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INTRODUCTION 

 

AUTSOMAL RECESSIVE ATAXIAS                                                                        

 

 

According to a pathogenic classification, the hereditary ataxias (HA) can be 

divided into five main categories: 1) mitochondrial; 2) metabolic; 3) 

defective DNA repair; 4) abnormal protein folding and degradation; 5) 

channelopathies (De Michele et al., 2004). Autosomal recessive ataxias fall 

in the first four groups, but the pathogenic mechanisms have not been 

defined in several of them.                                                                                                         

Mitochondrial ataxias are caused by defects in mitochondrial proteins, 

encoded by either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). 

Mutations in nDNA are responsible for Friedreich ataxia (FRDA), 

mitochondrial recessive ataxia syndrome (MIRAS), and infantile-onset 

spinocerebellar ataxia (IOSCA). Point mutations in mtDNA cause different 

diseases such as myoclonic epilepsy with ragged-red fibres (MERRF) and 

neuropathy, ataxia, and retinitis pigmentosa (NARP). Large mtDNA 

deletions cause Kearns–Sayre syndrome (KSS). The mtDNA group has 

matrilinear inheritance or sporadic occurrence. Ataxia may also be a main 
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feature in partial muscle coenzyme Q10 (CoQ10) deficiency.                                          

Metabolic ataxias can be intermittent or progressive. The main causes are 

hereditary disorders of urea cycle, amino acid, pyruvate, vitamin E, or lipid 

metabolism, and storage and peroxisomal diseases.                                                                                                             

Ataxias associated with defective DNA repair comprise the HA caused by 

mutations in genes involved in sensing, excising, and repairing DNA 

damage. Two major groups may be distinguished: defects of either 

double-strand break (DSB) or single-strand break (SSB) DNA repair. Ataxia–

telangiectasia (A-T) and ataxia–telangiectasia-like disorder (A-TLD) fall into 

the first group, where chromosomal instability, sensitivity to ionizing 

radiation, and tumors may also be present. Ataxia with oculomotor 

apraxia type 1 (AOA1), spinocerebellar ataxia with neuropathy 1 (SCAN1), 

xeroderma pigmentosum (XP), and Cockayne syndrome (CS), and possibly 

ataxia with oculomotor apraxia type 2 (AOA2), belong to the second group 

(Paulson and Miller, 2005). 

Ataxias associated with abnormal protein folding and degradation 

comprise autosomal recessive spastic ataxia of Charlevoix–Saguenay 

(ARSACS) and Marinesco – Sjo¨gren syndrome (MSS). A chaperone-like 

activity has been proposed for sacsin, the product of the SACS gene, 

mutations of which are associated with ARSACS, and for the protein 
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codified by the SIL1 gene, mutated in MSS. 

Other autosomal recessive ataxias whose pathogenesis does not fall into 

the previous categories include congenital ataxias, early-onset cerebellar 

ataxia with retained tendon reflexes (EOCA), polyneuropathy, hearing loss, 

ataxia, retinitis pigmentosa, and cataract (PHARC), PRICKLE1 - progressive 

myoclonus epilepsy-ataxia syndrome, cerebellar ataxias with 

hypogonadism, with  ocular features, with deafness, with myoclonus, and 

with extrapyramidal features. 

 

 

The aim of our research was to study of three kind of recessive ataxias in 

patients referring to our center for neurodegenerative diseases: spastic 

ataxia of Charlevoix – Saguenay; polyneuropathy, hearing loss, ataxia, 

retinitis pigmentosa, and cataract (PHARC); PRICKLE1 - progressive 

myoclonus epilepsy-ataxia syndrome. 
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         Spastic ataxia of Charlevoix – Saguenay 

 

 

Spastic ataxia phenotype is characterized by genetic heterogeneity as it is 

demonstrated by reports of patients with spastic ataxia who harbor 

mutations in SACS gene, FRDA gene and of patients who are linked to the 

SPG30, SAX1, SAX2, and ARSAL loci.  

Autosomal recessive spastic ataxia of Charlevoix–Saguenay (ARSACS; MIM 

270550) is an early-onset neurodegenerative disorder showing pyramidal, 

cerebellar progressive involvement and peripheral neuropathy. This 

disorder, considered to be rare, was first described in the late seventies 

among French Canadians in the isolated Charlevoix–Saguenay region of 

northeastern Quebec, where the estimated carrier frequency is 1 of every 

22 persons (Bouchard et al., 1998). Two founder mutations were 

identified in this population. Nowadays it is known that the disorder is not 

only limited to this region. After mapping of the ARSACS locus, one 

Tunisian (Mrissa et al., 2000) and two Turkish families (Gu¨cu¨yener 

et al., 2001) showed linkage to the same chromosomal region, and after 

gene identification, missense and nonsense mutations of the SACS gene 

have been found in Tunisia (El Euch-Fayache et al., 2003), Italy (Criscuolo 
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et al., 2004; Grieco et al., 2004), Japan (Ogawa et al., 2004; Hara et al., 

2005; Shimazaki et al., 2005; Yamamoto et al., 2005), Turkey (Richter 

et al., 2004), and Spain (Criscuolo et al., 2005). The phenotype of these 

patients is comparable to that identified in Quebec, except for some 

minor differences: age at onset may be later, up to 20 years, retinal 

myelinated fibers are rare; cognitive impairment more frequent. Besides, 

Mrissa et al. (2000) reported early loss of ankle reflexes and Shimazaki et 

al. (2005) noted extensor plantar responses in the absence of spasticity 

and hyperreflexia. 

Main clinical features include early-onset (1-5 years) progressive ataxia, 

dysarthria, spasticity, nystagmus, retinal striation, and distal amyotrophy. 

MRI Imaging shows cerebellar vermis atrophy, and peripheral nerve 

conduction studies reveal markedly decreased amplitude of the sensory 

potentials and reduced motor conduction velocities.  

A postmortem study of a 21-year-old man (Richter et al., 1993) showed 

atrophy of the superior cerebellar vermis, especially in the anterior 

structures (central lobule and culmen), where Purkinje cells were absent. 

The molecular and granular layers were thin; in the spinal cord there was 

loss of myelin staining in the lateral corticospinal tracts and dorsal 

spinocerebellar tracts. Abnormalities were more pronounced in a 59-year-
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old man, and extended to the hippocampus, neocortex, basal nucleus of 

Meynert, globus pallidus, thalamus, dentatus nucleus, and posterior 

columns (Bouchard et al., 2000). Sural nerve biopsy showed loss of large 

myelinated fibers; there was increased variability of intermodal length on 

nerve teasing.                                                                                                                                                    

The gene responsible for ARSACS, named SACS, maps to chromosome 

13q11 and encodes the protein sacsin. This gene consists of nine coding 

exons including a gigantic exon spanning more than 12.8k bp. Sacsin is a 

4,579-amino acid protein which includes a carboxy-terminus domain that 

harbors a higher eukaryotes and prokaryotes nucleotide-binding domain 

(HEPN) and an upstream 'DnaJ' motif, that has the potential to interact 

with members of the HSP70 family. Its N-terminus contains an UBQ region 

and has extensive homology for Hsp90. The presence of both UbQ and J-

domains suggests that sacsin may integrate the ubiquitin–proteasome 

system and Hsp70 function to a specific cellular role. In addition, sacsin is 

characterized by the presence of two leucine zipper domains, three coiled-

coil domains and seven nuclear localization signals (Engert et al., 2000; 

Grynberg et al., 2003). Sacsin is expressed in a variety of tissues, including 

skeletal muscles, skin fibroblasts and central nervous system, mainly the 

cerebral cortex, the granular cell layer of the cerebellum, and the 
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hippocampus (Engert et al., 2000). 

 

Objectives of our work were the definition of SACS mutation prevalence in 

Italian cohort of early spastic ataxia patients; better characterization of 

the mutations which could improve our knowledge of sacsin normal 

function and pathophysiology of ARSACS, and finally the picturing of a 

finer genotype – phenotype correlation.  

 

 

Methods. We have recruited 23 southern Italy patients (pts 1-23) with 

progressive early onset ataxia (≤ 16 years of age), pyramidal signs (two 

among: brisk tendon reflexes, spasticity and Babinski signs) and clinical 

(decreased or absent ankle reflexes and decreased vibration sense) or 

neurophysiologic signs of peripheral neuropathy and performed direct 

sequencing of PCR products of SACS nine coding exons and intron-exon 

boundaries. Friedreich Ataxia was previously excluded in all patients. 

 

 

Results. The complete sequencing of SACS in all patients detected three 

mutated patients and 12 different SNPs. In detail, we found a novel 
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compound heterozygous mutation (c.5719C>T plus 

c.12628_12633delTGAAA)  in pt6 (Figure 1); a novel homozygous 5 bp 

deletion (c.7249_7254delCAGAA) in pt19 (Figure 2); a novel homozygous 

deletion (c.702_700delAA) in pt23 (Figure 3); and 12 different SNPs  

(rs17078720; rs3751368; rs4143768; rs9552929; rs2737700; rs17078605; 

rs2737701; rs2737699; rs2031640; rs41315020; rs1536365; rs17325713) 

in pts 2, 4, 5, 8, 10, 18; 20; 2-9, 10-12, 14-18, 21, 22; 6; 2,6,8,10,11; 

4,5,9,18,20; 6,8,10,11; 2-5, 7-12, 14-18, 20-22; 2,6,8,11; 7,12,15,16; 3; 

15,16,22 and 22 respectively (Table 1). Moreover we found a novel base 

pair change in pt10 (c.1310C>T) in heterozygous state (Figure 4). 

All mutations causes premature truncation of sacsin and probably its loss 

of function. The compound heterozygous mutation in pt6 causes a new 

stop codon at p.1907 R>X and frameshift with new stop codon at p.4212 

R>X; the homozygous deletion in pt19 produces frameshift with 

mistranslation and an early stop codon at p.2426 R>X; the homozygous 

deletion in pt23 causes frameshift with mistranslation and an early stop 

codon at p.235 K>X. We cannot confirm the pathogenicity of the novel 

base pair change of pt10 (p.T437M) for the Polyphen modeling analysis of 

the aminoacid change was “variant predicted to be benign” and for 

species alignment of sacsin showed that the residue at position 437 is not 
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conserved among different species. So we could only suggest that it is 

probably a novel SNP, not yet described in literature. 

 

 

Perspectives for future research. Several studies have previously shown 

the ability of aminoglycosides to induce premature termination codon 

(PTC) readthrough and to restore a full-length protein synthesis. These 

antibiotics interact with the small ribosomal RNA subunit and decrease 

translational accuracy, leading to a deleterious protein synthesis in 

prokaryotes. The same mechanism is observed for the eukaryotic 

translation machinery but with a lower affinity for aminoglycosides, a 

feature possibly accounted for by two nucleotide divergences in the small 

ribosomal subunit. When the ribosome comes across a PTC, it may 

substitute an aminoacid to the stop codon and resume protein synthesis. 

Recessive genetic disorders caused by nonsense mutations are good 

candidates for aminoglycoside readthrough, as small amounts of 

functionally active protein may have a clinical impact. On this background 

we will test the effect of gentamycin on cultured skin fibroblasts of our 

mutated patients performing Western blot analysis of sacsin and RT-PCR 

of SACS mRNA. 
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Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract 

(PHARC) 

 



Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract 

(PHARC) (MIM612674) is a neurodegenerative disease marked by early-

onset cataract and hearing loss, retinitis pigmentosa, and involvement of 

both the central and peripheral nervous systems, including demyelinating 

sensorimotor polyneuropathy and cerebellar ataxia. The disease is slowly 

progressive, with recognition of the first symptoms typically in the late 

teens. In This Refsum-like disorder was first mapped to a 16 Mb region on 

chromosome 20 (Fiskerstrand et al., 2009), more recently it has been 

reported by the same authors that mutations in the a/bhydrolase 12 

(ABHD12) gene cause PHARC disease (Fiskerstrand et al., 2010).                                                                                        

Each of the four different ABHD12 mutations so far reported has been 

interpreted as a null mutation that would either abolish or severely reduce 

the activity of the encoding enzyme, a/bhydrolase 12. PHARC may, 

therefore, be considered a human ABHD12 knockout model. The question 

also arises whether less detrimental mutations may cause various 

incomplete phenotypes. The serious and progressive disease seen in 
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patients suggests that ABHD12 performs an essential function in the 

peripheral and central nervous systems and in the eye. This is supported 

by the high expression of ABHD12 in the brain, with a striking enrichment 

in microglia (Fiskerstrand et al., 2010). Currently, the only known 

substrate for ABHD12 is the main endocannabinoid 2-arachidonoyl 

glycerol (2-AG). This compound has important functions in synaptic 

plasticity (Makara et al., 2005; Straiker et al., 2009) and 

neuroinflammation (Zhang et al., 2008; Kreutz et al., 2009). In acute 

ischemia and/or excitotoxicity, 2-AG appears to have neuroprotective 

properties (Kreutz et al., 2009; Panikashvili et al., 2001; Di Marzo et al., 

2008) but the effects of long-term increased levels of this metabolite have 

not been investigated. 2-AG represents the most abundant 

endocannabinoid and it is formed on demand from the membrane lipid 

diacylglycerol (by diacylglycerol lipase a or b). The endocannabinoid 

signaling system is the focus of increasing scientific interest, in part 

because of the potential for developing novel therapeutic agents. The 

system is tightly regulated and appears to be important for many 

physiological processes including neurotransmission, pain appreciation, 

appetite, mood, addiction behavior, body temperature, and inflammation 

(Di Marzo et al., 2008). Key players in these pathways are the G protein-
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coupled cannabinoid receptors CB1 and CB2 and their endogenous 

ligands, endocannabinoids, as well as enzymes that synthesize or 

hydrolyze these ligands. Endocannabinoids act locally as lipid transmitters 

and are rapidly cleared by hydrolysis (Wang et al., 2009). Several enzymes 

are involved in 2-AG hydrolysis, and there is evidence that these enzymes 

are differentially expressed in various cell types and cellular 

compartments (Savinainen et al., 2011). In the mouse brain, 

monoacylglycerol lipase (MAGL) accounts for 85% of the hydrolase 

activity, with additional contributions from ABHD12 and a/b-hydrolase 6 

(ABHD6). The apparent paradox of a purported minor role of ABHD12 in 2-

AG hydrolysis versus the serious PHARC phenotype in the brain and eye 

suggests either that ABHD12 is of crucial importance only in certain cell 

types or that it is also acting on a hitherto unknown substrate other than 

2-AG. The finding that microglial cells have a particularly high expression 

of ABHD12, but very low levels of MGLL (encoding MAGL) and ABHD6, 

indicates that the former alternative of differential cellular expression 

exists. Moreover, microglia dysfunction is known to be involved in 

neurodegenerative diseases (Landreth et al., 2009) as well as in retinal 

dystrophies (Eberth et al., 2009). Whether ABHD12 acts on more than one 

substrate is currently unknown, but many hydrolases have overlapping 
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functions, including MAGL, which is involved in lipolysis (Guzman, 2010) as 

well as in hydrolyzing 2-AG.  

Interestingly, PHARC patients up to date reported did not show overt 

cannabinomimetic effects.                 

The finding of four different deleterious ABHD12 mutations in a total of 19 

patients with PHARC disease from four countries (Norway, USA, United 

Arab Emirates and Algeria) clearly supports a causal genotype-phenotype 

relationship and a worldwide distribution. Besides, the screening of 190 

Western Norway healthy blood donors have found two heterozygous 

carriers of this mutation, corresponding to a disease incidence of 

approximately 1/36,000 in this population, this indicates that the 

frequency of PHARC in is comparable to, or may be even higher than, 

relevant differential diagnoses like Friedreich ataxia and Refsum disease 

(Fiskerstrand et al., 2010).  

 

On this behalf, we decide to screen a group of Southern Italy ataxic 

patients presenting a PHARC-like phenotype.  

 

 

Methods. 11 patients were selected in according to the following inclusion 
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criteria: recessive inheritance, early onset ataxia (≤ 16 years old), and 

ocular impairment (retinitis pigmentosa, cataract or optic atrophy). 

Friedreich ataxia, ataxia oculomotor apraxia 1 and 2 were excluded in all 

patients. We performed direct DNA sequencing of sequencing of the 13 

coding exons and the intron-exon boundaries of ABHD12 gene. 

 

 

Results. We found no mutation and 10 validated SNPs (rs114038555, 

rs2274890, rs6107027, rs884613, rs2260197, rs746748, rs10966, 

rs2424708, rs1046073, rs11100): 3 coding, 3 intronic and 3 at 3’UTR (Table 

2). 

An heterozygous deletion in the 3'-UTR, c.*324delG, not reported in the 

database, was found in two patients, however it seems not to be 

pathogenic. 
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PRICKLE1 - Progressive myoclonus epilepsy-ataxia syndrome 

 

 

Progressive myoclonus epilepsies (PMEs) are a group of rare inherited 

disorders characterized by epilepsy, myoclonus, and progressive 

neurological deterioration, particularly ataxia and dementia. Several 

disorders with different patterns of transmission can cause PMEs, most of 

them being autosomal recessive. One rare cause of autosomal recessive 

PME has been recently identified and is due to mutations of PRICKLE1 

(MIM 608500) (Bassuk et al., 2008). Two probably related families, 

previously reported in linkage to chromosome 12, and a further third 

family (Berkovic et al., 2005, El-Shanti et al., 2006, Straussberg et al., 2005) 

showed the same homozygous variant c.311G>A (R104Q) in PRICKLE1 

(Bassuk et al., 2008). Two kindreds were from Northern Israel and one 

from Northern Israel and Jordan. All three pedigrees showed early onset 

ataxia (at 4-5 years of age) with later myoclonus and seizures, impaired 

upgaze, mild or absent cognitive decline, and normal MRI.  

The finding of a shared haplotype and identical PRICKLE1 mutation in 

three separately ascertained families of the same ethnic group with PME 

suggests a founder effect.  
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First discovered in Drosophila (Goldschmidt, 1945), prickle proteins are 

highly conserved throughout evolution. Characterized by PET and LIM 

domains (Gubb et al., 1999) the prickle proteins function in the 

noncanonical WNT signaling pathway, which regulates intracellular 

calcium release and planar cell polarity (PCP) (Veeman et al., 2003). 

Recently, mice lacking Prickle1 were shown to die early in gestation, 

confirming an essential role for Prickle1 in development. In vitro studies 

suggest that PRICKLE1 normally binds and translocates REST to the 

cytoplasm, thereby preventing REST from silencing target genes. The 

R104Q PRICKLE1 mutation lies within a known protein binding domain and 

thus disrupts REST binding, blocking the normal transport of REST out of 

the nucleus. These results suggest that tissues expressing mutant 

PRICKLE1 contain constitutively active REST which inappropriately 

downregulates REST target genes (Bassuk et al., 2008). This is significant 

because in addition to silencing neuronal genes in nonneuronal cells and 

neuronal precursors, REST also regulates target genes in mature neurons 

(Palm et al., 1998). REST targets include ion channels and 

neurotransmitters, and the PME-ataxia syndrome may occur when brain 

regions expressing mutant PRICKLE1 misexpress these target genes. 

Although Prickle function was implicated in the control of cell division and 
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morphogenesis during zebrafish neurulation and REST activity was 

recently described in fish and frogs, a role for the PRICKLE/REST 

interaction during neurogenesis has not yet been studied. 

Prickle1 is expressed in multiple brain regions throughout mouse 

embryonic development, including regions such as the hippocampus, 

cerebral cortex, and thalamus, as well as the primitive cerebellum 

(Cromptom et al., 2007, Katoh et al., 2003, Okuda et al., 2007, Tissir et al., 

2006). Similarly, in human adult thalamus, hippocampus, cerebral cortex, 

and cerebellum, PRICKLE1 is in neurons rather than glia. These findings 

demonstrate that PRICKLE1 is expressed in multiple areas of the brain 

thought to be involved in generating seizures (neurons of thalamus, 

hippocampus, and cerebral cortex) and ataxia (cerebellar neurons) (Bassuk 

et al., 2008). 

 

Our aim was to search for PRICKLE1 mutations in a cohort of unclassified 

PME-ataxia patients from Southern Italy and to define their clinical 

phenotype. 

 

 

Methods. Twenty index cases (11 females, 9 males) were selected 
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according to the following criteria: early onset sporadic or recessive ataxia, 

myoclonus, and/or tonic-clonic seizures. Mean age at onset ± SD was 13.6 

± 10.6 years (range, 1–38). Symptoms at onset were gait ataxia in seven 

patients; action myoclonus or tremor in five; epilepsy in six (tonic-clonic 

generalized seizures and/or myoclonic seizures); and peripheral 

neuropathy in two. Cognitive impairment was present in two patients. 

MRI showed cerebellar atrophy in seven patients. After informed consent, 

we excluded other forms of PME and recessive ataxia, such as MERRF, 

Unverricht–Lundborg disease, Lafora disease, Friedreich ataxia, and 

mithocondrial inherited ataxia syndrome in all patients. 

Direct sequencing of the seven coding exons and the intron-exon 

boundaries of PRICKLE1 has been conducted.  

 

 

Results. No mutations were indentified. Five different SNPs were 

identified: three synonymous SNPs (rs3747562, rs3747563, rs34778200), 

one intronic (rs12230583) both in heterozygous and in homozygous state 

in the screened population, and one missense (rs3827522, c.2236 T>C) in 

heterozygous state in one patient. Notably, even if rs3827522 

heterozygosity is 0.08 and is considered not pathogenic, proline 746 is 
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highly conserved among species and no homozygous c.2236C/C mutation 

has been reported from the HapMap-CEU and AFP_EUR_panel control 

DNA samples (http://www.ncbi.nlm.nih.gov/projects/SNP). Even not 

excluding the hypothesis of a pathogenic or a predisposing role of 

rs3827522, we could not find a second variation in our patient. PRICKLE1 

dosage assay was not performed; therefore, gene copy-number 

alterations could not be excluded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/projects/SNP
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Conclusion  

 

Aims of our research was to define the usefulness of genetic screening for 

three different kinds of autosomal recessive ataxia in undiagnosed ataxic 

patients.  

Regarding ARSACS, our results confirm the worldwide diffusion, the 

uniform clinical presentation of the disease and the prevalence of loss of 

function mutations, further confirming the value of genetic screening for 

SACS mutation in  case of early onset spastic ataxia. We also confirm the 

high frequency of SNPs throughout SACS. 

As for PHARC we found no mutation in our selected patients, not 

confirming what already reported in literature, however our results are 

limited from the sample size of screened patients. 

Finally, according to our analysis PRICKLE1 mutations are not a frequent 

cause of PME-ataxia in Southern Italy. So far, PRICKLE1 PME has been 

reported only in the three original Middle Eastern families, our data are in 

agreement with a recent survey showing no cases of PRICKLE1 mutations 

in 25 patients from different countries including Italy (Dibbens et al., 2009) 

and indicate that routine screening for these mutations in Italian patients 

is of limited clinical value. 
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TABLES AND FIGURES 

 

 

Table 1. SNPs in SACS. Classification, position and significance are 

according ensembl database (www.ensembl.org).  
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        SNP     Exon Significance Patients 

rs17078720 2 Non Synonymous A/G 2, 4, 5, 8, 10, 18 

rs3751368 3 Synonymous T/T 20 

rs3751368 3 Non synonymous C/C 
2,  3,  10, 11, 12, 14, 

16,  18,  21, 22 

rs3751368 3 Non synonymous C/T 4,  5, 7, 8, 9, 15, 17 

rs2031640 8 Non Synonymous N/L 7,12,15,16 

rs41315020 8 Synonumous A/A 3 

rs1536365 8 Synonymous L/L 15,16,22 

rs17325713 8 Non Synonymous A/T 22 

rs4143768 10 Synonymous I/I 6 

rs9552929 10 Synonymous V/V 2,6,8,10,11 

rs2737700 10 Synonymous A/A 4,5,9,18,20 

rs17078605 10 Non synonymous V/A 6,8,10,11 

rs2737701 10 Synonymous Q/Q 
2-5, 7-12, 14-18, 20-

22 

rs2737699 10 Synonymous L/L 2,6,8,11 
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Table 2. SNPs in ABHD12. Classification, position and significance are 

according ensembl database (www.ensembl.org).  

 

        SNP Position  Significance 

rs114038555 
Intronic  

 

rs2274890 
Intronic  

 

rs6107027 
ex9 Synonymous R/R 

rs884613 
Intronic  

 

rs2260197 Intronic  
 

rs746748 
ex12 Non Synonymous A/T 

rs10966 ex12 Synonymous N/N 

rs2424708 3’UTR 
 

rs1046073 3’UTR 
 

rs11100 3’UTR 
 

 

 

 

 

http://www.ensembl.org/
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Figure 1. Electropherogram showing novel compound heterozygous 

mutation (arrows) (c.5719C>T plus c.12628_12633delTGAAA) in pt6 (top) 

compared to a normal control (bottom). 

 

 

 

Figure 2. Electropherogram showing homozygous deletion (arrow) 

(c.7249_7254delCAGAA) in pt19 (top) as compared to a normal control 

(bottom). 
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Figure 3. Electropherogram showing novel homozygous deletion (arrow) 

(c.702_700delAA) in pt23 (top) as compared to a normal control (bottom). 

 

 

 

Figure 4. Electropherogram showing novel base pair change (arrow) 

(c.1310C>T) in pt10 (top) as compared to a normal control (bottom).  
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