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                                The research motivation 

 

 

The aim of this research is the development of new heterogeneous 

catalytic processes to produce high commodities chemicals of 

industrial interest such as ethyl acetate, acetaldehyde and pure 

hydrogen from bio-ethanol. 

Actually, the acetaldehyde is produced by dehydrogenation reaction of 

ethanol performed at high temperature and low pressure. The 

thermodynamic restriction of this reaction has been a starting point to 

study the oxidative dehydrogenation reaction of the ethanol. A 

challenge of this new process is represented by the individuation of a 

good alternative catalytic system to improve the acetaldehyde 

selectivity. At this purpose new catalytic systems have been prepared 

by grafting of vanadia on a multiple layers of titania supported on 

silica. The obtained results could be considered very promising and 

strictly correlated to the nature of the prepared catalysts. The grafting 

technique has, as main advantage, the possibility to obtain catalysts 

with a well dispersed active phase, a high resistance to sintering and a 

high mechanical strength. 

Successively, our interest has been focused on the ethyl acetate 

production. The use, in the classical processes, of acetaldehyde and 

acetic acid, respectively, a toxic and corrosive solvents and the 

corresponding increase of the global demand of this solvent, has 

required the development of alternative production routes. In 

particular, the ethanol dehydrogenation reaction represents a possible 

alternative route to produce ethyl acetate with high yields. The main 
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peculiarities of the proposed process is the low cost of raw materials, 

of plant maintenance and the possibility to obtain in only one step of 

reaction the main product with an high degree of purity. The catalysts 

employed, to perform this reaction, are copper based ones supported 

and unsupported on Alumina. The catalysts are characterized by the 

presence of different promoters such as zinc oxide and chromia. The 

use of promoters is fundamental to improve the copper stability on 

the catalyst surface due to the low Hutting-Tamman temperature 

(300°C) of the copper. As matter of fact, the mobility of the copper 

particles became very significant at temperature higher than 180°C. 

The main advantage of this process is related to the possibility to 

obtain pure hydrogen, which could be recovered and used to feed fuel 

cells. This reaction has been studied in more details with the aim to 

realize a scale up of the process. At this purpose, various 

dimensionless criteria were evaluated to confirm there was not 

significant mass transfer limitation, and thus the experimental results 

represent intrinsic kinetics. Furthermore, a thermodynamic study was 

conducted using a Gibbs free energy minimization method to identify 

the effect of reaction conditions on ethanol conversion and ethyl 

acetate selectivity with the aim to evaluate the thermodynamically 

favorable operating conditions. The performances of different copper 

based catalytic systems have been studied in the ethanol 

dehydrogenation reaction. Moreover, the performances of these 

catalytic systems were correlated with their physical and chemical 

properties; in fact, a careful study of characterization was realized. A 

depth investigation has suggested that the individuation of the 

optimal conditions of temperature, pressure, residence time and feed 

composition is fundamental to improve the ethanol conversion and 

reach the desided industrial target of purity. By the depth kinetic study 

was identified the best model able to fit the experimental data: the 

Langmuir-Hinselwood-Hougen-Watson (LHHW). The examined model 
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was used to determine the activation energy, the order of reaction 

and the kinetics parameter useful for a process scale-up. 

Moreover, the ethanol reforming and oxidative reforming reactions in 

presence of both commercial and prepared by combustion synthesis 

catalysts have been studied. The interest for this reaction is essentially 

due to the high global demand of hydrogen in the last few years. The 

high yield in hydrogen has been obtained in wide range of 

temperature (100-500°C) and atmospheric pressure. The use of 

catalysts highly resistant to sintering and with a very high thermal 

strength has been required to perform this reaction. At this purpose 

the use of catalysts promoted by chromia has been proposed. The 

catalytic performances of commercial catalysts have been compared 

with the ones prepared by combustion. The catalysts physical and 

chemical properties have been deeply investigated by using the 

common characterization techniques. The scope of this research is, 

thus, the development of new process able to convert, ethanol 

produced by renewable raw material, in high commodities chemicals 

and pure hydrogen.   



  1 

 

 
         

 

                         
               A general overview 

 

 

This chapter provides general background information about the 

research carried out, including a general overview about the ethanol 

application in oxidative dehydrogenation, dehydrogenation and 

oxidative reforming reactions of ethanol, and around the catalysts 

selection, research methodology and objectives.  

 

i-1 Introduction 

In the last years, the main interest of the worldwide academic and 

industrial research is to attain sustainable chemical industry. Due to 

the reduced availability of non-renewable resources and the climate 

change caused by increasing the greenhouse effect, studies have been 

conducted with a view to gradual replacement of current energy 

sources based on fossil fuels to produce clean fuels from biomass. At 

this purpose an investigation of the potential of substituting 

bioethanol based processes to the fossil-based processes, has been 

realized in this project. In particular, in this research three processes 

were investigated, that share the use of ethanol as feedstock. Actually, 

the vast majority of fuels and carbon-containing chemicals are 

produced from fossil resources but on the other hand, many studies 

predict that most kinds of fossil resources will be depleted within the 

next century. Furthermore, the combustion of fossil fuels causes 

elevated levels of greenhouse gases (GHG) in the atmosphere, which is 

the main cause of the global warming effect [1]. Consequently, in the 

last years the growing concerns related to the safeguard of the world 
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by the greenhouse gas emissions and by the global warming have 

captured the attention of the worldwide multinational companies [2]. 

At this purpose, the aim of the nowadays society is a gradual change 

from an economy based on fossil resources to one based on 

sustainable resources. Biomass resource is widely acknowledged as a 

potential substitute of fossil resources for sustainable development. 

Many kinds of biomasses are potentially available at a large scale and 

are cost-competitive with petroleum whether considered on a mass or 

energy basis, and in terms of price on current, projected and mature 

technology [3]. Bio-ethanol has already been playing a role as a kind of 

bio-fuel replacing petroleum and, its large availability in the next 

future will make it as the main feedstock to produce many kinds of 

high commodity chemicals. Produced by various kinds of biomass 

renewable resources, bio-ethanol can be considered as a possible 

candidate that would contribute to solving some urgent 

environmental problems such as fossil depletion and climate change. 

However, the utilization of bio-ethanol cannot guarantee actual 

sustainability unless bio-ethanol based processes are examined from 

the viewpoints of not only renewability but also other sustainability 

indicators. Therefore, a comprehensive assessment of bio-ethanol 

based processes from the viewpoint of monetary and non-monetary 

issues, such as environmental impacts and safety hazards, is strongly 

needed considering the entire chain of production processes of both 

bio-ethanol and bio-ethanol based chemicals. This assessment is 

aimed to provide visions for further development and investment in 

bio-ethanol based chemical industry. It is noteworthy that with the 

proper technology it is possible to convert biomass to essentially all 

the high-value commodity chemicals and fuels currently available from 

fossil resources. There could even be some advantages using biomass 

compared to fossil fuels as a feedstock, e.g., for production of certain 

oxygenated chemicals since introduction of oxygen functionalities into 

hydrocarbons can be rather difficult, whereas many products derived 

from biomass already contain some oxygen [4]. However, this also 
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entails an increase in production costs for some of the non-oxygen-

containing products, such as gasoline [5]. Figure 1 illustrates that, in 

relative terms, it is possible to produce some chemicals from biomass. 

Thus, fossil and renewable resources are not necessarily equally useful 

starting materials for all possible products. 

 
Figure 1: Bioethanol as new generation fuel and as feedstock for many 
high commodities chemicals and hydrogen. 

 

In particular, the growing demands for CO2-neutral transportation 

fuels and the desire to achieve a reduced dependence on fossil 

resources have been the major driving forces for the substantial 

increase in the amounts of bioethanol produced by fermentation of 

biomass. An interesting question is whether the optimal use of 

bioethanol as a fuel, or as a feedstock for producing higher-value 

chemical products. As well known, the ethanol is already widely used, 

as motor fuel or additive for gasoline in country such as Brazil and in 

the United States [6]. From 2007 to 2008, the share of ethanol in 

global gasoline type fuel use increased from 3.7% to 5.4%[6]. In 2010 

worldwide ethanol fuel production reached 22.95 billion U.S. liquid 

gallons (bg) (86.9 billion liters), with the United States as the top 

producer with 13.2 bg (50 billion liters), accounting for 57.5 percent of 

global production [7]. Moreover, the ethanol is a potential sources for 

hydrogen considered as the fuel of the future that can be employed in 

fuel cells for auto vehicles application. The ethanol could be find 

application also in the production of an important industrial chemical 

Hydrogen Fuel 

fuel additive 

Acetaldehyde 
Ethylene 

Butadiene 
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as acetaldehyde that can be used in turn as an intermediate in the 

production of acetic acid, acetic anhydride, ethyl acetate, 

butyraldehyde, crotonaldehyde, n-butanol and many other high value 

chemicals[8]. A potential source for low-cost ethanol production is to 

utilize waste means as lignocellulosic materials (crop residues, grasses, 

sawdust, woodchips, sludges, livestock manure) [9]. The feasibility of 

using these materials as a feedstock is often limited by the cost of bio-

ethanol production, which is relatively high based on current 

technologies. The challenges are generally associated with the low 

yield and the high cost of the hydrolysis process [10]. In the next 

paragraph, a general framework on the bioethanol production and 

application will be discussed. 

 

i-2 The oil market and the Ethanol innovative routes 

As well known, the light olefins and in particular the propylene and 

ethylene represents some of the main building-blocks of the chemical 

industry. The great interest for these raw materials is related to their 

application for the production of important chemicals, commonly 

employed for the production of materials of large consume and fuels. 

The Figure 2 represents the common employments of the mentioned 

building block. 

 
Figure 2: main products obtainable by ethylene and propylene 
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Ethanol is directly produced by ethylene, one of the main sub-products 

of the petroleum processing. The increasing of the global demand of 

the olefins required the necessity to develop new dedicated processes, 

such as the steam cracking and the catalytic cracking, for the 

processing of virgin naptha. The Business Intelligence Committee (BIC) 

of APPE (Association of Petrolchemicals Producers in Europe) [11] has 

estimated the global production of olefins by fossil raw materials and 

in particular, in Figure 3 a review of the market situation for ethylene 

as well as an analysis of the competitiveness of the European 

petrochemicals industry has been reported.  

On the other hand the rapid rise of oil prices, that began in 2007 

culminated in the middle of 2008 as in the last two years as shown by 

the trends represented in Figure 4, requires the development of 

alternative processes able to use raw materials of renewable nature 

for the production of ethanol, as alternative to the classical routes that 

employs ethylene derived by fossil sources.  

 
Figure 3: market situation for ethylene 

 

 

 Moreover, the worldwide interest for the safety of the planet and the 

new concept of environmental sustainability requires the individuation 
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of alternative sources to the fossil ones. The use of biomasses 

represents actually a great challenge for the research world. Supplies 

of ethanol have increased greatly in the last few years and the 

development of alternative technologies able to convert waste 

cellulosic residues in second generation bio-ethanol will generate its 

large supply in the next decades, which could be used as a gasoline 

substitute or fuel additive. 

 
Figure 4: oil price revolution (INSEE Institut National de la 

Statistique et des Études Économiques 
 

Taking into account, this future large availability of bio-ethanol, the 

use of ethanol as feedstock for the chemical industry can also be 

foreseen. Brazil and many tropical countries use sugarcane or 

molasses, while France, the largest producer in Europe, uses mainly 

sugar beets. The United States and eastern Canada use mainly corn 

kernels; in western Canada, wheat is the main feedstock. In China, 

corn, cassava and sweet potatoes are the mostly used materials. In 

France and Italy, ethanol is also produced from waste from wine 

manufacture [12]. Actually, a considerable research is being focused 

on developing processes that can produce ethanol from low-cost, no-

food feedstock. The industry is hoping to develop economical 

cellulosic ethanol, derived from the fermentation of cheap forms of 
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biomass. The main challenge is the development of advanced or 2nd 

generation production technologies. At this purpose the use of 

lignocellulosic materials to produce bioethanol represent a really 

advanced technology. In fact, the bio-ethanol can be produced by 

using several materials such as sugar, starch and lignocellulose-based 

materials but bioethanol is produced predominantly from sugarcane 

and corn. The use of lignocellulose represents a great challenge cause 

by the difficulties of pre-treatment of the raw materials than sugar-

rich or starch-rich materials. On the other hand, the lignocellulosic 

materials are abundant almost all over the world and they can be used 

for bioethanol production because they have a high content of 

cellulose and hemicellulose. In more detail, the lignocellulose is 

composed of mainly cellulose, hemicellulose and lignin. Cellulose is a 

long-chain homogenous polysaccharide of D-glucose units linked by b-

1,4 glycoside bonds and contains over 10,000 glucose units. 

Hemicellulose is a complex, heterogeneous polymer of sugars and 

sugar derivatives which form a highly branched network and the 

monomers include hexoses (glucose, galactose, and mannose) and 

pentoses (xylose and arabinose). It consists of about 100-200 sugar 

units. Lignin is a very complex heterogeneous mixture of mainly 

phenolic compounds and their derivatives. It is a main component in 

plant cell walls. Lignin holds the cellulose and hemicellulose fibers 

together and provides support to the plants. The great complexity of 

the lignocelluloses materials requires its conversion to ethanol by 

involving three steps: pretreatment, hydrolysis, and fermentation. The 

purpose of the pretreatment is to separate the lignin from the main 

polymeric components cellulose and hemicelluloses in the 

lignocellulose, reduce cellulose crystallinity, and increase the porosity 

of the material, so the hydrolytic enzymes can access their substrates 

(cellulose and hemicellulose) in the following enzymatic hydrolysis.  
The pretreatment technologies have been extensively investigated in 

the last three decades, including physical, chemical, and biological 

processes. The main drawback of the acid or alkaline hydrolyses 
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(chemical pretreatment) is due to corrosion and maintenance of the 

apparatus. Moreover the dilute acid pretreatment could get the 

formation of chemicals such as furfurals during the degradation of 

hemicelluloses that inhibit the following enzymatic hydrolysis and 

microbial fermentation. While during the alkaline pretreatment, 

although alkaline pretreatment could cut the bonds between lignin 

and cellulose or hemicelluloses, a significant portion of lignin still 

remains mixed with cellulose after the pretreatment. The existence of 

lignin may inhibit cellulase enzymes during the following enzymatic 

hydrolysis. An alternative methodology of pre-treatment is of 

biological typology by using microbes such as brown-, white- and soft-

rot fungi to degrade lignin and hemicellulose in lignocellulosic 

materials. Although this process has positive economical feedback, it is 

also a very time consuming process in fact the pretreatment usually 

takes a few weeks. An innovative pretreatment is the physical one that 

includes low energy consumption pretreatment process using satured 

water vapor to release polysaccharides rapidly and without chemicals. 

The pretreatment includes a previously mechanical comminution, 

steam explosion, ammonia fiber explosion, and pyrolysis. After the 

pretreatment process, of the lignocellulosic materials an enzymatic 

hydrolysis is employed to obtain hexoses (glucose, galactose, and 

mannose), from the cellulose fraction and pentoses (xylose and 

arabinose), from the hemi-cellulose fraction. The enzymatic hydrolysis 

is carried out in very mild conditions about pH=4.8 and 50°C, by using 

as catalytic system enzymes such as cellulase and hemicellulose. 

Finally the fermentation converts the clean sugars to ethanol using a 

modified by brewer’s yeast (Saccharomyces cerevisiae). The 

fermentation step produces beer with a high ethanol concentration. In 

the last step of the process beer resulting from fermentation is treated 

is a separate column to separate ethanol from fermentation residues, 

mainly lignin. Since lignin has a high heating value it can be fed to a 

cogeneration unit to produce steam and electrical power, thus 

ensuring self-sustaining from an energy perspective. 



Introduction 

 

 

 

 9 

 

 

i-3 The Bio-refinery: chemicals from Bio-ethanol 

The exploitation of biomass as well defined in the previously 

paragraph represents a key technology toward a sustainable 

development. In particular the large supply of ethanol obtained by 

cellulosic residues could be used to produce commodity chemicals of 

great interest. In the last several years the main interest of the 

research world is to investigate the potential of substituting 

bioethanol based processes for fossil-based process to produce 

ethylene, acetaldehyde, acetic acid, ethyl acetate and pure hydrogen. 

As a matter of fact the technologies for producing chemicals from 

ethanol are well known and have been employed commercially for 

several decades. Ethylene production by ethanol dehydration, for 

example, was widely used in the United States and Western Europe 

during the first half of the 20th century, and in Brazil and India during 

the 1950s and 1960s. Thereafter, the steam cracking process, which 

employs petroleum fractions and natural gas as feedstock, emerged as 

the dominant method for large-scale ethylene production worldwide. 

As consequence of declining oil prices in the 1980s and 1990s and 

wide availability of olefins from steam cracking, most processes using 

ethanol as feedstock could no longer compete with their 

corresponding petrochemical routes, and the ethanol-based chemical 

industry went into decline.  

With the recent boom in the market of ethanol as fuel, particularly in 

Brazil and the United States, the production of chemicals from ethanol 

has attracted renewed interest. Environmental concerns over the use 

of fossil-based resources and the concept of sustainability have also 

broadened the worldwide interest in renewable sources for both 

chemical feedstock and for energy. In the case of bio-derived ethanol, 

production costs declined significantly over the years as result of 

productivity improvements and scale economies. These, combined 

with the promise of new technologies from cheap cellulosic biomass, 

could make ethanol a competitive feedstock for chemicals in the 
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future. At this purpose this research work is focused on the 

development of alternative processes and innovative catalytic system 

for the production of chemicals from ethanol, with a special focus on 

acetaldehyde, ethyl acetate and pure hydrogen. 

New catalytic systems for the acetaldehyde production by using the 

oxidative dehydrogenation of ethanol to acetaldehyde have been 

studied. The ethyl acetate represents another important commodity 

chemicals and a new process, by dehydrogenation of dry ethanol, for 

its production has been developed. In particular the production of 

ethyl acetate from ethanol by dehydrogenation is very economically 

competitive with the conventional esterification process. One of the 

main by-products of this process is pure hydrogen that could be easily 

separated from the other reaction by-products by condensations 

processes. Finally, the reactions of ethanol decomposition at high 

temperature and oxidative reforming have been investigated to 

produce hydrogen with high yield. The hydrogen is considered a fuel 

for fuel cells and in the future it could be substitute the gasoline. The 

ethanol for its versatility of application could be considered as a 

building block for the future biorefinery. In the next paragraphs, only a 

rapid survey will be done on the main applications of acetaldehyde, 

ethyl acetate and hydrogen and the aspect will be studied in depth in 

the next sections of this thesis. 

 

i-3.1 The Acetaldehyde: uses, global demand and production. 

Acetaldehyde is produced throughout the world primarily from 

ethylene, although some is still derived from ethanol and acetylene. 

The worldwide demand for acetaldehyde has continued to decrease 

primarily because of less consumption for acetic acid manufacture. 

For example, all manufacture of acetic acid from acetaldehyde in 

North America has been discontinued and in Europe, significant 

capacity for this process has been permanently shut down. 

Acetaldehyde use for acetic acid manufacture in Asia continues but is 

under pressure from the enduring establishment of methanol 
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carbonylation technology. In addition to the disappearance of use for 

acetic acid and plasticizer alcohols, acetaldehyde demand has also 

declined in the last few years because of mature end-use markets and 

the effects of the economic downturn on these acetaldehyde-derived 

products. There has also been continued substitution for 

acetaldehyde-based chemistries with other materials, which has 

further contributed to the drop in acetaldehyde use. In figure 5, the 

world consumption of acetaldehyde is reported. 

 

 
Figure 5: world consumption of acetaldehyde 

 

Overall, the global market for acetaldehyde is expected to grow 2–3% 

annually during 2009–2014. However, some of this growth is actually a 

recovery from the significant decline experienced in 2009 (for 

example, China's use in the acetic acid market). Major regions 

including Japan, Western Europe and the United States will have low 

growth because of no use or no growth for acetic acid production, 

minimal growth in other acetaldehyde-consuming products, or 

continued product replacement of materials that consume 

acetaldehyde. 

 

i-3.2 The Ethyl Acetate: uses, global demand and production 

All current and potential processes producing ethyl acetate from bio-

ethanol are analyzed, and their sustainability is comprehensively 

evaluated. Ethyl acetate is a colourless liquid with a characteristic 



Introduction 

 

 

 

 12 

 

fruity odour. It is slightly soluble in water and soluble in most organic 

solvents, such as alcohol, acetone, ether and chloroform. It finds use 

as a solvent in a wide range of applications, across many industries. 

Surface coating and thinners: ethyl acetate is one of the most popular 

solvents and finds wide use in the manufacture of nitrocellulose 

lacquers, varnishes and thinners. It exhibits high dilution ratios with 

both aromatic and aliphatic diluents and is the least toxic of industrial 

organic solvents. Pharmaceuticals: Ethyl acetate is an important 

component in extractants for the concentration and purification of 

antibiotics. It is also used as an intermediate in the manufacture of 

various drugs. Flavours and essences: Ethyl acetate finds extensive use 

in the preparation of synthetic fruit essences, flavors and perfumes. 

Flexible packaging: Substantial quantities of ethyl acetate are used in 

the manufacture of flexible packaging and in the manufacture of 

polyester films. It is also used in the treatment of aluminum foils. 

Miscellaneous: Ethyl acetate is used in the manufacture of adhesives, 

cleaning fluids, inks, coated papers, explosives, artificial leather, 

photographic films and plates. 

The main advantage of its use is related to the possibility to replaces 

completely the aromatic compounds, in the sector previously listed, 

which cause serious damage to human beings and the environment. 

The Ethyl acetate is an active solvent that is available in three grades: 

85-88%, 99% and 99.5%. The most popular grade, 99% is mainly used 

in industrial lacquers and surface coating resins. It is also used as an 

extraction solvent in the production of pharmaceuticals and food and 

as a carrier solvent for herbicides. About 60% of demand is in coatings. 

Process solvents, including pharmaceuticals and organic synthesis, 

account for 15% of demand, as does printing inks. Miscellaneous uses, 

including adhesives and cosmetics, account for 10% of consumption. 

In figure 6 the main sectors of application of this solvent have been 

reported.  
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Figure 6: Distribution of ethyl acetate consume (ton/anno) [14] 

 

Table 1: Source: Chemical Market Reporter 
Producer Annual capacity 

[million lbs] 

Annual capacity 

[tons] 

Celanese, Pampa, Tex 130 59.091 

Eastman, Kingsport, Tenn 59 26.818 

Eastman, Longview, Tex 51 23.182 

Solutia, Springfield, Ma 30 13.636 

Solutia, Trenton, Mich 24 10.909 

Total  294 13.636 

 

The demand for ethyl acetate in US was 71 Mtons in 2001 and 68 

Mtons in 2002. Demand for the year 2006 was of about 81,000-tons. 

The historical growth during the period 1997-2002 was -5.3% per year. 

Therefore, the production of ethyl acetate catches many attentions in 

terms of improving productivity, saving cost etc. The identification of a 

sustainable bio-ethanol based production process of ethyl acetate has 

high contribution to the development of solvent industry.  

 

i-3.3 The Hydrogen: uses, global demand and production 

Bio-ethanol could constitute the raw material also for the production 

of H2 by catalytic processes. It is a common opinion that H2 will play a 

fundamental role in the future scenario of economy because it is a 

clean, renewable and non-polluting fuel. Fuel cell will supply the 
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energy that a global society requires to support the growing number 

of people that demanding on fuel cell technology using hydrogen. For 

that purpose, some fossil fuels, which have high hydrogen to oxygen 

ratio, were the best candidates to produce hydrogen. The hydrogen is 

cheap, easy to obtain, highly efficient, and its use releases less 

pollutant emissions. One of the primary uses, foreseen for the H2, is in 

the fuel cell technology to generate clean energy at high yield [13]. 

Among different fuel cell technologies, molten carbonate fuel cell 

(MCFC), operating at high temperature (650 ◦C) allow to process H2 

stream even containing high concentration of carbon monoxide 

without any deactivation problems.  

 

i-4 Strategy and contents of the thesis 

The research work described in this thesis was realized at the research 

group NICL (Naples Industrial Chemical Laboratory), managed by Prof. 

E.Santacesaria, of University of Naples ‘’Federico II’’. The aim of this 

thesis is to investigate the catalytic performances of vanadia and 

copper based catalysts in innovative processes such as the oxidative 

dehydrogenation, dehydrogenation and partial oxidative reforming 

reactions for the productions of high commodities chemicals such as 

respectively acetaldehyde, ethyl acetate and pure hydrogen. The use 

of bio-ethanol produced by second generation raw materials is 

actually the great challenge of the research world. By future forecasts 

the quantity of ethanol will be in the last few years increasing and the 

use of this ‘’future building blocks’’ is useful to produce these 

chemicals. In a first phase of this research work, the study is focused 

on the development of new catalytic system and on the study of them 

in the oxidative dehydrogenation of ethanol to acetaldehyde. Indeed, 

the interest toward the acetaldehyde is due to its use for the 

production of ethyl acetate. The experimental results have shown that 

the redox mixed metal oxide V2O5/TiO2-SiO2 are very active and 

selective catalysts in the oxidative dehydrogenation of the ethanol to 

acetaldehyde. The same performances have not been obtained in the 
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dehydrogenation reaction in one step reaction for the ethyl acetate 

production. In matter of fact, the scarce performances of these 

catalytic systems have increased the research of innovative ones to 

promote the ethyl acetate preparation. At this purpose different 

commercial copper based catalysts have been studied in the 

dehydrogenation of ethanol to ethyl acetate. In the latter case a depth 

investigation on the mechanism and on the kinetic of reaction have 

been realized. Finally, a simulation and a scale-up of the process is 

realized. The main co-product of this reaction is pure hydrogen. 

Actually, the interest of the research is directly aimed to the 

development of new alternative processes for the hydrogen 

production. At this purpose the commercial copper based catalysts 

have been studied in the ethanol decomposition and partially 

oxidative reforming too. The performances of the commercial 

catalysts have been compared with the ones prepared by using the 

innovative combustion synthesis reaction. The prepared catalysts and 

the commercial ones have been investigated in more details by using 

different advanced characterization techniques. To easily understood, 

the organization and scheme of this thesis a brief summary of the 

chapters is thus reported. The present thesis is divided in three 

different dedicated sections:  

• Section A: study of the performances of the Vanadia based catalysts 

in ethanol ODH (oxidative dehydrogenation) reaction.  

• Section B: study of the performances of copper based catalysts in the 

ethanol dehydrogenation reaction for the ethyl acetate and pure 

hydrogen production. 

• Section C: study of the hydrogen production by ethanol 

decomposition and oxidative reforming reactions. 

Section A. In this section, as already above mentioned, the results of 

the performances of the vanadia catalytic systems in the oxidative 

dehydrogenation of ethanol to acetaldehyde will be discussed. In more 

details, in this section, the peculiarities of different vanadia based 

catalysts prepared by grafting technique have been studied. The 
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catalytic performances have been compared with the results obtained 

with commercial system in the dehydrogenation reaction by using 

copper based catalysts. The section A is organized in four main 

chapters. 

A.1-Introduction and background information. In this section a 

systematic investigation of the most recent results reported in 

literature about the preparation, the characterization and the catalytic 

performances of vanadia based catalysts have been reported. In order 

to clarify the structure-property relationship of our investigation a 

clearly state of the art has been realized. 

A.2-Apparatus and analytic methods. In this chapter the techniques 

employed to perform the reaction have been illustrated. 

A.3-Experimental sections and discussion of the results. The 

performances of the vanadia based catalysts have been reported in 

the oxidative dehydrogenation reactions. The obtained results have 

been compared with the performances of the copper based catalysts 

in the dehydrogenation reaction. 

Section B. The second section is completely dedicated to the 

investigation of an alternative process for the production of ethyl 

acetate. In particular, our intent is to develop a new process, very 

innovative and simple respect to the classical ones that would produce 

ethyl acetate in only one step reaction. In this section a depth 

investigation of the performances of different copper based catalysts 

have been realized. In particular a great interest is devoted to the use 

of different structural promoters with the aim to improve the catalytic 

performances in terms of activity and selectivity towards the ethyl 

acetate production. The section B consists of six chapters that would 

illustrate the main peculiarities of a developed process to produce 

ethyl acetate.  

B.1- Introduction and background information. In this section a 

systematic investigation of the most recent results reported in 

literature about the preparation, the characterization and the catalytic 
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performances of the main active phases employed to perform the 

dehydrogenation reaction to produce ethyl acetate have been 

reported.  

B.2- Experimental sections. A summary of the characterization 

techniques employed to investigate the chemical and structural has 

been reported. Moreover, the operative conditions, the peculiarities 

of the reaction apparatus and the analysis of products is illustrated. 

B.3- Thermodynamic study. The reaction pathway was studied by using 

Aspen with the aim to evaluate the thermodynamics properties of 

each main reaction of the complex scheme of dehydrogenation 

reaction. 

B.4-Experimental, characterization and discussion. In this chapter the 

results in terms of ethanol conversion, ethyl acetate selectivity at 

different temperature, residence time, pressure, hydrogen partial 

pressure have been studied. The catalysts have been characterized by 

employing commonly in-situ and ex-situ techniques with the aim to 

correlate their physical-chemical properties to their performances in 

ethanol dehydrogenation at high pressure. 

B.5-kinetic study. The kinetic of reaction was also investigated by using 

a simple power law and more complex models focused on an assumed 

mechanism of reaction. The best model able to describe as well the 

experimental data is an adsorption model based on the Langmuir-

Hinshelwood-Hougen-Watson (LHHW). 

B.6-Industrial plant simulation. On the basis of a very simple power 

law kinetic model, an hypothesis of process was realized and 

investigated. The process consists of two different sections: of 

dehydrogenation of ethanol and azeotropic distillation to obtain a high 

purity degree final product. 

 

Section C. Finally, the performances in the last section the 

performances of the copper based catalysts in the ethanol 

decomposition and oxidative dehydrogenation has been studied. This 

section, essentially divided in four main chapters, would give general 
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idea of the actual main process dedicated to the hydrogen production 

by bio-ethanol (C-1). The second chapter of this section (C-2) 

illustrates the characterization techniques and the products analysis 

obtained by ethanol dehydrogenation. The third chapter (C-3) is 

entirely dedicated to the illustration of the experimental results in 

terms of catalysts performances and characterizations. The final part 

of the current chapter is thus dedicated to the discussion of the 

obtained results. 

The most significantly results have been summarized in the last 

chapter (conclusion) of this Ph.D thesis. 
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                                                            Abstract 

Oxidative Dehydrogenation  

 

 

In the present chapter, the oxidative dehydrogenation of ethanol to 

acetaldehyde has been thoroughly investigated. A particular attention 

was dedicated to the performances of catalysts prepared by grafting 

vanadyl tri-isopropoxide on the surface of silica coated with TiO2 that 

were found to be very active and selective. Together with 

acetaldehyde, small amounts of by-products were obtained, including 

acetic acid, acetals, ethyl acetate and CO2. The kinetic behavior of the 

catalysts was studied in the temperature range 100-180 °C, by 

changing the ethanol residence time, the molar ratio between the 

reagents (EtOH:O2), and the catalysts vanadium loading. Moreover, 

the performances of copper based catalysts in the dehydrogenation 

reaction have been studied. At the end of the chapter, a discussion 

about the more advantageous process for the acetaldehyde 

production was finally reported.  
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                                                    Chapter 1                                            

Background info 

Literature Review 

 

 

 

A-1.1 Introduction 

There are several different ways to produce acetaldehyde and the 

precursors, commonly used, are ethylene or acetylene. Nowadays a 

great attention is dedicated to the use of ethanol. There are several 

reasons for which the ethanol is favored with respect to ethylene or 

acetylene. Ethylene is produced in the petrochemical industry and is 

hence not classified as a green product. The production of 

acetaldehyde, from acetylene, includes a catalyst containing mercury, 

hence also this method is discarded. The main route to produce 

acetaldehyde is the ethanol dehydrogenation but a large attention is 

dedicated also to the use of the oxidation reactions. The acetaldehyde 

production via the oxidative dehydrogenation (ODH) of ethanol could 

be a promising alternative to the Wacker process, occurring more 

simply in a single step and in tubular reactors, if high activities and 

selectivities can be achieved under mild conditions. The partial 

oxidation of ethanol over different catalytic systems has been studied 

by several authors [1-8]. In particular, supported V2O5 based catalysts 

have been found to be active and selective in promoting the oxidative 

dehydrogenation of ethanol to acetaldehyde. The chapter in exam was 

entirely dedicated to the explanation of the main characteristics of the 

vanadia catalysts and to their application in the ODH reactions. As well 

known, the preparation methodology can affects the final 
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performances in ODH reactions and at this purpose, a rapid overview 

on the peculiarities of grafting technique was made. 

 

A-1.2 Acetaldehyde production 

A-1.2.1 Dehydrogenation  

An extensive amount of literature concerning acetaldehyde 

production via dehydrogenation is available. Acetaldehyde was first 

synthesized by ethanol oxidation in 1817 [9] and later was produced 

by hydration of acetylene. Armstrong and Hilditch [10] reported that 

the dehydrogenation process was developed and applied during the 

First World War, but more thorough investigation [11] was prompted 

by an increasing significance of acetaldehyde as one of the most 

important aliphatic intermediates in the production of acetic acid, 

acetone, ethyl acetate, C4-aldehydes, 1-butanol, pentaerythritol and 

many other chemicals. The most popular metal, used for selective 

dehydrogenation of alcohols to aldehydes or ketones, is copper, 

mainly because of its ability to dehydrogenate ethanol without 

splitting the C-C bond, which would lead to the undesirable 

decomposition of acetaldehyde to CH4 and CO. Various studies [13-17] 

have shown that it is metallic Cu
0
, formed by reduction of CuO, to act 

as an active phase in dehydrogenation. Other alternatives phases to 

Cu, including Pt, Pd, Cr, Cd, Ni, Fe, Mn, Co, Zn and Ru, were proposed, 

but none of them matched the selectivity obtained with copper 

catalysts. However, Cu suffers from poor stability at high 

temperatures, where dehydrogenation is thermodynamically 

favorable. The reaction only approaches 100% equilibrium conversion 

at temperatures higher than 500°C, while Cu is reported to deactivate 

at temperatures as low as 220°C. The most probable mechanism of 

thermal deactivation of copper is sintering, which is expected to 

become significant in the temperature range of 177–400°C (Hüttig 

temperature - Tamman temperature – empirically determined 

temperatures, when metal particles become mobile on the catalyst 
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surface, TH = 0.33·m.p., TT = 0.5·m.p.). Sintering as a deactivation 

mechanism was experimentally confirmed by the works of Tu et al.[13-

17]. 

On the other hand, other researchers [11,19] reported deactivation by 

carbon formation, which may originate from ethanol dehydration or 

from polymerization of higher hydrocarbons formed in subsequent 

acetaldehyde reactions. In either case, the selection of catalyst 

preparation technique, suitable support and promoter can eliminate 

or significantly inhibit deactivation. Thus, notwithstanding the high 

activity of unsupported copper, as demonstrated [19], must be 

supported. However, unsupported copper suffers from lower thermal 

stability and, more importantly, from low metallic surface area, 

resulting in less acetaldehyde produced per g of copper than in any of 

the supported or promoted copper catalysts [18,19,21]. Therefore 

copper has been deposited on a variety of high surface area materials. 

In the middle of the 20th century, various naturally occurring materials 

were commonly used as supports. Church et al.
 
[19] demonstrated the 

superior properties of asbestos and pumice for ethanol 

dehydrogenation. Nowadays, modified natural or synthetic materials 

with better-defined, more homogeneous structures and properties are 

employed. Iwasa and Takezawa [22] compared unsupported copper 

catalyst performance to copper supported on SiO2, ZrO2, Al2O3, MgO 

and ZnO. ZrO2 and ZnO supported catalysts were selective for ethyl 

acetate formation, while the use of Al2O3 support promoted undesired 

secondary reactions that resulted in higher amounts of diethyl ether 

and C4 species. It was concluded that these by-products were formed 

on the acidic sites of Al2O3, because selectivity to these by-products 

rapidly dropped after the support was doped with basic KOH. On the 

other hand, Church et al. [19]
 

observed increased formation of 

undesired higher hydrocarbons not only with basic oxides promoters 

(ZnO, MgO) but also with Al2O3 and ascribed this formation to base-

catalyzed aldol condensation. This observation was further confirmed 
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by Inui et al. [23] (2002) who reported that both Al2O3 and ZrO2 

additions to pure Cu completely switched selectivity from 

acetaldehyde to ethyl acetate, and diethyl ether and ethyl acetate, 

respectively. In contrast, the addition of ZnO had no effect on product 

distribution. Repeatedly and independently, SiO2 was proven to be 

superior support by Iwasa and Takezawa [22] and White [24], in all 

cases exhibiting high activity and selectivity to acetaldehyde 

formation. These superior properties were related to its high surface 

area, allowing for a high dispersion of Cu and also to its inertness, 

resulting in the absence of active sites required for undesired parallel 

or secondary reactions. The only aspect in which SiO2 may be lacking is 

thermal stability. SiO2-supported catalysts are commonly prepared by 

impregnation, a technique in which active metal is merely deposited in 

the pores and on the surface of the support, but not anchored in the 

support oxide lattice. From this perspective, hydrotalcites, i.e., a class 

of layered materials consisting of positively charged brucite Mg(OH)2 

like sheets where several Mg
2+

 ions are replaced by trivalent Al
3+

 ions 

and the excess of positive charge is counterbalanced by anions, such 

as CO3
2-

 or NO3
-
, in the interlayer plus water molecules, may provide a 

stable, high surface alternative to SiO2. Thus, Di Cosimo et al. [25] 

reported that small addition of Al to MgO (Mg/Al molar ratio > 5) leads 

to a creation of hydrotalcite material, which by itself was capable of 

producing significant amounts of acetaldehyde. When impregnated 

with Cu solution, Al
3+

 ions are exchanged by Cu
2+

 and copper is 

therefore incorporated in the support lattice as shown by Alejandre et 

al. [26]. Since the activity of copper catalyst quickly decreases with 

time on stream at temperatures higher than 300°C, most likely 

because of copper sintering, many researchers focused on improving 

the stability by adding a textural promoter to the catalyst formula, 

which would act mainly as a mechanical barrier decreasing copper 

particle mobility.  
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The common feature of the promoters studied was their irreducibility 

at the dehydrogenation reaction conditions, i.e., promoters were 

present on the catalyst surface in the form of metal oxides. Church et 

al.[19] evaluated the effect of 5-7 % addition of Cr2O3, CoO, ZnO and 

MgO on Cu/asbestos catalyst performance. It was found that Zn and 

Mg alkaline oxides had a detrimental effect on the selectivity of 

reaction, promoting aldol condensation and thus forming undesirable 

higher hydrocarbons. Amphoteric Cr2O3 favored the creation of 

ethylene via dehydration of ethanol. Although deposition of 5% CoO 

slightly decreased the selectivity of dehydrogenation to acetaldehyde, 

its addition resulted in increased conversion of ethanol. To further 

improved the stability of Cu-CoO catalyst, 2% Cr2O3 was added to the 

catalyst formula. Indeed, Cr2O3 is the most popular of all additives 

considered in the literature as a potential stabilizer. Tu et al.[12,16] 

published two papers addressing the effect of Cr2O3 on the 

dehydrogenation activity of unsupported copper catalysts. Even trace 

amounts increased the metallic copper surface area and also increased 

the stability, though sintering was never completely suppressed at 

temperatures higher than 300°C. Below this temperature, the catalyst 

did not show any signs of deactivation, but the reaction did not 

achieve 100% conversion. At 310°C, a Cr/Cu ratio of 4/40 resulted in 

the smallest decrease in Cu surface area and consequently in activity 

after 8 h on stream. Overloading the catalyst with chromium, for 

example at a Cr/Cu ratio of 20/40, had a significantly negative effect 

on the catalyst activity, since a new catalytically inactive CuCr2O4 

phase was formed. Kanoun et al.
18

 tested the influence of Cr and Al 

oxides addition on the catalyst properties and found that Al2O3 

increased the total catalyst surface area while Cr2O3 increased specific 

copper surface area. Cr addition also increased the activity of catalyst 

per copper weight. However, if activity was defined per weight of 

catalyst, then any addition of Al or Cr led to a decrease. The authors 

then concluded that Cr is a better structural promoter. Unfortunately, 
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the low reaction temperature of 190°C and deliberately low ethanol 

conversion (<1%) made it impossible to determine the effect of 

promoters on either acetaldehyde selectivity (always 100%) or catalyst 

stability. The same mild experimental conditions served for testing of 

other promoters, namely Zr, V, and Zn oxides, by the same research 

group
19,22 

[18,21]. The highest amounts of acetaldehyde produced per 

grams of Cu were always obtained with the highest Cu dispersion, 

which was attained at the lowest Cu loading. A Cu-Zr catalyst exhibited 

the highest activity (but only 80% selectivity) of all three binary 

mixtures tested, while a ternary mixture of Cu-V-Zr was inferior in 

performance to a Cu-V-Zn catalyst. The highest amount of 

acetaldehyde produced for g of copper was achieved with a Cu-V-Zn 

catalyst with minimum Cu loading. But once again, pure Cu proved to 

be most active in terms of acetaldehyde produced per g of catalyst. 

Even at such mild temperature (190°C), the authors reported a steady 

decline in activity over 16 h on stream. From all three papers 

published by Kanoun et al.[18,21],
 
it can be concluded that the total 

surface area decreases with the addition of promoters in this order: 

Al>Cr>Zr>V>Zn, while metallic copper surface area, which is 

responsible for the activity of the catalyst decreases with the additives 

in the following order: Cr>V=Zr>Al>Zn. Cr is thus the best structural 

promoter and also a good stabilizer. Chen [27] carried out series of 

tests on the effect of alkali metals (Na, K, Rb) and alkaline earth metals 

(Mg, Ca, Sr, Ba) as promoters on the performance of Cu/SiO2 catalyst. 

The metal oxides of alkaline metals and alkaline earth metals did not 

undergo reduction at a reaction temperature of 300°C, neither did 

they contribute significantly to the dehydrogenation activity. While 

alkali metals created only slightly basic sites on the catalyst surface, all 

alkaline-earth-metals containing catalysts, with the exception of Mg 

addition, possessed both strong and weak basic sites. The presence of 

strong basic sites resulted in an extreme drop in activity after a short 

time on stream, thus deeming especially Ba and Sr as poor promoters. 
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MgO proved to be most stable of alkaline earth oxides, but even this 

additive did not prevent the catalyst from losing 20% of its initial 

activity after just 4 h on stream. Among the alkali metals, a K-doped 

catalyst displayed the highest resistance to sintering, losing only 8% of 

its activity after 4 h on stream. Thus, K was identified as the best 

promoter out of all metals tested, even though the initial ethanol 

conversion was 2% lower (68%) than the highest conversion obtained 

with a MgO promoter (70%). Though it is rather difficult to compare 

the effects of various promoters, because of different conditions used 

by researchers, there seems to be a general agreement throughout 

the literature that the best promoter is Cr2O3.  

This promoter did not eliminate sintering but merely decreased the 

rate of deactivation. It may therefore be impossible to achieve stable 

operation with complete conversion and selectivity to acetaldehyde, in 

which case the reaction will have to be operated at lower non-

deactivating temperatures and then the use of a promoter would be 

superfluous. An alternative route to obtain acetaldehyde with high 

yields is the oxidative dehydrogenation. 

 

A-1.2.2 Oxidative dehydrogenation  

It seems that nowadays, for conversion of light alkanes, the oxidative 

dehydrogenation (ODH) reaction is more promising than direct 

dehydrogenation. Reactions are endothermic (e.g., for n-butane ∆Hr is 

about 134 kJ/mol) and in order to shift the equilibrium to product 

formation, reactions must be carried out at relatively high 

temperatures (from 400 to 500°C). As demonstrated by a literature 

thermodynamic study [28] a conversion of 100% was achieved at a 

temperature of almost 500°C. Moreover, the use of high temperatures 

in catalytic dehydrogenation presents several disadvantages. The 

difficulty in controlling undesirable reactions that decrease selectivity 

(such as cracking of hydrocarbons) and coke formation over the 

catalyst, which decreases activity, are the most significant. For all 
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these reasons, reactions of alcohols conducted in presence of oxygen 

are excellent alternatives in the synthesis of aldehyde. The formation 

of a very stable product such as water makes this reaction very 

thermodynamically favourable. Thus, in principle, practically complete 

conversion can be achieved even at low temperatures, getting 

enormous advantages from the economic and process engineering 

points of view. However, in such conditions selectivity also presents 

limitations. Notwithstanding all the above-mentioned advantages over 

dehydrogenation, ODH (as well as the majority of other catalytic-

oxidation processes) has some drawbacks: due to its exothermic 

character it may require special care in reactor operation, some feed 

composition ranges can be explosive (leading to limitations in feed 

compositions or to multiple air inlets), and the desired product must 

be sufficiently stable in the reaction conditions in order to be removed 

from the product stream before it decomposes or undergoes other 

subsequent reactions. Thus, ODH reactions with high yield are a great 

challenge in catalysis.  

The key-aspect of the technology is, therefore, the development of 

catalysts capable to favour the formation of acetaldehyde with high 

selectivity, starting from ethanol. Several reviews have discussed 

oxidation catalysts containing vanadium, but none is specifically 

concerned with the oxidehydrogenation reactions. The partial 

oxidation of ethanol over different catalytic systems has been studied 

by several authors [29-36].  

In particular, supported V2O5 based catalysts have been found to be 

active and selective in promoting the oxidative dehydrogenation of 

ethanol to acetaldehyde [37]. The reaction occurs under very mild 

conditions of temperature (150-250 °C) and pressure (1 atm). 

Moreover, in contrast to other ODH reactions, such as the ODH of light 

hydrocarbons that occurs at higher temperature, the surface oxygen 

of V2O5 lattice is not directly involved in the ODH process, because the 

oxygen exchange reaction is too slow at the low temperatures used. 
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According to Oyama and Somorjai [38], unlike to the oxidative 

dehydrogenation of methanol to formaldehyde, the ODH of ethanol to 

acetaldehyde performed on V2O5 based catalysts supported on SiO2 is 

not structure-sensitive. The same conclusion was reached by Lakshmi 

et al.[39] using V2O5 catalysts prepared by impregnation on mixed 

oxides. Inamaru et al.[40] studied ethanol dehydrogenation on V2O5 

catalysts prepared by both impregnation and by chemical vapor 

deposition (CVD). They found that, in the latter case, the catalysts 

were more dispersed and more selective in the reaction. As well as the 

preparation method, also the support plays an important role. 

According to the literature, vanadia catalysts constitute a relevant 

example of the influence of the interaction between catalytically 

active metal oxide particles and oxide carriers. Several authors 

compared the properties of vanadia supported on different carriers 

(SiO2, Al2O3, TiO2, MgO, ZrO2) and concluded that the nature of the 

dispersed surface metal oxide phase enabling the vanadia, to become 

an effective catalyst for selective oxidation of aromatics, olefins and 

alcohols. Titania (anatase) interacts strongly with an immobilized 

vanadia layer, generating a molecular dispersion of V2O5, but the 

system suffers from limited specific surface area and low resistance to 

sintering [35]. A way to obtain a titania surface with high, 

thermostable surface area and good mechanical properties is to 

support TiO2 onto silica. Thus, vanadia based systems such as 

V2O5/TiO2 and V2O5/SiO2 catalysts have been studied for selective 

oxidation of alcohols. In particular, V2O5 and V2O5/SiO2 are very active 

and selective for oxidation of ethanol to acetaldehyde. By a proper 

selection of the catalytic oxide system and to acetaldehyde, acetic 

acid, or ethyl acetate, all of which can be used either as final products 

or as intermediates in synthetic routes. Quaranta et al. [35] studied 

the ODH of ethanol to acetaldehyde on V2O5/TiO2/SiO2 catalyst by 

comparing the catalytic performances with those of V2O5/TiO2 and 

V2O5/SiO2 catalysts. A depth studies of the performances of vanadia 
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based catalysts was realized also by Santacesaria et al. [44]. As 

demonstrated, the coating of the silica carrier with a monolayer of 

TiO2 increased substantially the activity of the catalyst. Despite the 

significant attention paid by various authors to the ODH of ethanol 

and to the action of vanadium-based catalysts, only one kinetic study 

has been published on this  reaction, namely, the work by Gomez et al. 

using a VMgO as catalyst [45].  Tesser et al. [46] studied the kinetic of 

the ODH of ethanol on V2O5/TiO2/SiO2 catalyst, prepared by grafting 

vanadyl tri-isopropoxide onto a support of silica coated with TiO2. The 

TiO2/SiO2 support has been prepared according to the multi-step 

grafting procedure. The kinetic behaviour of the catalyst was verified 

by varying the reagent concentrations, the residence time, the 

temperature, the vanadium load, the acid and basic characteristics of 

the catalyst and the presence in the feed of reaction products such as 

water or acetaldehyde. A kinetic law for interpreting both the main 

reaction from ethanol to acetaldehyde and all other oxidations 

occurring in the reaction scheme was derived by assuming a redox 

mechanism occurring in the following four steps: (i) dissociative 

adsorption of ethanol on vanadium giving place to an ethoxy group, (ii) 

α-hydrogen withdrawal by the metal to form acetaldehyde and a 

hydride group, (iii) oxidation of the formed hydride, and (iv) 

dehydration of the vanadium site to restore the original active site. 

The kinetic law derived was found to be identical, in mathematical 

form, to the one that can be obtained from the classical Mars and van 

Krevelen mechanism [47]. As shown by the kinetic study realized by 

Tesser et al. [45], on the basis of the obtained values of activation 

energies, the V2O5-TiO2 chemical environment is favorable to this 

reaction, in agreement with the suggestion made by other authors 

that V-O-support bonds are determinant for the activity and selectivity 

of different reactions, because the effect of the support is often 

dramatic. In the next paragraphs, the main techniques employed to 

prepare vanadia based catalyst have been reported. In particular, our 
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attention was focused on the grafting peculiarities and on the 

properties of the metal alkoxides. 

A-1.3 Vanadia based catalysts preparation 

A-1.3.1 Classical routes 

The preparation of supported metal oxide catalysts is a very important 

step because it significantly affects the three most important 

characteristics of the final catalyst product, i.e., its catalytic activity, 

catalyst selectivity, and catalyst lifetime [48].    

Despite the large number of patents and applications about catalyst 

preparation, the field of “catalyst design” can be still considered in 

continuous developing. It involves the precise control over the nature 

(oxidation state, coordination environment, dispersion, etc) of the 

supported active site at the molecular level in a reproducible manner. 

This far from easy, and future research has to be directed toward a 

better understanding of the basic aspects of catalyst preparation 

through the use of in situ and operando microscopic and spectroscopic 

techniques. Catalyst preparation is, thus, defined as the strategy 

domain in chemical industries. It is also a field with great potential 

because important improvements in catalyst performance can be 

obtained by simply fine-tuning the different preparation steps of a 

specific catalyst.  There are two main stages in the preparation of 

supported metal oxides catalysts. In a first stage, the active metal 

component precursor is deposited on the oxidise support. The second 

stage consists of a transformation of the deposited metal precursor 

into a metal oxide dispersed at the support surface. This 

transformation process can be achieved by a heat treatment of the 

precursor material in oxygen or in air, often referred to as calcination 

step (formation of supported metal oxides).  Supported vanadium 

oxide based catalysts can be prepared via several methods.  

 

Impregnation 
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The most simple and widely used deposition method is impregnation, 

which refers to a procedure whereby a certain volume of an aqueous 

or non-aqueous solution containing the specific metal component 

precursor is totally adsorbed into the pores of an inorganic oxide. Two 

important impregnation procedures can be distinguished. If the 

support is dipped into an excess amount of solution, the process is 

called wet impregnation. More precise control over the vanadium 

oxide loading is achieved with a technique called dry impregnation, 

pore volume impregnation or incipient wetness impregnation. In this 

case, the support is contacted with a solution of appropriate 

concentration, corresponding in quantity to the total known pore 

volume of the support, or slightly less. This allows precise control of 

the concentration of the active vanadium oxide component on the 

support. However, the maximum loading obtainable in a single 

impregnation step is limited by the solubility of the reagent and if 

necessary multiple impregnation steps should be applied. V2O5 has a 

low solubility in aqueous and non-aqueous solutions and therefore, 

many authors prepare their supported vanadium oxide catalysts by 

impregnating the support with an aqueous solution of, e.g. NH4VO3 or 

NH4VO3 dissolved in aqueous oxalic acid [49]. The impregnation 

process is followed by a drying and heating step in which the 

vanadium oxide compound is chemically anchored onto the support 

oxide. Non-aqueous impregnation methods use vanadyl 

acetylacetonate (VO(acac)2) as vanadium compound or VO(OC2H5)3 or 

VO(OC3H7)3 in methanol or another organic solvent [50]. After the 

impregnation step the material is calcined in air at high temperatures 

(e.g. 500 ◦C) and surface anchored vanadium oxides are formed. 

Another route to prepare catalysts is a gas-phase technique is the 

Atomic Layer Deposition (ALD) that uses as precursor a volatile 

vanadyl acetylacetonate. A correlated technique is Chemical Vapor 

Deposition (CVD), which makes use of a volatile inorganic or organo-
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metallic compound. Controlled reaction conditions are accomplished 

to stabilize the surface deposition sites on the support by heat  

treatment and by removing any physic-adsorbed or unreacted 

molecules after each reaction by inert gas purge [51].  However, it is 

important to point out that the adopted preparation method 

influences the amount of supported vanadium oxides, which can be 

deposited on a particular support oxide without the formation of 

crystalline V2O5. In this way, the preparation method may affect the 

vanadium oxide dispersion on the surface of the oxide support.  

 

A-1.3.2 Grafting technique 

Grafting is defined as the removal from solution of a compound 

containing vanadium through interaction with hydroxyl groups on the 

surface of an inorganic support. Several authors pointed out that 

grafting techniques lead to more dispersed catalysts that are stable 

when an opportune support is used. Multi-step grafting followed by 

calcination is, often, used to obtain a monolayer of vanadium oxide on 

the surface of a support oxide. In general, liquid phase deposition can 

be regulated by controlled reagent concentration and washing and 

drying procedures whereas in the gas phase, the key factors are the 

character of precursor, the reaction temperature and the number of 

active surface hydroxyl sites.  

 

A-1.4 Metal Alkoxides as precursor to prepare supported metal 

oxides by Grafting  

The alkoxides are largely employed to prepare catalysts and catalitic 

supports, that classicaly were produced by impregnation or 

coprecipitation [52]. The first methodology gets a not well dispersed 

active phase on the catalyst supports while with the coprecipitation 

the catalyst porosity is difficult to control. The grafting is an alternative 

preparation technique that involves a specific reaction between a 

metal alkoxide and a surface rich of hydroxides group [53,54]. A 
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number of literature works have shown the catalysts preparation and 

the main features of vanadia based catalysts supported on many 

different supports such as SiO2, TiO2, ZrO2, Al2O3. The main advantage 

of the examined technique is the possibility to check and to improve 

the redox properties of the catalysts, the dispersion degree of the 

active phase on a support [55,56]. The grafting reaction is thus 

represented (1): 

(1)                  ├OH + M(OR)n → ├OM(OR)n-m + m ROH 

The support, previously calcinated to stabilize the surface and to 

eliminate trace of moisture, was put in contact with a solution of 

known concentration of the desired metal alkoxide in an anhydrous 

solvent and in inert environment. The hydroxyl groups represent the 

reactive sites able to anchoring the metal and during the reaction, the 

use of an apolar solvent is necessary to favor the strong anchoring of 

the metals to the supports. An intensively study, conducted in this 

research group [57-59], has shown that the use of alcohols, close to 

the used alkoxides, is useful to obtain a well dispersion of the active 

phase on the catalysts surface, as the equation (2) illustrates [27-29]: 

( 2)
ROHOROMeSuperfaceORMeOHSuperface nn +−−↔+−− −1)()(  

The reaction in exam is of equilibrium and the removal of alcohol is 

fundamental to favor the mixed oxides formation. The alkoxides 

concentration that must be used to perform the reaction is evaluated 

on the basis of the quantity of active phase desired on the support. 

The strength of the bound between the metal oxide and the support is 

dependent by the acid-base characteristics of this last. A good catalytic 

system is characterized by a good dispersion of the active phase and 

the alkoxide must be has a very scarce tendency to oligomerization. An 

unavoidable operation is the steaming, that should be conducted after 
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the grafting reaction to eliminate the organic groups by the catalyst 

surface (3). 

 

Alternatively, the burning in air and the calcination at 200°Cx2h could 

be used. After that, the catalyst surface must be stabilized by 

calcination at 500°C x2h. The grafting technique is advantageous 

because combines the thermal resistance of an ideal support to the 

redox and acid-base surface properties. The technique is versatile and 

by a simply changing of the alkoxide it is possible to obtain different 

loading of the active phase on the support [60]. In particular, low 

loading (sub-monolayer) gives a wide dispersion of the active phase. 

The monolayer loading favors the obtainment of catalysts with 

chemical properties quite different by the support by with the same 

mechanical strength of this last one. The multilayer loading, obtained 

by repeating several time the grafting, gives catalysts with particular 

properties related to their structure (structure sensitive). 

 

 

 

A-1.4.1 Adsorption isotherms 

A-1.4.1.1 Support TS 

The critical factor regarding the preparation of supported 

TiO2/SiO2(TS) catalysts is the maximum surface coverage of the 

precursor molecules. Some factors such as the porosity, size, and 

morphology of the silica pores may influence the maximum surface 

coverage of a precursor. Very small pores may be inaccessible to large 

precursor molecules. Therefore, the maximum surface coverage of 

(3)       OMe(OR)n-1  +  (n-1)H2O                    OMe(OH)n-1  +  (n-1)ROH                    
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precursor molecules is associated with the steric hindrance effect. 

Above the maximum surface coverage, extra precursor molecules do  

not react with the surface hydroxyls and remain on the surface after 

the solvent is removed. The unreacted precursor molecules either 

evaporates during calcination at elevate temperatures or remain on 

the surface and become oxidized into oxide phase. In order to 

determine the maximum surface coverage of silica by titanium 

alkoxide, a deepth study of the grafting adsorption behaviour of 

titanium tetra-isopropoxide (Ti(O-Pr
i
)4) on the surface of silica support 

by contacting solutions of increasing concentrations of the mentioned 

alkoxide, dissolved in dioxane, was carried out. This approach resulted 

very interesting to investigate the chemical adsorption of titanium 

alkoxide until the surface saturation, by using the isotherm obtained, 

depicted in Figure 1[60]. 
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Fig.1: Adsorption isotherm of titanium tetra-isopropoxide (Ti(O-

Pr
i
)4) adsorbed by grafting on the surface of SiO2. 

As can be seen, the adsorption isotherm can be interpreted as a 

Langmuir isotherm in line with the following relation: 

K=(1/C
eq

)/(Γ∞
/Γ∞

-Γeq
)                                                                                 (4)                                                    
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As shown, by regression analysis experimental points can be well fitted 

by using the following values of the parameters: K = 710.89 [L/mol] e 

Γ∞
 = 1.02 mmolTi/gSiO2. By the latter value approximately 8.14% by 

weight of TiO2 adsorbed on support is calculated and this value 

corresponds to a monolayer. In the adopted preparation, due to the 

steric interference effect, the maximum surface coverage of the Ti(O-

Pr
i
)4 precursor in a one-step grafting has been found to be ~ 2.2 Ti 

atoms/nm
2
, which is similar to the maximum trimethylsilyl (TMS) 

surface coverage of 2.2-2.7 groups/nm
2 

[61]. On the basis of the 

results achieved, it is possible to classify the titanium silica-supported 

catalysts in two categories, depending on the content of titanium 

grafted on SiO2, expressed as “titanium surface density” and defined 

as the number of titanium atoms per square nanometer of the catalyst 

(atomsTi/nm
2
): sub-monolayers (~ 2 atomsTi/nm

2
) and monolayers 

(TSm) (~ 4-6 atomsTi/nm
2
). Another important observation is the 

strong affinity of titanium alkoxide with the silica surface, derived from 

the steep rise in the initial part of the adsorption isotherm. Saturation 

of the adsorbed alkoxide monolayer is reached at a relatively low 

alkoxide equilibrium concentration (0.01 mmolTi/ml). However, it is 

interesting to note that, after calcination treatment, not only some of 

Si–OH groups become re-exposed and can further react with more 

Ti(O−Pr
i
)4 precursor molecules but also some of Ti–OH groups of Ti-

species anchored in previous grafting steps. Thus, in order to 

completely cover the surface of silica with titania, the above-

mentioned sequence of operations, i.e., grafting, filtering, drying, 

steaming and calcinating were repeated, under the same conditions, 

twice more on each sample. This strategy resulted very useful to 

charge on the surface of silica a sufficient amount of titanium to form 

a monolayer coating of silica characterized by a highly dispersed active 

phase, corresponding to both isolated and/or polymeric titanium 

species, as resulted from the characterization investigation reported in 

the next paragraphs.  So, a higher loading of TiO2 (TSM) (~ 20% wt 
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TiO2), which correspond to ~ 4 Ti atoms/nm
2
, is reached by employing 

three grafting steps. As stated above, among the variables involved in 

the synthesis of this type of catalysts (TiO2/SiO2), also the nature of the 

solvent used for dispersing the titanium alkoxide before the grafting 

reaction, plays an important role. The yield of the grafting reaction, i.e. 

the maximum quantity of titanium alkoxide, expressed as % wt TiO2, 

that is possible to charge on the silica surface by employing one 

grafting-step, is almost quantitative by using toluene. This is probably 

due to the fact that the grafting is an equilibrium reaction and, thus, 

the use of the parent alcohol as solvent reduces the anchorage 

efficiency.   

 

 

 

1.4.1.2 System V2O5-TiO2/SiO2 

Apart from the role of the inorganic oxide used as support, the 

molecular structure of vanadium oxide species on amorphous support 

oxides can be influenced also by the vanadium oxide loading. Several 

studies on the vanadia based catalysts have shown that the adsorption 

of vanadia depends strongly by the typology of employed support. In 

Figure 2 the adsorption of vanadia respectively on silica and on 

supports prepared by grafting respectively TSm (monolayer 7.29%wt 

TiO2) and TSM (multiple layer 17,8% wt TiO2) have been reported  [53. 

The By comparing from a qualitative point of view the isotherms, 

reported in Figure 2, it is possible to note the greater affinity of the 

vanadyl tri-isopropoxide for a TiO2 surface.  

The steep rise of the curves obtained on TiO2 surface denotes a strong 

interaction between the adsorbate and the adsorbent. The great 

affinity of the vanadyl alkoxide for TiO2 surface is shown by the large 

value obtained for K that is about 30 times the value obtained for the 

interaction between titanium tetra-isopropoxide and silica surface. 
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Figure 2: Comparison between the chemical adsorption 

isotherms of vanadyl alkoxides on: SiO2, TSm and TSM. 

 

The saturation value, corresponding to the monolayer, occurs for a 

surface density of 1.67 VOx/nm
2
, that is about 7% by weight of V2O5. It 

is interesting to observe that the overall stoichiometry for the 

monolayer is about 2OH/V.  This means that we can have on the 

surface a mixture of  oligomeric species of the type: 

with the already seen monomeric species or alternatively a 

monomeric isolated specie of the type: 

 

It is interesting to observe that also in this case by further increasing 

the vanadyl tri-isopropoxide concentration the adsorption increases 
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over the monolayer. This can be interpreted again by assuming the 

possibility of aggregation by vanadium (on the surface)-vanadium (in 

solution) interaction. Prepared catalysts and supports have been 

submitted to XRD analyses in order to verify the presence of 

crystallites and to have an estimation of the solids dispersion. In Figure 

3, for example, XRD plots obtained for respectively pure V2O5 and V2O5 

supported on silica at two different levels of concentrations (30% and 

5% by weight) are reported.  

 

 
Figure 3: XRD spectra of vanadia catalysts supported on SiO2 by  

and pure V2O5: (a) 5V2O5/SiO2; (b) 30V2O5/SiO2; (c) pure V2O5. 

 

As can be seen, crystalline V2O5 is evident in the samples of pure V2O5 

and in the samples containing 30% of V2O5. For the lowest amount of 

V2O5 the catalyst shows a relatively good dispersion. The absence of 

crystallites of V2O5 has been observed for all the catalysts prepared by 

grafting on both SiO2 and TiO2-SiO2, independently of the amount of 

vanadium loaded. For catalysts of TiO2-SiO2 with 11.6% of V2O5, an 

increase of the intensity of the anatase reflex, at 25°, can be observed 
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with respect to a catalyst prepared by grafting containing a 

comparable amount of V2O5. This phenomenon has already been 

observed [62], that is, when vanadium is not uniformly dispersed on 

the surface it promotes the formation of anatase crystallites during 

the catalyst calcination. By concluding catalysts containing amounts of 

V2O5 lower than 10 % by weight don not show crystallites of this 

compound, in particular those prepared by grafting. Therefore, XRD 

analysis cannot give information about the molecular dispersion of 

V2O5 on the surface. 
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                                                Chapter 2                                               

Techniques  

and equipment 

 

 

A-2.1 Introduction 

This chapter introduces some general aspects related to the catalyst 

prepared and to the reaction apparatus, employed to perform the 

ethanol dehydrogenation and oxidative dehydrogenation reactions in 

low pressure (1 bar) conditions and in mild range of temperature (140-

200°C). In particular, in the following chapter the composition of 

vanadia catalysts supported on titania-silica by grafting, an available 

technique to obtain solids with a high dispersion of the active phase 

on support surfaces has been point out. Moreover, a list of the 

characterization techniques used to describe in details the chemical 

and physical properties of the examined catalysts have been 

described. Finally, the configuration of the equipment and of the 

operative condition has been reported. In this section, the study of the 

performances of several prepared vanadia based catalysts has been 

realized in the oxidative dehydrogenation and in dehydrogenation 

reaction too. The catalysts have been prepared by using different 

loading of Vanadia on a mixed oxide supports. In previously studies 

[1,2] the preparation of support by grafting Ti(O−Pr
i
)4 on silica has 

been optimized by evaluating the influence of the nature of the 

solvent, used for dispersing the mentioned alkoxide, and of Ti-loading 

on the final surface catalyst dispersion. In this study the maximum 

surface monolayer coverage of silica (Grace S432, specific surface area= 

282 m
2
/g, specific pore volume = 1.02 cm

3
/g, hydroxyl groups = 0.92 
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mmol/g) by Ti(O−Pr
i
)4 precursors was found to be ~ 2.2 Ti atoms/nm

2
 

by adopting a one-steps grafting procedure. The performances of 

these catalysts into the ethanol dehydrogenation reaction to 

acetaldehyde have been compared with the performances of several 

copper based catalysts. Moreover, several catalysts have been 

prepared by impregnation of copper nitrate on commercial support 

such as ZrO2 and ZnO2 (Sigma Aldrich). The coprecipitation technique 

has been used to prepare a copper catalyst incorporated in a structure 

of mixed oxide CuO-ZnO-Al2O3-ZrO2. Finally, the performances of a K-

310 catalyst have also studied in the mentioned reaction. The runs 

have an explorative character and have as main scope to individuate 

the possible active phase selective to produce acetaldehyde and ethyl 

acetate in low pressure conditions.  

 

A-2.2 Catalysts preparation 

A-2.2.1 Supported vanadia by grafting technique 

The interest towards the study of the structure and composition of the 

surface active phases is progressively increased in the last few years 

and the individuation of the relationships between the surface 

characteristics of the catalysts and the preparation methodology is a 

topic of great concern. The main techniques used to prepare 

heterogeneous catalysts based by mixed metals oxide require two 

main steps: 

1. The dispersion of the active phase on a catalytic support; 

2. The calcination of the solid, to stabilize the active phases on a 

support too. 

The deposition method involves, in the most cases, aqueous solutions 

of the catalytic active metal and the interaction between the precursor 

of active phase and the support occurs at the interphase liquid-solid 

[3]. In this chapter, the preparation modes of heterogeneous catalysts 

have been described by grafting of alkoxides on oxides surfaces. In 
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more detail, two different series of catalysts have been studied, at 

different loading of Vanadia respectively on a monolayer (TSm) and 

triple layer (TSM) of titania supported on silica. Firstly, the two 

different supports have been prepared. The supports have been 

prepared by the contact of a commercial silica, at high specific surface 

area (Silica Grace, specific surface area As=282m
2
/g), with a solution of 

titanium tri-isopropoxide (TiO[O-iPr]4, Aldrich 99.999%, d=0.963g/ml) 

dissolved in anhydrous dioxane, of increasing concentrations. At first, 

the support has been characterized to evaluate the specific surface 

area (As=280m
2
/g), the pore size distribution (mesoporous) and the 

density of the hydroxyls groups (see table 1). 

Table 1: Commercial Silica Characteristics 

Silica 
Thermal 

treatment 

Specific surface 

area (m
2
/g) 

Hydroxyles       

density (mmol/g) 

   Grace S432    500°CX 8h 282 0.92 

 

The evaluation, by thermogravimetric measurements, of the density of 

hydroxyls groups is fundamental to evaluate, the exact quantity of 

alkoxides to employ to obtain the complete monolayer covering of 

silica support. For each –OH group an alkoxides molecule reacts and to 

be sure, of the complete monolayer covering, an alkoxides excess of 

about 50% mol has been used. 

The grafting reaction was performed for 5h in a well stirred glass 

reactor, under inert nitrogen atmosphere. The obtained solids were 

filtered, washed with dioxane, oven-dried at 120 °C overnight, heated 

at 200 °C and then calcined at 500 °C. The grafting operation was 

repeated for three times to prepare support of triple layer of titania on 

silica. Residual alkoxide groups were eliminated by burning. In table 2 

the operative conditions used to prepare the supports Tsm, with a 

monolayer of about 7% in weight of TiO2, TSm2 with a double layer of 

TiO2 that correspond to 10% and TSM with a triple layer (15% wt of 
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TiO2 , have been reported. In table 2, the composition for each 

prepared support is summarized.  

Table 1: operative conditions to prepare TSm and TSM 

Solvent/Support Acronym Ti(OR)4 

(g) 

SiO2 

(g) 

Dioxane 

(mL) 

TiO2/SiO2 TSm1 10.64 24.02 400 

TiO2/SiO2 TSm2 (doppio strato) 8.62 15.00 250 

TiO2/SiO2 TSM (triplo strato) 8.63 10.94 183 

 

In Table 2 the weight percentage of anchored Titania on 3 grams of 

silica supports have been reported for each step of grafting reaction. 

Table 2: TiO2 loading at three different graftig steps. 

Support Step TiO2 (mmol/g) %TiO2wt 

TSm I 1.00 7.44 

TSm2 II 1.46 10.43 

TSM III 2.24 15.18 

 

The values in table 2 show that in the first step the anchoring titania is 

of about the 7.44%. So, by speculating a stoichiometry of  1OH/1Ti, the 

complete monolayer loading is obtained, in agreement with previous 

works [4-6]. The chemical adsorption of the titanium alkoxides on the 

support surface has been studied to evaluate the adsorption isotherm 

of the titania on silica. As shown in literature work [7] the monolayer 

adsorption of TiO2 on silica surface corresponds to a titania value of 

about 8%wt, that correspond to a surface concentration of 1mmols/g 

SiO2 . By repeating two more times the grafting technique, a triple 

layer has been obtained. In all the mentioned cases, the amount of 

adsorbed titanium was determined by the colorimetric analysis 

suggested by Snell and Ettre [8], by evaluating the quantity of titanium 
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remaining in solution after the grafting reaction. The amount of 

anchored active phase was also determined by realizing a 

mineralization of about 0.1 g of solid and by using a colorimetric 

method as described in Appendix A.The operative conditions used to 

prepare V2O5/TSm and V2O5/TSM are summarized in Table 3. The 

mixed oxides catalysts of vanadia V2O5/TiO2-SiO2 were prepared by 

grafting of vanadyl tetra-isopropoxide (VO[O-iPr]4, Aldrich 99.999%, 

d=0.963g/ml) on two types TiO2/SiO2 supports: TSm (7.29 %wt TiO2) 

and TSM (17.8 %wt TiO2). The supports indicated with the acronyms 

TSm and TSM correspond, respectively, to the titanium tetra-

isopropoxide monolayer and multilayer coverage of silica as above 

mentioned. In both the cases, a given amount of solid was contacted 

with solutions of vanadyl tri-isopropoxide (VO[O-iPr]3, Aldrich 

99.999%, d=0.963g/ml) dissolved in anhydrous dioxane of increasing 

concentrations. The grafting reaction was performed for 5h in a well 

stirred jacketed glass reactor, under inert helium atmosphere. The 

solids obtained were filtered, washed with dioxane, oven-dried at 120 

°C overnight, heated at 200 °C and then calcined at 500 °C. Residual 

alkoxide groups were eliminated by burning. In Table 3 are 

summarized the operative conditions used respectively to prepare 

V2O5/TSm and V2O5/TSM catalysts.  

Table 3: operative conditions adopted to prepare VTSm and VTSM 

Precursor/solvent/support Acronym 
VO(O-iPr)4 

(g) 

 

Silica 

(g) 

Dioxane 

(ml) 

V2O5 
Teor.%ww 

V2O5 
sper.%w 

VO(O-iPr)4 /diossano/TSm 1 V/TSm 0.08 3.0 50 0.99 0.98 

VO(O-iPr)4/diossano/TSm 3 V/TSm 0.75 3.9 64 7.20 5.50 

VO(O-iPr)4/diossano/TSM 1.5 V/TSM  0,12 3,00 50 1.5 1.5 

VO(O-iPr)4/diossano/TSM 2.7 V/TSM  0,22 3,00 50 2.7 2.7 

VO(O-iPr)4/diossano/TSM 8.8 V/TSM  0,89 3,00 50 11.0 8.8 
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The amounts of vanadium (%wt) adsorbed on silica (Table 3) have 

been determined by analysing residual vanadium on the filtration of 

water solutions, using UV-VIS spectroscopy. Moreover, the catalysts 

were mineralized by using sulphuric acid at high temperature (200°C) 

for about 4h; the details of the applied methodology are reported in 

Appendix A. The catalysts support is considered as an inert substance 

with an high specific surface area, ideal to support the metal oxide and 

to increase the mechanical strength of the catalysts. The activity, the 

selectivity and the life time of the catalysts have been affected by both 

the properties of the supports and by the preparation methodology of 

the catalytic systems. The TiO2 favor the vanadia dispersion by the 

effect of the strong interaction between the titania and the supported 

vanadium oxide. On the other hand the TiO2 supports have a very 

scarce thermal and mechanical strength and a low specific surface area 

(80m
2
/g), which is touchy to further decrease by the effect of sintering. 

The use of SiO2 as support is necessary to increase the thermal and 

mechanical strength of the catalyst support. On the other hand, the 

acidic sites on the silica could promote an agglomeration of the 

vanadylic species, with a consequently decrease of the active phase 

dispersion. Thus, the use of a triple layer of titania on silica as support 

for vanadia is the best catalytic design ad already demonstrated in 

several previously papers [9-12]. The supports obtained by grafting the 

titania on silica are more stable to the high temperature, in fact the 

fusion temperature of silica is of about 1800°C. At the end catalysts 

with the same thermal and mechanical strength of silica and moreover, 

the use of titania favor a good dispersion of vanadia on titania [13,14]. 

The vanadia supported on a triple layer of TiO2 coated SiO2 is a 

possible candidate to perform the ODH of ethanol with high 

performances.   
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A-2.2.2 Supported Copper by impregnation 

The most simple and widely used deposition method is impregnation, 

which refers to a procedure whereby a certain volume of an aqueous 

or non-aqueous solution containing the specific metal component 

precursor is totally adsorbed into the pores of an inorganic oxide. Two 

important impregnation procedures can be distinguished. If the 

support is dipped into an excess amount of solution, the process is 

called wet impregnation. More precise control over the vanadium 

oxide loading is achieved with a technique called dry impregnation, 

pore volume impregnation or incipient wetness impregnation. In this 

case, the support is contacted with a solution of appropriate 

concentration, corresponding in quantity to the total known pore 

volume of the support, or slightly less. This allows precise control of 

the concentration of the active vanadium oxide component on the 

support. The catalyst 30%Cu/ZnO e 30%Cu/ZrO2 have been prepared 

by impregnating with a copper nitrate (Cu(NO3)2�2H2O) solution two 

different supports ZnO (Aldrich) e ZrO2 (Aldrich). For each 4g of a 

support a quantity of 4,4g di Cu(NO3)2�2H2O has been dissolved in 

6,8mL of water. The incipient wetness factor is determined to evaluate 

the quantity of water in which the salt of the active phase precursor 

must be dissolved. The obtained material was dried in oven at 100°C 

overnight and calcinated in air at 500°Cx3h to stabilize the surface. The 

operative conditions adopted to synthetize the catalysts have been 

summarized in Table 5. 

 

Table 5: adopted operative condition to prepare catalysts by impregnation 

Precursor/solvent/support Acronym
 

CuO (%wt)  

Cu(NO3)2/H2O/ZnO 30%Cu/ZnO 30 

Cu(NO3)2/H2O/ZrO2 30%Cu/ZrO2  30 
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The copper catalysts have been previously reduced in hydrogen flow 

(18 cm
3
/min) for about 16-18h. 

A-2.2.3 Copper catalyst by coprecipitation 

The catalyst Cu-Zn-Zr-Al-O was prepared by coprecipitation of the 

corresponding metals nitrate by using sodium hydroxide as 

precipitating agent (3mol dm
-3

). Precisely, 9.7g of Cu(NO3)2�2H2O, 4g di 

Zn(NO3)2, 50.4g di Al2(NO3)2 and 3.6g of zirconyl nitrate have been 

dissolved in 0.5 L of water. The obtained solid was filtered, washed, 

dried and calcined at 500°Cx3h. The solid was reduced in hydrogen 

flow at 200°Cx4h. 

 

A-2.2.4 Copper commercial catalyst  

The performances of two different commercial catalysts have also 

studied in the dehydrogenation and oxidative dehydrogenation of 

ethanol at low pressure. In table x the acronyms and the composition 

of the examined system has been reported. The studied catalysts are 

characterized by the presence of two different promoter ZnO and 

Chromia. Moreover, both of them contain alumina to increase the 

specific surface area. 

Acronym 
 

Composition given by the companies 

BASF K-310 CuO-ZnO-Al2O3 (40-40-20 % b.w.) 

BASF Cu-1234 CuCr2O4-CuO-Cu-BaCrO4-Al2O3 (45-1-13-11-30 % b.w.) 

 

A-2.3 Reaction Apparatus 

The Kinetic runs were performed in a stainless steel tubular reactor 

with an internal diameter of 1 cm, kept isothermal with a fluidized bed 

of sand (Figure 1). Samples of powdered catalyst, generally 0.3 g, were 

placed inside the reactor on a bed of glass wool. Two thermocouples 
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located immediately upon and under the catalytic bed allowed the 

validity of the isothermal conditions to be controlled within ± 1 °C. 

Liquid ethanol was fed, by a syringe pump, into a vaporizer chamber 

kept at 250 °C and was then sent, after the addition of a stream of 

oxygen and helium, into a stainless steel coil kept at the same 

temperature of the reactor. All the fitting tubes are heated by heater 

at a temperature of 180°C to escape the condensation of products in 

the tube fitting. In Figure 2 the configuration of the apparatus has 

been represented. 

 

 
Figure 1: Reactor scheme 
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Figure 2: Schematic representation of the lab-scale plant used for the 

ODH of methanol to formaldehyde.  R= reactor; S= sample valve; GC= 

gas-cromatograph. 

 
 
The catalytic runs were conducted at atmospheric pressure (1 atm), by 

keeping constant the residence time and by changing the reaction 

temperature from 180 to 300 °C. Table 6 collects the operative 

conditions adopted for the catalytic screening.  

Table 6: conditions used for the catalytic tests (Ethanol:Oxygen:Helium = 20:20:60 

mol%) 

Catalyst 

weight 

(g) 

Helium Flow 

(ml/min) 

Oxygen 

Flow 

(ml/min) 

Ethanol 

Flow 

(ml/h) 

W/F 

(gcat*h/molMetOH) 

0.5-1.5 22.3 7.4 0.05-0.1 25.3 

 

The composition of the gases at the outlet of the reactor was gas-

chromatographically analysed by withdrawing a sample with an on-

line sampling valve kept at 170°C. The GC used was an HP 5890 

instrument, with a Restek RT-Q-Plot 30 m × 0.32 mm column. Helium 

was used as the carrier gas. The conditions used for the analyses were 
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as follows: temperature held at 40°C for 2 min, increased at a rate of 

20°C/min to 100°C and then at a rate of 20°C/min to 180°C for 5 min, 

and finally kept at this temperature for 5 min. A TCD detector kept at 

200°C was used. In Table 7 has been reported the retention times and 

the GC-factors determined for each component of the reaction 

mixture. The response factors of each compounds, have been evaluate 

by preparing solution of known concentration of two components. The 

solution contains always ethanol at which a factor 1 is attributed. The 

prepared mixture is then analyzed by gas-chromatograph with the aim 

to evaluate the response factor of the -i specie by using the following 

relation: 

)1(

1
∑

=
n

ii

ii
i

Af

Af
x

                     

�� = �����	
�	��

��	�� − �	���
��	 
��=molar fraction of –i 

�� = ��	����	�� − �	���
�� 

 

 Table 7: retention times and the GC-factors determined for each component 

Components Retention Time Responce factors 

Oxygen 5,11 1,9 

CO2 5,32 0,8 

Etylene 5,89 1 

Water 9,16 6,45 

1-butanol 10,42 - 

Acetaldehyde 11,92 1,3 

Ethanol 13,64 1 

Propan-2-ol 16,37 - 

Dietylether 17,55 0,4 

1-propanol 18,99 - 

Acetic acid 19,31 1,1 

Ethyl acetate 25,5 0,8 

Crotonaldehyde 30,60 - 
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Results are reported in terms of the ethanol conversion and product 

yields. The ethanol conversion and product selectivity is defined as:

i
fed

produced
i

reacted

produced
i

fed

reacted
EtOH

a
molEtOH

iprodottomol
CSYield

molEtOH

iproductsmol
S

molEtOH

molEtOH
X

×=×=

=

=
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                                                Chapter 3                                               

Experimental Results 

 

 

 

A-3.1 Introduction 

As well known, the environmental concerns have increased the interest 

toward the development of new processes able to convert second-

generation waste materials into ethanol. The main interest is its use as 

feedstock to produce acetaldehyde, ethyl acetate, acetic acid, ETBE and 

pure hydrogen. In this chapter, the interest is focused on the 

Acetaldehyde and pure hydrogen production. As well known, the 

importance towards acetaldehyde, considered as the most important 

aliphatic intermediates, is concerning to its use to produce acetic acid, 

acetone, ethyl acetate, C4-aldehydes, 1-butanol, pentaerythritol and 

many other chemicals. Actually, the ethanol dehydrogenation, oxidation 

and oxidative dehydrogenation, are the main routes to produce this 

compound, whose interest is related to its wide range of application in 

several industrial sectors [1,2].The reaction steps by which is possible 

obtain acetaldehyde are reported below. The ethanol 

decomposition/dehydrogenation (1) is an endothermic reaction, the use 

of small amount of oxygen makes the reaction moderately endothermic 

(2). The use of a large excess of oxygen favour the ethanol combustion 

reaction (3).  

CH�CH�OH → CH�CHO� H�																∆H 
 68.1	Kcal/mol															�1� 

	CH�CH�OH�
1

2
O� → CH�CHO � H�O	∆H 
 4.87	Kcal/mol												�2� 

CH�CH�OH� 3O� → 2CO� � 3H�O				∆H 
 �305	Kcal/mol												�3� 
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In this chapter, the study of the dehydrogenation and oxidative 

dehydrogenation reactions, to produce acetaldehyde and pure hydrogen 

by ethanol, in mild temperature conditions and at low pressure, were 

carried out. In a first part of this chapter, the ethanol dehydrogenation by 

using copper/copper chromite catalysts have been lead. In order to 

successfully obtain acetaldehyde with high yield, it is necessary to identify 

an active, selective and stable catalyst system and also to find optimum 

conditions at which the production of hydrogen and acetaldehyde will be 

maximized and secondary reactions suppressed. At this purpose, the 

performances of Cu/ZnO, Cu/ZrO2, Cu-ZnO-ZrO2-Al2O3 and two others 

commercial Cu/ZnO/Al2O3 (K310) and CuCr2O4/CuO/BaCrO4/Al2O3 have 

been studies. In a second section of this research work, the bearing of 

vanadia based catalysts prepared by grafting (see chp.2 section A) have 

been studied in the ethanol oxidative dehydrogenation reaction (ODH). At 

this purpose, a depth study on the mentioned reaction was realized in our 

research group and interesting results have been obtained by using redox 

catalysts of Vanadia supported on a triple layer of titania coated on silica. 

Thus, catalysts prepared by grafting of vanadyl tri-isopropoxide on the 

surface of silica coated with TiO2 were found to be very active and 

selective to acetaldehyde in the oxidative dehydrogenation reaction [3-6]. 

The reaction occurs under very mild conditions of temperature (150-

180°C) and at atmospheric pressure. The operative conditions and the 

characteristics of the catalysts have been reported in the chapter 2 of the 

current section. In correspondence with each experimental flow rate and 

temperature combination, different samples of the gaseous outlet 

mixture were withdrawn and sent to the GC for on line analysis, to 

evaluate the ethanol conversion and products selectivity. All the data 

reported in the tables mentioned above are averaged values for both the 

conversion and yields, evaluated under steady-state conditions. 
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A-3.2 Dehydrogenation 

In this paragraph, the performances of copper based catalysts have been 

studied in low pressure and mild temperature (180-220°C) conditions. In 

more detail, the catalysts studied are: 

• Catalysts of 30%wt of copper impregnated on ZnO and ZrO2.  

• Catalysts of copper prepared by co-precipitation of metal nitrates 30% 

Cu/ZnO- ZrO2-Al2O3. 

• A typical low gas shift and steam reforming commercial catalyst 

supplied by BASF-K310 of Cu-ZnO-Al2O3 (40:40:20% b.w) 

• A commercial catalyst of copper/copper chromite supplied by BASF-Cu-

1234 of CuCr2O4-CuO-Cu-BaCrO4-Al2O3 (45-1-13-11-30 % b.w). 

The details on the preparation and compositions of the studied catalysts 

are reported in chapter 2 of this section. 

All the copper based catalysts studied have been previously reduced in 

hydrogen flow 6% in nitrogen of 20 cm
3
/min, for about 16-18 h at 200°C 

of temperature. The runs have been performed by using 0.58 g of 

catalyst, ethanol flow 0.1cm
3
/h, a constant residence time of 478.8 

ghmol
-1

. In Table 1, the operative conditions and the results in terms of 

activity and selectivity for the catalysts prepared by coprecipitation (Cu-

ZnO-ZrO2-Al2O3) and by impregnation (Cu/ZnO and Cu/ZrO2) have been 

summarized. 

The catalysts studied have the same composition in copper, about 30% 

wt, and are mixed or supported with different oxides. As shown in table 1, 

the catalyst 30% Cu/ZnO has a relatively high conversion of about 50% at 

260°C and of about 77% at 290°C. The use of so high reaction 

temperature is necessary to sustain the endothermic nature of the 

reaction and to activate the catalyst action. The acetaldehyde selectivity 

is high and corresponds to 95-98%. The catalytic activity of 30%Cu/ZrO2 is 
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relatively low (10-18%) also at high temperature (350°C). On the other 

hand, the use of zirconia, instead of ZnO, favors the ethyl acetate 

formation (18-22%).  

 

 

Table 1: catalyst prepared by coprecipitation (Cu-ZnO-ZrO2-Al2O3) and by impregnation 

(Cu/ZnO and Cu/ZrO2). 

Catalyst T°(C)
 W/F 

(ghmol
-1

) 

Conv. 

EtOH(%) 

Sel. (%) 

AcOEt AcH 

30%Cu/ZnO 260 478.8 47.7 4.5 95.4 

30%Cu/ZnO 290 478.8 77.2 1.9 98.0 

30%Cu/ZrO2 290 478.8 10.7 21.5 78.5 

30%Cu/ZrO2 350 478.8 18.8 16.7 83.2 

30%Cu/ZnO-ZrO2-Al2O3 290 478.8 16.7 14.0 85.9 

 

This particular result is in agreement with those reported by Inui et al. [7], 

in which the product distribution over a series of catalysts with different 

composition is summarized. The quaternary system has a relatively poor 

activity also at high temperature (290°C). The main inconvenient of these 

systems is the rapid catalytic deactivation, after about 90 min of reaction, 

at this so high operating temperature. On the other hand only at T>250°C 

the examined catalysts show a significant activity.  

More promising was the performances of a commercial low temperature 

gas-shift catalyst of Cu-ZnO-Al2O3. The performances of the catalyst (0.58 

g) were studied by using mild temperature in the range of 180-190°C, low 

pressure (1 bar), a residence time of 290-583 ghmol
-1

, an ethanol flow of 

FEtOH=0.1mL/h-0.05mL/h and inert flow FHe=4cm
3
min

-1
. In Figure 1 the 

ethanol conversion, the acetaldehyde and ethyl acetate selectivities 

profiles have been reported as function of the time-on-stream. The runs 

have been performed at a W/F=290 ghmol
-1

, T=260°C, with ethanol flow 

of 0.1 cm
3
/min and inert flow of nitrogen of 5 cm

3
/min. As it can be 

appreciated by the profiles of Figure 1, the acetaldehyde selectivity is of 

about 89% and slightly decreases with the time on stream.  
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Table 2: operative conditions, selectivities and activities results for K-310. The catalytic 

runs were performed charging the reactor with 0.58g and by fed a nitrogen flow of 4 

cm
3
/min as carrier. 

Time 

(min) 

T  

(°C) 

FEtOH 

(mL/h) 

W/F 

(gcat*h)/mol 

Conversion 

 (%) 

Selectivity(%) yield (%) 

AcOEt AcH AcOEt AcH 

60 180     0.1 290 74.9 4.1 95.9 3.1 71.8 

90 180 0.1 290 69.9 2.9 97.1 2.0 67.9 

30 190 0.1 290 70.0 1.7 98. 1.2 69.3 

60 190 0.1 290 70.4 2.0 98. 1.5 72.3 

90 190 0.1 290 65.7 2.3 98. 1.5 64.2 

60 260 0.1 290 72.7 10.9 89.1 7.9 64.8 

90 260 0.1 290 64.3 10.7 89.3 6.9 57.5 

120 260 0.1 290 56.9 11.5 88.5 6.5 50.4 

160 260 0.1 290 55.3 12.1 88. 6.7 48.6 

190 260 0.1 290 52.7 12.5 87.5 6.6 46.2 

210 260 0.1 290 48.1 13.9 86.1 6.7 41.4 

240 260 0.1 290 46.9 14.3 85.7 6.7 40.1 

280 260 0.1 290 41.7 15.6 84.4 6.5 35.2 

310 260 0.1 290 40.2 16.2 83.8 6.5 33.7 

350 260 0.1 290 40.2 16.2 83.8 6.5 33.7 

60 260 0.05 583 55.0 17.1 82. 9.4 45.5 

90 260 0.05 583 42.0 23.6 76.4 9.9 32.2 

120 260 0.05 583 36.5 26.4 73.6 9.6 26.9 

150 260 0.05 583 32.0 27.7 72.3 8.9 23.1 

180 260 0.05 583 28.0 29.2 70.7 8.2 19.9 

190 260 0.05 583 29.2 29.5 70.5 8.6 19.9 

 

On the other hand, the selectivity to ethyl acetate increases by 10 to 17% 

mol. This behavior could be an indicative guideline to understand the 

mechanism of reaction. The ethanol dehydrogenation results are in 

agreement with the literature [8,9]. In particular, condition of 

temperature, pressure, residence time and hydrogen partial pressure fed, 

the acetaldehyde can react with ethoxy group adsorbed in the catalyst 

surface to give ethyl acetate. This aspect will be thoroughly described in 

the section B of this thesis, completely dedicated to the ethyl acetate 

production by ethanol dehydrogenation under pressure. 
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Figure 1: ethanol conversion, acetaldehyde and ethyl acetate selectivities for K-

310. The runs have been performed at W/F=290 ghmol
-1

, T=260°C, with ethanol 

flow of 0.1 cm
3
/min and inert flow of nitrogen of 5 cm

3
/min. 

 

One of the main disadvantages of this reaction is the prominent catalyst 

deactivation at temperatures higher than 200-220°C. A first hypothesis is 

the deactivation due to the fouling of the catalyst surface due to the coke 

deposition or acetaldehyde adsorption, which could polymerize. At this 

purpose, a flow of oxygen of about 1.5 cm
3
/min at a temperature of 

200°C, was fed on the catalyst bed with the aim to burning the carbon 

residuals. This operation was not able to restore the catalyst activity. The 

reason of deactivation could be the possible copper sintering phenomena 

on the catalysts surface due to the low Hutting-Tamman temperature of 

the active phase (THugging<300°C), as demonstrated [10] in literature. In 

Figure 2 the profiles of ethanol conversion, acetaldehyde and ethyl 

acetate selectivity for all the runs shown in Table 2 are reported. 
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Figure 2: runs performed with K-310 catalysts at the operative conditions 

reported in table 2. 

 

The profiles of Figure 2 suggest an increase of the ethyl acetate selectivity 

with the temperature of reaction and with the time on stream. A 

comparison also of the runs at two different residence times has been 

done. In figure 3, the comparison of the performances at respectively 

290-583 ghmol
-1

 has been represented.   

As it can be appreciated at higher residence time, 583 ghmol
-1

, the ethyl 

acetate selectivity is of about 30% but on the other hand, the ethanol 

conversion is very low. The catalysts studied show high tendency to 

deactivate due to the effect of both the fouling of the catalysts surface, 

by coke deposition and acetaldehyde condensation, and the sintering of 

the active phase and growing of the copper metal particles with a 

consequently drastic reduction of the catalysts activity during the 

reaction. 
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Figure 3: comparison of the performances at two different residence 

time 290-583 ghmol
-1

. The runs have been performed at 260°C. 

 

At last, the performances of another catalyst have been studied in this 

reaction. The catalyst examined is a commercial copper/copper chromite 

system composed by CuCr2O4-CuO-Cu-BaCrO4-Al2O3 with the following 

compositions 45-1-13-11-30 % b.w. The catalyst has been studied at 

220°C, at atmospheric pressure and at two very different residence times, 

of about 97.56 ghmol
-1

 and 0.18 ghmol
-1

.  

The runs were performed by charging, in the first case (W/F=97.56 ghmol
-

1
), the reactor with 50 g of catalyst and by feeding 0.5 cm3/min of 

ethanol. In the second case (W/F=0.18 ghmol
-1

) the reactor was charged 

with 0.4 g of catalyst and fed with 0.5  cm
3
/min of ethanol Moreover the 

effect of the ethanol/oxygen ratio on the catalyst activity and 

acetaldehyde selectivity has been evaluated. 
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In Table 3, the operative conditions and the obtained results in terms of 

ethanol conversion, acetaldehyde and ethyl acetate selectivity have been 

summarized.  

 

Table 3: Cu-1234 performances in ethanol dehydrogenation to produce acetaldehyde. 

The runs have been performed at a pressure of 1 atm at a temperature of 220°C. A 

mixture of hydrogen 6% in nitrogen of 25 cm
3
/min was previously mixed and successively 

fed to the reaction apparatus. 

 

The runs 1A-2A have been performed in absence of oxygen, in 

dehydrogenation reaction at two very different residence times 

respectively of 97.56 ghmol
-1

 and 0.18 ghmol
-1

. Moreover, the behavior of 

the catalyst have been studied in partial oxidative dehydrogenation, 

reaction by feeding small amount of oxygen 1.2 cm
3
/min (O2:EtOH=0.6) 

and 3.3 cm3/min (O2:EtOH=1.2), by using a residence time of 0.18 ghmol
-1

. 

The catalyst in exam has very important and interesting performances 

and mostly it was very stable and did not deactivate during the reaction. 

In figure 4, a comparison of the results obtained by operating at two 

different residence time, at a temperature of 220°C and at atmospheric 

pressure was reported. As it can be appreciated, the catalyst Cu-1234 

shows at two different residence time more or less the same activity of 

about 50% molar conversion while a wide difference in the acetaldehyde 

selectivity has been obtained. The use of high residence time, of about 

100 ghmol
-1

, favors the acetaldehyde coupling reaction towards the ethyl 

RUN 
 

cat 
(g) 

W/F 

(ghmol-1) 

FEtOH 

(cm3/min) 

FO2 

(cm3/min) 

X 

(%) 

SCH3CHO 

(%) 

SAcOEt 

(%) 

 

Sothers 

(%) 

 

1A 50.00 97.56 0.5 - 49.55 12.17 40.40 47.43 

2A 0.40 0.18 2.2 - 51 56.00 10.00 34.00 

3A 0.40 0.18 2.2 1.2 53 85.11 4.5 10.39 

4A 0.40 0.18 2.2 3.3 70 88.43 2.1 9.47 
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acetate production (40.40%), whilst at low residence time the 

acetaldehyde selectivity is of about 56%. 

 
Figure 4: Cu-1234 performances in dehydrogenation reaction, 

performed at 220°C, at 1 bar, at 0.18-97.56 ghmol
-1

. 

 

The main advantage is to produce with high selectivity and a relatively 

high conversion, acetaldehyde and pure hydrogen as described in the 

reaction (1), at relatively mild temperature condition (220°C). By fed in 

the apparatus system a low amount of oxygen to have a ratio 

O2:EtOH=0.6, the ethanol conversion is almost the same and 

acetaldehyde selectivity increase from 56 to 85.11%mol. A further increase 

of the oxygen flow promotes a significantly increase of the ethanol 

conversion whilst the value of acetaldehyde selectivity is of about 88%.  In 

spite of the good results obtained in partial oxidative dehydrogenation 

reaction, the main drawbacks are firstly related to the explosive nature of 

the reaction mixture and then to the several by-products COx, CH4, H2O 

that can reduce the purity of hydrogen. The use of dehydrogenation 
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reaction is more safety and flexible process, that, in presence of adequate 

catalytic system and of optimal operative conditions can favor the 

formation of other chemicals such as ethyl acetate (see section B). 

A-3.3 Oxidative dehydrogenation  

In this section the performances of two catalysts of vanadia supported on 

titania coating the silica, characterized by increasing amounts of active 

phase has been studied in the oxidative dehydrogenation reaction. In 

Table 4 the results in terms of activities and acetaldehydde selectivities of 

2.7% of Vanadia supported on a triple coating of titania on silica has been 

reported. In this particular case the runs have been performed in a range 

of temperature of 100-200°C, at a residence time of 60 ghmol
-1

, by 

charging the reactor with 0.3 g of catalyst. In this case the molar ratio 

between EtOH:O2 is kept constant (1:3). 

Table 4: 2.7-V2O5/TSM performance in ethanol ODH. The runs have been performed at 

64.8ghmol
-1

, by using 0.33 g of catalyst, at a constant ratio molar ratio EtOH:O2=1:3. A 

flow of 0.30 mL/h and 0.7 mL/min of oxygen. 

RUN 

 

T 

(°C) 

FEtOH (cm
3
/h) 

F O2 

(cm
3
/min) 

X 

(%) 

SCH3CHO 

(%) 

SAcOEt 

(%) 

 

Sothers 

(%) 

 

1B 100 0.3 0.7 13.2 8.23 - 91.77 

2B 120 0.3 0.7 12.9 15.4 - 84.6 

3B 140 0.3 0.7 23.4 20.2 - 79.8 

4B 160 0.3 0.7 48.4 39.9 - 60.1 

5B 170 0.3 0.7 59.4 49.5 3.6 46.9 

6B 180 0.3 0.7 62.3 54.3 4.4 41.3 

 

In Table 5 the results in terms of activities and acetaldehyde selectivities 

of 8% of vanadia supported on a triple coating of titania on silica has been 

reported. In this particular case, the runs have been performed at 170-

180°C, at a residence time of 60.80 ghmol
-1

, by charging the reactor with 
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0.3 g of catalyst. In this case the molar ratio EtOH:O2 is kept constant 

(1:3). 

In figure 5 the profiles of ethanol conversion and acetaldehyde 

selectivities for both 2.7-VTSM and 8.8-VTSM have been reported. 

 

Table 5:  8.8-V2O5/TSM performance in ethanol ODH. The runs have been performed at 

64.8ghmol-1, by using 0.33 g of catalyst, at a constant molar ratio EtOH:O2=1:3. A flow of 

0.30 mL/h and 0.7 mL/min of oxygen. 

RUN 

 

T 

(°C) 

FEtOH 

(cm
3
/h) 

FO2 

(cm
3
/min) 

X 

(%) 

SCH3CHO 

(%) 

SAcOEt 

(%) 

 

Sothers 

(%) 

 

1C 170 0.3 0.7 68.4 53.9 3.6 42.5 

2C 180 0.3 0.7 75.2 65.1 8.69 26.21 
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Figure 5: performances of 2.7-VTSM (A) and of 8.8-VTSM (B) in 

ODH by changing the temperature of reaction. 
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As it can be appreciated, by the profiles in Figure 5, by increasing the 

reaction temperature the ethanol conversion rise up from 12 to 64%. This 

effect is more evident for the catalyst with higher content of vanadia (B), 

where the ethanol conversion at a 180°C is of about 75%. At higher 

content of vanadia, the catalyst is more selective to acetaldehyde and in 

particular at 180°C the selectivity is of about 50% vs 40% obtained by 2.7-

VTSM catalyst. In Table 6 the results in terms of activities and 

acetaldehyde selectivities of 8-VTSM has been reported at different molar 

ratio EtOH:O2=1:3. In this particular case, the runs have been performed 

at 180°C, at a residence time of 60.80 ghmol
-1

, by charging the reactor 

with 0.3 g of catalyst.  

Table 6: 8-V/TSM performance in ethanol ODH. The runs have been performed at 

64.8ghmol
-1

, by using 0.33 g of catalyst, at a constant temperature of 180°C. An ethanol 

flow of 0.30 mL/h and an inert nitrogen flow of 25cm
3
/min. 

RUN 
FEtOH 

(cm
3
/h) 

FO2 

(cm
3
/min) 

 

EtOH:O2 (mol) 

X 

(%) 

SCH3CHO 

(%) 

SAcOEt 

(%) 

 

Sothers 

(%) 

1D 0.3 - - 19.01 51.40 7.01 41.59 

2D 0.3 2.5 1:1 33.90 57.91 3.51 38.58 

3D 0.3 4.6 1:2 45.61 64.52 2.73 32.75 

4D 0.3 7.7 1:3      75.90 75.10 1.01 23.89 
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In Figure 6, the effect of the oxygen partial pressure on the performance 

of the 8% V2O5/TiO2-SiO2 catalyst has been appreciated.  
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Figure 6: 8.8-V/TSM performance in ethanol ODH. The runs have 

been performed at 64.8ghmol-1, by using 0.33 g of catalyst, at a 

constant temperature of 180°C. A flow of 0.30 mL/h and 0.7 mL/min 

of oxygen. 

 

As it can be seen, the use of higher amount of oxygen favours the 

increase of the ethanol conversion also at lowest reaction temperature. 

The initially endothermic reaction becomes self-sustaining and able to 

produce acetaldehyde with high selectivities. The more drawback is the 

explosive nature of the reaction and the moreover the use, of higher ratio 

ethanol:oxygen than EtOH:O2=1:3, favours the combustion reaction and 

consequently the formation of undesired COx. Very active and selective 

catalysts have been prepared by grafting vanadyl alkoxide onto a silica 

support coated with TiO2. 
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This type of catalyst (V2O5/TiO2-SiO2) gives rise to high conversion of 

ethanol to acetaldehyde at very low temperature (160-180 °C), which 

represents a useful perspective in view of industrial applications. The high 

dispersion of the catalyst strongly improves the selectivity and the activity 

is a linear function of supported vanadium amount. Acetaldehyde is 

relatively stable on this catalyst and this is the reason for the high 

selectivities observed. The acid and basic properties of the catalyst have a 

minimal influence on the catalyst performance in this reaction, and 

therefore, only the redox properties are responsible for the reaction. The 

mechanism of the reaction does not involve surface lattice oxygen, 

because, at the temperature used, the oxygen exchange reaction is too 

slow [11]. As demonstrated by several works the TiO2 represent a 

favourable chemical environment for the vanadium catalytic reactions in 

the ODH of ethanol to acetaldehyde, in agreement with the suggestion 

made by other authors that V-O-support bonds are determinant for the 

activity and selectivity of different reactions, because the effect of the 

support is often dramatic.  

 

A-3.4 Acetaldehyde: an intermediate of reaction to produce high 

commodities chemicals. 

As demonstrated by several literature works, one of the main chemicals 

that could be produced by acetaldehyde is ethyl acetate. One of the 

section of this thesis will be completely dedicated to the study of the 

production of this important chemical, of great industrial interest for its 

wide range of applications [12,13]. The use of vanadia catalysts to 

produce acetaldehyde to convert successively into ethyl acetate could be 

an interesting study. The final section of this work was dedicated to the 

study of mechanical mixture of vanadia based catalysts prepared by 

grafting with ZnO, ZrO2 with the aim to identify an eventual phase able to 

promote the ethyl acetate formation starting from acetaldehyde. Chan et 
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al. [14] suggests the use of physical mixture to promote the ethyl acetate 

formation. In this section two different mechanical mixtures of 

respectively 2.7-V2O5/TSM (2.7VTSM-ZnO) and 8.8VTSM (8VTSM-ZnO) 

with commercial ZnO (Aldrich 99,9%) and 8.8-VTM with ZrO2(Aldrich 

99,9%), almost the most used supports for the catalysts of 

dehydrogenation. The mechanical mixtures are 1:1 weigh %. The use of 

ZnO could be justified on the basis of many literature works that 

demonstrate that the active centers that favor the ethanol coupling 

reaction to form hemiacetal species, rapidly dehydrogenated to ethyl 

acetate are localized on the surface of a mixed oxide, which acts 

prevalently as a support (ZnO, ZrO2, Al2O3) [15]. In Table 6 the operative 

conditions adopted and the results has been obtained by operating in 

mild condition of temperature (180°C) and pressure of 1 atm. The reactor 

was charged with about 3 g of catalyst and fed with 0.1 cm
3
/h of ethanol, 

1.2 cm
3
/min of oxygen and 25 cm

3
/min of nitrogen as carrier. 

Table 7: performances of a mechanical mixture of 2.7-VTSM-ZnO, 8.8-VTSM-ZnO and 8.8-

VTSM-ZrO2. The runs were performed at 180°C, at 1 atm, 0.1 cm
3
/h of ethanol flow. 

 

Catalyst 

 

W/F (ghmol
-1

) 

 

XEtOH   (%) 

Selectivity (%) 

AcOEt AcH 

2.7VTSM-ZnO 156.85 37,9 6,5 88,0 

8.8VTSM-ZnO 156.85 45,4 6,7 82,0 

8.8VTSM-ZrO2 156.85 41.4 32.10 57.24 

 

At a temperature of reaction of 180°C the conversion is higher in case of 

catalyst with higher amount of vanadia supported and the selectivity is 

pretty the same (80-88%). The use of zirconia favors an evident increase 

of the ethyl acetate selectivity from 10 to 32%. 

The effect of the temperature also was studied and in table 8 the results 

have been reported for the catalyst 8.8VTSM-ZnO. 
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Table 8: ODH 8.8-VTSM-ZnO. T=180-200°C, P=1 atm, 0.1 cm
3
/h of ethanol, 1.2 

cm
3
/min of oxygen and 25 cm

3
/min of nitrogen 

T 

(°C)
 

 

W/F 

 (ghmol
-1

) 

Conversion EtOH(%) 

Selectivity (%) 

AcOEt AcH 

180 140.33 45,4 6,7 82,0 

190 148.59 42,3 16,5 79,7 

200 156.85 45,4 17,2 78,8 

  

More probably, the coupling reaction is favored by the increase of the 

temperature reaction and as demonstrated by the results reported in 

Table 8 a significantly increase of the ethyl acetate selectivity was 

obtained by increasing the reaction temperature from 180 to 200°C. On 

the other hand, the use of high temperature and concentration of oxygen 

favors the combustion reaction, the formation of COx and consequently a 

decrease of selectivity to acetaldehyde.  
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                                               Conclusion                                               

 

The literature survey reported has shown that supported vanadium 

oxide catalysts are very complex inorganic materials that play an 

important role in most of heterogeneous catalytic processes. Their 

synthesis and catalytic design require a profound knowledge of both 

the solid-state chemistry and inorganic chemistry. Their application in 

heterogeneous catalysis results from the specific interaction between 

the support and the vanadium oxide. Insight into the preparation of 

supported vanadium oxides at the molecular level would be very 

important to an understanding of the different steps involved. It is also 

evident form this review/chapter that the support characteristics (i.e., 

structure and chemical composition) have a significantly influence on 

the properties of the supported vanadium oxide catalysts. This 

support−effect results in the formation of specific, often not-well 

defined, molecular structures of metal oxides with, for example, 

special redox properties. A better insight into the formation and local 

structure of these molecular structures can be only obtained by 

applying a battery of complementary characterization techniques, 

preferably under in situ conditions. Thus, the research has to be 

directed towards the use of an intelligent combination of preferably in 

situ spectroscopic techniques delivering both molecular and electronic 

information about the supported vanadium oxides. The results 

obtained about the ODH of ethanol to acetaldehyde, showed that 

vanadia supported by grafting on TiO2-coated silica (V2O5/TiO2-SiO2) 

are very active and selective catalysts because able to promote the 

mentioned reactions under mild conditions of both temperature (140-
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180°C) and pressure (1bar). This is due to the higher surface molecular 

dispersion of vanadium sites that is possible to achieve by using the 

grafting preparation method. By comparing the catalytic performances 

of supported vanadia catalysts in the ODH of ethanol to the 

corresponding aldehydes, the following considerations could be done: 

• A high surface dispersion of supported vanadium sites is 

fundamental to improve both the activity and the selectivity to the 

desired products. It was found that the coating of the silica carrier with 

a monolayer of TiO2 increases substantially not only the activity, but 

also the selectivity, as compared to those of the one supported on 

pure TiO2. This is in agreement with the literature, according to which 

the oxygen in the V−O−support bond is cri4cal for these cataly4c 

oxidation reactions.  

• Only redox sites are responsible for the reactions. The acid and 

basic properties of the catalysts have a minimal influence on the 

catalyst performances.  

The ODH reactions could have problem related to the safety due to 

the explosive nature of the reaction. Moreover the main drawback is 

the presence of co-feed oxygen that could drop significantly the 

selectivity to hydrogen and acetaldehyde and favor the combustion 

reactions to CO and CO2. The ethanol dehydrogenation, at this 

purpose, has shown promising results by using a catalyst promoted 

with chromia at low pressure and in mild conditions of temperature. 

Moreover, in total absence of oxygen, the possibility to improve the 

hydrogen selectivity and purity is very high. The dehydrogenation 

reaction suffers of the low life time of the catalyst and a depth study 

has been done to prove the high stability of copper catalyst promoted 

with chromia. Finally, by choosing particular range of temperature, 

pressure, residence time and initial hydrogen partial pressure the 

system could be improved and by ethanol, in only one step of 

reaction, towards acetaldehyde, the ethyl acetate could be produced 
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with high selectivity as it will be demonstrated in the section B of this 

thesis. 
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                    Abstract 

High Pressure  

Dehydrogenation 
 

A novel catalytic process for producing ethyl acetate and high-purity, 

elevated-pressure hydrogen from synthesis gas was proposed and 

investigated. The process combines the advantages of low investment 

and operating costs with the flexibility to adapt to a small-scale 

operation. The process consists of one step ethanol dehydrogenation 

reaction by using a copper-chromite based catalyst. The main 

peculiarity of the developed process is the high selectivity to ethyl 

acetate, with respect to the conventional existed processes that 

requires another step of hydrogenation to convert the huge class of 

sub-products, mainly C3-C4 aldehydes and ketones, to ethanol. 

Another aspect is correlated to the possibility to obtain pure 

hydrogen, exempt of COx, which could be used directly as fuels for fuel 

cells. Various dimensionless criteria were evaluated to confirm there 

was no significant effect of mass transfer limitations and thus the 

experimental results represent true kinetics. Furthermore, a 

thermodynamic study was conducted using a Gibbs free energy 

minimization model to identify the effect of reaction conditions on 

ethanol conversion and determine the thermodynamically favorable 

operating conditions. Various commercial catalysts were characterized 

and screened for the reaction in exam in a down-flow, stainless steel 

fixed-bed reactor under pressure. The effects of temperature, 

pressure, residence time, and feed hydrogen partial pressure on 

ethanol conversion and product composition were determined. 
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Several kinetic models have been derived to describe the behavior of 

the reaction. On the basis of an empirical power law kinetic model a 

plant  hypothesis has been finally realized. Finally an overall process 

simulation, made in ChemCAD, was used as a base for the sizing of the 

different units. The study shows the possibility to realize a plant to 

produce ethyl acetate and pure hydrogen by ethanol 

dehydrogenation. The plant capacity is of about 160 kton/year and by 

assuming an activity of  8000 hours/years. The hourly productivity is 

for ethylacetate of about 21 t/h and for hydrogen of 1 t/hour. An 

ethanol fed of 23 t/h is assumed. 
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Background info 

Literature Review 

 

 

B-1.1 Introduction 

The first chapter of the section B is entirely dedicated to furnish a 

general background of the actually operative processes of production 

of the ethyl acetate by ethanol. In forecasting of the next future large 

supply of bioethanol, due to the use and the processing of cellulosic 

residues, new alternative processes able to produce commodities 

chemicals should be realized. Thus, taking in account this future large 

availability of bioethanol, the use of ethanol as feedstock for the 

chemical industry can also be foreseen. As well known the ethyl 

acetate is an industrially important high commodities chemical, 

alternative to the aromatics compounds, used primarily as a solvent in 

the paints, coatings, and inks industries. Actually it is produced 

commercially by classical routes such as the (i) esterification of ethanol 

by acetic acid [1], (ii) addition of ethane to acetic acid [2], or (iii) the 

dimerization of ethanol over alkaline solids by the Tischenko reaction. 

The use of acetic acid or acetaldehyde, respectively corrosive and toxic 

materials, has required the necessity to develop new processes at low 

environmental impact and characterized by low cost of maintenance. 

At this purpose a new process has been commercialized in which ethyl 

ethanoate can be synthesized without the need of acetic acid or 

ethanol, which consists of a one-step ethanol dehydrogenation 

reaction [3]. The scope of this chapter is to have a more detailed point 

of view about the advantages and disadvantages of the classical routes 
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to produce this chemical with the aim to improve and develop in our 

research alternative, economically and at low impact ways of 

production. 

 

B-1.2 Classical routes to produce ethyl acetate 

Actually the commercial production of ethyl acetate is realized almost 

exclusively by esterification of acetic acid with ethanol. On the other 

hand several new technologies have been commercialized such as BP’s 

new Avada process, employed in a new plant at Hull, UK, that uses 

ethylene and acetic acid with solid acid catalyst. Ethyl acetate is also 

produced as a by-product in the liquid phase oxidation of n-butane.  In 

general the industrial processes related to the ethyl acetate 

production could be, thus, classify as follow: 

1. The Fisher esterification of acetic acid with ethanol [4,5].  

2. Oxidation of ethanol  

3. The oxidation of the ethylene to acetaldehyde and the Hoechst 

process based on Tischenko reaction [6,7].  

4. Ethylene esterification with acetic acid [8].  

5. Oxidative dehydrogenation reaction 

6. One-step liquid phase esterification process over copper –based 

catalysts developed by Kvaermer-Technology Ltd. 

The acetic acid esterification with ethanol is a reversible reaction that 

occurs in presence of a homogeneous catalyst based on sulphuric acid 

as represented by the following reaction. 

                                                                                         

                                                                                                           

(1) 

 

The use of acetic acid causes apparatus corrosion and consequently an 

increase of the total cost of the process of production. On the other 
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hand, although Tishchenko reaction uses only one feed and it involves 

a non-corrosive chemical, it is not considered as a green process due 

to the difficult of handling of acetaldehyde, considered a toxic 

chemical. Moreover, another aspect that absolutely should not be 

neglected is correlated to water production, which should be removed 

during the reaction because its presence could favor the shift of the 

reaction equilibrium to the formation of acetic acid rather than 

ethylacetate. In such circumstances, an improved process of ethyl 

acetate production is strongly desired and required by the industrial 

sectors. 

An alternative process consists of two different phases: an oxidation of 

the ethylene to acetaldehyde (Wacker) catalyzed by a palladium based 

catalyst and a condensation of acetaldehyde to ethyl acetate 

(Tischenko), by using a homogeneous catalyst of aluminium alkoxide. 

The use of homogeneous catalysts is not advantageous and the 

development of an alternative heterogeneous system could represent 

a solution to this aspect. Although the cationic exchange resins can 

solve both of these problems, this catalyst has a poor resistance to 

heating and could deactivate during the reaction. Another important 

drawback of this reaction is related to the thermodynamic limitations; 

in fact the overall yield to ethyl acetate is typically within 67% with 

equimolar reactants. The necessary separation processes, of ternary 

mixture ethanol-ethylacetate-water, involves high energetic 

consumption.  

An example of oxidation reaction has been reported in the U.S.Pat.No 

5,770,761[9]. In this work the oxidation of liquid ethanol in the 

presence of excess liquid ethanol and supported oxidation catalyst 

provided a one-step process for the production of ethyl acetate. 

During the reaction, the ethanol acid produced in the oxidation is 

adsorbed by the excess liquid ethanol which esterifies to ethylacetate. 

In more detail the first part of the process is the partial oxidation of 
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the acetic acid by air while the second step is the esterification of 

acetic acid with ethanol. The oxidation portion of the process is 

preferred with a metallic oxidation catalyst on a hydrophobic support 

such as Pd/C and the esterification portion with acidic solid ion 

exchange resin (amberlyst 15) to promote the esterification. This type 

of reaction is generally performed in a trickle bed reactor design[11]. 

Lemaski et al. [11] used this process with a multi-component catalysts 

consisting of Pd, Ti, and P (PdaMbTiPcOx) where M is selected from Cd, 

Au, Zn, Tl, alkali metals and alkaline earth metals. In this process a 

mixture of acetic acid and ethyl acetate has been obtained. 

Sano [12] also proposed that Pd supported on SiO2 with some 

promoters, as for instance, W and Zn, is also able to generate ethyl 

acetate and acetic acid. Moreover, a Pd/SiO2 catalyst prepared by ionic 

exchange was also considered for the synthesis of ethyl acetate from 

ethanol by Appel et al. [13]. The results from the latter showed that 

high selectivity to acetate (70%) can be achieved at low ethanol 

conversions (50%). However, this process still showed some amount of 

acetic acid (30% selectivity). In the scientific literature, only two 

contributions, both using the liquid phase reaction and the oxidation 

process, can be quoted [14,15]. The first one employed a styrene-

divinylbenzene copolymer (SDB) as support for the Pd catalyst that 

generated ethyl acetate and also acetic acid. The selectivities were 

similar to those of Pd/SiO2. However, during the reaction, 

deterioration of the catalytic performance was observed and it was 

verified that it was mainly caused by the leaching of the Pd metal. The 

second one, by Jørgensen et al.[15], who used gold catalysts, 

synthesized acetic acid and also ethyl acetate. They showed that gold 

catalysts can be very active and selective to acetic acid. However, 

according to these same authors these catalysts should be improved 

as regard to acetate selectivity. Acetaldehyde, acetic acid and CO2 are 

the main byproducts of the oxidation process.  
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Therefore, the purification procedures are straightforward and not 

expensive, and moreover the catalyst is very stable. However, due to 

the flammability and explosive limits of the ethanol/O2 mixture, the 

oxidation process must be carried out using ethanol diluted in air, 

implying that high yields of ethyl acetate must be achieved. All in all, 

this contribution aims at further studying the oxidation of ethanol to 

ethyl acetate using PdO/SiO2 catalysts. Anyway the main drawback of 

the oxidative process is the formation of high quantity of acetic acid 

[16]. The main inconvenient of this process is related to the necessity 

to perform the reaction in two different steps that cause the increase 

of the total cost of the process. One attempt to solve this inconvenient 

is by reacting of an aldehyde and an alcohol in presence of oxygen as 

described by Yan et al. [17]. In this case a bifunctional catalyst 

consisting of a metal as palladium supported on a zeolites acidic 

support, has been employed. These bifunctional catalysts are 

characterized by highly dispersed metals on adequate acid supports 

[18,19]. The palladium supported on zeolites or co-polymers of SDB 

(styrene-divinilbenzene) are considered very promising to realize this 

reaction [20]. The Hoechst process is based on the acetaldehyde 

condensation represented by Tischenko reaction, performed by using 

an aluminium alkoxides catalyst [21]. The Tischenko reaction is a 

dimerization of an aldehyde forming an ester, and catalyzed by solid 

base catalysts such as MgO, CaO, SrO under mild conditions. The main 

drawback is strictly related to the exotermic nature of the reaction and 

as consequence an intensive cooling is required. This process is 

complicated in operation procedures and equipment for the 

processing steps. The esterification of acetic acid with ethylene [22] is 

a further alternative to the ethyl acetate production. The reaction, as 

illustrated, is promoted by heterogeneous supported heteropoly acid 

catalysts such as a tungstophosphoric acid H4SiW12O40. 

C2H4 + CH3COOH � CH3COOCH2CH3                                                   (2) 
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Although the promising yields to desired reaction product, the 

necessity to use raw renewable materials, easy to handling and with 

low environmental and healthy impact is the main challenge. 

A survey of the patent literature shows that it is possible to synthesize 

ethyl acetate from ethanol using an oxidative route, i.e., using ethanol 

in the presence of oxygen[23].The acetaldehyde was easily formed by 

oxidative dehydrogenation and reacted further with residual ethanol 

and oxygen to produce esters.  

The common catalytic system employed to perform this reaction are 

mixed oxide metals such as of SiO2, TiO2, Fe2O3, Fe3O4, CaO, Bi2O3, 

MoO3.  Several works have shown the performances of these catalysts 

in the ODH reaction [24]. As reported by Idriss et al. [25] the mixed 

metals oxide and in particular Fe2O3 has a relatively high selectivity to 

ethyl acetate (about 40%), that decrease with the temperature of 

reaction in favor of the acetaldehyde production.  

The great innovation is represented by Davy Process Technology 

(formerly Kvaerner) has licensed its ethanol-based process to Sasol. 

The main peculiarity of this process is the direct ethanol 

dehydrogenated to form ethyl acetate. 

 

B-1.3 Innovative Route: Ethanol dehydrogenation 

B-1.3.1 Introduction  

The dehydrogenation reaction by using a single renewable feedstock, 

bio-ethanol, allows significant production cost benefits over other 

technologies.  The elimination of acetic acid as a feedstock allows for 

lower grade materials of construction thereby reducing investment 

and maintenance costs.  At this purpose Nguyen et al. [26] on the basis 

of a commercial process simulator, aspen plus, has modeled and 

calculated the mass and heat balance of the alternative processes, 

based on which production cost is evaluated. These processes are 
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designed to produce ethyl acetate with purity 99.95 wt% and 

productivity 100,000 tons/year. 

Ethanol, as a renewable fuel, is playing an increasingly important role 

in both chemical and energy industries. Its mixture with water can be 

easily produced via fermentation of renewable sources such as corn, 

cane, fast-growing plants, or biomass waste. This product, containing 

up to 20% of ethanol, is then refined and can be used either as 

alternative fuel or a precursor in the synthesis of many important 

industrial chemicals. In the 2001 Davy techn, have developed a new 

process based on ethanol as unique raw material to produce in 

particular ethyl acetate. The great inconvenient of this process is 

related to the relatively low selectivity, during the dehydrogenation 

step, to the desired product of reaction. For this reason the process is 

equipped with an hydrogenation reactor to convert successively by-

products, aldehydes and ketones, to corresponding alcohols, 

facilitating the purification of the target product. A schematic 

representation of this process is reported in Figure 1. 

 

 
Figure 1: Ethanol dehydrogenation to ethyl acetate 

Another aspect to take in account is that more recently, the 

importance of ethanol dehydrogenation as a source of hydrogen for 

fuel applications was recognized [27]. Our interest is focused on the 

identification of an active, selective and stable catalyst system as well 



 

Section B 

Chapter 1 

Overview 

 

 

  83 

 

as the optimum conditions at which the production of hydrogen and 

ethyl acetate will be maximized and secondary reactions suppressed. 

At this purpose an in-depth study has been realized and considered 

further in the text in terms of the catalyst composition (nature of 

active metal phase, effect of promoters and supports, and effect of 

deposition techniques), reaction temperature and pressure, residence 

time, and feed composition.  

 
B-1.3.2 Desiderable main reaction  

Ethanol dehydrogenation is a relatively fast endothermic reaction 

occurring at temperatures higher than 100°C. One mole of hydrogen is 

released per mole of ethanol reacted. The Acetaldehyde is the second 

main product, which can be separated by condensation (b.p. 21°C, at 

atmospheric pressure) and theoretically 100% pure hydrogen can thus 

be produced. The Ethyl acetate can be subsequently formed through 

different reaction pathways, with overall pathways as listed below 

(3.a-c). 
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Most authors[28-31] agree that its formation is enhanced by 

increasing residence times and ethanol conversions and by decreasing 

temperatures, because ethyl acetate is thermodynamically favored 

over acetaldehyde up to 200°C. In addition, ethyl acetate formation 

can be enhanced by increasing the size of the active metal particles on 
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the catalyst surface [32]. In general one aspect to take in account that 

represent the main drawbacks of this reaction, is the poor selectivity 

to ethyl acetate caused by the several secondary reactions that can be 

divided into four main groups:  

1. Acetaldehyde condensation reactions – main products of these 

reactions are generally higher C3 and C4 species, such as alcohols, 

aldehydes, ketones, acids and their esters. 

2. Ethanol dehydration – main products are ethylene, ethane, diethyl 

ether and water. 

3. Ethanol and acetaldehyde decomposition reactions – main 

products are simple C1 species such as CO, CO2 and CH4. 

4. Fischer-Tropsch synthesis – syngas mixture in the second step of 

the cycle is commonly used for production of various hydrocarbons. 

5. Ethyl acetate reaction with water to produce acetic acid [30]. 

Finally the ethanol dehydration is also highly undesirable since the 

dehydration products can serve as precursors to coke formation, thus 

deactivating the catalyst.  

A possible scheme of the main side reaction has been proposed by Inui 

et al [33] and reported in Figure 2. 
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Figure 2: reaction pathway proposed by Inui. 

 

In more detail the aldol condensation is a reaction between two 

aldehyde molecules resulting in a compound containing alcohol and 

aldehyde functional groups. It occurs readily in solution at low 

temperatures (4-5°C) provided that some base is supplied as a 

catalyst. Several authors, studying ethanol dehydrogenation [34,35], 

reported trace amounts of crotonaldehyde – product of subsequent 

aldol dehydration – and C4 species such as 1-butanol, butanal and 

methylethylketone to pollute the outlet ethyl acetate stream. 

Davidson et al.[35] confirmed that the support played an essential role 

in aldol condensation, as no higher species were detected with high 

active metal loadings. 

4.2������ → ������������� → �'	��()*+(),	�-(	��.�*��, 

∆�����
� � "46.21

��

	���
					∆�����

� � "11.38
��

	���
		/�0	.0�1�-��(. 



 

Section B 

Chapter 1 

Overview 

 

 

  86 

 

Ethanol can undergo dehydration to diethyl ether (DEE) or ethylene 

which can polymerize on the catalyst surface and form carbon 

deposits. Dehydration has usually high activation energy and, 

therefore, is favored by high temperatures. For example, Freni et al 

[27]reported that, under his conditions, ethylene formation occurred 

on copper catalysts only at temperatures exceeding 500°C. Both 

ethylene and DEE formation are catalyzed by acidic sites present on 

the support, e.g., Al2O3. Thus, Iwasa and Takezawa (1991) detected 

DEE formation on supports with strong acidic sites. 
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Steam reforming of ethanol is a highly endothermic reaction resulting 

in conversion of ethanol to hydrogen and a mixture of CO2 and CO. The 

reaction is not thermodynamically favorable below 327°C. As reported 

Isawa et al
33

 [33], the selectivity to acetic acid increases by increasing 

ethanol conversion and residence time. The same authors reported 

that steam reforming of acetaldehyde also resulted in a mixture of 

acetic acid and hydrogen. 
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Nevertheless, the extent of the decomposition side-reactions can be 

significantly reduced by the choice of catalyst. For example, as early as 

1920, Armstrong [34] compared two common active metals, Ni and 

Cu, in both ethanol dehydrogenation and acetaldehyde 

hydrogenation, and found Cu incapable of splitting the C-C bond. 

Therefore, by using copper catalyst supported on appropriate support 

and running the reactions at mild temperatures in order to avoid 

thermal decomposition, the extent of decomposing and reforming 

reactions should be minimized, preferably to virtually 0%. Mixtures of 

carbon monoxide and hydrogen can be used for the production of a 

large variety of organic compounds. The product distribution is 

affected mainly by reaction conditions and type of catalyst. Copper 

catalysts, especially when mixed with ZnO, are commonly used for 

methanol synthesis.  

 

B-1.3.3 Active phases: employed catalysts 

The choosing of an adequate active phase is fundamental to obtain 

high yields in ethyl acetate. Several processes illustrate the ethanol 

dehydrogenation to esters but selectivity to ethyl acetate is not 

sufficiently high to obtain a final product that not requires further 

steps of purification. Several studies have shown that the most 

popular metal used for selective dehydrogenation of alcohols to 

aldehydes or ketones is copper, mainly because of its ability to 

dehydrogenate ethanol without splitting the C-C bond, which would 

lead to the undesirable decomposition of acetaldehyde to CH4 and 

CO. Various studies [36,37] have shown that it is metallic Cu
0
 formed 

by reduction of CuO, which acts as an active phase in 

dehydrogenation. Other alternatives to Cu, includes Pt, Pd, Cr, Cd, Ni, 

Fe, Mn, Co, Zn, Zr and Ru. For example the US patent 4,052,424 

describes the esters production by ethanol vaporization on silver-

cadmium alloy catalyst. Summerville et al. [38]has shown the 
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possibility to produce esters involving a mixture of alcohols and 

aldehydes in vapor phase with a reduced silver-cadmium-zinc-

zirconium catalyst composition. Sanchez et al. [39] has shown the 

direct transformation of ethanol to ethyl acetate over supported 

palladium catalysts with low palladium content (1%, w/wPd) at 1 MPa 

pressure. In particular the effect of the used supports, such as SiO2, 

Al2O3, ZnO, SnO2 and WO3-ZrO2 (29%, w/w WO3) on the catalytic 

performances has been studied. By using palladium (1wt%) supported 

catalyst in the dehydrogenative process that the support changes the 

catalytic behavior. They verified that palladium supported on SnO2 and 

ZnO are the most selective catalysts for the ethyl acetate synthesis. 

which can easily lead to alloyed palladium phases. 

As matter of fact the necessity to individuate a stable and highly 

selective catalytic system, is correlated to the difficulty to separate the 

ethyl acetate by the several by-products derived by the acetaldehyde 

condensation reaction such as the methyl ethyl ketone (MEK). The 

MEK in the products gets a serious problem in the purification of ethyl 

acetate due to its formation of azeotropic mixture with ethanol. At this 

purpose no one of the alternative phases above proposed, has 

matched the selectivity obtained with copper catalysts. But on the 

other hand Cu suffers of poor stability at high temperatures, where 

dehydrogenation is thermodynamically favorable. Nevertheless, 

several studies about the performance of copper catalysts are 

reported in literature with the aim to individuate adequate structural 

promoters that favor the ethyl acetate formation and able to improve 

the thermal and mechanical stability of the copper phase. The use of 

copper based catalysts for the alcohols dehydrogenation to esters has 

been reported in several literature works. The formation of ethyl 

acetate from ethanol over a heterogeneous catalyst such as Raney 

copper was reported in 1953. After the discovery, some researchers 

reported the formation of ethyl acetate from ethanol over various 



 

Section B 

Chapter 1 

Overview 

 

 

  89 

 

copper catalysts. Catalysts such as pure Cu, Cu-Al-Zn-O, and Cu-Zr-O 

have the ability to form ethyl acetate from ethanol.  The selectivity to 

ethyl acetate is at most 56% under atmospheric pressure. In particular 

Isawa
49

 et al have studied the performances of several copper based 

catalysts on supported on SiO2, ZrO2, Al2O3, MgO and ZnO. The use of 

supports has a significantly influence on the final product selectivity. 

As shown the Cu/ZrO2 and Cu/ZnO are highly selective for ethyl 

acetate production while C4-species are produced appreciably on the 

acidic sites of Cu-Al2O3. On the other hand, Menon et al have studied 

the performances of Cu-Al2O3 catalyst and demonstrated that no ester 

is obtained when copper or alumina alone is used as a catalyst, or 

when they are used separately in two reactors connected in series, but 

even a mechanical mixture of copper and alumina gives a good yield of 

the ester. Bolt et al [45] has shown the possibility to dehydrogenate 

alcohol fractions in the C3 and C4 alcohol boiling ranges to determine 

whether the process would be suitable to produce different types of 

oxygenated compounds (esters and ketones), which could find 

application as solvents. The reaction was conducted in the presence of 

a Cu/Zn/Al2O3. More specifically Inui et al. [33,46,47] have studied the 

dehydrogenative process using Cu/ZnO/Al2O3/ZrO2 by investigating the 

catalytic performances also under high pressure conditions. The main 

aim of the Inui research is to investigate the effect of additive metal 

like oxides as Al2O3, ZnO, and ZrO2, which are effective supports for 

the Cu catalyst, on the ethyl acetate production in the process of 

dehydrogenative dimerization of ethanol, to improve the selectivity to 

ethyl acetate. As showed by Inui et al. the pure copper catalyst gives 

low conversion of ethanol; selectivity to ethyl acetate is very low and 

the major product is acetaldehyde. The dehydrogenation is an 

equilibrium reaction and at a temperature of almost 260°C the ethanol 

conversion is about 35% at 533 K. It is reasonable that the low 

conversion is limited by the equilibrium between ethanol and 
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acetaldehyde because the pure copper catalyst has low ability for 

ester formation. The addition of ZnO into the pure copper catalyst has 

no significant effect on the catalytic reaction while including Al2O3 the 

conversion of ethanol and moderately also the selectivity to ethyl 

acetate can be promoted. A metal quaternary system of Cu-Zn-Zr-Al-O 

has shown high performances, with an evident reduction of the MEK. 

The addition of ZrO2 to copper greatly increases the yield of ethyl 

acetate. ZrO2 component is essential to the efficient ethyl acetate 

formation. The addition of Al2O3 increases the dehydrogenation ability 

of Cu and the yield of ethyl acetate, due to the decreased size of CuO 

particles.  

Since the dehydration reaction of acetaldol occurs over acidic surfaces, 

the surface acidity of the catalyst probably decreases by increasing the 

Cu content. This behavior has been confirmed by the Iwasa and 

Takezawa reporting that the doping of KOH on a Cu/Al2O3 catalyst 

decreased the formation of C4-species such as butanal, MEK, and 1-

butanone [48]. They concluded that the C4-species were produced by 

acid-catalyzed reaction. Judging from the results of the treatment with 

K2CO3 solution after and before reduction, the post-treatment affects 

the acid–base sites that formed after reduction. Especially, the alkaline 

treatment suppresses the formation of methylethylcheton (MEK. This 

result is probably caused by masking of surface acid sites, and the 

treatment decreases the dehydration ability. This assumption is 

supported by complete suppression of DEE formation in the alkaline 

treatment. In the dehydrogenative dimerization of ethanol, we can 

summarize the roles of acid sites on the metal oxide surface, which are 

to: (a) assist the formation of ethyl acetate via hemiacetal (b) promote 

the aldol addition, which may be deactivated by all the alkaline 

treatments, and (c) perform the dehydration of alcohols. Appel et 

al.[49,50] have studied the synthesis of ethyl acetate by ethanol 

dehydrogenation at atmospheric pressure from ethanol working with 
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physical mixtures or by using a double bed reactor (Cu/ZnO/Al2O3 + 

ZrO2) and suggested that: firstly, acetaldehyde is generated on the 

Cu/ZnO/Al2O3 catalyst; then it migrates towards the oxide (spillover) 

and reacts with ethanol or ethoxide species generating hemiacetal, 

which is then dehydrogenated producing ethylacetate. In more details 

these authors have studied the properties of a commercial 

Cu/ZnO/Al2O3 mixed physically with ZrO2 (monoclinic), CeO2, Al2O3 and 

SiO2.  

By using a physical mixture of Cu-Zn-Al and ZrO2 displays the highest 

selectivity towards ethyl acetate and the lowest to acetaldehyde. 

Another important effect should be noticed by this work is that the 

catalysts of Cu-Zn-Al-O physically mixed with ZrO2, that has shown the 

high yield to Ethyl acetate, has an higher ethanol consumption rate 

(mmolEtOHgcat
-1

min
-1

). In matter of fact, taking in account the 

thermodynamic study related to the dehydrogenation of ethanol to 

acetaldehyde, it is possible conclude that by using exclusively Cu-Zn-

Al-O the ethanol conversion results are closed to the thermodynamic 

equilibrium. By using a promoter, the ethyl acetate and condensation 

reactions are favored and consequently the equilibrium of 

dehydrogenation is shifted. By using a double catalytic bed the 

selectivities to ethyl acetate are much lower and to acetaldehyde 

higher. The ethanol consumption rates of the double bed reactors are 

low and similar to the ones observed for Cu-Zn-Al-O. This behavior is 

due to the possible re-adsorption of acetaldehyde or ethanol on the 

oxide bed.  The same work shows moreover the correlation between 

the total number of basic sites, on a catalysts surface, and the 

selectivity to ethyl acetate at a conversion of about 30%. It can be 

verified that, as the number of basic sites increases, the selectivity 

increases as well.  

Therefore, strong basic sites are much more relevant than medium 

and weak ones for the ethyl acetate synthesis.  According to Inui et 
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al.[33], basic sites are associated to the generation of ethoxide 

species. Therefore, the results obtained suggest that the ethoxide 

formation is a very important step of the ethyl acetate synthesis and 

might be the rate limiting step under these conditions. 

One of the main drawbacks of the copper based catalysts is related to 

the loss in activity of copper with time-on-stream at temperatures 

higher than 300°C, most likely because of copper sintering [52]. For 

metals, the predominant sintering mechanism in the bulk is vacancy 

diffusion, which suggests a relationship with cohesive energy. Hughes 

[53] gaves the following increasing order of stability for metals: 

Ag < Cu < Au < Pd < Fe < Ni < Co 

< Pt < Rh < Ru < Ir < Os < Re   

It is, therefore, not surprising the copper-based catalysts are more 

susceptible to sintering than other commonly used metallic catalysts, 

for example, the nickel and iron catalysts used in ammonia and 

hydrogen plants based on the steam reforming of hydrocarbons. This 

is also shown by copper’s low Hüttig temperature [54], which reflects 

a relatively low melting point (1083◦C), compared with, for example, 

that of iron (1535°C) and nickel (1455°C). In more detail the so-called 

Hüttig (THutting=0.3Tmelting) indicate the temperature at which sintering 

starts. The following semi-empirical relations for Hüttig and Tamman 

temperatures are more commonly used. 

Therefore, copper-based catalysts have to be operated at relatively 

low-temperatures, usually no higher than 300°C. In more detail the 

catalyst deactivation at high temperatures is due to the loss of 

catalytic surface area by the effect of crystal growth of the catalytic 

phase, the loss of wash-coat area due to a collapse of pore structure, 

and/or chemical transformations of catalytic phases to non-catalytic 

phases. The first two processes are typically referred to as sintering, 

and the third as the solid-solid phase transition at high temperatures 

[55]. In the case of supported metal catalysts, reduction of the active 
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surface area is stimulated the agglomeration and coalescence of small 

metal crystallites into larger ones [56]. Two different models have 

been proposed for sintering i.e., the atomic migration and the 

crystallite migration models. As such, sintering occurs either due to 

metal atoms migrating from one crystallite to another via the surface 

or gas phase by diminishing small crystallites in size and increasing the 

larger ones (atomic migration model). Sintering can also occur via 

migration of the crystallites along the surface, followed by collision 

and coalescence of two crystallites (crystallite migration model). 

Figure 3 represents a schematic representation of atomic migration 

and crystallite migration models.  

Many researchers focused on improving the stability by adding a 

textural promoter to the catalyst formula, which would act mainly as a 

mechanical barrier decreasing copper particle mobility.At this purpose 

as demonstrated by Peppley et al [57], the catalyst of Cu/ZnO/Al2O3 is 

prone to deactivation at operating temperatures between 220 and 

260°C. The time scale for deactivation, as measured by the time for 

the catalyst to lose one-half its initial activity, varies considerably with 

temperature [58]. 
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Figure 3: scheme of the sintering process 

 

To overcame this inconvenient, a low operating temperature is 

necessary to slow deactivation, but this is a synonymous of a lower 

catalyst activity so that a higher mass of catalyst is needed to improve 

the yield. Details of the mechanism of the thermal sintering of Cu 

catalysts emerged from in situ EXAFS studies [59].  

The local structure of the Cu/ZnO catalyst was studied under hydrogen 

at elevated temperatures. The structure around the Cu atoms 
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assumed several forms depending on the temperature, and was best 

explained by assuming three structures. 

1. Below 127°C, a quasi-two-dimensional layer epitaxially developed 

over the ZnO support. 

2. Between 127°C and at least 227°C, small copper metal clusters 

dispersed over the ZnO. 

3. At higher temperatures, large copper metal crystals dispersed on 

the support. 

Activities in both reactions were markedly superior than those of 

catalysts derived from biphasic systems containing additional CuO 

(that is, CuO/CuxZ1−xO). The enhanced activity in the former case was 

ascribed to very finely divided Cu crystallites present in intimate 

contact with the zinc oxide matrix. The Copper catalysts are not widely 

used for organic dehydrogenation reactions. In many cases, especially 

with hydrocarbon feedstock, thermodynamic limits on conversions 

[60,36]  force the use of high temperature for which copper catalysts 

are inappropriate. The common feature of the promoters studied was 

their irreducibility at the dehydrogenation reaction conditions, i.e., 

promoters were present on the catalyst surface in the form of metal 

oxides. New formulations were developed containing Cr2O3, and later 

Al2O3, in addition to CuO and ZnO in the unreduced catalyst. The 

thermal stability of these catalysts was significantly higher.  Chromium 

is known to be an effective specie for copper catalyst in the 

dehydrogenation reactions [60,61].  

As reported by Shiau et al. [62] chromium cannot only stabilize the 

dispersion of copper but can also prevent copper from reacting with 

aluminum support to form aluminate. In this study, the addition of 

chromium has a similar promoting effect. However, for the electroless 

plated copper catalysts, the promoting extent of chromium depends 

not only on the chromium loading but also on the addition procedure 

that is reflected on the catalyst activity. The key factor for the copper 
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catalyst activity depends on the amount of added chromium that can 

penetrate into the copper layer. This is because only the penetrated 

chromium could play a positive promoting role to disperse the copper 

and consequently to enhance the reaction activity. But the copper 

catalyst activity is also influenced by the chromium remained on the 

copper surface, which, on the contrary, would play a negative role due 

to its occupation of some active sites on the copper surface and would 

cause the activity to decrease. Increasing chromium loading might also 

increase the amount of surface chromium for the ic-series catalysts 

and further decrease the catalyst activity. Church et al [63] evaluated 

the effect of 5-7 % addition of Cr2O3, CoO, ZnO and MgO on 

Cu/asbestos catalyst performance. It was found that Zn and Mg 

alkaline oxides had a detrimental effect on the selectivity of reaction, 

promoting aldol condensation and thus forming undesirable higher 

hydrocarbons.  Indeed, Cr2O3 is the most popular of all additives 

considered in the literature as a potential stabilizer. The first study 

about the potentiality of the copper chromite catalysts have been 

reported by the works of Adkins [64]. The main peculiarity of this 

catalyst is related to the possibility to hydrogenate aldehydes and 

ketones in the correspondent alcohols.  

The properties and the wide application of the copper chromite based 

catalysts are well known. In matter of fact the copper chromite is a 

versatile catalyst which not only catalyzes numerous processes of 

commercial importance and national program related to defense and 

space research but also finds applications in the most concerned 

problem worldwide i.e. environmental pollution control. Several other 

very useful applications of copper chromite catalysts are in production 

of clean energy, drugs and agro chemicals, etc. In view of the globally 

increasing interest towards copper chromite catalysis, reexamination 

on the important applications of such catalysts and their useful 

preparation methods is thus the need of the time [65,66].  
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The main process in which the copper chromite (CuCr2O4) find 

applications as catalyst are: hydrogenation, dehydrogenation, 

hydrogenolysis, oxidation. Furthermore, copper chromite has been 

proved as promising catalyst for the production of H2 a clean energy 

carrier, by conversion of alcohols [67]. 

The Copper chromite catalysts are often stabilized by the 

incorporation of barium oxide, typically about 10%, but it is not clear 

how this promoter functions. The activity of copper chromite catalysts 

is influenced by the oxidation state of Cr and Ba oxide inhibits its 

reduction, so stabilizing the catalysts [68]. It is also possible that BaO 

could influence the populations of Cu(0) and Cu(I) sites [69] . Kanoun 

et al. [37] tested the influence of Cr and Al oxides addition on the 

catalyst properties and found that Al2O3 increased the total catalyst 

surface area while Cr2O3 increased specific copper surface area. Cr 

addition also increased the activity of catalyst per copper weight. 

However, if activity was defined per weight of catalyst, then any 

addition of Al or Cr led to a decrease. The authors then concluded that 

Cr is a better structural promoter. By concluding the total surface area 

decreases with the addition of promoters in this order: Al>Cr>Zr>V>Zn, 

while metallic copper surface area, which is responsible for the activity 

of the catalyst decreases with the additives in the following order: 

Cr>V=Zr>Al>Zn. Cr is thus the best structural promoter and also a good 

stabilizer. 

Tu and Chen [36] carried out series of tests on the effect of alkali 

metals (Na, K, Rb) and alkaline earth metals (Mg, Ca, Sr, Ba) as 

promoters on the performance of Cu/SiO2 catalyst. The metal oxides 

of alkaline metals and alkaline earth metals did not undergo reduction 

at a reaction temperature of 300°C, neither did they contribute 

significantly to the dehydrogenation activity. While alkali metals 

created only slightly basic sites on the catalyst surface, all alkaline-

earth metals containing catalysts, with the exception of Mg addition, 
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possessed both strong and weak basic sites. The presence of strong 

basic sites resulted in an extreme drop in activity after a short time on 

stream, thus deeming especially Ba and Sr as poor promoters. MgO 

proved to be the most stable among alkaline earth oxides, but even 

this additive did not prevent the catalyst from losing 20% of its initial 

activity after just 4 h on stream. Among the alkali metals, a K-doped 

catalyst displayed the highest resistance to sintering, losing only 8% of 

its activity after 4 h on stream. Thus, K was identified as the best 

promoter out of all metals tested, even though the initial ethanol 

conversion was 2% lower (68%) than the highest conversion obtained 

with a MgO promoter (70%). However, it is rather difficult to compare 

the effects of various promoters, because of different conditions used 

by researchers, there seems to be a general agreement, throughout 

the literature, that the best promoter is Cr2O3. At this purpose, the 

Kvaerner process technology announced a new ethyl acetate 

production process by  using a commercial Cu-Cr-O catalyst, whereas 

space-time yield (STY) of ethyl acetate is not so high: ethanol 

conversion, 27.9%; selectivity to ethyl acetate, 94.6% at 496K and 

2.86MPa [70]. Moreover in the open literature there are some 

contributions related to this technology, as for instance, the work 

published by Colley et al. [71] using Cu/Cr2O3.  

 

B-1.3.4 Operative conditions 

The individuation of the best operative conditions in terms of 

temperature, pressure, and residence time and feedstock composition 

is fundamental to obtain the desired results of activity and selectivity.  

In this particular case the individuation of the best temperature of 

reaction is correlated with the enthalpy of formation of the ethyl 

acetate. At this purpose, as already reported, the ethanol 

dehydrogenation to ethyl acetate is a partially endothermic reaction. 

The temperatures of reaction to improve the yield to ethyl acetate 
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should not particularly high and a range of 200-300°C could represents 

a good compromise. The choice of the temperature of reaction is also 

limited by the nature of active phase, in matter of fact the copper 

based catalysts are subjected to a rapid deactivation most likely 

because of sintering phenomena at temperature higher than 300°C. 

Another important aspect to take in account is the operating pressure.  

Elementary reactions in the process are divided into three types: (a) 

reactions preferred by high pressure, (b) reactions preferred by low 

pressure, and (c) reactions that do not depend on pressure. The 

dehydrogenative dimerization of ethanol to ethyl acetate is a 

combination of dehydrogenation, which is preferred by low pressure, 

and dimerization, which is preferred by high pressure. 

In particular the acetaldehyde formation is favored at low pressure (1 

atm) as suggested by the Le Chatelier’s principle. Moreover, in this 

case, in great part of the research literature works the use of diluted 

feedstock is necessary to further decrease the partial pressure of 

ethanol. In particular several works demonstrate the necessity to use 

high pressure of reaction to favor the esters formation [46,73]. In 

particular the experimental runs obtained operating at different 

temperatures and ant different pressure shown a decrease of the 

equilibrium conversion with the increase of the reaction pressure. 

High-pressure operation suppresses both the ethanol conversion and 

the formation of by-products such as butanone and 1-butanol, derived 

from acetaldol, which can be rationalized by the decrease in the 

partial pressure of acetaldehyde caused by a shift in equilibrium 

among ethanol, acetaldehyde, and hydrogen at high pressure. 

Consequently, a high selectivity to ethyl acetate is achieved by 

suppressing the acetaldehyde partial pressure in the initial elementary 

reaction rather than by suppressing each elementary reaction for the 

by-products.  



 

Section B 

Chapter 1 

Overview 

 

 

  100 

 

The formation of ethyl acetate proceeds stepwise via acetaldehyde, 

which is an intermediate. Inui et al.[33] has reported that the 

dehydrogenation step is not a rate-determining step in the formation 

of ethyl acetate from ethanol, because the product distribution in the 

reaction of acetaldehyde in H2 flow is similar to that observed in the 

reaction of ethanol. The ethyl acetate could be formed by two 

different possible routes: 

1. the Tishchenko reaction that consist into the coupling of 

acetaldehyde. 

2. dehydrogenation followed by addition of ethanol to acetaldehyde. 

In the formation of ethyl acetate from ethanol, the stepwise reaction 

requires a prolonged contact time, whereas much longer contact times 

cause by-products to form. When acetaldehyde has a high partial 

pressure in the reactor, an acetaldehyde molecule reacts with another 

acetaldehyde molecule to form acetaldol through aldol addition. The 

residence time affects both the conversion of ethanol and the 

composition of the outlet stream. Several authors [38] reported an 

increase in conversion with increasing residence time. However, the 

higher the contact time, the lower the selectivity towards 

acetaldehyde, which is subject to subsequent reactions
1
. Generally, it 

is rather difficult to extract information on residence time from 

different articles, because of a non-uniform nomenclature as well as 

the omission of the values for catalyst loadings and/or feed flow rates. 

It is also questionable whether the W/F (mass of catalyst/active phase 

to gas feed rate) ratio should be based on the amount of catalyst or 

active phase. Another important factor, to take in account, for the 

necessity to individuate the effect of the water in the feedstock, which 

can have a side-effect on the purity of the final reaction products. The 

use of high residence time and of feed stocks contained water could 

enhance the formation of acetic acid, another undesirable product of 
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reaction. Similarly, Marino et al. [73] observed that the presence of 

water improved acetaldehyde and hydrogen selectivities. Water, as 

well as hydrogen, improved the stability of the catalyst but slightly 

decreased the conversion of ethanol by 2-3%. On the other hand, the 

presence of even small amount of acetaldehyde 

(acetaldehyde/ethanol =0.1) in an inlet stream had a more detrimental 

effect, lowering the conversion by 4-6% depending on reaction 

temperature and feed composition. 
 
B-1.4 Hydrogen production by ethanol dehydrogenation 

The use of bioethanol for hydrogen production is a very promising way 

allowing to produce hydrogen from renewable sources. Several 

approaches for the development of a reliable method of hydrogen 

production from bioethanol have been proposed recently [74].  

Dolgykh et al. [75] have shown the results of hydrogen productivity by 

testing the catalytic activity of dehydrogenation industrial catalysts in 

the process of hydrogen production by steam reforming of bioethanol. 

In this study a range of hydrogen productivity of 5-25 gH2Kgcat
-1

h
-1

 has 

been obtained by operating in a range of temperature of 200-300°C, of 

ethanol residence time of  1.8-2.5 gcathmol
-1

 and by using a molar ratio 

C2H5OH : H2O : N2 = 1 : 18.5 : 17.5. The use of dehydrogenating 

catalysts is advantageous to limits the decomposition of acetaldehyde, 

that is in this case the main product containing carbon, to CO-CO2-H2O.  
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                                                Chapter 2                                               

Techniques  

and equipment 

 

 

B-2.1 Introduction 

This chapter introduces some general aspects related to the catalyst 

employed, their characterization and to the reaction apparatus 

employed to perform the reaction. In particular in the present chapter 

the commercial copper based catalysts composition has been 

reported. Moreover a list of the characterization techniques used to 

describe in details the chemical and physical properties of the 

examined catalysts have been reported. Finally the configuration of 

the experimental device and of the operative conditions has been 

described.  

 

B-2.2 Catalysts composition 

Five different commercial catalysts have been employed for the study 

of ethanol dehydrogenation reaction, respectively supplied by BASF 

and Sud Chemie Companies, that are: 

1) The BASF K-310, which contains CuO/ZnO/Al2O3 (40:40:20% b.w.), 

is a catalyst normally employed to promote the low temperature gas 

shift reaction or the steam reforming of methanol [1]. It is constituted 

by cylindrical pellets of regular size 4.5 mm of diameter and 4.5 mm of 

height. Also the performances of an improved catalyst composition 

supplied by the same company BASF Sg-9601 CuO:ZnO:Al2O3 

37:37:26% b.w. has been studied. As well known, and also showed by 

BASF [2], the active species, in the low temperature shift catalyst skills, 

consist of small metallic copper crystallites which are not 
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thermodynamically stable. Over time, they have a tendency to 

aggregate reducing both surface area and catalytic activity. A 

temporary overheating, due for example to plant upset, can accelerate 

this aging process. To withstand the effect of aging, the catalyst is 

formulated to begin with both high copper content and high density.  

 
Figure 1: increased zinc oxide content in BASF low temperature shift catalysts acts 

as structural spacer to reduce sintering [BASF brochure www.BASF.com/syngas]. 

 

Due to these built-in performance reserves, the technology is able to 

retain its activity longer and under more extreme process conditions. 

In addition, the increased zinc oxide content also acts as a structural 

spacer for the copper crystallites spreading them out and improving 

their resistance to sintering resulting in increased temperature 

resistance and longer life (Figure 1). 

2) The Sud-Chemie T-4466, a copper/chromium based catalyst 

containing CuO (53%) and Cr2O3 (45%), is constituted by regular tablets 

(3x3 mm). This catalyst is usually employed for the hydrogenation 

reactions of fatty acids to fatty alcohols. The performances of copper 

chromite catalyst supplied by sud-chemie have been compared with 

the ones of the copper chromite supplied by BASF Cu-0203 containing 

an higher amount of CuO (64%) and lowest amount of chromia (36%) 

3) The BASF Cu-1234-1/16-3F is a pre-reduced copper chromite 

catalyst supported on alumina and containing BaCrO4 as promoter. 
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The catalyst composition, provided by the supplier, is 

CuCrO4/CuO/Cu/BaCrO4/Al2O3(45:1:13:11:30% b.w.) although being 

this a pre-reduced catalyst BaCrO4, very probably, is present in a 

reduced form as barium chromite or BaO/Cr2O3. The catalyst shape is 

characterized by cylindrical extrudate with 1.8 mm of diameter and 

irregular heights of 3-5 mm. All the examined catalysts were 

previously pre-reduced for 16-18h in a mixture of hydrogen in nitrogen 

(H2/N2=6/94 mol/mol) with a flow of 25 cm
3
/min, keeping constant the 

temperature at 200°C. These catalysts have been selected because the 

first one contains free copper oxide supported on alumina and ZnO, 

while, the second one is characterized by the presence of unsupported 

copper chromite and the third one contains supported copper 

chromite. The properties, the performances and the drawbacks of 

these three different catalysts have been evaluated, compared and 

discussed. 

 

B-2.3 Catalysts characterization 

Physical and chemical properties of catalysts and their precursors 

were determined by various instrumental techniques. The following 

paragraph contains all techniques utilized in this work, the details of 

the experimental parameters can be found in Appendix Different 

techniques were used for the catalysts characterization, such as: BET, 

copper dispersion determination with N2O treatment, X-ray diffraction 

(XRD), temperature programmed reduction (TPR) with a mixture of H2 

(6%) in N2, temperature programmed desorption of ammonia (NH3-

TPD) and temperature programmed desorption of carbon dioxide 

(CO2-TPD) on a previously pre-reduced catalysts 

Textural analyses were carried out by using a Thermoquest 

Sorptomatic 1990 Instrument (Fisions Instrument) by determining the 

nitrogen adsorption/desorption isotherms at 77 K. The samples were 

thermally pre-treated under vacuum overnight up to 473K (heating 
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rate=1 K/min). Specific surface area (SBET)
 
and pore size distributions 

were determined by using respectively the BET [3,4] methods (see 

appendix A).  

The determination of the copper surface area and copper dispersion 

has been performed, with the N2O method. A known amount of the 

catalyst, about 100 mg, was first of all reduced with a flow stream of 

25 cm
3
/min of a mixture of 5% v/v H2 in N2  at 300°C for 2 hours. 

Afterwards, a flow stream (45 cm
3
/min) of pure N2 was sent for about 

20 minutes to remove residual hydrogen and water and then the 

catalyst was cooled to 60°C maintaining constant this temperature 

during the oxidation experiment. Specific Cu surface area and 

dispersion were measured by the well-known N2O chemisorption 

method based on the reaction: 2�� + ��� → ���� + ��																																																																									(1) 
The N2O experiments were conducted utilizing a pulse method. 

Precisely several pulses of 1 cm
3 

of 5% N2O in N2 were injected into a 

carrier stream of N2 flowing at 50 cm
3
/min until no further N2O was 

reacted. Uptake of N2O was monitored with a gold plated tungsten 

filament thermal conductivity detector (TCD) with a current of 130 

mA. Dispersion and Cu specific surface area [5] were calculated 

assuming a Cu surface atomic density of 1.47*10
19

 atoms/m
2
 

(Appendix A). 

X-ray diffraction (XRD) patterns were obtained using a Philips powders 

diffractometer. The scans were collected in the range 5-80° (2θ) using 

Cu Kα radiation with a rate of 0.01° (2θ)/s. The X-ray tube operated at 

40KV and 25mA (Appendix A). 

The TPR experiments were carried out using a quartz U-tube reactor 

with an internal diameter of 10 mm. The powdered catalyst was 

loaded on a sintered quartz wool disk placed inside the reactor. The 

catalyst formed a bed of less than 5 mm in thickness (0.1-0.2 g) on 

which a glass wool plug was added. The samples were initially 
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pretreated in N2 flow of 20 cm
3
/min, at a temperature of 100°C, for 

about 1 h, to remove any trace of moisture. The samples were then 

cooled at room temperature. Always under nitrogen stream the 

temperature was then gradually increased with a scanning rate of 

10°C/min until reaching 300°C.  After this pre-treatment the hydrogen 

TPR were performed using a flow stream of 6% of H2 in N2 (60 cc/min). 

The gas stream was split in two flows one leading to the reference arm 

of a thermal conductivity detector (TCD) and the other one passing 

through the reactor before going to the detector. The water produced 

during the TPR was trapped by a dry trap located between the 

detector and the reactor. After the reduction pre-treatment the 

catalysts were subjected to a Programmed Desorption of NH3 or to a 

Programmed Desorption of CO2 to evaluate respectively the overall 

surface acidity and basicity of the studied catalysts. The overall surface 

acidity of the prepared catalysts was determined by a Temperature-

Programmed Desorption of ammonia (NH3-TPD) in a fixed-bed 

continuous flow micro-reactor system. Before the NH3-TPD 

measurement, a sample of powdered catalyst (0.1-0.2g) was out-

gassed in a flow of pure helium (20 ml/min), at 300 °C for 30 minutes. 

Then, the sample was cooled at 40 °C and saturated with a stream of 

10% NH3 in He (20 ml/min) for about 30 min. Afterward, the catalyst 

was purged in a helium flow until a constant baseline was attained. 

The ammonia desorption was determined in the temperature range of 

40–500 °C with a linear heating rate of 10 °C min
-1

 in a flow of He (10 

ml/min).  Desorbed NH3 was detected by a thermal conductivity 

Detector (TCD). Then, the surface basicity of the prepared catalysts 

was determined by TPD of CO2 performed in the same fixed-bed 

micro-reactor used for ammonia TPD. The fresh catalysts were 

subjected to a pre-reduction, as previously described.  Before the CO2-

TPD measurement, a sample of powdered catalyst (0.1-0.2 mg) was 

out-gassed in a flow stream of pure helium (20 ml/min), at 300 °C for 
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30 min. Subsequently, the sample was cooled at 40 °C and saturated 

with a stream of CO2 (10 ml/min) for about 30 min. Then, the catalyst 

was purged with a helium flow until a constant baseline level was 

attained. The carbon dioxide desorption was evaluated in the 

temperature range of 100–500 °C with a linear heating rate of 10 °C 

min
-1

 in a flow stream of He (20 ml/min). Desorbed CO2 was detected 

by a thermal conductivity detector (TCD) (Appendix A).  

X-ray photoelectron spectroscopy (XPS) is a quantitative analysis 

technique that is widely used in catalyst research because of its ability 

to analyze the surface (depth ~10 nm) of solid materials. However 

experiments must take place under ultra-high vacuum (UHV) 

conditions to ensure electrons reach the detector. The XPS 

experiments were conducted by using a Kratos XSAM-800 instrument 

with an Al-Kα X-ray source operating at 1486.6 eV and a 90-degree 

takeoff angle. The binding energies (BE) were calibrated with the C 1s 

peak fixed at 285.0 eV as an internal reference standard. 

Fresh ground powder catalyst samples were adhered to brass mounts 

with double-sided carbon tape prior to loading into the analysis 

chamber. Samples were left to degas overnight while the vacuum 

system maintained a pressure less than 1*10
-8

 torr. Control and data 

collection was data was done using Vision2 software running on Sun 

workstations. Normally each element of interest was scanned 10 times 

with a range of ~20 eV and an acquisition time of ~1 minute, elements 

with low concentrations were scanned more times. Raw data was 

processed with CasaXPS software package, with relative sensitivity 

factors obtained from the Kratos XSAM library (Appendix A). The 

Scanning Electron Microscopy Scanning electron microscopy (SEM) 

was used to study the microstructure of certain catalyst particles. The 

microscope column is evacuated to approximately 10
-6

 torr, to 

minimize electron scattering by gas molecules. The generated 

electrons are accelerated to a proper voltage, depending on the type 
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of experiment, typically 0.1-30 keV using electromagnets. Magnetic 

lenses are able to focus the electron beam to a spot on the specimen 

less than 10 nm in diameter. Scanning coils are used to raster the 

beam across the surface of the sample. Due to scattering, both 

backscattered and secondary electrons escape from the sample 

surface and can be detected. Prior to analysis powder samples were 

finely ground and mounted on carbon tape on a stainless steel sample 

mount. Alternatively, to improve the particle dispersion on the holder, 

approximately 2 mg of sample was diluted in distilled water to form a 

suspension. Then, a single drop was set on the clean holder surface 

and evaporated at room temperature. The analysis was done in a 

Hitachi S4500 field emission SEM at 30 keV under a vacuum of 10
-6

 torr 

for the samples (Appendix A). X-rays are an important tool to probe 

the structure of solids. During X-ray absorption experiments, an X-ray 

having a given wavelength, or monochromatic beam, is directed into a 

sample. Then, the energy of the X-ray beam is gradually increased in 

order to reach the absorption energy of the photoelectrons of the 

element being analyzed. Depending on the energy range beyond the 

ionization edge, the absorption spectrum is classified between 5 and 

150eV as X-ray absorption near edge structure (XANES), and above 

150 eV as X-ray absorption fine structure (EXAFS). The XANES region 

provides information of the oxidation state of the atom and the local 

geometry around the atom. 

The EXAFS region provides detailed information on the local 

environment of the target atom, coordination numbers and scattering 

lengths. Measurements using extended x-ray absorption spectroscopy 

including extended x-ray adsorption fine structure and x-ray 

absorption near edge spectroscopy have been used. The 

measurements were made in transmission mode with ionization 

chambers optimized for the maximum current with linear response 

(~1010 photons detected/sec). A cryogenically cooled double-crystal Si 
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(111) monochromator with resolution (ΔE) better than 2.5 eV at 8.979 

keV (Cu K edge) was used in conjunction with a Rh-coated mirror to 

minimize the presence of harmonics. The integration time per data 

point was 1-3 sec, and three scans were obtained for each processing 

condition. Standard procedures based on WINXAS97 software were 

used to extract the EXAFS data. Phase shifts and backscattering 

amplitudes were obtained from EXAFS data for reference compounds: 

CuO and Cu2O for Cu-O and Cu foil for Cu-Cu. The sample was 

previously pressed into a cylindrical holder with a thickness chosen to 

give an absorbance (Δμx) of about 1.0 in the Cu edge region. Due to 

the high density of the Cu based catalysts, fresh powder was diluted 

by a factor of 10 with silica fume prior to being pressed into a wafer. 

The sample holder was centered in a continuous-flow EXAFS quartz 

reactor tube 18 inches long and 0.75 inches diameter. The tube was 

fitted at both ends with polyimide windows to allow transmission of 

the x-ray beam with gas valves fitted perpendicular to the tube. This 

entire apparatus was fitted into a clamshell style electrical furnace, 

which was controlled and monitored with three type K thermocouples 

located inside the reactor tube and furnace assembly. This furnace, 

window, and valve configuration allowed isolation of the reactor from 

the atmosphere and the ability to flow various reducing, reactant, and 

oxidizing gas mixtures at elevated temperatures, all while being 

probed by the x-ray beam. The Catalysts were studied via XANES 

spectroscopy under reaction and reducing conditions. Usually the 

spectrum was first recorded with the catalyst in its untreated state in 

air. All samples were reduced by heating in a reducing atmosphere of 

pure H2 to a temperature of 300°C, and then scanned after cooling to 

room temperature. For reaction studies under ethanol decomposition 

reaction conditions the temperature was changed to the desired set 

point and a reaction mixture of 2.2 cm
3
/min of CH3CH2OH in He was 

flowed over the catalyst for 30 minutes. After that the EXAFS spectrum 
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has been recorded with the aim to evaluate the eventually variation of 

the oxidation state during the reaction (Appendix A). 

Fourier Transform Infrared (FTIR) spectrometers are widely used to 

study the infrared absorption of adsorbed species on solid surfaces. 

Transmission IR can be obtained with samples that are partially 

transparent to IR radiation. When the sample is opaque and infrared 

transmittance is low, spectra can be collected in diffuse reflectance 

mode, better known as diffuse reflectance infrared fourier transform 

spectroscopy or DRIFTS. 

The diffuse reflectance infrared spectra (DRIFTS) of ethanol on copper 

based catalysts were obtained in a Bruker Equinox 55 spectrometer 

equipped with a DTSG KBr detector. For ethanol adsorption 

experiments, a pressed disk of catalyst powders, in mixture with fuse 

silica, were used. A conventional manipulation/outgassing ramp 

connected to the IR cell equipped with a calcium fluorite window were 

used.  In particular the IR cell has connections for inlet and outlet 

flows, and thermocouples connected to a temperature controller to 

monitor and control its temperature. The samples were thermally pre-

treated by heating under Helium flow  (25 cm
3
min

-1
), after that it has 

been reduced at 300°C in a flow of 20% H2 in He for about 1h. The 

system was rapidly cooling and the adsorption of ethanol procedure 

involves contact of the pre-treated sample disk with Ethanol at three 

different temperature 100-300°C, at atmospheric pressure. For each 

spectrum 128 sample scans in the range 4000–370 cm
-1

 were recorded 

with a resolution of 4 cm
-1

 (Appendix A). 

B-2.4 Catalytic activity 

B-2.4.1 Apparatus 

A wholly automated experimental apparatus built in-house, depicted 

in Figure 2, was used for the evaluation of catalyst activity of ethanol 

dehydrogenation. 
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Figure 2: A1-Ethanol Tank, A2- ethanol hplc pump, A3/A5-check valves, A4-rielef valve, 

A6-flow mass controller,  A7-cylinder containing a gases mixture of H2  in N2, A8-

preheater,A9-stainless steel packed bed tubular reactor, A10-back pressure regulator,  

A11-heat exchanger, A13/A14-products tank raising,  A12/A15-liquid nitrogen dewars, 

S1/S2/S5-temperature probes, S3/S4- pressure transducers. 

 

 

The catalytic tests were performed in a stainless steel packed bed 

reactor of about 30 cm of length and 1inch of external diameter. In 

figure 3 the scheme of the reactor employed has been reported.  
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Figure 3: reactor scheme 

As it can be seen by the reactor scheme the temperature of reactor 

was measured by using two different thermocouples (TC1 e TC2), 

inserted between the walls of the reactor and the heaters (series 

thinband). A third thermocouple has been placed inside the reactor to 

estimate the variation of the temperature along the catalyst bed. The 

thermocouples (TC1 e TC2) works by the action of thermo-regulators 

equipped with relay system. All the connecting pipes were heated by 

using electrical heaters kept at a constant temperature of 200°C to 

avoid the condensation of high boiling point compounds. 

The pressure has been regulated by using a backpressure regulator 

able to operate in a range of 0-100 bars (Swagelok KBP1N Cv=0.06). 

The pressure of reaction has been monitored by using two different 

pressure transducers respectively placed at the inlet and at the outlet 

of the reactor. The apparatus consists of separate gas and liquid 

delivery sections. The liquid ethanol reactant (Fluka 99.8%), was 

pumped, by using an HPLC pump (flow of 0.0001-10 cm
3
/min and max. 

pressure limited to 100 bars) into a pre-heater kept at a temperature 

of 200°C, filled with inert material (glass balls) and mixed with the 

carrier flow of Nitrogen. The reaction has always been conducted in 

the presence of a hydrogen stream. The flow of the carrier mixed with 

a 6%wt of hydrogen was regulated by using a mass flow controller 

(Bronkhorst) able to operate at 1-50 cm
3
/min and at pressure up to 

100 bar. On each connecting pipes to the instruments several check 
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valves have been placed. The resulting gaseous mixture was, after 

passing through a pre-heater zone, directed to a standard fixed-bed 

down-flow quartz reactor.  

A weighed amount of catalyst (2-10-50 gr), in pellets, was charged in 

the reactor and, before the catalytic test, was submitted, for 18 h, to a 

pretreatment with a flow stream of H2-N2 mixture (H2/N2=6:94 

mol/mol) 25 cm
3
/min, at a temperature of 200°C.  

 

 

Table 1: reactor, catalyst bed and operative properties for a catalytic bed of 50g 

Reactor Property 

 

Catalytic bed 

 

Operative conditions 

Reactor vol. 89 cm
3
 Bed weight 50 g Pressure 1-30 bar 

Height 35 cm 
Void 

fraction 
0.4 Temperature 200-260°C 

internal 

diameter 
1.8 cm Bed Length 

17-18 

cm 

EtOH Liquid 

Flow  

0.1-1.5 

cm
3
/min 

 Bed volume 48 cm
3
 

H2 6% N2  

Gas Flow  

5-25 

cm
3
/min 

 

After the pretreatment, the catalyst was heated to the desired 

reaction temperature. The reaction was carried out at different 

temperatures in the range 200-260°C and different pressures in the 

range 10-30 bars 

 The ethanol contact time W/F has been taken in the range 5-950 g h 

mol
-1

, where W and F are respectively the catalyst weight and the 

ethanol molar flow rate. The un-reacted ethanol and the condensable 

obtained products were collected in a trap cooled with liquid nitrogen. 

The reaction products were periodically analyzed by a 

gaschromatograph.  

 

B-2.4.2 Gaschromatographic method 

The gaschromatograph used was an HP 6890 with a Restek Rt-Q Plot 

30m*0.32mm column, pure hydrogen has been used as carrier gas. 
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The conditions used for the analyses were as follows: the initial 

temperature of 80°C was increased at a rate of 10°C/min up to 220°C 

and then maintained at this value for 10 minutes. The flame ionization 

detector (FID) was kept at 280°C.  The split-splitless injector was kept 

at 250°C. The response factors and the retention times for each 

products of reaction have been reported in Table 2. 

 

 

Table 2: summary of the retection time and of the adopted responce factors for each 

detected compound. 

Component 
Retention time 

(min) 
Response factor 

Acetaldehyde 3.80 1.7 

Ethanol 4.50 1.0 

Propan-2-ol 6.40 0.71 

Acetone 6.60 0.76 

Dietilether 7.30 0.91 

1-propanol - - 

Acetic acid - - 

Butanon (Mek) 9.30 0.79 

Ethyl acetate 9.60 1.09 

Crotonaldehyde 10 0.75 

 

The response factors have been evaluated on the basis of the internal 

normalization. Each gas-chromatographic area has been corrected on 

the basis of the specific obtained response factor for that compound. 

The response factors have been evaluated by using solution at well-

defined concentration of the compound in exam. In more detail the 

ethanol has response factor assumed equal to 1. Several mixture of 

well-known weigh ratio of the compound (acetaldehyde, ethyl acetate, 

ethylene) with ethanol have been prepared and analyzed to the gas-

chromatograph. By the ratio of the gas-chromatographic area and the 
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concentration of the mixture compound analyzed it’s possible to 

obtain the response factors. 

By using the equations (2)-(4) the quantity of each component and the 

correspondent area has been correlated. 
��� = ���� ∗ ���� 																																																																																								(2) 
������ = ������� ∗ �������																																																																				(3) 
By the ratio (4) between the two above reported equations (2) and (3) 

an evaluation of the response factor (5) of each compound was done. 

		
������
��� = ������� ∗ ����������� ∗ ���� 																																																																		(4) 
	������� = 
������ ∗ ���� ∗ ����
��� ∗ ������� 																																																														(5) 
Known the response factor and the gas-chromatographic area the 

molar fraction for each component is evaluated by the reported 

equation (6): 

	�� = ����∑ ���� � 																																																																																																	(6) 
 Where fi, xi and Ai represent respectively the response factor, the 

molar fraction and the gas-chromatographic area of the -iesim 

compound. Different sets of runs were performed in order to evaluate 

the effect of the temperature, the pressure and the ethanol residence 

time on the catalysts performances. Results are reported in terms of 

ethanol conversion and products selectivity. Moreover on the basis of 

the obtained conversion and selectivity's to the compound containing 

hydrogen, its productivity has been calculated. The ethanol conversion 

is defined as (7): 
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	�"�#$ =	%&'(	)*�+	,��-���%&'(	)*�+	.�� = 1 − 0 1∑  12 13456 7-27-3856
9																		(7) 

while the selectivities, determined on the basis of a carbon balance for 

each component, are determined as (8): 

 

; = %&'(	<=&>�?*�	�&=%@>A"�#$=@B?*@> ∗ A��A�"�#$ 	= A��A�"C#$ �?��?"�#$ D1 − �"�#$�"�#$ E																																		(8) 
Where nCi and nCEtOH represent respectively the numbers of carbon 

atoms in the component i and in the ethanol fed, while Aci and AcEtOH 

are the normalized chromatographic peaks areas. The hydrogen 

productivity has been expressed as the gH2/Kgcath and has been 

calculated by equation (9). 

G=&>�?*HIH*J	+� = K38562L(�M�/O)∗P3856∗[RST6URST538]WXTY8 																						(9)  
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                                                Chapter 3                                               

Thermodynamic study 

 

 

B-3.1 Introduction 

The ethanol dehydrogenation reaction, as well known, is generally 

used to produce acetaldehyde [1,2]. As demonstrated by Inui et al. [3] 

by employing the optimal operative conditions in terms of 

temperature, pressure and residence time the equilibrium of reaction 

could be shifted to the production of ethyl acetate and the 

acetaldehyde has been exploited as intermediate to produce the 

desired product of reaction. The shifting of the equilibrium reaction is 

not so easy because of several collateral reactions such as 

acetaldehyde condensation and ethanol dehydration. At this purpose, 

a thermodynamic analysis of dehydrogenation reaction for ethyl 

acetate production has been carried out by application of the Gibbs 

free energy minimization method. In advance, the optimum conditions 

for ethyl acetate productions have been identified: reaction 

temperatures between 200 and 260°C, pressure of 10-30 bar and 

relatively high residence time to favors the ethyl acetate production 

respect to the several reaction by-products. Under the optimal 

conditions, as will be demonstrated in chapter 4, a conversion of 

ethanol of about 60-65%, a selectivity of 98.8% to ethyl acetate has 

been obtained. 
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B-3.2 Determination of the equilibrium constants 

By the minimization of the free energy it’s possible to individuate the 

composition at equilibrium for each reactive system at an established 

pressure and temperature [4]. As already said, the dehydrogenation 

reaction to esters could be simplified in three different steps of 

reactions: R1. dehydrogenation of ethanol to acetaldehyde; R2. 

acetaldehyde could react with the unreacted ethanol to form 

ethylacetate and finally a third step, R3., of direct production of ethyl 

acetate by ethanol. The three mentioned reactions are below 

reported.  

 

R1.   ���� → ��� +	�
 

R2.   ���� + ��� → ����� + �
 

R3. 		2	���� → ����� + 2�
 

 

For each reaction, the equilibrium constant, at atmospheric 

temperature and pressure, has been evaluated by considering both 

the Gibbs energy of formation and the standard entalphy. The 

determination of the equilibrium constant is related to the energy of 

Gibbs according to the equation 1[5]. 

ln� = −∆�
����
�� 																																																																																									�1� 

The evaluation of the equilibrium constants, for each reaction, at 

several temperature of reaction has been realized by applying the 

equation 2: 

	�� ����
������� = −∆�
�

� � 1�
 −
1
���																																																																	�2� 
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At this purpose a first evaluation of respectively Gibbs energy and 

entalphy of formation   ∆G!�  e  ∆H!� have been calculated. In Table 1 

the values at a 298.15K, obtained by the CHEMCAD library for each 

reactions have been reported. 

 

Table 1: Chemcad Library value of Entalphy and Gibbs energy of formation of 

the different components of ethanol dehydrogenation 

 ∆#$% (Kcal/mol) ∆&$%(Kcal/mol) 

Acetaldehyde -30.79 -39.70 

Ethanol -40.09 -56.12 

Ethyl acetate -78.34 -106.17 

Hydrogen 0 0 

In Table 2 the values of the Gibbs energy	∆G'�, entalphy	∆H'� of 

reaction and of equilibrium constant Ka at a temperature T0=298.15 K 

have been reported. 

Table 2: calculated values of ∆G°, ∆H° and Ka at 298 

K for the three reactions R1, R2, R3 

 R1 R 2 R 3 

∆#(% (Kcal/mol) 9.30 -7.46 1.84 

∆&(% (Kcal/mol) 16.42 -10.35 6.07 

Ka (T= 298 K) 1.51E-07 2.96E+5 4.48E-02 

 

According to the equation (2), the equilibrium constant have been 

evaluated at atmospheric pressure and at reaction temperature of 

100-500°C. In figure 1 the profiles of ln(ka) vs 1/T have been 

represented.  
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Figure 1: logarithmic profile of the equilibrium constant as function 

of the reaction temperature. 

In Figure 2 the profiles of the logaritm ln(Ka) vs temperature for each 

reaction (R1-R2-R3) , obtained by applying the equation 3 have been 

also reported. 

 
Figure 2: Equilibrium constant profiles of the three main 

reaction steps to produce ethyl acetate as function of the 

temperature. 
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The profiles of Figure 2 show that the reaction R1, related to the 

acetaldehyde formation by ethanol dehydrogenation is an 

endothermic reaction and therefore is favored at a temperature 

higher than 300°C. The ethyl acetate is produced by reaction R2, a 

coupling reaction between an acetylic fragment and an ethoxy group, 

formed by adsorbed ethanol. This reaction is favored by relatively low 

temperature of reaction because of its exotermicity. As matter of fact 

at low temperature of reaction (<300°C) the equilibrium constant is 

higher. The global reaction R3 is a moderately endothermic. At this 

purpose to favor the ethyl acetate product of reaction, the 

dehydrogenation has been realized at temperature lower than 300°C. 

The obtained information are in agreement with the literature studies. 

Thus, the obtained equilibrium constants have applied in some of the 

kinetics models developed, as it will be illustrated in chapter 5. 

 

B-3.3 Aspen simulation 

In the present study, in order to evaluate the equilibrium 

compositions, the Gibbs energy minimization method was used. The 

total free energy of the system, regarded as an ideal gas phase, may 

be expressed, by taking in account the dependence of the equilibrium 

constants by the temperature of reaction, as: 

�� = ∑ �*�*+,*-� = ∑ �*�*� + ��∑ �*��+,*-�+,*-�
./
./0
																																	�3�  

2ℎ454: 
78* = 9*:*;                                                                                                                         

8*� = 1	<=5 

�*� = 0	elements 

The opportune substitutions transform the equation 3 in equation 4. 

����*?, �, ;� = ∑ �*∆�*� +∑ ����; + ∑ �A	��	��9+,*-� *
+,*-�+,*-� 						�4�  



 

Section B 

Chapter 3  

Thermodynamic study 

 

 

  123 

 

The aim is to minimize nG maintaining constant the temperature and 

pressure reaction with the bond: 

 		∑ �A	=C* = <D																							E = 1… . . �+,*-� 																																											�5� 
The nonlinear programming model, comprising the objective function 

to be minimized is solved by using PSRK (short for Predictive Soave-

Redlich-Kwong)[8] that is an estimation method for the calculation of 

phase equilibria of a non-ideal mixtures of chemical components, 

contained in ASPEN, process modeling tool. In the present work, 

calculations were made considering an equilibrium reactor, fed with 1 

Kmol/h of ethanol, a fixed pressure, respectively of 1-20-30 bar, and in 

a range of temperature of 0-500°C. 

Precisely, the results of the components compositions obtained by the 

minimization of the free Gibbs energy have been reported for the 

reaction R2 in non-ideal case at different pressure of reaction 1-10-20-

30 atm., in the mentioned range of temperature. 

In the calculation of the equilibrium constants the relation between 

the partial pressure, the total pressure and the molar fractions have 

been taken in account. For each Kmol/h of fed ethanol it is possible to 

extract the Kmol/h of all the products of reaction such as 

acetaldehyde, ethyl acetate and hydrogen and of the not react 

ethanol. It is important to specify that the eventually production of by-

products of reaction, derived by acetaldehyde condensation, has been 

neglected. Moreover the reaction has been considered to occur in gas 

phase while, in the reality, the reaction occurs in an heterogeneous 

system between two phases: the gas phase of the reagents and the 

solid catalyst. Also the adsorption steps have been neglected.  All this 

simplification could contribute to an error between the experimental 

data and the calculated ones.  
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The molar fraction of each components produced during the reaction 

have been calculated taken in account the fed of ethanol and the mols 

of each component in the outlet stream of the equilibrium reactor. 

The molar fractions were expressed as (6a-d): 

:IJKL = MNOPQRSO
MTPT 																												Residual	ethanol																									�6=�     

:̀ ,L = MabQRSO
MTPT 																																	acetaldehyde																															�6b�                      

	yf
 =
nfghij
nklk 																																hydrogen																																						�6c� 

	:̀ ,KIJ =
�`,KIJopJ

�qKq 																						ethyl	acetate																															�6d� 
 

The total mols in inlet stream is equal to the mols of each components 

and of not reacted ethanol in the outlet stream �qKq =	�IJKL +
�`,L + �L
 + �`,KIJ																																																�7� 
By the composition of the several compounds in the outlet stream, the 

ethanol conversion and the selectivities of ethyl acetate, hydrogen and 

acetaldehyde at equilibrium has been defined by the equation (8 a-d). 

sIJKL	 = :IJKL,*M − :IJKL,opJ
:IJKL,*M 																																																															�8=� 

	ù ,KIJ	 =	 :̀ ,KIJ,opJ ∗ �qKq
sIJKL	 																																																																		�8<� 

ù ,L	 =	 :̀ ,L,opJ ∗ �qKq
sIJKL	 																																																																										�8�� 

uL
	 =	:L
,opJ ∗ �qKqsIJKL	 																																																																													�87� 
 

 Where, ywjlf,xy and ywjlf,hij are respectively the molar fraction of 

fed ethanol and in the outlet stream. While 

yz{lwj,hij, yz{f,hij	and		yf
,hij are respectively the molar fraction of 

ethyl acetate, of acetaldehyde and hydrogen in the outlet stream of 
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the equilibrium reactor. The selectivities, for each products containing 

carbon, were calculated by considering a mass balance on the carbon. 

 

B-3.4 Results and discussion 

The ethanol conversion and the compounds selectivity have been 

evaluated on the basis of thermodynamic considerations. The profiles 

of the molar fraction, of ethanol conversion and of the selectivites of 

the several products of reaction at a constant pressure of 20 bars, as 

example, have been represented. As suggested by the profiles of 

Figure 3, at a constant pressure of 20 bars, by increasing the 

temperature of reaction, the molar composition of ethanol in the 

effluents decrease up to completely consume at a temperature of 

about 600°C. Moreover the figure shows the significant effect of the 

temperature on the selectivities to the desired product of reaction. 

 
Figure 3: molar fractions for each compound at 20 bars, at 

different temperature. 
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In fact to maximize the ethyl acetate production the range of 

temperature 200-300°C should be used. By increasing the temperature 

of reaction, the ethyl acetate composition rising up to a maximum 

(340-350°C), after that the acetaldehyde becomes the main reaction 

product. In Figure 4, the profiles, of conversion of the ethanol and of 

selectivities of the three main products of reaction, at different 

temperature of reaction and at a constant pressure of 20 atm have 

been represented.  

 
Figure 4: conversion and selectivities profiles at 20 bar. 

 

An ethanol conversion of about 100% has been obtained at operating 

temperature higher 600°C. The maximum selectivity to ethyl acetate  

of about 0.5%, regardless carbon balance, was obtained at a 

temperature of 220-230°C. The ethanol conversion, in each case, 

increase with the temperature but on the other hand by increasing the 

pressure, it is necessary to increase the temperature to obtain the 
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100% of conversion. By operating at atmospheric pressure to obtain a 

100% of ethanol conversion, a temperature of 500°C is required. At an 

intermediate temperature of reaction of about 300°C conversion of 

about 85% has been obtained vs the 70%, 62% and 55% obtained with 

an increase of the pressure until 30 bars. 

 
Figure 5: profiles of conversion variation with the pressure of reaction. 

 

In Figure 6 the profile of selectivities to ethylacetate as function of the 

reaction temperature at different operating pressure have been 

reported. At temperature of reaction higher than 250°C, an evident 

increase of acetaldehyde selectivity was observed. The acetaldehyde 

formation by ethanol dehydrogenation is an endothermic reaction and 

for this reason favored by higher temperature. The effect of the 

decrease of selectivity of ethyl acetate at higher temperature is more 

evident at lower pressure. The increase of the operative pressure from 

1 to 10 gives a significantly increase of the ethyl acetate yields. But a 
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further increase of the pressure from 10 to 30 atm doesn’t affect 

significantly the ethyl acetate selectivity. In Figure 7 the profiles of 

selectivity to acetaldehyde as function of the temperature, at different 

pressure have been represented. The acetaldehyde selectivity has 

favored at low pressure and at temperature higher than 300°C. As the 

thermodynamic study suggests at temperature higher than 600°C the 

selectivity to acetaldehyde could rising up to 100%. Of course, the real 

situation is far from the ideal case, obtained with an equilibrium 

reactor. 

 
Figure 6: ethyl acetate selectivities profiles obtained at different pressure 

of reaction. 
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Figure 7: selectivities profile to acetaldehyde vs temperature at 

different pressure  

Once the theoretically curves of equilibrium ethanol conversion and 

ethyl acetate/acetaldehyde selectivities have been individuated by the 

application of the free energy of Gibbs minimization, a comparison of 

them with the experimental results have been realized. The 

theretically profiles of compositions, selectivities, conversion are in 

perfect agreement with the thermodynamic study reported by 

Chadlek [9]. On the other hand, the theoretical compositions at 

equilibrium, predicted with the PSRK method, are in direct 

contradiction with our experimental data, as demonstrated also in the 

chapter 3-section A of this thesis. As demonstrated by our 

experimental works the acetaldehyde was produced also at relatively 

low temperature and this experimental results are in agreement with 

those reported in literature [10,11]. The acetaldehyde production can 

be obtained, during the dehydrogenation reaction also at low 
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temperature, when the adopted residence time is very low, as in our 

experimental runs, of about 0.18-20 ghmol
-1

. In fact the 

thermodynamics model, obtained by using the free Gibbs energy 

minimization with ASPEN, has shown that: 

1. At low temperature, until 300°C, the thermodynamic doesn’t favor 

the acetaldehyde production, the selectivity is less then 5%, without 

considering mass balance on the carbon. 

2. In the same range of temperature 100-300°C the ethyl acetate 

should be the main reaction product.  

These two considerations are in direct contradiction with both the 

experimental results that we will discuss in the chp.4 but also with the 

literature results. As shown by Zonetti et al.[12] at a temperature of 

200°C, for an ethanol conversion of about 55% a selectivity to 

acetaldehyde of about 60% has been obtained. This contradiction is 

related to the competition between the ethanol dehydrogenation to 

acetaldehyde and ethyl acetate. Thermodynamically the acetaldehyde 

is more favorable species up to 340°C. Once this results can be 

explained by the infinite residence time assumption used in Gibbs free 

energy minimization. In reality the residence time is finite and 

therefore only part of the acetaldehyde formed by dehydrogenation 

reaction, which is the first and fastest reaction to occur, gets 

converted to ethyl acetate. 

At this purpose in Figure 8 a comparison of the theoretically profiles of 

conversion, obtained by the previously thermodynamic evaluation, 

with the experimental results obtained at two different residence time 

respectively of 4.07 ghmol
-1

 e 97.45 ghmol
-1

 have been reported. The 

experimental results have been obtained at a constant pressure of 20 

bars at different reaction temperature of 200-260°C. 
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Figure 8: comparison of the experimental (20 bars) and 

theoretical profiles. 

 

A first evaluation, has shown different behaviors at different residence 

time. At lowest residence time W/F=4.07 ghmol
-1

, the ethanol 

conversion, obtained by changing the reaction temperatures, is far 

from the ones obtained at equilibrium, imposed by the 

thermodynamic restrictions. At higher residence time the 

experimental ethanol conversion is higher than the ones obtained by 

the thermodynamic study. Nevertheless, the actual ethanol conversion 

is greater than the equilibrium conversion. Since the produced 

acetaldehyde is further converted to other by-products, such as 

butanone and butanol, at high temperatures, the actual conversion is 

greater than the equilibrium conversion of ethanol to ethyl acetate. 

On the other hand the experimental conversion is so different by the 

theoretical also for the several considered approximations: the 

reaction is more complex than the simplified represented and the sub-
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product produced during the reaction could have such influence on 

the equilibrium.  

Moreover this system is heterogeneous so a reaction of a gas phase 

with a solid catalytic surface has occurred, but all the phenomena of 

adsorption and how they could influence the thermodynamic 

equilibrium have been neglected. In Figure 9 the ethyl acetate 

selectivity theoretical and experimental profiles, obtained in the above 

described conditions, as function of the temperature have been 

compared. 
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Figure 9: comparison of the ethyl acetate experimental selectivities 

profiles at 20 bar with the thermodynamic values. 

 

The selectivities profiles show that at low residence time the 

experimental selectivity to ethyl acetate is of about 80%, a value less 

than the theoretical ones (100%), obtained at equilibrium in the 

examined range of temperatures (200-260°C). At high residence time a 
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good agreement between the experimental (96-98%) and theoretical 

values (100%) has been obtained. At high residence time the 

equilibrium selectivity value, imposed by the thermodynamic 

constrains, has been considered.  
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   Figure 10: comparison of the experimental acetaldehyde profiles 

obtained at a pressure of 20 bar with the theoretical ones. 

The acetaldehyde selectivity at lowest residence time is more favored 

(16-19%) than by operating at higher residence time. This behavior is 

in good agreement with which suggested by the thermodynamics 

studies. The high-pressure operation suppresses both the ethanol 

conversion and the formation of by-products such as butanone and 1-

butanol, derived from acetaldol, which can be rationalized by the 

decrease in the partial pressure of acetaldehyde caused by a shift in 

equilibrium among ethanol, acetaldehyde, and hydrogen at high 

pressure. Consequently, a high selectivity to ethyl acetate is achieved 
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by suppressing the acetaldehyde partial pressure in the initial 

elementary reaction rather than by suppressing each elementary 

reaction for the by-products. Finally in Figure 10 the acetaldehyde 

profiles of selectivities have been compared with the theoretical ones. 

The thermodynamic study of ethanol dehydrogenation reaction at 

high temperature and pressure has suggested how to maximize the 

main desired product of reaction, ethyl acetate, by choosing the 

optimal range of operative condition. A total conversion of ethanol 

should be obtained at a temperature of about 600°C, at which the 

acetaldehyde selectivity is higher.  At this purpose to favor the ethyl 

acetate formation reaction a temperature of reaction of about 220-

240°C should be used. As well, the pressure has a great influence on 

the final ethanol conversion, in fact the increase of the reaction 

pressure could decrease the ethanol conversion that achieved a 

conversion of 100% at higher temperature. The increase of pressure 

favors the ethyl acetate selectivity with respect to acetaldehyde. The 

last product is favored at low pressure and high temperature of 

reaction (>300°C). By comparing the experimentally ethanol 

conversion profiles with the theoretically ones a discrepancy has been 

observed, in fact the experimentally conversion is higher than the 

conversion observed at equilibrium. This behavior could be justified 

taken in account the simplification made on the models, as already 

above discussed. A good agreement has been obtained, at higher 

residence time, between the theoretically and experimental 

selectivities of both ethyl acetate and acetaldehyde. 
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Chapter 4                                               
Experimental Results 

 

 

 

B-4.1 Introduction 

The ethanol dehydrogenation to ethyl acetate and pure hydrogen, in 

one-step reaction, has been studied by using several commercial cop-

per-based catalysts. 

The use of copper catalysts is fundamental to limits the undesirable 

decomposition of acetaldehyde to CH4 and CO, in fact copper is able to 

dehydrogenate ethanol without splitting the C-C bond. 

The early literature works related to the ethanol dehydrogenation to 

ethyl acetate date back to Dolgov et al. [1] that studied the perfor-

mances of Cu/ZnO/Al2O3 (Cr2O3) and Cu-Cr2O3 catalysts. Many other 

researchers have then studied the same reaction using copper based 

catalysts and we can distinguish two different classes of such catalysts 

containing respectively copper/copper chromite [2-4] and copper 

metal supported and/or promoted by different oxides such as: Al2O3, 

Cr2O3, ZnO, ZrO2, SiO2 [5-10].  

In particular, the copper chromite containing catalysts are useful for a 

variety of chemical reactions and one of the mayor applications of this 

system includes hydrogenation of fatty acids to fatty alcohols, without 

hydrogenating the eventual double bonds. Supported and promoted 

copper catalysts are used in many reactions of industrial interest and 

methanol synthesis, methanol steam reforming, low temperature wa-
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ter gas shift reaction are significant examples. The presence of oxide 

compounds has, in some cases, the scope of slowing down the catalyst 

deactivation, because of copper sintering. The physical properties of 

copper chromite have been deeply investigated by several authors 

[11-18]. 

By reacting ethanol, according to the adopted type of catalyst and to 

the operative conditions, acetaldehyde or ethyl acetate as main prod-

ucts were obtained. Moreover, in some cases many by-products, es-

sentially deriving from acetaldehyde, can also be attained. The path-

ways of the ethanol dehydrogenation are illustrated in Scheme 1 [8]. 

The challenge of this research work is to individuate an alternative 

catalytic system able both to resist to the high temperature and pres-

sure of reaction and to give high selectivity to desired product by sup-

press the collateral reactions.  

At this purpose, the reaction has been conducted in a conventional 

packed bed tubular reactor, by exploring a temperature range of 200-

260°C and a pressure range of 10-30 bars. The best results have been 

found by using a commercial copper/copper chromite catalyst, sup-

ported on alumina and containing barium chromite as promoter, op-

erating at 220-240°C, 20 bars and 98 (grams hour/mol) of ethanol con-

tact time. 

In these conditions, a conversion of 65 % with selectivity to ethyl ace-

tate of 98-99% has been obtained. Another aspect to take in account is 

the production of high yield of pure hydrogen exempt by COx impuri-

ties. Therefore, this catalyst is a good candidate for developing a new 

process [19] and the optimal operative conditions have been individu-

ated. In this section, several commercial copper based catalysts, pro-

moted with zinc and chromia, unsupported and supported on alumina 

in the ethanol dehydrogenation reaction to produce ethyl acetate and 

pure hydrogen have been studied. The details related to the catalysts 

composition, the apparatus of reaction and the operative conditions 

were reported already in Chapter 2 of the current section.  
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Scheme 1: pathways of the ethanol dehydrogenation reaction 

 

The main aim of this chapter is to shown the chemical/structural 

properties of copper based catalyst, their performances in the ethanol 

dehydrogenation and finally to correlate the performances of the ex-

amined catalysts to their structural and chemical features, evaluated 

on the basis of ex-situ and in-situ characterization techniques. At the 

end of this chapter, the obtained results have been discussed on the 

basis of an hypotized and reliable reaction mechanism. 

 

B-4.2 Catalysts characterization 

The techniques employed to characterize the prepared catalysts could 

be classified in two different categories: ex-situ characterization such 

as BET, X-ray diffraction (XRD), scanning electron microscopy (SEM) 
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and X-ray photoelectron spectroscopy (XPS) and in-situ ones diffuse 

reflectance infrared fourier transform (DRIFT) in presence of ethanol 

and X-ray adsorption near edge spectroscopy (XANES). A detailed de-

scription of the equipment employed to characterize these materials 

and of the operative conditions used to pretreat the materials and to 

analyze, the same have been reported in APPENDIX A. The optimiza-

tion of the operative conditions is a key of crucial interest to optimize 

and study in depth the physical and chemical characteristics of the ma-

terials with the scope to correlate them to the performances of the 

catalysts in the reaction of interest, the ethanol dehydrogenation to 

ethyl acetate. 

 

B-4.2.1 Ex-situ characterization 

The specific surface area, the pores volume and pores distribution of 

the employed catalysts are reported in Table 1. The table reports also 

the copper dispersion and copper surface area for the best catalytic 

systems. The calculations, employed to evaluate the dispersion and 

the copper surface area, are reported in APPENDIX A.  

The results of Table 1 show that the BASF copper chromite catalyst Cu-

1234-1/16-3F, supported on alumina, has a specific surface area, of 

127 m
2
/g; this value is much higher than the specific surface area of 

the both unsupported Cu/copper chromite catalyst supplied by Sud-

Chemie (21 m
2
/g) and Cu-0203 (13 m

2
/g) by BASF company. 

In Figure 1, the N2 sorption isotherms for the three mentioned cata-

lysts are reported, while, in Figure 2 are reported the corresponding 

pore size distributions. 

The specific surface area and the pores distribution of the catalyst 

BASF K-310 are, on the contrary, comparable with ones of the BASF 

Cu-1234-1/16-3F catalyst. The characteristics of another commercial 

Cu-Zn-Al-O catalyst have also been studied. The presence of alumina, 

in both BASF catalysts, is responsible of the relatively high specific sur-

face area. Furthermore, in Table 1 are also reported the dispersion and 



 
Section B 

Chapter 4  

Experimental 

 

  

  139 

 

the specific surface area of Cu determined with the N2O method for 

each catalyst. 
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Figure1-BET N2 sorption isotherms for the three tested cat-

alysts. 
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Figure 2: pore distribution curves 
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Table 1. Specific surface area, pores volume distribution, copper surface area and dispersion and for all the proven catalysts. 

Sample 

 

Composition given by the com-

panies 

Surface 

area 

(m2/g) 

Pores 

volume 

(cm3/g) 

 

Copper  

dispersion 

% 

 

Cu sur-

face area 

(m2/g) 

Pore distribution, vol. % 

r<20Å 20Å<r<1000Å r>1000Å 

BASF K-310 
CuO-ZnO-Al2O3 

(40-40-20 % b.w.) 
106 0.29 1.97 4.05 10.08 83.66 6.23 

BASF Sg-9601 CuO:ZnO:Al2O3 (37:37:26) 62 14.2 - - 
 

7.00 

 

87.3 

 

5.70 

BASF Cu-1234 
CuCr2O4-CuO-Cu-BaCrO4-Al2O3 

(45-1-13-11-30 % b.w.) 
127 0.41 1.22 2.05 12.27 83.84 3.90 

Sud-Chemie T-

4466 

CuO/CuCr2O4 

(CuO/Cr2O3= 53/45) 
21 0.11 

 

1.48 

 

3.71 
- 89.83 10.16 

BASF Cu-0203 Cu:Cr (CuO/Cr2O3=64:36%b.w) 13 2.90 - - 6.60 78.00 15.4 
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As it can be seen in Table 1, the BASF K-310 catalyst has both the high-

est Cu dispersion and specific surface area. It is interesting to observe 

that the unsupported catalyst T-4466, despite the lowest overall spe-

cific surface area, shows a Cu dispersion and a Cu specific surface area 

comparable with that of the BASF K-310 catalyst. At last, the catalyst 

Cu-1234 shows the lowest dispersion and copper surface area, not-

withstanding the presence of 30% b.w. of an alumina support. Proba-

bly, this catalyst has been calcined at relatively high temperature; this 

involves the grown of the Cu particles by sintering inside the promot-

ers to obtain a stable configuration. The alumina support, in this case, 

has the main scope to disperse the copper chromite particles, as it can 

be appreciated by observing the XRD diffraction patterns, reported in 

Figure 3, related to the fresh copper chromite based catalysts (not pre-

treated with hydrogen). 
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Figure 3: XRD diffraction patterns obtained for the different exam-

ined catalysts. (x) (o) cubic spinel CuCr2O4. (o) CuO. (c, y) Cu (0). 

 

As a matter of fact, the copper/copper chromite catalyst Cu-1234-

1/16-3F shows different wide and weak diffraction peaks indicative of 

small copper chromite particles size in the 2θ range 35-37.5°, that are 

related to the cubic spinel CuCr2O4 probably with a structure stabilized 

by protons, as different authors have previously suggested for cata-

lysts reduced with hydrogen (this is a catalyst pre-reduced by the sup-

plier) [20-22].  

The Sud Chemie T-4466 catalyst shows, on the contrary, more sharp 

diffraction peaks and even if it is well known that for the above men-

tioned 2θ range CuCr2O4 diffraction peak is overlapped with the CuO 

one [23], on a qualitative basis  it is possible to conclude that the T-

4466 catalyst is characterized by CuCr2O4 cristallites greater than the 

Cu-1234-1/16-3F one. This is also confirmed by the great difference in 

specific surface area of the two mentioned catalysts. The X-Ray diffrac-

tion peaks at 2 θ = 42
°
-43

°
 are typical of Cu (0) phase. The analysis of 

the diffraction pattern, related to BASF K-310 catalyst,  shows CuO 

phase peaks and also the presence of other different compounds like 

aurichalcite ((Cu,Zn)5(CO3)2(OH)6 at 15°-28° 2θ and hydrozincite 

(Zn5(CO3)2(OH)6) at 25°-32° 2θ. Alumina used as support for both the 

BASF catalysts resulted an amorphous phase. Moreover, three SEM 

images of a copper-chromite catalyst T-4466, the copper chromite 

alumina catalysts Cu-1234 and finally of the K-310, of CuO-ZnO-Al2O3 

are depicted in Figure 4A-4B (APPENDIX A).  



 
Section B 

Chapter 4  

Experimental 

 

  

 143 

 

 
Figure 4A: SEM micrographs recorded under 30 KV, 

500 nm of CuCrAl (Cu-1234). 

 

 

 
Figure 4B: SEM micrographs recorded under 30 KV, 500 

nm of CuZnAl (K-310). 

 



 
Section B 

Chapter 4  

Experimental 

 

  

 144 

 

A Careful examination of the micrograph at a magnification of the cat-

alyst Cu-1234, reported in Figure 4A, reveals that is not easy to identify 

particles of copper on a surface. These results are in agreement with 

both the TPO measure of low surface area and low copper surface dis-

persion and XRD. Well, to clarify this statement, as showed by the TPO 

results the copper surface of Cu-1234 are is 2.05 m
2
/g, this value is 

lowest respect to the ones obtained for the other catalysts, thus, this 

low dispersion (1.22%) is due to the low concentration of copper on 

the catalyst surface. Moreover, the SEM could clarify the XRD diffrac-

tion pattern of Cu1234, in which the peaks look like weak and abroad 

for effect of the alumina support; more probably, this catalyst has 

been prepared by coprecipitation of metal salts. In the case of K-310, 

which SEM is reported in Figure 4B, a closer view of some of the larger 

particles reveals the existence of much smaller particles on the surface 

has been reported. These features are estimated to be ~10-20 nm in 

size and may account for some of the dispersed cpper phase observed 

in the XRD patterns. 

The surface composition of three fresh catalysts was measured by x-

ray photoelectron spectroscopy (APPENDIX A). The samples were ex-

amined in oxidized form, because the XPS instrument was not 

equipped of a pre-reduction chamber. Moreover, a pre-reduction, not 

in-situ, of the sample, first of XPS measure, turns out to be needless 

because, as demonstrated by the phd thesis work [24] by transferring 

the samples, after the reduction, to the XPS sample analysis appa-

ratus, the oxidation cannot be ruled out and consequently, the ob-

tained results could be not easy to interpret. Surface atomic weigh 

percentage of each elements for the three examined catalysts, ob-

tained by CASA elaborator, are presented in Table 2. As shown the 

catalyst Cu-1234 has the lowest content of copper on the catalyst sur-

face, this result is in good agreement with the TPO measure of the 

copper dispersion [25].   
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Table 2: Concentration of each component on the catalysts surface 

Catalyst Cu 2p O 1s C 1s Al 2p Cr 2p Ba Zn 

Cu-1234 7.3 54.7 12.7 21.1 3.7 0.4  

T-4466 11.2 44.7 28.0  11.8   

K-310 15.4 48.2 17.1 16.2   7.2 

 

The Figure 5A shows that Cu-1234, T-4466 and K-310 exhibit binding 

energy signals at 932.2-932.8 eV that corresponds to Cu
2+ 

in Cu2O 

compound is generally attributed to Cu
2+

 located in an octahedral and 

tethraedral sites of CuCr2O4, in agreement with Zhang and Brooks lit-

erature works [26,27]. K-310 exhibits distinct satellite peaks suggesting 

Cu
+2

 as in CuO, indicating that the catalyst is in a fully oxidized state.  
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Figure 5A: XPS binding energy signals of copper  

The binding energy Cr 2p3/2 of all the catalysts containing chromia is 

in the range 576.58-578.7 eV attributed to the Cr
3+

 in Cr2O3 com-

pounds (Figure 5B), in good agreement with studies by Brooks et al. 

(577.0 eV)[27]. 
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The spectra reported in Figure 5B shows a small variation in binding 

energy of Cr observed in T-4466, the shoulder peak at higher binding 

energy in each manifold (ca. 580 eV Cr 2p3/2,) is assigned to the Cr
6+ 

present in the  previously characterized CuCrO4 phase [28].  
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Figure 5B: XPS binding energy signals of chromium 

All the mentioned catalysts have been submitted to thermal pro-

grammed reduction (TPR) with hydrogen, in order to evaluate the de-

gree of reducibility of the copper species APPENDIX A.  

Before the TPR, the catalysts were pretreated with an inert nitrogen 

flow by gradually increasing the temperature until 300°C. The catalysts 

were then cooled at room temperature and again heated from room 

temperature to 300°C in a flow stream of 25 cm
3
/min consisted of 6% 

of hydrogen in nitrogen, as already described in a previous section. 

The obtained results are reported in Figure 6. A first observation is 

that the reduction of the copper chromite catalysts starts in both cases 

at the same lower temperature of about 150°C, while, the start tem-
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perature for K-310 catalyst is 180° C. In particular, in the case of cop-

per chromite catalysts is possible to observe a shift of the starting 

temperature of reduction hinge on by the chromium content. 
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Figure 6: TPR profiles of Cu-1234, T-4466, Cu-0203, Sg-9601, K310. 

Temperature range: 25-300°C. Reduction realized with a stream of 25 

cm
3
/min of 6%H2 in N2 

 

At higher chromium content, as in case of the Cu-1234, the maximum 

temperature of reduction has been localized at about 200°C, by de-

creasing the chromium content (Cu-0203) the maximum temperature 

of reduction is observed at 270°C.  

Another observation is that the peak area obtained for the BASF 1234-

/16-3F (8.6*10
6 

mV s/g) catalyst is much smaller than the others ob-

tained for both the catalysts of copper-chromite respectively Sud 

Chemie T-4466 (2.26*10
7
 mV s/g) and Basf Cu-0203 (3.49*10

7
 mV s/g) 

and the catalysts of copper-zinc BASF K-310 (8.60*10
7
 mV s/g) and 

BASF Sg-9601 (1.13*10
7
 mV s/g), in agreement with the fact that this is 

a pre-reduced catalyst. The low reduction area of the catalyst Sg-9601, 

also in this case, could be ascribed to the pre-reduced nature of the 
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catalyst. The pre-reducing treatment is almost necessary to obtain a 

more stable configuration but on the other hand, this treatment could 

get catalyst with a lowest specific surface area. Several considerations 

about the copper reducibility have been found in literature. According 

to the literature [13, 34] Cu
2+

 can be reduced to Cu° by hydrogen 

through two different reactions, being the following the first one:  

��� + �� → �� + ���																																																																													(1) 

The reduction of copper oxide not linked to chromium oxide is a reac-

tion occurring for all the tested catalysts. The second copper reduction 

path is that of copper chromite, occurring for about 50% of the total 

copper chromite through the following reaction
 
[34]: 

Cu
2+

 + H2      ↔     2H
+
 + Cu°                                                  (2) 

Cu° formed in this way, grows epitaxially
 
[34]

 
on the spinel surface, 

while, H
+
 remains inserted into the spinel structure taking the place of 

Cu
2+

 for compensating the negative charges of the crystal lattice. This 

process could be labeled by the following equation: 

H2 + CuCr2O4 = yCu
0
//Cu(II)(1–y)H+2yCr2O4 

The spinel Cu (II)(1–y)H+2yCr2O4 is an acid catalyst in which, in case of 

Cu-1234, some basic promoters of Barium oxide are dispersed. 

By observing Figure 6, it is clear that the catalysts Cu-1234, T-4466 and 

Cu-0203 containing copper chromite, are more reducible than K-310 

and Sg-9601. In the TPR profile of the pre-reduced catalyst Cu-1234, 

the low peak area at 225°C has been attributed almost exclusively to 

the effect of the reaction (2). As a matter of fact, by heating this cata-

lyst under a stream of inert gas, at 300°C, as in our previously de-

scribed pre-treatment, the inverse of the reaction (2) occurs as shown 

by Colley et al.
4 

and copper ions formed return to be reducible with 

hydrogen.  

The amount of hydrogen consumed in the TPR, for the catalyst Cu-

1234, was 1.14 mmols/(g of catalyst), while, the copper reducible with 
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the reaction (1), on the basis of the catalyst formulation, corresponds 

to 0.124 mmols/g, related to the content of 1% of CuO. 0.975 mmols/g 

are, on the contrary, related to 50% of the copper chromite, that is, in 

total 1.10 mmoles/g corresponding to a good agreement for the pre-

reduced catalyst. The catalyst T-4466 has given a value for the hydro-

gen consumed of 3.01  mmoles/g that is less than the value obtainable 

by the declared composition (CuO+1/2 CuCr2O4) corresponding to a 

minimum value of about 5 mmoles/g. Probably, in this case, the reduc-

tion occurring during the TPR until 300°C is not complete and higher 

temperature are necessary to obtain the complete reduction of the 

catalyst. As matter of fact the copper chromite T-4466 was reduced 

also at higher temperature of about 600°C. In this particular case the 

hydrogen consumed, of 5.99 mmoles/g, correspond exactly to the val-

ue obtainable by the declared composition of 6.00 mmoles/g. At this 

purpose the catalysts could be reduced at high temperature or at low-

er temperature but for more prolonged time in particular 16-18h are 

enough to reduce completely also at 200°C the copper catalyst sur-

face. Tu et al. [2-3 ] has shown that the catalysts reducibility is strongly 

dependent by the catalytic environment. As shown by Prasad [30] and 

Adkins [31], the reduction of the species Cu
2+

 is withdrawn by the 

eventually presence of basic oxide such as chromia or zinc oxide. The 

chromia has been considered a good structural promoter for its ability 

to achieve dispersed the copper because it could not be reduced at 

temperature higher than 800°C [32,33]. Finally, K-310 catalyst gives 

place to a H2 consumption of 4.07 mmols/g, instead of 5.02 mmols/g, 

corresponding to the CuO composition. In this case, only reaction (1) 

occurs. Maybe, less reducible complexes of copper with zinc are 

formed. The NH3-TPD measurements were carried out with the scope 

of determining the characteristics of the surface acidity of the differ-

ent examined catalysts (APPENDIX A). In Figure 7 the NH3-TPD plots, 

obtained for respectively the K-310, T-4466 and Cu-1234, catalysts are 
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reported. Both K-310 and Cu-1234 catalysts show similar surface acidi-

ty in the range of 100-350°C and 350-450°C corresponding to respec-

tively acid sites of weak and medium strength. This behaviour is in 

agreement with the observations made by Prasad et al. [30], that at-

tributes these peaks mainly to the alumina acidity contribution. 
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Figure 7 - A comparison of the TPD-NH3 patterns of all the examined catalysts. 

 

It is interesting to point out that a pronounced peak, at 500°C, has 

been observed for the pre-reduced catalyst Cu-1234. This peak corre-

sponds, according to Colley et al
4
 [4], to the Bronsted acid sites formed 

as a consequence of reaction (2). The strong acidic sites are due to the 

presence also of alumina support. In fact also each catalyst of copper-

zinc supported on alumina has strong acidic sites. In particular the cat-

alyst Sg-0203, with higher content of alumina (26%wt) respect to the 

classical Cu-Zn-Al-O formulation (20%wt), have an higher concentration 

of strong acidic sities. 

These sites are not present obviously in the copper/copper chromite 

fresh catalyst T-4466 and Cu-0203. Moreover, this last catalyst is less 
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acid because does not contains alumina support. A quantitative evalu-

ation of the acid sites distribution is reported in Table 3.  

 

Table 3. Surface acidities of the examined catalysts evaluated by NH3-TPD 

Sample Specific acidity distribution (mmol NH3/g) 

100<T1(°C)<250 350<T2(°C)<450 T3>500°C 

BASF Cu-1234 0.185 0.123 0.029 

BASF K-310 0.283 0.057 0.006 

Sud-Chemie                   

T-4466 

0.033 0.047 - 

Sg-9601 0.143 - 0.030 

Cu-0203 0.022 - - 

 

The CO2-TPD measurements were carried out with the scope of de-

termining the characteristic of the surface basicity of the different ex-

amined catalysts (APPENDIX A). A strong surface basicity can promote 

the formation of ethyl acetate through the Tischenko reaction but also 

the acetaldehyde condensation to acetaldol and successive by prod-

ucts (see scheme 1). In Figure 8, the CO2-TPD plots obtained for re-

spectively the copper-zinc catalysts K-310 and Sg-9601 and copper-

chromia catalysts T-4466, Cu-1234 and Cu-0203 catalysts have been 

reported. In Table 4 are summarized the basicity distribution in four 

different range of temperature. 

Table 4: Surface basicity of the examined catalysts evaluated by CO2-TPD 

Sample 
Specific basicity distribution (mmol CO2/g) 

100<T1(°C)<200 300<T2(°C)<350 400<T(°C)<470 T3>500°C 

BASF Cu-1234 5.92 0.69 6.42 1.21 

BASF K-310 3.32 3.91 1.23 1.69 

Sud-Chemie                        

T-4466 
4.28 6.87 1.58 0.56 

Sg-9601 2 - 3.47 7 

Cu-0203 2.34 - 3.95 1.8 
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The CO2-TPD profiles show the presence of four different basic sites 

with different strength respectively in the regions 100-200°C, 300-350 

°C, 400-480°C and above 500°C. The obtained results are in good 

agreement with the ones reported in the literature [34].  

 
Figura 8: A comparison of the TPD- CO2 patterns of Cu-1234, Sg-9602, 

T-4466, K-310, Cu-0203 examined catalysts. 

 

Figure 8 shows that all the examined catalysts have basic sites but with 

a different distribution between weak, medium and high strength. K-

310 is the most basic catalyst in agreement with the presence of ZnO 

in its composition. It is interesting to observe that the presence of 

BaCrO4 reported by BASF for the catalyst Cu-1234 has a particular con-

sequence on the surface basicity of the sample.  

Probably, during the reduction pre-treatment of the catalyst, the spe-

cie BaCrO4 is reduced to barium chromite or to a mixture of BaO and 

Cr2O3 but BaO is neutralised by the Lewis acid sites of both alumina 
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and cromia, because, in the TPD with CO2 no basic sites of high 

strength appear.  

Therefore, pre-reduced catalyst Cu-1234 shows a particular structure, 

if compared with the other catalysts, characterised by the presence of 

copper metal deposited on the chromite surface and near to Bronsted 

acid sites of the reduced copper chromite (reaction 9), while, BaO neu-

tralises external acidity. The presence of Bronsted acid sites inside the 

reduced copper chromite have been demonstrated by Colley et al 

[4]attributing to these sites the good selectivities to ethyl acetate of 

the copper chromite based catalysts. 

 

B-4.2.2 In-situ characterization 

In-situ diffuse reflectance infrared fourier transform (DRIFT) in ethanol 

flow has been realized with the aim to observe the adsorbed phases 

produced and adsorbed on the previously reduced catalyst surface 

(APPENDIX A). The Figure 9A shows the DRIFT spectra for the copper 

chromite alumina commercial catalysts Cu-1234. Thanks to the use of 

such a diluent as silicon powder, the spectra of our black sample ap-

pear clear (fumed silica : catalyst= 5 : 1 wt%). The use of fumed silica is 

justified by the several trials that have shown the ability of black sam-

ples, characteristic of almost of the catalyst employed, to absorb the 

infrared radiation and to reflect weakly the radiation. The catalysts 

have been previously reduced in hydrogen flow at 300°C for 1h, after 

that a flow of inert have been fed to the chamber to clean the fitting, 

the tube and the chamber. After cooling the chamber, a flow of 2.2 

cm
3
/min of ethanol diluted in 25 cm

3
/min of nitrogen was feed to the 

catalyst compartment. The spectrum for each sample has been col-

lected at three different temperatures, 100, 200 and 300°C and under 

flowing ethanol. The assignment of the bands was made by analogy 
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with the spectra of known compounds and by comparison with pub-

lished literatures. 

The figure 9A displays the DRIFT spectra of Cu-1234, showing barely 

distinguished features at a wavenumber of 3750 that corresponds to 

the –OH group of the adsorbed ethanol. 
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Figure 9A: DRIFT specta of Cu-1234 at 100-200-300°C in etha-

nol flow of 2.2 cm
3
/min. The catalyst was previously reduced in 

hydrogen flow at 300°C for 1h. 

 

At higher temperature (>200°C) a 1400-1600 cm
-1

 a well-defined peak 

related to the –COO ester phase (ethylacetate) have been identified 

[35], where the signal at 1550 cm
-1

 corresponds to υsym (COO)[36-38]. 

At a wavenumber of 2800-3000 cm
-1

, other two not well defined fea-

tures can be identified that correspond to the –CH3 and/or -C2H5 

groups. By increasing the temperature the bands of adsorbed –OH dis-

appear, indicating the ethanol consumption in favor of the formation 

of the ester group in a range temperature of 200-300°C [39,40]. More 

probably the ethylacetate adorbed on copper catalyst gets a signal, re-
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lated to C=O stretch, at about 1650 cm
-1

 while the signal at 1550 cm
-1

 

is related to the same specie adsorbed on alumina [41]. An important 

aspect to take in account is the total absence of acetaldehyde adsorp-

tion signal that generally is observed at 1750 cm
-1

. The nonappearance 

of adsorbed aldehyde is fundamental, because is a synonymous of a 

catalyst that does not deactivate because of fooling phenomenon. At 

this purpose, it is possible to anticipate that the promoters of chromi-

um and zinc have the function to limits the adsorption of acetyl specie 

on the surface.  

In Figure 9B the DRIFT spectra of a copper chromite catalyst has been 

represented. The spectra also in this case shows different bands corre-

sponding to –OH at 3750 cm
-1

, -CH3 and –C2H5 at 2800-3000 cm
-1

, CO2 

adsorbed at 2300-2400 cm
-1

, acetaldehyde specie at 1757 cm
-1

 but the 

intensity of the signals related to the adsorbed esters species are rela-

tively less intense. 
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Figure 9B: DRIFT specta of T-4466 at 100-200-300°C in ethanol 

flow of 2.2 cm
3
/min. The catalyst was previously reduced in 

hydrogen flow at 300°C for 1h. 
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Finally figure 9C, related to the catalyst Cu/ZnO/Al2O3 (K310), shows 

the signal related to C=O stretch of acetaldehyde group at relatively 

low temperature 100°C. At higher temperature, the signal of adsorbed 

ethanol disappears in favor of the esters. Probably the catalysts are 

not able to adsorb acetaldehyde that is present essentially in the gas 

phase. Another possibility is related to the kinetic of esters formation 

that is faster than the acetaldehyde formation. Once formed the acet-

aldehyde this reacts rapidly with the unreacted ethanol to get ethyl 

acetate and for this reason the acetaldehyde adsorbed is not detected 

or the signal is relatively low. This last aspect confirms that the acetal-

dehyde is an intermediate of reaction.  
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Figure 9C: DRIFT specta of K-310 at 100-200-300°C in ethanol 

flow of 2.2 cm
3
/min. The catalyst was previously reduced in 

hydrogen flow at 300°C for 1h. 
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The more clear spectra of Cu-1234 and K-310 can be justified on the 

basis of the better reflectance of the catalysts provided by the alumina 

support. A possible scheme of the reaction, on the basis of the FTIR 

results can be proposed (Figure 10).  

 
Figure 10: scheme of reaction obtained on the basis of FTIR inves-

tigation. 

 

The hypotized mechanism is in agreement with the ones proposed by 

Inui et al. A possible route toward the formation of ethyl acetate has 

been already discusses [6,43,44], but the several theories look like 

controversial. As reported by Inui the reaction proceeds via hemiacetal 

as an intermediate, formed by ethanol adsorption, whereas hemiace-

tal has not been detected in the reaction of ethanol [7-10]. The fine 

structure, of Cu and Cr was determined by using in-situ EXAFS/XANES. 

The experiments were conducted in order to determine oxidation 

states of Cu and Cr during different reaction conditions. The XANES 

and EXAFS experiments were carried out at the Advanced Photon 

Source (APS) of Argonne National Laboratory (ANL) (APPENDIX A). The 
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spectra were obtained in transmission mode at the sector 10 MRCAT 

(Material Research Collaborative Access Team) beam line B, equipped 

with a bending magnet. The experimental data obtained is fitted to 

the model scattering equation to get the coordination numbers; inter-

atomic distances using standard the WINXAS97 and ATHENA software. 

Self-supported catalyst wafers were prepared by pressing the sample, 

diluted by silica, in a cylindrical holder with multiple channels that can 

contain up to six catalysts at a time. In Figure 11 the picture of the 

configuration of reactor and wafers employed is illustrated. 

 
Figure 11: reactor and wafer configuration system employed to realize the Xanes 

measure  

 
The dilution of a sample with silica and the amount of diluted sample 

to make wafers were adjusted to get the optimized absorption edge 

height ( )Eχ  to  about 1 unit. In Cu, Cr, Zn samples, the value of dilu-

tion ratio varied between 1:2 to 1:7 (wt sample: wt silica) and the typi-

cal amount required for wafer preparation was 7mg-15mg of the di-

luted sample. The 6 channel multiple sample holder was placed in the 

center of a quartz reaction tube of 0.75” ID.  18” long. The tube has 

special fitting arrangements at both ends for inlet and outlet of the re-
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actant gases to flow through the reactor as well as it had an opening 

for a thermocouple (K-type) to measure the sample temperature. The 

reactor tube fittings have openings at both ends which were covered 

with polyimide film providing a window to allow transmission of X-ray 

and a seal of the tube. The reactor set-up was heated by an electrical 

furnace to control the reactor temperature. This complete set up al-

lowed us to obtain measurements during reaction conditions i.e. in 

operando mode. The sample measurements were taken in the follow-

ing three conditions: 

• In air at room temperature 

• Reduced sample at room temperature 

• In situ at 270 °C during reaction with ethanol 

• In air after reaction 

The sample was first reduced at 300 ºC for 1 h in 5% H2 (balance He) 

atmosphere at a flow rate of 50cm
3
/min in a hood outside the x-ray 

beam station to optimize utilization of the beam line. After reduction, 

the sample was cooled down in the gas flow to room temperature 

then the flow was stopped and the inlet and outlets valves closed to 

isolate the reactor and avoid air contact. The gas lines were discon-

nected and the reactor was transferred to the beam line and reactant 

gases reconnected, purging fitting tubes and valves before flowing re-

actant gases into the reactor. The spectrum was first obtained at room 

temperature on the reduced samples then the reactor temperature 

was raised from room temperature to 270 ºC under the continuous 

flow of reactants. Standards for the reduced metals were obtained 

from foils and for the oxides from CuO, Cu2O, Cr2O3 and CrO3 furnished 

by Sigma Aldrich. By the comparison with the reference XANES spec-

tra, the Cu K-edge XANES spectra (Cu K edge – 8979 ev analysis) of the 

sample have been analyzed. In order to avoid the local binding struc-

ture in the catalyst the spectra in the Xanes region has been distorted 

thus affects the fitting. A linear combination fitting is performed with a 
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fitting range of 20~30 around absorption edge and a fitting space de-

rivative. Spectra were taken at all the three catalysts, at Cu edges of 

8979 eV, to study the change in oxidation states, and estimate the size 

of nanoparticles (NP) and the coordination state of each element. This 

information is helpful in determining the oxidation state of the ele-

ments which are related to the activity and selectivity of the catalyst 

during reaction. 

In order to understand the characteristics of the Cu K-edge XANES of 

Cu oxides, Cu K-edge XANES spectra of typical Cu oxides with known 

crystal structures and valence states have been measured. At this pur-

pose In Figure 12A the Cu edge XANES spectra of the three different 

Cu standards of Cu
0
, Cu

+
 and Cu

2+
 are reported.  

 

Figure12A: Cu
0
, Cu

+
, Cu

2+
standards Xanes spectra 

The XANES spectra, shown in Figure 12 (B-D), were helpful in qualita-

tively assessing the oxidation state of the bulk material. 
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As it can be seen at the Cu edge (Figure 12B) the Cu, in Cu-1234 cata-

lyst at room temperature, is partially oxidized Cu
2+

. After reduction, 

the peak edge does not match well with that of the pure Cu metal ref-

erence foil XANES. In more details after reduction of copper it is possi-

ble identify two different oxidation state of copper: metallic Cu and 

Cu
+1

 species, typically presented by the spinel of copper chromite cata-

lysts. In presence of ethanol/He only, a small change seems to take 

place but still mostly Cu is in reduced state. 

 
Figure 12 B: Cu Edge Xanes-Cu-1234. The measure has been done in 

different step. 1. Exposure to the air. 2. catalyst reduction. 3. Ethanol 

decomposition.  

 

In table 5A are summarized the percentage composition of each oxida-

tion state in the three operating mode. 
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Table 5A: percentage composition of each copper oxidation state 

Cu oxid. 

state 

Exposure 

to the Air 
 Catalyst Reduced   Ethanol  Exposure 

Cu
0
 0.270 0.84 0.710 

Cu
+
 0.214 0.26 0.290 

Cu
2+

 0.524 - - 

 

The presence of two oxidation state is in agreement with the TPR 

measures that discriminate two different way of copper reduction. The 

reduction of copper oxide not linked to chromium oxide is a reaction 

occurring for all the tested catalysts. The second copper reduction 

path is that of copper chromite, occurring for about 50% of the total 

copper chromite. Cu° formed in this way, grows epitaxially
  
on the spi-

nel surface, while, H
+
 remains inserted into the spinel structure taking 

the place of Cu
2+

 for compensating the negative charges of the crystal 

lattice. The spinel Cu (II)(1–y)H+2yCr2O4 is an acid catalyst in which, in 

case of Cu-1234, some basic promoters of Barium oxide are dispersed. 

Moreover, this behavior is demonstrated also by TPD-NH3 measure in 

which the presence of strong acidic sites related to the presence of a 

charge H
+
 is inserted in the spinel structure. The presence of copper in 

two oxidation state also after reduction of the catalyst at high temper-

ature (>300°C) could suggest that the active phase in the dehydro-

genation to ethyl acetate is the spinel of copper chromite and not the 

reduced copper as suggested by Prasad et al. [45]. The same consider-

ations have been done for the copper-chromia catalyst T-4466. By 

comparing the EXAFS spectra of the copper-chromia T4466 catalysts 

with the ones of the copper standard, it is possible deduce that in air 

the catalyst is partial oxidized form while after reduction the edge 

match well with that of the pure Cu metal reference foil XANES, show-

ing a completely reduction of copper to copper foil (Figure 12 C).  
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Figure 12C: Cu Edge Xanes-T-4466. The measure has been done in dif-

ferent step. 1. Exposure to the air. 2. catalyst reduction. 3. Ethanol de-

composition. 

 

In table 5B the composition of the different oxidation states, at two 

different catalyst treatments, have been reported. 

 

Table 5B: percentage composition of each copper oxidation state for 

T-4466 

Cu oxid. 

state 

Exposure 

to the Air 
 Catalyst Reduced 

Cu
0
 0.085 1.00 

Cu
+
 0.018 - 

Cu
2+

 0.841 - 

 

As it can be seen at the Cu edge (Figure 12 D) the K-310 catalyst at 

room temperature, is partially oxidized Cu
2+

. After reduction, the peak 

edge matches as well with that of the pure Cu metal reference foil 

XANES and on K-310 catalyst only copper foil have been individuated. 
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In presence of ethanol/He only, a small change seems to take place 

but still mostly Cu is in reduced state.  

 
Figure 12D: Cu Edge Xanes-K310 The measure has been done in differ-

ent step. 1. Exposure to the air. 2. catalyst reduction. 3. Ethanol de-

composition. 

 

In Table 5C the composition of the different oxidation states, at three 

different catalyst treatments, have been reported. 

 

Table 5C: percentage composition of each copper oxidation state for K-310 

Cu oxid. state 
Exposure 

to the Air 
 Catalyst Reduced Ethanol  Exposure 

Cu0 - 1.000 1.000 

Cu+ - - - 

Cu2+ 1.000 - - 
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Spectra were taken at all the three catalysts at Cr edges of 5989 eV. At 

the same way in order to understand the characteristics of the Cr K-

edge XANES of Cr oxides, Cr K-edge XANES spectra of typical Cr oxides 

with known crystal structures and valence states (standards) have 

been measured. One of the main drawbacks for Cr data set do not 

have reliable reference signal. The analysis is based on the assumption 

that during the measurement, there is no energy shift.  Cr foil data is 

noisy in the xanes region.  Fitting is performed in xanes region fitting 

range: -20 to +30 around absorption edge and fitting space energy 

(normalized).  In Figure 13A the XANES spectra for the two chromium 

standard (Cr
3+

 and Cr
6+

) have been reported. 

 
Figure 13A: Cr Edge Xanes of two standards CuCr3 and Cu2O3. 
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By the comparison of the chromia spectra of both the catalysts Cu-

1234 and T-4466 is air with the standard Cr
3+

 (see Figure 13B) a perfect 

matching has been obtained.  

 
Figure 13 B: Cr Edge Xanes. Comparison of the oxidation state of two catalysts Cu-

1234 and T-4466 in air. 

 

The fresh commercial catalysts of copper chromite are Cr
6+

 free also 

before the pre-treatment. This is a key factor for the industrial applica-

tion of these catalysts. The absence of Cr
6+

, a possible carcinogenic el-

ement, makes this process green, safety for human healthy and at low 

environmental impact. 

In Figure 13C are shown the EXAFS spectra for the catalysts Cu-1234 

and T-4466 after reduction that are perfectly matched with the profile 

of the Cr
3+

 standard. 
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Figure 13C: Cr Edge Xanes. Comparison of the oxidation state of two cat-

alysts Cu-1234 and T-4466 after hydrogen reduction at 300°C. 

 

Thus, after the pre-treatment of the catalysts in hydrogen flow, no 

great changes in the chromium oxidation states have been detected. 

After a detailed description of the physical and chemical characteristic 

of the commercial copper catalysts promoted with chomia or zinc un-

supported and supported on alumina, a depth investigation of the per-

formances of these catalysts into ethanol dehydrogenation reaction to 

ethyl acetate has been realized. A discussion of the correlation of the 

structural and chemical properties, in terms of basicity and acidity, 

with their performances will be discussed into the final section of this 

chapter. 

 

B-4.3 High pressure dehydrogenation  

In this research, five different commercial catalysts have been studied, 

promoted with two different oxides such as chromia and zinc and sup-
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ported or unsupported on alumina. The main aim is to evaluate the 

performances of these commercial catalysts to produce ethyl acetate 

and pure hydrogen at high pressure (10-30 bar) and temperature (200-

260°C). 

A first examination on the performances of two different Cu-ZnO-Al2O3 

catalysts has been done. After that, the performances of three differ-

ent copper chromite catalysts with different content of chromia, un-

supported or supported on alumina have been evaluated. 

Copper is, normally, present in the catalysts composition in the form 

of oxide and must be reduced to metal to be active. For this reason all 

the proven catalysts in pellets have been submitted to the already de-

scribed pre-treatment with a flow stream of hydrogen mixed with ni-

trogen for about 18 hours at 200°C. This pre-treatment is very im-

portant for the catalysts performances, as it can be appreciated in Ta-

ble 6, in which conversions and selectivities, obtained for the catalyst 

BASF Cu-1234-1/16-3F after respectively 2, 4, 10 and 18 hours of pre-

treatment are reported. In particular in Table 6 the kinetic runs after 2, 

4, 10 and 18 hours, performed at 220°C with ethanol liquid flow rate 

of 0.1 cm
3
/min diluted in a mixture of H2 6% in N2  at 20 bar using 

50.12 g of Cu-1234 catalyst have been reported. 

 

Table 6: Effect of activation time performed with a gas mixture of H2 

6% in N2, at temperature of 200°C, pressure 1 bar. 

Activation time (h) X (%) SAcOEt (%) SCH3CHO (%) Sothers (%) 

2 31.59 34 49.6 16.4 

4 35.4 51.7 43.5 14.8 

10 44.33 96.82 1 2.17 

18 57.35 97.74 - 2.26 

 



 
Section B 

Chapter 4  

Experimental 

 

  

 169 

 

As it can be seen, the conversion increased at more prolonged pre-

treatment and after 18 hours no further change of conversion should 

occur. The results reported in Table 6 show that the prolonged reduc-

tion time have a significantly effects also on the ethyl acetate selectivi-

ty, this suggest that the copper in reduced oxidation state is more se-

lective to desired product of reaction. 

A so long pre-treatment with hydrogen is necessary, in particular, for 

the BASF-K310 catalyst that is the less reducible catalyst, as previously 

demonstrated by TPR profiles, in order to reduce completely the cata-

lyst. In the present research, the behavior of five different catalysts, in 

the ethanol dehydrogenation, has been studied. At first, the behavior 

of the BASF K-310 catalyst, which composition was rich in copper oxide 

supported on Al2O3 and ZnO was studied. The main scopes were to in-

dividuate the best operative conditions (temperature, pressure and 

contact time) for the reaction to ethyl acetate by evaluating the relat-

ed performances in term of conversion, selectivity, by products for-

mation and catalyst stability. In Table 7 the results of ethanol conver-

sion, ethyl acetate and acetaldehyde selectivity, obtained by changing 

the pressure and the ethanol residence time, have been summarized. 

In more details, the performances of the copper-zinc-alumina catalyst 

(K-310) have been studied at different temperature 170-200°C, pres-

sure 1-15-20 bar, residence time 5.6-943.9 ghmol
-1

. As reported in Ta-

ble 7 by increasing the temperature of reaction from 170°C to 200°C a 

sensible increase of the ethanol conversion from 56 to 63% has been 

appreciated. Another aspect to take in account is the effect of the res-

idence time of the ethanol, at this purpose in Figure 14A an histogram 

of the ethanol conversion, acetaldehyde and ethyl acetate selectivities 

at two different residence time respectively of 32.44 and 97.32 ghmol
-

1
 have been reported. The experimental results have been obtained by 

performing the reaction at a temperature of 200°C and at a pressure 

of 20 bar. 
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Figure 54A: catalyst K310. Ethanol conversion, acetaldehyde 

and ethyl acetate profiles at two different residence time 

32.44-97.32 ghmol
-1

, at 200°C, 20 bar. 

 

As confirmed by the profile in Figure 14A the residence time have a 

significantly effect on the ethyl acetate selectivity that increase by 80 

to 97% at high residence time of 97.32 ghmol
-1

. The ethanol conver-

sion is of about 50%mol and was not affected by the variation of resi-

dence time because the ethanol conversion has reached the equilibri-

um of reaction. 

More significantly is the effect of the pressure of reaction, as matter of 

fact at atmospheric pressure and at low residence time (5ghmol
-1

) the 

main product of reaction is the acetaldehyde with a selectivity of 

about 84% (Figure 14B). 
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Figure 64B: catalyst K-310. Effect of the total pressure (1-13-25 

atm).Temperature 200°C, residence time 5ghmol
-1

, inert flow 

4cc/min.K-310 

 

At first, as confirmed by the profile of Figure 14B, by increasing the 

pressure of reaction from 1 atm to 25 atm the ethanol conversion de-

creases from 60% to 30%. This behavior is in agreement with our 

thermodynamic study reported in chapter 2 of the current section. 

Moreover, the pressure has a significant effect on the selectivity to ac-

etaldehyde and ethyl acetate. At atmospheric pressure, the main 

product of reaction is acetaldehyde (86%) and by increasing the pres-

sure of reaction at 13 atm a significant increase of ethyl acetate is ob-

served (52%). At pressure higher than 20 bar the main product of reac-

tion is the ethyl acetate with a selectivity of about 78%. The mass bal-

ance on the carbon is closed by considering the other sub-products of 

this reaction mainly aldehydes and ketones C3-C4. In particular, the 

formation of methyl ethyl ketone is the main inconvenient to obtain 

the purity target requires by industry for ethyl acetate that forms an 
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azeotrope with the ketone above mentioned.  The obtained results are 

in perfect agreement with the literature [5,46-48] the performances of 

a copper-zinc-alumina catalyst at a temperature of 200°C and atmos-

pheric pressure, in this condition for a conversion of about 40% a se-

lectivity to acetaldehyde of 98% has been obtained. Another aspect to 

be considered is the effect of the pre-reduction of the catalyst in situ 

with a stream of 5cm
3
/min of 6% H2 in N2. The Figure 14C shows the 

comparison between two different runs performed on K-310 at a pres-

sure of 20 bars, at a residence time of about 97ghmol
-1

 and at a tem-

perature of 200°C, respectively with a pre-reduced catalyst (Table7, 

run 7A) and a not reduced ones (Table7, run 6A).  

As shown by the profiles of Figure 14C the effects of the pre-reduction 

treatment on both the activity and ethyl acetate selectivity are signifi-

cant.  The fresh catalyst shows a low activity (15%) and a poor selectiv-

ity to ethyl acetate (15%). After the reduction with a stream of 6% H2 

in N2, the activity of the catalyst is highly promoted (55%) and the 

ethyl acetate selectivity rising up to a value of about the 80%. 

 

Figure 7: effects of the pre-treatment on K-310 catalyst performances 
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The improved selectivity to ethyl acetate is due in this case also to the 

effect of the residence time. At higher residence time, of about 

97ghmol
-1

, a selectivity to ethyl acetate of 80% has been obtained vs 

the 59% obtained at lowest residence time of 5ghmol
-1

. This very 

promising results, in terms of pressure effect, have been forwarded to 

a more deeply investigation. The mainly aspects that should be con-

sidered to propose a catalyst, as a possible candidate for application in 

an industrial process, is its thermal, mechanical and chemical strength. 

As matter of fact the main factors to take in account to apply the cata-

lyst in an industrial process is its durability, resistance to sintering, to 

poisoning effect and to thermal stress. Several studies have already 

shown the scarce resistance to sintering of copper-zinc-allumina at 

temperature of reaction higher than 200°C [47,49]. At this purpose the 

K-310 activity have been studied at two different pressures of 1 bar 

and 20 bar, at a temperature of 200°C and at constant residence time 

of 5.6 ghmol
-1

. The profiles of activity have been reported in Figure 

14D. 
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Figure 14D - Deactivation profiles for K-310 catalyst. ■The run has been per-

formed with 0.58g of catalyst at temperature of 200°C, at atmospheric pres-

sure and at contact time of 5.6 ghmol
-1

, N2 flow rate 4 cm
3
/min.▲. The run 

has been performed with 10 g of catalyst at 200°C, at 20 bars and contact 

time of 98.7 ghmol
-1

 with N2 flow rate 25 cm
3
/min. 
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The rapid deactivation after about 1h of reaction is due to the effect of 

both sintering of copper on the catalysts surface and to the fouling of 

the catalysts surface by the effect of acetaldehyde adsorption. The ac-

tivity faster decreases by increasing the pressure, as it can be seen in 

the above mentioned figure. However, we can conclude that copper 

deposited on ZnO-Al2O3 produces mainly acetaldehyde, at low pres-

sure (1 bar), ethylacetate at higher pressure (10-20 bars) but with a 

maximum selectivity of 80-83%. Many by-products. deriving from the 

acetaldehyde condensation, are formed lowering the selectivity. Then, 

the catalyst is subjected to deactivation probably by sintering as sug-

gested by the literature for this type of copper catalysts
 
[47,49]. On 

the other hand as this catalyst is less selective in the studied reaction it 

cannot be excluded a contribution of fouling to the deactivation as a 

consequence of the acetaldehyde condensation reactions giving place 

to strongly adsorbed bulky molecules. 

 

Figure 14E: K310 catalyst. Hydrogen productivity profile in dependence 

by the time on stream for K-310 catalyst. Temperature 200°C, Pressure 

1 bar, residence time 5.6 ghmol
-1
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The K-310 catalyst, by operating with 0.58 g of catalyst, at tempera-

ture of 200°C, at atmospheric pressure and at contact time of 5.6 

ghmol
-1

 and  N2 flow rate 4 cm
3
/min, have shown a maximum of hy-

drogen productivity of about 259 gH2/(Kgcat*h). By increasing the time 

on stream, the ethanol conversion decreases by the effect of the foul-

ing of the active sites due to the coke deposition. Consequently the 

hydrogen productivity slightly decreases until 135 gH2/(Kgcat*h) after 

about 350 min of time on stream (see Figure 14E). 
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Table 7. Some catalytic results obtained for the catalyst K-310 by opportunely changing some significant operative conditions. *The Run 6A is related to 

the performances of a catalyst not pre-reduced with 6%H2in N2 flow. This run should be compared with Run 7A. 
 

RUN 
Cat. 
(g) 

W/F 
(ghmol-1) 

T 
(°C) 

P 
(atm) 

FEtOH 
(cm3/min) 

F (H2 
6%/N2) 

(cm3/min) 

F N2     

(cm3/min) 
X (%) 

SAcOEt 

(%) 
SCH3CHO 

(%) 

 
Sothers 

(%) 
 

PH2 
(gH2/Kgcat h) 

 

1A 0.58 5.6 170 1 0.1 - 4 64.3 10.7 89.0 n.d. 224.90 

2A 0.58 5.6 200 1 0.1 - 4 52.7 12.5 87.5 n.d. 184.88 

3A 0.58 5.6 200 15 0.1 - 4 51.6 58.9 37.1 5.0 173.78 

4A 10.14 98.7 200 15 0.1 - 5 24.1 74.3 20.0 5.7 4.56 

5A 10.14 98.7 200 20 0.1 - 5 28.6 80.7 10.2 9.1 5.22 

6A* 10.14 98.7 200 20 0.1 5 - 13.3 13.3 59.9 26.7 1.95 

7A 10.14 97.32 200 20 0.1 5 - 57.39 92.46 7.52 0.02 11.51 

8A 10.14 32.44 200 20 0.3 5  50.62 74.52 22.63 2.85 29.61 

9A 9.70 943.9 200 15 0.01 5 - 56.2 82.2 9.2 8.6 1.08 

10A 9.70 943.9 200 15 0.01 5 - 63.5 83.1 11.0 5.8 1.25 
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The performances of another commercial copper zinc alumina (Sg-

9601) catalyst have been studied. The catalyst supplied by BASF has an 

analogue composition of K-310 but is tougher to sintering, because 

during the preparation has been submitted to thermal treatment to 

stabilize the active phase. The catalytic runs have been performed at a 

pressure of 20 bar, at a constant residence time of 4 ghmol
-1

 and by 

using a mixture of 6% H2 in N2 of 25 cm
3
/min. 

 The results in terms of activity and selectivity have been reported in 

Table 8. The profiles of conversion (Figure 15A) show that the catalysts 

has a relatively low activity and its behavior could be justified by the 

lowest specific surface area of this catalyst of about (62 m
2
/g) respect 

to the K-310 of about (120 m
2
/g). 
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Figure 15A: catalyst Sg-9601. The runs were performed at 20 bar, at 4 

ghmol
-1 

of residence time and with a mixture of 6% H2 in N2 of 25 

cm
3
/min 
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Despite the low activity (ethanol conversion <30%mol) the catalyst 

shows an high selectivity to ethyl acetate, that increases with the reac-

tion temperature by reaching a maximum of about 90% at 240°C. At 

temperature higher than 260°C the selectivity decreases by the effect 

of the molecules decomposition to CO and H2. The main advantage of 

this catalyst is the higher stability, also at higher temperature of reac-

tion and after about 40 h of reaction, the catalyst did not deactivates 

for the effect of sintering of the active phase or fouling due to acetal-

dehyde adsorption and successive polymerization. The hydrogen 

productivity of Sg-9601, by operating at constant residence time of 4 

ghmol
-1

, at a pressure of 20 bar and by using a constant total flow of 

H26% in N2 of 25 cm
3
/min, changes by increasing the temperature of 

reaction from 200 to 260°C in the range 25-130 gH2/(Kgcat*h). It is evi-

dent that at higher temperature, the dehydrogenating action of the 

catalyst is higher and the ethanol conversion rising up to 30% (Figure 

15 B). 
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Figure 15B: Sg-9601. Hydrogen productivity profile vs temperature 

of reaction (200-260°C). Pressure 20 bar, residence time 4 ghmol
-1

 

and a mixture of 6% H2 in N2 of 25 cm
3
/min.       
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This catalyst could be considered a possible candidate for industrial 

application provided, thus, its performances will be investigated in 

more details, and this aspect will be subject of next future works.
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Table 8: Sg-9601 catalytic results obtained by opportunely changing some significant operative conditions.  

RUN Cat. (g) 
W/F 

(ghmol-1) 

T 

(°C) 

P 

(atm) 

FEtOH 

(cm3/min) 

F H26% N2 

(cm3/min) 
X (%) 

SAcOEt 

(%) 

SAcH 

(%) 

SALTRI 

(%) 

PH2 

(gH2/Kgcat h) 

 

1A 2.10 4.25 200 20 0.5 25 5.05 84.27 15.73 0.00 24.47 

2A 2.10 4.25 200 20 0.5 25 5.21 84.64 15.36 0.00 25.24 

3A 2.10 4.25 200 20 0.5 25 5.45 84.84 15.15 0.00 26.40 

1B 2.10 4.25 220 20 0.5 25 10.80 90.33 9.66 0.01 52.32 

2B 2.10 4.25 220 20 0.5 25 10.27 88.68 11.32 0.00 49.76 

3B 2.10 4.25 220 20 0.5 25 10.77 87.70 12.30 0.00 52.18 

1C 2.10 4.25 240 20 0.5 25 16.36 89.88 10.11 0.01 79.25 

2C 2.10 4.25 240 20 0.5 25 17.41 90.77 9.03 0.20 84.18 

3C 2.10 4.25 240 20 0.5 25 18.64 89.64 10.33 0.03 90.28 

1D 2.10 4.25 260 20 0.5 25 30.08 88.81 8.07 3.12 141.18 

2D 2.10 4.25 260 20 0.5 25 28.89 86.05 7.98 5.97 131.61 

3D 2.10 4.25 260 20 0.5 25 28.89 90.45 7.28 2.27 136.79 
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The performances of the copper catalysts promoted by chromium ox-

ide have been studied. In particular the performances of two different 

Copper-Chromia catalysts, T-4466 and Cu-0203 supplied, respectively, 

by Sud-Chemie and BASF, with a different weight ratio of CuO:Cr2O3 

have been investigated. In more details, the performances of a com-

mercial copper chromite catalyst promoted with barium oxide, chro-

mia and alumina has been examined in several operative conditions of 

pressure, temperature, residence time and hydrogen partial pressure.   

The results obtained for the Sud Chemie T-4466 copper/copper chro-

mite catalyst are summarized in Table 9. In this case, 50 g of catalyst 

have been charged in the packed bed reactor. This catalyst resulted 

more stable to sintering and we have had the possibility to operate al-

so at temperatures higher than 200°C.  

In Figure 16 A an indication of the performances of T-4466 catalyst, at 

different temperature of reaction, have been observed. As already 

known, the operating temperature has a strong effect on the conver-

sion but has not affect the selectivity results. In particular, at 260°C a 

conversion of 50% has been obtained vs 30% at 200°C.  

The selectivities of this copper/copper chromite catalyst (96% for a 

conversion of 50%) are much higher than the ones obtained with the 

BASF K-310 catalyst but the best values have been obtained at higher 

temperatures. However, activities are relatively low, for this catalyst, 

in accordance with its low specific surface area. It must be pointed out 

that the presence of copper chromite in the catalyst composition has a 

positive effect on both the selectivity to ethyl acetate and stability to 

copper sintering and catalyst deactivation. 
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Figure 16A: T-4466. Effect of the temperature (200-220-

260°C).Temperature 20°C, residence time 98.23 ghmol
-1

, a mix-

ture of 6% H2 in N2 of 25 cm
3
/min.  

 

The catalyst stability has been established by controlling period-

ically the conversion and selectivity in the conditions of run 3B, 

of Table 9, during the time. Both conversion and selectivity re-

mained unchanged for about 70 hours of reaction.  
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Table 9: Examples of catalytic results obtained for the Sud-Chemie T-4466 catalyst. All the dehydrogenation reactions were realized at a pressure of 20 

bars. 

RUN Cat. (g) 
W/F 

(ghmol-1) 

T 

(°C) 

FEtOH 

(cm3/min) 

F H2 6%/N2 

(cm3/min) 
X (%) 

SAcOEt 

(%) 
SCH3CHO (%) 

Sothers 

(%) 

PH2 

(gH2/Kgcat h) 

1B 50.47 98.23 200 0.5 25 29.18 96.8 2.2 1.0 5.82 

2B 50.47 98.23 220 0.5 25 39.63 95.8 2.6 1.6 7.86 

3B 50.47 98.23 260 0.5 25 50.4 95.8 1.6 2.6 9.90 



 
Section B 

Chapter 4  

Experimental 

 

  

 184 

 

The performances of Cu-0203 catalyst have also been described. 

This catalyst has a composition very similar to the ones of cop-

per/chromia T-4466. The runs were performed by using only 2g 

of catalyst. The results of conversion and product selectivity 

have been presented in Table 10. In Figure 17A the results as 

function of the reaction temperature have been represented. 
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Figure17A: Cu0203, W/F=4ghmol-1, temperature 220°C, pressure 

20 bar, 25cm
3
/min of H26% in N2. 

 

The activity of the examined catalyst is very poor, less than 15% of 

ethanol conversion also at relatively high temperature of reaction 

(260°C). In addition, the selectivity to ethyl acetate is less than 70% 

and one of the acetaldehyde is one of the main co-products of reac-

tion with a selectivity of about 32-37%. The hydrogen productivity of 

Cu-0203 is comprised in the range 25-65 gH2/(Kgcat*h) (Figure 17B). 

The performances of the catalyst in exam will be compared in the next 

paragraph with the ones, obtained by using a catalyst bed of 2g, of the 

other two catalysts studied Sg-9601, a copper/ZnO/Al2O3, and Cu-



 
Section B 

Chapter 4  

Experimental 

 

  

 185 

 

1234, a copper chromite catalyst promoted with alumina and barium 

oxide. 
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Figure 17B8: Cu-0203. Hydrogen productivity profile vs tem-

perature of reaction (200-260°C). Pressure 20 bar, residence 

time 4 ghmol
-1

 and a mixture of 6% H2 in N2 of 25 cm
3
/min. 
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Table 10: Examples of catalytic results obtained for the Cu-0203 catalyst. All the dehydrogenation reactions were realized at a pressure of 20 

bars, at W/F=4ghmol
-1

 and by feeding a mixture 0f 25cm
3
/min 6% H2 in N2. 

RUN 
Cat. 

(g) 

W/F 

(ghmol-1) 

T 

(°C) 

P 

(atm) 

FEtOH 

(cm3/min) 

F H26% N2 

(cm3/min) 
X (%) 

SAcOEt 

(%) 

SAcH 

(%) 

SALTRI 

(%) 

PH2 

(gH2/Kgcat h) 

 

1A 2.00 3.90 Sg9601 20 0.5 25 4.65 68.07 31.93 0.00 23.65 

2A 2.00 3.90 200 20 0.5 25 4.82 66.48 33.51 0.01 24.52 

3A 2.00 3.90 200 20 0.5 25 4.86 67.90 32.09 0.01 24.72 

1B 2.00 3.90 220 20 0.5 25 5.34 64.89 35.11 0.00 27.16 

2B 2.00 3.90 220 20 0.5 25 5.83 63.15 36.85 0.00 29.66 

3B 2.00 3.90 220 20 0.5 25 5.28 62.61 37.38 0.01 26.86 

1C 2.00 3.90 240 20 0.5 25 7.30 58.59 41.41 0.00 37.13 

2C 2.00 3.90 240 20 0.5 25 7.32 57.06 42.93 0.01 37.23 

3C 2.00 3.90 240 20 0.5 25 7.43 59.77 40.22 0.01 37.79 

1D 2.00 3.90 260 20 0.5 25 11.32 70.22 29.78 0.00 57.58 

2D 2.00 3.90 260 20 0.5 25 11.31 71.82 28.18 0.00 57.53 

3D 2.00 3.90 260 20 0.5 25 11.96 68.77 31.03 0.20 60.72 
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Catalyst BASF Cu-1234-1/16-3F contains relatively dispersed copper 

chromite particles (see X-rays diffraction of Figure 3) supported on 

alumina. This catalyst has been studied in a more details, because pro-

vided the best performances for what concerns activity, selectivity and 

stability. A wide range of experimental runs were performed and in 

particular the catalytic reactor was charged with respectively 2-10-50g 

of catalyst. The runs were performed at different temperature (200-

260°C), pressure (1-30 bar), residence time (1-20 ghmol
-1

) and at three 

different hydrogen molar flow rate (7.31x10
-4

 – 2.19 x10
-3

 -3.66 x10
-3

 

mol/h) and consequently at three different mixture of H2 6% in N2 of 

respectively 5-15-25 cm
3
/min.  

Catalyst bed 2g - In more detail in the Tables 11A-C are reported the 

runs performed, by using 2g of catalyst, respectively at 10-20-30 bar, 

at different temperature (200-260°C) and by using a constant hydro-

gen flow rate (3.66 x10
-3

 mol/h).  

In Table 11D the results obtained, by operating at two different tem-

peratures 200-220°C and at a constant pressure 20 bars, by using two 

different ethanol residence time (1-20 ghmol
-1

) has been summarized. 

In Tables 11E-11F, the comparison of the performances obtained by 

changing the hydrogen fed to the reactor have been reported. The 

runs in this case have been obtained for the three residence times (1-

4-20 ghmol
-1

) at a constant pressure (20 bar), temperature (220°C), 

and at three different hydrogen partial pressure. The comparison of 

the performances has been reported in the profile of Figure 18 A-I. 

In Figure 18A the ethanol conversions as function of the reaction tem-

perature for the catalyst of copper chromite, promoted with barium 

chromate and alumina, at three different pressure 10-30 bars, have 

been reported. The runs have been performed by using 2g of catalyst, 

4ghmol
-1

 of residence time, 3.66 mol/h of hydrogen and 0.057mol/h of 

nitrogen. 
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Figure 18A: catalyst Cu-1234. Ethanol conversion profiles. The 

runs were performed by changing the temperature (200-260°C) 

and at three different pressure 10-20-30 bar, at 4 ghmol
-1 

of resi-

dence time and with a mixture of 6% H2 in N2 of 25 cm
3
/min. 

 

At a pressure of 10 bar the catalyst shows a conversion of about 15% 

that increase until reach a 45% at 260°C. By increasing, the pressure 

from 10 to 30 bar an evident decrease of the activity has been ob-

served. In particular, at 260°C and at a pressure of 30 bar a conversion 

of 27% has been obtained. This behavior is in agreement with the 

thermodynamic studies reported in the chapter 2 of the section B. In 

Figure 18B, the selectivities to ethyl acetate have also been compared. 

At very low residence time, as in this particular case of about 4ghmol
-1

, 

the selectivity to ethyl acetate is of about 62% at a temperature reac-

tion of 200°C and slightly increases to 67% at a temperature of 260°C. 

At low temperature, 200°C at a pressure of both 20-30 bar the selec-

tivity is included in the range 80-85%. By increasing the temperature 

the best selectivity to ethyl acetate has been obtained by operating at 

a pressure of 20 bar in all the range of temperature examined.  
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Figure 18B: catalyst Cu-1234. Ethyl acetate selectivity profiles. 

The runs were performed by changing the temperature (200-

260°C) and at three different pressure 10-20-30 bar, at 4 ghmol
-1 

of residence time and with a mixture of 6% H2 in N2 of 25 

cm
3
/min. 

 

The pressure has a great influence on the acetaldehyde formation. As 

demonstrated by the profiles of Figure 18C at low temperature (200°C) 

and at a pressure of 10 bar the acetaldehyde selectivity is around 38-

40% and decrease, at parity of temperature, to 15-18%. The effect of 

the increased pressure is stronger at higher temperature of reaction.  
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Figure 18C: catalyst Cu-1234. Acetaldehyde selectivity profiles. 

The runs were performed by changing the temperature (200-

260°C) and at three different pressure 10-20-30 bar, at 4 ghmol
-1 

of residence time and with a mixture of 6% H2 in N2 of 25 

cm
3
/min. 

 

The hydrogen productivity has been studied also for the catalysts of 

Cu-1234. At a constant residence time of 4ghmol
-1

 and H2 6% in N2 flow 

of 25 cm
3
/min, the profiles of hydrogen productivity vs the reaction 

temperature at three different operating pressure has been reported 

in Figure 18D. 
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Figure 18D: catalyst Cu-1234. Hydrogen productivity profiles. The 

runs were performed by changing the temperature (200-260°C) 

and at three different pressure 10-20-30 bar, at 4 ghmol
-1 

of resi-

dence time and with a mixture of 6% H2 in N2 of 25 cm
3
/min. 

 

By increasing the reaction temperature, the hydrogen productivity in-

creases but on the other hand the increase of the reaction pressure 

suppress the dehydrogenating activity of the catalyst and consequent-

ly a reduction of the ethanol conversion promotes the decrease of the 

hydrogen productivity. The higher hydrogen productivity of about 200 

gH2/(Kgcat*h) has been obtained by operating at 10 bar and 260°C of 

reaction. The hydrogen productivity of this catalyst Cu-1234 and the 

obtained results are very promising for a future application of this cat-

alytic system an industrial process for ethyl acetate and pure hydrogen 

production. 

The effect of how the residence time affects the ethanol conversion 

and the selectivities of the main products of the dehydrogenation re-

action is well represented in Figure 18E. 
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Figure 18E: catalyst Cu-1234. Ethanol residence time effect 

on the ethanol conversion and main products selectivity. The 

runs were performed by changing the residence time 1-4-20 

ghmol
-1

.The runs were performed at 20 bar and 220°C. 

 

At low residence, time of about 1ghmol
-1

, the ethanol conversion is of 

about 12% and increases to 25% at 4ghmol
-1

. At higher residence time 

of 20 ghmol
-1

 an ethanol conversion of 48% has been achieved. The 

residence time affects in significant way the selectivity to the desired 

product of reaction. At low residence time a selectivity to ethyl acetate 

of 52% vs 42% of selectivity to acetaldehyde has been obtained. At 

first to favor the main reaction product to reach the industrial target 

of purity (98.9%) is necessary to increase the ethanol residence time, 

as demonstrated by the profiles of Figure 18E, at 20 ghmol
-1

 a selectiv-

ity to ethyl acetate of about 90% has been obtained. The acetaldehyde 

selectivity is less than 10%. In Figure 18F the dependence of the hy-

drogen productivity from the ethanol residence time has been repre-

sented. The runs have been performed at 20 bar, 220°C, at H2 6% in N2 

flow of 25 cm
3
/min and at three different residence time of 1-4-20 

ghmol
-1
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Figure 18F: catalyst Cu-1234. Ethanol residence time effect on the 

hydrogen productivity. The runs were performed by changing the 

residence time 1-4-20 ghmol
-1

.The runs were performed at 20 bar 

and 220°C. 

 

The profile of Figure 18F has shown that the higher hydrogen produc-

tivity, in the reaction condition above described, was of about 400 

gH2/(Kgcat*h). A depth investigation of the hydrogen partial pressure 

effects on the catalysts activities and selectivities to ethyl acetate have 

been realized by fed in the reaction apparatus, three different hydro-

gen molar flow respectively of 7.31x10
-4

-2.19x10
-3

 and 3.66x10
-3

 mol/h 

in mixture with ethanol (see Figure 18G-I). In Figure 18G the ethanol 

conversion profiles vs the hydrogen molar flow rate (mol/h) at three 

different residence time of 1-4-20ghmol
-1

 have been reported. 
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Figure 18G: catalyst Cu-1234. Variation of hydrogen molar flow 

rate effect on the catalyst conversion. The runs were performed 

by changing the hydrogen flow rate (7.31x10
-4

-2.19x10
-3

 and 

3.66x10
-3

 mol/h).The runs were performed at 20 bar and 220°C. 

 

The profiles of conversion show the effect of hydrogen partial pres-

sure on the catalyst activity. Is clear that by increasing the hydrogen 

molar flow a significantly increase of the ethanol conversion is ob-

served and this phenomenon is more strongly evident for higher resi-

dence times. The best results have been obtained at 20 ghmol
-1

 by fed 

hydrogen flow of 0.0037mol/h. At these conditions, an ethanol con-

version of 47% was achieved. In Figure 18H the selectivity profiles 

show the favorable effect of the hydrogen pressure on ethyl acetate 

formation.  
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Figure 18H: catalyst Cu-1234. Variation of hydrogen molar flow 

rate effect on the ethyl acetate selectivity. The runs were per-

formed by changing the hydrogen flow rate (7.31x10
-4

-2.19x10
-

3
 and 3.66x10

-3
 mol/h).The runs were performed at 20 bar and 

220°C 

 

At low residence, time 1 ghmol
-1

 the ethyl acetate selectivity increase 

from 37% to 53% by increasing the hydrogen flow from 7.31x10
-4

 to 

3.66x10
-3

 mol/h. The residence time of 20 ghmol
-1

, at low hydrogen 

partial pressure, gives an ethyl acetate selectivity of about 75%. The 

ethyl acetate selectivity achieves a maximum of 90% at 20 ghmol
-1

 and 

hydrogen flow of 3.66x10
-3

 mol/h. In Figure 18I, the profiles of acetal-

dehyde selectivity by changing the hydrogen molar flow rate fed in the 

apparatus have been reported. Moreover, this study was performed at 

three  different residence time 1-4-20 ghmol
-1

. 
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Figure 18I: catalyst Cu-1234. Variation of hydrogen molar flow rate effect 

on the acetaldehyde selectivity. The runs were performed by changing the 

hydrogen flow rate (7.31x10
-4

-2.19x10
-3

 and 3.66x10
-3

 mol/h).The runs 

were performed at 20 bar and 220°C. 

 

The acetaldehyde selectivity at low residence time (1ghmol
-1

) and at 

low hydrogen pressure 7.31x10
-4

 is of about 63%. In this condition, the 

acetaldehyde is the main reaction product. Increasing the residence 

time and hydrogen partial pressure favors, a decrease of acetaldehyde 

that in this process is undesired because limits the target of ethyl ace-

tate purity required by industry. 
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Table 11A: Experimental Runs of Cu-1234 catalysts. The runs have been performed in a range of 200-260°C of temperature, by using a catalytic bed of 2g, 

at 10 bar, at a residence time of 4ghmol
-1

, an ethanol flow of 0.5mol/h, a total flow of 6%H2 in N2 of 25 cm3/min that corresponds to FN2=0.057 mol/h 

and to FH2=3.66E-3 mol/h. 

N Wcat 

(g) 

W/F EtOH  

 (ghmol-1) 

T 

(°C) 

P 

(atm) 

FEtOH  

(mol/h) 

FN2 

(mol/h) 

FH2 

(mol/h) 

XEtOH 

(%) 

SACOEt 

(%) 

SAcH 

(%) 

Sothers 

(%) 

PH2 

(gH2/Kgcat h) 

1 2.07 4 200 10 0.5 0.057 3.66E-03 16.16 62.79 37.21 0.01 78.07 

2 2.07 4 200 10 0.5 0.057 3.66E-03 15.47 59.38 40.62 0.01 74.73 

3 2.07 4 200 10 0.5 0.057 3.66E-03 16.79 63.16 36.84 0.01 81.11 

4 2.07 4 220 10 0.5 0.057 3.66E-03 25.94 67.6 26.35 6.05 117.73 

5 2.07 4 220 10 0.5 0.057 3.66E-03 24.55 66.99 27.02 5.99 111.49 

6 2.07 4 220 10 0.5 0.057 3.66E-03 23.07 66.94 27.09 5.97 104.80 

7 2.07 4 240 10 0.5 0.057 3.66E-03 39.8 70.64 21.1 8.26 176.39 

8 2.07 4 240 10 0.5 0.057 3.66E-03 38.59 68.21 24.55 7.24 172.93 

9 2.07 4 240 10 0.5 0.057 3.66E-03 40.62 71.78 22.22 6.00 184.46 

10 2.07 4 260 10 0.5 0.057 3.66E-03 46.46 70.21 21.84 7.95 206.60 

11 2.07 4 260 10 0.5 0.057 3.66E-03 42.18 70.84 21.8 7.36 188.77 

12 2.07 4 260 10 0.5 0.057 3.66E-03 47.26 70.33 21.61 8.06 209.91 
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Table 11B: Experimental Runs of Cu-1234 catalysts. The runs have been performed in a range of 200-260°C of temperature, by using a catalytic bed of 2g, 

at 20 bar, at a residence time of 4ghmol
-1

, an ethanol flow of 0.5mol/h, a total flow of 6%H2 in N2 of 25 cm
3
/min that corresponds to FN2=0.057 mol/h and 

to FH2=3.66E-3 mol/h. 

N Wcat 

(g) 

W/F EtOH  

 (ghmol-1) 

T 

(°C) 

P 

(atm) 

FEtOH 

(mol/h) 

FN2 

(mol/h) 

FH2 

(mol/h) 

XEtOH 

(%) 

SACOEt 

(%) 

SAcH 

(%) 

Sothers 

(%) 

PH2 

(gH2/Kgcat h) 

13 2.07 4 200 20 0.5 0.057 3.66E-03 10.6 81.07 18.93 0.01 51.21 

14 2.07 4 200 20 0.5 0.057 3.66E-03 10.89 85.73 14.27 0.01 52.61 

15 2.07 4 200 20 0.5 0.057 3.66E-03 10.24 82.96 17.04 0.01 49.47 

16 2.07 4 220 20 0.5 0.057 3.66E-03 25.33 79.18 16.85 3.97 117.51 

17 2.07 4 220 20 0.5 0.057 3.66E-03 25.27 80.19 16.46 3.35 117.99 

18 2.07 4 220 20 0.5 0.057 3.66E-03 24.29 77.59 18.93 3.48 113.26 

19 2.07 4 240 20 0.5 0.057 3.66E-03 32.08 78.37 17.27 4.36 148.22 

20 2.07 4 240 20 0.5 0.057 3.66E-03 31.99 78.7 16.94 4.36 147.80 

29 2.07 4 240 20 0.5 0.057 3.66E-03 31.74 77 18.25 4.75 146.05 

30 2.07 4 260 20 0.5 0.057 3.66E-03 42.79 80.81 12.14 7.05 192.14 

31 2.07 4 260 20 0.5 0.057 3.66E-03 39.76 80.29 13.59 6.12 180.32 

32 2.07 4 260 20 0.5 0.057 3.66E-03 42.18 80.54 13.32 6.14 191.26 
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Table 11C: Experimental Runs of Cu-1234 catalysts. The runs have been performed in a range of 200-260°C of temperature, by using a catalytic bed of 2g, 

at 30 bar, at a residence time of 4ghmol-1, an ethanol flow of 0.5mol/h, a total flow of 6%H2 in N2 of 25 cm3/min that corresponds to FN2=0.057 mol/h 

and to FH2=3.66E-3 mol/h. 

N Wcat 

(g) 

W/F EtOH  

 (ghmol-1) 

T 

(°C) 

P 

(atm) 

FEtOH 

(mol/h) 

FN2 

(mol/h) 

FH2 

(mol/h) 

XEtOH 

(%) 

SACOEt 

(%) 

SAcH 

(%) 

Sothers 

(%) 

PH2 

(gH2/Kgcat 

h) 

33 2.07 4 200 30 0.5 0.057 3.66E-03 17.3 76.02 20.9 3.1 81.00 

34 2.07 4 200 30 0.5 0.057 3.66E-03 16.94 77.68 18.58 3.7 78.78 

35 2.07 4 200 30 0.5 0.057 3.66E-03 17.03 79.85 16.85 3.3 79.56 

36 2.07 4 220 30 0.5 0.057 3.66E-03 20.89 80.23 15.63 4.12 96.74 

37 2.07 4 220 30 0.5 0.057 3.66E-03 20.3 80.08 15.2 4.72 93.44 

38 2.07 4 220 30 0.5 0.057 3.66E-03 22.64 84.41 12.12 3.46 105.58 

39 2.07 4 240 30 0.5 0.057 3.66E-03 25.47 70.36 25.02 1.38 117.36 

40 2.07 4 240 30 0.5 0.057 3.66E-03 23.6 70.39 23.15 6.46 106.64 

41 2.07 4 240 30 0.5 0.057 3.66E-03 23.21 70.58 24.89 4.53 107.05 

42 2.07 4 260 30 0.5 0.057 3.66E-03 35.35 73.74 19.45 6.81 159.14 

43 2.07 4 260 30 0.5 0.057 3.66E-03 28.76 72.14 22.17 5.69 131.03 

44 2.07 4 260 30 0.5 0.057 3.66E-03 29.4 70.55 23.49 5.96 133.56 

 



 
Section B 

Chapter 4  

Experimental 

 

  

 200 

 

Table 11D: Experimental Runs of Cu-1234 catalysts. The runs have been performed in a range of 200-220°C of temperature, by using a catalytic bed of 2g, 

at 20 bar, at two different residence time of 4-20ghmol-1, by using an ethanol flow of 0.1-1.5 mol/h, a total flow of 6%H2 in N2 of 25 cm
3
/min that corre-

sponds to FN2=0.057 mol/h and to FH2=3.66E-3 mol/h. 

N Wcat 

(g) 

W/F EtOH 

(ghmol-1) 

T 

(°C) 

P 

(atm) 

FetOH 

 (mol/h) 

FN2 

(mol/h) 

FH2 

(mol/h) 

XEtOH 

(%) 

SACOEt 

(%) 

SAcH 

(%) 

Sothers 

(%) 

PH2 

(gH2/Kgcat h) 

45 2.07 1 200 20 1.5 0.057 3.66E-03 7.64 39.62 60.38 0.0001 110.72 

46 2.07 1 200 20 1.5 0.057 3.66E-03 7.24 44.74 55.26 0.0001 104.93 

47 2.07 1 200 20 1.5 0.057 3.66E-03 7.74 39.75 60.25 0.0001 112.17 

48 2.07 1 220 20 1.5 0.057 3.66E-03 30.00 53.61 40.37 6.02 408.61 

49 2.07 1 220 20 1.5 0.057 3.66E-03 33.00 53.13 40 6.87 445.40 

54 2.07 20 220 20 0.1 0.057 3.66E-03 46.02 90.62 5.21 4.17 42.61 

55 2.07 20 220 20 0.1 0.057 3.66E-03 47.35 90.25 5.59 4.16 43.85 
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Table 11E: Experimental Runs of Cu-1234 catalysts. The runs have been performed at 220°C of temperature, at a pressure of 20 bars, by using a catalytic 

bed of 2g, at a two different residence time of 1-4ghmol
-1

, by using ethanol flow of 0.5-1.5 mol/h. The runs have been performed at  three different flow 

rate of the mixture of 6% H2 in N2 (5-15-25 cm
3
/min). 

N Wcat 

(g) 

W/F 

EtOH 

(ghmol-1) 

T 

(°C) 

P 

(atm) 

FetOH 

(mol/h) 

FH26%N2 

(cm3/min) 

FN2 

(mol/h) 

FH2 

(mol/h) 

XEtOH 

(%) 

SACOEt 

(%) 

SAcH 

(%) 

Sothers 

(%) 

PH2 

(gH2/Kgcat h) 

48 2.07 1 220 20 1.5 25 0.057 3.66E-03 13.74 53.61 40.37 6.02 187.14 

49 2.07 1 220 20 1.5 25 0.057 3.66E-03 13.63 53.13 40 6.87 183.97 

60 2.07 1 220 20 1.5 15 0.034 2.19E-03 8.7 46.66 53.34 0 126.09 

61 2.07 1 220 20 1.5 15 0.034 2.19E-03 8.85 44.41 55.59 0 128.26 

62 2.07 1 220 20 1.5 5 0.011 7.31E-04 8.41 37.81 62.19 0 121.88 

63 2.07 1 220 20 1.5 5 0.011 7.31E-04 8.74 36.46 63.54 0 42.22 

16 2.07 4 220 20 0.5 25 0.057 3.66E-03 25.33 79.18 16.85 3.97 117.51 

17 2.07 4 220 20 0.5 25 0.057 3.66E-03 25.27 80.19 16.46 3.35 117.99 

18 2.07 4 220 20 0.5 25 0.057 3.66E-03 24.29 77.59 18.93 3.48 113.26 

50 2.07 4 220 20 0.5 15 0.034 2.19E-03 19.09 63.96 29.38 6.66 86.08 

51 2.07 4 220 20 0.5 15 0.034 2.19E-03 19.27 63.99 30.29 5.72 87.77 

52 2.07 4 220 20 0.5 5 0.011 7.31E-04 16.9 61.97 32.6 5.42 77.21 

53 2.07 4 220 20 0.5 5 0.011 7.31E-04 15.79 63.58 31.06 5.36 72.19 
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Table 11F: Experimental Runs of Cu-1234 catalysts. The runs have been performed at 220°C of temperature, at a pressure of 20 bars, by using a cata-

lytic bed of 2g, at a residence time of 20ghmol
-1

, by using ethanol flow of 0.1 mol/h. The runs have been performed at  three different flow rate of the 

mixture of 6%H2 in N2 (5-15-25 cm3/min). 

N Wcat 

(g) 

W/F EtOH 

(ghmol-1) 

T 

(°C) 

P 

(atm) 

FEtOH 

(mol/h) 

FH26%N2 

(cm3/min) 

FN2 

(mol/h) 

FH2 

(mol/h) 

XEtOH 

(%) 

SACOEt 

(%) 

SAcH 

(%) 

Sothers 

(%) 

PH2 

(gH2/Kgcat h) 

54 2.07 20 220 20 0.1 25 0.057 3.66E-03 46.02 90.62 5.21 4.17 42.61 

55 2.07 20 220 20 0.1 25 0.057 3.66E-03 47.35 90.25 5.59 4.16 43.85 

56 2.07 20 220 20 0.1 15 0.034 2.19E-03 46.77 84.17 11.87 3.96 43.40 

57 2.07 20 220 20 0.1 15 0.034 2.19E-03 46.77 83.07 13.35 3.58 43.57 

58 2.07 20 220 20 0.1 5 0.011 7.31E-04 33.26 75.9 17.24 6.86 29.93 

59 2.07 20 220 20 0.1 5 0.011 7.31E-04 34.33 72.5 21.69 5.81 31.24 
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Catalyst bed 10g- Several runs have been performed at two different 

residence time of respectively at 35 ghmol
-1

 and 97 ghmol
-1

. The reac-

tor has been charged with 10 g of catalyst Cu-1234 and fed with two 

different ethanol flows of respectively 0.1-0.3 cm
3
/min.  

The runs have been performed in the range of temperature of 200-

260°C, at pressures of 10-20 bars and by operating with a total flow of 

6% H2 in N2 of 5 cm
3
/min, which correspond to the use of the lowest 

hydrogen flow of 7.31E-4 mol/h. The most significantly results have 

been reported in Table 12. To well understand the aim of these re-

sults, firstly, the evaluations of the catalyst behavior at the same resi-

dence times, but by using an higher quantity of catalyst (50g) and dif-

ferent hydrogen molar flow rate in the inlet stream has been studied.  
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Table 12: Experimental Runs of Cu-1234 catalysts. The runs have been performed at 200- 260°C of temperature, at a pressure of 10-20 bars, by using 

a catalytic bed of 10g, at a two different residence time of 34-104ghmol
-1

, by using ethanol flow of 0.1-0.3 mol/h. The runs have been performed at a 

flow rate of the mixture of 6% H2 in N2 of 5cm
3
/min). 

RUNS T (°C) 
P 

(atm) 

W/F EtOH 

(ghmol-1) 

FEtOH 

(cm3min-1) 

F6%H2in N2 

(cm3/min) 

FN2 

(mol/h) 

FH2 

(mol/h) 

X 

(%) 

SAcOEt 

(%) 

SAcH 

(%) 

Sal. 

(%) 

PH2 

(gH2/Kgcat 

h) 

60 220 20 34.4 0.3 5 0.011 7.31E-4 49.59 87.73 11.36 0.91 30.00 

61 240 20 34.4 0.3 5 0.011 7.31E-4 58.42 86.78 9.08 4.14 34.19 

62 200 10 104.13 0.1 5 0.011 7.31E-4 46.85 87.29 10.90 1.81 9.36 

63 220 10 104.13 0.1 5 0.011 7.31E-4 57.62 87.68 5.05 7.27 10.87 

64 240 10 104.13 0.1 5 0.011 7.31E-4 58.79 88.26 8.72 3.02 11.60 

65 260 10 104.13 0.1 5 0.011 7.31E-4 62.04 86.29 17.94 6.04 13.16 

66 200 30 104.13 0.1 5 0.011 7.31E-4 62.02 72.0 21.4 6.6 11.79 
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Catalyst bed 50g - The kinetic runs have been performed by changing 

the ethanol contact time from 32.48 to 97.45 g h mol
-1

, the tempera-

ture from 200 to 260°C, and the pressure from 10 to 30 atm. The best 

results have been obtained at 220-240 °C, 20 atm and 97.45 g h mol
-1 

of ethanol contact time with a conversion of 55-61% and a selectivity 

to ethyl acetate of 98-99%. It is important to point out that all the runs 

of Table 13 have been made on the same catalyst and that the catalyst 

worked for different months without showing deactivation. In Figure 

19, the effect of temperature on, respectively, the conversion and se-

lectivity for three different values of the pressure, at a constant etha-

nol contact time of 32.48 g h mol
-1

 can be appreciated.  
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Figure 19: Effect of temperature and pressure on catalytic activity 

and selectivity of the copper chromite based catalyst Cu-1234. The 

catalytic tests have been conducted at residence time of 

W/F=32.48 ghmol
-1

.  

 

As it can be seen, the conversion increases with the temperature, 

while, the selectivity is not affected by the temperature change, but is 
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dramatically affected by the pressure from 10 to 20 bars. A further in-

crease of the pressure from 20 to 30 bars has a lower effect. There-

fore, it can be concluded that 20 bar is the optimal pressure for this 

set of runs. In Figure 20, the effect of the temperature on, respective-

ly, the conversion and the selectivity for three different values of the 

pressure, at the ethanol contact time of 97.45 g h mol
-1

,
 
is reported. 

Once again, the conversion increases with the temperature at the dif-

ferent pressures of 10, 20 and 30 bar, although the slope of the in-

crease is lower for the runs performed at the highest pressure.  
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Figure 20 - Effect of temperature and pressure on catalytic activity and se-

lectivity of the copper chromite based catalyst Cu-1234. The catalytic tests 

have been conducted at residence time of W/F=97.45ghmol
-1

.
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Table 13. Catalytic results over copper based catalyst. The dehydrogenation reaction were conducted at different pressure (10-30 bar), temperature (200-260°C) and at dif-

ferent contact time.   

RUN Cat. (g) 
W/F 

(ghmol-1) 

T 

(°C) 

P 

(atm) 

FEtOH 

(cm3/min) 

FH2-6% N2 

(cm3/min) 

FN2 

(mol/h) 

FH2 

(mol/h) 
X (%) 

SAcOEt 

(%) 
SAcH     (%) 

Sothers 

(%) 
PH2 (gH2/h Kgcat) 

1 C 50.70 97.45 200 10 0.5 25 0.057 3.66E-3 45.3 96.2 3.2 0.6 9.04 

2  C 50.70 97.45 220 10 0.5 25 0.057 3.66E-3 51.1 96.1 2.9 1.0 10.15 

3  C 50.70 97.45 240 10 0.5 25 0.057 3.66E-3 61.8 96.5 1.1 2.4 12.10 

4  C 50.70 97.45 260 10 0.5 25 0.057 3.66E-3 69.7 93.4 1.5 5.1 13.27 

5  C 50.70 97.45 200 20 0.5 25 0.057 3.66E-3 48.6 98.3 1.3 0.4 9.71 

6  C 50.70 97.45 220 20 0.5 25 0.057 3.66E-3 54.8 98.9 0.8 0.3 10.96 

7  C 50.70 97.45 240 20 0.5 25 0.057 3.66E-3 61.16 98.5 0.9 0.6 12.20 

8  C 50.70 97.45 260 20 0.5 25 0.057 3.66E-3 70.6 94.2 0.5 5.3 13.42 

9  C 50.70 97.45 200 30 0.5 25 0.057 3.66E-3 54.3 97.9 1.3 0.8 10.81 

10  C 50.70 97.45 220 30 0.5 25 0.057 3.66E-3 63.2 96.8 0.6 2.6 12.35 

11  C 50.70 97.45 240 30 0.5 25 0.057 3.66E-3 63.2 96.8 0.6 2.6 12.35 

12  C 50.70 97.45 260 30 0.5 25 0.057 3.66E-3 67.2 96.0 0.8 3.2 13.05 

 50.70 97.45 200 30 0.5 15 0.057 3.66E-3 58.4 87.7 9.1 3.2 11.34 

13  C 50.70 32.48 200 10 1.5 25 0.057 3.66E-3 34.8 78.2 10.6 11.2 18.60 

14  C 50.70 32.48 220 10 1.5 25 0.057 3.66E-3 40.5 86.9 6.3 6.8 22.72 

15  C 50.70 32.48 240 10 1.5 25 0.057 3.66E-3 59.9 84.0 6.3 9.6 32.56 

16  C 50.70 32.48 260 10 1.5 25 0.057 3.66E-3 60.4 84.2 4.9 10.9 32.40 

17  C 50.70 32.48 200 20 1.5 25 0.057 3.66E-3 35.3 93.5 5.2 1.3 20.97 

18  C 50.70 32.48 220 20 1.5 25 0.057 3.66E-3 47.2 96.9 1.9 1.2 28.07 

19  C 50.70 32.48 240 20 1.5 25 0.057 3.66E-3 61.2 96.1 1.8 2.1 36.07 

20  C 50.70 32.48 260 20 1.5 25 0.057 3.66E-3 67.5 95.2 1.7 3.0 39.38 

21  C 50.70 32.48 200 30 1.5 25 0.057 3.66E-3 35.9 94.8 3.7 1.5 21.29 

22  C 50.70 32.48 220 30 1.5 25 0.057 3.66E-3 42.4 96.1 2.0 1.9 25.04 

23  C 50.70 32.48 240 30 1.5 25 0.057 3.66E-3 60.9 95.8 2.1 2.1 35.89 

24  C 50.70 32.48 260 30 1.5 25 0.057 3.66E-3 65.6 93.8 2.6 3.6 38.07 



 
Section B 

Chapter 4  

Experimental 

 

  

  208 

 

The selectivities, as it has been appreciated also at low ethanol resi-

dence time, are poorly affected by the temperature but, in this case, 

are less sensible to the increase of the pressure from 10 to 20 bars. At 

last, it is interesting to observe by comparing Figure 8 and 9 that the 

increase of ethanol contact time is beneficial to the reaction selectivity 

reaching in this case, the top value. By concluding, according to the 

described results the best operative conditions for the dehydrogena-

tion of ethanol to ethyl acetate on the BASF Cu-1234-1/16-3F catalyst 

are: 220°C, 20 bars and about 100 g h mol
-1 

of ethanol contact time. 

The hydrogen productivity in the condition of reaction reported in Ta-

ble 13 is included in the range 9-40 gH2/(Kgcat*h).  

Another important aspect is related to the presence of a hydrogen 

stream fed to the reactor with the reactant during the runs. In this 

case the effect of the partial pressure at high residence time (30-100 

ghmol
-1

) have been studied. The results obtained performing runs, in 

which the molar flow rate of hydrogen in the system was changed, by 

maintaining constant the flow rate of ethanol have been reported in 

Figure 21-22. In Figure 21, the comparison was between runs per-

formed at 200°C, 30 bar, residence time of 97ghmol
-1

 and at three dif-

ferent partial pressures of hydrogen fed. In Figure 22, the comparison 

was between runs performed in range of temperature 200-260°C, 10 

bar, residence time of 97ghmol
-1

 and at two different total flow of 

H26% in N2 respectively of 5cm
3
/min and 25 cm

3
/min. 
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Figure 21: Hydrogen partial pressure effect on catalytic performance of 

copper chromite based catalyst Cu-1234. The reaction has been con-

ducted at temperature of 200°C, total pressure of 30 bar and at resi-

dence time of  97.45 ghmol
-1

.  
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Figure 22: Comparison of Cu-1234 performances at two different Hy-

drogen flow respectively of 7.31E-4 and 3.66E-3 mol/h. The runs have 

been performed at 200°C, 10 bar, 100 ghmol
-1

. 

 

As it can be seen, the ethanol conversion is poorly affected by the hy-

drogen partial pressure but the selectivity to ethyl acetate strongly in-

creases, by increasing the hydrogen molar flow rate. This means that, 

in an industrial plant, recycled pure hydrogen, produced during the 

dehydrogenation reaction, could be useful as carrier gas, respect to 

inert diluents like nitrogen, to promote the ethyl acetate selectivity.  

To summarize the several obtained results, a comparison between the 

performances of the catalysts studied have been reported. 

In Figure 23 A-D the comparison of the catalytic performances in terms 

of hydrogen productivity, ethanol conversion , ethyl acetate and acet-

aldehyde selectivity have been reported for the catalysts Cu-1234 (Cu-

Cr-Al), Sg-9601 (Cu-Zn-Al), Cu-0203 (Cu-Cr). The runs have been per-

formed for each system at a pressure of 20 bar, at a residence time of 

about 4 ghmol
-1

, by fed a mixture of 6%H2 in N2 of 25 cm
3
/min. The 

behavior of the examined system has been studied in a range of tem-

perature of 200-260°C. 
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The conversion profiles (Figure 23A) have shown the higher activity of 

CuCrAl (Cu-1234) catalyst, at 260°C and at a residence time of 4 

ghmol-1 is of about 40%. The activity of Cu-0203, in the same opera-

tive conditions, is very low and of about 10%. The ethyl acetate selec-

tivity's profiles have shown the higher performances, with 85-90% of 

ethyl acetate selectivity, of Cu-1234 and Sg-9601 respect to Cu-0203 

(65-70%) at a temperature of reaction higher than 220°C. In these case 

the selectivity is included in the range 85-90%. 
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Figure 23A: Conversion profiles of Cu-1234, Sg-9601, Cu-0203. 

The runs were performed at 20 bar and 4ghmol
-1

 of residence 

time. 
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Figure 23B: ethyl acetate selectivity profiles of Cu-1234, Sg-9601, 

Cu-0203. The runs were performed at 20 bar and 4ghmol
-1

 of res-

idence time. 
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Figure 23C: acetaldehyde selectivity profiles of Cu-1234, Sg-9601, Cu-

0203. The runs were performed at 20 bar and 4ghmol
-1

 of residence 

time. 
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Figure 23D: hydrogen productivity profiles of Cu-1234, Sg-9601, 

Cu-0203. The runs were performed at 20 bar and 4ghmol
-1

 of resi-

dence time. 
 

The catalyst CuCr (Cu-0203) favor the acetaldehyde production that in 

the range of temperature 200-260°C is of about 35-40%.  

To well understanding the evolution of the ethanol conversion, ethyl 

acetate and acetaldehyde selectivity, at three different residence 

times the Figure 24 should be considered in this discussion. In particu-

lar, the experimental profiles of ethanol conversion, acetaldehyde and 

ethyl acetate selectivities obtained for the catalyst Cu-1234 at differ-

ent residence time, by operating at 220°C, at 20 bar, with a flow of hy-

drogen 6% in N2 of 25 cm
3
/min have been reported.  
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Figure 24: Cu-1234 catalyst. Effect of the ethanol residence time on the cata-

lyst performances. The runs were performed at 220°C, 20 bar and by feeding 

25 cm
3
/min of H2 in N2. 

 

At relatively low residence time of about 1 ghmol
-1

 the ethanol con-

version is less then 10% whilst the ethyl acetate is less than 50%. As 

demonstrated in chapter 3 of this section, at temperature lowest then 

300°C no acetaldehyde should be detected. This consideration is valid 

in the case of a Gibbs reactor in which an infinite residence time is 

considered. The experimental result have been collected at finite and 

very low residence time (<100 ghmol
-1

) and in this conditions high ac-

etaldehyde selectivity's have been obtained and moreover, a wide 

range of by-products, directly derived by acetaldehyde condensations, 

have been detected. By increasing the residence time the ethyl ace-

tate selectivity and the ethanol conversion reaches the equilibrium.  
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B-4.4 Discussion and Mechanism of reaction 

On the basis of the several obtained results some conclusion can be 

reached. The catalyst of CuCrAl (Cu-1234) have shown, togheter with 

the K-310 and Sg-9601 the best performances in terms of activity and 

ethyl acetate selectivity. The poor activity of T-4466 and Cu-0203 

could be attributed mainly to the low specific surface area that cha-

reacterize the catalyst examined. But as demonstrate the catalyst K-

310 (CuZn-Al-O) is more susceptible to sintering and after about 10 h 

of reaction deactivate for effect of both sintering of copper and fouling 

of the catalyst surface due to acetaldehyde adsorption. 

The Cu-1234 is characterized by very small copper crystallites, as 

demonstrated by XRD and SEM, inserted in alumina support. This 

characteristic is very promising to obtain highly active catalysts sys-

tem. The most relevant aspects, arising from the results obtained with 

BASF Cu-1234-1/16-3F catalyst, are the positive effect on the selectivi-

ty to ethyl acetate of increasing: the partial pressure of hydrogen, the 

temperature from 200 to 220°C, the pressure up to 20 bars and the 

ethanol contact time  from 32.5 to 97.5 g h mol
-1

. All the mentioned 

aspects cooperate to increase the selectivity to ethyl acetate. The 

most surprising is the effect of pressure, because, dehydrogenations 

normally occur with an increase of moles, therefore, would be favored 

by the low pressure. In order to deepen this aspect, it could be useful 

to consider one of the most accredited reaction scheme for ethanol 

dehydrogenation proposed by Inui et al.
 
[8] and reported in the intro-

duction of this chapter. This reaction scheme does not consider the 

surface intermediates interactions, and although is reasonable, be-

cause, justify all the observed reaction products, both the main inter-

mediates hemiacetal and acetaldol have not been experimentally ob-

served by the authors. Maybe, these species are present only as pre-

cursors adsorbed on the copper surface. However, according to this 
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scheme the reaction occurs in two chemical steps. The first one is the 

dehydrogenation of ethanol to acetaldehyde favored, as expected, by 

the low pressure and short ethanol residence time and the second 

step characterized by two competitive acetaldehyde condensation re-

actions, one involving two acetaldehyde molecules for giving acetaldol 

and another one giving hemiacetal by condensing one molecule of 

ethanol and one of acetaldehyde. The in-situ DFTIR characterization 

results obtained in ethanol flow, confirm this hypothesis. In fact at low 

temperature of reaction (<100°C) mainly it is individuate adsorbed 

ethanol that gradually disappear to favor the formation of acetalde-

hyde and esters, like ethyl acetate. As it can be seen in the reaction 

scheme, several by products can be obtained from acetaldol by further 

condensation and dehydrogenation (aldehydes and ketones), while, 

from hemiacetal only ethyl acetate can be obtained by dehydrogena-

tion.  

The condensation reactions are clearly favored by the pressure in con-

trast to the successive dehydrogenations. Therefore, the use of a 

moderate pressure (20 bars) should be a good compromise between 

these two contrasting demands.  

Another important aspect to be considered is the acetaldehyde accu-

mulation in the system, favoring the auto-condensation reaction so 

giving undesired by products. Therefore, in order to obtain a high se-

lectivity to ethyl acetate, it is necessary to minimize the partial pres-

sure of acetaldehyde in the system. Different factors would contribute 

in maintaining low the acetaldehyde concentration in the system fa-

voring the pathway to ethyl acetate. The increase of temperature, for 

example, favors the reaction with the highest activation energy the in-

crease of pressure corresponds to an increase of ethanol concentra-

tion in the system the increase of ethanol residence time gives time to 

the second reaction step to occur. At last, the presence of hydrogen in 
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the feeding stream could slow down the ethanol dehydrogenation rate 

to acetaldehyde concurring to maintain low the partial pressure of ac-

etaldehyde. However, a very high selectivity to ethyl acetate can be 

achieved only with a catalyst surface favoring exclusively the conden-

sation route to ethyl acetate. At this purpose, it is important to deepen 

the reaction mechanism. According to Colley et al.[4], which studied 

the mechanism of the ethyl acetate formation on a copper chromite 

catalyst, the reaction mechanism would be characterized by a first 

step, in which ethanol is dissociatively adsorbed on the catalyst sur-

face as it follows:  

��������	(
) ↔ �������	(�) + �(�)																																												(3) 

As the hydrogen collected by the authors for the ethanol adsorption 

was more than the amount foreseen for this reaction, other successive 

dehydrogenations steps have been proposed to occur such as: 

�������	(�) ↔ ������	(�) + �(�)																																																	(4) 

������	(�) ↔ �����(�) + �(�)																																																							(5) 

Then the reactions forming the main observed products should be: 

������	(�) ↔ ������	(
)																																																																		(6)	 

	2�(�) ↔ ��(
)																																																																																										(7)	 

Finally, the reaction of adsorbed ethoxy species with adsorbed acetyl 

groups gives place to adsorbed ethyl acetate that slowly desorbs: 

	�������	(�) + �����	(�) ↔ ������������	(�)																					(8) 

	������������	(�) ↔ ������������	(
)																																		(9)                      

According to Colley et al.[4], ethyl acetate desorption (9) would be the 

rate determining step, being this compound strongly adsorbed on the 

Bronsted acid sites present on the surface of the copper chromite cat-

alyst as a consequence of the reaction (2). As seen, this mechanism 

does not consider the possibility of the formation of the adsorbed 

hemiacetal intermediate as postulated in the scheme (1) by Inui et al.
 

[8] but suggests a direct formation of ethyl acetate. This mechanism 

well explains the ethyl acetate formation but does not explain the al-



 
Section B 

Chapter 4  

Experimental 

 

  

  218 

 

ternative pathway passing through the condensation of two acetalde-

hyde molecules. Probably, as suggested by the scheme (1), strongly 

adsorbed acetaldol is formed, that is then easily involved in many fur-

ther reactions giving several by-products instead of desorbing: 

2������(�) ↔ �����(��)������	(�)																																								(10� 
A more reliable reaction scheme, taking into account the intermediate 

species adsorbed on the catalytic surface, would be: 

(10) 

 

 

According to this mechanism, the selectivity will be strongly affected 

also by the peculiarity of the copper catalytic sites, retaining the dif-

ferent adsorbed species as previously described. At low pressure, it 

has been experimentally observed that reactions (4) and (6) mainly oc-

cur. On the contrary, at moderate pressure condensation reactions are 

generally favored but with a large predominance of reactions (8) and 

(9) on reaction (6). The selectivity between the condensation reactions 

(8) and (9) is then determined by two main factors: the partial pres-

sure of acetaldehyde, as already mentioned, and the structure of the 

surface of the catalyst. As a matter of fact White et al. [50] has shown, 

for example, that isolated Cu atoms are more selective in producing 
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acetaldehyde, while, the formation of ethyl acetate is promoted by 

poorly dispersed catalysts, so the catalysts rich of multi-sites assem-

blies are able to favor the condensation reactions.  

Therefore, this type of selectivity will strongly be affected by: the na-

ture of the catalyst, the preparation method, the catalyst pre-

treatment, the acid-base properties of the catalytic environment and 

the type of used support [38]
 
and promoters. By concluding, for in-

creasing the selectivity to ethyl acetate, it is imperative both to keep 

low the acetaldehyde concentration, to reduce the probability of the 

occurrence of reaction (18), requiring two vicinal acetaldehyde ad-

sorbed molecules, and to avoid the presence of sites favoring this cou-

pling reaction. As a matter of fact, in this work we observed, by com-

paring the results obtained with the catalysts K-310 and T-4466, that 

the presence of copper chromite increases the selectivity to ethyl ace-

tate. The catalyst Cu-1234 has reached a very satisfactory activity and 

selectivity this last never obtained before.  

We attribute the obtained results to the particular structure of this 

catalyst having Cu° epitaxially grown on the surface of the chromite 

during the reduction with hydrogen [5] and to the acid environment 

near this Cu°, always formed during the reduction as a consequence of 

reaction (10). On the basis of EXAFS spectra of Cu-1234 copper chro-

mite alumina catalyst, the oxidation state change of copper changed 

drastically during the reduction and a mixture of Cu
0
/Cu

+
 could be in-

dividuate. The spinel of CuCr2O4 is difficult to reduce and as suggested 

by Plyasova et al [12] only 50% of the total copper could be reduce.  

Cu° promotes the dehydrogenation reactions and the acid environ-

ment hinders the acetaldehyde auto-condensation. Al2O3 support 

[51,52] has an important dispersion effect on copper chromite cristal-

lites, while, BaO-Cr2O3 has probably a positive effect in avoiding the 

catalyst deactivation by sintering. BaO in particular has also the effect 
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of neutralizing the Lewis acid sites of both chromia and alumina [2,3], 

creating a more efficient barrier to sintering and limiting, as a conse-

quence of the neutralization, the strength of both acid and basic sites, 

that could modify the selectivity. Another important aspect is to verify 

the eventually presence of Cr
6+

. As confirmed by the XPS binding ener-

gy of Cr, the fresh catalyst Cu-1234 is exempt by Cr
6+

, unlike of T-4466, 

and this represent an important factor that make this process green 

and sustainable. 

On the basis of the obtained results, the best catalyst BASF Cu-1234-

1/16-3F has been considered for a possible process development. 

Many other kinetic runs have been performed on this catalyst in both 

differential and integral reactors with the aim to achieve kinetic laws 

and related parameters of the involved reactions, in agreement with 

the proposed mechanism. The detailed kinetic approach will be re-

ported in the next chapter of this thesis. However, considering the 

best results obtained (Table 13), it seems possible to obtain pure ethyl 

acetate and hydrogen without a post-treatment of hydrogenation on 

acetaldehyde and by-products, as described in a previous technology 

[53-55]. Obviously, this aspect must be further deepened; being crucial 

for the economy of the process, but the very high selectivity achieved 

is the basis for reaching this goal. In this process, unreacted ethanol, 

after dehydration, must be recycled together with the small amount of 

produced acetaldehyde. Correspondingly, hydrogen must be partially 

recycled because its use, as carrier gas, is beneficial for the promotion 

of ethyl acetate selectivity (see Figure 21).The ethyl acetate separation 

from ethanol requires at least two distillation columns for breaking the 

azeotrope. On the basis of all the mentioned aspects, a simplified pro-

cess scheme like the one reported in Figure 25 can be drawn [56,57]. 
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Figure 25 - A simplified scheme of the process based on the use of a 

new copper/copper chromite commercial catalyst. 

 

The interesting obtained results will be interpreted in the next chapter 

of this section by using essentially three kinetics models: an empirical 

power law, a dual site adsorption based mechanism, and a Langmuir-

Hinshelwood-Hougen-Watson. The power law kinetic was then used to 

realize a plant hypothesis illustrated in the final chapter of this section. 
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           Chapter 5 

                      A kinetic Study 

 

 

 

B-5.1 Introduction 

A catalyst was defined by J. J. Berzelius in 1836 as a compound, which 

increases the rate of a chemical reaction, but which is not consumed 

by the reaction [1]. This definition allows for the possibility that small 

amounts of the catalyst are lost in the reaction or that the catalytic 

activity is slowly lost. However, the catalyst affects only the reaction 

rate, it changes neither the thermodynamics of the reaction nor the 

equilibrium composition. Catalysis is of crucial importance for the 

chemical industry, the number of catalysts applied in industry is very 

large, and catalysts come in many different forms, from 

heterogeneous catalysts in the form of porous solids over 

homogeneous catalysts dissolved in the liquid reaction mixture to 

biological catalysts in the form of enzymes. The thermodynamics 

frequently limits the concentration of a desired product. As the 

catalyst does not affect the thermodynamics of the reaction, it is vain 

to search for a catalyst to improve the conversion of the reagents and 

the selectivity to the desired products. Instead, the reaction conditions 

(temperature, pressure and reactant composition) must be optimized 

to maximize the equilibrium concentration of the desired product. 

Once suitable reaction conditions have been identified, generally the 

reaction rate is found to be too low, frequently by orders of 

magnitude and consequently the search for a suitable catalyst begins. 
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The study of the kinetics of heterogeneous catalyzed reactions consists 

of at least three rather different aspects. 

 

Kinetics studies for design purposes. In this field, results of 

experimental studies are summarized in the form of an empirical 

kinetic expression. Empirical kinetic expressions are useful for design 

of chemical reactors, quality control in catalyst production, 

comparison of different brands of catalysts, studies of deactivation 

and of poisoning of catalysts. 

Kinetics studies of mechanistic details. If a reasonable and not too 

detailed reaction mechanism is available, an experimental kinetic 

study may be used to determine details in the mechanism. 

Mechanistic considerations may be very valuable as guidance for 

kinetic studies. 

Kinetics as a consequence of a reaction mechanism. The deduction of 

the kinetics expression from a proposed reaction mechanism generally 

consists in a reasonably straightforward transformation, where all the 

mechanistic details are eliminated until only the net gas−phase 

reaction and its rate remains. This approach may be used to 

investigate if a proposed mechanism is consistent, what the reaction 

rate is and if it is consistent with available experimental data. For the 

three aspects of the kinetics study, the optimal experimental and 

theoretical approach is quite different. By following this approach, the 

main goal of this chapter was the development of a kinetic model that 

can be used to predict the conversion and selectivity of ethanol 

dehydrogenation to ethyl acetate.  

Our kinetic investigation starts from the reaction mechanisms (Scheme 

1, Chapter 5-Section B) proposed in the literature [2] with the aim to 

find the most reliable kinetic laws. According to a previous ethanol 

dehydrogenation to acetaldehyde kinetic study, made by Tu et al. [3], 

on unsupported Cu and Cr promoted Cu, this reaction is of first order 
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with respect to ethanol and has an apparent activation energy of 12.2 

Kcal/mol. To our knowledge, only one paper has been published 

concerning the kinetics of the ethyl acetate formation on Cu based 

catalysts, in particular on Cu/copper chromite catalyst [4]. Colley et al. 

[4] have demonstrated that in a first step ethanol adsorbs on to the Cu 

component of Cu/Cr2O3 catalysts as an ethoxy species with an 

activation energy of 7.41 Kcal/mol and, successively, the ethoxy 

species adsorbed is dehydrogenated to an acetyl species with an 

activation energy of 22.50 Kcal/mol. Finally the ethoxy and acetyl 

species adsorbed on Cu, react to form adsorbed ethyl ethanoate and, 

assuming a first-order desorption, this has a desorption activation 

energy of 43.06 Kcal/mol.  

Cause of the limited literature information in this research work, we 

have studied the kinetics of this reaction on the already mentioned 

commercial copper/copper chromite catalyst supported on alumina 

and promoted with barium chromite BASF Cu-1234 

(CuCrO4/CuO/Cu/BaCrO4/Al2O3 (45:1:13:11:30% b.w.). The kinetic runs 

were carried out in packed bed tubular reactor, alternatively filled 

with 2 or 50 g of catalyst, approximately isothermal, by feeding pure 

ethanol together with a mixture of nitrogen and hydrogen as carrier 

gas. The runs have been made by changing the temperature in the 

range of 200-260°C, the pressure between 10 and 30 bars and the 

residence time from 1 to 20 ghmol
-1

. The parameters obtained by 

regression analysis of the experimental data obtained by using 2g of 

catalysts were, thus used in to simulate the experimental profiles 

obtained by runs performed with 50 g of catalys. 

The first step to realize an intrinsic kinetic investigation is to evaluate 

the transport limitations. The absence of transport limitations 

provides kinetic parameters as expression of the chemical nature of 

the reaction. At first purpose, an evaluation of the inter-phase and 

intra-particles mass transfer limitation, by using respectively Mears [5] 
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and Weisz and Prater criteria [6-8]
 

has been realized. After this 

examination the study of the reaction mechanism, in the experimental 

condition employed to perform the runs, has been realized. Supported 

by literature data, above mentioned, and by experimental evidence of 

our research, it was speculated that the ethyl acetate was produced by 

three different reaction steps, as shown by Scheme 1. 

 
Scheme 1: hypothesized reaction scheme 

 

The first step is ethanol dehydrogenation to acetaldehyde. Then the 

produced acetaldehyde reacts with un-reacted ethanol to give ethyl 

acetate by a coupling reaction, moreover the acetaldehyde by aldol 

condensation gives place to C3-C4 aldehydes and ketones, classified in 

this particular study as ‘’others’’. In this study, we have been 

hypothesized different possible reaction mechanisms.  

The collected kinetics data, at different pressure, temperatures, and 

residence time, were interpreted by a mono-dimensional plug-flow 

reactor model for which an isothermal condition was assumed. This 

assumption is justified by the relatively low ethanol conversion 

obtained with 2 grams of catalyst and by the high thermal capacity of 

the reactor body. The experimental data have been elaborated with 

several kinetic models, to verify the most reliable to describe the 

evolution of the ethanol and selectivities to main products of reaction 

in the adopted operative conditions. 

More in detail, three different models have been developed and the 

characteristics of each ones have been described in the following. 
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Model 1: different empirical models based on a power law kinetic have 

been hypothesized.  

 

Model 2: starting from the Scheme 1, each reaction step has been 

described by different elementary steps of adsorption/desorption. 

Several dual sites adsorption models have been realized in which for 

the reaction (1), related to the acetaldehyde formation, among the 

four different steps of adsorption/desorption, different rate 

determining step (RDS) have been considered. 

 

Model 3:  Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic 

model has been used for interpreting all the experimental data 

collected. This model corresponds to a mechanism in which the first 

step is the dissociative adsorption of ethanol on the surface, giving an 

adsorbed ethoxy group that gives place with two consecutive steps to 

acetaldehyde and ethyl acetate. The rate determining step is the 

surface reaction. 

The several models have been briefly described on the basis of the 

simulation curves trends with the experimental results. The good or 

bad fitting of experimental vs calculated has been evaluated by 

calculating the overall average error. 

As computing language, Matlab has been used with the aim to 

simulate all the experimental runs by regression of the kinetics, 

adsorptions and equilibrium parameters. 

In Table 1 a summary of the models developed, of their typology, of 

the main details and of the total number of the parameters has been 

reported. All the mentioned models, as it will be illustrated in the next 

paragraph, have given good results for what concerns the correlation 

index and the average per cent error, but only the Langmuir-
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Hinshelwood-Hougen-Watson model (LHHW model 3) gives place to 

kinetic parameters with physical mean. 

Table 1: Kinetic models developed 

Model Typology Description N°Parameters 
 

Paragraph 

1.1 power law simplified 11 
 

B.5.4.1.1 

1.2 power law simplified 13 B.5.4.1.2 

1.3 power law Kei =f(T) 13 B.5.4.1.3 

2.1 dual site RDS: AcH desorption 18 B.5.4.2.1 

2.1A dual site 
RDS: AcH desorption 

Kei =f(T) 
18 B.5.4.2.2 

2.2 dual site 
RDS:ethoxy 

adsorbed formation 
18 B.5.4.2.3 

2.3 dual site 
RDS: acetaldehyde 

adsorbed formation 
18 B.5.4.2.4 

3 LHHW Kei =f(T) 14 B.5.4.3 

 

This kinetic model allows a satisfactory fitting of all the performed 

experimental runs with a standard error below 15%. The obtained 

kinetic parameters of the best model, has a physical mean.  A list and 

the meaning of each symbols is reported at the end of this chapter. 

B-5.2 Diffusion limitation  

In experimental studies of heterogeneously catalyzed reactions, the 

first study should be focused on the determination of the interactions 

between the kinetics and transport phenomena.   

To ensure that the kinetic data obtained in an experimental reactor 

reflect only chemical events, gradients must be virtually eliminated 

from two domains: 

a. intraparticle gradient within individual catalysts particles 
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b. interphase gradient between the external surface of the particles 

and fluid adjacent to them. 

Figure 1 depicts porous adsorbent particles in a catalysts bed with 

sufficiently generality to illustrate the nature and location of individual 

transport and dispersion mechanisms. Each mechanism involves a 

different driving force. 

 
Figure 1. Mass transfer in a reactor results of interphase and intra-pellets transport. 

 

The intraparticles transport may be limited mainly by pore diffusion 

and solid diffusion. The interphases or extraparticle mechanisms are 

affected by the design of the contact device and depend on the 

hydrodynamic conditions outside the particles. The external mass 

reflects the transfer between the external surfaces of the adsorbent 

particles and surrounding liquid phase. Moreover, the transport 

limitations are directly dependent by the operative condition adopted 

to perform the reaction such as the temperature and the pressure. 

It is desirable to have some means to ascertain the effects of transport 

on reaction rates, a priori, both from the experimental measurement 

of catalytic reaction kinetics and for the design of catalytic reactors 

too. Such criteria must be based upon what can be measured or 

directly observed. The approach to this problem can ensue two 

different ways: (1) the development of means for the determination of 

catalytic effectiveness on the basis of observable quantities in a given 
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situation. (2) Development of a priori criteria to ensure the absence of 

significant concentration/temperature gradients. In our case, the 

second way was followed and a substantial number of a priori criteria 

for the estimation of transport effects on catalytic reaction rates have 

been individuated in the literature. Thus, to ensure that the kinetic 

experiments, taking place in the reactor, are kinetically controlled and 

not influenced by mass or heat transfer, reaction conditions were 

selected such that the Mears criterions for external diffusion and  the 

Weisz and Prater criterion for intra-particles diffusion limitations are 

satisficed [9,10]. In Table 2 the main properties required, to apply both 

the criteria mentioned, has been summarized. 

Table 2: Summary of the properties, parameters, bed 

characteristics needed to apply the criteria. 

Properties Acronyms/units value 

Bed porosity εB 0.4 

Bulk density catalyst ρB (g/cm3) 0.955 

Tortuosity τ 0.4 

Constriction factor σ 0.8 

Molecular 

diffusivity EtOH in N2 
Di (cm

2
/min) 6.12 

Pellets diameter dp (cm) 0.1 

Cross sectional area of the 

tube 
Ac (cm2) 2.54 

Kinematic viscosity ν(cm2/min) 0.0092 

Reaction order n 2 

 

B-5.2.1 Intra-particles transport 

Intra-particles transport has been analyzed for ethanol 

dehydrogenation at high pressure (10-30 bar) and high temperature 

(200-260°C) to produce ethyl acetate. In particular, the Weisz and 

Prater criterion for the absence of concentration gradients, in an 

isothermal spherical particle was applied. It’s assumed that the Fick’s 
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first law governs diffusion in the porous media, that the effective 

diffusivity, De, remains independent of the nature of reaction and that 

the intrinsic catalytic activity is distributed uniformly throughout the 

catalytic bed. To ensure η > 0.95 in an isothermal spherical particle 

with a first-order reaction, the criterion requires (Eq.1): ��������	

 < 1																																																																																																																																	(1) 

The ways to calculate the reaction velocity rA (2), radius Rp (3), the 

concentration C0 (4) and diffusivity (5) have been described in the 

following equations 2-5. 

 

�� = ���
(1 − ��) ������

= � ���
min "�#$																																																												(2) 

�� = &
' = ("�)																																																																																													(3) 

�� = (���+,-. − ���+,/0� )/2																																																																											(4) 

�	

 = �- 3� ∗ 5
6 7																																																																																								(5) 

As it can be seen, in Figure 2 the intra-particles criterion as function of 

the temperature, at three different reaction pressures has been 

evaluated.  
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Figure 2: Weisz and Prater criterion 

 

 

By the profiles reported in Figure 2, by increasing the temperature the 

increase of intra-particles ratio is higher than the ones obtained at 

lowest temperature of reaction. The increase of temperature implies 

an increase of the reaction rate and consequently, as the criterion 

suggests a raise of the intra-particles transport limitations. On the 

other hand, also the pressure effect on the diffusion can be 

appreciated by the profiles of Figure 2. By increasing the operating 

pressure, the transport phenomena limitations could be decrease. 

Nevertheless the highest temperature and lowest pressure of reaction, 

the diffusion coefficient is less than 1 and consequently it is possible 

conclude that the reaction is not limited by intra-particles transport 

phenomena. 
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B-5.2.2 Inter-phase transport 

Assuming an isothermal system the resistance to the bulk mass 

transport across the film around the particles can be described by the 

Mears criteria: 

	��	�9	��	:;��� < 0.15																																																																																						(6) 

The mass transfer coefficient has been defined as function of the bed 

porosity, diameter of the particles, diffusivity, and Sherwood number 

as reported into the Eq.7. 

	;� = 1 − �9�9 ?�-@�A 'ℎC																																																																															(7) 

In order to obtain the Sherwood number it’s possible to choose the 

Thoenes-Kramers equation, flow conditions through a catalyst bed, in 

which Sh
’
 (Eq.8) is correlated respectively to Re’ (Reynolds) (Eq.9) and 

Sc’(Schimdt) numbers (Eq.10): 

'ℎC = (�E′)G/�('"′)G/#																																																																															(8) 

ReC = U	dM(1 − εO)P																																																																																										(9) 

		'"C = P-DS 																																																																																																	(10) 

In Figure 3 the profiles of interphase criterion at different temperature 

and pressure of reaction have been reported. As it can be appreciated 

from Figure 3 the intra-phase transport limitation is higher at high 

temperature while the pressure increase have a favorable effect. 

Anyway the intra-phase diffusivity ratio is always lower than 0.15 and 

we can conclude that the kinetic of reaction is not affected by intra-

phase transport phenomena. 
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Figure 3: Mears Criterion 

 

B-5.3 Kinetic study of ethanol dehydrogenation 

B-5.3.1 Reaction mechanism pathway 

The different and main reaction steps, by which ethyl acetate starting 

from ethanol has been obtained, have been reported (Eq.a-c). 

The first step is an ethanol dehydrogenation to acetaldehyde and 

hydrogen.  

TUVW → Y"W +W�																																																																																					([) 
The subsequent step is another dehydrogenation reaction of ethanol 

and acetaldehyde to ethyl acetate and hydrogen. TUVW + Y"W → Y"VTU + W�																																																																				(b) 

And finally a secondary reaction of aldol condensation of two 

acetaldehyde molecules favors the formation of several sub-products 

C3-C4 aldehydes and chetones such as methylethylchetone, acetone, 

crotonaldehyde, that will be indicate, as lumped by-products, with the 

acronym ‘’others’’.  Y"W + Y"W → VUℎE�\ + W�V																																																																		(") 
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The collected kinetic data, at different pressure, temperature and 

residence time, were interpreted by a mono-dimensional plug flow 

reactor model for which an isothermal condition was assumed. This 

assumption is justified by the relatively low ethanol conversion 

obtained with 2 grams of catalyst and by the high thermal capacity of 

the reactor body. On the basis of the reaction pathway, for each 

components of the reacting system it has been considered ordinary 

differential equation (ODE) and by integration of each ones, the 

concentration profiles of both the reagents and the products inside 

the reactor, assuming that the reactor is isothermal, were evaluated. 

The general ODE equation (11) has been reported:  

@�-@] =^_-`
#
`aG

b�̀ c																																																																																						(11) 
where i=1-6 representing the components, reactants and products, 

while j=1-3 representing the reactions in the assumed scheme. αij 

represents the corresponding stoichiometric coefficients for 

component i in reaction j. More explicitly, the ODE’s expressions are :  

@���+,@] = −�G − ��																																																																																				(12) @���,@] = �G − �� − 2�#																																																																														(13) @�,d@] = �G + ��																																																																																											(14) @���+��@] = ��																																																																																															(15) @�+�e	f@] = �#																																																																																															(16) @�g.	f�@] = 0																																																																																																	(17) 
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By introducing the dimensionless length of the bed, z, defined as 

z=L/Lbed [0,1], the mass balances for each component, can be 

advantageously written in dimensionless form as it follows (18): 

@�-@h = ����^_-`
#
`aG

b�̀ c																																																																													(18) 
Introducing the dimensionless catalyst weight w (catalyst 

weight)=L*(wcat/Lbed), the differential rate equations 19-24 have been 

obtained: @���+,@h = ����(−�G − ��)																																																																						(19) @���,@h = ����(�G − �� − 2�#)																																																																(20) @�,d@h = ����(�G + ��)																																																																														(21) @���+��@h = ���� ∗ ��																																																																																		(22) @�+�e	f@h = ���� ∗ �#																																																																																		(23) @�g.	f�@h = 0																																																																																																	(24) 
The system of differential equations was numerically integrated using 

ode45 function, in MATLAB. All kinetic parameters were subject to a 

mathematical regression analysis involving minimization of the 

objective function, represented by a nonlinear least squares fitting for 

the determination of the adjustable models parameters, by using the 

following objective function that was minimized by mathematical 

regression analysis:  

�i' = 1j^
k
-aG

b_-	l� − _-��mc�																																																												(25) 
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In this relation a
exp

 and a
calc

 are respectively related to both 

experimental and calculated conversions and selectivities. The overall 

average error has been calculated by using the following expression: 

err =^o1N q^rαtSuvM − αtSwxywαtSuvM z{
SaG

q 100|}
taG

																																														(26) 
Where j is an index for, respectively, ethanol conversion, acetaldehyde 

selectivity, ethylacetate selectivity and other by-products selectivity. 

The full program code used for the parameter fitting and the 

differential equation solver can be found in Appendix B. Moreover, to 

discriminate the several models studied the Pearson correlation index 

R
2
,was used and calculated as following: 

�� = 1 − (''T)/(j\~ − :~ − 1)''�/(j\~ − 1) 																																																								(27) 
Where, Nsp are the total experimental runs, np are the total number 

of the parameters employed and SSE represents the differences 

between the experimental and calculated data, as expressed by 

equation 28. 

''T =^(_-	
k
GaG

−_-�)�																																																																														(28) 
The value of SST is the quadratic sum of all the experimental data as 

expressed by the relation 29. 

''� =^_-	�
k
-aG

																																																																																												(29) 
The Pearson coefficient must be a number included between zero and 

1. As demonstrated in the next paragraphs, a good correlation 

between the model and experimental data (R
2
>0.88) has been 

obtained. In some of the examined models, the dependence of the 

equilibrium constants by the reaction temperature was considered. In 

particular, as already described in Section B- Chapter 3, where a 
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detailed thermodynamic study was reported, the specifics related to 

the determination of the equilibrium constants were reported. Our 

kinetic runs have been performed in a narrow range of temperature, 

thus, we have applied the Van’t Hoff equation for evaluating the 

dependence of the equilibrium constants by the temperature (30). 

;	- = ;	f-
 ∗ E�~ ��∆W-� � ? 1
�f	
 − 1

�A�																																															(30) 

The dependence of the equilibrium constants on the temperature has 

been expressed by the following equation (31): 

ln(;E-) = Y + �
� 																																																																																							(31) 

The values of the constants A and B are the following: reaction 1 

A=16.5, B=-9136.4, reaction 2 A=-4.79, B=4386.0. As already 

mentioned, these expressions have directly been used in some of the 

developed kinetic model.  

 

B-5.4 Kinetic models 

Different kinetic models have been reported, based on different 

adsorption mechanisms. The real mechanism of ethanol 

dehydrogenation to ethyl acetate is not well defined yet. 

Nevertheless, most authors agree that the first elementary step is the 

molecular adsorption of ethanol on the active site to give ethoxide and 

adsorbed hydrogen. The ethoxide species are, in order, 

dehydrogenated to acetaldehyde, adsorbed on the catalyst surface, 

which reacts with an adsorbed ethoxy group to give ethyl acetate. The 

wide range of by-products could be obtained by aldol condensation of 

two adsorbed acetaldehyde molecules that must be controlled using 

optimal operating conditions to favor the ethyl acetate production. In 

more detail, the expressions of the rates of reaction for three different 
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models have been deduced on the basis of mechanistic 

considerations. 

The kinetic constants (ki) and consequently reaction rates the can be 

expressed as function of the temperature of reaction (T) and by 

considering a reference temperature (Tref) of 220°C, according to the 

Arrhenius equations, by using the following equation (32). 

�- = �-f	
E�~ �T�-� � 1
�f	
 − 1

��$																																																													(32) 

 In the next paragraphs the details of each models have been 

described. 

 
B-5.4.1 Power law  

B-5.4.1.1 Model 1.1 

The kinetic expressions for the model in exam are reported (33 a-c). In 

particular it has been assumed a simply power law model in which it 

the equilibrium has been neglected. 

�G = �G~��/,� ~,�� 																																																																																				(33	[) 

�� = ��~��/,� ~��,� ~,�� 																																																																											(33	�) 

�# = �#~��,� 																																																																																													(33	") 
Where k1, k2, k3 are the kinetic constants. In the model in exam the 

parameters value: the reference kinetic constants K1
ref

, K2
ref

, K3
ref

, the 

activation energies and the reaction orders (α, β, δ,γ,ω) , have been 

estimated on runs performed by using two grams of catalysts (see 

Chapter 4-Section B). The kinetic constants at a temperature of 

reference of 220°C, the corresponding activation energy parameters 

and the exponential parameters of the power law have been reported 

in Table 3.   
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Table 3: Model 1.1.Kinetic parameters of the power law model determined by 

regression analysis on all the experimental runs performed by using the reactor loaded 

with 2 g of catalyst (see chapter 4). 

 Averange Error  14.65 

Averange Correlation Index 0.82 

Kinetic constants (mol/cm
3 

h) Activation Energy (Kcal/mol) 

k1
ref 

1.59E-2 Ea1 19.27 

k2
ref 

0.11 Ea2 2.41E-3 

k3
ref 

1.28E-3 Ea3 5.69 

Reaction orders 

αααα    0.50 

ββββ    -0.50 

γγγγ    1.67 

δδδδ    -1.37 

ωωωω    -0.24 

 
In Figure 4A and 4B are reported the parity plot diagrams obtained 

respectively for the ethanol conversion and selectivities to the main 

products of reaction such as ethyl acetate and acetaldehyde, where 

the validity of the adopted kinetic model can be better appreciated.  

The Figure 4C shows the fitting of conversion experimental data with 

the calculated ones, obtained by operating in a range of temperature 

of 180-300°C, at three different pressure (10-30 bar) and by using an 

ethanol flow rate of 0.5 cm
3
/min that correspond to a residence time 

of 4 ghmol
-1 

(see chapter 4-Section B). In Figure 4D the fitting of ethyl 

acetate selectivity experimental data with the calculated ones, 

obtained by operating in a range of temperature of 180-300°C, at 

three different pressure (10-30 bar) and by using an ethanol flow rate 

of 0.5 cm
3
/min that correspond to a residence time of 4 ghmol

-1 
(see 

chapter 4-Section B) have been reported. 
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Figure 4A: Parity plot for ethanol conversion calculated vs 

experimental (2 g catalyst). 

 
Figure 4B: Parity plot of acetaldehyde, ethyl acetate, others 

selectivity calculated vs experimental (2 g catalyst). 
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Figure 4C: ethanol conversion as a function of temperature reaction. 

The runs were performed at three different pressures (10-20 bars), 

at a residence time of 4ghmol
-1

, by fed a constant flow of H26%N2 25 

cm
3
/min. 
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Figure 4D: ethyl acetate selectivities as a function of temperature 

reaction. The runs were performed at three different pressures (10-

20 bars), at a residence time of 4ghmol
-1

, by fed a constant flow of 

H26%N2 25 cm
3
/min. 
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As shown in Figure 4C the calculated conversion profiles by using a 

power law model are able to well interpret the experimental data 

obtained in the above-mentioned conditions. On the other hand, the 

model was not able to give a resonable interpretation of the 

experimental selectivity data of ethyl acetate, this aspect is more 

clearly evident at higher pressure (20-30) bar as shown in Figure 4D.  

In Figure 4E the experimental and calculated profiles of ethanol 

conversion as function of the reaction temperature obtained by 

operating at three different residence time 1-20 ghmol
-1

, at constant 

pressure of 20 bar and by feeding into the apparatus system 

respectively 1.5-0.5-0.1 cm
3
/min have been reported. In this case, the 

calculated profiles are able to simulate the dependence of the ethanol 

conversion by the residence time adopted. As it can be seen at higher 

residence time of 20 ghmol
-1

 the ethanol conversion is at a 

temperature of 220°C of about 43%. 

 
Figura 4E: ethanol conversion as a function of temperature reaction. 

The runs were performed at three different residence time of 1.30-
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3.89-19.46 ghmol
-1

, by fed a constant flow of H2 6% N2 25 cm
3
/min 

and at constant pressure of 20 bar. 

This behavior is in agreement with the experimental results in which 

the ethanol conversion, at the same mentioned temperature and 

residence time, is in the range 35-43%. At lowest residence time the 

calculated profiles by power law kinetic model are able to well 

describe the experimental data.   

The model 1.1 was used also in simulation to individuate also the best 

parameter fitting of the experimental data obtained for the all the 

experimental runs performed by using 50 g of catalyst. Thus, the 

empirical kinetic expressions obtained could be useful for design 

purpose and in particular, as it will be described in Chapter 6 of this 

section, a plant hypothesis for the dehydrogenating reactor to 

produce ethyl acetate has been proposed. The Table 4 describes the 

parameters, the kinetic constants at a temperature of reference of 

220°C, the corresponding activation energy parameters and the 

exponential parameters of the power law, obtained for experimental 

runs performed at 50 g. 

 
Table 4: Kinetic parameters of the power law model 1.1 determined by 

regression analysis on all the experimental runs performed by using the reactor 

loaded with 50 g of catalyst (see chapter 4). 

Average Error  12.21 

R
2
=0.88 

Kinetic constants (mol/cm
3 

h) Activation Energy (Kcal/mol) 

K1
ref 

3.54 Ea1 7.71 

K2
 ref 

0.41 Ea2 4.52 

K3
 ref 

29.22 Ea3 10.30 

 Exponential Parameters power law 

α    1.010 

β    0.063 

γ    1.095 

δ    -0.953 

ω    0.997 



 
Section B 

Chapter 5  

Kinetic study 

 

 

  246 

 

 
The average standard error resulted less than 13% as it can been 

appreciated by Figures 5A and 5B, in which are reported the parity 

plots for, respectively, the ethanol conversion and the selectivity to 

acetaldehyde, ethyl acetate and others.  

 
Figure5A: Parity plot for ethanol conversion calculated vs 

experimental (50 g catalyst). 

 
Figure 5B: Parity plot for selectivity's calculated vs experimental (50 g 

catalyst). 
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B-5.4.1.2 Power law model 1.2 

By increasing the number of parameters, another expression of the 

power law was derived and the rate laws are reported on following. �G = �G ∗ ~��+,� ∗ ~,�� ∗ ~��,� 																																																														(34	[) �� = �� ∗ ~��+,� ∗ ~��,� ∗ ~,�� ∗ ~��+��� 																																													(34	�) �# = �# ∗ ~��,� 																																																																																								(34	") 
The values of the obtained kinetic parameter are reported in Table 5. 

Although the higher number of parameters, the value of the average 

error is still non enough low. The obtained parameters are not able to 

well describe the experimental results. Moreover, the average error 

on the data at 50 g is very high and of about 25%.  

 

Table 5: Kinetic parameters of the power law model 1.2 determined by regression 

analysis on all the experimental runs performed by using the reactor loaded with 2 g 

of catalyst. 

Average Error- Parameter adjustment 14.62 

R
2
=0.89 

Kinetic constants (mol/cm
3 

h) Activation Energy (Kcal/mol) 

K1
rif 

1.64E-2 Ea1 17.98 

K2
rif 

8.68E-2 Ea2 5.91 

K3
rif 

1.20E-3 Ea3 15.67 

 Exponential Parameters power law 

α 0.49 

β -0.38 

γ 1.37 

δ -1.32 

ε -4.27 

ω -1E-2 

ϕ 1.01 

 

The obtained parameters have physical meaning and can be used to 

interpret as well the obtained experimental data. 
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B-5.4.1.3 Power law model 1.3 

The model 1.3 consists of a power law expression in which the overall 

reaction rate expressions are dependent by the corresponding 

equilibrium constants. Power law rate expressions used in the reaction 

pathway for dehydrogenation of ethanol to acetaldehyde, 

dehydrogenation of ethanol to ethyl acetate, aldol condensation of 

acetaldehyde to other sub-products are shown in the equations 35a-c.  

	�G = �G���+,� r1 − 1;	G ���,
� �,����� z																																																	(35	[) 

	�� = �����+,����,� ?1 − 1;	�
���,φ �,�����+,����A																																			(35	�) 	�# = �#���,� 																																																																																												(35	") 

 

In order to respect congruence, two of the 7 order of reaction have 

been evaluated to respect the congruence as reported in the 

equations 36 a-b. _ = � + � − 1																																																																																								(36	[) 
ϕ=δ+ε−ω         																																																																																								(36	�) 
The equilibrium constants Ke1 and Ke2 have been calculated, as already 

described in the previous section B-5.3.2. In Figure 6A-B the parity 

plots of conversion and selectivity were reported. The obtained 

parameters have been used in simulation to describe the experimental 

runs obtained by using high residence time (30-100 ghmol-1) on 50 g 

of catalysts, at temperature of 200-260°C and in the pressure range 

10-30 bar. As it can be seen by the values of Table 6 and Figure 7A-B, 

also in this case have not obtained a satisfactory agreement. 
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Table 6: Model 1.3.Kinetic parameters of the power law with equilibrium models determined by 

regression analysis on all the experimental runs performed by using the reactor loaded with 2 g 

of catalyst. 

Average Error 21.30 

R
2
=0.94 

Kinetic constants (mol/gcat h) Activation Energy (Kcal/mol) 

Kr1 3.51x10
-3

 Ea1 16.50 

Kr2 5x10
-2

 Ea2 9.80 

Kr3 8x10
-3

 Ea3 5.00 

Exponential Parameters   

α (by eq.36a) 1.17   

β 1.01   

γ 1.16   

δ 7.x10
-2

   

ε 1.40   

ω 1.43   

ϕ (by eq.36b) 0.040   

 
Figure 6A: Parity plot for ethanol conversion calculated vs 

experimental (2 g catalyst). 
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Figure 6B: Parity plot for selectivity calculated vs experimental (2 g 

catalyst). 

 

Figure 7A: Parity plot for ethanol conversion calculated vs 

experimental (50 g catalyst). 
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Figure 7B Parity plot for selectivity calculated vs experimental (50 g 

catalyst). 
 

This empiric model 1.3 shows not satisfactory performances (Average 

Correlation Index R
2
=0.92, Average error= 21.30%). However, by 

observing the obtained values for the apparent reaction orders, it is 

possible to conclude that some orders (δ and �) are near to zero, this 

probably means that more reliable kinetic equations would contain 

adsorption terms appearing at the denominator. At this scope, we 

have tested many different kinetic models derived from different 

hypothesis of reaction mechanism as reported in the next paragraph.  

 

B-5.4.2 Adsorption dual-site 

Another approach to kinetics studies is based on the hypothesis of  

reliable mechanistic consideration. At this purpose, in this model a 

duals site adsorption mechanism was proposed. In particular, σ0 and 

0Θ  was assuming as, respectively, the free sites and the fraction of  

the free active sites present on the catalyst surface. Whilst, with σi and 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Parity plot - Selectivity

Experimental Selectivity

C
al

cu
la

te
d 

S
el

ec
tiv

ity

 

 

Ethyl acetate

Acetaldehyde
Others



 
Section B 

Chapter 5  

Kinetic study 

 

 

  252 

 

Θi=σi/στοτ were indicated the sites and the fraction of active sites 

occupied by the reactant (i). Assuming that the number of sites 

consumed in the adsorption and dissociation steps must be equal to 

the number of sites liberated in the formation and desorption steps, 

each reaction (a-c) consists of different adsorption steps. Thus, it is 

possible to split up each reaction in a series of elementary adsorption 

step, where the symbol (a) is related to adsorbed species while (g) the 

components in gas phase. 
A. The model was structured assuming for the reaction a, related to 

the acetaldehyde production, four different adsorptions/desorption 

steps (a.1-4),  �W#�W�VW(�) + 25� ↔ �W#�W�V([) + W([)																																										([. 1) �W#�W�V([) + 5� ↔ �W#�WV([) + W([)																																																		([. 2) �W#�WV([) ↔ �W#�WV(�) + 5�																																																																			([. 3) 2W([) ↔ W� + 25�																																																																																														([. 4) 
The reaction rate expression is therefore (Eq.37). �� = ��.# = ;� ∗ ���, −;�� ∗ ���, ∗ ��																																													(37) 
B. The reaction b, related to the ethyl acetate formation, was been 

well described by three different adsorption steps, as reported (b.1-3): �W#�WV([) + 5� ↔ �W#�V([) + W([)																																									(�. 1) �W#�V([) + �W#�W�V([) ↔ �W#�VV��W�([)																										(�. 2	) �W#�VV��W�([) 				↔ �W#�VV��W�(�) + 25�										��	���			(�. 3	) 
The reaction rate expression is therefore (Eq.40): �� = �9.# = ;� ∗ ���+�� − ;�� ∗ ���+�� ∗ ��� 																															(38) 
 

C. Finally, the reaction c related to the formation of by-products was 

been well described by two adsorption step, as reported (c.1-2): �W#�WV([) + �W#�WV([)↔ �W#�W(VW)�W��WV([)																																																																			(". 1) �W#�W(VW)�W��WV([) 	↔ �W#�W(VW)�W��WV(�) + 25�				�� 	���				(". 2) 
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The desorption of the acetaldol intermediate specie to by-products 

(others) was been assumed the rate determining step for the reaction 

39. 	�� = ��.� = ;� ∗ ��� −;�� ∗ ���e	f� ∗ ��� 																																						(39) 
The partial pressure of acetaldehyde, ethyl acetate and ‘’others’’ are 

respectively indicated as PA, PAc and P0 while the sites occupied 

respectively by acetaldehyde, ethyl acetate, hydrogen, ethoxide, 

acetaldol and others are respectively reported as 

θAcH, θAcoEt, θΗ, θEx , θΑο and θothers.  

Finally, the adsorption/kinetics parameters for each reaction Kra, Kr-a, 

Krb, Kr-b and Krc, Kr-c have been reported. The dependence of the 

adsorption constants by the reaction temperature can be expressed by 

using the Van’t Hoff equation.  

 

B-5.4.2.1 Model 2.1 

In the model 2.1 it has been assumed for the reaction a as RDS rA (rate 

determining step) the acetaldehyde desorption to the gas phase 

(reaction a.3). For the reaction b and for the reaction c the RDS are 

respectively the expressed by the equations b.3 and c.2.  

Thus, it should be possible derive the adsorption equilibrium constants 

Ki and successively the occupied sites fractions. 

Reaction a  

kx.G = kG = �¡¢£¤�¤�¥d¦¡¢£¤ 																																���+, = �G~��+,§ ¨©�¤d ��                      

kx.� = k� = ���,�,�� ���+, 																													���, = �G��~��+, �}~,� �� 

kx.} = k} = �,����,� 																																	�, = ª~,��} �� 
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Reaction b 

kO.G = k� = ��l�,�� ���, 																																���+, = �G����~��+, �}~,�
G.� �� 

kO.� = k« = ���+����l���+, 																														���+, = �G������«~��+, � �}~,��
� ���  

Reaction c 

kw.� = k¬ = ��/���,� 																														 									��/ = �¬ ��G ���} ~��+,~,� �
� ���  

 

By the reported expressions, it should be possible to calculate the site 

fractions as function of free sites fraction �� 

(���+,, ���, , ��l , �, , ���+��, ��/)	and an overall balance on the free 

and adsorbed sites must be equal to 1 as the in following expression is 

indicated.    �� + ���+,���, + ��l + �, + 	2 ∗ ���+�� + 2 ∗ ��/ = 1															(39) 
By the resolution of the reported equation it is possible obtain an 

equation of the second order respect to θ0 (40). Y��� + �	�� + � = 0																																																																																												(40) 
Where A, B and C have the following expressions: 

Y = 2�G������«~�� �}�~,� + 2�¬�G�����}�
~��+,�
~,��  

� = 1 + �G~��+,ª�}~, + �G���} ~��+,~,� + �G����~��+, ��}~,�
G.� + ª~,�}  

� = 1 

The model in exam has 18 parameters: Ki represents the adsorption 

constants, Kri-kr-I the kinetics constants of the direct/inverse reactions, 

whilst Eai-Ea-i the corresponding activation energies. The dependence 

of the kinetic constants by the reaction temperature has been 

expressed, as already said, by the Arrehenius equation (26). The 

obtained parameters are thus reported in Table 7. 
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Table 7: kinetics parameters obtained by hypnotizing as rate determining step the 

acetaldehyde desorption to gas phase (a.3) for the reaction a. 

Adsorption 

Parameters 

 

Kinetics constant 

(mol/hgcat) 

 

Activation Energies 

(Kcal/mol) 

k1 [atm
-1

] 6.31  

r1 

krA 32.32 EaA 14.8 

k2 [-] 1.38E-3 kr-A 46.65 Ea-A 0.00619 

k4 [atm] 39.74  

r2 

KrB 37.49 EaB 10.86 

k5 [-] 23.51 kr-B 189 Ea-B 0.0015 

k6 [-] 2.62e-3 
 

r3 

KrC 33.98 EaC 22.62 

k8 [-] 2.56 Kr-C 59.02 Ea-C 33.63 

Average error: 16.52 

Correlation Index R
2
=0.98 

 

The parity plots of Figure 8 A-B show the not enough satisfactory 

correlation between the experimental data and calculated ones. 

 
Figure 8A: Parity plot for ethanol conversion calculated 

vs experimental (2 g catalyst). 
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Figure 8B: Parity plot for selectivities calculated vs 

experimental (2 g catalyst). 

In Figure 8C the profile of ethanol conversion as function of the 

reaction temperature at three different pressure 10-30 bar have been 

reported. The experimental runs have been performed in this case at a 

constant residence time of 4 ghmol
-1

. The symbols are the 

experimental data, whereas lines the calculated data. At lowest 

temperature of reaction, a deviation is observed probably due to the 

default of controlling temperature. At higher temperature the 

agreement would seem better but still not enough satisfactory. In 

Figure 8D, the selectivity's profiles of the main reaction product, ethyl 

acetate, obtained in the same mentioned conditions are also reported. 

In this case it should be possible identify a good agreement between 

the experimental (symbols) and calculated data only at low pressure, 

were the ethyl acetate selectivity is relatively low, less than 70%, and 

the sensibility if the models is higher. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Parity Diagram - Selectivity

Selectivity sper

S
el

ec
tiv

ity
 c

al
c

 

 

Ethyl Acetate

Acetaldehyde
Others



 
Section B 

Chapter 5  

Kinetic study 

 

 

  257 

 

 
Figure 8C: ethanol conversion as a function of temperature reaction. The runs 

were performed at three different pressures (10-20 bars), at a residence time 

of 4ghmol
-1

, by fed a constant flow of H26%N2 25 cm
3
/min. 

 
Figure 8D: ethyl acetate selectivity as a function of temperature reaction. The runs 

were performed at three different pressures (10-20 bars), at a residence time of 

4ghmol
-1

, by fed a constant flow of H26%N2 25 cm
3
/min. 
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In Figures 8E the conversion and in Figures 8F ethyl acetate 

selectivities profiles have been reported by operating at a constant 

pressure of 20 bar and at three different residence time of 1.3-3.89-

19.46 ghmol
-1

 that correspond to an ethanol feeding of respectively 

1.5-0.5-0.1 cm
3
/min. The calculated profiles of conversion are able to 

fit quite well the conversion results whilst it is not the same for 

selectivity to ethyl acetate. The kinetics parameters determined by 

regression analysis of the experimental data with 2 g of catalyst have 

been used to simulate the behavior of experimental data at 50 g. In 

this case an average error of 26.50 and R
2
=0.95 has been obtained. 

The parity plots of Figure 9 A-B show the not satisfactory agreement 

obtained. 

 
Figure 8E: ethyl acetate conversion as a function of temperature reaction. 

The runs were performed at constant pressures of 20 bars, at three different 

residence time of 1-4-20ghmol
-1

, by fed a constant flow of H26%N2 25 

cm
3
/min. 
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Figure 8F: ethyl acetate selectivities as a function of temperature reaction. 

The runs were performed at constant pressures of 20 bars, at three different 

residence time of 1-4-20ghmol
-1

, by fed a constant flow of H26%N2 25 

cm
3
/min. 

 
Figure 9A: Parity plot for ethanol conversion calculated vs experimental (50 g 

catalyst). 
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Figure 9B: Parity plot for ethyl acetate selectivity calculated vs 

experimental (50 g catalyst). 

 

B-5.4.2.1.1 Model 2.1A 

In this case, the same hypothesis of RDS, of the model 2.1.A has been 

assumed, but, within, the dependence of the equilibrium constants by 

the reaction temperature was considered by using the Van’t Hoff 

expression. The rate expression for each different step has been 

represented by equation 1-3. In particular has been reported the 

ethanol dehydrogenation reaction to acetaldehyde:  

�� = �G = ;� ∗ ��� − 1;E[ ∗ �� ∗ ���																																																(41[) 
The rate expression for ethanol dehydrogenation reaction to 

ethylacetate:  

�� = �� = ;� ∗ ���� − 1;E� ∗ ��� ∗ ��� �																																							(41�) 
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Finally, the desorption of the acetaldol intermediate specie to 

subproducts (others) was been assumed the rate determining step for 

the reaction 3. 

�� = �# = ;� ∗ ���� − 1;E" ∗ �� ∗ ��� �																																										(41") 
The partial pressure of acetaldehyde, ethyl acetate and other are 

respectively indicate as PA, PAc and P0 while the fraction of sites 

occupied respectively by acetaldehyde, ethyl acetate, hydrogen, 

acetaldol and others are respectively reported as θAcH, θΑcΟΕτ, θΗ, θAx 

and θΑo. The kA, kB, and kC represent the adsorption/kinetics 

parameters. The obtained values of each parameter are reported in 

Table 8.  

In figure 10 A-B are shown the parity diagrams respectively for the 

ethanol conversion and for the products selectivities. Although the 

model takes in account the dependence of the equilibrium constant by 

the reaction temperature, no significant improvements have been 

obtained. 
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Table 8: dual site kinetic model parameters, determined by regression analysis on all 

the experimental runs performed by using the reactor loaded with 2 g of catalyst. 

Adsorption 

Parameters 

 

Kinetics constant 

(mol/hgcat) 

 

Activation Energies 

(Kcal/mol) 

k1 [atm
-1

] 40.11 krA 20.27 EaA 20.87 

k2 [-] 3.51x10
-3

 kr-A 0.34 ∆Ha 
-9.8x10

-3
 

(VL) 

k4 [atm] 10.50 KrB 31.30 EaB 11.16 

k5 [-] 89.90 kr-B 5.66x10
-3

 ∆Hb 
-7.32x10

3
 

(VL) 

k6 [-] 3.66x10
-3

 KrC 106.56 EaC 28.62 

k8 [-] 1.52 Kr-C 1.74x10
-2

 ∆Hc 
-1.49x10

3
 

(VL) 

Conversion Average error: 21.74 

Correlation Index R
2
=0.94 

 

This behavior could be find explanation in the low sensibility of the 

model to fitting experimental value of selectivity's to acetaldehyde 

and others, present in the withdrawn in concentration less than 1%. 

Moreover, in Figure 10C the ethanol conversion as a function of 

temperature reaction, for runs performed at three different pressures 

(10-20 bars), at a residence time of 4ghmol
-1

, by fed a constant flow of 

H26%N2 25 cm
3
/min has been represented. The Figure 10D represents 

the ethyl acetate selectivities profiles. The calculated profiles of 

conversion and selectivity to ethyl acetate are difficult to interpret. As 

It can be seen, at low pressure (10 bar) and low temperature the 

ethanol conversion should be higher than the once obtained at 20-30 

bar and at temperature of 220-260°C. 
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Figure 10A: Parity plot for ethanol conversion calculated vs 

experimental (2 g catalyst).  

 

The model is not able to interpret this aspect, whilst at higher 

temperature a reasonable fitting of the experimental data has been 

obtained. The model is able to well interpret the experimental data of 

conversion obtained at 30 bar. In Figure 10E, the profiles, at three 

different residence time 1-20 ghmo
-1

, have been obtained. The model 

is able to well interpret the experimental data obtained by using a 

residence time of 4ghmol
-1 

that correspond to the ethanol fed of 0.5 

mol/h. The calculated data on a system charged with 50 g, obtained by 

using this same model and the kinetic parameters reported in Table 8 

show unsatisfactory results, as it can be seen by parity plot of Figure 

11 A-B. 
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Figure 10B: Parity plot for selectivities calculated vs experimental 

(2 g catalyst). 

 
Figure 10C: ethanol conversion as a function of temperature reaction. 
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residence time of 4ghmol
-1

, by fed a constant flow of H26%N2 25 

cm
3
/min. 

 
Figure 10D: ethyl acetate selectivity as a function of temperature 

reaction. The runs were performed at three different pressures (10-20 

bars), at a residence time of 4ghmol
-1

, by fed a constant flow of 

H26%N2 25 cm
3
/min. 

 
Figure 10E: ethyl acetate conversion as a function of temperature 

reaction. The runs were performed at constant pressures of 20 bars, at 

three different residence time of 1-4-20ghmol
-1

, by fed a constant flow 

of H26%N2 25 cm
3
/min. 
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Moreover the average error is of about 31.11 and the value of R
2
=88.7. 

This model could not satisfy our requirement and for this reasons the 

investigation was depth by considering as rate determing step the 

reaction of ethoxy adsorbed formation by gas phase ethanol. 

 
Figure 11A: Parity plot for ethanol conversion calculated vs experimental (50 g 

catalyst). 

 

Figure 11B: Parity plot for selectivities calculated vs experimental (50 g 

catalyst). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Parity Diagram - Conversion

Conversion sper

C
on

ve
rs

io
n 

ca
lc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Parity Diagram - Selectivity

Selectivity sper

S
el

ec
tiv

ity
 c

al
c

 

 

Ethyl Acetate

Acetaldehyde
Others



 
Section B 

Chapter 5  

Kinetic study 

 

 

  267 

 

B-5.4.2.2 Model 2.2 

In the model 2.2 it has been assumed for the reaction a as RDS rA (rate 

determining step) the ethoxy adsorbed formation by gas phase 

ethanol (reaction 1a). In Table 9 the parameters results have been 

summarized. Nevertheless the low average error and the good 

agreement between the experimental and calculate data, this model 

cannot consider acceptable because of the absence of physical 

meaning for the obtained parameters (Ea>50 Kcal/mol). 

 

Table 9: dual site kinetic model parameters, determined by regression analysis on all the 

experimental runs performed by using the reactor loaded with 2 g of catalyst. 

Adsorption 

Parameters 

 

Kinetics constant 

(mol/hgcat) 

Activation Energies 

(Kcal/mol) 

K2 0.97 KrA 2.77 EaA 53.69 

K3 [atm] 0.10 Kr-A 1.26 Ea-A 41.51 

K4 [atm] 1.32 KrB 0.34 EaB 15.04 

K5 6.87 Kr-B 1.09 Ea-B 37.28 

K6 0.57 KrC 0.85 EaC 26.16 

K8 0.85 Kr-C 0.63 Ea-C 53.96 

Conversion Average error: 15.26 

Correlation Index R
2
=0.98 

 

B-5.4.2.3 Model 2.3 

In the model 2.3 it was assumed as rate determining step of the 

reaction a, the acetaldehyde adsorbed formation by adsorbed ethoxy 

group (reaction a.2). The details of the model have been not 

considered because, although all the parameters, as shown in Table 

10, obtained have a physical meaning the overall average error is too 
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high (20.74) to consider this model effective for the description of 

experimental results.  

Table 10: dual site kinetic model parameters, determined by regression analysis on all 

the experimental runs performed by using the reactor loaded with 2 g of catalyst. 

Adsorption 
Parameters 

 

Kinetics constant 

(mol/hgcat) 

 

Activation Energies 
(Kcal/mol) 

KE 0.71 KrA 88.41 EaA 14.20 

KA 0.57 Kr-A 112.1 Ea-A 0.57 

KH 0.76 KrB 0.11 EaB 11.30 

KC 0.41 Kr-B 0.4 Ea-B 11.90 

KAE 31.51 KrC 0.26 EaC 14.90 

KAA 0.36 Kr-C 0.27 Ea-C 41.10 

Average error: 20.74 
Correlation Index R2=0.95 

 

Moreover, the parameters have been used to obtain in simulation the 

curves to fit the experimental data obtained by using 50 g of catalysts. 

The average error on this model is of about 30.97 and the coefficient 

of linear correlation is of about 0.89.  

By concluding, many kinetic models have been developed on empirical 

laws or mechanism hypothesis and most of them have given 

parameters with no physical meaning. At this purpose our 

investigation have developed, as the last paragraph of this chapter will 

show, a Langmuir-Hinshelwood-Hougen-Watson (LHHW) model to 

interpretation the experimental data on both 2g and 50 g of catalyst. It 

should be useful to anticipate that this model have shown a good 

coherence between the experimental and calculated data. 
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B-5.4.3 Model 3 

When a catalytic reaction was considered, it is possible image the 

reaction mechanism as consisting in different steps. Each of these 

steps may be of different types, and the adsorbed species react with 

each other, that surface species may migrate into the bulk, that 

reactive radicals desorb and then react in the gas−phase etc. The 

Langmuir−Hinshelwood-Hougen-Watson mechanisms form an 

important class of reactions. These mechanisms consist of the 

following types of steps: 

• Adsorption from the gas−phase 

• Desorption to the gas−phase 

• Dissociation of molecules at the surface 

• Reactions between adsorbed molecules 
At this purpose, by assuming with σ0 and 0Θ respectively the free sites 

and the fraction of the free the active sites present on the catalyst 

surface and with σi and Θι=σι/σ0 respectively the sites and the fraction 

of the active sites occupied by reactant (i), the following reaction 

scheme can be assumed for the dehydrogenation reaction of ethanol. 

For the reaction a the mechanism hypothesis should be so 

represented: ��W�VW + 5� ↔ 5��+,																																																																									(43[) 	5��+, + 5� ↔ 5��, + 5,�								���																																																	(43�) 5��, ↔	�W#�WV +	5�																																																																								(43") 5,� ↔	W� +	5�																																																																																						(43@) 
For this reaction, the rate determining step should be the surface 

reaction between chemisorbed ethanol and a catalyst free site to form 

adsorbed acetaldehyde. For the reaction b (44) we suggest the 

following mechanism: ��W�VW + 5� ↔ 5��+,																																																																									(44[) �W#�WV +	5� ↔ 5��,																																																																									(44�) 
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5��+, + 5��, ↔ 5��+�� + 5,�								���																																										(44") 5,� ↔	W� +	5�																																																																																						(44@) 
In this case, the rate determining step should be the dual sites reaction 

between two adsorbed molecules of respectively ethanol and 

acetaldehyde to give adsorbed ethyl acetate and hydrogen.  

The reaction 3, occurring in a very small amount between two 

molecules of adsorbed acetaldehyde to give other by-products have 

been described in an approximated way by a second order irreversible 

reaction. The kinetic laws are, thus expressed: �G = �G���� − ��G���,																																																																										(45) �� = ������ − �������,																																																																								(46) 
Applying a balance on the free sites and the adsorbed ones it possible 

to write: ��(���+,~��+, + ���,~��, + ���+��~��+�� + �,~,)= 	���, + ���+, + ���+�� + �,																																	(47) 
�� = 11 + ∑�¯	~¯ 																																																																																							(48) 
�- = �-~-1 + ∑�¯	~¯ 																																																																																								(49) 
Generally, the mathematical expressions for the rate equations may 

be expressed by a combination of three terms, the kinetics term, the 

potential term and the adsorption term (eq.50) [10]:  

� = (;¯:EU¯"	UE��)(~�UE:U¯[�	UE��)([@\��~U¯�:	UE��). 																																															(50) 
Therefore, on the basis of the described mechanisms the following 

kinetic rate laws can be derived (50 a-c): 

�G = �G���+, 31 − 1�	G ���,�,����+, 7
(1 + ���+,���+, + ���,���, + �,�, + ���+�����+��)� 															(50[) 

�� = �G���+, 31 − 1�	� ���+���,����+,���,7(1 + ���+,���+, + ���,���, + �,�, + ���+�����+��)� 															(50�) 
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�# = �#	���,� 																																																																																																							(50")
 

 

Where, the dependence of the equilibrium constant by the reaction 

temperature was already described in the paragraph B-5.3.2. 

In Table 11, all the kinetic parameters determined by regression 

analysis are reported. The equilibrium constants Ke1 and Ke2 have 

been calculated, as described  in the previous Chapter 3. 

From the kinetic parameters reported in Table 11 it is possible to 

observe that k3 has a very low value and a negligible value of the 

activation energy. This is the consequence of: (i) the approximation 

introduced by considering a pseudo-second order rate law; (ii) the fact 

that reaction c corresponds to an ensemble of different reactions 

considered as acetaldehyde that gives “others”; (iii) the very low 

amount of by-products found corresponds to a low precision in the 

analytical determination. The kinetic effect of the hydrogen adsorption 

is negligible with respect to the other values. The other values have a 

reasonable physical mean. The average standard error resulted less 

than 14% (R
2
=0.98) and the validity of the developed model can be 

appreciated in Figures 12A and 12B in which are reported the parity 

plots for, respectively, the ethanol conversion and the selectivity to 

acetaldehyde, ethyl acetate and others. 
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Table 11 – Kinetic parameters of the LHHW dual site model determined by regression 

analysis on all the experimental runs performed by using the reactor loaded with 2 g 

of catalyst.  

Kinetic constants Activation Energy 

(Kcal/mol) 

k
ref

1 97.1 (mol/(gcat h atm)) 36.25 

k
ref

2 0.089 (mol/(gcat h atm
2
)) 12.95 

k
ref

3 0.0011 (mol/(gcat h atm
2
)) 1.6E-4 

 

Adsorption parameters 

Adsorption 

enthalpy 

(Kcal/mol) 

b
ref

EtOH 10.4 (atm
-1

) -25.53 

b
ref

AcH 98.4 (atm
-1

) -7.02 

b
ref

EA 41.2 (atm
-1

) -13.91 

b
ref

H 2.5x10
-4

 (atm
-1

) -13.34 
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Figure 12A: Parity plots related to the ethanol  conversion by 

considering a catalyst bed of 2g. 
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Figure 12B: Parity plots related to selectivities by considering a catalyst 

bed of 2g. 

In Figure 12 C the conversion profiles of conversion in dependence of 

the reaction temperature have been reported at three different 

pressure respectively of 10, 20, 30 bar. The calculated profiles of 

conversions with the LHHW are able to fitting experimental data of 

ethanol conversion. The same is true for the ethyl acetate selectivity's 

(see Figure 12D). In Figure 12E the experimental and calculated 

profiles of ethanol conversion as function of the reaction temperature 

obtained by operating at three different residence time 1-20 ghmol
-1

, 

at constant pressure of 20 bar and by feeding into the apparatus 

system respectively 1.5-0.5-0.1 cm
3
/min have been reported. In this 

case, the calculated profiles are able to simulate the dependence of 

the ethanol conversion by the residence time adopted. In Figure 12F, 

as well, the calculated profiles of ethyl acetate selectivity were able to 

fit the experimental date.  
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Figure 12 C: ethanol conversion as a function of temperature reaction. The runs were 

performed at three different pressures (10-20 bars), at a residence time of 4ghmol
-1

, by 

fed a constant flow of H26%N2 25 cm
3
/min. 

 
Figura 12D: ethyl acetate profile as a function of temperature reaction. The 

runs were performed at three different pressures (10-20 bars), at a residence 

time of 4ghmol
-1

, by fed a constant flow of H26%N2 25 cm
3
/min. 
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Figure 13E: ethanol conversion as a function of temperature reaction. The runs 

were performed at constant pressures of 20 bars, at three different residence 

time of 1-4-20ghmol
-1

, by fed a constant flow of H26%N2 25 cm
3
/min. 

 
Figure 14F: ethyl acetate selectivity as a function of temperature reaction. The 

runs were performed at constant pressures of 20 bars, at three different 

residence time of 1-4-20ghmol
-1

, by fed a constant flow of H26%N2 25 cm
3
/min. 
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Some kinetic runs have been performed by charging the same tubular 

reactor with 50 g of catalyst instead of 2 g. Two different consecutive 

ovens have been used for heating the reactor with the aim to obtain 

as much as possible an isothermal profile along the catalytic bed. This 

has been experimentally verified and a variation of not more than ±5°C 

has been observed along the reactor. In Table 12 some of the 

performed runs are reported together with the adopted experimental 

conditions. In the same Table are also reported for comparison 

experimental and calculated values of ethanol conversions and 

selectivities of respectively ethyl acetate, acetaldehyde and other by-

products. Calculations have been made with the LHHW described 

model using the kinetic parameters reported in Table 11 and the 

agreement obtained is very satisfactory (see Table12 and Figure 13A-

F).  
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Figure13 A: Parity plots related respectively to the ethanol  

conversion and selectivities by considering a catalyst bed of 50g. 
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Figure 13B: Parity plots related respectively to the ethanol  conversion and 

selectivities by considering a catalyst bed of 50g. 

 

 
Figure 13C: ethanol conversion as a function of temperature reaction. The runs were 

performed at three different pressures (10-20 bars), at a residence time of 97 ghmol
-1

, 

by fed a constant flow of H26%N2 25 cm
3
/min. 
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Figure 13D: ethyl acetate selectivity's profiles as a function of 

temperature reaction. The runs were performed at three different 

pressures (10-20 bars), at a residence time of 97 ghmol
-1

, by fed a 

constant flow of H26%N2 25 cm
3
/min. 

 
Figure 12E: ethanol conversion as a function of temperature 

reaction. The runs were performed at constant pressures of 

180 200 220 240 260 280 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Temperature (°C)

E
th

yl
 a

ce
ta

te
 s

el
ec

tiv
ity

 

 

P=10 atm

P=20 atm
P=30 atm

180 200 220 240 260 280 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Conversion vs Temperature (P=20 bar)

Temperature (°C)

C
on

ve
rs

io
n

 

 

F0=0.5

F0=1.5



 
Section B 

Chapter 5  

Kinetic study 

 

 

  279 

 

20 bars, at three different residence time of 30-97 ghmol
-1

, 

by fed a constant flow of H26%N2 25 cm
3
/min. 

 
Figure 12F: ethyl acetate selectivity as a function of 

temperature reaction. The runs were performed at constant 

pressures of 20 bars, at three different residence time of 30-

97 ghmol
-1

, by fed a constant flow of H26%N2 25 cm
3
/min. 

 

The calculated profiles fit with a good agreement the experimental 

data obtained at different temperature, pressure and residence time 

as shown in the profile of conversion and selectivity get in the wide 

range of operative conditions explored, as demonstated by the Figure 

12C-F. However, the results obtained in these runs correspond, very 

probably, to equilibrium conditions. This can be appreciated in Figure 

13, in which the profiles of respectively conversions and selectivities 

are reported as a function of the residence time.  
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Figure 13 – Conversion and selectivities obtained for different residence times. This 

plot has been obtained by considering all data collected in both the reactors 

containing respectively 2 and 50 g of catalyst working at 220°C, 20 bars with a 

constant flow of a mixture of 6% H2 in N2 of 25 cm
3
/min that correspond to an 

hydrogen flow of 3.77x10
-3

 mol/h and nitrogen flow of 0.057mol/h. 

As it can be seen, the runs made with 50 g of catalyst show the 

approaching to a plateau for both conversion and selectivities. For this 

reason these runs have not been considered together with the ones 

performed with 2 g of catalyst in the regression analysis but are used 

here to verify the model. The average standard error in simulating 

these runs is of 11% and R
2
=97.30.  
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Table 12: Comparison of experimental and calculated data by using LHHW model. The runs have been performed by using 50g of catalyst, temperature range: 200°-260°C, 

pressure range: 10-30 bar, at two different residence time of 34.4-97.32 ghmol
-1

, keeping constant the nitrogen (5.7x10
-2

 mol/h) and hydrogen (4x10
-3

 mol/h) flow rates. 

Operative conditions Experimental data Calculated data with the LHHW model 

T(°C) P(bar) FEtOH 

(cm
3
/min) 

W/F 

(ghmol
-1

) 

XEtOH SAcOEt SAcH Sothers XEtOH SAcOEt SAcH Sothers 

200 10 0.5 97.32 0.51 0.96 0.03 0.01 0.63 0.97 0.02 0.01 

220 10 0.5 97.32 0.62 0.97 0.01 0.02 0.70 0.95 0.03 0.02 

240 10 0.5 97.32 0.70 0.93 0.02 0.05 0.74 0.93 0.04 0.05 

260 10 0.5 97.32 0.50 0.99 0.01 0.00 0.43 0.97 0.01 0.00 

200 20 0.5 97.32 0.49 0.98 0.01 0.00 0.43 0.97 0.01 0.00 

200 20 0.5 97.32 0.57 0.99 0.01 0.00 0.55 0.96 0.01 0.00 

220 20 0.5 97.32 0.61 0.99 0.01 0.00 0.55 0.96 0.01 0.00 

220 20 0.5 97.32 0.65 1.00 0.00 0.00 0.63 0.94 0.02 0.00 

240 20 0.5 97.32 0.64 0.93 0.00 0.06 0.63 0.94 0.02 0.06 

240 20 0.5 97.32 0.71 0.94 0.01 0.05 0.68 0.91 0.03 0.05 

260 20 0.5 97.32 0.54 0.99 0.11 0.01 0.43 0.97 0.01 0.01 

200 20 0.5 97.32 0.61 0.99 0.00 0.01 0.51 0.95 0.01 0.01 

220 30 0.5 97.32 0.63 0.97 0.01 0.03 0.51 0.95 0.01 0.03 

220 30 0.5 97.32 0.63 0.97 0.01 0.03 0.59 0.93 0.02 0.03 

240 30 0.5 97.32 0.67 0.96 0.01 0.03 0.64 0.88 0.02 0.03 

260 30 0.5 97.32 0.35 0.78 0.11 0.11 0.35 0.95 0.04 0.11 

200 10 1.5 34.40 0.41 0.87 0.06 0.07 0.50 0.95 0.04 0.07 

220 10 1.5 34.40 0.60 0.84 0.06 0.10 0.63 0.94 0.04 0.10 

240 10 1.5 34.40 0.60 0.84 0.05 0.11 0.72 0.93 0.04 0.11 

260 10 1.5 34.40 0.35 0.94 0.05 0.01 0.30 0.95 0.03 0.01 

200 20 1.5 34.40 0.47 0.97 0.02 0.01 0.43 0.94 0.03 0.01 

220 20 1.5 34.40 0.61 0.96 0.02 0.02 0.55 0.93 0.03 0.02 

240 20 1.5 34.40 0.68 0.95 0.02 0.03 0.65 0.92 0.03 0.03 

260 20 1.5 34.40 0.36 0.95 0.04 0.02 0.27 0.94 0.02 0.02 

200 30 1.5 34.40 0.42 0.96 0.02 0.02 0.39 0.93 0.02 0.02 

220 30 1.5 34.40 0.61 0.96 0.02 0.02 0.51 0.92 0.02 0.02 

240 30 1.5 34.40 0.59 0.97 0.01 0.02 0.51 0.92 0.02 0.02 

240 30 1.5 34.40 0.66 0.96 0.03 0.02 0.61 0.89 0.03 0.02 
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List of symbols 

r observed reaction rate per unit particle volume   [mol/(min cm
3
)] 

rj reaction rate             [mol/(min gcat)] 

C0  reactant concentration at the external surface of the particle

                                                                                      [mol/cm
3
] 

Rp radius of the particle                        [cm] 

Deff  effective diffusivity coefficient           [cm
2
/min] 

Fi molar flow rate of component i                      [mol/min] 

FE°         inlet ethanol flow rate                       [mol/min]  

XE,XEtOH ethanol conversion                       [-] 

Si Selectivity to component i         [-] 

Di molecular diffusivity of ethanol in nitrogen         [cm
2
/min] 

εB  porosity of the bed          [-] 

ρB bulk density of the catalyst bed                      [g/cm
3
] 

τ tortuosity factor [-] 

σ constriction factor                  [-] 

kc mass transfer coefficient               [cm/min] 

n reaction order            [-] 

dp pellets diameter                [cm] 

v0          volumetric flow rate           [cm
3
/min] 

Ac cross sectional area of the reactor tube         [cm
2
] 

U superficial velocity=v0/Ac           [cm/min] 

μ kinematic viscosity            [cm
2
/min] 

nCi number of carbon atoms in component i         [-] 

ACi Chromatographic area of component i         [-] 

z dimensionless bed length                     [-] 

W,wcat catalyst weigth           [g] 

αij stoichiometric coefficient of component i in reaction J [-] 

NR number of reactions          [-] 

L axial coordinate           [cm] 

LBED lenght of the catalytic bed          [cm] 

ai conversion or selectivities          [-] 

N  number of experimental measurements       [-] 

Sh' Sherwood number            [-] 



 
Section B 

Chapter 5 

Kinetic Study 

 

 

 283 

 

σi catalytic site occupied by component i        [-] 

kj kinetic constant of reaction j [mol/(g h atm)] (k1)    

 [mol/(g h atm
2
)] (k2, k3)                                                                                                    

bi adsorption parameters                                              [atm
-1

] 

Kej equilibrium constant of reaction j          [-] 

Pi partial pressure of component i          [atm] 

Subscripts 

EtOH    ethanol 

AcH      acetaldehyde 

EA         ethylacetate 

H2             hydrogen 

Others  subproducts derived by aldol condensation (esters, aldehyde,             

alcohols and chetones C3-C4).        
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           Chapter 6 

                      Plant Design 

 

 

C-6.1 Introduction 

An overall process simulation, made in ChemCAD, was used as a base 

for the sizing of the different characteristic units of the hypotized plant 

for the ethyl acetate production. The study shows the possibility to 

realize a plant to produce ethyl acetate and pure hydrogen by ethanol 

dehydrogenation. The plant capacity is of about 160 kton/year and by 

assuming an activity of  8000 hours/years. The hourly productivity is 

for ethylacetate of about 21 t/h and for hydrogen of 1 t/hour. An 

ethanol fed of 23 t/h is assumed. 

 

C-6.1.1 Introduction to the scale-up  

Scaling up is a major task for chemical engineers and is the 

fundamental step in the realization and optimization of an industrial 

plant [1]. The scale up activity represents the synthesis of the know-

how accumulated in the various phase of the process development 

from the design of laboratory experiments and the derivation of 

kinetic correlations, to fluid dynamic experiments, mathematical 

modeling, design and operation of pilot and industrial plants. The term 

‘’scale up’’ has been usually explained as ‘’how to design a pilot or 

industrial reactor able to replicate though a standard methodology the 

results obtained in laboratory’’. This is a limiting definition, since 

experiments has shown that it does not really exist a standard way 

through process innovation.  
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Scale up is the ability of finding out the quantitative rules that 

describes the operation of a chemical reactor at different scales, 

operating conditions and with different reaction technologies.  

The scale up is realized on the basis of a mathematical model that is 

the synthesis of ideas and experimental data and is the main tool to be 

used for scaling up or improving the performance of an industrial unit. 

The mathematical model may be simple or a complex one within 

available data, knowledge, ideas and objectives. 

Most novel chemical processes present chemical engineering 

challenges. The following section describes some of the challenges 

that were addressed during the development of the ethyl acetate 

process. Resolution of these problems required a combination of 

fundamental chemical engineering research and application of state-

of-the-art software tools for steady state and dynamic simulation and 

computational fluid dynamics. 

 

C-6.1.2 Ethanol dehydrogenation to Ethyl acetate: process 

design 

The development deals with process engineering trends for improving 

biotechnological production of ethanol. The future availability of 

ethanol in the next future will require its use in process to produce 

chemicals such as ethylene, acetaldehyde, ethyl acetate, still now 

produced by fossil sources. In particular, the ethyl acetate is increasing 

its share of the oxygenated solvents market. As demand rises, 

producers are seeking more economic, environmentally compatible 

and reliable process routes. Actually, the Davy Process Technology is 

the only developed and commercialized process technology that 

addresses all these issues. This technology adds value to ethanol and, 

in a fully integrated fermentation facility, can provide a process that is 
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carbon neutral. The process consists of several parts that can be 

summarized in four steps: ethanol drying, dehydrogenation, selective 

hydrogenation and refining (see Figure 1). The product is cooled in an 

integrated heat exchanger system, hydrogen being separated from the 

crude product. The hydrogen is mainly exported. 

 
Figure 1: simplified scheme of the Davy process 

Crude product is passed through a second catalytic reactor to allow 

selective 'polishing' to remove minor by-products such as carbonyls. 

Polished product is passed to a distillation train where a novel 

distillation system allows the ethanol/ ethyl acetate/water azeotrope 

to be broken. The products from this distillation scheme are un-

reacted ethanol, which is recycled, and ethyl acetate product. The 

mean advantage of this process is the use of a single renewable 

feedstock that allows significant production cost benefits over other 

technologies. This process is proven to be safe, efficient and reliable 

and the resulting product has been readily accepted by end-users. The 

elimination of acetic acid as a feedstock allows for lower grade 

materials of construction thereby reducing investment and 

maintenance costs. With conventional process routes to ethyl acetate, 

hydrocarbon molecules are broken down and reformed. The major 

benefit of the Davy Process Technology is that it relies only upon the 

availability of ethanol, the majority of which is produced by 

fermentation. As fermentation, ethanol is derived from biomass and 

this relies on atmospheric carbon dioxide there is no depletion of a 
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non-renewable feedstock. The major application of ethyl acetate is as 

a solvent in coatings and inks. In the atmosphere it is readily oxidized 

to carbon dioxide and water. Davy Process Technology has made a 

break-through so that ethyl acetate is produced in two process stages 

(fermentation to bioethanol and catalytic dehydrogenation) from 

natural resources rather than petrochemicals. This route is far less 

likely to suffer cost fluctuations; production economics are therefore 

more stable. As the Davy Process Technology route is almost 100% 

carbon efficient there is no net carbon dioxide contribution. 

Moreover, the only by-product is hydrogen which is the ultimate clean 

fuel. 

The main drawback of the Davy process is the needs of an 

hydrogenating reactor to convert the several co-products of reaction, 

such as C3-C4 aldehydes and ketones to the corresponding alcohols. On 

the basis of the surprising results obtained in our research, as 

demonstrated by the experimental runs reported in chapter 4 of the 

current section, a new simplified process in which a catalyst of 

copper/copper chromite/alumina/barium chromate was used to 

obtain by the dehydrogenation ethyl acetate with high purity and pure 

hydrogen. The main peculiarities of this process is the use of a very 

selective commercial catalyst Cu-1234 that gives during the 

dehydrogenation step an ethyl acetate selectivity of about 98.8% vs an 

ethanol conversion of 65% [2]. 

In this chapter, the key role is an evaluation of the equipment that 

should be employed for a future realization of the scale up of the 

dehydrogenation reactor through the analysis of major trends in 

process synthesis, modeling, simulation and optimization related to 

ethyl acetate and pure hydrogen production. Main ways of process 

intensification through reaction– reaction, reaction–separation and 

separation–separation processes are analyzed in the case of ethyl 

acetate production. Finally, some concluding considerations on 
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current and future research tendencies in ethyl acetate production 

regarding process design and integration are presented. 

 

 

 

 

 

C-6.2 Main aspect of the project 

C-6.2.1 Necessary Information and Simulation Hints 

The main step of the process is the ethanol dehydrogenation to ethyl 

acetate represented by the two reactions: 

��������	 ↔		������ + ��																																																																												(1) 

��������	 +		������		↔	������������ 	+ 	��																																		(2) 

The co-products of the reaction, mainly C3-C4 aldehydes and ketones, 

derive by the aldol condensation of the acetaldehyde produced during 

the ethanol dehydrogenation step. To take in account the secondary 

reactions, an approximate way is by considering the aldohol 

condensation to crotonaldehyde and water according to the reaction 

(3). 

2	������	 ↔		����� = ����� + ���																																																								(3) 

The kinetics of this reaction was previously studied and was derived by 

a laboratory experimentation in a fixed bed tubular reactor (section 

200). For the main steps of reaction (1)-(3), the kinetic expressions 

have been reported below (4)-(6) 

�� = �������
� ���

� 																																																																																										(4) 

�� = �������
�

����
�

���
� 																																																																																		(5) 
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�� = ������
� 																																																																																																			(6) 

The dependence of the kinetic constant k1, k2 e k3 from the reaction 

temperature was expressed by using the Arrhenius law, for more 

details see chapter 5. In Table 1 the values of the activation energies, 

of the pre-exponential factors and of the enthalpies of reactions have 

been reported. In Table 2 the have been summarized the values of the 

exponents of the power law have been reported. On the basis of a 

simplified kinetic consisting of a power law empirical model, a process 

for ethyl acetate production has been designed.  

Table 1:power law parameters 

Reaction Activation energies 

(cal/mols) 

kinetic constant 

(mols/(h cm
3
)) 

Entalphy 

(cal/mole) 

1 7715 3.545 16350 

2 4519 0.416 -9970 

3 10284 29.922 - 

 

Table 2:esponential power law parameters 

Parameters Values 

α  1.001 

β  0.063 

γ  1.095 

δ  -0.953 

ω  0.997 

 

 

C-6.2.2 Process description 

The overall process can be divided into three sections, for each of 

them approximate evaluations has been done. In more detail, the 

sections have been designated as ethanol dehydration (100), reaction 

(200) and respectively, acetaldehyde and ethyl acetate purification 
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and recovery (300) (400). The figure 1 represents a global scheme of 

all the apparatus employed in each section. The reaction was 

performed in four adiabatic reactors in series that could be considered 

as consisting of four catalytic beds of the same reactor, with 

intermediate heating. All the calculations were realized by using the 

PSRK (predictive Soave-Redlich-Kwong) thermodynamics for K-values, 

as suggested by the Chemcad expert system. 

The process consists of four sections: 

1. Section ‘’100’’ – fresh ethanol purification and recycle. 

In this section, the ethanol was dehydrated because an excess of 

water could be dangerous firstly for the ethyl acetate selectivity, in 

fact the presence of water could favor the acetic acid formation, and 

moreover could promotes a drastic increase of the recycle  flows. The 

dehydration is realized by using a system of double distillation 

columns, at atmosphere pressure, where the ethylene glycol was used 

to broken the azeotrope ethanol/water[3]. 

Furthermore, the formation of reaction by-product produce a small 

amount of water too. The produced water must be removed before 

the unreacted ethanol can be recycled to the reaction section. Water 

removal can either be integrated within the ethyl acetate unit or can 

be part of a larger external ethanol refining facility. If the ethanol feed 

has a high water content, an integrated water removal unit can be 

designed to dry both the recycle and feed ethanol before it is fed to 

the reactors. Studies indicate that molecular sieve based processes are 

generally the most economic, although conventional entrainer base 

distillation systems or pervaporation based processes could also be 

used [4]. 

2. Section “200” – Catalitic reactors  

In the reaction section, dry ethanol is first heated in a feed/product 

and then vaporized before entering the dehydrogenation reactor. 

Here the ethanol is dehydrogenated to ethyl acetate. The reaction is 
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endothermic and the vapour is reheated several times in the reactor 

to maintain the reaction temperature. The apparatus of reaction is 

composed by four adiabatic catalytic beds with an inter-beds heating 

to offset the global endothermicity of the reaction. The reactors work 

in the best conditions of temperature and pressure identified in the 

experimental section (see chapter 4) respectively of 220°C and 20 bar.  

3. Section “300” – Hydrogen purification and acetaldehyde separation 

The stream leaving the reactors contains mainly acetaldehyde, 

unreacted ethanol and hydrogen. In this section, the hydrogen 

recovery is necessary to obtain it in highly purity degree. The 

separation was realized in two flash operating at two different 

temperatures and pressures. In this section the modality of separation 

of the acetaldehyde and hydrogen should be better defined, as matter 

of fact this two components should not feed in the next section. At 

present, in the calculation, this separation is implemented as an ideal 

separation. 

4. Section “400” – Ethyl acetate and others recovery 

In this last section the unreacted ethanol is separated by ethyl acetate 

and recycled to the section ‘’100’’. This separation is realized with 

Pressure Swing Distillation (PSD) by using two distillation columns 

working at two different pressures respectively of 20 and 1 bar. 

Successively a separation of other by-products, all lumped as 

crotonaldehyde, should be realized but actually, this is considered as 

an ideal separation and should be defined in future study. 

In the next paragraph all the sections will be described in more detail. 

 

 



 290 

 

O UT-2

FEED-0

10

13

22

24

2526

27

ACETALD+H2

31

32

ETHYLAC

BY-PRO D

FRESH ETOH

1

21

14

30

23

34

16

P-101

36

18

33

E-101

C-101

38

RECY-ETOH

RECY-ETOH

15

17

E-201

R-201
R-202

E-202

FEED-1

E-203

R-203 R-204

E-204

E-205

FEED-3 FEED-4FEED-2

O UT-1 OUT-3 O UT-4

V-301

E-301

T-302

12

AUX ETO H

V-302

20 PURE H2

E-302

37 39

47

49EG MAKEUP

46

50

51

48 52

43

WATER

2 3 4

42

44

5

BY-PASS

7 8

9

E-102

E-103

T-101

T-102

PURG E-EG

RECY-EG

53

45

28

29

40

6

19 RAW H2

54

41

C-301

E-301

RECY ET+EA

35

T-401 T-402

PURG E

E-401

C-401

11

55

 

 

 

Figure 2: overall plant description 



 

Section B 

Chapter 6  

Plant Design 

 

 

  291 

 

C-6.2.2.1 Section ‘’100’’ 

The ethylene glycol was used as entrainer to realize the ethanol 

dehydration. As shown in Figure 3A, the fresh ethanol (1) and the 

recycled one (11) was heated at 80°C by using an heat exchanger E-

101. In Table 3, the compositions of each stream (Kg/h) are 

summarized. 

Table 3: Flow 1-11 summaries 

 

The outlet was fed directly in the by-pass current by passing the 

ethanol purification section. As shown in Figure 3B, the separation was 

realized by fed a make-up current of ethylene glycol (45) that was sent 

with the ethylene glycol recycles (51) to a first distillation column T-

101 operating at atmospheric pressure. The overhead products 

contains mainly ethanol and traces of ethyl acetate whilst the bottom 

was fed to a second distillation column T-102 able to separate the 

water, from the overhead, and the ethylene glycol from the bottom 

section, thus recycled to T-101. In Table 4, the composition of each 

current is so summarized. 

Stream No.                      1             2             3             4             5             7             8            11 

       Name            FRESH ETOH                                                 BY-PASS                      FEED-0     RECY-ETOH 

- - Overall - -         

Molar flow kmol/h        507.0262      507.0262     1303.5646     1303.5646        0.0130     1280.9406     1293.0969      796.5384 

Mass flow  kg/h        23000.0018    23000.0018    59631.5989    59631.5989        0.5963    59192.0000    59771.1494    36631.6060 

Temp C                    20.0000       20.0000       55.4957       80.0000       80.0000      249.6300      243.8839       77.0000 

Pres bar                   1.0000        1.0000        1.0000        1.0000        1.0000       20.0000       20.0000        1.0000 

Vapor mole fraction        0.0000        0.0000        0.0000         1.000         1.000         1.000         1.000        0.0000 

Flowrates in kg/h         

Ethanol              22770.0003    22770.0003    58864.6273    58864.6273        0.5886    58805.7808    59329.2087    36094.6306 

Ethyl Acetate            0.0000        0.0000      377.4401      377.4401        0.0038      377.4399      428.7271      377.4401 

Hydrogen                 0.0010        0.0010        0.0010        0.0010        0.0000        0.0010        0.2393        0.0000 

Acetaldehyde             0.0000        0.0000        0.0000        0.0000        0.0000        0.0000        3.6373        0.0000 

Nitrogen                 0.0000        0.0000        0.0000        0.0000        0.0000        0.0000        0.0000        0.0000 

Water                  230.0000      230.0000      387.3099      387.3099        0.0039        1.1687        1.2536      157.3100 

Cis-Crotonaldehy         0.0000        0.0000        2.2237        2.2237        0.0000        1.5996        2.0689        2.2237 

Ethylene Glycol          0.0000        0.0000        0.0000        0.0000        0.0000        6.0094        6.0094        0.0000 
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Table 4: Flow 25-53 summaries 

 

Optionally, a purge of the ethylene glycol could be useful to keep 

under control the impurities concentration that could gather into the 

recycle loop. In this section the heat exchanger E-102, warm up the 

ethanol from 77°C to 80°C whilst the E-103 cool down the ethylene 

glycol from 195°C to 85°C. The heat exchangers could be connected to 

optimize the thermal recovery between the two above mentioned 

streams. 

 

 

 

 

Stream No.                     35            42            43            44            45            46            47            48 
       Name                                                                     EG MAKEUP                                           
- - Overall - -         
Molar flow kmol/h         12.1562     1303.6518     1281.0388     1281.0258        0.8056      701.4273      724.1156      700.6919 
Mass flow  kg/h          579.1498    59635.5182    59196.4302    59195.8313       50.0000    43535.2464    43978.7853    43489.5966 
Temp C                   -20.0000       80.0000       79.9997       77.0731       80.0000       80.0003      182.2720      195.5586 
Pres bar                  50.0000        1.0000        1.0000        1.0000        1.0000        1.0000        1.0000        1.0000 
Vapor mole fraction        0.0000         1.000         1.000        0.0000        0.0000        0.0000        0.0000        0.0000 
Flowrates in kg/h         
Ethanol                523.4316    58868.7097    58810.3982    58809.8100        0.0000        0.0000       58.8901        0.0000 
Ethyl Acetate           51.2879      377.2564      377.2600      377.2562        0.0000        0.0000        0.0000        0.0000 
Hydrogen                 0.2383        0.0010        0.0010        0.0010        0.0000        0.0000        0.0000        0.0000 
Acetaldehyde             3.6377        0.0000        0.0000        0.0000        0.0000        0.0000        0.0000        0.0000 
Nitrogen                 0.0000        0.0000        0.0000        0.0000        0.0000        0.0000        0.0000        0.0000 
Water                    0.0849      387.3234        1.1664        1.1626        0.0000        0.3864      386.5464        0.3864 
Cis-Crotonaldehy         0.4693        2.2223        1.5981        1.5981        0.0000        0.0008        0.6250        0.0008 
Ethylene Glycol          0.0000        0.0000        6.0047        6.0047       50.0000    43534.8601    43532.7233    43489.2103 
         
Stream No.                     49            50            51            52            53    
       Name                 WATER      PURGE-EG       RECY-EG                                
- - Overall - -         
Molar flow kmol/h         23.4239        0.0701      700.6218      700.6919     1281.0258    
Mass flow  kg/h          489.1947        4.3490    43485.2449    43489.5966    59195.8313    
Temp C                    90.9666       80.0000       80.0000       80.0000       80.0000    
Pres bar                   1.0000        1.0000        1.0000        1.0000        1.0000    
Vapor mole fraction        0.0000        0.0000        0.0000        0.0000         1.000    
Flowrates in kg/h         
Ethanol                 58.8901        0.0000        0.0000        0.0000    58809.8100    
Ethyl Acetate            0.0000        0.0000        0.0000        0.0000      377.2562    
Hydrogen                 0.0000        0.0000        0.0000        0.0000        0.0010    
Acetaldehyde             0.0000        0.0000        0.0000        0.0000        0.0000    
Nitrogen                 0.0000        0.0000        0.0000        0.0000        0.0000    
Water                  386.1601        0.0000        0.3864        0.3864        1.1626    
Cis-Crotonaldehy         0.6242        0.0000        0.0008        0.0008        1.5981    
Ethylene Glycol         43.5202        4.3489    43484.8587    43489.2103        6.0047    
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Figure 3A: section ‘’100’’
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Figure 3B: : section ‘’100’’
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C-6.2.2.2 Section ‘’200’’ 

The reaction section was composed by four adiabatic catalysts bed of 

10 m
3
 for each and with an inlet temperature of 220°C for the first two 

ones and 230°C for the third and fourth reactor (see Figure 4). The 

presence of heat exchangers (E-202, E-203 and E-204) between the 

reactors is necessary to offset the endothermicity of the examined 

reaction. The operating pressure of each reactor is of 20 bar. The 

ethanol global conversion is of about 40% and the in more detail the 

fractional conversion obtained in each of four reactors is reported in 

Table 5. 

Table 5: fractional conversions 

 

 

 

In table 6 the streams composition is reported.

 

St ream N o.                       8             9            38            16            36            15            17            18 

       Name                FEED-0        FEED-1         OUT-1        FEED-2         OUT-2        FEED-3         OUT-3        FEED-4 

- - Ov eral l -  -         

Molar f low kmol/h       1293.2687     1293.2687     1445.3220     1445.3220     1490.4344     1490.4344     1527.3062     1527.3062 

Mass f low  kg/h        59779.0944    59779.0944    59775.5082    59775.5082    59775.5365    59775.5365    59775.5223    59775.5223 

Temp C                   243.8851      220.0000      209.2989      220.0000      214.9440      230.0000      226.8004      230.0000 

Pres bar                  20.0000       20.0000       20.0000       20.0000       20.0000       20.0000       20.0000       20.0000 

Vapor mole f raction         1.000         1.000         1.000         1.000         1.000         1.000         1.000         1.000 

Flowrates in kg/h         

Et hanol              59337.1182    59337.1182    48345.9053    48345.9053    42788.0416    42788.0416    39067.8967    39067.8967 

Et hy l Acet at e          428.7706      428.7706     8039.3888     8039.3888    14694.2435    14694.2435    18560.3371    18560.3371 

Hy drogen                 0. 2393        0. 2393      481.0280      481.0280      724.2210      724.2210      887.0007      887.0007 

Acetaldehy de             3. 6377        3. 6377     2326.5096     2326.5096      841.8034      841.8034      500.7122      500.7122 

Nitrogen                 0. 0000        0. 0000        0. 0000        0. 0000        0. 0000        0. 0000        0. 0000        0. 0000 

Wat er                    1. 2510        1. 2510      118.4864      118.4864      148.0433      148.0433      154.6579      154.6579 

Cis-Crotonaldehy         2. 0680        2. 0680      458.1865      458.1865      573.1819      573.1819      598.9170      598.9170 

Et hy lene Gly col          6. 0001        6. 0001        6. 0047        6. 0047        6. 0047        6. 0047        6. 0047        6. 0047 

         

St ream N o.                      33            21       

       Name                 OUT-4                     

- - Ov eral l -  -         

Molar f low kmol/h       1556.5880     1556.5880       

Mass f low  kg/h        59775.5011    59775.5011       

Temp C                   227.6554        5. 0000       

Pres bar                  20.0000       20.0000       

Vapor mole f raction         1.000        0. 3194       

Flowrates in kg/h         

Et hanol              36249.8832    36249.8832       

Et hy l Acet at e        21369.7908    21369.7908       

Hy drogen              1010.3055     1010.3055       

Acetaldehy de           372.0951      372.0951       

Nitrogen                 0. 0000        0. 0000       

Wat er                  157.4894      157.4894       

Cis-Crotonaldehy       609.9333      609.9333       

Et hy lene Gly col          6. 0047        6. 0047       

Catalytic bed Ethanol conversion 

1 0.185 

2 0.278 

3 0.341 

4 0.389 
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Figure 4: section 200
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C-6.2.2.3 Section ‘’300’’ 

In Figure 5 was represented the section 300. The stream in the outlet 

of the fourth reaction step (section 200) was cooled to 5°C in E-205 

and sent to a flash unit (V-301) that works at 5°C and 20 bar. The liquid 

stream (10) passed through the next step of purification of the ethyl 

acetate, whilst, the gaseous phase was purified to obtain hydrogen 

with a high grade of purity. At this purpose an auxiliary current of 

fresh ethanol was added (41) and sent to the compressor to obtain a 

pressure of 50 bar, after that the outlet was cooled down to -20°C in 

the heat exchanger E-301. The flash unit V-302, operating at -20°C and 

50 bar, produced in the bottom a recycling current of ethyl acetate 

and ethanol, decompressed at 20 bar and sent, as feeding, at the first 

reactor. By the same unit (V-302) was recovered 1000 kg/h of 

hydrogen at 99.98% vol. The bottom of the section V-301 went 

through the ethyl acetate purification section among the heat 

exchangers E-303 that was fed to the separator T-302. In this unit the 

residual acetaldehyde and hydrogen should be removed to promote 

the next step of purification (section 400). This unit is an ideal 

separator where the gas phase containing acetaldehyde and hydrogen 

were separated by all the other components. In table 7 all the 

composition streams were summarized. 
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Table 7: stream composition for the section 300. 

 

 

 

 

 

Stream No.                     21            19            10            41            54             6            40            20 

       Name                              RAW H2                    AUX ETOH                                                 PURE H2 

- - Overall - -         

Molar flow kmol/h       1556.5948      497.2069     1059.3877       10.8533      508.0602      508.0603      508.0603      495.9041 

Mass flow  kg/h        59775.8413     1083.9023    58692.0000      500.0000     1583.9016     1583.9005     1583.9005     1004.7536 

Temp C                     5.0000        5.0000        5.0000      -20.0000        3.3576       73.5434      -20.0000      -20.0000 

Pres bar                  20.0000       20.0000       20.0000       20.0000       20.0000       50.0000       50.0000       50.0000 

Vapor mole fraction        0.3194         1.000        0.0000        0.0000        0.9776        0.9998        0.9761         1.000 

Flowrates in kg/h         

Ethanol              36250.0958       25.7275    36224.3686      500.0000      525.7270      525.7258      525.7258        2.2969 

Ethyl Acetate        21369.9733       53.5481    21316.4228        0.0000       53.5480       53.5480       53.5480        2.2601 

Hydrogen              1010.3077      999.6957       10.6120        0.0000      999.6957      999.6958      999.6958      999.4576 

Acetaldehyde           372.0985        4.3726      367.7258        0.0000        4.3726        4.3726        4.3726        0.7349 

Nitrogen                 0.0000        0.0000        0.0000        0.0000        0.0000        0.0000        0.0000        0.0000 

Water                  157.4883        0.0851      157.4031        0.0000        0.0851        0.0851        0.0851        0.0002 

Cis -Crotonaldehy       609.9335        0.4732      609.4602        0.0000        0.4732        0.4732        0.4732        0.0039 

Ethylene Glycol           5.9453        0.0000        5.9453        0.0000        0.0000        0.0000        0.0000        0.0000 

         

Stream No.                     37            39            35            55            12            13            29  

       Name                                        RECY ET+EA                                ACETALD+H2                

- - Overall - -         

Molar flow kmol/h        495.9041      495.9041       12.1562       12.1562     1059.3877       13.6116     1045.7760  

Mass flow  kg/h         1004.7536     1004.7536      579.1471      579.1471    58692.0000      378.3340    58313.6083  

Temp C                    20.0000       20.0000      -20.0000      -19.5884      200.0000      200.0000      200.0000  

Pres bar                  50.0000       50.0000       50.0000       20.0000       20.0000       20.0000       20.0000  

Vapor mole fraction         1.000         1.000        0.0000      0.005808         1.000         1.000         1.000  

Flowrates in kg/h         

Ethanol                  2.2969        2.2969      523.4291      523.4291    36224.3686        0.0000    36224.3686  

Ethyl Acetate            2.2601        2.2601       51.2878       51.2878    21316.4228        0.0000    21316.4228  

Hydrogen               999.4576      999.4576        0.2383        0.2383       10.6120       10.6119        0.0001  

Acetaldehyde             0.7349        0.7349        3.6377        3.6377      367.7258      367.7221        0.0037  

Nitrogen                 0.0000        0.0000        0.0000        0.0000        0.0000        0.0000        0.0000  

Water                    0.0002        0.0002        0.0849        0.0849      157.4031        0.0000      157.4031  

Cis -Crotonaldehy         0.0039        0.0039        0.4693        0.4693      609.4602        0.0000      609.4602  

Ethylene Glycol           0.0000        0.0000        0.0000        0.0000        5.9453        0.0000        5.9453  
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C-6.2.2.3 Section ‘’400’’ 

The separation of ethyl acetate product from unreacted ethanol and 

byproducts is complicated by low boiling, binary and ternary 

azeotropes of ethanol, ethyl acetate and water. It was found that the 

composition of these azeotropes varies significantly with pressure and 

so a pressure swing distillation scheme was adopted to separate the 

products. In pressure swing distillation systems, there is an optimum 

between the column refluxes and the recycle stream, which gives 

minimum heat input to the system. In the ethyl acetate system, 

extensive optimization studies showed that minimum heat input could 

be achieved by limiting the accumulation of water in the column 

overhead system. The separation of the ethyl acetate by ethanol 

would be realized in the current section (see figure 6). The azeotropic 

composition is sensible to the pressure variation and as matter of fact 

it changed significantly by varying the pressure from 1 bar to 20 bar, 

pressure of reaction. In particular, the azeotropic compositions 

changed as represented in Table 8. 

 

Table 8: variation of azeotropic composition with the pressure 

Pressure (bar) Temperature (°C) Ethanol molar fraction 

1 70.7 0.47 

20 179.0 0.85 

 

The separation scheme consists of a first column (T-401), working at 

20 bar, in which on the overhead the azeotrope ethyl acetate/ethanol 

was separated by the crude ethyl acetate. The overhead of T-401 was 

sent to T-402 that worked at 1 bar, able to separate the azeotrop 

ethanol/ethylacetate whilst on the bottom (11) the obtained ethanol 

was sent to rectification section (section 100). After that the overhead 

outlet of T-401 was compressed at 20 bar with C-401 and heated at 

200°C in E-401. 
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The bottom of the column contained crude ethyl acetate with about 

100 kg/h of ethanol and 600 kg/h of crotonaldehyde.  

The mass balance on the current 34 have the following compositions 

(Table 9): 

Table 9: current 34-outlet stream 

composition 

 
weight (%) 

Ethanol 0.6 

Ethyl acetate 96.6 

Acetaldehyde 6.9X10
-6

 

Others 2.80 

 

This current (34) was sent to an ideal separation unit (T-403) able to 

separate the pure ethyl acetate by the other components (bottom). 

The separation is ideal and dictated by the vincol of purity imposed in 

the above mentioned separation section (T-403). In table 10 the 

composition of each current is summarized. 
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Table 10: section 400 stream compositions 

 

 

Stream No.                     29            24            27            28            14            30            22            23 

       Name                                                                                                                   PURGE 
- - Overall -  -         

Molar flow  kmol/h       1045.7760     2545.2689     1499.5591      249.0538     2296.2117     2296.2117     1499.5742        0.0150 
Mass flow   kg/h        58313.6083   146195.3014    87888.0505    21670.0583   124525.0252   124525.0252    87889.0000        0.8789 

Temp C                   200.0000      199.9962      200.0000      206.0000      178.7069       73.2980       61.1286       61.1286 

Pres bar                  20.0000       20.0000       20.0000       20.0000       20.0000        1.0000        1.0000        1.0000 
Vapor mole fraction         1.000         1.000         1.000        0.0000        0.0000        0.5167        0.0000        0.0000 

Flowrates in kg/h         
Ethanol              36224.3686    83727.1768    47502.2448      125.1452    83602.0000    83602.0000    47502.7196        0.4750 

Ethyl Acetate        21316.4228    61458.7611    40149.2538    20931.6525    40527.0000    40527.0000    40149.6578        0.4015 
Hydrogen                 0.0001        0.3694        0.3694        0.0000        0.3694        0.3694        0.3694        0.0000 

Acetaldehyde             0.0037       14.9665       14.9648        0.0015       14.9650       14.9650       14.9650        0.0001 

Nitrogen                 0.0000        0.0000        0.0000        0.0000        0.0000        0.0000        0.0000        0.0000 
Water                  157.4031      377.4866      220.0789        0.0779      377.4088      377.4088      220.0811        0.0022 

Cis-Crotonaldehy       609.4602      610.6042        1.1443      607.2359        3.3681        3.3681        1.1443        0.0000 
Ethylene Glycol          5.9453        5.9453        0.0000        5.9453        0.0000        0.0000        0.0000        0.0000 

         

Stream No.                     25            26            34            31            32    
       Name                                                         ETHYLAC       BY-PROD    

- - Overall -  -         
Molar flow  kmol/h       1499.5591     1499.5591      249.0538      236.3857       12.6682    

Mass flow   kg/h        87888.0505    87888.0505    21670.0583    20827.0000      843.0630    
Temp C                    61.1286       61.9798       76.7607       76.7607       76.7607    

Pres bar                   1.0000       20.0000        1.0000        1.0000        1.0000    

Vapor mole fraction        0.0000        0.0000        0.8521         1.000        0.0000    
Flowrates in kg/h         

Ethanol              47502.2448    47502.2448      125.1452        0.0000      125.1452    
Ethyl Acetate        40149.2538    40149.2538    20931.6525    20827.0000      104.6573    

Hydrogen                 0.3694        0.3694        0.0000        0.0000        0.0000    
Acetaldehyde            14.9648       14.9648        0.0015        0.0000        0.0015    

Nitrogen                 0.0000        0.0000        0.0000        0.0000        0.0000    

Water                  220.0789      220.0789        0.0779        0.0000        0.0779    
Cis-Crotonaldehy         1.1443        1.1443      607.2359        0.0000      607.2359    

Ethylene Glycol          0.0000        0.0000        5.9453        0.0000        5.9453    
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C-6.3 Summary 

In this paragraph, a summary of the mass and energy balance was 

reported. In particular in table 11 is represented the overall mass 

balance expressed respectively in Kmol/h and Kg/h on the inlet and 

outlet global mixture. 
Table 11: Overall mass balance 

Overall Mass Balance          kmol/h                    kg/h             

                      Input      Output        Input       Output 

Ethanol                 505.11      4.05        232 70.00      186.80 

Ethyl Acetate                       237.76            -       20948.10 

Hydrogen                            501.06        0 .001       1010.03 

Acetaldehyde                          8.36                     368.41 

Nitrogen                                 

Water                   12.767       21.44        2 30.000     386.23 

Cis-Crotonaldehy                      8.67                    607.83 

Ethylene Glycol         0.806         0.86        5 0.000      53.63 

 

Total                 518.685       782.21      23550.00      23561.039 

 

The process should be improved, as it can be seen by the results 

reported in Table 9, the weigh percentage of the sub-products is too 

high.  In Table 12 the overall energy balance was reported. In 

Appendix C a summary of the all equipment for each sections is 

reported. 

Table 12: Overall  energy balance 

Overall Energy Balance                    kcal/h 

                           Input             Output 

Feed Stre               -3.48185e+007 

Product Streams                             -2.7297 1e+007 

Total Heating            1.2739e+008 

Total Cooling           -1.26139e+008 

Power Added              4.42322e+006 

Power Generated         -505.656 

Hrxn correction          1.86227e+006 

 

Total                   -2.72824e+007       -2.72971e+007  
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A possibility could be the use of a kinetic law able to a well interprets 

the experimental data. The simplified power law is not able to 

describe the experimental data as the model LHHW as demonstrate in 

chapter 5 of the current section. At this purpose, a future 

development should be the use of LHHW in chemcad to scale up of the 

process. Moreover, the Davy process have realized the scale up by 

using a kinetic model of Langmuir-Hinchelwood to fit the experimental 

data. The final kinetic model was then used to develop tubular and 

multiple adiabatic bed reactor models and a four bed adiabatic reactor 

with inter-bed reheating was the economic choice for this application.  

 

 

C-6.4 References 

[1] G.Donati, R.Paludetto / Catalysis Today 34 (1997) 483-533 

[2]E.Santacesaria, M.Di Serio, R.Tesser, G,.Carotenuto WO 

2011/104738 A2 

[3] Colley et al, US PATENT 7,553,397 B1 Jun 30,2009  

[4] Davy process technology brochure www.davy.com Novel 

Technology for an Industrial Solvent by Mike Ashley 

 



 306 

 

 

                                           

                                   

          

           Conclusions 

 

 

 

The investigation of several literature researches, as shown in chapter 

1, have displayed the performances of different phase into ethanol 

dehydrogenation. The results of ethyl acetate are not higher than the 

94%. As repeatedly pointed, the main problem of this reaction is 

strictly related to the individuation of optimal operative conditions in 

terms of temperature, pressure, residence times, and inlet hydrogen 

flow. Actually, the individuation and the choice of an active, selective 

and stable catalytic system remains still a great challenge. The 

foregoing technologies, however, have not satisfied the economical 

requirements for industrial application, especially regarding the space-

time yield (STY) of ethyl acetate, selectivity to ethyl acetate, and 

production of by-products such as methyl ethyl ketone (MEK). In the 

practical plant operation, MEK in the products causes a serious 

problem in the purification of ethyl acetate because MEK and ethyl 

acetate forms an azeotropic mixture. It is very difficult to separate 

MEK from the mixture under ordinary distillation. Therefore, on the 

basis of such these considerations, in this research, the attention has 

been paid on the study of the ethanol dehydrogenation at high 

pressure with the aim to produce ethyl acetate as well as hydrogen, as 

second main reaction product, of this reaction, after acetaldehyde. 

The hydrogen produced in our innovative proposed process, is 

completely exempt of COx and easily separated by the condensable by-

products of reaction. As demonstrate by using a relatively high 



 

Section B 

Conclusions 

 

 

  307 

 

pressure (10-30 bar), temperature of 200-260°C, ethanol residence 

time of 1-100ghmol
-1

, a productivity to hydrogen in the range of 20-

300 gcathmol
-1 

has been obtained. The key factor of our invention is the 

develop of innovative process, simplified respect to the Davy, able to 

convert ethanol 65% to ethyl acetate, with a selectivity of 97.8%, and 

pure hydrogen in only one step without the use of hydrogenating 

reactor to convert the several by-product to ethanol.  

The individuation of the best operative conditions was done on the 

basis of a preliminary thermodynamic study of ethanol 

dehydrogenation reaction at high temperature and pressure, reported 

in chapter 3. By this theoretical study was demonstrated the necessity 

to operate in a low range of temperature of 200-260°C and at a 

moderate pressure 20-30 bars to favor the ethyl acetate formation 

rather than acetaldehyde. Moreover, was demonstrate the strong 

dependence of the ethanol conversion by the pressure, in fact by 

increasing the reaction pressure an evident decrease of the ethanol 

conversion was observed. On the other hand, the increase of pressure 

favors the ethyl acetate selectivity with respect to acetaldehyde. The 

last product is favored at low pressure and high temperature of 

reaction (>300°C). The experimental runs, performed in the range of 

temperature and pressure suggested by the thermodynamic study, 

were realized by using several copper based catalysts promoted with 

chromium or zinc. By the obtained results, as shown in chapter 4, we 

can conclude that it is possible to obtain ethyl acetate with a 

satisfactory conversion and very high selectivity by using a 

copper/copper chromite catalyst, containing an opportune support, 

like alumina, and different promoters, having the main scopes of 

preventing the sintering of the metal and the subsequent catalyst 

deactivation and create an acid-base environment favorable to the 

desired reaction. We have seen, in agreement with the current 

literature, that the operative conditions are very important for 
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obtaining high activities and selectivities. In particular, at low pressure 

(1-5 bars) acetaldehyde is the main reaction product but moderately 

increasing the pressure up to 20-30 bars the selectivity is shifted 

toward the formation of ethyl acetate as main product. Afterword, by 

operating in the conditions favorable to ethyl acetate formation, the 

selectivity could be lowered by the presence of a competitive reaction 

pathway originated by the acetaldehyde self-condensation. This 

pathway gives place to many possible by-products, as seen in scheme 

(1) reported in chapter 4. As, very probably, the two possible 

condensation reactions occur on two different multi-sites assemblies, 

on the copper surface, a further increase of the selectivity depends on: 

the type of catalyst used the preparation method, the catalyst pre-

treatment, the acid-base properties of the catalytic environment and 

the type of used support and promoters. Our experimental 

observation, for example, is that copper/copper chromite catalysts (T-

4466 and Cu-1234) are more stable to sintering and more selective 

than copper catalysts (K-310) supported on a mixture of oxides with 

basic character (Al2O3/ZnO). Moreover, supported copper chromite 

catalyst (Cu-1234), in which copper chromite is more dispersed, 

resulted more active and more selective. Surprisingly, the presence of 

BaO-Cr2O3 in this catalyst formulation has a favorable effect. Our 

proposal is that, probably, this promoter increases the thermal 

stability of the catalyst and improves the selectivity optimizing the 

acid-base properties of the surface. With this catalyst a maximum of 

98-99% of selectivity has been obtained for 60-65% of ethanol 

conversion. This performance, never obtained before, has been 

achieved by operating at 220-240°C, 20 bars and an ethanol residence 

time of 97.5 g h mol
-1

. At last, it is important to point out that activity 

and selectivity are also promoted by the hydrogen partial pressure. 

Hydrogen keep the catalyst in the reduced form and limit the 

acetaldehyde formation maintaining low its concentration so 



 

Section B 

Conclusions 

 

 

  309 

 

disfavoring the auto-condensation. This last observation opens the 

possibility in an industrial plant to use a stream of recycled hydrogen 

as carrier gas. Finally, in this process pure hydrogen (exempt of CO) is 

produced in mild conditions as by products. With the aim to sizing the 

reactor modeling and optimization a kinetic study of the high pressure 

ethanol dehydrogenation was realized. By the many proposed model, 

the  Langmuir-Hinshelwood-Hougen-Watson kinetic model has been 

used for interpreting all the kinetic runs performed, that is, 62 runs 

performed in different operative conditions by using a tubular reactor 

filled with 2 g of catalyst and 28 runs made by using 50 g of catalyst. It 

has been shown that the runs with the lowest amount of catalyst have 

been performed in chemical regime and have been used to identify 

the best kinetic model, while, the runs performed with 50 g of catalyst 

give data that are near the equilibrium conditions and allow to verify 

both the model goodness and the validity of the equilibrium constants. 

The obtained agreements are satisfactory, considering the 

approximations introduced as the assumption of isothermal conditions 

and the use of the equilibrium constants directly derived from 

theoretical calculations. At last, the model is based on a reliable 

mechanism and the kinetic parameters show physical mean. 

Nevertheless, in a first phase of this work a simplified power law was 

used at first to realize the sizing of the plant equipments. Traditionally, 

ethyl acetate is produced by esterification of acetic acid or by 

oxidation of ethylene – more recent process developments are based 

upon ethylene addition to acetic acid. All these routes are dependent 

on petrochemical based feedstock and certainly, the development of 

the ethanol to ethyl acetate process, described here, was driven by 

the availability of relatively low value, fossil fuel derived ethanol. 

However, this novel technology offers a wider choice of feedstock and 

future projects may be based on fermentation ethanol derived from 

renewable resources. 
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So, the major benefit of this new process is that it relies only upon the 

availability of ethanol, the majority of which is produced by 

fermentation. As fermentation ethanol is derived from biomass and 

this relies on atmospheric carbon dioxide, there is no net carbon 

dioxide contribution. Logically, plants based upon this process would 

be located close to sources of low cost ethanol. Additional benefits can 

be realized by integration of cane sugar, ethanol and ethyl 

acetate units in one location. Of particular benefit in this respect is the 

use of waste bagasse as a fuel to support the units. The proposed new 

ethyl acetate process produces a high quality ethyl acetate product 

without, in spite of the already commercialized Davy proves, the use 

of hydrogenation unit. Thus, the proposed process is more simple and 

able to produce high quality ethyl acetate in only one step of reaction. 

Furthermore, the use of pressure changes to break the ethyl acetate/ 

ethanol / water azeotrope leads to an inherently cleaner product than 

processes such as esterification or direct addition that operate 

separation systems in water rich regions of the phase diagram. The 

key benefits of this ethanol dehydrogenation route to ethyl acetate 
includes: 

1. Feedstock Flexibility: Poor quality ethanol from many sources is 

acceptable as feedstock to the process. The pressure swing distillation 

system, ensure high quality product despite the presence of impurities 

in the feed. 

2. High Atom Efficiency: co-production of a hydrogen by-product 

stream results in a very high atom efficiency compared with the 

traditional esterification or acetaldehyde routes. High Product Quality: 

the novel selective hydrogenation and product distillation schemes 

produce product of unprecedented quality suitable in premium value 

applications. 

3. Environmental Compatibility: Ethyl acetate is biodegradable and so 

when it is used as a solvent its vapors are rapidly rendered to carbon 

dioxide without imposing a toxic hazard. 



 

Section B 

Conclusions 

 

 

  311 

 

The scale up of this process, on the basis of the obtained results, 

should be improved and refined, possibly by using kinetic laws able to 

describe as well the experimental data and devoting a greater 

attention to the purification sections that should be analyzed and 

evaluated in all their peculiarities in more detail. The development and 

use, of an adequate kinetic expression, is necessary, fundamental to 

develop tubular, and multiple adiabatic bed reactor models. As 

demonstrated in the chapter 5, of this section, the kinetic model 

power law is a very simplified model and is not able to well interpret 

the experimental data. On the other hand, as demonstrated, the 

Langmuir-Hichelwood-Hugen-Watson is the model able to fit the 

experimental data with an error of less than 12%, when the reactor 

was charged wth 50g. At this purpose, the LHHW could be considered 

as an adequate kinetic law that should be use, as future perspective, 

to define the process scale-up. 
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                                                            Abstract 
Partial Oxidative 
Reforming (OPR) 

 

 

 

The aim of this section is to provide the research motivation, the 

background of ethanol reforming reactions, the catalyst selection, the 

research methodology, and objectives. The catalytic generation of 

hydrogen by ethanol decomposition and oxidative reforming over 

copper-chromite and copper-zinc catalyst supported on alumina has 

been investigated. The catalysts have been prepared by the innovative 

method of combustion synthesis, characterized by a fast heating rate 

and a short reaction time, leading to increase catalyst porosity. The 

catalytic activity and selectivity have been investigated without O2 and 

under various O2 and C2H5OH molar ratio in the temperature range up 

to 500°C. It was found that copper chromite supported on alumina 

shows the best activity and hydrogen selectivity during ethanol 

decomposition. The selectivity decreased during oxidative reforming 

but with a low O2/EtOH=0.6 molar ratio at 300°C, a hydrogen rich 

mixture (35-40%) was obtained. The use of relatively low amount of 

oxygen is necessary to reduce the coke formation, which causes 

catalyst deactivation. The catalysts were characterized by ex-situ 

methods such as XRD, BET, XPS, and in-situ EXAFS and FTIR with the 

aim to evaluate their physic-chemical properties and to correlate the 

obtained results with the catalysts performance. 
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                                                   Chapter 1                                               

Background info 

Literature Review 

 

 

C-1.1 Introduction 

Energy is one of the main factors that must be taken in account when 

sustainable development of our society is envisioned because there is 

an intimate connection between energy, the environment and devel-

opment. In response to the need for cleaner and more efficient energy 

technologies, a number of alternatives to the current energy network 

have emerged. In recent years, hydrogen production from hydrogen 

bearing molecules has been a topic of growing research interest for its 

potential application in fuel cells. Hydrogen can be produced by elec-

trolysis of water using Hoffman’s apparatus, steam reforming of natu-

ral gas and other fossil fuels, as off-gases from petroleum refinery op-

erations, and by steam reforming of methanol or ethanol. Ethanol is 

the only renewable source of hydrogen since it can be produced from 

biomass by fermentation process. This is a promising advance in the 

production of electrical energy from chemical energy, since the effi-

ciency of a fuel cell is much higher than that of a combustion engine. 

The main technologies, devoted to the efficiently production of hydro-

gen from ethanol, are: 

1. steam-reforming (SR) 

����������� 	 3������ � 2����
� 	 6���
�									∆� � 347.4	��/��� 

2. oxidative steam reforming (OSR)  

����������� 	 1.5���
� � 2����
� 	 3���
�									∆� � �554	��/��� 
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3. partial oxidation (PO)  

����������� 	 0.5���
� + 2������ = 2����
� + 5��	 

	∆� = −50	��/��� 

 

While SR has been extensively studied [1-8], there are few studies in 

the open literature that focus on the POX [9-12] and OSR [13-16] reac-

tions. All these technologies face one common drawback: several reac-

tion pathways may occur depending on the reaction conditions and 

catalyst used. Commonly, some of these reactions lead to the for-

mation of coke, which can in turn induce catalyst deactivation. 

The choosing of an optimal phase, support with specific characteristics 

and of the best operative condition is fundamental to optimize the hy-

drogen productivity. In the next paragraph the main peculiarities and 

the commonly active phases used for each of the mentioned processes 

have been reported. 

 

C-1.2 Ethanol steam reforming 

The main research effort on hydrogen production from bio-ethanol 

was focused, in the last decade, on SR reaction giving the highest yield 

in hydrogen. This reaction was studied in details and many information 

can be achieved by the literature [17]. 

The reaction pathways and thermodynamics of this reaction were 

studied by several authors [6, 18-21]. The possible reaction pathways 

proposed of ethanol steam reforming are summarized in Table 1. It 

can be seen that hydrogen production differs significantly with differ-

ent reaction pathways. In order to maximize hydrogen production, it is 

crucial to ensure sufficient supply of steam and to minimize ethanol 

dehydration and decomposition.  
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Table 1: Reaction pathways of ethanol steam reforming 

 

 

The literature surveys presented above reveal that the ethanol con-

version and selectivity to hydrogen highly depend by the type of metal 

catalyst used, type of precursors, preparation methods, type of cata-

lyst support, presence of additives, and operating conditions, i.e. wa-

ter/ethanol molar ratio and temperature. In particular, the catalysts 

play a crucial role in the reactivity toward complete conversion of eth-

anol. However, each catalyst induces different pathways and, there-

fore, the selection of a suitable catalyst plays active role in ethanol 

steam reforming for hydrogen production. The catalysts should max-

imize hydrogen selectivity and inhibit coke formation as well as CO 

production. For ethanol steam reforming, different metals (Ni [22], Co 

[23,24], Ni–Cu [25], Pt, Pd, Rh [26–28]) deposited on oxide support 

(Al2O3, La2O3, ZnO, MgO) have been investigated. Noble metal catalysts 

are well known for their high catalytic activities.  
 
 

C-1.2.1 Noble metal catalysts 

For ethanol steam reforming, Rh, Ru, Pd, and Pt have been extensively 
investigated. Liguras et al. [28] compared the catalytic performance of 
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Rh, Ru, Pt, and Pd catalysts at 873–1123K with metal loading of 0–5 

wt%. Rh showed the best catalytic performance in terms of ethanol 

conversion and hydrogen production. Although inactive at low loading, 

Ru showed comparable catalytic activity with Rh at high loading. The 

Ru/Al2O3 with 5 wt% loading could completely convert ethanol into 

syngas with hydrogen selectivity above 95%. High dispersion of cata-

lyst atom at the support surface was found to enhance the activity of 

catalysts. The selection of support played an important role in long-

term catalyst operation. Acidic supports, i.e. Al2O3, induced ethanol 

dehydration to produce ethylene, which was a source of coke for-

mation (see Table 1). Dehydration can be depressed by adding K to 

neutralize the acidic support, or by using basic supports, i.e. La2O3 and 

MgO. About 15% degradation in ethanol conversion was detected for 

Ru/Al2O3 with 5wt% after operation for 100 h. For comparison, 

Rh/Al2O3 with 5 wt% loading was found to degrade considerably after 

operation for 100 h [29].  

Another study conducted by Cavallaro [29] showed that coke for-

mation could be greatly inhibited by operating ethanol steam reform-

ing at high temperature (923 K) with sufficiently high Rh loading (5 

wt%) and high steam/ethanol molar ratio (8.4:1). Frusteri et al. [30] 

evaluated catalytic performance of MgO supported Pd, Rh, Ni, and Co 

for hydrogen production by ethanol steam reforming. Rh/MgO 

showed the best performance in terms of ethanol conversion and sta-

bility, while Ni/MgO exhibited the highest hydrogen selectivity (>95%). 

Coke formation rate on Rh/MgO was very low as MgO was basic. It 

was also found that the deactivation was mainly due to metal sinter-

ing. In a recent study by Erdohelyi et al. [7], ethanol steam reforming 

effects on Al2O3 and CeO2-supported noble metal catalysts, i.e. Pt, Ir, 

Pd, Rh, and Ru, were compared. By analyzing the surface species in 

ethanol adsorption on the supported catalysts, it was found that water 

enhanced the stability of ethoxide surface species, which were formed 
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during the dissociation process of ethanol. Consistent with previous 

studies, ethylene produced by dehydration of ethanol was observed 

on Al2O3-supported noble metal catalysts. For comparison, acetalde-

hyde derived by dehydrogenation of ethanol was detected on CeO2-

supported catalysts. In addition, hydrogen formation was found to de-

crease with time on CeO2-supported noble metal catalysts due to the 

inhibiting effect of surface acetate species formed on the support. This 

study was very useful as detailed analysis of surface species formed 

during the adsorption and reaction of ethanol was conducted, provid-

ing a better understanding on how chemical reaction proceeded on 

catalyst surfaces. Depositing Rh on MgAl-based spinel oxide supports 

exhibited higher basicity, compared with alumina-supported Rh, 

whereas the surface acidity was strongly reduced, resulting in im-

proved stability [31]. In Ni–Rh bimetallic catalyst supported on CeO2, 

the addition of Ni was found to improve dispersion of Rh particles, 

leading to higher catalytic activity. In addition, smaller crystals of CeO2 

support could enhance Rh-CeO2 interaction [32]. Unlike Rh, co-

deposition of Pd and Zn on ZnO support led to formation of PdZn alloy, 

which favored dehydrogenation and hydrogen production [33].  

It can be seen that Rh is generally more effective than other noble 

metals, such as Pt, Pd, and Au, for hydrogen production by ethanol 

steam reforming. At high temperature and high catalyst loading, Ru 

shows comparable performance with that of Rh. CeO2, MgO, and La2O3 

are suitable supports for efficient ethanol reforming on Rh. The use of 

Al2O3 as support shows significant deactivation of catalyst after long-

term operation. In terms of long-term stability, MgO exhibits the best 

performance. It is also expected that La2O3 may be a suitable support 

for Rh for stable ethanol steam reforming. So far, the development of 

catalyst for ethanol reforming is basically a trial-and-error approach. 

Detailed analyses of reactant species, intermediate product species, 

and final product species are lacking. Therefore, the working mecha-
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nisms have not been fully understood yet. In addition, comparative 

long-term tests are required for practical applications. 

 

C-1.2.2 Non Noble metal catalysts 

Apart from noble metal catalysts, non-noble metal catalysts have also 

been used for ethanol steam reforming. Some selected studies on eth-

anol steam reforming over non-noble metal catalysts are summarized 

reported in literature [34,35]. Nickel is widely used as a low-cost non-

noble metal catalyst in industry for a number of chemical reaction 

processes. For ethanol reforming, Ni also works well as it favors C–C 

rupture. Sun et al. [36] compared the catalytic activity of Ni/Y2O3, 

Ni/La2O3, and Ni/Al2O3 for hydrogen production by ethanol steam re-

forming. The catalysts were prepared using nickel oxalate as precursor 

and by impregnation–decomposition–reduced method. Operating at 

ambient pressure and at 593 K, conversion of ethanol using Ni/Y2O3 

and Ni/La2O3 was 93.1% and 99.5%, respectively, while the selectivity 

of hydrogen was 53.2% and 48.5%, respectively. The high activity and 

stability of Ni/La2O3 were due to formation of a lanthanum oxycar-

bonate species (La2O2CO3), which could react with surface carbon de-

posited during reaction to prevent deactivation of catalyst. For com-

parison, selectivity of hydrogen for Ni/Al2O3 catalyst reached the max-

imum of 47.7% at 573 K. The reported selectivity of hydrogen was rel-

atively low, probably due to the low water/ethanol molar ratio used 

(3:1). It was demonstrated that increasing water/ethanol molar ratio 

could significantly increase selectivity of hydrogen [37]. Besides La2O3 

and Al2O3, other oxides have also been studied as alternative supports 

for Ni catalyst. Yang et al. [38] evaluated the effect of support on eth-

anol steam reforming over Ni-based catalyst. At 923 K and with Ni 

loading of 10 wt%, almost 100% conversion of ethanol was attained 

for all catalyst. Selectivity to hydrogen was found in the following de-

creasing order: Ni/ZnO ≈ Ni/La2O3 > Ni/MgO> Ni/Al2O3. Frusteri et al. 
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[39] evaluated the effects of alkali addition (Li, Na, and K) on catalytic 

performance of Ni/MgO. The addition of Li and K was found to en-

hance the catalyst stability by depressing Ni sintering. The coke for-

mation at Ni/CeO2 was much faster than that on Ni/MgO [40]. This ob-

servation could be explained by strong interaction of the CeO2 support 

with the adsorbed reaction intermediate species. Their tests also 

demonstrated that the basic nature of MgO favored ethanol reforming 

and inhibited coke formation. Akande et al. [34] investigated the ef-

fects of catalyst synthesis method, Ni loading, and temperature on the 

catalytic activity of Ni/Al2O3 catalysts for ethanol reforming. In their 

study, water/ethanol molar ratio of 13:1 was used, representing the 

actual composition of bio-ethanol produced by fermentation of bio-

mass. Three types of preparation methods, namely, coprecipitation, 

precipitation, and impregnation, were evaluated. Optimal Ni loading of 

15% was found for maximum ethanol conversion using Ni/Al2O3 cata-

lyst prepared by coprecipitation and precipitation methods. For com-

parison, Ni loading did not show noticeable effect on Ni/Al2O3 activity 

when impregnation method was used. Regarding hydrogen produc-

tion, the catalyst prepared by coprecipitation with Ni loading of 15% 

showed the best performance. In addition, Ni/Al2O3 prepared by co-

precipitation also showed the highest selectivity of hydrogen.  

In addition also the copper contributes in the reaction in exam was 

matter of investigation. Marino et al. [41] studied catalytic activity of 

CuNiK/Al2O3 catalysts. Ethanol dehydrogenation and C–C bond rupture 

were favored by Cu and Ni, respectively. In addition, K neutralized 

acidic sites of Al2O3, reducing the possibility of coke formation. A series 

of Cu–Ni–Zn–Al mixed oxide catalysts were prepared by the thermal 

decomposition of Cu1−xNixZnAl hydrotalcite-like precursors for ethanol 

steam reforming [42]. The use of a bi-metallic catalyst can have two 

concomitant effects. In fact, the addition of Cu species facilitated de-

hydrogenation of ethanol to acetaldehyde, while the presence of Ni 
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led to C–C bond rupture. Cobalt (Co) is another non-noble metal cata-

lyst under extensive investigation as supported Co could break C–C 

bond [43]. The selectivity of H2 decreased in the order: Co/Al2O3 > 

Co/ZrO2 > Co/MgO> Co/SiO2 >Co/C. Due to the basic characteristics of 

MgO, Co/MgO was more resistant to coke formation than that of 

Co/Al2O3 at 923 K [44]. The use of Co2(CO)8 as precursor produced a 

catalyst that was highly active (100% ethanol conversion) and selective 

(about 73%) toward CO-free hydrogen production by ethanol steam 

reforming at 623 K. Long term tests (75 h) demonstrated the stability 

and applicability of Co/ZnO as an active catalyst for ethanol steam re-

forming. In a study conducted by Batista et al. [45], Co/Al2O3 (8.6 

wt%), Co/SiO2 (7.8 wt%), and Co/MgO (18.0 wt%), prepared by im-

pregnation method, all showed high catalytic activity (>90% ethanol 

conversion) and selectivity to hydrogen (about 70%). However, after 9 

h of steam reforming at 673 K, coke formation on the catalysts were 

detected in the following decreasing order: Co/Al2O3 (24.6 wt% 

coke)>Co/MgO (17.0 wt% coke)>Co/SiO2 (14.2 wt% coke). The highest 

coke formation on alumina was ascribed to the acidic character of 

alumina, which favored ethanol dehydration to ethylene. Their subse-

quent study showed that CO in the outlet gas stream could be reduced 

by increasing the cobalt content
 
[24].  

Jordi et al. [46] performed their investigation on Co/ZnO catalyst using 

a water to ethanol molar ratio of 13:1 (20% v/v ethanol), whereas 

Leclerc et al.[47] reported that water to ethanol ratios in the range of 

20:1 (14%v/v ethanol) to 30:1 (10%v/v ethanol) enhanced hydrogen 

selectivity and inhibited the production of undesirable product such as 

methane (CH4), carbon monoxide (CO), acetaldehyde, ethylene and 

carbon. By this examination emerges that among all catalysts tested, 

Rh and Ni exhibited the best activity of ethanol conversion and selec-

tivity to hydrogen. Studies have shown that ethanol is adsorbed on Rh 

and Ni metals surface as ethoxide species, which forms an oxametal-
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lacycle intermediate and favors C–C bond rupture [48,49]. Compared 

with other noble catalysts, such as Pt, Pd, and Ru, Rh is more active 

and selective toward hydrogen. For comparison, Pt promotes water 

gas shift reaction, but its activity for C–C rupture is limited. It is there-

fore anticipated that hydrogen production could be enhanced by using 

Rh–Pt bi-metallic catalysts or by passing the reactants with excessive 

water content through supported Rh catalyst and Pt catalyst, respec-

tively. In addition, at high metal loading, the performance of Ru-based 

catalyst is comparable to Rh for hydrogen production by ethanol 

steam reforming. However, Ru also induces dehydration of ethanol to 

form ethylene, leading to coke formation via polymerization. Suitable 

promoters/additives should be added to prevent coke formation for 

effective and stable operation. Aside from noble metals, Ni is so far 

the best choice for hydrogen production by catalytic steam reforming 

of ethanol. Ni has high activity for C–C bond and O–H bond breaking 

and also has high activity for hydrogenation, facilitating H atoms to 

form molecular H2. Addition of alkali species could modify the interac-

tion between adsorbed species and the metal Ni, further enhancing its 

steam reforming activity. However, like Rh, Ni is less active for WGSR. 

Since Cu favors dehydrogenation and WGSR, the combination of Ni 

and Cu shows high steam reforming activity and high selectivity to hy-

drogen [44]. In addition, mixing Cu with noble metal, such as Rh may 

also improve hydrogen production due to enhanced WGSR by Cu. Like 

other catalysts, Ni-based catalysts also suffer from coke formation as 

well as metal sintering, leading to considerable performance degrada-

tion during long-term operation. As Ni is more economical than noble 

metal catalyst, research on Ni catalyst development will be fruitful. 

Supports also play important roles in steam reforming of ethanol, as 

supports help in the dispersion of metal catalyst and may enhance 

metal catalyst activity via metal-support interactions. Supports may 

promote migration of OH group toward the metal catalyst in the pres-
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ence of water at high temperature, facilitating steam reforming reac-

tions [12]. Al2O3 is widely used as a support in methanol steam reform-

ing and has also been tested for steam reforming of ethanol. However, 

due to its acidic nature, Al2O3 induces dehydration of ethanol, leading 

to coke formation. Addition of alkali species can improve catalyst sta-

bility as its acidity can be partly neutralized. For comparison, MgO, 

ZnO, and CeO2 are basic. Thus, their use as support can significantly 

inhibit ethanol dehydration, greatly reducing coke formation. Catalyst 

supports not only can affect reaction pathways, but also can affect 

metal dispersion and inhibit metal sintering. La2O3 is also a good sup-

port as La2O3 promotes dehydrogenation and does not induce coke 

formation. Therefore, MgO, ZnO, CeO2, and La2O3 are suitable support 

materials for ethanol steam reforming. As have been mentioned, cata-

lyst precursors and preparation methods also affect the catalytic per-

formance of catalyst. Use of different precursors and under different 

preparation conditions can result in variance of catalyst phase, surface 

area, particle size, surface dispersion, purity, and catalyst-support in-

teraction [50]. As research on the comparison of precursors and prep-

aration methods are limited, it is worthy of future research for the op-

timization of catalyst preparation procedures. The obstacles for stable 

operation of ethanol steam reforming are mainly coke formation and 

metal sintering. From previous reaction path analysis, coke formation 

is mainly caused by Boudouard reaction, polymerization of ethylene, 

or by decomposition of methane formed during ethanol steam reform-

ing. Coke can destroy catalyst structure and occupy catalyst surface, 

thus considerably reduce catalyst activity. Coke formation is faster on 

acidic support as dehydration occurs. This adverse effect can be re-

duced by using basic oxide as support or adding alkali species onto the 

acidic support. Recently, novel concept of double bed reactor was 

proposed to improve catalyst stability [51]. In this proposed system, 

bio-ethanol passes through the first layer (Cu catalyst) at 573–673K to 
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perform dehydrogenation to acetaldehyde and hydrogen, followed by 

acetaldehyde steam reforming or decomposition. Ethylene formation 

can be prevented at 573–673 K, thus reduce the possibility of coke 

formation. The intermediate species are then passed through the se-

cond layer (Ni-based catalyst) to enhance hydrogen production. Alt-

hough this concept remains to be demonstrated, it offers an economi-

cal method to enhance hydrogen production and catalyst stability. Be-

sides, bi-metallic catalysts or alloy catalysts can also improve catalyst 

stability and enhance hydrogen production due to the interaction of 

the metals. Besides the rapid catalyst deactivation, another significant-

ly drawback of the steam reforming reaction is the need of external 

energy supply for balancing reaction endothermicity [30,52]. In fact 

the steam reforming is an endothermic process in the absence of oxy-

gen gas and requires energy input to initiate reactions. 

 

C-1.3 Ethanol reforming and partial oxidation 

The catalytic decompositions/reforming of alcohols have gained par-

ticular interest due to growing environmental, economic, and political 

concerns regarding energy production. Safe and efficient in situ hydro-

gen generation from alcohols (i.e. methanol, ethanol, propanol, buta-

nol) can promote the use of fuel cells and other clean technologies as 

a source of energy for mobile applications. Alcohols can serve as H2 

carriers that are compatible with current infrastructures for liquid 

fuels and can be catalytically converted on-site in order to minimize 

energy input requirements and operating temperatures. Cavallaro and 

Freni [53] studied the ethanol reforming with mixed oxide catalyst 

CuO/ZnO/Al2O3, showing that the main products CO, CO2 and H2 are 

formed above 350 °C. Copper supported on alumina was studied in the 

ethanol reforming, showing that copper promoted a rapid dehydro-

genation of ethanol to acetic aldehyde, while nickel favored the rup-
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ture of carbon–carbon bonds of ethanol, with formation of methane 

and carbon monoxide [54]. 

Ethanol decomposition by reaction 1 and 2 is another reaction path-

way for hydrogen generation from ethanol.  

������ � ������ 	 ��																																																																								�1� 
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Relatively less literature is available for this reaction as compared to 

ethanol steam reforming and partial oxidation. Xu et al. [55] reports 

that decomposition of ethanol over Ni(1 1 1) proceeds by O–H bond 

cleavage and formation of ethoxy species on the catalytic surface. 

Ethanol desorption and decomposition studies on a Rh (1 1 1) surface 

shows that ethanol decomposition occurs simultaneously with ethanol 

desorption. The decomposed ethanol leaves H and CO on the surface 

which desorbs at higher temperature to produce H2 and CO. Catalytic 

decomposition of ethanol on a Cu/Al layered double hydroxide (LDH) 

catalyst was investigated at temperatures between 150–400 ◦C and 

atmospheric pressure [56]. Catalytic generation of H2 starts at 200–

300 ◦C along with the formation of aldehyde. Ethanol conversion of 

60% was observed at 400 ◦C. These authors also reported that Cu/Al 

LDH undergoes some physical modification and produce highly dis-

persed metallic Cu, which could be the active phase in this catalyst. 

Ir(1 1 1) [57] has also been reported to be active for ethanol decompo-

sition. The activity of supported Pd catalysts such as: Pd/ZnO, 

Pd/Ga2O3, Pd/In2O3, Pd/MgO, Pd/SiO2, Pd/Al2O3, Pd-black along with 

Cu/Zn [58], were studied for the decomposition reaction. The activities 

of such supported Pd catalysts were greatly modified upon the for-

mation of Pd alloy phases. Over Pd–Zn, Pd–Ga and Pd–In alloys, acet-

aldehyde was selectively produced at lower conversion levels. As con-

version increased, ethyl acetate was produced at the expense of acet-

aldehyde. The selectivity for the ethyl acetate formation exceeded 

that of acetaldehyde over a Cu/ZnO catalyst. On metallic Pd, the de-
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composition of ethanol occurred to a considerable extent. The main 

problem associated with the ethanol decomposition reaction on this 

catalyst, however, was the formation of coke at high temperatures. 

Based on the above literature survey it is clear that, excluding noble 

metals, Ni, Fe and Cu are the most frequently studied. Kumar et al. 

have shown the performances of Ni, Fe, and Cu based catalysts syn-

thesized in different molar ratios using solution combustion synthesis 

technique.  In particular among the catalysts studied Ni1Fe0.5Cu1 was 

selected based on its activity and hydrogen selectivity for detailed 

studies. It was found that these catalysts are active and hydrogen se-

lective for the ethanol decomposition reaction. Carbon formation was 

observed at high temperature, which slightly affects the catalyst per-

formance. Adding oxygen to the feed reduces carbon content but it 

also decreases the hydrogen selectivity. Ni was found to be most ac-

tive at lower temperature and selective for hydrogen and methane, Cu 

was selective for acetaldehyde and Fe was selective for CO2 and 

ethane. Hydrogen selectivity was found to be highest for Fe at high 

temperature. The ethanol decomposition reaction appears to proceed 

through the formation of alkoxy species that decompose at higher 

temperatures. Further work is underway – to understand the mecha-

nism of ethanol decomposition and partial oxidation as well as the role 

of different metals used in this work. The main drawback is the low 

hydrogen selectivity of ethanol partial oxidation. In order to enhance 

hydrogen production, auto-thermal reforming can be applied.  

 
C-1.4 Ethanol oxidative steam reforming 

Auto-thermal reforming, also called oxidative steam reforming, is a 

combination of ethanol oxidation and steam reforming [19]. Under au-

to-thermal steam reforming conditions, which are produced by intro-

ducing oxygen in the reaction mixture, is possible to operate with a 

more favorable energetic balance. In fact, the reaction is more effec-
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tive and energy efficient, despite a slightly lower hydrogen yield [32]. 

The research is now under way to develop catalysts that control the 

oxidation process through the combining of catalytic partial oxidation 

and steam reforming of ethanol. The auto-thermal reforming not only 

attains thermally sustained operation, but also maximizes hydrogen 

production. As well known, the oxidizing environment reduces the 

carbon poisoning of the catalyst and could promote the decomposi-

tion of intermediate molecules such as ethylene and acetaldehyde. On 

the other hand, an excess of oxygen leads to a strong reduction of hy-

drogen as reaction product. In this respect, studies under partial oxi-

dation conditions could contribute to a better knowledge of auto-

thermal ethanol steam reforming. Generally, the ethanol conversion 

and hydrogen selectivity by auto-thermal reforming of ethanol vary 

greatly with the type of catalyst, support and oxygen/steam/ethanol 

molar ratios. Auto-thermal reforming is advantageous as coke for-

mation is greatly inhibited by oxidation. Thus, long-term stable opera-

tion can be achieved. As reported by Raminez et al [60], some studies 

on catalytic behavior of Ni, Pt- and Ru-based catalysts have recently 

been reported. In autothermal conditions, reports concerned the use 

of Ni and Cu catalysts and promoted noble metals supported on highly 

stable carriers, i.e., Pt-CeO2-La2O3/Al2O3, Rh/CeO2, Rh/Al2O3. As 

demonstrated by Adkim et al. [61] various catalysts based on noble 

(Rh) and not noble (Ni–Cu) metal supported over neutral (SiO2) and 

amphoteric (Al2O3) supports, respectively, lead to stable and highly 

performing systems [62].  

Deluga et al [63] shown the performances of several noble metals Ni, 

Ru, Rh, Pt, and Pd) and metals with additives as cerium oxide, lantha-

num oxide, and magnesium oxide as catalysts for this reaction. All 

were deposited from salt solutions on low-area alumina foams or alu-

mina spheres. As demonstrated by the mentioned work only Rh-ceria 

was more stable and gave greater WGS activity than noble metals 
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alone. The main role of promoters is associated, in this case to metal-

promoter interactions [27], which affect the adsorption-

decomposition of ethanol to CH4 and CO and their subsequent reform-

ing with steam to produce H2.  

 

C-1.5 Catalysts preparation 

Combustion synthesis (CS) is an attractive technique for materials syn-

thesis on account of being simple, economical, fast and energy effi-

cient process. This simplicity and flexibility to synthesize a wide range 

of materials has led to an increase interest in using it in diverse areas 

as indicated by the increase in the publications on CS [64,65]. The con-

ventional solid-solid CS can be broadly classified into two groups based 

on the way combustion reaction takes place. Combustion reaction can 

proceed as a self sustained wave front upon local ignition of the reac-

tive pellet or it can be combusted simultaneously all over the volume 

by a uniform heating. The former method is known as Self-Propagating 

High-Temperature Synthesis (SHS) and the later as Volume Combus-

tion Synthesis (VCS). Recent innovations have led to the use of CS in 

other phases as well, namely, flame synthesis (gas phase synthesis) 

and solution combustion synthesis. Among the above-mentioned 

methods, combustion synthesis in solution or SCS, due to its ability to 

produce nano-materials, recently gained  research attention and it is 

being applied to diverse areas such as pigments, catalysis, electronic 

and magnetic materials, drug delivery etc [66]. SCS is considered as a 

redox reaction consisting of oxidizing agents (e.g. metal nitrates) and 

reducing agents (e.g. glycine, urea, hydrazine etc), also known as fuel. 

The exothermic reaction between metal nitrates and the fuel provide 

the energy required for sustaining the combustion synthesis reaction 

without adding external energy. Furthermore, the energy released is 

high enough to evaporate volatile compounds and calcine the prod-

ucts formed leading to the formation of crystalline phases. Because 
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the combustion reaction rate is very high, the crystallites formed do 

not have sufficient time to sinter, leading to the formation of na-

nopowders with higher surface areas compared to conventional syn-

thesis.  Thus SCS yields highly pure and crystalline material synthesized 

in a single step without requiring any further thermal treatments. The 

CS reaction between metal nitrates and glycine, used as fuel, can be 

represented by the following widely accepted scheme 1:  

3 2 2 2
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(Scheme 1) 

where M
v
 is a v-valent metal. The parameter φ, fuel to oxidizer ratio, is 

defined such that φ = 1 corresponds to a stoichiometric oxygen con-

centration, meaning that the initial mixture does not require atmos-

pheric oxygen for complete oxidation of the fuel, while φ > 1 (<1) im-

plies fuel-rich (or lean) conditions.  

According to the above scheme, (Eq. 1), SCS can be used for the syn-

thesis of metal oxides. Recent publications from our group [67-70] 

demonstrated the capability of using SCS to synthesize reduced metals 

nano-powders (e.g. Ni, Cu rather than their oxides NiO, CuO) as well. A 

reaction pathway was proposed to describe the controlled synthesis of 

different phases using impregnated layer combustion synthesis (ILCS). 

In the latter case, the active solution containing metal nitrate and gly-

cine was impregnated on a thin media (e.g. cellulose paper, carbon 

nano-tubes or graphite sheet etc.) before combustion to facilitate the 

cooling of the products obtained after CS [71-73]. This faster cooling 

and unique microstructure of the products result in finer particles with 

high surface area particularly suitable for catalytic applications as indi-

cated by experiments and model studies [9, 10]. This study comple-

ments our previous work on the synthesis and activity studies of mul-

ticomponent Ni/Fe/Cu based catalyst for hydrogen production from 

ethanol using SCS [74] which showed, Ni1Fe0.5Cu1 to be the optimun 
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catalyst composition for hydrogen production from ethanol partial ox-

idation and decomposition reactions. As stated earlier, SCS has nu-

merous advantages over other catalyst preparation methods such as 

co-precipitation, which require separation of the products after pre-

cipitation and then their calcination which may lead to sintering thus 

influencing the total surface area adversely. As indicated by scheme 

(1), except for the metal oxide product, all other products are gas 

phase products, which can be controlled by varying the parameter φ. 

The released gases form micro-channels on the solid as they are re-

leased during reaction thus contributing towards the porosity of the 

material synthesized potentially leading to high surface area. 
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                                                Chapter 2                                               

Techniques  

and equipment 

 

 

 

C-2.1 Introduction 

This chapter introduces some general aspects related to the catalyst 

preparation technique, their characterization and to the reaction 

apparatus of employed to perform the partial oxidative reforming 

reaction. In this chapter, the innovative combustion synthesis way 

employed to prepare catalysts composed mainly by copper chromite, 

unsupported and supported on alumina, and copper-zinc-alumina was 

proposed. Moreover, a list of the characterization techniques used to 

describe in details the chemical and textural properties of the 

examined catalysts have been described. The configuration of the 

reaction apparatus and of the analytical methodology was also 

described. Four different catalysts of copper chromite have been 

prepared. Each catalyst distinguishes itself by other for the 

compositions, the presence of a support and by the ratio phi, between 

glycine and oxygen, employed during the preparation. By using the 

same technique, a catalyst of Cu/ZnO/Al2O3 has been prepared and, its 

performances, compared with the performances of CuCr series. The 

copper chromites, prepared by combustion, have been characterized 

deeply and their performances in ethanol reforming and partial 

oxidation reforming were studied. At the end of this chapter a 

comparison of the catalytic performances of the above mentioned 

system with three different commercial catalysts has been done. 
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C-2.2 Catalysts Preparation: the combustion synthesis 

The technique used in this study to prepare the catalysts is the 

glycine/nitrate powder synthesis, well known as combustion consisted 

of the following steps. Exothermic mixtures of metal nitrates (Alfa 

Aesar) Me(NO3)x.yH2O (where Me =Cu, Zr, Zn, or Pd) and glycine 

(C2H5NO2), the fuel of the reaction, were used to synthesize catalysts 

by using the volume combustion synthesis (VCS) approach. More 

specifically, for the VCS method, reactants in desired amounts are 

dissolved in water and the obtained solution is thoroughly mixed to 

reach homogenization on the molecular level. After preheating to the 

373 K, water evaporates, followed by temperature increase until the 

self-ignition point Tig~525 K. More precisely the solution prepared in a 

beaker was placed in a hot plate under a hood and then heated slowly 

to evaporate excess water, which resulted in a viscous liquid layer. At a 

certain temperature, the viscous layer ignited and underwent self-

sustaining combustion, producing an ash composed of the oxide 

product. In fact after ignition, the temperature rises rapidly (~103 K·s
-1

) 

up to 1300 K. High temperature, accompanied by intensive gasification 

(CO2, N2, steam) during a short time period (0.1-1s), converts the initial 

solution to a fine highly crystallized powder. In general, under 

equilibrium conditions, the combustion reaction in such systems can 

be represented in equation 1. 

��(���)� + 	

 �φ�
��
����
 + 	

� �(� − 1)�� → 																	���
�
+

��

 �φ��� +

�	
�� �φ
�� +	�

	��

�� � ���																					(1)  

Where Me - is a metal with valence ν, φ is a fuel to oxidizer ratio 

where φ =1 means that the initial mixture does not require 

atmospheric oxygen for complete oxidation of the fuel, while φ > 1 

represents fuel-rich conditions and φ < 1 represents fuel lean 
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conditions. At first, three different copper chromite catalysts with the 

same composition, CuO-Cr2O3=50:50wt%, were prepared by combustion 

synthesis of a mixture of copper and chromium nitrates in presence of 

glycine, using three different fuel oxidizer ratios of φ=0.5 (CuCr-0.5), 

φ=0.8 (CuCr-0.8) and φ=3 (CuCr-3) and the details about the 

composition of the mentioned catalysts have been reported in Table 1. 

The aim of this study is to individuate the best value of φ to obtain 

crystalline phases active and selective in the reaction examined. Once 

identified the best way to design the catalyst, a copper chromite 

supported on alumina (CuCr2O4: Al2O3=60:20 wt%), indicated with the 

acronym CuCr/Al, was prepared in two different steps: a support of 

activated alumina (Sigma-Aldrich Brockmann I, standard grade-150 

mesh) was at first impregnated with an aqueous mixture of copper 

nitrate, chromia nitrate and glycine as fuel (φ=0.8) (see Table 1). The 

catalyst prepared by impregnation was then heated to realize the 

combustion reaction. The reaction occurred vigorously and it was 

undertaken with extreme caution to produce a high yield of catalysts. 

The performances of all these systems, all characterized by the 

presence of chromia as promoter, have been compared with the 

performances of Cu-ZnO-Al2O3 (40:40:20wt%) catalyst, denoted as 

CuZnAl, prepared in this case by combustion of a mixture of the 

nitrates of copper, zinc, and aluminum in presence of glycine by using 

the optimized ratio φ of 0.8. The prepared catalysts were sieved to 

0.6- 1mm particle size and were previously pre-reduced for 2h in pure 

hydrogen flow of 50 cm
3
/min, keeping constant the temperature at 

300°C. Table 1 summarizes the composition and the preparation ratio 

of the catalysts studied in this work. In the experimental chapter of 

this section (chapter 3-section C) the performances of catalysts 

prepared by combustion synthesis have been compared with the 

commercial catalytic systems, which the textural and chemical 

properties and the performances in high pressure dehydrogenation 
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reaction, has been already studied in deepen in a previously section of 

this thesis (see Chp.2 section B). In order to facilitate the reading, a 

summary table (Table 2) of the features of such systems is provided 

below.  

 

Table 1: catalysts compositions and acronyms 

Catalyst Acronym Phi Composition 

Cu-ZnO-Al2O3 CuZnAl 0.8 
CuO-ZnO-Al2O3 

( 40:40:20 b.w.) 

CuO-Cr2O3 CuCr-0.5 0.5 
CuO-Cr2O3 

(50:50 b.w.) 

CuO-Cr2O3 CuCr-0.8 0.8 
CuO-Cr2O3 

(50:50 b.w.) 

CuO-Cr2O3 CuCr-3.0 3.0 
CuO-Cr2O3 

(50:50 b.w.) 

CuCr2O4/ Al2O3 CuCr/Al 0.8 
CuCr2O4/Al2O3 

(60:20 b.w.) 

 

 

Table 2: characteristics of composition of commercial catalysts supplied by companies 

BASF and Sud-Chemie. 

Catalyst Acronym 
 

Composition given by the companies 

BASF K-310 
CuO-ZnO-Al2O3 

(40-40-20 % b.w.) 

BASF Cu-1234 
CuCr2O4-CuO-Cu-BaCrO4-Al2O3 

(45-1-13-11-30 % b.w.) 

Sud-Chemie T-4466 
CuO/CuCr2O4 

(CuO/Cr2O3= 53/45) 

 

The properties, the performances and the drawbacks of these three 

different catalysts have been evaluated, compared and discussed in 

the chapter 3 of this section. 
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C-2.3 Catalysts characterization 

The following chapter contains all techniques and the details of the 

experimental operative conditions employed in this work. The textural 

properties of the catalysts prepared by combustion have been studied 

in detail and the techniques employed to characterize the mentioned 

materials could be classified in two different categories: ex-situ 

characterization such as BET, X-ray diffraction (XRD) , scanning 

electron microscopy (SEM) and X-ray Photoelectron Spectroscopy 

(XPS) and in-situ ones, such as diffuse reflectance infrared fourier 

transform (DRIFT) in presence of ethanol and X-ray adsorption near 

edge spectroscopy  (XANES). 

BET measurements. Surface area measurements were carried out on a 

Quantachrome Autosorb-1 Instrument using nitrogen as the adsorbent 

gas. Catalyst particles were first outgassed at 473 K until the 

differential pressure fell below 20 mmHg/min. The weight of the 

outgassed sample was precisely measured before calculating the 

specific surface area. No other pretreatments were carried out prior to 

BET area measurements.   

X-ray diffraction (XRD). A Bruker powders diffractometer was used to 

obtain XRD patterns were obtained. The scans were collected in the 

range 5-80° (2θ) at a rate of 0.01° (2θ)/s,  using Cu Kα radiation The X-

ray tube operated at 10 KV and 50 mA (Appendix A). 

X-ray photoelectron spectroscopy (XPS). A Kratos XSAM-800 with an Al-

Kα X-ray source operating at 1486.6 eV and a 90-degree take-off angle 

was used for XPS analysis of O 1s, Al 2p, Cr 3d and Cu 2p electronic 

transitions using a multi-channel detector. Fresh ground in powder 

catalyst samples were adhered to brass mounts with double-sided 

carbon tape, prior to loading them into the analysis chamber. Samples 

were left to degas overnight while the vacuum system maintained a 

pressure less than 1*10
-8

 torr. During data processing of the XPS 



 

Section C 

Chapter 2  

Experimental device 

 

 

  338 

 

spectra, binding energy values were referenced to the C 1s peak 

(284.8 eV) from the adventitious contamination layer. At the end the 

obtained spectra have been analysed by using the CasaXPS software 

package with relative sensitivity factors obtained by Kratos library. This 

technique is useful to estimate the surface concentration of the 

several elements and their oxidation states using carbon as standard 

for calibrating the peaks locations (Appendix A). 

X-ray adsorption near edge spectroscopy (XANES). Measurements 

using extended x-ray absorption spectroscopy including x-ray 

absorption near edge spectroscopy were carried out at the Advanced 

Photon Source (APS) at Argonne National Laboratory (ANL). The 

measurements were made in transmission mode with ionization 

chambers optimized for the maximum current with linear response. 

The measurements were made in transmission mode with ionization 

chambers optimized for the maximum current with linear response 

(~1010 photons detected/sec). A cryogenically cooled double-crystal Si 

(111) monochromator with resolution (ΔE) better than 2.5 eV at 8.979 

keV (Cu K edge) was used in conjunction with a Rh-coated mirror to 

minimize the presence of harmonics. The integration time per data 

point was 1-3 sec, and three scans were obtained for each processing 

condition. Standard procedures based on WINXAS97 software were 

used to extract the XANES spectra. Phase shifts and backscattering 

amplitudes were obtained from XANES data obtained for the following 

reference compounds: CuO and Cu2O for Cu-O and Cu foil for Cu-Cu 

while Cr2O3 and CrO3 for Cr-O and Cr foil for Cr-Cr. 

The sample was pressed into a cylindrical holder with a thickness 

chosen to give an absorbance (Δμx) of about 1.0 in the Cu edge region. 

Due to the high density of the Cu based catalysts, the fresh powder 

was diluted by a factor of 10 with fumed silica prior to being pressed 

into a wafer. The sample holder was centered in a continuous-flow 

EXAFS reactor tube 18 inches long and 0.75 inches diameter. The tube 
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was fitted at both ends with polyimide windows to allow transmission 

of the x-ray beam with gas valves fitted perpendicular to the tube. The 

reactor was fitted into a clamshell style electrical furnace, which was 

controlled and monitored with three type K thermocouples located 

inside the reactor tube and furnace assembly. This furnace, window, 

and valve configuration allowed isolation of the reactor from the 

atmosphere and the ability to flow various reducing, reactant, and 

oxidizing gas mixtures at elevated temperatures, all while being 

probed by the x-ray beam, meaning the catalyst under operando 

reaction conditions could be monitored. The catalysts were studied via 

XAS spectroscopy under reaction and reducing conditions. Spectrum 

was first recorded with the catalyst in its untreated state at room 

temperature (in air). All samples were previously reduced by heating 

in a reducing atmosphere of pure H2 to a temperature of 300°C, then 

scanned after cooling to room temperature. For reaction studies under 

ethanol decomposition reaction conditions the temperature was 

changed to the desired set point and a reaction mixture of 2.2 

cm
3
/min of CH3CH2OH in He was flowed over the catalyst for 30 

minutes. After that the Xanes spectrum was recorded with the aim of 

evaluating the variation of the oxidation state during the reaction 

(Appendix A). 

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT)  

The DRIFT spectra of ethanol on copper based catalysts were obtained 

in a Bruker Equinox 55 spectrometer equipped with a DTSG detector 

and a moving interferometer with a scanner velocity of 2-30 KHz, a 

Mid-IR source and a beam splitter. For ethanol adsorption 

experiments, a weighted quantity of catalyst in powder mixed with 

fumed silica, necessary to prevent the adsorption of radiation by the 

black powder that characterize our samples, was charged in IR-Cell 

reactor (Harrick) equipped with a CaF2 window, with thermostated 

heaters and heated at inlets and outlet to allow reactants flow into the 
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cell. The samples were pre-treated in-situ by heating under Helium 

flow (25 cm
3
min

-1
), then reduced at 300°C in a flow of 20% H2 in He for 

about 1h. The system was rapidly cooled and ethanol flow was 

introduced in the cell and contacted with the pre-treated sample at 

three different temperature 100-200-300°C and at atmospheric 

pressure. For each spectrum 128 scans in the range 4000–370 cm
-1

 

were recorded with a resolution of 4 cm
-1

(Appendix A). Finally, the 

powder microstructures of used catalysts were imaged and analyzed 

using a Bruker Field-Emission SEM (Appendix A).  

 

C-2.4 Catalytic activity 

C-2.4.1 Apparatus 

The oxidative reforming reaction was conducted in continuous packed 

bed quartz tubular reactor of 50 cm length, and 10.5 mm ID (see figure 

1).  

A diagram of the reactor feed system is presented in Figure 1.  

 
Figure 1: Diagram of the reactor setup used for kinetic evaluations and activity 

experiments. 
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Indentations approximately 10 cm from the bottom held a loose plug 

of fine quartz wool, on top of which the catalytic bed rested. The 

reactor was thermally heated with a custom made Amptek heating 

jacket. Reactor temperature was monitored and controlled using a K-

type thermocouple placed in the center of the catalyst bed connected 

to an Omega CN-2100 temperature controller. A low system pressure 

of less than 0.5 psi was carefully maintained using a bypass and needle 

valve inside the reactor system to provide constant pressure in the GC 

sampling system. A picture of the reactor employed is represented in 

Figure 2. 

 

 
Figure 2: reactor configuration 

 

The reactor was charged with 0.4 g of agglomerated powders of fresh 

catalyst. Precisely, the catalysts were first pressed at 5000 psi for 4 
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minutes. The resulting pellet was then broken and sieved to obtain a 

particle size between 0.6 and 1 mm. A mass of 400 mg sieved catalyst 

was used in activity experiments supported by quartz wool inside the 

reactor. The charged catalyst was pre-reduced in situ with a pure 

hydrogen flow of about 50 cm
3
min

-1
 by heating the catalytic bed from 

room temperature to 300°C at a rate of 4.5°C/min, the hold time at 

the final temperature is of about 1h. 

The feed system was comprised of four calibrated Brooks 5850 series 

mass flow controllers, which precisely metered and mixed nitrogen, 

oxygen, hydrogen, and eventually an auxiliary gas (such as CO2) if 

needed to form the reactor feed stream. Gas lines and fittings were 

(1/8’’) Swagelok stainless steel. Ethanol was added to the nitrogen 

stream via an in-line saturator, which saturated the flow to a 

concentration of 3.7% by volume of ethanol. By-pass valves allowed 

the saturator to be bypassed for situations when pure nitrogen or 

mixture of hydrogen in nitrogen was needed.  

Then, the hydrogen flow was switched to a nitrogen flow, of about 38 

cm
3
/min, to purge the system from traces of hydrogen. The nitrogen 

passed through a bubbler containing ethanol resulting in a total 

ethanol flow of about 2.2 cm
3
min

-1
. Oxygen was then added to the 

ethanol reactant stream to obtain ratios of (CH3CH2OH:O2) 0.6 and 1.5. 

The reaction was conducted by heating the catalytic bed from room 

temperature to 500°C in about 4 hours. 

 

C-2.4.2 Gas-chromatographic method 

The reaction products were analyzed on line by a gas-cromatograph 

(HP-5890) equipped with a six ways sampling valve. The separation 

and identification of the effluent products was realized employing two 

different gas-chromatographic packed columns connected in series: a 

3.7 m Hayesep Q connected to a FID detector for the detection of 

ethanol, acetaldehyde, methane, carbon dioxide, methane, and a 5 m 
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Hayesep DB column connected to a thermo-conductivity detector 

(TCD) to separate nitrogen, hydrogen, oxygen, carbon monoxide. The 

carrier gas employed is argon at an inlet pressure of about 60 psi. The 

oven temperature of the gas-chromatograph is kept at 40°C for about 

5 min, after that time was increased with a rate of 8°C/min to 120°C 

for an holding time of 5 min.  

Peak positions and detector responses were calibrated using flowing 

mixtures of gases, such as acetaldehyde, CH4, CO, CO2 in nitrogen, at 

concentrations in the same range as those expected when monitoring 

reactions. Flow rates of each gas were carefully checked with the use 

of a bubble flow meter and a stopwatch. Repeated measurements 

ensured that the flow rate was correct with errors between 

measurements typically < 1%. Peak areas and retention times were 

measured at least three times for each gas concentration and at least 

three different gas concentrations were used to generate a response 

curve as peak area vs. volume percent gas. Identical procedures were 

used to calibrate all the reaction products of interest. After an 

accurate calibration for each system a measure of conversion and 

selectivity was realized. The ethanol conversion, hydrogen selectivity, 

carbon dioxide selectivity, and CO byproduct formation were 

calculated based on the peak area measured with the integrator and 

peak area response calibration as already described. Ethanol 

conversion was defined using equation 2 and the hydrogen selectivity 

by using equation 3. 

	� !"# =
% !"#	&' − % !"#	()!

% !"#	&' 																																																																	(2) 

	+#� =
%#�	,-(.)/0.

3(% !"#	&' − % !"#	()!)																																																																(3) 
While, the selectivities to acetaldehyde, methane, ethylene, CO and 

CO2 determined on the basis of a carbon balance for each component, 

are determined as (equation 4): 
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XEtOH represents the conversion while SH2 represents the hydrogen 

selectivity. FEtOHin and FEtOHout represent the molar flow rate of the 

ethanol at the inlet and at the outlet of the reactor, respectively. The 

other main co-products observed during the gas-chromatographic 

analysis are: water, acetaldehyde, ethylene, CH4, CO and CO2 and the 

composition analysis was realized on the basis of a carbon mass 

balance (equation 4). Where nCi and nCEtOH represent respectively the 

numbers of carbon atoms in the component i and in the ethanol fed, 

while Aci and AcEtOH are the normalized chromatographic peaks areas.  
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Experimental Results 

 

 

C-3.1 Introduction 

Nowadays the catalytic generation of hydrogen by alcohols 

reformation is a topic of great interest. The use of ethanol is well 

known and in the last few years, the use of ethanol, that can be 

produced by second generation raw materials, has encouraged the 

interest of the academic and industry world. Actually, the most 

employed process to produce hydrogen is the catalytic steam 

reforming but, on the other hand, due to the strong endothermicity 

the requirement of the overall process external energy supply to 

sustain the reaction, along with the difficulties of development of a 

long-term stable coke resistant catalysts  have led to search for other 

processes. At this purpose, the exothermic nature of the ethanol 

partial oxidation reaction looks as a reasonable alternative process for 

hydrogen production. In this chapter, the investigation of catalysts for 

processing bio-ethanol under oxidative reforming conditions has been 

reported. The main aim of this research is to investigate the use of 

ZnO and Chromia promoters to reduce coke formation and to improve 

the catalyst activity and hydrogen selectivity.  

In particular, in this thesis the catalytic generation of hydrogen by 

partial oxidation of ethanol over a series of copper-zinc and Cu-

chromite catalysts unsupported or supported on alumina, prepared by 

combustion synthesis has been realized. Combustion synthesis has 

been used to prepare metal oxide powders, including substituted 

chromite powders of high quality. The catalysts preparation and the 
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peculiarities of the combustion technique have been already retrieved 

in chapter 2 of the current section.  

In a first part of this chapter, the textural properties, by using in-situ 

and ex-situ characterization, of the prepared catalysts were 

investigated. The individuation of the optimal fuel to oxidizer ratio (φ), 
as already mentioned in the chapter 2 of this section, during the 

preparation of the catalysts, is fundamental to obtain system with 

desired final textural properties. At this purpose, three different 

catalysts of Cu-Cr2O3 have been prepared by using the same 

composition but three different ratio φ=0.5−0.8−3.0.   
Once identified the best phi ratio, other two different systems, a 

catalysts of copper chromite supported on alumina CuCr/Al and a 

catalyst of copper-zinc oxide-alumina Cu-Zn-Al, have been prepared by 

using φ=0.8. The catalysts behavior was studied in ethanol reforming 

and partial oxidative reforming reaction with the scope to investigate 

both the effect of the preparation methodology and of the presence of 

two different promoters such as chromia/chromium and zinc-oxide. In 

more detail, the partial oxidative reforming was studied under various 

O2/C2H5OH ratios. At the end, the comparison of the performances of 

prepared catalysts and commercial catalysts was done. The 

commercial catalysts peculiarities, chemical and textural properties 

have been already described, in details, in the chapter 2 of the section 

B of this thesis. The chapter has been concluded with a discussion of 

the obtained results. 
 

C-3.2 Catalysts characterization 

The catalysts prepared by combustion have been submitted to a depth 

characterization studies. The techniques employed to characterize the 

prepared catalysts could be classified in two different categories: ex-

situ characterization such as BET, X-ray diffraction (XRD), scanning 
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electron microscopy (SEM) and X-ray Photoelectron Spectroscopy 

(XPS) and in-situ characterizations such as diffuse reflectance infrared 

Fourier Transform (DRIFT) in presence of ethanol and X-ray adsorption 

near edge spectroscopy  (XANES). A detailed description, of the 

equipment employed to characterize these materials and of the 

operative conditions used to pretreat the materials and to analyze 

them, has been reported in APPENDIX A. To well understanding the 

peculiarities of the catalysts is, thus, necessary to have both textural 

information of the fresh catalysts (EX-situ), to have an idea of their 

eventually changing during/after the reaction (In-situ) and finally to 

correlate their characteristics to the results of activity and selectivity in 

reforming and oxidative reforming reactions. 

 

C-3.2.1 Ex-Situ Characterizations 

The ex-situ techniques are able to give some information on the 

specific surface area (BET), on the crystalline structure (XRD), about 

the morphology (SEM) and the surface oxidation state of the catalysts 

components (XPS). These investigations give qualitatively types 

information only on the textural characteristics of fresh, not reduced, 

catalysts. The name, composition, glycine/O2 ratio and the BET area of 

the synthesized catalysts prepared by combustion are summarized in 

Table 1. 

In a first phase of this research, different copper-chromia catalysts 

were prepared by using different glycine/oxygen ratios. As the activity 

results will show, the best catalytic system was prepared by using a 

ratio between glycine/oxidizer of 0.8. The results reported in Table 1 

show that the copper chromite supported on alumina CuCr/Al, 

prepared by impregnation of copper chromite on alumina and 

combusted, has the highest surface area of about 127 m
2
/g. Copper-

chromite (Cu-Cr) catalysts prepared with a different ϕ ratio exhibited a 
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lower surface area, perhaps, due to sintering occurring at high 

temperature during the combustion synthesis process. Interestingly, 

the surface area of the CuZnAl catalyst, of about 31 m
2
/g, is low maybe 

because all the phases, included alumina, were combusted together 

instead of impregnating the Cu-ZnO phases on the alumina, as in the 

case of the CuZn/Al catalyst. 

Table 1: Copper based catalysts surface area 

Catalyst Acronym ΦΦΦΦ    Composition 
Surface area 

(m
2
/g) 

Cu-ZnO-Al2O3 CuZnAl 0.8 
CuO-ZnO-Al2O3 

( 40:40:20 b.w.) 
31 

CuO-Cr2O3 CuCr-0.5 0.5 
CuO-Cr2O3 

(50:50 b.w.) 
84 

CuO-Cr2O3 CuCr-0.8 0.8 
CuO-Cr2O3 

(50:50 b.w.) 
46 

CuO-Cr2O3 CuCr-3.0 3.0 
CuO-Cr2O3 

(50:50 b.w.) 
34 

CuCr2O4/ Al2O3 CuCr/Al 0.8 
CuCr2O4/Al2O3 

(60:20 b.w.) 
127 

 

Figure 1 shows the XRD diffraction patterns for all the fresh catalysts in 

oxidized form. The copper/copper chromite catalyst CuCr/Al, CuCr-0.5 

and CuCr-0.8 shows several broad diffraction peaks indicative of small 

copper chromite particles size that in the case of CuCr/Al are well 

dispersed on the alumina support. The main phases at 2θ= 33°, 36.5°, 

41.1°, 63° are related to the cubic spinel CuCr2O4. The X-Ray diffraction 

peaks at 2θ = 35
°
-38

°
 are typical of Cu (+2). The copper Cu(0) peaks are 

located at  2θ= 50°, and 42.8°. Chromia diffraction peaks are located 

at 2θ = 25
°
,34°, 38°,55

° 
[1,2]. The CuCr-0.5 catalyst shows broad peaks 

due to the low dimension of copper oxide crystallites at 35°. The 

diffraction peaks of CuCr-0.8 have been assigned to a spinel of copper 

chromite, also in this case characterized by very small crystallite size. 
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Finally, CuCr-3.0 has shown very well defined diffraction peaks that 

correspond to the several phases formed after the combustion 

synthesis at high temperature such as CuO, Cu, Cr2O3, CuCr2O4 

assigned at 2θ value as mentioned above. The catalyst CuCr-3.0 

prepared by using the higher ϕ ratio shows the presence of the 

diffraction peaks attributed to metallic copper, indicating that the 

catalyst in part is reduced, by the effect of large value of 

ϕ used (ϕ =3), which results in a reduced metal nanoparticles [3]. The 

well high defined peaks are due to the larger size of the particles due 

to sintering occurring during the combustion synthesis in excess fuel 

[4]. To simplify the diffraction pattern reported above the XRD of the 

CuZn/Al catalyst has not been reported. In this case, ZnO phase at 

2θ = 37
°
 and a spinel of ZnAlO4 at 2θ = 32°

 have been identified. The 

amorphous alumina support exhibits only weak and broad peaks. 

 
Figure 1- comparison of XRD diffraction patterns of the copper-

chromite catalysts CuCr-0.5, CuCr-0.8, CuCr-3, CuCr/Al . 
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SEM micrographs of the CuCr-0.8, CuCr/Al and CuZn/Al are catalysts 

represented in Figures 2A-C.  

 

 

 

The Figure 2A, corresponding to unsupported CuCr-0.8, shows 

individual particles of copper chromite of about 200 nm. The 

supported CuCr/Al catalyst shown in Figure 2B show small particles,  

presumably of copper chromite, of varying sizes and shapes dispersed 

on the alumina support in agreement with the XRD and BET results. 

Similarly, Figure 2C shows well defined particles supported on the 

alumina although we did not identified the various phases present in 

this case. 

 The surface composition, of CuCr-0.5, CuCr-0.8, CuCr-3 and CuZn/Al 

and CuCr/Al catalysts, was studied by XPS. The spectra are shown in 

Figures 3A and 3B respectively for Cu and Cr 2p 3/2 photoelectrons 
C
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with the  surface composition of the selected fresh catalysts listed in 

Table 2 in terms of the relative % of the various elements present. 

 

 

Table 2: XPS relative surface composition 

 Cu 2p  

(%) 

Zn 

(%) 

Cr 2p   

 (%) 

Al 2p 

(%) 

C 1s 

(%) 

O 1s 

(%) 

CuZn/Al 7.85 5.86 - 28.69 30.83 26.77 

CuCr/Al 9.1 - 6.9 23.9 7.3 52.8 

CuCr-0.5 15.9 - 15.5 - 16.8 51.8 

CuCr-0.8 12.81 - 12.54 - 23.71 50.93 

CuCr-3.0 11.31 - 16.85 - 16.95 54.88 

 

Figure 3A shows that CuCr-0.5 and CuCr/Al exhibit a copper binding 

energy signal at 932.2-932.8 eV that corresponds to Cu
+ 

in Cu2O, 

attributed to Cu
+
 located in an octahedral and tethraedral sites of 

CuCr2O4 [5].  
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Figure 3A: copper binding energy signals. 

 

As it can be seen CuZn/Al, CuCr-0.8 and CuCr-3.0 exhibit distinct 

satellite peaks at 933.6 eV that correspond to the Cu
+2

 as in CuO, 

indicating that the catalyst is in a fully oxidized state. Moreover the 

catalysts CuCr-0.8 and CuCr-3.0 show also small variation in binding 

energy of Cu with shoulder peaks at 932.2-932.8 eV, that correspond 

as above mentioned to Cu
+
. On the fresh catalytic systems CuCr-0.8 

and CuCr-3.0 a mixture of two oxidation states has been individuated. 

In Figure 3B, the chromium binding energy has been represented for 

each catalysts studied. 
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Figure 3B: chromium binding energy 

 

The binding energy of Cr 2p3/2 of all the catalysts containing chromia 

is in the range 576.58-578.7 eV attributed to the Cr
3+

 in Cr2O3 

compounds (Figure 3B), in good agreement with studies by Brooks et 

al. (577.0 eV)
5
. Moreover, the spectra reported in Figure 3B shows a 

small variation in binding energy of Cr observed in CuCr-0.5 and CuCr-

0.8, the shoulder peaks at higher binding energy in each peak (ca. 580 

eV Cr 2p3/2,) is assigned to the Cr
6+ 

present in the previously 

characterized CuCr2O4 phase [6]. The accepted Zn 2p3/2 electron 

binding energy for oxidized zinc Zn
0
 reported near 1021.4 eV. 

 

C-3.2.2 In-Situ Characterizations  

The use of in-situ characterizations gives indications about the nature 

of adsorbed species on the catalysts surface during the ethanol 
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reforming reaction and about the variation of oxidation states during 

after respectively reduction, reaction and air exposure. 

Several adsorbed species on the catalysts surface have been detected 

by using in-situ DRIFT in ethanol flow of 2.2 cm
3
/min diluted in 

nitrogen flow of about 25 cm
3
/min at 100, 200 and 300°C. In Figure 4 

A-C DRIFT spectra respectively of CuCr-3, CuZn/Al and CuCr/Al 

catalysts have been represented. The spectra of CuCr-0.5A and CuCr-

0.8B, even though diluted with fumed silica, show very weak bands 

difficult to identify due to the low reflectance and high absorption of 

infrared radiation by the black catalyst powder and hence are not 

shown. Figure 4A displays the DRIFT spectra of CuCr-3, showing barely 

distinguished features at 3750 and 1400 cm
-1

 that attributed to the –

OH group of the adsorbed ethanol and –COO of an ester phase 

(ethylacetate). These DRIFT experiments enabled identification 

of surface ethoxy species [7]. At 2800-3000 cm
-1

 another feature 

can be identified corresponding to the –CH3 and/or -C2H5 

groups. By increasing the temperature the bands of adsorbed –

OH disappear favoring the formation of the ester group. In particular, 

the spectrum 4A shows a different band, at a wavenumber of about 

1750 cm
-1

 related to the formation of acetaldehyde species. Figures 4B 

and 4C shows the spectra for CuZn/Al and CuCr/Al supported catalysts 

which although obtained at the same dilution ratio catalyst/fumed 

silica=1:5 as in Figure 4A, the spectra is clearer due to the better 

reflectance provided by the alumina support. The spectra show 

different bands corresponding to –OH at 3750 cm
-1

, -CH3 and –C2H5 at 

2800-3000 cm
-1

, CO2 at 2300-2400 cm
-1

, acetaldehyde specie at 1757 

cm
-1

. Figure 4C, for CuCr/Al, shows at 300°C  the formation of surface 

acetate species υsym(COO) at 1550 cm
-1

 and characteristic υ(C–O) 

bands corresponding to mono- (υ(CO) = 1096 cm
−1

) and bidentate 

(υ(CO) = 1055 cm
−1

) ethoxy species [8-10].  
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Figure 4A:  (A) CuCr-3 DRIFT spectra 
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Figure 4B. CuZn/Al DRIFT spectra 
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Figure 4C: CuCr/Al DRIFT spectra 

Further investigation of the oxidation state under reaction conditions 

was carried out by in-site XANES. Figure 5A shows the Cu edge XANES 

spectra of the three different Cu standards: Cu
0
, Cu

+ 
and Cu

2+
. 

 



 
Section C 

Chapter 3  

Experimental 

 

 

  355 

 

 
Figure 5A: Xanes spectra of Copper Standards. 

 

By comparing the Cu edge XANES spectra of the CuCr-0.5 catalyst, 

reported in Figure 5B, and the standard ones, it is possible to observe 

a variation of oxidation state of the copper during reduction and 

ethanol decomposition. As it can be seen, in the CuCr-0.5 catalyst, Cu 

has initially an oxidation state of Cu
+2

 in the fresh catalyst exposed to 

air. After reduction, ethanol decomposition and subsequent exposure 

to air after reaction the oxidation state of CuCr-0.5 is mainly Cu
0
. 
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Figure 5B: Xanes spectra of CuCr-0.5 catalyst. The measure has 

been done in different step. 1. Exposure to the air. 2. catalyst 

reduction. 3. Ethanol decomposition. 4. Exposure to air after 

reaction. 

In Figure 5C the XANES spectra of a CuCr-0.8 catalyst after the 

reduction and successively exposure to air are shown. In this case it 

can be seen that after reduction and catalyst exposure to air the 

curves do not fir neither the reduced or oxidized standars indicating 

that the oxidation state of copper is a mixture of Cu
o
/Cu

+1
. As 

previously demonstrated CuCr-0.8 catalyst has shown the best 

performances in the ethanol decomposition. The mixture of two 

oxidation state is typically present in the active copper-chromite 

catalyst and could represent the active phase in the ethanol 

decomposition reaction. 
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Figure 5C: XANES spectra of CuCr-0.8 catalyst : 1. catalyst 

reduction 2. Exposure to air after reaction. 

 

The CuCr/Al catalyst, Figure 5D, shows a Cu edge XANES profile similar 

to the ones obtained for the CuCr-0.5 catalyst, i.e mainly oxidized in 

the fresh catalyst in air and mainly reduced after reduction, reaction 

and subsequent exposure to air. The Cu XANES spectrum of CuZn/Al 

catalyst (not shown) is basically the same as CuCr/Al and CuCr-0.5 

showing no major effect of ZnO on the oxidation state of Cu. 
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Figure 5D: XANES spectra of CuCr/Al catalyst :1. Exposure to 

the air. 2. catalyst reduction. 3. Ethanol decomposition. 4. 

Exposure to air after reaction. 

 

 

C-3.3 Catalytic tests 

According to the literature, the reforming reactions are catalyzed by 

metals of Groups 8–10 of the Periodic Table and in particular nickel 

being preferred for industrial applications [11]. However, early studies 

on ethanol reforming were carried out over copper-based catalysts 

[12]. The copper is active and selective phase to produce hydrogen, 

but promoters and supports are necessary to prevent both metal 

sintering and fouling the surface due to the acetaldehyde 

adsorption.Copper, initially present in the fresh catalysts composition 

in the form of oxide, was previously reduced to metal to be active in a 

flow of hydrogen for about 3h at 300°C. In this section the 

performances of two series of catalysts have been studied: 

A. Catalysts prepared by combustion 

B. Commercial catalysts 
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C-3.3.1 Copper based catalysts prepared by combustion 

At first, the individuation of the best ‘’phi’’ ratio necessary to obtain 

the most active and selective catalyst have been done. Figure 6A 

shows the ethanol conversion versus the temperature profiles for 

three different catalysts profiles for CuCr-0.5, CuCr-0.8 and CuCr-3 

catalysts with the corresponding selectivity shown in Figure 6B. The 

runs were performed in a constant flow of ethanol (2.2 cm
3
/min) 

diluted in 38 cm
3
/min of nitrogen, at atmospheric pressure and by 

changing the temperature of reaction in the range 50-500°C. The 

Figure 6A shows the conversion for each three catalysts examined at 

different temperature of reaction. At high temperature (>500°C) a 

conversion of about 95-100% was obtained for all catalyst. At an 

intermediate temperature of about 250°C the conversion is about 77-

80% for CuCr-0.5 and CuCr-0.8 and is only 10% for CuCr204. It follows 

that, by increasing phi value decreases conversion at intermediate 

temperatures. The hydrogen selectivity (Figure 6B) defined as the ratio 

of the amount of hydrogen produced to the total amount of hydrogen 

that can be produced from the reacted ethanol, is very different 

among the three catalysts. 
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Figure 6A: conversion profiles for profiles for CuCr-0.5, CuCr-

0.8 and CuCr-3 catalysts. 

Up to 100°C hydrogen selectivity is low leading to the formation of COx 

and water. As temperature increases, H2 selectivity increases and at 

300°C the order of selectivity ranks as follows: CuCr-0.8 (40%)>CuCr-

0.3 (27%) whereas the CuCr-0.5 is nearly unselective for H2 producing 

mainly acetaldehyde (SAcH=85-90% at 200<T<300°C), as shown in 

Figure 6C, along with water, COx and methane.  
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Figure 6B: hydrogen selectivities profiles for CuCr-0.5, 

CuCr-0.8 and CuCr-3 catalysts 
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Figure 6C: acetaldehyde selectivity profiles of CuCr-0.5, CuCr-

0.8 and CuCr-3 copper chromite catalysts. 

 

Acetaldehyde selectivity for CuCr-3 is about 25-30% in the 

temperature range of 200-300°C. In the same temperature range the 

acetaldehyde selectivity of CuCr-0.8 is almost the same (22-25%). For 

each studied catalysts CuCr-0.5, CuCr-0.8 and CuCr-3.0, the 
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acetaldehyde selectivity reaches a maximum and then decreases as 

temperature increases. At temperatures higher than 300
o
C, H2 

selectivity levels off at about 47% for CuCr-0.8 and 33% for CuCr-3.0 

and remains low for CuCr-0.5. The results, in Figure 6, indicate that the 

optimum value of phi is 0.8, which was used in subsequent 

preparations. Several studies have shown good activity for CuO-ZnO 

and CuCr2O4 catalysts in the ethanol steam reforming reaction [13-15]. 

On behalf of this purpose, the effect of zinc oxide on unsupported, 

CuCr-0.5 and CuCr-0.8, and supported on alumina, CuZn/Al and 

CuCr/Al, was studied (Figure 7). 
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Figure 7A: comparison of the activity profiles CuCr-0.5, CuCr-0.8, 

CuCr/Al and CuZn-Al. 

 

Figure 7A shows that at 300°C the conversion is in the 85-95% range 

for the unsupported CuCr-0.5/0.8 and about 92% for the supported Zn 

promoted catalysts CuZn/Al and slightly lower (~80%) for the 

supported CuCr/Al catalyst.  
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As it can be appreciated by the profiles of Figure 7B at 300°C, 

hydrogen selectivity is the highest for the supported CuCr/Al catalysts 

(48%) followed by the unsupported CuCr-O.8 (40 %) and the CuZn/Al ( 

31% ).  
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Figure 7B: comparison of the hydrogen selectivity profiles of 

CuCr-0.5, CuCr-0.8, CuCr/Al and CuZn/Al. 

 

At 400°C, the hydrogen selectivity of these three catalysts is almost 

the same (40-45%) whereas the CuCr-0.5 catalyst exhibits no hydrogen 

selectivity in the whole temperature range. These results show that Zn 

promotion is not as effective as Cr promotion, in particular when the 

CuCr catalyst is dispersed in the Al support. Moreover, the 

deactivation resistance of the supported CuCr/Al catalyst was studied 

as a function of time-on-stream (TOS) (Figure 8). The conversion-

temperature profile of the catalyst after used at different time on 

stream is shown in Figure 8A. As it can be appreciated, the conversion 
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at 300°C of the fresh catalysts (R1) and reactor used (R2: after 25 h 

TOS) decreased  from 80% to about 51%.  
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Figure 8A: comparison of the activity of CuCr/Al catalyst: (R1) 

fresh catalyst, (R2) used catalyst for about 25h, (R3) regenerate 

catalyst in oxygen flow of 2.2 cm
3
/min. 

 

The activity, pull through after regeneration of the catalyst in 

hydrogen, gets about the same value as the fresh catalyst (R3). The 

selectivities at 300°C (Figure 8B), however, were about the same for 

the three cases reported. It is likely that the activity decrease after 25h 

of operation is due to the formation of coke from the partially 

dehydrogenated intermediates involved in the decomposition 

reaction. This is quite different that our previous results on Cu-Ni-Fe 

promoted multi-component catalysts [3], which show a significant 

decrease in activity with TOS for ethanol decomposition. 

The H2 selectivity remains constant during the time on stream studied 

which indicates that the sites involved in adsorption of ethanol are 

transformed by coke formation but the concentration of the 
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intermediates leading to their decomposition is not delayed in during 

the time-on-stream studied.  
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Figure 8B: comparison of the selectivity profiles of CuCr/Al 

catalyst: (R1) fresh catalyst, (R2) used catalyst for about 25h, 

(R3) regenerate catalyst in oxygen flow of 2.2 cm
3
/min. 

 

The ethanol decomposition is a strongly endothermic reaction, which 

would require an additional energy source to sustain itself. The 

alternative use of oxidative reforming of ethanol, previously studied in 

the above mentioned Cu-Ni-Fe catalysts [3], has the advantage of 

being exothermic. Precisely, the use a low stream of oxygen, lowest 

than the stoichiometric one, has the possibility to keep clean the 

catalyst surface by coke deposition, the main cause, as above 

mentioned, of the catalyst deactivation. 

At first the performances of CuZn/Al, CuCr/Al and CuCr-0.8 was 

investigated in a range 50-500°C of temperature, by using the same 

amount of catalyst and by using a mixture of ethanol and oxygen, 

diluted in 38 cm
3
/min of nitrogen, with molar ration of EtOH:O2=0.6. 
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The results obtained in terms of ethanol conversion and hydrogen 

selectivity for these catalysts are reported in Figure 9. 

Figure 9A shows that at 300°C CuCr-0.8 exhibits about 96% conversion 

while both supported CuCr/Al and CuZn/Al have conversions of about 

68-72%.  
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Figure 9A: comparison of activity profiles of CuZn/Al, 

CuCr/Al and CuCr-0.8 catalysts. The runs were performed 

in presence of a low quantity of oxygen EtOH:O2=0.6 . 

 

H2 selectivities (Figure 9B), shows that until 200°C no hydrogen is 

produced and the main products of reaction are CO2 and water. By 

increasing the temperature to 300°C CuZn/Al has a selectivity of 35% 

versus 28% obtained for CuCr/Al. At 300°C, in presence of oxygen 

CuCr-0.8 has a H2 selectivity of only 10% indicating that in this catalyst 

the reaction pathway favors the total oxidation of ethanol to CO2 and 

water. At temperature higher than 300°C, the H2 selectivity of CuZn/Al 

is nearly constant in the 30-35% and 25-28%, for CuCr/Al.  
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It follows that in the presence of oxygen Zn promotion does not 

increase that total oxidation of the intermediates leading to CO2 and 

water but rather this catalyst, retain sites selective for partial oxidation 
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Figure 9B: comparison of selectivities profiles of CuZn/Al, CuCr/Al 

and CuCr-0.8 catalysts. The runs were performed in presence of a 

low quantity of oxygen EtOH:O2=0.6 

 

Further increase of the oxygen concentration to O2/EtOH =1.2 

decreases the selectivity for all catalysts even further (not shown) 

favoring the combustion of hydrogen to water. The increase of oxygen 

concentration promotes an increase of the catalysts activity. The 

hydrogen selectivity decreases drastically as O2 concentration increase 

because the secondary reactions of combustion to COX are favored. 

The use of small amount of oxygen EtOH:O2=0.6 should be a good 

compromise to obtain high activity, decreases catalysts deactivation 

and increases hydrogen selectivity. In OPX (oxidative partial oxidation) 

reactions, Cu/Cr with phi ratio=0.8 has shown very scarce 

performances in terms of hydrogen selectivity that was less than 10%. 
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A further increase of the ratio EtOH:O2=1.2 corresponds to a 

considerably decrement of the hydrogen selectivity, since in that 

conditions the secondary combustion reaction are the favored side 

reactions. This behavior is, well, understood by the profiles reported in 

Figure 10A and 10B.  
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Figure 10A: comparison of activity profiles of copper based 

catalysts prepared by combustion. The runs were performed in 

presence of a high amount of oxygen EtOH:O2=1.2. 

 

The catalysts CuZnAl and CuCr-0.8 show a relatively high activity also 

at low temperature due to burning of coke depositions. At a 

temperature of 300°C the CuCr-0.8 shown an higher activity (95%) 

respect to CuZnAl (87%) and CuCrAl (81%). At temperature higher than 

400°C the activity of CuCr and CuZnAl is almost the same (100%). In 

Figure 10B the profiles of hydrogen selectivity have been represented. 

It follows that the use of higher amount of oxygen could promote the 

formation of several co-products such CO2, CH4 and acetaldehyde, 

rather than hydrogen.  
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Figure 10B: comparison of selectivity profiles of copper based 

catalysts prepared by combustion. The runs were performed in 

presence of a high amount of oxygen EtOH:O2=1.5. 

 

By considering the several results obtained the use of small amount of 

oxygen EtOH:O2=0.6 should be a good compromise to obtain high 

activity, decreases catalysts deactivation and increases hydrogen 

selectivity. The interesting result is that all these system are very 

selective to produce acetaldehyde. In Figure 11, the profiles of 

acetaldehyde selectivity as function of the reaction temperature for 

each catalyst at three different ratios EtOH:O2=0/0.6/1.2 have been 

represented. In figure 11 A, the profiles of acetaldehyde selectivities 

have been reported related to the catalyst CuCrAl performance in 

both, ethanol decomposition reaction and in partial oxidative 

reforming. In Figure 11 B and in Figure 11 C the profiles of 

acetaldehyde selectivity for respectively CuCr-0.8 and CuZnAl have 

been reported. 



 
Section C 

Chapter 3  

Experimental 

 

 

  370 

 

 

0 100 200 300 400 500

0

20

40

60

80

100

 EtOH:O2=1.2
 no oxy
 EtOH:O2=0.6

S
el

ec
tiv

ity
A

cH
(%

)

Temperature (°C)
 

Figure 11A: acetaldehyde selectivity of the catalyst CuCrAl in 

ethanol decomposition (no oxy) and in partial oxidative reforming 

(EtOH:O2=0.6/1.2). 
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Figure 11B: acetaldehyde selectivity of the catalyst CuCr-0.8 in 

ethanol decomposition (no oxy) and in partial oxidative 

reforming (EtOH:O2=0.6/1.2). 
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Figure 11C: acetaldehyde selectivity of the catalyst CuZnAl in 

ethanol decomposition (no oxy) and in partial oxidative reforming 

(EtOH:O2=0.6/1.2). 

 

In each case, the acetaldehyde production is higher at higher ratio 

EtOH:O2. Moreover, in the ethanol decomposition reaction it should 

possible to individuate the acetaldehyde formation only at higher 

temperature (T>250°C). This bearing is due to the endothermic nature 

of the reaction, so a high energy supply is necessary to favor the 

acetaldehyde formation. The exothermic nature of the OPX reaction, 

thanks to the small amount of oxygen employed, shifts the 

acetaldehyde production to low temperature range. The acetaldehyde 

observed is in all the cases very high (70-90%) and this consideration 

leads to conclude that these catalysts favor the dehydrogenation 
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reaction. This aspect is agreement with the results obtained by the 

ethanol dehydrogenation at high pressure. 

 

C-3.4 Commercial catalysts  

The behavior of commercial copper chromite and copper zinc catalysts 

have been already studied in the ethanol dehydrogenation reaction at 

high pressure (10-30 bar) and in a range of temperature of 200-260°C, 

with the aim to improve the ethyl acetate, in spite of acetaldehyde, 

and pure hydrogen production. In this section, dedicated wholly to the 

hydrogen production, these same catalysts have been studied in 

conditions of high temperature (50-500°C) and atmospheric pressure 

(1 atm). To ensure an easier understanding of the results below, a 

summary table of the composition of all the examined catalysts has 

been reported (Table 3). 

 

Table 3: composition of the proven catalysts 

Sample 
 

Composition given by the companies 

BASF K-310 CuO-ZnO-Al2O3 (40-40-20 % b.w.) 

Sud-Chemie T-4466 CuO/CuCr2O4 (CuO/Cr2O3= 53/45) 

Cu-0203 CuO/CuCr2O4 (CuO/Cr2O3= 64/36) 

BASF Cu-1234 CuCr2O4-CuO-Cu-BaCrO4-Al2O3 (45-1-13-11-30 % b.w.) 

 

At first, a comparison of the activities and hydrogen and 

acetaldehydes selectivities profiles was done, between the four 

mentioned catalysts into the ethanol decomposition reaction (see 

Figure 12). Precisely, Figure 12A shows the high activity of both K-310 

and Cu-1234 catalysts a relatively low temperature of reaction (10-

20% at T<100°C). This feature could be justified by the presence of 

acidic sites of alumina in both the systems, on which the residual coke 

depositions burn and successively, in the first step of reaction, 

moderate quantity of CO2 could be observed. At a temperature of 
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300°C, Cu-0203 containing an higher copper content (64%) has shown 

a very poor activity. Moreover, the Figure 12B point out the high 

hydrogen selectivity of Cu-1234, T-4466 and K-310 catalysts (82-91%). 
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Figure 12A: conversion variation with the temperature for T-

4466, Cu-1234, Cu-0203, and K-310. 
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Figure 12B: hydrogen selectivity profiles of T-4466, Cu-1234, Cu-

0203, and K-310. 
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In more detail, as it can be seen by the profiles of Figure 12B, the 

catalyst Cu-1234 shows, at temperature lower than 200°C, hydrogen 

selectivity of about 30%. This feature is very interesting because, the 

use of low temperature, provides several economics advantages 

generally related to the low cost of process. By a further increase of 

the reaction temperature to 250°C, a maximum of hydrogen selectivity 

of about 58-59% was reached. At temperature higher than 250°C, the 

hydrogen selectivity sligly decreases to 40-42%, a value that remains 

constant in all the explored range of temperature. The catalyst T-4466 

has hydrogen selectivity of about 35-40% at temperature higher than 

250°C. At the same temperature, Cu-0203 and k-310 show very low 

selectivity value of about 10%. At temperature higher than 300°C the 

hydrogen selectivity, for the last two mentioned catalysts, is of about 

30%. The main reaction co-product of in each catalysts studied is the 

acetaldehyde as it can be appreciated by Figure 12C. 
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Figure 12C: acetaldehyde selectivity profiles of T-4466, Cu-1234, 

Cu-0203, and K-310. 
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As it can be appreciated by the profiles of Figure 12C, Cu-1234, T-4466 

and K-310 show a selectivity of 40-65% in the range of temperature of 

150-250°C. Cu-1234 has shown the better performances and it has 

proven to be a god system in dehydrogenation reaction at low 

temperature. The acetaldehyde selectivity rises up to a 72% at a 

temperature of 250°C and slightly decreases to a value of 35-40% at 

temperature of 400°C due to the effect of decomposition of 

acetaldehyde to CH4 and CO. The catalyst Cu-0203 shows a discrete 

selectivity to acetaldehyde only at temperature reaction higher than 

300°C, at which the catalyst has also shown a moderately activity 

(15%). The investigation is going on by studying the catalysts features 

in the partial oxidative reforming reaction. Firstly, the reaction has 

been performed by using a ratio CH3CH2OH:O2=0.6 (Figure 13). In 

these conditions, the catalysts show a very scarce tendency to 

deactivate and no cycles of oxidation/reduction have been required.  
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Figure 13 A: comparison of activity profiles of T-4466, Cu-1234, Cu-

0203, and K-310. The runs were performed by using a ratio 

CH3CH2OH=0.6. 
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In figure 13 A is proven that at temperature of 300°C the activity of all 

the examined catalyst, except 300°C, is higher (90-100%) respect the 

ones obtained in ethanol decomposition reaction. The use of small 

amount of oxygen is useful to escape the coke deposition on the active 

sites of the catalysts used.  

In Figure 13 B the hydrogen selectivities for each catalyst examined 

have been represented. 
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Figure 13 B: comparison of hydrogen selectivity's profiles of T-4466, 

Cu-1234, Cu-0203, and K-310. The runs were performed by using a 

ratio CH3CH2OH=0.6. 

The use of small amount of oxygen provokes the sharp decrement of 

the selectivity to hydrogen that at 300°C is for the best catalyst Cu-

1234 of about 18%. The other studied systems have shown selectivity 

values less than 15%. By increasing the temperature until 450°C, both 

Cu-1234 and T-4466 show a selectivity of 25-26% while K-310 of 35%. 

In this condition, the most favored product of reaction is the 

acetaldehyde as demonstrated by Figure 13C in which the profiles of 
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selectivity to acetaldehyde for each catalyst have been reported. Cu-

1234 displays a very high selectivity to acetaldehyde narrow to the 

range of 50-60%, at low temperature (T<100°C).Whilst, as 

demonstrated by the activity profiles the catalyst has a conversion of 

20-25% at a temperature of 50°C. 
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Figure 13C: comparison of acetaldehyde selectivities profiles of 

T-4466, Cu-1234, Cu-0203, and K-310. The runs were performed 

by using a ratio CH3CH2OH:O2=0.6. 

 

The catalysts Cu-0203, T-446 and K-310 reach a maximum of 

selectivity, 60-70%, in a broad range of temperature of about 200-

350°C. Moreover Cu-0203 and T-4466, the only two catalysts that do 

not contain alumina, show an high ability to preserve the C-C bound at 

higher temperature, as demonstrated by the high selectivity values at 

T>400°C. By considering the several results obtained the use of small 

amount of oxygen EtOH:O2=0.6 should be a good compromise to 

obtain high activity, decreases catalysts deactivation and increases 

hydrogen selectivity. The increase of oxygen fed could promote a 

significantly increase of the activity and of the stability of the used 
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catalysts (figure 14). At a temperature of 300°C, all the catalysts 

studied have demonstrated to hold a conversion of 87-92% (Figure 

14A). 
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Figure 14 A: comparison of activity profiles of T-4466, Cu-1234, Cu-

0203, and K-310. The runs were performed by using a ratio 

CH3CH2OH:O2=1.2.
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Figure 14 B: comparison of selectivity acetaldehyde profiles of T-

4466, Cu-1234, Cu-0203, and K-310. The runs were performed by 

using a ratio CH3CH2OH:O2=1.2. 
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In addition, the acetaldehyde profiles of Figure 14B show the high 

selectivity (60%) at low temperature (T<150°C) of the Cu-1234 

catalyst. Also in this case, by operating at this ethanol oxygen ratio the 

selectivities in the range of temperature higher than 200°C the 

selectivity is 70-90%.  

It follows that the use of higher amount of oxygen could promote 

reaction of formation of several co-products such CO2, CH4 and 

acetaldehyde, rather than hydrogen. Moreover, these catalysts in low 

pressure condition, favor the acetaldehyde as main product of a 

dehydrogenation process. The main advantage is related to the low 

presence of CO, CO2 and CH4 gases that should be separate by 

hydrogen to obtain high grade of purity, necessary to fuel cells 

application. 

 

C-3.4 Discussion 

In this chapter, two series of catalysts have been examined 

respectively prepared by combustion and commercial ones, supplied 

by BASF (K-310, Cu-1234, Cu-0203) and Sud-Chemie (T-4466).  

In spite of the various characterization methods utilized, each requires 

different conditions, like the standard ex-situ XRD vs. the more 

complicated in-situ experiments. Each method probe different 

properties and material volumes giving results that are often not 

consistent as discussed in detail below, so only qualitative conclusions 

can be reached. 

In addition, there are multiple phases in these catalysts, as 

demonstrated by several characterization techniques, involving 

several oxidation states so more than one site could be involved. This 

is a complex reaction network, involving multiple sites that would 

require detailed kinetic evaluation, to correlate quantitatively active 

sites and material properties with the activity-selectivity trends. 
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Several considerations, about the correlation of the oxidation state 

with the properties of this material, have been done.  

Firstly, the study of Cu-Cr prepared by using three different oxider/fuel 

ratio has shown that the preparation methodology could affect the 

catalysts textural properties. In a first phase of this research work, the 

best value phi to prepare the catalysts has been identified. The 

increase of phi ratio gets catalysts with a very low surface area due to 

the sintering and collapsing of the catalyst structure by the effect of 

the high temperature reached during the combustion synthesis 

reactions. BET area varies inversely with the fuel/oxidizer ratio 

increasing as phi decreases.  

Highest BET area is obtained in the supported catalyst prepared by 

impregnation in a high area alumina as opposed to one prepared 

including the alumina precursor in the CS (CuZn/Al).  

The ex-situ XRD examination in air shows the presence of several oxide 

phases including copper chromite, CuO, ZnO and Cr2O3 depending on 

the fuel/oxidizer and support used. As the XRD patterns have shown, 

the increase of fuel ratio can affect significantly the final crystalline 

structure of the catalysts. In more detail, the catalyst CuCr-3 shows 

well defined and closed diffraction peaks indicative of higher crystallite 

size. This feature is a direct effect of the high temperature reached 

during the combustion synthesis cause of eventually sintering and 

growing by aggregation of the crystallites.  

Another important structural aspect that emerges by the XPS analysis 

is the presence of copper chromite at lowest phi ratio due to the 

identification of Cu
2+

/Cu
+
. Finally, the prepared catalysts show a very 

high porosity that makes these catalysts particularly active in the 

reaction in exam. All the consideration made on fresh catalysts cannot 

give clear info about the really behavior of the catalysts during the 

reaction. In matter of fact, the catalysts, during the reaction, are in 
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pre-reduced form and, thus, the active phase could be very different 

by the once identified on fresh catalysts. The use of in-situ 

investigation in conjunction with the results of activities and 

selectivities can help to the well interpretation of the obtained results. 

The ethanol decomposition was studied also on copper metallic phase, 

to understand the contributing of this metal in the ethanol 

decomposition reaction. In Figure 15 the profile of activity and 

selectivity has been reported.  
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Figure 15: activity and selectivity respectively to hydrogen and 

acetaldehyde for metallic copper in ethanol decomposition 

reactions. 

At low temperature (T<150°C) the copper activity is in truth poor. Only 

at a temperature higher than 250°C a modest activity, 40%, is 

detected. The scarce activity of the copper is due to the high 

endothermicity of ethanol decomposition reaction. At low 

temperature, less than 250°C, the acetaldehyde selectivity is very high 

of about 90%. This feature reflects the dehydrogenating character of 
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the copper. Another aspect should be considered, on the basis of the 

thermodynamic study realized on the dehydrogenation reaction (see 

chapter3-section B), the fact that, despite of low temperature the 

acetaldehyde is produced with high selectivity. This contradiction 

could be justified by the infinite residence time assumed in Gibbs free 

energy minimization. As matter of fact, all the runs reported in this 

chapter were performed at a very low ethanol residence time of about 

0.18 ghmol
-1

. By comparing the results obtained respectively with 

commercial and prepared by combustion catalysts, about the activity 

and selectivity  performances, to the one obtained with pure metallic 

copper, it would be demonstrate its the contribute in the final results.  

As matter of fact, all the catalysts are active for ethanol decomposition 

at T>250°C, except CuCr-3.0 the less active. Mainly the activity of all 

the examined system is due to the contributing of metallic copper on 

the catalysts surface. The catalysts selectivity, in turn, varies with the 

fuel to oxidizer ratio and the presence of Cr or Zn. The use of two 

different promoters could give different performances in terms of 

hydrogen and acetaldehyde selectivity. As shown by the obtained 

results the unsupported CuCr-0.8 and the supported version CuCr/Al 

are the most active and selective catalysts. The performances of these 

catalysts are comparable with the corresponding commercial ones, 

respectively, T-4466 and Cu-1234.  

Surely, a better way to understand the behavior of the catalysts during 

the reaction is the use of in-situ characterization. In-situ XANES, 

contrary to ex-situ investigations, indicates that there is a significant 

difference in oxidation state between the fresh samples and those 

reduced before, during, and after reaction. Moreover, the CuCr-0.8 

catalyst shows the presence of a mixed Cu
o
/Cu

+1
 mixture, whereas the 

other catalysts show mainly the presence of Cu
o

.  
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In addition, the in-situ FTIR could give a suggestion about such a 

possible pathway of reaction. Several adsorbed species have been 

detected such as OH
-
, COO

-
, CO and CO2 as well as -CH3 and C2H2. The 

results have been studied in deep by examining the behavior of these 

adsorbed species on the catalysts surface. In particular, by increasing 

the reaction temperature, the ethanol adsorption peaks disappear in 

favor of the acetaldehyde and esters adsorption. While, all the above 

products are detected in the gas phase and as adsorbed species by 

FTIR, the reaction pathways involves the formation of partially 

dehydrogenated intermediates and the breaking of different bonds 

such as C-C, COO, C-OH and C-H bonds requiring different type of sites. 

After this overview about the main results obtained, a more detailed 

examination on the overall results has been made. 

By examining each system, one clear result is the activity-selectivity of 

the CuCr-3.0 which appears correlated with the larger crystallite sizes 

in this catalyst as detected by XRD, SEM, and its low BET area. The 

presence of Cr2O3 in this catalyst, which is difficult to reduce, is also 

consistent with studied showing high decarbonylation activity [16-18]. 

It follows that the excess fuel used in the preparation of CuCr-3.0 led 

to a temperature increase during combustion synthesis that resulted 

in larger crystallites with fewer selective active sites for ethanol 

adsorption-formation of ethoxy and acetaldehyde intermediates 

followed by dehydrogenation. On the opposite side of the activity-

selectivity results are those of CuCr-0.5 catalyst which although active, 

has low hydrogen selectivity but instead high acetaldehyde selectivity 

and high surface area. In this case, in-situ XANES shows that a reduced 

Cu phase is present during reaction, which is consistent with the well-

known selectivity of Cu towards acetaldehyde formation [3,19]. 

Unfortunately, due to its dark color the FTIR results on this sample are 

too weak to show a good correlation with the adsorbed acetyl species. 
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CuCr-0.8 has intermediate properties but show higher activity towards 

hydrogen production and exhibits a distinct mixture of Cu
o
 and Cu

+1
 

oxidation states during reaction. The CuCr/Al catalyst exhibits similar 

XANES spectra than the CuCr-0.5 catalyst, whereas one would have 

expected more similarities with CuCr-0.8 due to its similar synthesis 

conditions activity-selectivity behavior. The nature of photoelectron 

emission detected in the XANES spectra is different in unsupported 

and supported samples because since X-rays are used in this method, 

the unsupported material reflects more bulk properties whereas the 

supported one are more surface because of its higher dispersion on 

the alumina support. Due to the noisy signal of the results obtained in 

the bending magnet beam line EXAFS fits were not reliable to estimate 

coordination numbers. CuCr/Al, while exhibiting similar oxidation state 

than the bulk of CuCr-0.5 it should have exhibited some Cu
+1

 sites 

similar than CuCr-0.8 based on the similar activity selectivity behavior. 

It follows that such sites are probably located on the surface of the 

dispersed phase and are not detected by the XANES results. As 

demonstrated in literature works
18,19

 [18-19] the ethanol is mainly 

adsorbed on Cu
0
 phase and then easily dehydrogenated to acetyl 

species derived by adsorbed acetaldehyde. This aspect, demonstrated 

also by our results obtained by studying the metallic copper behavior, 

emerges by Figure 15. 

The metallic copper favors the hydrogen selectivity (30%) at a 

temperature of about 200°C. The main co-product of reaction, in all 

the runs performed, is acetaldehyde that in turn could decomposes at 

high temperature to give hydrogen and carbon monoxide. Relatively 

scarce amount of methane, carbon dioxide have also been observed. 

To well understanding the products formation, the stoichiometric 

reactions involved in ethanol decomposition and the corresponding 

heats of reaction are as follows: 
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����������� → ��������� + ��							∆� = +68.1
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																								 �1� 

����������� → ������� + ���															∆� = +45	����/���														�2� 

����������� → 1/2��� +
3

2���

							∆� = −74	����/���																				�3� 

����������� → �� + ��� + ��														∆� = +49	����/���												�4� 

In addition, ethanol and acetaldehyde can undergo to further 

oxidation and decomposition by gas phase or adsorbed oxygen to yield 

CO2 and water. The methane selectivity at temperature higher than 

about 300°C is about 27-30% and the other main product of reaction is 

CO (23-26%), according to the reaction (4). This behavior is due to the 

acetaldehyde decomposition affected by the high temperature and in 

agreement with the work of Luengo et al. [20], in which has been 

described that both Cu and Cr are responsible for the subsequent 

alcohol decomposition into CO and H2.  

Reactions leading to carbon formation also occur, especially at high 

temperature. While all the above products are seeing in the gas phase 

and some as adsorbed species by FTIR, the reaction pathways involves 

the formation of partially dehydrogenated intermediates and the 

breaking of different bonds such as C-C, COO, C-OH and C-H bonds 

requiring different type of sites. In addition there are multiple phases 

in these catalysts involving several oxidation states so more than one 

site could be involved. This is a complex reaction network, involving 

multiple sites that would require detailed kinetic evaluation to 

correlate quantitatively active sites and material properties with the 

activity-selectivity trends. In addition, in spite of the various 

characterization methods utilized, each requires different conditions, 

like the ex-situ XRD vs. the more complicated in-situ experiments. Each 

method probe different properties and material volumes giving results 

that appear inconsistent, so only qualitative conclusions can be 
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reached. The activity-selectivity of the CuCr-3.0 appears to correlate 

well with the larger crystallite sizes in this catalyst as detected by XRD, 

SEM, and its low BET area. The presence of Cr2O3 in this catalyst is also 

consistent with studied showing high decarbonylation activity [16-18]. 

It follows that the excess fuel used in the preparation of CuCr-3.0 led 

to temperature increases during combustion synthesis that resulted in 

larger crystallites with fewer selective active sites for ethanol 

adsorption-formation of ethoxy and acetaldehyde intermediates 

followed by dehydrogenation.  

On the opposite side of the activity-selectivity results are those of 

CuCr-0.5 catalyst which although active, has low hydrogen selectivity 

but instead high acetaldehyde selectivity and the highest surface area 

among the unsupported catalysts. In this case, in-situ XANES shows 

that a reduced Cu phase is present during reaction, which is consistent 

with the well-known selectivity of Cu towards acetaldehyde formation 

[19]. Unfortunately, due to its dark color the FTIR results on this 

sample are too weak to show a good correlation with the adsorbed 

acetyl species. CuCr-0.8 has intermediate properties but show higher 

activity towards hydrogen production and exhibits a distinct mixture of 

Cu
o
 and Cu

+1
 oxidation states during reaction. Previous studies in our 

group show that the more selective catalysts for hydrogen production 

show a mixture of oxidation states. The CuCr/Al catalyst exhibits 

similar XANES spectra than the CuCr-0.5 catalyst, whereas one would 

have expected more similarities with CuCr-0.8 due to its similar 

synthesis conditions activity-selectivity behavior. The excitation 

volume of x-ray absorption detected in the XANES spectra is different 

in unsupported and supported samples because X-rays absorption in 

the unsupported material reflects more bulk properties whereas in the 

supported one it reflects more surface properties because of its higher 

dispersion on the alumina support. Due to the noisier signal of the 
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results obtained in the bending magnet beam line, EXAFS fits were not 

reliable to estimate coordination numbers. CuCr/Al, while exhibiting 

similar oxidation state than the bulk of CuCr-0.5 should have exhibited 

some Cu
+1

 sites similar than CuCr-0.8 based on the similar activity 

selectivity behavior. It follows that such sites are probably located on 

the surface of the dispersed phase and are not detected by the XANES 

results. As reported using in-situ FTIR studies Zhang at al [6] shows 

that ethanol is mainly adsorbed on reduced Cu
0
 phase and then easily 

dehydrogenated to acetyl species derived from adsorbed 

acetaldehyde. Colley et al [19] used TPR-TPD to study a copper 

chromite catalysts previously reduced in hydrogen flow. After that, a 

12% C2H5OH/He stream was fed to the reactor. The cracking patterns 

of the reactant ethanol (C2H5OH) and product ethyl ethanoate 

(CH3CO2C2H5) together with those of possible intermediates e.g., 

(CH3CHO, (CH3COC2H5 and crotonaldehyde) were all determined on 

the mass spectrometry, by which studies details on the elementary 

steps of reaction on copper/chromia catalysts was deduced. The 

existence of CuCr2O4 phase might contribute to the dispersion and 

stabilization of Cu
0
 phase in Cu-Cr and suppress or limits the catalyst 

deactivation. Thus the Cu-CuCr2O4 are both active phase for the first 

step of ethanol decomposition to acetaldehyde and esters (ethyl 

acetate) compounds. The formation of the above mentioned 

compound has been confirmed by the in-situ DRIFT spectra. The 

chromia sites probably break the C-H and C-C bonds of adsorbed 

ethoxy that further decomposes to form hydrogen, methane and CO 

and consequently the acetaldehyde selectivity decreases by increasing 

the reaction temperature as confirmed for the copper-chromite 

catalysts (Figure 7). These results are in perfect agreement with those 

reported in the literature [21-23], in which is demonstrated that is 

generally accepted that Ni promotes C-C bond scission whereas 
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additives like Cr, Cu are the active agents for subsequent oxidation to 

produce CO and H2. Freni et al. [24] found that the copper chromite 

exhibited high activity and selectivity to H2 due to the lower tendency 

of Cu to re-oxidize during the reaction. These aspects have been 

demonstrated by our investigations and the low tendency of metallic 

copper to re-oxidize during the reaction and after exposure to the air 

(150 min) have been demonstrate by XANES spectra (Figure 5), in 

which the oxidation state of the catalyst during the reaction and after 

next exposure to the air have been shown. The copper oxidation state 

of all the fresh catalysts is +2 and +1. The XANES spectra of copper 

chromite catalysts have shown that after reduction and ethanol 

reforming the oxidation state of the copper is Cu
0
 or Cu

+1
. These active 

phase have shown a high selectivity to acetaldehyde and hydrogen, as 

demonstrated in a previously study [3]. On the other hand, the nature 

of the support affects the performance of the catalyst, especially coke 

formation. Acidic supports, such as γ - alumina favors ethanol 

dehydration resulting in the formation of ethylene, which is a coke 

precursor. Dehydration can be reduced by using basic supports such as 

ZnO [25,26]. The DRIFT spectra suggest a possible mechanism of 

involving ethanol adsorption, decomposition to ethoxy intermediate 

that in a second step of reaction could transform to aldehydes and 

acetate, by reaction with adsorbed acetaldehyde species at higher 

temperature. These species at temperature higher than 300°C 

decompose to give hydrogen and a series of undesirable reaction 

products. Chromia has a role of structural promoter its presence 

prevents the copper mobility on the catalysts surface [22,23]. 

Moreover, the use of chromia as promoter has the effect to decrease 

deactivation due to C formation, commonly obtained in CuNiFe 

catalysts in which the selectivity decreased drastically with TOS 

although the conversion stays nearly constant. The reduction of coke 
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formation is due to the basicity of chromium oxide that could create a 

good environment to reduce the coke deposition principally favored 

by acidic Bronsted sites [6]. In summary, the picture that emerges 

from this study is the formation of reduced Cu probably on the surface 

of CuCr2O4. Ethanol interacts preferentially with Cu and form ethoxy 

species that decompose sequentially to the various products 

observed. The presence of chromia provides structural stability to Cu 

sites and in addition reduces coke formation. 
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           Conclusions 

 

 

As shown by the literature investigation the commonly catalytic 

phases employed for the hydrogen production by steam reforming, 

steam oxidative or partial oxidative reforming are copper, nickel, 

rutenium and platinum. In this research, we focused our attention on 

the performances of copper based catalysts promoted with chromia 

and zinc oxide prepared by combustion synthesis. Recently, 

combustion synthesis techniques have gained attention for material 

synthesis on account of being an economical, fast, and energy efficient 

process. Typically, CS involves a self-sustained reaction in a solution of 

metal nitrates and an oxygen containing fuel. The reaction between 

the fuel, oxygen, and specie formed during decomposition of nitrates 

provides conditions for rapid high-temperature propagating reacting 

front and the final combustion products are a metal oxide. 

We use combustion synthesis techniques to prepare catalysts for 

hydrogen production from ethanol reforming reactions. SCS is energy 

efficient and less time consuming process in comparison to other 

techniques such as co-precipitation, which requires the separation of 

products after precipitation. Furthermore, in co-precipitation, these 

products are calcined separately, which leads to sintering and a 

decrease in the surface area. The potential advantage of CS is that it 

can yield oxides with larger surface areas than co-precipitated-calcined 

catalysts. Apart from its simplicity and rapidness, SCS has other 

advantages. The combustion is exothermic, which in some cases can 

result in local temperatures as high as 1000 ◦C that can provide 

enough energy to evaporate volatile impurities as well as for 
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calcination of the product. Thus a pure crystalline product is obtained 

in a single step avoiding any other thermal treatment. Also, all other 

reaction products, except the metal oxide, are gas phase products 

which form channels while escaping, contributing towards the porosity 

of the solid products and potentially to a higher surface area. In 

particular active and selective copper-zinc and copper-chromite based 

catalysts for ethanol decomposition and oxidative reforming were 

prepared by using combustion synthesis. The catalysts preparation, 

the use of Zinc or Chromia as promoters, and the use supports have a 

significant effect on the activity and selectivity of the catalysts. The 

investigation on the use of an optimum ratio the fuel/oxidizer suggests 

the possibility, as demonstrated by ex-situ characterization, to have 

catalysts with a particular morphology, oxidation state and specific 

surface area. All catalysts are active for ethanol decomposition at 

T>250°C, except for the catalyst prepared by using an high ratio 

glycine/fuel. On the other hand the catalysts selectivity varies with the 

fuel to oxidizer and the presence Zn. The unsupported CuCr-0.8 and 

the supported version CuCr/Al are the most active and selective 

catalysts. The supported CuCr/Al catalyst, while it deactivates with TOS 

it maintains its selectivity in a 25 h TOS run. The activity can be 

recovered by re-reduction. The ex-situ characterization has suggested 

differences in oxidation state between the fresh samples and those 

reduced before, during, and after reaction. The CuCr-0.8 catalyst 

shows the presence of a mixed C
o
/Cu

+1
 mixture, whereas the other 

catalysts show mainly the presence of Cu
o
. The DRIFT investigation 

suggested the formation of several species adsorbed on the catalyst 

surface that at higher temperature could decompose by forming coke 

that could deactivate the catalysts surface. Chromia improves the 

catalyst stability by limiting coke deposition on the catalysts surface. In 

addition the use of alumina as support is useful to disperse the active 

phase. The partial oxidative reforming of ethanol, i.e in the presence 



 

Section C 

Conclusions 

 

 

  388 

 

of oxygen at lower than the stoichiometric values, could be an 

alternative to the reforming reaction.  
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By concluding, as well understood by our research, the future goal is 

to convert biomass into products that can compete with 

corresponding products derived from fossil resources with a focus on 

sustainability, resource availability and supply reliability. At this 

purpose, the use of bio-ethanol produced by second generation raw 

materials represents actually the great challenge of the research 

world. Since, by future forecasts, the quantity of ethanol will be in the 

last few years increasing, its use as ‘’future building blocks’’ will be 

useful to produce chemicals.  

At this purpose, the research work, described in this thesis, has shown 

the wide range of application of bioethanol and in particular its use for 

the production of high commodities chemicals, such as acetaldehyde 

and ethyl acetate, and moreover of pure hydrogen. As well known, 

about 90 % of chemicals are nowadays produced via a catalytic 

process and in this thesis, several heterogeneous phases have been 

studied. In particular the performances of two different phases, 

vanadia and of copper based catalysts, have been investigated in the 

oxidative dehydrogenation reaction (ODH), dehydrogenation at low 

and high pressure. Finally the copper chromite performances have 

been evaluated also in the ethanol partial oxidative reforming (OPX) to 

produce hydrogen.  

The individuation and use of efficient heterogeneous catalytic systems 

represent a great challenge and their design is crucial to promote 

innovations in the chemical industry.  
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The heterogeneous systems are characterized by a very complex 

architecture, referred to chemicals, structural and textural levels, 

which all have a deep impact on the final catalytic performances. This 

research has been provide to the understanding of the relationships 

between the textural and surface chemical properties of vanadia and 

copper based catalysts and their catalytic performances, by 

investigating mainly the effect of preparation method, of the reaction 

temperature, pressure, ethanol residence time, oxygen concentration 

and  hydrogen partial pressure on the catalytic behaviour. 

The first part of this research works was entirely dedicated to the 

examinations of the catalytic performances of V2O5/TiO2-SiO2 prepared 

by grafting in the ethanol ODH. Moreover the performances of 

Cu/ZnO, Cu/ZrO2 and of commercial Cu-ZnO-Al2O3 (K-310) have been 

studied at low pressure ethanol dehydrogenation reaction. In each 

mentioned case the interest is focused on the production of 

acetaldehyde. Indeed, the interest toward the acetaldehyde is also 

due to its use for the production of ethyl acetate, ethylene, and acetic 

acid. The experimental results have shown that the redox mixed metal 

oxide V2O5/TiO2-SiO2 are very active and selective catalysts in the 

oxidative dehydrogenation of the ethanol to acetaldehyde. In 

particular, by operating at relatively low residence time and at a 

temperature of 140-180°C, it is possible obtain ethanol conversion of 

about 80% and acetaldehyde selectivity of 90-95%. In particular, for 

the given support (TiO2/SiO2), the catalysts prepared by grafting 

resulted more active and selective and this behaviour would be find 

enlightenment in the higher surface molecular dispersion of vanadium 

sites that is possible to achieve by using the grafting preparation 

method. A high surface dispersion of supported vanadium sites is 

fundamental to improve both the activity and the selectivity to the 

desired products. It was found that the coating of the silica carrier with 

a monolayer of TiO2 increases the vanadia active phase dispersion and 

consequently the selectivity towards the desired reaction product. As 

demonstrated in previous works, conducted in this research group, by 
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supporting directly the vanadia on the silica, due to the effects of the 

strong acidic sites of the support, the vanadia can agglomerate on the 

support surface and for this particular reason the Titania was used. On 

the other hand the use of silica as support is fundamental to preserve 

the mechanical and thermal strength of the catalysts. The results 

obtained into ethanol dehydrogenation by using copper based 

catalysts are very promising but, because of the high endothermicity 

of the reaction, a higher range of temperature should be used to 

sustain the reaction. An interesting result is associated to the 

production of small amount of ethyl acetate by using of copper based 

catalysts in low pressure dehydrogenation reaction in one step 

reaction. At this purpose the research, in a second phase, was 

dedicated to the development of a new process for the ethyl acetate 

and pure hydrogen production directly by ethanol in only on step 

dehydrogenation reaction by using copper commercial catalysts. The 

ethanol dehydrogenation is in general a low selectivity reaction and 

the C3-C4 products derived by the acetaldehyde condensation can 

shatter the industrial target of purity required. The Davy solved this 

problem by using a further reactor of hydrogenation of C3-C4 

aldehydes and ketones to the corresponding alcohols that can easily 

separate, in the purification section, from ethyl acetate. The section B 

represents the core of this research work in which has been illustrated 

very interesting and innovative results. All the paths followed to 

realize an innovative industrial process from the laboratory, to the 

kinetic study toward the final industrial plant design proposal have 

been illustrated in detail in each chapter of this section. Interesting 

results of selectivity and activity have been obtained in particular 

operative conditions by using a commercial copper chromite catalyst 

(Cu-1234) able to convert ethanol 65% to ethyl acetate, with a 

selectivity of 97.8%. According to the obtainment of high selectivity 

results during the dehydrogenation step, the use of a further 

hydrogenating reactor was ruled out. Thus, the key factor of our 

invention is the development of an innovative simplified process to 
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produce ethyl acetate by ethanol in one step reaction. The main 

peculiarities of this process is related to the use of a copper/copper 

chromite catalyst, containing an opportune support, like alumina, and 

different structural promoters such as barium oxide and chromium 

oxide, having as main scope the prevention of the sintering of the 

metals and the subsequent catalyst deactivation. Moreover these 

oxide are able to create an acid-base environment favorable to the 

desired reaction. We have observed, in agreement with the current 

literature, that the operative conditions are very important for 

obtaining high activities and selectivities. In particular, at low pressure 

(1-5 bars) acetaldehyde is the main reaction product but moderately 

increasing the pressure up to 20-30 bars the selectivity is shifted 

toward the formation of ethyl acetate as main product. Afterword, by 

operating in the conditions unfavorable to ethyl acetate formation, 

the selectivity could be lowered by the presence of a competitive 

reaction pathway originated by the acetaldehyde self-condensation. At 

last, it is important to point out that activity and selectivity are also 

promoted by the hydrogen partial pressure. Hydrogen keep the 

catalyst in the reduced form and limit the acetaldehyde formation 

maintaining low its concentration so disfavoring the auto-

condensation. This last observation opens the possibility in an 

industrial plant to use a stream of recycled hydrogen as carrier gas. 

Finally, in this process pure hydrogen (exempt of CO) is produced in 

mild conditions as by products. With the aim to sizing the reactor 

modeling, several kinetic models have been study and as 

demonstrated the Langmuir-Hinshelwood-Hougen-Watson (LHHW) is 

the ones to well fitting the experimental kinetic runs. It has been 

shown that the runs with the lowest amount of catalyst have been 

performed in chemical regime and have been used to identify the best 

kinetic model, while, the runs performed with 50 g of catalyst give 

data that are near the equilibrium conditions and allow to verify both 

the model goodness and the validity of the equilibrium constants. The 

obtained agreements are satisfactory, considering the approximations 
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introduced as the assumption of isothermal conditions and the use of 

the equilibrium constants directly derived from theoretical 

calculations. Nevertheless, in a first phase of this work a simplified 

power law was used at first to realize the sizing of the plant 

equipment. As already mentioned, the proposed new ethyl acetate 

process produces a high quality ethyl acetate product without, in spite 

of the already commercialized Davy proves, the use of hydrogenation 

unit, necessary to convert MEK or C3-C4 in ethanol. Thus, the proposed 

process is more simple and able to produce high quality ethyl acetate 

in only one step of reaction. Furthermore, the use of pressure changes 

to break the ethyl acetate/ ethanol / water azeotrope leads to an 

inherently cleaner product than processes such as esterification or 

direct addition that operate separation systems in water rich regions 

of the phase diagram. The scale up of this process, on the basis of the 

obtained results, should be improved and refined, possibly by using 

kinetic laws able to describe as well the experimental data and 

devoting a greater attention to the purification sections that should be 

analyzed and evaluated in all their peculiarities in more detail. The 

development and use, of an adequate kinetic expression, is necessary, 

fundamental to develop tubular, and multiple adiabatic bed reactor 

models. On the basis of the obtained results, in terms of hydrogen 

productivity, in the high pressure ethanol dehydrogenation, the last 

section of this research work was addressed to the investigation of the 

performances of copper chromite and copper-zinc based catalysts, 

prepared by using the innovative combustion synthesis, in the partial 

oxidative refoming (OPX) reaction to produce hydrogen. The 

combustion synthesis techniques have gained attention for material 

synthesis on account of being an economical, fast, and energy efficient 

process. Typically, CS involves a self-sustained reaction in a solution of 

metal nitrates and an oxygen containing fuel. The reaction between 

the fuel, oxygen, and specie formed during decomposition of nitrates 

provides conditions for rapid high-temperature propagating reacting 

front and the final combustion products are a metal oxide. The CS is 
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energy efficient and less time consuming process in comparison to 

other techniques such as co-precipitation, which requires the 

separation of products after precipitation. Furthermore, in co-

precipitation, these products are calcined separately, which leads to 

sintering and a decrease in the surface area. The potential advantage 

of CS is that it can yield oxides with larger surface areas than co-

precipitated-calcined catalysts. Apart from its simplicity and rapidness, 

SCS has other advantages. The combustion is exothermic, which in 

some cases can result in local temperatures as high as 1000 ◦C that can 

provide enough energy to evaporate volatile impurities as well as for 

calcination of the product. Thus a pure crystalline product is obtained 

in a single step avoiding any other thermal treatment. Also, all other 

reaction products, except the metal oxide, are gas phase products 

which form channels while escaping, contributing towards the porosity 

of the solid products and potentially to a higher surface area. In 

particular active and selective copper-zinc and copper-chromite based 

catalysts for ethanol decomposition and oxidative reforming were 

prepared by using combustion synthesis. The catalysts preparation, 

the use of Zinc or Chromia as promoters, and the use supports have a 

significant effect on the activity and selectivity of the catalysts. The 

investigation on the use of an optimum ratio the fuel/oxidizer suggests 

the possibility, as demonstrated by ex-situ characterization, to have 

catalysts with a particular morphology, oxidation state and specific 

surface area. All catalysts are active for ethanol decomposition at 

T>250°C, except for the catalyst prepared by using an high ratio 

glycine/fuel. On the other hand the catalysts selectivity varies with the 

fuel to oxidizer and the presence Zn. The unsupported CuCr-0.8 and 

the supported version CuCr/Al are the most active and selective 

catalysts. The supported CuCr/Al catalyst, while it deactivates with TOS 

it maintains its selectivity in a 25 h TOS run. The activity can be 

recovered by re-reduction. The ex-situ characterization has suggested 

differences in oxidation state between the fresh samples and those 

reduced before, during, and after reaction. The CuCr-0.8 catalyst 
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shows the presence of a mixed C
o
/Cu

+1
 mixture, whereas the other 

catalysts show mainly the presence of Cu
o
. The DRIFT investigation 

suggested the formation of several species adsorbed on the catalyst 

surface that at higher temperature could decompose by forming coke 

that could deactivate the catalysts surface. Chromia improves the 

catalyst stability by limiting coke deposition on the catalysts surface. In 

addition the use of alumina as support is useful to disperse the active 

phase. The partial oxidative reforming of ethanol, i.e in the presence 

of oxygen at lower than the stoichiometric values, could be an 

alternative to the reforming reaction.  

By concluding this PhD thesis highlights the main results obtained are 

related to development of a new process for the ethyl acetate and 

pure hydrogen production by using of copper/copper chromite 

catalysts in only one step ethanol dehydrogenation reaction. The 

commercial copper catalyst Cu-1234 has shown surprising 

performances in terms of ethyl acetate selectivity and resistance to 

sintering, that represent the main drawback of the copper based 

catalysts. The use of chromia improves the structural properties of the 

catalyst and limits the copper mobility at temperature of almost 

300°C. The very promising results should be induced to an 

improvement of the process plant design, proposed in a very 

simplified form in the last part of this thesis. Moreover, a preliminary 

study of the performances of copper-chromite catalysts in the OPX of 

ethanol to produce hydrogen was realized. Also in this case very 

interesting results have been obtained and the best operative 

conditions to obtain the higher yield to hydrogen have been 

distinguished. The use of copper chromite is in this case fundamental 

to limits the catalyst fouling due to the coke deposition. 
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Catalysts  

Characterization  

Techniques 

 

 

A.1 Spectroscopic UV-Vis  

A.1.1 Determination of titanium content 

The quantity of Titania graphted on silica surface could be evaluated by 

using the colorimetric method UV-VIS proposed in literature[1,2]. The 

method consists in the formation of a yellow complex between the Ti 

and H2O2 in a solution of diluted  sulphuric acid (0.75-1.75M). In a 

preliminary phase by using standard of titanium with a concentration 

of the element included in the range 10-40mg/mLH2O, a calibration 

curve was built. By the curve it is possible calculate the concentration 

of titanium known the absorbance at 397 nm. The quantity of 

supported TiO2 could be evaluated by both the filtration solution or 

directly on the solid sample, by using a mineralization procedure. In 

the first case a ratio 1:5 between the filtration solution and sulphuric 

acid 1.69M could be used. In the second case, the solid (0.1 g) should 

be firstly mineralized with 9.41 mL of H2SO4  (96 wt%), under stirring, 

at 180°C for 4 h. After the filtration, the solution was diluted with H2O 

to 100 mL to obtain a solution with a concentration 1.69 M of H2SO4. 

                                                           
1
 F.Snell and L.S.Ettre Enciclopedia of industrial chemical analysis vol 19 (1974) 107 

interscience New York. 
2
 I.M. Kolthoff and P.J.Elving: ‘’ Treatise on Analytical Chemistry’’, II, vol8 (1963). 
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In each case, by adding some drops of H2O2, a complex was formed 

and individuated at  ≈ 397 nm. 

 

A.1.2 Determination of vanadium content 

Also in this case the method employed to evaluate the quantity of 

vanadium supported on TiO2/SiO2 was evaluate by applying a 

colorimetric methodology [1,2]. In this case a complex red-brown 

between the vanadium and the hydrogen peroxide in a perchloric acid 

solution was formed and individuated at wavelength of  λmax=460nm. 

Also in this case the evaluation is quantitative and obtained by built a 

calibration curve. Several solution was prepared by diluition of a 

standard solution of 1020 µg/mL (Aldrich) with 10 mL of HClO4 70% wt 

to 50 cm3 of water. The complex was formed by using a solution at 

35%wt of hydrogen peroxide.  

 

A.2 BET and pore size distribution.  

The total area of the catalysts was evaluated by using two different 

apparatus Sorptomatic 1990 and Quantachrome Monosorb. The total 

area of the catalysts was measured on a direct reading dynamic flow 

surface area analyzer (Quantachrome Monosorb) using a single point 

N2 isotherm, operating at a nitrogen partial pressure of 0.3 in He. 

Approximately 50 mg of sample is placed in a U-tube and out-gassed in 

the built-in degassing instrument port at 200ºC for 1 h prior the 

measurement. This pretreatment assures that weakly adsorbed water 

and other adsorbates are fully eliminated from the sample surface. 

Then the dried sample is moved to the adsorption port where, after 

flowing a mixture of 30% N2/He, the sample in the U-tube is 

immerged in a liquid nitrogen bath to allow nitrogen condensation on 

the sample surface. After reaching equilibrium, the liquid nitrogen 

dewar is removed and the sample is exposed to room temperature 

causing the physisorbed nitrogen to be desorbed from the sample 
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surface. The total volume of nitrogen released from the sample is 

detected by a thermal conductivity detector and a built-in integrator 

automatically computes the total specific surface area, Sg. Such value 

is calculated as Sg=vmNAN2/V, where vm is the monolayer volume of 

the adsorbed gas as calculated from the BET isotherm, N is the 

Avogadro’s number, AN2 the adsorption cross section of a N2 molecule, 

and V is the molar volume of nitrogen. The resulting specific surface 

area, Sg, is divided by the amount of mass used in the analysis and the 

BET area is obtained. The analysis was repeated for each sample 

several times to ensure reproducibility. In the case of Sorptomatic the 

solid were degased overnight at 180°C under vacuum. By using this 

instrument the pore size distribution was also evaluated. 

 

A.3 Copper dispersion TPO-N2O 

The determination of the copper surface area and copper dispersion 

has been performed, with the N2O method. A known amount of the 

catalyst, about 100 mg, was first of all reduced with a flow stream of 

25 cm3/min of a mixture of 5% v/v H2 in N2  at 300°C for 2 hours. 

Afterwards, a flow stream (45 cm3/min) of pure N2 was sent for about 

20 minutes to remove residual hydrogen and water and then the 

catalyst was cooled to 60°C maintaining constant this temperature 

during the oxidation experiment. The N2O experiments were 

conducted using a pulse method. Precisely several pulses of 1 cm3 of 

5% N2O in N2 were injected into a carrier stream of N2 flowing at 50 

cm3/min until no further N2O was reacted. Uptake of N2O was 

monitored with a gold plated tungsten filament thermal conductivity 

detector (TCD) with a current of 130 mA. Dispersion and Cu specific 

surface area were calculated assuming a Cu surface atomic density of 

1.47*1019 atoms/m2. Mean and specific Cu surface areas were 

measured by a well-known chemisorption method where N2O reacts 

with surface Cu0 with the following stoichiometry:  
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2Cu + N2O → Cu2O+ N2  

After that, the sample was subjected to hydrogen flow to reduce the 

surface. Precisely, the experiments have been conducted by using a 

constant flow of 5% of H2 in Argon. About 6-8 areas, corresponding to 

the oxidation of the reduced surface, have been collected until the 

area of the chromatograms were constant and a maximum area has 

been achieved. The loop volume in which the N2O is collected, first to 

be sent on the sample by using an automatically six way valve, is of 

about 1cc. Once known the areas related to the compleately oxidation 

of copper is possible define the volume of hydrogen adsorbed by the 

following equation: 

������	��		
��
 = ∑(���� − ��)���� ∗ ����	��� ∗ %	
��	�� 

The dispersion of copper is expressed by the ratio between the mols of 

copper exposed divided by the mols of copper loaded. 

 ��	��
���
��� =  !"	#�$%&#'
 !"	(%�'#'  

By considering a temperature of 25°C  a pressure of hydrogen of 1 bar 

is possible to calculate the mols of copper exposed. 

���	�)��
�� = 2	���		
��
 = +,-
 ∗ �-
�'&./�
 ∗ 0 1 

For 100g of catalysts the mols of copped loaded are expressed by the 

equation x, function of the total mols of copper, obtained known the 

composition of the catalysts, of the molecular weigh of copper, of the 

grams of catalyst charged into the oxidation reactor (about 0.1g). 

���	������ = �!"0�2 ∗ ,34" ∗ /4�5100/	8�2  
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The copper specific surface areas were calculated assuming a Cu 

surface atomic density of 1.47*1019 atoms·m-2 as it follows: 

������	
��8���8	
����8�	����	 9�

/ : = 1

/4�5 ;
�2��
	��

��	�2���8	���
�2<= 
Where the atoms of Cu have been calculated by considering the 

number of Avogadro 6.023E23 and the mols of copper exposed. 

�2��
	�� = >�?�/���� ∗ ���
	��	�)��
�� 

 

A-4 Crystalline structure characterization. X-ray diffraction 

spectroscopy (XRD) 

 X-ray analysis of powders is a technique extensively used for 

characterization and identification of polycrystalline phases. Incident 

X-rays waves interact with atoms in crystalline structures causing 

destructive and constructive interference of the reflected beam, 

resulting in the appearance of diffraction lines. This phenomenon 

occurs because X-rays with short wavelengths in the keV range have 

wavelengths that are approximately of the same order of magnitude 

of atomic distances in crystalline solids. Since the arrangement of 

atoms varies for different crystal structures, the diffraction patterns 

are characteristic of the solid and widely used to identify bulk 

materials. If we assume that atoms are ordered in sets of symmetrical 

planes forming lattices, then, for a set of planes with an inter-plane 

distance “d”, the condition for a diffraction to occurs is 2dsinθ=nλ, 

which is known as Bragg’s law. In this equation, λ is the wavelength of 

the x-ray, θ the scattering angle and n is an integer representing the 14 

order of the diffraction peak. If the angle is varied, a set of sharp lines 

are observed for a single crystal. In samples in the form of powder, a 

small fraction of atoms in the sample will be oriented in such a way 
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that a certain crystal plane will be at the right angle with the incident 

beam for giving constructive and destructive interference. The 

diffraction angle that allows having maximum diffraction in a sample 

enables one to calculate the spacing between the lattice planes and 

allows phase identification. Furthermore if the crystallites in a sample 

have sizes below 50 Å, the diffraction lines broaden up due to the 

elimination of crystal planes causing destructive interference. The 

width of a diffraction peak can be used to estimate the average 

crystallite size, D, according the Debye-Scherrer equation: D= 

kλ/(βcosθ), where λ is the wavelength of the radiation (commonly 

λCu=1.54056 Å for a Cu-Kα radiation ), β is the full with at half 

maximum of the diffraction peak in radians, θ is the position of the 

maximum diffraction, and the constant k is the Scherrer constant 

(k=0.89-1.39). The x-ray diffractometer utilized in this work was a 

Scintag X-1 to produce Cu Kα radiation at a wavelength of 0.1540562 

nm. Approximately 100 mg of a finely crushed and sieved sample were 

homogenously dispersed onto a silica or glass holder. The diffracted x-

rays from the sample were detected by a Peltier cooled solid-state 

detector moving in a circular pattern (see Figure 2.1). 2θ scan angle 

was ranged from 20 degrees to 90 degrees with a step size of .05 

degrees. Depending on the analysis the scan rate was constant at 0.1 

degrees per second or 0.5 seconds per step. 

 

A.5 Reducibility, basic and acid sites quantification TPR/ TPD-

CO2/ TPD-NH3  

The TPR experiments were carried out using a quartz U-tube reactor 

with an internal diameter of 10 mm. The powdered catalyst was 

loaded on a sintered quartz wool disk placed inside the reactor. The 

catalyst formed a bed of less than 5 mm in thickness (0.1-0.2 g) on 

which a glass wool plug was added. The samples were initially 
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pretreated in N2 flow of 20 cm3/min, at a temperature of 100°C, for 

about 1 h, to remove any trace of moisture. The samples were then 

cooled at room temperature. Always under nitrogen stream the 

temperature was then gradually increased with a scanning rate of 

10°C/min until reaching 300°C.  After this pre-treatment the hydrogen 

TPR were performed using a flow stream of 6% of H2 in N2 (60 cc/min). 

The gas stream was split in two flows one leading to the reference arm 

of a thermal conductivity detector (TCD) and the other one passing 

through the reactor before going to the detector. The water produced 

during the TPR was trapped by a dry trap located between the 

detector and the reactor. After the reduction pre-treatment the 

catalysts were subjected to a Programmed Desorption of NH3 or to a 

Programmed Desorption of CO2 to evaluate respectively the overall 

surface acidity and basicity of the studied catalysts. The overall surface 

acidity of the prepared catalysts was determined by a Temperature-

Programmed Desorption of ammonia (NH3-TPD) in a fixed-bed 

continuous flow micro-reactor system. Before the NH3-TPD 

measurement, a sample of powdered catalyst (0.1-0.2g) was out-

gassed in a flow of pure helium (20 ml/min), at 300 °C for 30 minutes. 

Then, the sample was cooled at 40 °C and saturated with a stream of 

10% NH3 in He (20 ml/min) for about 30 min. Afterward, the catalyst 

was purged in a helium flow until a constant baseline was attained. 

The ammonia desorption was determined in the temperature range of 

40–500 °C with a linear heating rate of 10 °C min-1 in a flow of He (10 

ml/min).  Desorbed NH3 was detected by a thermal conductivity 

Detector (TCD). Then, the surface basicity of the prepared catalysts 

was determined by TPD of CO2 performed in the same fixed-bed 

micro-reactor used for ammonia TPD. The fresh catalysts were 

subjected to a pre-reduction, as previously described.  Before the CO2-

TPD measurement, a sample of powdered catalyst (0.1-0.2 mg) was 

out-gassed in a flow stream of pure helium (20 ml/min), at 300 °C for 
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30 min. Subsequently, the sample was cooled at 40 °C and saturated 

with a stream of CO2 (10 ml/min) for about 30 min. Then, the catalyst 

was purged with a helium flow until a constant baseline level was 

attained. The carbon dioxide desorption was evaluated in the 

temperature range of 100–500 °C with a linear heating rate of 10 °C 

min-1 in a flow stream of He (20 ml/min). Desorbed CO2 was detected 

by a thermal conductivity detector (TCD). 

 

A.6 Near surface structure analysis: X-ray photoelectron 

spectroscopy (XPS). 

X-ray photoelectron spectroscopy (XPS) is a technique also based on 

photoelectron emission. This effect consists on the excitation of 

electrons from a sample subjected to electromagnetic radiation. As 

stated by the Einstein photoelectron law, the energy of the incident 

radiation must surpass a minimum energy in order to delocalize and 

eject inner electrons from the sample with a kinetic energy Ek.  

 
The binding energy of the excited electron, Eb, corresponds to the 

minimum energy required to eject the electron from the sample. The 

product between the Planck’s constant (h) and the frequency of the 

incident photon (ν) is the energy of the x-ray striking the surface of the 

sample. Once the energy of the incident x-ray is bigger than the 

electron’s binding energy, a core or valence electron will be emitted 

from the sample with a kinetic energy Ek. The emitted electrons are 

focused by an array of magnetic lenses into a series of slits on 

hemispherical electrodes. The concentric electrodes are set at a 

differential voltage that directs electrons with different kinetic 

energies to follow specific radii before reaching the detector. In this 

way the electrons are energetically dispersed and an energy spectrum 

can be recorded. An XPS spectrum consists of a set of peaks with 
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different intensities at different energies. Binding energies are 

characteristic of the elements under study and therefore each element 

provides electrons with specific kinetic energies, which allows direct 

identification of the atomic composition of materials. The intensity of 

each peak is proportional to the concentration of the corresponding 

atom. Therefore, quantitative information of the surface 

concentration can be also obtained from the XPS signal. Consider for 

example a copper sample subjected to x-rays of 1486.6 eV, which is 

the energy of a typical spectrometer using a monochromated Al K-α 

radiation. The complete electronic distribution on atomic Cu is 1s2 

2s22p6 3s23p63d10 4s1 with a total of 29 electrons, but for simplicity 

Figure 2.5A shows only some of the quantized energy levels of Cu. 

Under such radiation electrons with binding energies lower that the 

incident beam are excited and removed from the corresponding 

orbital. Some of the removed electrons are backscattered into the 

unfilled orbitals while others are able to reach the Fermi level (Fermi 

energy is the energy of the highest occupied state at 0ºK).Since the 2s 

electrons have lower energy than the incident x-ray, electron from the 

2s orbital will be excited and removed from the 2s level. Alternatively, 

any other electron with a binding energy lower than 1486.6 eV will be 

excited as well. Since the incident energy is known, 1486.6 eV, the x-

axis scale can be easily converted to binding energies, Eb, by using that 

Eb=hν-Ek. The differences in intensity for electrons from different 

energy levels are due to unequal probabilities for photoejection.  The 

presence of gas in the analysis chamber can scatter the ejected 

electrons and hinder them from reaching the detector. Therefore, the 

quantification of the number of emitted electrons at each binding 

energy requires ultra-high vacuum conditions (UHV). Depending on 

the sample, the photo-emitted electrons reaching the vacuum are 

originated from a layer of approximately 10 nm of the sample. This is 

because the emitted photoelectrons have low kinetic energies (0 - 
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1500 eV) and the depth from which they can emerge is therefore very 

limited. For this reason, XPS is a surface-sensitive technique and the 

sample depth is in the range of few nanometers. X-ray photoelectron 

spectroscopy measurements were carried out in a Kratos XSAM-800 

spectrometer utilizing Al-Kα radiation source operating at 1486.6 eV 

and a 90-degree takeoff angle.. The binding energies (BE) were 

calibrated with the C 1s peak fixed at 285.0 eV as an internal reference 

standard. Fresh ground powder catalyst samples were adhered to 

brass mounts with double-sided carbon tape prior to loading into the 

analysis chamber. Samples were left to degas overnight while the 

vacuum system maintained a pressure less than 1*10-8 torr. Control 

and data collection was data was done using Vision2 software running 

on Sun workstations. Normally each element of interest was scanned 

10 times with a range of ~20 eV and an acquisition time of ~1 minute, 

elements with low concentrations were scanned more times. Raw data 

was processed with CasaXPS software package, with relative sensitivity 

factors obtained from the Kratos XSAM library. 

A.7 Surface topography characterization: Scanning Electron 

Microscopy (SEM) 

Scanning electron microscope (SEM) provides images of magnified 

three-dimensional objects with high depth of field quality. An SEM 

microscope consists of an electron gun (tungsten filament) able to 

generate an electron beam in the range of energy of 0.1-30 keV. The 

generated electrons are accelerated by magnetic lenses, which direct 

the electron beam into a specific path downward the evacuated 

column (see Figure 2.6). 25  

The vacuum inside the column, usually of about 10-6 torr, assures that 

the scattering of electrons by remaining gases inside the column is 

minimized. The magnetic lenses are able to focus the electron beam 

onto the specimen on a spot of less than 10 nm. A pair of scanning 
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coils causes the beam to deflect back and forth following a line 

pattern. One line is scanned after another until a rectangular region 

has been completely scanned. When the electron beam impacts the 

surface of the sample backscattered and secondary electrons escape 

from the specimen. Backscattered electrons are electrons from the 

beam able to escape the specimen because of elastic scattering. 

Secondary electrons are electrons from the specimen having enough 

kinetic energy, from the inelastic collision with electrons beam, to 

escape from the sample surface. These two types of electrons are 

collected by a positively charge detector. The detector consist of a 

scintillator that when struck with an energetic electron (~10 keV) 

photons are emitted. The emitted photons are directed to a multiplier 

and back converted into a current. This current differs depending of 

the energy of the electrons captured by the detector, which allows 

forming a contrast image map of the specimen surface. Prior the 

analysis the samples were finely grounded and mounted in a carbon 

tape on the specimen holder. Alternatively, to improve the particle 

dispersion on the holder, 2 mg of the grounded sample was diluted in 

distilled water. Then, a drop of this suspension was set on the clean 

holder surface and evaporated at room temperature. The analysis was 

done in Magellan field emission SEM at 30 keV under a vacuum of 10-6 

torr.  

 

A-8. Nearest neighbor characterization by Extended X-ray Absorption 

Fine Structure (EXAFS) 

X-rays are an important tool to probe the structure of solids. During X-

ray absorption experiments, an X-ray having a given wavelength, or 

monochromatic beam, is directed into a sample. Then, the energy of 

the X-ray beam is gradually increased in order to reach the absorption 

energy of the photoelectrons of the element being analyzed. When 

the X-ray energy is equal to the binding energy of a core electron from 
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an inner shell, it is adsorbed causing a sharp jump (absorption edge) in 

the adsorption energy occurs and a 16 photoelectron is emitted. The 

absorption edge corresponds to the energy required to excite and 

emit an electron from an inner shell of the atom. Below that edge 

energy the X-ray absorption is low and no electron excitation is 

observed. The particle-wave duality of the emitted photoelectron 

allows one to visualize it as a propagating wave interacting with the 

surrounding atoms. The constructive and destructive interference 

between the outgoing and back-scattered electron waves results in a 

series of oscillations on the high photon energy side of the adsorption 

edge. If the outgoing and backscattered photoelectron waves are out 

of phase and thus interfere destructively, it will be a local minimum in 

the spectrum. In contrast, constructive interference will give a local 

maximum. These oscillations are related to the atomic structure 

information of the scattering atoms. Using a scattering model it is 

possible to fit the data to the model and obtain information such as 

the atomic number, scattering distance, and coordination number of 

the atoms surrounding the element being studied. Depending on the 

energy range beyond the ionization edge, the absorption spectrum is 

classified between 5 and 150eV as X-ray Absorption Near Edge 

Structure (XANES), and above 150 eV as X-ray Absorption Fine 

Structure (EXAFS). The XANES region provides information of the 

oxidation state of the atom and the local geometry around the atom. 

The EXAFS region provides detailed information on the local 

environment of the target atom, coordination numbers and scattering 

lengths. Since the X-ray energy must be varied in the range close to 

the edge energy, EXAFS experiments require a tunable high intensity x-

ray source, which are best attained with the use of synchrotrons. In a 

typical synchrotron, electrons are accelerated at high speed by 

magnetic fields so that they follow a circular trajectory. During this 

process the particles emit synchrotron radiation which typically 
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includes radio waves, infrared light, visible light, ultraviolet light, and 

x-rays. The latter, being several order of magnitude greater than the 

radiation from a typical laboratory X-ray source. Measurements using 

extended x-ray absorption spectroscopy focusing on near edge 

spectroscopy were carried out at the Advanced Photon Source (APS) at 

Argonne National Laboratory (ANL). The measurements were made in 

transmission mode with ionization chambers optimized for the 

maximum current with linear response (~1010 photons detected/sec). 

A cryogenically cooled double-crystal Si (111) monochromator with 

resolution (ΔE) better than 2.5 eV at 8.979 keV (Cu K edge) was used in 

conjunction with a Rh-coated mirror to minimize the presence of 

harmonics. The integration time per data point was 1-3 sec, and three 

scans were obtained for each processing condition. Standard 

procedures based on WINXAS97 software were used to extract the 

XANES spectra. Phase shifts and backscattering amplitudes were 

obtained from XANES data obtained for the following reference 

compounds: CuO and Cu2O for Cu-O and Cu foil for Cu-Cu while Cr2O3 

and CrO3 for Cr-O and Cr foil for Cr-Cr.The sample was pressed into a 

cylindrical holder with a thickness chosen to give an absorbance (Δμx) 

of about 1.0 in the Cu edge region. Due to the high density of the Cu 

based catalysts; the fresh powder was diluted by a factor of 10 with 

fumed silica prior to being pressed into a wafer. The sample holder 

was centered in a continuous-flow EXAFS reactor tube 18 inches long 

and 0.75 inches diameter. The tube was fitted at both ends with 

polyimide windows to allow transmission of the x-ray beam with gas 

valves fitted perpendicular to the tube. The reactor was fitted into a 

clamshell style electrical furnace, which was controlled and monitored 

with three type K thermocouples located inside the reactor tube and 

furnace assembly (see figure 1).  
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Figure 1: reactor assembly and sample holders. 

 

This furnace, window, and valve configuration allowed isolation of the 

reactor from the atmosphere and the ability to flow various reducing, 

reactant, and oxidizing gas mixtures at elevated temperatures, all 

while being probed by the x-ray beam, meaning the catalyst under 

operando reaction conditions could be monitored. The catalysts were 

studied under reaction and reducing conditions. Spectrum was first 

recorded with the catalyst in its untreated state at room temperature 

(in air). All samples were previously reduced by heating in a reducing 

atmosphere of pure H2 to a temperature of 300°C, then scanned after 

cooling to room temperature. For reaction studies under ethanol 

decomposition reaction conditions the temperature was changed to 

the desired set point and a reaction mixture of 2.2 cm3/min of 

CH3CH2OH in He was flowed over the catalyst for 30 minutes. After 

that the XANES spectrum was recorded with the aim of evaluating the 

variation of the oxidation state during the reaction. 

 

A-9 DRIFT: Characterization of adsorbed species on surfaces. 

Fourier Transform Infrared Spectroscopy  
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Atoms in a molecule have a periodic motion while the molecule as a 

whole has translational and rotational motion. The frequency of that 

periodic motion is known as a vibration frequency. Vibrations in a 

molecule are quantized and can be excited to higher energies by 

adsorbing photons of similar energy. This adsorbing process changes 

the rotational and vibrational energy state of the molecule from a 

ground state to an excited state. The energy transition between the 

two states occurs at specific photon energies (wavelength), which are 

characteristic of the atoms or molecular groups under involved. As a 

result, a group of several bonded atoms or chemical functional group, 

being studied in a specific infrared energy can absorb radiation at 

specific energies, which are almost independent or the structure of 

the rest of the molecule. This absorption process produces specific 

spectral bands which allow identifying the groups present in the 

studied molecule and thus determining the molecular structure. This 

fingerprint character of infrared absorption allows one to use this 

technique for identifying types of chemical bonds present in 

molecules. To generate the spectra, the sample is illuminated with an 

infrared beam having a variable energies and thus frequencies. In this 

way, excited functional groups present in the sample can be identified. 

Depending on the wavelength frequency, infrared light can be divided 

in three main energy regions, far infrared (4 ~ 400cm-1, λ=2500-25 

μm), mid infrared (400 ~ 4,000cm-1, λ=25-2.5 μm) and near infrared 

(4,000 ~ 14,000cm-1, λ=2.5-0.7 μm). For the purpose of catalysis, the 

mid infrared region is mostly used since it gives information about 

molecular vibrations of adsorbed molecules. 28  

Fourier Transform Infrared (FTIR) spectrometers are widely used to 

study the infrared absorption of adsorbed species on solid surfaces. 

Such spectrometers are designed to be able to measure all infrared 

frequencies simultaneously in the range studied. This is achieved by an 

internal arrangement of mirrors known as interferometer, which is 
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able to produce an interference pattern. The Michelson 

interferometer consists of four arms. The first arm consists of an 

infrared source usually a carbon rod heated to high temperature, the 

second arm contains a fixed mirror, the third arm contains a moving 

mirror, and at the fourth is focused on a detector. At the intersection 

of the four arms a beamsplitter is located, which is designed to 

transmit half the radiation that impinges upon it, and reflect half of it. 

With this setup, the transmitted part of the beam from the 

beamsplitter is directed to the moving mirror and the reflected part 

from the beamsplitter directed to the fixed mirror. Both beams 

recombine at the beam splitter, producing an interferogram which 

illuminates the sample and then directed to the detector. A sample 

can be located between the IR reflected from the fourth arm, and then 

the resulting infrared beam directed to a detector.  The transmission 

mode of operation is the most common experimental arrangement 

used for solid powders. In this technique, a sample is pressed into a 

thin self-supported wafer through which the infrared beam is 

transmitted and captured by a detector. The interference pattern 

produced is fitted to a Fourier transform series and then deconvoluted 

to yield a spectrum of adsorbed energy versus frequency. In the 

present study transmission infrared spectra of pressed disks (~20 mg) 

were collected in-situ in an IR reactor cell. The cell is placed in an FTIR 

spectrometer and the spectra were collected at a resolution of 2 cm-1 

upon collection of 100 scans per spectrum. The spectrometer was 

equipped with a KBr beamsplitter and a deuterated triglycine sulfate 

(DTGS) detector. As the amount of radiation striking the detector 

changes, the temperature of the DTGS element change. This change in 

temperature is measured in terms of voltage across the detector 

element. The IR cell is equipped with CsI windows, has connections for 

inlet and outlet flows, and thermocouples connected to a temperature 

controller to monitor and control its temperature. The spectra were 
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obtained in absorbance mode after subtraction of the background 

spectrum of the catalyst's disk under He atmosphere at the 

corresponding 30  temperature. The samples were pretreated at 

various conditions prior to study adsorptions and reactions. After 

pretreatment, the catalyst was cooled down to room temperature in 

He, and the reaction mixture with a given composition was introduced 

and spectra collected at different temperatures (example for the PROX 

reaction: 0.8% CO, 0.8% oxygen, and 51% H2, with He as balance was 

added at a total flow rate of 195 cc/min). Transmission IR can be 

obtained with samples that are partially transparent to IR radiation. 

When the sample is opaque and infrared transmittance is low, spectra 

can be collected in diffuse reflectance mode, better known as Diffuse 

Reflectance Infrared Fourier Transform Spectroscopy or DRIFTS. This 

mode does not require that the infrared beam goes through the bulk 

sample as in transmission mode. In the diffuse reflectance mode the 

infrared beam illuminates a shallow bed of catalyst powder 

penetrating 1-10 microns into it and it is then reflected back to an 

optical system. An arrangement of mirrors allows directing the 

incident infrared beam to a couple of parallel elliptical mirrors. One 

side of this elliptical mirror direct the incident beam to the sample and 

then the reflected radiation from the sample is collected by the 

second elliptical mirror and directed to a detector. The DRIFT spectra 

of ethanol on copper based catalysts were obtained in a Bruker 

Equinox 55 spectrometer equipped with a DTSG detector and a 

moving interferometer with a scanner velocity of 2-30 KHz, a Mid-IR 

source and a beam splitter. A weighted quantity of catalyst powder 

was mixed with fumed silica, used to prevent the total adsorption of IR 

radiation by the black powder characteristic of our samples. The 

diluted sample  was charged in an IR-cell-reactor (Harrick) equipped 

with a CaF2 windows and thermostated heaters, and connected to 

heated inlets and outlet lines to allow ethanol/He flow into the cell. 
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The samples were pre-treated in-situ by heating under Helium flow (25 

cm3min-1), then reduced at 300°C in a flow of 20% H2 in He for about 

1h. The system was rapidly cooled and ethanol flow was introduced in 

the cell and contacted with the pre-treated sample at three different 

temperature 100; 200; 300°C and at atmospheric pressure. For each 

spectrum 128 scans in the range 4000–370 cm-1 frequency range were 

recorded at a resolution of 4 cm-1 (see Figure 2).  

 

Figure 2: DRIFT cell apparatus 
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MATLAB CODE 

 

 

B.1 MATLAB CODE to evaluated the kinetic parameters. 

 

B.1.1 Main 

clc  
clear  
warning( 'off' , 'MATLAB:dispatcher:InexactCaseMatch' )  
% format long  
format short  
 
global  x0                             % parameters 
del modello  
global  Data                           % data 
sperimentali  
global  nd id  
global  temper wcat pres  
global  fe0 fa0 fin0 fh20 fac0 fo0  
global  xe_sp  sa_sp sac_sp so_sp  
global  it                             % contator 
iterazioni        
global  n_ prove                        % exp runs  
global  i_mod  
global  xData yData  
  
% choosing model  
% i_mod=4   LHHW  
%-------------------------------------------------  
i_mod=4;  
  
 
 
% experimental data reading 
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%------------------------------------------------  
Data=lettura();        % experimental  
nd=Data(:,1);          % index exp.run(-)  
id=Data(:,2);          % (0=no)exclusion of the run     
wcat=Data(:,3);        % catalyst(g)  
temper=Data(:,4);      % temperature(°C)  
pres=Data(:,5);        % Pressure(atm)   
fe0=Data(:,6);         % EtOH(mols/h)  
fa0=Data(:,7);         % AcH (mols(h)  
fin0=Data(:,8);        % Inert(mols/h)  
fh20=Data(:,9);        % Hydrogen(mols/h)  
fac0=Data(:,10);       % Ethyl acetate(mols/h)  
fo0=Data(:,11);        % Others(mols/h)  
xe_sp=Data(:,13);      % EtOH conversion  
sac_sp=Data(:,14);     % AcH selectivity  
sa_sp=Data(:,15);      % AcOEt selectivity  
so_sp=Data(:,16);      % Others selectivity  
NP=size(Data);  
n_prove=NP(1);  
%------------------------------  
xData=[wcat temper pres fe0 fa0 fin0 fh20 fac0 fo0] ;  
yData=[xe_sp sac_sp sa_sp so_sp] ;  
ysp=xe_sp;  
  
% Parameters  
%------------------------------  
if  i_mod==4  
  x0(1)=+97.10; % INIZIALI  
  x0(2)=+8.62833e-002  ;  
  x0(3)= +9.16221e-004   ;  
  x0(4)= 3.62595e+004    ;  
  x0(5)= 1.22523e+004   ;  
  x0(6)= 1.66183e-004  ;   
  x0(7)= 1.03309e+001 ;  
  x0(8)= +0.98872e+002    ;  
  x0(9)= +4.13585e+001  ;  
  x0(10)= 2.66350e-004 ;  
  x0(11)= 2.51384e+004  ;  
  x0(12)=  7.17526e+003    ;  
  x0(13)=  1.39557e+004 ;   
  x0(14)=  1.33489e+004 ;  
end  
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npar=length(x0);  
  
% parameters constraints 
%-----------------------------------  
  
if   
elseif  i_mod==4  
  xbound=[40      100  
          0       0.5  
          0       0.1  
          34000   36000  
          13000   14000  
          0       0.001  
          8       11  
          98      120  
          36      42  
          0       0.01  
          24000   26000  
          7000    7500  
          14000   18000  
          11000   14000];  
end  
xmin=xbound(:,1);  
xmax=xbound(:,2);  
% reset  
%-----------------------------------  
it=0;  
% parameters optimization  
%---------------------------  
OPTIONS1=optimset( 'MaxFunEvals' ,1, ...  
                  'Display' , 'On' , ...  
                  'TolFun' ,1.e-8, ...  
                  'Tolx' ,1.e-8, ...  
                  'LevenbergMarquardt' , 'Off' , ...     
                  'TolCon' ,1.e-8, ...  
                  'MaxIter' ,300);           
%  [x,resnorm,resid] = 
lsqcurvefit('objfun',x0,xData,yData,xmin,xmax,OPTIO N
S1);  
%             
%  resnorm           
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%                            
jopt=1;  
if  jopt==1;  
[x,resnorm,resid] = 
lsqcurvefit( 'objfun' ,x0,xData,yData,xmin,xmax,OPTION
S1);  
   resnorm;  
end  
if  jopt==2;  
   [x,fval] = fminsearch( 'objfun_fx' ,x0,OPTIONS1);  
   x  
   fval  
end  
if  jopt==3;  
   [x,fval] = 
lsqnonlin( 'objfun_fx' ,x0,xmin,xmax,OPTIONS1);  
   x  
   fval  
end  
 disp ( '--------------------------------------------
-----------------' )  
 
B.1.1.2 Objfun 

% parameters optimizations  
%-------------------------------  
function  f=objfun2(par,xData)  
global  y0                    % conditions 
global  x0                    % parameters 
global  it                    %  
global  temp_i                % temp.(°C) 
global  wcat_i                % cat.(g)  
global  pres_i                % press (atm)  
global  n_prove               % exp.Runs  
global  i_mod                 % index  
global  xe_sp  sa_sp sac_sp so_sp  
x0=par;  
zspan=[0 0.5 1];             %  
for  i=1:n_prove;  
wcat_i=xData(i,1);  
temp_i=xData(i,2);  
pres_i=xData(i,3);  
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y0(1)=xData(i,4);    % ethanol  
y0(2)=xData(i,5);    % acetaldehyde  
y0(3)=xData(i,6);    % inert  
y0(4)=xData(i,7);    % hydrogen  
y0(5)=xData(i,8);    % ethyl acetate  
y0(6)=xData(i,9);    % others  
options=odeset( 'RelTol' ,0.001);  
[z,ycz]=ode45( 'odesis' ,zspan,y0,options);  
for  j=1:6;  
    f_out(j)=ycz(3,j);  
end  
  r_a  = (2*f_out(2)) / (2*f_out(1));  
  r_ac = (4*f_out(5)) / (2*f_out(1));  
  r_o  = (4*f_out(6)) / (2*f_out(1));  
  r_e  = (2*f_out(1)) / (2*f_out(1));  
  sum_r= r_a + r_ac + r_o + r_e;  
  sum_r  
  xe_cal(i)=1 - (1/sum_r) ;  
  if  xe_cal(i)~=0  
     fatt_sel=(1-xe_cal(i))/xe_cal(i);  
  else   
     fatt_sel=1;  
  end  
  sa(i) = r_a*fatt_sel;  
  sac(i)= r_ac*fatt_sel;  
  so(i) = r_o*fatt_sel;  
  sum_sel(i)=sa(i)+sac(i)+so(i);  
 end  
%  sa, sac, so, sum_sel  
yData_cal(:,1)=xe_cal;  
yData_cal(:,2)=sac;  
yData_cal(:,3)=sa;  
yData_cal(:,4)=so;  
f=yData_cal;  
sum_err=0;  
for  i=1:n_prove;  
   delta_conv(i)=100*abs(xe_cal(i)-
xe_sp(i))/abs(xe_cal(i));  
   sum_err=sum_err+delta_conv(i);  
   delta_sac(i) =100*abs(sac(i)-
sac_sp(i))/abs(sac_sp(i));  
   delta_sa(i)  =100*abs(sa(i)-
sa_sp(i))/abs(sa_sp(i));  
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   delta_so(i)  =100*abs(so(i)-
so_sp(i))/abs(so_sp(i));  
   sum_err=sum_err+delta_conv(i);  % ...  
end  
sum_err=sum_err/n_prove;  
it=it+1;  
  
 
 
B.1.1.3 ODESIS 

function  f = odesis(z,fmol);  
global  i_mod             % indice per la scelta del 
modello  
% MODELLO 4 
%-----------------------------  
if  i_mod==4  
  fdot=modello_4(fmol);     
end  
f=fdot';  

 

 
B.1.1.4 experimental Data reading 

% ------------------------  
function  Data=lettura(Data)  
  
% legge dati dal file  
%-----------------------  
[D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15  
D16] = ...  
   textread( 'CU1234-50.TXT' , ...  
            '%f %f %f %f %f %f %f %f %f %f %f %f %f 
%f %f %f'  , ...  
            'headerlines' ,1);  
%--------------------------------  
Data1=[D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 
D14 D15 D16];  
%--------------------------------  
n_rows=size(Data1,1);  
n_columns=size(Data1,2);  
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i_prove=0;  
for  i=1:n_rows  
   if  Data1(i,2)~=0  
      i_prove=i_prove+1;  
      for  j=1:n_columns  
         Data(i_prove,j)=Data1(i,j);  
      end  
   end  
end  
 

 

B.1.2 Model LHHW  
function   fdot = modello_4( fmol )  
global  x0                 
global  temp_  
global  wcat_i             
global  pres_i             
% ---- gas constant ----  
rgas=1.987; % calK?1mol?1;  
% ---- molar flow rates ----  
fe   = fmol(1);  
fa   = fmol(2);  
fi   = fmol(3);  
fh2  = fmol(4);  
fac  = fmol(5);  
fo   = fmol(6);  
ftot=  fe+fa+fi+fh2+fac+fo;  
% ---- molar fraction----  
ye  =  fe/ftot;  
ya  =  fa/ftot;  
yi  =  fi/ftot;  
yh2 =  fh2/ftot;  
yac =  fac/ftot;  
yo  =  fo/ftot;  
% ---- partial pressure----  
ptot=pres_i;  
pe  = ptot*ye;  
pa  = ptot*ya;  
pi  = ptot*yi;  
ph2 = ptot*yh2;  
pac = ptot*yac;  
po  = ptot*yo;  
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% ----Kinetic constants, activation energies and 
equilibrium constants----  
tk=temp_i+273.15;  
trif=220+273.15;  
kr1 =x0(1);  % kinetic costant  
kr2 =x0(2);  
kr3 =x0(3);  
ea1 =x0(4);  % activation energies  
ea2 =x0(5);  
ea3 =x0(6);  
ker =x0(7);  %adsorption constants  
kar =x0(8);  
kaer=x0(9);  
kh2r=x0(10);  
de  =x0(11);  
da  =x0(12);  
dae =x0(13);  
dh2 =x0(14);  
%-----------ki vs T-----------  
inv_t=(1/trif)-(1/tk);  
k1=kr1*exp((ea1/rgas)*inv_t);  
k2=kr2*exp((ea2/rgas)*inv_t);  
k3=kr3*exp((ea3/rgas)*inv_t);  
%----- Keq vs T by ASPEN---------  
ke1=exp((-9136.40/tk)+15.434+1.17);  
ke2=exp(+(4386.003/tk)-4.79);  
%----kads vs T-------  
ke=ker*exp((de/rgas)*inv_t);  
ka=kar*exp((da/rgas)*inv_t);  
kae=kaer*exp((dae/rgas)*inv_t);  
kh2=kh2r*exp((dh2/rgas)*inv_t);  
  
% ---- reaction rates-------  
te1=(1/ke1)*(pa*ph2);  
if  te1>pe  
    te1=pe;  
end  
te2=(1/ke2)*(pac*ph2);  
if  te2>pe*pa  
    te2=pe*pa;  
end  
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tads=(1+ke*pe+ka*pa+kh2*ph2+kae*pac)^2;  
r1=k1*ke*(pe-te1)/tads;  
r2=k2*ka*ke*(pa*pe-te2)/tads;  
r3=k3*pa^2;  
 
% ---- mass balance ----  
fdot(1)= wcat_i*(-r1-r2);         % ethanol  
fdot(2)= wcat_i*(r1-r2-2*r3);     % acetaldehyde  
fdot(3)= wcat_i*(0);              % inert  
fdot(4)= wcat_i*(r1+r2);          % hydrogen  
fdot(5)= wcat_i*(r2);             % ethyl acetat  
fdot(6)= wcat_i*(r3);             % others  
end  
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Plant equipment 

 

Summary of the employed equipment and of the operative conditions 

used to sizing them. 

 
Table 1: Pump-section 100 

Equip. No.                                23 
Pump                                     P-101 
Output pressure  bar                     1.0000 
Efficiency                               1.0000 
Calculated Pout  bar                     1.0000 
Vol. flow rate  m3/h                     29.0403 
Mass flow rate  kg/h                     23000.0020  

Table 2: Heat exchangers-section 100 

Equip.                24           38           37 
Heat Ex.            E-101        E-102         E-103 
1st Stream T Out  80.0000      80.0000         80.0 000 
(kcal/h)        1.3633e+007    1.2354e+007    -3.20 05e+006 
LMTD Corr Factor  1.0000       1.0000          1.00 00 
(bar)             1.0000       1.0000          1.00 00 

Table 3: compressor-section 100 

Compressor  
Equip. No. Compressor                      8 
Name                                       C-101 
Pressure out  (bar)                        20.0000 
Type of Compressor                         1   
Efficiency                                 0.7500 
Actual power (kcal/h)                      3.9664e+ 006 
Cp/Cv                                      1.1452 
Theoretical power (kcal/h)                 2.9748e+ 006 
Ideal Cp/Cv                                1.1242 
Calc Pout  (bar)                           20.0000 
Calc. mass flowrate (kg/h)                 59192 

Table 4: distillation towers (TWRS)-section 100 

Equip. No.                                 33           34 
Name: distillation towers                  T-101        T-102 
No. of stages                              30           15   
1st feed stage                             3            7   
2nd feed stage                             22            0   
Top pressure  (bar)                        1.0000       1.0000 
Condenser mode                             7            7   
Condenser spe                              0.9990       0.9990 
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Cond comp i                                1            6   
Reboiler mode                              7            7   

 

Table 5: heat exchangers- section 200 

Eq.n      13          5            6          7          21 
H.Ex.     E-201       E-202        E-203      E-204       E-205 
TOut(°C)  220.0000    220.0000     230.0000   230.0 000   5.0000 
(kcal/h) -801018     351190     496704     106195      -1.6345E7 
LMDT      1.0000      1.0000       1.0000     1.000 0     1.0000 
Pout (bar)  20.0000     20.0000      20.0000    20.0000    20.0000 

 

Table 6: kinetics reactors- section 200 

Equip. No.        1            2            3            4 
Name Reactors     R-201        R-202        R-203        R-204 
Reactor type      2            2            2            2   
Reaction phase    1            1            1            1   
Thermal mode      2            2            2            2   
Pressure (bar)    20.0000      20.0000      20.0000       20.0000 
Tout   C            209.2982     214.9438     226.8005     227.6552 
Reactor vol.(m 3)  10.0000      10.0000      10.0000      10.0000 
C.flag            1            1            1            1   
Number of steps   300          300          300          300 
No.of Reactions   3            3            3            3   
Molar Flow Unit   2            2            2            2   
Activ. E/H        6            6            6            6   
Volume Unit       3            3            3            3   
U(kcal/h-m 2-C)    10.0000      10.0000      10.0000      10.00 00 
(kcal/h)     -13946.4883   -3941.0779    -713.1607    -215.2497 
Mass unit          2            2            2            2   
Partial P unit     2            2            2            2   

Table 7: flash- section 300 

Equip. No.               14           30 
Name Flash               V-301        V-302 
Flash Mode               0            2   
Param                    5.0000     -20.0000 
Param 2                  20.0000      50.0000 
Heat duty (kcal/h)       0.0230 
K values: 
 Ethanol                 1.513E-003   1.076E-004 
 Ethyl Acetate           5.352E-003   1.080E-003 
 Hydrogen                200.719      102.824 
 Acetaldehyde            0.025        4.952E-003 
 Nitrogen                87.669       56.335 
 Water                   1.153E-003   6.742E-005 
 Cis-Crotonaldeh         1.654E-003   2.053E-004 
 Ethylene Glycol         1.846E-006   7.770E-008 

Table 8: compressor-section 300 

Equip.No.                         27 
Name Compressor                   C-301 
Pressure out  bar                 50.0000 
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Type of Compressor                1   
Efficiency                        0.7500 
Actual power (kcal/h)             378150.0313 
Cp/Cv                             1.3991 
Theoretical power  (kcal/h)       283612.5313 
Ideal Cp/Cv                       1.3891 
Calc Pout  bar                    50.0000 
Calc. mass flowrate  (kg/h)       1584 

Table 9: heat exchanger-section 300 

Equip. No.         39           11           15 
Name H.ex          E-301        E-302        E-303 
1st Stream T Out (°C)-20.0000      20.0000      200.0000 
Ht Duty(kcal/h)   -472920.0000  137214.7188  1.4464 e+007 
LMTD Corr Factor   1.0000       1.0000       1.0000  
1st StreamP out (bar) 50.0000      50.0000      20.0000 

Table 10: valve-section 300 

Equip. No.                     29 
Name  Valve                     
Pressure out  bar             50.0000 

Table 11: expander-section 300 

Equip. No.                  41 
Pressure out  bar           20.0000 
Type of Expander            1   
Efficiency                  0.7500 
Actual power  kcal/h       -505.6559 
Cp/Cv                       1.1836 
Theoretical power          -674.2078 
 (kcal/h) 
Ideal Cp/Cv                  1.0386 
Calc Pout  bar              20.0000 

Table 12: component separator-section 3 

Equip. No.                 10 
Name Separator             T-302 
Top Temp Spec              200.0000 
Bottom Temp Spec           200.0000 
Heat duty  kcal/h         -5152.8140 
Component No. 3            1.0000 
Component No. 4            1.0000 

Table 13: distillation towers-section 4 

Equip. No.                      9               16 
Name                            T-401           T-4 02 
No. of stages                   30              30   
1st feed stage                  20              10   
Top pressure  bar               20.0000         1.0 000 
Condenser mode                  1               1   
Condenser spec.                 3.0000          0.5 000 
Reboiler mode                   3               3   
Reboiler spec.                  206.0000        77. 0000 
Initial flag                    1               1   
Calc cond duty (kcal/h)        -5.5480e+007    -2.0 983e+007 
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Calc rebr duty  kcal/h          3.9099e+007     9.6 528e+006 
Est. Dist. rate (kmol/h)                        151 .4930 
Est. Reflux rate(kmol/h)                        75. 7465 
Est. T top  C                   173.4420        95. 9732 
Est. T bottom  C                184.5531        77. 0000 
Est. T 2  C                     178.8442        76. 3716 
Column diameter  m                              2.2 860 
Tray space  m                                   0.6 096 
No of sections                  0               1   
Calc Reflux ratio               3.0000          0.5 000 
Calc Reflux mole                6888.0435       749 .7289 
 (kmol/h) 
Calc Reflux mass  kg/h          373542.6250     439 41.1211 
No of passes (S1)               0               1   
Weir side width  cm                             13. 9700 
Weir height  cm                                 5.0 800 
System factor                                   1.0 000 
Optimization flag               1               1  
                                                             Table 14: compressor-section 4 

Equip. No.                   20 
Name Compressor              C-401 
Pressure out  bar            20.0000 
Type of Compressor           1   
Efficiency                   0.7500 
Actual power  (kcal/h)       78649.6328 
Cp/Cv                        1.1302 
Theoretical power(kcal/h)    58987.2227 
Ideal Cp/Cv                  1.1054 
Calc Pout  bar               20.0000 
Calc. mass flowrate(kg/h)    87881 

Table 15: valve-section 4 

Equip. No.                     28 
Name Valve                         
Pressure out  bar            1.0000 

Table 16: separator-section 4 

Equip. No.                     22 
Name Separator                T-403 
Heat duty  kcal/h       181769.7500 
Component No. 2              0.9950 

 
 

 

 


