
I

Facoltà di Ingegneria
Dipartimento di Informatica e Sistemistica

Dottorato di Ricerca in Ingegneria Informatica ed Automatica, XXIV ciclo

Coordinatore: prof. Francesco Garofalo

Ph.D. Thesis:

Reverse Engineering and Testing of Rich
Internet Applications

Tutor: prof. Anna Rita Fasolino

Ph. D. Student: Domenico Amalfitano

November 2011

II

ad Antonia

III

Abstract

The World Wide Web experiences a continuous and constant evolution, where new

initiatives, standards, approaches and technologies are continuously proposed for

developing more effective and higher quality Web applications.

To satisfy the growing request of the market for Web applications, new technologies,

frameworks, tools and environments that allow to develop Web and mobile applications

with the least effort and in very short time have been introduced in the last years.

These new technologies have made possible the dawn of a new generation of Web

applications, named Rich Internet Applications (RIAs), that offer greater usability and

interactivity than traditional ones. This evolution has been accompanied by some

drawbacks that are mostly due to the lack of applying well-known software engineering

practices and approaches. As a consequence, new research questions and challenges have

emerged in the field of web and mobile applications maintenance and testing.

The research activity described in this thesis has addressed some of these topics with the

specific aim of proposing new and effective solutions to the problems of modelling,

reverse engineering, comprehending, re-documenting and testing existing RIAs.

Due to the growing relevance of mobile applications in the renewed Web scenarios, the

problem of testing mobile applications developed for the Android operating system has

been addressed too, in an attempt of exploring and proposing new techniques of testing

automation for these type of applications.

Reverse Engineering and Testing of Rich Internet Applications

4

Index

Introduction 7

Chapter 1. Rich Internet Application Fundamentals 12

 1.1 The evolution of the World Wide Web. From the Hypertext to RIAs 12

 1.2 Rich Internet Applications: a new generation of Web Applications 15

 1.3 AJAX 17

 1.4 RIA Modelling 21

 1.5 Open Issues 30

Chapter 2. Reverse Engineering the Behaviour of Rich Internet Applications 33

 2.1 Modelling the Behaviour of a Rich Internet Application 34

 2.2 Reverse Engineering Process 37

 2.2.1 Extraction step 38

 2.2.2 Abstraction step 39

 2.3 The Reverse Engineering Tool 40

 2.3.1 GUI Package 41

 2.3.2 Extractor Package 42

 2.3.3 Abstractor Package 43

 2.4 Case Study 44

 2.5 Conclusions 48

Chapter 3. Experimenting the Reverse Engineering Technique for Modelling The

Behaviour of Rich Internet Applications 49

 3.1 The proposed FSM model and the reverse engineering technique 49

 3.2 The experiment 51

 3.2.1 Experimental results 53

 3.3 Conclusions 55

Chapter 4. An Iterative Approach for the Reverse Engineering of Rich Internet

Application User Interfaces 57

 4.1 Introduction 57

 4.2 The Iterative reverse engineering Process 59

 4.3 The Reverse Engineering Environment 61

 4.3.1 The Extractor Package 64

 4.3.2 The Abstractor Package 65

 4.4 Examples 68

 4.5 Case Studies 70

Reverse Engineering and Testing of Rich Internet Applications

5

 4.5.1 First Case Study 70

 4.5.2 Second Case Study 74

 4.6 Conclusions 75

Chapter 5. Rich Internet Application Testing Using Execution Trace Data 77

 5.1 Introduction and Related Works 77

 5.2 Generating Execution Trace Based Test Cases for RIAs 81

 5.2.1 Execution Traces Collection 81

 5.2.2 Test Suite Generation 83

 5.2.3 Test Suite Reduction 84

 5.3 Experiment 85

 5.3.1 Research questions 85

 5.3.2 Measured Variables 86

 5.3.3 Experimental process and supporting tools 87

 5.4 Subject Application 89

 5.4.1 Fault Seeding 89

 5.4.2 Data Collection 90

 5.5 Discussion 91

 5.6 Conclusions 94

Chapter 6. Techniques and Tools for Rich Internet Applications Testing 96

 6.1 Introduction 96

 6.2 A Framework for RIA testing technique Classification 98

 6.2.1 Testing goal 98

 6.2.2 Test Case generation technique 99

 6.2.3 Testing Oracle 101

 6.2.4 Testing automation tools 103

 6.3 Tools for RIA testing automation 104

 6.3.1 CReRIA 104

 6.3.2 CrawlRIA 105

 6.3.3 TestRIA 105

 6.3.4 DynaRIA 106

 6.3.5 Crawljax and ATUSA 106

 6.3.6 Selenium 107

 6.4 RIA automated testing processes 107

 6.4.1 Process #1: Crash Testing Process 108

 6.4.2 Process #2: User Visible Fault Testing process 109

 6.5 Examples 110

 6.5.1 Crash Testing 111

 6.5.2 User Visible Fault Testing process 112

 6.5.3 Regression Testing Process 114

 6.6 Conclusions 115

Chapter 7. Comprehending Ajax Web Applications by the DynaRIA Tool 117

 7.1 Introduction 117

 7.2 Related Works and Tools for the comprehension of Ajax 119

 7.3 The DynaRIA Tool 122

 7.3.1 DynaRIA‘s program comprehension features 123

 7.3.2 DynaRIA‘s Testing features 124

Reverse Engineering and Testing of Rich Internet Applications

6

 7.3.3 DynaRIA‘s quality assessment features 125

 7.3.4 The architecture of the DynaRIA tool 126

 7.4 Case studies 127

 7.4.1 First Case Study 128

 7.4.2 Second Case Study 132

 7.4.3 Third Case Study 134

 7.4.4 Fourth Case Study 135

 7.5 Conclusions 137

Chapter 8. Using Dynamic Analysis for Generating User Documentation for Web

2.0 Applications 138

 8.1 Introduction 139

 8.2 Related Works and Tools for the software re-documentation 141

 8.3 End User Documentation of Web 2.0 Applications 142

 8.3.1 Introductory Manual 143

 8.3.2 Tutorial Documentation and Reference Guide 144

 8.4 The Documentation Generation Approach 145

 8.4.1 Web application Dynamic Analysis 146

 8.4.2 Generation of the Navigational Model 148

 8.4.3 End User Documentation Generation 148

 8.5 The CReRIA Tool 149

 8.6 An Example 150

 8.7 Conclusions 156

Chapter 9. A GUI Crawling-based technique for Android Mobile Application

Testing 158

 9.1 Introduction 158

 9.2 Related Works 160

 9.3 Background 162

 9.3.1 Implementing the GUI of an Android Application 163

 9.3.2 Open Issues with Android Application Testing 164

 9.4 A Technique for Testing Android Applications 165

 9.4.1 Test Case Definition 167

 9.5 The Testing Tool 168

 9.6 An Example 169

 9.7 Conclusions 174

Chapter 10. Conclusions 176

References 180

Reverse Engineering and Testing of Rich Internet Applications

7

Introduction

The original World Wide Web was a platform for accessing static or dynamic content

encoded in hypertext markup language. User interaction was limited to navigating links

and entering data in forms. This thin-client architecture was simple and universal (no

client installation required) but severely limited the quality of the applications that

could be delivered over the Internet. Early attempts at extending interface functionality

(such as Java applets and client-side scripting) enriched HTML-based navigation

with interactive objects, animated presentation effects, and input validation.

Modern Web solutions resemble desktop applications, enabling sophisticated user

interactions, client-side processing, asynchronous communications, and multimedia.

In such scenario nowadays Rich Internet Applications (RIAs) play a prominent role.

The term RIA refers to a heterogeneous family of solutions, characterized by a common

goal of adding new capabilities to the conventional hypertext-based Web. RIAs combine

the Web‘s lightweight distribution architecture with desktop applications‘ interface

interactivity and computation power, and the resulting combination improves all the

elements of a Web application (data, business logic, communication, and presentation)

[11].

On the other hand while the use of RIAs‘ technologies positively affects user-friendliness

and interactiveness of web applications it comes at a price. Indeed, RIAs‘ advent creates

Reverse Engineering and Testing of Rich Internet Applications

8

an articulated research landscape with issues that include the language and

architectural standards used to develop RIAs, the software frameworks built on top of

these standards that enhance development productivity and solution quality, and the

development tools and methodologies backing the RIA life cycle‘s development activities.

A specific crucial issue for RIAs is that of finding suitable approaches and technologies

for supporting all the software lifecycle activities effectively, and the maintenance and

testing activities above all. The relevance, complexity, expensiveness and criticalities of

software maintenance processes are well known for any type of software application.

However, these problems are even more relevant in the context of RIAs, since these

applications are usually developed in short times by programmers that don‘t use well

known practices of Software Engineering, and often use frameworks and tools that, on the

one hand simplify RIAs‘ development, on the other hand produce complex code that is

difficult to understand, at the expense of the quality of the final product.

Moreover, both the asynchronous and the heterogeneous nature of the RIAs, which are

developed by means of several technologies and are based on a client-server architectural

model in which the communication between the client and server may be asynchronous,

make the RIAs harder to comprehend and consequently difficult to maintain and test.

To solve these problems with success, specific research questions must be addressed. First

of all, suitable models for representing the dynamic behaviour and the heterogeneous

nature of RIAs are needed. Reverse Engineering approaches that allow reconstructing

these models by exploiting dynamic analysis techniques must be introduced. Moreover,

comprehension processes that are based on these models and techniques will have to be

proposed, in order to allow the code of RIAs to be analysed and understood efficiently.

Finally, new testing methods and techniques for verifying the quality of such applications

are needed, as well as novel maintenance processes must be introduced to support the

complete life cycle‘s development of RIAs.

On the other hand, we‘re now entering a new era of the Web in which Smartphones,

gadgets and consumer electronics are more and more Internet-enabled. In the coming

Reverse Engineering and Testing of Rich Internet Applications

9

years, billions of devices will be connected to the Internet, and they‘ll access and share

information through the Web. New kinds of mobile and Web apps are on the horizon that

will be more ubiquitous and smarter than current apps and will be accessible anytime,

anywhere, and from any kind of device [143].

Nowadays most mobile applications are usually small-sized and developed by a small

team (one or two people) that has the responsibilities for conceiving, designing and

developing them [144]. The team usually works in strict times, under the pressure of short

time-to-market, using powerful development tools and frameworks, but rarely adopting

any formal development process. This approach may be suitable for small or medium size

applications. However, as mobile applications become more complex and business-

critical, it becomes essential to use well-defined Software Engineering techniques. In

particular, to satisfy the need for quality of these applications, greater efforts and attention

have to be devoted to the testing activity.

On the other side, due to the huge growth of mobile applications developed for the

Android platform recorded in the last months, finding effective testing techniques,

strategies and tools for Android applications is a relevant research topic too

In the last years, the scientific community has dealt with great interest the topics outlined

above, trying to propose suitable approaches for developing and maintaining RIAs. At the

same time, a lot of research and industrial initiatives aiming at defining effective testing

principles, techniques and tools for mobile applications have been carried out too [145,

146, 147, 148, 149, 150, 151].

The research activity described in this thesis addressed some of these topics too, with the

specific aim of proposing new and effective solutions to the problems of analysing,

reverse engineering, comprehending and testing existing Rich Internet Applications.

Moreover, due to their growing relevance in the renewed Web scenarios, the problem of

testing mobile applications developed for the Android operating system has been

addressed too, in an attempt of exploring and proposing new techniques of testing

automation for these kind of applications. The results of this research activity will be

Reverse Engineering and Testing of Rich Internet Applications

10

presented in this thesis that is organized as it follows. In the first chapter, after a brief

historical excursus that shows the evolution of the Web from its beginnings until today,

the main characteristics of RIAs are analysed and Ajax is introduced. As we‘ll read in this

thesis RIAs are a novel kind of Web applications and Ajax is a set of Web technologies

that allow to develop them.

Afterwards in the same chapter we show the new issues introduced by the advent of RIAs

and how the scientific community of the Software Engineers are facing them.

In chapter 2 we address the problem of modeling the RIAs, proposing both a suitable

model able to describe the characteristics of this new kind of Web application and a

Reverse Engineering process that allows to obtain this model exploiting techniques of

dynamic analysis. In chapter 3 we present the results of an experimentation performed in

order to assess the effectiveness of the Reverse Engineering process proposed in chapter 2.

In chapter 4 we introduce an original process of Reverse Engineering for Rich Internet

Application that may be defined ―Agile‖. This technique is more effective than the one

proposed in chapter 2.

In the chapters 5 and 6 of this thesis we address the problem of RIAs testing. In chapter 5

we propose a testing technique that allows to detect crashes on the client side of a Rich

Internet Application. In chapter 6 we propose a classification framework that characterizes

existing RIA testing techniques from different perspectives.

In chapter 7 we present DynaRIA, a tool developed to analyse Web applications from

different perspectives. The tool offers a user-friendly environment and can be used to

execute activities of program comprehension, testing, debugging and quality assessment.

Moreover, the chapter shows the effectiveness of the tool in performing several program

comprehension activities involving different real RIAs.

In chapter 8 we address the problem of software re-documentation and propose a novel,

tool-supported process for re-documenting Web applications. The process is based on the

RIA model and the related Reverse Engineering technique for obtaining it that have been

introduced in previous chapters. The process is semi-automatic and has been employed for

Reverse Engineering and Testing of Rich Internet Applications

11

re-documenting a real Rich Internet Application.

Finally, the 9
th

 chapter of the thesis will be dedicated to the problem of testing Android

mobile applications and will present a new testing technique based on a GUI crawler for

crash testing of Android applications.

Reverse Engineering and Testing of Rich Internet Applications

12

Chapter 1

RICH INTERNET APPLICATION FUNDAMENTALS

As Leon Shklar and Rich Rosen wrote in the preface of their book Web application

architecture: Principles, Protocols and Practices [12], ―The expression ‗web time‘

connotes a world in which rapid change is the norm, where time is exponentially

condensed. Technological advances that once upon a time might have taken years to

transpire now occur in a matter of months or even days. What's more these advances often

result in radical paradigm shifts that change the way we interact with our technology and

with the world at large.‖

This phrase synthesizes the technological revolution that we are living every day and in

particular the way the web has changed so rapidly in the last two decades.

1.1 The evolution of the World Wide Web. From the Hypertext to RIAs

Tim Berners-Lee at the CERN of Geneva in Switzerland, in 1989, presented a proposal for

an information management system to share knowledge and resources over a computer

network. Nowadays this system is known as World Wide Web (WWW) or more simply

―The Web‖. The Web poses its basis on existing Internet protocols and services and

actually represents an ubiquitous network that is able to provide information and

communication services to hundreds of millions of people around the world.

From its humble beginnings the web has expanded exponentially to serve a wide variety of

purposes for a wide variety of people.

The Web is nowadays so common in ordinary life that concepts, technologies and

Reverse Engineering and Testing of Rich Internet Applications

13

definitions related to it have become in ordinary usage, such as Client, Server, hypertext,

HTML, HTTP, URL, Web Browser, Web 2.0, Web application, etc.

In particular the term ―hypertext‖ represent a set of documents related each other through

―key-words‖, it can be considered like a network whose nodes are the documents. The

hypertext can be read in non sequential manner, unlike the static text of print media, each

document of the network can be the next one on the basis of the choice of the reader

selecting a key-word as link. The choice of a key-word actually opens a new document.

Hypertext was intended for use with an interactive computer screen and could be

connected to other pieces of hypertext by ―links‖. In practice a hypertext was text

containing links to other text and is one of the major features of the World Wide Web.

Berners-Lee married together the notion of hypertext with the power of the Internet,

promoting the web as a virtual library useful to share information resources among

researchers via on-line documents that could be accessed via a unique document address, a

universal resource locator (URL). An URL is a sequence of characters used to identify or

name a resource, such as a Web page, uniquely on Internet. The evolution of the hypertext

was the Web page that is a document or information resource that is suitable for the World

Wide Web and can be accessed through a Web browser.

Web pages was richer than simple hypertext including, usually, information as to the

colors of text and backgrounds and very often also contain links to images and sometimes

other types of media to be included in the final view. Web pages are written in HyperText

Markup Language (HTML) that is a markup language rather that a programming

language, that allows to define, by the means ―tags‖, paging, formatting and graphical

layouts both of the textual and not textual contents of a Web page, providing, moreover,

navigation to other web pages via hypertext links. .

A set of web pages interrelated each other is defined as a Web Site. A web site is a

structure of hypertext, hosted in a Web server, accessible by a user through a Web

Browser. Web pages are requested and served from web servers using Hypertext Transfer

Protocol (HTTP).

http://en.wikipedia.org/wiki/Document
http://en.wikipedia.org/wiki/Resource_%28Web%29
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Hypermedia
http://en.wikipedia.org/wiki/Navigation_bar
http://en.wikipedia.org/wiki/Hypertext
http://en.wikipedia.org/wiki/Hyperlink
http://en.wikipedia.org/wiki/Server_%28computing%29

Reverse Engineering and Testing of Rich Internet Applications

14

The served content by web sites in response to a user request usually consists of a HTML

document: a web browser downloads from one o more web server the HTML content, and

any related documents and processes them, interprets the code, in order to generate the

display of the page on the computer screen.

Web site was static so that the user could navigate only through the Web pages. The

advent of the dynamic web which resulted from the birth of scripting languages server

side, such as CGI, a new generation of application was born, the so called Web

applications. By means of the client side scripting languages was possible to. By the

means of these languages was possible to access to various resources, creating

dynamically and returning web pages depending on the client requests.

Web applications are client-server application that uses a web browser as their client

program and deliver interactive services through web servers distributed over the Internet

(or an intranet). Unlike a web site that simply delivers content from static files a web

application can present dynamically tailored content based on request parameters, tracked

user behaviours and security considerations. Web applications not only provide

information and interact with site visitors, but also collect and update information,

maintain access controls and support on-line transactions. As the web matured, more

server-side scripting languages appeared, examples of which include PHP, Python, Ruby,

Java Server Pages (JSP), and Active Server Pages (ASP).

Since 2000, another major trend has arisen in the Web, incorporating applications that

support user-generated content, on-line communities. and collaborative mechanisms for

updating on-line content. This trend is often referred to as Web 2.0, because it is closely

tied to advances in web technology that herald a new generation of web applications.

Another kind of Web application is emerged in the last years and is actually a new way to

think to the Web as a platform for accessing and develop applications. This is possible due

both to the evolution of scripting languages client-side and to networks that present more

and more larger bandwidth. This new kind of Web application is called Rich Internet

Applications (RIAs) and will be discussed in the next chapters.

Reverse Engineering and Testing of Rich Internet Applications

15

1.2 Rich Internet Applications: a new generation of Web Applications

The term "Rich Internet Application" (RIA) was introduced for the first time in a White

Paper in 2002 by Jeremy Allaire of Macromedia [13] to denote a unification of traditional

desktop applications and Web applications with the aim, on the one hand, to exploit the

advantages of both and the other of trying to overcome the disadvantages of the two

architectures.

In the past the original World Wide Web was a platform for accessing static or dynamic

content encoded in hypertext markup language. User interaction was limited to navigating

links and entering data in forms. This thin client architecture was simple and universal (no

client installation required) but severely limited the quality of the applications that could

be delivered over the Internet [14].

During the last years, processes, technologies and tools for developing Web

applications have evolved considerably, so that a new generation of Web applications

characterized by an enhanced usability of their interfaces and providing a more interactive,

dynamic, and satisfactory user experience has come. The advent of RIAs has evolved into

an authentic technological revolution, providing Web information systems with many of

the features and functionality of traditional desktop applications [15]. RIAs are

client/server applications that exist at the intersection of two competing development

cultures: desktop and Web applications providing most of the deployment and

maintainability benefits of Web applications while supporting a much richer and

responsive client user interface (UI) [15]. These capabilities represent a way to make

programs easier to use and more functional, thus both enhancing the user experience and

overcoming problems with traditional Web applications such as slow performance and

limited interactivity.

The concept of "Rich" has two aspects: the richness in the data model and rich user

interface. Rich in the data model means that the user interface can represent and

manipulate more complex data structure within the client, reducing the server-side

computational load, and allows the transmission and reception of data asynchronously.

Reverse Engineering and Testing of Rich Internet Applications

16

The advantage is that the application resides on the client that requests more specific and

essential data to the server, reducing at the same time the interactions with it. The server

continues to have the task of generating and transforming the responses to the client‘s

requests, these responses not are whole HTML pages but individual portions of them.

The richness of the user interface means an approach both aesthetic and functional to the

models of the user interface of the desktop applications. Indeed the most evident

difference between a Rich Internet Application and a traditional web application regards

their presentation levels. More precisely, at the presentation level a traditional web

application can be considered as a form-based software system [16] that uses a multi-page

interface model where the user submits some input on the current web page and requesting

the elaboration to the server, the server executes some data processing and responds by

presenting a new page.

Vice-versa, the interface model of a RIA can be considered as a single-page model where

changes can be made to each page components without the need of refreshing the page

entirely.

With the new rich user interfaces is possible to move from a model in which the server's

response affects the entire interface to another where changes are specific only of an area

of the application‘s interface in which the request of change was originated or necessary.

This means that the interfaces are divided into different areas of components that can be

added, deleted, modified independently. The result is the ability to manage the interface of

the client as a set of components that reflect much better the richness and complexity of

data and business logic offered by the web application.

The common element of RIAs technologies is to create Web applications featuring

sophisticated interfaces moving part or all of the layers involved in the presentation,

interaction and application logic from server to the client using the so called client engine

that is loaded automatically at the beginning of the session, as well as to exploit the same

engine to require the needed data to the server.

The RIAs provide the load, at the beginning of the session, of a client engine both to

Reverse Engineering and Testing of Rich Internet Applications

17

manage the communication between the client and the server and to manage the showed

user interface. Although it may seem that adding a new layer to the application may slow

down its execution, in fact the opposite is true.

Usually the client engine is loaded as part of the application instantiation, and if needed

itself could download supplementary portions of code from the server, actually the client

engine acts as if it were an extension of the browser, standing between the client and the

server avoiding that all the user interactions generate requests to the server, which in the

classical model of interaction would lead to make HTTP requests. In fact in the case of

RIAs, the same user interactions generate only requests to the client engine which tries to

manage them on its own without any interaction with the server, unless it is necessary.

Moreover if the client engine needs some information or some processing, it makes

requests, usually asynchronous, to which the server sends only the data that the client

engine needs to update the page or to perform other kinds of elaborations, in contrast,

rather, to the traditional Web applications in which the server responds by sending to the

client and building the entire HTML page.

The presence of the engine allows that the RIAs has fast response time to the user requests

and reduce the amount of network traffic and so will meet clients with limited bandwidth

connections and giving them the opportunity to fully enjoy the richness of the application.

RIAs are developed using Web 2.0 techniques and technologies, such as Ajax [17] and

Ajax based framework [108] such as GWT [120], or Ajax platforms such as ASP.NET

Ajax [121], or non Ajax platforms such as Microsoft Silverlight [122], Adobe AiR [123],

and Adobe Flex [124], or Sun Microsystems‘ Javafx [125].

Nowadays Web developers use mainly Ajax technologies to build Web applications with

improved performance and interactivity, as well as responsive user interfaces. Ajax will be

discussed in the next section.

1.3 AJAX

Jesse James Garrett, president of the Adaptive Path product-design consultancy, coined the

Reverse Engineering and Testing of Rich Internet Applications

18

acronym Ajax for Asynchronous JavaScript (JS) and XML in 2005 [17] to indicate a set of

Web 2.0 technologies now supported by all major browsers.

As Garret said Ajax isn‘t a technology. It‘s really several technologies, each flourishing in

its own right, coming together in powerful new ways. Ajax incorporates the following

technologies [18]:

 Dynamic HTML. Ajax applications take advantage of dynamic HTML, which

consists of HTML, Cascading Style Sheets, and JavaScript glued together with

the document object model. The technology describes HTML extensions that

designers can use to develop dynamic Web pages that are more animated than

those using previous HTML versions. For example, when a cursor passes over a

DHTML page, a color might change or text might get bigger. Also, a user

could drag and drop images to different places.

 XML. Ajax uses XML to encode data for transfer between a server and a browser or

client application.

 Cascading Style Sheets. CSS gives Web site developers and users more control

over how browsers display pages. Developers use CSS to create style sheets that

define how different page elements, such as headers and links, appear. Multiple

style sheets can be applied to the same Web page.

 Document Object Model. The DOM is a programming interface that lets

developers create and modify HTML and XML documents as sets of program

objects, which makes it easier to design Web pages that users can manipulate. The

DOM defines the attributes associated with each object, as well as the ways in

which users can interact with objects. DHTML works with the DOM to

dynamically change the appearance of Web pages. Working with the DOM makes

Ajax applications particularly responsive for users.

 JavaScript. JavaScript (JS) interacts with HTML code and makes Web pages and

Ajax applications more active. For example, the technology can cause a linked

page to appear automatically in a popup window or let a mouse rollover change

Reverse Engineering and Testing of Rich Internet Applications

19

text or images. Developers can embed JavaScript, which is openly and freely

available, in HTML pages. Ajax uses asynchronous JavaScript, which an HTML

page can use to make calls asynchronously to the server from which it was loaded

to fetch XML documents. This capability lets an application make a server call,

retrieve new data, and simultaneously update the Web page without having to

reload all the contents, all while the user continues interacting with the program.

 XMLHttpRequest. Ajax can use JavaScript-based XMLHttpRequest (XHR) objects

to make HTTP requests and receive responses quickly and in the background,

without the user experiencing any visual interruptions. Thus, Web pages can get

new information from servers instantly without having to completely reload. For

example, users of an application with XHR objects could type in a centigrade

amount in one box of a temperature conversion application and have the

Fahrenheit amount appear instantly in another box.

Figure 1.1 and Figure 1.2, in the next page, show in details the differences between the

classic web application model and the Ajax web application model. In the classic web

application model most user actions in the interface trigger an HTTP request back to a web

server. The server does some processing (retrieving data, crunching numbers, talking to

various legacy systems) and then returns a formatted HTML page to the client. As showed

in Figure 1.2 the user activity is blocked waiting for the responses of the server, the user

have to wait at every step usually staring at a blank browser window and an hourglass

icon, waiting around for the server to do something.

Ajax applications eliminate the start-stop-start-stop nature of interaction on the Web by

introducing an intermediary, the so called Ajax engine, between the user and the server.

Instead of loading a webpage, at the start of the session, the browser loads an Ajax engine

written in JavaScript that runs within the JavaScript browser engine. This engine intercepts

user inputs, displays requested material, and handles interactions on the client side and is

responsible for both rendering the interface the user sees and communicating with the

server on the user‘s behalf. The Ajax engine allows the user‘s interaction with the

Reverse Engineering and Testing of Rich Internet Applications

20

application to happen asynchronously independently of communication with the server.

The user activity is continuous, and is never blocked as is showed in figure, in fact every

user action that normally would generate an HTTP request takes the form of a JavaScript

call to the Ajax engine instead. Any response to a user action that doesn‘t require a trip

back to the server, such as simple data validation, editing data in memory, and even some

navigation, the engine handles on its own. If the engine needs some information from the

server in order to respond, if it‘s submitting data for processing, loading additional

interface code, or retrieving new data, the engine makes those requests asynchronously,

usually using XML, without stalling a user‘s interaction with the application.

Figure 1.1:

 The traditional model for web applications

(left) compared to the Ajax model (right)
Figure 1.2: The synchronous interaction

pattern of a traditional web application (top)

compared with the asynchronous pattern of

an Ajax application (bottom).

Ajax is not only technically sound, but also practical for real-world applications. Google is

making a huge investment in developing the Ajax approach. All of the major products

Google has introduced over the last year, Orkut, Gmail, Google Groups, Google Suggest,

and Google Maps, are Ajax applications. For instance, when users hold down the left

mouse button and slide the cursor over an image on the Ajax-based Google Maps to

retrieve a part of the map not shown on the screen, the updates occur smoothly and the

image appears to move and change immediately. With typical Web applications, users

http://www.orkut.com/
http://www.gmail.com/
http://groups-beta.google.com/
http://www.google.com/webhp?complete=1&hl=en
http://maps.google.com/

Reverse Engineering and Testing of Rich Internet Applications

21

must spend time waiting for entire pages to reload, even for small changes.

Flickr uses Ajax in some parts of its Web site, on which users post and share

photographs. For example, Ajax enables the site to let users add and view photo

annotations. Expedia has produced features such as pop-up calendars on its travel site via

Ajax. Amazon‘s A9.com search engine applies Ajax.

All these projects demonstrate that Ajax isn‘t another technology that only works in a

laboratory. Ajax applications can be any size, from the very simple, single-function

Google Suggest to the very complex and sophisticated Google Maps.

1.4 RIA Modelling

In the last years much of the efforts of the scientific community were focused on

proposing suitable models of RIAs to be used in several fields such as architectural design,

maintenance, testing, comprehension, model-driven approaches, accessibility, migration

from legacy systems, etc. In this section we present some of the most well-known models

introduced in the last years in the field of the research on the Rich Internet Applications.

With respect to traditional web applications RIAs technologies introduce several

differences in all the web application lifecycle too. According to [19, 20] the development

process of a RIA needs to be changed in order to take into account the new RIAs‘

capabilities, and traditional methods, models and techniques used for designing a web

application need to be adapted or extended in order to take into account the new aspects.

In their work Preciado et al. [19] in 2005 presented the main characteristics of RIAs and

reviewed several methodologies for the Web, Multimedia, and Hypermedia application

development, in order to asses if they was suitable for modelling RIAs. In their work the

authors demonstrated that none of the methodologies in the selected fields were suited to

model applications that respond to the main requirements of the RIA technology.

However, they proved that their combination presents most of the required characteristics,

emphasizing strongly the necessity to provide a modelling approach for the RIA

technologies, since at the moment of the paper methodologies in this area were missing

http://www.a9.com/

Reverse Engineering and Testing of Rich Internet Applications

22

and the current methodologies couldn‘t be directly applied to model and generate RIAs.

Moreover the same development process of a Web Application has to be changed in order

to take into account the new RIAs‘ capabilities, and traditional methods, models and

techniques used for designing a web application need to be adapted or extended in order to

cope with the new aspects of the RIAs. As an example, the approaches proposed in the

literature to model a traditional web application are clearly unsuitable to specify the

behaviour of an application whose processing is no more exclusively performed by the

server, but can be performed on either the client, or the server, or both sides of the

application.

At the same time, approaches, techniques and models traditionally used for testing [21],

maintaining [22] and evolving a web application will need to undergo substantial

modifications too. In particular, new solutions will have to be investigated in order to

reverse engineering software representation models that can support the expensive tasks of

comprehending, evolving and validating existing RIAs‘ implementations. In this context,

open issues consist of defining both effective representation models, and reverse

engineering processes that are able to reconstruct them using both traditional and

innovative analysis techniques.

The Web engineering community is well-aware that the RIA development is a new and

difficult challenge requiring that the traditional methodologies are modified.

Before all, new models capable to represent the interactive nature of the RIAs must be

introduced. Recently, the Web engineering community has advocated adopting the model-

driven development (MDD) paradigm for RIAs [14]. MDD refers to a family of

development approaches based on using models as a primary artifact in the development

life cycle. Researchers have extended numerous existing methodologies, originally

conceived for traditional Web applications, to cope with the new modelling issues

appearing in RIAs [14]. However, this extension is far from trivial because of RIAs

incorporate many novel features, such as presentation behaviours, data and processing

distribution, flexible event handling and communication. Consequently, RIA models can

Reverse Engineering and Testing of Rich Internet Applications

23

quickly grow too complex for developers to be understood or managed.

In the last years, several methodologies and models for developing Web applications have

been proposed in the literature. The first methodologies, such as RMM [23, 24], HDM

[25] and OOHDM [26], derived from the area of hypermedia applications, while other

ones were developed specifically for web applications [27, 28, 29]. A user-centered design

process for web applications was described by Cloyd [30]. WebML (Web Modelling

Language) [31, 32] is another language for the high-level description of a Web system

built on several previous proposals for hypermedia and Web design languages, including

HDM, RMM, and OOHDM. Jim Conallen [33, 34] proposed some extensions to the UML

notation to make the UML suitable to model web applications. UWE (UML-Based Web

Engineering) [35] is a modern proposal for the development of Web applications based on

UML and the Object Oriented model. Further approaches for developing web applications

are reported in [19]. Unfortunately, due to substantial differences between a RIA and a

traditional web application, these methodologies and the corresponding models for

representing a web application are not suitable for RIAs.

Moreover RIA methodologies are relatively new and don‘t yet cover all design concerns

usually encountered in state-of-the-art software engineering.

Recently many efforts have been made in order to find models capable to represent the

heterogeneous nature of the RIAs, and how these models could be applied in effective

processes of RIAs development. All these approaches have proven successful for

functional concerns such as domain, navigation, and presentation. Broadly, they propose a

set of RIA-specific abstractions. Unfortunately, RIA researchers tend to overlook

architectural and technological aspects. Consequently, these RIA proposals have a gap

between the problem concepts that capture their models and how these concepts are

ultimately implemented through components or RIA frameworks. For this reason, these

methods must realize a set of assumptions and select predefined architectures and

technologies that often aren‘t the most appropriate with regard to the solution the customer

seeks.

Reverse Engineering and Testing of Rich Internet Applications

24

Moreover, the need to have the most appropriate architecture is especially important in

methodologies that provide a code-generation environment (such as RUX, WebML,

OOWS and OOH4RIA). Including solution-space abstractions would thus decrease the set

of predefined architectural decisions that these methodologies usually make when

generating code in such environments.

Melia et al. [36] in this context have proposed a new approach called OOH4RIA which

proposes a model driven development process that extends OOH methodology. It

introduces new structural and behavioural models in order to represent a complete RIA

and to apply transformations that reduce the effort and accelerate its development. The

developed RIA is implemented on the Google Web Toolkit (GWT) framework.

Preciado et al. [20] have proposed an integrated Web Engineering approach based on the

WebML and the RUX-Model conceptual models for supporting a high-level design of

Rich Internet Applications and their automatic code generation.

Valverde et al. in [37] tried to establish the foundations for supporting the UI

technological perspective of the Web 2.0 in a MDE scenario. The technological

complexity of RIA development is abstracted to the analysts, applying the MDE

principles,. To achieve this goal, first of all, the authors have defined a RIA meta-model to

support the new expressivity required in this new kind of Web applications.

The meta-model that has been defined is generic enough to be extended and related to

different MDE methods. Furthermore, it can be used as a basis to define concrete UI meta-

models to address the UI modelling for different RIA technologies.

The proposed RIA meta-model has been defined without taking into account a specific

method. The authors explained how is possible the integration of their RIA meta-model

with the OOWS Web Engineering method [38].

OO-Method [39] is an automatic code generation method that produces an

equivalent software product from a system conceptual specification. OOWS was

defined to extend OO-Method with the principles proposed by the Web Engineering

community. To achieve this goal, OOWS introduces a new set of models for

Reverse Engineering and Testing of Rich Internet Applications

25

supporting the interaction concern between the user and a Web application.

An interesting proposal of a new architectural style for Ajax applications, named SPIAR,

has been presented by Mesbah and van Deursen [40]. The authors state that the SPIAR

style can be used when high user interaction and responsiveness is desired in web

applications. The SPIAR style considers three categories of architectural elements, namely

processing, data, and connecting elements. An overview of these elements is showed in

Figure 1.3.

Figure 1.3: Processing View of a SPIAR-based architecture

Processing Elements are defined as those components that supply the transformation on

the data elements, including the Client Browser, the Ajax Engine, the Server Application,

the Service Provider, the Delta Encoder/Decoder and the UI Components. Data Elements

contain the information that is used and transformed by the processing elements, such as

the Representational Model, a run-time abstraction of how a UI is represented on the client

browser through the DOM, and the Delta communicating messages, that form the means

of the delta communication protocol between client and server. SPIAR makes a

distinction between the client delta data (DELTA-CLIENT, C) and the server delta data

(DELTA-SERVER, S). Finally Connecting Elements serve as the glue that holds the

components together by enabling them to communicate. The connecting elements are the

Events, the Delta connectors and the Delta Updates. Figure 1.3 shows a processing view to

describe how the elements work together to form the architecture. The view concentrates

on the data flow and some aspects of the connections among the processing elements with

respect to the data, showing the interactions of the different components at some time after

the initial page request (the engine is running on the client). User activity on the user

interface fires off an event to indicate some kind of component defined action which is

delegated to the AJAX engine. If a listener on a server-side component has registered itself

with the event, the engine will make a DELTA-CLIENT message of the current state

Reverse Engineering and Testing of Rich Internet Applications

26

changes with the corresponding events and send it to the server. On the server, the decoder

will convert the message, and identify and notify the relevant components in the

component tree. The changed components will ultimately invoke the event listeners of the

service provider. The service provider, after handling the actions, will update the

corresponding components with the new state which will be rendered by the encoder. The

rendered DELTA-SERVER message is then sent back to the engine which will be used to

update the representational model and eventually the interface. The engine has also the

ability to update the representational model directly after an event, if no round-trip to the

server is required. The same authors in another work [41] faced the challenge of migrating

web applications to single page Ajax applications, introducing a Single-page Meta-model.

The meta-model is depicted in Figure 1.4 showing that a Web Rich Internet Application is

composed by an Ajax single-page that in turn is composed of widgets. Each widget, in

turn, consists of a set of user interface (UI) components. The UI components are

components of Input, Output, Navigation or Layout. As an example Button, Text, Anchor

and File are Input UI Components, and Image, Label and Data are Output UI components.

Figure 1.4: The meta-model of a single-page AJAX

application composed of UI components
Figure 1.5: A single page web

application composed of UI components

The client side page is composed of client-side views, which are generated by the server-

side widgets/components as showed in Figure 1.5

Navigation is through view changes. For each view change, merely the state changes are

interchanged between the client and the server, updating or changing dynamically the

singles widgets that compose the page as opposed to the full-page retrieval approach in

multi-page web applications.

Reverse Engineering and Testing of Rich Internet Applications

27

The SPIAR and the single page proposal are relevant contributions in the direction of

defining suitable representation models for specifying RIAs‘ characteristics. However,

further models besides the architectural one are necessary for representing a RIA from

other relevant points of view, such as the behavioural one.

From this point of view, being a RIA an hybrid between a web application and a desktop

application, suitable models for representing its behaviour may be considered and selected

from the ones usually adopted for modelling GUIs in event-driven software. In RIAs,

indeed, like in Graphical User Interfaces the interface is sensible to a set of user-generated

and system-generated events that act on the interface widgets. As a consequence suitable

models for representing the RIAs‘ behaviour include the ones usually adopted for

modelling GUIs evolution in event-driven software, such as the Event Flow Graphs or

Finite State Machines (FSM) [50].

In the field of GUI modelling and reverse engineering, Memon et al. [44] presented a GUI

model and a technique (called GUI Ripping) for reverse engineering it from the executing

GUI. This model includes both a representation of the hierarchical nature of a GUI (called

GUI Forest and made up of GUI‘s windows, each one containing a set of widgets, a set of

properties of these widgets, and a set of values associated with the properties, and flow

between windows) and a representation of its execution behaviour (made up of an Event-

flow Graph). The model has been used with success in several GUI testing activities [42].

EFG models are successfully used by Memon in the context of test automation of EDS

Systems in particular for the GUI of desktop applications [43]. In particular to automate

the process of GUI testing, a graph-traversal model, event flow graph (EFG), and its later

version, event interaction graph (EIG)[44-47] and event sequence graph (ESG) [48-49],

have been proposed in recent years to generate sequences of events for creating test cases.

In this field of research, the event flow graph (EFG) was proposed as the core-enabling

model. In EFG, each vertex represents an event. All events which can be executed

immediately after this event are connected with directed edges from it. A path in EFG is a

legal executable sequence which can be seen as a test case. EFGs can be generated

Reverse Engineering and Testing of Rich Internet Applications

28

automatically using a tool called GUI Ripping ([44]) Traversing the EFG with certain

strategy can generate test cases. EFG was first proposed in [45], its definition being as

follows.

 Definition: An event-flow graph for a component C is a quadruple <V, E, B, I>

where:

o V is a set of vertices representing all the events in the component. Each v ∈

V represents an event in C;

o E ⊆ V × V is a set of directed edges between vertices. Event ei follows ej iff

ej may be performed immediately after ei. An edge (vx, vy) ∈ E iff the event

represented by vy follows the event represented by vx;

o B ⊆ V is a set of vertices representing those events of C that are available to

the user when the component is firstly invoked; and

o I ⊆ V is the set of restricted-focus events of the component.

In the definition, a GUI component C is an ordered pair <RF, UF>, where RF

represents a model window in terms of its events and UF is a set whose elements represent

modeless windows also in terms of their events. Each element of UF is invoked either by

an event in UF or RF.

Another example of a model representing the flow of events in a GUI has been proposed

by Belli et al. [51]. This model is also proposed for testing a GUI and consists of an event

sequence graph representing the system behaviour and the facilities from the user‘s point

of view while interacting with the system. However, this model is a more abstract

representation compared with State transition diagrams or Finite State Machines, since it

disregards the detailed internal behaviour of the system.

FSMs provide another convenient way to model software behaviour from a black-box

perspective, and several techniques have been proposed in the literature to reverse

engineering them from existing software applications [52-54] and from traditional web

applications [55].

Finite State Machine (FSM) is one of the most widely used models in software design and

Reverse Engineering and Testing of Rich Internet Applications

29

software testing, especially for GUI modelling [50]. To represent the GUI behaviour by

means of a FSM is mandatory define the concepts of GUI State and State Transition.

There are many ways to define the states of a GUI application, usually the graphical user

interface of a given application is treated as a series of interfaces. Each interface can be

regarded as a state. This state can be used to construct a finite state machine for GUI test

automation. A GUI‘s state is modeled as a set of opened windows and the set of objects

(label, button, text, etc.) contained in each window.

As definition,

 at a particular time t, the GUI can be represented by its constituent windows:

o W ={w1, w2, …, wn} and their objects O ={ O1, O2, …, On},

where Oi={o(i,1), o(i,2),…o(i, mi)}, i=1, 2, …, n;

each object contains properties

 P = { P(1,1), P (1,2), …, P (1, ml),

 P (2,1), P (2,2), …, P (2, m2),

….,P (n,1), P(n,2), …., P(n, mn)},

where

P(i,j) = { p(i, j, 1), p(i, j, 2), …., p(i, j, kij) }; i=1, 2, …, n; j= 1, 2, …., mi ;

 and their corresponding values

V(i,j) = { V(i,j,1), V(i,j,2), …., V(i,j, kij) };

where

V(i,j, k) = { v(i,j, k, 1) , v(i,j, k, 2) , …, v(i,j, k, Lijk) ,},

i=1, 2, …, n; j= 1, 2, …., mi; k= 1, 2, …., kij;

At a certain time t, the set of windows and their objects constitutes the state of the GUI.

All the objects are organized as a forest. A GUIs state is then modeled as a quadruple (W,

O, P, V). Events {e1, e2… eq} performed on the GUI may lead to state transitions. The

function notation Sj = ei(Si) is used to denote that Sj is the state resulting from the

execution of event ei at state Si. Such a state and transition can be considered as a finite

state machine.

Reverse Engineering and Testing of Rich Internet Applications

30

Recently FSMs have been successfully used by Marchetto et al. in [56] and Mesbah et al.

in [57, 83] as reference model to describe the behaviour of the RIAs GUI in their-model

based testing processes.

1.5 Open Issues

As we discussed in the previous sub-sections, Rich Internet Applications present a richer

functionality and enhanced usability than the traditional Web applications. On the other

hand, there are some aspects of RIAs that introduce new challenges in several fields of

research.

In particular RIAs, as well as Web sites and Web applications, usually are deployed at a

fast pace not only by experts but also by individuals programmers without the required

training and knowledge to implement well-structured systems. For this reason the field of

the Web applications, and of the RIAs too, has been characterized by a lack of well

defined design methodologies and development processes. Often RIAs are developed

without adequate phases of design and testing so that the quality of resulting software is

drastically decreased.

Moreover RIAs are obtained by means of a successful combination of heterogeneous

technologies, multiple programming languages, frameworks and communication models

that has contributed to the complexity‘s growth of these web systems.

All these problems are true for RIAs developed with several technologies, however they

have been concretely faced in the literature just for RIAs developed in Ajax.

In the field of testing, Marchetto and al. [56] stated that the advent of Ajax adds novel

problems to those already known in the Web testing area. Since Ajax Web applications are

heavily based on asynchronous messages and DOM manipulation, the authors expect that

the faults associated with these two features are relatively more common and widespread

than in other kinds of applications. Hence, Ajax testing should be directed toward

revealing faults related to incorrect manipulation of the DOM. For example the DOM

structure can become invalid during the execution due to page manipulations by

JavaScript code. Another example is an inconsistency between code and DOM, which

Reverse Engineering and Testing of Rich Internet Applications

31

makes the code reference an incorrect or nonexistent part of the DOM.

Often Ajax programmers make the assumption that each server response comes

immediately after the request, with nothing occurring in-between. While this is a

reasonable assumption under good network performance, when the network performance

degrades, we may occasionally observe unintended interleaving of server messages,

swapped callbacks, and executions occurring under incorrect DOM state. All such faults

are hard to reveal and require dedicated techniques.

Mesbah et al. in [58] stated that with the new change in developing web applications

comes a whole set of new challenges, mainly due to the fact that AJAX shatters the

metaphor of a web ‗page‘ upon which many web technologies are based. Among these

challenges are the following:

 Searchability ensuring that AJAX sites are indexed by the general search engines,

instead of (as is currently often the case) being ignored by them because of the use

of client-side scripting and dynamic state changes in the DOM;

 Testability systematically exercising dynamic user interface (UI) elements and

states of AJAX to find abnormalities and errors;

 Accessibility examining whether all states of an AJAX site meet certain

accessibility requirements.

The same authors in [57] asserted that while the use of AJAX technology positively

affects user-friendliness and interactiveness of web applications, it comes at a price: AJAX

applications are notoriously error-prone due to, e.g., their stateful, asynchronous and event

based nature, the use of (loosely typed) JavaScript, the client-side manipulation of the

browser‘s Document-Object Model (DOM), and the use of delta-communication between

client and web server.

Matthijssen et al. in [59] stated that although Ajax allows developers to create rich web

applications, Ajax applications can be difficult to comprehend and thus to maintain.

Before the dawn of Ajax, Hassan and Holt already noted that ―Web applications are the

legacy software of the future‖ and ―Maintaining such systems is problematic‖ [60].

Reverse Engineering and Testing of Rich Internet Applications

32

Moreover, software processes often devote little effort to the production of end user

documentation due to budget and time constraints, or leave it not up-to-date as new

versions of the application are produced. In particular, in the field of Web applications,

due to their quick release time and the rapid evolution, end user documentation is often

lacking, or it is incomplete and of poor quality.

In this thesis we examine the new Software Engineering challenges in the field of Ajax-

based RIAs, in particular in the context of maintenance, comprehension, testing and re-

documentation processes. First of all, we address the problem of finding the most suitable

models for representing the peculiar features of the RIAs. As a consequent step we

propose Reverse Engineering processes that allow to obtain these models automatically,

by exploiting techniques of dynamic analysis. Then we show how the obtained models can

be used to carry out cost-effective processes of comprehension, testing and re-

documentation of Rich Internet Applications. These arguments will be discussed in details

in the next chapters of the thesis.

Reverse Engineering and Testing of Rich Internet Applications

33

Chapter 2
1

REVERSE ENGINEERING THE BEHAVIOUR OF RICH INTERNET

APPLICATIONS

Software technologies, processes and development paradigms for producing Internet

applications are evolving in constant and rapid way, offering always new methods and

solutions for producing more effective Web applications. A recent output of this trend is

represented by Rich Internet Applications (RIA), a new generation of Web applications

which exploit specific web technologies for overcoming usability limitations of traditional

web applications and offering greater usability and interactivity to their users.

The term AJAX, originally proposed as an acronym for Asynchronous JavaScript and

XML [17], is just an approach for developing RIAs using a combination of Web

technologies such as XML, XMLHttpRequest, JavaScript, CSS, and DOM: these

technologies give RIAs new client-side elaboration capacity, new presentation features,

and different communication mechanisms between client and server side. The main

characteristic of an Ajax application is that it introduces an intermediary — an Ajax

engine — between the user and the server. Instead of loading a webpage, at the start of the

session the browser loads an Ajax engine, written in JavaScript. This engine is responsible

for both manipulating the interface the user sees, and communicating with the server on

the user‘s behalf. The interface evolves dynamically on the basis of the user‘s interaction

with its single DOM components, while the engine communicates with the server by the

XMLHttpRequest (XHR) object. This object allows asynchronous retrieval of arbitrary

1
 Part of this chapter was published in the Proceedings of the 15th Working Conference on Reverse Engineering (WCRE 2008).

Reverse Engineering and Testing of Rich Internet Applications

34

data from the server without the need of refreshing the current page and leaving at the

same time the user able to perform other tasks independently. This aspect has produced an

important shift in the Internet‘s default request/response paradigm, and now that major

browsers have added support for it, web applications have gained the ability to provide

richer user experiences, becoming more and more similar to desktop applications.

In this chapter, the problem of modelling the behaviour of a RIA using Finite State

Machines will be addressed, and a reverse engineering approach for obtaining this model

from Ajax-based RIAs will be presented. A key challenge of the proposed approach

consists of obtaining the model on the basis of an analysis of just the client side of the

application.

The reverse engineering approach will reconstruct and model the behaviour of an existing

RIA by analysing both the evolution of its user interface, and other relevant information

about the processing performed by it at run-time. The approach is based on a two-step

process where the former step is devoted to tracing the RIA executions, and the latter one

exploits abstraction techniques based on client interface clustering rules for generating the

FSM from the information collected during the RIA execution.

The process execution is supported by a tool that provides an integrated environment for

performing dynamic analysis and collecting information about the RIA execution using

non-invasive techniques. Moreover, the tool implements automatically clustering criteria

that are used for abstracting the FSM-based model of the RIA behaviour.

2.1 Modelling the Behaviour of a Rich Internet Application

Finite State Machines (FSM) provide a convenient way to model software behaviour from

a black-box perspective, and several techniques have been proposed in the literature to

reverse engineering them from existing software applications. Many black-box reverse

engineering techniques generate FSMs by analysing the software user interface run-time

evolution [52-54] and making hypotheses for generating states and transitions of the

corresponding FSM. Some of these techniques have also been applied with success to

reverse engineer FSMs from traditional web applications [55].

Reverse Engineering and Testing of Rich Internet Applications

35

These approaches are applicable to RIAs, provided that key differences between a RIA

and a traditional web application presentation levels are taken into consideration.

In particular, at the presentation level, a traditional web application can be considered as a

form-based software system [16, 61] where human-computer interaction is session-based

and composed of an alternating exchange of messages between user and computer. The

web application, indeed, is based on a multi-page interface model, where the user submits

some input on the current web page, the server executes some data processing and

responds by presenting a new page.

Vice-versa, the interface model of a RIA can be considered as a single-page model where

changes are made to the single page components without the need of refreshing the page

entirely. Page changes are produced by elaborations triggered on the page components by

several types of events (such as user events, time events, or other asynchronous events)

and performed by event handlers.

As an example, in RIAs implemented with Ajax-based technologies, the evolution of the

client interface corresponds to the run-time evolution of the DOM associated with the RIA

web page. In particular, the DOM (e.g., Document Object Model) is the document model

proposed by the W3C providing a standard set of objects for representing HTML and

XML documents, a standard model of how these objects can be combined, and a standard

interface for accessing and manipulating them [62]. The DOM of a web page defines a

tree data structure, made up of components (e.g., element nodes), that is processed by the

browser for rendering it on the client interface.

During the execution of an Ajax-based RIA, external events trigger elaborations (e.g.,

event handlers) which may both involve the DOM tree element nodes
2
, and other related

data structures instantiated at run-time (such as XHR requests). Each triggered elaboration

will certainly produce a change in the client-side accessible data structures of the

application, and potentially will result in a new configuration of the client interface.

2
 In Ajax, several types of DOM events allow various event handlers (or listeners) to be registered on the DOM element nodes, where each event

handler is a piece of code that is executed when particular events occur.

Reverse Engineering and Testing of Rich Internet Applications

36

This client-side run-time behaviour of a RIA can be specified by the UML class diagram

reported in Figure 2.1.

Figure 2.1: The conceptual model of a RIA client-side

behaviour

The model describes the behaviour in terms of the Client Interfaces shown by the RIA as

far as several types of events are triggered, and explicitly represents registered events,

event handlers, raised events and some information about the processing triggered by

raised events. In particular, the model shows the various RIA‘s Client Interfaces where

each Client Interface is associated with the corresponding DOM configuration. A DOM is

composed of DOM elements, a DOM element can be associated with 0 or more Events

registered with the element, and this pair is associated with the corresponding Event

Handler. An Event Handler may be either declared in the script code explicitly, or may be

implicitly pre-defined (such as for the default event handlers of click events on hyperlink

objects, or on form submit buttons).

During the RIA execution, the occurrence of each Event at a given Timestamp will be

registered by a Raised Event, and the processing triggered by the Raised Event may result

in a Transition that links the starting Client Interface to an ending one reached at the End

Transition Timestamp. Moreover, the handling of a raised event may instantiate a set of

HTTP Requests, which may either be Web Page Requests to Server Pages, or XHR

Requests directed to any Server Side Resource.

Server Page

Client Interface

DOM

DOM Element

1

1

1..*

1..*

1..*
Transition

+End Transition Timestamp

Http Request

XHR RequestWeb Page Request

Server Resource

*

1

*

1

Event

+Builds

1

*

1..

Raised Event

+Timestamp

Event Handler

1

*

1

0..1

0..*
1

Reverse Engineering and Testing of Rich Internet Applications

37

 As well as the behaviour of a traditional web application can be described by a Finite

State Machine whose states and transitions can be deduced by analysing the sequence of

different web pages rendered by the browser during the web application execution [63,

55], a similar approach can be used for a RIA too.

In particular, in the case of a RIA, we propose to specify the client-side behaviour of the

application by a FSM=(S, T) made of a set S of states, and a set T of transitions, where

each state from S is associated with a distinct Client Interface generated by the RIA at run-

time, and each transition from T corresponds to a raised event that produced a new Client

Interface. Of course, such a definition of the FSM exposes to a well-known problem of

state explosion. Indeed, each new DOM configuration that is reached after an event-driven

processing is a distinct state of the FSM. To solve this problem, equivalence criteria can be

exploited for determining both equivalent states and equivalent transitions inside the State

Machine, and simplifying it accordingly. Such criteria can be defined by considering both

the structure of each client interface, and the processing that can be triggered by

interacting with its elements. Several proposals of these criteria have been defined in the

context of a Reverse Engineering process that was designed for generating the FSM of an

existing RIA. This process and proposed criteria will be presented in the next section.

2.2 Reverse Engineering Process

The Reverse Engineering process proposed in this section aims at reconstructing a Finite

State Machine modelling the behaviour of an existing Rich Internet Application using a

combination of dynamic analysis and clustering techniques involving the RIA user

interfaces. The process is based on two sequential steps of Extraction and Abstraction,

respectively. The Extraction step implements the RIA dynamic analysis for tracing the

sequence of event-driven Client Interfaces produced during the RIA execution, as well as

some event handling related processing information. The information collected during this

step can be used to build a direct graph, the RIA Interface Transitions Graph (TG), whose

nodes represent the RIA client interfaces, and edges represent events that cause the

Reverse Engineering and Testing of Rich Internet Applications

38

generation of new interfaces. Of course, using dynamic analysis techniques for collecting

information about the RIA execution behaviour requires that two main problems are

addressed. The former is a problem of adequacy of the set of traced executions for

representing all the relevant behaviours of the RIA. This problem can be addressed by

adopting suitable strategies for assuring that traced executions capture all possible

behaviours of a RIA during the execution of its use cases. The latter problem is a problem

of explosion of the number of different client interfaces produced during the RIA

executions. To solve this problem, the proposed reverse engineering process introduces the

Abstraction step, where equivalence criteria are exploited for clustering together

equivalent client interfaces and equivalent transitions between interfaces of the TG, and

generating a FSM correspondently. Additional details about both Extraction and

Abstraction steps will be presented in the next sub-sections.

2.2.1 Extraction step

The Extraction step is actually a tracing activity of user sessions where the RIA is

executed in a controlled environment in order to trigger sequences of events (making up

the execution of specific use cases of the application) and to register corresponding results

available on the client side of the application.

This tracing activity can be modelled by the statechart diagram shown in Figure 2.2 that

includes two main iterative states, the Event Waiting and the Event Handling Completion

Waiting one.

Figure 2.2: The Tracing Activity of the Extraction Step

Raised EventEvent Handiling Completed

Event Waiting

entry/DOM Extraction

Event Handling Completion Waiting

entry/Transition Tracing
exit/End transition Tracing

Start Tracing

End Tracing

Reverse Engineering and Testing of Rich Internet Applications

39

When the Start Tracing initial state is entered, a new Web page is loaded and rendered by

the browser, and the Event Waiting state is reached where the page remains frozen until

any event rises.

Entering in the Event Waiting state, the DOM Extraction activity, consisting of extracting

and storing information about the structure of the currently rendered DOM, is carried out.

The occurrence of a raised event causes a transition from the Event Waiting state towards

the Event Handling Completion Waiting state.

Three main types of events are able to trigger this transition:

 user events, corresponding to user actions made on any input device, such as mouse

or keyboard;

 time events, due to the occurrence of a timed condition;

 http response event, due to receptions of responses to some http request, such as a

request for a web page, or an asynchronous Ajax (XHR) request.

During the reverse engineering process, in order to avoid loss of data or inconsistent data,

the execution of the RIA should be controlled by delaying a new event occurrence until

the DOM Extraction activity in each Event Waiting state has been completed. While

entering in the Event Handling Completion Waiting state, a Transition Tracing activity is

carried out consisting of the extraction and storage of information related to the raised

event, such as its type, its timestamp of raising, and the DOM element node which it has

been raised on. When the event handling is completed, the time of the event handling

termination is stored (End Transition Tracing activity) and the reverse engineering process

returns in the Event Waiting state, for continuing the Tracing activity. While in the Event

Waiting state, the Tracing activity can be stopped by the reverse engineer in order to exit

from the Extraction step of the process.

2.2.2 Abstraction step

At the end of the Extraction step, the reverse engineering process enters the Abstraction

one, where data extracted during the tracing activity is analysed in order to obtain the FSM

modelling the RIA behaviour.

Reverse Engineering and Testing of Rich Internet Applications

40

 The abstraction of this model is accomplished in two steps: in the first step, a Transition

Graph whose nodes represent the generated RIA client interfaces, and edges represent

events that caused the generation of new interfaces, is built.

In the second step, this graph is analysed and Clustering techniques are used for grouping

together its equivalent nodes and transitions. The resulting graph is submitted to a Concept

assignment process, which will finally generate the FSM.

The clustering techniques exploit equivalence criteria of the client interfaces based on the

analysis of the corresponding DOM configurations. In particular, we have considered (and

experimented with) several heuristic criteria such as the one that considers two client

interfaces to be equivalent if their DOMs include the same set (or sub-sets) of ‗active

element nodes‘, that is elements with registered events of selected types (such as user

event, time event, asynchronous events, etc.) and having the same event handlers.

As a consequence, transitions of the TG between equivalent client interfaces and

associated with the same type of event will be considered equivalent and clustered

together too.

After the completion of the clustering task, a simplified TG will be obtained. This graph

will be submitted to a Concept Assignment task where each node of the TG will be

initially assumed as a distinct state of the State Machine, and the software engineer

knowledge and experience will be needed for validating or discarding this hypothesis. The

transitions between states will be deduced accordingly.

At the end of this task, the FSM modelling the behaviour of the RIA will be finally

obtained.

2.3 The Reverse Engineering Tool

The proposed Reverse Engineering process can be executed with the support of the RE-

RIA (Reverse Engineering RIA) tool that provides an integrated environment where the

different activities of the process can be performed, and their intermediate results are

persistently managed.

Reverse Engineering and Testing of Rich Internet Applications

41

The tool architecture is shown in Figure 2.3.

Figure 2.3: The RE-RIA tool architecture

The RE-RIA tool comprehends three packages, named GUI, Extractor and Abstractor, and

a relational database that stores the extracted information and produced abstractions. A

description of the package components, their functionality and of technological solutions

used for implementing them follows in the next sub-chapters.

2.3.1 GUI Package

The GUI package comprehends two components, namely Browser and Reverse

Engineering Process Manager. The Browser is actually the instantiation of a Mozilla

Firefox Browser inside a Java GUI, allowing RIAs to be navigated trough the GUI, while

their structure and behaviour can be at the same time accessed by other components of the

tool. In particular, we used the Standard Widget Toolkit (SWT) [64], that is an open

source widget toolkit for Java providing abstract classes and packages for instantiating

HTML Browsers. Moreover, the browser uses the same rendering engine Gecko [65] used

by the Mozilla Firefox browser for rendering the DOM. The Reverse Engineering Process

Manager component is another Java GUI providing the user with several functionalities

for the reverse engineering process management. The component allows starting and

Extractor

GUI

Abstractor

Reverse
Engineering

Process
Manager

Browser

DOM
Extractor Clustering

FSM
Abstractor

DataBase
<<artifact>> Statechart

Diagram

<<artifact>>

Trace Extractor

DOM Querying

Reverse Engineering and Testing of Rich Internet Applications

42

stopping a user session tracing, starting a clustering session, and setting some process

parameters, such as types of data that will be captured during the RIA execution, as well

as the Equivalence Conditions that will be applied by the clustering sessions. A screenshot

depicting the Reverse Engineering Process Manager GUI of the RE-RIA tool is shown in

Figure 2.4.

Figure 2.4: The Reverse Engineering

Process Manager GUI

2.3.2 Extractor Package

The Extractor package comprehends two components, the DOM Extractor and the Trace

Extractor. The DOM Extractor is a Java component interacting with the Browser in order

to extract information about currently instantiated DOM element nodes that are rendered

by the browser. The access to the DOM elements is made possible by the JavaXpCom

library [66], that allows the interaction with the Mozilla browser embedded in SWT by

using the full range of public Mozilla Interfaces. The DOM Extractor stores the structural

information about the visited RIA interfaces into the database.

The Trace Extractor is a Java component interacting with the Browser Emulator in order

to trace and collect information about both event raising and termination of the execution

of their event handlers. The information collection has been realised by inserting non-

Reverse Engineering and Testing of Rich Internet Applications

43

invasive probes that exploit the bubbling and capturing standard mechanisms defined by

the W3C for DOM event dispatching (cfr. [67]). Event dispatching is the technique used

by the script engine of Web browsers for propagating a raised event to the event listeners

registered to the same event. In the W3C Event model, event handlers can be registered

with an event associated with a DOM object (hereafter, the Target object) and

characterized by a flag that assumes two values, namely ‗capture‘ and ‗bubble‘, defining

the propagation order of events to the DOM element nodes. The Event Dispatch

mechanism operates according to a procedure comprehending three sequential phases,

called Capture phase, Target phase and Bubble phase, respectively. In the capture phase,

the set of the ancestors of the Target object is analysed in descending order, from the

DOM root (i.e. the window DOM object) to the Target object. Event handlers flagged as

‗capture‘ are launched in this phase. In the target phase, the event handler associated to the

Target object is executed. In the bubble phase, the ancestor set is visited in reverse order,

from the Target object to the root, and the event handlers flagged as ‗bubble‘ are launched

too. The Trace Extractor is able to capture and trace the events of given types occurred in

a tracing session thanks to two types of event handlers, named Hraise and Htermination, that are

added to the window element (that is the DOM root) at the start of the session for each

type of event that needs to be captured. The Hraise handlers are flagged as ‗capture‘, so that

each of them will be the first handler executed after the raising of any event of the

specified type, and will be responsible for storing information about the raised event into

the database. The Htermination handlers are flagged as ‗bubble‘, so that each of them will be

executed after the termination of all the event handlers associated to the same type of

raised event, and will be responsible for storing information about the termination of the

event handling.

2.3.3 Abstractor Package

The Abstractor package comprehends two components, the Clustering component and the

FSM Abstractor, respectively. The Clustering component is a Java component

implementing the clustering techniques described in section 3.3 for simplifying the Trace

Reverse Engineering and Testing of Rich Internet Applications

44

Graph obtained after the event tracing activity. The resulting Trace Graph is stored in the

database. The FSM abstractor is another Java component designed to support the Concept

Assignment task performed by the software engineer for abstracting the FSM from the

Trace Graph stored in the database. In particular, the component offers a GUI where

choices made during the abstraction task can be inputted and stored into the database.

2.4 Case Study

This section presents a case study that was carried out for exploring the feasibility and

effectiveness of the proposed reverse engineering approach. In particular, the case study

involved a medium-size open source Rich Internet Application which was submitted to the

reverse engineering process. Using the support provided by the RE-RIA tool, some FSMs

describing how the application behaves were deduced. The reverse engineering process we

performed and its results are described in the following. The subject of the experiment was

an Ajax-based RIA named FilmDB [68] that provides registered users with several

functionalities for the management of a personal movie archive, such as visualisation of a

movie description, insertion, modification, deletion of a movie description and search for

movies in the archive, management of movie loans and so on. The server side of this

application is implemented by 99 PHP server pages (624 kBytes) that generate client

pages containing several scripts (implemented in JavaScript) able to realise a complex user

interface. Moreover, FilmDB interacts with server side resources (in particular with the

imdb.com web site to obtain movie data) by exploiting Ajax requests. A user

documentation of FilmDB is available on line; it provides some indications about its main

user functions, but it does not describe detailed information about the behaviour of its

interface. Several use cases offered by the application were submitted to the reverse

engineering process. In the Extraction step each use case was executed several times with

different input data and actions in order to exercise various use case scenarios. These user

sessions were traced automatically by the tool and registered by a number of execution

traces. In the Abstraction step, for each use case, information collected by the tool about

the related execution traces was used for deducing an FSM associated with the RIA

Reverse Engineering and Testing of Rich Internet Applications

45

corresponding behaviour. This step required two tasks: the first task involved the

production of a Transition Graph (TG) associated with collected traces. The second task

was devoted to the TG analysis, and Clustering techniques were used for grouping

together its equivalent nodes and transitions. The resulting graph was submitted to a

Concept assignment process, which finally generated the FSM. In the following, we report

data about the process that was performed for two specific use cases, the former one

allowing a user to enter his/her personal movie area, and the latter for exiting this area.

The first use case was characterised by three alternative scenarios (unsuccessful login of

unregistered user, successful login of the administrator user, and successful login of a

generic user), so that three executions were necessary for exercising all them. The exit use

case presented just a single scenario that was exercised twice. The process was performed

using the RE-RIA tool, whose Trace Extractor component captured and stored various

data about monitored session. Table 2.1 reports synthetic data about these sessions

captured by the tool, such as #Client interfaces that were generated, #DOM element nodes

of these interfaces, #traced events (of various types).

Table 2.1: Synthetic data about traced sessions
#Client interfaces 60

Extracted DOM elements 6015

Traced transitions 59

 # Total traced User events (of which) 42

Click on a DOM element 11

Mouseover on a DOM element 9

Mouseout on a DOM element 8

Keydown 14

 # XHR response reception events 8

 #Client interface reception events 4

 # Timeout events 5

The Transition Graph associated with these execution traces was complex enough,

including 60 nodes and 59 edges. In the Abstraction step, various clustering heuristic

techniques were used for simplifying this Graph, grouping together its equivalent nodes

and transitions. As to the client interfaces grouping, two different clustering criteria were

experimented with: the former criterion (C1) considered two client interfaces to be

equivalent if they included the same set of ‗active‘ DOM elements (e.g., having the same

Reverse Engineering and Testing of Rich Internet Applications

46

registered events and event handlers), while (C2) criterion considered two client interfaces

to be equivalent if they included the same set of ‗active‘ DOM elements and have the

same set of instantiated XHR, Http Requests, or timeout listeners. As to transition

grouping, the criterion that considers being equivalent two transitions of the TG if they

link equivalent client interfaces and are produced by the same type of event was used. As

to the simplified TG produced by criterion (C1), it comprised 8 nodes and 22 transitions

(with respect to the 60 nodes and 59 edges of the initial graph).

This TG was submitted to a Concept Assignment task, where each node of the TG was

initially assumed as a distinct state of the Finite State Machine, and the software engineer

knowledge and experience were needed for validating or discarding this hypothesis.

This concept assignment step revealed that most TG nodes could be associated with

meaningful states of the FSA, while some nodes could not be associated with meaningful

states but had to be further split.

As an example, this problem was encountered with respect to a node of the TG that

clustered together several RIA‘s client interfaces having the same DOM element nodes,

but differing just for the set of instantiated XHR objects, Http Requests, and timeout

listeners.

As to the simplified TG produced by criterion (C2), it comprised 12 nodes and 23

transitions (with respect to the 60 nodes and 59 edges of the initial graph).

The concept assignment revealed that all nodes of this TG could be associated with

meaningful states of the RIA behaviour. Indeed, graph nodes associated with RIA‘s client

interfaces having the same DOM element nodes, but differing just for the set of

instantiated XHR objects, Http Requests, and timeout listeners were correctly considered

non equivalent.

Therefore, this graph reconstructed correctly the behaviour of the RIA, thanks to the

correct consideration of Ajax synchronization communication mechanisms.

This result confirmed that clustering criteria are able to influence the effectiveness of the

FSM reverse engineering process.

Reverse Engineering and Testing of Rich Internet Applications

47

The resulting FSM is shown in Figure 2.5, while Table 2.2 describes the meaning assigned

with each state of the FSM.

Table 2.2: FSM states – criterion (C2)

1 Home Page, no logged users

2 Wait for login form

3 Login form

4 Wait for server authentication

5 Obtained authentication, wait for

synchronization

6 Login failed

7 Obtained authentication, wait for page reload

8 Home Page, user logged

9 Wait for logout

10 Logged out, wait for synchronization

11 Logout notification, wait for home page reload

12 Logout notification

Figure 2.5: The Resulting FSM

Reverse Engineering and Testing of Rich Internet Applications

48

2.5 Conclusions

In this chapter we have presented the initial results of a reverse engineering research

project that aims at defining and validating effective reverse engineering processes and

techniques for reconstructing suitable representation models of Rich Internet Applications.

The research preliminarily addressed the problem of modelling the client-side behaviour

of a RIA by reverse engineering techniques based on the dynamic analysis of the

application. Dynamic analysis is a necessary technique for reconstructing all possible

behaviours exhibited by event-driven applications, but it exposes to several problems, such

as the problem of assuring a full coverage of all possible RIA behaviours, as well as a

problem of potential state explosion.

To solve the first problem, well known input selection strategies assuring the needed

coverage (and already used for software testing aims) can be adopted with success. Vice-

versa, a possible approach for managing the state explosion problem is offered by

clustering techniques that exploit equivalence criteria for recognizing equivalent

behaviours and classifying them correctly.

We have proposed to cope with the second problem using heuristic clustering criteria,

whose effectiveness has been assessed in a preliminary experiment. The case study we

performed showed the feasibility of the proposed reverse engineering approach,

highlighting future works to be addressed. In particular, we plan to extend the

experimentation with further case studies in order to assess the scalability of the approach.

Moreover, the adequacy of the proposed model for supporting maintenance and testing

activities involving the RIA, will be addressed, too.

In the next chapter we present an experimentation of the presented technique that we

performed in order to assess its effectiveness.

Reverse Engineering and Testing of Rich Internet Applications

49

Chapter 3
3

EXPERIMENTING THE REVERSE ENGINEERING TECHNIQUE

FOR MODELLING THE BEHAVIOUR OF RICH INTERNET

APPLICATIONS

In the previous chapter we have proposed the use of Finite State Machines (FSMs) to

represent the behaviour of AJAX [17] applications, and presented a reverse engineering

technique and a tool for obtaining them from existing applications using dynamic analysis

[1]. In this chapter, we present the results of an experiment that aimed at assessing the

effectiveness of this technique in reconstructing a FSM model of the RIA behaviour that

can be used for maintenance, evolution, or re-documentation purposes

3.1 The proposed FSM model and the reverse engineering technique

Finite State Machines, which have also been used with success for modelling traditional

Web applications [63], provide an abstract view of a system in terms of states and

transitions among them. More precisely, a FSM representing an RIA behaviour will be a

couple (S, T) where S is a set of states reached by the RIA during its processing, T is the

set of transitions between states.

We propose of representing in the FSM all the elaboration states where the RIA receives

any input solicitation by its user (state abstraction criterion), and of describing each state

of the RIA by the User Interface shown to the user at that interaction time (representation

criterion). In this model, transitions between states will be associated with user

3
 This chapter was published in the Proceedings of the 25th International Conference on Software Maintenance (ICSM 2009).

Reverse Engineering and Testing of Rich Internet Applications

50

interactions (e.g. user events) that triggered the RIA migration towards the new state. This

FSM-based model of the RIA behaviour can be obtained by a four-step dynamic analysis

based technique that, in a first step, records a set of execution traces of the RIA from user

sessions. An execution trace will be modeled as a sequence of couples (Ii, eventi), where

each Ii represents a user interface state and each eventi is the user event occurred on that

interface during the execution. For obtaining these execution traces, we use a non-invasive

technique that does not instrument the code of the application directly, but rather the

browser that renders it [1]. Once a set of execution traces (representative of all possible

RIA behaviours) has been collected, the second step of the technique addresses the

problem of detecting and filtering out redundant information contained in this set. In

particular, user interfaces with the same set of ‗active widgets‘ (i.e. elements with

registered event listeners) and offering the same interaction behaviour to their users (by

means of the same set of event handlers) will be considered as equivalent, and will be

substituted by the corresponding equivalence class. Table 3.1 reports the definitions of

three interface structural equivalence criteria C1, C2, and C3 that have been proposed for

finding equivalent user interfaces.

Table 3.1: Interface equivalence criteria

C1: two client interfaces I1 and I2 are equivalent if the same active widgets of

I1 are also included in I2 and vice versa, and they have the same indexed path,

the same type of corresponding listeners, and corresponding event handlers with

the same name.

C2: two client interfaces I1 and I2 are equivalent if the same active widgets of

I1 that are visible and enabled are also included in I2 and vice versa, and they

have the same indexed path, the same type of corresponding listeners, and

corresponding event handlers with the same name.

C3: two client interfaces I1 and I2 are equivalent if the same active widgets of

I1 that are visible and enabled are also included in I2 and vice versa, and they

have the same un-indexed path.

When the trace collection activity ends and its included equivalent user interfaces have

been found, the FSM abstraction step of the technique (third step) can be entered in order

to obtain a machine modelling the behaviour of the analysed application. The resulting

FSM=(S, T) will include a set S of states corresponding to all interface equivalence classes

discovered by a considered equivalence criterion, while the set T of transitions will be

defined on the basis of recorded transitions between consecutively visited client interfaces.

Reverse Engineering and Testing of Rich Internet Applications

51

Finally, a model validation step (fourth step) is required for assessing the

correctness/adequacy of the reconstructed FSM, and for assigning each validated state

with a meaningful description. Generally speaking, the correctness of such a model

depends on the objectives of the task the model was produced for (such as comprehension,

testing, maintenance, etc.), and its evaluation will be based on the judgment of an expert of

the task. The proposed Reverse Engineering technique can be executed with the support of

the RE-RIA (Reverse Engineering RIA) tool that provides an integrated user-friendly

environment where execution traces collection, traces analysis and classification, and FSM

abstraction and validation activities can be performed.

3.2 The experiment

This section illustrates an experiment that was carried out using a set of real RIAs. The

experiment was designed (1) for assessing the effectiveness of the reverse engineering

technique, and (2) for analysing its cost-effectiveness ratio.

For evaluating the effectiveness of the technique in reconstructing a behavioural model of

an RIA we analysed the correctness of the FSM model produced by it. The FSM

correctness can be evaluated by comparing two FSM models, e.g. the model M produced

by the technique from a given set of execution traces T of a RIA, and a reference model O

(the so-called Gold Standard) which would have been produced by an expert from the

same set of execution traces T. Since both the expert and the technique actually distribute

the set of visited interfaces I into a set of partitions (i.e. the states of the FSM models), we

decided of comparing the models M and O by evaluating the edit distance d(M, O)

proposed in [69] between these partitions. Using such an approach, we measured the

reverse engineering technique effectiveness by the following Correct Interface Ratio

(CIR) metric:

CIR (M) = 1 - d(M, O)/ |I|

where CIR = 100% indicates that M and O partitions are exactly the same. As to the

evaluation of the cost C of the proposed technique, we took into account the costs of its

Reverse Engineering and Testing of Rich Internet Applications

52

single steps. These costs include: Ccoll that is the cost of collecting user session traces

(semi-automatic task), Canalysis that is the cost needed for classifying analysed interfaces

into a set of equivalence classes on the basis of the selected equivalence criterion

(automatic task), Cabstr that is the cost needed for defining the FSM on the basis of the

recovered interface equivalence classes (automatic task) and Cval that is the cost needed to

validate the obtained FSM (manual task). Cval includes the cost Cv of validating the

proposed state for each interface and the cost Cmov of moving incorrectly classified

interfaces towards the expected classes of the Gold Standard model. Intuitively, Ccoll, Cabstr

and Cv depend on the number of analysed trace interfaces, and grow with it. Canalysis

depends both on the number of analysed trace interfaces, and on the number of active

widgets included in analysed interfaces, while Cmov grows with the number of interface

move operations needed for correcting the reconstructed model, that is with the partition

edit distance d(M, O).

If we consider as negligible all automatic activity costs, the most relevant cost factors

include Ccoll and Cmov.

In the experiment we used the following materials and procedures.

Subject applications included the following four distinct available online RIAs:

 W1: http://app.ess.ch/tudu/welcome.action

 W2: http://www.pikipimp.com

 W3:http://www.agavegroup.com/agWork/theList/theListWrapper.php

 W4: http://www.buttonator.com

We involved in the experiments two software engineers and five under-graduate students

from the Software Engineering courses held at the University of Naples, in Italy.

A set of two/three students per application were trained about the application use cases

(and their normal and alternative scenarios), and were asked for collecting a set of user

session traces.

We asked each student for covering each use case of the application at least two times

with their user sessions. This task was accomplished with the support of the RE-RIA tool

Reverse Engineering and Testing of Rich Internet Applications

53

and returned a set of execution traces ET per application.

The experts produced a FSM reference behaviour model for each Web application, the so

called „Gold Standard‟ (GS) model, to be used for comparative analysis. Each GS model

was obtained by analysing the set of all collected execution traces ET (with the support of

RE-RIA tool) and provided a specific partitioning of execution trace interfaces.

Table 3.2 reports, for each application, the number of considered use cases (UC) and

alternative scenarios (SC), the number of collected User Session Traces (UST) and

interfaces (I), and the number of the corresponding GS States (GS-s) and transitions (GS-

t).

For each application and for each analysed execution trace, three FSM models M1, M2,

and M3 were finally obtained automatically on the basis of a different interface

equivalence criterion (C1, C2, and C3, respectively). Each model provided a different

partitioning of execution trace interfaces.

For each model M, the partition distance d (M, GS), and the CIR metric values were finally

computed.

Table 3.2: Data about subject applications

RIA UC SC UST I GS-s GS-t

W1 8 17 30 1885 15 52

W2 1 2 8 533 4 16

W3 3 10 11 731 4 9

W4 1 8 11 829 19 54

3.2.1 Experimental results

For discovering the factors affecting the technique effectiveness, we analysed the

correctness of the reconstructed FSM models as the subject RIA, the Interface equivalence

criterion and the considered execution trace changed.

For brevity, the following Table 3.3 reports summary data about the experiments

involving just the W1 application.

In particular, the table shows the number of states (#S) of the FSM and GS models, and the

corresponding values of CIR which we obtained as the length of the trace (TL in the table)

Reverse Engineering and Testing of Rich Internet Applications

54

and the equivalence criterion varied.

Table 3.3: Experimental data about W1
 C1 C2 C3 GS

TL CIR #S CIR #S CIR #S #S

35 68% 9 37% 15 100% 8 8

51 49% 17 63% 23 94% 10 10

93 48% 24 61% 34 85% 10 15

141 27% 28 38% 42 90% 10 15

251 23% 67 25% 95 91% 10 15

604 13% 142 16% 204 88% 10 15

Table 3.3 shows that the FSM models produced by criterion C3 well approximated the

Gold Standard model, whatever the length (TL) of considered trace (indeed, the CIR

values were always not less than 85%). This trend was not so good for those models

produced by criteria C1 and C2. In order to explain the effectiveness difference among the

different criteria, we analysed the characteristics of RIA interfaces included in the set of

analysed traces. We deduced that the C3 criterion worked well (that is, it classified

equivalent interfaces effectively) if the RIA interfaces mostly presented collections (such

as tables or lists) of active widgets with the same tag, but with different and dynamically

defined sizes of the collections. Vice-versa, C2 worked well in case of interfaces without

this type of collections. Finally, C1 was the less effective criterion in both types of

interfaces, since it did not consider the visibility and enabling properties of active widgets.

Hence, we concluded that the interface equivalence criterion actually influenced the

effectiveness of the technique.

As to the cost-effectiveness, we also studied the trends of the main cost factors Ccoll, and

Cval as the subject RIA, the Interface equivalence criterion and the considered execution

trace changed. Since experimental data showed that the CIR values did not significantly

improve with the size of the trace, for reducing the cost of the technique without affecting

its effectiveness we deduced that it would be necessary to find the shorter execution trace

that allows the abstraction of the FSM model having the best CIR value.

As the data in Table 3.3 show, the number of states of FSM models produced by C3

definitely tended to a stable value likewise the GS number of states, while it did not

happen for models produced by C1 and C2. Hence, we could hypothesize a possible

Reverse Engineering and Testing of Rich Internet Applications

55

criterion for selecting the execution trace and the equivalence criterion for producing a

suitable FSM model with the minimum cost. This cost-effective selection criterion

indicates (1) of choosing the criterion where the number of states of the reconstructed

FSM assumes a stable value, and (2) of choosing the model produced by this criterion

from the smaller trace in correspondence of which the number of FSM states assumes the

stable value: the related FSM model will be the most cost-effective one. Using such a

criterion, we were actually able to select the most cost-effective model for each RIA,

hence we validated the proposed criterion. Table 3.4 reports summary data about the

selected models. In particular, for W1, W2 and W3, this model was produced by the C3

criterion, while for W4 two acceptable FSM models were reconstructed both by C2 and

C3 criteria.

Table 3.4: Data about FSM models with the best

cost-effectiveness ratio

RIA Trace

length

Best

Criterion

FSM

states

CIR Edit

distance

W1 93 C3 10 85% 14

W2 23 C3 2 65% 8

W3 40 C3 4 100% 0

W4 60 C2 19 100% 0

W4 60 C3 19 62% 23

3.3 Conclusions

In this chapter we presented the results of a validation experiment involving four real Web

applications that showed the cost-effectiveness of the proposed reverse engineering

technique for obtaining a model of the behaviour of a Rich Internet Application by

dynamic analysis. The experiment showed that a key point of the proposed reverse

engineering technique is the interface equivalence criterion that allows dynamically

produced execution traces of the application to be analysed and simplified, in order to

abstract a representative model of the RIA behaviour. Experimental data showed that these

criteria are able to influence the effectiveness of the technique, as well as its cost-

effectiveness. However, these criteria are general and reusable for any type of client

interfaces of RIAs, differently from the technique [56] that requires that specific features

allowing the correct classification of equivalent states be tailored manually with

Reverse Engineering and Testing of Rich Internet Applications

56

application-specific mechanisms. Moreover, their effectiveness on discriminating different

states is not dependent on the choice of any similarity threshold, differently from the

Levenshtein distance-based technique proposed by [58]. The proposed reverse engineering

approach is actually a waterfall process made by three steps, Extraction, Abstraction and

FSM model validation, that have to be sequentially executed. In the next chapter we‘ll

present an iterative agile reverse engineering process more effective than the one proposed

in the previous chapter.

Reverse Engineering and Testing of Rich Internet Applications

57

Chapter 4
4

AN ITERATIVE APPROACH FOR THE REVERSE ENGINEERING

OF RICH INTERNET APPLICATION USER INTERFACES

Comprehending and modelling the behaviour of user interfaces exposed by Rich Internet

Applications (RIAs) are important activities in software maintenance, testing, and

evolution. This chapter presents an ‗agile‘ process for the reverse engineering of Rich

Internet Application User Interfaces: the process is based on dynamic analysis of the

application, is iterative and exploits heuristic clustering criteria for reducing the data

gathered by dynamic analysis. Moreover, it is based on the continuous validation feedback

of the process executor, and allows the incremental reconstruction of a Finite State

Machine for modelling the behaviour of RIA GUIs.

4.1 Introduction

As Rich Internet Applications (RIAs) are the new generation of Web applications that,

besides the traditional server-side elaborations, provide client-side processing and

asynchronous communication with the server, which make them more dynamic,

interactive, responsive, and usable than traditional Web applications. In particular a RIA

offers a rich user interface, which is programmatically built at run-time on the basis of

user interactions with the application. For comprehending the characteristics and the

behaviour of this type of interface, static analysis of the application code does not suffice,

while dynamic analysis techniques can be used.

4
 This chapter was published in the Proceedings of the 5th International Conference on Web Applications and Services (ICIW 2010).

Reverse Engineering and Testing of Rich Internet Applications

58

According to Cornelissen et al. [70], using dynamic analysis in program comprehension

contexts has the benefits of the precision with regard to the actual behaviour of the

software system, and of enabling goal-oriented analysis strategies where only the parts of

interest of a software system can be exercised. On the other side, dynamic analysis

limitations include the incompleteness, which depends on its inability in covering all

possible program executions, and the scalability that is associated with large amounts of

data collected at run-time.

For solving the scalability issue, over the last years several reduction techniques based on

abstractions or heuristic criteria have been proposed in the literature to group parts of the

program executions having similar properties. Reduction techniques can be either applied

a-posteriori, once all the execution data have been collected, or step-by-step during the

data collection activity. The former strategy has the advantage that the reduction

techniques do not impact the process of execution trace collection at all, but their feedback

usually comes too late, while the latter ones are able to provide an early feedback on the

collection process. A possible classification of trace reduction techniques and a

methodology for assessing them have been recently presented in [10].

Specific reduction techniques have also been proposed in the context of dynamic analysis

of RIAs performed with the aims of reverse engineering [1, 2], crawling [58] or testing the

RIA [56, 72, 57, 83], respectively. We, in particular, have proposed [1] and experimented

with [2] some heuristic criteria for clustering similar user interfaces of a RIA that are built

at run-time. The criteria have been defined in the context of a reverse engineering process

that recovers from execution traces of the RIA a Finite State Machine (FSM) modelling

the GUI behaviour. This process requires that the heuristic criteria be applied after the

trace collection activity, and involve the complete set of collected interfaces. Moreover,

the abstractions proposed by the criteria must be validated by a human expert on the basis

of his knowledge about the application.

To improve the overall effectiveness of that approach, in this chapter we propose an

improved, more ‗agile‘ version of the reverse engineering process. This process version is

Reverse Engineering and Testing of Rich Internet Applications

59

iterative, the feedback about the reduction techniques is provided at each process iteration,

and it supports the incremental reconstruction of the FSM of the RIA.

This approach is supported by CReRIA, an integrated reverse engineering environment

that provides automatic facilities for executing the process and incrementally recovering

and validating the FSM. In this chapter both the approach and the environment will be

presented, as well as the results of an experiment that was carried out for preliminarily

assessing the feasibility of this technique.

4.2 The Iterative reverse engineering Process

In previous chapters we addressed the problem of reconstructing a FSM for modelling the

behaviour of the client side of a RIA, and proposed a dynamic analysis technique,

supported by the ReRIA tool, that exploits data collected from user sessions for

abstracting this model. Since we aimed at obtaining a model of the interaction of a user

with the RIA user interface, we decided to represent in the FSM all the interface states

where the RIA receives an input solicitation by its user, and for describing each state of

the RIA by the user interface shown to the user at the interaction time. As to the transitions

between states, we associated them with the user interactions (e.g., user events) that

moved the RIA towards the new state.

For obtaining this model we proposed the three-step process illustrated in Figure 4.1,

including the sequential activities of Execution Trace Collection (performed by an

instrumented Web browser), Trace Analysis (using a set of heuristic clustering criteria),

and FSM Model Abstraction where an expert of the application analyses the abstractions

proposed by the criteria, validate or refuse them on the basis of his personal knowledge

about the application, and finally obtains a FSM of the application.

Figure 4.1: RIA reverse engineering process proposed

Execution
Trace

Collection

Trace
Analysis

FSM Model
Abstraction

Reverse Engineering and Testing of Rich Internet Applications

60

Like any waterfall-like process, this process has some limitations, such as: (1) the FSM is

obtained only at the end of all the three steps, (2) the process does not provide any

feedback from the late steps to the early ones, and (3) the FSM abstraction step relies on a

costly and human intensive validation activity. On the contrary, the comprehension

approach proposed in this chapter and illustrated in Figure 4.2 is not affected by these

limitations since it assumes that the FSM model can be obtained incrementally by an

iterative process including, at each iteration, the steps of User Interaction, Extraction,

Abstraction and Concept Assignment.

Figure 4.2: The iterative comprehension process

The process can be performed by any software engineer who aims at gaining an

understanding of the RIA user interface behaviour just acting as a user of the application.

The process starts with the User Interaction step where the user interacts with the RIA and

fires an event on its current user interface: this interaction must be, of course, performed

in a controlled navigation environment (such as the one offered by the CReRIA tool) that

registers all the interactions and the needed information about them.

In the successive Extraction step, information about current interface, fired user event and

the user interface that is obtained after the event processing, must be extracted and

persistently stored. Using a controlled navigation environment, this step can be performed

in a straightforward manner too.

The Abstraction step is performed using some heuristic criteria (such as the ones discussed

in section 4.3) that evaluate the degree of similarity of the current user interface with the

previously produced ones, as well as the similarity among occurred events. Each distinct

2. Extraction
3.Abstraction

1. User

Interaction

4. Concept

Assignment

5. Termination

Criteria

FSM Model

2. Extraction
3.Abstraction

1. User

Interaction

4. Concept

Assignment

5. Termination

Criteria

FSM Model

Reverse Engineering and Testing of Rich Internet Applications

61

heuristic criterion creates a different clustering of interfaces (and events) into equivalence

classes.

The Concept Assignment is actually a comprehension [73] and validation step where the

software engineer has to validate the clustering proposed by the heuristic criteria and

accepts or refuses them. If the clustering is refused, he has to propose the correct concept

to be assigned. In this way, the expert incrementally reconstructs a FSM modelling the

behaviour of the RIA GUI, since he either associates the current interface with a new class

of interfaces (and a new FSM state), or with an already existing interface class (and FSM

state). Analogously, he associates the current event either with a new or an already

existing transition between states of the FSM. The proposed iterative process ends on the

basis of a termination criterion, such as the one which considers the event coverage

reached by the process, or the coverage of known scenarios of the application, or the effort

(e.g, the time spent) devoted to the whole process.

The main difference between the processes reported in Figure 4.1 and Figure 4.2,

respectively, is that the former process first collects execution traces, hence clusters their

content by heuristic criteria, and then requires an expert to validate all proposed interface

clustering and event clustering for abstracting the FSM. This validation task requires a

huge (and too expensive) effort that makes it almost impracticable. In contrast, in the latter

process the interface clustering and event clustering are produced iteratively, so that the

validation effort is smaller and manageable (at each iteration). Moreover, it is possible to

use the continuous feedback provided by process iteration data for executing the

successive iterations of the process in a more effective manner and to determine when the

FSM model has been completely reconstructed.

4.3 The Reverse Engineering Environment

CReRIA is the integrated environment for dynamic analysis designed for supporting

comprehension processes of RIAs. CReRIA is the subsequent version of the tool RERIA

presented in chapter 2. CReRIA both improves the functionalities offered by its ancestor

Reverse Engineering and Testing of Rich Internet Applications

62

and offers new ones. The functionalities implemented by CReRIA include:

 offering a Web browser for navigating the rich internet application and performing

user sessions tracing;

 extracting and recording relevant information about traced user sessions, such as

user interfaces and events that occurred during the navigation;

 clustering of interfaces and events according to different abstraction criteria;

 supporting the Concept Assignment task on the basis of information collected or

abstracted in the previous steps of the process.

The software architecture of CreRIA is illustrated by the package diagram of Figure 4.3.

Figure 4.3: The CreRIA tool architecture

The architecture includes five packages named Browser, Concept Assignment GUI,

Extractor, Abstractor, and DataBaseController, respectively, and a relational database that

stores the extracted information and the produced abstractions. The architecture has been

developed with Java technologies and MySQL DBMS. The Browser package supports the

user navigation of the RIA. The package actually includes the instantiation of a Mozilla

Firefox Browser inside a Java GUI implemented by the SWT Standard Widget Toolkit

[64], which allows RIAs to be explored and navigated in a controlled environment where

the runtime behaviour can be easily traced.

GUI

Abstractor

Concept
Assignment

GUI

Extractor

Database
Controller

FSM Model
<<artifact>>

Database
<<artifact>>

Collected
Interfaces

<<artifact>>

Browser

Reverse Engineering and Testing of Rich Internet Applications

63

The Extractor package includes the software components that are responsible for

extracting and collecting data about the RIA run-time.

In particular, these components capture both data about the structure and content of user

interfaces, and data about user events that were fired on user interfaces during the

navigation.

The output of this extraction activity is persistently stored in the Database component of

the tool architecture, which is accessed through the DataBase Controller package.

Moreover, the Extractor package produces another type of artifact, e.g., a set of Collected

Interfaces that are the HTML version of the user interfaces captured during the RIA

navigation.

The Abstractor package is responsible for clustering interfaces and events into equivalence

classes. Several heuristic clustering criteria have been implemented in CReRIA, which

produce different partitioning of both interfaces and events. The Concept Assignment GUI

package implements a GUI that offers several aids to the user who performs the Concept

Assignment phase of the comprehension process.

As an example, after the generation of a new user interface, this GUI displays the possible

clusterings produced by each heuristic criterion, and for each class shows examples of

interfaces belonging to the same class.

This GUI also provides the facility for assigning a concept to a new class of interfaces or

events, and up-to-dating the FSM accordingly. The resulting FSM model is encoded by the

tool in order to be automatically rendered by the graph viewer Dotty [74]. Another

functionality offered by this GUI consists of providing some statistics about the FSM such

as the number of states and transitions currently making up the model and the number of

new states and transitions discovered in the last process iterations: this last datum can be

used as an indicator of the stability of the reconstructed FSM model, and can be used as a

termination criterion of the comprehension process.

Further details about the Extractor and Abstractor packages are provided in the following

sub sections.

Reverse Engineering and Testing of Rich Internet Applications

64

4.3.1 The Extractor Package

As to the user interface data extraction, the Extractor captures by the DOM API [62] all

the data necessary for describing each user interface by a sub-set of its widgets (such as

buttons, text fields, forms, …) having specific properties and values of these properties

[44]. As an example, the Extractor characterizes the interface widgets that are potentially

able to trigger an event-driven client-side processing of the RIA by the properties listed in

Table 4.1. As to the user events, which were fired during the navigation, the Extractor

captures the user event type (i.e. click, mouseover, mouseout, etc…) and the id of the

widget on which the user event was fired, and records the ids of the current interface and

of the one reached after the event handling completion (next interface).

Table 4.1: Widget Property Description
Widget Property Description

Id, Type Identifier and Type of the widget

InputType Type attribute for widgets defined by an INPUT Html tag

Listeners Set of Listeners of user event attached to the widget

Event handlers Set of scripts responsible of event handling.

Active property a Boolean attribute indicating whether the widget is actually

accessible (that is, clickable) to end-users, or not.

Absolute Indexed Path
(AIP)

DOM path that links the DOM root element with the considered
widget.

Un-indexed Path (UP) UP is similar to AIP, but it does not include the information about

the indexed position of the DOM path component elements.

Un-indexed path with id

(UPid)

UPid is similar to UP, but it also includes the id attribute of the

DOM path component elements.

Figures 4.4-a and 4.4-b show an example interface and the corresponding HTML code of

the page body.

Figure 4.4-a: Example interface Figure 4.4-b: Html code of the interface in Figure 4.4-a

Reverse Engineering and Testing of Rich Internet Applications

65

The Extractor gets from this page just three elements, namely the two buttons and the

hyperlink, since they are able to trigger an event-driven client-side processing, and stores

the attributes reported in Table 4.2. If the user had pressed the ‗Active Button‘, CReRIA

would extract about this event the information reported in Table 4.3.

Table 4.2: An Example of Interface Widgets Data Extracted by CReRIA
ID 1 2 3

Listener Click Click Click

Handler ―buttonFunction();‖ ―otherButtonFunction();‖ ―www.google.it‖

Type Button Button Null

Active True False true

AIP html(1)/body(1)/div(1)/input(1) html(1)/body(1)/div(2)/input(1) html(1)/body(1)/a(1)

UP html/body/div/input html/body/div/input html/body/a

UPid html/body/div[@id=‘container1‘]/input html/body/div[@id=‘container2‘]/input html/body/a

Table 4.3: An Example of User-event Data

Id Event User event Id Widget
Id current
interface

Id next
interface

30 ―click‖ 2 24 25

As to the event management, the Extractor package is not only responsible for capturing

the event rising, but also for detecting the termination of the execution of the event

handlers. To obtain this information, a technique based on two types of event handlers,

named Hraise and Htermination respectively, that act as probes and exploit the bubbling and

capturing standard mechanisms defined by the W3C for DOM event dispatching [67] has

been implemented. Moreover, a monitor component has been developed and embedded in

CReRIA for tracing the data traffic between client and server side of the RIA and

detecting the completion of synchronous and asynchronous server requests triggered by

user events. This component and the Htermination handler can be used to trace at run-time the

termination of user event management.

4.3.2 The Abstractor Package

For the aim of reducing the information collected by dynamic analysis, the Abstractor

Package implements some heuristic clustering criteria. At the moment, for the interfaces

Reverse Engineering and Testing of Rich Internet Applications

66

four heuristic criteria named C1, C2, C3 and C4, respectively, have been implemented in

CReRIA.

The former two criteria consider two interfaces as equivalent if they include the same set

of clickable widgets, and some specific widget properties have the same values. In

particular, according to C1, two interfaces are equivalent if they have the same set of

active widgets, and the values of their Handler, Listener, Type, and AIP widget properties

are exactly the same. C2 criterion considers two interfaces to be equivalent if they satisfy

the same C1 criterion, and in addition the values of the widget Active attributes are exactly

the same. In other words, C2 assumes as equivalent all the interfaces offering exactly the

same elaboration to their users.

As an example, the interfaces I1 and I2 shown in Figure 4.5 will be considered equivalent

by C1, but not equivalent by C2 since they have the same set of widgets, but one of them

(cfr. ‗Admins‘ button) is not clickable in the first interface, while it is clickable in the

second one. It can be deduced that the event-driven elaboration provided by the interfaces

is not exactly the same.

Figure 4.5: Two example interfaces (I1 and I2)

As to C3 and C4 equivalence criteria, they assume two interfaces to be equivalent if each

of them includes a set (of any size) of clickable widgets having the same type of nesting

position in the DOM tree (where the nesting position is defined either by the UP property

or the UPid one).

Reverse Engineering and Testing of Rich Internet Applications

67

As an example, Figure 4.6 reports two interfaces I3 and I4, which are considered as

equivalent by C3 criterion (since I3 include a set of two hypertextual links, and I4 a set of

three links with the same UP property value), but not equivalent by C4 criterion (since the

links in I4 belong to different page divisions and have different UPid property values). As

a further example, interfaces I2 (from Figure 4.5) and I3 (from Figure 4.6) aren‘t

considered to be equivalent by C2 criterion (since I3 has an additional Hyperlink), while

they are equivalent according to criteria C3 and C4.

As to the reduction of data about user-events fired during user session registration, some

heuristic equivalence criteria of events have been defined too. In CReRIA a traced session

is defined by the sequence:

…<Ii, eventi>, <Ii+1, eventi+1>,..

where each user event is fired on a user interface widget, and Ii+1 is the interface reached

after the event management.

Hence, according to the first equivalence criterion T1, two events of the same type (such

as click, mouseover, mouseout, etc.) and fired on two widgets with the same UPid will be

considered as equivalent.

Moreover, according to the second criterion T2, two events of the same type and fired on

two widgets with the same UPid will be considered as equivalent only if they are fired on

two equivalent interfaces, and the interfaces reached after the event managements are

equivalent too.

Figure 4.6 Two example interfaces (I3 and I4)

Reverse Engineering and Testing of Rich Internet Applications

68

The third criterion T3 is similar to T2, but doesn‘t require the equivalence of the interfaces

on which the events are fired.

4.4 Examples

The following two examples show the support to comprehension processes actually

provided by CReRIA environment.

The RIA application involved in these examples is named Tudu, and is an open source

application available at http://app.ess.ch/tudu, offering functionalities for the management

of lists of tasks (the so-called ‗todos‘) such as adding, deleting, searching for todos,

organizing lists of todos, and so on.

Tudu is a meaningful example of a simple (but not trivial) RIA whose server side is

implemented by php files, while its client side includes typical ‗rich‘ pages that modify

themselves at run-time on the basis of the user interaction with the pages.

Figure 4.7-a reports a CReRIA screenshot captured during a Tudu navigation session, the

left side of the screenshot contains the CReRIA Browser window that renders the current

Figure 4.7-a: An Example of CReRIA GUI during the navigation of Tudu

Reverse Engineering and Testing of Rich Internet Applications

69

interface of Tudu, while the right side contains the Concept Assignment GUI.

A zoom on a part of the Concept Assignment GUI is also reported in Figure 4.7-b: this

GUI contains the following items (from up-side to down-side): an output field reporting

the number of recorded interfaces of the current trace (e.g., #2), the Accepted Suggestion

Ratio (e.g., C1%, C2%, C3%, C4% output fields) of each interface clustering criterion
5,

 an

input field ―Insert a label for the Current State‖, the four suggested clusterings, and two

lists of buttons for accepting a suggestion (‗Add C Suggestion‘ buttons) or for showing a

suggestion (‗Show C Suggestion‘ buttons).

For the current Tudu interface, the C1 criterion suggests that the interface belongs to the

interface class already named ‗no list‘, while C2, C3 and C4 suggest that it is a new type

of interface, providing a new FSM state. If the user accepts one of the latter three

suggestions, he will have to label the current new state using the input field ―Insert a label

for the Current State‖. Figure 4.8-a illustrates another CReRIA screenshot showing a new

Tudu interface.

Figure 4.8-a: A second Example of CReRIA GUI during the navigation of Tudu

5
 The Accepted Suggestion Ratio metric is defined in Section 5.

Figure 4.7-b: Zoom on the Concept Assignment GUI of CReRIA

Reverse Engineering and Testing of Rich Internet Applications

70

Figure 4.8-b provides a zoom on the clustering suggestions for this interface (in this case

two criteria, C3 and C4, have the 100% Accepted Suggestion Ratio). In order to aid the

decision of the user about the current interface class, CReRIA shows a pop-up (see the

right side of Figure 4.8-a) displaying another Tudu interface belonging to the same

interface class suggested by the C4 criterion.

Figure 4.8-b: Zoom on the Concept Assignment GUI of CReRIA

The FSM resulting from the complete execution of the proposed reverse engineering

process is shown in Figure 4.9.

This FSM has been generated by CReRIA as an input file for the graph viewer Dotty.

In that figure, nodes represent states of the FSM, while arcs represent transitions between

states. Labels correspond to the ones proposed by means of the Concept Assignment GUI.

Figure 4.9: The reconstructed FSM for the RIA application Tudu

4.5 Case Studies

4.5.1 First Case Study

The iterative comprehension process of RIAs proposed in this chapter is based on the

Reverse Engineering and Testing of Rich Internet Applications

71

assumption that it allows a more efficient process than traditional ones based on the simple

navigation of the application.

The improved efficiency should depend on the clustering suggestions proposed iteratively

by the CReRIA tool.

To show the validity of this assumption, we carried out a case study where the dynamic

analysis of three distinct RIAs was carried out using the CReRIA environment, and the

actual utility of the clustering suggestions provided by the tool heuristic criteria was

assessed.

The following two metrics were used for this evaluation:

 Accepted State Suggestion Ratio (ASR-S) of criterion C, that is the ratio between the

number of suggested state clusterings made by C and accepted by the user, and the

number of suggested state clusterings made by C;

 Accepted Transition Suggestion Ratio (ASR-T) of criterion C that is the ratio

between the number of suggested event clusterings made by C and accepted by the

user, and the number of suggested event clusterings made by C.

The subject applications were three real AJAX applications with a rich user interface and

that were available online.

Besides Tudu (W1 in the following), the second one W2 (TheList) is a demo application

providing functionalities to manage a list of task descriptions.

The third one W3 (Buttonator) is a simple utility for web developers that offers

functionalities for generating buttons with different shapes, size, and colors. The

applications were analysed by three software engineers who faced the task of

understanding the RIA client side behaviour and modelling it by a FSM.

Their previous knowledge about the applications was that of generic users of the

applications, since no specific knowledge about RIA technologies is needed for using

CReRIA.

During the experiment, CReRIA was configured to propose one more interface clustering

suggestion, the so called CBest one, which represents the suggestion proposed by that

Reverse Engineering and Testing of Rich Internet Applications

72

criterion (from the set of criteria from C1 to C4) whose suggestions were accepted by the

engineer in most cases until the current iteration.

As an example, at a given process iteration, if the ASR-S of criteria C1, C2, C3, and C4

had the percentage values of 80%, 30%, 25%, and 90%, the CBest suggestion would

coincide with the C4 one.

Analogously, a similar TBest event clustering suggestion was added too.

Table 4.4 reports a summary of the characteristics of these applications: the number of Use

cases (UC) and Scenarios (SC) that were exercised during the navigation sessions, the

number of different states and transitions composing the final FSM models that were

reconstructed by the engineers, and the number of interfaces (NI) and fired events (NE)

encountered during the reverse engineering process.

Table 4.4: Data about Subject Applications

 RIA UC SC States Transitions NI NE

W1 Tudu 8 17 15 52 610 609

W2 TheList 3 10 3 11 557 556

W3 Buttonator 1 8 19 72 825 824

Table 4.5 shows, for each application, the number of different states that were proposed by

the clustering criteria C1, C2, C3, C4 and CBest respectively, the number of proposed

state suggestions (Accepted Suggestion #) of each clustering criterion that were accepted

by the engineer, and the consequent ASR-S values.

Table 4.5: Performance of State Clustering Criteria
 C1 C2 C3 C4 CBest

W1

Proposed FSM state # 142 204 10 14 14

Accepted State Identification Suggestion # 78 97 519 605 605

ASR-S 13% 16% 85% 99% 99%

W2

Proposed FSM state # 143 143 3 3 3

Accepted State Identification Suggestion # 195 195 557 557 557

ASR-S 35% 35% 100% 100% 100%

W3

Proposed FSM states # 3 19 7 19 19

Accepted State Identification Suggestion # 91 825 825 371 825

ASR-S 11% 100% 100% 45% 100%

Reverse Engineering and Testing of Rich Internet Applications

73

Analogously, Table 4.6 shows, for each application, the number of different transitions

that were proposed by the clustering criteria T1, T2, T3 and TBest, the number of

proposed transition suggestions (Accepted Suggestion #) of each clustering criterion that

were accepted by the engineer, and the consequent ASR-T values.

Table 4.6: Performance of State Clustering Criteria
 T1 T2 T3 TBest

W1 Proposed FSM transition # 28 34 47 47

Accepted Transition Identification Suggestion # 304 426 518 518

ASR-T 50% 70% 85% 85%

W2 Proposed FSM transition # 9 8 10 10

Accepted Transition Identification Suggestion # 483 434 495 495

ASR-T 87% 78% 89% 89%

W3 Proposed FSM transition # 12 45 68 68

Accepted Transition Identification Suggestion # 107 461 700 700

ASR-T 13% 56% 85% 85%

Data reported in the tables show that ASR-S and ASR-T values vary with the clustering

criterion and with the application. However, in this experiment, the ASR-S and ASR-T

values of CBest and TBest criteria were never lower than 85%, meaning that at least 85%

of their suggestions were accepted by the engineer. This datum indicates the validity of

suggestions proposed by the heuristic criteria, and the actual improved efficiency of the

CReRIA supported navigation process with respect to a suggestion-less one.

These experimental data produced a further consideration: in the considered

comprehension processes, there is not a single clustering criterion that is able to provide

the most reliable suggestions for a given application. As a consequence, any dynamic

analysis, which uses only a single clustering criterion, will be less effective than an

„adaptive‟ analysis where several criteria are used at the same time, and the CBest and

TBest criteria offer a prevision about the most reliable suggestion. This aspect shows the

relevance of having a feedback from past iterations to current ones, which can be obtained

only by adopting an incremental and iterative reverse engineering approach.

Reverse Engineering and Testing of Rich Internet Applications

74

4.5.2 Second Case Study

The comprehension process supported by CReRIA is an iterative approach that at each

iteration builds an intermediate version of the FSM model of the RIA GUI behaviour. In

this type of approach, a relevant role is played by termination criteria that establish when

the process iterations should stop. A first category of termination criteria is based on the

evaluation of the coverage of some known RIA characteristics (such as its functionality,

use cases, execution scenarios, event-driven processing, etc..) achieved by the considered

navigation session. These criteria are, of course, not applicable in explorative navigation

processes, when these RIA characteristics are not known before executing the process. A

second category, vice-versa, is applicable in explorative navigation processes, since they

consider some properties of the performed process iterations (such as number of

performed iterations, time spent, size of the reverse engineered model, etc.) as a feedback

for process termination. In the second case study, we decided to investigate the

effectiveness of two types of process properties as possible indicators of explorative

process termination: (1) the number of states VS(i) of the FSM model produced at the end

of the i-th process iteration, and (2) the number of transitions VT(i) of the FSM model

produced at the end of the i-th process iteration. To this aim, we considered the same

comprehension processes carried out in the first case study, and we analysed the values of

VS(i) and VT(i) as the iterations proceeded. The plots of these values are reported in

Figure 4.10 and Figure 4.11 respectively, for the first analysed application Tudu. A similar

trend was observed for the other applications.

Figure 4.10: Plot of the VS number of FSM states

discovered during the execution of the process on W1

(Tudu)

Figure 4.11: Plot of the VT number of FSM transitions

discovered during the execution of the process on W1

(Tudu)

0

10

20

0 100 200 300 400 500 600

Number of Iterations

F
S

M
 s

ta
te

s

0

10

20

0 100 200 300 400 500 600

Number of Iterations

F
S

M
 s

ta
te

s

0

10

20

30

40

50

60

30 80 130 180 230

Number of Iterations

F
S

M
 T

ra
n

s
it

io
n

s

0

10

20

30

40

50

60

30 80 130 180 230

Number of Iterations

F
S

M
 T

ra
n

s
it

io
n

s

Reverse Engineering and Testing of Rich Internet Applications

75

As these figures show, the FSM model version obtained at the 75th iteration (and further

ones) has the same number of states of the model obtained at the last process iteration (that

is the 610th). Analogously, the FSM model version obtained at the 120th iteration has the

same number of transitions of the model obtained at the last process iteration (that is the

610th). These data indicate that, in this case, the process could be terminated after only

120 iterations. Hence, a possible termination criterion is the one that stops the process

when a ‗sufficient‘ number of iteration did not reveal any new state or new transition. As

an example, a possible termination criterion could be the one that stops the process when

the percentage of iterations that did not reveal any new state or transition (with respect to

the number of performed iterations) is greater than a given threshold (such as 30%).

Of course, this technique for stopping the navigation of the application is not applicable to

traditional analysis approaches that are not iterative, and do not produce incrementally any

intermediate version of the FSM at each process iteration.

In conclusion, these case studies showed that the adoption of an iterative and incremental

comprehension approach is beneficial for the overall reverse engineering process because:

The feedback provided by CBest and TBest criteria during the iterative process is able to

improve the efficiency of the concept assignment and FSM reconstruction tasks;

The availability of a partial version of the FSM model of the analysed application at each

process iteration supports the evaluation of effective termination criteria for stopping the

RIA navigation during explorative comprehension processes.

4.6 Conclusions

In the last years, the principles and practices of the agile development [75, 76] are

becoming more and more diffused, and their adoption is being experimented in different

types of software contexts [77, 78].

Proposing and validating agile processes and methods also for software maintenance,

evolution, and comprehension aims is an interesting new research area, and the first

proposals of using agile approaches in the fields of Reverse Engineering and

Reengineering are emerging in the literature [79, 80].

Reverse Engineering and Testing of Rich Internet Applications

76

The work presented in this chapter provides an attempt to define an ‗agile‘ process for the

reverse engineering of Rich Internet Applications that is iterative, based on the continuous

feedback of the process executor, and allowing the incremental reconstruction of a Finite

State Machine modelling the behaviour of RIA GUIs. This approach is supported by

CReRIA, an integrated reverse engineering environment that provides automatic facilities

for executing the process and incrementally recovering and validating a FSM model.

The approach has been experimented with some case studies, which involved the dynamic

analysis of existing RIAs. Results of the experiment showed the approach feasibility and

how it simplifies the concept assignment tasks needed for software comprehension. The

experiment highlighted further aspects to be investigated in future work, such as the

definition and validation of additional iteration termination criteria. Moreover, future

work will address the definition of further clustering criteria for reducing the data

collected at run-time, and will investigate to which extent distinct clustering criteria are

effective in supporting different reverse engineering and comprehension tasks.

In next chapters we propose techniques of testing automation, comprehension and re-

documentation of RIA developed in Ajax that exploit the proposed models and the

dynamic analysis techniques.

Reverse Engineering and Testing of Rich Internet Applications

77

Chapter 5
6

RICH INTERNET APPLICATION TESTING USING EXECUTION

TRACE DATA

In this chapter we present a technique for testing RIAs that generates test cases from

application execution traces, and obtains more scalable test suites thanks to testing

reduction techniques. Execution traces provide a fast and cheap way for generating test

cases and can be obtained either from user sessions, or by crawling the application or by

combining both approaches. The proposed technique has been evaluated by a preliminary

experiment that investigated the effectiveness of different approaches for execution trace

collection and of several criteria for reducing the test suites. The experimental results

showed the feasibility of the technique and that its effectiveness can be improved by

hybrid approaches that combine both manually and automatically obtained execution

traces of the application.

5.1 Introduction and Related Works

As we introduced in section 1.2 Rich Internet Applications and are usually developed

using Web 2.0 technologies, such as Ajax [17], Silverlight [122], or Flex [124].

Ajax [17], in particular, is a set of technologies (JavaScript, XML, XHR objects) that can

be used for implementing RIAs. The user interface of an Ajax-based RIA is made up of

Web pages (or, at least, of a single page), whose status changes thanks to run-time client-

side elaborations performed on the page by JavaScript event handlers triggered by user

6
 This chapter was published in the Proceedings of the 3th International Conference Software Testing, Verification, and Validation Workshops

(ICSTW 2010).

Reverse Engineering and Testing of Rich Internet Applications

78

events or other external events (such as timeout events or asynchronous responses by the

server). Event handlers access and manipulate the Web page using the Document Object

Model (DOM) [62] interface. These handlers, besides synchronous requests, can also send

asynchronous requests (for data or elaborations) to the server which introduce parallelism

between the client and the server, leaving the user interface active. Due to the event-driven

elaborations, the interface of Ajax-based RIAs may be considered like an event-driven

software system (EDS) or similar to the GUI of a desktop application. Moreover in RIAs

the dynamic elaboration of the user interface may be not deterministic but usually depends

on the current state of the application. With these new characteristics, a set of new

challenges have come such as the one of finding effective techniques, models and

approaches for testing RIAs. Indeed a RIA may potentially exhibit specific types of

failures due to incorrect manipulations of the DOM, unintended interleaving of server

messages, swapped callbacks, etc. [72]. As a consequence, models, techniques, and

strategies already proposed for traditional Web application testing [21, 63, 81, 82], may

not be suitable for them. Indeed, the traditional web testing approaches are based on the

assumption that the interaction between the user and the Web pages is limited to clicks on

navigational links and to the insertion of data in forms, and that the business logic of the

application is entirely implemented on the server side of the application.

Some research contributions to the RIA testing topic have recently been proposed in the

literature [56, 57, 72, 83]. These papers essentially present different model-based testing

techniques applied to Ajax applications, which require that a model of the application is

preliminary obtained (either by semi-automatic approaches, or automatically by crawling

techniques) and different approaches are used for generating test cases that cover these

models. Two crucial points of these techniques are the expensiveness of the processes

needed for reconstructing the Ajax application‘s model and the often unmanageable size

of generated test suites. Another promising approach that should be investigated for RIA

testing is the user-session based one that has been already applied with success both for

traditional Web application testing [81, 84], and for GUI automated testing [85]. This

Reverse Engineering and Testing of Rich Internet Applications

79

approach aims at automatically generating test cases composed of event sequences which

are deduced by analysing user interactions with a version of the application. The obtained

test cases can be either replayed for testing the same application, or for regression testing

(provided that the user interfaces of modified versions are still the same of the original

one), or for generating a model of the application which can be used for deriving test cases

automatically. RIA user session data have also been exploited by the reverse engineering

technique, presented in chapter 2 and validated in chapter 3 [1, 2], that aims at obtaining a

state-based model of the user interface of RIA applications.

Examples of user-session based techniques are the ones proposed by Elbaum et al. [81,

86], who investigated the fault-detection capability and the cost-effectiveness of user-

session based techniques, and by Sampath et al. [84] who explored the possibility of using

concept analysis for achieving scalability in user-session based testing of Web

applications.

As to the automated testing of Web applications, most testing proposals are based on the

usage of capture and replay tools which can be used to record user interactions with a

version of the Web application and to replay them. However, since the interactions must

be recorded manually and obtained test cases are mostly usable for exercising just the

considered version, the applicability of these techniques is actually limited.

Several automated techniques have been proposed for GUI test case generation. In

particular, [44] remarked the necessity of automated GUI rippers to obtain automatically a

model of the GUI behaviour that can be used to design test cases. In [87] a GUI smoke

regression testing process called DART that automates GUI smoke testing is presented:

the process is based on a GUI ripper that automatically reconstructs a model of the GUI

(the so called Event-Flow Graph) and on a test case generator component that generates

smoke test cases made up of sequences of interacting events that may be executed on the

GUI. Yuan et al. [88] present a new automated model-based testing technique that uses the

feedback from the execution of an initial and automatically obtained test suite to obtain

new and improved test cases for a GUI, while [89] presents two studies showing the

Reverse Engineering and Testing of Rich Internet Applications

80

improved effectiveness of the feedback-based technique with respect to other techniques.

Some research contributions to the RIA testing topic have recently been proposed in the

literature: Marchetto et al. [56] investigated the feasibility of a state-based testing

technique based on semantically interacting events, and in [72] the same authors propose

an improvement of this technique that exploits a search-based approach (based on the hill-

climbing algorithm) for obtaining longer interaction sequences having higher fault

exposing capability and keeping the test suite size reasonable. Mesbah et al. [57, 83] have

explored the Ajax automatic testing field, and have proposed an approach that uses an

automatic crawler to infer a flow-graph of client-side interface states, and generates a test

suite covering the paths obtained during crawling for identifying specific types of fault

that can occur in those states. Finally, the Selenium testing framework [90] has added

some specific constructs (such as waitForResponse) which can be used for replaying

correctly the interactions with Ajax applications that exploit asynchronous messaging

between client and server.

At the moment, no user-session based technique has been yet investigated in the literature

for Rich Internet Applications testing.

In this chapter we present a preliminary investigations about using execution traces of an

RIA for the aims of testing. In this context, we have defined a testing technique that

exploits concrete execution traces of an application, either produced by real users (or tester

users) or automatically by a Web crawler, to transform traces into executable test cases.

For achieving the technique scalability, a test suite selection technique is employed for

reducing the size of obtained test suites.

For exploring the feasibility and effectiveness of this technique, we developed an

integrated set of tools for implementing it and carried out an experiment. In the

experiment, different approaches for execution trace collection and several criteria for

reducing the test suites were analysed and the characteristics of resulting test suites were

evaluated and compared. The preliminary results showed the fault detection capability of

obtained test suites and that the scalability of the technique can be improved by means of

Reverse Engineering and Testing of Rich Internet Applications

81

suitable reduction techniques, that do not impact its effectiveness. Moreover the

experiment revealed that the effectiveness of the technique can be improved by hybrid

approaches that combine both manually and automatically obtained execution traces of the

application.

5.2 Generating Execution Trace Based Test Cases for RIAs

Finite State Machines (FSM) are one of the most popular models used for representing the

behaviour of a software system and testing it. They provide an abstract view of a system in

terms of states and transitions among them and have also been used with success for

modelling and testing object oriented systems [101], traditional Web applications [63] and

GUIs [51]. These models are usually obtained manually or by semi-automatic techniques,

and need state abstraction functions for managing the state-explosion problem.

Moreover, in state-based testing processes, the FSM model can be used for generating test

cases given by paths (sequences of events) on the FSM that assure a requested coverage of

the FSM model. A limitation of such an approach is that not all the possible FSM paths

can be translated into executable test cases, and specific analysis techniques need to be

used to select only paths that are actually executable on the application.

In this chapter we propose a testing technique where real execution traces of an RIA (both

manually, and artificially obtained) are transformed into executable test cases, and a FSM

of the application is not used for deriving test cases, rather it provides one possible

reference model for reducing the test suite into a smaller one. More precisely, the

proposed technique is implemented by the following steps:

 Collection of a set of execution traces of the application;

 Test suite generation;

 Test suite reduction.

These steps are described in the following sub sections.

5.2.1 Execution Traces Collection

The goal of this activity consists of obtaining a set of execution traces of the application

which are representative of the behaviours to be tested. These execution traces may be

Reverse Engineering and Testing of Rich Internet Applications

82

either recorded from user sessions of real users/testers of the application like it was

suggested in chapters 2 and 3, or they can be obtained from an automatic exploration of

the RIA user interfaces, such as the one produced by a crawler of the application.

A crawler is a tool that can be used for reconstructing a model of a Web application by

exercising its client-side code: as an example, an Ajax crawler triggers all events that are

accessible through the Web page widgets (buttons, forms, anchors, …) either by breadth-

first or depth-first visiting strategy, so that the corresponding JavaScript functions are

invoked. Finally it registers the new user interface states (DOM states) reached after the

JavaScript execution. In this way the crawler can reconstruct a state flow-graph whose

nodes capture the states of the user interface and edges represent possible transitions

between them. However, since the same states can be regenerated during the crawling

process, some techniques for recognising similar states must be used. As an example, in

[91] a technique using hash values of the state content is used for discovering similar

states, while in [58] the same problem is solved by using the edit distance between DOM

trees. We have implemented an Ajax crawling technique in a tool called CrawlRIA

(further details about this tool are provided in section 5.3). The tool can be also used for

generating a set of execution traces of the application. The crawler starts from the initial

page of the application and triggers its events in a depth-first manner; each time a new

DOM state is reached, its similarity with already visited states is evaluated using one of

the interface equivalence criteria proposed in chapter 3. If the interface state has not been

already visited, the crawler continues its navigation process otherwise it stops the

exploration, saves the sequence of DOM states and events as an execution trace, and

restarts the crawling from the initial page of the application. Each resulting execution trace

is defined as a sequence of couples:

…, <Interf. Statei, eventi>, <Interf. Statei+1, eventi+1>, … (1)

An open issue with RIA crawling techniques is the management of interfaces including

forms where the user has to insert specific input values: an automatic crawler can solve

this problem either using a pre-defined set of input values to populate the forms, or

Reverse Engineering and Testing of Rich Internet Applications

83

excluding the forms from its analysis. Both solutions will yield to resulting execution

traces that may not be representative of real interactions of human users with the

application. Moreover, the termination criteria used by the crawler to stop the exploration

of DOM states are likely to produce execution traces associated with short/ simplified

paths of interactions with the application, far from the semantically-rich interactions of a

real user.

As possible solutions to these problems and to obtain more representative and meaningful

execution traces, we suggest integrating the crawled execution traces with traces from user

sessions. To obtain such traces, a tool like CReRia, presented in chapter 4, can be used.

The tool besides collecting traces is able to classify the generated DOM states using the

already cited interface equivalence criteria, and to generate a trace with the same format

defined in (1).

5.2.2 Test Suite Generation

Our testing approach generates test suites by transforming each available execution trace

into a test case. This transformation is not straightforward but requires that some questions

are solved, such as the definition of the pre-conditions of each test case and the definition

of the expected output of a test case.

To solve the former problem, since in general the behaviour of an RIA will depend on the

current state of the application data as well as by its environment and session data, it is

necessary to get the RIA state before recording each execution trace, or to set it to a

known reference value. This state will provide the preconditions of each test case and

during the test case execution specific set-up and tear-down methods will have to be

executed to manage it.

The second problem requires a testing oracle to define the PASS/FAIL result of a test case

execution. Some authors solved this problem by checking specific types of failures of an

RIA, such as state-invariant violations [83], or asynchronous message passing anomalies

(such as unintended interleaving of server messages, swapped callbacks, …) [56]. Another

proposed solution is that of checking the consistency of the concrete state sequence with

Reverse Engineering and Testing of Rich Internet Applications

84

respect to the expected state sequence on an FSM model of the application [56]. In this

chapter, we evaluate test case results by checking the occurrence of JavaScript crashes,

and use a dynamic analyser of Ajax application executions (DynaRIA) to detect their

occurrence automatically.

5.2.3 Test Suite Reduction

For obtaining a test suite with a manageable size, the typical testing problem of test suite

reduction has to be addressed. Given an initial test suite, this problem can be solved by test

case selection techniques that produce a test suite smaller than the original one yet still

satisfying the original suite‘s requirements [92, 93, 94].

Several properties and models of the analysed software can be considered for test suite

reduction. As an example, if a FSM model of the application is available, a starting test

suite TS can be reduced into a smaller one including either its (1) test cases that cover the

same set of FSM states covered by the original suite, or (2) the ones covering the same set

of FSM transitions (or events) covered by TS. Analogously, if just the source code of the

application is available, reduced test suites can be obtained by selecting the test cases

covering the same set of code components (such as functions, modules, LOC, etc…) as the

original test suite.

The selection techniques can be implemented using the generic reduction algorithm

proposed in [95] that applies to any binary coverage matrix M where each row

corresponds to a test case of TS and each column corresponds to a generic item xX. The

elements of the matrix M are defined as follows:

m(i, j) =1 iff the test case i covers the item j

m(i, j) =0 iff the test case i does not cover the item j

The reduction algorithm uses the following essentiality and dominance criteria for

generating the reduced set of test cases.

 Essentiality criterion: a test case tc is essential if it is the only test case from TS that

covers a given item x;

 Row dominance criterion: a test case tci is dominated by a test case tcj if all the items

Reverse Engineering and Testing of Rich Internet Applications

85

covered by tci are covered by tcj too;

 Column dominance criterion: an item xi dominates another item xj if xi is covered by

all test cases that cover xj.

The first criterion identifies test cases associated with essential rows and they will have to

be included in the final reduced test suite. The row dominance criterion identifies test

cases associated with dominated rows and these test cases will be excluded from the final

test suite.

The algorithm iteratively analyses the matrix M and progressively reduces it by discarding

its rows or columns using the following rules: 1) the essential rows are discarded from

the matrix, the corresponding test cases will be added to the reduced test suite, and the

set of columns associated with the objects covered by those essential rows will be

discarded too; 2) dominated rows and dominant columns are discarded from M. The

algorithm ends when the matrix becomes empty, providing the reduced subset of test

cases.

5.3 Experiment

In this section describes an experiment that was performed for evaluating the proposed

testing approach and the supporting tools we developed.

5.3.1 Research questions

The proposed testing approach allows different types of execution traces to be used for test

suite generation and different characteristics of an RIA to be considered for test suite

reduction.

We investigated nine testing techniques that were obtained by combining three execution

trace collection approaches (e.g., by user-sessions, by crawling, and both by user-sessions

and crawling) and three reduction techniques that considered different types of RIA

characteristics, namely M1 (considering FSM states), M2 (FSM transitions), and M3

(JavaScript functions). The reduction techniques M1 and M2 assume that each subject

application has been associated with a FSM model that was produced automatically from

Reverse Engineering and Testing of Rich Internet Applications

86

the available execution traces using the abstraction technique presented in chapter 3. For

the reduction aim of M3, the considered JavaScript functions include just the distinct static

script functions called during the trace execution (also including library functions). We

also considered three additional techniques (B1, B2, and B3) where no test suite reduction

was performed. Table 5.1 reports the 12 techniques involved in the experiment.

Table 5.1: The testing techniques considered in the

experiment
Technique Execution trace collection Reduction

Technique

B1 By user sessions -

B2 By crawling -

B3 By user sessions and crawling -

T1 By user sessions M1

T2 By user sessions M2

T3 By user sessions M3

T4 By crawling M1

T5 By crawling M2

T6 By crawling M3

T7 By user sessions and crawling M1

T8 By user sessions and crawling M2

T9 By user sessions and crawling M3

The experiment was designed to address the following research questions:

RQ1. How effective are the testing techniques B1, B2, and B3? This question concerns the

performance of the B1, B2, and B3 techniques in terms of the coverage and fault-detection

they provide.

RQ2. How effective are the reduction-based T1… T9 techniques with respect to the B1,

B2, and B3 techniques? This question concerns the relationship about the performance of

the B1, B2, and B3 techniques with reference to the T1… T9 techniques, in terms of the

coverage and fault-detection they provide.

5.3.2 Measured Variables

In the experiment, we measured the following variables:

 FSM State Coverage (ts): percentage of FSM states covered by at least one test case

of the test suite ts.

Reverse Engineering and Testing of Rich Internet Applications

87

 FSM Transition Coverage (ts): percentage of FSM transitions covered by at least

one test case of the test suite ts.

 JavaScript function Coverage (ts): percentage of JavaScript functions executed

during the ts execution w.r.t. the number of script functions contained by the

JavaScript modules of the application.

 JavaScript LOC Coverage (ts): percentage of JavaScript function LOC executed

during the ts execution w.r.t. the LOC of JavaScript functions of the application.

 Fault detection effectiveness (ts): percentage of faults detected by ts (section 5.4.1

provides further details on the faults used in the experiment).

 Test Suite Size: number of test suite test cases.

 Test Suite Event Size: number of events exercised by the test suite test cases.

5.3.3 Experimental process and supporting tools

The experimental process has been carried out with the support of a set of tools developed

by the authors. The set of tools comprehends CreRIA, CrawlRIA, Test Case Generator,

Test Case Reducer and DynaRIA which are briefly described in the following.

CReRIA is the tool, presented in chapter 4, for dynamic analysis of RIAs designed for

supporting comprehension processes. The functionalities implemented by CReRIA

include:

 offering a Web browser for navigating the rich internet application and performing

user sessions tracing;

 extracting and recording relevant information about traced user sessions, such as

user interfaces and events that occurred during the navigation;

 clustering of interfaces and events according to different abstraction criteria;

 abstraction of the FSM.

The user session traces (sequences of interfaces and events) and the corresponding paths

on the abstracted FSM (sequences of states and transitions) are stored in the FSM & Trace

Repository implemented by a MySQL database. Further details about CreRIA are

described in chapter 4.

Reverse Engineering and Testing of Rich Internet Applications

88

CrawlRIA is a prototype crawler that automatically generates execution traces of an RIA

by triggering the events found in RIA interfaces. CrawlRIA is also able to cluster

interfaces and events with the same technique implemented by the CReRIA tool, to

generate an FSM model, and to store them in the FSM&Trace Repository.

Test Case Generator is a tool able to transform the execution traces stored in the FSM &

Trace Repository in a test suite composed of executable test cases. The current Test Case

Generator prototype generates test cases both in a format executable by the Selenium suite

[90] and by the DynaRIA tool.

Test Case Reducer is a tool able to reduce a test suite ts into a smaller one that satisfies

the same ts coverage requirements. The output of the tool is a reduced test suite ts‘ in the

same format of the input test suite ts. The Test Case Generator tool and the Test Case

Reducer are integrated in a general tool called TestRIA.

DynaRIA is a tool for dynamic analysis and testing of RIAs. It is able to execute the test

cases produced by the Test Case Generator or the Test Case Reducer tool, to monitor their

execution in a browser environment, and to produce a report of detected crashes. It also

evaluates and reports the coverage measures described

in sub-section 5.3.2.

The experimental process we carried out is shown in

Figure 5.1. Chosen the subject RIA, execution traces

were both manually collected (using the CreRIA tool)

and automatically by the CrawlRIA tool. Produced

traces were stored in FSM&Trace Repository realised

as a MySQL database. The Test Case generator tool

produced test cases from the collected execution

traces. The Test Case Reducer applied the

minimization techniques and produced reduced test

suites. The produced test suites were submitted to the

DynaRIA tool for the execution. The DynaRIA tool

Figure 5.1: The experimental testing

process

CReRIA

CrawlRIA

RIA

FSM & Trace

Repository

Test Case

Generator

Test Case

Reducer

Test Suites

Reduced

Test Suites
DynaRIA

User/Tester

Fault

Injector

Faulted RIA

Coverage

Measures

Crash

Report

CReRIA

CrawlRIA

RIARIA

FSM & Trace

Repository

FSM & Trace

Repository

Test Case

Generator

Test Case

Reducer

Test SuitesTest Suites

Reduced

Test Suites

Reduced

Test Suites
DynaRIA

User/TesterUser/Tester

Fault

Injector

Fault

Injector

Faulted RIAFaulted RIA

Coverage

Measures

Coverage

Measures

Crash

Report

Crash

Report

Reverse Engineering and Testing of Rich Internet Applications

89

evaluated the results of all test case executions both on the original version of the RIA, and

on a set of RIA versions in which an expert injected some faults. A description of the

injected faults is reported in the sub section 5.4.1.

5.4 Subject Application

Our experiment involved Tudu, an open source application available from

http://tudu.sourceforge.net offering ‗todo‘ list management facilities (such as adding,

deleting, searching for todos, organizing lists of todos, and so on). This application is a

well-known example of open source RIA [56, 72] consisting of about 10,000 LOCs of

Java, JSP and JavaScript, and it uses JavaScript frameworks. The persistent data related to

the users and their todos are stored in a MySQL database.

5.4.1 Fault Seeding

As we wanted to evaluate the fault detection capability of proposed testing techniques, we

injected faults of different types in the JavaScript (JS) code of the subject application. We

focused on faults that are able to produce JS crashes. Since the JS code of an Ajax

application is interpreted at run-time by a browser component, a JS crash is managed by

interrupting the current execution (event handling). The notification of the crash may be

shown or not on the user interface. For this reason, depending on the fault‘s position in the

JS code, JS crashes may emerge or not on the GUI. Hence, we had to analyse the flow of

the program in order to inject both faults whose effects are visible on the client interface

DOM, and faults that do not produce visible effects on the DOM. Both types of fault are

automatically detectable by DynaRIA thanks to the functionality of JavaScript execution

tracing.

The faults were representative of typical JS programming errors, such as: JS function call

instructions with undefined, incorrect, or missing parameters, JS syntax errors, array out of

bound errors, server requests of missing resources or JS files, etc. 19 faults were injected

and 19 versions of Tudu were produced, each one containing just one fault.

Reverse Engineering and Testing of Rich Internet Applications

90

5.4.2 Data Collection

In the experiment, the Tudu application was crawled by the CrawlRIA tool that collected

1,684 interfaces belonging to 203 execution traces by triggering 1,481 events on the

interfaces. Moreover, one of the authors who knew the main functionalities offered by the

application recorded 21 user sessions by the CReRIA tool, triggering 518 events and

navigating 539 interfaces. These user sessions were able to exercise all the application‘s

known use cases and their scenarios. All the traces were collected by starting from the

same initial conditions of the application state. In particular, the session data were always

reset to zero and the database was reset to a reference dump.

 All the collected traces were used for automatically abstracting a reference FSM model of

the application. Table 5.2 reports the overall number of collected interfaces and triggered

events, the number of states and transitions of the resulting FSM, the total number of

distinct JavaScript function definitions found in the code of collected interfaces and their

size in LOC.

The execution traces were used to obtain three initial test suites: US (generated from user

session traces), CR (generated from CrawlRIA traces), and HY (obtained by merging the

test suites US and CR).

Each test suite was then reduced using the three minimization techniques M1, M2 and M3,

and 9 reduced test suites were obtained called US-M1, US-M2, US-M3, CR-M1, CR-M2,

CR-M3, HY-M1, HY-M2, and HY-M3, respectively.

The test suites were automatically executed on all the faulty versions of Tudu by the

DynaRIA tool that also evaluated the coverage measures and the number of detected faults

of each test suite. The following tables report collected data for the test suites obtained

Table 5.2: Overview information about collected

execution traces

Collected Interfaces 2223

Triggered Events 1999

FSM States 19

FSM Transitions 61

Defined JS Function # 1018

Defined JS Function LOC 6150

Reverse Engineering and Testing of Rich Internet Applications

91

from user sessions (Table 5.3), from crawler traces (Table 5.4) and both from user sessions

and crawled traces (Table 5.5), respectively.

Table 5.3: Data about user session test suites

 US US-M1 US-M2 US-M3

Test Case # 21 3 9 10

Event # 518 81 232 235

Covered States 19 19 19 19

Covered States % 100% 100% 100% 100%

Covered Transitions 56 40 56 56

Covered Trans. % 91,8% 65,6% 91,8% 91,8%

Covered Functions 172 160 163 172

Covered Funct. % 16,9% 15,7% 16,0% 16,9%

Covered LOC 1016 967 980 992

Covered LOC % 16,5% 15,7% 15,9% 16,1%

Revealed faults # 19/19 16/19 19/19 19/19

Table 5.4: Data about test suites from crawled traces

 CR CR-M1 CR-M2 CR-M3

Test Case # 203 5 20 23

Event # 1481 42 134 273

Covered States 14 14 14 14

Covered States % 73,7% 73,7% 73,7% 73,7%

Covered Transitions 35 16 35 35

Covered Trans. % 57,4% 26,2% 57,4% 57,4%

Covered Functions 160 141 153 160

Covered Funct. % 15,7% 13,9% 15,0% 15,7%

Covered LOC 949 875 929 937

Covered LOC % 15,4% 14,2% 15,1% 15,2%

Revealed faults # 17/19 9/19 17/19 17/19

Table 5.5: Data about test suites obtained from user sessions and crawled traces

 HY HY-M1 HY-M2 HY-M3

Test Case # 224 3 21 24

Event # 1999 81 261 283

Covered States 19 19 19 19

Covered States% 100% 100% 100% 100%

Covered Trans. 61 40 61 61

Covered Trans.% 100% 65,6% 100% 100%

Covered Funct. 192 160 164 192

Covered Funct.% 18,9% 15,7% 16,1% 18,9%

Covered LOC 1042 967 987 1022

Covered LOC% 16,9% 15,7% 16,0% 16,6%

Revealed faults # 19/19 16/19 19/19 19/19

5.5 Discussion

To answer the research question RQ1 on coverage and fault detection effectiveness of the

considered B1, B2 and B3 techniques, we analysed the results achieved by the initial test

suites US, CR, and HY, which are reported in the second columns of Tables 5.3, 5.4 and

5.5, respectively.

When we analyse the coverage of JavaScript functions and of FSM states and transitions,

Reverse Engineering and Testing of Rich Internet Applications

92

we can observe that US covers 172/1018 (16.9 %) functions, CR covers 160/1018 (15.7%)

functions, HY covers 192/1018 functions (18.9%). However, US exclusively exercises 32

functions of the overall 192, while CR exclusively exercises only 20 functions of 192.

This small coverage of JS functions of both US and CR can be explained because the

Tudu application largely includes library functions from frameworks, but just a little part

of these library functions are actually used by it. As to the LOC coverage of functions,

analogous coverage data were obtained.

As to the FSM coverage, US and HY cover all FSM states (19), while CR only covers

14/19 (73.7%) states. Moreover, US covers 56/61 transitions (91.8%), CR covers 35/61

(57.4%) and HY covers all transitions.

As to the fault detection effectiveness, US and HY discover all known faults (19/19),

while CR only 17/19 faults. For understanding why CR did not reveal these faults, we

analysed them, and discovered that they were not exercised by the crawler execution

traces because the sequence of events that caused the crash was not triggered by the

crawler. Vice-versa, this sequence of events was executed by the user sessions, since it

belonged to a well-known functionality of Tudu.

As a result, the test suite US (obtained from user session traces) reached a wider coverage

of the FSM model, JS code, and faults than CR (that is automatically obtained by the

crawler), and its size in number of test cases (21) and covered events (518) was smaller

than the size of CR (203 test cases and 1481 events).

On the other hand, even if CR included more test cases than US, their average length (in

number of executed events) was smaller (about 7 events against 25) and they discovered

about 90% faults. Moreover, deriving CR is less expensive than generating US since CR

can be derived automatically, while US always requires human intervention for trace

collection As to the test suite HY, it was larger than US and CR, but it covered quite the

same JS functions of US and of CR, and had the same fault detection capability of US.

Moreover, the costs of generating HY is approximately the same of generating US, being

CR automatically obtained.

Reverse Engineering and Testing of Rich Internet Applications

93

In conclusion, in this experiment the B3 testing technique proved to be more effective than

the B1 and B2 ones, but B1 and B3 effectiveness are quite similar. However, we can

observe that the technique B2 always provides an automatic and fast solution to the

problem of generating test suites that detect about 90% of known defects.

To answer the research question RQ2 about the relationship between techniques without

test suite reduction (B1, B2, and B3) and the techniques with reduction (T1, …, T9), we

first compared the size of the US test suite against the size of its reduced test suites.

Similar comparisons were made for CR and HY and their respective reduced test suites.

As to the US test suite, the M1 technique significantly reduced the US size (3 test cases

against 21, covering 81 events against 518), but US-M1 lost the coverage of 16 transitions

of the FSM, as well as of 12 JS functions, and revealed only 16 faults (rather than 19).

Vice-versa, the M2 and M3 reduction techniques allowed a smaller reduction of the test

suite size (232/518 and 235/518 covered events, respectively), but preserved the FSM

transition coverage and fault detection capability.

As to the automatically obtained test suite CR, we recognized that the size reductions

provided by M1, M2 and M3 techniques were actually relevant (CR-M1, CR-M2, and CR-

M3 covered 42, 134, and 273 events with reference to the 1481 events covered by CR). On

the other hand, while the fault detection capability of reduced test suites CR-M2 and CR-

M3 remained the same (17/19 faults) of CR, the capability of CR-M1 of revealing faults

decreased (only 9 faults/ 17 detected by CR).

As to the HY test suite, the size reductions of the M1, M2, M3 techniques were relevant

and similar to the ones observed for the US test suite. While the fault detection capability

of the reduced suite HY-M1 get worse (e.g., 16/19 with respect to 19/19 of the HY), for

the HY-M2 and HY-M3 it remained the same of HY.

In conclusion, these results showed that all analysed test suite reduction techniques

significantly reduced the size of test suites automatically obtained by crawling, and the

fault detection capability of test suites reduced by M2 and M3 did not get worse. Hence,

the testing techniques with reduction (T1, …, T9) were comparable to the techniques

Reverse Engineering and Testing of Rich Internet Applications

94

without reduction (B1, B2 and B3) as to the coverage and the fault detection effectiveness.

5.6 Conclusions

In this chapter we have proposed a testing technique for RIAs that transforms execution

traces of an existing application into executable test cases. For achieving the technique

scalability, a test suite selection technique is employed that reduces the size of obtained

test suites. For exploring the feasibility and effectiveness of this technique, we carried out

an experiment involving an open-source RIA application, where different approaches

(both human-based, and automatic) for execution trace collection and several criteria for

reducing the test suites were analysed.

The experimental results showed that test suites produced automatically by means of a

crawler of the RIA user interface are not more effective than suites derived from execution

traces, but the former ones have the advantage of being automatically obtained and of

revealing a good percentage of RIA faults. As a consequence, we believe that a more

effective testing strategy should combine test cases obtained by both approaches: first, test

cases automatically obtained by an RIA crawler and by reduction techniques should be

used for discovering the most of application defects. Since these test cases are usually

made up by shorter sequences of events than the ones generated by user session traces,

they will also have the advantage of being executed and debugged faster. Then, if user

session data will be available, test cases based on these data could be employed to obtain a

wider coverage of defects. Of course the validity of obtained experimental results is

reduced, due to several limitations of the experiment we performed, such as the single RIA

application involved, the small number of collected user sessions, the single user involved

in the collection, and the single initial state of the application that was considered during

trace collection. Moreover, the faults that were injected in the application were just of a

particular type (i.e. faults causing JS crashes), while faults affecting the RIA behaviour

without causing crashes were not considered. Finally, the technique adopted for

abstracting the FSM model of the RIA may provide just an approximate model of the RIA

behaviour. To overcome these limitations, further investigations and a wider

Reverse Engineering and Testing of Rich Internet Applications

95

experimentation will be carried out in future work. In this chapter we‘ve proposed a

testing technique in order to detect JavaScript crashes of Rich Internet Applications. In

next chapter we propose a classification framework that characterizes RIA testing

techniques from different perspectives.

Reverse Engineering and Testing of Rich Internet Applications

96

Chapter 6
7

TECHNIQUES AND TOOLS FOR RICH INTERNET APPLICATIONS

TESTING

The User Interfaces of Rich Internet Applications (RIAs) present a richer functionality and

enhanced usability than the ones of traditional Web applications which are obtained by

means of a successful combination of heterogeneous technologies, frameworks, and

communication models. Due to its increased complexity, dynamicity, and responsiveness,

testing the user interfaces of an RIA is more complex than testing the user interfaces of a

traditional Web application and requires that effective and efficient testing techniques are

proposed and validated. In this chapter we analyse the most critical open issues in RIA

testing automation and propose a classification framework that characterizes existing RIA

testing techniques from four different perspectives. Driven by this classification, we

present a set of testing techniques that can be used for automatically and semi-

automatically generating test cases, for executing them and evaluating their results. Some

examples of applying the proposed techniques for testing real Ajax applications will also

be shown.

6.1 Introduction

Rich Internet applications provides a more satisfactory user experience than the one

offered by traditional Web applications. This improvement is obtained thanks to a

combination of Web techniques and technologies that allow several advantages, such as

7
 This chapter was published in the Proceedings of the 12th International Symposium on Web Systems Evolution (WSE 2010).

Reverse Engineering and Testing of Rich Internet Applications

97

the possibility of implementing most of the business logic of the application on the client-

side rather than exclusively on the server-side, of communicating with the server in both

synchronous and asynchronous ways, of exchanging with the server just small amounts of

data and, finally, of manipulating the inner Web page components of the user interface

independently at run-time.

Unfortunately, while these applications are actually more usable, interactive and

responsive that traditional Web applications, testing them may be a more complex and

challenging task.

Indeed, the traditional Web testing approaches such as the ones proposed in [21, 63, 81,

82] are all based on the assumption that the business logic of the application is entirely

implemented on the server side of the application and that the interaction between the user

and the Web pages is limited to clicks on navigational links and to the insertion of data in

forms. On the contrary, the user interface of an RIA may be considered like an event-

driven software system whose behaviour is a not-deterministic one, since it usually

depends on the current state of the application. As an example, the user interface of an

Ajax-based RIA is made up of Web pages (or, at least, of a single page), whose status

changes thanks to run-time client-side elaborations performed on the page by JavaScript

event handlers triggered by user events or other external events (such as timeout events or

asynchronous responses by the server). Event handlers access and manipulate the Web

page using the Document Object Model (DOM) interface [62]. These handlers, besides

synchronous requests, can also send asynchronous requests (for data or elaborations) to the

server that introduce parallelism between the client and the server, leaving the user

interface active. With these new characteristics, an Ajax-based RIA may potentially

exhibit specific types of failures due to incorrect manipulations of the DOM, unintended

interleaving of server messages, swapped callbacks, etc. [72].

RIA testing automation is a relevant research topic. Some research contributions to this

topic have recently been proposed in the literature [5, 56, 72, 83]. These papers present

different testing techniques which require that a model of the run-time behaviour of the

Reverse Engineering and Testing of Rich Internet Applications

98

application user interface is preliminary obtained (either by semi-automatic techniques or

automatically by crawling techniques) and different approaches are used for generating

test cases that cover these models. Some of these techniques are applicable for regression

testing of RIAs; other ones are also usable in other testing contexts.

However, automated testing of RIAs requires that specific problems are solved with

systematic and effective solutions. As an example, suitable techniques and tools are

needed for the automatic definition of test cases, for the generation of a testing oracle and

for evaluating the results of a test execution.

In this chapter we analyse the critical open issues in RIA testing automation and discuss

possible techniques and tools that can be used to solve them.

6.2 A Framework for RIA testing technique Classification

RIA testing techniques can be characterized from different perspectives. Here we propose

to classify them on the basis of the following categories: 1) testing goal, 2) technique used

for generating test cases, 3) testing oracle and 4) types of tool supporting the testing

process. In this section we present these categories and their definitions.

6.2.1 Testing goal

Finding defects is the classic objective of testing: a test is run in order to trigger failures

that expose defects. However, other types of testing can be executed, such as acceptance,

regression, stress, load testing, etc. [96]. Hereafter we focus on RIA testing whose goal is

to find application defects.

Of course, there may be several types of defect in a Web application. Guo and Sampath

[97] proposed a classification of Web application faults that distinguishes them on the

basis of two main dimensions, the physical location of a fault and the effect of the fault.

The considered fault categories hence include: Data store faults, Logic faults, Form faults,

Appearance faults, Link faults and Compatibility faults. Marchetto et al. [98, 99] have

proposed a Web application fault taxonomy that explicitly takes into account some

specific characteristics and sub-characteristics of a Web application in order to find

possible classes of faults affecting each sub-characteristic. However, both the former and

Reverse Engineering and Testing of Rich Internet Applications

99

the latter classification proposals have been defined for traditional Web applications, but

they have not been thought for Rich Internet applications.

Generally, we look for defects in all interesting parts of the software application.

However, whatever their position, RIA application faults either produce effects that are

directly visible on the User Interface of the application, or not-visible ones. Faults

producing user-visible effects can be in turn divided into generic-faults (that cause the

violation of generic and implicit requirements of the UI, such as the HTML syntax

validity, the accessibility requirements, the absence of broken links or server error

messages, etc.) and application-specific ones. Application-specific faults produce

violations of specific functional requirements of the application (as an example, an

application specific fault is the one that produces an incorrect, incomplete, or

inappropriate DOM configuration at a given point of an application execution).

As to the faults that produce non user-visible effects, we intend faults that do not emerge

with effects on the UI but whose effects can be detected either by monitoring the

application execution [100] for checking the occurrence of abnormal events, such as JS

crashes, or by testing any post-condition of the application.

In conclusion, we distinguish the following testing goals:

 To detect generic/application-specific faults with no user-visible effects;

 To detect generic/application-specific faults with user-visible effects.

6.2.2 Test Case generation technique

A test case for an interactive application with an event-based User Interface (UI) can be

described as a sequence of events and input values to be submitted to the application, plus

a set of pre-conditions that must be verified before the test case execution. Moreover, the

test case definition requires a testing oracle that provides the expected output and a set of

post-conditions that has to be verified after the test execution. Techniques for generating

inputs will be discussed in this subsection while oracles and post-conditions will be

discussed in the next one.

Besides the traditional code-based and requirement-based testing approaches, two further

Reverse Engineering and Testing of Rich Internet Applications

100

techniques are suitable for RIA test case generation: the model-based approach and the

one based on real execution traces of the application. The model-based one requires that a

model of application is available and test cases are selected so as to assure an expected

coverage of the model components. The main limitation of this approach consists of the

difficulty of obtaining a trusted model of the RIA, since models produced by the

development process do not usually match the actual implementation of the application,

while reverse engineered models require costly semi-automated and human-intensive

processes [56, 101, 102]. Test cases can be also generated by real execution traces of the

application which can be obtained in three different ways as stated in chapter 5 [5]:

 From user sessions;

 By crawling techniques;

 By hybrid approaches (e.g., mix of user session and crawler executions).

Using execution traces produced by real users (or by testers) of the application is a cheap

and effective technique for obtaining test cases, already used for testing both traditional

and rich Web applications [5, 81, 84, 86, 94]. Usually, these test cases allow the coverage

of the most common scenarios of the application execution. This technique needs non-

invasive Capture tools that can be used by more users contemporarily, for obtaining a

wider set of traces.

A point of weakness of this technique is that it may produce very huge test suites that

cover only the most commonly used scenarios of the application, while the rarest scenarios

may not be navigated by any user. In order to improve the scenario coverage, traces

produced by testers with the aim of exercising the rarest scenarios should be considered

too. On the other hand, in order to reduce the size of test suites, reduction techniques that

are able to select a minimal sub-set of test cases on the basis of some equivalence criterion

can be used too, such as the ones introduced in chapter 5 [5].

The use of a Web crawler allows a completely automatic generation of execution traces.

The realization of a crawler for the automatic navigation of dynamic Web applications is a

well known challenge for the builders of search engines. The wide diffusion of Ajax

Reverse Engineering and Testing of Rich Internet Applications

101

applications, which exploit techniques of dynamic generation of JavaScript code, leads to

new difficulties that make this problem very challenging.

A fundamental aspect with Ajax crawling techniques is the termination criterion adopted

to stop the user interface exploration when an already known interface is encountered.

This problem can be solved by heuristic approaches based on user interface similarity or

equivalence criteria. Two feasible solutions to this problem have been recently proposed

by the authors in [1, 2, 4] and Mesbah et al. [58].

Another feasible approach for generating execution traces is offered by hybrid approaches

that mix test cases obtained from execution traces produced either by real users or by

testers, with test cases generated automatically by a crawler. Hybrid approaches are able to

improve the effectiveness of the technique in terms of its fault detection capability and

code coverage [5].

As to the pre-conditions of a test case, normally they are defined both by the internal state

of the application (made up by the state of the resources, global and session variables of

the application) and by the state of the execution environment of the application (such as

the state and type of the browser, the state of the Web server, the communication

infrastructure and protocols, the system clock, the concurrency of other executions, data

sources and so on). Of course, while the internal state of the application may be usually

accessed and set before a test case execution, it is difficult and, at least impossible, to set

the state of the execution environment to a given known state. As a consequence, test case

pre-conditions usually will include only the settable conditions and will not consider the

uncontrollable one. While pre-conditions must be settable, analogous considerations can

be done for test case post-conditions that vice-versa must be observable.

6.2.3 Testing Oracle

In software testing the role of the oracle is that of defining the expected output of a given

execution.

When an application execution does not produce a user visible output, its effects may be

alternatively deduced by testing any post-condition of the application (such as the state of

Reverse Engineering and Testing of Rich Internet Applications

102

persistent data managed by the application, or the state of environmental variables). Of

course, the techniques usable for accessing the post-conditions of an execution will depend

on the techniques and technologies used for implementing the application itself, and

sometimes these post-conditions cannot be assessed at all by the tester.

Vice-versa, when the effects of an application execution are visible on its UI, the tester

just needs an oracle to define which will be the post-execution state of the RIA UI. In this

case, the oracle can be either automatically provided by a previous version of the same

application (but this approach is feasible just in regression testing processes) or it must be

manually defined, on the basis of a knowledge of the application specifications. The

manual oracle that punctually defines the Web interface obtained by an output execution is

very expensive to obtain, so that it is used very seldom in the practice of Web applications.

A more efficient approach for defining the expected output of an execution is the one used

in invariant-based testing approaches [83]. An invariant is defined as a property of the

application that must be true and it can be checked by means of an assertion. An assertion

is a boolean expression that defines necessary conditions for correct execution [101].

There are both implementation-specific assertions and implementation-independent ones.

Van Deursen et al. [83] distinguish between invariants on the DOM-tree, between DOM-

tree states, and application-specific invariants that are based on a fault model of Ajax

applications.

More in general, we propose to classify an invariant for RIA testing according to the

applicability scope of the invariant (that is, the scope of the components of the Web

application which the invariant refers to) and the invariant generation technique.

As to the applicability scope, the invariant can refer either to properties that must be true

for any Web application (we call it a universal invariant), or for any UI state of a given

application (e.g., application level invariant), or for a specific sub-set of UI states (e.g.,

application group of states level invariant), or only for specific states of the UI (e.g.,

application single state level invariant).

The generation of invariants is a challenging task for testing and in particular for testing

Reverse Engineering and Testing of Rich Internet Applications

103

automation. An invariant can be defined manually by a programmer or by an expert of the

application implementation who defines the assertions that must be checked. In some

particular cases (when a previous version of the application is available) the invariant can

be obtained ‗automatically‘ by analysing the output of the execution of the previous

version. In other cases, a hybrid approach can be used that exploits some technique for

deducing possible invariants automatically and requires human intervention for validating

them. An example of this approach is presented in [3, 103] where a technique for detecting

specific features of Web pages that can be used for defining invariant properties is

proposed. Other semi-automatic approaches may deduce invariants by analysing the

similarity of Web pages according to specific UI equivalence criteria. As an example, a

simple (but often ineffective) criterion is the one that considers equivalent two interfaces if

and only if they have exactly the same HTML and JavaScript code. More effective

interface clustering criteria have been presented in the literature, such as the structural

equivalence criteria proposed in [1, 2, 4] and the Levenshtein distance based criterion

proposed in [58] that provide suitable approaches for finding equivalent interfaces of

Ajax-based applications.

6.2.4 Testing automation tools

There are several categories of tool that executes basic tasks needed for RIA testing

automation. They include:

 Crawler, that is able to interact automatically with the RIA under test and to

generate execution traces by firing events on the RIA user interface. An execution

trace is defined as a sequence of pairs: (widget, fired event).

 Capturer, that allows user interactions with the RIA under test to be recorded for

generating user session traces.

 Test Case Generator, that is able to transform the execution traces produced either

by the Crawler or by the Capturer into executable Test Cases. A test case generator

is also responsible for defining the pre-conditions of a test case.

 Test Suite Reducer, that is responsible for reducing the size of existing test suites. It

Reverse Engineering and Testing of Rich Internet Applications

104

exploits some minimization technique for assuring that the reduced test suites have

the same coverage characteristics of the original ones.

 Replayer, that is delegated to replay test cases.

 Execution monitor, that observes and analyses the execution of the RIA, in order to

detect specific types of events (such as the occurrence of JavaScript crashes).

 Assertion generator, that is able to generate the assertions on user interfaces that will

be evaluated during the testing phase. An Assertion Generator can be:

o Automatic, if it automatically generates the assertions for the interfaces.

o Hybrid, if it suggests to the user the assertions to be evaluated for each

interface. The user can validate the suggestions and accept or not them.

o Manual, if it allows the user to set manually the assertions for each interface

of the RIA.

 Assertion verifier, that is delegated to verify if the expected assertions associated

with each interface are verified.

6.3 Tools for RIA testing automation

Several tools and frameworks are now available to support the execution of RIA testing

processes. In the following we report the characteristics of both some RIA testing tools

that we developed ad hoc in our research laboratory, and some other ones we selected

from the Web. All the considered tools belong to the categories presented in the previous

subsection and can be freely downloaded from the Web.

6.3.1 CReRIA

CReRIA, already discussed in chapters 4, is an interactive tool for dynamicanalysis that

has been designed for supporting comprehension and reverse engineering processes of

RIAs implemented in Ajax [4]. In particular the tool supports the semi-automatic reverse

engineering of a Finite State Machine (FSM) modelling the behaviour of an Ajax

application user interface. The tool offers an integrated Web browser that allows a user to

navigate the RIA and to trace and record his user sessions. Hence, this component of the

tool actually implements the functionality of a Capturer that can be used in testing

Reverse Engineering and Testing of Rich Internet Applications

105

processes too.

As to the recorded information about traced user sessions, both data about the structure

and the content of user interfaces, both data about user events that were fired on user

interfaces are captured by the tool. More precisely, CReRIA describes each user interface

only by a selected sub-set of its widgets (such as buttons, text fields, forms, …) that have

specific properties and values of these properties. As to the user events which were fired

during the navigation, the user event type (i.e. click, mouseover, mouseout, etc…), and the

widget on which the user event was fired are captured by the tool. From the perspective of

Ajax testing, this information can be used to produce precise test cases as sequences of

user interfaces and events triggered on them.

The CReRIA tool also implements several heuristic criteria for clustering together

equivalent interface states, as well as equivalent events.

6.3.2 CrawlRIA

CrawlRIA is a tool belonging to the category of automatic Crawlers. It has been designed

for crawling Ajax applications and explores the user interface states by automatically

firing events on these interfaces. It fires events by either a depth first or a breadth first

visiting strategy. CrawlRIA is also able to extract data about interfaces and triggered

events and to cluster them with the same techniques implemented by the CReRIA tool,

and to generate the corresponding FSM model. In testing processes, CrawlRIA can be

used for automatically generating execution traces (which can be stored in the same format

and in the same database used by the CReRIA tool).

6.3.3 TestRIA

TestRIA, already introduced in chapter 5, [5] is a tool designed for Ajax test case

generation and management. It implements the functionalities of a Test Case Generator,

Test Case Reducer, Automatic, Hybrid and Manual Assertion Generator, and of an

Assertion Verifier. Moreover, it also provides the functionality of Test Case Replayer.

TestRIA generates test cases by translating the execution traces collected either by

CReRIA or by CrawlRIA into test cases implemented as Java test classes that use classes

Reverse Engineering and Testing of Rich Internet Applications

106

from the Selenium RC library [104]. The tool is an Assertion Generator that builds

assertions in three distinct ways: if test cases must be used for regression testing of the

application, it builds automatically assertions regarding selected properties of the user

interfaces of the initial version of the application that were encountered during test case

executions. TestRIA is also able to suggest potential assertions about widgets found in the

interfaces, or to support the manual definition of assertions. This tool is also an Assertion

Verifier that exploits the same interface equivalence criteria implemented by CReRIA and

CrawlRIA for assessing the equivalence of a given interface to a cluster of similar

interfaces. It verifies generic assertions associated with Html validity or Web accessibility

requirements by invoking external Web services too. Eventually TestRIA is also able to

replay the generated test cases either in the TestRIA context or in a standalone way.

6.3.4 DynaRIA

DynaRIA is a tool supporting the comprehension and the testing of RIAs implemented in

Ajax. It is based on dynamic analysis and provides functionalities for recording (acting

like a Capturer) and analysing user sessions from several perspectives and for producing

various types of abstractions and visualizations about the behaviour of the application. In

particular it is able to execute the test cases produced by the CReRIA and TestRIA tools

(acting as a Replayer), and to implement both a Monitor of JS crashes and a Network

Monitor of Http errors.

6.3.5 Crawljax and ATUSA

Crawljax [102] is an open source Java tool supporting the automatic crawling and testing

of Ajax applications. It has been developed by the SERG group at the Delft University.

Initially designed for the automatic crawling of Ajax Web applications for indexing

purposes [58], the most recent releases of Crawljax also supports invariant-based testing,

regression testing [105], accessibility validation, security testing, broken

links/images/tooltips detection [83]. The last releases of Crawljax include ATUSA, a tool

originally designed for supporting AJAX testing.

Crawljax comprehends components that explore the existing application for building a

Reverse Engineering and Testing of Rich Internet Applications

107

state-flow graph representing the dynamic DOM states and the transitions between them,

and a component (a Test case generator) that builds test cases from that model. The tool

also provides several functions for generating a set of pre-defined assertions about the user

interface states (Assertion Generator) and for verifying them (Assertion Verifier).

6.3.6 Selenium

Selenium [104] is a framework composed of a set of tools supporting test automation of

Web applications. In particular, Selenium-IDE is a Firefox add-on providing an interface

for developing test cases starting from information extracted during a user navigation

session. Selenium-IDE also provides assertion suggestions during the capture activity, by

proposing expressions related to the presence of widgets and attributes in the captured user

interfaces. The test cases produced by Selenium IDE can be executed in the context of

Selenium IDE itself, or they can be automatically replayed in the context of a program

written in a high-level programming language by using the Selenium-RC API.

Table 6.1 summarizes the analysed tools and reports the types of testing tool components

they offer.

Table 6.1: Coverage of Tools Categories
 C

R
eR

IA

C
raw

lR
IA

D
y

n
aR

IA

T
estR

IA

C
raw

ljax

S
elen

iu
m

Crawler X X

Capturer X X X

Replayer X X X

Execution Monitor X X

Test Case Generator X X

Test Case Reducer X

Automatic Assertion Generator X X

Hybrid Assertion Generator X X

Manual Assertion Generator X X

Assertion Verifier X X X

6.4 RIA automated testing processes

In this section, we propose two general RIA automated testing processes that exploit

execution traces of the application for generating test cases. They can be instantiated in

different ways in order to reach different testing goals: the first process can be used to

detect faults with no user-visible effects, such as crashes, the second one aims at detecting

Reverse Engineering and Testing of Rich Internet Applications

108

faults with user-visible effects. The processes will be characterized according to the

categories proposed in section 6.2

6.4.1 Process #1: Crash Testing Process

The first testing process can be executed with the aim of discovering the occurrence of

generic failures of the application, such as run-time crashes of the JavaScript engine, Http

errors, etc. JS crashes are frequent during the execution of the JavaScript code of a Web

page and are usually due to code faults such as references to non-existing objects,

references to out-of-bounds array items, divisions by zero and so on. These types of defect

may depend on the fact that JavaScript is a interpreted rather than compiled language, and

its code can be dynamically generated at run-time. JS crashes usually do not produce

visible effects on the interface.

To discover this type of defect it is not necessary to use assertions. The testing process just

requires that a set of execution traces is replayed by a Replayer with the support of an

execution Monitor.

In particular, the following types of tools are needed: a Test Case Generator tool that

obtains execution traces either by a Crawler or by a Capturer and transforms them into test

cases, a Test Case Reducer that operates a possible reduction of the test suite, a Replayer

that automatically replays the test cases, and one or more execution Monitors that observe

the RIA execution and detect the occurrence of abnormal events. Figure 6.1 shows a

possible schema of this process.

Figure 6.1: An implementation of the Crash Testing process

Reverse Engineering and Testing of Rich Internet Applications

109

6.4.2 Process #2: User Visible Fault Testing process

The second testing process is executed with the aim of discovering faults with user-visible

effects.

According to the definition given in section 6.2, faults with user-visible effects may be

either generic-faults (that cause the violation of generic and implicit requirements of the

UI, such as usability, accessibility, security, syntax validity requirements, etc) or

application-specific ones. A typical example of generic fault is due to invalid HTML

statements, which is very frequent in dynamic Web applications where the HTML code is

generated at run-time.

An example of application-specific fault is the one that causes a given user interface to be

not correct because it does not comply with the functional specifications of the

application.

As an example, the page may miss some widgets (such as a foot note, a disclaimer or a

common menu), or include unexpected widgets, or present a layout different from the

correct one.

Both types of fault can be detected by analysing the status of the RIA UI and verifying the

violation of suitable assertions.

The assertions that are valid for checking generic requirements can be produced once and

are applicable to any Web application UI state. Vice-versa, assertions needed for checking

application specific requirements must be defined ad-hoc for specific applications or

specific UI states of a given application. Hence the generation of this type of assertions

usually requires expensive manual processes. However, when the application is submitted

to regression testing after the implementation of some changes and a previous version of

the application is also available, the invariants can be deduced ‗automatically‘ from the

former version executions.

The verification of the assertions can be performed by any Assertion Verifier like the ones

offered by TestRIA [5], Selenium [104] and by Atusa [83]. Alternatively, the invariant

evaluation may be performed by invocation of external services, such as the ones offered

for HTML Validation [106] or Web Accessibility evaluation [107].

Reverse Engineering and Testing of Rich Internet Applications

110

Figure 6.2 shows a possible organization of such a testing process that preliminarily

requires that execution traces of an RIA are collected (either by a Crawler or by a

Capturer) and transformed into executable test cases by adding the assertions to be

verified.

Figure 6.2: An implementation of the User Visible Fault Testing process

The Assertion Generator may produce assertions manually, automatically, or by a hybrid

approach. Test cases are then executed by a Replayer that must include an Assertion

Verifier component too. Some examples of possible application failures that can be

detected by such a process will be illustrated in the next section.

6.5 Examples

In this section we show how the testing processes described in section 6.4 can be

implemented by means of available testing tools and how they can be used to test a real

Ajax application. We show the usability of the testing approaches by some examples and

we discuss some problems and possible solutions that have been adopted to solve some

specific testing issues.

The examples that will be presented refer to ―Tudu‖, an open source application offering

‗todo‘ list management facilities (such as adding, deleting, searching for todos, organizing

lists of todos, and so on). Tudu is a meaningful example of a simple (but not trivial) RIA

whose server side is implemented with JSP pages, while its client side includes typical

‗rich‘ pages that modify themselves at run-time on the basis of the user interaction with

Reverse Engineering and Testing of Rich Internet Applications

111

the pages; Tudu uses a persistent data source realized with a MySql database. Tudu has

been often used in case studies involving RIA reverse engineering and testing [2, 4, 5, 56,

72, 83].

6.5.1 Crash Testing

In order to carry out a crash testing on Tudu, we implemented the process proposed in

section 6.4 with the support of some tools presented in section 6.3. The architecture

reported in Figure 6.3 shows that the CrawlRIA and CReRIA tools are alternatively used

to collect execution traces of the RIA under test, while the DynaRIA tool replays these

execution traces, monitors them and reports occurred JS crashes and Http errors.

Figure 6.3: An architecture supporting the Crash Testing process

To show the effectiveness of the approach, we injected in Tudu the faults reported in

Table 6.2 that were all detected by the

proposed testing process. The first row

of Table 6.2 shows a piece of code with

a fault due to the highlighted line of

code (containing the statement

alert(hiAll)) that makes a reference to

the hiAll variable, which has never been

defined. This fault causes a crash during

the function execution that does not

Table 6.2: Examples of Faults Producing JS Crashes
function showAddTodoList() {

 hideTodosLayers();

 $("addNewListDiv").style.display="inline";
 document.forms.addNewListForm.name.focus();

alert(hiAll);

}

function renderTableListId(listId) {
 hideTodosLayers();

 document.forms.todoForms.listId.value = listId;
 todos.forceRenderTodos(listId, replyRenderTable);

 tracker('/ajax/renderTableListId');

}

function initMenu() {

 var uls = document.getElementsByTagName("ul");

 for (i = 0; i < uls.length+1; i++) {

 if (uls[i].className == "menuList") {
 decorateMenu(uls[i]);

 }

 }
}

Reverse Engineering and Testing of Rich Internet Applications

112

produce any visible effect on the interface.

The second row of Table 6.2 shows another fault we injected by changing the name of a

referred form from todoForm to todoForms (see the highlighted statement) that does not

correspond to any existing page form. The execution of this statement causes a JS crash

due to the reference to a non-existing object.

The third injected fault is reported in the third row of Table 6.2 and was obtained by

changing the termination value of the for iteration from uls.length to uls.length+1, so that

an array out of bound crash occurs when the script tries to access the uls[uls.length+1]

object.

6.5.2 User Visible Fault Testing process

To carry out a testing process for detecting User Visible Faults, the Process #2 illustrated

in section 6.4 was implemented by the architecture shown in Figure 6.4.

Figure 6.4: An architecture supporting the User Visible Fault Testing process

CrawlRIA and CReRIA tools are used to collect execution traces, while the TestRIA tool

is used to support the tester in the generation of assertions, to generate test cases

(Selenium executable test cases are also reported as outputs of the process), to replay test

cases and to produce a report of the detected faults on the basis of the occurred assertion

violations. To carry out this process, it is needed that suitable assertions are defined to test

the execution output. Both assertions that are applicable to all the user interfaces of the

application and assertions applicable just to any specific interface can be used.

Reverse Engineering and Testing of Rich Internet Applications

113

As an example of assertions applicable to all user interfaces of the application, we have

considered a requirement of Tudu that states the need for the logo shown in Figure 6.5 to

be included in any user interface of Tudu. A possible assertion describing this property of

Tudu is given by the following XPath expression:

bool(/html/body/table[1]/tbody/tr/td[1]/a/img)

Figure 6.5: The logo of the ‘Tudu’ application

This expression is true when an image is present in the precise location of the user

interface where the logo usually stays. Of course, this expression does not check if the

logo image is the correct one. In order to have a more precise checking, the following

XPath expression can be used, which checks the presence of the correct logo anywhere in

the page:
bool(//img[@src="http://tudu.sourceforge.net/static/2.2/images/tudu_logo.png"])

As an example of assertions that are applicable just to some specific interface of the

application (such as the ones obtained by executing a specific functionality), we consider

the Tudu functionality of adding todos to a list, and analyse the execution scenario where

three todos were inserted in an empty todo list. To check this functionality, a specific

assertion for checking the results of the insertion is needed. Such an assertion contains the

following XPath expression that verifies if a list with three todos is shown:

count(//table[@class='list']/tbody/tr/td/div[@style!='display:none;'])=3

In order to test the effectiveness of the test cases including this assertion, we have first

executed them on the original application, and obtained the final interface shown in Figure

6.6.

Figure 6.6: An example of interface showing a todo list containing 3 todos

Reverse Engineering and Testing of Rich Internet Applications

114

This interface correctly verifies the assertion listed above.

Then we have produced a faulted version of the application, by injecting a fault that

disables the code responsible for the insertion of the submitted todos, and we have

executed the same test cases on this version. In this case, the user interface shown in

Figure 6.7 was obtained, which does not satisfy the assertion, so that the fault was

correctly detected.

Figure 6.7: An example of interface showing an empty todo list

6.5.3 Regression Testing Process

The last example regards a Regression Testing process that was executed with the support

of the software tools reported in Figure 6.8.

Figure 6.8: An architecture supporting the Regression Testing process

While the CrawlRIA and the CReRIA tools are always used to collect execution traces, the

TestRIA tool is now used to generate test cases from the collected execution traces, to

automatically generate assertions, to replay the generated test cases on a changed version

of the RIA and to produce a report of the detected regressions on the basis of the violated

assertions. The assertions in this case were defined to check the equivalence (with respect

to a given user interface equivalence criterion) between the homologous interfaces

Reverse Engineering and Testing of Rich Internet Applications

115

obtained by executing the same test case on the two different versions of the RIA. The

unique intervention of the Tester in the Test Case generation activity consisted of the

selection of the heuristic clustering criterion by means of which the equivalence between

the interfaces can be assessed. The TestRIA tool is able to evaluate four different

equivalence criteria that are described in [2, 4, 5].

As an example of detectable fault, we have considered a scenario consisting in the deletion

of all the todos from a todo list. In the changed version of the RIA we inserted a change

causing the todos not to be actually deleted.

The C3 clustering criterion presented in [2] was adopted to define the assertions. The

criterion is defined as follows:

Two client interfaces I1 and I2 are equivalent if the same active widgets of I1 that are

visible and enabled are also included in I2 and vice versa, and they have the same un-

indexed path.

Our tests revealed that this criterion was effective in the distinction between the expected

interface (that was similar to the one shown in Figure 6.7) and the interface obtained by

replaying test cases exercising the deletion scenario in the faulted version of the RIA. In

fact, the latter interface contained a non empty list (that was similar to the interface shown

in Figure 6.6), that the assertion did not consider equivalent to the expected one.

6.6 Conclusions

Due to the wide diffusion of Rich Internet Applications recorded in the last years, the need

for effective and efficient processes, techniques and tools for testing them and assuring

their quality has been recorded too. In this chapter we have proposed a classification that

distinguishes between RIA testing techniques for finding faults having no effects on the

RIA user interface and techniques that are suitable for finding faults with user visible

effects. Possible solutions to the problems of generating test cases, defining testing

oracles, and automatically evaluating the results of test case executions have been

analysed for both types of testing techniques. Moreover, two general testing processes

Reverse Engineering and Testing of Rich Internet Applications

116

have been proposed for Ajax applications, where the former is suitable for finding

execution crashes, while the latter can be used for finding faults that produce effects

visible on the User Interface. Some possible instantiations of these processes that are

based on already existing tools for Ajax testing automation have been also discussed in the

chapter.

The presented processes are able to discover automatically or semi-automatically different

failures in RIA applications. However, further work is needed for extending these

processes and the supporting tools in order to address other types of RIA failures.

Moreover, empirical studies should be carried out for assessing systematically the fault

detection capability and the scalability of these approaches.

Future work will address both this issue and the problem of comparing the proposed

approaches with other approaches already proposed in the literature.

Reverse Engineering and Testing of Rich Internet Applications

117

Chapter 7
8

COMPREHENDING AJAX WEB APPLICATIONS BY THE

DYNARIA TOOL

Thanks to Rich Internet Applications (RIAs) with their enhanced interactivity,

responsiveness and dynamicity, the user experience in the Web 2.0 is becoming more and

more appealing and user-friendly. The dynamic nature of RIAs and the heterogeneous

technologies, frameworks, communication models used for implementing them negatively

affect their analysability and understandability. Consequently, specific software

techniques and tools are needed for supporting RIA comprehension. In this chapter we

present DynaRIA, a tool for the comprehension of RIAs implemented in Ajax that is based

on dynamic analysis. It provides functionalities for recording and analysing user sessions

from several perspectives, and for producing various types of abstractions and

visualizations about the run-time behaviour of the application. In order to evaluate this

tool, four case studies involving different comprehension tasks of Ajax applications have

been executed. The experimental results showed the usefulness and effectiveness of the

tool that provided a valid support for Ajax comprehension in reverse engineering,

debugging, testing and quality assessment contexts.

7.1 Introduction

As written in previous chapters Ajax Web applications exploit a combination of Web

8
 This chapter was published in the Proceedings of the 7th International Conference on the Quality of Information and Communications Technology

(QUATIC 2010) and was partially published in the Proceedings of the 18th International Conference on Program Comprehension (ICPC 2010).

Reverse Engineering and Testing of Rich Internet Applications

118

technologies for obtaining a richer interaction of the user with the application. The user

interface of an Ajax application is implemented by one or more Web pages that are

composed by individual components, which can be updated, deleted or added at run time

independently. The manipulation of the page components is performed by an Ajax engine

written in JavaScript (JS) that is loaded by the browser at the start of the session, accesses

the page components by the DOM interface [62] and is responsible for communicating

with the server on the user‘s behalf [17]. The execution of the engine‘s JavaScript

functions is driven by user events or other external events (such as server responses or

time-out events). Besides synchronous requests of data or elaborations, these functions are

also able to send asynchronous requests to the server side of the application that introduce

parallelism between the client and the server.

Using Ajax or similar development approaches the user interfaces of Web applications

become similar to the ones of desktop applications and provide the same type of user

experience. Unfortunately, while the new implementation techniques improve the usability

of these applications, there are several factors that negatively impact their internal quality

characteristics, such as the comprehensibility and analysability. As an example, RIAs have

an heterogeneous nature that make several types of code parsers necessary for their

analysis. Moreover, RIAs are dynamically configured systems (as an example, in Ajax

applications, JavaScript modules composing the engine can be requested to the server at

run-time, as well as new JavaScript functions can be dynamically generated), which make

static code analysis not sufficient to gain a deep understanding of the application.

Nowadays RIAs are being implemented using a wide variety of frameworks [108], which

accelerate development, but lead to opaque application behaviour and make the analysis of

generated code and of the interaction among its parts more complicated.

These factors produce a general worsening in the maintainability and testability of RIAs

and raise the costs of developing and assuring their quality. As a consequence, there is a

great need for effective techniques and tools supporting the efficient execution of analysis

tasks involving RIAs. Several open-source and commercial tools offering specific

Reverse Engineering and Testing of Rich Internet Applications

119

functionalities of Ajax analysis are now available. Most of them have been designed to

support Ajax development and provide functionalities of JavaScript debugging, DOM

inspection and network monitoring. Some other ones perform dynamic analysis of the

application and record several relevant aspects of a session, such as network requests,

JavaScript source code and DOM events. However, the features of these tools have not

been designed to support comprehension processes explicitly.

In this chapter we present DynaRIA, already introduced in chapter 5. DynaRIA is a tool

for the comprehension of Ajax applications that has been designed to support analysis

tasks to be executed in different contexts, such as maintenance, quality assessment, reverse

engineering and testing. DynaRIA is based on dynamic analysis and provides

functionalities for recording and replaying user sessions, for analysing them from several

different perspectives, and for producing several types of abstractions and visualizations

about the run-time behaviour of the application. DynaRIA has been implemented in Java

using the NetBeans IDE and open source technologies. In order to evaluate this

environment, we performed four case studies, where some tasks that were representative

of typical comprehension, debugging, quality assessment, and testing activities were

executed with the support of the tool. The case studies involved two real Ajax applications

and their results showed the actual utility of the tool in supporting the considered types of

activity.

7.2 Related Works and Tools for the comprehension of Ajax

In the last years, several approaches for Ajax analysis have been proposed in the literature,

both in reverse engineering and testing contexts.

A first proposal is due to Mesbah et al. [58], who presented a technique for crawling Ajax

applications through dynamic analysis and obtaining a ‗state-flow graph‘ modelling the

various navigation paths and states within the applications. This technique was initially

proposed for generating a multi-page static version of the original Ajax application that

could be used to expose it to general search engine. Later, the same technique has been

used to support an invariant-based automatic testing technique of Ajax user interfaces

Reverse Engineering and Testing of Rich Internet Applications

120

[83]. Duda et al. proposed in [91] another technique for crawling Ajax applications using

hash values of the state content for discovering similar states of the user interface.

In previous chapters we have addressed the problem of obtaining a model of the behaviour

of an Ajax application user interface by reverse engineering [1, 2], proposing a technique

based on dynamic analysis that exploits some user interface and transition equivalence

criteria for abstracting a Finite State Machine (FSM) from user session data. The

technique is supported by CReRIA, a tool for the automatic collection and analysis of user

sessions. Further techniques for analysing Ajax applications have been proposed to

support the execution of testing processes. Marchetto et al. [56, 72] proposed two

approaches for testing Ajax applications that exploit a partially automated technique to

recover a state graph of the application by analysing its execution.

Due to the growing diffusion of Ajax applications in the last years, several tools

supporting their development and run-time analysis have been proposed: most of them are

JavaScript debuggers, Ajax profilers, and tools for automated testing. In the following, an

overview of the characteristics of some of them is reported. Firebug is a very popular tool

for Ajax analysis [109, 110] that is distributed as a Firefox add-on to be executed inside

the Mozilla browser. Firebug offers facilities for inspecting and editing Web pages, and

highlighting the changes of its nodes at run-time.

It provides a console for editing and executing new JS code, and a JS debugger. Moreover,

Firebug offers a useful monitor of the network activity that tracks the progress of both

synchronous and asynchronous requests (by the XMLHttpRequest channel) to the server,

and a profiler of the JS function executions, reporting for each function the calls it made,

minimum, maximum, and average execution time. The Ajax Toolkit Framework ATF

[111] has similar features to the ones of Firebug, but it is distributed as a plug-in for the

Eclipse IDE.

Besides the functionalities of DOM and CSS inspecting, network monitoring, and JS

debugging already proposed by Firebug, ATF has the additional characteristic of offering

an integrated Mozilla browser and a framework on which adopters can build advanced and

Reverse Engineering and Testing of Rich Internet Applications

121

technology specific tools.

As to the category of debuggers, an example is given by Venkman [112], the Mozilla‘s

JavaScript debugger.

It offers traditional debugging functionalities (such as breakpoint management, call stack

inspection, and variable/object inspection) besides an interactive console that also allows

the execution of arbitrary JavaScript code.

Another category of tools is that of profilers, such as the Dynatrace AJAX Edition [113]

tool for Internet Explorer.

This tool analyses, records and saves several aspects of a session, such as network

requests, JavaScript executions, all DOM events, etc., and provides graphical views of the

performance of the application (such as page loading time, network request time, amount

of resources used, types of resources used, JavaScript execution time, and rendering time).

Other tools support automated testing of Ajax: an example is provided by the Selenium

testing framework [90] that was originally designed for capturing and replaying user

interactions with traditional Web applications. Recently, Selenium has added specific

constructs (such as the waitForText, waitForCondition, etc.) that can be used for correctly

replaying the interactions with Ajax applications that exploit asynchronous messaging

between client and server.

We observed that most of the analysed tools provided either very detailed views on

separate aspects of an RIA (such as its HTML, JS code, or network traffic in specific

moments of the execution), or high level views about just the performance of the Ajax

application.

None of these tools included the most typical extraction, analysis, cross-referencing, and

presentation features that support top-down, bottom-up, or opportunistic software

comprehension approaches [114].

As an example, no tool provided abstraction mechanisms for obtaining views documenting

the structure, the behaviour, or the run-time interactions between the Ajax application

components, such as UML structural or behavioural diagrams.

Reverse Engineering and Testing of Rich Internet Applications

122

 Table 7.1 summarizes the most relevant features of Ajax analysis offered by the tools we

analysed and by the DynaRIA tool. The features include: JS debugging, DOM change

inspecting, network monitoring, user session tracing, user session replaying, performance

analysis, code coverage and UML diagrams abstraction.

In the following, we present the DynaRIA tool whose features were specifically designed

for supporting the comprehension of Ajax applications.

7.3 The DynaRIA Tool

As reported by Storey in her review on program comprehension theories, tools and

methods [114], tools for program comprehension usually include three categories of

features: extraction, analysis and presentation. Extraction tools include parsers and data

gathering tools to collect both static and dynamic data. Analysis tools support activities

such as clustering, concept assignment, feature identification, slicing, or similar ones.

Presentation tools include code editors, browsers, hypertext viewers, and visualizations.

The set of features included in software comprehension and reverse engineering

environments usually depends on the purposes of these tools, which may vary from aiding

top-down or bottom-up comprehension processes, to supporting reverse engineering,

maintenance, or testing activities.

Table 7.1: Ajax Analysis Features offered by the

considered tools

F
ir

e
b

u
g

A
ja

x
 T

o
o
lk

it

F
r
a
m

e
w

o
r
k

V
e
n

k
m

a
n

D
y

n
a
T

ra
ce

S
e
le

n
iu

m

D
y

n
a

R
IA

JS debugging Y Y Y N N P

DOM change inspecting Y Y N N N Y

Network Monitor Y Y N Y N Y

User Session Tracing N N N Y Y Y

User Session Replaying N N N N Y Y

Performance Analysis Y N P Y N P

Code Coverage N N N N N Y

UML diagrams abstraction N N N N N Y

Reverse Engineering and Testing of Rich Internet Applications

123

The DynaRIA tool has the purpose of supporting comprehension, quality assessment and

testing activities involving the client-side of Ajax applications. The tool‘s features and its

architecture are described in the following sub-section.

7.3.1 DynaRIA’s program comprehension features

 The DynaRIA tool provides the following extraction, analysis and visualization features.

As to the extraction, it gathers dynamic data from the run time behaviour of an Ajax

application. To this aim, the tool provides an integrated Web browser where a user can

interact with a Web application while all relevant data about this user session are captured

and stored. Collected data include: the sequence of user events fired on DOM objects of

the user interface, the JavaScript functions that are activated by user event handlers, the

executed lines of code of JS functions, exceptions and errors occurred at run time. At the

same time, the tool keep tracks of the changes (such as add, delete, or change) on DOM

objects resulting from a given event management, analyses the network traffic, and

monitors message exchanges between client and server.

The class diagram in Figure 7.1 shows the conceptual model of collected data.

The tool provides some session analysis functions that have been designed to support code

artifact discovery, or to display relevant attributes of the retrieved items. As an example

the tool analyses the run-time behaviour and provides the sequence of events that were

Figure 7.1: The Conceptual Model of collected data

User Session

+Starting HTTP Request

User
event

+Type

Dom
Object

+XPath

Dom
Change

+Type

Executed
LOC

+Text

Exception

+Message

Server
Response

+Status

1..*
+Next

+Previous

0..1

0..1

1

0..*

JS Function
Execution

+Function name
+File name

1..*0..*

Call >

1

0..* 1

0..*

+Event Handler

1

1

Raise>

0..*

1

1

0..*

0..1

0..1

Server Call

+Asynchronous
+HTTP Request

0..*

1

10..1

Attribute

+Name
+Value

0..*1

1

0..1

Reverse Engineering and Testing of Rich Internet Applications

124

fired, the associated JS function call-tree, the set and number of executed JS functions

(distinguishing among application‘s functions, functions from development frameworks,

and dynamically generated ones), the set of server requests made by a JS function and

server callbacks, the set of DOM changes it made and summary data and metrics about JS

function executions (such as minimum, maximum, and average execution time, # of server

requests it made, percentage of executed lines of code, etc). Moreover, the tool is able to

abstract an Event-flow-graph [47] that reports the flow of events fired along a user session

and UML sequence diagrams at various levels of detail and abstraction from each user

session or from its parts. The high-level sequence diagrams show the observed interactions

among three layers of the application, e.g., the browser, the Ajax engine, and the server

side. The low-level sequence diagrams report the observed interactions between the Web

browser, the single JavaScript modules making up the Ajax engine, and the server side.

The DynaRIA tool provides functions for exporting the abstracted diagram in XML

format.

Finally, the tool provides several features of software visualization. Multiple views are

offered both at the session level and at the JS function level, and cross-referencing

functions are provided for switching between views. At the session level, the tool provides

both UML sequence diagram visualizations and Event-flow-graph visualizations. At the JS

function level, views reporting details about JS function code, JS executed lines of code,

JS call tree, DOM changes, network traffic and exceptions are provided. A view on the

DOM before and after the management of a given event is also offered by the tool. In next

sections some examples of these views and of the cross-reference mechanisms are

reported.

7.3.2 DynaRIA’s Testing features

As to the testing activity support, the DynaRIA tool provides functionalities for recording

user sessions and replaying them automatically. Capture and Replay tools, such as the

Selenium IDE, or similar ones, already provide this type of functionality; however the

DynaRIA tool offers additional features for test suite error detection and coverage

Reverse Engineering and Testing of Rich Internet Applications

125

evaluation. Indeed, during user session replay, the tool traces the JS code execution, keeps

track of performed network traffic and detects any JS error or network warning occurred at

run-time.

Moreover, with respect to a replayed user session, the tool computes several code

coverage metrics such as the percentage of executed JS functions with respect to the

defined JS functions and the percentage of executed JS function LOC with respect to the

defined JS function LOC. These coverage metrics can be used for evaluating the

effectiveness of test suites obtained from user sessions.

7.3.3 DynaRIA’s quality assessment features

The dynamic analysis performed by the DynaRIA tool provides insights into the internals

of an Ajax application that can be used for expressing a judgment about the application‘s

internal quality too. As an example, the DynaRIA tool is able to compute some complexity

and coupling metrics about the JS code that is contained either in HTML pages or in js

files of the application (hereafter, JS modules).

These metrics are all computed by the tool based on the data that are retrieved with respect

to a given set of executions of the application. The complexity metrics include:

 # JavaScript modules making up the Ajax engine;

 JavaScript module size (in LOC);

 JavaScript module size (in # JS function);

 JavaScript function size (in LOC).

 As to the coupling between modules, the following metrics can be evaluated:

 Fan-in of a JS module (that is the number of distinct calls to JS functions of the

subject module);

 Fan-out of a JS module (that is the number of distinct calls to external JS functions

made by functions of the subject module);

 Call Coupling between JS modules (that is given by the number of distinct calls to

JS functions made by functions of the first module to the second module

functions);

Reverse Engineering and Testing of Rich Internet Applications

126

 Server Coupling of a module (that is given by the number of distinct HTTP requests

to the server that are made by a given module);

 DOM coupling (that is the number of distinct DOM change instructions that are

executed by a given JS module).

These metrics can be used for assessing several quality aspects of the RIA, such as its

maintainability or testability. As an example, in a maintenance process the complexity

metrics can be used to detect the modules whose changes potentially require greater effort

(due to their size or coupling to other modules of the application). Analogously, in a

testing process, the Server Coupling metric may be exploited for counting the number of

different server stubs that at least must be developed for the unit testing of that module;

hence it provides a testability indicator for that module.

7.3.4 The architecture of the DynaRIA tool

The DynaRIA tool has been developed using Java technologies. The architecture of the

tool includes six main packages and eighteen sub-packages that are illustrated by the UML

package diagram reported in Figure 7.2.

Figure 7.2 The DynaRIA tool Architecture

In particular, the DynaRIA GUI package implements the graphical user interface of the

tool and has been developed using the Java SWT libraries [64]. It offers an embedded

Mozilla Web Browser, a ‗Session Manager‘ GUI for recording user sessions and analysing

or replaying them, and a ‗Session Monitor‘ window providing views on session‘s events,

executed JavaScript code, DOM changes, Client-Server communication details, etc..

dynaRIA

DynaRIA
Abstractor

DynaRIA Trace ManagerDynaRIA GUI

DynaRIA EngineDynaRIA Observer
Java

XPCom

User Event Monitor

Javascript Debugger

Network Monitor

DOM Changes Monitor

User Event Controller

Javascript Controller

Network Monitor Controller

DOM Changes Controller

Session Controller

DynaRIA
Semaphore

Sequence
Diagram Builder

Event Flow Graph
Builder

Coverage
Evaluator

DynaRIA Trace
Executor

DynaRIA Trace
Recorder

Web Browser Session Monitor
GUI

Session
Manager GUI

Event Flow
Graph

<<artifact>>

Coverage
Reports

<<artifact>>

Sequence
Diagram

<<artifact>>

Recorded
Traces

<<artifact>>

Dynaria Sequence
Diagram Viewer

SWT

Reverse Engineering and Testing of Rich Internet Applications

127

The DynaRIA Observer package is responsible for capturing all run-time data such as user

events triggered on the interface, the JavaScript code loaded and executed at runtime,

DOM changes, and the Client-Server message exchanges. This package has been

developed using the APIs of the JavaXPCOM library [66].

The DynaRIA Engine package is the core component of the tool that implements all the

business logic of the application and coordinates the execution of all the other tool‘s

packages.

The DynaRIA Abstractor package is responsible for performing the abstraction functions

regarding the Web application run-time. The output of these functions is stored in XML

files (representing the sequence diagrams), DOT files (providing the EFG graphs in the

dotty software format [74]) and text files reporting summary data about the overall Web

application execution. Figure 7.2 also reports the DynaRIA Sequence Diagram Viewer

tool that is responsible for visualizing the sequence diagrams produced by DynaRIA. This

tool has been developed in Visual Basic .NET 2008, and using the Windows Presentation

Foundation (WPF) library.

7.4 Case studies

Program comprehension tools are often evaluated by researchers using case studies and

evaluation frameworks [114]. The aim of case studies is to evaluate the performance of the

tools in a realistic software comprehension scenario, while evaluation frameworks define

comprehension tasks that can be used for comparing them [115]. An example of

evaluation framework is provided by Pacione et al. [116] who defined a set of both general

and specific comprehension tasks for comparing the performance of software visualization

tools. This framework has recently been used by Cornelissen et al. to derive some

representative tasks for a quantitative evaluation of a tool for the visualization of large

execution traces [117].

For evaluating our tool we carried out four case studies, involving two different RIAs

where some tasks that were representative of typical analysis activities were executed with

Reverse Engineering and Testing of Rich Internet Applications

128

the support of the tool.

The first case study focused on a ‗feature comprehension‘ activity, the second one

explored an ‗error detection activity‘ in a testing and debugging context, the third one

dealt with a ‗testing evaluation activity‘, and the latter one focused on a ‗quality

assessment activity‘.

7.4.1 First Case Study

In this first case study, we selected a functionality offered by the AjaxFilmDB application

available from [68] and considered a comprehension activity whose goal was to

understand how the functionality is implemented.

The subject application provides registered users with functionalities for the management

of a personal movie archive (including the visualisation of a movie description, the

insertion, modification, deletion of a movie, and the search for movies in the archive), the

management of movie loans, and so on. The selected functionality consisted in adding a

new movie to the personal archive of a registered user of the application.

The comprehension activity was assigned to one of the authors (hereafter, the software

engineer) who was a familiar user of the application, but had no knowledge about its

internals.

To accomplish this activity, the author used the DynaRIA tool for monitoring several

executions of the functionality (which corresponded both to the successful

accomplishment of the functionality, both to exceptional scenarios), and thanks to the

views and reports produced by the tool he was able to address with success the

comprehension tasks reported in Table 7.2.

Table 7.2: Comprehension Tasks in the first case study
Comprehension task descriptions (for the selected functionality)

T1.1 How do the high-level components of the application interact ?

T1.2 What low-level components of the application interact?

T1.3 How do the low-level components of the application interact?

T1.4 What low-level components exchange messages with the server

side of the application?

T1.5 What are the internal elaboration details of the considered

functionality?

The T1.1 task was solved using several high-level UML sequence diagrams reporting the

Reverse Engineering and Testing of Rich Internet Applications

129

interactions among the browser, the Ajax engine and the server side of the application in

both normal and exceptional execution scenarios of the functionality. An excerpt of the

diagram associated to the successful function execution is reported in Figure 7.3.

Figure 7.3: An excerpt of an high level UML sequence diagram for an AjaxFilmDB functionality

Using this diagram, the software engineer obtained a comprehension of the set of fired

user events, DOM changes produced by the Ajax engine, synchronous and asynchronous

requests to the server, as well as server responses. In particular, this execution involved 8

user events, 46 messages from the Ajax engine (including 42 messages representing DOM

change requests and 4 requests to the server), 4 server responses and 0 exceptions.

The tasks T1.2, T1.3, T1.4 were accomplished using low-level UML sequence diagrams.

An excerpt of one of them is shown in Figure 7.4.

Figure 7.4 An excerpt of a detailed UML sequence diagram for an AjaxFilmDB functionality

This diagram provides a more detailed view on the Ajax engine internals, where the

interacting objects above the lifelines represent the JS modules containing the executed JS

functions.

Reverse Engineering and Testing of Rich Internet Applications

130

Table 7.3 reports summary data about these interactions.

Table 7.3: Summary data about the traced execution
user events 8

JS modules 6

JS function calls 97

server requests 25

server responses 25

DOM change requests 42

exceptions 0

The T1.5 task required the comprehension of internal details of the elaboration. In an Ajax

application, the implementation of a functionality can be analysed from several distinct

perspectives, e.g., the one of the events that are fired on the UI and trigger the elaboration,

the one of the JS functions that carry out the elaboration, the perspective of the server that

provides data or elaboration by communicating with the client, and the perspective of the

User Interface where the effects of the elaboration are shown.

The software engineer analysed the execution of the selected Ajax functionality from these

four perspectives using the ‗Session Monitor‘ view offered by the tool. This view is

composed of several panels showing data and details that are relevant for each considered

perspective. An example of this view is reported in Figure 7.5.

Figure 7.5: The Session Monitor view provided by DynaRIA

The left side panel corresponds to the ‗fired event‘ analysis perspective and reports the

Reverse Engineering and Testing of Rich Internet Applications

131

sequence of fired events and, for each event, the actor who fired it, the name of the event,

and the DOM object on which the event was fired (by its tag and XPath).

Clicking on a given event, the central panel will report a view on the ‗JS function‘

perspective that includes: the call-tree of executed JS functions and details about each

function execution, such as Start, End, and execution times, and an indication about

network requests or DOM changes performed by the function. This last information is

represented by graphic icons reported in the ‗N‘ and ‗D‘ labelled columns of the panel.

Further details belonging to this same perspective are provided by two right side panels

showing a summary of script function details and the script function body (where

executed lines of code are highlighted with a different colour), respectively.

The third analysis perspective is about the ‗interactions with the server‘ and it is offered by

the lower central panel that shows network calls made by a selected JS function. The Error

Message panel finally shows details about occurred exceptions. Eventually, a given

elaboration can be analysed from the ‗User Interface‘ perspective that is offered by

another view of the tool (that is obtainable by selecting the ‗DOM changes‘ tab of the

central panel), which reports details about the DOM changes produced by a JS function

execution. As an example, Figure 7.6 depicts an instance of this view that includes three

distinct panels reporting details about added, deleted, or modified DOM nodes, while the

low right panel shows the rendering of one of the modified nodes that was selected in one

of these panels.

Figure 7.6: The DOM Changes panel of DynaRIA

In conclusion, all the considered comprehension tasks were accomplished thanks to the

Reverse Engineering and Testing of Rich Internet Applications

132

high-level views and the lower-level ones offered by the tool, and thanks to the

opportunity for a user of DynaRIA of navigating through different views. These views

provided useful insights about the implementation of the selected functionality.

Other Ajax dynamic analysers (like the DynaTrace Ajax edition tool presented in section

8.2) lack of high-level views produced by our tool, but often provide just low-level ones

that focus on the run-time performance of the application rather than on its implementation

details. Hence, we concluded that the features of the DynaRIA tool supported the

comprehension activity more effectively than other tools.

7.4.2 Second Case Study

In this case study, we analysed the support offered by DynaRIA in testing and debugging

contexts.

The goal of the considered activity was of finding exceptions of an application‘s

functionality execution and comprehending what JS components were responsible for

them. To this aim, one of the authors injected faults of different types in the JS code

implementing the functionality of ‗adding a movie to the user‘s archive‘ of the Ajax

FilmDB application, and asked another author for addressing the comprehension tasks

reported in Table 7.4.

Table 7.4: Comprehension Tasks in the second case study
Comprehension task descriptions (for the selected functionality)

T2.1 What run-time exceptions do occur during the functionality

execution?

T2.2 What JS functions (and lines of code) are responsible for run-time
exceptions?

The T2.1 task was completed with success thanks to the functionality provided by the tool

of detecting JS exceptions at run-time. In particular, the types of JS exception that are

detectable by the DynaRIA tool include the ones caused by references to not defined

objects/methods/attributes, JS function call instructions with undefined, incorrect, or

missing parameters, JS syntax errors, array out of bound errors, server requests of missing

resources or JS Files. The T2.2 task was solved by the tool‘s feature of detecting the

Reverse Engineering and Testing of Rich Internet Applications

133

components that are involved in the exceptional execution. In particular, the ‗Session

Monitor‘ view reports in different panels: the event that triggers an exceptional execution,

the sequence of called JS functions, the JS function and its line of code that caused the

exception, the type of the exception, and the corresponding message error.

As an example, one of the exceptions that was detected in this case study was due to a

‗check‘ script function that is executed during the handling of the ‗click-_3‘ user event.

As the ‗Session Monitor‘ view in Figure 7.7 reports, the occurrence of this exception is

signalled in its central panel by the highlighted colour of the ‗check‘ function row.

Figure 7.7: The Session Monitor View showing the exception caused by the ‘check’ script function

executed during the handling of the ‘click-_3’ user event

Figure 7.8 reports the error messages panel showing details about this exception, while

Figure 7.9 shows the body of the „check‟ function, and the faulty line of code.

Figure 7.8: The Error message panel showing the

detected exception

Figure 7.9: An excerpt of the

‘check’ function body causing

the exception

The right side of Figure 7.7 depicts user interface screenshots of the analysed Ajax

Reverse Engineering and Testing of Rich Internet Applications

134

application at the start and the end of the executed event sequence, respectively. This view

can be used to visually track the user interface evolution and it may show the effects of the

occurred exception.

In conclusion, thanks to the tool, the software engineer was able to find the exceptional

executions and to locate their causes in the JS code effectively. Moreover, the tool

provided such a detailed knowledge about the exception leading elaboration that it could

be used to support debugging activities. Debugging tools such as Firebug or Venkman are

able to signal the instruction leading to the exception and its call stack, whereas DynaRIA

reports the complete elaboration sequence triggered by the user event too.

7.4.3 Third Case Study

In this case study we explored the contribution of DynaRIA in a testing context. In

particular, we considered the problem of assessing the effectiveness of test suites by

evaluating their code coverage and fault detection capability.

We considered a user-session based testing technique proposed in the 5
th

 chapter [5] and

decided to use it for testing an open source Ajax application called ‗Tudu‘ [118] that offers

„todo‟ list management facilities (such as adding, deleting, searching for todos, organizing

lists of todos, and so on). This technique is based on the sequential tasks reported in Table

7.5. One of the authors executed these tasks with the support of the DynaRIA tool.

Table 7.5: Tasks in the Third case study
Testing task descriptions

T3.1 Generation of a test suite from user sessions

T3.2 Test suite coverage assessment

T3.3 Generation of several application faulty versions by fault injection

T3.4 Replay of test suites on the faulty versions of the application

T3.5 Test suite fault detection capability assessment.

As to the T3.1 task, the software engineer recorded 21 user sessions by the tool, triggering

518 events and navigating 539 interfaces. The corresponding test suite TS consisted of 21

test cases. To accomplish the T3.2 task, the test suite‘s code coverage was automatically

computed by the tool and consisted of 172/1018 (16.9%) (distinct JS functions that were

executed / distinct JS functions that were defined in the JS code).

Reverse Engineering and Testing of Rich Internet Applications

135

This small coverage of JS functions could be explained because the Tudu application

largely includes library functions from frameworks, but just a little part of these library

functions are actually used by it. As to the coverage of function LOC, the value of

1016/6150 (16.5%) was obtained.

The T3.3 task was executed manually by another author who injected 19 faults and

obtained 19 faulty versions of Tudu, each one containing just one fault. Table 7.6 shows a

summary of the typologies of the injected faults. The faults were all able to generate

exceptions possibly detectable by the DynaRIA tool.

Table 7.6: Summary data about the injected faults
Fault Type Number of

injected faults

References to not defined objects/ methods/ attributes 7

JS function call instructions with undefined, incorrect,

or missing parameters

5

JS syntax errors 2

Array out of bound errors 2

Server requests of missing resources or JS files. 3

The T3.4 task was automatically performed by our tool, and the fault detection capability

(T3.5 task) was found to be 100%. Thanks to this case study, we assessed that the tool

provides a valid aid for client-side automated testing of Ajax applications. It offered the

same functionality of other Capture and Replay tool for Web applications, such as

Selenium [90], but also the additional features of code coverage computation.

7.4.4 Fourth Case Study

In this case study we analysed the contribution of the DynaRIA tool in carrying out tasks

of internal quality assessment of an Ajax application‘s JS code. To this aim, we considered

the ‗Tudu‘ Ajax application and used the complexity and coupling metrics computed by

the tool as possible indicators of its internal quality.

One of the authors exercised the application through the DynaRIA‘s browser and executed

a user task that included the following sequence of actions: User registration- Login-

Adding a todo list- Adding a todo- Logout. By means of the tool, the set of JS modules,

which had been loaded at run-time, was obtained.

Reverse Engineering and Testing of Rich Internet Applications

136

The modules were characterized with respect to their complexity and coupling levels:

indeed, the tool computed the size (in LOC and number of JS functions) of the involved

JavaScript modules, as well as their Fan-in, Fan-out, and Coupling values.

The values of some of these metrics are reported in Table 7.7.

Table 7.7: Some complexity and coupling metrics

about the Tudu application
Module # JS

func.

LOC Fan-

in

Fan-

out

Serv.

Requ.

DOM

Changes

logout.action 2 2 1 1 0 0

scriptaculous.js 395 2693 27 15 5 0

util.js 65 1321 17 28 4 140

showTodos.acti

on

54 338 17 17 1 3

todos.js 45 90 4 6 0 0

welcome.action 2 2 1 1 0 0

register.action 3 3 2 2 0 0

scriptaculous/
effects.js

143 1134 21 12 0 0

engine.js 62 908 21 25 5 0

tabs.js 9 92 5 8 0 3

Todo_lists.js 35 70 1 2 0 0

prototype.js 328 1961 34 34 0 0

The data in the Table indicate that the ‗scriptaculous.js‘ and ‗prototype.js‘ modules are the

most complex ones (due to their size in LOC and # JS functions) and are characterized by

the higher Fan-in values. Moreover, the ‗scriptaculous.js‘ and ‗engine.js‘ modules are the

mostly coupled to the server modules (they make 5 Http requests), while prototype.js does

not make any request to the server, or DOM changes. Eventually, the ‗util.js‘ module is

the one making the most changes to the DOM of the application. These metrics provide a

useful starting point for making hypotheses about the quality of the modules involved in

given executions of the applications, such as their maintainability or testability.

Of course, the data reported in the Table do not definitely characterize the size and

complexity of the modules, but are just valid with respect to the considered execution of

the application and they will change each time the application is exercised in a different

way. However, when dealing with Ajax applications whose source code can be

dynamically loaded at run-time, this one is the only feasible approach for obtaining the

code of the application and analysing it. In this perspective, the DynaRIA tool provides a

valid support to the activity of source code quality assessment, too.

Reverse Engineering and Testing of Rich Internet Applications

137

7.5 Conclusions

Program comprehension tools based on dynamic analysis provide a formidable support for

the analysis of software systems with an event-based and dynamic nature. Several works

presented in the literature have shown the utility of these tools for the comprehension and

analysis of Java, C++, desktop, Web-based applications, and so on, and [117] reports a

comprehensive survey of papers tackling this topic. We believe that this type of tools will

receive greater interest in the software engineering community thanks to the growing

diffusion and request for Rich Internet Applications not only designed for PC platforms,

but also for mobile devices, such as PDAs or smartphones. In This chapter we presented

the DynaRIA tool that provides a user-friendly environment for analysing the dynamic

behaviour of Rich Internet applications implemented in Ajax. The features of this tool

have been designed to address the analysability issues that are typical of Ajax applications,

such as their heterogeneous nature and the dynamically built configuration of the source

code. In the chapter some case studies showed how this tool can be used to carry out

program comprehension, testing, debugging and quality assessment activities. The

considered activities, which are typical of RIA life-cycle processes, were accomplished

with success thanks to the tool. However, further experiments are necessary for evaluating

the actual cognitive support provided by the tool and for comparing it against other

analysis tools by empirical studies [119]. These topics will be addressed by future work. In

future work we also plan to improve the analysis and visualization features offered by the

tool by means of techniques for detecting recurrent interaction patterns in the

reconstructed sequence diagrams, and techniques for the horizontal and vertical

compression of the diagrams. In addition, we aim to extend the analysis techniques of

DynaRIA for abstracting architectural diagrams of an RIA by integrating static and

dynamic data, and to improve its error detection capability by considering further types of

run-time exceptions (such as errors due to the violation of specific invariant conditions).

Reverse Engineering and Testing of Rich Internet Applications

138

Chapter 8
9

USING DYNAMIC ANALYSIS FOR GENERATING USER

DOCUMENTATION FOR WEB 2.0 APPLICATIONS

The relevance of end user documentation for improving usability, learnability and

operability of software applications is well known. However, software processes often

devote little effort to the production of end user documentation due to budget and time

constraints, or leave it not up-to-date as new versions of the application are produced. In

particular, in the field of Web applications, due to their quick release time and the rapid

evolution, end user documentation is often lacking, or it is incomplete and of poor quality.

In this chapter a semi-automatic approach for user documentation generation of Web 2.0

applications is presented. The approach exploits dynamic analysis techniques for capturing

the user visible behaviour of a web application and, hence, producing end user

documentation compliant with known standards and guidelines for software user

documentation. A suite of tools support the approach by providing facilities for collecting

user session traces associated with use case scenarios offered by the Web application, for

abstracting a Navigation Graph of the application, and for generating tutorials and

procedure descriptions. The obtained documentation is provided in textual and

hypertextual formats. In order to show the feasibility and usefulness of the approach, an

example of generating the user documentation for an existing Web application is presented

in the chapter.

9
 This chapter was published in the Proceedings of the 13th International Symposium on Web Systems Evolution (WSE 2011).

Reverse Engineering and Testing of Rich Internet Applications

139

8.1 Introduction

According to the ISO/IEC 9126 Standard on Software Quality [126], software usability

depends on several sub-characteristics of software, such as its learnability, i.e. the

capability of the software product to enable the user to learn its application, and its

operability, i.e. the product capability to enable the user to operate and control it.

The relevance of end user documentation for improving learnability and operability of

software applications is well known [127]. Differently from technical software

documentation that is intended to software developers, testers or maintainers and describes

software from its internals, end user documentation shows how to use a software

application and may include user guides, reference guides, help files, tutorials and

walkthroughs which explain how to accomplish certain tasks. The IEEE Standard 1063 for

Software User Documentation [128] describes minimum requirements for the structure,

information content, and format of user documentation.

According to the IEEE 1063 Standard, user documentation should be complete and

describe all the critical use cases offered by the application, as well as all the associated

interaction scenarios. At the same time, documentation shall be accurate and reflect the

functions and results of the applicable software version. Moreover, the standard

recommends including explanations about all the known problems in using the software in

sufficient detail such that the users can either recover from the problems themselves or

clearly report the problem to technical support personnel. Moreover, reference mode

documentation shall include each error message with an identification of the problem,

probable cause, and corrective actions that the user should take. Eventually, the standard

provides possible structures and format of user documentation.

It can be deduced that obtaining complete, accurate, and effective user documentation is

not a trivial task. Real software development processes often devote little effort to the

production of end user documentation due to budget and time constraints, or leave it not

up-to-date as new versions of the application are produced. In particular, in the field of

Web applications, due to their quick release time and the rapid evolution, end user

Reverse Engineering and Testing of Rich Internet Applications

140

documentation is often lacking, or it is incomplete and of poor quality. Nowadays, due to

the fast and growing diffusion of the Web 2.0, this problem is particularly true with Rich

Internet Applications (RIAs). RIAs, indeed, with the enhanced dynamicity,

responsiveness, and interactivity of their user interfaces are more and more similar to

desktop applications, being able to offer more complex and richer functionalities [17]. As

a consequence, richer and accurate end user documentation is absolutely needed for RIAs

too. To save on time and costs for developing this documentation, end user documentation

tools that provide facilities to automate some or all of the often laborious tasks associated

with creating an application's documentation can be used. End user documentation tools

include screen casting software and authoring tools. Screen casting tools [129] are used to

record activities on the computer screen, mouse movement and are suitable for recording

demonstrations, remote technical assistance, sales presentations, and training. Authoring

tools are computer based systems that allow a general group (including non-programmers)

to create (i.e., author) content for intelligent tutoring systems.

Unfortunately, these tools are just able to record the workflow needed for accomplishing

given tasks (presenting the sequence of screens shown to users and the actions that must

be performed by users on these screens) and to transform it into procedure descriptions by

means of editing functions, but are not able to provide any other information about the

overall application behaviour. As an example, with respect to rich Web applications, these

tools have no facilities for generating site maps, navigational trees of the site, overview

descriptions, or any other information that vice-versa may be obtained by dynamic

analysis of the application. Reverse engineering techniques based on dynamic analysis of

RIAs have been recently proposed in the literature for obtaining a Finite State Machine

model of the user interface of the Web application [1, 2, 4]. These techniques have been

exploited in the context of comprehension [6, 8] and testing processes [5, 7], but the FSM

model they produce can be considered a suitable model for describing the navigation of

the application too.

In this chapter, we propose of using the reverse engineering techniques proposed in [4]

Reverse Engineering and Testing of Rich Internet Applications

141

with the aim of generating end-user documentation for RIAs. In particular, we present a

documentation process of RIAs that and is based on a reverse engineering process and a

tool that provide facilities for collecting user session traces associated with use case

scenarios offered by the Web application, for abstracting a Navigation Graph of the

application, and for generating tutorials and procedure descriptions. The obtained end user

documentation is provided in textual and hypertextual formats and is compliant with some

indications provided by the IEEE Standard for Software User Documentation [128].

8.2 Related Works and Tools for the software re-documentation

Software Documentation is a relevant part of a software product [130] but it is often

neglected in software development processes. Usually, software engineers operate under

the pressure of strict schedules and deadlines and do not devote much time to the

production of documentation. In these conditions, tools for the automatic generation of

technical documentation about the code, like JavaDoc [131] or Doxygen [132] that create

online documents by extracting text from specially formatted comments can be used, or

reverse engineering [133] techniques and tools can be exploited for post-generating

technical documentation after the development.

End user documentation is usually even more overlooked, being usually produced

manually or at least using some tool of user documentation generation based on screen-

casting or authoring techniques. As an example, Zhang et al. [134] propose SmartTutor an

environment for creating IDE-based interactive tutorials via editable replay. This tool is

proposed to support programmers in the task of learning software IDEs and its features are

similar to the ones offered by Jtutor [135], a tool designed to create and replay code-based

tutorials in Eclipse. Other similar solutions are provided by DocWizards [136], a follow-

me documentation wizard system in which the procedures are authored through

demonstration as well as by manual editing, and by EpiDocx [137], a commercial tool for

tutorial generation and maintenance of Windows-based applications.

However, all these tools just limit themselves to capture and record the procedures needed

Reverse Engineering and Testing of Rich Internet Applications

142

for accomplishing user tasks, but they are not able to do any data mining from the

observed application behaviour. As an example, they have no feature for automatic

classification of shown user interfaces (or user events) based on their similarity and for

associating them with a unique meaningful description, and have no feature for cross-

referencing similar interfaces or events belonging to different user tasks.

As to the field of traditional Web applications, while several reverse engineering

techniques and tools have been proposed for obtaining technical documentation about the

applications [22, 138, 139, 140, 141], no specific reverse engineering solution has been

defined for obtaining end-user documentation.

With respect to Web 2.0 applications, feasible solutions for obtaining Finite State Machine

based models of user interactions with rich internet applications have been proposed in the

literature [2, 56, 58]. At the moment, these models have been used for the aims of

comprehending the behaviour of a RIA from the user point of view [1], crawling the

application [24], or testing it [5, 72]. However, these models may provide a suitable

starting point for obtaining end user documentation of the Web application too.

8.3 End User Documentation of Web 2.0 Applications

Sommerville states that end user documentation should be prepared for different classes of

user and different levels of user expertise, and suggests five types of documents (or five

chapters) with different audience and levels of detail to be delivered with the software

system. These documents include: Functional descriptions of services provided,

Installation document, Introductory manual for getting started with the system, Reference

manual including details of all system facilities and System administrators guide [127].

Analogously, IEEE Standard 1063 for Software User Documentation [128] recommends

including both instructional mode (to learn about software) and reference mode

documentation (to refresh the user memory about it). Instructional mode documentation

should include procedures structured according to user‘s task, while Reference mode

documentation should be arranged to facilitate random access to individual units of

Reverse Engineering and Testing of Rich Internet Applications

143

information. The Standard also suggests ways of organizing chapters and topics to

facilitate learning.

According to these suggestions, we have decided to organize the end user documentation

of a Rich Internet Application in three main parts: 1) an Introductory manual for getting

started with the system, that provides an overall description of user tasks; 2) a Tutorial

showing detailed descriptions of single user tasks; 3) a Reference guide showing

explicative materials about screens shown to users and user actions to be performed

during task executions.

 In particular, the Introductory manual will be based on a Navigation Model showing how

the application allows its user to access all its functions. The Tutorial is vice-versa

composed of a set of more detailed views and descriptions about each user function

execution. There will be also traceability relationships between the various parts of the

documentation that will be implemented by means of hyper-textual files.

In the following we provide further details about the documentation items.

8.3.1 Introductory Manual

In traditional Web applications the navigation model is one of the most important aspects

of the application to be communicated to application users. This model is usually given by

a navigation graph with nodes representing Web pages and edges representing direct

transitions between Web pages. A navigation graph of static Web applications can be

obtained in a straightforward manner by means of spiders or link checkers, while

obtaining this graph for dynamic Web applications requires more sophisticated approaches

for dealing with the problem of page explosion and the request generation problem [141].

With respect to Rich Internet Applications that can be considered as a hybrid between a

Web application and a desktop application [17], obtaining a navigational model is even

more complicate. Indeed, the user interface of RIAs is not implemented by traditional Web

pages having different URIs and interconnected by hyperlinks, but it is usually associated

with a single Web page whose state changes depending both on events triggered on the

user interface of the application and on various types of external or asynchronous event.

Reverse Engineering and Testing of Rich Internet Applications

144

As a consequence, a suitable navigational model of the application is given by Finite State

Machines (FSMs) that represent the various states of the user interface and the transitions

between them.

 In particular, in the proposed Navigation Graph we assume that user interface states with

similar structure are represented as a single node, while edges between nodes represent

transitions due to user events that caused the user interface state to change. Moreover,

selected paths belonging to this graph

will show possible execution

scenarios of use cases offered by the

RIA.

Figure 8.1 reports an excerpt of

Navigation graph for an example

Web application. The graph shows

five nodes and nine edges associated

with transitions between user

interface states.

We propose the Introductory Manual of end user documentation of a RIA to include the

Navigation Graph and an index of all the user functions offered to various classes of actors

of the application. Moreover, each user function will be cross-referenced to the Navigation

Graph paths that describe the corresponding user interactions with the application,

representing both normal and exceptional execution scenarios.

To obtain this graph, the reverse engineering technique proposed in [4] will be used. The

technique is based on dynamic analysis of the application and is supported by the CreRIA

tool that exploits data collected from user sessions for abstracting this model. Further

details about the technique are provided in section 8.4.

8.3.2 Tutorial Documentation and Reference Guide

To show the procedures needed for accomplishing user tasks, the proposed end user

documentation will include a Tutorial section reporting operational descriptions of the

Figure 8.1: An example of Navigation Graph

corresponding to the Login and Registration use cases of

a Web Application

Reverse Engineering and Testing of Rich Internet Applications

145

scenarios of each use case offered by the Web application. The descriptions will be

grouped on the basis of the actors involved in the use cases. For each actor‘s use case, both

textual descriptions of the scenarios and the Navigation Graph paths associated with them

will be reported, as well as the sequence of screen shots shown by the application during

the scenarios execution will be illustrated. Screen shots will have labels reporting the

meaning of the corresponding state of the execution and there will be explanations of input

values and user events that need to be fired on the corresponding user interface.

As to the Reference Guide, it will be composed of detailed descriptions of all user

interactions and user interfaces encountered during the execution of user tasks.

8.4 The Documentation Generation Approach

 The documentation generation process that we propose in this chapter exploits both user

knowledge about the application, both information extracted and abstracted about the Web

application by reverse engineering. The process will be based on three main steps: 1)

Dynamic analysis of the Web application, 2) Navigation Graph Generation, 3) User

Documentation Generation. The proposed process is supported by a reverse engineering

tool and relies on a repository that stores both information obtained by reverse engineering

and data annotations provided

manually by the software engineer

during the generation process. The

process can be used to generate

new user documentation

incrementally, as well as to up-to-

date existing documentation as the

Web application evolves.

Figure 8.2 shows the proposed

process, while the process steps

are illustrated in the following.

Figure 8.2: The documentation generation process

Analyst

RIA

Dynamic

Analysis

RIA

Navigational

Model

Generation

User

Documentation

Generation

Introductory

Manual

Reference

GuideTutorials

FSMs

Collected Traces

Repository
Edited FSMs

Use Case

Scenarios

Navigation Graph

FSMs

Edited FSMs

Navigation Graph

Collected Traces

Analyst

RIA

Dynamic

Analysis

RIA

Navigational

Model

Generation

User

Documentation

Generation

Introductory

Manual

Reference

GuideTutorials

FSMs

Collected Traces

Repository
Edited FSMs

Use Case

Scenarios
AnalystAnalyst

RIA

Dynamic

Analysis

RIARIA

Navigational

Model

Generation

User

Documentation

Generation

Introductory

Manual

Introductory

Manual

Reference

Guide

Reference

GuideTutorialsTutorials

FSMs

Collected Traces

RepositoryRepository
Edited FSMs

Use Case

Scenarios

Use Case

Scenarios

Navigation Graph

FSMs

Edited FSMs

Navigation Graph

Collected Traces

Reverse Engineering and Testing of Rich Internet Applications

146

8.4.1 Web application Dynamic Analysis

The purpose of this activity is to record user sessions devoted to exercising the single use

cases offered by the Web application. The software engineer who is in charge of

generating the end user documentation will carry out this activity having the attention of

exercising all the use case scenarios of the application that will have to be included in the

user manual. This activity must be performed to reach two aims: a) obtaining user session

traces that will be transformed into walkthroughs showing how given user tasks can be

accomplished, and b) abstracting an FSM describing the behaviour of the User Interface

for each user session.

To record the execution traces and to obtain the corresponding FSMs, the RIA

comprehension process proposed in [4] can be used, which assumes that an FSM can be

obtained incrementally through the iterative steps of User Interaction, Extraction,

Abstraction and Concept Assignment. This process is supported by the CReRIA reverse

engineering tool and is illustrated in Figure 8.3.

Figure 8.3: The iterative comprehension process of a RIA

The process starts with the User Interaction step where the user interacts with the RIA and

fires an event on its current user interface: this interaction is performed in the controlled

navigation environment offered by the CReRIA tool that observes and registers all the

interactions and the needed information about them.

In the successive Extraction step, information about current interface, fired user event and

2. Extraction

3.Clustering

1. User

Interaction

4. Concept
Assignment

FSM Model

2. Extraction

3.Clustering

1. User

Interaction

4. Concept
Assignment

FSM Model

Reverse Engineering and Testing of Rich Internet Applications

147

user interface obtained after the event processing must be retrieved and persistently stored.

Hereafter, we call ‗Interface Instance‘ each user interface captured during the dynamic

analysis, and ‗Transition Instance‘ each transition recorded during the interaction.

Interface Instances and Transition Instances are captured and stored in the CReRIA tool

repository.

The Clustering step is performed using some heuristic clustering criteria that evaluate the

degree of similarity of the current user interface instance with the previously produced

ones, as well as the similarity among occurred transitions. Each criterion creates a

different clustering of similar interfaces and similar transitions. Hereafter we call

‗Interface Class‘ each clustering of similar interface instances, and ‗Transition Class‘ each

clustering of similar transition instances.

 The Concept Assignment is actually a comprehension [73] and validation step where the

software engineer has to validate the clustering proposed by the heuristic criteria and

accepts or refuses it. If an interface (transition) clustering is refused, he has to propose the

correct clustering of the interface instance

(transition). In this way, the expert

incrementally reconstructs a FSM modelling

the behaviour of the RIA GUI, since he either

associates the current interface with a new

interfaces class (and a new FSM state), or with

an already existing interface class (and FSM

state). Analogously, he associates the current

transition either with a new class of transitions,

or with an already existing one.

Figure 8.4 shows the conceptual model of the

information that is captured during the dynamic

analysis step and that is used to build the

Navigation Graph.

Figure 8.4: Information Model

Use Case

+Name
+Description

Scenario

+Name
+Description

Execution Trace

Interface Class

+Name
+Description

Interface Instance

+Screenshot

Transition Class

+Name
+Description

Transition Instance

1..*

1

1

1..*
1..*

Exception Scenario

Actor

+Name

Navigation Graph

+Node
1..*

+Edge1..*

1..*1..*

2..*

1..*

+Next

+Previous

0..1

0..1

Reverse Engineering and Testing of Rich Internet Applications

148

8.4.2 Generation of the Navigational Model

During this step, the single FSMs obtained by dynamic analysis are merged and

transformed into the Navigational Model of the Web application that will be included in

the Introductory Manual of the Web application. This step will be performed using the

CreRIA tool: indeed, the software engineer will have to select the set of traces that he

wants to include in the final user documentation and the tool will produce the overall

Navigation Graph. In this graph, each node will represent a user interface class and will be

labelled with the textual string provided to it in the Concept Assignment step.

Analogously, each edge will be associated with a transition between states and will be

labelled with the corresponding transition description.

The user will be able to edit this graph and associate each node or edge with additional

textual annotations, or to correct the labels, if he considers them incorrect due to wrong

past interpretations of Interfaces and Transitions.

At the end of this step, the navigation graph data will be stored in the tool repository.

8.4.3 End User Documentation Generation

This step will be devoted to the automatic generation of the end user documentation of the

application and will be carried out by the CReRIA tool using the data stored in its

repository. The documentation will include the Introductory Manual, the Tutorial Guide

and a Reference Guide and will be provided both in textual and in hypertextual format.

The hypertextual documentation can be seen as an interactive site map and can be

accessed both online (by publishing it on a Web server and linking it to the Web

application) and offline, as a downloaded hypertext on a client machine. The hypertextual

format provides links and shortcuts between the different pages in which the same items

are cited. As an example, Interfaces and Transitions in the Navigation graph are clickable

and the link reaches the page containing the detailed description of the Interface or of the

Transition.

Reverse Engineering and Testing of Rich Internet Applications

149

8.5 The CReRIA Tool

The CReRIA tool provides an integrated environment for dynamic analysis of Rich

Internet Applications implemented with Ajax-based technologies whose main

functionalities include:

 incorporating a Web browser (implemented with JavaXPCOM technology) for

navigating the Rich Internet Application;

 extracting and storing in a Mysql database the relevant information about traced user

sessions, such as user interfaces, events and transitions that occurred during the

navigation;

 capturing and storing the screen shots of the navigated interfaces;

 proposing clustering of interfaces and transitions according to heuristic clustering

criteria;

 supporting the Concept Assignment task on the basis of information collected or

abstracted in the previous steps of the process;

 supporting the interactive navigation and editing of the Navigational model

information, such as the collected scenario executions, screen shots and details of

collected Interfaces and Transitions;

 generating user documentation in textual (rtf) or hypertextual (html, css, and

JavaScript) format.

The original basic version of the CReRIA tool was born to exclusively support the FSM

abstraction from RIAs and provided the former five functionalities of the above list as we

have presented it in chapter 4.

A more recent version of the tool has been tailored for software re-documentation

processes and implements the latter two functionalities too.

Using this tool, several versions of the user documentation can be generated by selecting

different subsets of execution traces.

As an example, it is possible to generate the user documentation only for the subset of use

cases scenarios related to a given actor, or to generate documentation for a new release of

Reverse Engineering and Testing of Rich Internet Applications

150

the application by selecting only recently updated use cases and scenarios.

8.6 An Example

In this section an example of using the proposed document generation approach will be

described with the purpose to show the feasibility of the process and to present some

details about the RIA documentation that it produced.

 The involved application is an Ajax-based open source Web application called Tudu

[118], available at http://www.julien-dubois.com/tudu-lists and offering functionalities for

the management of lists of tasks (the so-called ‗todos‘) such as adding, deleting, searching

for todos, organizing lists of todos, and so on.

Tudu provides an exemplar Rich Internet Application that has been frequently used for

experimenting reverse engineering and testing techniques of RIAs [4, 5, 56, 72, 83].

Indeed, Tudu is a simple (but not trivial) RIA composed of about 10 KLOC, whose server

side is implemented with Java/JSP technology, while its client side includes typical ‗rich‘

pages that modify themselves at run-time on the basis of the user interaction with the

pages.

 As a consequence, for comprehending which are the user functionalities offered by Tudu

and how they can be replayed, static analysis of its server pages does not suffice, while

dynamic analysis must be carried out.

Moreover, the user documentation retrievable on the Tudu website is very poor.

Only a brief list of the 8 main use cases and 4 screen shots are reported in the Web page

http://www.julien-dubois.com/tudu-lists/user-documentation.

Instead, on the basis of our past knowledge about Tudu, we know that it offers a wider set

of use cases, including 23 use cases and 119 scenarios offered to three different actors, i.e.

a Generic User ―GU‖ (not yet logged in) (involved in 2 use cases), the Logged User ―LU‖

(with 16 use cases) and the Administrator ―A‖ (with 20 use cases, 16 of which are shared

with the Logged User).

Reverse Engineering and Testing of Rich Internet Applications

151

The overall list of use cases, involved actors and # of related scenarios is reported in Table

8.1.

In order to re-document the user functions provided

by Tudu, we followed the process proposed in the

chapter. In the first step of the process, one author

performed Dynamic Analysis of Tudu and collected

119 Execution Traces exactly, corresponding to the

known use case scenarios of the application.

These execution traces included 425 Interface

Instances and 306 Transition Instances.

During the dynamic analysis, the Concept

Assignment activity was performed and these

instances were grouped into 42 Interface classes and

138 Transition classes.

Figure 8.5 reports the screen shown by the CReRIA

tool during the execution of the clustering and

concept assignment steps, where the clustering

suggestions provided by tool can be accepted or

refused by the software engineer.

Figure 8.5: An Example of CReRIA GUI

during the execution of the

comprehension process

Table 8.1: Use Cases of Tudu Lists
Use Case Actor Scenarios #

User Login GU 5

Register a New User GU 12

Quick Add of a Todo LU & A 2

Advanced Add of a Todo LU & A 11

Manage Completed Todos LU & A 3

Filter Listed Todos LU & A 6

Edit a Todo LU & A 11

Delete a Todo LU & A 2

Backup LU & A 1

Restore LU & A 4

Order Listed Todos LU & A 3

Refresh LU & A 1

Add New Todo List LU & A 7

Open a Todo List LU & A 2

Edit a Todo List LU & A 5

Share a Todo List LU & A 6

Delete a Todo List LU & A 5

User Logout LU & A 2

Show User Info LU & A 16

User Monitoring A 6

Configuration A 4

Manage Users A 5

Dump Database A 1

Reverse Engineering and Testing of Rich Internet Applications

152

In this case, the clustering suggestions were accepted 420 out of 425 times for the

Interface Instances, and 278 out of 306 times for the Transition Instances. The overall

dynamic analysis activity was accomplished in about ten hours. At the end of this step,

119 FSM models associated with the execution traces were obtained and stored in the tool

repository.

In the second process step, the overall Navigation Graph of Tudu was generated by

merging the available FSMs. This task was performed using the features of CReRIA of

selecting the set of execution

traces, navigating them possibly

refining the concepts assigned

with the related FSMs states and

transitions, and finally adding

extra-information to be included

in the final documentation.

Figure 8.6 shows some snapshots

of the CReRIA tool during the

execution of the tasks of trace

selection, concept refinement,

and extra-information editing.

As the lower part of Figure 8.6

shows, to support the Concept

refinement task the CReRIA tool

allows a user to select a FSM

node and to get a view about the

original associated screens of the RIA, as well as to get further data captured during

dynamic analysis (see the right panel in the Figure).

Figure 8.6: Two examples of CReRIA GUI showing

Execution Traces selection (on the upper side) and concept

refinement (on the lower side)

Reverse Engineering and Testing of Rich Internet Applications

153

The Navigation Graph of Tudu obtained at the end of this second step is reported in Figure

8.7.

Figure 8.7: The overall Navigation Graph of Tudu

In the third step of the process, the final user documentation was obtained. In particular,

the overall Navigation Graph of Tudu was generated both in textual format and in

hypertextual one. In the hypertextual format, the Navigation graph was implemented by a

HTML clickable map that allows the reader to click on graph nodes and edges and to jump

to related pages describing additional details about each Interface and Transition.

As to the Tutorial Guide, it had to include separate descriptions of how each use case

scenario can be executed. Each scenario description comprised:

 An explicative text of the use case scenario;

 the list of Actors involved in that scenario;

Reverse Engineering and Testing of Rich Internet Applications

154

 the part of Navigation Graph comprehending only Interface nodes and Transitions

involved in the scenario;

 the sequence of Interface screen shots and the description of the user events needed

in order to replicate the scenario execution.

In the following, we show the part of Tutorial Guide documenting just a use case related to

the insertion of a new todo. In particular, we considered the use case labelled ―Advanced

Add‖ that allows a todo to be inserted by specifying several parameters of it (such as todo

description, priority, due date, assigned user, notes). The latter use case has 11 different

scenarios, 7 of which correspond to correct insertions of a todo (with different valid

combinations of input data) and 4 of which correspond to exceptional scenarios (due to

incorrect input data). Two different views of the Navigation Graph for the ―Advanced

Add‖ use case are reported in Figure 8.8. The view on the left is a typical graph

visualization, while in the right view graph nodes have been substituted by an interface

instance of the Interface Class. Both the views can be included in the textual and in the

hypertextual versions of the documentation (as a HTML map). The last one is a more

intuitive view that can be used to have an immediate exemplification of the real

appearance of the Interfaces shown by the application.

Figure 8.8: The Navigation Graph (in its classical view on the left, with

thumbnails on the right) for the Advanced Add use case

Reverse Engineering and Testing of Rich Internet Applications

155

Moreover, the Tutorial guide includes a walkthrough description of user tasks needed for

accomplishing each ―Advanced Add‖ scenario. Figure 8.9 shows the walkthrough

generated for the first scenario of

Advanced Add. This scenario

explains the procedure for

inserting a todo in a todo list by

specifying its parameters, and

reports a synthetic description of

the use case scenario, the sequence

of screen shots of the obtained

Interface Instances (labelled with

the names given to the

corresponding Interface classes)

and the description of the events

causing the Transitions between

the Interface Instances (with the

values set in the input fields). In

conclusion, the produced

documentation was more complete

and detailed with respect to the

one obtainable by using the most

part of user documentation

generation tools described in the

literature and commercially

available, such as SmartTutor

[134], DocWizards [136], JTutor

[135], EpiDocX [137], that

essentially produce only

Figure 8.9: The walkthrough description generated for a

scenario of the Advanced Add use case

Reverse Engineering and Testing of Rich Internet Applications

156

walkthroughs of user tasks.

Of course, our approach was more expensive as to the time needed for accomplishing the

dynamic analysis of the RIA. However, this extra-effort was valuable for obtaining more

abstractions and details about the application usage, that could be transformed

automatically into user documentation by our tool.

8.7 Conclusions

According to the survey presented by [142], software documentation generation processes

should rely on technologies that improve automation of the documentation process, as well

as facilitating documentation maintenance.

In this chapter we have proposed a technique and a tool for semi-automatic generation of

end user documentation about Web 2.0 applications. The technique is innovative since it

exploits reverse engineering processes and tools for generating the documentation,

differently from most existing solutions supporting user documentation production. With

respect to other competing tools, ours is able to generate a more flexible, complete and

accurate documentation.

The chapter presented the features of the tool that we designed to support the proposed

process and showed an example of using it for re-documenting an existing application

implemented using Ajax technology. The resulting documentation provides both overview

and more detailed descriptions of the user functions offered by the application, and was

obtained effectively thanks to the tool support. In future work, we will extend the features

of our documentation generation tool in order to allow the generation of other types of

contents suggested by the IEEE Standard on User Documentation, such as documentation

about error management.

Of course, in order to demonstrate the validity of the proposed approach, experiments are

needed for showing both the effectiveness of the documentation process and of the

obtained documentation. In future work we will carry out experiments aiming at

comparing effectiveness and scalability of our approach against other ones, and at

Reverse Engineering and Testing of Rich Internet Applications

157

obtaining a systematic evaluation of the actual contribution given to software usability by

the produced documentation.

Reverse Engineering and Testing of Rich Internet Applications

158

Chapter 9
10

A GUI CRAWLING-BASED TECHNIQUE FOR ANDROID MOBILE

APPLICATION TESTING

As mobile applications become more complex, specific development tools and

frameworks as well as cost-effective testing techniques and tools will be essential to assure

the development of secure, high-quality mobile applications.

In this chapter we address the problem of automatic testing of mobile applications

developed for the Google Android platform, and present a technique for rapid crash testing

and regression testing of Android applications. The technique is based on a crawler that

automatically builds a model of the application GUI and obtains test cases that can be

automatically executed. The technique is supported by a tool for both crawling the

application and generating the test cases. In the chapter we present an example of using

the technique and the tool for testing a real small size Android application that preliminary

shows the effectiveness and usability of the proposed testing approach.

9.1 Introduction

With about three billion people using mobile phones worldwide and the number of devices

that can access the net climbing rapidly, the future of the Web is definitely mobile.

Bridging the gap between desktop computers and hand-held devices is the main challenge

that research in mobile applications is addressing for the next future: according to Andy

Rubin, Guru for Google's Android, “There should be nothing that users can access on

10

 This chapter was published in the Proceedings of the 4th International Conference Software Testing, Verification, and Validation Workshops

(ICSTW 2011).

Reverse Engineering and Testing of Rich Internet Applications

159

their desktop that they can‟t access on their cell phone”.

Thanks to the advancement of hardware industry, modern mobile phones have now faster

processors, growing memories, faster Internet connections, and much richer sensors, and

are able to host more demanding applications. Moreover, the current applications

programming platforms and development tools used to develop applications for mobile

devices (such as Java ME, .NET Compact Framework, Flash Lite, Android) provide

options to create highly functional mobile multimedia applications [152], allowing the use

of various technologies, like Java, Open C, Objective C, Python, Flash Lite or Web

technologies.

In such a scenario, the complexity, variety and functional richness of mobile applications

are growing and the request for mobile software applications offering even more complex,

rich, and usable functionalities is going to grow more and more in the next future.

Unfortunately, the quality of applications for mobile devices is often poor. This lack of

quality is mostly due to very fast development processes where the testing activity is

neglected or carried out in a superficial way since it is considered too complex, difficult to

automate, expensive and time-consuming. Indeed, testing a mobile device application is

not a trivial task due to several factors: a first factor consists of the variety of input that

normally solicit a mobile application (such as user input, context and environment inputs)

which makes it hard to find the right test cases that expose faults. A second factor is the

heterogeneity of the technologies used by the devices, so that multiple tests on multiple

platforms should be performed.

In order to obtain higher quality mobile applications, greater attention should be devoted

to the testing activity throughout the development process and effective models, methods,

techniques and tools for testing should be available for testers. In particular, cost-effective,

rapid, and automated testing processes should be executed when possible, in order to cope

with the fundamental necessity of the rapid delivery of these applications.

This chapter focuses on the problem of automatic testing of mobile applications developed

for the Google Android platform. Among the currently available mobile platforms (such as

Reverse Engineering and Testing of Rich Internet Applications

160

Symbian, Android, Research In Motion and Apple iOS), Android is predicted to become

the second largest mobile Operating System by 2012 [153], thanks to the open-source

nature and the programmability features: Android is indeed based on open source Linux

software that allows developers to access to the underlying code. This feature will

certainly increase Android diffusion in the market of mobile devices.

Android applications can be actually considered Event Driven Software (EDS) whose

behaviour is driven by several types of events. Hence, a major issue in Android

application testing is that of assessing which testing approaches usable for traditional EDS

systems (such as GUIs, Rich Internet Applications, embedded software, etc.) are also

applicable for Android based mobile applications and which tuning and technological

adaptations are needed for them.

In particular, in the chapter we focus on GUI testing techniques already adopted for

traditional applications and propose a GUI crawling based technique for crash testing and

regression testing of Android applications. The technique is supported by a tool for

producing test cases that can be automatically executed.

9.2 Related Works

As mobile applications become more complex, specific development tools and

frameworks as well as software engineering processes will be essential to assure the

development of secure, high-quality mobile applications. According to Wasserman [144],

there are important areas for mobile software engineering research, and defining testing

methods for product families, such as Android devices, is one of the areas requiring

further efforts and investigations.

In the literature, recent works in testing mobile applications have mostly focused on the

definition of frameworks, environments and tools supporting testing processes in specific

development contexts. Other works have addressed specific issues of functional or non-

functional requirements testing, like performance, reliability or security testing of mobile

applications.

Reverse Engineering and Testing of Rich Internet Applications

161

As an example, She at al. [149] have proposed a tool for testing J2ME mobile device

applications that comprises a framework for writing tests using XML and a distributed

run-time for executing tests automatically on the actual device, rather than on device

emulators. Satoh [147, 148] presented a framework providing an application-level

emulator for mobile computing devices that enables application-level software to be

executed and tested with the services and resources provided through its current network.

As to the performance testing, Kim et al. [154] describe a method and a tool based on

JUnit for performance testing at the unit level of mobile applications implemented in the

J2ME environment.

As to the techniques for testing the correctness of a mobile application, Delamaro et al.

[146] proposed a white-box testing technique that derives test cases using structural testing

criteria based on the program Control-Flow-Graph. This technique is supported by a test

environment that provides facilities for generating, running the tests and collecting the

trace data of a test case execution from the mobile device.

More recently, a black-box testing technique for GUI Adaptive Random Testing has been

presented in [155]. This technique considers two types of input events to a mobile

application, namely user events fired on the application GUI, and environmental events

produced by the mobile device equipments like GPS, bluetooth chips, network, etc. or by

the other applications. Test cases are defined as event sequences composed by pools of

randomly selected events. The technique has been experimented with six real-life

applications running on Android 1.5 Mobile OS.

In the Android development platform, several tools, APIs and frameworks have been

recently proposed for supporting application testing.

The Android Testing framework, besides native JUnit classes and API, includes an API

that extends the JUnit API with an instrumentation framework and Android-specific

testing classes. As an example, the extensions to the JUnit classes include Assertion

classes (that contain specific assertions about Views and Regular Expressions),

MockObject classes (that can be used to isolate tests from the rest of the system and to

Reverse Engineering and Testing of Rich Internet Applications

162

facilitate dependency injection for testing), and specific TestCase classes that allow

peculiar components of the Android application (such as Activity, Content Provider, and

Intent) to be tested in an effective manner.

Among the available tools, Monkey [156] is a built-in application that can send random

event sequences targeted at a specific application and can be used for stress testing.

However, pure random testing, although simple and fully automatic, may not be effective

for detecting a fault. The Monkey Runner tool [157] vice-versa provides an API for

writing programs (written in Python) that control an Android device or emulator from

outside of Android code. Monkey Runner can be used both for functional testing, where

the tester provides input values with keystrokes or touch events, and view the results as

screenshots, and for regression testing (Monkey Runner can test application stability by

running an application and comparing its output screenshots to a set of screenshots that are

known to be correct).

The Google Code site presents the Robotium framework [158] based on JUnit that can be

used to write automatic black-box test cases for testing Android applications at function,

system and acceptance level. Using Robotium, test case results can be checked by means

of GUI assertions like in Web application testing using the Selenium framework.

9.3 Background

The Android Developers Web site [159] defines Android as a software stack for mobile

devices that includes a Linux-based operating system, middleware and core applications.

Using the tools and the APIs provided by the Android SDK, programmers can access the

stack resources and develop their own applications on the Android platform using the Java

programming language. Although based on well-known open source technologies like

Linux and Java, Android applications own remarkable peculiar features that must be

correctly taken into account when developing and testing them. In the following, we

present an insight into Android application internals and focus on the technological

approaches adopted for developing user interfaces and event handling in user oriented

Reverse Engineering and Testing of Rich Internet Applications

163

applications.

9.3.1 Implementing the GUI of an Android Application

The Android operating system is often installed on smartphone devices that may have

limited hardware resources (like CPU or memory) and a small-sized screen, but are

usually equipped with a large number of sensors and communication devices such as a

microphone, wi-fi and Bluetooth chips, GPS receiver, single or multi touch screen,

inclination sensors, camera and so on. In order to optimize the management of all these

resources and to cope with the intrinsic hardware limitations, the Android applications

implement a multi-thread process model in which only a single thread can access to user

interface resources, while other threads contemporarily run in background. Moreover, each

application runs in its own virtual machine (the Dalvik one) that is a virtual machine

optimized for Android mobile devices.

An Android application is composed of several types of Java components instantiated at

run-time (namely, Activities, Services, Broadcast Receivers, and Content Providers) where

the Activity components are crucial for developing the user interface of an application

[159]. The Activity component, indeed, is responsible for presenting a visual user interface

for each focused task the user can undertake. An application usually includes one or

several Activity classes that extend the base Activity class provided by the Android

development framework. The user interface shown by each activity on the screen is built

using other framework classes such as View, ViewGroup, Widget, Menu, Dialog, etc.

In its lifecycle, an Activity instance passes through three main states, namely running,

paused and stopped. At run-time just one activity instance at the time will in the running

state and will have the complete and exclusive control of the screen of the device. An

Activity instance can make dynamic calls to other activity instances, and this causes the

calling activity to pass to the paused state. When a running activity becomes paused then

it has lost focus but is still visible to the user. Moreover, an activity can enter the stopped

state when it becomes completely obscured by another activity.

In Android applications, processing is event-driven and there are two types of events that

Reverse Engineering and Testing of Rich Internet Applications

164

can be fired (e.g., user events, and events due to external input sources). The user events

(such as Click, MouseOver, etc.) that can be fired on the user interface items (like Buttons,

Menu, etc.) are handled by handlers whose definition belong either to the respective

interface object, or to the related Activity class instance (using the Event Delegation

design pattern). As to the events that are triggered by other input sources, such as GPS

receiver, phone, network, etc., their handling is always delegated to an Activity class

instance.

9.3.2 Open Issues with Android Application Testing

Since the behaviour of an Android application is actually event-driven, most of the

approaches already available for EDS testing are still applicable to Android applications.

However, it is necessary to assess how these techniques can be adopted to carry out cost-

effective testing processes in the Android platform.

Most of the EDS testing techniques described in the literature are based on suitable models

of the system or sub-system to be tested like Event-Flow Graphs, Event-Interaction-

Graphs, or Finite State Machines [51, 56, 87], exploit the analysis of user session traces

for deriving test cases [5], or are based on GUI rippers [44] or Web application crawlers

[83] that automatically deduce possible sequences of events that can be translated into test

cases.

Using such techniques for the aims of Android testing will firstly require an adaptation of

the considered models and strategies in order to take into account the peculiar types of

event and input source that are typical of Android devices.

As a consequence, new reverse engineering and GUI ripping techniques will have to be

designed for obtaining the necessary models, as well as platforms and tools aiding user

session analysis, will have to be developed.

From the point of view of the supporting technologies, the Android development

environment [159] provides an integrated testing framework based on JUnit [160] to test

the applications. At the moment, the framework has been mostly proposed to carry out

assertion based unit testing and random testing of activities. A further issue consists of

Reverse Engineering and Testing of Rich Internet Applications

165

assessing what support it is able to offer to the implementation of other automatic testing

techniques too.

9.4 A Technique for Testing Android Applications

Like the crawler-based technique presented by [83] for testing Ajax applications, the

automatic testing technique we propose for Android applications is based on a crawler that

simulates real user events on the user interface and infers a GUI model automatically. The

GUI model is hence used for deriving test cases that can be automatically executed for

different aims, such as crash testing and regression testing. The model produced by the

crawler is actually a GUI Tree, the nodes of which represent the user interfaces of the

Android application, while edges describe event-based transitions between them.

For obtaining this model, while the crawler fires events on the application user interface, it

also captures data about interfaces and events that will be also used to decide the further

events to be fired. The data analysed by the crawler at run time belong to the conceptual

model of an Android GUI that is represented by the class diagram shown in Figure 9.1.

Figure 9.1: Conceptual Model of an Android Application

GUI

The model shows that a GUI is made up of interfaces linked to each other by a Transition

relationship. Each interface is characterized by the Activity instance that is responsible for

drawing it and is composed by a set of Widgets. We define a Widget as a visual item of the

Interface. A Widget can be implemented in the Android framework by an instance of a

View class, a Dialog class or a Menu Item class.

Any Widget is characterized by a set of Properties with related Values (such as size, color,

Event

+Type

Widget

+Type

Event Handler
0..1 0..* 1

0..*

Interface

+ActivityInstance

0..* 0..*

0..1

Property

+Name
+Value 1..*

Parameter

+Name
+Value

0..*

Transition

0..*

0..*

Editable Property

Reverse Engineering and Testing of Rich Internet Applications

166

position, caption and so on). Some Widget Properties are Editable: in this case their values

are provided as user input at run time (as an example, we can consider the text field of a

TextView object).

Events can cause transitions between Interfaces. In Android applications there can be both

user events and events associated with interrupt messages sent from any component

making up the device equipment (such as GPS, phone, wireless connections, inclination

sensors, etc.).

Event Handlers code can be either defined in the context of a Widget of the interface, or in

the context of an Activity, depending on the type of Event. Events may have zero or more

Parameters and each Parameter has a Name and a Value.

The GUI crawler builds the GUI tree using an iterative algorithm that relies on two main

temporary lists (Event list and Interface list, respectively) and executes the steps reported

in Figure 9.2.

0) Describe the starting interface (associated with the first interface shown by the application at its launch) in

terms of its activity instance, widgets, properties and event handlers, and store this description into the

Interface list;

1) Detect all the interface fireable events having an explicitly defined Event Handler and, for each event,

define a possible way of firing it by choosing the random values that will be set into the widget Editable

Properties and to the Event Parameter Values (if they are present). Save this information into an Event

description and store this description into the Event List
11

.

repeat

2) Choose one fireable event E from the Event List, set the needed preconditions and fire it, according to its

description.

3) Catch the current interface and add a node representing that interface to the GUI tree; then add an edge

between the nodes associated with the consecutively visited interfaces.

4) Describe the current interface in terms of all its properties, store the interface description in the Interface

List, and check whether the current interface is ‗equivalent‘ to any previously visited one, or it is a ‗new‘ one.

If it is equivalent to any interface or it does not include fireable events, the corresponding GUI node will be a

leaf of the tree, otherwise the new interface fireable events will be detected and a description of each event

will be defined and added to the Event List. In both cases, the E Event that caused that interface to be reached

will be removed from the Event List.

Until the fireable Event list is empty
Figure 9.2: The Crawling algorithm

11 In the Event List, the description of each event will include the sequence of events that need to be fired before firing that event. This sequence

actually represents the pre-conditions for firing the event.

Reverse Engineering and Testing of Rich Internet Applications

167

A critical aspect of any GUI crawling algorithm consists of the criterion used for

understanding when two interfaces are equivalent. Several approaches have been proposed

in the literature to solve this problem [56, 83, 159]. Our algorithm assumes two interfaces

to be equivalent if they have the same Activity Instance attribute (see the model in Figure

9.1) and they have the same set of Widgets, with the same Properties and the same Event

Handlers.

Another critical aspect of this algorithm consists of the approach it uses for defining the

values of widgets‘ properties and event parameters that must be set before firing a given

event. At the moment, the crawler assigns them with random values.

9.4.1 Test Case Definition

The GUI tree generated by the crawler is the starting point for obtaining test cases that can

be run both for automatic crash testing and for regression testing of the application.

 According to Memon et al. [87], crash testing is a testing activity that aims at revealing

application faults due to uncaught exceptions.

To detect crashes in the subject Android application, we have implemented a technique

based on a preliminary instrumentation of the application code that automatically detects

uncaught exceptions at run-time. In this way, during the GUI exploration performed by the

crawler we are able to perform a first crash testing. Indeed, test cases used for crash testing

are given by the sequences of events associated with GUI tree paths that link the root node

to the leaves of the tree.

As to the regression testing activity that must be executed after changes to a given

application have been made, it is usually performed by rerunning previously run tests and

checking whether program behaviour has changed and whether new faults have emerged.

In the regression testing of an Android application, we propose to use the same test cases

used for crash testing, and we had to define a suitable solution to check possible

differences between the application behaviours.

 A possible way of detecting differences is by comparing the sequences of user interfaces

obtained in both the test runs. The interface comparison can be made using test oracles

Reverse Engineering and Testing of Rich Internet Applications

168

having different degrees of detail or granularity [42]. As an example, the Monkey Runner

tool [157] executes regression testing of Android applications but it checks results just by

comparing the output screenshots to a set of screenshots that are known to be correct.

We propose to check whether all the intermediate and final Interfaces obtained during test

case rerunning coincide with the ones obtained in the previous test execution, and their

Activity, Event Handlers, and Widgets‘ Properties and Values are the same. To do this

checking, we add specific assertions to the original test cases that will be verified when

tests are run.

A test will reveal a failure if any assertion is not verified, or some event triggering is not

applicable

9.5 The Testing Tool

In this section a tool supporting the testing technique proposed in the previous section will

be presented.

The tool, named A
2
T

2
 (Android Automatic Testing Tool), has been developed in Java and

is composed of three main components: a Java code instrumentation component, the GUI

Crawler and the Test Case Generator.

The Java code instrumentation component is responsible for instrumenting the Java code

automatically, in order to allow Java crashes to be detected at run-time.

The GUI crawler component is responsible for executing the Android crawling process

proposed in section 9.3. It produces a repository describing the obtained GUI Tree,

comprehending the description of the found Interfaces and of the triggered Events.

Moreover, it produces a report of the experienced crashes, with the event sequences

producing them.

The GUI crawler exploits Robotium [158], a framework originally designed for supporting

testing of Android applications. Robotium provides facilities for the analysis of the

components of a running Android application.

The GUI crawler extracts information about the running Activity, the Event Handlers that

Reverse Engineering and Testing of Rich Internet Applications

169

the Activity implements and the Widgets that it contains (with related Properties, Values

and Event Handlers). Moreover, the GUI crawler is able to emulate the triggering of

Events and to intercept application crashes.

The current prototype of A
2
T

2
 manages only a subset of the possible Widgets of an

Android application, comprehending, TextView labels, TextEdit fields, Buttons and

Dialogs, while, in the future, we plan to extend the support to a larger number of Widgets

and Event typologies.

The Test Case Generator component is responsible for the abstraction of executable test

cases supporting crash testing and regression testing from the GUI Tree produced by the

GUI Crawler component.

Test cases produced by the Test Case Generator are Java test methods that are able to

replay event sequences, to verify the presence of crashes (for crash testing) and to verify

assertions regarding the equivalence between the Interfaces obtained during the replay and

the original ones obtained in the exploration process (for regression testing).

Generated Test Cases exploit the functionalities offered by the Robotium framework both

for events triggering and for the extraction of information about the obtained Interfaces.

Both the Crawler and the Generated Test Cases can be executed in the context of the

Android Emulator provided by the Android SDK [161].

9.6 An Example

In this section we show an example of using the proposed technique and tool for testing a

simple Android application. The subject application implements a simple mathematic

calculator that can operate either in a basic mode, providing the possibility of executing

the basic arithmetic operations between numeric input values, or in a scientific mode,

providing trigonometric functions, inverse trigonometric functions and other ones.

The application was developed for the Android 2.2 platform by using the libraries

provided by the corresponding SDK. It consists of five Java classes contained in one

package, for a total of 557 Java LOCs. Two of the implemented classes extend the

Reverse Engineering and Testing of Rich Internet Applications

170

Android Activity class and contain, in total, 36 different Widgets, comprehending Buttons,

EditText and TextView Widgets.

After a preliminary automatic instrumentation of the application - that was needed for

detecting runtime crashes - the application crawling was automatically executed by the

tool and a GUI tree of the application was obtained. During crawling, 19 Events were

triggered, 19 Interfaces were obtained, and an exception causing an application crash

occurred. Using the equivalence criterion presented in section 3.1, the 19 Interfaces we

obtained were grouped into the following three equivalence classes:

 Class IC1 that comprehends the Interfaces I1, I2, I3, I4, I5, I9, I16 corresponding to

instances of the BaseCalculator Activity, by means of which the basic arithmetic

operations can be performed (an example of an Interface belonging to IC1 is

reported in Figure 9.3-a);

 Class IC2, comprehending the Interfaces I6, I7, I8, I10, I11, I12 and I19,

corresponding to instances of the ScientificCalculator Activity, by means of which

the trigonometric functions, the reciprocal function and the square root function

can be computed (an example of Interface belonging to IC2 is reported in Figure

9.3-b);

 Class IC3, comprehending the Interfaces I13, I14, 15, I17 and I18, corresponding to

instances of the ScientificCalculator Activity by means of which inverse

trigonometric functions, the reciprocal function and the square function can be

computed (an example of Interface belonging to IC3 is reported in Figure 9.3-c).

Figure 9.3-a: IC1 Interface Figure 9.3-b: IC2 Interface Figure 9.3-c: IC3 Interface

Figure 9.3: Screenshots of Interfaces of the example Android application

Reverse Engineering and Testing of Rich Internet Applications

171

Figure 9.4 shows the GUI Tree we obtained, where each node reports the screenshot and

the label associated to the corresponding interface, and edges are labeled by the event that

caused the transition between the interfaces. The leaves of the tree correspond always to

interfaces that were equivalent to at least another interface previously explored by the

crawler (the number in the Interface label represents, too, the order in which the Interface

was found by the crawler).

Figure 9.4: The GUI Tree obtained by crawling the example Android application

As an example, our crawling technique was able to distinguish automatically the instances

of Interfaces belonging to IC1 from interfaces of the other groups because they were

associated with instances of different Activity classes. Moreover, it was able to distinguish

between instances of Interfaces belonging to IC2 and IC3, because they included different

sets of Buttons.

While exploring the GUI interfaces via the crawler some crashes of the application were

discovered, too. As an example, a crash occurred after firing the E18 Event that

corresponds to the click on the ‗atan‘ Button on the Interface I13.

The cause of this crash was the lack of the try/catch code block for handling the exception

due to the input of a non-numeric value in the Input TextEdit widget. This caused a

java.lang.NumberFormatException when the application tries to convert the string in the

input field into a Double value before computing the arctangent function. After correcting

Reverse Engineering and Testing of Rich Internet Applications

172

this defect, we run the crawler again and obtained a new GUI tree where another instance

of Interface (belonging to IC3 group) was correctly associated with the right node.

After obtained the GUI Tree, the Test Case Generator produced 17 test cases for crash

testing that corresponded to the 17 different paths from the root to the leaves of the tree.

The Test Case Generator tool developed 17 test cases for regression testing, too.

In order to assess the effectiveness of our test cases for the aims of regression testing, we

injected two faults in the Android application and run the 17 regression test cases to find

these faults.

The first injected fault was due to a change of the code of the Scientific Calculator

Activity causing an interface Button (namely the one that makes it possible to return to the

Base Calculator) to be no more drawn on the screen window.

One of the regression test cases (namely the test case corresponding to the execution of the

event sequence E5- E12-E13) revealed an assertion violation. The assertion violation was

due to a layout difference between the obtained Interface I13 and the corresponding one

collected during the previous crawling process, since the new Interface did not contain the

Button that was included in the original one.

Figure 9.5 shows the Java code of the test case corresponding to the execution of the event

sequence E5-E12-E13 that detected the fault.

public void testSequence11() throws Exception {

 InterfaceComparator.compare("I1");

 solo.clickOnButton("Scientific");

 InterfaceComparator.compare("I6");

 solo.clickOnButton("Inverse");

 InterfaceComparator.compare("I13");

 solo.enterText("Input", "dfghfdjg");

 solo.clickOnButton("1/x");

 InterfaceComparator.compare("I14");

}

Figure 9.5: Java code of the test case firing the E5-E12-

E13 event sequence

In Figure 9.5, ‘solo‘ is one of the classes that Robotium provides for automatically

firing events onto the application, while ‘InterfaceComparator’ is a class that we

developed, having a method ‘compare’ that is used to check the coincidence between

interfaces.

Reverse Engineering and Testing of Rich Internet Applications

173

The second fault we injected consisted of associating an incorrect event handler to the

click event on the cosine Button (e.g., the ‘calculateSin’ function) instead of the

correct one (e.g., the ‘calculateCos’ function). This fault is explained by the code

fragment shown in Figure 9.6, where in the last line of code, calculateCos should be

written instead of calculateSin.

View.OnClickListener calculateSin = new View.OnClickListener() {

 public void onClick(View v) { … }

};

View.OnClickListener calculateCos = new View.OnClickListener() {

 public void onClick(View v) { … }

};

sinButton.setOnClickListener(calculateSin);

cosButton.setOnClickListener(calculateSin);

Figure 9.6: Code fragment associated with an injected fault

The execution of the test case corresponding to the event sequence E5-E10 revealed an

assertion violation and allowed the injected fault to be discovered. The violation was due

to the difference between the obtained Interface and the one collected during the crawling

process, since they contained different methods associated to the onClickListener attribute

of cosButton widget.

We explicitly remark that, thanks to the type of assertion checked by our regression test

cases, we were able to find a fault whose effects were not visible on the GUI. Other

regression testing tools like Monkey Runner could not discover it, since it just limits itself

to check screenshots.

However, the fault detection effectiveness of the technique depends considerably on the

strategy used by the crawler for defining the input values needed for firing the events. As

an example, a possible fault in the reciprocal function due to an unmanaged exception of a

division by zero might be revealed only by a test case with a zero value in the input field.

This value may not be used in any test case, due to the random strategy used by the

crawler for generating input. Other input generation techniques should be considered in

order to solve this problem.

Moreover, in the example we assumed that the replay of the same event sequence with the

Reverse Engineering and Testing of Rich Internet Applications

174

same input values produced always the same effects. In general, instead, the problems

related to the management of preconditions and postconditions related to persistent data

sources (such as files, databases, Shared Preferences objects, remote data sources) must be

considered, too.

In conclusion, this example showed the usability of the technique for running crash testing

and regression testing, and its effectiveness in detecting some types of fault in a

completely automatic manner.

9.7 Conclusions

In this chapter we propose a technique for automatic testing of Android mobile

applications. The technique is inspired to other EDS testing techniques proposed in the

literature and relies on a GUI crawler that is used to obtain test cases that reveal

application faults like run-time crashes, or that can be used in regression testing. Test

cases consist of event sequences that can be fired on the application user interface.

At the moment, we have not considered other types of events that may solicit a mobile

application (such as external events produced by hardware sensors, chips, network, or

other applications running on the same mobile device) and just focused on user events

produced through the GUI. In future work, we intend to propose a strategy for considering

other types of events, too, in the test case definition process.

The proposed testing technique aims at finding runtime crashes or user-visible faults on

modified versions of the application.

In the chapter we just discussed an example of using the technique for testing a small size

Android application, and showed the usability and effectiveness of the technique and

supporting tool.

In future work, we plan to carry out an empirical validation of the technique by

experiments involving several real world applications with larger size and complexity,

with the aim of assessing its cost-effectiveness and scalability in a real testing context.

Moreover, in order to increase the effectiveness of the obtained test suites we intend to

investigate further and more accurate techniques for the crawler to generate several kinds

Reverse Engineering and Testing of Rich Internet Applications

175

of input values, including both random and specific input values depending on the

considered type of widget. In addition, solutions for managing test case preconditions and

postconditions related to persistent data sources (such as files, databases, Shared

Preferences objects, remote data sources) will be looked for.

Reverse Engineering and Testing of Rich Internet Applications

176

10. Conclusions

The Web is steadily increasing its reach beyond the desktop to devices ranging from

mobile phones to domestic appliances. This rapidly expanding accessibility is largely due

to the Web‘s foundation in open protocols and markup languages, which offer the most

widely implemented global infrastructure for content and application access [162].

New technologies, frameworks, tools and environments that allow to develop Web and

mobile applications with the least effort and in very short time have been introduced in the

last years. As consequence both client software for the Web and mobile applications have

quickly evolved.

This evolution has been accompanied by some drawbacks that are mostly due to the lack

of applying well-known software engineering practices and approaches. As a

consequence, new research questions and challenges have emerged in the field of web and

mobile applications maintenance and testing. Some of these questions have been

addressed in the research activity described in this thesis.

The thesis describes the main results of this activity. In particular, in the first chapters we

presented the results of a reverse engineering research that aimed at defining and

validating effective reverse engineering processes and techniques for reconstructing

suitable representation models of Rich Internet Applications.

Our research preliminarily addressed the problem of modelling the client-side behaviour

of a RIA and we choose Finite State Machines to represent the event-driven nature of this

behaviour. FSMs are one of the most popular models used in literature for representing the

behaviour of a software system, providing an abstract view of a system in terms of states

Reverse Engineering and Testing of Rich Internet Applications

177

and transitions among them.

We have presented a reverse engineering process for obtaining the FSM model of a RIA.

The process is based on the dynamic analysis of the application. Dynamic analysis is a

mandatory technique for reconstructing all possible behaviours exhibited by event-driven

applications, but it exposes to several problems in particular to the potential explosion

both of states and transitions of the FSM. To solve the explosion problem we have

proposed clustering techniques that exploit equivalence criteria for recognizing and

classifying equivalent states and transitions.

Afterwards we have presented the results of a validation experiment involving real Web

applications that showed the cost-effectiveness of the proposed reverse engineering

technique. Moreover the experiment showed how the equivalence criteria are able to

influence the effectiveness of the technique, as well as its cost-effectiveness.

Successively, we have presented an ‗Agile‘ process for the reverse engineering of Rich

Internet Applications that is iterative, based on the continuous feedback of the process

executor, and allows the incremental reconstruction of a Finite State Machine modelling

the behaviour of RIA. The approach has been experimented with some case studies, which

involved the dynamic analysis of existing RIAs. The results of the experiment showed the

effectiveness of the approach and how it simplifies the concept assignment tasks needed

for software comprehension that was the weakness point of the first proposed Reverse

Engineering process.

As for the Rich Internet Applications testing we have proposed a technique that transforms

execution traces of an existing application into executable test cases. To achieve the

technique scalability, a test suite selection technique is employed that reduces the size of

obtained test suites. For exploring the feasibility and effectiveness of this technique, we

carried out an experiment involving an open-source RIA application, where different

approaches (both human-based, and automatic) for execution trace collection and several

criteria for reducing the test suites were analysed.

In the field of RIA testing we have proposed a classification framework that distinguishes

Reverse Engineering and Testing of Rich Internet Applications

178

different RIA testing techniques, including techniques for finding faults having no effects

on the RIA user interface and techniques that are suitable for finding faults with user

visible effects. The classification is made on the basis of the following categories: testing

goal, technique used for generating test cases, testing oracle and types of tool supporting

the testing process. Possible solutions to the problems of generating test cases, defining

testing oracles, and automatically evaluating the results of test case executions have been

analysed for both types of testing techniques.

Another topic we addressed in the thesis is the comprehension of existing RIAs developed

in Ajax. About this topic we presented the DynaRIA tool that provides a user-friendly

environment for analysing the dynamic behaviour of Rich Internet applications

implemented in Ajax. The features of this tool have been designed to address the

analysability issues that are typical of Ajax applications, such as their heterogeneous

nature and the dynamically built configuration of the source code.

We performed some case studies that showed how this tool can be used to carry out

program comprehension, testing, debugging and quality assessment activities. In the case

studied the considered activities, which are typical of RIA life-cycle processes, were

accomplished with success thanks to the tool.

Finally, we‘ve addressed the problem of re-documenting existing RIAs. In this thesis we

have proposed a technique and a tool for semi-automatic generation of end user

documentation about Web 2.0 applications. The technique is innovative since it exploits

reverse engineering processes and tools for generating the documentation, differently from

most existing solutions supporting user documentation production. With respect to other

competing tools, ours is able to generate a more flexible, complete and accurate

documentation.

In the final part of the thesis, we have described the preliminary results of a research

activity we performed in the field Android application testing. Likewise RIAs, these

mobile applications have characteristics of event-driven software systems, so we decided

to transfer the research finding we obtained in the field of RIA testing to this specific

Reverse Engineering and Testing of Rich Internet Applications

179

sector.

In regard to this argument, in this thesis we have described a technique for automatic

testing of Android mobile applications. The technique is inspired to other EDS testing

techniques proposed in the literature and relies on a GUI crawler that is used to obtain test

cases that reveal application faults like run-time crashes, or that can be used in regression

testing. Test cases consist of event sequences that can be fired on the application user

interface. Moreover we have just discussed an example of using the technique for testing a

small size Android application, and showed the usability and effectiveness of the

technique and of the supporting tool we developed.

All the techniques we‘ve presented in the thesis are supported by prototype tools that aim

at automating the proposed processes, such as ReRIA and CReRIA, DynaRIA, TestRIA,

CrawlRIA and A
2
T

2
. Thanks to these tools, we were able to carry out experiments for

validating the proposed techniques and for deducing further research topics and questions

that will need to be investigated in future works.

Reverse Engineering and Testing of Rich Internet Applications

180

References

[1] Amalfitano, D.; Fasolino, A.R.; Tramontana, P.; , "Reverse Engineering Finite State Machines

from Rich Internet Applications," Reverse Engineering, 2008. WCRE '08. 15th Working

Conference on , vol., no., pp.69-73, 15-18 Oct. 2008

[2] Amalfitano, D.; Fasolino, A.R.; Tramontana, P.; , "Experimenting a reverse engineering

technique for modelling the behaviour of rich internet applications," Software Maintenance,

2009. ICSM 2009. IEEE International Conference on , vol., no., pp.571-574, 20-26 Sept. 2009

[3] Amalfitano, D.; Fasolino, A.R.; Tramontana, P.;, ―A Tool-supported Process for Reliable

Classification of Web Pages,‖ International Conference on Advanced Software Engineering &

Its Applications (ASEA 2009), Volume 59, 338-345, Springer.

[4] Amalfitano, D.; Fasolino, A.R.; Tramontana, P.; , "An Iterative Approach for the Reverse

Engineering of Rich Internet Application User Interfaces," Internet and Web Applications and

Services (ICIW), 2010 Fifth International Conference on, pp.401-410, 9-15 May 2010.

[5] Amalfitano, D.; Fasolino, A.R.; Tramontana, P.; , "Rich Internet Application Testing Using

Execution Trace Data," Software Testing, Verification, and Validation Workshops (ICSTW),

2010 Third International Conference on , vol., no., pp.274-283, 6-10 April 2010

[6] Amalfitano, D.; Fasolino, A.R.; Polcaro, A.; Tramontana, P.; , "DynaRIA: A Tool for Ajax

Web Application Comprehension," Program Comprehension (ICPC), 2010 IEEE 18th

International Conference on , vol., no., pp.46-47, June 30 2010-July 2 2010

[7] Amalfitano, D.; Fasolino, A.R.; Tramontana, P.; , "Techniques and tools for Rich Internet

Applications testing," Web Systems Evolution (WSE), 2010 12th IEEE International

Symposium on , vol., no., pp.63-72, 17-18 Sept. 2010

[8] Amalfitano, D.; Fasolino, A.R.; Polcaro, A.; Tramontana, P.; , "Comprehending Ajax Web

Applications by the DynaRIA Tool," Quality of Information and Communications Technology

(QUATIC), 2010 Seventh International Conference on the , vol., no., pp.122-131, Sept. 29

2010-Oct. 2 2010

[9] Amalfitano, D.; Fasolino, A.R.; Tramontana, P.; , "A GUI Crawling-Based Technique for

Android Mobile Application Testing," Software Testing, Verification and Validation

Workshops (ICSTW), 2011 IEEE Fourth International Conference on , vol., no., pp.252-261,

21-25 March 2011

[10] Amalfitano, Domenico; Fasolino, Anna Rita; Tramontana, Porfirio; , "Using dynamic analysis

for generating end user documentation for Web 2.0 applications," Web Systems Evolution

(WSE), 2011 13th IEEE International Symposium on , vol., no., pp.11-20, 30-30 Sept. 2011

[11] Murugesan, S.; , "Understanding Web 2.0," IT Professional , vol.9, no.4, pp.34-41, July-Aug.

2007

[12] Leon Shklar, Rich Rosen, ―Web Application Architecture: Principles, Protocols and Practices,

2nd Edition‖, Wiley

[13] Allaire, J; , "Macromedia Flash MX—A next-generation rich client", Macromedia White Paper

(March, 2002)

[14] Fraternali, Piero; Rossi, Gustavo; Sánchez-Figueroa, Fernando; , "Rich Internet Applications,"

Internet Computing, IEEE , vol.14, no.3, pp.9-12, May-June 2010

[15] Meli , S.; G mez, J.; P rez, S.; D az, O.; , "Architectural and Technological Variability in Rich

Internet Applications," Internet Computing, IEEE , vol.14, no.3, pp.24-32, May-June 2010

[16] Atkins, D.L.; Ball, T.; Bruns, G.; Cox, K.; , "Mawl: a domain-specific language for form-based

services," Software Engineering, IEEE Transactions on , vol.25, no.3, pp.334-346, May/Jun

1999

[17] J. Garrett, ―AJAX: A new approach to Web applications‖, Adaptive Path, 2005

Reverse Engineering and Testing of Rich Internet Applications

181

[18] Paulson, L.D.; , "Building rich web applications with Ajax," Computer , vol.38, no.10, pp. 14-

17, Oct. 2005

[19] Preciado, J.C.; Linaje, M.; Sanchez, F.; Comai, S.; , "Necessity of methodologies to model rich

Internet applications," Web Site Evolution, 2005. (WSE 2005). Seventh IEEE International

Symposium on , vol., no., pp. 7- 13, 26 Sept. 2005

[20] Preciado, J.C.; Linaje, M.; Comai, S.; Sanchez-Figueroa, F.; , "Designing Rich Internet

Applications with Web Engineering Methodologies," Web Site Evolution, 2007. WSE 2007.

9th IEEE International Workshop on , vol., no., pp.23-30, 5-6 Oct. 2007

[21] G.A. Di Lucca, A.R. Fasolino, ―Testing Web-Based Applications: the State of the Art and

Future Trends‖, Information and Software Technology Journal, Vol. 48, Issue 12, Pages: 1172-

1186 (December 2006), Elsevier inc.

[22] G.A. Di Lucca, A.R. Fasolino, P. Tramontana, ―Reverse Engineering Web Application: the

WARE approach‖, Journal of Software Maintenance and Evolution: Research and Practice,

Volume 16, Issue 1-2, John Wiley & Sons, Ltd, Chichester, West Sussex, UK. Date: January -

April 2004, Pages: 71-101

[23] T. Isakowitz, E. A. Stohr, and P. Balasubramanian, ―RMM: a methodology for structured

hypermedia design‖, Communications of the ACM, August 1995

[24] Isakowitz, T.; Kamis, A.; Koufaris, M.; , "Extending the capabilities of RMM: Russian dolls

and hypertext," System Sciences, 1997, Proceedings of the Thirtieth Hawaii International

Conference on , vol.6, no., pp.177-186 vol.6, 7-10 Jan 1997

[25] Garzotto F., Paolini P. and Schwabe, D., ―HDM: a model-based approach to hypertext

application design‖, ACM Transactions on Information Systems, ACM Press, 1993, vol. 11 is.

1 pp. 1 - 26

[26] G. Rossi, D. Schwabe, F. Lyardet, ―Web application models are more than conceptual models‖,

Proceedings of the First International Workshop on Conceptual Modeling and the WWW,

Paris, France, November 1999

[27] C. Gnaho and F. Larcher, ―A user centered methodology for complex and customizable web

applications engineering‖, 1st ICSE Workshop on Web Engineering, Los Angeles, May 1999

[28] D. Jones and T. Lynch, ―A model for the design of web-based systems that supports adoption,

appropriation and evolution‖, 1st ICSE Workshop on Web Engineering, Los Angeles, May

1999

[29] S. Murugesan, Y. Deshpande, S. Hansen, and A. Ginlge, ―Web engineering: A new discipline

for development of web-based systems‖, 1st ICSE Workshop on Web Engineering, Los

Angeles, May 1999

[30] M. H. Cloyd, ―Designing user-centered web applications in web time‖, IEEE Software, IEEE

Computer Society Press, 18:62–69, Jan/Feb 2001

[31] Ceri, S., Fraternali, P. and Bongio, A., ―Web Modeling Language (WebML): a Modeling

Language for Designing Web Sites‖, 9th International WWW Conference, Amsterdam, 2000,

pp. 137 - 157

[32] Ceri S., Fraternali P., Bongio A., Brambilla M., Comai S., and Matera M., "Designing Data-

Intensive Web Applications", Morgan Kauffmann, 2002

[33] Conallen, J. 1999. "Modeling Web application architectures with UML" Commun. ACM 42,

10 (Oct. 1999), 63-70

[34] Conallen, J. 1999. ―Building Web Applications with UML‖, Addison-Wesley Publishing

Company, Reading, MA

[35] Koch N., Kraus A., Cachero C. and Meli S., ―Integration of Business Processes in Web

Application Models‖, Journal of Web Engineering, Rinton Press, vol. 3 is.1 pp. 22 - 49

[36] Melia, S.; Gomez, J.; Perez, S.; Diaz, O.; , "A Model-Driven Development for GWT-Based

Rich Internet Applications with OOH4RIA," Web Engineering, 2008. ICWE '08. Eighth

International Conference on , vol., no., pp.13-23, 14-18 July 2008

[37] Francisco Valverde and Oscar Pastor. 2009. Facing the Technological Challenges of Web 2.0:

A RIA Model-Driven Engineering Approach. In Proceedings of the 10th International

Conference on Web Information Systems Engineering (WISE '09), Gottfried Vossen, Darrell

D. Long, and Jeffrey Xu Yu (Eds.). Springer-Verlag, Berlin, Heidelberg, 131-144.

[38] Fons, J., Pelechano, V., Albert, M., Pastor, O.: "Development of Web Applications

from Web Enhanced Conceptual Schemas", ER 2003, Vol. 2813. LNCS. Springer (2003) 232-

245

[39] Pastor, O., Molina, J.C.: "Model-Driven Architecture in Practice. A Software Production

Environment Based on Conceptual Modelling", Springer-Verlag, Berlin Heildeberg (2007)

[40] Mesbah, A.; van Deursen, A.; , "An Architectural Style for Ajax," Software Architecture,

Reverse Engineering and Testing of Rich Internet Applications

182

2007. WICSA '07. The Working IEEE/IFIP Conference on , vol., no., pp.9, 6-9 Jan. 2007

[41] Ali Mesbah and Arie van Deursen. 2008. A component- and push-based architectural style for

ajax applications. J. Syst. Softw. 81, 12 (December 2008), 2194-2209

[42] Xie, Q. and Memon, A. M. 2007. "Designing and comparing automated test oracles for GUI-

based software applications", ACM Trans. Softw. Eng. Methodol. 16, 1 (Feb. 2007), 4

[43] Memon, A. M.. ―An Event-Flow Model to Test EDS‖. In Software Engineering and

Development, (Enrique A. Belini, ed.), 2009

[44] Memon, I. BanerJee, A. Nagarajan, ―GUI Ripping: Reverse Engineering of Graphical User

Interfaces for Testing‖, Proc. of 10th Working Conference on Reverse Engineering (WCRE

‘03), 2003

[45] Memon, A. M., Soffa, M. L., Pollack, M. E. "Coverage Criteria for GUI Testing", Proceedings

of the 8th European software engineering conference held jointly with 9th ACM SIGSOFT

international symposium on Foundations of software engineering, Vienna, Austria. Pages: 256

– 267. 2001

[46] Xie, Q. and Memon, A. M. 2006. "Automated model-based testing of community-driven open

source GUI applications" In ICSM ‘06: Proceedings of the 22nd IEEE International

Conference on Software Maintenance. IEEE Computer Society, Washington, DC, USA, 145-

154

[47] Memon, A. M. and Xie, Q. "Studying the fault-detection effectiveness of GUI test cases for

rapidly evolving software" IEEE Transactions on Software Engineering 31, 10 (Oct.), 2005,

884–896

[48] Zhu, H., Wong, W. E., Belli, F. "Advancing test automation technology to meet the challenges

of model-driven software development" report on the 3rd workshop on automation of software

test, ICSE, 2008

[49] Belli, F. "Finite-State Testing and Analysis of Graphical User Interfaces", ISSRE, 2001

[50] Yuan Miao; Xuebing Yang; , "An FSM based GUI test automation model," Control

Automation Robotics & Vision (ICARCV), 2010 11th International Conference on , vol., no.,

pp.120-126, 7-10 Dec. 2010

[51] F. Belli, C. J. Budnik, L. White, ―Event-based modelling, analysis and testing of user

interactions: approach and case study‖, Software Testing Verification and Reliability, J. Wiley

& Sons, Ltd., 2006, 16: 3-32.

[52] Stroulia E., El-Ramly M., Kong L., Sorenson P., Matichuk B., 1999. Reverse Engineering

Legacy Interfaces: An Interaction-Driven Approach. In:Proceedings of the Sixth IEEE

Working Conference on Reverse Engineering, IEEE CS Press, 292-302.

[53] Stroulia E., El-Ramly M., Sorenson P., 2002. From Legacy to Web through Interaction

Modeling. Proc. of the IEEE International Conference on Software Maintenance, IEEE CS

Press, pp.320-329

[54] G. Canfora, A.R.Fasolino, G. Frattolillo, P.Tramontana, ―Migrating Interactive Legacy

Systems To Web Services‖, 10th IEEE European Conference on Software Maintenance and

Reengineering, CSMR 2006, pp. 23-32.

[55] G. Di Lorenzo, A. R. Fasolino, L. Melcarne, P. Tramontana, V. Vittorini, ―Turning Web

Applications into Web Services by Wrapping Techniques‖, 14th Working Conference on

Reverse Engineering, WCRE 2007, pp. 199- 208

[56] Marchetto, A.; Tonella, P.; Ricca, F.; , "State-Based Testing of Ajax Web Applications,"

Software Testing, Verification, and Validation, 2008 1st International Conference on , vol., no.,

pp.121-130, 9-11 April 2008

[57] Mesbah, A.; van Deursen, A.; Roest, D.; , "Invariant-Based Automatic Testing of Modern Web

Applications," Software Engineering, IEEE Transactions on , vol.PP, no.99, pp.1, 0

[58] Mesbah, A.; Bozdag, E.; van Deursen, A.; , "Crawling AJAX by Inferring User Interface State

Changes," Web Engineering, 2008. ICWE '08. Eighth International Conference on , vol., no.,

pp.122-134, 14-18 July 2008

[59] Matthijssen, N.; Zaidman, A.; Storey, M.-A.; Bull, I.; van Deursen, A.; , "Connecting Traces:

Understanding Client-Server Interactions in Ajax Applications," Program Comprehension

(ICPC), 2010 IEEE 18th International Conference on , vol., no., pp.216-225, June 30 2010-July

2 2010

[60] A. E. Hassan and R. C. Holt, ―Architecture recovery of web applications,‖ in Proceedings of

the International Conference on Software Engineering (ICSE). ACM, 2002, pp. 349–359

[61] Draheim D., Weber G., 2005, Form-Oriented Analysis. A New Methodology to Model Form-

Based Applications. Springer-Verlag

[62] Document Object Model (DOM), W3C, available at: http://www.w3.org/DOM/

Reverse Engineering and Testing of Rich Internet Applications

183

[63] A. Andrews, J. Offutt, R. Alexander, ―Testing Web applications by modeling with FSM‖,

Software and System Modeling, vol.4, no.3, pp. 326-345, 2005

[64] Standard Widget Toolkit (SWT), available at: http://www.eclipse.org/swt/

[65] Gecko: https://wiki.mozilla.org/Gecko

[66] JavaXPCOM, available at: http://developer.mozilla.org/en/docs/JavaXPCOM

[67] B. Hohrmann, P. Le Hègaret, T. Pixley and D. Schepers, J. Rossi―Document Object Model

Events‖, available at: http://www.w3.org/TR/DOM-Level-3-Events/

[68] Ajax FilmDB, available at: http://sourceforge.net/projects/ajaxfilmdb/

[69] D.A. Konovalov, B. Litow and N. Bajema, ―Partition-distance via the assignment problem‖,

 Bioinformatics 21(10), 2005, pp. 2463-2468

[70] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, R. Koschke, "A Systematic Survey

of Program Comprehension through Dynamic Analysis,", IEEE Transactions on Software

Engineering, vol. 99, pp. 684-702, 2009

[71] B. Cornelissen, L. Moonen and A. Zaydman, ―An Assessment Methodology for Trace

Reduction Techniques‖, IEEE Int. Conf. on Software Maintenance, 2008, IEEE CS Press, pp.

107-116

[72] A. Marchetto and P. Tonella, ―Search-Based Testing of Ajax Web Applications‖, Proc. Of 1st

International Symposium on Search Based Software Engineering, IEEE CS Press, 2009, pp. 3 -

12

[73] T.J. Biggerstaff, B.G. Mitbander and D. Webster, ―Program understanding and the concept

assignment problem‖, Communications of the ACM, vol. 37 (5), pp. 72- 83

[74] Graphviz - Graph Visualization Software, available at http://www.graphviz.org

[75] Scott Amber: Agile Modeling: Effective Practices for Extreme Programming and the Unified

Process, Wiley 2002

[76] Kent Beck: Extreme Programming Explained - Embrace Change, Addison Wesley 2000

[77] M. Smith, J.Miller, L. Huang and A. Tran, ―A More Agile Approach to Embedded System

Development‖, IEEE Software, May/June 2009, pp. 50- 57

[78] S. Cohan, ―Successful Integration of Agile Development Techniques within DISA‖, Agile

2007, IEEE CS Press, pp. 255-261

[79] M.I: Cagnin, J.C. Maldonado and R.D. Penteado, ―PARFAIT: towards a framework-based

agile reengineering process‖, Proc. of the Agile Development Conference, ADC 2003. 2003

Page(s):22 – 31

[80] Naresh Jain, ―Offshore Agile Maintenance‖, Proceedings of AGILE 2006 Conference

(AGILE'06), IEEE CS Press, 2006

[81] S. Elbaum, G. Rothermel, S. Karre, M. Fisher, "Leveraging User-Session Data to support Web

Application Testing", IEEE Transactions on Software Engineering, 2005, 31 (3):187- 202

[82] F. Ricca , P. Tonella, "Analysis and Testing of Web Applications" Proc. of International

Conference on Software Engineering, IEEE Computer Society Press, 2001, pp. 25-34

[83] Mesbah, A.; van Deursen, A.; , "Invariant-based automatic testing of AJAX user interfaces,"

Software Engineering, 2009. ICSE 2009. IEEE 31st International Conference on , vol., no.,

pp.210-220, 16-24 May 2009

[84] S. Sampath, V. Mihaylov, A. Souter, L. Pollock, "A Scalable approach to user-session based

testing of Web applications through Concept Analysis", Proc. of 19th Int. Conf. on Automated

Software Engineering, IEEE CS Press, 2004, pp. 132- 141

[85] P. A. Brooks, A. M. Memon, "Automated GUI Testing guided by Usage Profiles", Proceedings

of ASE‘07, ACM , 2007, pp. 333- 342

[86] S. Elbaum, S. Karre, G. Rothermel, "Improving Web Application Testing with User Session

Data", Proceedings of International Conference on Software Engineering, IEEE Comp. Society

Press, 2003, pp. 49-59

[87] A. M. Memon, Q. Xie, "Studying the Fault-Detection Effectiveness of GUI Test Cases for

Rapidly Evolving Software", IEEE Transaction on Software Engineering, 2005, Vol. 31, No.

10, pp. 884-896

[88] X. Yuan, A. M. Memon, "Using GUI Run-Time State as Feedback to Generate Test

Cases", ICSE 2007, IEEE CS Press, pp. 396-405

[89] X. Yuan, A. M. Memon, "Generating Event Sequence-Based Test Cases using GUI Run-Time

State Feedback", IEEE Transaction on Software Engineering, 2010, Vol. 36, No. 1, pp. 81-95

[90] Selenium: http://seleniumhq.org/

[91] C. Duda, G. Frey, D. Kossmann, R. Matter, C. Zhou, "AJAX Crawl: Making AJAX

Applications searchable", Proc. of IEEE Int. Conf. on Data Engineering, 2009, IEEE CS Press,

pp. 78-89

http://www.informatik.uni-trier.de/~ley/db/conf/icse/icse2007.html#YuanM07

Reverse Engineering and Testing of Rich Internet Applications

184

[92] M. J. Harrold, R. Gupta, M. L. Soffa, "A methodology for controlling the size of a test suite",

ACM Transactions on Software Engineering and Methodology, 1993, 2 (3): 270- 285

[93] S. McMaster, A. M. Memon, "Call-Stack Coverage for GUI Test Suite Reduction", IEEE

Trans. on Software Engineering, Vol. 34, No. 1, Jan. 2008, pp. 99- 115

[94] S. Sampath, S. Sprenkle, E. Gibson, A. Souter, L. Pollock, "Applying concept analysis to user-

session based testing of Web applications", IEEE Trans. on Software Engineering, v. 33, n. 10,

Oct.2007, pp. 643- 658

[95] G. A. Di Lucca, A. R. Fasolino, P. Tramontana, "A Technique for Reducing User Session Data

Sets in Web Application Testing", Proc. of IEEE Workshop on Web Site Evolution, WSE

2006, IEEE CS Press, pp. 7-13

[96] Cem Kaner, "What is a good test case?", Software Testing Analysis & Review Conference

(STAR) East, Orlando, FL, May 12-16, 2003

[97] Y. Guo and S. Sampath, ―Web application fault classification - an exploratory study‖,

in Proceedings of the Second ACM-IEEE international Symposium on Empirical Software

Engineering and Measurement (Kaiserslautern, Germany, October 09 - 10, 2008). ESEM '08.

ACM, New York, NY, 303-305, 2008

[98] A. Marchetto, F. Ricca and P. Tonella, ―Empirical Validation of a Web Fault Taxonomy and its

usage for Fault Seeding‖, In the IEEE Int. Symposium on Web Site Evolution, pp.31-38, 2007

[99] A. Marchetto, F. Ricca and P. Tonella, ―An Empirical Validation of a Web Fault Taxonomy

and its usage for Web Testing‖, In Journal of Web Engineering, vol..8, n. 4, pp. 316-345, 2009

[100] D. Delgado, A. Quiroz Gates and S. Roach, ―A taxonomy and catalog of Runtime software-

fault monitoring tools‖, IEEE Trans. On Software Engineering, 2004, Vol. 30, No. 12, pp. 859-

872

[101] R. V. Binder, "Testing Object-Oriented Systems. Models, Patterns, and Tools", 1999, Addison

Wesley

[102] Crawljax, available from http://crawljax.com

[103] Giuseppe A. Di Lucca, Anna Rita Fasolino and Porfirio Tramontana: ―Web Pages

Classification using Concept Analysis‖, IEEE International Conference on Software

Maintenance, ICSM 2007, IEEE CS Press, pp. 385-394, 2007

[104] Selenium: available from http://seleniumhq.org/

[105] D. Roest, A. Mesbah and A. van Deursen, ―Regression Testing Ajax Applications: Coping

with Dynamism‖. In Proceedings of the 3rd International Conference on Software Testing,

Verification and Validation (ICST‘10), 2010 IEEE Computer Society, pp. 127-136

[106] Markup Validation Service, available from http://validator.w3.org/

[107] Complete List of Web Accessibility Evaluation Tools, W3C WAI, available from

http://www.w3.org/WAI/ER/tools/complete.html

[108] Ajax Frameworks, available at: http://ajaxpatterns.org/Ajax_Frameworks

[109] John J. Barton and Jan Odvarko. 2010. Dynamic and graphical web page breakpoints. In

Proceedings of the 19th international conference on World wide web (WWW '10). ACM, New

York, NY, USA, 81-90.

[110] Firebug, available at: http://getfirebug.com/

[111] Ajax Toolkit Framework Project, available at http://www.eclipse.org/atf/

[112] Venkman JavaScript Debugger Project, available at: http://www.mozilla.org/projects/venkman/

[113] dynaTrace Ajax Edition, available at: http://ajax.dynatrace.com/pages/

[114] M.A. Storey, ―Theories, tools and research methods in program comprehension: past, present,

future‖, Software Quality Journal, 2006, Springer, Vol. 14: pp. 187-208

[115] S. R. Tilley, D. B. Smith, S. Paul ―Towards a Framework for Program Understanding‖,

Proceedings of the 4th International Workshop on Program Comprehension, WPC 1996

[116] M. J. Pacione, M. Roper, and M. Wood, ―A Novel Software Visualisation Model to Support

Program Comprehension‖, Proc. of 11th Work. Conf. on Reverse Engineering (WCRE ‘04),

2004, IEEE CS Press, pp. 70- 79

[117] B. Cornelissen, A. Zaidman, A. Van Deursen, ―Trace Visualization for Program

Comprehension: a Controlled Experiment‖, Proc. of Int. Conf. on Program Comprehension

(ICPC ‗09), 2009, IEEE CS Press, pp. 100-109

[118] Tudu Lists, available at: http://sourceforge.net/projects/tudu/

[119] M. Di Penta, R.E.K. Stirewalt, and E. Kraemer, ―Designing your Next Empirical Study on

Program Comprehension‖, Proc. of Int. Conf. on Program Comprehension (ICPC), 2007, IEEE

C.S. Press, pp. 281- 285

[120] GWT, Google Web Toolkit, available at: http://code.google.com/intl/it-IT/webtoolkit/

[121] ASP.NET Ajax: http://www.asp.net/ajax

Reverse Engineering and Testing of Rich Internet Applications

185

[122] Microsoft Silverlight, available at: http://silverlight.net/

[123] Adobe AIR, available at: http://www.adobe.com/products/air.html

[124] Adobe Flex, available at: http://www.adobe.com/products/flex.html

[125] JavaFx, available at: http://javafx.com/

[126] ISO, Software Product Evaluation - Quality Characteristics and Guidelines for Their Use

(ISO/IEC IS 9126). Geneva, Switzerland: International Organization for Standardization 1991

[127] I. Sommerville, Software Engineering: Nineth edition, 2011, Addison-Wesley

[128] IEEE Standard for Software User Documentation, IEEE Std 1063-2001, 2001

[129] Wikipedia, Comparison of Screencasting Tools, available at:

http://en.wikipedia.org/wiki/Comparison_of_screencasting_software

[130] Institute of Electrical and Electronics Engineers. Glossary of Software Engineering

Terminology. IEEE, New York, 1990. IEEE Standard 610.12-1990

[131] Javadoc Tool, available at

http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html

[132] Doxygen, Generate documentation from source code. available at:

http://www.stack.nl/~dimitri/doxygen/

[133] E.J. Chikofsky and J.H. Cross II. "Reverse engineering and design recovery: a

taxonomy", IEEE Software, vol.7, no.1, pp.13-17, Jan 1990

[134] Y. Zhang, G. Huang, N. Zhang, and H. Mei. "SmartTutor: Creating IDE-based interactive

tutorials via editable replay", In Proceedings of the 31st International Conference on Software

Engineering (ICSE '09). IEEE Computer Society Press, pp. 559-562

[135] C. Kojouharov, A. Solodovnik, and G. Naumovich, "JTutor: an Eclipse plug-in suite for

creation and replay of code-based tutorials", In Proceedings of the 2004 OOPSLA workshop

on eclipse technology eXchange (eclipse '04). ACM, New York, NY, USA, 27-31

[136] L. Bergman, V. Castelli, T. Lau and D. Oblinger, "DocWizards: a system for authoring follow-

me documentation wizards", In Proceedings of the 18th annual ACM symposium on User

interface software and technology (UIST '05). ACM, New York, NY, USA, 191-200

[137] Epiance Software, epiDOCX, http://www.epiplex500.com/ (also available at

http://download.cnet.com/windows/epiance-software/3260-20_4-6311213.html)

[138] G. Antoniol, M. Di Penta, M. Zazzara: "Understanding Web Applications through Dynamic

Analysis", Proceedings of the International Workshop on Program Comprehension, IWPC

2004, IEEE CS Press, pp. 120-131

[139] M. L. Bernardi, G. A. Di Lucca and D. Distante. "The RE-UWA approach to recover user

centered conceptual models from Web applications", International Journal on Software Tools

for Technology Transfer, STTT 11(6): 485-501 (2009)

[140] F. Ricca and P. Tonella, "Understanding and Restructuring Web Sites with ReWeb", IEEE

Multimedia magazine, special issue on Web Engineering, pp. 40-51, April-June 2001, Vol 8,

N. 2

[141] W. Wang, Yu Lei, S. Sampath, R. Kacker, R. Kuhn and J. Lawrence, "A Combinatorial

Approach to Building Navigation Graphs for Dynamic Web Applications", Proceedings of the

2009International Conference on Software Maintenance (ICSM '09). IEEE Computer Society

Press, pp. 211- 220

[142] A. Forward and T. Lethbridge, "The relevance of software documentation, tools and

technologies: a survey", In Proceedings of the 2002 ACM symposium on Document

engineering (DocEng '02). ACM, New York, NY, USA, 26-33

[143] Murugesan, San; Rossi, Gustavo; Wilbanks, Linda; Djavanshir, Reza; , "The Future of Web

Apps," IT Professional, vol.13, no.5, pp.12-14, Sept.-Oct. 2011

[144] A.Wasserman, "Software Engineering Issues for Mobile Application Development", Proc. of

the FSE/SDP workshop on Future of software engineering research, FOSER 2010, IEEE

Comp. Soc. Press, pp. 397- 400

[145] J. Bo, L. Xiang, and G. Xiaopeng,. "Mobiletest. A Tool Supporting Automatic Black Box

Testing for Software on Smart Mobile Devices". In AST ‘07: Proceedings of the Second

International Workshop on Automation of Software Test. Washington, DC, USA: IEEE

Computer Society, 2007, p. 8-14.

[146] M. E. Delamaro, A. M. R. Vincenzi, and J. C. Maldonado. "A strategy to perform coverage

testing of mobile applications". In Proceedings of the 2006 international workshop on

Automation of software test (AST '06). ACM, New York, NY, USA, 118-124

[147] I. Satoh. "A Testing Framework for Mobile Computing Software". IEEE Trans. Softw.

Eng. 29, 12 (December 2003), 2003, pp. 1112-1121

[148] I. Satoh. Software testing for wireless mobile application. IEEE Wireless Communications,

http://www.epiplex500.com/
http://download.cnet.com/windows/epiance-software/3260-20_4-6311213.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Antoniol:Giuliano.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Penta:Massimiliano_Di.html
http://www.informatik.uni-trier.de/~ley/db/conf/iwpc/iwpc2004.html#AntoniolPZ04
http://www.informatik.uni-trier.de/~ley/db/conf/iwpc/iwpc2004.html#AntoniolPZ04
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bernardi:Mario_Luca.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Distante:Damiano.html
http://www.informatik.uni-trier.de/~ley/db/journals/sttt/sttt11.html#BernardiLD09

Reverse Engineering and Testing of Rich Internet Applications

186

Oct. 2004 pp. 58-64

[149] S. She, S. Sivapalan, I. Warren. Hermes: A Tool for Testing Mobile Device Applications. Proc.

of 2009 Australian Software Engineering Conference, IEEE Comp. Soc. Press., pp. 123-130

[150] S. Srirama, R. Kakumani, A. Aggarwal, and P. Pawar, "Effective Testing Principles for the

Mobile Data Services Applications", First International Conference on Communication System

Software and Middleware, Comsware 2006, IEEE Comp. Soc. Press, pp. 1-5

[151] J. L. Wesson and D. F. van der Walt, "Implementing Mobile Services: Does the Platform

Really Make a Difference?" in SAICSIT ‘05: Proc. of the 2005 Annual Research Conference

of the South African Institute of Computer Scientists and Information Technologists on IT

Research in Developing Countries. South African Institute for Computer Scientists and

Information Technologists, 2005, pp. 208–216

[152] D. Gavalas and D. Economou. "Development Platforms for Mobile Applications: Status and

Trends". IEEE Software, Volume: 28, Issue: 1 , 2011, pag. 77- 86

[153] Gartner Newsroom. Gartner Says Android to Become No. 2 Worldwide Mobile Operating

System in 2010 and Challenge Symbian for No. 1 Position by 2014.

[154] H. Kim, B. Choi, W. Eric Wong. "Performance Testing of Mobile Applications at the Unit Test

Level". Proc. of 2009 Third IEEE International Conference on Secure Software Integration and

Reliability Improvement, IEEE Comp. Soc. Press, pp. 171- 181

[155] Z. Liu, X. Gao, X.Long. "Adaptive Random Testing of Mobile Application". Proc. of 2010 2nd

International Conference on Computer Engineering and Technology (ICCET), IEEE Comp.

Soc. Press, pp. 297-301

[156] Android Developers. UI Application Exerciser Monkey Available at:

http://developer.android.com/guide/developing/tools/monkey.html

[157] Android Developers. Monkeyrunner. Available at:

http://developer.android.com/guide/developing/tools/monkeyrunner_concepts.html

[158] Google Code. Robotium. Available at: http://code.google.com/p/robotium

[159] Android Developers. The Developer‘s Guide. Available at: http://developer.android.com

[160] Junit. Resources for Test Driven Development. Available at: http://www.junit.org

[161] Android Emulator, available at:

http://developer.android.com/guide/developing/tools/emulator.html

[162] Butler, M.; Giannetti, F.; Gimson, R.; Wiley, T.; , "Device independence and the

Web," Internet Computing, IEEE , vol.6, no.5, pp. 81- 86, Sep/Oct 2002

