < 0,01 vs CTRL; *** p < 0.001 vs CTRL; °° p < 0,01 vs OGSD;  
°°° p < 0.001 vs OGSD; •• p < 0,01 vs Rx 3h; +++ p < 0,001 vs Rx 24h. 
 

 

Overall these results demonstrated that the cytoprotective effects of 

Simvastatin, with a consequent improvement of cell viability observed in H9c2 

cells subjected to hypoxia/reoxygenation and treated with Simvastatin, were 

due to: 

• the reduction of peroxynitrite levels, related to the reduced expression 

of iNOS, induced by Simvastatin; 

• a decrease of ROS production determined, at least in part, to a reduced 

LIP extension, and then to a reduced availability of iron to participate in 

the ROS production; 

• finally, the observed reduction in the LIP was essentially related to the 

increased expression of ferritin, induced by the treatment with 

Simvastatin. 
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5. DISCUSSION 
 

There is a growing body of evidence that increased oxidative stress and generation of 

ROS is one of the crucial mechanisms of ischemic cardiomyopathy [Asghar et al., 

2009; Smyth et al., 2010]. In addition, it was indicated that the generation of ROS 

correlated with metal oxidants such as iron [Ward et al., 2010]. The ischemic cardiac 

condition and the subsequent reperfusion, lead to several functional and metabolic 

changes that globally define the so-called “ischemia/reperfusion injury”, in which the 

overproduction of ROS is the main source of cell damage. A key role in the ROS 

production is played by iron through the Haber-Weiss-Fenton reaction. Iron is an 

essential element for the growth and metabolism of all living organisms, however, an 

excess of this metal can be toxic for all cell types, then the iron metabolism must be 

finely regulated. 

To evaluate the role of iron and the molecular mechanisms that regulate the cellular 

iron homeostasis during the cardiac ischemia/reperfusion injury, an in vivo model of   

myocardial infarction/reperfusion was produced in rat by ligation of left anterior 

descending coronary artery, and successive ligature removal, at the end of the 

ischemia period, to obtain a reperfusion phase. We have demonstrated in this in vivo 

model that relatively short periods of ischemia lead to a minimum damage that not 

affects the functions of the cardiac tissue, while longer periods of ischemia induce 

greater damage that alters the normal architecture of myocardial tissue, showing 

edema between muscle fibers and erythrocyte infiltration.  

Concerning the iron metabolism, we demonstrated that 90 minutes of ischemia alter 

IRP1 activity in in vivo model of ischemia/reperfusion injury. In particular, we 
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demonstrated a significant decrease of RNA-binding activity of IRP1 after 90 

minutes of ischemia, followed by a remarkable increase during the reperfusion phase. 

Through the immunoblot analysis of IRP1 levels, that did not show any appreciable 

variations in the amounts of IRP1 protein, we demonstrated that the ischemia caused 

an up-regulation of RNA-binding activity of IRP1 without affecting the protein 

expression.  

In agreement with the altered IRP1 activity, we observed a decrease of TfR1 

expression after ischemia, followed by an increased levels of this protein during the 

reperfusion, especially in rats subjected to 90 minutes of ischemia and subsequent 

reperfusion phase. Respect to the expression of ferritin, no variation was shown in 

the cytosolic levels of this protein after 90 minutes of ischemia, whereas a significant 

reduction of ferritin was shown during the subsequent reperfusion, a result that is 

consistent with altered IRP1 activity. All these results suggest an increase of 

intracellular levels of iron, in particular during reperfusion after a period of 90 

minutes of ischemia. To demonstrate this hypothesis, we decided to evaluate the 

extension of the “Labile Iron Pool” (LIP) in an in vitro model of 

hypoxia/reoxygenation. To this aim, rat cardiomyoblasts (line H9c2) were exposed to 

combined oxygen and glucose deprivation and then to a reoxygenation condition. 

First, we determined the cell viability and ATP production in this model. The 

obtained results show that up to 6 hours of hypoxia and subsequent reoxygenation 

the damage is reversible, emphasizing that the 6 hours of hypoxia could be 

considered a “no return point”, beyond which the damage sustained by the cells 

becomes irreversible. Moreover, measuring the release of LDH enzyme, as a marker 

of the damage of cell membranes, and evaluating the activation of Caspase-3, as a 

marker of apoptosis, we demonstrated that hypoxia leads to a necrotic death of the 
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cells, confirming the in vivo obtained data on cTpI and MYO release, markers of 

necrosis, after ischemic injury. 

Then, we evaluated the LIP extension and we found that the free intracellular iron 

content was strongly increased, in particular during the reoxygenation phase 

subsequent to hypoxia.  

To assess the potential oxidative damages caused by iron, we determined the ROS 

content, both in the in vivo and in the in vitro  cardiac models. The results were in 

accordance with increased LIP extension. In fact, we found  a significant increase of 

ROS levels essentially during prolonged periods of ischemia, levels that remained 

elevated during the subsequent reperfusion. 

Moreover, we conducted experiments in which H9c2 cells were treated with SIH, a 

strong iron chelator, and then exposed to hypoxia/reoxigenation. We observed a 

significant reduction of ROS production, resulting in an improvement in cell 

viability, in iron starved cells exposed to hypoxia/reoxigenation conditions. Thus, we 

demonstrated that an important part of ROS, produced during ischemic/reperfusion 

conditions is iron-dependent and that therefore this metal is directly involved in the 

development and in the progress of ischemic injury. 

In addition, my study was focused on the so-called “pleiotropic” effects of statins, in 

particular on the anti-inflammatory and antioxidant activities of these drugs, that 

could  ameliorate the reperfusion injury,  as suggested by their promotion of 

endothelial NO synthesis (Vaughan et al., 1996). Therefore, we tested this hypothesis 

in our in vitro  model of myocardial ischemia/reperfusion.  We investigated the 

cytoprotective effects of Simvastatin on H9c2 cells exposed to 6 hours of hypoxia 

and subsequent reoxigenation. The obtained results demonstrated that Simvastatin 

improved cell viability by distinct mechanisms: 
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• Simvastatin reduced the expression of iNOS, strongly induced during 

ischemia, and the levels of peroxynitrite, one of the key mediators of cell 

damage; 

• Simvastatin decreased the production of ROS, strongly implicated in the 

ischemic injury; 

• Simvastatin reduced LIP extension, leading to a reduced availability of iron 

to participate in the ROS production; 

• Simvastatin induced an increase of ferritin expression, in particular during 

hypoxic conditions, in agreement with the reduced LIP extension and ROS 

production, thus explaining the improvement of cell viability, observed after 

treatment with this drug. 

In conclusion these results not only clarify the role that iron plays in the progression 

of ischemic injury, but also highlight how proteins that regulate the homeostasis of 

this metal, such as ferritin, may be targets of drugs such as Simvastatin, which could 

be used in the prevention of oxidative damage induced by ischemic conditions. 

Should this be the case, a new horizon as an antioxidant opens for Simvastatin. 
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