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PREFACE 
 

In the field of tissue engineering, polymeric and micro/nanocomposite substrates with 

suitable architectural features, mechanical, transport and surface properties are 

normally required according to specific applications. 

In this context, the present research has been divided into two different steps 

evidencing some strategies to develop 3D multifunctional scaffolds with enhanced 

and tailored performances.  

The first step highlights the possibility to extend a precisely controlled two-step 

procedure to immobilize RGD motifs on 3D rapid prototyped PCL scaffolds.  In 

particular, the aim was to design 3D advanced scaffolds through 3D Fiber Deposition 

technique, that are able to guide cell functions, benefiting from an approach to control 

morphology, spatial distribution of surface treatment, as well as macro-, micro-, nano-

mechanical performances. Nanoindentation and tensile measurements on the PCL 

fibers of 3D scaffolds have allowed to understand the effects of the surface 

modification via aminolysis. Furthermore, the efficacy of both functionalization and 

bioactivation was monitored by analytically quantifying functional groups and/or 

peptides at the interface. Cell adhesion studies verified the correct presentation of the 

peptide with enhanced cell attachment.  

On the other hand, the second step of the research was mainly focused on the design 

of 3D PCL/biomimetic hydroxyapatite (HA) nanocomposite scaffolds for hard tissue 

regeneration. Accordingly, 3D fiber-deposited PCL/Mg,CO3-substituted HA 

nanocomposite scaffolds were developed and the effects of the biomimetic HA 

nanoparticles on the biological and mechanical performances were suitably evaluated.  
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CHAPTER I 

General Introduction 
 

I.I Tissue Engineering 
 
The loss or failure of an organ or tissue represents a frequent and devastating problem 

in health care. Thus, the need for substitutes to replace or repair tissues or organs 

problems is overwhelming. 

For this reason, tissue engineering is becoming an important field of research. Tissue 

engineering is defined as a multidisciplinary field that integrates principles of 

engineering and life sciences to develop biological substitutes that restore, maintain or 

improve tissue function.1-3 As easily understood, this approach involves a 

multidisciplinary knowledge gathered from the fields of engineering, biotechnology, 

life sciences, biology and, recently, from the appearance of micro- and nano-

mechanical approaches for predicting the mechanical properties of natural tissues.3-5   

Therefore, the main goal of tissue engineering and regenerative medicine strategies is 

to restore the function of damaged tissues by delivering a combination of cells, 

biological factors and a biomaterial scaffold on which these cells must adhere, 

organize and develop similarly to native tissue.6 

 

 
Figure I.I: Tissue engineering paradigm. 

 
example, bone ECM consists mostly of collagen I [2], mineral and non-
collagenous proteins such as osteocalcin, fibronectin and vitronectin
[3]. However, cartilage ECM is predominantly composed of collagen II
and aggrecans [4]. This tissue-specific difference in ECM composition
may be instructive to tissue engineering because different ECM
macromolecules regulate cell growth and differentiation by selec-
tively stimulating different signaling pathways through ECM interac-
tions with various cell receptors [5].

2.1.2. Cell–ECM interaction — integrins
Transmission of chemical and mechanical signals from the ECM is

primarily mediated by integrins. Integrins are a family of cell-surface
transmembrane receptors, each of which consists of α and β subunits.
So far, 8 β and 18 α integrin subunits have been found. These integrin
subunits associate to form 24 distinct αβ combinations, and each of
these integrins has unique binding characteristics [6] (Fig. 3). Most
integrins bind to several types of ECMmolecules and conversely, most

ECM bind to more than one integrin. Integrins also can also undergo
bidirectional signaling. That is, when ECM binds to the extracellular
domain of integrins, it activates intracellular signaling (outside-in).
Conversely, intracellular signaling can affect the conformation of an
integrin, which modulates its affinity to its ligand (inside-out) [7].

Both α and β integrin subunits pass through the cell membrane
once and have large 700–1100 residue extracellular domains and
small 30–50 residue cytoplasmic domains. The extracellular domains
of integrins serve to recognize and bind ECM. Upon ECM binding,
integrins cluster and their cytoplasmic domains associate with both
cytoskeletal and intracellular signal transduction molecules. The
association of integrins with the cellular signaling network initiates
downstream signaling cascades such as the protein kinase C, Rac, Rho
and MAPK pathways. The coordinated clustering of ECM ligands,
integrins and cytoskeletal components forms macromolecular aggre-
gates known as focal adhesions on the inside and outside of the cell
membrane [8]. These integrin–ECM interactions govern cell survival,
growth,migration and differentiation [7,9,10] and are therefore useful
targets of biomimetic tissue engineering strategies. Furthermore,
because focal adhesions occur on submicron to nanometer size scales
[11] and integrins are approximately 10 nm in diameter [12] and have
20 nm long extracellular domains [13,14], integrin–ECM based
biomaterial strategies are especially relevant applications for nano-
fabrication and nanopatterning technologies.

2.1.3. Integrin-binding adhesive peptide sequences within ECM
Although ECM macromolecules such as collagens and fibronectin

have long protein backbones consisting of thousands of amino acids,
integrins recognize and bind to only a few short peptide sequences
within the ECM molecules, triggering cell adhesion, signaling and
spreading. In collagens I, II and III, cells bind to the GFOGER [15,16]
peptide sequence, while in fibronectin, the RGD [17], PHSRN [18],
REDV [19], and LDV [20] sequences are responsible for cell binding.
Recognition sequences within laminin include RGD, as well as IKVAV
[21], YIGSR [22] and PDSGR [23] (Fig. 3).

2.1.4. Biomaterial strategies utilizing ECM-derived adhesive peptides
Integrin interactions with ECM peptide ligands trigger complex

signaling pathways which regulate crucial cell behaviors such as
proliferation and differentiation as well as tissue-level responses such
as morphogenesis, homeostasis and regeneration [6]. Therefore,

Fig. 1. Tissue engineering paradigm.

Fig. 2. Bioactive signals found within the extracellular environment.
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In vivo, cell fates are determined by a complex interaction of nano-scale physical and 

chemical signals. Therefore, scaffolds for tissue engineering often incorporate 

biosignals to create a controlled, bioinspired extracellular environment to direct 

tissue-specific cell responses. The intention is that, when presented with appropriate 

biological cues, cell receptors will bind to these signaling biomolecules and transmit 

the signals, at intracellular level, by activating signaling cascades. These cascades will 

modulate gene expression and determine important cell fate processes such as 

differentiation to ultimately regenerate functioning tissue. As nanotechnology can 

recapitulate the submicron-scale spatial orientation of extracellular signaling 

molecules, it may be a powerful tool for enhancing cell-biomaterial communication 

and inducing desired cell behaviors.  

Signals from the extracellular microenvironment that may be incorporated into 

biomaterials fall into three major categories: (1) insoluble extracellular matrix (ECM) 

macromolecules, (2) diffusible/soluble molecules, and (3) cell–cell receptors (Figure 

I.II).6 

 

 
Figure I.II: Bioactive signals found within the extracellular environment. 

 

I.II Extracellular Matrix (ECM): structure and function in vivo 

 
There is a great diversity of insoluble ECM molecules including structural proteins 

such as collagens, elastin and laminin, glycoproteins such as fibronectin and 

vitronectin, as well as glycosaminoglycans such as chondroitin sulfate.7 In vivo, these 

example, bone ECM consists mostly of collagen I [2], mineral and non-
collagenous proteins such as osteocalcin, fibronectin and vitronectin
[3]. However, cartilage ECM is predominantly composed of collagen II
and aggrecans [4]. This tissue-specific difference in ECM composition
may be instructive to tissue engineering because different ECM
macromolecules regulate cell growth and differentiation by selec-
tively stimulating different signaling pathways through ECM interac-
tions with various cell receptors [5].

2.1.2. Cell–ECM interaction — integrins
Transmission of chemical and mechanical signals from the ECM is

primarily mediated by integrins. Integrins are a family of cell-surface
transmembrane receptors, each of which consists of α and β subunits.
So far, 8 β and 18 α integrin subunits have been found. These integrin
subunits associate to form 24 distinct αβ combinations, and each of
these integrins has unique binding characteristics [6] (Fig. 3). Most
integrins bind to several types of ECMmolecules and conversely, most

ECM bind to more than one integrin. Integrins also can also undergo
bidirectional signaling. That is, when ECM binds to the extracellular
domain of integrins, it activates intracellular signaling (outside-in).
Conversely, intracellular signaling can affect the conformation of an
integrin, which modulates its affinity to its ligand (inside-out) [7].

Both α and β integrin subunits pass through the cell membrane
once and have large 700–1100 residue extracellular domains and
small 30–50 residue cytoplasmic domains. The extracellular domains
of integrins serve to recognize and bind ECM. Upon ECM binding,
integrins cluster and their cytoplasmic domains associate with both
cytoskeletal and intracellular signal transduction molecules. The
association of integrins with the cellular signaling network initiates
downstream signaling cascades such as the protein kinase C, Rac, Rho
and MAPK pathways. The coordinated clustering of ECM ligands,
integrins and cytoskeletal components forms macromolecular aggre-
gates known as focal adhesions on the inside and outside of the cell
membrane [8]. These integrin–ECM interactions govern cell survival,
growth,migration and differentiation [7,9,10] and are therefore useful
targets of biomimetic tissue engineering strategies. Furthermore,
because focal adhesions occur on submicron to nanometer size scales
[11] and integrins are approximately 10 nm in diameter [12] and have
20 nm long extracellular domains [13,14], integrin–ECM based
biomaterial strategies are especially relevant applications for nano-
fabrication and nanopatterning technologies.

2.1.3. Integrin-binding adhesive peptide sequences within ECM
Although ECM macromolecules such as collagens and fibronectin

have long protein backbones consisting of thousands of amino acids,
integrins recognize and bind to only a few short peptide sequences
within the ECM molecules, triggering cell adhesion, signaling and
spreading. In collagens I, II and III, cells bind to the GFOGER [15,16]
peptide sequence, while in fibronectin, the RGD [17], PHSRN [18],
REDV [19], and LDV [20] sequences are responsible for cell binding.
Recognition sequences within laminin include RGD, as well as IKVAV
[21], YIGSR [22] and PDSGR [23] (Fig. 3).

2.1.4. Biomaterial strategies utilizing ECM-derived adhesive peptides
Integrin interactions with ECM peptide ligands trigger complex

signaling pathways which regulate crucial cell behaviors such as
proliferation and differentiation as well as tissue-level responses such
as morphogenesis, homeostasis and regeneration [6]. Therefore,

Fig. 1. Tissue engineering paradigm.

Fig. 2. Bioactive signals found within the extracellular environment.
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secreted ECM proteins form a meshwork of fibers or fibrils with ECM glycoproteins 

incorporated into them. The resulting matrix functions as both a structural and 

signaling scaffold to cells. ECM composition, immobilization and spatial arrangement 

vary for each tissue type. For example, bone ECM consists mostly of collagen I,8 

mineral and non-collagenous proteins such as osteocalcin, fibronectin and 

vitronectin.9 However, cartilage ECM is predominantly composed of collagen II and 

aggrecans.10 This tissue-specific difference in ECM composition may be instructive to 

tissue engineering because different ECM macromolecules regulate cell growth and 

differentiation by selectively stimulating different signaling pathways through ECM 

interactions with various cell receptors.11 

Transmission of chemical and mechanical signals from the ECM is primarily 

mediated by integrins. Integrins are a family of cell-surface transmembrane receptors, 

each of which consists of α and β subunits. So far, 8 β and 18 α integrin subunits have 

been found. These integrin subunits associate to form 24 distinct αβ combinations, 

and each of these integrins has unique binding characteristics (Figure I.III).12 

 

 
Figure I.III: Integrin alpha and beta subunit combinations and binding specificity.12 

Most integrins bind to several types of ECM molecules and conversely, most ECM 

bind to more than one integrin. Integrins can also undergo bidirectional signaling. 

That is, when ECM binds to the extracellular domain of integrins, it activates 

intracellular signaling (outside-in). Conversely, intracellular signaling can affect the 

conformation of an integrin, which modulates its affinity to its ligand (inside-out).13 

Both α and β integrin subunits pass through the cell membrane once and have large 

700–1100 residue extracellular domains and small 30-50 residue cytoplasmic 

coatings of ECMmacromolecules such as collagen and laminin or their
recognition peptides such as RGD or IKVAV have been used to
biofunctionalize surfaces or implants and drive tissue-specific cell
responses. Although naturally derived ECM molecules have proved
fairly successful in some applications (for a review, see [24]),
extracting and purifying matrix polymers in large scale is challenging,
and animal-derived ECM may elicit an immune response. Further-
more, natural ECM biomaterials are difficult to modify, characterize
and control. These limitations have driven the need for synthetic non-
fouling materials functionalized with ECM-derived peptides [25]
which are easily synthesized, immobilized, may be presented at
unnaturally high densities, and may be tailored in composition for
each tissue-specific application. Although there are many ECM-
derived cell-binding motifs, most bioadhesive tissue engineering
strategies have been restricted to modifying materials with RGD,
GFOGER, IKVAV and YIGSR and PHSRN. Of these studies, the majority
have focused on RGD due to its status as a universal and ‘promiscuous’
adhesion peptide which is found in numerous ECM molecules and
binds to multiple integrins (αvβ3, α5β1, αvβ1, α8β1, αvβ8, αvβ6,
αvβ5 and αIIbβ3) [6].

2.2. Diffusible/soluble signals

Besides a broad host of ECM-mimetic studies, other bioinspired
approaches have focused on incorporating soluble signals into tissue
engineering scaffolds. Soluble signals include growth factors such as
epidermal growth factor (EGF), vascular endothelial growth factor
(VEGF) and fibroblast growth factor (FGF), as well as cytokines and
chemokines. Growth factors are naturally occurring protein hormones
which may act through autocrine or paracrine mechanisms and have
potent effects on cell growth, proliferation, and differentiation.
Growth factors are often stored and sequestered in the ECM and
interact with cells through receptor tyrosine kinases (RTKs). Growth
factor signaling pathways overlap to a large extent with integrin
signaling pathways, and cell responses to many growth factors are
dependent on integrin-mediated adhesion. Considerable efforts have
been focusedwithin the tissue engineering and regenerativemedicine
fields on delivering or immobilizing growth factors to biomaterials
promote stem cell proliferation and differentiation (for reviews, see
[26,27]). Growth factor delivery strategies increasingly feature the use
of nanoparticles and nanotechnology (reviewed here [28]). Although
biomaterials incorporating growth factors will not be directly

addressed in this article, growth factors can be used in combination
with adhesive peptides to direct cell functions for tissue engineering.

2.3. Cell–cell interactions

Cell–cell interactions are primarily mediated by cadherins, ephrins
and CAMs. Intercellular receptors have not been widely used in
biomimetic tissue engineering with a few notable exceptions. For
example, Beckstead et al. immobilized the Notch ligand, Jagged-1 to a
biomaterial surface to direct stem cell differentiation [29] and Moon
et al. functionalized hydrogels with ephrin A-1 to promote angiogen-
esis [30].

3. From micro to nano in biomaterials

Over the past few decades, techniques for creating nanoscale
features, patterns and particles have emerged. Although these
techniques were initially applied to electronics fabrication, they
have more recently been used to pattern and immobilize proteins and
peptides with nanoscale precision for applications such as tissue
engineering, drug delivery and biosensing. Like nanotechnology, the
interdisciplinary field of tissue engineering is also fledgling, and began
approximately two decades ago with the idea that engineering and
biology principles could be applied to the design of cell-based artificial
constructs which would restore tissue and organ function [31]. The
application of nanotechnology to tissue engineering thus far has
mainly focused on recapitulating non-biochemical aspects of ECM.
Examples include nanofiber scaffolds which recapitulate the archi-
tecture of structural proteins within ECM [32], substrates with
nanoscale features which model native ECM nanotopography [33],
and nanocomposites which recreate the mineral content and
structure of bone ECM [34]. While these strategies represent
promising avenues of research which may be combined with
bioadhesive approaches, they fall beyond the scope of this article,
which will focus solely on nanoscale biomaterial approaches using
peptide or small protein ECM-derivatives for tissue regeneration.

4. Techniques to nanopattern peptides and proteins

Nanoscale control of ECM-derived peptides and proteins have
primarily been used for non-regenerative medicine applications,
including biosensing, drug delivery and for model systems to study
cell functions such as adhesion and spreading. However, given that
integrins and focal adhesions exist on submicron size scales, there is a
compelling rationale for using nanotechnology in bioadhesive tissue
engineering applications. The following strategies have been used to
control and pattern proteins and peptides on a nanoscale for a range
of applications and may be used for bioadhesive strategies as well. In
the following section, the approaches may be equally applied to
patterning either peptides or proteins unless stated otherwise.
However for brevity, the term ‘peptides’ will be used to refer to
‘peptides and/or proteins’.

4.1. Self-assembly

Self-assembly is the spontaneous formation of ordered structures
and is an important nanotechnology tool which may be utilized for
spatially orienting peptides with nanoscale precision. Self-assembly is
a ‘bottom-up’ approach in which smaller building block molecules
associate with each other in a coordinated fashion to form larger,
more complex supramolecules. The organization of these building
blocks into supramolecules is governed by molecular recognition due
to non-covalent interactions such as hydrogen bonding, as well as
electrostatic and hydrophobic interactions. Commonly used peptide
self-assembly methods include self-assembled monolayers,

Fig. 3. Integrin alpha and beta subunit combinations and binding specificity.
Adapted from [6].
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domains. The extracellular domains of integrins serve to recognize and bind ECM. 

Upon ECM binding, integrins cluster and their cytoplasmic domains associate with 

both cytoskeletal and intracellular signal transduction molecules. The association of 

integrins with the cellular signaling network initiates downstream signaling cascades 

such as the protein kinase C, Rac, Rho and mitogen-activated protein kinase (MAPK) 

pathways. The coordinated clustering of ECM ligands, integrins and cytoskeletal 

components forms macromolecular aggregates known as focal adhesions on the inside 

and outside of the cell membrane.14 These integrin–ECM interactions govern cell 

survival, growth, migration and differentiation13,15,16 and are, therefore, useful targets 

of biomimetic tissue engineering strategies. Furthermore, because focal adhesions 

occur on submicron to nanometer size scales17 and integrins are approximately 10 nm 

in diameter18 and have 20 nm long extracellular domains,19,20 integrin–ECM based 

biomaterial strategies are especially relevant applications for nanofabrication and 

nanopatterning technologies. 

Although ECM macromolecules, such as collagens and fibronectin, have long protein 

backbones consisting of thousands of aminoacids, integrins recognize and bind to 

only a few short peptide sequences within the ECM molecules, triggering cell 

adhesion, signaling and spreading. In collagens I, II and III, cells bind to the Gly-Phe-

Hyp-Gly-Glu-Arg (GFOGER) peptide sequence,21,22 while in fibronectin, the Arg-

Gly-Asp (RGD),23 Pro-His-Ser-Arg-Asn (PHSRN),24 Arg-Glu-Asp-Val (REDV),25 

and Lys-Asp-Val (LDV)26 sequences are responsible for cell binding. Recognition 

sequences within laminin include RGD, as well as Ile-Lys-Val-Ala-Val (IKVAV),27 

Tyr-Ile-Gly-Ser-Arg (YIGSR)28 and Pro-Asp-Ser-Gly-Arg (PDSGR)29 (Figure I.III). 

Integrin interactions with ECM peptide ligands trigger complex signaling pathways 

which regulate crucial cell behaviors such as proliferation and differentiation as well 

as tissue-level responses such as morphogenesis, homeostasis and regeneration.12 

Therefore, coatings of ECM macromolecules such as collagen and laminin or their 

recognition peptides such as RGD or IKVAV have been used to bio-functionalize 

surfaces or implants and drive tissue-specific cell responses. Although naturally 

derived ECM molecules have proved fairly successful in some applications30 

extracting and purifying matrix polymers in large scale is challenging, and animal-

derived ECM may elicit an immune response. Furthermore, natural ECM biomaterials 

are difficult to modify, characterize and control. These limitations have driven the 

need for synthetic non-fouling materials functionalized with ECM-derived peptides31 
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which are easily synthesized, immobilized, may be presented at unnaturally high 

densities, and may be tailored in composition for each tissue-specific application. 

Although there are many ECM-derived cell-binding motifs, most bioadhesive tissue 

engineering strategies have been restricted to modifying materials with RGD, 

GFOGER, IKVAV and YIGSR and PHSRN. Most of these studies have focused on 

RGD due to its status as a universal and “promiscuous” adhesion peptide which is 

found in numerous ECM molecules and binds to multiple integrins (αvβ3, α5β1, 

αvβ1, α8β1, αvβ8, αvβ6, αvβ5 and αIIbβ3).12 

In this regard, the current work, in the bargain, highlights the possibility to extend a 

precisely controlled two-step procedure to immobilize RGD motifs on 3D rapid 

prototyped PCL scaffolds, in order to promote cell adhesion and, subsequently, 

specific events at the cellular level. In particular, the aim of this research was to 

design 3D advanced scaffolds able to guide cell functions, benefiting from an 

approach to control morphology, spatial distribution of surface treatment, as well as 

macro-, micro-, nano-mechanical performances. On the other hand, the possibility to 

create nanocomposite scaffolds for repairing bone tissue defects is also showed. In 

particular, it is evidenced the effect of the inclusion of biomimetic hydroxyapatite 

nanoparticles on mechanical and biological performances of 3D rapid prototyped PCL 

scaffolds, also including the possibility to achieve a double layered scaffold, as will 

be shown below. 

Accordingly, the following paragraphs will aim to clarify the approach and the goal of 

this research. 

 

I.III Scaffold Biomaterials: from inorganic materials and polymers 

to polymer-based composites 
 

Natural, synthetic, semi-synthetic and hybrid materials have been widely proposed 

and tested as scaffolds for tissue regeneration.2,32-41 Among synthetic and natural 

inorganic ceramic materials, hydroxyapatite (HA) and tricalcium phosphate have been 

considered as candidates for scaffold materials for bone tissue engineering.2,42 Even 

though these ceramic materials resemble the natural inorganic component of bone and 

possess osteoconductive properties,2,43 they are brittle and cannot properly match the 

mechanical properties of bone. Furthermore, ceramic scaffolds have also been found 
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to be unsuitable for the growth of soft tissues that are characterized by different 

cellular receptors and mechanical performances than hard tissues. Accordingly, 

synthetic and natural polymers may be considered an attractive alternative to the 

growth of most tissues.2,38-44 Natural polymers used in tissue engineering include 

collagen, alginate, agarose, chitosan, fibrin and hyaluronic acid (or hyaluronan).2,39-45 

Unlike natural polymers, synthetic polymers are man-made polymers that may present 

several advantages as well as more flexibility and processability into different size 

and shapes.45 The physical-chemical properties of such polymers can be easily 

modified, and the mechanical behavior and degradation can be suitably modulated by 

varying the chemical composition of the macromolecule. By incorporating functional 

groups and side chains, synthetic polymers can also be bioactivated with specific 

molecules. 45 

With regard to synthetic polymers, aliphatic polyesters such as polyglycolic acid 

(PGA), polylactic acid (PLA), their copolymers such as poly(lactic-co-glycolic acid) 

(PLGA) (also known as polylactide-co-glycolide), and polycaprolactone (PCL) are 

the most commonly used polymers for tissue engineering applications.2,38,45-47 

Products obtained from the degradation of these polymers can be removed by natural 

metabolic pathways. 

As previously said, scaffolds were initially fabricated using either polymers or 

ceramics, however, polymeric scaffolds turned out to be too flexible, while the 

ceramic ones tended to be too brittle.48,49 Consequently, over the past few years, 

composite materials consisting of polymers reinforced with inorganic ceramic fillers 

have attracted research interest in the field of tissue engineering48,49 to reconstruct 

several types of tissues, such as bone, tendons or ligaments, meniscus and cartilage. 

Compared to neat polymers, composites should present improved mechanical 

properties, better flexibility and structural integrity than brittle ceramic materials. This 

means that porous scaffolds with enhanced bioactivity and controlled reabsorption 

rates can be obtained by suitably combining polymers and ceramics.49  

The term “composite material” generally refers to the combination, on a macroscopic 

scale, of two or more materials, that differ in composition or morphology, in order to 

obtain specific chemical, physical and mechanical properties. The advantage is that 

the resulting composite material may possess a combination of the best properties of 

their constituents, and often other interesting properties, which are not shown by the 

single constituents.50,53 Hence, composite materials with polymeric matrices, that are 
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also defined as polymer-based composite materials, have emerged as suitable 

candidates for load bearing applications in several fields. 

The polymeric matrix and its interaction with a reinforcing phase, that is in the form 

of continuous or discontinuous high stiffness fibers and particles, represents one of 

the major controlling factors in the properties of a composite. Since fiber-reinforced 

polymers show high strength and stiffness to weight ratios, they have gained research 

attention; little by little, the interest in applications for composites has also been 

extended to particulate polymer composites and, lately, to nanocomposites.53 Different 

polymer-based composites have also been studied for biomedical applications. 

Specific advantages have been obtained in using polymer-based composite 

biomaterials that are also called “biocomposites”.53,54 

As can be easily understood, the concept of polymer-based composite material has 

been rapidly extended to the design of scaffolds for tissue engineering, the aim being 

to improve their functionality. 

 

I.IV Poly-ε-caprolactone 
 

Poly-ε-caprolactone (PCL) is a biodegradable polyester with a low melting point of 

around 60°C and a glass transition temperature of about −60°C. PCL is obtained from 

ring opening polymerization of ε-caprolactone using a catalyst, such as stannous 

octanoate or different metal-based, enzymatic, and organic systems (Figure I.IV).55,56 

Polycaprolactone is commonly used in the manufacture of special polyurethanes, 

because it imparts good water, oil, solvent and chlorine resistance to the polyurethane 

produced. Furthermore, polycaprolactone is often used as an additive for resins, in 

order to improve their processability and their end use properties (e.g., impact 

resistance). Being compatible with a range of other materials, PCL can be mixed with 

starch to lower its cost and increase biodegradability or it can be added as a polymeric 

plasticizer to polyvinyl chloride (PVC).57-59 
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Figure I.IV: Ring opening polymerization of ε-caprolactone to polycaprolactone. 

 

PCL has been used in different fields such as biomaterial for scaffolds in tissue 

engineering,61,65–67 in long-term drug delivery systems56,62,63 (in particular 

contraceptives delivery60), in microelectronics,68 as adhesives,64 and in packaging.60 

Its wide applicability and interesting properties (controlled degradability, miscibility 

with other polymers, biocompatibility and potential to be made from monomers 

derived from renewable sources) make PCL a very useful polymer if its properties can 

be controlled and it can be made inexpensively. 

 

I.IV.I Chemical features 

 
From a chemical point of view, polycaprolactone represents a linear aliphatic 

polyester and it is characterized by the structural formula: 

 
It is able to dissolve at room temperature in the presence of various solvents, such as 

dimethylacetamide (DMAC), benzene and chloroform, chosen according to the 

specific application.72 

The most important feature of the PCL is its ability to degrade in physiological 

environment; in particular it is affected by degradation phenomena due to the ease of 

interaction that the aliphatic ester bonds along the backbone show with water 

molecules. 

PCL biodegrades within several months to several years depending on the molecular 

weight, the degree of crystallinity of the polymer, and the conditions of 
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degradation.60–68,70 Many microbes in nature are able to completely biodegrade PCL.70 

The amorphous phase is degraded firstly, resulting in an increase in the degree of 

crystallinity while the molecular weight remains constant.61 Then, cleavage of ester 

bonds results in mass loss.56,65 The polymer degrades by end chain scission at higher 

temperatures while it degrades by random chain scission at lower temperatures 

(Figure I.V).64 PCL degradation is auto-catalyzed by the carboxylic acids liberated 

during hydrolysis56 of the ester bond73 but it can also be catalyzed by enzymes, 

resulting in faster decomposition.63 While PCL can be enzymatically degraded in the 

environment, it cannot be degraded enzymatically in the body.60 

 
Figure I.V: Cleavage of the polymeric chains during the degradation of PCL.55 

 

Many studies were made in order to better understand the degradation process of the 

PCL. For example, some studies have shown that free radicals produced by the 

reaction between the carboxylic group are much more reactive than oxygen radicals 

produced by reaction with oxydrile (OH-) groups.73 Other works aimed to study the 

evolution of physical and chemical properties during the degradation process. 

Figure I.VI shows the trend of the molecular weight of the polymer in distilled water. 

It is clear that, due to the activation of hydrolysis, the breaking of bonds along the 

aliphatic macromolecules, which gradually become shorter, begins and this causes the 

loss of molecular weight, faster at first, and then most significant slower, until the 

complete degradation of the polymer.73 
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Figure I.VI: PCL molecular weight versus time, after the introduction in distilled water.74 

 

Similarly, as the mechanism of degradation goes on, a percentage reduction in the 

amount of polymer occurs.75 

The period of time where the degradation process take place is pretty long: in distilled 

water, it is of about 30 weeks, in agreement with the figure I.VI.74 

Sun et al. (2008) highlighted that the in vivo degradation of PCL was observed for 3 

years in rats. The distribution, absorption and excretion of PCL were traced in rats by 

radioactive labeling. PCL capsules with initial molecular weight (Mw) of 66000 g 

mol-1 remained intact in shape during 2-year implantation. It broke into low molecular 

weight (Mw 1⁄4 8000 g mol-1) pieces at the end of 30 months. The molecular weight 

(Mw) of PCL decreased with time and followed a linear relationship between log Mw 

and time (Figure I.VII).69 

 
Figure I.VII: Decrease in Mw of PCL capsules, implanted in rats, with time. A linear relationship between 
the logarithm of Mw and time was observed. 69 
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I.IV.II Physical features 

 
Polycaprolactone is a thermoplastic semi-crystalline polymer76 characterized by high 

workability that enables the rapid modeling of the form that is more useful for the 

application. It is a very versatile polymer since it shows a high propensity to form 

compatible blends with a wide variety of polymers. In fact, it is easily co-polymerized 

with monomers such as ethylene oxide, cloroprene and methylmethacrylate, to 

achieve composites able to present, in addition to the widely documented 

biocompatibility, suitably mechanical properties. 

The main limitation of the PCL lies in its mechanical properties (compressive strength 

of about 1.6 MPa75 and tensile strength between 20.7 and 42.0 MPa77) that are lower if 

compared to those of hard tissue (i.e., cortical bone). 

 
I.IV.III Biomedical applications 
 

PCL degrades by hydrolysis of its ester linkages in physiological conditions (such as 

in the human body) and has therefore received a great deal of attention for use as an 

implantable biomaterial. In particular, it is especially interesting for the preparation of 

long-term implantable devices, owing to its degradation which is even slower than 

that of polylactide. 

PCL has been approved by the Food and Drug Administration (FDA) in specific 

applications used in the human body as (for example) a drug delivery device, suture 

(sold under the brand name Monocryl or generically), or adhesion barrier.  

It is being investigated as a scaffold for tissue repair via tissue engineering,61,65-67 and 

as a membrane for guided bone replacement (GBR)78. It has been used as the 

hydrophobic block of amphiphilic synthetic block copolymers used to form the 

vesicle membrane of polymersomes. A variety of drugs have been encapsulated 

within PCL beads for controlled release and targeted drug delivery.56,62,63 

In odontology or dentistry (as composite named Resilon)71, it is used in root canal 

filling. It performs like gutta-percha: it has the same handling properties and, for 

retreatment purposes, may be softened with heat, or dissolved with solvents like 

chloroform.71 Similar to gutta-percha, there are master cones in all ISO sizes and 

accessory cones in different sizes available. The major difference between the 
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polycaprolactone-based root canal filling material (Resilon and Real Seal) and gutta-

percha is that the PCL-based material is biodegradable but the gutta-percha is not 

degradable. There is lack of consensus in the expert dental community as to whether 

an absorbable root canal filling material, such as Resilon or Real Seal is desirable.71 

 

I.IV.IV Hobbyist and Prototyping 
 

PCL also has many applications in the hobbyist market. Some brand names used in 

selling it to this market are Mold-Your-Own Grips, InstaMorph, Shapelock, Hand 

Moldable Plastic, and Friendly Plastic in the US, and Polymorph in the UK. It has 

physical properties of a very tough, nylon-like plastic that melts to a putty-like 

consistency at only 60°C. 

 

 
Figure I.VIII: Home-made bicycle light mounting, made from PCL. 

 

PCL's specific heat and conductivity are low enough that it is not hard to handle at 

this temperature. This makes it ideal for small-scale modeling, part fabrication, repair 

of plastic objects, and rapid prototyping where heat resistance is not needed. Though 

molten PCL readily sticks to many other plastics, if the surface is cooled, the 

stickiness can be minimized while still leaving the mass pliable. 
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I.V Scaffolds for Tissue Engineering 
 

The design of a scaffold able to guide tissue regeneration represents a promising 

challenge in the field of tissue engineering. The ideal scaffold should promote and 

control specific events at the cellular and tissue levels, as results of its unique 

chemical, biochemical and biophysical cues.3,44 Consequently, a scaffold has to 

satisfy several requirements2,3,67,79  that can be briefly summarized as follows.  

It should be characterized by interconnecting pores of specific scale, and made using 

materials with controlled biodegradability or bioresorbability.  

It should possess suitable mechanical properties to match the intended site of 

implantation and handling, as well as specific surface chemistry for promoting cell 

attachment, differentiation and proliferation.  

In addition, the scaffold should not induce adverse reactions, and it should be easily 

manufactured into a variety of shapes and sizes. 

Over the last two decades, the concept of cell guidance has also been progressively 

revised32-54,67,72-77,79-85 since a new knowledge about the complex features of cell-

material interaction has come to light. Thus, novel scaffold materials based on the cell 

guidance concept have been developed, benefiting from contemporary advances in the 

fields of molecular biology and materials science.3,32 

Several polymeric and composite materials have been used to make three-dimensional 

(3D) porous scaffolds, using both conventional methods and more advanced 

manufacturing processes. 67,79,32-37,87-92 

Conventional techniques include solvent casting and particulate leaching, gas 

foaming, fiber meshes and fiber bonding, phase separation, melt molding, emulsion 

freeze drying, solution casting etc., whilst rapid prototyping is a common name for a 

group of techniques which can generate a physical model directly from a computer 

aided design (CAD) data and may act as a methodical interface between tissue and 

engineering.91-95 Among Rapid Prototipyng techniques, 3D Printing, 

Stereolithography, Selective Laser Sintering (SLS), Fused Deposition Modeling 

(FDM), etc. are included. Differently from conventional processing techniques, rapid 

prototyping offers the possibility to strictly control pore geometry, size and 

interconnectivity, as well as the spatial distribution of pores within the structure. 

Among novel rapid prototyping techniques for scaffold fabrication, 3D Fiber 
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Deposition2,34-37,94-96 has recently emerged as a method to manufacture well-defined 

and custom-made scaffolds for tissue regeneration, with 100% interconnected pores. 

The main advantages of this CAD/CAM based technique consist in obtaining 

scaffolds with pores, which are interconnected per definition, as the structure can be 

built layer-by-layer alternatively depositing polymer fibers with a particular sequence 

of stacking. 

 

I.VI Rapid Prototyping (RP) 
 

Materials of natural, synthetic, semi-synthetic and hybrid origins have been proposed 

and tested as scaffolds for tissue regeneration.35,39,40 

Synthetic and natural inorganic ceramic materials, such as hydroxyapatite and 

tricalcium phosphate, have been considered as candidates for scaffold materials for 

bone tissue engineering.42,91 These ceramics resemble the natural inorganic 

component of bone and possess osteoconductive properties.43,91 The main drawback is 

that they are inherently brittle and cannot match the mechanical properties of bone. 

Moreover, ceramic scaffolds are not suitable for the growth of soft tissues since they 

are characterized by different cellular receptors and mechanical performances. 

Synthetic and natural polymers are an attractive alternative and versatile in their 

applications to the growth of most tissues.46,47,99 

As for synthetic polymers, the previously mentioned aliphatic polyesters (PGA, 

PLLA, PLGA and PCL) are the most commonly used polymers for designing 

scaffolds. Products obtained from the degradation of these polymers (glycolic acid 

and lactic acid) are present in the human body and can be removed by natural 

metabolic pathways. On the other hand, naturally derived protein or carbohydrate 

polymers have been considered as scaffold materials for the growth of several tissue 

types.46,94 By far the most popular natural polymer used for tissue engineering 

scaffolds is collagen. 

Different techniques have been developed to fabricate 3D porous scaffolds, each 

characterized by its own advantages and limitations.  

The introduction of RP technologies in the biomedical field has led to the division of 

scaffold fabrication techniques into two groups, defined as “conventional” and 

“novel” methods.91,94 In particular, conventional methods are defined as processes to 
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obtain scaffolds that are characterized by continuous, uninterrupted pore structure, 

however, lacking any long-range channeling microarchitecture. Basically, these 

techniques include fiber meshes/fiber bonding, gas foaming, solvent 

casting/particulate leaching, phase separation, melt molding, freeze drying, solution 

casting, and emulsion freeze drying.91,94 

The internal architecture of scaffolds, including pore size, pore shape and 

interconnectivity, are critical to their in vivo and mechanical performances, since it 

influences the degree and the path of tissue regeneration, and determines the 

mechanical properties of the scaffolds.92-109 However, in many scaffold manufacturing 

techniques, the control of the internal architecture and interconnectivity is limited.92-

109 Conventional scaffold processing techniques are, in fact, incapable of precisely 

controlling pore size, pore geometry, spatial distribution of pores and construction of 

internal channels within the scaffold.91,94 For example, scaffolds produced by solvent 

casting/particulate leaching cannot guarantee interconnection of pores because this is 

dependent on whether the adjacent salt particles are in contact. Furthermore, the 

interconnectivity provided by these techniques is strongly related to many processing 

variables, such as the rate of solvent evaporation and the 3D contact between the 

porogen particles.89,92 Consequently, using conventional scaffold manufacturing 

methods to have precise control over the internal architecture and interconnectivity is 

very difficult. Moreover, scaffolds fabricated with conventional techniques can be 

shaped with custom-made molds. 

Conversely, the technology transfer of solid freeform fabrication (SFF) to tissue 

engineering represents the key to produce customized scaffolds with reproducible 

internal morphology. This allows for a higher degree of architectural control, making 

structures to increase the mass transport of oxygen and nutrients throughout the 

scaffold.91,94 

SFF is a collective term for a group of technologies that can manufacture objects in a 

layer-by-layer fashion from the 3D computer design of the object. SFF was initially 

developed for fabricating prototype engineering parts, thus the name “rapid 

prototyping” (RP) is also widely used.79,89,91,92,94,109 

Since 1987, more than 20 SFF technologies have been developed and these 

technologies differentiate themselves mainly by the method by which the layers are 

laid down, solidified, and attached to the previous ones.79,89,91,92,94,109 
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Even though there are several commercial variants of SFF technology that differ 

significantly in the way they build up 3D models, they also present several common 

features, since all SFF technologies are characterized by three basic steps in their 

process: data input, data file preparation, and object building.91-92,110-111 In particular, 

the general process involves producing a computer-generated model using computer-

aided design (CAD) software. Successively, a CAD model is expressed as a series of 

cross-sectional layers, and the data are implemented by the SFF machine that creates 

the physical model. Some SFF technologies require an additional step of post-

processing to remove either temporary supports or the excessive material trapped 

inside the void space in the built structure. Furthermore, if a second type of data 

source is data obtained from computed tomography (CT) or magnetic resonance 

imaging (MRI), medical scans can be used to create a customized CAD model and, 

consequently, a scaffold which should be characterized by the exact external shape 

required to correct the damaged tissue site. 91-92,110-111  Among these SFF technologies, 

many have been modified or developed towards the manufacturing of tissue 

engineering scaffolds, including 3D printing, fused deposition modeling, ink-jet 

printing, stereolithography, selective laser sintering and a few other extrusion-based 

technologies, such as 3D Bioplotting.79,89,91,112-115  

3D printing incorporates a technology to eject a binder from a jet head that moves in 

accordance with the CAD cross-sectional data, onto a polymer powder surface. The 

binder dissolves and joins adjacent powder particles. The piston chamber is lowered 

and refilled with another layer of powder and the process repeated. The unbound 

powder acts to support overhanging or unconnected features and needs to be removed 

after component completion.91,114  

Fused deposition modeling (FDM) uses a moving nozzle to extrude a fiber of 

polymeric material from which the physical model is built layer-by-layer. The model 

is lowered and the procedure repeated. Although the fiber must also produce external 

structures to support overhanging or unconnected features that need to be manually 

removed, the pore sizes in tissue engineering scaffolds are sufficiently small enough 

for the fiber strand to bridge across without additional support structures.91,113,116-117  

In ink-jet printing the layout of the system consists of a build platform set on top of an 

elevator with a rolling cutter blade on one side of the platform and two print jets 

mounted on x, y rails. Two print materials are used, build materials and support 

materials. The build jet first lays down the design pattern by printing droplets onto the 
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platform. The support jet then prints support material around the printed pattern. After 

printing, the cutter blade comes over and cuts the build layer to a predetermined layer 

thickness, thereby controlling the accuracy in the z-direction. The build jet then prints 

build material for the next layer. The process repeats itself until the entire object is 

completed.91-92,94  

As for stereolithography, the basic process involves selective polymerization of a 

liquid photocurable monomer by an ultraviolet laser beam. The UV beam is guided 

(x- and y-axis control) onto the liquid monomer surface, in accordance with the CAD 

cross-sectional data. After the first layer is built, the elevator holding the model is 

lowered into the vat so as to allow the liquid photopolymer to cover the surface. A 

“wiper arm” is then displaced over the liquid to flatten the surface. The procedure is 

repeated until the model is completed. This system requires support structures to be 

added to the model, to prevent any overhanging or unconnected features from falling 

to the bottom of the liquid-filled vat. After completion, the model is raised and any 

support structures are removed manually.91-92,94,112,118  

In selective laser sintering (SLS), the build material of the system is either a polymer 

or a polymer-coated ceramic powder. The layout of the system consists of a build 

platform set on top of an elevator with a powder dispensing roller on one side of the 

platform and a CO2 laser on the top of the machine. The powder bed on the platform 

is preheated to a temperature just below the glass transition temperature of the 

polymer to minimize the energy required in the subsequent fusing processing. In 

object building, the computer directs the CO2 laser to a raster on the polymer or the 

polymer-coated ceramic powder bed causing the powder particles to fuse. After one 

layer is built, the platform moves downward to a specified distance to allow the 

powder dispensing roller to travel across the platform and coat the entire layer with 

fresh powder. The computer then directs the laser to a raster on the fresh powder to 

build the next layer. The process is repeated until the entire object is made. In 

building scaffold-like structures where multiple internal channels are present, there is 

loose, un-synthesized powder trapped inside the channels and it will require a post-

processing step to remove the trapped powder.91-94,119  

3D Bioplotting is an extrusion-based technology similar to FDM. This technology 

uses a pressurized nozzle to extrude the build material into the form of filaments 

which solidify onto the platform. The Bioplotter system, developed by researchers at 

the University of Freiburg, involves a moving extruder head (x-, y- and z-axis control) 
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and uses compressed air to force out a liquid or a paste-like plotting medium. The 

extruder head can be heated to the required temperature. The medium solidifies when 

it comes in contact with the substrate or previous layer.33,86,91-94  

A comparison of the above-mentioned RP techniques on the basis of materials, 

advantages and disadvantages are summarized in Table I.I.92-94 

 

 
Table I.I: Comparison of different rapid prototyping (RP) techniques on the basis of materials, advantages 
and disadvantages.94,115 

 

I.VII 3D Fiber Deposition Technique 
 

As previously described, RP techniques offer the possibility of directly fabricating 

scaffolds with different geometric structures and with different properties. 

The scaffolds are built layer-by-layer through material deposition by CAD/CAM 

techniques, either as a molten thermoplastic material, as in the case of the fused 

deposition modeling technique, or as droplets together with a binding agent, as in the 

3D printing technique.33,89,91,116  

In 2000 a new RP technology based upon 3D dispensing of liquids and pastes in a 

liquid medium, also referred to as 3D plotting technology, was developed at the 

Freiburg Materials Research Center to produce objects with complex architectures 

according to computer design. Individual microstrands and microdroplets can be 

positioned combined with in situ bonding to produce architectures similar to non-

woven materials.33,86,115 The direction of the individual strands can be varied layer-by-

layer. Therefore, it is possible to design scaffolds with interconnecting pores, thus 

Rapid prototyped scaffolds for tissue regeneration
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terconnecting pores, thus meeting the demands for cell 
attachment and cell growth.

Among all of the RP techniques, 3D plotting (55-57) 
and 3D fiber deposition (62, 63) have been recently de-
veloped and used for tissue engineering purposes. In par-
ticular, 3D fiber deposition may be considered as a modi-
fied technique of 3D plotting for the extrusion of highly 
viscous polymers, and it is a fused deposition technique 
in which a molten polymer is extruded and then deposited 
through a servo-mechanically controlled syringe that ap-
plies pressure (Fig. 1) (61, 64, 65). This process allows the 
realization of scaffolds with specific shape and size and 
100% interconnectivity. Such scaffolds possess a defined 
structure and architecture, and can be built with a cus-
tomized shape by CAD/CAM techniques. 

The key element of the 3D fiber deposition tech-
nique is a dispensing machine known as a Bioplotter, 
which was developed by Landers et al (55-57) to real-
ize scaffolds from hydrogels for soft tissue engineering. 
In particular, it consists of a dispenser, equipped with 
a heating jacket that is movable in three dimensions. 
The basic process involves dispensing of a flowable 
material stored into a cartridge through a thin needle 
by air-pressure control, and its subsequent hardening. 
The material can be dispensed in the presence of air 
or in a liquid. The advantage of dispensing in a liq-
uid medium is that the buoyancy in the liquid prevents 
deformation in the dispensed but not the completely 
hardened structure (Fig. 2) (56). Consequently, only 
highly viscous materials, such as polymer melts, can be 
processed in air. Hardening processes can be obtained 

through thermally induced solidification, solidification 
induced by a chemical reaction (e.g. a reactive compo-
nent is added to the plotter material and a second one 
is added to the plotter medium), and solidification in-
duced by precipitation. Among solidification process-
es, the thermally induced one includes solidification 
of melts and gelling of thermally reversible hydrogels, 
such as gelatin and agar.

The knowledge of the critical processing parame-
ters is crucial to develop 3D fiber-deposited scaffolds. 
Briefly, if a molten polymer is assumed as a viscous 
Newtonian fluid and the Hagen-Poiseuille equation as 
valid (62, 66), the flow rate from the nozzle can be ex-
pressed according to:

                  Q=            d4                                   [1]
                        128 l

The above described Hagen-Poiseuille equation 1 indi-
cates that the flow rate (Q) is directly proportional to both 
the pressure gradient ( P) across the syringe and needle tip, 
and the needle diameter (d). Moreover, Q is inversely pro-
portional to needle length (l) and polymer viscosity ( ). A 
high Q value may result in over-deposition of the fiber, thus 
reducing porosity, whilst a low Q value reduces the fiber 
diameter, compromising the overall scaffold integrity. 

A decrease in needle diameter reduces the flow rate, 
requiring considerably greater pressures to extrude fibers, 
and in the case of small needle diameters the pressures 
required to achieve a suitable flow rate can be greater 

TABLE I -  COMPARISON OF DIFFERENT RAPID PROTOTYPING (RP) TECHNIQUES ON THE BASIS OF MATERIALS, ADVANTAGES AND  
DISADVANTAGES (35, 56)

RP techniques Materials Advantages Disadvantages

Stereolithography Reactive resins Good mechanical strength Limited to reactive resins (mostly toxic)
  Easy to remove support materials  Limited choice of photopolymerizable
  Easy to achieve small features  and biocompatible liquid polymer materials
3D Printing Ink + powder of bulk polymers,  No inherent toxic components Weak bonding between powder particles
 ceramics  Fast processing Rough surface
  Low costs Post-processing 
Inkjet Printing Wax or wax compounds  Excellent accuracy Slow process
   Material limited to low melting point wax
FDM/FDC Some thermoplastic  Low costs Elevated temperatures during process
 polymers/ceramics  Small range of bulk materials 
   Medium accuracy
Selective Laser Sintering Metals, ceramics, bulk polymers,  High accuracy Elevated temperatures - local high energy
 compounds Good mechanical strength input
  Broad range of bulk materials Uncontrolled porosity
   Trapped powder difficult to be removed
3D Bioplotting Swollen polymers (hydrogels),  Broad range of materials Slow processing
 thermoplastic polymers,  Broad range of conditions Low accuracy
 reactive resins, ceramics Incorporation of cells, protein  Limited resolution
  and fillers No standard condition-time consuming 
   adjustment to new materials
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meeting the demands for cell attachment and cell growth. Among all of the RP 

techniques, 3D plotting and 3D Fiber Deposition34,35 have been recently developed 

and used for tissue engineering purposes. In particular, 3D Fiber Deposition may be 

considered as a modified technique of 3D plotting for the extrusion of highly viscous 

polymers, and it is a fused deposition technique in which a molten polymer is 

extruded and then deposited through a servo-mechanically controlled syringe that 

applies pressure.34,36,37 This process allows the realization of scaffolds with specific 

shape and size and 100% interconnectivity. Such scaffolds possess a defined structure 

and architecture, and can be built with a customized shape by CAD/CAM 

techniques.33,86,115 

The key element of the 3D Fiber Deposition technique is a dispensing machine known 

as a Bioplotter, which was developed by Landers et al.33,86,115 to fabricate scaffolds 

from hydrogels for soft tissue engineering (Figure I.IX). In particular, it consists of a 

dispenser, equipped with a heating jacket that is movable in three dimensions. The 

basic process involves dispensing of a flowable material stored into a cartridge 

through a thin needle by air-pressure control, and its subsequent hardening. The 

material can be dispensed in the presence of air or in a liquid. The advantage of 

dispensing in a liquid medium is that the buoyancy in the liquid prevents deformation 

in the dispensed but not the completely hardened structure.115 Consequently, only 

highly viscous materials, such as polymer melts, can be processed in air. Hardening 

processes can be obtained through thermally induced solidification, solidification 

induced by a chemical reaction (e.g. a reactive component is added to the plotter 

material and a second one is added to the plotter medium), and solidification induced 

by precipitation. Among solidification processes, the thermally induced one includes 

solidification of melts and gelling of thermally reversible hydrogels, such as gelatin 

and agar. 
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Figure I.IX: Schematic representation of 3D Fiber Deposition process and different scaffold 
architectures.33,36,37  

 

The knowledge of the critical processing parameters is crucial to develop 3D fiber-

deposited scaffolds. Briefly, if a molten polymer is assumed as a viscous Newtonian 

fluid and the Hagen-Poiseuille equation as valid,34,120 the flow rate from the nozzle 

can be expressed according to: 

Q = !!P
128l"

"d4                                                        (1) 

The above described Hagen-Poiseuille equation (1) indicates that the flow rate (Q) is 

directly proportional to both the pressure gradient (∆P) across the syringe and needle 

tip, and the needle diameter (d). Moreover, Q is inversely proportional to needle 

length (l) and polymer viscosity (η). A high Q value may result in over-deposition of 

the fiber, thus reducing porosity, whilst a low Q value reduces the fiber diameter, 

compromising the overall scaffold integrity. 

A decrease in needle diameter reduces the flow rate, requiring considerably greater 

pressures to extrude fibers, and in the case of small needle diameters the pressures 

required to achieve a suitable flow rate can be greater than those usually used in 

practice, thus needing changes in viscosity.34 Even though for small needle diameters 

polymer viscosity can be reduced through the addition of specific solvents or 

increasing the syringe temperature, the incomplete removal of solvents post-

processing or polymer exposure to high temperatures can be detrimental to scaffold 

biocompatibility.79,86 By exploiting the knowledge about the plotting process and the 

properties of the materials, 3D fiber-deposited scaffolds with desired properties may 

be obtained. 
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For the first time, Lander et al.33,86,115 designed and characterized hydrogel scaffolds 

with a desired external shape and a well defined internal pore structure through 3D 

Bioplotting, also suggesting this technology as a bio-functional and cell compatible 

processing for hydrogels in the area of RP techniques. In particular, the versatile 

application potential of rapid prototyped agar scaffolds coated with a mixture of 

hyaluronic and alginic acid or with fibrin was demonstrated in cell culture using two 

cell types which were seeded on these hydrogel scaffolds, a human osteosarcoma cell 

line (CAL-72) and a mouse connective tissue fibroblast.  

Woodfield et al.34 presented and characterized the 3D Fiber Deposition technique for 

making 3D poly(ethylene glycol)-terephthalate-poly(butylene terephthalate) 

(PEGT/PBT) block co-polymer scaffolds with a 100% interconnecting pore network 

for articular cartilage tissue engineering. This technique allowed to design desired 

scaffold characteristics layer-by-layer by accurately controlling the deposition of 

molten co-polymer fiber from a pressure-driven syringe placed onto the mobile arm 

of a 3D plotter. Values of dynamic stiffness similar to those of native articular 

cartilage explants were obtained by suitably varying porosity, pore geometry and 

PEGT/PBT composition. It was demonstrated that these 3D fiber-deposited scaffolds 

seeded with bovine articular chondrocytes supported a homogeneous cell distribution 

and subsequent cartilage-like tissue formation following in vitro culture as well as 

subcutaneous implantation in nude mice. These results were highlighted by the 

presence of articular cartilage extracellular matrix constituents (glycosaminoglycans 

and type II collagen) throughout the interconnected pore structure. Interesting results 

were also achieved with respect to the attachment of expanded human articular 

chondrocytes.  

Since nutrient limitation (e.g. oxygen) has been considered as a cause of the onset of 

chondrogenesis solely within the peripheral boundaries of larger constructs, the effect 

of the 3D fiber-deposited PEGT/PBT scaffold architecture on oxygen gradients in 

tissue engineered cartilaginous constructs was assessed by Malda et al.35 through 

microelectrode measurements, and then compared to the results obtained from a 

compression-molded and particle-leached scaffold. 

Even though it was not observed, an effect of scaffold architecture on oxygen 

gradients, cell distribution and matrix deposition was enhanced in 3D fiber-deposited 

scaffolds if compared to the compression-molded and particle-leached ones.35 All of 

these results stressed the importance of a rationally designed scaffold for cartilage 
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tissue engineering applications, and suggested that organized structures, such as the 

3D fiber-deposited scaffolds, with their less tortuous and more open structure may 

offer possibilities for the regulation of nutrient supply.35  

In this context, Moroni et al.33,36,37 designed, manufactured and characterized 3D 

fiber-deposited scaffolds processing poly(ethylene oxide terephthalate)-poly- 

(butylene terephthalate) (PEOT/PBT) block copolymers which belong to a class of 

materials known as thermoplastic elastomers, and possess mechanical properties 

depending on the PEOT/PBT weight ratio in block form and on the molecular weight 

of the initial poly(ethylene glycol) (PEG) blocks. 

Several PEOT/PBT copolymer compositions were used to fabricate scaffolds with a 

Bioplotter device through heating polymer granules. Moreover, pores were varied in 

shape and size, by changing fiber diameter, spacing, sequence of stacking (i.e. 

pattern), and layer thickness. However, since pore geometry (and, hence, porosity) is 

defined by fiber diameter and spacing, and layer thickness, it is also strongly 

dependent on the deposition speed used during the process (Figure I.X).36  

 

 
Figure I.X: Effect of deposition speed on scaffold porosity and fiber diameter. Results obtained from 3D 
fiber-deposited PEOT/PBT scaffolds with specific composition and architecture.36  

 

Accordingly, in order to assess the influence of the pore geometry and architecture on 

the mechanical performances, 3D fiber-deposited PEOT/PBT scaffolds were 

characterized through dynamic-mechanical analysis (DMA). 

In particular, with increasing porosity, DMA analysis showed a decrease of the elastic 

properties such as the storage modulus (E′) (Figure I.XI a)37, whilst an increase of the 
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modulus was evaluated with decreasing the fiber spacing (Figure I.XI b).37 

Furthermore, it was also evidenced hat for PEOT/PBT scaffolds with the same 

composition and porosity but different architectures, E′ varied within a wide range of 

values (Figure I.XI c).37  

  

 
Figure I.XI: a) Effect of porosity on the storage modulus E′ for 3D fiber-deposited PEOT/PBT scaffolds 
with specific composition; b) Effect of fiber spacing on the storage modulus E′ for 3D fiber-deposited 
PEOT/PBT scaffolds with specific composition and architecture, considering two different fiber diameters; 
c) Effect of architecture on the storage modulus E′ for 3D fiber-deposited PEOT/PBT scaffolds with same 
composition and porosity.37 

 

Another interesting approach was to make hollow fibers directly integrated in a 3D 

fiber-deposited structure, thus realizing scaffolds, which can be used in tissue 

engineering and controlled drug delivery applications as possible smart biomaterial 

devices.93 

To realize hollow fibers with controllable hollow cavity diameter and shell thickness 

a rheological phenomenon, which is known as “viscous encapsulation” and often 

undesired in molten polymeric blends, was considered.93  

Briefly, when two components of a polymer blend possess a significant difference in 

viscosity in the molten state fibers with a shell-core configuration can be extruded. 

(a) (b)

(c)
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The polymer with lower viscosity tends to shift, when flowing through a narrow duct, 

such as the nozzle of an extruder (e.g. the needle used during the 3D Bioplotting 

process), towards the walls of the nozzle during extrusion. Due to the higher shear 

stresses at the walls this separation of the components produces a stratification or a 

‘‘canalization’’ effect, thus providing fibers with a shell-core structure (Figure I.XII). 

By removing the polymer core by selective dissolution, hollow fibers can be 

obtained.93  

 
Figure I.XII: Viscous encapsulation phenomenon: arrows indicate the encapsulation of the high viscosity 
polymer (A) by the low viscosity polymer (B), due to higher shear stress (longer arrows) at the nozzle 
walls.93 

 

Taking into consideration this phenomenon, Moroni et al.93 manufactured and 

characterized PEOT/PBT scaffolds with hollow fibers through the direct deposition of 

the viscous encapsulated fibers in a CAD/CAM fashion and the subsequent selective 

core dissolution. In particular, PEOT/PBT scaffolds with hollow fibers were obtained 

by soaking 3D shell-core scaffolds in a specific solvent (i.e. acetone) for the 

poly(butylmethacrylate-methylmethacrylate) (P(BMA/MMA)) or for the PCL core 

polymers. Consequently, P(BMA/MMA) or PCL was selectively dissolved and only 

the PEOT/PBT well organized structure was left. However, it was found that viscous 

encapsulation occurred for specific values of melting index ratios when these 

polymers are extruded under proper rheological conditions of the 3D Fiber Deposition 

process used.93 

Accordingly, by varying the polymers in the blend, the blend composition, and the 

extrusion needle diameter, the possibility to control the hollow cavity diameter and 

the shell thickness was also highlighted.  

Benefiting from the same principle, biphasic 3D fiber-deposited scaffolds for cartilage 

tissue engineering with a shell-core fiber structure, in which the core polymer 



Chapter I: General Introduction                                                                                                             

 

26 

provided appropriate mechanical properties and the shell polymer acted as a coating 

characterized by specific physicochemical surface properties, were designed and 

studied.104 In this case, biphasic shell-core PEOT/PBT 3D scaffolds were 

manufactured from PEOT/PBT co-polymers with different compositions (hence, a 

different melting index), by exploiting viscous encapsulation and 3D Fiber Deposition 

technique. If compared to the core polymer, the shell polymer contained a higher 

molecular weight of the initial PEG segments used in the copolymerization and a 

higher weight percentage of the PEOT domains. Rapid prototyped scaffolds entirely 

produced with the shell or with the core polymers were also characterized and the 

results were compared with those of biphasic shell-core scaffolds. Even though for all 

of the investigated scaffolds comparable amounts of entrapped chondrocytes and of 

extracellular matrix formation were obtained, chondrocytes maintained their rounded 

shape and aggregated during the culture period on shell-core 3D fiber-deposited 

scaffolds, thus suggesting a proper cell differentiation into articular cartilage. 

Moreover, from a mechanical point of view, the biphasic shell-core scaffolds also 

evidenced an improved dynamic stiffness. All of these results suggested that the use 

of these biphasic shell-core 3D fiber-deposited scaffolds with appropriate mechanical 

and surface properties is a promising solution for cartilage tissue engineering.121  

Furthermore, since cell seeding efficiency still remains a critical factor for optimal 

tissue regeneration, the possibility to combine the 3D Fiber Deposition technique with 

electrospinning was also demonstrated;122 therefore, obtaining scaffolds where the 

periodical macrofibers typical of 3D fiber-deposited structures were integrated with 

the random electrospun ones. In these integrated structures, the 3D fiber-deposited 

scaffold acts as a structural support with adequate mechanical properties, whilst the 

electrospun network mainly works as a cell entrapment system.  

An additional challenge in tissue engineering is that most tissues and organs are 

multiphasic in nature and contain multiple cell types. Consequently, an ideal scaffold 

should be capable of supporting multilineage cell types and few attempts have been 

made to engineer tissues consisting of different cell types.38,123,124  

For these reasons, stabilized osteoblast-like cells (MG63) and normal endothelial cells 

(human umbilical vein endothelial cells, HUVEC) were co-seeded onto 3D fiber-

deposited PCL scaffolds, and cultured by means of a rotary cell culture system in 

order to study their reciprocal cell interactions for enhanced bone tissue engineering.38  
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The proposed co-cultural endothelial and osteoblast-like cell model is based on the 

close mutual interaction of the two cell types, and this is sustained by histological 

evidence that osteoblasts and osteoprogenitor cells are always located adjacent to 

blood vessel endothelial cells.38,125,126 Moreover, with regard to embryonic skeletal 

tissue osteogenesis and angiogenesis are temporally related.38,127 All of these in vivo 

findings clearly highlight that these processes are mutually interdependent38,128 and 

that endothelial cells may accelerate bone formation through angiogenesis as well as 

in bone remodeling.38,129  

Since the maintenance, survival and growth of a 3D bio-construct is strongly related 

to a delicate balance between cell metabolism, nutrient transport and scaffold 

properties,38,130,131 porous yet sufficiently stiff 3D structures with a suitable 

architecture were manufactured. 

In particular, 3D fiber-deposited PCL scaffolds were fabricated with a Bioplotter 

device by extruding the molten polymer and alternatively depositing the fibers along 

the 0° and the 90° directions between two successive layers, thus obtaining a 0°/90° 

pattern.38  

 
Figure I.XIII: Typical stress-strain curve of a 3D fiber-deposited PCL scaffold with specific architecture, 
pore shape and size, tested in compression up to strain level of 60%.2,38 

 

As for the mechanical properties of these 3D PCL scaffolds, compression tests 

highlighted a modulus of 134.6 ± 8.5 MPa and a stress-strain curve (Figure I.XIII) 

similar to that of a flexible foam.132  
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that for PEOT/PBT scaffolds with the same composition 
and porosity but different architectures, E  varied within a 
wide range of values (Fig. 4c) (65).

Another interesting approach was to make hollow fi-
bers directly integrated in a 3D fiber-deposited structure, 
thus realizing scaffolds which can be used in tissue engi-
neering and controlled drug delivery applications as pos-
sible smart biomaterial devices (67).

To realize hollow fibers with controllable hollow cav-
ity diameter and shell thickness a rheological phenom-
enon, which is known as “viscous encapsulation” and 
often undesired in molten polymeric blends, was consid-
ered (67). 

Briefly, when two components of a polymer blend 
possess a significant difference in viscosity in the mol-
ten state fibers with a shell-core configuration can be 
extruded. The polymer with lower viscosity tends to 
shift, when flowing through a narrow duct, such as the 
nozzle of an extruder (eg the needle used during the 
3D Bioplotting process), towards the walls of the noz-
zle during extrusion. Due to the higher shear stresses at 
the walls this separation of the components produces a 
stratification or a ‘‘canalization’’ effect, thus providing 
fibers with a shellcore structure (Fig. 5). By removing 
the core polymer by selective dissolution, hollow fibers 
can be obtained (67). 

Taking into consideration this phenomenon, Moro-
ni et al (67) manufactured and characterized PEOT/PBT 
scaffolds with hollow fibers through the direct deposi-
tion of the viscous encapsulated fibers in a CAD/CAM 
fashion and the subsequent selective core dissolution. In 
particular, PEOT/PBT scaffolds with hollow fibers were 
obtained by soaking 3D shell-core scaffolds in a specif-
ic solvent (i.e. acetone) for the poly(butylmethacrylate-
methylmethacrylate) (P(BMA/MMA)) or for the PCL core 
polymers. Consequently, P(BMA/MMA) or PCL was 
selectively dissolved and only the PEOT/PBT well or-
ganized structure was left. However, it was found that 
viscous encapsulation occurred for specific values of 
melting index ratios when these polymers are extruded 
under proper rheological conditions of the 3D fiber de-
position process used (67).

Accordingly, by varying the polymers in the blend, the 
blend composition, and the extrusion needle diameter, 
the possibility to control the hollow cavity diameter and 
the shell thickness was also highlighted (67).

Benefiting from the same principle, biphasic 3D fi-
ber-deposited scaffolds for cartilage tissue engineering 
with a shell-core fiber structure, in which the core poly-
mer provided appropriate mechanical properties and the 
shell polymer acted as a coating characterized by spe-
cific physicochemical surface properties, were designed 
and studied (68). In this case, biphasic shell-core PEOT/
PBT 3D scaffolds were manufactured from PEOT/PBT co-
polymers with different compositions (hence, a different 

Fig. 5 - Viscous encapsulation phenomenon: arrows indicate the encap-
sulation of the high viscosity polymer (A) by the low viscosity polymer 
(B), due to higher shear stress (longer arrows) at the nozzle walls (67).

Fig. 6 - Typical stress-strain curve of a 3D fiber-deposited PCL scaffold 
with specific architecture, pore shape and size, tested in compression up 
to strain level of 60% (70). 

melting index), by exploiting viscous encapsulation and 
3D fiber deposition technique. If compared to the core 
polymer, the shell polymer contained a higher molecular 
weight of the initial PEG segments used in the copoly-
merization and a higher weight percentage of the PEOT 
domains. Rapid prototyped scaffolds entirely produced 
with the shell or with the core polymers were also char-
acterized and the results were compared with those of 
biphasic shell-core scaffolds. Even though for all of the 
investigated scaffolds comparable amounts of entrapped 
chondrocytes and of extracellular matrix formation were 
obtained, chondrocytes maintained their rounded shape 
and aggregated during the culture period on shell-core 
3D fiber-deposited scaffolds, thus suggesting a proper cell 
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Figure I.XIV: 3D reconstruction of a 3D fiber-deposited PCL scaffold obtained from Micro-CT analysis: a) 
top view, b) the inner structure highlighting the architecture and the pore interconnectivity.38  

After an initial relatively stiff mechanical response, there is a region with lower 

stiffness, finally followed by another stiff portion, similar to the densification region 

of flexible foams. However, unlike the typical behavior of flexible foam, the central 

part of the curve does not show a plateau.38 Micro-CT and imaging analyses (Figure 

I.XIV) confirmed that the 3D fiber-deposited PCL scaffolds were characterized by a 

precise pore size and a repeatable microstructure, also showing sufficient consistency 

between real and theoretical values and an interconnectivity of 100%.2,38  

In such a study on dynamic co-seeding onto 3D fiber-deposited PCL scaffolds, 

Kyriakidou et al.38 underlined how osteoblasts increase proliferation of endothelial 

cells and endothelial cells amplify the growth of osteoblasts but decrease their 

differentiation. It was also suggested that dynamic seeding of osteoblasts and 

endothelial cells onto a 3D fiber-deposited polymeric scaffold was a useful approach 

to study the mechanisms of the interaction of endothelial and osteoblast cells, and to 

achieve a functional hybrid in which angiogenesis, furnished by neo-vascular 

organization of endothelial cells, may further support osteoblast growth.2,38  

In light of what has been said, 3D Fiber Deposition is a powerful technique to design 

multifunctional and tailor-made scaffolds with suitable mechanical and surface 

properties, therefore, satisfying the need for tissue engineered porous structures with 

an organized and repeatable microarchitecture, which enables cells to assemble in an 

ordered matrix and allows adequate nutrient perfusion. 
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differentiation into articular cartilage. Moreover, from a 
mechanical point of view the biphasic shell-core scaffolds 
also evidenced an improved dynamic stiffness. All of these 
results suggested that the use of these biphasic shell-core 
3D fiber-deposited scaffolds with appropriate mechanical 
and surface properties is a promising solution for cartilage 
tissue engineering (68). 

Furthermore, since cell seeding efficiency still remains 
a critical factor for optimal tissue regeneration, the possi-
bility to combine the 3D fiber deposition technique with 
electrospinning was also demonstrated (69); therefore, ob-
taining scaffolds where the periodical macrofibers typical 
of 3D fiber-deposited structures were integrated with the 
random electrospun ones. In these integrated structures, the 
3D fiber-deposited scaffold acts as a structural support with 
adequate mechanical properties, whilst the electrospun 
network mainly works as a cell entrapment system (69).

An additional challenge in tissue engineering is that 
most tissues and organs are multiphasic in nature and 
contain multiple cell types. Consequently, an ideal scaf-
fold should be capable of supporting multilineage cell 
types and few attempts have been made to engineer tis-
sues consisting of different cell types (70-72). 

For these reasons, stabilized osteoblast-like cells (MG63) 
and normal endothelial cells (human umbilical vein endothe-
lial cells, HUVEC) were co-seeded onto 3D fiber-deposited 
PCL scaffolds, and cultured by means of a rotary cell culture 
system in order to study their reciprocal cell interactions for 
enhanced bone tissue engineering (70).

The proposed co-cultural endothelial and osteoblast-
like cell model is based on the close mutual interaction 
of the two cell types, and this is sustained by histologi-
cal evidence that osteoblasts and osteoprogenitor cells 
are always located adjacent to blood vessel endothelial 
cells (70, 73, 74). Moreover, with regard to embryonic 
skeletal tissue osteogenesis and angiogenesis are tempo-
rally related (70, 75). All of these in vivo findings clearly 
highlight that these processes are mutually interdepen-

dent (70, 76) and that endothelial cells may accelerate 
bone formation through angiogenesis as well as in bone 
remodeling (70, 77).

Since the maintenance, survival and growth of a 
3D bio-construct is strongly related to a delicate bal-
ance between cell metabolism, nutrient transport and 
scaffold properties (70, 78, 79), porous yet sufficiently 
stiff 3D structures with a suitable architecture were 
manufactured.  

In particular, 3D fiber-deposited PCL scaffolds were 
fabricated with a Bioplotter device by extruding the mol-
ten polymer and alternatively depositing the fibers along 
the 0° and the 90° directions between two successive lay-
ers, thus obtaining a 0°/90° pattern (70).

As for the mechanical properties of these 3D PCL scaf-
folds, compression tests highlighted a modulus of 134.6 
± 8.5 MPa and a stress-strain curve (Fig. 6) (70) similar to 
that of a flexible foam (80). 

After an initial relatively stiff mechanical response, 
there is a region with lower stiffness, finally followed by 
another stiff portion, similar to the densification region of 
flexible foams. However, unlike the typical behavior of 
flexible foam, the central part of the curve does not show 
a plateau (70). MicroCT and imaging analyses (Fig. 7) 
confirmed that the 3D fiber-deposited PCL scaffolds were 
characterized by a precise pore size and a repeatable mi-
crostructure, also showing sufficient consistency between 
real and theoretical values and an interconnectivity of 
100% (70).

In such a study on dynamic co-seeding onto 3D fiber-
deposited PCL scaffolds, Kyriakidou et al (70) underlined 
how osteoblasts increase proliferation of endothelial cells 
and endothelial cells amplify the growth of osteoblasts but 
decrease their differentiation. It was also suggested that 
dynamic seeding of osteoblasts and endothelial cells onto 
a 3D fiber-deposited polymeric scaffold was a useful ap-
proach to study the mechanisms of the interaction of en-
dothelial and osteoblast cells, and to achieve a functional 

Fig. 7 - 3D reconstruction 
of a 3D fiber-deposited 
PCL scaffold obtained 
from microCT analysis: 
a) top view, b) the inner 
structure highlighting the 
architecture and the pore 
interconnectivity (70).
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CHAPTER II 

3D Bioactive Poly(ε-caprolactone) Scaffolds 

 

II.I Preface: how to enhance cell recognition 
Although many biodegradable synthetic polymers such as polyglycolic acid (PGA), 

poly(lactic acid) (PLA), poly(lactide-co-glycotide) (PLGA) and poly(caprolactone) 

(PCL) have been already used for making scaffolds to support the regeneration of 

several tissue-engineered organs,1-66 the poor cytocompatibility of the synthetic 

polymers leads to the inefficiency of the scaffold in obtaining a friendly interface with 

living cells.  

In biological tissues, cells are immersed in the extracellular matrix (ECM) that is a 

coacervate of glycosaminoglycans and proteins with various mechanical and signaling 

functions. In particular, fibroblast and osteoblast cells are known to express various 

integrins, each component having a large extracellular domain responsible for ligand 

binding, a transmembrane domain, and a short cytoplasmic domain responsible for 

interacting with the actin cytoskeleton.67-68 Integrin heterodimers bind to specific 

aminoacid sequences, such as the arginine-glycine-aspartic acid (Arg-Gly-Asp or 

RGD) recognition motif that is largely present in many ECM proteins, including 

fibronectin, vitronectin, bone sialoprotein, and osteopontin.69 Small synthetic peptides 

(a few hundred daltons) that contain aminoacid sequence RGD can thus mediate cell 

attachment as well as the large parental molecule (a hundred thousand dalton).  

Consequently, in order to improve their cytocompatibility, modifications of the tissue 

engineering polymer-based materials are needed. In tissue engineering, cell adhesion 

to scaffold surface results a critical factor since adhesion occurs before other 

biological events such as cell spreading, migration and differentiation. In particular, 

cell adhesion is strongly related to the surface properties of biomaterials, and it is 

influenced by substratum surface properties, such as surface charge, wettability, 

roughness and topography. Most conventional materials do not meet the criteria for 

serving as tissue engineering scaffolds and, for this reason, many surface modification 

techniques have been developed to alter the surface properties of these materials.70-78 

Surface modification represents an effective approach to promote biological 
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interactions of a particular material for developing multifunctional scaffolds. Since 

surface modification only changes the outermost surface composition of a 

biomaterial, its bulk properties should not vary. 

Many surface modification techniques such as γ-ray irradiation, plasma treatment, 

end-grafting, ozone oxidization, or in situ polymerization have been already 

considered to modify the materials surface properties, the aim being to improve the 

cytocompatibility of the polymeric materials without altering their bulk properties. 

On the basis of this, biomimetic approaches have been developed to immobilize short 

peptides, such as RGD, onto synthetic or natural surfaces, to produce biofunctional 

materials able to promote and enhance cell attachment.1,79 In particular, it has been 

found that a minimum RGD density of 1.0⋅10-15 mol/cm2, corresponding to a spacing 

of about 140 nm between peptide ligands, is sufficient to promote cell spreading, 

while a density of 1.0⋅10-14 mol/cm2 is needed to promote the formation of focal 

contacts.4 However, such parameters strongly depend on peptide presentation and, in 

turn, from chemical and physical characteristics of the substrate. Moreover, spatial 

distribution and the aggregation of RGD peptides at the micro- and nano-scale 

significantly affect cell responses. For example, nano-scale clustering of RGD 

peptides can induce integrins to cluster, thus triggering complete cell signaling.80,81 

Aminolysis, as shown in this work, may be considered an easy-to-perform chemical 

technique to engraft amino groups along polyesters chains, providing active sites 

through which other biomolecules such as collagen, gelatin, or RGD peptides can be 

further immobilized, obtaining cytocompatible surface on which cells can grow well, 

at the same time decreasing the surface hydrophobicity, neutralizing the acid 

generated during the scaffold degradation and reducing the inflammation around the 

implanted scaffold.82 

 

II.II Materials and Methods 

 

II.II.I 3D Scaffold Design and Preparation 
 

The poly(ε-caprolactone) (PCL) pellets used in this study, (Mw = 65000 g mol-1) are a 

product of Sigma-Aldrich, St. Louis, MO. 
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3D block-shaped scaffolds characterized by a length (l) of 7.0 mm, a width (w) of 7.0 

mm and a height (h0) of 7.8 mm, were fabricated through 3D Fiber Deposition 

technique, using a Bioplotter dispensing machine (Envisiontec GmbH, Germany) 

equipped with a CAD/CAM system. 

PCL pellets were initially placed in a stainless steel syringe and, then, heated at a 

temperature of 120°C through a cartridge unit placed on the mobile arm of the XYZ 

plotter. As PCL reached the molten phase, a nitrogen pressure of 8-8.5 bar was 

applied to the syringe through a cap. 3D models were loaded on the Bioplotter 

CAD/CAM system.  

3D scaffolds were obtained by alternatively extruding and depositing the polymer 

fibers with different angle steps between two successive layers, making two different 

patterns: 0°/90° and 0°/45°/90°/135°. The nozzle used to extrude PCL fibers was a 

stainless steel needle characterized by an inner diameter of 400 µm. Each scaffold 

was characterized not only by the fiber diameter (depending on the needle diameter 

and/or the deposition speed), but also by the fiber spacing (strand distance, i.e. center-

to-center distance) and layer thickness, which influence the overall pore size. The 

values of strand distance were set to 640 µm, while for the layer thickness was chosen 

320 µm. A deposition speed of 50-55 mm/min was used.  

 

II.II.II Micro-Computed Tomography 
 

A micro-computed tomography (Micro-CT) was performed through a SkyScan 1072 

(Aartselaar, Belgium) system using a rotational step of 0.9° over an angle of 180°, in 

order to analyze the internal structure of the 3D scaffolds fabricated via rapid 

prototyping technique, pore shape and size. Cross-sections and 3D model of PCL 

scaffolds were reconstructed using Skyscan’s software package and Image J software, 

that allowed to visualize and analyze the results from Micro-CT system scan. The 

pore network was visualized and the pore interconnectivity was studied. 
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II.II.III Surface modification of 3D fiber-deposited poly-ε-caprolactone 

scaffolds via aminolysis  
 

As PCL is a synthetic polymer, it does not possess molecular motifs for cell 

recognition.83,84 To promote cell adhesion, its backbone has to be suitably modified 

by introducing functional groups for the following RGD conjugation.85,86  

Most of modification methods may show many problems such as low level of 

functional groups, lack of control of peptide immobilized on PCL surface, and the 

eventual presence of uncontrolled degradation products. 

In addition, the bioactive groups may not be covalently attached but only adsorbed 

onto the surface, thus leading to the possibility of being removed or exchanged upon 

introduction into in vitro culture or in vivo implantation.  

On the other hand, it has been demonstrated that chemical methods can be 

successfully used for bioactivating polymer surfaces. Functional groups have been 

introduced on PCL via hydrolysis,87,88 aminolysis,87 plasma treatment,73,89 or 

copolymerization.74 

However, all the above mentioned studies clearly evidence a lack of control in the 

effective presentation of immobilized peptide toward cell, as well as in the 

characterization of surface properties after peptide conjugation. For this reason, it has 

been proposed90 a systematic study of peptide ligand organization and spatial 

distribution on PCL surfaces, evaluating the effective peptide distribution and 

presentation able to activate specific cell functions (i.e., adhesion or differentiation).  

PCL molecules are characterized by a great number of ester groups (-COO-), which 

can be hydrolyzed to carboxylic acid under alkaline condition. Moreover, the amino 

groups can be introduced onto the polyester surface through a reaction with diamine, 

providing that one amino group reacts with the -COO- group to form a covalent bond, 

-CONH-, while the other amino group is unreacted and free.91 However, the 

hydroxyl-terminated chains will also be yielded on the polyester surface during this 

process. The decreasing of surface hydrophobicity, neutralization of the acid 

originated from the scaffold degradation, possibility to provide active sites through 

which other biomolecules, such as gelatine, collagen or arginine-glycine-aspartic acid 

(Arg-Gly-Asp or RGD) peptides can be immobilized, are the main advantages in 

tissue engineering that can be derived from the introduction of the amino groups.91 
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Moreover, it has already been demonstrated that aminolysis may be considered an 

easy-to-perform chemical technique to engraft amino groups along polyesters 

chains.91 

In the case of PCL, amine groups were introduced onto film surfaces through 

treatment with a diamine, before attaching peptide sequences (i.e., RGD) using either 

glutaraldehyde, carbodiimide, or epoxy-amine chemistry.91,92  

A two step-procedure has been used to immobilize peptides onto the polymer surface, 

involving a treatment with 1,6-hexanediamine followed by the use of 1-ethyl-3-

(dimethylaminopropyl) carbodiimide23, whilst Taniguchi et al. (2006) also modified 

PCL with poly(ethylene oxide) grafts before coupling with RGD containing peptides, 

thus obtaining an improvement in cellular responses.92 Recent works have also 

highlighted the possibility to bioactivate 3D PCL scaffolds with RGD after 

aminolysis.94,95 

In particular, in order to overcome the above mentioned problems (lack of control in 

the effective presentation of immobilized peptide toward cell, characterization of 

surface properties after peptide conjugation) the grafting of the synthetic peptide Gly-

Arg-Gly-Asp-Tyr (GRGDY) which contains the RGD sequence of several adhesion 

molecules has been performed onto PCL sheets using a two-step procedure similar to 

those already reported in the literature,22,23 involving a polymer aminolysis to graft 

primary amines on the film surface and a subsequent conjugation of the RGD motif. 

Unlike the other works, each step was precisely controlled through functional groups 

determination as well as chemical and physical parameter evaluation. Peptide surface 

density and distribution as well as penetration depth in the polymer substrate were 

deeply investigated through morphological and topological measurements. It was 

demonstrated that the conjugation of amine-terminated peptides by means of 

reductive amination after tether insertion may show a specific recognition of the solid 

signal to Mouse embryo fibroblasts (NIH3T3) integrin cell receptors highlighting a 

correct presentation of the peptide sequences.91 

The possibility to extend this controlled two-step procedure to immobilize RGD 

motifs on 3D well-organized scaffolds, also taking into account the effect on their 

macro-mechanical behavior, could be a great challenge in tissue engineering.  

Accordingly, a specific procedure was used to insert covalently amino groups onto the 

fiber surface of the designed 3D PCL scaffolds, using 1,6-hexanediamine (DEA).  
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Briefly, 3D fiber-deposited scaffolds were immersed at different times in 0.08 g/ml 

DEA/isopropanol (IPA) solution at 37°C. The aminolysis reaction was carried out in a 

custom-made reactor thermostatted in a water bath with adequate magnetic stirring for 

a suitable time, in batch mixer processing conditions. After the aminolysis treatment, 

solution was removed and the scaffolds were rinsed with deionized water at room 

temperature for 24 h. Successively, they were dried in vacuum desiccator and stored 

at room temperature for further modifications.  

 

II.II.IV Determination of Engrafted Amines  
 

A ninhidryn-based procedure (Kaiser test, Aldrich) was employed to assess the 

amount of amino groups on the aminolyzed (PCL-NH2) scaffolds. The samples were 

dissolved in kit solutions and heated at 100°C for 15 min. Afterwards, at room 

temperature methylenecloryde/ethanol solution was added to stabilize the blue 

compound and to bring in solution the polymer mixture. The absorbance was 

measured at 570 nm using an UV-vis spectrophotometer (Lambda 25, Perkin-Elmer). 

A calibration curve was obtained by 1,6-hexanediamine in methylenecloryde/ethanol 

solution. 

 

II.II.V Peptide Conjugation 
 

Peptide sequences were covalently grafted peptides onto the surface in a two step way 

by using an epoxy crosslinker in mild aqueous condition. Firstly, the aminolyzed 3D 

scaffolds were treated with a 5% diethylene glycol diglycidyl ether (DGDGE) in a 

sodium carbonate solution (50 mM, pH 8.5), at room temperature gently shaking for 

3h. Subsequently, the tether solution was rinsed out and the scaffolds were washed 

thoroughly with water. The conjugation step were performed adding 0.2 mg/ml of 

GRGDY (Inbios, Italy) in sodium carbonate solution (50 mM, pH=8.5), a scrambled 

sequence (GYDGR) was used as negative control for biological assessment. In both 

case, a Ethanolamine (2mM) aqueous solution was used to deactivate any unreacted 

oxyrane groups.  
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II.II.VI Determination of Conjugated Peptide 
 

The bicinchoninic acid (Micro-BCA) assay (Sigma-Aldrich) was used to quantify the 

peptide density directly onto the bioactivated surfaces above melting temperature of 

PCL samples.  

Micro-BCA is a biochemical assay for determining the total level of peptide 

immobilized on solid support in a solution, using colorimetric techniques. This 

method combines the reduction of the Cu2+ to Cu1+ by peptide or protein in an 

alkaline medium with the highly sensitive and selective colorimetric detection of the 

Cu1+ using a BCA containing reagent. The purple colored reaction product of this 

assay is relative to a chelation of two BCA molecules with one Cu1+. This water-

soluble compound exhibits a strong absorbance at 562 nm and is linearly proportional 

to the peptide concentration. The amount of peptide bound was determined with a 

standard curve for known quantity of the same peptide.  

The number of peptide bonds and the presence of four aminoacids (cysteine, cystine, 

tryptophan and tyrosine) have been reported to be responsible for color formation in 

peptide samples when assayed with BCA. 

The kit solutions were prepared as described by the supplier in a reduced volume (1 

ml) and added to the sample. After heating the mixture at 37° for 2 h, the absorbance 

was read at 562 nm and compared with a calibration curve, obtained each time by 

using standard solution of GRGDY peptides curve in the range of concentration 

between 0.01 and 0.50 mM. Unmodified 3D PCL scaffolds were used as negative 

control. 

 

II.II.VII Nanoindentation tests 
 

Nanoindentation tests were carried out on aminolyzed and not-aminolyzed PCL 

fibers, which were characterized by a diameter (D) of 340-360 µm and obtained 

through a Bioplotter Dispensing Machine. 

All the tests were performed in a 1-5 mN load range, using a Nanotest Platform 

(Micromaterials, U.K.) with a diamond pyramid-shaped Berkovich-type indenter tip. 

Trapezoidal load functions, characterized by a loading-unloading rate of 300 µN/s and 

a peak-load hold period of 20 s, were imposed. Load-depth curves and hardness 
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values were evaluated. Hardness and reduced modulus were evaluated using the 

methods introduced by Oliver and Pharr (1992). 

The interaction between the tip and the sample during the indentation process 

provides data that can be used to assess material properties such as Young’s modulus 

or elastic modulus (E) and indentation hardness (H). As an example, it may be 

considered the load-depth curve shown in Fig. II.I.  

 
Figure II.I: Typical load-depth curve obtained from nanoindentation tests, showing the loading-unloading 
process related to an applied trapezoidal load function. 

Taking into consideration the compliance method,96,97 the hardness H and reduced 

modulus Er (the combined modulus of the tip and the sample) can be determined 

directly from analysis of load-displacement data using the relationships: 
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where S is the initial unloading stiffness (that means the slope of the unloading curve 

dP/dh, evaluated at the maximum load), Pmax is the maximum load, and Ac is the 

projected contact area between the indenter tip and the sample at maximum load (and, 

hence, at maximum indentation depth hmax). 

For an ideal Berkovich pyramid geometry, that is perfectly sharp with no defect at the 

tip, the relationship between the projected contact area and contact depth (hc) is given 

by:98,99 
25.24 cc hA =  
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The contact depth hc is considered as the actual value of the displacement, that mainly 

occurs, but not exclusively, in a plastic fashion. 

If we consider that the material would show an elastic response at the beginning of the 

unloading phase, as in the case of a flat punch indenter, the difference (hmax-hc) 

represents an evaluation of the instantaneous elastic recovery. To avoid the errors 

related to the flat punch assumption, that is normally used to evaluate the contact 

stiffness, Oliver and Pharr96,97 suggested to introduce a correction factor (ε). 

Following this approach, the contact depth is evaluated by subtracting from the 

measured maximum indentation depth the downward elastic displacement of the 

indented surface through the following relationship: 

   

S
Phhc max

max ε−=  

 

where ε is a constant depending upon the tip geometry and results equal to 0.75 for a 

Berkovich tip. 

However, the presence of tip imperfections requires appropriate calibrations to 

determine the area function Ac(hc) from indentations upon hard and plastic materials, 

also reducing the elastic and viscoelastic effects of the response. Ac can be a 

polynomial function of the contact depth hc with coefficients obtained from a material 

of known elastic properties (i.e., fused silica, as in the present study) indented to 

different depths.98 The reduced modulus (Er) is related to the material Young’s 

modulus by the relationship:98,99 
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where subscripts i and s refer to the tip and substrate materials, respectively, whilst ν  

is Poisson’s ratio. 

Once the indenter material properties (i.e., Ei = 1141 GPa and νi = 0.07 for the 

diamond Berkovich tip used) and the Poisson’s ratio of the material are known, the 

material Young’s modulus (Es) can be evaluated from the reduced modulus. However, 

the plane strain modulus E' = E/(1 - ν2) is generally reported if the Poisson’s ratio of 

the material is not known.98,99 
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Finally, an interesting consideration may be made regarding to the applied load 

function during the nanoindentation tests. It is well known that polymers exhibit time-

dependent or viscoelastic behavior. Thus, the effect of viscoelasticity on indentation 

should be creep, or a sinking of the tip into the sample under a constant load. When 

creep behavior dominates the elastic response of the material, a “nose” can be 

observed on the indentation unloading curve.98,100 In such a case, that means when the 

loading phase is followed by unloading without a hold at peak load, displacement 

increases slightly in the initial portion of the unloading process, since the creep rate of 

the material is initially higher than the imposed unloading rate. As consequence, the 

initial unloading region is characterized by a negative and changing slope, thus the 

modulus evaluation results impossible. To overcome this problem, a hold period at 

peak load should be incorporated in the applied load functions allowing the material 

to approach an equilibrium prior to unloading.98 All of this suggests that trapezoidal 

load functions with appropriate hold periods have to be considered instead of 

triangular ones.  

 

 

II.II.VIII Tensile tests 
 

Tensile tests were performed on unmodified PCL and PCL-NH2 fibers according to 

the ASTM D3822 standard. All the tests were carried out using an INSTRON 5566 

testing machine. The engineering stress (σ) was calculated as the force F measured by 

the load cell divided by the fiber cross section (A = πD2/4): 

A
F

=σ  

whilst engineering strain (ε) was evaluated as the ratio between the fiber elongation Δl 

and the initial fiber length l0 (i.e. the initial grips separation): 

0l
lΔ

=ε  
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II.II.IX Compression tests 
 

Compression tests were performed on the 3D fiber-deposited scaffolds in the form of 

block-shaped specimen characterized by a length (l) of 7.0 mm, a width (w) of 7.0 

mm and a height (h0) of 7.8 mm. All the tests were carried out at a rate of 1 mm/min 

up to a strain value of 0.5 mm/mm, using an INSTRON 5566 testing machine. The 

stress was evaluated as the force F measured by the load cell divided by the total area 

of the apparent cross section of the scaffold (A0 = l · w):  

0A
F

=σ  

while the strain ε was defined as the ratio between the scaffold height variation Δh 

and its initial height h0: 

0h
hΔ

=ε  

 

II.II.X Spatial Distribution of Surface Treatment 
 

Confocal Laser Scanning Microscopy (CLSM) was used to investigate the penetration 

depth of treatment by LSM 510 Zeiss confocal inverted microscope equipped with a 

Zeiss 20X/3 NA objective and an argon laser. Each stage of bioactivation (aminolysis 

and peptide covalent coupling) was followed conjugating the surface samples with 

two different fluorescent dyes. Firstly, the aminolysis treatment was analysed by 

coupling PCL-NH2 surfaces with 0.1 mg/ml of Rhodamine B isothiocyanate (RBITC) 

in isopropanol (IPA) overnight at 4°C. Subsequently, surfaces were rinsed thoroughly 

with IPA and then with water for 24 h to remove any non covalent bound dye 

molecule.  

In order to mimic the peptide route, Fluoresceinamine (FLUO) was linked to the 

epoxy-functionalized surfaces by first dissolving the dye in carbonate buffer at 

pH=8.5 in the same conditions used for peptide conjugation. Finally, samples were 

rinsed with buffer followed by copious amounts of distilled water to remove any non 

covalently linked molecules. The PCL fluorescent samples were then left to dry 

overnight in a vacuum desiccator before analysis. Unmodified PCL surfaces were 
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equally processed as control. Samples after RBITC or FLUO conjugation were 

respectively visualized using the characteristic wavelength of RBITC  (λex = 543 nm; 

λem = 572) and FLUO (λex = 496 nm; λem= 518 nm). 

To compare the results, CLSM settings, in particular, laser power, pinhole aperture, 

detector gain and amplifier offset were kept constant for both kinds of observations. 

The penetration depth of treatment was visualized by z-stack acquisitions through the 

fiber by starting from the outer part. Intensity profiles of fluorescent dyes as function 

of penetration depth were obtained along a line drawn in the radius direction (here 

indicated as z-direction). 

 

II.II.XI Cell Adhesion Study 
 

Mouse embryo fibroblasts NIH3T3 were maintained at 37°C and 5% CO2 in 

Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine 

serum (FBS, BioWhittaker, Walkersville, MD), 2 mM L-glutamine (Sigma, St. Louis, 

MO), 1000 U/l penicillin (Sigma, St. Louis, MO) and 100 mg/l streptomycin (Sigma, 

St. Louis, MO). In particular, PCL, PCL-NH2, PCL-DGDGE-GYDGR and PCL-

DGDGE-GRGDY 3D scaffolds were sterilized with antibiotics and pre-incubated in 

serum-free medium for 16-18 h. After the incubation, 5 x 104 cells were seeded on all 

the different kinds of 3D scaffolds and grown in DMEM w/o FBS to avoid unspecific 

cell adhesion depending on serum protein adsorption.  

Scanning Electron Microscopy (SEM) analyses were performed by a Leica 420 

microscope in order to evaluate cell adhesion and shape. At 24 h after cell seeding, 

the 3D fiber-deposited scaffolds were rinsed with PBS and fixed with 2.5% 

glutaraldehyde (pH= 7.4) (Sigma-Aldrich, Italy) for 2h at room temperature. The cell-

scaffold constructs were dehydrated in graded ethanol concentrations (from 50% to 

100% v/v in ethanol), air-dried, gold sputtered and analyzed by SEM. Four different 

kinds of 3D scaffolds were studied: PCL, PCL-NH2, PCL-DGDGE-GYDGR and 

PCL-DGDGE-GRGDY. 

Furthermore, the several cell-scaffold constructs were also analyzed (PCL, PCL-NH2, 

PCL-DGDGE-GYDGR and PCL-DGDGE-GRGDY) through Confocal Laser 

Scanning Microscopy (CLSM). They were fixed with 4% paraformaldeyde for 20 min 

at room temperature, after 24 h from cell seeding, rinsed twice with PBS buffer and 
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incubated with PBS-BSA 0.5% to block unspecific binding. Actin microfilaments 

were stained with phalloidin-tetramethylrhodamine B isothiocyanate (Sigma-Aldrich). 

Phalloidin was diluted in PBS-BSA 0.5% and incubated for 30 min at room 

temperature. The images were acquired by using a helium-neon excitation laser at the 

wavelength of 543 nm and a 20x objective.  

 

II.III Results and Discussion 

 

II.III.I Micro-Computed Tomography 
 

Micro-computed tomography (Micro-CT), that is an attractive single and 

nondestructive method to study the characteristics of scaffolds, has firstly allowed to 

highlight the morphological and architectural features of the 3D fiber-deposited PCL 

structures. This analysis has confirmed that well-organized PCL scaffolds have been 

obtained, showing precise pore size and shape, as well as a repeatable microstructure 

(Figure II.II).  

 
Figure II.II: 3D reconstructions obtained from Micro-CT analysis on PCL fiber-deposited scaffolds with 
0°/45°/90°/135° (a) and 0°/90° (b) lay down patterns.  

 

In particular, imaging analyses have evidenced a sufficient consistency between real 

and theoretical values, showing a mean fiber diameter of 340-360 µm and a center-to-

center fiber distance of about 640-660 µm between two fibers in a common layer, as 

expected on the basis of the process/instrument parameters employed during the 

fabrication (i.e., needle inner diameter, deposition speed, fiber spacing, etc.). Scaffold 
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interconnectivity, which is normally defined as 100% x volume of interconnected 

pores/volume sum of interconnected and closed pores, has been also evaluated and 

found to be equal to 100%. 

 

II.III.II Determination of Engrafted Amines and Conjugated Peptide 
 

It has already been demonstrated that aminolysis may be considered an easy-to-

perform chemical technique to engraft amino groups along polyesters chains.79 By 

treating these 3D well-organized PCL scaffolds with a 1,6-hexandiamine in an aprotic 

solvent at a 37°C, an high density of amino groups were rapidly obtained onto the 

PCL fiber surface of the structure. The reaction starts by a nucleophilic attack onto the 

ester by an amino group at one end of diamine leading to the formation of an amide 

and leaving at the other end a free amino group emerging the PCL fiber surface. The 

functionalization pathway of the PCL scaffolds, that means the functionalization of 

the fiber surface of the porous structure, is reported in Figure II.III. In addition to the 

new bond formation along the polymer surface, from the rupture of ester group were 

produced hydroxyl groups that could remain attached onto fiber surface or leached 

out during the washes.  

As summarized in Figure II.III, the scaffold surface bioactivation was then performed 

by covalently grafting the GRGDY peptide via a homobifunctional cross-linker. 

Diethylene glycol diglycidyl ether (DGDGE) is an epoxy crosslinker, water soluble 

that reacts quite well with amine in mild condition.   

 
Figure II.III: Scheme of the two-step procedure used to immobilize GRGDY peptides on PCL fibers of the 
3D scaffolds. DEA and IPA indicate 1,6-hexanediamine and isopropanol, respectively. The chemical 
structure of DGDGE is also reported. 
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After aminolysis, an analytical determination of amino groups engrafted onto the 

surface of PCL fibers constituting the well-organized scaffold was performed by a 

slight modification procedure based on Kaiser test.79,101,102   

With regard to the evolution of aminolysis treatment of the 3D scaffolds, a high 

amino-density of 161.3 ± 15.3 nmol/cm2 was reached after 30 min of aminolysis, and, 

then, a decrease of surface amines was observed over the time (Figure II.IV). 

 

 
Figure II.IV: Amine and peptide grafted density as function of time. Data are graphically reported as mean 
value, and bars represent the standard deviation.  

 

The amount of peptides immobilized on PCL fibers of the scaffolds was then 

evaluated using a one-pot colorimetric assay based on the BCA-Cu+1 purple color 

complex. This assay is widely employed to assess proteins both in solution and on 

adsorbing solid substrates in a very reproducible way and with high sensitivity 

(picomolar scale). 

The number of peptide bonds and the presence of four aminoacids (cysteine, cystine, 

tryptophan and tyrosine) have been reported to be responsible for color formation in 

peptide sample when assayed with BCA. Studies with tri- and tetra-peptides suggest 

that the extent of color formation is due to the presence of several functional groups.82 

The advantages in using BCA method include a compatibility with ionic and non 

ionic detergents, a stable working reagent and a tolerance to the presence of 

compounds that could interfere. As described by Tyllianakis et al.103, this method can 

be used to determine the total solid supports functionalized with cysteine and tyrosine, 
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it requires only one incubation step and allows to determine the amount of the 

functional groups. The quantification of the different groups should be calculated 

from a standard curve of an appropriate substance. 

In the current study, a one-step colorimetric method has been reported to quantify the 

surface concentration of GRGDY peptides covalently bound on the fibers of the 3D 

PCL scaffolds. The quantification was carried out by a standard curve using a known-

concentration of 1,6-hexanediamine. 

The results obtained from micro-BCA assay have highlighted that the tyrosine present 

in our peptide provides significantly different amount of color formation at 37 °C, 

thus suggesting a partial reaction of the BCA reagent with tyrosine. Moreover, the 

BCA reagent requires at least a tri-peptide in order to oxidize the peptide backbone. 

The concentration of peptides covalently coupled to the PCL has been calculated by 

taking into account the surface area of sample rather than nominal surface area. A 

nominal peptide density of 20.13 ± 4.68 nmol/cm2 has been achieved (Figure II.V). 

 
Figure II.V: Intensity profiles of fluorescent molecules in the depth during the two-step conjugation 
procedure – (a) CLSM intensity profile as a function of depth in the z-direction of a PCL-NH-RBITC fiber;  
(b) CLSM intensity profile as a function of depth in the z-direction of a PCL-DGDGE-FLUO fiber. 
 

(a) 

(b) 
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To analyze the spatial distribution and penetration depth during each step of 

bioactivation, Confocal Laser Scanning Microscopy (CLSM) was employed. For this 

reason, two different dyes were coupled: rhodamine B isothiocyanate activated 

(RBITC) to label free amino groups after aminolysis treatment, whereas in a second 

step, fluoresceinamine (FLUO) was conjugated to the epoxy-activated PCL surface to 

mimic the peptide behavior studying its distribution on the scaffold fiber surface. 

Accordingly, Figure II.V clearly shows the intensity profile of the fiber cross-section 

along the radius (here indicated as z-direction), evidencing a penetration depth more 

than 140 µm for the aminolysis treatment. With regard to the Fluoresceinamine bound 

surfaces, the total penetration depth of the treatment was about 80 µm, thus providing 

an important information on the potential peptide penetration depth.  

 

II.III.III Nanoindentation tests 
 

In the literature, many works have already shown how several surface modifications 

and RGD immobilization may improve the wettability and/or the biological 

performances of PCL scaffolds.  

For example, Zhang et al. (2009) have previously extended a simple method to 

immobilize RGD peptide on 2D PCL films to the case of 3D well-organized 

scaffolds, investigating the human bone marrow stromal cells (hMSCs) behavior84. 

Their modification strategy allowed to obtain a successful Arg-Gly-Asp-Cys (RGDC) 

immobilization on 3D rapid prototyped PCL scaffolds via aminolysis and a 

heterobifunctional crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl) 

cyclohexane-1-carboxylate (sulfo-SMCC). Zhang et al. (2009) have widely studied 

hMSCs attachment, cellular distribution, signal transduction and survival on their 

RGD-modified PCL scaffolds, demonstrating that the modification elicits specific 

cellular responses and improves the final cell–biomaterial interaction.104 

However, it is worth noting that none of the above mentioned studies has assessed the 

effect of the surface modification on the mechanical behavior of the 3D rapid 

prototyped scaffolds.  

Consequently, trying to fill this gap present in the literature, nanoindentation, tensile 

and compression tests were carried out with the aim to highlight the effect of 
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aminolysis on the surface and bulk material properties, as well as on the macro-

mechanical performances of the 3D fiber-deposited PCL scaffolds.        

Advanced materials as well as biological tissues show hierarchical structures with 

particular features down to the nanometer or micrometer scale. For this reason, a 

technique that can probe mechanical properties at these scales has to be considered. In 

this context, nanoindentation is emerging as a valuable mechanical testing technique 

for biomaterials. Hardness and microhardness testing (e.g. Vickers and Knoop 

indentation) 5,85 have been already considered to investigate the mechanical properties 

of hard tissues such as teeth and bones.105-108 However, nanoindentation enhances the 

spatial, force, and displacement resolutions of these traditional techniques, thus 

providing a powerful tool to study tissues and biomaterials with submicron resolution. 

Nanoindentation is also useful for measuring mechanical properties of microstructural 

features within bulk samples, characterizing the properties of individual constituents 

within composite or heterogeneous samples, or mapping mechanical properties across 

a sample surface. Because of its small probe size, nanoindentation can be used to 

measure local material properties in small, thin, and heterogeneous samples. 

Nanoindentation, that is an instrumented or depth-sensing indentation, involves the 

application of a controlled load to the surface inducing local surface deformation. 

Load and displacement are monitored during the loading and unloading phases. Thus, 

properties such as hardness and reduced modulus are calculated from the unloading 

curves using well-established equations. Considering  its typical working force range 

and displacement range (1 µN-500 mN and 1 nm-20 µm, respectively) 

nanoindentation technique surely bridges the gap between Atomic Force Microscopy 

(AFM) and macro-scale mechanical testing. 

Accordingly, in the present study, nanoindentation measurements on PCL fibers have 

displayed differences in terms of load-depth curves and, hence, of hardness values. 

Both aminolyzed (PCL-NH2) and unmodified (PCL) fibers have evidenced hardness 

(H) values which generally decrease as load increases from 1 to 5 mN. In particular, 

measurements on unmodified PCL fibers have evidenced hardness values ranging 

from 0.50 to 0.27 GPa in the load range investigated. These values result greater than 

those obtained for PCL fibers which were modified via aminolysis (0.1 - 0.03 GPa) 

(Figure II.VI a). This suggests that after aminolysis the fiber surface becomes softer. 

Consistently with hardness values, the reduced modulus (Er) of unmodified PCL 
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fibers (4.2 – 1.2 GPa) results higher than those obtained from the PCL-NH2 ones (1 - 

0.3 GPa) (Figure II.VI b).  

     
Figure II.VI: Results obtained from nanoindentation tests on PCL and PCL-NH2 fibers: hardness (a) and 
reduced modulus (b) as function of the applied load (1-5 mN). Data are graphically reported as mean value, 
and bars represent the standard deviation. The dashed lines are just a guide for the eye. 

 

The reduced modulus may be considered a combined modulus obtained from 

nanoindentation tests as it is related to the Young’s moduli of both tip and sample, 

and to the their Poisson’s ratios. The tip properties are usually known, thus the 

Young’s modulus of a material can be evaluated from the reduced modulus if the 

Poisson’s ratio of the sample material is known. 

 

II.III.IV Tensile tests  
 

Tensile tests have shown a ductile behavior for both PCL-NH2 and unmodified PCL 

fibers. In particular, the stress-strain curves obtained show an initial linear region, 

then a little decrease in the slope occurs up to a local maximum stress value, followed 

by a decrease of the tensile stress. Then, a plateau-like region is evident, and finally a 

new increase of stress until the failure is generally reached. During testing the 

propagation of multiple necks were also observed along the aminolyzed fibers in 

comparison with the unmodified ones, as can be also evidenced by the fluctuating 

stress values after the first local maximum of the stress-strain curve (Figure II.VII). 

 

(a) (b) 
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Figure II.VII: Typical stress-strain curves obtained from tensile tests on PCL and PCL-NH2 fibers. 

 

Furthermore, even though the surface treatment strongly reduces the maximum strain, 

it seems to provide no differences in terms of modulus (E) and yield stress (σy) (Table 

II.I). 

 

Fibers 
 

E 
(MPa) 

σy 
(MPa) 

εmax 
(mm/mm) 

PCL 570.5 ± 50.1 25.0 ± 3.5 12.7 ± 1.1 

PCL-NH2 550.0 ± 48.6 24.2 ± 3.7 6.5 ± 0.5 

 

Table II.I: Results from tensile tests performed on PCL and PCL-NH2 microfibers: tensile modulus (E), 
yield stress (σy) and maximum strain (εmax), reported as mean value ± standard deviation.  

 

II.III.V Compression tests 
 

Considering that both nanoindentation and tensile measurements have allowed to 

evidence the effect of the modification via aminolysis on the surface and bulk 

properties, compression tests were carried out to analyze the effect on the macro-

mechanical performance of the 3D fiber-deposited scaffolds.      

Unlike nanoindentation and tensile measurements on PCL fibers, compression tests 

have evidenced that the aminolyzed 3D fiber-deposited scaffolds show stress-strain 

curves similar to those obtained for the unmodified ones. For both PCL-NH2 and PCL 
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scaffolds, compressive stress-strain curves may be divided into three different 

regions: after an initial relatively stiff mechanical response, there is a region with 

lower stiffness, finally followed by another stiff portion, similar to the densification 

region of flexible foams (Figure II.VIII).  

 

 
Figure II.VIII: Effect of lay-down pattern and surface modification via aminolysis on the mechanical 
properties of 3D rapid prototyped scaffolds. (a) Typical stress-strain curves for PCL scaffolds characterized 
by two different lay-down patterns (0°/90° and 0°/45°/90°/135°), before (PCL) and after aminolysis (PCL-
NH2). (b) Stress-strain curves reported up to a strain level of 0.04 mm/mm, in order to better highlight the 
different initial stiffness of the 3D morphologically-controlled structures. 

 

However, differently from the typical behavior of a flexible foam, the central zone is 

not a plateau, i.e. does not have zero slope but just a lower one if compared with the 

other two portions of the stress-strain curve. This behavior is also consistent with that 

already reported for 3D fiber-deposited PCL scaffolds.1,36  

The compressive modulus (E) has been evaluated as the slope of the initial linear 

region of the stress-strain curve. 

As expected, the architecture, that means the specific lay-down pattern used (0°/90° 

or 0°/45°/90°/135°), also influences the mechanical behavior of the 3D PCL scaffolds 

in compression. 

To emphasize the effect of architecture and surface modification and on the 

compressive mechanical performances of the 3D fiber-deposited scaffolds, values of 

compressive modulus and maximum stress have been reported as mean value ± 

standard deviation, for the two different lay-down patterns (0°/90° and 

0°/45°/90°/135°), also before and after aminolysis (Table II.II). 

 

(a) (b) 
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Lay-Down Pattern 
Compressive Modulus 

E (MPa) 
Maximum Stress 

σ (MPa) 
PCL PCL-NH2 PCL PCL-NH2 

0°/45°/90°/135° 63.0 ± 4.7 61.1 ± 5.1 12.3 ± 1.1 12.0 ± 1.3 
0°/90° 89.1 ± 6.9 87.9 ± 8.1 13.5 ± 1.3 13.2 ± 1.5 

 

Table II.II: Effect of lay-down pattern and surface modification via aminolysis on the mechanical properties 
of 3D rapid prototyped scaffolds. Compressive modulus and maximum stress reported as mean value ± 
standard deviation, for PCL scaffolds characterized by two different lay-down patterns (0°/90° and 
0°/45°/90°/135°), before (PCL) and after aminolysis (PCL-NH2). 

 

The lay-down pattern strongly influences the mechanical behavior of the 3D fiber-

deposited PCL scaffolds, especially in terms of initial stiffness. As reported in Table 

II.II, before the surface modification via aminolysis, PCL scaffolds characterized by a 

0°/90° pattern exhibit compressive modulus (89.1 ± 6.9 MPa) which is greater than 

that obtained for a 0°/45°/90°/135° pattern (63.0 ± 4.7 MPa). At a strain value of 

50%, a maximum stress of 13.5 ± 1.3 MPa and 12.3 ± 1.1 MPa has been evaluated for 

0°/90° and 0°/45°/90°/135° patterns, respectively. 

Furthermore, the surface treatment via aminolysis does not negatively affect the 

macro-mechanical behavior of the 3D fiber-deposited scaffolds, as evaluated through 

compression tests. For example, after aminolysis, PCL scaffolds characterized by a 

0°/90° pattern have shown values of compressive modulus (87.9 ± 8.1 MPa) that are 

similar to those achieved before the surface treatment (89.1 ± 6.9 MPa), as well as a 

maximum stress of 13.2 ± 1.2 MPa compared to a value of 13.5 ± 1.3 MPa obtained 

for the corresponding not-aminolyzed structures.  

Analogue observations might be made for the 3D fiber-deposited PCL scaffolds with 

a 0°/45°/90°/135° pattern, taking into account the results numerically reported in 

terms of modulus and maximum stress, before and after the surface treatment via 

aminolysis (Table II.II).  

 

II.III.VI Cell Adhesion Study 
 

All the steps carried out till this point can be briefly summarized as follows: a) design 

and fabrication of “morphologically-controlled” scaffolds through 3D Fiber 
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Deposition technique; b) optimization of the one-step surface treatment, especially 

through the precise quantification of amino-groups and the analysis of the penetration 

depth; c) RGD peptides quantification; d) mechanical characterization performed to 

assess the effect of the functionalization on the surface and bulk PCL properties, as 

well as on the macro-mechanical compression performances of the structures. 

However, even though the above mentioned steps are crucial, the knowledge of cell-

material interactions results to be a key element in designing 3D advanced 

multifunctional scaffolds with suitable morphology and properties, that are able to 

guide cell adhesion. For this reason, as a final step of this research, to analyze the 

bioactivation of 3D fiber-deposited scaffolds at the cell-material interface, their 

interaction with fibroblast cells was studied through Scanning Electron Microscopy 

(SEM) and Confocal Laser Scanning Microscopy (CLSM).   

SEM analyses have highlighted that NIH3T3 cells already adhere on the PCL fiber of 

the 3D scaffolds after 24 h from seeding, showing a morphology that drastically 

changes on the different samples (Figure II.IX). 

 
 
Figure II.IX: Cell adhesion study after 24 h from cell seeding: SEM micrographs (A PCL; B PCL-NH2; C 
PCL-DGDGE-GYDGR; D PCL-DGDGE-GRGDY), bar 20 µm; confocal laser scanning microscope images 
of phalloidin staining of microfilaments (E PCL; F PCL-NH2; G PCL-DGDGE-GYDGR; and H PCL-
DGDGE-GRGDY). 

 

In particular, with regard to unmodified PCL, PCL-NH2, and PCL-DGDGE-GYDGR 

scaffolds, cells did not show an appropriate shape, indicating a poor adhesion to the 

A B C D

E F G H
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substrate (respectively Figure II.IX A-E, B-F, and C-G). Conversely, as for PCL 

bioactivated with RGD peptide, cells correctly adhered and were well spread on the 

fiber surface, evidencing a good interaction with the material (Figure II.IX D,H).  

Moreover, at higher magnification, the formation of filopodia was observed. The 

effect of PCL functionalization in enhancing cell adhesion was further confirmed by 

actin cytoskeleton staining. This qualitative analysis indicated that cells better adhered 

on RGD bioactivated scaffolds, as demonstrated by the presence of stress fibers, 

compared to cells seeded on unmodified PCL, PCL-NH2, and PCL-DGDGE-GYDGR 

surfaces, where there is no evidence of a complete cytoskeleton organization.  

After 48 h from cell seeding, the effect of RGD peptide immobilization on cell 

adhesion results more evident as evidenced by Figure II.X, where it is worth noting 

the presence of cells that tend to fill the space between the fibers of 3D scaffolds. 

 
Figure II.X: Cell adhesion study after 48 h from cell seeding - SEM micrographs (PCL-DGDGE-GRGDY), 
bar 50 µm. 

 

II.IV Conclusions 
 

The ligand presentation at the cell-material interface results crucial in cell recognition 

of bioactive ligands immobilized onto polymeric substrates. Consequently, RGD 

motifs are being widely considered to design biomimetic surfaces that could trigger a 

specific function in cell behavior at the cell-material interface. In particular, cell 

adhesion should be suitably enhanced and tailored since it represents the basic feature 

in the cell-material interaction. Previous works have already evidenced that 

aminolysis represents an easy route to introduce primary amines with high yield that 

can be easily optimized. In this work, the precisely controlled two-step procedure 

proposed by Causa et al. (2010) for 2D PCL films was successfully extended to 
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immobilize RGD motifs on 3D rapid prototyped scaffolds, thus designing 3D 

advanced multifunctional scaffolds able to guide cell functions. The determination of 

amines and peptides effectively engrafted on the fiber surface of 3D scaffolds, as well 

as the treatment penetration depth was suitably assessed and discussed. 

Nanoindentation and tensile measurements carried out on PCL fibers allowed to 

underline the effect of the functionalization on the surface and bulk properties. More 

importantly, the surface modification did not negatively affect the macro-mechanical 

behavior of the 3D rapid prototyped scaffolds as evaluated through compression tests. 

On the other hand, results from cell adhesion study evidenced that the conjugation of 

amine-terminated peptides through reductive amination after tether insertion 

enhanced NIH3T3 cell adhesion and spreading. This means that a specific recognition 

of the solid signal (i.e., a correct presentation of the peptide sequences) to NIH3T3 

integrin cell receptors was presented.   

Accordingly, the present study could be considered as an approach to control scaffold 

morphology, spatial distribution of surface treatment as well as macro-, micro-, nano-

mechanical performances, for guiding cell adhesion or promoting specific cell-

material interactions as eventually in the case of different peptide sequences or 

structure. 
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CHAPTER III  

3D PCL/Mg,CO3-substituted hydroxyapatite 

nanocomposite scaffolds 

 

III.I Preface  
 

Recently, much attention has been driven toward the synthesis of new substituting 

biomaterials mimicking natural bone, as an alternative to autograft and allograft. In 

particular, several studies have focused on the development of new biomimetic non-

stoichiometric apatites as a result of a better understanding of the functional role of 

the active groups contained in natural bone tissue. These new substituting 

biomaterials must necessarily have a higher rate of biodegradability and bioactivity 

compared to stoichiometric hydroxyapatite. 1 

A controlled bioreabsorbability together with the comprehension of the mechanisms 

that, in physiological conditions regulates the solubility, represent a key element in 

the development of these new biomaterials. The cristallinity grade of powders and the 

addition of doping groups replacing those presents in the apatite network, although it 

will result in improved similarity to that of natural bone tissue, influence the solubility 

of these new biomaterials in physiological conditions.1 

Even though for a long time the inorganic phase of bones and teeth has been 

represented and idealized as stoichiometric hydroxyapatite [HA: Ca10(PO4)6(OH)2],1-

13 biological apatites are poorly crystalline and contain anionic and cationic 

substitutions in the sites of hydroxyapatite crystal structure, thus resulting far from the 

typical stoichiometric HA.14 

For this reason, during the past years, research has been focused on the synthesis of 

non-stoichiometric hydroxyapatite that is hydroxyapatite containing specific 

substituting ions, at both the cationic and anionic reticular sites. Among the 

substituents of the calcium ion (Ca2+), Mg2+ is of great interest, as it plays a crucial 

role in the new bone tissue formation. In particular, it has been shown that the amount 

of magnesium present in the bone tissue is variable during the calcification process 

and decreases as the mineralization progress continues. Qualitative alterations of bone 
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matrix are linked to the role of Mg: it has been demonstrated that a deficiency in Mg 

leads to the cessation of bone growth, reduction of osteoblast and osteoclast activities, 

osteopenia and, hence, bone fragility.2-11 

Several studies on the chemical synthesis and characterization of partially Mg-

substituted apatite have shown that the presence of Mg ion seems to accelerate the 

nucleation kinetics of hydroxyapatite, to inhibit its crystallization, producing a 

synthetic apatite characterized by a lower level of crystallinity, making it 

morphologically more similar to natural apatite (i.e., Figure III.I shows the crystalline 

structure of the stoichiometric hydroxyapatite).7-9,11,14,16  

Although the synthetic “Mg-doped” hydroxyapatite results more soluble and 

absorbable than “non-doped” hydroxyapatite, there is a limit to the introduction of Mg 

ion into the apatite network without altering the reticular structure. As an example, the 

formation of tricalcium magnesium phosphate rather than hydroxyapatite was favored 

if the molar ratio Mg/Ca in solution was above 0.3.2-13  

On the other hand, the substitution of the Ca ion with the Mg one can be increased by 

simultaneously incorporating carbonate ions into the apatite structure, as the 

carbonate ion is also found in the structure of natural apatite. The carbonate ion 

(CO3
2-) can partially substitute the OH- ion (site A) and/or the PO4

3- ion (site B). 

Both the total carbonate content (in the range of 3-8 weight percent) and the relative 

quantities of type A and type B carbonation (A/B in the range of 0.7-0.9) found in 

biological carbonate depend on the age of the individual.7-9,11,14,16 

 

 

Figure III.I: Projection of the constituting ions of the hydroxyapatite on the basal plane (left) and 
Hexagonal structure of hydroxyapatite (right). 

Synthetic carbonation should preferably take place at site B, giving a reduction of the 

crystallinity and an increase of the solubility of the apatite phase. Moreover, type A 

carbonation is characterized by a lesser affinity of the apatite for the osteoblast cells, 
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thus resulting in a lesser cellular adhesion and a decreased production of collagen 

compared to non-substituted HA.  

Accordingly, the synthesis of Mg carbonate hydroxyapatite (MCHA) results 

important to develop synthetic materials that mimic the inorganic phase of bone tissue 

both with respect to its composition and to its morphology.  

To date, synthetic hydroxyapatites present problems (slow bioabsorption and 

insufficient activation of the osteoblasts) related to the fact that they are 

stoichiometrically pure, while natural apatites contain such doping ions as carbonate 

and magnesium. It seems that carbonate-doped hydroxyapatites are absorbed better by 

the osteoclasts, probably for an improved solubility caused by the substitution of 

phosphate with carbonate. On the other hand, a faster osteointegration for apatites 

doped with magnesium is probably due to the stimulating effect of magnesium both 

on the growth of the osteoblasts and on the secretion of matrix proteins. 

Moreover, it is important that the magnesium is not simply superficially absorbed but 

also inserted into the crystalline matrix, in order to avoid its massive and swift 

release.  

As reported in literature, several works on the synthesis of Mg- and Mg,CO3-

substituted hydroxyapatite6,8-9,12,17-23 are simply based on the immersion of HA or 

carbonated HA in magnesium nitrate solution.6,8,12,18-20  

The Mg,CO3 biological-like substituted hydroxyapatite considered in the present 

work has been synthesized by the Institute of Science and Technology for Ceramics 

(ISTEC), National Research Council (CNR) – Faenza (Italy), using magnesium 

chloride (MgCl2, which is otherwise a constituent of the synthetic body fluid) as 

reagent, starting from the classical neutralization route involving calcium oxide and 

ortophosphoric acid.  

This synthesis allows to avoid additions of ammonia during the process to control and 

maintain high the value of the pH, contrarily to the synthesis based on calcium nitrate 

and ammonium hydrogen phosphate, making the whole synthesis easier and more 

suitable for industrialization. MgCl2 was already used in the synthesis of Mg-doped 

calcium deficient apatite starting from a mixture of calcium hydrogen phosphate and 

tetra-calcium phosphate powders5: thus, the interaction among the reactants is not 

comparable to that involved in the synthesis process below described and it is well 

known that the physico-chemical properties of the synthetic HA are strongly 

influenced also by the precursors used. 



Chapter III: 3D PCL/Mg,CO3-substituted hydroxyapatite nanocomposite scaffolds                                   

 

 

85 

III.II Materials and Methods 
 

III.II.I Biomimetic Mg and Mg,CO3-substituted hydroxyapatites 
 

The biomimetic Mg,CO3-substituted hydroxyapatite used in this work was suitably 

synthesized by ISTEC-CNR, Faenza, Italy. Sodium hydrogen carbonate (NaHCO3) 

was used as carbonate source, in order to favor the carbonation in the B-site 

(phosphate position). 

Many works have highlighted that the introduction of carbonate ions in the reaction 

mixture by bubbling carbon dioxide gas improves the contribute of A-site (hydroxyl) 

carbonation of synthetic Mg-substituted hydroxyapatite6-7,16 giving out carbonated 

apatites characterized by a high A/B carbonation ratio. Mg ions are bivalent as Ca 

ions, thus the carbonate ion is not “forced” to substitute in the phosphate site in order 

to preserve the charge balance, as on the contrary occurs for the Na,CO3 co-

substituted hydroxyapatite, in which the substitution of bivalent Ca2+
 with monovalent 

Na+ stimulates the substitution of trivalent anion PO4
3- with the bivalent anion CO3

2-. 

The use of sodium hydrogen carbonate as carbonate source for the synthesis of 

Mg,B–CO3
 co-substituted hydroxyapatite appears interesting also considering that Na 

ions are present in the bone mineral, thus the synthetic product can not be chemically 

disadvantaged, if Na ion partially enters in the apatite structure. 

In this work, the inclusion of synthetic hydroxyapatite simultaneously doped with 

magnesium and carbonate ions (MCHA) was assessed from a mechanical and 

biological point of view.2 

The synthesis method used allows to obtain hydroxyapatites with a carbonate 

substitution ranging from 6 to 8 weight percent (w %), and a distribution between the 

two sites of about 40-45 w % for site A and consequently 55-60 w % for site B. With 

the same process it is possible to uniformly dope the carbonate hydroxyapatite with 

magnesium, resulting in a Mg concentration of about 6-8 % if expressed as a molar 

ratio with respect to calcium, or, if expressed as weight percentage, a Mg quantity 

ranging from 1.0 to 2.7 w %. The introduction of Mg causes a partial collapse of the 

crystalline structure of the hydroxyapatite, but x-ray analysis has shown the 

persistence of the characteristic bands of this type of structure: the resulting product 
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still remains hydroxyapatite, even though at the nanostructure level it presents a low 

level of crystallinity (estimated around 40-60%).2 

The molar ratio of (Ca-Mg)/P in the resulting compound exceeds 1.7 and is thus 

above the value of 1.67 of non-substituted hydroxyapatites; in fact, the carbonate 

substitution has taken place mainly at site B. At any rate, the resulting material is 

homogenous and for purely descriptive purposes can be represented as an 

intermediate compound between the following two limit-defining formulas, assuming 

a constant Mg/Ca ratio:  

 

Ca6.4Mg0.5(HPO4)3.8(CO3)2.1(OH)2                                                                               (1) 

Ca6.4Mg0.55(PO4)0.5(HPO4)3.5(CO3)1.7(CO3)                                                                 (2)        

 

where formula 1 would show a compound in which all substitutable sites B have been 

substituted with carbonate and formula 2 a compound in which all substitutable sites 

A have been substituted with carbonate. Analogous representations can be made for 

other compounds with different Mg/Ca ratio.2  

Basically, the MCHA employed in the present work may be obtained through a 

synthesis process, the classical neutralization method, described below.2  

A phosphoric acid solution and a sodium bicarbonate solution are added 

simultaneously over a period of 3-5 hours to a calcium hydroxide suspension and a 

magnesium salt (preferably hexahydrated magnesium chloride), while the temperature 

is maintained around 35-45°C. Once the addition is complete, the mixture is stirred 

for 1-6 hours and is then left to rest at room temperature for 20-28 hours. The 

hydroxyapatite is filtered by centrifugation or filtration, washed with water and dried.2  

 

III.II.II 3D Scaffold Design and Preparation 
 

3D rapid prototyped composite scaffolds were produced by embedding biomimetic 

hydroxyapatite into a poly(ε-caprolactone) (PCL) matrix. 

Poly(ε-caprolactone) (PCL, Mw=65000 g mol-1 - Aldrich) pellets were dissolved in 

tetrahydrofuran (THF) through stirring at room temperature.  

MCHA nanoparticles and, subsequently, ethanol were added to the PCL/THF solution 

during stirring. A PCL/MCHA weight ratio (w/w) 80/20 was used. An ultrasonic bath 
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(Branson 1510 MT) was also employed to optimize the nanoparticles dispersion in the 

polymer solution.  

3D cylindrical scaffolds characterized by a diameter (D) of 10 mm and a height (h0) 

of 10.2 mm, were fabricated through 3D Fiber Deposition technique, using a 

Bioplotter dispensing machine (Envisiontec GmbH, Germany) equipped with a 

CAD/CAM system (Figure III.II). 3D scaffolds were obtained by alternatively 

extruding and depositing the polymer fibers with a 0°/90° pattern. The nozzle used to 

extrude PCL and PCL/MCHA fibers was a stainless steel needle characterized by an 

inner diameter of 400 µm. Each scaffold was characterized not only by the fiber 

diameter (depending on the needle diameter and/or the deposition speed), but also by 

the fiber spacing (strand distance, i.e. center-to-center distance) and layer thickness, 

which influence the overall pore size. The values of strand distance were set to 640 

µm, while for the layer thickness was chosen about 320 µm. A deposition speed of 

50-55 mm/min was used.  

Single polymeric (PCL) and nanocomposite (PCL/MCHA) fibers and bi-layered 

scaffolds characterized by a 0°/90° pattern were also manufactured for 

nanoindentation tests and cell adhesion study, respectively.  

 

 
Figure III.II: Polymeric (PCL) and nanocomposite (PCL/MCHA) cylindrical scaffolds obtained through 3D 
Fiber Deposition technique.  

 

III.II.III Micro-Computed Tomography 
 

A micro-computed tomography (Micro-CT) was performed through a SkyScan 1072 

(Aartselaar, Belgium) system using a rotational step of 0.9° over an angle of 180°, in 

order to analyze the internal structure, pore shape and size of the 3D polymeric (PCL) 

and nanocomposite (PCL/MCHA) scaffolds fabricated via rapid prototyping 

technique. Cross-sections and 3D model of PCL scaffolds were reconstructed using 

PCL 

PCL/MCHA 
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Skyscan’s software package and Image J software, for image analysis and 

visualization of the results from Micro-CT system scan. The pore network was 

visualized and the pore interconnectivity was studied. 

 

III.II.IV Nanoindentation tests 
 

Nanoindentation tests were carried out on polymeric (PCL) and nanocomposite 

(PCL/MCHA) fibers, obtained through a Bioplotter Dispensing Machine and 

characterized by a diameter of 340-360 µm. 

All the tests were performed in a 1-5 mN load range, using a Nanotest Platform 

(Micromaterials, U.K.) with a diamond pyramid-shaped Berkovich-type indenter tip. 

Trapezoidal load functions characterized by a loading-unloading rate of 300 µN/s and 

a peak-load hold period of 20 s were imposed. Load-depth curves, values of hardness 

and reduced modulus were evaluated. In particular, hardness and reduced modulus 

were evaluated using the methods introduced by Oliver and Pharr (1992), as 

previously described in Chapter II. 

 

III.II.V Compression tests 
 

Compression tests were performed on the 3D polymeric (PCL) and nanocomposite 

(PCL/MCHA) cylindrical scaffolds, characterized by a diameter (D) of 10 mm and a 

height (h0) of 10.2 mm. All the tests were carried out at a rate of 1 mm/min up to a 

strain value of 0.5 mm/mm, using an INSTRON 5566 testing machine. The stress was 

evaluated as the force F measured by the load cell divided by the total area of the 

apparent cross-section of the scaffold (A0 = πD2/4):  

0A
F

=σ  

while the strain ε was defined as the ratio between the scaffold height variation Δh 

and its initial height h0: 

0h
hΔ

=ε
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III.II.VI Microscopy and Cell Adhesion Study 
 

Numerous autologous sourcing sites together with the comprehension of the 

mechanisms that regulate, in vitro, expansion and differentiation making it possible to 

consider Mesenchymal stem cells (hMSCs) as an integral part of tissue engineering.33-

41 Much attention has been focused on the questions related to the true potential of 

MSCs in terms of plasticity and what marker can be used to identify true MSCs from 

a cell characterized by a limited plasticity, due to various level of differentiation.42-51  

Therefore, it is necessary to improve the knowledge on how it is possible to control 

and influence MSCs behavior starting from the awareness of cell-material interaction, 

such as cell adhesion and spreading, in order to understand what biological stimuli are 

required in order to obtain different functional cell types, (osteoblasts, chondrocytes, 

adipocytes and hepatocytes) from an MSC-like population i.e. simply by using 

supplemented mediums (Figure III.III).52-55  

To date, it is possible to guide MSC in vitro differentiation by means of growth 

factors and cytokines, but the guidance of cell differentiation driven by specific 

substrate/scaffold (i.e. cell recognition could be improved by using different material 

or different composition) represents a more attractive challenge in tissue engineering.  

  

Figure III.III: Assumed steps in the osteoblast lineage: different stages of proliferation and differentiation 
are involved.54,55 

 

In this work, human Mesenchimal Stem Cells (hMSCs) were maintained at 37°C and 

5% CO2 in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% 

fetal bovine serum (FBS, BioWhittaker, Walkersville, MD), 2 mM L-glutamine 
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(Sigma, St. Louis, MO), 1000 U/l penicillin (Sigma, St. Louis, MO) and 100 mg/l 

streptomycin (Sigma, St. Louis, MO). In particular, PCL, and PCL/MCHA 3D fiber-

deposited scaffolds were sterilized with antibiotics and pre-incubated in serum-free 

medium for 16-18 h. After the incubation, 5 x 104 cells were seeded on all the 

different kinds of 3D scaffolds and grown in DMEM-w/o FBS to avoid unspecific cell 

adhesion depending on serum protein adsorption.  

Firstly, Scanning Electron Microscopy (SEM) was performed by a Leica 420 

microscope in order to evaluate morphological structure and hence the architecture of 

the scaffolds. 3D fiber-deposited scaffolds were rinsed with PBS and fixed with 2.5% 

glutaraldehyde (pH=7.4) (Sigma-Aldrich, Italy) for 2h at room temperature, 

dehydrated in graded ethanol concentrations (from 50% to 100% v/v in ethanol), air-

dried, gold sputtered and analyzed by SEM. Different polymeric (PCL) and 

nanocomposite (PCL/MCHA) scaffolds were studied. 

Cell-scaffold constructs, made from 3D fiber-deposited scaffolds seeded with hMSCs, 

were analyzed through stereomicroscope (OLYMPUS SZX7), in order to study cell 

adhesion on the polymeric and nanocomposite substrate, by staining with crystal 

violet and toluidine blue.  

In the first case, crystal violet staining was performed by using glutaraldehyde for 30 

min, at room temperature. The cell-scaffold constructs were successively rinsed three 

times with PBS buffer and the cells were stained with crystal violet 0.1% (w/v, Sigma 

Aldrich) for 60 min at room temperature. The dye’s solution was then aspirated and 

the cell-scaffold constructs were washed twice in PBS. The cells adhered to the 

substrate material was colored in purple. 

At 24 h after seeding, cell adhesion and distribution within the PCL based scaffolds 

was also verified by Toluidine blue staining. Briefly, samples were washed in 

phosphate buffered solution (PBS), fixed in formalin 4% for 10 min, rinsed in PBS 

and stained with Toluidine Blue for 5-10 minutes. Samples were then washed in 

distilled water to remove extra stain, and immediately analyzed by stereomicroscopy 

at different magnifications. Furthermore, cell-scaffold constructs were also analyzed 

through Confocal Laser Scanning Microscopy (CLSM). They were fixed with 4% 

paraformaldeyde for 20 min at room temperature, rinsed twice with PBS buffer and 

incubated with PBS-BSA 0.5% to block unspecific binding. Actin microfilaments 

were stained with phalloidin tetramethylrhodamine B isothiocyanate (Sigma-Aldrich). 

Phalloidin was diluted in PBS-BSA 0.5% and incubated for 30 min at room 
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temperature. The images were acquired at different times from cell seeding by using a 

He-Ne excitation laser at the wavelength of 543 nm and a 20x objective.  

At 21 days after cell seeding, in order to evaluate if MCHA nanoparticles may act as a 

bioactive solid signal able to induce osteogenic differentiation of the hMSCs, cell-

scaffold constructs were also analyzed through stereomicroscope by alizarin red 

staining, comparing the data obtained with those related to a “2D” control element, 

characterized by cells in osteogenic medium (OM), (made from 10% FBS; 0.1 µM di 

dexamethasone; 50 µM ascorbate-2-phosphate; 10 mM β-glycerophosphate; 1% 

penicillin/streptomycin; 1% L-glutamine). The alizarin red is generally used in 

biochemical analysis to determine the presence of calcium deposits by osteogenic cell 

line. As for the experimental methodology, cells were fixed in glutaraldehyde 0.25% 

for 15 minutes at room temperature; the cell-scaffold constructs were washed several 

times with PBS and then the cells were stained with Alizarin Red S 2% (Sigma 

Alrich) for 10 minutes; successively, the cell-scaffold constructs were washed several 

times with de-ionized water to remove excess of dye and analyzed through a 

stereomicroscope.  

In order to better understand the effect of the inclusion of MCHA in terms of 

osteogenic differentiation, the potential differentiation of hMSCs was evaluated by 

the osteoblast-phenotype marker (alkaline phosphatase, ALP) measured at 7, 14 and 

21 days after cell seeding.  

Alkaline Phosphatase represents an osteogenic differentiation marker, as it is 

normally used to evaluate the scaffold ability to induce osteogenic differentiation. For 

this reason, ALP/DNA tests were performed in order to evaluate the effect of the 

inclusion of MCHA nanoparticles on osteogenic differentiation of hMSCs. 

Briefly, the samples were analyzed using pNPP Alkaline Phosphatase Assay 

SensoLyteTM enzymatic kit (Anaspec), that is a colorimetric kit based on the activity 

of the dephosphorylating enzyme: 

p-Nitrophenol phosphate + H2O → pi + p-nitrophenol 

Generally, alkaline phosphatase is associated with a secondary antibody, using 

paranitrophenol-phosphate (pNPP) as substrate; pNPP, after being dephosphorylated 

by the alkaline phosphatase, is yellow-colored, making it possible to detect its 

presence at a wavelength of 405 nm. Thus, by measuring the amount of p-nitrophenol 

at 405 nm, the alkaline phosphatase activity can be analyzed. 
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In this work, different kinds of cell-scaffold constructs were freeze thawed three times 

in 30 min cycles of -70°C and 37°C. p-Nitrophenol phosphate in a diethanol-amino 

buffer (Merck, UK) was used as a substrate for ALP. The release of the reaction 

product p-nitrophenol (yellow color) was quantified using a spectrophotometer 

(Lambda 25, Perkin-Elmer) at a wavelength of 405 nm. 

The results were then normalized for total DNA content, using the PicoGreen dsDNA 

Kit Quant-ITTM Reagent. 

 

III.II.VII Gene expression: Real Time quantitative PCR 
 

The termination of the proliferation process and, subsequently, the formation of a 

collagenous extracellular matrix (ECM) underlie the differentiation from 

osteoprogenitors into mature, secretory osteoblasts. In primary osteoblast cultures and 

non-transformed osteoblast cell lines, the expression of specifical differentiation 

markers follows a clear temporal sequence (Figure III.IV). Genes associated with cell 

proliferation, such as H4 histone, C-FOS, and C-MYC, are expressed at early times 

along with those encoding the proαl(l) and proα2(1) propeptides of type I collagen. 

Initial collagen matrix accumulation precedes and is essential for sequential 

expression of the differentiation-related proteins, alkaline phosphatase, the 

PTH/PTHrP receptor, bone sialoprotein, and osteocalcin.56-63  

 
Figure III.IV: Cell growth versus differentiation-related gene expression for the various early intermediates 
during the in vitro cultivation of calvarial osteoblasts. Arrows indicate proliferation and differentiation 
trends. H4 histone gene expression is most closely correlated with cell division. Other genes expressed at this 
time are c-fos and c-jun. Abbreviations: Col1, type I collagen; AP, alkaline phosphatase; Op, osteopontin; 
and OC, osteocalcin. Although Col I mRNA levels are highest during the proliferation phase, matrix 
deposition continues to increase throughout the entire culture period.58 
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Similar pattern of gene expression is also seen in vivo and in organ culture; 

osteoprogenitors adjacent to bone are highly proliferative and express low levels of 

bone-specific proteins, while secretory osteoblasts on the bone surface stop dividing 

and produce large amounts of bone-specific ECM.64,65 Thus, a complete model for 

transcriptional regulation in osteoblasts must explain the conversion of mesenchymal 

stem cells to osteoprogenitors as well as the influences of cell proliferation and ECM 

synthesis on gene expression.  

Specific changes in gene expression are attributable at the progression from 

uncommitted stem cell to osteoprogenitor and finally mature osteoblast and osteocyte. 

A common believe in development is that specific transcription factors or groups of 

factors are able to control the process of lineage commitment by selectively activating 

those genes to be expressed in the differentiated state. Several classes of tissue-

specific transcription factors have been described, including the basic helix/loop/helix 

(bHLH) family involved in myogenic, myeloid, erythroid, and neuronal 

differentiation,66 bHLH leucine zipper factors involved in adipocyte and liver 

differentiation,67,68 orphan members of the steroid receptor superfamily such as HNF-

4 involved in liver differentiation68 and POU-domain factors involved in pituitary 

differentiation.69 Several experimental approaches have been successfully used to 

identify transcription factors controlling tissue-specific gene expression. It is possible 

to identify two main approaches: (1) identification of factors able to confer a 

differentiated phenotype on an undifferentiated cell or tissue, and (2) identification of 

promoter elements able to confer tissue-specific expression on genes associated with a 

given phenotype, with subsequent identification and functional testing of nuclear 

proteins associating with these elements. The classic example of the first type of 

approach is the discovery of myogenic differentiation protein (MyoD), a muscle-

specific bHLH transcription factor. MyoD was isolated from a cDNA library enriched 

for transcripts present in a myogenic clone of C3HlOTI/2 cells that were not present 

in wild-type undifferentiated cells. Transfection of MyoD into wild-type C3H1OT1/2 

cells induced myotube formation and muscle-specific gene expression.70 MyoD was 

subsequently shown to bind to and activate skeletal muscle-related genes through a 

specific DNA element called an E-box and having the general sequence Cytosine-

Adenine-n-n-Thymine-Guanine (CAnnTG). Four other myogenic bHLH factors 

(myogenin, myf-5, MRF-4, and myf-6) were subsequently cloned and shown to be 

involved in various steps in myoblast/myotube formation.71 Although there is 
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considerable redundancy between members of the MyoD family, gene knockout 

studies with one family member, myogenin, indicate that this factor is essential for the 

formation of skeletal muscle.66 Similarly, neuroD, a second type of bHLH protein, 

can convert presumptive epidermal cells into neural cells when its mRNA is injected 

into Xenopus embryos.72 An example of the second approach is the isolation of the 

hepatocyte-specific factor, HNF-1. This transcription factor was identified in 

hepatocyte nuclear extracts by its ability to bind to an oligonucleotide containing a 

sequence in the ornithine transcarbamylase gene promoter, essential for liver-specific 

expression.68 

Although several studies on osteoblast gene regulation have used both of the 

experimental approaches above described, authors have achieved the greatest success 

in this area by focusing their research on specific gene promoters and associated 

nuclear factors. The osteocalcin gene and genes encoding the proαI(I) and proα2(I) 

chains of type I collagen have intensively been studied. Recently, several laboratories 

have also initiated studies on the bone sialoprotein gene. The type I collagen genes, 

subject of many and complex controls in a number of tissues in addition to bone, have 

been recently reviewed.73,74 

Runx2 is a bone-related transcriptional factor, homologous to the Drosophila protein, 

Runt.75-77 This protein is essential for the differentiation of osteoblasts from 

mesenchymal precursors and bone formation. It has been demonstrates that Runx2 

can directly stimulate transcription of osteoblast-related genes such as those encoding 

osteocalcin (OC), type I collagen, osteopontin (OP) and collagenase 3 by binding to 

specific enhancer regions containing the core sequence PuCCPuCA (where Pu is for 

purine),75-80 although the molecular mechanism of Runx2 action is already unknown. 

Runx2 is expressed exclusively in mineralized tissues and their precursors, but, in 

many cases, there is a poor correlation between actual Runx2 mRNA or protein levels 

and the expression of osteoblast-related genes. Thus, Runx2 expression precedes 

osteoblast differentiation and OC expression by several days.75-77 Also, in several 

osteoblast cell culture systems, Runx2 protein levels are not very well correlated with 

expression of its targeted genes. 

Thus, as osteoblasts must establish a type I collagen-containing ECM before they can 

differentiate and express osteoblast-related genes such as those encoding OC, bone 

sialoprotein, alkaline phosphatase and the parathyroid hormone/parathyroid hormone-
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related protein receptor and, ultimately, mineralize55, the ECM signals are needed to 

the differentiating preosteoblast by binding to b1 subunit-containing integrins (a2b1 

and, possibly, a1b1). 78,82-84 Disruption of integrin signaling using either blocking 

antibodies or peptides that mimic the cell-binding domain of collagen completely 

blocks ECM-dependent differentiation. This observation is highly significant for the 

comprehension of osteoblast metabolism since, through integrins, cells can sense their 

ECM environment and respond to changes in mechanical loading.78,85 

Moreover, it is well established that mechanical loading plays an important role in the 

regulation of bone homeostasis and skeletal morphology during development and in 

postnatal life where it increases bone density and strength. In contrast, skeletal 

unloading in humans and rats, as seen during space flight, is associated with bone loss 

and compromised bone mechanical properties. Mechanical stimulation has also been 

examined in a variety of cells in vitro including epithelial cells, fibroblast, 

chondrocytes, and osteoblasts.78,86 Mechanically strained osteoblasts express 

increased levels of osteopontin (OP), osteocalcin (OC), and collagen I/ III 

mRNA.78,87-88 

Although the importance of mechanical loading in the development and maintenance 

of bone integrity is undisputed, the mechanisms underlying mechano-transduction 

through which osteoblasts sense and convert mechanical stimuli into cellular 

responses are largely unknown. In particular, the MAP kinase pathway is one of the 

principle signal transduction cascades to be associated with mechano-transduction. 

Integrins, which connect the cytoskeleton to the extracellular matrix and mediate a 

variety of signaling cascades, may transduce mechanical stimuli into biochemical 

signals. Two recent studies established an important link between Runx2 and 

mechano-transduction. Ziros and coworkers89 have highlighted that Runx2 may act as 

a target for mechanical signals in human periodontal ligament (hPDL) cells (i.e., 

osteoblast-like cells which can differentiate toward osteoblasts in response to a variety 

of extracellular stimuli.).78,89 Specifically, low level continuous mechanical stretching 

of hPDL cells dramatically increased binding of Runx2 to OSE2 DNA in gel 

retardation mobility shift assays, although a slight increase in Runx2 mRNA or 

protein was also observed. This stimulation was detected after as little as 30 min of 

stretching, peaked after 6 h, and lasted for at least 12 h. Extracellular Regulated 

Kinase 1 and 2 (ERK1/2) phosphorylation was activated in a time-dependent manner 

in mechanically stretched hPDL cells and was well correlated with the increase in 
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Runx2 binding activity. Furthermore, the stretch-induced increase in Runx2 DNA 

binding activity was completely abolished by U0126, a specific inhibitor of ERK1/2 

activation. Of particular interest, stretch-activated ERK physically interacted with 

Runx2 and could phosphorylate this transcription factor in vitro. In separate studies, 

Wang et al. provided evidence that both ERK activation and Runx2 phosphorylation 

are required for mechanical signaling in human and rat bone marrow stromal cells.78,90 

They showed that extra-corporeal shock wave (ESW), an alternative non-invasive 

method for the promotion of bone growth and tendon repair, promoted stromal cell 

proliferation and differentiation to osteoblasts. Specifically, optimal ESW treatment 

of bone marrow stromal cells at 0.16 mJ/nm2 for 500 impulses increased [3H]-

thymidine incorporation into DNA, alkaline phosphatase activity, OC gene 

expression, and bone nodule formation. Of particular interest, ESW dramatically 

stimulated ERK-dependent Runx2 phosphorylation although it did not change the 

Runx2 protein levels. Thus, mechanical force may regulate osteoblast proliferation 

and differentiation as well as bone formation through MAPK-dependent Runx2 

phosphorylation.  

In this work, cells from a human cell line (MG63) were cultured in Coon’s F12 

modified medium supplemented with 10% fetal calf serum (FCS), 2 mM glutamine, 

100 IU/ml penicillin and 100mg/ml streptomycin. The culture medium was changed 

every 3 days. When the cells became confluent, they were detached with 0.05% 

trypsin-0.01% EDTA and re-plated until the next confluence. All cultures were 

performed within 37°C-5% CO2 humidified incubators.  

Cells from a human cell line (MG63) were selected in order to avoid a 

dedifferentiation or a transdifferentiation. Transdifferentiation is a process whereby a 

cell type committed to and progressing along a specific developmental lineage 

switches into another cell type of a different lineage through genetic 

“reprogramming”. Indeed, it has already been demonstrated that MSCs exposed to 

osteogenesis-inducing factors can maintain their potential of differentiation into 

adipocytes and chondrocytes. Osteogenic differentiation of MSCs is characterized by 

three distinct phases: cell proliferation, cessation of proliferation and secretion of 

extracellular matrix and finally mineralization of extracellular matrix, resulting in 

mature osteoblasts. It has been widely accepted that as osteogenic differentiation 

progresses, the multiple differentiation potentials of mesenchymal cells gradually 

become more restricted, such that terminally committed osteoblasts are unable to 
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differentiate into other cell types. However, Lin Song and Rocky S. Tuan91 showed 

that MSCs cultured under osteogenic conditions for 10, 20, or 30 days maintained 

their ability to differentiate into adipocytes and chondrocytes. Even the fully 

differentiated osteoblasts (after 30 day induction), identified by expression of alkaline 

phosphatase, bone sialoprotein, and osteocalcin, histochemically detectable alkaline 

phosphatase activity and the elaboration of calcified extracellular matrix, were able to 

change their differentiation program and became lipid-producing adipocytes and 

chondrocytes that produced sulfated proteoglycan, collagen type II, and link protein. 

An interesting phenomenon during the transdifferentiation process was the extensive 

cell proliferation that preceded the phenotypic switch. When MSCs were cultured in 

osteogenic medium for 30 days, adherent cells formed large osteoblastic nodules 

(Figure III.V A, a). When the osteogenesis-inducing medium was replaced with 

control medium, spindle-shaped fibroblast-like cells started to migrate out of the 

calcified matrix nodule (Figure III.V A, b) and were morphologically similar to the 

original MSCs.  

 
Figure III.V: Osteoblasts derived from osteogenic differentiation of hMSCs were capable of 
dedifferentiation and retention of multidifferentiation potential. A) A fully differentiated osteoblastic nodule 
in osteogenic culture of hMSCs (30 days) stained with alizarin red (a). Fibroblastic cells derived from the 
osteoblastic nodule migrated out and proliferated (b). B) Expression levels of lineage-specific transcription 
factors (Cbfa1, Sox9, and PPARγ2) during osteogenesis and osteoblast dedifferentiation. C) Cells derived 
from the osteoblastic nodule differentiated into 3 mesenchymal lineages: osteoblasts (a, alizarin red stain), 
adipocytes (b, Oil red O stain), and chondrocytes (c, Alcian blue stain; d, immunohistochemical staining of 
collagen type II). Scale bar, 50 µm. 91 

 

Since cell division is required for demethylation, a critical step for genome 

reprogramming, perhaps without the pressure of inducing factors, fully differentiated 
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MSC-derived cells could resume cell proliferation, modify their gene expression 

profile, and return to a more primitive stem cell-like stage. The phenotypic changes 

were observed together with a fluctuation in the expression of lineage-specific 

transcription factors: core binding factor A1 (Cbfa1) for osteogenesis, Sry-related 

HMG box 9 (Sox9) for chondrogenesis, and Peroxisome proliferator-activated 

receptor γ 2 (PPARγ2) for adipogenesis (Figure III.V B). As expected, expression of 

Cbfa1 was up-regulated during osteogenesis, whereas both Sox9 and PPARγ2 were 

down-regulated compared with undifferentiated MSCs. On the other hand, expression 

levels of all three transcription factors decreased during osteoblast dedifferentiation, 

which suggested that cells might return to an uncommitted developmental stage from 

a fully determined cell type. The dedifferentiated cells derived from the osteoblasts 

not only exhibited similar morphology as MSCs, but also exhibited MSC-like 

multidifferentiation potentials. As shown in Figures III.V C and III.VI, these 

fibroblast-like cells formed mature osteoblasts (Figure III.V C a), adipocytes (Figure 

III.V C b), and chondrocytes (Figure III.V C c, d). 

 

 
Figure III.VI: A transdifferentiation model of MSCs. Osteoblasts, adipocytes, and chondrocytes 
differentiated from MSCs were able to transdifferentiate into other mesenchymal cell types. Fully 
differentiated cells were also capable of dedifferentiation into a primitive stem-like cell type and retention of 
multiple differentiation potential.91 

 

Therefore, in order to avoid problems related to a dedifferentiation or a 

transdifferentiation of hMSCs from osteoblast precursor to other mesenchymal cell 

types, MG63 cell line was selected. MG63 cell line derived from an osteosarcoma and 

they are better known as osteoblast-like cells; so, we assume MG63 as hMSCs 

differentiated in osteoblast precursor, the aim being to acquire data related to typical 

gene expression of collagenous ECM secretion: Runx2, Collagen type I (Coll I) and 

osteopontin (OP). 
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In this context, polymeric (PCL) and nanocomposite (PCL/MCHA) scaffolds were 

homogeneously loaded with 104 cells/ml. After 1 hour, additional complete medium 

(6 ml) was added to cover the overall 3D scaffold. Cell-scaffold constructs were all 

maintained in static culture for 24 h, to allow a complete cell adhesion. Successively, 

while some cell-scaffold constructs were maintained in static conditions, other ones 

were moved within a bioreactor system previously developed,92 and perfused in 

alternate directions at a flow rate of 1.2 ml/min through the pores of scaffolds 

(appendix I contains a part of the Wendt’s work (2003)93 related to the specific 

bioreactor used in this work. So, for detail, see following appendix I, Wendt 2003 and 

Scaglione 2006).92,93  

MG63 cells were cultured on polymeric (PCL) and nanocomposite (PCL/MCHA) 

scaffolds for two weeks under osteogenic conditions, consisting of control medium 

supplemented with 10 nM Dexametasone, 0.25 mM L-ascorbic acid-2-phosphate and 

10 mM b-glycerophosphate.94 Cultures were then harvested at timed intervals and 

processed for biochemical and mRNA analysis. In particular, total messenger RNA 

was extracted by the cells cultured within 3D PCL based scaffolds, either under static 

or dynamic stimulation, by using the PerfectPure RNA Cultured Cell Kit (5-Prime 

GmbH, Hamburg, Germany) according to the manufacturer's instructions. mRNA was 

also extracted by cells before their biomechanical stimulation within the bioreactor 

system.  

Briefly, scaffolds were incubated for 10-15 min with the lysis buffer, on ice, to allow 

a complete solution infiltration within the 3D structure. The SuperScript III Reverse 

Trascriptase (Invitrogen) was used to perform standard RT-PCR reactions. Primer sets 

for each gene of interest were derived from published sequences. The expression level 

of genes encoding the most typical osteoblast-related membrane and extracellular 

matrix molecules (i.e., Coll I, OP) was evaluated. The transcriptional factor of the 

osteogenic lineage (i.e. RUNX-2) was also evaluated. The Gly-Ala-Pro-Asp-His 

(GAPDH) rRNA was selected as a reference gene.  

Samples of cDNAs were amplified with the RealMasterMix SYBR ROX 2,5X (5’-

Prime) in an Eppendorf Mastercycler Realplex apparatus. Delta Ct method was used. 

For each gene, different RNA concentrations were used, and the related standard 

curves provided. Real time PCR runs were performed in quadruplicate for each 

sample and the specificity of the reaction products was counterchecked by the 

analysis of the melting curve.  
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In the present study, RT-PCR analysis was performed on cell-scaffold constructs 

under static or dynamic stimulation by dr. S. Scaglione from Institute of Electronics, 

Computer and Telecommunication Engineering (IEIIT) of the National Research 

Council (CNR) – Genoa (Italy), and prof. R. Quarto from Department of Sperimental 

Medicine (DIMES), University of Genoa (Italy).  
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Appendix I 

 
For the direct perfusion of a cell suspension through the pores of 3D scaffolds, Wendt et al., 2003, 

designed and fabricated a novel bioreactor. As shown in Figure A.I, scaffolds were placed in 

polysulfone/Teflon chambers (one scaffold per chamber) that were positioned at the bottoms of two 

glass columns and connected through a U-shaped glass tube at their base. Flow of the cell suspension 

was induced with the use of a vacuum pump and the flow rate regulated with a flow meter. The 

direction of flow was reversed when the fluid level in one column reached an optical sensor placed 

near the top of each glass column. The sensor detected the cell suspension, actuating a pair of solenoid 

valves, switching the vacuum to the opposite column, and therefore reversing the direction of fluid 

flow. Because scaffolds were press-fit into the chamber, the cell suspension could not deviate around 

the scaffold and was therefore forced to flow through its pores. The bioreactor was oriented vertically 

to avoid cells from settling onto the glass columns as would occur if in horizontal oriented. 

 
Figure A.I: Perfusion seeding bioreactor. The cell suspension oscillates between the two glass columns (A), 
flowing through the sample chamber (B), scaffold (C), and U-tube (D). The direction of flow reverses when 
the cell suspension reaches the level of the sensors (E). 

 

Briefly, polymeric (PCL) or composite (PCL/MCHA) scaffolds were press-fit into the chambers 

ensuring fluid flow through the scaffold. 107 cells in 4 ml medium were added to each pair of columns 

and perfused in alternate directions at a flow rate of 1.2 ml/min through the pores of each scaffold. 

 

 

 

 

 

 

Cell Seeding Techniques

Eight millimeter-diameter disks of Polyactive foam were
cored out from a 4.3 mm thick sheet using a custom-made
drilling device to obtain a reproducible scaffold shape and
size. Four millimeter thick Hyaff!-11 meshes were punched
into 5 mm diameter disks for static and spinner flask seed-
ing, and 8 mm diameter disks for perfusion seeding.
ChronOS™ ceramic cylinders were 8 mm in diameter and 4
mm thick. All scaffolds were seeded at 6E + 07 cells/cm3 of
scaffold volume for all seeding methods. The duration of
seeding was set to 18 hours, after preliminary experiments
indicated that additional time did not improve the seeding
efficiency for any method tested.

Static Seeding

Pre-wet Polyactive and ChronOS™ scaffolds were blotted
dry on sterile gauze and transferred to agarose-coated 24-
well plates. 1.3E + 07 chondrocytes or BMSC were resus-
pended in 100 !L or 95 !L of medium, volumes previously
determined to completely fill, respectively, the foam or ce-
ramic pores. The cell suspension was slowly dispersed over
the top surface of the scaffold with a micropipette. Simi-
larly, 5.0E + 06 chondrocytes were resuspended in 45 !L
media and added to the dry Hyaff!-11 mesh. The seeded
scaffolds were transferred to a 37°C incubator for 45 min-
utes to allow for initial cell attachment. One hundred mi-
croliters of medium was then carefully added to the base of
each well. After a further 1.5 hours of incubation, an addi-
tional 2 mL of medium was slowly added along the side of
the well to cover the scaffold. Well plates were placed back
into the incubator and constructs cultured statically for an
additional 16 hours.

Spinner Flask Seeding

Polyactive and Hyaff!-11 were seeded in spinner flasks as
previously described (Vunjak-Novakovic et al., 1998).
Briefly, scaffolds were threaded onto 31-gauge stainless
steel wires that were affixed into a silicone stopper at the top
of the 50-mL spinner flask (Bellco Glass Inc., NJ; Model
#1967). Fifty milliliters of medium and either 1.3E + 07
cells/Polyactive foam or 5.0E + 06 cells/Hyaff!-11 mesh
were added to the flask and stirred at 50 rpm for 18 h at
37°C.

Perfusion Seeding

For the direct perfusion of a cell suspension through the
pores of 3D scaffolds, a novel bioreactor was designed and
fabricated. As shown in Figure 1, scaffolds were placed in
polysulfone/Teflon chambers (one scaffold per chamber)
that were positioned at the bottoms of two glass columns
and connected through a U-shaped glass tube at their base.
Flow of the cell suspension was induced with the use of a
vacuum pump and the flow rate regulated with a flow meter.
The direction of flow was reversed when the fluid level in

one column reached an optical sensor placed near the top of
each glass column. The sensor detected the cell suspension,
actuating a pair of solenoid valves, switching the vacuum to
the opposite column, and therefore reversing the direction of
fluid flow. Because scaffolds were press-fit into the cham-
ber, the cell suspension could not deviate around the scaf-
fold and was therefore forced to flow through its pores. The
bioreactor was oriented vertically to avoid cells from set-
tling onto the glass columns as would occur if in horizontal
oriented.

Polyactive foams were press-fit into the chambers radi-
ally and compressed from 4.3 mm to 4.2 mm in thickness by
the chamber cover, ensuring fluid flow through the scaffold.
2.6E + 07 cells in 5 mL medium were added to each pair of
columns (1.3E + 07 cells per scaffold) and perfused at su-
perficial velocities of 0.1–10 mm/s for 18 h in a 37°C in-
cubator. Hyaff!-11 meshes were punched into 8 mm diam-
eter disks and placed into the chambers. A Teflon ring (8
mm O.D. × 5 mm I.D. × 3.2 mm) was placed on top of each
mesh, securely clamping it in place by its outer 1.5 mm
diameter sector and allowing perfusion of only the inner 5
mm diameter region. 1.0E + 07 cells per pair of seeding
columns (5E + 06 cells per mesh) were seeded by perfusion
in 4 mL of culture medium at a superficial velocity of 1
mm/s. ChronOS™ ceramics were press-fit radially into the
sample chamber, and 2.6E + 07 cells in 5 mL medium (1.3E
+ 07 cells per scaffold) were added to each pair of columns
and perfused at 1 mm/s.

Cell Seeding Efficiency

The seeding efficiency, defined as the percentage of initially
seeded cells that attached to the scaffolds, was determined
as follows. Seeded scaffolds were rinsed with PBS (Gibco,
Grand Island, NY), cut in half, each half weighed, and one

Figure 1. Perfusion seeding bioreactor. The cell suspension oscillates
between the two glass columns (A), flowing through the sample chamber
(B), scaffold (C), and U-tube (D). The direction of flow reverses when the
cell suspension reaches the level of the sensors (E).

WENDT ET AL: PERFUSION SEEDING OF 3D SCAFFOLDS 207
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III.III Results and discussion 

 

III.III.I Micro-Computed Tomography 
 

Micro-computed tomography (Micro-CT) is an advanced and nondestructive method 

that allows to analyze the morphological features and architecture of the scaffolds. In 

this context, Micro-CT analyses were performed on cylindrical PCL and PCL/MCHA 

scaffolds, characterized by a diameter (D) of 10 mm and height (H) of 10.2 mm, using 

a SkyScan microtomography 1072 (Aartselaar, Belgium).  

Micro-CT analyses allow to analyze the internal structure of porous scaffolds from a 

series of layered two-dimensional images, or cross-sections, (Figure III.VII), and 

successively to create 3D models of the entire structure, using appropriate softwares 

(ANT, SkyScan 1072, Belgium) (Figure III.VIII).  

Micro-CT analyses have allowed to confirm that 3D Fiber Deposition technique bears 

the realization of 3D porous structures, characterized by precise and controlled pore 

shape and size, showing an average fiber diameter of 320-340 µm and a fiber spacing 

of about 640 µm, as determined during parameter setting. Scaffold interconnectivity, 

which is normally defined as 100% x volume of interconnected pores/volume sum of 

interconnected and closed pores, has been also evaluated and found to be equal to 

100%.79 

 

  

  

Figure III.VII: Cross-section of PCL (a, b) and PCL/MCHA (c, d) cylindrical scaffold characterized by a 0°/ 
90° lay-down pattern. 

 

 

(a) 

(c) (d) 

(b) 
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Figure III.VIII: 3D reconstructions of PCL (a-f) and PCL/MCHA (g-i) cylindrical scaffold obtained from 
Micro-CT analysis. 

 

III.III.II Nanoindentation tests 
 

As already highlighted in the Chapter II, advanced materials and biological tissues 

exhibit hierarchical structures with peculiar micro- and nano-features. In this context, 

nanoindentation results a powerful tool to analyze tissues and biomaterials measuring 

local material properties.5,85-89  

Accordingly, nanoindentation tests were carried out in order to highlight the effect of 

the inclusion of MCHA nanoparticles on the topography and surface properties of the 

neat PCL fiber trying to correlate these features with their mechanical and biological 

performances.        

In particular, results from nanoindentation measurements on PCL and PCL/MCHA 

fibers have highlighted not substantial differences in terms of load-depth curves. 

However, in the case of PCL fibers, both hardness (H) and reduced modulus (Er) 

generally decrease as load increases from 1 up to 4 mN whilst PCL/MCHA fibers 

have shown values of the above mentioned parameters that increase by varying the 

applied load from 1 to 3 mN (Figure III.IX).  

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Figure III.IX: Results obtained from nanoindentation tests performed on PCL and PCL/MCHA fibers – 
hardness (a) and reduced modulus (b) as function of the applied load (1-5 mN). Data are graphically 
reported as mean value, and bars represent the standard deviation. The dashed lines are just a guide for the 
eye. 

 

III.III.III Compression tests 
 

Compression tests have evidenced that the mechanical behavior of the 3D 

PCL/MCHA nanocomposite scaffolds is qualitatively similar to that of the PCL 

structures. With regard to the stress-strain curve, a linear region is evident at low 

values of strain, suggesting an initial stiff mechanical response. This zone is followed 

by a region with lower stiffness, and, finally, it can be noticed another stiff portion of 

the stress-strain curve (Figure III.X). 

 

 

Figure III.X: Effect of the inclusion of MCHA nanoparticles on the mechanical properties of 3D rapid 
prototyped scaffolds. Typical stress-strain curves for PCL and PCL/MCHA scaffolds characterized by a 
0°/90° lay-down pattern. 
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Values of compressive modulus and maximum stress (at 0.5 mm/mm) have been 

reported in the following table III.I. 

 

Scaffold Modulus 
E (MPa) 

Maximum Stress at 0.5 mm/mm 
σ  (MPa) 

PCL 65.3 ± 4.9 16.2 ± 1.3 

PCL/MCHA 79.5 ± 6.1 13.9 ± 1.1 

 

Tabella III.I: Effect of the inclusion of MCHA nanoparticles on the mechanical properties of 3D rapid 
prototyped scaffolds. Compressive modulus and maximum stress reported as mean value ± standard 
deviation, for PCL and PCL/MCHA scaffolds. 

 

Figure III.X and Table III.I clearly suggest that the presence of MCHA nanoparticles 

improves the compressive modulus, as shown by the slope of the initial linear region 

of the stress-strain curve, however slightly reducing the stress value at higher strains. 

 

III.III.IV Microscopy and Cell Adhesion Study 
 

All the steps carried out till this point can be briefly summarized as follows: a) design 

and fabrication of morphologically-controlled scaffolds through 3D Fiber Deposition 

technique; b) compression and nanoindentation tests performed to assess the effect of 

the nanoparticles inclusion on the surface and bulk PCL properties, respectively. 

However, even though the above mentioned steps are crucial, the knowledge of cell-

material interactions results to be a key element in designing advanced 

multifunctional scaffolds for hard tissue engineering with suitable morphology and 

properties, that are able to guide cell activity. For this reason, as a final step of this 

research, in order to analyze the effect of the inclusion of MCHA nanoparticles from a 

biological point of view, the interaction with human Mesenchymal Stem Cells 

(hMSCs) was studied through stereomicroscope and Confocal Laser Scanning 

Microscopy (CLSM).   

Firstly, Scanning Electron Microscopy (SEM) analyses were performed on polymeric 

(PCL) and nanocomposite (PCL/MCHA) scaffolds in order to analyze morphological 

structure and to assess the presence and hence the distribution of MCHA 

nanoparticles within the polymeric matrix.  
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The Scanning Electron Microscopy performed on polymeric (PCL) and 

nanocomposite (PCL/MCHA) cylindrical scaffolds has allowed to highlight the well 

organized porous structures (i.e., architecture, fiber spacing, effective fiber diameter) 

(Figure III.XI). 

 

 

 
Figure III.XI: Results from SEM analyses - (a) lateral view of a cylindrical PCL scaffold obtained through 
3D Fiber Deposition technique and characterized by a 0°/90° lay-down pattern; (b) two different images of 
nanocomposite PCL/MCHA fiber. 
 
Images obtained through Scanning Electron Microscopy (SEM) have shown that 3D 

Fiber Deposition technique allows the realization of morphologically-controlled 

structures characterized by a fully pore interconnection (100%), a fiber diameter of 

about 320 µm and a fiber spacing of 640 µm, in agreement with the setting values. 

Moreover, SEM analyses performed on nanocomposite scaffolds (PCL/MCHA) have 

highlighted the presence of MCHA nanoparticles also on the fiber surface (Figure 

III.XI b). 

In order to analyze the effect of the inclusion of MCHA nanoparticles from a 

biological point of view, the interaction with human Mesenchymal Stem Cells 

(hMSCs) through crystal violet staining was studied (Figure III.XII and III.XIII), 

showing that hMSCs are able to recognize and consequently to adhere and proliferate 

on both polymeric and nanocomposite scaffolds. Moreover, it is clearly evident that 

hMSCs better adhere on the fiber and within the interstices of the 3D 

morphologically-controlled nanocomposite scaffolds (Figure III.XIII). This is 

probably due to the presence of MCHA nanoparticles, which may act as a “bioactive 

solid signal”, and/or to a higher value of the surface roughness if compared to the neat 

PCL scaffolds. 

(a) 

(b) 



Chapter III: 3D PCL/Mg,CO3-substituted hydroxyapatite nanocomposite scaffolds                                 

 

 

107 

 

  
Figure III.XII: Crystal violet staining performed on cell-scaffold constructs. 3D fiber-deposited PCL 
scaffolds seeded with human Mesenchymal Stem Cells. 
 

  
Figure III.XIII: Crystal violet staining performed on cell-scaffold constructs. 3D fiber-deposited 
PCL/MCHA scaffolds seeded with human Mesenchymal Stem Cells. 
 

Cell adhesion was studied through Toluidine Blue staining under stereomicroscopy, at 

24h after cell seeding. Cells were able to adhere onto both polymeric (PCL) and 

nanocomposite (PCL/MCHA) scaffolds (Figure III.XIV).  

 

 
Figure III.XIV: Cell adhesion onto different scaffolds was observed through Toluidine Blue staining under 
stereomicroscopy. Cells were able to adhere onto both PCL (a) and PCL/MCHA (b) scaffolds. hMSCs were 
displayed well attached and spread onto the PCL/MCHA surface (b). Images supplied by dr. S. Scaglione 
and prof R. Quarto. 
 

It is worth noting that hMSCs better adhere on the fiber and within the interstices of 

the 3D morphologically-controlled nanocomposite scaffolds; at high magnification, 

(a) (b) 
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cells seem to be well attached and spread onto the PCL/MCHA surface (Figure 

III.XIV b). 

Finally, cell-scaffold constructs were also analyzed via Confocal Laser Scanning 

Microscopy (CLSM) through phalloidin staining, in order to observe actin filaments 

orientation and, hence, cytoskeleton morphology. 

The following figure III.XV reports the results in terms of cell adhesion and spreading 

obtained from CLSM analyses. These analyses have highlighted that hMSCs well 

adhere and spread on both polymeric and nanocomposite scaffolds. However, if 

compared to the case of neat PCL scaffolds (Figure III. XV a and b), a higher cell 

number and a better cell spreading on PCL/MCHA scaffolds are well evident (Figure 

III.XV c and d).  

 

 

   

    
Figure III.XV: Confocal laser scanning microscope images of phalloidin staining of actin filaments. Images 
related to cell-scaffold constructs: hMSCs seeded on 3D fiber-deposited PCL scaffolds (a and b) and 
PCL/MCHA scaffolds (c and d). 

 

In order to evaluate if MCHA nanoparticles act as a solid bioactive signal and if 

PCL/MCHA nanocomposite is able to induce osteogenic differentiation, at 21 days 

after cell seeding, Alizarin red staining was also performed, and results were 

compared to those obtained from hMSCs seeded on a bidimensional support. 

(a) (b) 

(c) (d) 
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Figures III.XVI and III.XVII show the results obtained by means of Alizarin red 

staining, in which red-colored calcium deposits are evident. 

 

   

   

Figure III.XVI: Alizarin Red staining at 21 days after cell seeding – hMSCs seeded on 2D support as 
control(a and b); 3D fiber-deposited PCL scaffold seeded with hMSCs (c and d). 

 

Alizarin Red staining was initially performed on polymeric (PCL) and nanocomposite 

(PCL/MCHA) scaffolds, before cell seeding, in order to highlight the presence of 

calcium deposits also on the surface of the composite scaffolds, as clearly evidenced 

in Figure III.XVII (b). Positive red staining was observed in samples with MCHA 

crystals, while pure PCL scaffolds were negative to the staining. 

 

   
Figure III.XVII: Alizarin Red staining performed on PCL and PCL-MCHA scaffolds (a and b, 
respectively). Positive red stain was observed in samples enriched with a HA crystals, while pure PCL 
scaffolds were negative to the staining. Images supplied by dr S. Scaglione and prof. R. Quarto. 
 

(a) (b) 

(c) (d) 

(a) (b) 
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Confirming the above results from crystal violet staining, we can just suppose that 

composite scaffolds, because of the presence of MCHA nanoparticles on the fiber 

surface, that may act as a solid bioactive signal, can better induce osteogenic 

differentiation of the hMSCs compared with neat PCL scaffolds. Anyway it is not 

possible to precisely distinguish the cells from the calcium deposits that are typical of 

the MCHA. Future works will be carried out in order to overcome this limitation, 

taking into account that a further investigation was also performed through a 

quantitative analysis, ALP/DNA, shown hereinafter (Table III.III). ALP activity was 

evaluated at 7, 14 and 21 days after cell seeding. Results are reported in table III.III, 

in terms of mean values ± standard deviation and normalized to the total DNA 

content. As reported in table III.III, cell-scaffold constructs made from PCL/MCHA 

scaffolds and hMSCs showed ALP activity values higher and even twice as those 

obtained for cell-scaffold constructs made from PCL scaffolds and hMSCs, both at 14 

and 21 days after cell seeding. Both kinds of scaffolds have evidenced a peak value at 

14 days after cell seeding. 

The shape acquired by the cell adhered to the substrate influence cell proliferation and 

differentiation: for tis reason, the results obtained from the ALP/DNA assay are 

consistent with the morphological differences observed on different substrates. 

 
ALP Activity  (%) 

[ng ALP/ng DNA] 

 7 days 14 days 21 days 

PCL-hMSCs --- 64.0 33.0 

PCL/MCHA-hMSCs --- 110.0 66.0 

 

Table III.III: Effect of the inclusion of MCHA nanoparticles on the biological performances of cell-scaffold 
constructs. Osteogenic differentiation of hMSCs: ALP/DNA. Results in ng/ng (%) are reported as mean 
value ± standard deviation, for PCL and PCL/MCHA cell-scaffolds constructs. 

 

III.III.V Gene expression: Real Time quantitative PCR 
 

In order to determine if the expression of the investigated genes was regulated by the 

chemical composition of the scaffolds (PCL and PCL/MCHA) either under static 

culture or under perfusion, mRNA levels were measured, in OM, after 14 days 

culture.  
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Both Runx-2 and Col-I did not reveal significant variations among different scaffold, 

while OP gene levels were significantly more expressed in PCL/MCHA scaffolds 

cultured under perfusion if compared to PCL scaffolds cultured under the same 

conditions, and to the statically cultured scaffolds (Figure III.XVIII). 

 

 
Figure III.XVIII: Quantitative real time RT-PCR analysis was assessed for expression of transcriptional 
factor related to the osteogenic lineage (RUNX-2) and osteoblast-related genes (Col-I and OP) in human 
cells cultured either on PCL or PCL-MCHA scaffolds under perfusion. As control, PCL-MCHA cultured in 
static condition was used. Expression levels of each gene are reported as ratio to average levels of GAPDH 
reference gene. 
 

 

III.III.VI Design and preparation of customized PCL/MCHA scaffolds 

for mandibular simphysis and ramus tissue engineering 

 
Nanocomposite scaffolds (PCL/MCHA) for human mandibular symphysis and ramus 

tissue engineering were designed and manufactured by integrating different 

techniques such as 3D scanning, 3D modeling and rapid prototyping, with those 

related to the preparation of PCL/MCHA nanocomposite material for scaffolds 

processing. A scheme of the production process of those scaffolds may be 

summarized in the following Figure III.XIX. 

 
Figure III.XIX: Production process of the proposed scaffolds. 

Composite scaffolds 
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3D image capture 
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3D image capture technique and 3D modeling 

3D scanning was performed through a Cyberware Mini Shop Model scanner, in order 

to capture the image and, hence, shape and size of a natural human mandible. 

The point clouds produced by 3D scanners are usually not used directly, and most 

applications instead use polygonal 3D models, NURBS surface models, or editable 

feature-based CAD models. The process of converting a point cloud into a usable 3D 

model is called “reconstruction” or “modeling”. Consequently, the 3D model of 

human mandible was then reconstructed using Rapidform software (2007) (Figure 

III.XX), thus creating the NURBS that describe the complex geometry of the 

mandible. 

 

 
Figure III.XX: 3D reconstruction of human mandible. 

 

To manufacture scaffolds for mandibular symphysis and ramus tissue engineering 

through rapid prototyping technique, the design was then exported as an STL file 

using Materialise Magics (v. 9.5) (Figures III.XXI, III.XXII and III.XXIII) which 

offers advanced and highly automated tools for STL manipulation. Using this 

software, it is possible to interact directly on defective triangles and thus very quickly 

resolve any errors. Accordingly, this software was tuned to the needs and 

characteristics of the rapid prototyping process considered. 
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Figure III.XXI: 3D reconstruction of mandibular symphysis. 

 

 
Figure III.XXII: 3D reconstruction of a mandibular ramus portion. 

 
Figure III.XXIII: 3D reconstruction through Rapidform and Materialise Magics: human mandible, 
symphysis and ramus portion. 
 

Preparation of PCL/MCHA nanocomposite material and 3D fiber-deposited 

scaffold  

PCL/MCHA nanocomposite pellets and 3D fiber-deposited scaffolds were 

manufactured according to specific procedure already described in the paragraph 

III.II.II. In particular, models of mandibular symphysis and ramus portion were 

loaded on the Bioplotter CAD/CAM system. Hence, they were plotted layer-by-layer, 

extruding and depositing PCL/MCHA fibers according to a 0/90° lay-down pattern. 

Images of customized PCL/MCHA nanocomposite scaffolds for mandibular 

symphysis and ramus portion tissue engineering are reported in the following Figure 

III.XXIV. 
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Figure III.XXIV: Customized PCL/MCHA nanocomposite scaffolds for mandibular symphysis (a) and 
ramus portion (b) tissue engineering. 
 
 

III.IV Conclusions and future trends 
 

In the field of hard tissue engineering, the possibility to make appropriate 

modifications into hydroxyapatite reticular structure for guiding specific cell 

responses together with the ability to tailor the morphology, hence the mechanical and 

transport properties of composite scaffolds through a suitable topological optimization 

process should represent a great challenge. 

As a first step, the design of 3D rapid prototyped PCL/Mg,CO3-substituted 

hydroxyapatite (MCHA) nanocomposite scaffolds for bone tissue engineering has 

been described. Successively, the effect of the inclusion of MCHA nanoparticles have 

been properly assessed through experimental tests. In particular, a nanoparticle 

amount of 20% by weight embedded into the polymeric matrix seems to enhance both 

stiffness and biological performances. 

An approach toward the design and development of customized PCL/MCHA 

nanocomposite scaffolds for human mandibular symphysis and ramus tissue 

engineering have been also proposed by integrating different techniques such as 3D 

scanning, 3D modeling and 3D Fiber Deposition technique, with those related to the 

preparation of PCL/MCHA nanocomposite material for scaffolds processing. 

Furthermore, the possibility to create 3D heterogeneous bilayered scaffolds (PCL and 

PCL/MCHA), composed of two distinct but integrated layers for the cartilage and 

bone regions should be also taken into account for the regeneration of osteochondral 

defects. 

In recent studies95-96, it has been studied the possibility to obtain iron-doped 

hydroxyapatite, as an intrinsically magnetic compound which can be embedded into a 

polymer matrix97-99 in order to make new conceptually type of magnetic scaffolds for 

tissue regeneration and orthopaedic surgery. The magnetic moment of the scaffolds 

(a) (b) 
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introduces the fascinating possibility to continuously control and reload them with 

scaffold precursors and active factors (e.g. Vascular Endothelial Growth Factor, 

VEGF). Such magnetic scaffolds can be imagined as fixed “stations” that offer a 

long-living assistance to the tissue engineering via a controlled in vivo supply of bio-

agents functionalized to magnetic nanoparticles injected in the proximity of the 

scaffold. This innovative approach offers the unique possibility to adjust the scaffold 

activity to the personal needs of each patient. It would be possible to precisely control 

the growth factors delivery time and site, therefore allowing the proper regeneration 

of damaged tissues and the prevention of their degeneration. 

Conceptually innovative solution for designing magnetic scaffolds for tissue 

engineering was recently proposed,100 the aim being to design magnetic scaffolds 

through the dip coating technique that are able to attract and take up in vivo growth 

factors, stem cells, or other bioagents bound to magnetic particles. Accordingly, the 

design and preparation of 3D fiber-deposited magnetic PCL/iron oxide (Fe3O4) 

scaffolds have been proposed, also studying the effect of Fe3O4 nanoparticles on the 

biological, mechanical, and magnetic performances.99 

Preliminary Confocal Laser Scanning Microscopy was carried out on the PCL/Fe3O4 

nanocomposite fibers, in order to study human mesenchymal stem cell adhesion and 

spreading, at 72 h after cell seeding. A PCL/Fe3O4 nanoparticles weight ratio (w/w) of 

90/10 was used. To visualize the cells adhered on the nanocomposite fibers, the 

phalloidin-labeled actin filament fluorescence intensity was measured with several 

steps along the length of the fibers by means of a confocal laser scanning microscope 

(Zeiss LSM 510/Confocor 2, Oberkochen, Germany). 

 

 
Figure III.XXV: Images obtained from confocal analysis with several steps along the length of the 
nanocomposite fibers, highlighting the phalloidin-labeled actin filaments.99 
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This qualitative analysis evidenced that hMSCs better adhered on PCL/Fe3O4 

scaffolds compared to cells seeded on neat PCL structures, as confirmed by 

previously reported analyses. An increase in the adhered number and a marked 

spreading of hMSCs was also well shown in the case of composite structures (Figure 

III.XXV). Future works will focus on the possibility to employ iron-doped 

hydroxyapatite in designing 3D rapid prototyped composite scaffolds, the rationale 

being to study the effect on cell behavior due to the synergic contribution of the 

surface topography of the composite fibers and the chemistry of the iron-doped 

hydroxyapatite nanoparticles and those due to an applied magnetic field. 
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La città in cui tende il mio viaggio è 
discontinua nello spazio e nel tempo. Non 
credere che si possa smettere di cercarla. 

  
Italo Calvino, Le città invisibili 

 
 
 
 
 

 
  



 

 

 

 


