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1. INTRODUCTION 

 

1.1  Alzheimer’s disease 

With an estimated 35 million afflicted world wide and a projected increase to 41 

million in 2040 (Sloane et al. 2002), Alzheimer’s disease (AD) is a late-onset 

progressive neurodegenerative disorder that leads to death within 3 to 9 years after 

diagnosis.  

AD results in the irreversible loss of cholinergic cortical neurons, particularly in the 

associative neo-cortex and hippocampus. The principal risk factor for AD is age. With 

the increasing longevity of our population, AD is already approaching epidemic 

proportions with no cure or preventative therapy available (Hebert et al. 2000). 

Clinically, AD is characterized by the progressive impairment of higher cognitive 

function, loss of memory and altered behaviour that follows a gradual progression. 

The pathological AD hallmarks are characterised at autopsy; the presence of senile 

plaques composed of extracellular amyloid-beta (Aβ) protein aggregates, intracellular 

neurofibrillary tangles (NFTs) composed of hyper-phosphorylated tau (τ) protein 

deposits, and the shrinkage of the cerebral cortex due to extensive neuronal loss. 

The “amyloid cascade hypothesis” remains the main pathogenetic model, as 

suggested by familial AD, mainly associated with mutation in amyloid precursor 

protein and presenilin genes (Querfurth and LaFerla 2000).  

 

1.1.1 Protein Abnormalities in Alzheimer’s Disease: Aβ and Tau 

Protein 

 

The pathological AD hallmarks are the presence of cerebral senile plaques 

composed of extracellular amyloid-beta (Aβ) protein aggregates, intracellular 

neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau (τ) protein 

deposits, and the shrinkage of the cerebral cortex due to extensive neuronal loss. 

The β-site amyloid precursor protein–cleaving enzyme 1 (BACE1 or β-secretase), the 
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principal actor in amyloid precursor protein (APP) processing in AD (Hayley et al. 

2009), is a stress-response protein involved in several neurologic diseases including 

stroke (Wen et al. 2004), amyloid angiopathy, inflammation, and oxidative damage. 

Aβ peptides are natural products of metabolism consisting of 36 to 43 amino 

acids. Monomers of Aβ40 are much more prevalent than the aggregation-prone and 

damaging Aβ42 species. Aβ peptides originate from proteolysis of the APP by the 

sequential enzymatic actions of BACE-1 and γ-secretase, a protein complex with 

presenilin-1 at its catalytic core (Haass and Selkoe 2007) (Fig. 1). An imbalance 

between production and clearance causes an aggregation and accumulation of Aβ 

peptides triggering AD. This process, called “amyloid cascade hypothesis”, 

remains the main pathogenetic model, as suggested by familiar AD, mainly 

associated with mutation in APP and presenilin genes (Selkoe 2001; Tanzi et al. 

2005) including Down’s syndrome (Busciglio et al. 2002). Aβ peptides spontaneously 

self-aggregate into multiple coexisting forms. One form consists of oligomers (2 to 6 

peptides), which link into intermediate assemblies (Kayed et al. 2003; Klein et al. 

2001)  (Fig. 1). Aβ peptides can also grow into fibrils, which arrange themselves into 

β-pleated sheets to form the insoluble fibers of advanced amyloid plaques. Soluble 

oligomers and intermediate amyloids are the most neurotoxic forms of Aβ (Walsh and 

Selkoe 2007). The severity of the cognitive defect in AD correlates with levels of 

oligomers in the brain, not the total Aβ (Lue et al. 1999). 

Experimental evidence indicates that Aβ accumulation precedes and drives tau 

aggregation (Oddo et al. 2003; Gotz et al. 2001; Lewis et al. 2001). Tau is normally 

an abundant soluble protein in axons that promotes assembly and stability of 

microtubules and vesicle transport. Hyperphosphorylated tau is instead insoluble, 

lacks affinity for microtubules, and self-associates into paired helical filament 

structures. Like Aβ oligomers, the aggregates of abnormal tau molecules 

(neurofibrillary tangles) are cytotoxic and impair cognition. These filamentous 

inclusions are sited in pyramidal neurons and their number is a pathologic marker of 

the severity of AD. 

Increased oxidative stress, the impaired protein-folding function of the 

endoplasmic reticulum (ER), and deficient proteasome-mediated and autophagic-

mediated clearance of damaged proteins — all of which are also associated with 
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aging — accelerate the accumulation of amyloid and tau proteins in AD (López Salon 

et al., 2000; Hoozemans et al. 2005). 

 

1.1.2 APP processing and Aβ generation 

 

Aβ peptides are produced by endoproteolysis of the parental APP, which is 

achieved by the sequential cleavage of APP by groups of enzymes or enzyme 

complexes named α-, β- and γ-secretases (Fig. 1). Three enzymes with α-secretase 

activity have been identified, all belonging to the ADAM family (a disintegrin- and 

metalloproteinase-family enzyme): ADAM9, ADAM10 and ADAM17 (Allinson et al. 

2003). Several groups identified BACE1, which is a type I integral membrane protein 

belonging to the pepsin family of aspartyl proteases, as the β-secretase (Vassar et al. 

1999; Hussain et al. 1999; Sinha et al. 1999). The γ-secretase has been identified as 

a complex of enzymes composed of presenilin 1 or 2, (PS1 and PS2), nicastrin, 

anterior pharynx defective and presenilin enhancer 2 (Wolfe et al. 1999; Steiner et al. 

2002; Francis et al. 2002; Levitan et al. 2001; Yu et al. 2000). 

The cleavage and processing of APP can be divided into a “non-amyloidogenic 

pathway” and an “amyloidogenic pathway”.  

In the prevalent non-amyloidogenic pathway, APP is cleaved by the α-secretase 

at a position 83 amino acids from the carboxyl (C) terminus, producing a large amino 

(N)-terminal ectodomain (sAPPα) which is secreted into the extracellular medium 

(Kojro and Fahrenholz 2005). The resulting 83-amino-acid C-terminal fragment (C83) 

is retained in the membrane and subsequently cleaved by the γ-secretase, producing 

a short fragment termed p3 (Haass et al. 1993). Importantly, cleavage by the α-

secretase occurs within the Aβ region, thereby precluding formation of Aβ. 

The amyloidogenic pathway is an alternative cleavage pathway for APP which 

leads to Aβ generation. The initial proteolysis is mediated by the β-secretase at a 

position located 99 aminoacids from the C-terminus. This cut results in the release of 

sAPPβ into the extracellular space, and leaves the 99-amino-acid C-terminal 

fragment (known as C99) within the membrane, with the newly generated N-terminus 

corresponding to the first aminoacid of Aβ. Subsequent cleavage of this fragment 

(between residues 38 and 43) by the γ-secretase liberates an intact Aβ peptide. Most 
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of the full-length Aβ peptide produced is 40 residues in length (Aβ40), whereas a 

small proportion (approximately 10%) is the 42 residue variant (Aβ42). The Aβ42 

variant is more hydrophobic and more prone to fibril formation than Aβ40 (Jarrett et al. 

1993), and it is the longer form that is also the predominant isoform found in cerebral 

plaques (Younkin 1998). 

Mutations in three genes — APP, PS1 and PS2 — are known to cause 

autosomal dominant AD, which generally manifests with an early-onset pathogenesis 

(St George-Hyslop, P. H. & Petit 2005). All these mutations affect the metabolism or 

stability of Aβ. These genetic mutations have been used to generate transgenic 

mouse models of the AD. One common mutation in APP is known as the Swedish 

mutation (APPSwe), in which a double amino acid change leads to increased 

cleavage of APP by the β-secretase (Haass et al. 1995). Other mutations, such as 

the Arctic mutation (APPArc), increase the aggregation of Aβ, leading to early onset, 

aggressive forms of the disease (Nilsberth et al., 2001). Mutations in the presenilins, 

such as the PS1M146V mutation, increase levels of Aβ42 (Guo et al. 1999; 

Jankowsky et al., 2004), which aggregates more readily than Aβ40. Increased dosage 

of the APP gene also results in AD (Gyure et al., 2001; Mori et al. 2002). 

 

 

       

 

Fig. 1 APP processing: amyloidogenic pathway and non-amyloidogenic pathway 
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1.1.2.1 Intracellular Aβ 

 

The Aβ peptide was first identified as a component of extracellular amyloid 

plaques in the mid-1980s. Not long thereafter, reports describing the existence of the 

intracellular Aβ began to appear in the literature. In the first study reporting the 

presence of intraneuronal Aβ, an antibody against residues 17–24 of Aβ was used, 

and Aβ-immunoreactive material was observed in neurons from the cerebellum, 

cerebrum and spinal cord of individuals with or without AD neuropathology (Grundke-

Iqbal et al. 1989). As the participants in this study ranged in age from 38 to 83 years, 

these findings suggested that the occurrence of intracellular Aβ might not be an age-

dependent event. Careful studies using C-terminal-specific antibodies against Aβ40 

and Aβ42 have established that most of the intraneuronal Aβ ends at residue 42 and 

not at residue 40.  

Despite the numerous publications in a range of animal species indicating that 

Aβ may accumulate intracellularly, the acceptance of this concept has been slow and 

controversial, mainly for technical reasons. One understandable objection relates to 

the extent of antibody cross-reactivity, as it is plausible that Aβ-specific antibodies 

may also recognize full-length APP or its other derivatives. 

Recent studies suggest that the buildup of intracellular Aβ may be an early event 

in the AD pathogenesis. The accumulation of intraneuronal Aβ is an early event in 

the AD progression, preceding the formation of extracellular Aβ deposits. Indeed, it 

has been demonstrated that intraneuronal Aβ levels decrease as extracellular 

plaques accumulate (Mori et al. 2002). Curiously, authors reported that intraneuronal 

Aβ was not predictive of brain amyloidosis or NFT degeneration. 

 

1.1.2.2 Intracellular sites of Aβ production 

 

Although there is a large body of evidence to demonstrate that Aβ accumulates 

intracellularly, a key question that remains to be addressed is whether the 

intracellular Aβ builds up because a portion of the generated Aβ is not secreted and 

consequently remains intracellular, or alternatively, whether secreted Aβ is taken 

back up by the cell to form these intracellular pools (LaFerla et al. 2002). To address 
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these issues, it is important to understand how and where Aβ is cleaved and 

released from APP.  

APP localizes to the plasma membrane (Kinoshita et al., 2003) and is involved in 

cell adhesion (Breen et al., 1991) and cell movement (Sabo et al., 2001), but APP 

has also been localized to the trans-Golgi network (Xu et al., 1991), ER, and 

endosomal, lysosomal and mitochondrial membranes (Mizuguchi et al., 1992). The 

formation of Aβ could potentially occur in several cellular compartments where APP 

and the β- and γ-secretases are localized. The majority of Aβ is secreted, suggesting 

that Aβ is predominantly produced at the plasma membrane, or as part of the 

secretory pathway, so that it is rapidly expelled from the cell. 

It has been shown that retention of APP in the ER blocks production of Aβ40 but not 

Aβ42, suggesting that Aβ42 can be produced in the ER (Cook et al., 1997; Lee et al., 

1998; Skovronsky et al., 1998; Wild-Bode et al., 1997). 

Interestingly, these sites of Aβ production were limited to neurons, as in non-

neuronal cells both Aβ40 and Aβ42 were produced at the cell surface rather than 

intracellularly (Hartmann et al., 1997). 

 

1.1.3 ER stress in AD 

 

The ER is a membrane-enclosed reticular network connecting the nuclear 

envelope to the Golgi complex (Baumann et al. 2001). It has multiple vital functions: 

(I) protein folding, post-translational modification, and transport to the Golgi complex, 

(II) maintenance of cellular calcium homeostasis, (III) synthesis of lipids and sterols, 

and (IV) regulation of cellular survival via a complex transducer and signaling 

network (Baumann et al., 2001; Gorlach et al., 2006; Schroder et al., 2005; Bernales 

et al., 2006; Ron et al., 2007; Kim et al., 2008). 

ER is a sensitive organelle which can recognize disturbances in cellular 

homeostasis and therefore it is not surprising that AD brains display many indications 

of ER stress (Hoozemans et al. 2009). ER can defend the host by activating the UPR 

(unfolded protein response) including signaling cascades that evoke the adaptive 

changes in metabolism and gene expression required to manage stress situations. 
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Should a condition become more prolonged or overwhelming, the ER can then 

trigger the apoptotic program killing the cell, but saving the tissue from necrotic injury. 

Only caspase-4 and caspase-12 are activated by ER stress, their function in ER 

stress is still not defined (Martinon et al. 2009; Nadiri et al. 2006). Several studies 

have indicated that activation of caspase-12 is related to ER stress-induced apoptotic 

cell death. However, the activation mechanism is still unknown although some 

putative mechanisms have been proposed. 

 

1.1.3.1 Neuronal ER stress: cause or consequence of AD? 

 

Immunohistochemical studies have revealed that neurons in postmortem brain 

samples of AD patients display prominent expression of markers of ER stress. This is 

not a surprising result since AD involves several characteristics that could be 

inducers of ER stress, e.g. oxidative stress, accumulation of neurofibrillary tangles 

and even intraneuronal Aβ aggregates (Selkoe 2001; Tanzi et al. 2005; LaFerla et al. 

2007). However, there is uncertainty about whether this neuronal ER stress triggers 

inflammation and AD pathology or whether it is a consequence of pathological 

processes in AD brain. 

Genetic studies strongly indicate that Aβ production, oligomerization and 

aggregation have a crucial role in the pathogenesis of AD (Haass and Selkoe 2007; 

Selkoe 2001; Tanzi et al. 2005; LaFerla et al. 2007; Thinakaran et al. 2008). Recent 

studies have revealed that oligomers in particular are the toxic form of Aβ in AD 

pathogenesis. One key question is whether synthesized APP is cleaved in ER and in 

this way could trigger Aβ oligomerization and subsequently an unfolding response in 

ER. BACE1 and γ-secretase are present in ER but it seems that normally Aβ is not 

cleaved in ER due to (I) the incompatible pH optimum, (II) the presence of BACE1 

stabilizers, and (III) the protective acetylation of BACE1 (Ko and Puglielli 2009).  

In addition, ER stress has been shown to increase the expression of BACE1 and 

thus trigger APP processing in ER. It seems that ER stress can disturb APP 

processing in neurons, acts synergistically with other inducers to stimulate UPR in 

neurons, and subsequently provokes AD pathology in the context of prolonged 

stress. 
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On the other hand, AD is known to involve several pathological changes that can 

trigger ER stress and in that way aggravate AD pathogenesis.  

ER stress can also prepare neurons to undergo apoptotic cell death. 

Interestingly, recent studies have indicated that ER stress can also trigger 

inflammatory responses to defend brain tissue against necrotic injuries. This 

response seems to be an alarm type of response involving chemokines and 

cytokines to activate glial cells. Excessive and/or prolonged ER stress can be 

detrimental to neurons since a delayed defense decreases the viability of neurons 

and can shift the UPR response to switch on an apoptotic program. However, the ER 

is highly specialized in neurons and the level of ER stress can vary among different 

sub-compartments, e.g. in dendrites and axonal synapses. Initial evidence indicates 

that ER stress can trigger synaptic loss and axonal degeneration. In conclusion, ER 

stress involves all the elements that can aggravate the AD pathogenesis.  

 

1.1.4 Mitochondrial Dysfunction 

 

Aβ is a potent mitochondrial poison, it affects in particular the synaptic pool 

(Mungarro-Menchaca et al. 2002). In AD, the exposure to Aβ inhibits key 

mitochondrial enzymes in the brain and in isolated mitochondria (Hauptmann et al. 

2006; Reddy et al. 2008). 

Cytochrome c oxidase is specifically attacked by Aβ (Caspersen et al. 2005). 

Consequently, electron transport, ATP production, oxygen consumption, and 

mitochondrial membrane potential all become impaired. The increase in 

mitochondrial superoxide radical formation and conversion into hydrogen peroxide 

cause oxidative stress, release of cytochrome c, and apoptosis. The accumulation of 

Aβ within structurally damaged mitochondria isolated from the brains of patients with 

AD (Hirai et al. 2001) and transgenic brains (Caspersen et al. 2005) is consistent with 

other evidence of intraneuronal Aβ in AD (Gouras et al. 2005).  

The antihistamine dimebolin hydrochloride, a putative mitochondrial stimulant, 

has been reported to improve cognition and behavior in patients with mild to 

moderate AD (Doody et al. 2008). 
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1.1.5 Oxidative Stress 

 

Dysfunctional mitochondria release oxidizing free radicals causing considerable 

oxidative stress (Good et al. 1996; Smith et al. 1996). Experimental models show that 

markers of oxidative damage precede pathological changes (Nunomura et al. 2001). 

Aβ, a potent generator of reactive oxygen species (ROS) (Hensley et al. 1994) and 

reactive nitrogen species (RNS), (Combs et al. 2001) is a prime initiator of this 

damage.  

Mitochondrial hydrogen peroxide readily diffuses into the cytosol to participate in 

metal ion–catalyzed hydroxyl radical formation. Stimulated microglia are a major 

source of the highly diffusible nitric oxide radical. These ROS and RNS damage 

several molecular targets. Peroxidation of membrane lipids yields toxic aldehydes 

(Keller et al. 1997), which impair critical mitochondrial enzymes (Hirai et al. 2001; 

Humphries and Szweda 1998). Other essential proteins are directly oxidized, yielding 

carbonyl and nitrated derivatives (Smith et al. 1997). Subsequently, increases in 

membrane permeability to calcium, other ionic imbalances, and impaired glucose 

transport aggravate the energy imbalance (Mark et al. 1997).  

 

1.1.6 Inflammation 

 

Activated microglia and reactive astrocytes localize to fibrillar plaques, and their 

biochemical markers are elevated in the brains of AD patients (Wyss-Coray and 

Mucke 2002). Initially, the phagocytic microglia degrade Aβ. However, chronically 

activated microglia release chemokines and a cascade of damaging cytokines — 

notably, interleukin-1, interleukin-6, and tumor necrosis factor α (TNF-α) (Akiyama et 

al. 2000). In common with vascular cells, microglia express receptors for advanced 

glycation end products, which bind Aβ, thereby amplifying the generation of 

cytokines, glutamate, and nitric oxide (Yan et al. 1996; Li et al. 2003). In experimental 

studies, chemokines promote the migration of monocytes from the peripheral blood 

into plaque-bearing brain (Simard et al. 2006). Fibrillar Aβ and glial activation also 

stimulate the classic complement pathway (McGeer et al. 2001).  
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The contradictory roles of microglia — eliminating Aβ and releasing 

proinflammatory molecules — complicate treatment (Fiala et al. 2005). Nonsteroidal 

anti-inflammatory agents have been reported to lower the risk of AD and slow 

progression of the disease, but only in prospective observational studies (McGree et 

al. 2007; Vlad et al. 2008).  

 

1.2 Calcium 

 

Loss of calcium (Ca2+) regulation is common to several neurodegenerative 

disorders. In AD, elevated concentrations of cytosolic calcium ([Ca2+]i) stimulate Aβ 

aggregation and amyloidogenesis (Isaacs et al. 2006; Pierrot et al. 2004). The 

presenilins modulate Ca2+ balance. Presenilin mutations might disrupt Ca2+ 

homeostasis in ER (Leissring et al. 2000; Nelson et al. 2007). However, the main 

effect of the mutations is to increase Aβ42 levels, which in turn increases Ca2+ stores 

in the ER and the release of Ca2+ into the cytoplasm (LaFerla 2002). The relevance 

of these mechanisms to sporadic AD is unclear. A chronic state of excitatory amino 

acid (glutaminergic) receptor activation is thought to aggravate neuronal damage in 

late-stage AD (Rothman and Olney 1995). Glutamate increases [Ca2+]i, which in turn 

stimulates calcium-release channels in the ER. Aβ forms voltage-independent, cation 

channels in lipid membranes (Arispe et al. 1993), resulting in Ca2+ uptake and 

degeneration of neuritis (Lin et al. 2001). Indirectly, glutamate activates voltage-gated 

calcium channels. The L-type voltage-gated calcium-channel blocker, MEM 1003, is 

in a phase 3 trial, and memantine, an NMDA-receptor blocker, is approved by the 

Food and Drug Administration.  

 

1.2.1 Calcium regulation of Aβ production and linkage to AD 

 

By screening genes located in known AD linkage regions, Philippe Marambaud 

and colleagues (2008) discovered a novel calcium-conducting channel, with 

polymorphisms associated with increased risk for the development of Sporadic AD 

(SAD) (Dreses-Werringloer  et al. 2008). 
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They called this novel calcium channel Calcium Homeostasis Modulator 1 

(CALHM1). It is a three-transmembrane domain containing glycoprotein. Expression 

of CALHM1 was found in all brain regions and cells of neuronal lineage. CALHM1 

localized predominantly to the ER but also exists at the plasma membrane where it 

mediates a novel Ca2+ influx to the cytosol, which is unaffected by specific blockers of 

store-operated Ca2+ influx or voltage-gated calcium channels but inhibited by 

nonspecific cation channel blockers such as cobalt (Fig. 2). CALHM1 appears to 

exist as multimeric complexes, forming a functional ion channel, and has structural 

similarities with the NMDA receptor within the ion selectivity region.  

Critically, Ca2+ influx through CALHM1 decreases Aβ production and is 

accompanied by increases in sAPPα. The mechanism underlying this effect has not 

been elucidated but presumably involves a calcium-dependent effect on an α-

secretase, which are enzymes that are known to cleave APP 83 amino acids from 

the carboxyl terminus and can thereby prevent Aβ formation. Conversely, increases 

in Aβ occur after siRNA knockdown of endogenous CALHM1 in cells when combined 

with calcium influx.  

Curiously, this observation is contradictory to the vast majority of studies 

published on cytosolic Ca2+ entry and Aβ production, which indicate that increasing 

Ca2+ influx into the cytosol, either from the extracellular media or from ER stores, 

increases Aβ production (Green et al. 2007). An unexplored possibility could be that 

CALHM1 and the polymorphism P86L variant (that decrease Ca2+ permeability and 

also increases Aβ) exert their effects on Aβ processing via their location in the ER 

rather than the smaller pool found on the plasma membrane, given that the vast 

majority of CALHM1 was localized to the ER. It is unknown whether CALHM1 forms a 

functional cation-conducting pore within the ER, which could facilitate Ca2+ influx or 

efflux from the stores (Green et al. 2008).  

As the channel appears to be constitutively open (as membrane depolarization 

was not required for Ca2+ influx), it may exist as a potential leak channel at the ER, 

which would increase [Ca2+]i and would be diminished by the P86L variant. 

This finding would then be in agreement with previous studies showing how ER 

Ca2+ regulation modulates Aβ production. 
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The source of elevated basal [Ca2+]i in neurites in close proximity to Aβ plaques 

was unexplored by the authors. Basal Ca2+ levels are tightly regulated by a number of 

calcium pumps and binding proteins, which sequester free cytosolic Ca2+ so that it 

cannot affect local enzymes and signaling cascades.  

Calcium enters into the cytosol from the extracellular space through ionotropic 

receptor-operated (ligand-gated) channels (ROCs), voltage-operated Ca2+ channels 

(VOCCs), and also through store-operated calcium-entry channels. ROCs permeable 

to Ca2+ include the N-methylo-D-aspartate receptors (NMDARs), some a-amino-3-

hydroxy-5-methylisoxazole- 4-propionate acid receptors (AMPARs). Calcium can also 

enter into the cytosol from intracellular stores such as the ER via IP3 and ryanodine 

receptors, as well as the mitochondria. When [Ca2+]i increases are large, 

mitochondria become rapidly-sequestering Ca2+ buffers, ensuring protection against 

excess of Ca2+(Collins et al. 2001; Giacomelli et al. 2007). Indeed, slower Ca2+ 

clearance is mediated by Ca2+ pumps and exchangers located at plasma membrane 

level. Ca2+ ions are pumped out against a concentration gradient of four orders of 

magnitude by a plasma membrane Ca2+ ATPase (PMCA). Ca2+ is also removed from 

the cytoplasm by Na+/Ca2+ exchanger (NCX) located in the cell membrane; NCX has 

low affinity but high capacity for Ca2+ compared with PMCA (Secondo et al. 2007) for 

this it is perfectly suited to extruding large amounts of this ion. 

Conversely, [Ca2+]i is reduced via the presence of calcium-binding proteins, such 

as calbindin, acting as buffers, and also through the extrusion of Ca2+ either into 

intracellular stores, such as the ER via the sarco-endoplasmic reticulum ATPase 

(SERCA), or out across the plasma membrane via plasmalemmal calcium pumps 

and exchangers (Fig. 2).  
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              Fig. 2 Calcium Signaling Pathways 

 

 

1.2.2 Presenilins and Calcium Homeostasis 

 

Familial Alzheimer’s Disease (FAD)-associated mutations in the presenilins were 

found to enhance IP3-mediated Ca2+ release from the ER stores (LaFerla 2002). The 

presenilins were identified in 1995 as multi-transmembrane proteins, which 

predominantly localized to the ER, and were postulated to form a novel ion channel. 

Their involvement in the AD pathogenesis was cemented with the discovery that the 

presenilins formed the catalytic core of the γ-secretase complex, which liberates Aβ 

from the membrane fragment C99 (Fig. 1). These FAD mutations lead to the 

formation of the more predominantly 42 amino acid long version Aβ, which 

aggregates more readily.  

The effects of FAD presenilin mutations on Ca2+ are very significant given that 

FAD presenilin mutations enhance Ca2+ release from the ER via the IP3 receptor 

(Leissring et al. 1999), the ryanodine receptor via caffeine (Smith et al. 2005), and 

through endogenous calcium leak channels (Tu et al. 2006), it was thought that these 

results could all be explained by an increase in ER Ca2+ load. However, the same 
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FAD-linked mutations have also shown a reduction in ER Ca2+ load and ER release 

with SERCA inhibition (Zatti et al. 2006). Thus, it is unclear whether all mutations 

increase ER Ca2+ or not. 

Foskett and colleagues (2008) perfomed direct IP3 channel recordings via single-

channel patch-clamp electrophysiology of the ER membrane, expressing presenilin 

or FAD-linked mutants. Overexpression of mutant presenilin 1 or 2 directly increased 

IP3 channel activity by prolonging the channel open time (Cheung et al 2008). 

Presenilin mutants appear to modulate the IP3 receptors directly, as they were 

found to physically interact and are known to co-localize to the ER membrane (Ma et 

al. 2000). 

Presenilin have been shown to interact with the ryanodine receptor, via its N 

terminus, and to increase the open channel probability and mean current 

(Rybalchenko et al. 2008), similar to that described with the IP3 receptor.  

Furthermore to these ‘‘gain-of-function’’ interactions with native ER calcium 

receptors, FAD-linked presenilin mutations have also been shown to have a ‘‘loss-of-

function’’ effect on ER Ca2+ dynamics by reducing endogenous Ca2+ leak from the 

ER (Tu et al. 2006). 

Overexpression of wild-type presenilins also accelerates the sequestration of 

cytosolic Ca2+, an effect that can be blocked by pharmacological inhibition of SERCA, 

suggesting that presenilins modulate SERCA function, and that SERCA pumping is 

impaired in the absence of both presenilins. Taken together, presenilins appear to 

interact and modulate Ca2+ influx into the ER via SERCA, and Ca2+ extrusion from 

the ER via interactions with the ryanodine and IP3 receptors. 

ER Ca2+ regulation results to be a critical determinant for the production of Aβ, in 

addition to plasma membrane influx pathways such as with CALHM1. 

 

1.3 The Sodium/Calcium Exchanger 

 

The Na+/Ca2+ exchanger (NCX) is one of the major means of Ca2+ extrusion at 

the plasma membrane of many excitable and non-excitable cells. 

The regulation of Ca2+ and Na+ homeostasis is a crucial physiological 

phenomenon in excitable cells. In fact, Ca2+ ions play a key role as a second 
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messenger in the cytosol and in the nucleus (Choi, 1988), while the Na+ ion regulates 

the cellular osmolarity, induces action potentials (Lipton, 1999), and it is involved in 

the signal translation (Yu et al., 1997). The control of this regulation is delegated to 

ionic channels selective for Ca2+ and Na+, to Na+ pumps, Ca2+ ATP-dependent and to 

NCX (Blaustein and Lederer 1999). 

 

1.3.1 Molecular Biology of NCX 

 

NCX belongs to the superfamily of membrane proteins comprising the following 

members: 

1) the NCX family, which exchanges three Na+ ions for one Ca2+ ion or four Na+ ions 

for one Ca2+ ion depending on [Na+]i and [Ca2+]i  (Reeves and Hale 1984; Fujioka et 

al. 2000; Hang and Hilgemann 2004); 

2) the Na+/Ca2+ exchanger K+-dependent family, which exchanges four Na+ ions for 

one Ca2+ plus one K+ ion (Schnetkamp et al. 1989; Lytton et al. 2002); 

3) the bacterial family which probably promotes Ca2+/H+ exchange (Cunningham KW 

and Fink 1996);  

4) the nonbacterial Ca2+/H+ exchange family, which is also the Ca2+ exchanger of 

yeast vacuoles; 

5) the Mg2+/H+ exchanger, an electrogenic exchanger of protons with Mg2+ and Zn2+ 

ions (Shaul et al. 1999). 

These membrane proteins are all peculiarly characterized by the presence of α-

repeats, the regions involved in ion translocation. Regarding the NCX family, three 

dominant genes coding for the three different NCX (Nicoll et al. 1990), NCX2 (Li et al. 

1994), and NCX3 (Nicoll et al. 1996) proteins have been identified in mammals. 

These three genes appear to be dispersed, since NCX1, NCX2, and NCX3 have 

been mapped in mouse chromosomes 17, 7, and 12, respectively (Nicoll et al. 1996). 

At the post-transcriptional level, at least 12 NCX1 and 3 NCX3 proteins are 

generated through alternative splicing of the primary nuclear transcripts. These 

variants arise from a region of the large intracellular f-loop, are encoded by six small 

exons defined A to F, and are used in different combinations in a tissue-specific 
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manner. To maintain an open reading frame, all splice variants must include either 

exon A or B, which are mutually exclusive (Quednau et al. 1997). 

NCX1 is composed of 938 amino acids in the canine heart and has a molecular 

mass of 120 kDa and contains nine transmembrane segments (TMS). NCX1 amino 

terminus (N-terminal) is located in the extracellular space, whereas the carboxyl 

terminus (C-terminal) is located intracellularly (Fig. 3). The nine transmembrane 

segments can be divided into an N-terminal hydrophobic domain, composed of the 

first five TMS (1–5), and into a C-terminal hydrophobic domain, composed of the last 

four TMS (6–9). These two hydrophobic domains are important for the binding and 

the transport of ions. The first (1–5) TMS are separated from the last four (6–9) TMS 

through a large hydrophilic intracellular loop of 550 amino acids, named the f-loop 

(Nicoll et al 1999). Although the f-loop is not implicated in Na+ and Ca2+ translocation, 

it is responsible for the regulation of NCX activity elicited by several cytoplasmic 

messengers and transductional mechanisms, such as Ca2+ and Na+ ions, NO, 

phosphatidylinositol 4,5 bisphosphate (PIP2), protein kinase C (PKC), protein kinase 

A (PKA), phosphoarginine (PA), and ATP. In the center of the f-loop, a region of 

approximately 130 amino acids in length (371–508 amino acids) has been reported 

to exert a Ca2+ regulatory function. This region is characterized by a pair of three 

aspartyl residues and by a group of four cysteines (Nicoll et al. 1999). At the N-

terminal end of the f-loop near the membrane lipid interface, an autoinhibitory 

domain, rich in both basic and hydrophobic residues and consisting of a 20-

aminoacid sequence (219–238), named exchange inhibitory peptide (XIP) (Matsuoka 

1997), has been identified. The f-loop is also characterized by alternative splicing 

sites named α1-repeat and α2-repeat. The NCX protein amino acid sequence found 

between TMS2 and TMS3 is called α-1 repeat, whereas the one found between 

TMS7 and TMS8 is named α-2 repeat. With electrophoretic gels and under non 

reducing conditions, NCX1 migrates as a 120- and a 70-kDa band. The 120-kDa 

band represents the native protein, and the 70-kDa protein is a proteolytic fragment, 

which includes a large part of the f-loop and retains an NCX activity.  

Interestingly, NCX2 and NCX3 have been found only in the brain and in the 

skeletal muscle. These two gene products consist of 921 and 927 amino acids and 

are characterized by molecular masses of 102 and 105 KDa, respectively. In 
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addition, NCX2 displays a 65% sequence identity with NCX1, whereas NCX3 

possesses a 73% sequence identity with NCX1 and 75% sequence identity with 

NCX2 (Nicoll et al. 1996). All three NCX gene products share the same membrane 

topology. 

 

 

Fig.3 Molecular pharmacology of NCX.  

 

NCX can facilitate both Ca2+ and Na+ flow in a bidirectional way through the 

plasma membrane (Blaustein and Lederer 1999; Philipson and Nicoll 2000) with a 

stoichiometry of 3 Na+ ions versus 1 Ca2+ ion. 

Depending on the intracellular levels of Na+ and Ca2+, NCX can operate in the 

forward mode by extruding one Ca2+ against three entering Na+, using the Na+ 

gradient across the plasma membrane as a source of energy (Blaustein and Lederer 

1999; Annunziato et al. 2004). Alternatively, in the reverse mode, NCX can function 

as Na+ efflux–Ca2+ influx. Because of its high exchange capacity, NCX is well-suited 

for rapid recovery from high intracellular Ca2+ concentrations ([Ca2+]i) and may play 

an important role in maintaining Ca2+ homeostasis and protecting cells from Ca2+ 

overload and eventual death (Blaustein and Lederer 1999; Annunziato et al. 2004). 
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1.3.2 NCX Regulation  

 

Several factors are involved in the regulation of NCX activity: the two transported 

ions, Na+ and Ca2+, the intracellular pH, metabolic related compounds, ATP, PA, 

PIP2, PKA, and PKC, redox agents, hydroxyl radicals, H2O2, dithiothreitol (DTT), O2-, 

Fe3+, Fe2+, Cu2+, OH°, glutathione reduced (GSH), and glutathione oxidized (GSSG) 

and finally the gaseous mediator, NO.  

 

1.3.2.1 Intracellular Ca2+ Concentrations 

 

The site level at which [Ca2+]i regulates NCX activity is different from the one 

required for Ca2+ transport. In fact, submicromolar concentrations (0.1– 0.3 µM) of 

intracellular Ca2+ are needed to activate the antiporter (Di Polo 1976; Hilgemann et al 

1992). Indeed, the removal of intracellular Ca2+ ions completely blocks NCX activity 

(Philipson and Nicoll 2000). This regulatory function of low micromolar Ca2+ is more 

evident when the Na+/Ca2+ exchanger is working in the reverse mode. However, it is 

not completely clear how low µM Ca2+ can also regulate NCX when it operates in the 

forward mode (Matsuoka et al, 1997). The location of such a regulatory site has been 

identified in the 134 amino acid length region, situated in the center of the 

intracellular f-loop. This region is characterized by a pair of three aspartyl residues 

and by a group of four cysteines. 

 

1.3.2.2 Intracellular Na+ Concentrations 

 

In addition to the submicromolar intracellular Ca2+ regulatory site, an increase in 

[Na+]i can also regulate the Na+/Ca2+ exchanger (Hilgemann 1990). In particular, 

when intracellular Na+ increases, it binds to the transport site of the exchanger 

molecule, and after an initial fast outward Na+/Ca2+ current, an inactivation process 

occurs (Hilgemann et al. 1992). This inactivation process, very similar to the 

phenomenon occurring in voltage-dependent ionic channels, is named Na+-

dependent inactivation. The region of the intracellular f loop, in which this regulatory 
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site is located, has been identified in a 20-amino acid portion of the N-terminal part of 

the loop termed XIP (Matsuoka et al. 1997). Studies in vitro have characterized a 

negatively charged region of the intracellular f loop (445–455 amino acids) of the 

NCX protein that is able to cross link with synthetic XIP, suggesting that this amino 

acid sequence constitutes the binding site of XIP. On the other hand, since deletion 

mutagenesis of amino acids 562 to 685 results in an exchange activity that is no 

longer regulated by XIP, it is likely that XIP interacts with residues 445 to 455 and 

with another region of the f loop located between residues 562 and 685. Indeed, this 

region is believed to be a Na+ regulatory site. Regarding the mechanism by which 

XIP inhibits NCX activity, it has been proposed that when the XIP-binding site is 

ligand occupied, a conformational change is induced in the C-terminal portion of the f 

loop, resulting in the inhibition of the ion transport. XIP is provided with relevant 

pharmacological implications. In fact, those exogenous peptides, having the same 

amino acid sequence as XIP, act as potent inhibitors of NCX activity (Pignataro et al. 

2004). Interestingly, Ca2+ ions, at low micromolar concentrations, binding its 

regulatory site, decrease the extent of this Na+-dependent inactivation. In fact, 

mutations in the Ca2+ regulatory binding site alter the activation and inactivation 

kinetics of exchange currents by modulating Na+-dependent inactivation. 

 

1.3.2.3 Intracellular H+ Concentrations 

 

H+ strongly inhibits NCX activity under steady-state conditions. Changes in 

intracellular pH values, as little as 0.4, can induce a 90% inhibition of NCX activity. 

Since this H+ ion modulatory action is α1-chymotrypsin sensitive, the action site of 

the proton can be attributed to the antiporter’s hydrophilic intracellular loop 

(Annunziato et al. 2004). Intriguingly, such inhibitory action depends on the presence 

of intracellular Na+ ions (Doering and Lederer 1994). Hence, the action exerted by H+ 

ions is pathophysiologically relevant with regards to brain and heart ischemia. In fact, 

when intracellular H+ and Na+ ion homeostasis is deregulated, the anoxic conditions 

resulting in these cells may selectively interfere with the activity of the different NCX 

gene products. In particular, increases of H+ and Na+, as in anoxic conditions, 

sinergically inhibit NCX activity (Di Polo and Beauge 2002).  
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1.3.2.4 ATP, PKA, PKC, and PIP2 

 

Acting as a phosphoryl donor molecule, ATP may increase the activity of the 

exchanger in a number of ways. Firstly, ATP directly participates in the NCX 

molecule phosphorylation process by PKA and PKC. Secondly, it increases PIP2 

production. Finally, by activating G-protein-coupled receptors, via endogenous and 

exogenous ligands, ATP can stimulate the activity of the Na+/Ca2+ exchanger through 

the pathway involving PKC or PKA activation (Annunziato et al. 2004). The 

mechanism underlying the phosphorylating effect on the exchanger seems to be 

related to an increase in its affinity for both internal Ca2+ and external Na+ and to a 

decrease in its inhibition by internal Na+. Each of the NCX isoforms has distinctive 

putative phosphorylation sites, although their roles have not yet been elucidated 

(Linck et al. 1998). ATP cellular depletion inhibits NCX1 and NCX2 but does not 

affect NCX3 activity. The exchange activity of NCX1 and NCX3 is modestly increased 

by those agents that activate PKA and PKC (Linck et al. 1998). More recently, the 

mechanism by which PKA and PKC activate NCX has been clarified. In fact, it has 

been demonstrated that the regulation of PKA-induced phosphorylation is due to the 

existence of an NCX1 macromolecular complex that contains the kinase PKA 

holoenzyme. This holoenzyme consists of two PKA catalytic subunits and two 

identical PKA regulatory subunits (Schulze et al. 2003). Together with PKA, other 

critical regulatory enzymes are also associated with NCX1, including PKC and 

serine-threonine protein phosphatases, PP1 and PP2A (Schulze et al. 2003). 

Particularly a pathway involving PKC has been shown to stimulate NCX1 (Iwamoto et 

al. 1996; Iwamoto et al. 1995). In a more recent paper, it has been demonstrated that 

PKC-dependent regulation of NCX isoforms also involves NCX3 but not NCX2 

(Iwamoto et al. 1998). In the same paper, three phosphorylation sites in the NCX1 

protein, Ser-249, Ser- 250, and Ser-357, have been identified. Among these, Ser-250 

is the amino acid that is predominantly phosphorylated (Iwamoto et al. 1998). The 

other mechanism by which ATP can activate NCX occurs through PIP2 production. 

This mechanism of activation is related to the relevant PIP2 influence on Na+-

dependent inactivation of NCX. In fact, PIP2 directly interacts with the XIP region of 
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the exchanger, thus eliminating its inactivation and stimulating NCX function. Indeed, 

exchangers with mutated XIP regions no longer respond to PIP2 or to PIP2 

antibodies (Hingelmann et al. 1992).  

 

1.3.2.5 Redox Agents 

 

In the last 15 years, several groups of investigators using different cellular 

models, such as cell-expressing cloned splicing variants of the brain, heart isoforms, 

cardiac sarcolemma vesicles, cells transiently transfected with NCX1 isoform, and 

giant excised patches, have found that the Na+/Ca2+ exchanger is sensitive to 

different combinations of redox agents (Reeves et al. 1986; Amoroso et al. 2000). In 

particular, the stimulation of the exchange activity requires the combination of a 

reducing agent (DTT, GSH, or Fe2+) with an oxidizing agent (H2O2 and GSSG). The 

effects of both agents are mediated by metal ions (e.g., Fe2+). The antiporter’s 

sensitivity to changes in the redox status can assume particular relevance during 

oxidative stress. In fact, in this condition, the modulation of reactive oxygen species 

(ROS) could affect the transport of Na+ and Ca2+ ions through the plasma membrane.  

 

1.3.2.6 Nitric Oxide 

 

The ubiquitous gaseous mediator Nitric Oxide (NO) seems to be involved in the 

modulation of NCX activity. In fact, Asano et al. (1995) provided evidence that NO, 

released by NO donors, is able to stimulate NCX in the reverse mode of operation in 

neuronal preparations and astrocytes through a cGMP-dependent mechanism. In 

contrast, in C6 glioma cells, the stimulatory action on NCX reverse mode of 

operation, elicited by the NO donor sodium nitroprusside (SNP), is not elicited by NO 

release but by the presence of iron in SNP molecule (Amoroso et al. 2000). In 

addition, a direct relationship between the constitutive form of nitric oxide synthase 

(NOS), the enzyme involved in NO synthesis, and NCX has recently been 

demonstrated. Indeed, heat stress by inducing NOS phosphorylation causes NOS 

complexation with NCX, thus decreasing its activity. Very recently, we have 
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demonstrated the selectivity of NO in modulating each isoform at different molecular 

determinant level (Secondo et al. 2010). 

 

1.3.3 NCX Role in Physiological Conditions 

 

The NCX protein may play a relevant function in different neurophysiological 

conditions. In neurons, the level of expression of NCX is particularly high in those 

sites where a large movement of Ca2+ ions occurs across the plasma membrane, as 

it happens at the level of synapses (Annunziato et al. 2004). Specifically, during an 

action potential or after glutamate-activated channel activity, Ca2+
 massively enters 

the plasma membrane. Such phenomenon triggers the fusion of synaptic vesicles 

with the plasma membrane and promotes neurotransmitter exocytosis. After this 

event, outward K+ currents repolarize the plasma membrane, thus leading to VOCC 

closure. According to the diffusion principle, Ca2+ ions are distributed in the cytosolic 

compartment, reversibly interacting with Ca2+-binding proteins. Residual Ca2+ is then 

rapidly extruded by the plasma membrane Ca2+ ATPase and by NCX.  

The NCX becomes the dominant Ca2+ extrusion mechanism when [Ca2+]i is 

higher than 500 nM, as it happens when a train of action potentials reaches the nerve 

terminals. It has been calculated that for these [Ca2+]i values (500 nM), more than 

60% of Ca2+ extrusion is mediated by NCX families. In such physiological conditions, 

NCX activation is consistent with its low-affinity (Kd=500 nM) and high-capacity (5 X 

103 Ca2+/s) function. In contrast, in resting conditions or after a single action potential, 

when [Ca2+]i slightly increases, requiring, therefore, a more subtle control, the high-

affinity (Kd=100 nM) and low-capacity (102 Ca2+/s) pump, plasma membrane Ca2+-

ATPase, assumes a predominant function, thus making the involvement of NCX less 

relevant (Blaustein and Lederer 1999). 

 

1.3.3.1 NCX genes knocking-out effect 

 

ncx1-, ncx2- and ncx3-specific knockout mice were generated over the past 

decade (Jeon et al. 2003; Sokolow et al. 2004; Wakimoto et al. 2003). 
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These mouse models are useful tools for elucidating NCX1–3 specific function in 

physiological and pathophysiological processes in the central nervous system (CNS). 

NCX1-deficient mice are not viable. NCX1 null-mutation caused embryonic lethality, 

irregular heartbeats and apoptosis in the heart (Wakimoto et al. 2003; Koushik et al. 

2001). Recent studies indicated that cardiac-specific transgenic re-expression of 

NCX1 was not enough to rescue the lethal phenotype, suggesting an important non-

cardiac role for NCX1 during embryogenesis (e.g. vascularization of yolk sac, 

placental development) (Cho et al. 2003; Conway et al. 2002). Mice lacking NCX2 

exhibit enhanced learning and memory (Jeon et al. 2003). Targeted disruption of 

NCX3 leads to defective neuromuscular transmission (Sokolow et al. 2004). Under 

ischemic conditions, NCX3-deficient mice exhibit increased neuronal damage 

(Molinaro et al. 2008; Cross et al. 2009). Studies also showed that NCX plays a 

major role in restoring baseline Ca2+ levels following glutamate-induced 

depolarization in cortical and hippocampal neurons (Jeon et al. 2003; Ranciat-

McComb et al. 2000). These findings highlight NCX function in the regulation of Na+ 

and Ca2+ following synaptic activity. 

 

1.3.4 NCX Role in Pathophysiological Conditions 

 

The disregulation of [Ca2+]i and [Na+]i homeostasis is involved in neuronal and 

glial injury occurring in in vitro and in vivo models of hypoxia-anoxia and in several 

neurodegenerative diseases. 

In a cellular model of glial cells, C6 glioma, the activation of NCX, in reverse 

mode, obtained by [Na+]e removal, reduces cell injury induced by chemical hypoxia. 

Such phenomenon suggests that the antiporter plays a protective role during this 

pathophysiological condition. Consistent with these results, the pharmacological 

inhibition of NCX activity worsens cell damage by increasing the intracellular 

concentration of Na+ ions (Amoroso et al. 1997). Furthermore, the stimulation of NCX 

activity by redox agents results in a protective effect (Amoroso et al. 2000; Sirabella 

et al. 2009) against hypoxia as well as the overexpression of NCX3 (Secondo et al. 

2007). Published evidence demonstrated that Ca2+ influx due to NCX activity in 

reverse mode is the main component of the excitotoxicity damage (Kiedrowski 1999). 
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More papers highlighted the different roles played by the different NCX isoforms 

in the cell survival modulation in cellular death models. For example, NCX3 is 

neuroprotective during an ischemia insult in vitro both in neuronal models and in cells 

transfected with only this isoform. This role is attributable to the NCX3 ability to buffer 

the cytosolic Ca2+ by the forward mode of operation, like during glutamate increase or 

chemical ipoxia insult (Secondo et al. 2007). In particular Bano et al. (2005) showed 

that NCX is cleaved by calpains in brain ischemia and in cultured cerebellar granule 

neurons exposed to glutamate. Calpains (Mellgren et al. 1989; Murachi et al. 1987) 

modulate a variety of physiological processes (Robles et al. 2003) but can also 

become important mediators of cell death (Neumar et al. 2003). Ample evidence 

documents the activation of calpains in brain ischemia and excitotoxic neuronal 

degeneration (Lankiewicz et al. 2000; Leist et al. 1997; Siman and Noszek 1988). 

In in vivo models, reproducing human cerebral ischemia through the occlusion of 

the middle cerebral artery, the inhibition of NCX, induced by selective inhibitors 

(Pignataro et al. 2004) or by the knockout of one of the NCX isoforms (NCX2) (Jeon 

et al. 2003) or NCX3 (Molinaro et al. 2008) aggravates brain infarct, whereas the 

activation of the antiporter with redox agents reduces the cerebral infarctual area 

(Pignataro et al. 2004).  

The role played by NCX in those neurons and glial cells involved in cerebral 

ischemia should be differentiated according to the anatomical regions involved in the 

ischemic pathological process. In particular, it is conceivable that, since in the 

penumbral region ATPase activity is still preserved, NCX may likely operate in a 

forward mode. As a result, by extruding Ca2+ ions, the exchanger favors the entry of 

Na+ ions. Therefore, the inhibition of NCX in this area reduces the extrusion of Ca2+ 

ions, thus enhancing Ca2+-mediated cell injury. In contrast, in the ischemic core 

region, in which ATP levels are remarkably low and Na+/K+ ATPase activity is 

reduced, intracellular Na+ ions massively accumulate because of Na+/K+ ATPase 

failure (Boscia et al. 2006).  

Hence, the intracellular Na+ loading promotes NCX to operate in the reverse 

mode as an Na+ efflux-Ca2+ influx pathway.  
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In conclusion, the NCX pharmacological inhibition in this core region further 

worsens the necrotic lesion of the surviving glial and neuronal cells as the loading of 

intracellular Na+ increases (Pignataro et al. 2004).  

The “Ca2+ hypothesis” provides an attractive mechanism to explain the cell 

death associated with AD. The theory proposes that cell death results from elevated 

[Ca2+]i.  

The acute or chronic in [Ca2+]i rise may exist lead the cell to an irreversible 

pathway of necrosis and/or apoptosis. If true, derangements in several Ca2+ 

homeostatic processes could simultaneously contribute to and be responsible for a 

persistent rise in [Ca2+]i. Peterson (1992) documents the many changes that occur in 

Ca2+ homeostatic processes in the aging brain and AD. A large bulk of studies have 

shown that the neurotoxicity exerted by Aβ protein is intimately related to [Ca2+]i. 

Indeed, the attenuation of [Ca2+]i increase by Ca2+ channel blockers, growth factors, 

and cytochalasins results in a reduction of neural damage induced by the Aβ peptide. 

It has been demonstrated that exposure to the Aβ protein partially reduces Na+-

dependent Ca2+ accumulation in plasma membrane vesicles deriving from the human 

frontal cortex of patients affected by AD. These findings have suggested that Aβ 

directly interacts with the hydrophobic surface of the NCX molecule, thus interfering 

with plasma membrane Ca2+ transport (Yu et al. 1997). 

Many evidence are in literature in support of the “Ca2+ hypothesis of AD”. Where 

does the NCX become involved in this mechanism? NCX would be expected to be 

neuroprotective in situations where elevations in [Ca2+]i are leading to cell death. This 

neuroprotective role was proposed to explain increased NCX activity in AD brain 

(Colvin et al. 1991). In this model, neurons that survived the neurodegenerative 

elevations in [Ca2+]i caused by AD did so because they had increased capacity for 

NCX. This increased capacity for NCX in surviving neurons was manifested as 

increased Na+-dependent Ca2+ uptake in plasma membrane vesicles derived from 

AD brain (Colvin et al. 1994).  

Changes in the Ca2+ transport rate of the NCX in neurons could be caused by 

both changes in the NCX isoforms expression or in the lipid composition (Moson et 

al. 1992) of the plasma membrane.  
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The generation of NCX1–3 specific antibodies has allowed the study of their 

specific expression in terminals isolated from AD and cognitively normal individuals. 

Sokolow et al. (2011) demonstrated for the first time that selective changes occur in 

the pattern of NCX1–3 protein expression in AD synaptosomes. Major findings can 

be summarized as follows: (i) NCX1–3 are widely expressed in human synaptosomes 

isolated from parietal cortex of AD and control patients; (ii) NCX2 expression was 

modestly but significantly increased and NCX3 levels were significantly reduced in 

AD terminals compared to controls and (iii) all NCX isotypes co-localized with Aβ in 

AD parietal cortex. NCX1 is 1.5 times more abundant than NCX2 and NCX3 in the 

parietal cortex of cognitively normal patients. Quantitative flow cytometry also 

showed that NCX2 levels were increased and NCX3 levels reduced in the parietal 

cortex of AD patients. NCX2 up-regulation in AD terminals may be the result of a 

compensatory mechanism to balance the loss of NCX3 expression. A net increase of 

NCX proteins may result in increased NCX activity in AD brains (Colvin et al. 1994). 

The present experiments demonstrated co-localization of NCX1, NCX2 and NCX3 

with Aβ, and all three NCX isoforms were up-regulated in pathological terminals that 

contained Aβ. Increased levels of NCX1, NCX2 and NCX3 in Aβ-positive terminals 

are likely to follow oligomeric Aβ–induced Ca2+ imbalance and may be an indication 

of the participation of NCX1–3 in Ca2+ homeostasis in surviving synapses affected by 

the intra-terminal toxicity of Aβ oligomers (Green et al. 2008). 

The possibility that NCX is a substrate for caspases was suggested by the 

demonstration that in Western blot analysis the full-length 120-kDa NCX1 protein co-

purifies with an active proteolytic fragment of 70 kDa (Philipson et al. 1988); this latter 

segment is likely to derive from a proteolytic cleavage at the level of two close sites of 

the NCX intracellular f-loop. More recently, Nicotera, Carafoli, and colleagues 

claimed that NCX1 can be cleaved by caspase 3 in cerebellar granule cells 

undergoing apoptosis, thus suggesting that NCX possesses consensus sites for 

caspases. As a result, the NCX cleavage operated by caspases might participate in 

the events leading neurons to switch from apoptosis to necrosis (Schwab et al. 

2002). In fact, when cellular Ca2+ efflux is hindered by NCX failure, a Ca2+ overload 

occurs, shifting the balance of neuronal death from apoptosis to necrosis (Schwab et 

al. 2002). 
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Release of Ca2+ ions from internal calcium stores may gain access Ca2+ to the 

neuronal cytoplasm via ion channels or calcium transport systems, or through the 

release of Ca2+ ions from intracellular stores. Depletion of Ca2+ ions from the ER has 

been suggested as an initial signal for ER dysfunction in ischemic neurons. Many 

studies indicate that a strong release of calcium ions from ER is associated with 

damage to cells, including damage to neurons after ischemia. Deregulation of ER 

Ca2+ homeostasis following ischemia involves two phases: accumulation of Ca2+ in 

ER stores and subsequent release of Ca2+ from ER following 

ischemia/reoxygenation.  

Consistent with an elevation of NCX activity and in accordance with normal 

[Ca2+], Sirabella et al. (2009) showed that in primary cortical neurons, transcript and 

protein expression of the three isoforms, NCX1, NCX2, and NCX3, respond 

differently to anoxic injury. In particular, 3 hours of OGD (Oxygen Glucose 

Deprivation) induced an NF-kB-dependent up-regulation of NCX1 and a proteasomal-

dependent NCX3 down-regulation, leaving, however, NCX2 unaffected. These 

changes in NCX isoform expression during OGD were accompanied by increases in 

NCX currents (INCX), both in the reverse and forward modes of operation, and by 

cytosolic Ca2+ levels comparable to those found under normoxic conditions. 

Consistent, with an elevation of NCX activity and in accordance with normal cytosolic 

[Ca2+], they found that during OGD, an increased refilling of Ca2+ into ER occurred. 

This augmented refilling was prevented by NCX inhibition and by NCX1 knocking-

down, thus suggesting that this plasma membrane antiporter is crucial for the Ca2+ 

refilling process. Interestingly, when this refilling process was prevented by the 

plasma membrane NCX blockade or by NCX1 knocking-down, an activation of 

caspase-12, a specific marker of ER stress, occurred together with an increased 

neuronal vulnerability to OGD. Altogether these data suggested the protective role 

played by NCX when it works in the reverse mode. In fact, the increase in free Ca2+ 

concentration, indeed by NCX, within the ER appears to be a protective key factor in 

that it determines the synthesis and processing of proteins within this organelle, a 

crucial early self-protective mechanism against ER stress. By contrast, its depletion 

activates neuronal cell death signals. Intriguingly, it is also well known that Ca2+ 

accumulation and NF-kB translocation into the nucleus constitute relevant self-
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protective mechanisms against ER stress. Remarkably, whereas the transcriptional 

factor NF-kB, induced by ROS, was responsible for NCX1 up-regulation in cortical 

neurons exposed to OGD, the inhibition of its translocation into the nucleus prevented 

NCX1 overexpression. Unlike NCX1, the other brain-specific isoform NCX3 displayed 

a down-regulation during OGD that was not exerted at the transcriptional level but 

was rather proteasomal-dependent. Particularly, evidence that proteasome inhibition 

did not affect basal NCX3 expression suggests that this system is specifically 

activated by OGD. Interestingly, the proteasomal system appears to be involved in 

the early phase of ER stress as an upstream signal able to induce caspase and 

calpain activation. In addition to the effect of the proteasomal system, the NCX3 

downregulation could also be ascribed to the activation of calpains involved in 

glutamate-induced excitotoxicity in cerebellar granule cells. However, current findings 

demonstrated that the inhibition of the proteasomal system completely prevented 

OGD-induced NCX3 down-regulation, thereby suggesting that under OGD, this 

degradation pathway is the only operative system.  

In agreement with the data showing that there was an up-regulation of NCX1 

expression, we found that the total INCX recorded in the reverse and forward modes of 

operation were higher than those in controls at 1 and 3 hours after OGD. However, 

the re-exposure of cortical neurons to 24 hours of reoxygenation significantly reduced 

INCX in the reverse mode. Noticeably, the enhancement of INCX began just 1 hour after 

OGD, a time when no increases in NCX1 protein expression were detected. This 

evidence suggested that this INCX increase was most likely due to an OGD-induced 

functional modulation rather than protein overexpression. This assumption was 

further confirmed by cytosolic Ca2+ variations observed during OGD. The increase in 

[Ca2+]i after 1 hour of hypoxia was probably due to the increased activity of NCX in 

the reverse mode during the same time period, whereas its return to control levels 

after 3 hours of OGD was probably the result of NCX-dependent Ca2+ refilling into 

ER. In fact, this refilling was blocked by CB-DMB and by siRNA against NCX1. In 

agreement with these results, in anoxic astrocytes and in Ca2+ oscillating muscle 

cells, NCX blockade prevents ER Ca2+ refilling (Sirabella et al. 2009). 
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2. AIM OF THE STUDY 

 

Owing to this evidence, by means of patch-clamp, Fura-2AM microfluorimetry, 

western blot, site-directed mutagenesis, deletions, and chimera strategies, we 

characterized: 

(a) The Aβ1-42-effects on the expression and the activity of NCX;  

(b) The molecular mechanisms underlying Aβ1-42-mediated effects on NCX isoforms;  

(c) The molecular determinants responsible for Aβ1-42-effects on NCX; 

(d) The role of NCX isoforms in Ca2+-refilling into ER, caspase-12 activation, 

apoptosis, and neuronal death induced by Aβ1-42. 
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3. MATERIALS AND METHODS 

 

Aβ1-42 and mouse monoclonal anti-β-Actin (1:1000), as well as all other 

unmentioned materials, were from Sigma Chemicals (St. Louis, MO, USA). Nerve 

Growth Factor (NGF 2.5S) and Tetrodotoxin (TTX) were from Alomone Labs 

(Jerusalem, Israel). Rabbit polyclonal anti-Caspase12 (1:500) and goat polyclonal 

anti-Calpain (1:500) antibodies were purchased from Santa Cruz Biotechnology 

(Santa Cruz, California, USA). Rabbit polyclonal antibody anti-NCX3 (1:5000) was 

kindly provided by Dr K. D. Philipson and Dr D. A. Nicoll (Los Angeles, California, 

USA) whereas mouse monoclonal anti-NCX1 (1:1000) was from Swant (Bellinzona, 

Switzerland). 

RPMI 1640, horse serum (HS), fetal bovine serum (FBS), Dulbecco's Modified 

Eagle's (DMED), Nutrient Mixture F-12 (Ham's F-12), L-glutamine, fetal calf serum 

(FCS), Earle’s balanced salt solution (EBSS), and phosphate buffed saline (PBS) 

were from Gibco-BRL (Grand Island, NY, USA). Protease inhibitor cocktail II was 

purchased from Calbiochem (San Diego, CA, USA). 

 

3.1 Cell cultures 

  

3.1.1 BHK cells 

 

The baby hamster kidney (BHK) cells, stably transfected with canine cardiac 

NCX1 or rat brain NCX3, were grown on plastic dishes in a mix of DMEM and Ham's 

F12 media (1:1) (Gibco, Invitrogen, MI, Italy) supplemented with 5% fetal bovine 

serum, 100U/ml penicillin, and 100µg/ml streptomycin. Cells were cultured in a 

humidified 5% CO2 atmosphere; the culture medium was changed every 2 days. For 

microfluorimetric and electrophysiological studies, cells were plated on glass 

coverslips (Fisher, Springfield, NJ, USA) coated with poly-L-lysine (30µg/ml) and 

used at least 12 hours after plating (Secondo et al. 2007). 
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3.1.2 PC-12 cells 

 

Rat pheochromocytoma cells (PC-12 cells) were grown as previously described 

(Pannaccione et al. 2005). For all the experiments, cells were seeded at low density 

on glass cover-slips coated with poly-L-lysine (50µg/ml). Differentiation of PC-12 cells 

was achieved by NGF 2.5S treatment (50ng/ml) for 7-9 days (Greene and Tischler 

1976).  

 

3.1.3 Mouse hippocampal neurons 

 

Hippocampal neurons were obtained from the brains of 18-day-old C57BL/6 wild-

type, ncx3+/+, and ncx3–/– mice embryos as previously described (Scorziello et al. 

2001). Cytosine-β-D-arabino-furanoside (5µM) was added after 5 days of plating to 

prevent the growth of non-neuronal cells. In all experiments, neurons were cultured in 

a humidified atmosphere at 37°C with 5% CO2, and used after 8 days of culturing 

(8DIV). 

 

3.2 Aββββ1-42 peptide treatment 

 

Aβ1-42 was prepared as 0.1mg/0.1ml stock solution in sterile PBS incubated at 

37°C for 24 hours to enhance aggregation, and stored at -20°C. Stock solution was 

then directly diluted in cell culture media to give the desired experimental 

concentrations (5µM).  

 

3.3 RNA Silencing  

 

The pSUPER.retro.puro vector (OligoEngine) was used to express siRNA against 

NCX1 (siNCX1) or NCX3 (siNCX3) in PC-12 cells. In particular, two complementary 

oligonucleotides were annealed and inserted into pSUPER.retro.puro according to 

the manufacturer’s instructions. The gene-specific siNCX1 and siNCX3 contain the 

19-nucleotide sequence corresponding to the nucleotides 2000-2018 and 124-142 
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downstream of the transcription start site of rat NCX1 (GenBank accession no. 

NM_019268) and of rat NCX3 (GenBank accession no. U53420), respectively. For 

both siRNAs, the mismatch sequences cloned in the same vector were used as 

experimental controls and were ineffective on NCX1 or NCX3 protein expression. 

After 15 hours of plating, PC-12 cells were transfected with pSUPER-NCX1, 

pSUPER-NCX3 or pSUPER-control by means of lipofectamine standard protocol. 

After 48 hours, cells were lysed and used to quantify NCX1 or NCX3 protein 

expression or treated with NGF for 7 days. 

 

3.4 Generation and stable expression of wild-type, mutant, and 

chimeric NCX 

 

Dog heart NCX1.1 and rat brain NCX3.3 cDNAs, both generous gifts from Dr. K. 

Philipson (UCLA, Los Angeles, California, USA), were cloned into pcDNA3.1 

expression vector. NCX3 mutants were generated by means of QuikChange site-

directed mutagenesis kit (Stratagene, Italy). Briefly, NCX3∆f mutant was obtained by 

removing the amino acid region 292-708 from NCX3WT; NCX3KK370WW was obtained 

by replacing the amino acids lysin370 and lysin371 with tryptophan370 and 

tryptophan371; N-NCX3 was generated by site-directed mutagenesis of the amino 

acids lysin371, histidin372 and alanin373 in a triple stop codon; C-NCX3 was generated 

by cloning the amino acid region 513-927 of NCX3WT cDNA in the expression vector 

pEGFP-C2 (Clontech, USA). All mutants were verified by whole sequencing on both 

DNA strands (Primm, Milan, Italy). NCX1/NCX3 chimeras, cloned into pKCRH 

expressing vector, were a generous gift from Dr. T. Iwamoto (Fukuoka University, 

Fukuoka, Japan). 

Wild-type, mutant, and chimeric exchangers were transfected in the BHK cell line 

by Lipofectamine 2000 (Invitrogen, Italy) following the manufacturer’s instructions. 

Stable cell lines were selected by G418 resistance and by a Ca2+-killing procedure. 
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3.5 Electrophysiology 

 

NCX currents were recorded from primary hippocampal mouse neurons, NGF-

differentiated PC-12, and BHK cells at 20−22°C by the patch-clamp technique in 

whole-cell configuration using a commercially available amplifier and Digidata 1322A 

interface (Molecular Devices, Sunnyvale, CA) as previously described (Molinaro et al. 

2008; He et al. 2003). NCX currents were recorded starting from a holding potential 

of −60 mV up to a short-step depolarization at +60 mV (60 ms). Then, a descending 

voltage ramp from +60 mV to −120 mV was applied. The current recorded in the 

descending portion of the ramp (from +60 mV to −120 mV) was used to plot the 

current–voltage (I–V) relation curve. The magnitude of INCX was measured at the end 

of +60 mV (reverse mode) and at the end of −120 mV (forward mode), respectively. 

The Ni2+-insensitive component was subtracted from total currents to isolate INCX. In 

addition, the potassium, sodium and calcium currents were abolished by means of 

20mM tetraethylammonium (TEA), 50 nM tetrodotoxin (TTX), and 10 µM nimodipine.  

The neurons were perfused with external Ringer’s solution containing the 

following (in mM): 126 NaCl, 1.2 NaHPO4, 2.4 KCl, 2.4 CaCl2, 1.2 MgCl2, 10 glucose, 

and 18 NaHCO3, pH 7.4. 20 mM TEA, 50nM TTX, and 10µM nimodipine were added 

to Ringer’s solution. The dialyzing pipette solution contained the following (in mM): 

100 K-gluconate, 10 TEA, 20 NaCl, 1 Mg-ATP, 0.1 CaCl2, 2 MgCl2, 0.75 EGTA, and 

10 HEPES, adjusted to pH 7.2 with Cs(OH)2. Possible changes in cell size occurring 

after specific treatments were calculated by monitoring the capacitance of each cell 

membrane, which is directly related to membrane surface area, and by expressing 

the current amplitude data as current densities (pA/pF). Capacitive currents were 

estimated from the decay of the capacitative transient induced by 5mV depolarizing 

pulses from a holding potential of –80mV and acquired at a sampling rate of 50kHz. 

The capacitance of the membrane was calculated according to the following equation: 

Cm=τc·Io/∆Em(1-I∞/Io), where Cm
 is the membrane capacitance, τc is the time constant 

of the membrane capacitance, Io is the maximum capacitance current value, ∆Em
 is 

the amplitude of the voltage step, and I∞ is the amplitude of the steady-state current.  
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3.6 [Ca2+]i measurement  

 

[Ca2+]i was measured by single cell computer-assisted videoimaging (Secondo et 

al. 2007). Briefly, primary hippocampal neurons, NGF-differentiated PC-12, and BHK 

cells, grown on glass coverslips, were loaded with 10µM Fura-2 acetoxymethyl ester 

(Fura-2AM) (Calbiochem, San Diego, CA, USA) for 30 minutes at 37°C. At the end of 

the Fura-2AM loading period, the coverslips were placed into a perfusion chamber 

(Medical System, Co. Greenvale, NY, USA) mounted onto a Zeiss Axiovert 200 

microscope (Carl Zeiss, Germany) equipped with a FLUAR 40X oil objective lens. 

The experiments were carried out with a digital imaging system composed of 

MicroMax 512BFT cooled CCD camera (Princeton Instruments, Trenton, NJ, USA), 

LAMBDA 10-2 filter wheeler (Sutter Instruments, Novato, CA, USA), and Meta-

Morph/MetaFluor Imaging System software (Universal Imaging, West Chester, PA, 

USA). After loading, cells were alternatively illuminated at wavelengths of 340 nm 

and 380 nm by a Xenon lamp. The emitted light was passed through a 512 nm 

barrier filter. Fura-2AM fluorescence intensity was measured every 3 seconds. 

Ratiometric values were automatically converted by the software into [Ca2+]i using a 

preloaded calibration curve obtained in preliminary experiments as previously 

reported (Grynkiewicz et al. 1985). NCX activity was evaluated as Ca2+ uptake 

through the reverse mode by switching the normal Krebs medium to Na+-deficient 

NMDG+ medium (Na+-free) (in mM): 5.5 KCl, 147 N-methyl glucamine, 1.2 MgCl2, 1.5 

CaCl2, 10 glucose, and 10 Hepes–NaOH (pH 7.4). In the experiments involving the 

use of the irreversible and selective inhibitor of the ER Ca2+ ATPase (SERCA) 

thapsigargin (Tg) (1µM), this compound was added to the medium 10 minutes before 

the beginning of the recordings, as previously described (Secondo et al 2007). NCX 

activity was calculated as ∆% of peak/basal [Ca2+]i values after the perfusion with a 

Na+-free medium. 

 

3.7 Assessment of nuclear morphology 

 

Nuclear morphology was evaluated by using the fluorescent DNA-binding dye 

Hoechst-33258. To this aim, cells were fixed in 4% paraformaldehyde and incubated 
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for 5 minutes in PBS containing 1µg/ml Hoechst-33258 at 37°C. Coverslips were 

mounted on glass slides and observed with the fluorescence microscope Nikon 

Eclipse E400 (Nikon, Torrance, CA, USA). Digital images were taken with a 

CoolSNAP camera (Media Cybernetics Inc, Silver Spring, MD, USA), stored on the 

hard-disk of a Pentium III computer, and analyzed with the Image-Pro Plus 4.5 

software (Media Cybernetics Inc, Silver Spring, MD, USA). Pathological nuclei were 

characterized by chromatin condensation (pyknosis) and fragmentation, or by 

decreases and increases in size (Pannaccione et al. 2005). 

 

3.8 Western-blot analysis 

 

After treatment, cells were lysed with a buffer containing 20mM Tris–HCl (pH 

7.5), 10mM NaF, 1mM phenylmethylsulfonyl fluoride, 1% NONIDET P-40, 1mM 

Na3VO4, 0.1% aprotinin, 0.7 mg/ml pepstatin and 1µg/ml leupeptin. Samples were 

cleared by centrifugation and supernatants were used for Western blot. Protein 

concentration in supernatants was determined by Bradford method (Bradford, 1976). 

Protein samples (50µg) were analyzed on 8% sodium dodecyl sulfate polyacrilamide 

gel with 5% sodium dodecyl sulfate stacking gel (SDS-PAGE) and electrotransferred 

onto Hybond ECL nitrocellulose paper (Amersham). Membranes were blocked with 

5% nonfat dry milk in 0.1% Tween 20 (TBS-T; 2 mmol/l Tris–HCl, 50 mmol/l NaCl, pH 

7.5) for 2 h at RT and subsequently incubated overnight at 4 °C in the blocked buffer 

with the antibody for NCX1, NCX3, caspase-12, calpain.  

The membranes were washed with 0.1% Tween 20 and incubated with the 

secondary antibodies (1:1000; Amersham) for 1 h. Immunoreactive bands were 

detected with the ECL (Amersham). The optical density of the bands (normalized 

with those of actin) was determined by Chemi Doc Imaging System (Biorad). 

 

3.9 Statistical analysis 

 

Statistical comparisons between controls and treated experimental groups were 

performed by ANOVA followed by Newman test or Student t test. Differences were 

considered to be statistically significant when p values were <0.05. 
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4. RESULTS 

 

4.1 Effect of Aββββ1-42 fragment on NCX activity in hippocampal 

neurons and NGF-differentiated PC-12 cells 

 

After Aβ1-42 exposure, NCX currents in both hippocampal and NGF-

differentiated PC-12 cells were assessed in the reverse and forward modes of 

operation by patch clamp in a whole-cell configuration.  

Aβ1-42 induced a significant concentration-dependent (Fig. 4A) increase only in 

NCX currents operating in the reverse mode, whereas it was ineffective in currents 

operating in the forward mode (Fig. 4A-E). Consistently, as revealed by Fura-2AM 

microfluorimetry, NCX activity in the reverse mode of operation was significantly 

increased in hippocampal neurons and in NGF-differentiated PC-12 cells treated with 

5 µM Aβ1-42 for 24 hours (Fig. 4F and 4G).  
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Fig. 4 Effect of Aβ1‐‐‐‐42 fragment on NCX activity in hippocampal neurons and NGF differentiated 

PC    12 cells. (A) Quantification of Aβ1-42 dose-dependent (0.01-10µM) effect on INCX in the reverse and 

forward modes of operation. (B) and (C) INCX superimposed traces recorded under control conditions 

(gray trace) and after 24 hours of 5µM Aβ1-42 (black trace) in NGF-differentiated PC12 cells and in 

primary hippocampal neurons, respectively. (D) and (E) Quantification of INCX represented in B and C 

panels, respectively. (F) and (G) Quantification of NCX activity in the reverse mode of operation 

elicited by Na
+
-free perfusion under control conditions and after exposure to Aβ1-42 (5µM, 24 hours) 

recorded in hippocampal neurons and NGF-differentiated PC12 cells, respectively. All the values are 

expressed as mean ±SEM of current densities (n= 20 cells in 3 independent experimental sessions). 

*p<0.05 versus their respective controls.  

Fig. 4 
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4.2 Effect of NCX3 silencing or knocking-out on Aββββ1-42-induced 

upregulation of NCX currents 

  

Patch clamp experiments showed that the silencing of NCX3, but not of NCX1, 

prevented the Aβ1-42-induced upregulation in INCX in the reverse mode of operation in 

NGF-differentiated PC-12 cells (Fig. 5A-C). Accordingly, Aβ1-42 treatment failed to 

increase the NCX currents in primary hippocampal neurons obtained from ncx3-/- 

mice (Fig. 5D).  
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Fig. 5 Effect of NCX3 silencing or knocking‐‐‐‐out on Aβ1‐‐‐‐42‐‐‐‐induced upregulation of NCX currents 

in hippocampal neurons and NGF‐‐‐‐differentiated PC‐‐‐‐12 cells.  

(A) Representative western blot of NCX1 silencing (upper panel A), and INCX superimposed traces 

recorded from control (black trace), control plus siNCX1 (gray trace), after 5µM Aβ1-42 for 24 hours 

(black trace), and after 5µM Aβ1-42 for 24 hours plus siNCX1 (gray trace) in NGF-differentiated PC12 

cells. (B) Representative western blot of siNCX3 on protein expression (upper panel B), and INCX 

under the same experimental conditions of panel A. (C) Quantification of INCX represented in panels A 

and B. (D) INCX superimposed traces recorded from ncx3+/+ and ncx3‐/- primary hippocampal neurons 

under control conditions and after 24 hours of Aβ1-42 exposure. Inset depicts the quantification of INCX. 

All the values are expressed as mean±SEM of current densities (n= 20 cells in 3 independent 

experimental sessions). *p<0.05 versus their respective controls; **p<0.05 versus Aβ1-42. 

Fig. 5 
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4.3 Effect of Aββββ1-42 on calpain activation and on the formation of 

the NCX3 proteolytic fragment  

 

Immunoblot analysis performed on NGF-differentiated PC-12 cells revealed 

two bands at ~105 and ~75 kDa corresponding to the native and proteolytic bands 

of NCX3, respectively, in both control and Aβ1-42-treated groups (Fig. 6A). 

Densitometric analysis showed that the native band at ~ 105 kDa decreased in 

Aβ1-42-treated cells than in controls, whereas the ~ 75 kDa proteolytic band was 

significantly increased (Fig. 6A). Interestingly, exposure to 5 µM Aβ1-42 caused an 

increase in [Ca2+]i at 30 minutes (Fig. 6B), which was accompanied by calpain 

activation lasting 3 hours (Fig. 6C). The selective calpain inhibitor calpeptin (100 

nM) prevented both the Aβ1-42-induced generation of the ~75 kDa proteolytic 

fragment (Fig. 6D) and the increase in INCX3 in the reverse mode of operation (Fig. 

6E). Accordingly, in BHK cells stably transfected with NCX3, 5 µM Aβ1-42 induced 

an increase in [Ca2+]i at 6 and 12 hours (Fig. 7A). This [Ca2+]i increase was 

accompanied by the activation of calpain at 6 and 12 hours (Fig. 7B). Moreover, 

immunoblot analysis revealed a significant increase in the ~55 kDa band (the 

proteolytic band in the BHK cells has a different weight respect than in the 

neuronal cells) in Aβ1-42-treated BHK-NCX3 cells and a significant reduction in the 

NCX3 native band at ~105 kDa (Fig. 7C). In addition, in BHK-NCX3 cells Aβ1-42 

fragment (5 µM for 24 hours) induced an increase in NCX currents in the reverse 

mode of operation (Fig. 7D). 
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Fig. 6 Effect of Aβ1-42 on calpain activation and on the formation of NCX3 proteolytic fragments 

in NGF‐‐‐‐differentiated PC-12 cells. (A) Representative western blot and densitometric quantification 

of NCX3 expression under control conditions and after 24 hours of Aβ1-42. (B) Quantification of the 

time-dependent effect of Aβ1-42 on [Ca
2+

]i. (C) Representative western blot and densitometric 

quantification of calpain activation under control conditions, after 30 minutes and 3 hours of Aβ1-42 

exposure. (D) Representative western blot and densitometric quantification of NCX3 expression in the 

presence and in the absence of calpeptin (CalpP) in control conditions and after Aβ1-42 exposure. (E) 

INCX superimposed traces recorded in the presence and in the absence of CalpP in control conditions 

and after Aβ1-42 exposure. Inset depicts the quantification of INCX. The values are expressed as 

mean±SEM of 3 independent experimental sections. *p<0.05 versus their respective controls; 

**p<0.05 versus Aβ1-42. 

Fig. 6 



 

 

45

 

Fig. 7 Effect of Aββββ1-42 on calpain activation and on the formation of NCX3 proteolytic fragments 

in stably transfected BHK‐‐‐‐NCX3 cells. (A) Quantification of the time-dependent effect of Aβ1-42 on 

[Ca
2+

]i. (B) Representative western blots and densitometric quantification of calpain activation under 

control conditions and after 6 and 12 hours of Aβ1-42 exposure. (C) Representative western blot and 

densitometric quantification of NCX3 expression under control conditions and after 24 and 48 hours of 

Aβ1-42 exposure. (D) Superimposed traces of INCX3 recorded in control conditions and after Aβ1-42 

exposure. Inset depicts the quantification of INCX3. The values are expressed as mean±SEM of 3 

independent experimental sections. *p<0.05 versus their respective controls. 

 

Fig. 7 
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4.4 Effects of Aββββ1-42 on NCX currents in BHK cells stably 

transfected with NCX3 mutant and chimeras 

 

To investigate the molecular determinants of calpain-dependent effects of  

Aβ1-42 on NCX3 activity, the region containing calpain cleavage sites (Fig. 8A) and 

belonging to the transmembrane segment TM5 and to a part of the cytoplasmic        

f-loop, (227-469), named NCX3NCX1TM5, was substituted with the homologous region 

of NCX1, which is insensitive to Aβ1-42-induced calpain cleavage.  

Vice versa, the sensitive NCX3 TM5 f-loop region was replaced with the 

homologous insensitive region of NCX1, named NCX1NCX3TM5.  

The mutant, named NCX3∆f, was obtained by removing the large f-loop in 

NCX3 cDNA. All these chimeras and the mutant, stably transfected in BHK cells, 

were able to generate NCX currents similar to those carried by wild-type NCX1 and 

NCX3 (Fig. 9).  

Patch-clamp experiments revealed that the substitution of NCX3 TM5 f-loop 

(NCX3NCX1TM5) or the removal of the f-loop (NCX3∆f) prevented the stimulatory effect 

of Aβ1-42 on NCX currents (Fig. 8B).  

By contrast, the activity of the reverse chimera of NCX3NCX1TM5, named 

NCX1NCX3TM5, was inhibited by Aβ1-42 exposure (Fig. 8B). In addition, the activity of 

NCX3NCX1TM6, which contains the calpain cleavage sites, was increased after Aβ1-42 

exposure in the reverse mode of operation (Fig. 8B).  

Immunoblot experiments revealed that all NCX3 chimeras were recognized by 

the NCX3 antibody raised against the large intracellular f-loop (Fig. 8C, and 8D). 

Interestingly, Aβ1-42 treatment upregulated the 55 kDa proteolytic band of the 

NCX3NCX1TM6 chimera containing the calpain cleavage site (Fig. 8C), whereas it did 

not modify the intensity of the same band in NCX3NCX1TM5 chimera lacking the calpain 

cleavage site (Fig. 8D).  

Moreover, immunoblot analysis did not reveal any band in BHK-NCX3∆f 

mutant because this mutant lacked the antibody recognizing sites (data not shown). 

To investigate further the molecular determinants within the amino acid sequence 

227-469 responsible for the Aβ1-42-induced calpain-dependent effect on NCX3 current 
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upregulation, we performed a site-directed mutagenesis of two lysine residues (370-

371) essential for calpain cleavage.  

The mutant, named NCX3KK/WW, lacking the calpain cleavage sequence, was 

not modulated by Aβ1-42 in the reverse mode of operation (Fig. 10A-C).  

In addition, western blot analysis of BHK cells expressing the NCX3KK/WW 

mutant did not reveal the band at 55 kDa either under control conditions or after   

Aβ1-42 exposure (Fig. 10D).  
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Fig. 8 Effects of Aβ1‐‐‐‐42 on NCX currents in NCX3 mutant and chimeras in stably transfected BHK 

cells. (A) NCX3 sequence containing the calpain cleavage sites. (B) Quantification of the Aβ1-42 effect 

on INCX recorded in BHK cells transfected with each single chimera and mutant. The values are 

expressed as mean±SEM of 3 independent experimental sections. *p<0.05 versus their respective 

controls. (C) Representative western blot of NCX3NCX1TM5 expression in control conditions and after 

Aβ1-42 exposure. (D) Representative western blot of NCX3NCX1TM6 expression in control conditions and 

after Aβ1-42 exposure.  

Fig. 8 
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Fig. 9 Electrophisiology activity of the NCX3 mutant and chimeras in stably transfected BHK 

cells. 

 

Fig. 9 
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Fig. 10 Effects of Aβ1‐‐‐‐42 on NCX currents in NCX3KK/WW in stably transfected BHK cells. 

(A) INCX3 superimposed traces recorded in NCX3WT in control conditions and after Aβ1-42 exposure. (B) 

INCX superimposed traces recorded in transfected BHK cells with NCX3KK/WW in control conditions and 

after Aβ1-42. (C) Quantification of the Aβ1-42 effect on INCX in the same experimental conditions of panels 

A and B. The values are expressed as mean±SEM of 3 independent experimental sections. *p<0.05 

versus their respective controls. (D) Representative western blots of NCX3 and NCX3KK/WW expression 

in control conditions and after Aβ1-42 exposure. 

Fig. 10 
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4.5 Patch clamp analysis in BHK cells overexpressing the NH2-

terminal proteolytic fragment of NCX3  

 

To characterize further the activity of the proteolytic fragments of NCX3 produced 

by Aβ1-42-induced calpain cleavage, we made cDNA constructs encoding for both 

NH2- and COOH- terminus halves of NCX3, named N-NCX3 and C-NCX3, 

respectively (Fig. 11A and 11B). Patch clamp recordings revealed that the N-NCX3 

fragment carried currents comparable to those elicited by Aβ1-42 treatment (5 µM, 24 

hours) in BHK-NCX3 cells and greater than those recorded under control conditions 

(Fig. 11A and 11C). By contrast, C-NCX3 fragment did not carry significant currents 

(Fig. 11B and 11C). 
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Fig. 11 Patch clamp analysis in BHK cells overexpressing the NH2‐‐‐‐terminal proteolytic 

fragment of NCX3. (A) INCX superimposed traces recorded in BHK-NCX3 (black line) and in BHK-N-

NCX3 (grey line) cell lines in control conditions and after exposure to Aβ1-42 (grey line). (B) INCX 

superimposed traces recorded in BHK-NCX3 (black line) and in BHK-C-NCX3 (grey line) cells in 

control conditions and after Aβ1-42 exposure (grey line). (C) Quantification of INCX expressed in A and B 

panels. The values are expressed as mean±SEM of 3 independent experimental sections. *p<0.05 

versus NCX3 wild-type. 

Fig. 11 
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4.6 Effect of ncx3 silencing or knocking-out on Ca2+ refilling into ER 

induced by Aββββ1-42  

 

After 24 hours of Aβ1-42 exposure, the SERCA inhibitor thapsigargin induced a 

release of Ca2+ from ER stores higher than that obtained under control conditions in 

both hippocampal neurons and NGF-differentiated PC-12 cells, thus demonstrating 

that during Aβ1-42 exposure, a larger Ca2+ accumulation occurs in ER (Fig. 12). This 

larger Aβ1-42-induced ER-Ca2+ accumulation, however, was prevented when NCX3 

was silenced or knocked-out (Fig. 12B-C), an event that suggested the important role 

of the increased activity of NCX3 in the ER-refilling process. Relevantly, the blockade 

of L-, N- and P/Q-type VDCC with their specific inhibitors nimodipine (10 µM), ϖ-

conotoxin (200 nM), and ϖ-agatoxin (200 nM) did not prevent ER Ca2+ refilling 

induced by Aβ1-42 exposure (data not shown). 
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Fig. 12 Effect of ncx3 silencing or knocking-out on Ca
2+

 refilling into ER induced by Aβ1-42. (A) 

Superimposed single-cell traces of the effect of thapsigargin (Tg; 1 µM) on [Ca
2+

]i in Ca
2+

-free (0 

Ca
2+

/1.5 mM EGTA) added to control (black trace), control plus siNCX3 (gray trace), after 24 hours 

Aβ1-42 (black trace), and after 24 hours Aβ1-42 plus siNCX3 (gray trace) in NGF-differentiated PC12 

cells. (B) Quantification of Tg-induced [Ca
2+

]i release in the experimental conditions of panel A. (C) 

Quantification of Tg-induced [Ca
2+

]i release in ncx3+/+ and ncx3–/– primary hippocampal neurons in 

control conditions and after 24 hours of Aβ1-42 exposure. Each bar represents the mean±SEM (n=50 

cells in 3 independent experimental sessions). *p<0.05 versus their untreated controls; **p<0.05 

versus its respective control and Aβ1-42. 

Fig. 12 
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4.7 Effect of ncx3 silencing on caspase-12 activation, neuronal 

apoptosis and death induced by Aββββ1-42 in NGF-differentiated 

PC-12 cells 

 

After 72 hours of Aβ1-42 exposure, caspase-12, a specific marker of ER stress, 

was activated in NGF-differentiated PC-12 cells (Fig. 13A). Interestingly, when NCX3 

activity was silenced by siRNA, Aβ1-42-induced caspase-12 activation occurred 48 

hours earlier (Fig. 13B). Consistently, NCX3 silencing in Aβ1-42-treated neuronal cells 

hastened and enhanced the appearance of abnormal nuclear morphology, as 

detected by Hoechst-33258 (Fig. 13C). Furthermore, neuronal cell death, monitored 

by propidium iodide, was reinforced by NCX3 silencing in Aβ1-42-treated neuronal 

cells (Fig. 13D). 
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Fig. 13 Effect of ncx3 silencing on caspase-12 activation and neuronal apoptosis and death 

induced by Aβ1-42 in NGF-differentiated PC-12 cells. (A) Representative western blot and 

densitometric quantification of the time-dependent effect of Aβ1-42 on caspase-12 activation in control 

conditions. (B) Representative western blot and its densitometric quantification of caspase-12 

activation in the presence and in the absence of siNCX3 and after 24 hours of Aβ1-42 exposure in the 

presence and in the absence of siNCX3. All the data are expressed as means±SEM (n=5) and 

normalized on the basis of tubulin levels. (C) Assessment of nuclear morphology with Hoechst-33258 

in NGF-differentiated PC-12 cells under control conditions in the presence and in the absence of 

siNCX3 and after 24 and 48 hours of Aβ1–42 in the presence and in the absence of siNCX3. The 

quantification of the results was obtained in 4 separate experiments in which at least 10 microscopic 

fields were analyzed ( ~ 1000 cells per group). Scale bar 50 µm. *p<0.05 versus controls; **p<0.05 

versus Aβ1–42 groups. (D) Cell death detected under the previously mentioned conditions in NGF-

Fig. 13 
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differentiated PC-12 cells and represented as percentage of the ratio between PIpositive and 

PI+fluoresceinpositive cells. Scale bar 20 µm. *p<0.05 versus all.  

 

 

 

 

 

                    

                Fig. 14 Aβ1-42 pattern hypothesis on NCX3 



 

 

58

5. DISCUSSION 

 

 

The results of the present thesis demonstrated for the first time that, in 

neurons, Aβ1-42 peptide induces a dose-dependent increase in NCX currents in the 

reverse mode of operation and that this increase is mediated by the NCX3 isoform. 

Indeed, this augmented activity was due to the increased formation of a 

hyperfunctional proteolytic fragment of NCX3, induced by Ca2+-dependent calpain 

activation. In fact, the removal of the consensus site for calpain cleavage located on 

the f-loop prevented the formation of the proteolytic fragment and abolished the 

stimulatory effect of Aβ1-42 on NCX3 currents. Accordingly, the expression of the 

calpain-induced N-terminal proteolytic fragment of NCX3 in stably transfected cells 

carried NCX currents that were comparable to those recorded in control BHK-NCX3 

cells exposed to Aβ1-42. Moreover, this proteolytic fragment contributed to Ca2+ 

refilling into the ER by delaying ER stress. These data suggest that the formation of 

the hyperfunctional proteolytic fragment of NCX3 might represent a neuroprotective 

mechanism during Aβ1-42 insult, for it helps neurons to delay ER stress, caspase-12 

activation, apoptosis, and neuronal death.  

It is well known that Aβ1-42 exposure induces an increase in [Ca2+]i either by 

functioning as a channel per se or by activating other Ca2+ channels. This increase, in 

turn, triggers a Ca2+-dependent calpain activation in AD and other neurodegenerative 

diseases (Vosler et al.,2008). On the other hand, NCX3 sequence contains, at the 

level of the f-loop, two calpain cleavage sites (Bano et al. 2005). In the present study, 

we found that the two lysine residues (370-371) in the f-loop of the NCX3 sequence 

may represent the molecular determinants of calpain cleavage and are therefore 

responsible for the Aβ1-42 stimulatory effect on NCX3. In fact, when the two lysine 

residues are replaced with two tryptophan residues, that are not recognized by 

calpain (Tompa et al. 2004), the formation of the hyperfunctional proteolytic fragment 

is repressed. Another study has shown that during brain ischemia and glutamate 

exposure, NCX3 can be cleaved by the Ca2+-activated calpain at the same 

consensus sites, thus producing similar proteolytic fragments (Bano et al. 2005). This 

mechanism has been interpreted as a destruction of the cellular defences following 
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stroke (Choi 2005). By contrast, in our study we demonstrated that this cleavage 

produced a hyperfunctional proteolytic fragment of NCX3 that, in the early phases of 

Aβ1-42 exposure, helps neurons to maintain the [Ca2+]i homeostasis, thus delaying by 

48 hours the activation of caspase-12. This hypothesis was further reinforced by the 

results showing that the silencing of NCX3 accelerated caspase-12 activation and 

neuronal death. On the other hand, this NCX3 neuroprotective role during the initial 

phase of Aβ1-42 exposure resembles that observed in our laboratory during brain 

ischemia in rats (Pignataro et al. 2004), in ncx3 knock-out mice (Molinaro et al. 

2008), and in an in vitro model of OGD (Secondo et al. 2007). 

The first step in the chain of events triggered by Aβ1-42 exposure seems to be 

the Ca2+-dependent formation of a terminal proteolytic fragment of NCX3 responsible 

for the increase in NCX3 activity. Indeed, our results revealed that the transfection of 

cDNA encoding for the N-terminal proteolytic fragment of NCX3 in BHK wild type 

cells carried NCX currents that were comparable to those recorded after Aβ1-42 

exposure. Interestingly, two previous studies have reported that the expression of the 

N-terminal half of the exchanger can by itself induce NCX activity, suggesting that the 

truncated exchanger can dimerize and form a functional exchanger (Gabellini et al., 

1996; Li and Lytton, 1999). Interestingly, several years ago, Colvin et al. (1994; 1997) 

observed an increase in NCX activity in plasma membrane vesicles from human post 

mortem tissues of frontal cortex, temporal cortex and cerebellum of AD patients. 

Moreover, the increased activity of the proteolytic fragment of NCX3 may 

occurr in the ER refilling dysregulation observed in AD and in other 

neurodegenerative diseases. In fact, the Aβ1-42 peptide induces ER dysregulation in 

several neuronal models (Verkhratsky and Toescu, 2003). Particularly, ER seems to 

play a crucial role in AD pathogenesis (Guo et al.,1996; Supnet et al.,2006; 

Bezprozvanny and Mattson, 2008) because it is an important site for generating Aβ 

fragments in neurons and because both presenilin-1 and -2 proteins are localized 

predominantly in this cellular compartment (Walter et al.,1996). Interestingly, Ca2+ 

refilling into ER seems to be a crucial early self-protective mechanism against ER 

stress (Verkhratsky and Toescu, 2003). In the present study, our results indicated 

that there exists a functional relationship between NCX3 and [Ca2+]i buffering into 

ER. In fact, when NCX3 was silenced or knocked-out, the larger Aβ1-42-induced ER-
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Ca2+ accumulation was prevented, thus demonstrating the beneficial contribution of 

NCX3 to the ER-refilling process. In accordance with these results, in anoxic 

astrocytes and in Ca2+ oscillating muscle cells, NCX blockade prevents ER Ca2+ 

refilling (Lenart et al.,2004). Similarly, during OGD, the NCX1 up-regulation, in the 

reverse mode of operation, also plays a fundamental role in the Ca2+ refilling process, 

thus helping neurons to prevent ER stress (Fameli et al.,2007; Sirabella et al. 2009). 

Likewise, we found that increases in NCX3 activity seemed to delay ER stress, 

caspase-12 activation, apoptosis, and neuronal death triggered by Aβ1-42. On the 

other hand, several lines of evidence have indicated that NCX3 plays a protective 

role also during OGD in vitro and in vivo  thanks to its peculiar capability to maintain 

[Ca2+]i in the physiological range (Condrescu et al.,1995; Linck et al.,1998; Pignataro 

et al.,2004; Gomez-Villafuertes et al.,2005; Boscia et al.,2006; Secondo et al.,2007; 

Molinaro et al.,2008).  

Altogether, these data suggest that Aβ1-42-induced up-regulation of NCX3 

activity may play a fundamental role in ER Ca2+ refilling during Aβ1-42 insult as it helps 

neurons to prevent ER stress and thus delays cell death.  

This hypothesis is supported by the salient result showing that ncx3-/- 

hippocampal neurons exposed to Aβ1-42 resulted in an earlier death. In conclusion, 

NCX3 activation, by calpain cleavage, might be one of the defence mechanisms 

against Aβ1-42 neurotoxicity. 

Although these results may appear as a paradox considering the neurotoxicity 

of Aβ1-42, they may be interpreted as a survival strategy activated by neurons in an 

attempt to defend themselves from the death messages triggered by this peptide in 

the early phase of exposure.  

In conclusion, even if drugs selectively activating NCX3 are in development and 

not yet available, this molecular target might be of clinical relevance and open a new 

additional strategy against AD. 
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