
Università degli Studi di Napoli
Federico II

Generalized Boosted Additive Models

Sonia Amodio

Tesi di Dottorato di Ricerca in
Matematica per l’Analisi Economica e

la Finanza

XXIII Ciclo

Generalized Boosted Additive Models

Napoli, 30 novembre 2011

III

Ringraziamenti

É difficile in poche righe ricordare e ringraziare tutte le persone che
mi sono state vicino durante questo mio percorso formativo.
Desidero ringraziare il mio tutor, il Dr. Antonio D’Ambrosio, per
avermi sempre supportato durante questi anni.
Un ringraziamento particolare va alla Prof. Roberta Siciliano, che mi
ha sempre fornito ottimi spunti di riflessione e preziosi consigli.
Grazie al Dr. Massimo Aria per avermi tante volte ascoltato, confort-
ato e consigliato.
Grazie a tutti i membri del Dipartimento di Matematica e Statistica
ed ai colleghi dottorandi.
Un ringraziamento particolare va alla Prof. Jacqueline Meulman che
mi ha insegnato cosa vuol dire avere metodo e fare ricerca.
Un sentito ringraziamento va alla Dr. Anita van der Kooij, sotto la cui
guida ho sviluppato le mie abilità di programmazione e a tutti i mem-
bri dell’Istituto di Matematica dell’Università di Leiden, per avermi
accolto e fatto sentire come a casa.
Ma, sopratutto, un ringraziamento va alla mia famiglia che mi ha sup-
portato e sopportato con infinita pazienza e amore in questi anni.

V

ai miei genitori

VI

Contents

Introduction 1

1 Generalized Additive Models 5
1.1 Introduction . 5
1.2 Nonparametric Regression 6

1.2.1 Smoothing methods 7
1.2.2 Span selection and the Bias-Variance Tradeoff . 19
1.2.3 Curse of dimensionality 20

1.3 Additive Models . 21
1.4 Generalized Additive Models 24
1.5 Degeneracy in GAMs: concurvity 27
1.6 An illustration . 30

2 Nonlinear categorical regression 35
2.1 Introduction . 35
2.2 Optimal scaling . 36

2.2.1 Monotonic splines 39
2.3 Nonlinear regression with optimal scaling 41
2.4 An illustration . 45

VII

Contents

3 Generalized Boosted Additive
Models 63
3.1 Introduction . 63
3.2 Generalized Boosted Additive Models 63
3.3 Simulations . 66
3.4 Real data analysis . 72

Conclusions 79

A R codes 81
A.1 Catreg . 81

A.1.1 Algorithm for data normalization 81
A.1.2 Algorithm to compute knots from data 81
A.1.3 Algorithm to compute integrated m-splines . . . 82
A.1.4 Backfitting – inner loop 86
A.1.5 Catreg function 88
A.1.6 Algorithm for plotting transformations 91

A.2 Boosted Additive Models 93
A.2.1 Algorithms for implementing boosted additive

models when cross validation is required 93
A.2.2 Algorithm for boosted additive model 99

VIII

List of Tables

1.1 Kernel functions . 14

1.2 Estimating an additive model using the backfitting al-
gorithm . 23

1.3 General local scoring algorithm. 28

1.4 Eigenvalues and tolerance of independent variables . . 30

2.1 Backfitting algorithm for nonlinear regression with op-
timal scaling . 46

2.2 Boston Housing dataset 47

2.3 Eigenvalues of the correlation matrix and tolerance of
the predictors . 48

2.4 Regression coefficients of the model which considers only
numerical transformations of all predictors 49

2.5 Coefficients of the model considering a nominal spline
transformation (2,2) for predictor AGE and numerical
transformation for all the other predictors 51

2.6 Coefficients of the model considering a nominal trans-
formation for predictor AGE and INDUS and numerical
transformation for all the others predictors 55

IX

List of Tables

2.7 Eigenvalues of the correlation matrix and tolerance val-
ues before and after applying nominal transformations
on AGE and INDUS 58

2.8 Coefficients of the model considering a nominal trans-
formation for AGE and INDUS, and an ordinal trans-
formation for LSTAT (numerical transformation for all
others predictors) . 59

3.1 Eigenvalues and tolerance for simulated dataset, 5 pre-
dictors . 66

3.2 EPE and APE and respective standard errors for dif-
ferent boosted models, simulation with five predictors . 67

3.3 Eigenvalues and tolerance for simulated dataset, 5 pre-
dictors . 68

3.4 Eigenvalues and tolerance for simulated dataset, 13 pre-
dictors . 69

3.5 EPE and APE and respective standard deviation for
different boosted models, simulation with thirteen pre-
dictors . 70

3.6 Eigenvalues and tolerance for simulated dataset, 13 pre-
dictors . 71

3.7 Real dataset, data description 73
3.8 Eigenvalues of the correlation matrix and tolerance val-

ues, real dataset . 74
3.9 EPE and APE and respective standard deviation for

different boosted models, real data 75
3.10 Eigenvalues and tolerance values before and after each

prediction component is added into the model, real data 77

X

List of Figures

1.1 Example of regressogram: Prestige data from R package
car. The number of bins is 10 and binwidth is equal to
0.96. 9

1.2 Example of symmetric running-mean: Prestige data
from R package car. Span is equal to 0.088 (k = 4). . . 11

1.3 Example of symmetric running-line: Prestige data from
R package car. Span is equal to 0.088 (k = 4). 13

1.4 Example of Gaussian Kernel estimator: Prestige data
from R package car. 15

1.5 Example of cubic spline estimator: Prestige data from
R package car. Smoothing parameter is 0.86 17

1.6 Example of Lowess estimator: Prestige data from R

package car. 18

1.7 Additive model that relates the outcome variable to the
predictors. Each plot represents the contribution of a
term to the additive predictor. The ‘y-axis’ label repre-
sents the expression used to specify the corresponding
contribution in the model formula. 32

XI

List of Figures

1.8 True function of the effect of predictor x on the outcome
variable . 33

2.1 Standardized partial linear residuals versus standard-
ized predictor AGE. The line represents the standard-
ized nominal transformation of predictor AGE 52

2.2 Standardized partial linear residuals versus standard-
ized transformation of predictor AGE. 53

2.3 Standardized partial linear residuals versus standard-
ized predictors, AGE and INDUS. The lines in these
plots represent the standardized nominal transforma-
tions of AGE and INDUS, respectively. 56

2.4 Standardized partial linear residuals versus standard-
ized transformations of predictors AGE and INDUS. . . 57

2.5 Standardized partial residuals versus standardized pre-
dictors, AGE, INDUS and LSTAT. The lines in these
plots represent, respectively, the standardized nominal
transformations for predictors AGE and INDUS, and
standardized ordinal transformation for predictor LSTAT. 60

2.6 Standardized partial residuals versus standardized trans-
formations of AGE(nominal), INDUS(nominal) and LSTAT(ordinal). 61

XII

Introduction

This monograph is focused on nonparametric nonlinear regression and
additive modeling.

Regression analysis is a central method of statistical data analysis.
Linear regression concerns the conditional distribution of a dependent
variable, Y , as a function of one or more predictors, or independent
variables. The main characteristics of this model are its parametric
form and the hypothesis that the underlying relationship between the
outcome and the predictors is linear. For this reason this method is
often inappropriate to model this relationship when it is characterized
by complex nonlinear patterns and it can fail to capture important
features of the data.
In such cases, nonparametric regression, which allows to determine the
functional form between the dependent variable, Y , and the explica-
tive variables by the data themselves, is more suitable. Hence, non-
parametric methods become increasingly popular and apply to many
area of research and practical problems. These methods show a great
flexibility compared to parametric ones, but they also present an im-
portant drawback known as curse of dimensionality, which involves

1

Introduction

that the precision of the estimates obtained via these methods is in
inverse proportion to the number of explicative variables that are in-
cluded in the model.

To overcome this problem Generalized Additive Models (GAM) were
introduced. GAMs are based on the assumption that the conditional
value of the outcome variable can be expressed as the sum of a certain
number of univariate nonlinear functions, one for each predictor that
is included in the model. One major concern to the use of the GAM
is, therefore, when concurvity is present in the data. Concurvity can
be defined as the presence of nonlinear dependencies among transfor-
mations of the explanatory variables considered in the model. One of
the most common case of concurvity directly follows from the presence
of collinearity among the untransformed predictors. In the context of
generalized additive models the presence of concurvity leads to biased
estimates of the model parameters and of their standard errors.

For such reasons we explore an alternative class of models, CATREG,
based on the Regression with Transformation approach, applying the
optimal scaling methodology as presented in the Gifi system. When
we use this class of models in the presence of collinearity among un-
transformed predictors, applying nonlinear transformations through
optimal scaling implies that interdependence among these predictor
decreases.
Moreover in the framework of nonlinear regression with optimal scal-
ing, we follow the approach proposed by Meulman (2003) of consid-
ering models in which, applying the basic idea of a forward stagewise
boosting procedure, we introduce in the model nonlinear prediction
components in a sequential way with the aim of improving the predic-
tive power of the model itself. We call this approach the Generalized
Boosted Additive Model (GBAM).

2

Introduction

This monograph is structured as follows.
In first chapter we explore nonparametric regression models and their
methodological framework. This chapter deals also with (Generalized)
Additive Models, focusing on their advantages and limitations.
The second chapter is about nonlinear regression with optimal scal-
ing and its theoretical context. In this chapter we focus on the fact
that when collinearity is present in the data, applying nonlinear trans-
formations via optimal scaling on the predictor results in decreasing
the interdependence among them and we present some illustrations
through real data analysis.
The third chapter is about Generalized Boosted Additive Models. Af-
ter presenting their theoretical background, we show, through the
use of simulations and the analysis of a real dataset, that in case of
collinearity among predictors, which implies the presence of approxi-
mate concurvity among nonlinear transformations of these explicative
variables, the proposed strategy leads to a solution that is a huge
improvement compared to the linear model in terms of expected pre-
diction error. At the same time, the use of prediction components
in GBAM has the advantage of reducing the computational burden
by decreasing the number of iterations required in each step of the
procedure significanlty.

3

Chapter 1

Generalized Additive Models

1.1 Introduction

Regression analysis is a central method of statistical data analysis. By
extension and generalization, it provides the basis for much of applied
statistics.
Regression analysis concerns the conditional distribution of a response,
or dependent variable, Y , as a function of several predictors, or inde-
pendent variables. The object is to estimate the the regression coeffi-
cients {βj}p1 of the model.
The expected value of the dependent variable is, for this reason, ex-
pressed as a linear combination of the predictors and the parameters
in the model.

E(Y |x) = β1x1 + β2x2 + ...+ βpxp = xTβ (1.1)

where E(y|x) is the expected value of y and depends on the partic-
ular realization of the vector xT = (x1, x2, ..., xp)

T . If we define ε as
the difference between the dependent variable Y and its conditional

Generalized Additive Models

expected value E(Y |x):

ε = Y − E(Y |x) (1.2)

we can write the model as:

Y = xTβ + ε (1.3)

The main characteristics of this model are the parametric form (i.e.
the regression function is completely determined by the unknown pa-
rameters, βj) and the hypothesis of a linear relationship between the
dependent variable and the predictors.

Given a sample, the estimation of the parameters in the model is
usually obtained by least squares.

1.2 Nonparametric Regression

If we suppose that the relationship between the dependent variable
and the predictors is completely described by a generic function m(·),
which can be either linear or nonlinear, the regression model can be
expressed in the following way:

E(Y |x1, x2, ..., xp) = m(x1, x2, ..., xp) (1.4)

The model in equation (1.4) is known as nonlinear regression.
The object of nonparametric regression is to estimate the regres-

sion function m(·) directly, rather than to estimate parameters. Most
methods of nonparametric regression implicity assume that m(·) is a
smooth, continuous function.
The precision of the estimates obtained via this kind of models is in
inverse proportion to the number of predictors which are included in
the model. This problem is known as curse of dimensionality [2, 29].
The relationship between the dependent variable and the independent

6

1.2. Nonparametric Regression

variables can be graphically represented by a surface whose dimensions
depend on the number of predictors that are included into the model.
In general smoothing techniques used in nonparametric regression are
based on the idea of locally averaging the data to obtain an estimate
of the mean response curve.
Suppose that we want to estimate the following model:

E[Y |(x1, x2)] = m(x1, x2)

and suppose that m(·) is a smooth function.
These smoothing techniques give an estimate of the function m(·) in

an arbitrary point (x1 = s, x2 = e) using a local weighted average of the
values of the dependent variable, Y , that correspond to some values of
the independent variables that are situated in a small neighborhood of
the arbitrary point that has coordinates equal to (s, e). This weighted
average is characterized by a proximity concept: the values of Y receive
a higher weight if the correspondent couple of values of x1 and x2
are closer to the point (s, e), otherwise they receive a lower weight.
The outcome of this non-parametric model characterized by only two
predictors will be the approximation of a scatterplot in a 3-dimensional
space with a surface. Formally this local weighted average procedure
can be defined as:

m̂(x) =
1

n

n∑
i=1

wi(x)Yi (1.5)

where w denotes a sequence of weights that may depend on the com-
plete vector xT . Section 1.2 describes some of the most important
smoothing methods that fall into the class of linear smoothers.

1.2.1 Smoothing methods

According to the definition in [55], an estimator f̂n of f is a linear
smoother if, for each x, there exists a vector l(x) = (l1(x), ..., ln(x))T

7

Generalized Additive Models

such that

f̂n(x) =
n∑
i=1

li(x)Yi (1.6)

If we define the vector of fitted values as f̂ = (f̂n(x1), ..., f̂n(xn))T ,
where y = (Y1, ..., Yn)T , then follows that:

f̂ = Sy (1.7)

where S is the n × n smoothing matrix, whose i -th row is l(xi)
T , the

effective Kernel for estimating f(xi), contains the weights given to
each Yi in forming the estimate f̂n(xi). Note that the smoother matrix,
S, depends on the dependent variables, as well as on the smoother, but
not on Y . The trace of the smoothing matrix represents the degrees
of freedom of the linear smoother. The simplest linear smoother is
the Regressogram [77]. Suppose that all the predictor values are
included in the interval (a, b), a ≤ xi ≤ b, i = 1, ..., n. If we divide this
interval into m equally spaced bins, bj, j = 1, ...,m, and define

f̂n(x) =
∑
i:xi∈bj

li(x)Yi, for x ∈ bj, (1.8)

where li(x) = 1
nj

if xi ∈ bj, 0 otherwise, and ni is the number of points

included into bj, then the estimate f̂n is a step function obtained by
averaging the Yi in each bin (note that in this case we are assigning
equal weights to each observation that falls into a certain bin). The

binwidth h = (b−a)
m

controls the smoothness of the estimate (the higher
the h, the smoother the estimate).

A way to improve the estimate obtained from the regressogram
is to consider overlapping regions, instead of disjoint and exhaustive
regions. This is the main idea of two other simple smoothers, the
Running-mean smoother and the Running-line smoother.

8

1.2. Nonparametric Regression

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

● ●

●

●

●

●

6 8 10 12 14 16

20
40

60
80

education

pr
es

tig
e

Figure 1.1: Example of regressogram: Prestige data from R package
car. The number of bins is 10 and binwidth is equal to 0.96.

9

Generalized Additive Models

The running-mean smoother, also known as nearest neighborhood,
produces a fit at the target point x by averaging the data points in a
neighborhood Ni around x. Conversely to the regressogram, the width
of the neighnorhood is variable and not fixed. In other words, the val-
ues of the dependent variable, Y , that are considered to calculate the
mean, are those which correspond to the k values of the independent
variable X that are closer to the target point. More formally,

f̂(xi) =
1

n

∑
j∈N(xi)

Yj. (1.9)

The neighborhoods that are commonly used are symmetric nearest
neighborhoods consisting of the nearest 2k + 1 points:

N(xi) = {max(i− k, 1), ..., i− 1, i, i+ 1, ...,min(i+ k, n)}. (1.10)

Therefore the k parameters control the smoothness of the estimate: a
large value of k will produce smoother curves, whereas a small value
will produce more jagged estimates. We set w = (2k+1)

n
, which repre-

sents the proportion of points that are included in each neighborhood.
The proportion w is called the span and controls the smoothness of
the estimate (the larger the span, the smoother the functions). Even
though this smoother is simple in practice, it tends to be wiggly and
to flatten out trends near the endpoints, so it can be severly biased.

A simple generalization of the running-mean smoother is the running-
line smoother. This smoother fits a line by ordinary least squares to
the data in a symmetric nearest neighborhood Ni around each xi. The
estimated smooth at xi is the value of the fitted line at xi:

f̂(xi) = α̂(xi) + β̂(xi)xi, (1.11)

where α̂(xi) and β̂(xi) are the coefficients obtained by ordinary least
squares in the neighborhood of xi. The parameter k that indicates

10

1.2. Nonparametric Regression

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

● ●

●

●

●

●

6 8 10 12 14 16

20
40

60
80

education

pr
es

tig
e

Figure 1.2: Example of symmetric running-mean: Prestige data from
R package car. Span is equal to 0.088 (k = 4).

11

Generalized Additive Models

the number of points included in the neighborhood, as in the previous
case, determines the shape of the estimate. Moreover, also in this
case the span w = (2k+1)

n
indicates the proportion of points in each

neighborhood. In the extreme case, if w = 2, each neighborhood
contains all the data, the running-line smoother is the least square
line, while if w = 1

n
, each neighborhood contains just one data point

and the smoother interpolates the data. The running-line smoother
is considered to be an improvement over the running-mean because it
reduces the bias near the endpoints. But also this smoother, like the
other examined up to this point, can produce jagged curves, because it
assigns equal weights to all the points included in a given neighborhood
and zero weight to points outside the neighborhood.

Differently from the smoothers presented up to this point, Ker-
nel smoothers refine moving average smoothing through the use of a
weighted average. In other word, they explicitly use a specified set
of weigths Wi, defined by the kernel, to obtain an estimate at each
target value: they describe the shape of the weight function by a den-
sity function with a scale parameter, h, that adjusts the size and the
form of the weights near the target point. The kernel is a non-negative
symmetric real integrable function K which satisfies:∫ +∞

−∞
K(u)du = 1.

More formally, the estimate given by a generic Kernel smoother can
be written as:

f̂h(x) =

∑
iwiyi∑
iwi

(1.12)

The distance from the target point is

di =
xi − x
h

, (1.13)

12

1.2. Nonparametric Regression

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

● ●

●

●

●

●

6 8 10 12 14 16

20
40

60
80

education

pr
es

tig
e

Figure 1.3: Example of symmetric running-line: Prestige data from
R package car. Span is equal to 0.088 (k = 4).

13

Generalized Additive Models

and it measures the scaled and signed distance between the x-value
for the i-th observation and the target point x. The scale factor h con-
trols the bin width and, so, the smoothness of the estimate. Within
each bin, the set of weights results from applying the kernel function to
the distances calculated for the observations in the bin, wi = K

[
xi−x
h

]
.

Then, these weights are used to calculate the local weighted average in
equation (1.12). In Table 1.1 we show several kinds of kernel function
which are commonly used [49]. The value u in Table 1.1 is equal to
u = (X −Xi)/h and I(·) is the indicator function.
The kernel specifies how the observations in the neighborhood of the

Kernel k(u)

Uniform 1
2
I(|u| ≤ 1)

Triangular (1− |u|)I(|u| ≤ 1)

Epanechnikov 3
4
(1− u2)I(|u| ≤ 1)

Quartic 15
16

(1− u2)I(|u| ≤ 1)

Triweight 35
32

(1− u2)2I(|u| ≤ 1)

Gaussian 1√
2π

exp (−1
2
u2)

Cosinus π
4

cos (π
2
u)I(|u| ≤ 1)

Table 1.1: Kernel functions

target point, x, contribute to the estimate in that point. Whatever
the weighting function is, the weights must have certain properties:
(1) they must be symmetric with respect to the target point; (2) they
must be positive, and (3) they must decrease from the target point to
the bin boundaries.
Even though the kernel smoother represents an improvement with re-
spect to the simple moving average smoother, it has a drawback: the

14

1.2. Nonparametric Regression

mean cannot be considered as an optimal local estimator, and using a
local regression estimate instead of a local mean produces a better fit.

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

6 8 10 12 14 16

20
40

60
80

education

pr
es

tig
e

bandwidth = 2
bandwidth = 5

Figure 1.4: Example of Gaussian Kernel estimator: Prestige data
from R package car.

Spline smoothers represent the estimate as a piecewise polyno-
mial of a fixed order. Regions that define the pieces are separated by
a sequence of knots (or breakpoints) and the piecewise polynomials
are forced to joint smoothly in correspondence to these knots. For a
given set of knots, the estimate is computed by multiple regression on
a set of basis vectors which are the basis functions representing the

15

Generalized Additive Models

particular family of piecewise polynomials, evaluated at the observed
values of the predictors. There are several types of spline smoothers:
regression splines, cubic splines, B-splines, P-splines, natural splinse
and smoothing splines, and many others. In the simplest regression
splines, the piecewise functions are linear. In practice, we fit separate
regression lines within the regions between the knots, and the knots
tie together the piecewise regression fits. Also in this case, splines are
a local model with local fits between the knots instead of within bins,
and allow us to estimate the functional form from the data. Like in
other smoothing functions we must make several decisions: we need
to decide the degree of the polynomial for the piecewise function, the
number of knots, and their placement. The evaluation of all the dif-
ferent spline smoothers is far beyond the aim of this monograph, for
a wider coverage refer to [4, 17,20,55].

The locally weighted running-line smoother (LOWESS) [12]
combines the local nature of running-line smoother and the smooth
weights of the kernel smoother. The idea is to start with a local
polynomial least-squares fit computed in different steps. In the first
step the k nearest neighbors of the target point, x, are identified.
Then, we compute the distance of the furthest near-neighbor from x,
∆(x). The weights wi are assigned to each point in the neighborhood
using the tri-cube weight function

W

(
‖x− xi‖

∆(x)

)
, (1.14)

where

W (u) =

{
(1− u3)3 for 0 ≤ u < 1;

0 otherwise.
(1.15)

Then, the estimate is the fitted value at x from the weighted least-
squares fit of y to x in the neighborhood using the computed weights.

16

1.2. Nonparametric Regression

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

6 8 10 12 14 16

20
40

60
80

education

pr
es

tig
e

Figure 1.5: Example of cubic spline estimator: Prestige data from R

package car. Smoothing parameter is 0.86

17

Generalized Additive Models

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

6 8 10 12 14 16

20
40

60
80

education

pr
es

tig
e

span = 0.66
span = 0.2

Figure 1.6: Example of Lowess estimator: Prestige data from R pack-
age car.

18

1.2. Nonparametric Regression

1.2.2 Span selection and the Bias-Variance Trade-
off

A smoother is considered effective if it produces a small prediction
error, usually measured by the Mean Squared Error (MSE).

MSE(f̂h(x)) = E
(
f̂h(x)− f(x)

)2
= Bias2(f̂h(x)) + V ar(f̂h(x)),

(1.16)
where

Bias = E
[
f̂h(x)− f(x)

]
(1.17)

and

V ar(f̂h(x)) = E
(
f̂h(x)− Ef̂h(x)

)2
. (1.18)

We can see that the bandwidth controls the trade-off between the
squared bias and the variance: when h is large, the squared bias is
large but the variance is small and viceversa. Intuitively, when the
size of the local neighborhood is small this neighborhood contains few
observations and so the estimate closely approximates f . This results
in a small bias of the f̂h(x). However, since there are only few obser-
vations in the neighborhood, the variance of the estimate is large.

The smoothing parameter, from this point on indicated as λ, can be
chosen by visual trial and error, picking a value that balances smooth-
ness against the fit of the model.
Intuitively, a good smoothing parameter should produce a small aver-
age mean squared error:

ASE(f̂λ) = N−1
N∑
i=1

MSE(f̂λ(xi)) = N−1
N∑
i=1

(
f̂λ(xi)− f(xi)

)2
,

(1.19)

19

Generalized Additive Models

but this quantity is not defined because f is an unknown function
which has to be estimated. A good estimator for the ASE is the cross-
validation score:

CV (λ) = N−1
N∑
i=1

(
f̂−iλ (xi)− yi

)2
, (1.20)

where f̂−iλ (xi) is the fitted value at point xi if we use all the data
points except (xi, yi).

The cross-validation procedure selects the λ that minimizes the
score in equation (1.20). Moreover, for linear smoother the CV score
can be simplified as,

CV (λ) = N−1
N∑
i=1

(
f̂λ(xi)− yi

1− Sii

)2

(1.21)

where Sii is the i-th diagonal element of the smoother matrix S,
see [55] for details. Repeating this procedure for different values of the
smoothing parameter will suggest a value that minimizes the cross-
validation estimate. Often, Generalized cross-validation, first pro-
posed by [86] is used, where Sii is replaced by its average value tr(S)/N
and, for this reason, easier to compute.

1.2.3 Curse of dimensionality

With increasing dimensionality p, these techniques suffer under the
curse of dimensionality [2]. The relationship between the dependent
variable and the independent variables can be graphically represented
by a surface whose dimension depends on the number of predictors
included in the model. The use of nonparametric estimators, which
are for sure more flexible compared to those used in parametric mod-
els, is for this reason often used with complementary methods for the

20

1.3. Additive Models

reduction of dimensionality. This means that if we define a local neigh-
borhood over which we want to average the data to obtain an estimate,
then this neighborhood is most likely empty (i.e. has no observations
in it). Vice versa, if we choose the neighbourhood such that it is not
empty, then the estimate will be no longer local. But even if we could
estimate the smooth function reliably, it is not clear how we can vi-
sualise the response curve (surface) for large number of predictors to
gain the insight that we are looking for.
To overcome these two problems a class of models have been proposed
known as (generalized) additive models [50, 76]. Here, we do not as-
sume that the response curve f is a smooth p-variate function. Rather,
the assumption is that f can be written as the sum of p univariate
functions each of which has one predictor as argument.

1.3 Additive Models

A very useful generalization of the ordinary multiple regression

yi = α + βxi + εi,

is the class of additive models:

yi = α + f(x1,i) + ...+ f(xp,i) + εi. (1.22)

The form of the multiple regression model is relaxed: as in linear
regression, the additive regression model specifies the expected value
of Y as the sum of separate terms for each predictor, but now these
terms are assumed to be smooth functions of the independent vari-
ables. Even in this case the model might have component functions
with one or more dimensions, as well as categorical variable terms and
their interactions with continuous variables. Obviously we assume that

E{fj(xj)} = 0,

21

Generalized Additive Models

otherwise there will be a free constant in each of the functions.
A substantial advantage of the additive regression model respect to
nonparametric regression is that it eliminates the curse of dimension-
ality, as it reduces to a series of two-dimensional partial regression
problems.
Moreover, since each variable is represented in a separate way the
model has another important interpretative feature which is common
to the linear model: the variation of the fitted response surface, hold-
ing all predictors constant except one, does not depend on the values of
the other predictors. In other words, as each partial regression problem
is a two-dimensional problem, we can estimate separately the partial
relationship between the dependent variable and each predictor.

The model is fitted by iteratively smoothing partial residuals in a
process known as backfitting, which is a block1 Gauss-Seidel pro-
cedure for solving a system of equations. The idea of the backfitting
algorithm goes back to Friedman and Stuetzle [38], who used it for pro-
jection pursuit regression, Breiman and Friedman [6], who employed
it in their Alternating Conditional Expectation algorithm (ACE) and
Young, De Leeuw and Takane [92], who used it in their alternating
least squares algorithm (CORALS).
We can notice that in the additive model,

E

[
Y − α−

p∑
j 6=k

fj(xj)|xk

]
= fk(xk) (1.23)

holds for any k, 1 < k < p. This suggests the use of an iterative
algorithm to calculate the fj.

Given a set of initial estimates {α̂, f̂j}, we can improve these estimates
iteratively (i.e. looping over j = 1, ..., p) by calculating the partial

1Backfitting constitutes a block Galuss-Seidel procedure for the fact that in-
stead of solving for one element at each step we solve for n elements simultaneously

22

1.3. Additive Models

residuals from the observations {xj, Yi}. Considering the partial resid-
uals

r
[1]
i = yi − α̂−

p∑
l 6=k

fl(xil), (1.24)

and smoothing r[1] against xj to update the estimate f̂i.
The backfitting algorithm for Additive model is sketched in Table 1.2.

1. Set the counter k to zero. Initialise α̂ and f̂i as
α̂ = ȳ = 1

n

∑n
i=1 yi

f̂j(xj) = 0 for j = 1, ..., p and for i = 1, ..., n

2. For j = 1, ..., p do:
Calculate partial residuals: ri = yi − α̂−

∑p
l=1
l 6=j

f̂l(xil), i = 1, ..., n

Update the j th smooth function: f̂j(·) = Sj(wi, xij)r

3. Check for convergence.
If the algorithm has not converged yet, set k = k + 1 and go to 2.
Else return.

Table 1.2: Estimating an additive model using the backfitting algo-
rithm

The fjs are arbitrary univariate and smooth functions, one for each
predictor.
A two-dimensional plot is sufficient to examine the estimated partial
regression function f̂j relating y to xj holding the other explanatory
variables constant. This means that interpretation of additive regres-
sion models is relatively simple, assuming that the additive model ad-
equately captures the dependence of Y on the independent variables.

23

Generalized Additive Models

In other words, the backfitting algorithm solves the following system
of estimating equations:

I S1 S1 · · · S1

S2 I S2 · · · S2
...

...
...

. . .
...

Sp Sp Sp · · · I




f1
f2
...
fp

 =


S1Y
S2Y

...
SpY

 (1.25)

where I is a n× n unit matrix. In a short form we can write:

Pf = QY (1.26)

1.4 Generalized Additive Models

Generalized additive models represent a flexible extension of general-
ized linear models [59], allowing non-parametric smoothers in addition
to parametric forms combined with a range of link functions and pro-
vide one way to extend the additive model. More specifically, the
effects of the predictors are assumed to be linear in the parameters,
but the distribution of the response variable, as well as the link be-
tween the predictors and this distribution, can be quite general.
At least two other estensions have been proposed: Friedman and Stue-
zle [38] introduced Projection Pursuit Regression and Breiman and
Friedman [6] introduced Alternating Conditional Expectation.

A generalized linear models is specified by three components:

� a random component: we specify the distribution of the response
variable and we assume that it comes from exponential family
density,

f(Y, θ, φ) = exp

{
Y θ − b(θ)
a(θ)

+ c(Y, φ)

}
, (1.27)

24

1.4. Generalized Additive Models

which includes many distributions that are useful for practival
modelling, such as the Poisson, Binomial, Gamma and Normal
distribution. The canonical parameter θ represents the location,
while the dispersion parameter φ represents the scale of the ex-
ponential distribution taken into account. Moreover ai(φ), (θi)
and c(yi, φ) are known functions. Generally ai(φ) has the form
ai(φ) = φ

w0
, where w0 is a known prior weight, usually equal to

1.

� a systematic component: we assume that the expected value of
the response variable is related to the set of covariates by a linear
predictor,
η = βX.

� a link function that describes how the expected value of the
response variable is linked to covariates through linear predictor,
g(µ) = η.

Estimation and inference with generalized linear models is based on
the theory of maximum likelihood estimation. For a single observation
the log-likelihood is:

logL(θi, φ, Yi) =

[
Yiθi − b(θi)

ai(φ)

]
+ c(Yi, φ) (1.28)

So for independent observations, the log-likelihood will be
∑

i logL(θi, φ, Yi).
We can maximize this analytically and find an exact solution for
the MLE, β̂, only if the response variable has a Gaussian density
function, otherwise numerical optimization is required. McCullagh
and Nelder [59] showed that the optimization is equivalent to itera-
tively reweighted least squares (IRWLS), which turns out to be
equivalent to Fisher’s method of scoring, which is simply the Newton-
Raphson method with the Hessian replaced by its expected value.

25

Generalized Additive Models

Given a starting estimate of the parameters β̂, we calculate the
estimated linear predictor η̂i = x′iβ̂ and use that to obtain the fitted
values µ̂i = g−1(η̂i). Then we calculate, using these quantities, the
working dependent variable as

zi = η̂i + (yi − µ̂i)
(
∂ηi
∂µi

)
(1.29)

The rightmost term in (1.29) is the derivative of the link function eval-
uated at the initial estimate. Next we calculate the iterative weights
as:

wi =
1

b′′(θi)
(
∂ηi
∂µi

)2 (1.30)

where b
′′
(θi) is the second derivative of b(θi) evaluated at the starting

estimate assuming ai(φ) = φ. This weight is inversely proportional
to the variance of the working dependent variable, given the current
estimate of the parameters, with proportionality factor equal to φ.
From this point on we obtain an updated estimate of the β, regressing
the working dependent variable zi on the predictors, using the weights
wi. In other words, we calculate the weighted least-square estimate

β̂ = (X′WX)−1X′Wz (1.31)

where X is the model matrix, W is a diagonal matrix of weights
(with entries wi) and z is the response vector, with entries zi. This
procedure is repeated until two successive estimates change less than
a pre-specified small amount.

The linear predictor in GLM, η = βX, specifies that the indepen-
dent variables act in a linear way onto the response. According to [50],
a more general model can be:

η = α +

p∑
i

fj(Xj) (1.32)

26

1.5. Degeneracy in GAMs: concurvity

where f(·)s are smooth functions. As in the GLM the estimates are
found by regressing repeatedly the adjusted dependent variable z on
the predictors. In this ‘smooth’ version of the model in (1.32) it is pos-
sible to estimate the f(·) by repeatedly smoothing the adjusted depen-
dent variable on X. The authors called this procedure local scoring.
A general local scoring algorithm, as reported in [50], is sketched in
Table 1.3. As shown in Buja, Hastie and Tibshirani [8], the backfit-
ting algorithm will always converge. Being the local scoring simply
a Newton-Raphson step, if the step size optimization is performed, it
will converge as well. Note moreover that the convergence is moni-
tored by a change in the fitted functions rather than in the deviance.
Because the deviance is penalized, as analitically shown in [55], it can
increase during the iterations, especially when the starting functions
are too rough.

1.5 Degeneracy in GAMs: concurvity

As the term collinearity refers to linear dependencies among the in-
dependent variables, the term concurvity [8] describes the nonlinear
dependencies among the predictor variables. In this sense, as collinear-
ity results in inflated variance of the estimated regression coefficients,
the result of the presence of concurvity will lead to instability of the
estimated coefficients in GAM. As mentioned in [8]:

“Concurvity boils down to collinearity of (nonlinear)
transforms of predictors”. [8], p484

Exact concurvity is defined as the existence of a nonzero solution,
g = (g1, ..., gp)

T , of the corresponding homogeneous system of equa-

27

Generalized Additive Models

1. Initialise α̂ and f̂i as
α̂ = G−1(ȳ) = G−1(1

n

∑n
i=1 yi)

f̂
(0)
j (·) = 0

2. Set the counter k to zero. Iterate: k = k + 1

� Form the adjusted dependent variable

Z = ηm−1 + (Y − µm−1)(∂η/∂µm−1),

where:
ηm−1 = α+

∑p
j=1 f

m−1
j (Xj) and

ηm−1 = g(µm−1)

� Form the weights W = (∂µ/∂ηm−1)2V −1.

� Fit an additive model to Z usign the backfitting algorithm with
weights W , so to obtain estimated functions fmj (·) and model
ηm.

� Compute the convergence criterion

∆(ηm, ηm−1) =
∑p

j=1 ‖f
m
j −f

m−1
j ‖∑p

j=1 ‖f
m−1
j ‖

Repeat step 2 until the convergence criterion is below some small
threshold.

Table 1.3: General local scoring algorithm.

28

1.5. Degeneracy in GAMs: concurvity

tions: 
I S1 S1 · · · S1

S2 I S2 · · · S2
...

...
...

. . .
...

Sp Sp Sp · · · I




g1
g2
...
gp

 =


0
0
...
0

 (1.33)

If such g exists and f = (f1, f2, ..., fp)
T is a solution of the system

of normal equations in (1.25), then the system will have an infinite
number of solution because for any c also f + cg will be a solution.
In other words, the concurvity space of (1.26) is the set of additive
functions g(x) =

∑
gk(xk) such that Pg = 0.

As demonstrated in [55], concurvity is present when the spaces spanned
by the eigenvectors of the smoothing matrices are linearly dependent.
As demonstrated in [8], if we consider symmetric smoothers, for ex-
ample cubic spline smoothers, exact concurvity will be present only in
case of a perfect collinearity among the untransformed predictors.

Note that, in contrast to the linear regression framework where
collinearity implies that the solution of the equation system cannot
be found unless the data matrix is transformed in a full rank matrix
or a generalized inverse is defined, the presence of concurvity does
not imply that the backfitting algorithm will not converge. It has
been demonstrated that backfitting algorithm will always converge to
a solution. In case of concurvity the starting functions will determine
which solution of (1.25) will be the final solution. While exact con-
curvity is highly unlikely, except in the case of symmetric smoothers
with eigenvalues [0, 1], since it can only derive from an exact collinear-
ity among the original predictors, approximate concurvity is of prac-
tical concern, because it can lead to upwardly biased estimates of the
parameters and to the underestimation of their standard errors.

29

Generalized Additive Models

1.6 An illustration

In this section we try to illustrate the effects of strong concurvity in
fitting a generalized additive model with a simulated example. As
mentioned before, concurvity is present in the data when the predic-
tors are collinear. We simulate a total of n = 200 observations. We
simulate three predictors (x, z and t) independently from a uniform
distribution U [0, 1]. The forth predictor, g is generated as:

g = 3× x3 +N(0, 0.0001)

to show strong concurvity with predictor x.

Eigenvalues Tolerance
x 1.93871 0.14917
t 1.07470 0.97570
z 0.90923 0.98721
g 0.07736 0.14856

Table 1.4: Eigenvalues and tolerance of independent variables

In Table 1.4 we report the eigenvalues of the correlation matrix of
the four predictors and corresponding values of the tolerance. Obvi-
ously, there is a strong relation between x and g. Furthermore, we
generate the outcome variable, y, as:

y = 3× e−x + 1.3× x3 + t+N(0, 0.01),

So, y is function only of x and t. Now we fit a generalized additive
model on these data using the R package gam created by Hastie and
Tibshirani (smoothing parameters estimates are determined via cross
validation).

30

1.6. An illustration

Call: gam(formula = y ~ -1 + s(x, df = 5) + s(t, df = 1) + s(z, df = 2) +

s(g, df = 1), family = gaussian, data = datas)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.64432 -0.66797 0.02713 0.68381 2.38037

(Dispersion Parameter for gaussian family taken to be 0.9417)

Null Deviance: 2166.579 on 200 degrees of freedom

Residual Deviance: 177.984 on 189.0097 degrees of freedom

AIC: 568.2313

Number of Local Scoring Iterations: 4

DF for Terms and F-values for Nonparametric Effects

Df Npar Df Npar F Pr(F)

s(x, df = 5) 1 4 19.2320 2.743e-13 ***

s(t, df = 1) 1 0 0.2410 0.04080 *

s(z, df = 2) 1 1 1.5496 0.21474

s(g, df = 1) 1 2 6.5943 0.00178 **

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

The results obtained above clearly show that the nonparametric
effects for variables x and g are significantly different from zero. This
arises only from the concurvity between predictors x and g. In Figure
1.7 we show the graphical representation of the model we fit.

Moreover, in Figure 1.8 we show the effect of the true function
f(x) = 3× e−x + 1.3× x3 on U [0, 1].

31

Generalized Additive Models

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

x

s(
x,

 d
f =

 5
)

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
1

2
3

t

s(
t,

df
 =

 1
)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

z

s(
z,

 d
f =

 2
)

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 1.0 2.0 3.0

−
8

−
4

0
2

g

s(
g,

 d
f =

 1
)

Figure 1.7: Additive model that relates the outcome variable to the
predictors. Each plot represents the contribution of a term to the ad-
ditive predictor. The ‘y-axis’ label represents the expression used to
specify the corresponding contribution in the model formula.

32

1.6. An illustration

0.0 0.2 0.4 0.6 0.8 1.0

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

x1

3e
−x

+
1.

3x
3

Figure 1.8: True function of the effect of predictor x on the outcome
variable

33

Chapter 2

Nonlinear categorical
regression

2.1 Introduction

In this chapter we will focus on the nonlinear categorical regression
method, CATREG, which follows the Regression with Transformation
approach, applying the optimal scaling methodology as presented in
the so called ALSOS system [91] and in the Gifi system [39]. The
ideas presented in this section are inspired by [64], in which the author
argues that :

‘the particular transformations resulting from the re-
gression problem would have a particular influence on the
structure of the correlation matrix between the predictors
after optimal scaling’ ([64]; pp 498)

As we know, if the predictors in the linear regression model are inde-
pendent, their correlation matrix is equal to the identity matrix with
all eigenvalues equal to 1. In contrast, if collinearity is present, the

Nonlinear categorical regression

predictors are highly linearly related and this influences the size of the
distribution of the eigenvalues and the value of the small eigenvalues.
When the correlation among the predictors increases, the value of the
smaller eigenvalues decreases.

In the presence of multicollinearity, nominal and ordinal transfor-
mations obtained via optimal scaling linearize the relationship between
the dependent variable and the predictors. In other words, the effect
of these transformation is to decrease the interdependence among the
predictors. This effect is stronger or weaker depending on the smooth-
ness of the transformation itself (the smoother the transformation, the
smaller the effect).

2.2 Optimal scaling

The optimal assignment of quantitative values to qualitative scales is
an important development in multidimensional data analysis.
Optimal scaling represents a method to find an optimal transforma-
tion to convert categorical variables into numeric data. This trans-
formation process is known as ‘quantification’ [91]. In a regression
framework, quantifications of the categorical variables are estimated in
parallel with the estimation of the regression coefficients, via an alter-
nating least squares procedure that maximizes the correlation between
transformations of the dependent variable and the set of predictors.
The result of this procedure is that the optimal scaling transforma-
tions linearize the relationship between the dependent variable and
the predictors. Numerical variables in this framework are treated as
categorical ones, with a number of categories equal to the number of
distinct values that the numeric variable presents. Of course optimal-
ity must be interpreted in a wide sense because it is obtained always
with respect to the particular data set and to a particular criterion
that is optimized.

36

2.2. Optimal scaling

In the quantification process it is possible to preserve properties of
the data in the transformations by choosing an appropriate optimal
scaling level for the variables. Note that, when we use the term optimal
scaling level, we refer to the level on which the variable is analyzed
and not to the measurement level of the original variable, which can
be different.
The properties of the data that can be preserved are grouping, ordering
and equal relative spacing.
According to its measurement level a variable can have one, two or all
of these properties. We can distinguish:

� Variables with nominal measurement level: only grouping , i.e.
the category values code the observations into the different classes

� Variables with ordinal measurement level: grouping and order-
ing, i.e. the category values code observations into the different
classes and these classes are ordered .

� Numeric variable: grouping, ordering and equal relative spacing

To choose the scaling level, independent of the measurement level,
we make the following distinction:

� We use a nominal scaling level when we want just to maintain
the class membership information, i.e. objects in the same group
according to variable j obtain the same quantification in the
transformed variable ϕj(xj).

xij = xi′j ⇒ ϕj(xij) = ϕj(xi′j)

� We use an ordinal scaling level if a (categorical) variable contains
order information on the objects and we want to preserve it in

37

Nonlinear categorical regression

the transformation. In this case xj and ϕj(xj) are related by a
monotonic function.

xij < xi′j ⇒ ϕj(xij) ≤ ϕj(xi′j)

� We use a numeric scaling level when we want to preserve all
the properties. Note that if we use the numeric scaling level
for a variable that is measured on a categorical level we treat
the category values as numeric values, whereas if we use this
scaling level for a numeric variable, this will result in a linear
transformation to standard scores.

The scaling level is also related to the degrees of freedom of the
transformation and to the fit of the model: transformations with less
degrees of freedom will result in smoother transformations and worse
fit and vice versa.
The transformation based on the nominal scaling level has the max-
imum number of degrees of freedom, which is equal to the number
of categories minus one. Otherwise, the transformation which derives
from choosing the ordinal scaling level implies one more restriction on
the quantification of the order of thee categories, so the number of
degrees of freedom is equal to the number of categories with different
quantified values minus one.
Among the different transformations two approaches are available:
step functions and spline functions.
Step functions are generally associated with categorical data, while
spline functions refer to continuous data. Moreover, a continuous vari-
able can also be considered as a categorical variable with a number
of categories equal to the number of the objects. For this reason we
need to limit the number of parameters we want to fit. For splines,
the number of parameters is determined by the degree of the spline
that we choose and the number of interior knots, thus we have to limit

38

2.2. Optimal scaling

both of them. In spline transformation case we consider monotonic
and nonmonotonic spline.
Obviously the shape of the transformation is related to the number of
degrees of freedom of the transformation itself. Transformations with
more freedom will results in less smooth transformations and in a bet-
ter fit and vice versa. In other words, this means that if we choose to
preserve more properties of the data, using more restrictive transfor-
mations, we lose something in terms of fit of the model.

2.2.1 Monotonic splines

Following [69], monotonic splines are a class of piecewise polynomi-
als. A polynomial spline is a piecewise polynomial function defined
on an interval [a, b] which is divided in a mesh consisting of points
a = ξ1 < ... < ξq = b. This mesh is also divided in subintervals
[ξj, ξj+1) within which the function is a polynomial piece of specified
order k.
Adjacent polynomial are required to join with a specified degree of
smoothness at the boundaries of the subintervals. Smoothness is de-
fined as the equality of the derivatives of the polynomial pieces at the
joining points. In the common case, all orders of continuity, υj, are
specified as the degree k − 1 of the polynomial. For example, if k = 2
the spline consists of straightline segments that are required to match
at the boundaries, whereas k = 3 the spline is a piecewise quadratic
with matching first derivatives.
The domain and the continuity conditions are incorporated into the
knot sequence, t = {t1, ..., tn+k}, where n represents the number of free
parameters (total degrees of freedom) that specify the spline function.
This sequence has the following properties:

39

Nonlinear categorical regression

1.

t1 ≤ ... ≤ tn+k

2. For all i there exists a j such that ti = ξj.

3. The continuity characteristics are determined by:

� t1 = ... = tk = a and b = tn+1 = ... = tn+k;

� ti < ti+k for all i;

� if ti = ξj and ti−1 < ξj then ti = ... = ti+k−υj−1.

This means that the sequence of knots, t, is derived from the mesh
by placing the number of knots at the boundary value according to
the order of continuity desired. A spline of order k − 1 is a polyno-
mial at any point ξ and so it is determined by k free coefficients in
the subinterval containing that point. But the continuity conditions
impose υj linear equality constraints on the coefficients which define
adjacent polynomials. So the total degrees of freedom is equal to the
value n.
The spline transformation can be computed by defining a set of basis
splines, Mi(·|k, t), i = 1, ..., n such that any piecewise polynomial, f ,
of order k and associated sequence of knots t, can be represented as a
linear combination f =

∑
biMi.

In the Monotonic spline family the set of basis spline is defined to
be positive in (ti, ti+k) and zero elsewhere, and must comply with the
normalization property

∫
Mi(x)dx = 1 [16]. So, each Mi has the prop-

erties of a probability density function over the interval [ti, ti+k]. The
monotonicity is assured by the nonnegativity of bi.
Because monotonic splines are nonnegative we can define integrated
spline as:

Ii(x|k, t) =

∫ x

L

Mi(u|k, t)du, (2.1)

40

2.3. Nonlinear regression with optimal scaling

where L is the lower limit of the domain of the spline. Since each
Mi is a piecewise polynomial of degree k − 1, each Ii is a piecewise
polynomial of degree k.
For a simple knot sequence, for which tj ≤ x < tj + k for all x, the
I-spline Ii can be computed as:

Ii(x|k, t) =


0, i > j,∑j

m=1 (tm+k+1 − tm)Mm(x|k + 1, t)/(k + 1), j − k + 1 ≤ i ≤ j,
1, i < j − k + 1

(2.2)

2.3 Nonlinear regression with optimal scal-

ing

As mentioned before, in linear regression a dependent variable Y is
predicted from a set of p independent variables X. The aim of the
regression is to find a linear combination of X that is maximally cor-
related with the dependent variable.
In terms of a least squares loss function we write:

L(β) = ‖y − βX‖2 = ‖y −
J∑
j=1

βjxj‖2 (2.3)

We assume that the predictors are normalized to have zero mean and
sum of squares equal to one, so we do not need to fit an intercept. The
analytic solution of this problem is given by:

β̂ = (X′X)−1X′y (2.4)

where (X′X)−1 denotes the inverse of the correlation matrix be-
tween the independent variables.

41

Nonlinear categorical regression

If we include optimal scaling of the variables we substitute the inde-
pendent variables with the one-to-one nonlinear transformations of the
original variables. The nonlinear transformation of the j-th predictor
is indicated as ϕj(xj).

The loss function in (1) then can be rewritten as:

L(β, x) = ‖y −
p∑
j=1

βjϕj(xj)‖2 (2.5)

where L(β,x) indicates that the arguments over which the function is
to be minimized are the regression coefficients and the set of nonlinear
transformations x = {ϕj(xj), j = 1, ..., p}.

If the independent variables are correlated in the regression prob-
lem, the optimal transformations ϕj(xj) are also interdependent. To
solve this problem we use a backfitting approach which separates each
transformed variable and its weight from the rest of the weighted pre-
dictors, isolating the current target part βkϕk(xk) from the rest, de-
noted as

∑
l 6=k βlϕl(Xl).

The loss function can be rewritten as:

L(β, ϕ(X),y) = ‖y −
∑
l 6=k

βlϕl(xl)− βkϕk(xk)‖2 (2.6)

This means that we are changing the original multivariate problem
into a univariate one.
If we define as auxiliary variable uk:

uk = y −
∑
l 6=k

βlϕl(xl), (2.7)

we have to minimize:

L(βk, ϕk(xk)) = ‖uk − βkϕk(xk)‖2 (2.8)

42

2.3. Nonlinear regression with optimal scaling

which is a function of βk and ϕk(xk) only.
Using alternating least squares, we minimize over βk and ϕk(xk)
consecutively.
As the variable ϕk(xk) is standardized, we can compute the regression
weight βk separately from the transformation.
The new value for the regression weight βk is found as:

β̂k = u′kϕk(xk) (2.9)

After having fixed the new weight βk with respect to the fixed values
uk and ϕk(xk), we minimize the loss function over ϕk(xk) with respect
to the fixed uk and β̂k. Using the new value of βk, we minimize the
loss function over all ϕk(xk) over the cone that contains all admissible
transformations of the variable xk, Ck.

For each categorical variable xk we search a vector of quantification
vk which minimizes the overall value of the associated loss function,

L(β, ϕk(xk)) = ‖uk − βkGkvk‖2 (2.10)

where Gk represents the indicator matrix associated with the k-th
predictor. The number of different categories in the variable xk are
associated with the columns of this matrix and for each of these column
a 0 − 1 coding registers the presence-absence of the object in that
particular category. In case of a spline transformation we construct
an I-spline basis matrix Sk of xk and we minimize

L(bk) = ‖uk − βkSk(xkbk)‖2, (2.11)

where bk = {bkt , t = 1, ..., T} is the T-vector with spline coefficients
that have to be estimated, and T depends on the degree of the spline
and the number of interior knots. In this last case the problem is
further partitioned by separating the t-th column of the spline basis
matrix Sk, denoted by skt , from the other columns {skr , r 6= t} and the

43

Nonlinear categorical regression

t-th element (bkt) of the spline coefficient vector bk from the remaining
elements {bkr , r 6= t}. If the I-spline transformation is required to be
monotonic we have also to include this restriction in the model which
implies that the the spline coefficients must be non-negative. Then we
minimize iteratively:

L(bkt) = ‖(uk − βk
∑
r 6=t

bkrs
k
r)− βkbkt skt ‖2 (2.12)

When both βk and ϕk(xk) are updated, we move to the next regres-
sion weight and variable to be transformed. When all coefficients and
variable transformations have been updated, we move to the outcome
variable for which we may apply a similar set of transformation options
as the ones described above for the predictor variables. A sketch of the
resulting algorithm in the case of a spline transformation is presented
in Table 2.1.

44

2.4. An illustration

2.4 An illustration

The dataset analyzed in this section is called the Boston Housing
dataset. It was collected by Harrison and Rubingeld (1978) an it
concerns housing values in suburbs of Boston. This dataset contains
506 instances on 14 variables (13 continuous variable and a binary
one) and there are no missing values. These variables are reported
in Table 2.2. The dependent variable is MEDV which indicates the
median value of owner-occupied homes in $1000’s.

As a first step, we start with a standard linear regression analy-
sis. When we use categorical regression and we decide that all the
transformations have to be linear we obtain the same result of a linear
multivariate regression model. This first step is useful to have an idea
about the expected result when we consider the linearity hypothesis
and also to inspect the plots of the residuals against the predictors and
versus each predictor in turn. Moreover, when we look at the plots of
the standardized partial residuals against each predictor, this shall be
indicative of the most appropriate non-linear transformation to apply
in a next step. In Table 2.3 we show the eigenvalues of the correlation
matrix of the predictors and the values of the tolerance for each pre-
dictor. Tolerance, in the linear regression framework, is a measure for
detecting collinearity. It can be formally expressed as

tj = 1/r−1jj (2.14)

where rjj is the jth diagonal element of the inverse of the correlation
matrix of the predictors, R. Since the standard errors of the estimated
parameters of the predictors depend in inverse proportion on the tol-
erance, small values of the tolerance cause large standard errors of the
estimates of the regression coefficients, large confidence intervals and,
likely, not significant test results. Note also that the Pearson correla-
tion coefficient (or zero-order correlation coefficient) has low power in
detecting collinearity, because it is sensitive to outliers presence and it

45

Nonlinear categorical regression

1. Normalize response variable and predictor variables to obtain
Y ⇒ ϑ(Y)
X ⇒ ϕ(X)

2. Initialize regression coefficients β1, ..., βp

3. Initialize spline coefficients b1, ..., bT

4. for k in 1 : p minimize the loss function:

L(βk, ϕk(xk)) = ‖uk − βkϕk(xk)‖2,

� for t in 1 : T minimize the loss function

L(btk) = ‖uk − βk

∑
r 6=t

Skr (xk)b
k
r − Sk(xk)bk

 ‖2,
to obtain the estimates of the spline coefficients, imposing the
normalization condition b′kS

′
kSkbk = N , until the decrease in

the loss function L(btk) is smaller than some pre-specified value.

5. Update ϕk(xk) as

ϕ̂k(xk) = Sk(xk)b̂k (2.13)

6. Minimize L(βk) = ‖uk − βkϕ̂k(xk)‖2 to obtain the estimates of the
regression coefficients.

7. Repeat step 4 until the decrease in the loss function L(β, ϕ(x)) is
smaller than some pre-specified value.

Table 2.1: Backfitting algorithm for nonlinear regression with optimal
scaling

46

2.4. An illustration

Label Description
CRIM per capita crime rate by town
ZN proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS proportion of non-retail business acres per town
CHAS Charles River adjacency
NOX nitric oxides concentration (parts per 10 million)
RM average number of rooms per dwelling
AGE proportion of owner-occupied units built prior to 1940
DIST weighted distances to five Boston employment centres
RAD index of accessibility to radial highways
TAX full-value property-tax rate per $10,000
PTRATIO pupil-teacher ratio by town
B (Bk − 0.63)2, where Bk is the proportion of blacks by town
LSTAT % lower status

MEDV median value of owner-occupied homes in $1000’s

Table 2.2: Boston Housing dataset

47

Nonlinear categorical regression

also cannot detect collinearity due to the presence of a high correlation
between a predictor and a combination of other predictors. It is well
known that, when all the explanatory variables are independent, the
correlation matrix is equal to the identity matrix, with all eigenvalues
equal to one. Departures from independence thus can be indicated by
the largest eigenvalues greater than one.
We notice that the Boston Housing dataset seems to be slightly af-
fected by collinearity, for example if we look at the values of the tol-
erance for predictor RAD and TAX that are just greater than 0.1.
Collinearity us also indicated by the largest eigenvalue being 6.13 and
the smallest eigenvalue being 0.06.

Eigenvalues Tolerance
CRIM 6.12685 0.55798

ZN 1.43328 0.43502
INDUS 1.24262 0.25053
CHAS 0.85758 0.93110
NOX 0.83482 0.22760

RM 0.65741 0.51713
AGE 0.53536 0.32249
DIS 0.39610 0.25278

RAD 0.27694 0.13361
TAX 0.22024 0.11101

PTRATIO 0.18601 0.55584
B 0.16930 0.74155

LSTAT 0.06351 0.33996

Table 2.3: Eigenvalues of the correlation matrix and tolerance of the
predictors

The estimates of the regression coefficients, the βj’s, and their stan-
dard errors (calculated via bootstrap resampling (1000)), are reported

48

2.4. An illustration

Beta Estimate of Std Error F Sig.
CRIM -0.098 0.036 7.540 0.009
ZN 0.116 0.036 10.742 0.001
INDUS 0.018 0.037 0.226 0.746
CHAS 0.073 0.035 4.327 0.030
NOX -0.223 0.046 23.314 0.000
RM 0.299 0.062 23.467 0.000
AGE -0.002 0.050 0.001 0.931
DIS -0.335 0.045 56.484 0.000
RAD 0.287 0.062 21.431 0.000
TAX -0.229 0.055 17.610 0.000
PTRATIO -0.224 0.028 65.552 0.000
B 0.093 0.029 10.203 0.001
LSTAT -0.402 0.072 30.879 0.000

Table 2.4: Regression coefficients of the model which considers only
numerical transformations of all predictors

49

Nonlinear categorical regression

in Table 2.4. The Apparent Prediction Error (APE) for the training
set and the Expected Prediction Error (EPE) for the test set, ob-
tained by evaluating the Mean Square Error estimates with 10-fold
cross-validation, for this first model are respectively equal to

APE = 0.259 EPE = 0.283.

Note that using standardized coefficients, their interpretation is based
on the standard deviation of the variables.
Each coefficient indicates the number of standard deviations that the
predicted response changes for a one standard deviation change in a
predictor, all the other predictors remaining constant. For example, a
one standard deviation change in ZN leads to an increase in predicted
MEDV of 0.116 standard deviations. The standard deviation of raw
values of ZN is 23.322, so our outcome variable increases by 0.116 ×
23.322 = 2.745.
We note that the regression coefficient for the predictor AGE is quite
close to zero and it is not significantly different from zero according
to the F test. For this reason we can try to consider another type of
transformation for that predictor, different from the linear one. For
example, if we consider a nominal transformation, or more precisely
a nonmonotonic spline transformation of order two with two interior
knots, for the explicative variable AGE, we obtain different results
that are summarized in Table 2.5.

In this way the regression coefficient for the independent variable
AGE becomes significantly different from zero. In Figure 2.1, we can
see the standardized partial residuals, obtained as the difference be-
tween the standardized outcome and the fitted values calculated con-
sidering all the predictors except AGE, plotted against the standard-
ized values of the variable AGE. The line in Figure 2.1 represents the
standardized nominal transformation of predictor AGE. In Figure 2.2,
the same standardized linear partial residuals are plotted against the
standardized nominal transformation of AGE. In this figure the line

50

2.4. An illustration

Beta Estimate of Std Error df F Sig.
CRIM -0.110 0.034 1 10.467 0.001
ZN 0.094 0.037 1 6.454 0.012
INDUS -0.014 0.038 1 0.136 0.716
CHAS 0.078 0.034 1 5.263 0.022
NOX -0.235 0.048 1 23.969 0.000
RM 0.291 0.061 1 22.758 0.000
AGE 0.082 0.042 4 3.812 0.005
DIS -0.332 0.046 1 52.091 0.000
RAD 0.304 0.063 1 23.284 0.000
TAX -0.237 0.053 1 19.996 0.000
PTRATIO -0.215 0.027 1 63.409 0.000
B 0.081 0.029 1 7.801 0.005
LSTAT -0.429 0.070 1 37.559 0.000

Table 2.5: Coefficients of the model considering a nominal spline
transformation (2,2) for predictor AGE and numerical transformation
for all the other predictors

51

Nonlinear categorical regression

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●● ●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●
●

●

●

●

●

● ●

●

●

●

●
●

● ●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

−2.0 −1.0 0.0 1.0

−
2

0
2

4

AGE

 p
ar

tia
l l

in
ea

r
re

si
du

al
s

Figure 2.1: Standardized partial linear residuals versus standardized
predictor AGE. The line represents the standardized nominal transfor-
mation of predictor AGE

52

2.4. An illustration

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
2

0
2

4

nominal transformation predictor AGE

pa
rt

ia
l l

in
ea

r
re

si
du

al
s

Figure 2.2: Standardized partial linear residuals versus standardized
transformation of predictor AGE.

53

Nonlinear categorical regression

represents a lowess smoother that is used in order to detect any de-
parture from linearity.
As we can see from Figure 2.2 the relationship between the partial
linear residuals and the transformed predictor AGE seems to be lin-
earized by using a nominal transformation. The APE and EPE for
the second model are

APE = 0.254 EPE = 0.280,

thus both values decrease with respect to a linear transformation of
AGE. APE decreases per definition, but it is important that EPE
decreases as well. Then we consider a nominal transformation also for
the predictor INDUS, because its regression coefficient also was not
significantly different from zero in the first two models we considered.

In Table 2.6 we report the regression coefficients of the model in
which we consider for both AGE and INDUS a nominal transformation
and linear transformations for all the other predictors. For this model
we have that

APE = 0.245 EPE = 0.272,

which is satisfactory.

In Figure 2.3 we show the standardized partial residuals plotted
against the standardized predictors AGE and INDUS, while in Figure
2.4 the standardized partial residuals are plotted against the stan-
dardized transformations of these predictors. We can deduce from the
latter figure that both relationships have been linearized.
Moreover, in Table 2.7 we can notice that by applying these nominal
transformations we improve the values of the tolerance, not only for
AGE and INDUS, but also for others predictors, even if to a lesser
extent. Besides, the smaller eigenvalue of the correlation matrix of
the transformed predictors (0.073) is slightly greater than the smallest
eigenvalue of the correlation matrix before applying transformations

54

2.4. An illustration

Beta Estimate of Std Error df F Sig.
CRIM -0.113 0.033 1 11.725 0.001
ZN 0.023 0.041 1 0.315 0.538
INDUS 0.129 0.034 4 14.395 0.000
CHAS 0.087 0.034 1 6.548 0.012
NOX -0.249 0.048 1 26.910 0.000
RM 0.272 0.063 1 18.640 0.000
AGE 0.085 0.039 4 4.750 0.004
DIS -0.352 0.045 1 61.187 0.000
RAD 0.372 0.082 1 20.581 0.000
TAX -0.290 0.062 1 21.878 0.000
PTRATIO -0.220 0.030 1 53.778 0.000
B 0.081 0.027 1 9.000 0.002
LSTAT -0.428 0.073 1 34.375 0.000

Table 2.6: Coefficients of the model considering a nominal transfor-
mation for predictor AGE and INDUS and numerical transformation
for all the others predictors

55

Nonlinear categorical regression

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−
2

0
2

4

AGE

pa
rt

ia
l r

es
id

ua
ls

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−1 0 1 2

−
2

0
2

4
6

INDUS

pa
rt

ia
l r

es
id

ua
ls

Figure 2.3: Standardized partial linear residuals versus standard-
ized predictors, AGE and INDUS. The lines in these plots represent
the standardized nominal transformations of AGE and INDUS, respec-
tively.

56

2.4. An illustration

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
2

0
2

4

AGE, nominal transformation

pa
rt

ia
l r

es
id

ua
ls

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6

−
2

0
2

4

INDUS, nominal transformation

pa
rt

ia
l r

es
id

ua
ls

Figure 2.4: Standardized partial linear residuals versus standardized
transformations of predictors AGE and INDUS.

57

Nonlinear categorical regression

Before nominal transformations After nominal transformations

Eigenvalues Tolerance Eigenvalues Tolerance

CRIM 6.12685 0.55798 5.16203 0.54209
ZN 1.43328 0.43502 1.56822 0.34876

INDUS 1.24262 0.25053 1.27068 0.57163
CHAS 0.85758 0.93110 1.06598 0.93637
NOX 0.83482 0.22760 0.83460 0.25961

RM 0.65741 0.51713 0.76746 0.52848
AGE 0.53536 0.32249 0.62888 0.79491
DIS 0.39610 0.25278 0.52107 0.28968

RAD 0.27694 0.13361 0.45042 0.13515
TAX 0.22024 0.11101 0.27649 0.13066

PTRATIO 0.18601 0.55584 0.21113 0.56868
B 0.16930 0.74155 0.17046 0.73647

LSTAT 0.06351 0.33996 0.07259 0.38028

Table 2.7: Eigenvalues of the correlation matrix and tolerance values
before and after applying nominal transformations on AGE and INDUS

58

2.4. An illustration

(0.063). Also the largest eigenvalue after applying these nominal trans-
formations (5.16) is smaller than the one we had before, (6.12). Just
for illustrative purposes, we see what happens if we consider an addi-
tional ordinal transformation for the predictor LSTAT, which presents
the highest absolute value of the regression coefficient (−0.428).

Beta Estimate of Std Error df F Sig.
CRIM -0.137 0.022 1 38.779 0.000
ZN -0.012 0.040 1 0.090 0.742
INDUS 0.105 0.031 4 11.472 0.000
CHAS 0.058 0.030 1 3.738 0.036
NOX -0.213 0.041 1 26.989 0.000
RM 0.172 0.053 1 10.532 0.001
AGE 0.065 0.043 4 2.285 0.020
DIS -0.280 0.042 1 44.444 0.000
RAD 0.371 0.069 1 28.910 0.000
TAX -0.250 0.053 1 22.250 0.000
PTRATIO -0.214 0.028 1 58.413 0.000
B 0.077 0.023 1 11.208 0.001
LSTAT -0.587 0.064 3 84.123 0.000

Table 2.8: Coefficients of the model considering a nominal transfor-
mation for AGE and INDUS, and an ordinal transformation for LSTAT
(numerical transformation for all others predictors)

As for the previous cases, we show in Table 2.8 the estimated co-
efficients for this model. In Figure 2.5 the standardized partial resid-
uals are plotted against the standardized predictors and in Figure 2.6
against the standardized transformations of the predictors.
For this model we have that

APE = 0.202 EPE = 0.221.

59

Nonlinear categorical regression

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−
2

0
2

4
6

AGE

pa
rt

ia
l r

es
id

ua
ls

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1 0 1 2

−
2

0
2

4
6

INDUS

pa
rt

ia
l r

es
id

ua
ls

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

−1 0 1 2 3

−
2

0
2

4

LSTAT

pa
rt

ia
l r

es
id

ua
ls

Figure 2.5: Standardized partial residuals versus standardized pre-
dictors, AGE, INDUS and LSTAT. The lines in these plots represent,
respectively, the standardized nominal transformations for predictors
AGE and INDUS, and standardized ordinal transformation for predic-
tor LSTAT.

60

2.4. An illustration

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

0
2

4
6

AGE − nominal transformation

pa
rt

ia
l r

es
id

ua
ls

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6

−
2

0
2

4
6

INDUS − nominal transformation

pa
rt

ia
l r

es
id

ua
ls

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1

−
2

−
1

0
1

2
3

4

LSTAT − ordinal transformation

pa
rt

ia
l r

es
id

ua
ls

Figure 2.6: Standardized partial residuals versus standardized trans-
formations of AGE(nominal), INDUS(nominal) and LSTAT(ordinal).

61

Nonlinear categorical regression

This clearly demonstrates that by choosing transformations different
from the linear ones we can improve the expected prediction error
considerably.

62

Chapter 3

Generalized Boosted
Additive
Models

3.1 Introduction

The ideas presented in this chapter are inspired by [64], in which the
author, following the ideas of a forward stagewise boosting procedure
[26, 34], proposed to consider the fit of prediction component in a
sequential way with the aim of improving the predictive power of the
mode.

3.2 Generalized Boosted Additive Mod-

els

What we will call a generalized boosted additive model is based on
prediction components that consists of different nonlinear transforma-

Generalized Boosted Additive
Models

tions of the predictors. We define a prediction component as a linear
combination of optimally transformed predictors. More formally,

f =

p∑
k=1

βkϕk(xk). (3.1)

We can express a forward stagewise additive model as

L(X) = ‖y − fm(X)‖2 (3.2)

where fm can be defined as

fm(X) = fm−1 +

p∑
k=1

βkmϕkm(xk), m = 1, ...,M. (3.3)

This is in line with [53], pp 304-305. In other words, we consider
M prediction components that are computed sequentially to predict
the outcome variable, y, minimizing the loss function in M consecutive
steps.
Suppose that we are interested in fitting three different kinds of pre-
diction components sequentially, a linear, an ordinal and a nominal
one. Each prediction component is considered as the weighted sum of
the selected transformations of the predictor variables.
So, when we first fit the linear prediction component,

∑p
k=1 β

l
kϕ

l
k(xk),

we can write the loss function as

L(β,X)l = ‖y −
p∑

k=1

βlkϕ
l
k(xk)‖2 (3.4)

where the subscript l denotes a linear transformation. We thus define
the residual from the linear component, rlin, as

rlin = y −
J∑
j=1

βljϕ
l
j(xj). (3.5)

64

3.2. Generalized Boosted Additive Models

Next, we minimize the loss function with respect to this residual vec-
tor, rlin, by fitting the second prediction component, which we choose
to be ordinal,

∑p
k=1 β

o
kϕ

o
k(xk). More formally,

L(β, x)lin+ord = ‖rlin −
p∑

k=1

βokϕ
o
k(xj)‖2. (3.6)

We consider the residual vector rord, which results in

rord = rlin −
p∑

k=1

βokϕ
o
k(xj).

In the next step we consider the third prediction component, nominal,∑p
k=1 β

n
kϕ

n
k(xk), and we can express the loss function as

L(β,X)lin+ord+nom = ‖rord −
p∑

k=1

βnkϕ
n
k(xk)‖2 (3.7)

If we consider the observed outcome, then this sequential procedure
results to be equivalent in fitting a single prediction component (in this
example a nominal one) if and only if the transformations considered
in each prediction component are less restrictive in each step and if
the optimal solution has been obtained in the last step with respect
to both the weights and the transformations.

When our goal is to predict the outcome values for future observa-
tions iterating until the optimal solution is found is often not the best
choice, because this optimal fit of the data can lead to poor predic-
tions. For this reason we assume that obtaining a suboptimal solution
through a boosting approach leads to an improvement in predictions.
So, as described before, we follow this stagewise approach, but we do
not iterate until convergence in each step that fits a prediction com-
ponent. Thus, in each step of the procedure we stop before reaching
convergence, and we move to the next step in which we consider the

65

Generalized Boosted Additive
Models

residuals of the previous step and fit a new prediction component. In
this way the number of total iterations strongly decreases.

3.3 Simulations

In this section we show some of the results we obtain with simulated
datasets. The aim of our experiments is to prove that, in case of
collinearity among predictors, which implies the presence of approxi-
mate concurvity, our strategy leads to an improvement in predictions.

In the first simulation the explicative variables have been simulated
in such a way to show a moderate collinearity. We simulated a total
of n = 100 observations.

Eigenvalues Tolerance
x1 3.02435 0.42799
x2 0.86006 0.33777
x3 0.54180 0.34852
x4 0.40262 0.44627
x5 0.17118 0.79523

Table 3.1: Eigenvalues and tolerance for simulated dataset, 5 predic-
tors

In Table 3.1 eigenvalues of the correlation matrix and values of
tolerance for these five predictors are shown. As expected none of
the explicative variables has a small tolerance value. Moreover, we
simulate the outcome variable as:

y = 0.65× sinX1 − 1.4× cosX2 + 0.05×
√
X3+

+ 0.04× sin π ∗X4 − 0.6× logX5 + U [0, 1]

66

3.3. Simulations

to impose a nonlinear relationship among the outcome variable and
the explanatory variables.

EPE Std Error APE Std Error
lin(c) 1.987 0.052 1.545 0.020

ord(c) 1.225 0.034 0.918 0.023
nom(c) 1.206 0.036 0.834 0.015

lin(1)ord(1)nom(1) 1.587 0.054 1.173 0.041
lin(5)ord(5)nom(5) 1.241 0.046 0.863 0.014

ord(5)nom(5) 1.231 0.046 0.861 0.015
ord(1)nom(5) 1.228 0.053 0.862 0.015
ord(5)nom(1) 1.319 0.039 0.985 0.036
ord(1)nom(4) 1.232 0.055 0.865 0.015
ord(4)nom(1) 1.317 0.040 0.989 0.036

lin(5)ord(5)nom(c) 1.225 0.051 0.858 0.015

Table 3.2: EPE and APE and respective standard errors for different
boosted models, simulation with five predictors

In Table 3.2 the Expected Prediction Error (EPE) for the test set
and the Apparent Prediction Error (APE) for the training set, and
their standard errors, obtained by evaluating the Mean Square Error
estimates through a 10 fold cross validation, are shown. In the first
column of Table 3.2, lin stands for linear transformation, ord for or-
dinal and nom for nominal. The number within parentheses indicates
the number of iterations performed, while letter c indicates that the
algorithm is performed until convergence.

We can note that the model that presents the lowest value of the
EPE is the model in which there is a single nominal prediction com-
ponent and iterations are carried on until convergence is reached. Ap-
plying the 1-SE rule we think that also the model (ord(1)nom(4)),

67

Generalized Boosted Additive
Models

with two prediction components, respectively an ordinal and a nomi-
nal one, limiting the number of iterations to one for the first prediction
component and four for the second one, performs quite good.

Eigenvalues Tolerance
before ord(1) nom(4) before ord(1) nom(4)

x1 3.02435 2.88019 1.75070 0.42799 0.60892 0.64019
x2 0.86006 0.85247 1.06486 0.33777 0.42834 0.61942
x3 0.54180 0.55294 1.00708 0.34852 0.42002 0.96363
x4 0.40262 0.46068 0.78952 0.44627 0.53646 0.93456
x5 0.17118 0.25371 0.38785 0.79523 0.82019 0.93987

Table 3.3: Eigenvalues and tolerance for simulated dataset, 5 predic-
tors

In Table 3.3 we show the eigenvalues of the correlation matrix and
the tolerance values of the predictors before and after each transfor-
mation. We notice that the value of the greatest eigenvalue after each
step decreases, as well as the value of the smallest eigenvalues increases.
Tolerance values were not extreme before transformations, but after
transformations are applied they increase for all predictors. In other
words, applying transformations, also through prediction components,
linearizes the relationship among predictors.

In the second simulation, we simulated a total of n = 250 observa-
tions. The explanatory variables were simulated to be strongly related.
Also the outcome variable, as before, was calculated in such a way to
create a nonlinear relationship with the predictors,

68

3.3. Simulations

y = sinx1 + expx2 + x33 × 0.7× cosx4 + exp−x5 + sinx6+

+ 0.4 ∗ x7 × sin πx8 + x
4/3
9 + expx10 ∗ x212 + cos 2x11+

+ x313 +N(0, 0.01).

Eigenvalues Tolerance
x1 2.56988 0.19800
x2 2.20573 0.39154
x3 1.74454 0.44654
x4 1.55113 0.17037
x5 1.23456 0.35718
x6 0.92680 0.16947
x7 0.77038 0.27817
x8 0.63082 0.64637
x9 0.53694 0.41468
x10 0.42723 0.69113
x11 0.20180 0.40436
x12 0.15447 0.15163
x13 0.04573 0.53992

Table 3.4: Eigenvalues and tolerance for simulated dataset, 13 pre-
dictors

We notice in Table 3.4 that some of these explanatory variables
have low values of tolerance, especially x6 and x12. We apply again
our strategy, which consists in considering different combinations of
predictor components.

From Table 3.5 we see that the model that has the lowest value of
EPE is the model in which a single ordinal component is used and it-
erations continue until convergence. Applying the 1-SE rule we choose

69

Generalized Boosted Additive
Models

EPE Std Error APE Std Error
lin(c) 0.56041 0.59416 0.34893 0.02929

ord(c) 0.04217 0.02276 0.01603 0.00364
nom(c) 0.04813 0.02370 0.01185 0.00294

lin(1)ord(1)nom(1) 0.14676 0.08505 0.07710 0.01606
lin(5)ord(5)nom(5) 0.05854 0.04465 0.01594 0.00313

ord(5)nom(5) 0.04645 0.02753 0.01286 0.00321
ord(1)nom(5) 0.05169 0.03170 0.01510 0.00364
ord(5)nom(1) 0.04576 0.02717 0.01802 0.00424
ord(1)nom(4) 0.05491 0.02922 0.01683 0.00394

lin(5)ord(5)nom(c) 0.04811 0.02371 0.01185 0.00294

Table 3.5: EPE and APE and respective standard deviation for dif-
ferent boosted models, simulation with thirteen predictors

model lin(5)ord(5)nom(5), in which we use sequentially three predic-
tion components and we limit, in each step, the number of iterations to
be equal to 5. As before we are also interested in evaluating the effect
of transformations on the relationship that exists among predictors.

In Table 3.6 the eigenvalues of the correlation matrix of the trans-
formed predictors and tolerance values are shown, before and after
each prediction component is added in the model. As in the previous
example, tolerance values, which before transformations were applied
were quite small have become larger after transformations. Moreover,
as before, applying nonlinear transformations causes a decrease in the
greatest eigenvalue and an increase of the smallest one.

We performed several other simulations, varying the degree of cor-
relation among predictors and obtained similar results. So, we can
conclude that applying nonlinear transformation through optimal scal-
ing and following the stagewise boosting approach we allow a subop-
timal solution in terms of Apparent Prediction Error since this sub-

70

3.3. Simulations

Eigenvalues Tolerance
lin(5) ord(5) nom(5) lin(5) ord(5) nom(5)

1 2.56988 2.13813 2.20731 0.19800 0.45973 0.68303
2 2.20573 1.82896 1.87613 0.39154 0.75709 0.66788
3 1.74454 1.57988 1.59536 0.44654 0.65316 0.85693
4 1.55113 1.23352 1.34432 0.17037 0.83399 0.52448
5 1.23456 1.15684 1.13957 0.35718 0.71724 0.52127
6 0.92680 1.00128 1.07829 0.16947 0.40519 0.49769
7 0.77038 0.89638 0.90838 0.27817 0.58184 0.50014
8 0.63082 0.77422 0.69998 0.64637 0.82333 0.74650
9 0.53694 0.71800 0.59479 0.41468 0.77424 0.79848

10 0.42723 0.65483 0.53507 0.69113 0.85926 0.82001
11 0.20180 0.48634 0.39100 0.40436 0.84799 0.87686
12 0.15447 0.35378 0.29915 0.15163 0.45315 0.52522
13 0.04573 0.17784 0.20066 0.53992 0.77442 0.60992

Table 3.6: Eigenvalues and tolerance for simulated dataset, 13 pre-
dictors

71

Generalized Boosted Additive
Models

optimality is compensated by a smaller Expected Prediciton Error and
a drastic reduction of the number of iterations.

3.4 Real data analysis

The real dataset that we use in this section was collected by an Italian
financial istitution, which allowed its use only for academic purposes
under a non-disclosure agreement. These data contains 3568 obser-
vations measured on 22 variables and were sampled from a bigger
dataset. All the variables are reported in Table 3.7. RBT is the out-
come variable and all the other variables are predictors. These predic-
tors are mostly binary, only four of them are quantitative. This feature
makes a multiple linear regression approach not so easily interpretable
for these data. Also in this section, according to the stagewise ap-
proach mentioned earlier, we apply a boosted additive model to these
data, choosing different combinations of prediction components.

In Table 3.8 the eigenvalues of the correlation matrix of the inde-
pendent variables and the values of the tolerance are shown. We can
notice that this dataset is quite affected by collinearity, especially if
we look at the values of the tolerance for predictors NMC, NFC, DD
and RB. In Table 3.9 we report the Expected Prediction Error (EPE)
and the Apparent Prediction Error (APE), and their standard errors,
obtained by evaluating Mean Square Error estimates obtained with
10-fold cross validation.

In the first column of Table 3.9, lin stands for linear transformation,
ord for ordinal and nom for nominal. No transformation are available
for binary predictors, on the other hand, we use spline transformations
(order two and two interior knots) for numerical ones. The number
within parentheses indicates the number of iterations performed, while
letter c indicates that the algorithm is performed until convergence.
The model that presents the lowest EPE is the one in which we use

72

3.4. Real data analysis

Label Description
NMC number of marketing campaigns the customer was involved
NC number of contacts for maketing campaigns
NFC total of financial products owned by the customer
AGE customer age
type customer type (family = 1, personal= 2)
LI life insurance contracts and pension funds (NO = 0, YES = 1)
AM asset management (NO = 0, YES = 1)
MF mutual funds (NO = 0, YES = 1)
BOND bonds (NO = 0, YES = 1)
DCER deposit certificates (NO = 0, YES = 1)
IIT innovative investment tools (NO = 0, YES = 1)
BAC bank account (NO = 0, YES = 1)
DEP deposits (NO = 0, YES = 1)
DD direct debit (NO = 0, YES = 1)
DCARD debit card (NO = 0, YES = 1)
CCARD credit card (NO = 0, YES = 1)
RB remote banking (NO = 0, YES = 1)
CMS cash management services (NO = 0, YES = 1)
CSP credited salary/pension (NO = 0, YES = 1)
SML short-medium terms loans (NO = 0, YES = 1)
SEX sex (male = 1, female = 2)
RBT ratio between bank account assets and total assets

Table 3.7: Real dataset, data description

73

Generalized Boosted Additive
Models

Eigenvalues Tolerance
type 4.28003 0.58901

NMC 2.27561 0.19961
NC 1.71962 0.57521

NFC 1.19563 0.04554
LI 1.05413 0.16440

AM 1.02155 0.64343
MF 0.99441 0.51688

BOND 0.97581 0.46291
DCER 0.91783 0.61994

IIT 0.87875 0.52290
BAC 0.80573 0.49839
DEP 0.72073 0.67561

DD 0.69244 0.19499
DCARD 0.63130 0.36871
CCARD 0.57363 0.34895

RB 0.53954 0.15789
CMS 0.51741 0.42515
CSP 0.46427 0.30518
SML 0.44926 0.52625
SEX 0.26036 0.97293
AGE 0.03196 0.51357

Table 3.8: Eigenvalues of the correlation matrix and tolerance values,
real dataset

74

3.4. Real data analysis

EPE Std.Error APE Std.Error
lin(c) 1.247 0.067 1.034 0.002

ord(c) 0.807 0.063 0.798 0.016
nom(c) 0.759 0.064 0.694 0.002

lin(1)ord(1)nom(1) 0.918 0.081 0.904 0.002
lin(5)ord(5)nom(5) 0.819 0.069 0.805 0.002

ord(5)nom(5) 0.822 0.068 0.809 0.003
ord(1)nom(5) 0.827 0.072 0.813 0.002
ord(5)nom(1) 0.868 0.076 0.855 0.007
ord(1)nom(4) 0.830 0.071 0.817 0.002
ord(4)nom(1) 0.868 0.076 0.855 0.007

nom(1)nom(4) 0.830 0.073 0.817 0.003
nom(4)nom(1) 0.868 0.082 0.854 0.002

lin(5)ord(5)nom(c) 0.759 0.064 0.694 0.002

Table 3.9: EPE and APE and respective standard deviation for dif-
ferent boosted models, real data

75

Generalized Boosted Additive
Models

only a nominal prediction component and we iterate until convergence.
If we follow the 1-SE rule the model ord(5)nom(5) is chosen.

In Table 3.10 we report the eigenvalues of the correlation matrix and
the values of tolerance for each explanatory variable before and after
transformation. We notice that the greatest eigenvalue after transfor-
mations is smaller than the one before transformations. Similarly the
smallest eigenvalue after transformation is greater than the one before
transformation. Moreover, the values of the tolerance for all predic-
tors are improved after applying transformation, especially if we look
at explanatory variables NMC, LI, DD and RB. It is remarkable that
the tolerance for the binary variables increases dramatically through
the transformation of the numeric variables. As in previous examples
even dealing with real data our optimal scaling approach seems to
work very well: by transformation, we gain in reduction of expected
prediction error compared to the linear solution and by using different
prediction components we considerably reduce the computational time
restricting the number of iterations in each step.

76

3.4. Real data analysis

Eigenvalues Tolerance

before ord(5) nom(5) before ord(5) nom(5)
type 4.28003 4.05841 3.59375 0.568901 0.71882 0.75685

NMC 2.27561 2.27530 2.05339 0.19961 0.45246 0.88101
NC 1.71962 1.68988 1.51919 0.57521 0.85648 0.93033

NFC 1.19563 1.22539 1.23375 0.04554 0.14546 0.28403
LI 1.05413 1.03825 1.07931 0.16440 0.63068 0.71889

AM 1.02155 1.00795 1.00314 0.64343 0.95913 0.96083
MF 0.99441 0.98443 0.99753 0.51688 0.64030 0.73346

BOND 0.97581 0.96892 0.95816 0.46291 0.54922 0.61852
DCER 0.91783 0.89574 0.95507 0.61994 0.99448 0.99573

IIT 0.87875 0.89130 0.89167 0.52290 0.83463 0.89846
BAC 0.80573 0.82076 0.85685 0.49839 0.64936 0.61051
DEP 0.72073 0.72975 0.84327 0.67561 0.76157 0.85092

DD 0.69244 0.70190 0.75288 0.19499 0.60088 0.60039
DCARD 0.63130 0.67971 0.70361 0.36871 0.67227 0.72441
CCARD 0.57363 0.63077 0.65662 0.34895 0.59075 0.72561

RB 0.53954 0.57081 0.62842 0.15789 0.37701 0.67148
CMS 0.51741 0.52056 0.57089 0.42515 0.64557 0.76638
CSP 0.46427 0.49549 0.52090 0.30518 0.61741 0.72159
SML 0.44926 0.45615 0.51609 0.52625 0.77485 0.91051
SEX 0.26036 0.26030 0.45887 0.97293 0.97217 0.97368
AGE 0.03196 0.09822 0.20664 0.51357 0.61883 0.91517

Table 3.10: Eigenvalues and tolerance values before and after each
prediction component is added into the model, real data

77

Conclusions

The results from the simulated and the real data analysis suggest that
through the combination of nonlinear regression with optimal scal-
ing transformations and of the forward stagewise boosting approach,
Generalized Boosted Additive Models can deal with data affected by
collinearity and concurvity.

Moreover, when our goal is to predict the outcome values for fu-
ture observations from a set of explanatory variables, the boosting
approach, which is the building block of the sequential fitting proce-
dure of these models, allows us to reach a good solution in terms of
Expected Prediction Error, with the additional benefit of a consider-
able decrease in the number of iterations that are needed. In other
words, if we want to iterate the procedure until (full) convergence,
almost 100 iterations are tipically required. By contrast, the proposed
models require less than 20 iterations, thus we obtain a remarkable
saving in execution time.

The scientific results of this work can be extended in various direc-
tions: the hope is that they have induced curiosity in the reader.

79

Appendix A

R codes

A.1 Catreg

A.1.1 Algorithm for data normalization

NORM <- function(XX, norm) {

N <- dim(XX)[1]

M <- dim(XX)[2]

A <- colSums(as.matrix(XX))/N

E <- apply(XX, 2, function(x) sqrt(sum((x - mean(x))^2)))

YY <- apply(XX, 1, function(x) (x - A)/E)

YY <- YY * sqrt(norm)

return(t(YY))

}

A.1.2 Algorithm to compute knots from data

KNOTS <- function(y, #vector of data

norder, # spline order

nknots # number of interior knots

) {

nobs <- length(y)

ncoef <- norder + nknots

temp <- y[order(y)]

m0 <- norder

81

R codes

m1 <- m0 + 1

m2 <- norder + nknots

m3 <- m2 + 1

m4 <- m3 + norder - 1

T <- rep(0,m4)

T[1:m0] <- temp[1]

T[m3:m4] <-temp[nobs]

xorder <- m3 - m0

prop <- (((m1- 1) + 1:(m2-(m1-1)))- m0)/xorder

xpos <- (nobs+1) * prop

npos <- floor(xpos)

xval <- ((temp[npos + 1] - temp[npos]) * (xpos - npos))+ temp[npos]

T[(m1-1) + 1:(m2 - (m1 - 1))] <- xval

return(T)

}

A.1.3 Algorithm to compute integrated m-splines

IMSPLN <- function(T,

y,

left,

ival,

datum,

norder

){

j <- 1

isw <- 0

splm <- rep(1, length = 2)

spli <- rep(1, length = 2)

dr <- rep(1, length = 2)

dl <- rep(1, length = 2)

wk <- rep(1, length = 2)

K = 1

A = 1

while (A != 7) {

A = A

if(K == 1) {

if(norder == 1){

A = 6

} else {

A = A

82

A.1. Catreg

}

}else{

#print(A)

if (A == 1) {

step 1

jp1 <- j + 1

dr[j] <- T[left + j] - datum

dl[j] <- datum - T[(left - j) + 1]

s <- 0

i <- 1

A = 2

}

#print(A)

if (A == 2) {

step 2

z <- wk[i]/(dr[i] + dl[jp1- i])

wk[i] <- s + (dr[i] * z)

s <- dl[jp1-i] * z

if(j >= i + 1) {

A = 2

i <- i + 1

} else {

wk[jp1] <- s

if (isw == 1) {

A = 3

} else {

j <- jp1

if (j < norder) {

A = 1

} else {

A = 6

}

}

}}

#print(A)

if (A == 6) {

HUP

xorder <- norder

i <- 1

A = 4

}

#print(A)

if(A == 4) {

step 4:

83

R codes

splm[i] <- (wk[i]*xorder)/(T[left + i]- T[left + (i - norder)])

if (norder >= i + 1) {

A = 4

i <- i + 1

} else {

isw <- 1

A = 1

} }

#print(A)

if (A == 3) {

step 3:

SUM <- 0

i <- 1

A = 5

}

#print(A)

if (A == 5) {

step 5:

n <- norder + 1 - i

SUM <- SUM + wk[n + 1]

spli[n] <- SUM

if(norder >= i +1) {

A = 5

i <- i + 1

} else {

A = 7

}

}

#print(A)

}

K <- K + 1

}

return(spli)

}

%%%

JSPLINE <- function(T,

y,

NORDER,

NKNOTS

){

ncoef <- NORDER + NKNOTS

nobs <- length(y)

ispline <- matrix(0, nobs, ncoef)

ival <- 1

84

A.1. Catreg

KK <- 1

A = 11

while(A !=71) {

if(A == 11) {

step 1:

mj <- 0

datum <- y[ival]

left <- NORDER

if(ncoef -1 < left) {

A = 31

} else {

A = 21

}}

#print(A)

if(A == 21) {

step 2

if (T[left+1] > datum) {

A = 31

} else {

if((ncoef - 1) >= left + 1) {

A = 21

left <- left + 1

} else {

A = 31

left <- left + 1

}}

}

#print(A)

if(A == 31) {

step 3:

spli <- IMSPLN(T, datum, left, ival, datum, norder = NORDER)

k <- 1

if((left - NORDER) < k) {

A = 61

} else {

A = 41

}

}

#print(A)

if (A == 41) {

step 4

ispline[ival, mj +k] <- ispline[ival, mj + k] + 1

if ((left - NORDER) >= k + 1) {

A = 41

k = k+1

} else {

85

R codes

A = 61

}

}

#print(A)

if (A == 61) {

m <- 0

k <- (left - NORDER) + 1

A = 51 }

#print(A)

if(A == 51) {

m <- m + 1

ispline[ival, mj + k] <- ispline[ival, mj +k] + spli[m]

if (left >= k+1) {

A = 51

k = k+1

} else {

if (nobs >= ival + 1) {

A = 11

ival = ival + 1

} else{

A = 71}

}}

#print(A)

KK <- KK +1

}

DEVFMN(ispline)

}

%%

DEVFMN <- function(x # ISPLINE matrix

) {

a <- matrix(colSums(x), ncol = ncol(x), nrow = nrow(x), byrow =TRUE)/nrow(x)

w <- x - a

return(w)

}

A.1.4 Backfitting – inner loop

inner <- function(u, # unrestricted quantification

inb, # splines coefficients

S, # I-splines basis

ssbase, # sum of squares I-splines basis

ncoef, #

type, # 4 = nominal spline 5 = ordinal spline

j, # variable number

n.inits # number it for splines

86

A.1. Catreg

) {

u <- as.matrix(u)

S <- as.matrix(S)

iter <- 1

maxinit <- 2

ready <- FALSE

eps <- 1e-6

inner.res <- sum((u - (S %*% inb))^2)

bb <- cbind(inb, NULL)

R <- cbind(inner.res,NULL)

##

#

##

while(!ready) {

for(T in 1:ncoef) {

Z <- as.matrix(S[, -T]) %*% as.matrix(inb[-T])

z <- u - Z

inb[T] <- S[,T] %*% z

if (type == 3 | type == 5) {

if (inb[T] >= 0)

{ inb[T] <- inb[T] }

else

{inb[T] <- 0 }

}

if (ssbase[T] > 0) { inb[T] <- inb[T] / ssbase[T] }

}

res.iter <- sum((u - (S %*% inb))^2)

R <- cbind(R, res.iter)

bb <- cbind(bb, inb)

ready <- abs((R[iter+1] - R[iter]) / R[iter+1]) <= eps

if(iter == 1) {

ready <- (R[iter+1] <= R[iter]) & (iter >= 5) }

else {

ready <- (R[iter+1] <= R[iter]) & (iter >= maxinit)

}

ready <- iter == 1

iter <- iter + 1

print(iter)

}

W <- list ("inb" = inb)

return(W)

}

87

R codes

A.1.5 Catreg function

catreg <- function(y, # dependent variable

x, # independent variables

NORDER, # spline order

NKNOTS, # number of interior knots

TYPE, # transformation type

n.inits, # number of iteration in the inner loop

critit, # convergence criterion outer

maxit # maximum number it outer

) {

source("NORM.r")

source("KNOTS.r")

source("DEVFMN.r")

source("IMSPLN.r")

source("JSPLINE.r")

source("INNER.r")

nn <- dim(x)[1]

ssdat <- colSums(x^2)

varord <- order(ssdat, decreasing = FALSE)

#varord <- c(1:nvar)

norm <<- 1

Q <- t(NORM(y ,norm)) # normalized response variable

PHI <- NORM(x, norm) # normalized indep variables

betas <- as.matrix(rep(1/nvar, nvar)) # initialize beta

bbetas <- cbind(betas, NULL) # store beta in each iteration

RES.ini <- sum((Q - (PHI %*% betas))^2) # Initial RSS

RES.T <- cbind(RES.ini, NULL) # Store RSS in each iteration

for(j in 1:nvar) {

if (TYPE[j] == 1) {

NKNOTS[j] <- 0

NORDER[j] <- 0

}

if (TYPE[j] == 2 | TYPE[j] == 3){

NKNOTS[j] <- length(unique(x[,j])) - 2

NORDER[j] <- 1

}

if (TYPE[j] >= 4) {

check number of specified knots

maxnknots <- length(unique(x[,j])) - 2

if (NKNOTS[j] > maxnknots) {

88

A.1. Catreg

NKNOTS[j] <- maxnknots

issue a warning

cat("The number for knots of variable",j,"is set to the maximum of",

maxnknots,"\n")

}

}

}

sumncoef <- sum(NORDER) + sum(NKNOTS)

ISPLINE <- array(0,dim=c(nn, sumncoef))

ssbase <- array(0,dim=sumncoef)

splb <- array(0,dim=sumncoef)

ncoef <- rep(0, nvar)

ntotknots <<- rep(0, nvar)

for(j in 1:nvar) {

ncoef[j] <- NKNOTS[j] + NORDER[j]

ntotknots[j] <<- NKNOTS[j] + 2*NORDER[j]

}

maxknots <- max(NKNOTS) + 2*max(NORDER)

knot <<- array(0,dim=c(maxknots, nvar))

jw <- 1

jb <- ncoef[1]

for(j in 1:nvar) {

if (TYPE[j] != 1) {

splb[jw:jb] <- 1/ncoef[j] # initialize spline coefficients

nknots <- NKNOTS[j]

norder <- NORDER[j]

if (TYPE[j] == 2 | TYPE[j] == 3) {

Knots for nom/ord level

cat <- unique(x[,j])

ord <- order(cat)

knot[1:ntotknots[j],j] <<- unique(cat[ord])

}

if (TYPE[j] >= 4) {

knot[1:ntotknots[j],j] <<- KNOTS(unique(x[,j]), norder, nknots)

}

ISPLINE[,jw:jb]<- JSPLINE(knot[1:ntotknots[j],j], x[,j], norder, nknots)

for (k in jw:jb) { ssbase[k] <- sum(ISPLINE[,k]^2) }

}

jw = jb + 1

if (j < nvar) { jb = jb + ncoef[j+1] }

}

Set pointers to bases and spline weights

pntrbase <- rep(0, nvar)

k <- 1

for (j in 1:nvar) {

pntrbase[j] <- k

89

R codes

k <- k + ncoef[j]

}

##

it <- 1

ready2 <- FALSE

while(!ready2){

for(jj in 1:nvar) {

j <- varord[jj]

jw <- pntrbase[j]

jb <- jw + ncoef[j] - 1

H <- as.matrix(PHI[,-j]) %*% betas[-j]

u <- Q - H

if(TYPE[j] == 1)

{ betas[j] <- t(PHI[,j]) %*% u }

else {

result <- inner(u, splb[jw:jb], ISPLINE[,jw:jb], ssbase[jw:jb],

ncoef[j], TYPE[j], j, n.inits)

if (TYPE[j] == 3 | TYPE[j] == 5) {

if (all (result$inb == 0)) {

reflu <- -1 * u

result <- inner(reflu, splb[jw:jb], ISPLINE[,jw:jb],

ssbase[jw:jb], ncoef[j], TYPE[j], j, n.inits)

}

}

splb[jw:jb] <- result$inb

PHI[,j] <- as.matrix(ISPLINE[,jw:jb]) %*% as.matrix(splb[jw:jb])

ssq <- PHI[,j] %*% PHI[,j]

if (ssq > 0) { PHI[,j] <- (PHI[,j] / sqrt(ssq)) * sqrt(norm) }

betas[j] <- (t(u) %*% PHI[,j]) / norm

}

}

bbetas <- cbind(bbetas,betas)

RES.it <- sum((Q - (PHI %*% betas))^2)

RES.T <- cbind(RES.T, RES.it)

ready2 <- (abs(RES.T[it+1] - RES.T[it]) <= critit) | (it == maxit)

it <- it + 1

}

Relative Importance measure

imp <- as.matrix(rep(0, nvar))

zcor <- array(0,dim=nvar)

for (j in 1:nvar) {

zcor[j] <- (t(Q) %*% PHI[,j]) / norm

imp[j] <- zcor[j] * betas[j]

}

90

A.1. Catreg

tmp <- sum(imp)

imp <- imp / tmp

Tolerance

R_p <- cor(PHI)

IR_p <- diag(solve(R_p))

tol <- rep(0, nvar)

for(i in 1:nvar) {

if(abs(betas[i]) > 0){

tol[i] <- 1/IR_p[i]

} else {

tol[i] <- 0

}

}

W = list(betas = betas,

importance = imp,

transf = PHI,

Q = Q,

hist.RSS = RES.T,

hist.beta = bbetas,

RSS = RES.T[length(RES.T)])

return(W)

}

A.1.6 Algorithm for plotting transformations

OutputTrans <- function(x, # original predictor values

transf, # transformed variables

VNAME, # variables names

TYPE, # transformation type

prints, # TRUE or FALSE

plots # TRUE or FALSE

) {

npred <- dim(x)[2]

nn <- dim(x)[1]

nvar <- length(VNAME)

dim1 <- 4

dim2 <- ceiling(nvar / 4)

if (plots) {

windows()

par(mfrow=c(dim1, dim2))

91

R codes

for(j in 1:npred){

ord <- order(x[,j])

if (TYPE[j] == 1) {

plot(x[ord,j], transf[ord,j], type = 'b', xlab = VNAME[j],

ylab = 'phi', main = 'NUM TRANSF')

}

if (TYPE[j] == 2) {

plot(x[ord,j], transf[ord,j], type = 'b', xlab = VNAME[j],

ylab = 'phi', main = 'NOM TRANSF')

}

if (TYPE[j] == 3) {

plot(x[ord,j], transf[ord,j], type = 'b', xlab = VNAME[j],

ylab = 'phi', main = 'ORD TRANSF')

}

if (TYPE[j] == 4) {

plot(x[ord,j], transf[ord,j], type = 'b', xlab = VNAME[j],

ylab = 'phi', main = 'SPLINE NOM TRANSF')

}

if (TYPE[j] == 5) {

plot(x[ord,j], transf[ord,j], type = 'b', xlab = VNAME[j],

ylab = 'phi', main = 'SPLINE ORD TRANSF')

}

}

}

if (prints) {

W <- list(rep(0))

for(j in 1:npred){

ord <- order(x[,j])

W[[j]] <- unique(transf[ord,j]) * sqrt(nn)

print(W)

}

}

}

92

A.2. Boosted Additive Models

A.2 Boosted Additive Models

A.2.1 Algorithms for implementing boosted ad-
ditive models when cross validation is re-
quired

CatFreq <- function(y, x){

nobs <- dim(x)[1]

ncat <- array(0,dim=nvar)

for (j in 1:nvar) {

ncat[j] <- length(unique(x[,j]))

}

ncatdep <- length(unique(y))

maxncat <- max(ncat)

cat <- array(0,dim=c(maxncat,nvar))

for (j in 1:nvar) {

ord <- order(x[,j])

cat[1:ncat[j],j] <- unique(x[ord,j])

}

ord <- order(y)

catdep <- unique(y[ord])

freq <- array(0,dim=c(maxncat,nvar))

for (j in 1:nvar) {

for (k in 1:ncat[j]) {

ix <- which((x[,j] == cat[k,j]) == TRUE)

freq[k,j] <- length(ix)

}

}

freqdep <- array(0,dim=ncatdep)

for (k in 1:ncatdep) {

ix <- which((y == catdep[k]) == TRUE)

freqdep[k] <- length(ix)

}

return(list(nobs=nobs, ncat=ncat, cat=cat, freq=freq,

maxncat=maxncat, ncatdep=ncatdep, catdep=catdep,

freqdep=freqdep))

}

###

expandFrame <- function (tab, clean = TRUE, zero = TRUE,

93

R codes

returnFrame = TRUE){

n <- dim(tab)[1]

m <- dim(tab)[2]

g <- matrix(0, n, 0)

l <- rep("", 0)

lab1 <- labels(tab)[[1]]

lab2 <- labels(tab)[[2]]

for (j in 1:m) {

y <- as.factor(tab[, j])

h <- levels(y)

g <- cbind(g, ifelse(outer(y, h, "=="), 1, 0))

l <- c(l, paste(lab2[j], "_", h, sep = ""))

}

if (zero)

g <- ifelse(is.na(g), 0, as.matrix(g))

if (clean) {

g <- g[which(rowSums(g) > 0), which(colSums(g) > 0)]

g <- g[, which(colSums(g) < n)]

}

if (!returnFrame)

return(g)

g <- as.data.frame(g, row.names = lab1)

names(g) <- l

return(g)

}

##

CreateIndmat <- function(y, # dependent variable

x, # independent variables

ncat,

ncatdep,

nobs #number of observations

){

source("expandFrame.r")

Set pointers to Indmat

pntrixIndmat <<- rep(0, nvar)

k <- 1

for (j in 1:nvar) {

pntrixIndmat[j] <<- k

k <- k + ncat[j]

}

sumncat <- sum(ncat)

Indmat <<- array(0,dim=c(nobs,sumncat))

for (j in 1:nvar) {

var <- as.matrix(x[,j])

a <- pntrixIndmat[j]

b <- a + ncat[j] - 1

94

A.2. Boosted Additive Models

Indmat[,a:b] <<- as.matrix(expandFrame(var,

zero = FALSE, clean = FALSE))

}

Indmatdep <<- array(0,dim=c(nobs,ncatdep))

var <- as.matrix(y)

Indmatdep <<- as.matrix(expandFrame(var,

zero = FALSE, clean = FALSE))

}

DepInclTest <- function(y, QlinTrain, nobsAll, ncatdep,

ncatdepAll, freqdep, catdep,

catdepAll,NORDER, NKNOTS, knot,

TYPE, nv){

QlinAll <- array(0,dim=nobsAll)

maxncat <- max(ncatdepAll)

quantlin <- array(0,dim=maxncat)

tmp <- array(0,dim=ncatdep)

for (k in 1:ncatdep) {

ix <- which((y == catdep[k]) == TRUE)

tmp[k] <- QlinTrain[ix[1]]

}

kk <- 1

for (k in 1:ncatdepAll) {

if (freqdep[k] != 0) {

quantlin[k] <- tmp[kk]

kk <- kk + 1

} else {

quantlin[k] <- 0

}

}

Check if interpolation required

if (ncatdepAll != ncatdep) {

for (k in 1:ncatdepAll) {

if (freqdep[k] == 0) {

quantlin[k] <- interpol(1, catdepAll[k], y, quantlin,

catdepAll, ncatdepAll, freqdep, 0, 0, 0, 1)

}

}

}

QlinAll <- Indmatdep %*% as.matrix(quantlin[1:ncatdepAll])

return(QlinAll)

}

###

95

R codes

TransInclTest <- function(x, transTrain, nobsAll, ncat,

ncatAll, freq, cat, catAll,

NORDER, NKNOTS, knot, TYPE, nv){

transAll <- array(0,dim=c(nobsAll, nv))

maxncat <- max(ncatAll)

quant <- array(0,dim=c(maxncat,nv))

for (j in 1:nv) {

tmp <- array(0,dim=ncat[j])

for (k in 1:ncat[j]) {

ix <- which((x[,j] == cat[k,j]) == TRUE)

tmp[k] <- transTrain[ix[1],j]

}

kk <- 1

for (k in 1:ncatAll[j]) {

if (freq[k,j] != 0) {

quant[k,j] <- tmp[kk]

kk <- kk + 1

} else {

quant[k,j] <- 0

}

}

}

Check if interpolation required

for (j in 1:nv) {

if (ncatAll[j] != ncat[j]) {

#for (k in 1:ncatAll[j]) {

ind <- which(quant[,j] == 0)

for(z in ind){

quant[z,j] <- interpol(j, catAll[z,j], x[,j],

quant[1:ncatAll[j],j],

catAll, ncatAll, freq,

NORDER[j], NKNOTS[j],

knot[1:ntotknots[j],j],

TYPE[j])

}

}

a <- pntrixIndmat[j]

b <- a + ncatAll[j] - 1

transAll[,j] <- Indmat[,a:b] %*% as.matrix(quant[1:ncatAll[j],j])

ix <- which((transAll[,j] == 99999) == TRUE)

transAll[ix,j] <- NA

}

return(transAll)

96

A.2. Boosted Additive Models

}

##

interpol <- function(j, catip, dattrain, quant, catAll, ncatAll,

freq, NORDER, NKNOTS, knot,LEVEL) {

if (LEVEL == 1) {

mean <- sum(dattrain) / nobstrain

ss <- sum((dattrain - mean)^2)

ipval1 <- (catip - mean) / sqrt(ss)

} else {

interpol <- TRUE

if (LEVEL == 2 | LEVEL == 3) {

goto 5000

ipval1 <- 99999

interpol <- FALSE

}

if (interpol) {

CHECK IF EXTRAPOLATION IS REQUIRED

catneih <- FALSE

catneil <- FALSE

for (k in 1:ncatAll[j]) {

if (freq[k,j] != 0) {

if (catAll[k,j] > catip) { catneih <- TRUE }

if (catAll[k,j] < catip) { catneil <- TRUE }

}

}

extrapol <- FALSE

if ((!catneih) | (!catneil)) {

extrapol <- TRUE

interpol <- FALSE

ipval1 <- 99999

}

}

if (interpol) {

ipval1 <- 0

dimtmp1 <- (NORDER + 1)

tmpa1 <- array(0,dim=c(dimtmp1, dimtmp1))

tmpaa1 <- array(0,dim=dimtmp1)

tmpb1 <- array(0,dim=dimtmp1)

tmp21 <- array(0,dim=c(dimtmp1, dimtmp1))

tmp31 <- array(0,dim=dimtmp1)

tmpa1[1:dimtmp1,1] <- 1

tmpaa1[1] <- 1

97

R codes

tknot <- trunc(knot)

indk <- which(tknot > catip)[1]

categ <- tknot[indk]

for(tt in 1:dimtmp1) {

for (t in 1:(dimtmp1-1)) {

catix1 <- 0

ready <- FALSE

while(!ready) {

id <- which(catAll[,j] == categ)

if(length(id) != 0 && freq[id, j] != 0){

catix1 <- id

ready = TRUE

} else {

catix1 <- 0

categ <- categ - 1

}

}

if (is.na(ipval1) == TRUE) { break }

tmpa1[tt,t+1] <- catAll[catix1,j]^t

tmpaa1[t+1] <- catip^t

} # end t loop

if (is.na(ipval1) == TRUE) { break }

tmpb1[tt] <- quant[catix1]

if (tt < dimtmp1) {

categ <- categ - 1

if (categ == 0) {

ipval1 <- 99999

}

}

} # end tt loop

if (is.na(ipval1) != TRUE) {

tmp21 <- solve(tmpa1)

for (i in 1:dimtmp1) {

tmp31[i] <- 0

for (l in 1:dimtmp1) {

tmp31[i] <- tmp31[i] + tmp21[i,l] * tmpb1[l]

}

}

ipval1 <- 0

for (k in 1:dimtmp1) {

ipval1 <- ipval1 + tmpaa1[k] * tmp31[k]

}

}

98

A.2. Boosted Additive Models

}

} ### end else

return(ipval1)

}

##

A.2.2 Algorithm for boosted additive model

boosting <- function(y, # outcome variable

x, # predictor variables

NORDER, # spline order

NKNOTS, # number of interior knots

TYPE, # type of transformation

maxit){ # max number of iterations

source("catreg.r")

y <- as.matrix(y)

x <- as.matrix(x)

pointer of the number of additive components

if(dim(TYPE)[2] == 1){

A = 100

}

if (dim(TYPE)[2] == 2) {

A = 200

}

if(dim(TYPE)[2] == 3){

A = 300

}

nobs <- length(y)

norm=1

TYPE1 <- TYPE[,1]

mod.1<- catreg(y, x, NORDER, NKNOTS, TYPE[,1], n.inits, critit, maxit[1])

betas.M1 <- mod.1$betas

Q.M1 <- mod.1$Q

trans.M1 <-mod.1$transf

pred.M1 <- trans.M1 %*% betas.M1

res.M1 <- as.matrix(Q.M1 - pred.M1)

if(A == 100){

pred.M1 <- (pred.M1)*sqrt(nobs)

dep.M1 <- Q.M1 * sqrt(nobs)

res <- (dep.M1 - pred.M1)

betas.M2 = NA

99

R codes

betas.M3 = NA

PHI <- trans.M1

} else {

norm=1

TYPE2 <- TYPE[,2]

if (length(maxit) < 2) {

stop("you have to specify a number of max iteration per type")

}

mod.2 <- catreg(res.M1, x, NORDER, NKNOTS, TYPE2, n.inits, critit, maxit[2])

betas.M2 <- mod.2$betas

Q.M2 <- mod.2$Q

trans.M2 <- mod.2$trans

MSSres.M1 <- mean((res.M1*sqrt(nobs))^2, na.rm = TRUE)

predraw.M2 <- trans.M2 %*% (betas.M2 * sqrt(MSSres.M1))

res.M2 <- res.M1 - predraw.M2

if(A == 200){

pred.M2 <- (pred.M1 + predraw.M2)*sqrt(nobs)

dep.M2 <- Q.M1 * sqrt(nobs)

res <- (dep.M2 - pred.M2)

betas.M3 <- NA

PHI <- trans.M2

} else {

TYPE3 <- TYPE[,3]

if (length(maxit) < 3) {

stop("you have to specify a number of max iteration per type")

}

mod.3 <- catreg(res.M2, x, NORDER, NKNOTS, TYPE3, n.inits, critit, maxit[3])

betas.M3 <- mod.3$betas

Q.M3 <- mod.3$Q

trans.M3 <- mod.3$transf

MSSres.M2 <- mean((res.M2*sqrt(nobs))^2, na.rm = TRUE)

predraw.M3 <- trans.M3 %*% (betas.M3 * sqrt(MSSres.M2))

pred.M3 <- (pred.M1 + predraw.M2 + predraw.M3)*sqrt(nobs)

dep.M3 <- QAll.M1 * sqrt(nobs)

res <- (dep.M3 - pred.M3)

PHI <- trans.M3

}

}

100

A.2. Boosted Additive Models

MSE <- mean(res^2, na.rm = TRUE)

if(all(!is.na(betas.M1))){

b1 <- betas.M1

} else {

b1 <- NA

}

if(all(!is.na(betas.M2))){

b2 <- betas.M2

} else {

b2 <- rep(NA, length(b1))

}

if(all(!is.na(betas.M3))){

b3 <- betas.M3

} else {

b3 <- rep(NA, length(b1))

}

eigenvals <- svd(cor(PHI))$d

tolerance <- 1/diag(solve(cor(PHI)))

W <- list(MSE=MSE, beta1 = b1, beta2 = b2, beta3 = b3, eig = eigenvals, tol = tolerance)

return(W)

}

101

Bibliography

[1] R.E. Barlow, D.J. Bartholomew, J.M. Bremner, and H.D. Brunk.
Statistical inference under order restrictions: the theory and ap-
plication of isotonic regression. J. Wiley, 1972.

[2] R. E. Bellman. Adaptive control processes - A guided tour. Prince-
ton University Press, Princeton, New Jersey, U.S.A., 1961.

[3] R.D. Bock. Methods and applications of optimal scaling (tech.
rep. 25). Technical report, Chapel Hill, NC: University of North
Carolina, L.L. Thurstone Psychometric Laboratory, 1960.

[4] A.W. Bowman and A. Azzalini. Applied smoothing techniques
for data analysis: the kernel approach with S-Plus illustrations,
volume 18. Oxford University Press, USA, 1997.

[5] L. Breiman. Bagging predictors. Machine learning, 24(2):123–
140, 1996.

[6] L. Breiman and J.H. Friedman. Estimating optimal transforma-
tions for multiple regression and correlation. Journal of the Amer-
ican Statistical Association, 80:580–598, 1985.

103

Bibliography

[7] A. Buja. Remarks on functional canonical variates, alternat-
ing least squares methods and ace. The Annals of Statistics,
18(3):1032–1069, 1990.

[8] A. Buja, T. Hastie, and R. Tibshirani. Linear smoothers and
additive models. The Annals of Statistics, 17:453–510, 1989.

[9] J.M. Chambers, T. Hastie, et al. Statistical models in S. Chapman
& Hall London, 1992.

[10] Z. Chen, C. Gu, and G. Wahba. Linear smoothers and addi-
tive models: Discussion. The Annals of Statistics, 17(2):515–522,
1989.

[11] B. Clarke, E. Fokoue, and H.H. Zhang. Principles and Theory for
Data Mining and Machine Learning (Springer Series in Statis-
tics). Springer, 1 edition, July 2009.

[12] W.S. Cleveland. Robust locally weighted regression and smooth-
ing scatterplots. Journal of the American statistical association,
74:829–836, 1979.

[13] W.S. Cleveland and S.J. Devlin. Locally weighted regression: an
approach to regression analysis by local fitting. Journal of the
American Statistical Association, 83:596–610, 1988.

[14] C. Conversano, R. Siciliano, and F. Mola. Supervised classifier
combination through generalized additive multi-model. In Josef
Kittler and Fabio Roli, editors, Multiple Classifier Systems, vol-
ume 1857 of Lecture Notes in Computer Science, pages 167–176.
Springer, 2000.

[15] C. Conversano, R. Siciliano, and F. Mola. Generalized additive
multi-mixture model for data mining. Comput. Stat. Data Anal.,
38:487–500, 2002.

104

Bibliography

[16] H.B. Curry and I.J. Schoenberg. On pólya frequency functions
iv: the fundamental spline functions and their limits. Journal
d’analyse mathématique, 17(1):71–107, 1966.

[17] C. de Boor. A practical guide to splines. Springer Verlag., 1978.

[18] J. De Leeuw and W.J. Heiser. Multidimensional scaling with
restrictions on the configuration. Multivariate analysis, 5:501–
522, 1980.

[19] J. De Leeuw, F.W. Young, and Y. Takane. Additive structure
in qualitative data: An alternating least squares method with
optimal scaling features. Psychometrika, 41(4):471–503, 1976.

[20] P. Dierckx. Curve and surface fitting with splines. Oxford Uni-
versity Press, USA, 1995.

[21] B. Efron. Bootstrap methods: another look at the jackknife. The
annals of Statistics, 7(1):1–26, 1979.

[22] B. Efron. Estimating the error rate of a prediction rule: improve-
ment on cross-validation. Journal of the American Statistical As-
sociation, 78:316–331, 1983.

[23] B. Efron and R. Tibshirani. An introduction to the bootstrap,
volume 57. Chapman & Hall/CRC, 1993.

[24] J. Fan and I. Gijbels. Local polynomial modelling and its applica-
tions, volume 66. Chapman & Hall/CRC, 1996.

[25] J. Fox. Multiple and generalized nonparametric regression. Sage
Publications Thousand Oaks, CA, 2000.

[26] J. H. Friedman. Stochastic gradient boosting. Computational
Statistics and Data Analysis, 38:367–378, 1999.

105

Bibliography

[27] J.H. Friedman. A variable span smoother. Technical report, Lab-
oratory for Computational Statistics, Standford University, 1984.

[28] J.H. Friedman. Multivariate adaptive regression splines (with
discussion). The annals of statistics, 19:1–141, 1991.

[29] J.H. Friedman. On bias, variance, 0/1 loss, and the curse-of-
dimensionality. Data mining and knowledge discovery, 1(1):55–77,
1997.

[30] J.H. Friedman. Greedy function approximation: a gradient boost-
ing machine. Annals of Statistics, 29(5):1189–1232, 2001.

[31] J.H. Friedman. Stochastic gradient boosting. Computational
Statistics & Data Analysis, 38(4):367–378, 2002.

[32] J.H. Friedman. Recent advances in predictive (machine) learning.
Journal of classification, 23(2):175–197, 2006.

[33] J.H. Friedman and P. Hall. On bagging and nonlinear estima-
tion. Journal of statistical planning and inference, 137(3):669–
683, 2007.

[34] J.H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic
regression: a statistical view of boosting (with discussion). The
annals of statistics, 28(2):337–407, 2000.

[35] J.H. Friedman and B.E. Popescu. Gradient directed regulariza-
tion for linear regression and classification. Technical report, Lab-
oratory for Computational Statistics, Standford University, 2003.

[36] J.H. Friedman and B.E. Popescu. Importance sampled learning
ensembles, 2003.

106

Bibliography

[37] J.H. Friedman and B.W. Silverman. Flexible parsimonious
smoothing and additive modeling (with discussion). Technomet-
rics, 31:3–39, 1989.

[38] J.H. Friedman and W. Stuetzle. Projection pursuit regression.
Journal of the American statistical Association, 76:817–823, 1981.

[39] A. Gifi. Nonlinear multivariate analysis. New York: John Wiley
& Sons, 1990.

[40] G.H. Golub, M. Heath, and G. Wahba. Generalized Cross-
Validation as a Method for Choosing a Good Ridge Parameter.
Technometrics, 21(2):215–223, 1979.

[41] P. J. Green. Iteratively reweighted least squares for maximum
likelihood estimation, and some robust and resistant alternatives
(with discussion). Journal of the Royal Statistical Society, Series
B, Methodological, 46:149–192, 1984.

[42] P. J. Green and B. W. Silverman. Nonparametric regression and
generalized linear models: a roughness penalty approach. Chap-
man and Hall, London, 1994.

[43] P.J. Green and B.W. Silverman. Nonparametric regression and
generalized linear models: a roughness penalty approach, vol-
ume 58. Chapman & Hall/CRC, 1994.

[44] P.J.F. Groenen, W.J. Heiser, and J.J. Meulman. Global opti-
mization in least squares multidimensional scaling by distance.
Journal of Classification, 16:225–254, 1997.

[45] P.J.F. Groenen, B.J. van Os, and J.J. Meulman. Optimal scaling
by alternating length-constrained nonnegative least squares, with
application to distance-based analysis. Psychometrika, 65(4):511–
524, 2000.

107

Bibliography

[46] Aydinli G. Härdle, W. and S. Sperlich. The Art of Semiparamet-
rics. Physica-Verlag, Germany, 2006.

[47] W. Härdle. Applied Nonparametric Regression (Econometric So-
ciety Monographs). Cambridge University Press, January 1992.

[48] W. Härdle and P. Hall. On the backfitting algorithm for additive
regression models. Statistica neerlandica, 47(1):43–57, 1993.

[49] W. Härdle, M. Müller, S. Sperlich, and A. Werwatz. Nonpara-
metric and Semiparametric Models. Springer Verlag, Heidelberg,
2004.

[50] T. Hastie and R. Tibshirani. Generalized additive models (with
discussion). Statistical Science, 1:297–318, 1986.

[51] T. Hastie and R. Tibshirani. Generalized additive models, cu-
bic splines and penalized likelihood. Technical report, Stanford
University, CA, Department of Statisctics, 1987.

[52] T. Hastie and R. Tibshirani. Generalized additive models: some
applications. Journal of the American Statistical Association,
82:371–386, 1987.

[53] T. Hastie, R. Tibshirani, and J.H. Friedman. The elements of sta-
tistical learning: data mining, inference and prediction. Springer,
2 edition, 2009.

[54] Tibshirani R. Hastie, T and J.H. Friedman. The elements of
statistical learning. Springer-Verlag, 2001.

[55] T.J. Hastie and R.J. Tibshirani. Generalized additive models.
Chapman & Hall/CRC, 1990.

108

Bibliography

[56] J.B. Kruskal. Multidimensional scaling by optimizing goodness of
fit to a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[57] J.B. Kruskal. Nonmetric multidimensional scaling: a numerical
method. Psychometrika, 29(2):115–129, 1964.

[58] J.B. Kruskal. Analysis of factorial experiments by estimating
monotone transformations of the data. Journal of the Royal Sta-
tistical Society. Series B (Methodological), 27:251–263, 1965.

[59] P. McCullagh and J.A. Nelder. Generalized linear models. Chap-
man & Hall/CRC, 1989.

[60] J.J. Meulman. The integration of multidimensional scaling and
multivariate analysis with optimal transformations. Psychome-
trika, 57(4):539–565, 1992.

[61] J.J. Meulman. Principal coordinates analysis with optimal trans-
formation of the variables: Minimizing the sum of squares of the
smallest eigenvalues. British Journal of Mathematical and Statis-
tical Psychology, 46(2):287–300, 1993.

[62] J.J. Meulman. Optimal scaling methods for graphical display of
multivariate data. COMPSTAT 1998 Proceedings in Computa-
tional Statistics, pages 65–76, 1998.

[63] J.J. Meulman. Discriminant analysis with optimal scaling in r.
Classification and information processing at the turn of the mil-
lenium, pages 32–39, 2000.

[64] J.J. Meulman. Prediction and classification in nonlinear data
analysis: Something old, something new, something borrowed,
something blue. Psychometrika, 68(4):493–517, 2003.

109

Bibliography

[65] J.J. Meulman, W.J. Heiser, and SPSS Inc. SPSS Categories 10.0.
SPSS Inc., 2004.

[66] J.J. Meulman and A.J. van der Kooij. Transformations towards
independence through optimal scaling. In International Con-
ference on Measurement and Multivariate Analysis (ICMMA),
Banff, Canada, 2000.

[67] J.J. Meulman, A.J. Van der Kooij, and W.J. Heiser. Principal
components analysis with nonlinear optimal scaling transforma-
tions for ordinal and nominal data. Handbook of quantitative
methodology for the social sciences, pages 49–70, 2004.

[68] D. Pregibon and Y. Vardi. Estimating optimal transformations
for multiple regression and correlation: Comment. Journal of the
American Statistical Association, 80(391):598–601, 1985.

[69] J.O. Ramsay. Monotone regression splines in action. Statistical
Science, 4:425–441, 1988.

[70] J. Rice and M. Rosenblatt. Smoothing splines, regression deriva-
tives and convolution. Annals of Statistics, 11:141–156, 1983.

[71] R.E. Schapire. A brief introduction to boosting. In Inter-
national Joint Conference on Artificial Intelligence, volume 16,
pages 1401–1406. LAWRENCE ERLBAUM ASSOCIATES LTD,
1999.

[72] R.E. Schapire and Y. Singer. Improved boosting algorithms using
con dence-rated predictions. Machine learning, 37:80–91, 1999.

[73] G.A.F. Seber and C.J. Wild. Nonlinear regression, volume 503.
John Wiley and Sons, 2003.

110

Bibliography

[74] P. Spector. Data Manipulation with R (Use R). Springer, 1 edi-
tion, March 2008.

[75] C.J. Stone. Consistent nonparametric regression. The annals of
statistics, 5(4):595–620, 1977.

[76] C.J. Stone. Additive regression and other nonparametric models.
The annals of Statistics, 13:689–705, 1985.

[77] J.W. Tukey. Exploratory data analysis. Addison-Wesley, Reading,
Mas., 1977.

[78] E. Van der Burg and J. de Leeuw. Non-linear canonical correla-
tion. British Journal of Mathematical and Statistical Psychology,
1983.

[79] A.J. van der Kooij et al. Prediction accuracy and stability of
regression with optimal scaling transformations. Child & Family
Studies and Data Theory (AGP-D), Department of Education
and Child Studies, Faculty of Social and Behavioural Sciences,
Leiden University, 2007.

[80] A.J. van der Kooij and J.J. Meulman. Murals: Multiple regression
and optimal scaling using alternating least squares. Advances in
Statistical Software, pages 99–106, 1997.

[81] A.J. van der Kooij and J.J. Meulman. Regression with optimal
scaling. Meulman JJ, Heiser WJ, SPSS (eds): SPPS Categories
10.0, 13:107–157, 1999.

[82] A.J. van der Kooij, J.J. Meulman, and W. Heiser. Local minima in
categorical multiple regression. Computational Statistics & Data
Analysis, 50(2):446–462, January 2006.

111

Bibliography

[83] A.J. van der Kooij, P. Neufeglise, and J.J. Meulman. Catreg,
categorical multiple regression with optimal scaling (revised and
updated version). SPSS, Inc, Chicago, 2001.

[84] V.N. Vapnik. The nature of statistical learning theory. Springer
Verlag, 2000.

[85] W.N. Venables and B.D. Ripley. Modern applied statistics with
S. Springer verlag, 2002.

[86] G. Wahba. A survey of some smoothing problems and the method
of generalized cross-validation for solving them. Applications of
Statistics, 1977.

[87] L. Wasserman. All of Nonparametric Statistics (Springer Texts
in Statistics). Springer, May 2007.

[88] E.J. Wegman and I.W. Wright. Splines in statistics. Journal of
the American Statistical Association, 78:351–365, 1983.

[89] S.N. Wood. Generalized additive models: an introduction with R,
volume 66. CRC Press, 2006.

[90] H. Yanai, A. Okada, K. Shigemasu, Y. Kano, and J.J. Meulman.
New Developments in Psychometrics. Springer, 2003.

[91] F.W. Young. Quantitative analysis of qualitative data. Psychome-
trika, 46(4):357–388, 1981.

[92] F.W. Young, J. De Leeuw, and Y. Takane. Regression with qual-
itative and quantitative variables: An alternating least squares
method with optimal scaling features. Psychometrika, 41(4):505–
529, 1976.

112

	Introduction
	Generalized Additive Models
	Introduction
	Nonparametric Regression
	Smoothing methods
	Span selection and the Bias-Variance Tradeoff
	Curse of dimensionality

	Additive Models
	Generalized Additive Models
	Degeneracy in GAMs: concurvity
	An illustration

	Nonlinear categorical regression
	Introduction
	Optimal scaling
	Monotonic splines

	Nonlinear regression with optimal scaling
	An illustration

	Generalized Boosted Additive Models
	Introduction
	Generalized Boosted Additive Models
	Simulations
	Real data analysis

	Conclusions
	R codes
	Catreg
	Algorithm for data normalization
	Algorithm to compute knots from data
	Algorithm to compute integrated m-splines
	Backfitting – inner loop
	Catreg function
	Algorithm for plotting transformations

	Boosted Additive Models
	Algorithms for implementing boosted additive models when cross validation is required
	Algorithm for boosted additive model

