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Introduction

During the past ten years, several collapses of wide span roofs occurred

in Northern Europe under high snow loads, in some cases leading to fa-

talities [16]. Many of these roofs were composed by either solid or glulam

timber elements. These failures can be attributed to design errors, lack of

elements’ quality or bad execution. In addition, failure can be caused by

lack of maintenance or by unforeseen events that lead to a lower capacity

(damage) or higher loads than expected. The failures are most likely to

originate from errors made during the design phase and execution, while

failures due to material deficiencies or maintenance are relatively uncom-

mon, which was also found in an extensive study by Ellingwood [12].

In this context, attempts have been made to evaluate the robustness of

wide span timber roofs [4, 7, 26]. These studies were performed within the

framework of the COST action on performance and robustness of struc-

tures.

This study proposes an alternative approach: it aims to use a fully prob-

abilistic assessment to investigate the behavior of large span timber roofs,

with different purlin configurations, respect to reliability, robustness and
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Introduction

risk. The reason of this philosophy consists in the ambiguous definitions of

structural robustness, compartmentalization and redundancy.

Generally, robustness of a structure is understood as the insensitivity to

local failure and the avoidance of progressive collapse. This is a property

of the structure itself, not dependent on possible causes of initial local fail-

ure [36]. Many authors [21, 37] relate robustness to structural redundancy,

which requires static indeterminacy and the avoidance of progressive col-

lapse, and [1] use the ratio between direct and indirect expected damage

as a measure of robustness. This definition also includes the consequences

of failure, and it requires direct or indirect computation of the risk.

InChapter 1 a review about the causes of structural collapse and the state

of art concerning different approaches to measures structural robustness are

presented, while Chapter 2 introduces the theory of structural reliability

methods used for the probabilistic assessment of risk and robustness of a

large span timber roof.

The investigated structure is a simple but typical timber roof system. Sim-

ilar roof structures are widely used for large-span roofs of sport-arenas,

industrial factories or farm storage buildings. The behavior of the tim-

ber roof is investigated with respect to three different secondary system

structural configurations for the secondary system (simply-supported, con-

tinuous and lap-jointed purlins). These configurations were also subject to

a previous deterministic analysis of the system of primary elements (beams)

and secondary elements (purlins) carried out by Dietsch et al. in [7].

The risk and robustness assessment of the three roof systems is performed

by probabilistically considering all possible failure scenarios and all possible
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combination of structural interaction among the components of both pri-

mary (beams) and secondary system (purlins). In Chapter 3 the assumed

failure mechanisms and the interaction among the components of the roof

system are extensively described. In addition, referring to EC5 damage

limit requirement, a probabilistic based measure for structural robustness

is proposed. On the basis of deterministic failure mechanisms for timber

elements, a fully probabilistic model of both loads and strength proper-

ties is used. The statistics of timber properties and loads are presented in

Chapter 4 and Chapter 5 respectively.

The assessment of the secondary system accounts also for the possibility of

systematic errors (which are modeled by weakened sections that occur ran-

domly in the secondary structure), in order to investigate and compare the

behavior of a system with compartmentalization (simply supported purlins)

and a system with redundancy (continuous and lap-jointed purlins).

InChapter 6, the probabilistic assessment of the secondary system (purlins)

and primary system (beams) is done by means of Monte Carlo Simulations

and First Order Reliability Method. In Chapter 7 the assessment of the

full roof system considering the structural interaction is presented. This

interaction is modeled with an event tree that describes the consequences

of the failure event according to different conditions.

An important result is the computation of the full distribution of the conse-

quences, in terms of roof area failed, given a failure of the system. Indeed,

this distribution can be interpreted as a measure of robustness.

3





Chapter 1

Robustness and Risk

Assessment

During the past twenty years, several collapses of wide span roofs occurred

in Northern Europe during the winter season under high snow loads, in

some cases leading to fatalities [16]. Many of these roofs were built with

timber elements (solid or glulam timber). These failures can be attributed

to different reasons. Here a rewiew of structural failures and the state of

art about the structural robustness evaluation is described.

1.1 Timber Structural Problem

In the last decades the interest in a wider application of timber in structural

design strongly increased. The main reason is the higher interest in the use
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of sustainable and environmental friendly materials and in the wide field

of architectural possibility that this flexible and charming material gives to

designers.

Indeed, timber material is biologically produced in the growing tree and

therefore biodegradable. For this reason, it is a high quality fiber composite

material naturally designed to carry the loads acting on the tree (vertical

load and wind) and to create maximum strength in the stressed directions

[41].

Timber is also a very light and efficient material compared to the other

structural material (see table 1.1).

Material Young Modulus/Resistance

Concrete (C25-30, fck ∼= 25MPa) ∼= 1250

Steel (Fe430, ft = 430MPa) ∼= 480

Glulam (BS11 ÷BS18) ∼= 470

Alluminium (alloy 7020, ft ∼= 355MPa) ∼= 200

Table 1.1: Ratio between Young Modulus and Resistance.

In addition, the production process of timber is highly optimized in or-

der to have a cheap production with the smallest percentage of elements

that do not fulfill the standard requirements. Therefore, timber is not only

a cheaper material than concrete and steel, but it is also reliable and gives

a great push to the evolution both of the production process of elements

and joints and to design methods.

However, the non-homogeneity of the material, due to the presence of

growth defects in the form of knots, zone of compressed wood, oblique fiber

orientation and other growth characteristics, naturally created for the needs
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of the trees and differing according to the tipe of wood, reduce the strength

significantly when the wood is used in other contexts [41]. Moreover, the

presence of knots and other defects (rupture, compression zones, slope of

grain, decay, bark pockets, wane and resin pockets) leads to a variability

of the mechanical properties also inside small elements. For this reason,

timber material design rules and methods are still elementary if compared

to the design methods of the other structural materials and mostly timber

is designed in linear elastic range.

1.2 Cases of Structural Failures

Despite the high level of knowledge reached by structural engineers in mod-

eling the performance and the capacity of large and complex structural

systems and the increasing development of computer tools and software

able to simulate the behavior of advanced structures, the high number of

structural collapses occurring in the last years is surprising.

During the winter season of 2005-2006, more than fifty roofs failed in Ger-

many, Austria and Poland due to a large accumulation of the snow and some

of them led also to fatalities. However, structures should be able to resist

such high value of the load if properly designed according to modern codes.

Indeed, structures are designed with the characteristic value of the snow

load, normally chosen as the annual maximum value that can be exceeded

in average only once every 50 years. Beside this, codes provide additional

safety margins by adding load combination factors and resistance partial
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safety factors, so that the structure should be able to withstand loads that

exceed significantly the design load, unless the resistance is affected by de-

sign errors or deterioration.

Investigations about several of these failed structures showed that, except

few cases, the failure was due to human errors in applying existing tech-

nology in the design and in the construction phase.

Ellingwood in [12] compiled results from a series of investigations during

the years 1979- 1985 to identify where errors occur in the building process.

This study was included and extended in the report TVBK of Lund Uni-

versity (Sweden) [16]. Some of the results from this paper together with

new results are reported in table 1.2

The occurrence of errors are of the same order of magnitude for de-

sign/planning and construction respectively, with slightly higher frequency

in the design phase; failures due to material deficiencies or maintenance are

relatively uncommon. Furthermore, a previous statistical study of Allen

(1976) indicates that only the 10% of the failure occurs due to stochas-

tic variability in load and capacities, while the remaining 90% was due to

design and construction errors including modeling and analysis errors. A

similar European study done by Hauser (1979), showed that the 22% of the

failure was caused by stochastic variability, but it was not indicated which

percentage of the remaining 78% was due to design errors. The building

phase, in which the damage occurred or was detected, was also reported in

[16]:

• During construction 58%;
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1.2 Cases of Structural Failures

Reference Planning & Construction Utilization & Othera Total

Design [%] [%] Maintainance [%] [%] [%]

CEB 157 (1893) 50 40 8 – 98

Matousek (1982) 45 49 6 – 100

Grunau (1979) 40 29b 31 – 100

Raygaertz(1979) 49 22 29b – 100

Brand et al.(2005) 40 40 – 20 100

Taylor (1975) 36 12 – – –

Yamamoto et al.(1982) 36 43 21 – 100

Rackwitz et al.(1983) 46 30 23 – 99

Melchers et. al. (1983) 55 24 21 – 100

Fraczek (1979) 55 53 – – 108c

Allen (1979) 55 49 – – 104c

Hadipriono (1985) 19 27 33 20 99

Hauser (1979) 37 35 5 23 100

Gonzales (1985) 29 59 – 13 101c

a: Includes cases where failure can not be associated with only one factor and may be due to

several of them.

b: Building materials, environmental influences, service conditions.

c: Multiple errors for single failure case.

Table 1.2: Incidence of errors in building process by phase.
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• During use 39%;

• During rebuild/deconstruction 3%.

This confirms the findings from other investigations that failures occur

more frequently during the construction phase than later. For those failure

cases where people were killed or injured, the percentage of cases occurring

during construction is even higher (65-70 %). However, the fact that the

error was detected in the construction phase does not necessarily imply

that the error was initiated by inadequate construction methods.

In [12] also a classification of human errors was reported. Three basic types

of errors can be identified:

• Errors of concept (stupidity, ignorance);

• Errors of execution (carelessness, forgetfulness, negligence);

• Errors of intention (venality, irresponsibility).

In table 1.3, derived from [12], the causes of human error are listed according

to the three categories defined above.

Reference Ignorance, Insufficient Mistakes Reliance Other Total

negligence, knowledge on

carelessness others

[%] [%] [%] [%] [%] [%]

Matousek (1982) 35 38a 9 6 12b 100

Melchers (1983) 24 52 8 2 13 99

a: Breaks down as insufficient knowledge 25%; underestimation of influences 13%.

b: Breaks down as unknown situation 4%; other sources 8%.

Table 1.3: Causes of Error.
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1.2 Cases of Structural Failures

Furthermore, the first category can also include load cases not consid-

ered in the design, incorrect assumptions, incorrect analytical modeling,

incorrect modeling of the interaction structure-foundation-soil or of the

non-linear behavior in large-deformation behavior.

The second category includes also calculation or detailing errors, mistakes

in reading drawings and specifications, defective workmanship.

The third category includes unwarranted shortcuts, use of lower quality

material and acceptance of marginal workmanship in order to maintain

construction schedules and save money.

1.2.1 Failures in Timber Structures

In [16] a review of the more probable cause of damage leading to a failure

of a timber structure are:

• Inadequate behavior of the joints;

• Effects of moisture exposure;

• Poor durability performance;

• Inadequate bracing of structural system;

• Inadequate performance of material and products;

• Inadequate estimate of loads.

Inadequate consideration of load effects or underestimation of the actions

are instead quite uncommon and are considered among the design errors.
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Quite uncommon is also the use of inadequate quality of the wood material,

even if deficiencies in the quality of the timber was observed in some cases,

due to a too high occurrence of knots and too much irregular grains.

Mostly, the behavior of the connections appears to be critical and in the

most cases of failure, errors in the construction of the joints were found.

Moisture content variations are also often cause of shrinkage cracks devel-

opment both around the cross section and in direction orthogonal to the

grain due to moisture-induced stresses.

1.3 State of the art about timber analysis

Wood is a material ”biologically produced” in the growing tree and it is

a high quality fiber composite material. The wood cells are oriented pre-

dominantly in one direction that is the fiber direction or ”grain” direction

that is parallel to the longitudinal axis of the stem and also the strongest

direction. Differently from other building materials the strength and the

stiffness in the fiber direction are very large in relation to the weight of the

material especially in traction.

In addition, timber is a non-homogeneous material, since it contains growth

defects in the form of knots, zone of compressed wood, oblique fiber orien-

tation and so on. Therefore, the mechanical behavior of the timber cannot

be derived in a reliable way from the properties of clear wood. Moreover,

the presence of knots and other defects (rupture, compression zones, slope

of grain, decay, bark pockets, wane and resin pockets) is different according

12



1.3 State of the art about timber analysis

to each kind of wood.

According to [10, 11, 14], the influence of defects is implicitly included in

the strength value specified for the timber class and these values can only

be applied if the stresses are determined by elastic theory.

The fact that the load-bearing capacity of timber is governed by the pres-

ence and characteristics of random growth defects means that the strength

of timber elements also depends upon the size of the structural element

itself and on the way in which it is loaded.

In structural application wood is generally used in form of solid timber

and of glulam. Solid timber is directly cut and formed from wood pieces

(see figure 1.1), while glulam elements are made from laminations of struc-

tural timber bonded together with adhesives mixed with the constituents

or sprayed on their surfaces with application of heat and pressure. This

production process removes partially the growth defect of ”solid wood” or

distributed them in the finished product in a way that the strength is less

affected and the finite product is more uniform. For this reason and also be-

cause the locally weak sections of the laminations are able to redistribute

stress to adjacent stronger sections, even if glulam timber is made from

laminations of solid wood, the strength is significantly higher for glulam

then for wood.

Both for solid timber and for glulam, structural design codes treat tim-

ber material as an homogeneous, orthotropic elastic material with one main

axis in the fiber direction and with the same properties in all directions per-

pendicular to the main axis. An important difference is in the size-volume
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Figure 1.1: Wood cross section.

effect. Elements made of solid timber have often small sections so that the

volume effect is null, while glulam elements have often special shapes (e.g.

curved or tapered) with thin and high cross sections so that size effect and

also instability are more common.

Although the calculation method proposed in the codes is simplified be-

cause aims at ”manual calculations”, it is on the safe side. Only for very

special structures it can be worth adopting a FEM model (either 2D or 3D),

but the cylindrical orthotropy must be taken into account also according

to the year ring growth pattern of the specific wood used.

However, timber elements are designed mostly in bending and because tim-

ber has a linear elastic fragile behavior when subjected to bending, a linear

elastic analysis is sufficient to understand the global behavior of the struc-

ture. Therefore, it can be assumed an elastic linear behavior of the material

with parameters corresponding to the mean values of the stiffness and re-

sistance.
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Generally, the connections are built as hinged joints, hence exhibiting a

low stiffness, and this allows one to calculate and build the structure as

statically determinate, with the exception of some special cases.

Differently from other structural materials, for timber structures it is im-

portant to define the service class according to the exposure to humidity.

This condition changes strongly with the moisture content inside the wood

and this percentage of humidity changes the resistance and the stiffness of

the elements and leads to a faster degradation of the material due both to

mechanical splitting and to mildew.

1.4 Risk assessment approach advantages

Safety of structure is a complex problem. Indeed, loads, material strength

and model uncertainties are three fully random fields but, for practical rea-

son, engineers are used to look at the behavior of structures in deterministic

way, i.e. to assign a certain load capacity according to a specific demand

computed from defined load parameters. If these load parameters were

certain and we knew the maximum of all load configurations that can be

experienced by the structure, it would be sufficient for the safety to design

the structure in such a way that the limit situation is attained exactly for

the maximal value load. This also implies that any kind of uncertainly,

even on just one of the parameters affecting the behavior of the structure,

e.g. geometry, material resistance, modeling and load parameters, will lead

to an unsafe design.
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A fully probabilistic structural analysis allows one to compute, by means

of mechanical and mathematical model, the value of the probability that a

structure behaves in a certain way when one or more parameters (such as

mechanical properties, geometry and loads) are of random nature [6].

In this case, the mathematical model must define all the properties and

parameters of the structure in terms of random variables with appropriate

distribution.

In addition, the mathematical model has to describe the variables of the

problem in a realistic way, being often supported by experimental studies,

and also have to be operative i.e. suitable to solve engineering problems.

The probabilistic approach is obviously an extension of the deterministic

one and has the big advantage of leading to understand the most likely

behavior of the structure (e.g. which limit state is more likely to occur

under the set of random variables considered) and to solve design decision

problems related to the probabilistic structural analysis.

In the deterministic analysis, in fact, we assign the dimensions to the el-

ements in order to achieve a certain behavior under a specific action and

given a certain strength. This is equivalent to search for the event with

a probability of one. Probabilistic analysis can be used to define which

are the optimal properties and dimensions to be assigned to the struc-

tural elements, within all the probabilistically defined possibilities. This is

equivalent to search for the minimum of the probability of occurrence of the

failure event related to a specific behavior with respect to the probabilisti-

cally defined parameters of the problem, i.e. to search for the dimensions

that assure the optimum related to a certain behavior.
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Because of the computational effort required by a fully probabilistic ap-

proach, the majority of outstanding national codes have introduced only a

semi-probabilistic design approach, where all the variables are assumed to

be Normal random variables.

1.5 The Structural Robustness

Robustness is one of the fundamental issues and necessary properties for

structural systems.

As reported in modern codes and technical literature, it is indicated as an

important requirement for structural design. Mostly after the collapse of

the Ronan Point Building in 1968, where the consequences were unaccept-

able compared to the initial damage, and the collapse of the World Trade

Center, robustness became object of a renewed interest. This is also be-

cause the advance in building technology and technique allow one to realize

advanced types of structures and so that the consequences of a structural

collapse may exceed the mere rebuilding costs by orders of magnitudes in-

cluding also fatalities.

However, the meaning of robustness is often not clear and leaves space for

several interpretation, but it is reasonable to confirm that robustness is

strongly related to internal structural characteristics such as redundancy,

ductility and joint behavior characteristics, but also to the consequences of

structural collapse.

The Robustness of a structure is generally meant to be the insensitivity to
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local failure and to progressive collapse. This means that it must be read as

a property of the structure itself and it is independent from possible causes

of initial local failure [36]. In this sense Robustness must not be confused

with the definition of collapse resistance given in EC1, i.e. as insensitivity

to accidental circumstances which are represented by low probability events

and unforeseeable incidents. Collapse resistance is a property of the struc-

ture but it is influenced by both structural features and causes of possible

failure. Moreover robustness is related to the insensitivity of key elements

to failure. A key element is defined as a limited part of the structure whose

possible failure implies a failure of the entire structure or of a significant

part of it [37]. It is also strongly dependent on the specific scenario of events

(trigger-failure-event) over a complex series of intermediate events involv-

ing more localized damages which finally led to collapse. In this scenario,

the magnitude of the consequences depends not only on internal structural

characteristics but may be even more pronounced depending on passive

and active measures for damage reduction and detection as well as possible

nonconformities with design assumptions due to a bad quality of execution,

design errors and/or lack of maintenance.

The requirement for robustness is defined both in EN1990-EC0: Basis of

Structural Design and in EN1991-EC1: Accidental actions. The EC0 es-

tablish the principle for robustness, the EC1 provides methods and criteria

for the design of a robust construction against identified accidental actions

and unidentified actions. Precise definitions are available in the following

European codes:
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• ISO 22111 (ISO 2007b): Ability of a structure (or part of it) to with-

stand events (like fire, explosion, impact) or consequences of human

errors, without being damaged to an extent disproportionate to the

original cause;

• Eurocode 0 (CEN 2002): The ability of a structure to withstand

events like fire, explosions, impact or the consequences of human

error, without being damaged to an extent disproportionate to the

original cause;

• SIA 260 (SIA 2004): Ability of a structure and its members to keep

the amount of deterioration or failure within reasonable limits in re-

lation to the cause.

However, the previous definitions are all similar and relate the robustness to

the consequences of a certain event (failure or damage) as already discussed.

In Eurocode EN 1990:2002 (CEN 2002), the basic requirement to robustness

is given in clause 2.1 4(P): A structure should be designed and executed in

such a way that it will not be damaged by events such as explosion, impact

and the consequences of human errors to an extent disproportionate to the

original cause.

Given a certain exposure, the structure can have a local damage and it may

survive or (a substantial part) may collapse due to:

• Exposures which could be unforeseen, unintended effects and defects

(incl. design errors, execution errors and unforeseen degradation)

such as unforeseen action effects, incl. unexpected accidental ac-
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tions, unintended discrepancies between the structure’s actual be-

havior and the design models, unintended discrepancies between the

implemented project and the project material, unforeseen geometrical

imperfections, unforeseen degeneration;

• Local damage due to exposure (direct consequence of exposure);

• Total (or extensive) collapse of the structure following the local dam-

age (indirect consequence of exposure);

In this definition it is clear that robustness is especially related to pre-

cautions to prevent/reduce the indirect consequences in case of extensive

collapse associated with a local damage due to exposure.

It must also be noted that the system behavior is very important in robust-

ness assessment. This is a consequence of the fact that primary criteria in

building design codes are related to achieve a sufficient reliability of com-

ponents (sections). It should also be noted that redundancy in systems is

closely related to robustness. In principle, redundant system are believed

to be more robust than non-redundant systems - but this is not always

the case as illustrated by the failures of the Siemens Arena and the Bad

Reichenhall Ice Arena, see [16, 19, 43].

Moreover the current design codes and design procedures are based on ac-

tions and resistances defined statistically on the basis of empirical data. The

choice of an allowable probability of failure is reflected in the computation

of actions and resistance using probabilistic methods and it is implicit in

the choice of partial safety factors and series of load combination schemes.

In this way the code lead to a uniform safety level, but all these assumption
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can fail in the case of progressive collapse for three main reasons [36]:

• Current design codes are based on the consideration of local and not

global failure (check of cross section and stability); on the contrary,

the global safety, i.e. the safety against the collapse of the entire

system, is function of the safety of all the elements to local failure

(response of the system to local failure). This means that for non-

robust structures the uniform safety level of the single elements does

not lead to the same safety level of the system and to a safe design;

• Current design methods do not take into account the lower probability

events and this cannot be done for non-robust structures because they

are more sensible to local failure due to unforeseeable loads;

• Current design methods require a specification of an admissible prob-

ability of failure (or structural safety level) because the target failure

probabilities of probabilistic design codes are usually derived by cal-

ibration with previous deterministic codes and without considering

any impact on people;

The Danish Code of Practice for the Safety of Structures and probabilistic

modeling of the timber material is now the base for the Probabilistic Model

Code (PMC) of Joint Committee for Structural Safety and according to the

first one a structure has to be designed in such a way to be in agreement

at least with one of the following criteria:

• Demonstrating that those parts of the structure essential for the

safety (key elements) have only little sensitivity with respect to un-
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intentional loads and defects;

• Demonstrating a load case with removal of a limited part of the struc-

ture in order to document that an extensive failure of the structure

will not occur if a limited part of the structure fails;

• Demonstrating sufficient safety of key elements, such that the entire

structure with one or more key elements has the same reliability as a

structure where robustness is documented by the previous condition.

However, both Eurocode and PMC do not provide any specific criterion

for quantify the level of robustness. For this reason, robustness is often

identified with the structural redundancy, that can be defined as the avail-

ability of multiple load-carrying elements or multiple load paths which can

bear additional loads in case of failure of some elements, avoiding in this

way progressive collapse. That means that in case of failure of one or more

elements, the structure is able to redistribute the loads avoiding the global

failure of the structure, but this property is not necessary related to the

static indeterminacy but rather depends on the geometry of the structure

and the property of single elements.

Important aspects related to robustness are defined in [36, 12]:

• Key Elements: exterior columns and walls should be capable of span-

ning two or more stories without bucking, columns should be designed

to withstand blast pressure etc;

• Progressive Collapse: it is characterized by a disproportion in size be-

tween a triggering event and the resulting collapse [36]. According to

22



1.5 The Structural Robustness

[12] progressive collapse of a building is a catastrophic partial or total

failure that follows from an initiation event that causes local damage

and cannot be absorbed by the inherent continuity and ductility of

the building structural system;

• Redundancy: Incorporation of redundant load paths in the vertical

load carrying system;

• Ductility: Structural members and member connections have to main-

tain their strength through large deformations (deflections and rota-

tions) so the load redistribution(s) may take place.

1.5.1 Robustness measure overview

A measure of robustness it is needed for evaluation, comparison, optimiza-

tion and regulation of the robustness of a structure [37]. If a quantitative

measures is defined, critical elements can be identified and also different

structural configurations can be compared. In order to regulate robustness,

quantification is required. Minimum values of robustness can be defined in

standards and design guidelines generally or according to the type of struc-

ture and depending on the significance and exposure of the building [38].

We can allocate robustness measure into two categories:

• behavior-based measures;

• structural attributes.

The behavior based measure are often related to the response of a struc-

ture to an assumed initial local failure and require non-linear analysis of
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the structural response. For this reason they are usually not considered a

realistic measure to which a code can refer to.

Stiffness-based index (Starossek-Haberland 2009)

A simply method to measure structural robustness is to compute the static-

stiffness matrix of the structural system after the removal of one structural

element or a connection and compare it with the stiffness of the intact sys-

tem:

Rs = min
j

Kj

detK0
. (1.1)

Where Rs is the stiffness-matrix-based robustness index, K0 is the active

stiffness of the intact system and Kj is the active stiffness of the system

upon the removal of the element j or the connection j. This index has val-

ues in the interval [0, 1], with the upper bound indicating an intact system

and the zero value indicates a complete lack of robustness.

However, it was shown that only a low correlation between the decrease of

capacity due to the removal of an element and the corresponding robustness

Rs exists. Therefore this measure seems to be not very effective, although

simple.

24



1.5 The Structural Robustness

Damage-based index (Starossek-Haberland 2009)

Given the definition of robustness in terms of insensibility to local failure,

a measure related to the extension of the damage, upon a certain trigger

event, can be suggest.

Rd = 1− p

plim
. (1.2)

Where Rd is the damage-based robustness measure, p is the maximum

extent of additional damage (maximum damage progression) caused by the

assumed initial damage ilim and plim is an acceptable damage progression.

This index has values in the interval [0, 1], with the upper bound indicating

the optimal robustness. This is a more general measure and the damage

can be considered both in terms of structural damage (mass, volumes, floor

areas) and in terms of costs (repair, delay, service interruption).

Energy-based index (Starossek-Haberland 2009)

Energy-based approaches is based on the comparison between the energy

released by the initial failure and the energy required for a collapse pro-

gression.

Re = max
j

Er,j

Es,k
. (1.3)

Where Re is the energy-based robustness measure, Er,j the energy re-

leased by the initial failure of a structural element j and available for the
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damage of the next structural element k , Es,k is the energy required for

the failure of the next structural element k .

This measure does not have value restrictions: values between zero and one

are acceptable, while negative values indicate progressive collapse.

Energy-based index may be difficult to use because the determination of

the energy release is not easy and can be both under and over estimated. In

addition, the energy released by the initial failure of the structural element

is composed of several parts and depends on the failure mechanism. For

structures that have a tendency for a pancake-like or domino-like collapse,

the dominant portion of the energy will be kinetic energy converted from

the potential energy of the collapsing structural elements and a numerical

estimate can be done, but in case of other types of collapse, the energy re-

lease can only be determined through a comprehensive structural analysis.

Risk-based index (Baker-Schubert-Faber 2008)

Backer et al. suggest a risk-based robustness index that takes into account

also for the direct and indirect causes of a failure by measuring the fraction

of total system risk resulting from direct consequences. This is motivated

by the concept that a robust system is considered to be a system where

indirect risks do not contribute significantly to the total system risk.

IR =
Riskdir

Riskdir +Riskind
. (1.4)
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Where Riskdir are the direct consequences associated with local com-

ponent damage (that might be considered proportional to the initiating

damage) and Riskind are the indirect consequences associated with sub-

sequent system failure (that might be considered disproportional to the

initiating damage).

The index has values in the interval [0, 1]. If IR = 1 there are not indirect

consequences to the failure event and the system is considered to be robust.

If IR = 0 all the risk is in the indirect consequences.

However, this index is a measure of relative risk due to indirect conse-

quences and it can lead to a high value of the index also in presence of a

large direct risk respect to the indirect risk. In this case the system should

be rejected on the base of reliability criteria. Moreover, the optimal system

is the one which has the minimum risk. This implies that the definition of

a robustness index by equation is not always fully consistent with a full risk

analysis, but can be considered as a helpful indicator based on risk analysis

principles. It is noted that since the direct risks typically are related to

code based limit states, they can generally be estimated with higher accu-

racy than the indirect risks.

In addition, the exposure is an important factor in risk-based assessment

and therefore it can be useful to introduce an index conditioned on the

exposure.

IR|exposure =
Riskdir|exposure

Riskdir|exposure +Riskind|exposure
. (1.5)
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Reliability-based index (Frangopol et al. 1990 )

In [15, 17] a probabilistic measure for robustness is associated to redun-

dancy of the structure and consequently to the robustness.

RI =
PF,damaged − PF,intact

PF,intact
. (1.6)

Where the PF,damaged is the probability of the failure event F for the

damaged structural system and PF,intact is the probability of failure of the

intact structural system. The index takes values between zero and infinity,

with smaller values indicating larger robustness.

As related redundancy factor it can also be written in equivalent way as:

βR =
βintact

βintact − βdamaged
. (1.7)

Where βintact is the reliability index of the intact structural system and

βdamaged is the reliability index of the damaged structural system. The

index takes values between zero and infinity, with larger values indicating

larger robustness.

Deterministic robustness index (ISO 2007a)

The RIF-index (Residual Index Factor) is a specific deterministic robust-

ness measure used in the offshore structure. The RIF index is also called

Damage Strength Ratio and it is a measure of the effect of the failure of

the element j on the structural capacity, where the failure is defined as a
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full loss of functionality of the structure.

RIFi =
RSRfail,i

RSRintact
. (1.8)

Where the RSRintact and RSRfail,i are the Reserve Strength Ratio of the

intact structure and of the structure upon the removal-failure of component

i respectively. The RIF takes values between zero and one, with larger

values indicating larger robustness.

The RSR is defined as the ratio

RSR =
Rc

Sc
. (1.9)

Where Rc denotes characteristic values of the base shear capacity of an

offshore platform (typically a steel jacket) and Sc is the ultimate design

load corresponding to collapse.
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Chapter 2

Structural Reliability

Hereby the basis of structural reliability methods will be introduced.

The Structural Reliability concerns with the computation and prediction of

the probability of limit state violation for an engineered structural system

at any stage during its life, [28]. The violation of Ultimate Limit State is a

rare event, as we can observe in everyday life, because very few structures

collapse or require to be repaired suddenly.

2.1 The Structural Response

The response of a structure to a certain load event depends on the type

and magnitude of the load as much as on the strength and stiffness of the

structure itself. The response can be considered satisfactory only according

to defined requirements. Safety requirement are usually the safety level
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against structural collapse or limitation of damage or serviceability criteria.

Typical limit state requirements are defined according to three level for the

safety of the structural response:

• Ultimate , identified by the collapse of the structure or a part of it in-

cluding events like rupture, progressive collapse, plastic mechanisms,

instability, fatigue, deterioration etc.;

• Damage, often included in the collapse event and includes excessive

cracking, inelastic deformation etc.;

• Serviceability, disruption of use due to excessive deflection, vibrations,

local damages etc.

To predict the probability of violation of a certain limit state means to

predict the probability of occurrence of this special event. This measure

can be obtained only though an assessment that considers completely all

the uncertainties of the variables of the problem.

The use of safety factors and load factors, that is commonly introduced in

all the modern structural codes, is a conservative but only deterministic

measure of safety. This because these factors lead to use a conservative

value of the variables upon which it is assumed to be no uncertainly.
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2.2 Deterministic Measure of Structural Reliability

2.2 Deterministic Measure of Structural

Reliability

As described before the traditional measure of safety introduce determin-

istic factors on resistance R and loads S in order to assign to them a value

that is conservative and on which it is assumed to be no uncertainly. These

factors can be applied on the strength (safety factors) or on the actions

(load factor).

Safety factor are usually applied on the strength and are introduced in elas-

tic stress analysis as a reducing factor:

σlim,i =
σu,i
F
. (2.1)

The reducing factor F is applied directly on the ultimate stress strength

and is usually selected on the basis of experimental observations, practi-

cal experience economical issues etc. and is always imposed by the code

committee. This limit is equivalent to define an admissible stress limit and

therefore is valid only in linear elastic field analysis that is well known to

be far from the usual stress state analysis.

Load factor is a safety factor applied on the loads Q and developed for

being used in the plastic theory of structures. Commonly, it is defined as

the amplification factor λ that must be applied to the set of loads acting

on the structure in service condition to led the structure to failure.

Given a certain limit state function, the collapse-failure occur when the ex-

ternal work function Le of the loads λQ exceeds the internal work function
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Li of all plastic resistance Rp (plastic moments etc).

Li(Rp) ≤ Le(λQ). (2.2)

The Partial Safety Factor approach applies partial factors both to resis-

tance and loads. Commonly the load partial safety factor differs from load

to load in order to take into account the different variability and uncertainly

associated to the different nature of the load. According to the definition

of plastic collapse given in Eq.2.2 we can rewrite the PVW (Eq. 2.3) .

Li(ϕRp) ≤ Le

⎛
⎝ n∑

j=1

γj ·Qj

⎞
⎠ . (2.3)

However, these measures of safety fail in invariance because they depend

on the defined limit state function and how loads and resistance are defined.

2.3 Probabilistic Measure of Structural

Reliability

The full probabilistic measure of the safety of a structural element is de-

fined as the probability of the failure event. This can be computed only by

considering randomness in time and space of both loads and resistance.

Loads due to natural phenomena (snow, wind, earthquake...) occur with

randomness in time and in space. The randomness in time can be consid-

ered in terms of return period defined as the expected time between two
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successive statistically independent events, where the event can be related

also to a certain threshold to be exceeded. This means that the time be-

tween events is a random variable (r.v.). The magnitude of each event is

also uncertain and so must be defined as r.v. with a certain probabilistic

distribution (in terms of probability density function or cumulative density

function).

Also resistance and geometric property can be defined in terms of a prob-

abilistic distribution. In addition, the structural resistance changes with

time, due to deterioration phenomena, while loads have the tendency to

increase. For this reason, the probability density functions fS and fR of

the loads S and resistance R become wider and flatter with time and also

the mean value of S and R changes with time (see figure 2.1).

Figure 2.1: Time dependent reliability problem.

0 tt1 t2

R,S

R(t)
S(t)

fR(r|t=t1) fR(r|t=t2)

fS(s|t=t1) fS(s|t=t2)

When the resistance R is not strongly changing in time and the load
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S is applied many times in a defined time interval [0, T ] as single time-

varying load, it can be assumed that R is constant and S acts as a single

load following a certain probability distribution (usually an extreme value

distribution as Gumbel or Frechet), neglecting the time-dependency.

In this case the limit state function (l.s.f.) g(r, s), where (R,S) is the vector

of basic random variables of the problem, can be defined as in Eq. 2.4.

g(r, s) = R− S ≤ 0. or g(r, s) =
R

S
≤ 1. (2.4)

This is also known as the general structural reliability problem for compo-

nent failure events.

By definition, the failure event F corresponds to the event Eq. 2.5

F = {g(r, s) ≤ 0}. (2.5)

and the probability of failure is therefore

Pr(F ) = Pr(g(r, s) ≤ 0). (2.6)

where {g(r, s) ≤ 0} = Ωf is the failure domain in the space of the r.v. R

and S. The probability of failure is the probability of (r, s) taking a value

within the failure domain Ωf . The Pr(F ) can be computed by integrating

the joint probability density function of (r, s), denoted by fRS(r, s) over Ωf

(see figure 2.2).
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Figure 2.2: Failure Domain Ωf .

0
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The Pr(F ) is given by the following integral:

Pr(F ) =

∫
Ωf

fRS dr ds. (2.7)

When R and S are independent fRS(r, s) = fR(r)fS(s) where fR(r) and

fS(s) are the marginal density function of R and S. The integral becomes:

Pr(F ) =

∫ +∞

−∞

∫ s≥r

−∞
fR(r)fS(s) dr ds. (2.8)

For R and S statistically independent, we can reduce this integral of one

order using the property of convolution integral.

The definition of cumulative distribution function for a vector of r.v. X for

x ≥ y is provided by:
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FX(x) = Pr(X ≤ x) =

∫ x

−∞
fX(y) dy. (2.9)

This allow us to rewrite the probability integral for independent R and S as

Pr(F ) = Pr(g(r, s) ≤ 0) =

∫ +∞

−∞
FR(x)fS(x) dx. (2.10)

Where FR(x) is the probability that R ≤ x and the fS(x) represents the

probability of S to assume values in the range [x, x+Δx] for Δx→ 0.

Generally, the r.v. of the problem R and S are not independent. In addi-

tion, the analytical solution of this integral often does not exist and also

the numerical integration has computation times that increase exponen-

tially with the number of dimensions. Therefore, to solve the probability

integral when the number of random variables is larger than 3 to 5 is pos-

sible only in approximated way.

All structural reliability methods aim at solving the probability integral,

but all of these methods are approximations, and each method has its own

advantages and disadvantages, which make them suitable for different ap-

plications. There are three way of solving this multi-dimensional integral:

• direct integration (solution possible in only few special cases);

• numerical integration with Monte Carlo sampling;

• Transform the integrand into a multi-normal joint probability density

function for which the solution is already known.
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A simple, intuitive general and often powerful method for solving structural

reliability problems is Monte Carlo Simulation (MCS), which is a general

method for analyzing functions of random variables. MCS proceeds by arti-

ficially generating samples from the distribution of the input variables and

then evaluating the functions g(r, s), for each sample value separately. In

this way, a set of samples of the function value g(r, s) are generated, which

can be evaluated using statistical methods.

A powerful but approximated method in the case of a non-linear limit state

function with non-Normal random variables, proceeds by transforming all

random variables into Normal random variables and then approximating

the limit state function by a linear (first-order polynomial) function. This

approach is known as the First-Order Reliability Method (FORM) and is

founded on the principle, that the limit state function g(r, s) can be directly

evaluated by a first- order Taylor series expansion around the performance

point that is calculate by means of a line-search based algorithm (HLRF).

These methods will be described in the following.

2.4 Monte Carlo Direct Sampling

Monte Carlo method is a simulation technique. It consists in the genera-

tion of a large number of samples to observe the result of the sequence of

experiments/samples. For any structural reliability problem it is possible

to define the random variables (r.v.) to model both the property of the

elements and the loads, and to assign a limit state function g (X), where
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X is the vector of the r.v, according to the failure mechanism.

By generating a number N of sample of the vector of random variables

X, the limit state function is evaluated at each realization xi and if the

limit state is violated, the element is considered failed. This experiment

is repeated for the set of N samples and the probability of failure can be

approximated by the ratio between the number of experiments in which

g (X) ≤ 0 and the total number of experiments N.

Pr(F ) =

∑N
i=1 Ii [g (Xi) ≤ 0]

N
. (2.11)

Where Ii [g (Xi) ≤ 0] is the indicator function at sample i equal to 1 if

g (Xi) = 0.

The number of total sample N is related to the accuracy we want to achieve.

The MCS gives us an estimation of the solution and the value of the prob-

ability computed with MCS converges to the true one only if N → ∞.

Therefore we can associate to this estimate a mean value and an upper and

lower bound of confidence.

We can evaluate mean and variance of the estimated probability with Eqs.

2.12 and 2.13

E [Pr(F )] =

∑N
i=0 Ii
N

. (2.12)

VAR [Pr(F )] =

∑N
i=0 VAR [Ii]

N 2
=

VAR [I]

N
=
Pr(F )− Pr(F )

2

N
. (2.13)

The confidence interval is defined as the interval that has the pc proba-

bility of containing the true value of the Pr(F ). The probability of failure
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estimated with MC is computed as sum of N r.v. and this sum will con-

verge asymptotically to the Normal distribution for N → ∞. By assum-

ing the Pr(F ) having the Normal distribution with parameters E [Pr(F )],

VAR [Pr(F )], the confidence interval can be computed as

pc = E [Pr(F )]∓
√
VAR [Pr(F )]. (2.14)

2.5 First Order Reliability Method (FORM)

In the field of component reliability problem, the probability of failure of a

component corresponds to a certain reliability index. The FOR-Method is

an approach with high computational efficiency, developed mostly at TU

München in the ’70 and ’80 by Prof. Rackwitz and his research group. This

method allows to compute the reliability index β and the design point u∗.

In addition, the reliability index is an invariant safety measure and for this

reason FORM is a very important method.

First some definitions need to be given. Let’s assume both resistance R

and loads S as normal distributed and that the limit state function can be

written as g (r, s) = R−S. With this expression, the limit state function g

represents a safety margin,also normal distributed, with mean and variance

fully defined by the well-known addition rule of Normal r.v.( see Eqs. 2.15

and 2.16).

μg = μR − μS . (2.15)
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σ2g = σ2R − σ2S . (2.16)

The probability of failure, as defined in the previous section is

Pr(F ) = Pr (g(r, s) ≤ 0) = Φ

(
0− μg
σg

)
=

= Φ

⎛
⎝0− (μR − μS)√

σ2R − σ2S

⎞
⎠ =

= Φ(−β) . (2.17)

Where β = μg/σg is the well-known reliability index or safety index. If

both standard deviation of R and S become smaller, the β becomes larger

(safety increases) and the probability of failure decreases, while if the dif-

ference between the mean values of R and S decreases the probability of

failure increase.

The design point is commonly defined as the point on the limit state

function-surface, defined by a realization of the r.v. X∗, that is the most

likely point that leads to failure. It will be shown that the β index corre-

sponds to the design point u∗ in the space of the standard normal variables,

and that u∗ represents also the nearest point of the l.s.f. to the origin of

the standard normal space.

If the limit state function is linear and the r.v. are all Normal distributed

the probability of failure is simply given by the Eq. 2.5. Commonly, the

l.s.f. g is not linear and the r.v. are not Normal distributed. In this case
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a first order approximation of the l.s.f. is needed and the r.v. must be

transformed into Standard Normal Variable. In this way the optimization

problem of searching for the most likely point corresponding to failure of

the component can be solved into the space of the Standard normal vari-

able, because we have an isometric multidimensional space with a linear

failure surface and statistically independent r.v..

Trensforming the r.v. into the standard normal space, the probability in-

tegral can be equivalently written as:

Pr (F ) = Prg (x) ≤ 0 =

∫
g(x)

f (x) dx =

= PrG (u) ≤ 0 =

∫
G(u)

ϕ (u) du. (2.18)

The first order approximation of the l.s.f. g (X) (or equivalently of G (U))

is usually done by a Taylor series expansion respect to the vector of r.v. X

(or U) and around a point x0 (or u0) of the l.s.f, cut at the first order (Eq.

2.19).

g (X) ≈ g(x0) +
n∑

i=1

∂g (X)

∂xi
(Xi − x0,i) |x=x0 . (2.19)

Obviously, the accuracy of the solution depends on the choice of the

approximation point x0 and on the formulation of the l.s.f..

Hasofer and Lind in [20] proposed to perform the Taylor expansion around

the design point x∗.
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Rackwitz and Friessler in [32] extended the procedure to non-Normal dis-

tributed r.v. and developed an efficient algorithm to find the design point.

2.5.1 Transformation into the Standard Normal Space

Let X be the vector of r.v. of the problem and U the vector of uncorrelated

Gaussian r.v. corresponding to each variable xi into the standard normal

space as shown in figure 2.3.

The transformation U = T (X) is defined in Eq. 2.20.

Figure 2.3: Transformation to the standard normal space for a single random

variable (A. Der Kiureghian 2005).

0
x

u

u=φ-1[F(x)]

fX(x)

ϕU(u) ui

xi

Equal 
Probabilities

T : FX(x) = FU (T (x)) . (2.20)
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Where Fx is the joint Cumulative Density Function (CDF) of the r.v. X

and Fu is the standard Multi-Normal CDF that can be computed from the

standard Normal CDF as FU (u) =
∏n

i=1 Φ(ui) .

If the r.v. X are statistically independent Normal distributed r.v., we have

that FX(x) =
∏n

i=1 Fxi(xi) and the transformation T has the form given in

Eq. 2.21.

T : ui = Φ−1 [Fxi(xi)] , i = · · · , n. (2.21)

The inverse of the transformation of Eq.2.21 is given in Eq. 2.22.

T−1 : xi = F−1
xi

[Φ(ui)] , i = · · · , n. (2.22)

If the r.v. X are Normal distributed but statistically dependent, the joint

Normal distribution is fully defined by the vector Mx of the mean values,

the diagonal matrix Dx of the standard deviations and by the correlation

matrix Rxx. Calling L the lower triangular matrix obtained by Choleski

decomposition of Rxx, i.e. LLT = Rxx, the transformation T and its in-

verse in this case are:

T : u = T (x) = L−1D−1 (x−Mx) . (2.23)

T : x = T−1(u) = Mx +DLu. (2.24)

Commonly, in structural reliability problems, not all the r.v. of the vec-

tor X are Normal distributed, but this variables can still be described in
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the Standard Normal Space though the property of Gaussian Copulas: for

jointly Normal distributed random variables, the joint distribution is fully

described by the marginal distributions and the correlation matrix.

In addition, a set of r.v. X, with their marginal distribution Fxi(xi) and

correlation coefficients ρij, are defined to be Nataf distributed if their

marginally transformed r.v. U in the standard normal space are jointly

Normal distributed.

Der Kiureghian and Liu in [5] demonstrated that the correlation coefficients

ρij and ρu,ij of the two sets of r.v. X and U are related through the ex-

pression in Eq. 2.25, where ρu,ij is the correlation coefficient between ui

and uj and φ2(ui, uj , ρu,ij) is the bivariate normal pdf of the couple of r.v.

ui and uj.

ρij =

∫ +∞

−∞

∫ +∞

−∞

(
xi − μi
σi

)(
xj − μj
σj

)
φ2 (ui, uj , ρu,ij) duiduj. (2.25)

It can be noted that the standard normal variable ui is related to the

variable xi through the expression 2.26.

ui =
xi − μi
σi

(2.26)

Moreover, from the property of the correlation coefficient ρij , the fol-

lowing equivalence is valid:

ρij =

∫ +∞

−∞

∫ +∞

−∞
uiuj · φ2 (ui, uj , ρu,ij) dui duj =
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= E [ui, uj ] =

=
COV [xi, xj ]

σiσj
. (2.27)

The correlation matrix {ρu,ij} can be computed from the known ρij iter-

atively with the Eq. 2.27, but this procedure is computationally inefficient.

In [5], an empirical polynomial approximation of the factor Nij = ρu,ij/ρij

can be found. The expression of the polynomial approximation is given in

Eq. 2.28, where Va and Vb are the coefficients of variation (c.o.v.) of the

couple of r.v. (a, b) considered, rfafb is the correlation coefficient in the

origin space and a, b, c, d, e, f, g, h, k, l are the coefficients of the polynomial

approximation.

N = a+ b · Va + c · V 2
a + d · rfafb + e · r2fafb + f · rfafb · Va +

+g · Vb + h · V 2
b + k · rfafb · Vb + l · Va · Vb. (2.28)

This polynomial expression depends mostly on the coefficient of variation

of the origin marginal distributions of each couple of rv (a, b) and their

marginal distribution. The coefficients of the polynomial are listed accord-

ing to the type of marginal distributions.

For the distribution type used in this dissertation, the coefficients are de-

fined in table 2.1.

Finally the correlation matrix between each couple of Nataf distributed r.v.

is given in Eq.2.29.

47



Structural Reliability

RUU = {Nijρij}. (2.29)

Va Vb N (Vb, Va)

N N 1

LN LN
Ln
(
1+rfafb

·Va·Vb

)
rfafb

√
Ln(1+V 2

a )Ln
(
1+V 2

b

)

N LN
Vb√

Ln
(
1+V 2

b

)

N W 1.031− 0.195 · Va + 0.328 · V 2
a

LN W

1.031 − 0.011 · Va+

0.22 · V 2
a + 0.052 · rfafb + 0.002 · r2fafb+

0.005 · rfafb · Va − 0.21 · Vb + 0.35 · V 2
b +

−0.174 · rfafb · Vb + 0.009 · Va · Vb

Table 2.1: Coefficient of the polynomial approximation.

N:Normal Distribution.

LN: Lognormal Distribution.

W: Weibull Distribution.

2.5.2 The Design Point: The H-L-R-F Algorithm

Once the l.s.f. has been linearized and the r.v. X of the problem trans-

formed into Standard Normal variables, in order to find the design point u*

we use the line search based algorithm of Hasofer-Lindt-Rackwitz-Fissler.

The linearization of the l.s.f. in u* means that we are approximating the

l.s.f. in u* with its tangent. This means also that the probability integral
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Pr (g(x) ≤ 0) is approximated by Pr (GU (u) ≤ 0) (see figure 2.4).

Figure 2.4: l.s.f and β point in the standard normal space when two dimensions

are considered (Straub 2010).

u2

u1

βFORMl.s.f.

fU(u)
Linear approximation
of l.s.f.

Design point
u*

Here the main steps of HLRF Algorithm are summarized.

The HLRF algorithm consists in an iterative gradient based procedure to

evaluate the l.s.f. in a set of points until the convergence to the optimal

solution (design point) inside the space of the Standard normal Variables.

First it is needed to set the start point of the iteration at the origin of the

standard normal space U0 = ∅. To start the step-algorithm the gradient

∇g(U0) of the limit state function g is evaluated at the start point and

then the displacement vector between the point U0 and the first point U1

of the algorithm is evaluated with the expression 2.30.
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d1 =

[
G (U0)

‖∇G (U0) ‖ + α0U0

]
αT
0 − U0. (2.30)

where α0 is the row vector of the gradient components (with changed sign)

as computed with the Eq.2.31 and normalized respect to the norm of the

gradient of the limit state function G (U). The vector α0 represents a mea-

sure of the weight/importance of each component on the solution:

α0 = − ∇G (U0)

‖∇G (U0) ‖ . (2.31)

The new point of the step algorithm is computed as in Eq. 2.32

U1 = U0 + d1. (2.32)

By generalizing the Eqs.2.30 and 2.31, the next steps of the algorithm are

computed with Eqs. 2.33 and 2.34.

di+1 =

[
G (Ui)

‖∇G (Ui) ‖ + αiUi

]
αT
i − Ui. (2.33)

αi = − ∇G (Ui)

‖∇G (Ui) ‖ . (2.34)

The iteration process is computed until the components of the displacement

vector di are smaller than a certain error ε: |di ≤ ε|. This corresponds to

minimize the distance of the design point u∗ to the origin of the standard

normal space.

The design point U∗ is therefore defined in Eq. 2.35, with the constraint
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2.5 First Order Reliability Method (FORM)

that GU (u) = 0, i.e u∗ belongs to the surface defined by the l.s.f. G.

U∗:βFORM = min
√
(U−Mx)

T RUU
−1 (U−Mx). (2.35)

The reliability index is in this way equal to the length of the vector that

defines the position of U∗ into the standard normal space (Eq. 2.36).

βFORM =
√
|U∗|. (2.36)
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2.6 The Probability of Failure of a System

of Components

In the case of a system of m components, the system has m ways to fail.

Mathematically, we have m limit state surfaces that intersect pair wise in

the space of the r.v. leading to sets of singular points, which are points at

which the limit-state surface is not differentiable.

Generally, two kind of system can be defined:

• Series system, if the failure of one component i leads to the failure of

the system (weakest link)

Fs =
m⋃
i=1

Fi (2.37)

.

• Parallel systems, if all the components must fail to have the total

failure of the system

Fp =
m⋂
i=1

Fi (2.38)

.

Any system can be generally represented both as a series system of parallel

systems and as a parallel system of series systems, where the failure event

F is defined as:

F =
m⋃
i=1

⎛
⎝ i⋂

j=1

Fi

⎞
⎠ or F =

m⋂
i=1

⎛
⎝ i⋃

j=1

Fi

⎞
⎠ . (2.39)
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For example, a statically determined structure can be modeled as series

system of elements, because the failure of one element leads the system to

lose its load carrying capacity, while a statically indeterminate structure

can have several failure modes and several of the single failure modes do

not occur unless several structural elements have failed [6].

For an equally correlated system with correlation coefficient ρ and where

each component has the reliability index βi, we can define the safety margin

for each component i in Eq. 2.40:

Mi = (a · ui + b · v) + βi. (2.40)

Where a and b are constant parameters of the distribution of the safety

margin and are equal to a =
√
(1− ρ) and b =

√
ρ.

It follows that the covariance between safety marginsMi andMj of the com-

ponents i and j is defined as COV [Mi,Mj ] = b2 = ρ with Mi ∼ N (βi, 1).

For a parallel system the probability of failure is given by the intersection

between failure events, as given in the expression 2.41.

Fp =
m⋂
i=1

Fi =
m⋂
i=1

{
αT
i · u+ βi ≤ 0

}
=

=
m⋂
i=1

{zi ≤ −βi} = Φm (−β,R) =

=
m∏
i=1

Φi

(
−βi −√

ρ · vi√
ρ

)
. (2.41)
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Where Φm (−β,R) is the m-variate standard normal CDF evaluated at the

threshold β and with correlation matrix R.

This allows one to compute the probability of failure with the integral Eq.

2.42.

Pr (Fp) =

∫ ∞

−∞
φ (v)

[
m∏
i=1

1− Φi

(−βi −√
ρ · vi√

1− ρ

)]
dv. (2.42)

For a series system the probability of failure is given by the union of failure

events as in Eq. 2.43.

Fs =
m⋃
i=1

Fi =
m⋃
i=1

{
αT
i · u+ βi ≤ 0

}
=

=
m⋃
i=1

{zi ≤ −βi} = 1−
m⋂
i=1

{zi > −βi} = 1−
m⋂
i=1

{zi ≤ βi} =

= 1− Φm (β,R) =

= 1−
m∏
i=1

1− Φi

(
βi −√

ρ · vi√
ρ

)
. (2.43)

The probability of failure is finally given by integral in eq. 2.44.

Pr (Fs) =

∫ ∞

−∞
φ (v)

[
1−

m∏
i=1

1−Φi

(
βi −√

ρ · vi√
1− ρ

)]
dv. (2.44)

Obviously, if all the components have also the same reliability index, the

productorial in the Eq. 2.42 and Eq. 2.44 becomes a power of m.
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2.6 The Probability of Failure of a System of Components

For the case of non-equicorrelated system of components with different reli-

ability indexes, several algorithms to compute the integral of the m-variate

standard normal CDF can be found in the literature (see Genz [18], Joanni

[23], Kang-Song [25]).

2.6.1 The Ditlevsen bounds

As described in the previous section, the probability of failure for a general

system on m components, each with its linear safety margin Mi, can be

described by a convex polyhedral safe domain (see figure 2.5), where each

Mi represents an hyperplane. The set of safety margins are jointly normal

distributed and when the Mi are almost plane and the βi assumes large

positive values, the computation of the m-dimensional normal distribution

function 1− Φm (β,R) leads to small probability.

Figure 2.5: Polyhedral and convex safe set (O. Ditlevsen 2007).
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By calling IA and indicator function equal to 1 if Mi > 0 and null if

Mi < 0, the indicator function for the safe set is equal to the productorial

of the Isi safe sets of all the m components (see Eq. 2.45 ).

Is = Is1 · · · Ism. (2.45)

Let’s consider the expression in Eqs. 2.46 and 2.47.

1− Is = 1− I1 · · · Im = 1− I1 + I1 · (1− I2) +

+I1I2 · (1− I3) + · · ·+ I1I2I3 · · · Im · (1− Im) . (2.46)

I1 · · · Im =

⎧⎪⎨
⎪⎩

= max
{
1−∑i

j=1 (1− Ij) , 0
}

≤ Ij , if j < i

(2.47)

In Eq.2.47 the inequality is obvious. The equality assumes value equal

to 1 only if all Ij = 1, and the unity value represents the maximum pos-

sible value. By substituting Eq. 2.47 in Eq. 2.46, Eqs. 2.48 and 2.49 are

obtained.

1− Is = 1− I1 +
m∑
i=2

⎡
⎣max

⎧⎨
⎩(1− Ii)

⎛
⎝1− i−1∑

j=1

(1− Ij)

⎞
⎠ , 0

⎫⎬
⎭
⎤
⎦ . (2.48)

1− Is ≤ 1− I1 +
m∑
i=2

[(1− Ii)min {I1, I2, · · · , Ii−1}] =

= 1− I1 +
m∑
i=2

[(1− Ii) (1−max {I1, I2, · · · , Ii−1})] =
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=
m∑
i=1

(1− Ii)−
m∑
i=2

max
j<i

{(1− Ii) (1− Ij)} . (2.49)

From Eqs.2.48 and 2.49 it is straightforward to derive the following ex-

pression for the indicator function for the complementary set to the safe

set Is

If = 1− Is =

⎧⎪⎨
⎪⎩

= If1 +
∑m

i=2

[
max

{
Ifi −

∑i−1
j=1 (IfiIfj) , 0

}]

≤∑m
i=1 [Ifi −

∑m
i=2 maxj<i {IfiIfj}]

(2.50)

By assuming that the expectation of a random indicator function IA is the

same as the probability P(A) of the event A, from Eq.2.50, the Ditlevsen

probability inequalities valid for an arbitrary probability distribution can

be derived.

If

⎧⎪⎨
⎪⎩

≥ P (F1) +
∑m

i=2

[
max

{
P (Fi)−∑i−1

j=1 (P (Fi ∩ Fj)) , 0
}]

≤∑m
i=1 [P (Fi)−∑m

i=2maxj<i {P (Fi ∩ Fj)}]
(2.51)

With the definition of generalized reliability index as β = −Φ−1 [P (F )], it is

formally assigned a normal distribution to the space of input variables, such

that this normal distribution has the same second-moment representation

of the vector of input variables X. Therefore the expression in Eq.2.51

gives a valid bounds to the reliability index by setting P (F ) = Φ (−β) and
P (Fi ∩ Fj) = Φ2 (−βi,−βj ; ρij), for j = 1, · · · ,m.
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Chapter 3

Structural Model

Large-span timber roofs are realized by primary and secondary elements

in a rectangular arrangement. Secondary structures are either realized

as statically determinate or indeterminate systems. The latter are often

preferred since they feature a more efficient bending stress distribution and

enable load distribution in case of a local damage, but they might also

facilitate progressive collapse. The primary elements are usually simply

supported beams, usually realized with a shape which is optimized with

regard to bending stresses.

3.1 Large-Span Timber Roof Description

The investigated structure is a simple but typical timber roof system (figure

3.1). The structural system, shown in figure 3.2, is exemplary for common
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structural designs for large-span roofs of sport-arenas, industrial factories or

farm storage buildings. The roof covers an area of lxw = 30.0mx20.0m and

is supported by 6 primary pitched cambered beams at a distance e=6.0m.

The secondary elements (purlins) are mounted on the primary elements,

which feature a pitch angle of 10◦.

Three different configurations of the secondary system are studied: (a)

purlins designed as simply supported elements; (b) purlins designed as con-

tinuous beams; (c) purlins designed as lap-jointed beams (figure 3.3). This

system has been already subject to a previous deterministic analysis (Di-

etsch and Winter 2010 [7]).

The purlins are realized with timber grade C24, with dimensions summa-

rized in table 3.1 and characteristic value of the strength in table 3.2. The

distance between the purlins ep is selected to achieve a utilization factor

between 0.9 and 1, calculated according to [14]. The resulting values of ep

for different configurations are given in table 3.1.

Configuration distance [m] ep [mm] width [mm] height [mm]

Simply Supported (a) 1.0 100 200

Continuous (b) 1.2 100 200

Lap-Jointed (c) 1.6 100 200

Table 3.1: Dimensions and layout of the secondary system.

Usually, structural timber sections have a high ratio h/b ≥ 2 in order to

achieve a high capacity in the vertical plane, due to the fact that timber

elements are mostly loaded in bending. This leads also to a sensitivity to

lateral buckling, but the dimension chosen here are still in a range that is
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3.1 Large-Span Timber Roof Description

Figure 3.1: Illustration of a typical large-span timber roof system (Dietsch and

Winter 2010).

Figure 3.2: Geometry of the roof (Dietsch and Winter 2010).

  20.0m

 30.0m

 6.0m

(a)

(b) (c)

 ep
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Figure 3.3: Three investigated purlin configurations.

Lap-Jointed

Continuous

Simply Supp.

Table 3.2: Characteristic values of the strength according to DIN338 [9].
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3.1 Large-Span Timber Roof Description

insensitive to buckling.

The purlins in the three configurations have the same section, while the

distance between the axis of the purlins is chosen so that the utilization

factor according to EC5 [14] is in the range 0.9 < η < 1. The resulting

distances ep between purlins are: a) 1.0m, b) 1.2m and c) 1.6m as in table

3.1.

It is assumed that the connection between purlins and primary beams is

realized with constraint that behaves like an hinge (angle-iron with bolts

or screws). The joints are not modeled in this dissertation, therefore some

assumption need to be stated. The joints are assumed intact and with a

different capacity according to the the three different configurations.

The three static configurations chosen are the most common one. In ad-

dition, the simply supported configuration can be preferred because it is

easy to build and assures a certain degree of compartmentalization, given

that each element is independent, but it’s more expensive due to the higher

number of elements and connections to build. The continuous configura-

tion allow to use a lower number of elements, but the cost are affected by

the quality control of the finger joint made to obtain a unique purlin to

cover the entire length. The Lap-jointed configuration is often preferred

for the lower cost of building. In fact, the doubling of the section across

the support allows also to have a slightly bigger section where the bending

moment is higher.

The primary beams are made of glued laminated (glulam) timber of

grade GL24c and feature the shape shown in Figure 3.4. The correspond-
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ing dimensions are listed in table 3.3.

Figure 3.4: Pitched cambered glulam beam with a mechanically fixed apex.

ha

hap h1

L

L3L2L1

γ

δ

θ

r

Geometrical parameters Size

Span L [m] 20

Span L1 [m] 7.866

Span L2 [m] 4.268

Span L3 [m] 7.866

distance e [m] 6.0

Width b [mm] 180

Heigth at the support ha [mm] 600

Heigth at the support hap [mm] 1163

Angle upper edge δ 10

Angle lower edge γ 6

Inner radius r [m] 20

Lamella thickness t [mm] 32

Table 3.3: Dimensions of the primary beams.

The choice of a special shape is motivated by the wide length of the

element so that the dimension are strongly influenced by the serviceability

check (displacement check) and by local shape effect on the stress distribu-

tion (e.g. tension perpendicular to the grain).
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3.1 Large-Span Timber Roof Description

Table 3.4: Characteristic values of the strength for glulam from DIN14080 [11].

The timber GL24c is a composite of strength-graded wood laminations,

which are flat wise glued together. In this case, the external laminations

correspond to the class C24 and the internal one to class C16 (see table 3.4).

In fact, in bending condition only the external laminations are subjected to

high stresses so that a higher class of timber is needed, while for the shear

or tension perpendicular to the grain the strength resistance is quite sim-

ilar in all classes of timber depending only on the grain density (see table

3.4). The use of composite glulam allows to optimize further the costs and

material use and it also enables members with varying cross-sections.

All the strength values refer to a moisture content of 12%, i.e. to a relative

humidity of 65% at 20C.
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3.2 Timber deterministic design rules

Wood is a cellular composite material and the micro-structure of the wood

cells rules the characteristic anisotropic behavior of the material. There-

fore, the density is the single most important physical characteristic of wood

because the strength depends from the density of the cells.

The water content also has influence on the mechanical properties. The

anisotropic shrinkage caused by the drying process can cause distortions.

In order to avoid distortions, the finite timber product is subjected to a

strong quality control. In addition, the moisture content influences the

strength. Generally, bending strength is higher than both compression and

tensile strength. However, the bending behavior at failure depends on mois-

ture content. In bending at low moisture content, failure is governed by

areas in high tension. At high moisture content the failure is governed by

areas of high compression. The failure governed by tensile areas is more

dangerous because it exhibits a brittle behavior, while compression failure

can be characterized by an extensive yielding behavior due to creases.

Both EC5 [14] and DIN1052 [10] define three use classes according to mois-

ture condition of timber. Service class 1 shows higher compression strength

than tensile strength for a given quality of wood.

Class 1 timber will fail always in brittle way and therefore only a linear

distribution of stresses can be assumed in design. Class 1 is characterized

by values of moisture content not bigger than 65% at 20C.

Timber of service class 2 shows a brittle failure behavior for low quality

wood and a ductile behavior for high quality wood. Class 2 is character-
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3.2 Timber deterministic design rules

ized by values of moisture content not bigger than 85% at 20C.

Service class 3 timber shows a lower strength in compression than in tension

for all quality levels of timber. The bending failure starts with creases of

compressed wood and as the bending moment increases, the neutral axes

moves to the tensile region giving a large zone of the cross section in com-

pression.Class 3 is characterized by values of moisture content bigger than

85% at 20C.

The Italian code reference for timber structure is the ”N.I.CO.LE” design

rules, but it is mostly an agreement on the design rules of EC5 adapted

to the Italian conditions. However, most of the engineers refer always to

EC5 [14], to the German code DIN1052 (2008) [10] and to the Swiss Code

SIA265 [34].

As other building materials, timber design rule refer to two limit state de-

sign condition: ultimate limit state and serviceability.

The limit state condition for design is an essential condition and assures a

certain strength level according to design load within an acceptable safety

margin. The ultimate state can be both the collapse and an exceeding level

of damage or danger for the people, but also the loss of stability, exceeding

deformation, joint failure and kinematic conditions.

Serviceability condition of design assures a good serviceability condition

during the life-time of the structure by giving a certain limit to the de-

formations under service loads. In addition, exceeding deformations can

change the load condition of the structure and therefore the safety margin

at limit state condition can change.
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The aim of limit state design is to get a probability of exceeding the limit

state assigned that is low enough for the structure in relation to the type

of the structure (large-span roof, building, art-work), to the impact of the

structure use (importance) and to life-cycle assigned.

The limit state design condition consists in fulfilling the requirement in Eq.

3.1.

Sd = γf · Sk ≤ Rk ·Kmod

γm
= Rd. (3.1)

Sd is the design action (e.g. bending moment, axial force) on the section

object of the check, i.e. the highest action possible defined as the action

with the probability of being exceeded of 5%. Sk is the characteristic value

of the action with 5% fractile computed under the assumption of linear

elastic structural behavior. γf is the load safety factor as defined in (see

Eq.2.3 of section 2.2). Rd is the design strength of the section, i.e. the

smallest strength defined as the strength value associated to the probabil-

ity of 99.5% to be exceeded. Rk is the characteristic value of the strength

defined as the 5% fractile value and computed according to the real behav-

ior of the structure. γm is a safety factor that counts for the uncertainly of

strength. Kmod is a coefficient that counts for the duration of the load and

for environmental conditions.

In the computations, it will be assumed a value of 1 both for the factors

Kmod, due to the assumption of load acting for a short interval of time, and

for the γ because in reliability analysis a full probabilistic analysis is done

and therefore no safety factor is needed.
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The evaluation of Eq. 3.1 is needed for any possible load condition. There-

fore, in the code the load value is defined as combination of the loads. The

load combination for ultimate limit state is defined in Eq.3.2.

Sd = γg ·Gk + γq ·
[
Q1k +

n∑
i=2

ψ0i ·Qik

]
. (3.2)

In Eq. 3.2, Gk is the characteristic value of dead load, Q1k is the char-

acteristic value of the action to which the load combination refers to, Qik

is the characteristic value of the independent action i among the action n.

The factors γg and γq are the partial safety factors for dead load G and the

action Q, and ψ0i are the factors for combining of the loads Qik according

to ultimate state. Usually the factors ψ0i are assumed equal to 0.7.

The load combination for serviceability state is defined in Eq.3.3.

Sd = Gk + ψ11 ·Q1k +
n∑

i=2

(ψ2i ·Qik) . (3.3)

In Eq.3.3, the load combination coefficient ψ11 is equal to 1 for rare con-

ditions, is 0 for permanent conditions and a values that changes according

to the use of the structure for frequent condition (see [14]). The coefficient

ψ2i is equal to ψ0i for rare conditions, while it changes according to the use

of the structure for frequent and permanent conditions.

3.3 Failure modes for a purlin

According to the three assumed static configurations, the roof secondary

elements are mostly subjected to a combination of bending moments. For
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the special case of the lap-jointed purlins the computation of the bending

moment is done without considering the change of the moment of inertia

for the section coupling length across the joints. This is verified to be more

conservative. Only in the section bending check, the change of the moment

of inertia is considered in order to know if the section is really failed or not.

This is possible because it is assumed that the two parts in the lap-joint

connection are fully bonded.

The behaviour of the element in bending is assumed to be brittle with a

linear distribution of the strain until failure, that means that when a sec-

tion inside of the element is failed the entire element is considered to be

failed (weakest link).

An important assumption is that no torsional stiffness is considered between

the purlins that are next to each other, so that there isn’t any collaboration

in carrying the load, but each element carries just a load proportional to

its area of influence.

For this analysis, only the bending failure mode is considered, shear fail-

ures, buckling failures and failures of joints are neglected, since in this case

the bending failure is the main failure mechanism.

Bending failure at cross-section j is described by the limit state function in

Eq. 3.4.

gj = 1−max

{(
MSx,j

MRx,j
+ km

MSy,j

MRy,j

)
,

(
km

MSx,j

MRx,j
+
MSy,j

MRy,j

)}
. (3.4)

MSi,j denotes the bending moment andMRi,j denotes the bending capacity

at cross section j in direction i ( two-axial stress field shown in figure 3.5)
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3.3 Failure modes for a purlin

due to the roof inclination of 10◦). This limit state function represents a lin-

ear approximation of the resistance domain in the elastic stress-deformation

field given in the EC5 [14]. The coefficient km takes into account the stress

Figure 3.5: Rectangular cross section subjected to biaxial bending.
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distribution and the not homogeneity of the material. The failure in biaxial

bending does not occur always for the highest stress at the corner of the

rectangular section, as for the homogeneous materials and so the coefficient

km is introduced. For rectangular sections km is equal to 0.7.

Several authors [4, 26, 27, 42] introduce a correction factor in the limit state

function to account for the approximation made by this failure criterion.

Since we believe that further investigation is necessary to better understand

this factor, it is omitted in this study.

The bending moments are given in Eqs. 3.5 and 3.6.

MSx,j = ax,j · [C ·Q+G · acs + P ]; (3.5)

MSy,j = ay,j · [C ·Q+G · acs + P ]; (3.6)
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The load coefficients ax,j, ay,j depend on the structural configuration (a-

b-c) and the location j along the longitudinal axis; acs is the cross section

area of the purlins; the remaining variables are random variables describing

the loads:

• Snow load on the ground Q;

• Shape factor C (snow load on the roof);

• Timber specific weight G;

• Permanent load P.

The bending capacities in Eqs. 3.5 and 3.6 are described by Eqs. 3.7

and 3.8.

MRx,j = Rj · 2Ix
dy

. (3.7)

MRy,j = Rj · 2Iy
dx

. (3.8)

Where Rj is the bending strength at cross section j, Ix and Iy are the

inertia of the section and dx,dy are the width and depth of the purlins. The

resistance of the elements is computed neglecting any time-dependency of

the property of the material.

Each purlin is evaluated at discrete cross sections at distances of 0.5m

along its longitudinal axis, based on the approximate distance between

weak sections (e.g. knots) in the timber [27, 41].

Failure at a section j occurs when gj ≤ 0, where gj is defined by Eq. 3.4.
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The purlin is modeled as a series system, that means that any failure of a

section leads to failure of the purlin. Failure of a purlin leads to changes

in the static scheme for configurations (b) and (c). Therefore, upon failure

of one or more sections, the coefficients alx,j and aly,j in Eqs. 3.7 and 3.8

are recalculated and all sections are then evaluated with these values. In

this way, the possibility of progressive failures is accounted for. This is

illustrated in Figure 3.6.

Figure 3.6: A possible failure scenario for the three configurations.
(a)

(b), (c)

Furthermore, failure of the secondary system F is defined as the failure

of one or more purlins. Therefore, also the roof is considered failed, when

any of the discrete elements fail. This is justified by considering that the

failure of an element will be detected immediately and corrective actions

will be taken upon failure of one element.
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3.4 Failure modes for the beam

The primary system is realized with glulam beams of special shape in order

to cover a large span. The load on the beams consists of the vertical forces

from the secondary elements (purlins) and the self weight of the beams.

This load is modeled as a uniformly distributed load on the beam (see

figure 3.7).

In the ultimate limit state condition, the glulam beam of figure 3.4 can

Figure 3.7: Load scheme for the primary beam.

L1 L2 L3

L

q

Rq Rq

be subject to four failure mechanisms:

• Failure due to bending;

• Failure due to tension stresses perpendicular to the fibers in the

curved section (inside the length L2 of Figure 3.4);

• Failure due to shear across the support region;

• Failure due to a combined effect of tension perpendicular to the grain

and shear stresses.

To evaluate the performance of the primary system, each beam is evaluated

at discrete cross-sections at distances of 0.5m along its longitudinal axis,
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3.4 Failure modes for the beam

based on the approximate distance between weak sections (e.g. knots) in

the timber [27, 41]. Failure at a cross section j is described by limit state

functions (l.s.f.) gx,j, where index x identifies the failure mode. Failure

mode x occurs in section j when gx,j ≤ 0.

3.4.1 Limit state function for bending failure of the primary

beam

The l.s.f. for bending failure is defined as:

gb,j = 1− σb,j
fb,j

= kj
Mj

krfb,jbh
2
j/6

. (3.9)

where σb,j is the maximum tensile stress in the cross-section due to bending,

fb,j is the bending resistance of section j, Mj is the bending moment in

section j, b is the width and hj is the height of the section.

The factor kr takes into account the strength reduction due to bending of

the laminates during the production and is here equal to 1. The coefficient

kj ≤ 1 accounts for the non-linear distributions of stresses in the cross-

section (figure 3.8).

kr is here defined as in [10, 14]:

kj =

⎧⎪⎪⎨
⎪⎪⎩

1 + 4tan2 (δ − γ) if j ∈ L1, L3;

1 + 0.35
(
hap

r

)
+ 0.6

(
hap

r

)2
if j ∈ L2

. (3.10)

In Eq. 3.10, δ, γ, hap and r are geometrical parameters (see figure 3.4).

Due to the height of the section (h ≥ 600mm for glulam [10, 14]), the vol-
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Figure 3.8: Distribution of the bending stresses in the curved beam.

ume effect in bending (height effect) is here neglected.

3.4.2 Limit state function for tension perpendicular to the

grain failure of the primary beam

The limit state function for failure due to tension stresses perpendicular

to the grain, which is relevant only for the curved sections of the beam, is

given by:

gt90,j = 1− σt90,j

ft90,j k̇disk̇vol
. (3.11)

In 3.11, ft90,j is the tension strenght perpendicular to the grain. The coef-

ficient kdis accounts for the shape and kvol accounts for the volume effect

of the beam. It is kdis = 1.4 for double tapered and curved beams and

kvol =
(
V0
V

)0.2
for glulam timber beams, with reference volume V0 = 0.01m3

[14]. The tension σt90,j at the section j is computed according to Blumer
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3.4 Failure modes for the beam

formulation [2]:

σt90,j =
Mj

bhape

[
Ln

(
β − e

hap

β − 0.5

)
+
hap
r

(
e

hap
− 0.5

)]
. (3.12)

In the expression above, it is β = R/hap, r = h/Ln
(
β+0.5
β−0.5

)
and e = R− r

(see figure 3.4). R is the curvature radius with respect to the center of the

section, b is the section width, hap is the beam height at apex (see Figure

3.9 ).

Figure 3.9: Tension perpendicular to the grain.

3.4.3 Limit state function for shear failure of the primary

beam

The limit state function for shear failure in section j is defined as:

gv,j = 1− τv,j
fv,j

. (3.13)
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In Eq. 3.13, τv,j is the maximum shear stress and fv,j is the shear strength

in section j.

In the straight sections of the beam (j ∈ L1, L3) the maximum shear stress

follows the Jourawski law for rectangular sections, while in the curved sec-

tions (j ∈ L2), the stress along the depth is computed according to Blumer

[2].

τv,j = 1.5
Vj

Aj
, j ∈ L1, L3. (3.14)

τv,j =

[(
1.5 − 6e2

)
+
(
3.13e + 0.5e2 − 12.5e3

) hap
R

+

+
(
−0.693 − 0.565e − 0.438e2 + 223e3

)(hap
R

)2

+

+ 0.346

(
hap
R

)3
]

Vj

Kcrbhap
, j ∈ L2. (3.15)

In Eqs.3.14 and 3.15, Vj is the shear at section j , b is the beam width,

hap is the beam height at apex, e is the depth of the neutral fiber and the

factor kcr (see [14]) takes into account the reduction of the section due to

shrinkage cracks at the vertical side faces of the cross section. kcr is taken

as 2/3 (see figure 3.10).
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3.4 Failure modes for the beam

Figure 3.10: Effective section due to shrinkage cracks.

3.4.4 Limit state function for combined shear and tension

perpendicular to the grain failure of the primary beam

The maximum values of shear stress and tension perpendicular to grain

stress occur both in the central region of the cross section and the com-

bined effect of these stresses can lead to a brittle sudden failure. This

failure can be modeled by general resistance criteria [30]. There are several

definition for this limit state surface ( Haber-von Mises, Norris, Tsai and

Wu as reported in [30]), but both the EC5 and DIN don’t consider the

combination of this two states. Here, the l.s.f. given in the Swiss Code [34]

for modeling the combined failure mode is used. It is defined in 3.16 and

figure 3.11.

gvt90,j = 1−
⎧⎨
⎩
(
fc90,j + σt90,j
fc90,j + ft90,j

)2

+
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+

(
τvj
fvj

)2
⎡
⎣1−

(
fc90,j

fc90,j + ft90,j

)2
⎤
⎦
⎫⎬
⎭ . (3.16)

Figure 3.11: SIA-265 LSF for combined shear and tension perpendicular to

the grain.

In Eq. 3.16, fc90,j and ft90,j are the strength in compression and tension

perpendicular to the grain, fv,j is the shear strength of the section j and

σt90,j is the maximum tension stress at the section j according to Eq. 3.12.

Even if both failure mechanisms for tension perpendicular to the grain and

combined shear and tension perpendicular to the grain do not directly lead

to global failure, these phenomena must be considered in the structural

model as damage/deterioration events due to the loading process of the

structure. These failure mechanisms cause the splitting of the cross section

of the beam due to the propagation of a crack either from the supports

(shear) or from the mid-span inside the curved region j ∈ L2 (tension

perp.). Because the maximum shear as well as tension perpendicular to

grain stresses occur in the central region of the cross section, it is reason-

able to consider that the cross section is divided in two parts over a certain
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3.5 Failure modes for large span roofs: system behavior

length of the beam, once one of these two mechanisms arises. This leads to

a lower bending capacity of the beam and to a higher vertical displacement

under the load (lower elastic stiffness). This additional displacement has

an effect on the secondary system load condition.

3.5 Failure modes for large span roofs: system

behavior

The roof system is modeled as a series system of two subsystem: primary

system (beams) and secondary system (purlins). System failure will occur

when at least one primary or secondary element fails in bending.

The secondary system is considered to be failed when the purlins can no

longer support the tertiary system in at least one location (i.e. when the

roof ”comes down”). It is then assumed that upon such a failure the

structure will be closed and necessary actions will be taken (e.g. repairs,

retrofitting).

The primary system is considered failed when at least one section of one

beam is failed in bending. Upon bending failure of a primary beam, a per-

centage of the load acting on the beam will be transferred to the adjacent

beams, due to the reserve capacity of the purlins and the connections. This

effect occurs even if the beam is collapsing and can lead to progressive col-

lapse of the roof due to this additional load transfer. This redistribution

can reach a total value of 50% but also the 100% according to the connec-

tion details (ductility and plasticity reserve of the steel bolt and screws)
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and to the ”real” resistance of the purlins. This effect is included in the

model by redistributing a percentage of the load carried by the failed beam

to each of the adjacent beams. The primary system is then checked again

with the new load configuration.

This simple model is applied independently of purlin configuration, but

with a different redistribution factor. The applied redistribution factor

is equal to 40% on each beam for the statically indeterminate configura-

tions (continuous and lap-jointed purlin) for a total of 80%, while in the

case of the statically determinate configuration this redistribution can vary

strongly. Therefore, in the latter case the redistribution is assumed to vary

inside the interval 10% and 40% on each beam.

In addition, failure of primary beams corresponds to a loss of support for

the secondary system. For the statically determinate purlin configuration,

failure of a beam will lead to longitudinal tension stresses in the purlins, be-

cause the failed beam will essentially hang on the purlins (see figure 3.12).

In this case, combined bending and tension failure of the purlins is checked.

The new limit state function is defined in Eq. 3.17

Figure 3.12: Consequences of beam bending failure on simply supported purlins.

bending moment

tension axial force

gj = min

{
1−

(
TS,j
NR,j

+
MSx,j

MRx,j
+ km

MSy,j

MRy,j

)
;
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3.5 Failure modes for large span roofs: system behavior

1−
(
TS,j
NR,j

+ km
MSx,j

MRx,j
+
MSy,j

MRy,j

)}
. (3.17)

TS,j is the additional tension force and NR,j the tensional capacity of

the purlin at the section j.

For the statically indeterminate purlin configurations (b and c as shown in

figure 3.3), failure of a beam will lead to a significant increas of bending

demand in the purlins, which will almost certainly lead to failure of the

purlins and consequently to system failure (see Figure 3.13). Failures of

Figure 3.13: Consequences of beam bending failure on continuous and lap-jointed

purlins.
bending moment on intact system

failure (a) failure (b)

failure scenario (a)

failure scenario (b)

the primary beams due to shear and tension perpendicular to the grain will

not directly lead to system failure. They can, however, lead to reduced

bending capacity of up to 50% and thus facilitate bending failures of the

beams. Mostly, the exceeding tensions perpendicular to the grain, inside

the curved sector, cause the splitting of the grain (see figure 3.14).

In addition, these mechanisms lead to a loss of stiffness and therefore to a

change in the load on the secondary elements (additional displacement of
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Figure 3.14: Cracks due to tension perpendicular to the grain in a glulam beam

(Holzforschung, MPA-BAU TUM).

the support). For the statically determinate purlins, the displacement of

the support does not change the static condition and has no consequences.

For statically indeterminate purlin configurations, the effect of the loss of

stiffness in the primary beam is modeled by a displacement of the support of

100mm. This effect is included in the system assessment. When secondary

elements fail in bending, the system will fail. Failures of secondary elements

have no effect on the primary system, and, therefore, can be considered

separately in the analysis.

Figure 3.16 summarizes the analysis of the roof system.

3.6 Quantifying Risk and Robustness of the

timber roof system

The results of numerical simulations will be used to assess robustness and

risk of the chosen roof system. To compare risk and robustness of the three
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3.6 Quantifying Risk and Robustness of the timber roof system

Figure 3.15: Consequences of beam displacement on continuous and lap-jointed

purlins.

δ

δ

bending moment intact purlin

bending moment due to δ

structural configurations of timber roofs, quantitative definitions of these

characteristics are required. The definitions of measures for risk and ro-

bustness are provided in the following.

3.6.1 Definition and metric of Risk

Risk is generally defined as expected adverse consequences [22]. Conse-

quences of a roof failure include fatalities, injuries, costs of repair or re-

placement of the structure and economical losses due to unavailability of

the structure. Without making any assumptions on the use of the structure,

a reasonable approximation for the consequences of a failure is to consider

them as being proportional to the area of the roof that fails, AF .

Let α be the proportionality factor that takes into account the use of the

structure, the importance, people capacity and economical value. The risk

can be defined as:
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Figure 3.16: Flow chart of the failure analysis.
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3.6 Quantifying Risk and Robustness of the timber roof system

E [αAF ] = α [AF ] . (3.18)

where E [ ] is the expectation operation. For the purpose of comparing the

pure structural behavior of the three different configurations of roof sys-

tem, at this stage the factor α is neglected. The risk is therefore computed

as the expected value of the area failed (see Eq.3.19) once the probability

density function (pdf) fAF
(a) is defined.

E [AF ] =

∫ Aroof

0
a · fAf

(a) da. (3.19)

3.6.2 Definition of a probability based Robustness criterion

As described already in section 1.5, structural robustness is generally un-

derstood as the ability of a structure (or of some part of it) to have a limited

damage in case of failure due to unforeseen loads or damages. Therefore,

the structural robustness is related to the behavior of the structure in terms

of consequences to a failure or damage event.

Many authors [21, 37] relate robustness only to structural redundancy,

which requires static indeterminacy and the avoidance of progressive col-

lapse. Baker et al. [1] use the ratio between direct and indirect expected

damage as a measure of robustness. This definition also includes the con-

sequences of failure, and it requires computation of the risk (direct and

indirect). The main idea is to achieve an optimal solution between addi-

tional cost to increase robustness and the reduction of failure consequences.
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Therefore only a probabilistic approach can lead to the solution that fulfill

this requirement (optimal solution)[3].

A criterion of evaluation of structural robustness is hereby proposed. It is

based on the damage limit requirement reported in EN 1991-1-7 [13], which

includes a damage limit requirement for floors: a failure should not lead to

a failed area that exceeds the minimum between 100m2 and the 15% of the

total area. This limit has been established for multi-stored frame buildings

rather than single-stored, large-span structures. However, the limit of 15%

is here adopted as a probability-based ”robustness criterion” by converting

it in a probabilistic measure: we calculate the probability that the failed

area will be smaller than 15% of the total area, given a failure with the

expression in Eq.3.20 (see also [29]).

Pr [AF < 15% | F ] =
∫ 0.15·Aroof

0
fAF |F (a) da. (3.20)

where fAF |F is the conditional pdf of the failed roof area given a failure of

the roof. Since the 15% threshold is somewhat arbitrary, the full conditional

distribution of the failed area is also provided for assessing robustness.
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Chapter 4

Timber Statistics

The natural growing process of wood determins the characteristics of timber

material. Mostly, the dimension and density of wood cells is the interpre-

tation key of timber behavior. In addition, the load bearing capacity of

timber is governed by the presence and characteristics of natural growing

defects that occur randomly inside the trees. This implies that the strength

of timber elements also depends upon the size of the structural element and

on the load condition.

Strength properties of structural timber are determined by direct testing

of timber elements with standard procedures according to the stress state.

Assuming that the theory of elasticity is valid, bending strength, compres-

sion, tension and shear capacity of timber elements are referred to the

global behavior of an entire element and not to the material itself. In ad-

dition, according to [10], the influence of defects is implicitly included in

the strength value specified for timber class and they can only be applied
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if the stresses are determined by elastic theory.

For a fully probabilistic modelling of timber mechanical properties, the

probabilistic model code (PMC) of Joint Committee for Structural Safety

(JCSS) is adopted and herein described.

4.1 Timber Specific Weight/Density

All properties of wood material depend on the density of wood cells. The

density does no vary strongly among the different wood species, but it is

sensitive to temperature and relative humidity. The classification of both

[10, 14] are based on the bending strength and this classification assigns to

each class its density together with the other parameters. The values listed

in [10, 14] refer to a temperature of 20± 2◦ humidity of 65± 5%.

However, the variation of the density inside an element is very small.

In addition, the production process is strictly controlled, so that there isn’t

any variation of the geometrical dimensions. Therefore, the variation of

the self weight of the element depends only on the variation of the specific

weight.

The PMC [24] considers the timber specific weight Normal distributed with

a small c.o.v. (10%) for both solid and glulam elements.

For the assessed structure, the parameters of the Normal distribution of

timber specific weight γ for purlins and beams are listed in table 4.1 and

the CDF and pdf of Normal distribution are reported in Eqs. 4.1 and 4.2.
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4.1 Timber Specific Weight/Density

Timber class μγ σγ c.o.v. γk

Solid Timber C24 4.2 0.42 0.10 3.52

Glulam Timber GL24c 4.0 0.40 0.10 3.34

Table 4.1: Parameters of the Normal distributions of the specific weight for the

used timber class.

fγ(γ) =
1

σγ
√
2π

exp

⎡
⎣−1

2

(
γ − μγ
σγ

)2
⎤
⎦ . (4.1)

Fγ(γ) = Φ

(
γ − μγ
σγ

)
. (4.2)

In Figure 4.1 the pdf and cdf of Eqs. 4.1 and 4.2 are plotted.

Figure 4.1: Plot of the p.d.f. and CDF of the specific weight γ.
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In Eq. 4.2 the quantity Φ is defined as the integral of the Standard

Normal Distribution (Eq. 4.3)respect to the standard variable u = γ−μγ

σγ

for which there is no closed-form solution but only a numerical solution.
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Φ (u) =

∫ u

−∞
1

σP
√
2π

exp

[
−1

2
u2
]
du. (4.3)

4.2 Bending strength probability distribution and

Isaksson Model

Despite the dishomogeneity of timber material, current code and engineer-

ing design methods consider timber as an homogeneous material in order to

apply simplified design methods. In reality, due to the presence of defects,

timber strength is not constant inside an element but depends both on the

size (length) and on the load condition.

Generally, timber consists of single and/or clusters of defects (weak zones)

distributed throughout zone of free-defect wood (clear wood). Therefore,

it is commonly assumed that the strength along an element (inside the

clear wood) is constant except within the section in which a defect occurs

[27, 30, 41].

Due to the variability of the strength along the element (see figure 4.2) and

the uncertainty about the distribution of the weak zones, strength of the

weak zones is here described by stochastic variables. The distances between

weak zones can be modeled as exponential distributed [24] or Gamma dis-

tributed [27].

By assuming the weak zones as Poisson distributed, the realization zij of

the position of the weak zone j inside the element i occur according to the

exponential distribution with mean value of 1/λ. The JCSS [24] gives the
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4.2 Bending strength probability distribution and Isaksson Model

value of 1/λ = 0.48m only for Norway spruce. In [41], Isaksson estimates

the length of the weak zones in about 0.15m for both Norway spruce and

Radiata Pine.

Figure 4.2: Variability of strength along a timber element.
f(z)

z

Here, a discretized spatial model is used. Referring to data reported in

[27, 41], timber elements (beams and purlins) are here divided into sections

of 0.5m length and it is assumed that within each of these sections, one

weak zone is present. This corresponds to fix a deterministic occurrence of

weak zones.

The PMC of JCSS provides also a strength modification factor α for taking

into account the deterioration of the material mechanical property due to

duration of the load effects. The α coefficient depends on the exposure,

load duration classes, different service classes (s.c.) and on the expected

moisture content (m.c.) of the timber (s.c. 1, 2, 3 is associated with m.c.

< 12%, < 20%, > 20%). At this stage of assessment, duration of load is

neglected and therefore the α coefficient is set to unity for sc1 (short load
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duration).

Both purlins and beams of the assessed roof system are subjected mostly

to bending moments. Therefore, the Isaksson model of bending strength

can be used [24, 41]. The Isaksson model takes into account the variability

of the bending strength at different locations. The model is described in

the details in the section 4.2.1.

However, for the analysis of the considered roof system, it is required to

have a joint model of the timber strength properties at different locations

(sections) within a beam. This is not provided by the Isaksson model.

Therefore, a generalization of the model is proposed and described in section

4.6.

4.2.1 Isaksson Model of bending strength

The Isaksson model of bending strength is based on the previous model of

Riberholt (as reported in [41]) and supported by an extensive experimental

study. The main idea is to consider that timber is composed of weak zones

connected by segments of clear wood.

The main model assumption are here listed.

• Timber is composed of short weak zones connected by sections of

clear wood;

• Weak zones correspond to knots or clusters and they are randomly

distributed in space;

• Failure occurs only in the middle of the weak zones;
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4.2 Bending strength probability distribution and Isaksson Model

• Strengths of the weak zones are correlated random variable;

• The correlation between weak sections is independent from the dis-

tance between the sections within the same element.

The bending strength of timber elements is modeled as a r.v. with lognor-

mal distribution, then the variability within and between members is mod-

eled according to Eq.4.4. Figure 4.3 shows the path of bending strength

along a timber element.

Ln
(
fbij

)
= μLn(fb) +�i + χij. (4.4)

Figure 4.3: Lengthwise variation of bending strength for Isaksson model (PMC-

JCSS 2006).

ϖi

χil
ln(Rij)

longitudinal direction of the purlin

ln(bending strength)
μlnR  mean of 
the population mean of the 

element strength

section strength

μln(R)

The quantities in figure 4.3 and Eq.4.4 are here defined:

• μLn(fb) is the mean value of the logarithmic distribution of the strength

of all sections in all components;

• �i is the difference between the logarithm of the mean strength

of the sections within a component i and μLn(fb) ; �i is Normal
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distributed with mean value equal to zero and standard deviation

σ�i =
√
0.4 · σLn(fb);

• χij is the difference between the strength weak section j in the mem-

ber i and the value μLn(fb)+�i ; χij is Normal distributed with mean

value equal to zero and standard deviation σ�i =
√
0.6 · σLn(fb);

• �i and χij are statistically independent.

According to Eq.4.4, the bending strength fb,ij of a particular section j

within the component i is lognormal distributed with a standard deviation

according to Eq.4.5.

σ2Ln(fb) = σ2� + σ2χ. (4.5)

In Eq. 4.5, σ� is the standard deviation between members, σχ is the

standard deviation between sections within a member and σLn(fb) is the

standard deviation of the whole sample of weak sections and members.

From this model, it follows that the logarithm of bending strengths Ln (fb,ij)

of the cross sections j = 1, · · · , nj within a component i are correlated Nor-

mal random variables with correlation coefficient according to Eq. 4.6.

ρLn(fb) =
σ2fb,i

σ2fb,i + σ2fb,j
=

σf
�2

i

σ�2 + σχ2

. (4.6)

For the timber class used in the analysis the parameters of the lognormal

distributions are listed in table 4.2.
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4.3 Strength perpendicular to the grain ft90 and fc90 : probability
distribution

Timber class μfb μLn(fb)
σLn(fb)

c.o.v. fb,k

Solid Timber C24 36.97 3.58 0.246 0.25 24

Glulam Timber GL24c 31.00 3.42 0.149 0.15 24

Table 4.2: Parameters of the LogNormal distributions of the bending strength

for the used timber class.

4.3 Strength perpendicular to the grain ft90 and

fc90 : probability distribution

Tensile stress perpendicular to the grain is a commonly a severe stress con-

dition for glulam cambered members. Indeed, the fracture perpendicular

to the grain is a brittle mechanism and the strength in direction perpendic-

ular to the grain is strongly dependent on the size of the element (volume

effect) and also on the orientation and size of the annual growth rings.

Due to the brittle nature of this fracture mechanism the PMC of JCSS

indicates that an extreme value distribution of minima is a suitable prob-

abilistic distribution for the tensile strength in direction perpendicular to

the grain. Therefore the Weibull distribution into two parameters is here

used. In Eqs. 4.7 and 4.8 the Weibull CDF and pdf are reported. The

distribution defined in Eqs. 4.7 and 4.8 is plotted in figure 4.4 for timber

GL24c.

Fft90 (st) = exp

[
−
(
ft90
as

)k
]
for ft90 ≥ 0. (4.7)

fft90 (ft90) =
k

as

(
ft90
as

)k−1

exp

[
−
(
ft90
as

)k
]
for ft90 ≥ 0. (4.8)
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The expressions in Eqs. 4.7 and 4.8 are defined only for positive pa-

rameters as and k. For glulam GL24c the parameters are as = 0.961 and

k = 4.542.

Figure 4.4: Weibull distribution of the tension strength perpendicular to the grain

for timber GL24c.
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The fracture for compression perpendicular to the grain occur with big

plastic displacements and the wood cells pressed until the cracking of the

fibers inside the rings. The stress-strain relationship has in this case a

shorter linear elastic range and a wider plastic range.

The PMC suggests the use of a Normal distribution for the compression

strength perpendicular to the grain. In Eqs. 4.9 and 4.10 the Normal CDF

and pdf defined for timber GL24c are reported and then plotted in figure4.5.

Ffc90 (fc90) = Φ

(
fc90 − μfc90

σfc90

)
. (4.9)
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4.4 Compression fc0 and tensile stress ft0 strength in the
direction of the grain: probability distribution

ffc90 (fc90) =
1

fc90
√
2π

exp

⎡
⎣−1

2

(
fc90 − μfc90

σfc90

)2
⎤
⎦ . (4.10)

Figure 4.5: Compression strength perpendicular to the grain Normal probability

distribution.
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4.4 Compression fc0 and tensile stress ft0 strength

in the direction of the grain: probability dis-

tribution

The behavior of timber in traction and compression is different. In tensile

stress condition, timber shows a stress-strain behavior that is linear elastic

until the limit condition. In compression stress condition, timber shows a

linear elastic behavior with a small plasticity and a softening branch after

the elastic limit.

The PMC suggests to use a lognormal distribution for tensile strength and

a Normal distribution for the strength in compression. In Eqs. 4.11, 4.12

and Eqs. 4.13, 4.14 respectively, the CDF and pdf of the lognormal distri-
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bution of tensile strength parallel to the grain and the Normal distribution

of compression strength parallel to the grain are reported. The path of the

two strength distributions are shown in figures 4.6 and 4.7

Fft0 (ft0) = Φ

(
Lnft0 − μLnft0

σLnft0

)
. (4.11)

fft0 (ft0) =
1

ft0

1

σLnft0
√
2π

exp

⎡
⎣−1

2

(
Ln (ft0)− μft0

σLnft0

)2
⎤
⎦ . (4.12)

Ffc0 (fc0) = Φ

(
fc0 − μfc0
σfc0

)
. (4.13)

ffc0 (fc0) =
1

σfc0
√
2π

exp

⎡
⎣−1

2

(
fc0 − μfc0
σfc0

)2
⎤
⎦ . (4.14)

4.5 Tangential Strength: probability distribution

Due to the anisotropy of wood material, the behavior of timber under shear

load depends on the orientation of the fibers inside the section. Indeed,

when the action is applyed in the direction parallel to the grain, a slope of

fibers is also possible, differently from the case of shear acting in direction

orthogonal to the grain. The shear strength depends positively on density

of fibers and negatively on moisture content and temperature.

According to PMC, a lognormal distribution is chosen to model the vari-

ability of the shear strength. The cdf and pdf are reported is Eqs. 4.15 and

4.16 respectively. In figure 4.8 the pdf and cdf of the lognormal distribution
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Figure 4.6: Tension strength parallel to the grain lognormal probability distribu-

tion.

0 10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

strenght parallel to the grain f
t0

 [N/mm2] 

pd
f f

(f
t0

)

0 10 20 30 40 50 60 70 80
0

0.5

1

strenght parallel to the grain f
t0

 [N/mm2] 

C
D

F
 F

(f
t0

)

of the shear strength for timber GL24c is plotted.

Ffv (fv) = Φ

(
fv − μfv
σfv

)
. (4.15)

ffv (fv) =
1

fv

1

σfv
√
2π

exp

⎡
⎣−1

2

(
Ln (fv)− μfv

σLnfv

)2
⎤
⎦ . (4.16)
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Figure 4.7: Compression strength parallel to the grain normal probability distri-

bution.
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Figure 4.8: Shear strength Lognormal probability distribution.
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4.6 Extension of the Isaksson model for a joint spatial variability
model of timber strength properties

4.6 Extension of the Isaksson model for a joint

spatial variability model of timber strength

properties

The approach of Isaksson model is suitable to be applied also to other

strength characteristics. However, the cross-correlation among different

material properties at different locations in the element is not described

by the Isaksson model. This motivates the extension of the model as pro-

posed in the following. Correlation among the material properties must be

taken into account. This correlation is mainly due to the fact that most

mechanical properties depend on the density of wood cells and therefore on

the specific weight. The PMC [24] provides correlation factors among the

material properties within one section, which are used in this study and

are shown in table 4.3. This correlation matrix applies to both solid and

glulam timber.

ΣXX γij fb,ij fv,ij ft0,ij ft90,ij fc90,ij

γij 1 0.6 0.6 0.6 0.4 0.8

fb,ij 0.6 1 0.6 0.6 0.4 0.6

fv,ij 0.6 0.4 1 0.6 0.6 0.4

ft0,ij 0.6 0.4 0.6 1 0.2 0.4

ft90,ij 0.4 0.4 0.6 0.2 1 0.4

fc90,ij 0.8 0.6 0.4 0.4 0.4 1

Table 4.3: JCSS Correlation Matrix.

The subscript ij indicates that the correlation matrix of Table 4.3 refers

to the property of the section j within the element i. Commonly, material

properties among different elements are uncorrelated, because each compo-
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nent is manufactured independently. On the contrary, material properties

among different sections within one component are correlated r.v. and the

correlation among them should be taken into account for a more realistic

model.

Here, a joint probabilistic model of multiple strength properties at varying

locations within one element is proposed. This model has two special cases:

• Multiple properties at the same location must have the correlation

coefficient matrix defined in table 4.3;

• Values of the same material property at different locations must have

a dependence that is described by the Isaksson model.

The model can therefore be seen as a generalization of both the Isaksson

model and the correlation model of the PMC.

Let Xaij and Xbik be two different material properties at locations j and

k in element i. Since material properties among different elements are un-

correlated, it is sufficient to consider only a single element i and therefore

the index i will be omitted in the following.

Let’s define for each Xaj and Xbk , for j = 1, · · · , nj and k = 1, · · · , nj, the
corresponding standard Normal random variables Uaj and Ubk . They are

related by the marginal transformations in Eqs. 4.17 and 4.18.

Xaj = F−1
Xa

[
Φ
(
Uaj

)]
. (4.17)

Xbk = F−1
Xb

[Φ (Ubk)] . (4.18)
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In Eqs. 4.17 and 4.18, F−1
Xa

and F−1
Xb

are the inverse cumulative distribu-

tion functions (CDF) of Xaj and Xbk and Φ is the standard Normal CDF.

Let’s define Uaj as the sum of two uncorrelated random variables, Λa and

Ψaj (Eq.4.19).

Uaj = Λa +Ψaj . (4.19)

Λa is Normal distributed with zero mean and variance σ2Λa
= 0.4. Ψaj

is Normal distributed with zero mean and variance σ2Ψa
= 0.6.

Since the two r.v. are uncorrelated, it follows that Uaj has zero mean and

variance σ2Λa
+ σ2Ψa

= 1. Similarly, for the property b the same law can be

defined (Eq.4.20) .

Ubj = Λb +Ψbj . (4.20)

To represent the correlation between the different material properties,

it is required that Λa and Λb are correlated with correlation coefficient rab.

Furthermore, Ψaj and Ψak are also correlated with rab when j = k; for

j �= k they are uncorrelated.

The value of rab must be selected to give a correlation coefficient between

the two material properties at the same location j, Xaj and Xbj , equal to

the one provided by correlation coefficient matrix of PMC, (see table 4.3).

Let ρab denote this target correlation coefficient.

The correlation coefficient between Uaj and Ubj is therefore given in Eq.4.21.
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rUajUbj
= COV

[
Uaj ,Ubj

]
= σ2Λrab + σ2Ψrab = rab. (4.21)

Since Uaj ,Ubj are related to Xaj , Xbk through the marginal transforma-

tions provided in Eqs.4.17 and 4.18, the relation between rUajUbj
and ρab

is described by the Nataf transformation, see (Der Kiureghian and Liu [5]).

Therefore, rab is obtained as in Eq. 4.22.

rab = rUajUbj
= cab · ρab. (4.22)

The coefficient cab in Eq.4.22 is the transformation coefficient of the

Nataf distribution, which depends on the marginal distributions of Xaj and

Xbj .

The joint distribution among Xaj and Xbk for any values of j = 1, · · · , nj
and k = 1, · · · , nj is at this stage fully defined. To verify that this model

reduces to the Isaksson model, when considering only one property, i.e.

when a = b, it is enough to notice that the marginal transformation of

Eqs. 4.17 and 4.18 for the case of the lognormal distribution is defined as

in Eq.4.23.

Xaj = exp
(
μLnXa +UajσLnXa

)
. (4.23)

In Eq. 4.23, μLnXa and σLnXa are the parameters of the lognormal dis-

tribution. The substitution of Eq. 4.19 in Eq. 4.23 provides Eq. 4.24.

Xaj = exp
(
μLnXa + ΛaσLnXa +ΨajσLnXa

)
. (4.24)
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This is identical to the Isaksson model of Eq.4.4, since μLnXa = μLnfb ,

ΛaσLnXa = �i and ΨajσLnXa = χij .

Finally in table 4.4 and 4.5 a short review of the timber material statis-

tics is given.

C24 r.v. Distribution μ σ c.o.v. valuek

Specific Weight [kN/m3] γij Normal 4.2 0.42 0.10 3.52

Bending Strength [N/mm2] fbij Lognormal 36.97 9.24 0.25 24

Tension parallel to

the grain [N/mm2] ft0ij Lognormal 23.6 7.08 0.30 14

Compression parallel to

the grain [N/mm2] fc0ij Normal 15.8 3.16 0.20 21

Table 4.4: Timber material statistics for C24.

GL24c r.v. Distribution μ σ c.o.v. valuek

Specific Weight [kN/m3] γij Normal 4.0 0.40 0.10 3.34

Bending Strength [N/mm2] fbij Lognormal 31.0 4.65 0.15 24

Shear Strength [N/mm2] fvij Lognormal 4.52 0.68 0.15 3.5

Tension perpendicular

to the grain [N/mm2] ft90ij 2-p Weibull 0.848 0.21 0.25 0.5

Compression perpendicular

to the grain [N/mm2] fc90ij Normal 3.177 0.412 0.10 2.5

Table 4.5: Timber material statistics for GL24c.

4.7 Systematic Weaknesses

In order to study the behavior of the three different structural configura-

tions for the secondary structure when also systematic errors are present,
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a probabilistic model for these errors needs to be defined.

Systematic errors are caused, or indirectly induced, by human errors or un-

foreseeable complex conditions. Therefore, systematic errors can be mod-

eled as random events related to their possible causes, then in relation to

the causes, systematic events can induce common failure in the form of

single points of failure or the progressive failure in a redundant system.

Due to their nature, no probabilistic models of such errors exist. There-

fore, in this dissertation a model will be proposed as purely hypothetical

with the aim only to compare the performance of the different structural

configurations. The event that systematic errors are present is denoted by

D.

It is here assumed that systematic errors D can occur as design errors,

manufacture error (wrong cross section, wrong strength grade) or execu-

tion errors (production, execution of holes in the joints, finger joints etc.),

leading to significant reductions in bending strength locally, e.g. at the fin-

ger joints. The occurrence of these weak sections is modeled by a Bernoulli

process with rate p = 0.30. The bending strength of the secondary element

at the weak sections, fb,D, is modeled by a lognormal distribution whose

mean value is reduced by 20% compared to the intact sections. The c.o.v.

of fb,D is identical to the one of the intact element.
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Chapter 5

Load Statistics

A full probabilistic assessment requires the definition of the statistics of

the loads acting on the structure. Several descriptions of the probability

distributions (p.d.f and CDF) to be used can be found in the literature.

Hereby, the probabilistic model of the loads is based on the Probabilistic

Model Code of the Joint Committee of Structural Safety [24].

The most severe load condition is given by the snow load, because it has the

highest variability. Self weight and permanent load have a very low vari-

ability. The probabilistic load of the self weight will be described together

with the timber strength characteristics because they all depend strongly

on the density of wood cells.
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5.1 Permanent Load Distribution

The definition of loads is based on the previous deterministic study of the

Timber Chair of TUM [7]. The permanent load P is given by the weight of

the roofing and in [7] it is quantified in 0.4kN/m2 as mean value. Accord-

ing to [24] the permanent load is assumed to be Normal Distributed with

mean value μP = 0.4kN/m2 and coefficient of variation (c.o.v.) equal to

0.1. The Normal distribution of mean value μP and standard deviation σP

is defined by the pdf in Eq. 5.1, the CDF in Eq. 5.2 and inverse in Eq. 5.3.

fP (p) =
1

σP
√
2π

exp

[
−1

2

(
p− μP
σP

)2
]
. (5.1)

FP (p) = Φ

(
p− μP
σP

)
. (5.2)

F−1
P (p) = Φ−1

(
p− μP
σP

)
. (5.3)

In figure 5.1 the p.d.f. and CDF of permanent load P are plotted.

5.2 Snow Load Distribution

Snowfalls occur during the winter season as sequence of events with a dura-

tion that changes with the climatic region and with the altitude (see figure

5.2 from [39]).
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5.2 Snow Load Distribution

Figure 5.1: Plot of the p.d.f. and CDF for permanent load P.
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Figure 5.2: Recordings of meteorological variables and ground snow cover from

November 2005 to March 2006 at the DWD met office station in Bad Reichenhall

(DE) (U. Strasser 2008).
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Therefore, the snow load Q varies with time and can be modeled as

stochastic process whose statistics will be defined in this section.

Let’s assume that snow events occur according to a Poisson Spike Process.

In addition the process is considered to be homogeneous (constant rate over

time), stationary ( same statistic over time whatever time shifting is given),

with independent increments and starting from zero.

The Poisson process is suitable to count a number of events occurring in

a certain interval of time T. If the set {tn} = {t0, tn,∞} is a positive se-

quence that defines the time occurrences and with t0 = 0, the counting

process N (t) can be defined as the process that at each time interval t as-

sociates the number of outcomes n(t). Under the hypothesis of stationarity

and independent increments the process N (t) is defined Poisson process.

In the Poisson process the occurrences have a Poisson distribution and the

probability of having n events in the time interval [0, T ] is given in Eq. 5.4.

P (N (t) = n) = e−λT (λT )n

n!
. (5.4)

In Eq. 5.4 the parameter λ, that represents the mean arrival rate, is al-

ways positive and the distribution has both mean value μ (t) and standard

deviation σ (t) equal to λt.

At each occurrence ti, counted by the counter process N (t), can be assigned

an independent realization of the random variable Qi that is representative

of the nature of the event. This realization Qi is called jump. The jumps of

the process are assumed here to have instantaneous duration so that each

event occur as a spike.
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5.2 Snow Load Distribution

Figure 5.3 shows one realization of the snow load process, where ti are the

times of occurrence of the snow events and Qmi is the snow load (spike) at

each event.

The assumed mean occurrence rate per year for north Europe is λ = 1.175

Figure 5.3: Spike train for the snow load on the ground.
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[4] over a time interval of 50 years (life time). The maximum snow load in

each event Qm (spike) is modeled by a Gumbel distribution [33] with mean

0.384kN/m2 and c.o.v. = 0.4. With this model, the characteristic value

of the annual maximum snow load equals 0.8kN/m2, which corresponds to

snow zone 1 in Germany at an altitude of about 480m above sea level (see

[8] for Munich area).

With the model of snow load given above, it is necessary to compute the

distribution of the annual maximum snow load Qm, as described in the

following.

Let n be the number of snow events in a year and let Qn be the maxi-

mum snow load in the n snow events. The cumulative probability function

(CDF) of Qn is obtained as a function of the CDF of the maximum snow
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load in each event Qm as in Eq. 5.5, where a and b are the parameters of

the Gumbel distribution of Qi.

FQn (q|n) = [FQm (q)]n =

{
exp

[
−exp

(
−q − bq

aq

)]}n

. (5.5)

The number of snow events per year is a random variable with probabil-

ity mass function (PMF) pN (n). The CDF of the annual maximum snow

load is therefore given in Eq. 5.6.

FQmax (q) =
∞∑
n=0

[FQm (q|n)]n · pN (n) . (5.6)

In Eq. 5.6 pN (n) is the Poisson PMF with parameter λ·1yr. Combining

Eq. 5.5 with Eq. 5.6, the unconditioned CDF of the annual maximum snow

load is written in Eq. 5.7, where the parameters of the Gumbel distribution

are aq = 0.1197 and bq = 0.3147.

FQmax (q) =
∞∑
n=0

{
exp

[
−exp

(
−q − bq

aq

)]}n

·

·(λ · 1yr)n
n!

· exp (−λ · 1yr) . (5.7)

The expression of the CDF of the snow load on the ground in Eq. 5.7

is not very suitable for the generation of sample needed for the analysis

of the system, therefore the expression must be manipulated. Considering
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that the exponential function is defined as ex =
∑∞

n=0
xn

n! , the expression

Eq. 5.7 assumes the form in Eq. 5.2.

FQmax (q) = exp (−λ · 1yr)
∞∑
n=0

{
exp

[
−exp

(
− q−bq

aq

)]
· (λ · 1yr)

}n
n!

=

= exp (−λ · 1yr) exp
{
λ · 1yr

[
exp

(
−exp

(
−q − bq

aq

))]}
=

= exp {λ · 1yr [exp (−exp (−fracq − bqaq))]− λ · 1yr} =

= exp

{
λ · 1yr

[
exp

(
−exp

(
−q − bq

aq

))
− 1

]}
.

(5.8)

From the CDF of Eq.5.2, it can be defined both the p.d.f. of the snow

load on the ground as the derivative of the CDF (Eq.5.9) and the inverse

F−1 (Qmax) (Eq.5.10).

fQmax (q) =
λ · 1yr
aq

exp

{
−exp

(
bq − q

aq

)
+ λ · 1yr [−1+

+exp

(
−exp

(
bq − q

aq

))]
+
bq − q

aq

}
. (5.9)

F−1
Qmax

(u) = bq − aq · Ln
[
−Ln

(
Ln (u)

λ · 1yr + 1

)]
. (5.10)

In Eq. 5.10 the variable u is a r.v. uniform distributed between zero

and one (u ∼ U (0, 1)). In figure 5.4 the p.d.f. and CDF of snow load on
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the ground Q are plotted.

Figure 5.4: Plot of the p.d.f. and CDF for snow load on the ground Q.
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The path of the CDF of the snow load on the ground in figure 5.4 shows

that the effect of passing from the conditional probability in Eq. 5.5 to the

unconditional probability in Eq. 5.6 causes the shifting of the values of the

function equal to the quantity FQmax(q = 0) = 0.38.

5.3 Shape Factor Distribution

The cumulative distribution given in Eq. 5.2 defines only the snow load on

the ground. Due to environmental and geometrical conditions, snow is not

spread in uniform way over the roof, but it can accumulate on one side and

on localized areas of the pitch. The mass of the drifted snow depends on

several factors such as wind velocity and duration of high wind velocity, size

of snow grain, snow surface composition, topographic relief and exposure,
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temperature and humidity.

According to both [8, 14] this effect of local accumulation of the snow

must be taken into account through a shape factor that depends on the

roof geometry. This factor is defined as a deterministic quantity in the

current codes, even if an extensive study was carried out in order to give

an appropriate estimation of this factor (see [33]).

In the report of Sanpaolesi [33], data from ten climate regions in Europe

were collected and processed according to different statistical approaches

to define both combination factors and the snow load shape factor for the

Eurocode.

The shape factor ranges values between 0.8 and 1.6 or even higher values

according to contour conditions. The data collected showed that the drift

due to wind has the same effect in all climatic regions and that the resulting

shape coefficient for windy sides are much smaller than the lee side. In

addition, also the standard deviation is bigger on windward side.

According to the shape of the roof (for double pitched roofs), the roof shape

coefficients were divided in four categories of pitch angle [33]: 0− 7◦; 8 −
22◦; 23− 37◦; 38− 52◦.

Figures 5.6 and 5.7 show the mean and standard deviation for the shape

coefficient on windy side (windward side) and sheltered side (lee side) of

the reference roof geometry of figure 5.5 as reported in [33].

In this dissertation the shape factor C is assumed as Gumbel distributed

with parameters computed according to a pitch angle of 10◦. For practical

reasons, the mean value of the distribution is then taken as mean between

the value for lee side and windward side, resulting in a mean value of 0.78,
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Figure 5.5: Windward and lee side on a double pitched roof.

Figure 5.6: Mean and standard deviation of the shape factor for lee side.
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Figure 5.7: Mean and standard deviation of the shape factor for windward side.

while the standard deviation of windward side is kept. This assumption

can be quite severe, but it is motivated by the need of modeling also the

accumulation of snow on the roof during the winter season in Germany,

when snowfalls are quite near.

In Eqs. 5.11, 5.12 and 5.13 respectively, the expression of Gumbel CDF,

pdf and inverse cumulative distribution for the shape factor C are given.

The pdf and CDF are then plotted in Figure . The parameters of the CDF

are aC = 0.226 and bC = 0.649.

FC (c) = exp

[
−exp

(
−c− bC

aC

)]
. (5.11)

fC (c) =
1

aC
exp

[
−c− bC

aC
− exp

(
−c− bC

aC

)]
. (5.12)

F−1
C (c) = bC − acLn [−Ln (u)] . (5.13)
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Figure 5.8: Plot of the pdf and CDF of Shape Factor C.
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Finally in Table 5.1 a short review of the load statistics is given.

Load r.v. distribution μ c.o.v

Permanent load
[
kN/m2

]
P Normal 0.40 0.10

Snow load
[
kN/m2

]
Q Gumbel 0.384 0.40

Occurrence [1/yr] T Poisson 0.175 0.92

Shape Factor C Gumbel 0.78 0.35

Table 5.1: Parameters of the load distributions used.
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Chapter 6

Application

For the case study described in section 3.1, computations are performed.

Hereby, the solution of the probability integral is presented for a simpli-

fied case. For the primary and secondary system, Monte Carlo Simulations

(MCS) with 105 samples are computed. MCS enable the evaluation of the

full distribution of the damaged area, fAF |F as required for the risk and ro-

bustness assessment. As an independent check and to assess the sensitivity

of the results on the probabilistic model, First-Order Reliability Method

(FORM) is used to compute the probability of system failure, Pr (F ).
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Application

6.1 Purlin’s analysis: probability integral for a

simplified case

It is useful to compute the solution of the reliability problem computing

the reliability integral for a simplified case.

Let’s consider a single span simply supported purlin, loaded by snow load

Q, permanent load P and self weight Wp and subject to biaxial bending

condition as described in section 3.1. Let’s also consider the shape factor

equal to one and the self weight and permanent load as constant and equal

to their mean value, so that their sum is equal to 0.5kN/m. The statistics

of load and bending resistance are fully defined in the previous chapters.

Let’s assume R and S statistically independent.

The limit state function for the simply supported purlin can be defined

directly as vectorial composition of the bending moments along the two

main axes. It is a function of the strength R and of the loads S and it is

described by Eq. 6.1.

g (R,S) =
√
M2

Rx +M2
Rx −

√
M2

Sx +M2
Sx. (6.1)

In Eq. 6.1, MRx and MRy are the bending strengths and MSx and MSy

are the bending demands. At the midspan location, bending strengths and

demands are defined below.

MSx =
l2p
8
· [Q+Wp + P ] cos2α. (6.2)
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MSy =
l2p
8
· [Q+Wp + P ] cosα sinα. (6.3)

MRx =
1

6
· bh2 · R. (6.4)

MRy =
1

6
· hb2 ·R. (6.5)

where b, h are the dimension of the cross section (assumed determinis-

tic), α = 10 is the inclination of the roof and lp is the length of the purlin.

It is convenient to arrange the constants of the equations above as follows.

Cload =

√√√√( l2p
8
cos2α

)2

+

(
l2p
8
cosα sinα

)2

= 4.43. (6.6)

Cres =

√(
1

6
· bh2

)2

+

(
1

6
· hb2

)2

= 0.745. (6.7)

The probability of bending failure for the midspan section is therefore

given by Eq.6.8.

Pr (F ) = Pr (G < 0) = Pr (MR −MS < 0) =

= Pr

(
Q > R

Cres

Cload
−Wp − P

)
=

= 1− Pr

(
R
Cres

Cload
−Wp − P

)
. (6.8)

From Eq. 6.8, it follows that:

Pr (F |r) = Pr (Q > R = r) = 1− FQ

(
r
Cres

Cload
− w − p

)
. (6.9)
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Eq. 6.9 corresponds also to Eq. 6.10 written respect to the bending mo-

ments.

Pr (F |MR) = Pr (MS > MR = mr) =

= 1− FMS

(
ms

Cload
− w − p

)
. (6.10)

Let’s compute the distribution of bending moments. Due to the fact

that bending strength and demand are given by multiplying R and S by

constants, the distribution of the bending strengthMR and demandMS are

the same of R and S. Therefore, MR has lognormal distribution and MS

has Gumbel-Poisson distribution. It is needed to compute the expectation

and variance of the distributions of MR and MS as follows.

E [MR] = Cres · E [R] = 23.12kNm. (6.11)

E
[
M2

R

]
= C2

res · E
[
R2
]
= 12.014 (kNm)2 . (6.12)

From the values in Eqs. 6.11 and 6.12, the parameters of the lognormal

distribution are computed below.

σLnMR
= Ln

[
1 +

(
σMR

μMR

)2
]
= 0.022kNm. (6.13)

μLnMR
= Ln (μMR

)− 0.5 · σ2LnMR
= 3.14. (6.14)
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6.1 Purlin’s analysis: probability integral for a simplified case

In similar way we compute the parameters of the bending demand.

E [MS ] = Cload · E [Q+Wp + P ] = 3.915kNm. (6.15)

E
[
M2

S

]
= C2

load · E
[
Q2
]
= 0.1045 (kNm)2 . (6.16)

From the mean and standard deviation of MS , the parameters of the

Gumbel-Poisson distribution are computed (a = 0.24 and b = 1.68). The

probability density function of MR and MS are shown in figure 6.1.

Figure 6.1: Probability density function of MR and MS .
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According to the chain rule and the property of the convolution inte-

gral, the probability of Eq. 6.9 is given by the integral in Eq. 6.17, where

s = ms
Cload

− w − p.
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Pr (F ) =

∫ +∞

0

{
1− Exp

[
λ

[
Exp

(
−Exp

(
−s− b

a

))]]}

·
{

1

rσLnMR

√
2π

Exp

[
−1

2

(
Ln (r)− μLnMR

σLnMR

)2
]}

. (6.17)

By approximating the integral with the trapezoidal rule, it is easy to

compute the probability integral. The Probability of failure computed is

reported in table 6.1 together with the corresponding results from Monte

carlo sampling. The trapezoidal rule is a too crude approximation of the

integral and respect to Monte Carlo, it leads to overestimate the probabil-

ity of failure.

Computation Pr (F )1yr Pr (F )50yr

Integration 3.9 10−6 1.9 10−4

MCS 2.6 10−6 1.3 10−4

Table 6.1: Probability of Failure for the middle span of a simply supported

purlin.

6.2 Purlin’s analysis (FORM, MCS)

6.2.1 First Order Reliability Method formulation for the

purlin

The reliability index β and the associated probability of failure are com-

puted by implementing the HLRF algorithm for solving the FORM analysis
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6.2 Purlin’s analysis (FORM, MCS)

of the purlins series system. As reported in section 2.5, it is necessary to

define first the statistics of the variables of the problem and then to com-

pute the transformation function into the Standard Normal space for each

of them. The random variables for the formulation of the FORM analysis

for the purlins are the bending resistance Rb, the snow load on the ground

Q, the roof shape factor C, the self weight of the purlins WP and the per-

manent load P . To each of them corresponds a standard normal variable.

The transformation function for the snow load on the ground is given in

Eq. 6.18.

Q−1 (uq) =

{
0, if uq < −0.499;

bq − aqLn
[
−Ln

(
1 +

Ln(Φ(uq))
λ

)]
, else.

(6.18)

In Eq. 6.18, the value of uq = −0.499 corresponds to the value of the

standard normal variable that has the same probability of the null value of

q on the CDF of the snow load on the ground.

The transformation function for the roof shape factor is given in Eq. 6.19.

C−1 (uc) = bc − ac · Ln [Ln (Φ (uc))] . (6.19)

The transformation function for the self weight is given in Eq. 6.20.

W−1
P (uwp) = μwp − σwp · uwp. (6.20)

The transformation function for the permanent load is given in Eq. 6.21.

P−1 (up) = μp − σp · up. (6.21)
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The transformation function for the bending resistance is given in Eq. 6.22.

R−1
b (urb) = Exp [μLnRb

− σLnRb
· uLnRb

] . (6.22)

Let’s write the equation of the limit state function in the standard

normal space, given the vector of the standard normal variables U =

{uq, uc, uwp, up, urb} corresponding to the variables in the ordinary space.

The limit state function G for the purlins in biaxial bending in the standard

normal space is given in Eq. 6.23, where the coefficients Cload,x, Cload,y,

Cres,x and Cres,y are constants depending respectively on the static config-

uration of the purlin and on the geometry of the cross section.

G (U) = 1−
Cload,x

[
Q−1 (uq) · C−1 (uc) +W−1

P (ug) + P−1 (up)
]

Cres,x ·R−1 (urb)

−
Cload,y

[
Q−1 (uq) · C−1 (uc) +W−1

P (ug) + P−1 (up)
]

Cres,y ·R−1 (urb)
.

(6.23)

Each purlin is modeled as series system of discrete sections, each at

distance of 50cm. This means also that each purlin is considered as a

series system of equicorrelated elements/components, each of them with its

reliability index β and a correlation factor, respect to the other sections,

that is constant because the system is loaded by the same external load.

As reported in section 2.5.2, the computation of the components of the

gradient is needed. For the case study of the purlins, the components of
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the gradient of the limit state function G are listed below in Eqs. 6.24,

6.25, 6.26, 6.27, 6.28.

∂G

∂uq
=

(
Cload,x

Cres,x
+
Cload,y

Cres,y

)
· C−1 (uc)

Exp [μLnRb
+ σLnRb

]

·
aq
[

1√
2π
Exp

(
−1

2u
2
q

)]
λΦ (uq) · Ln

(
1 +

Ln(Φ(uq))
λ

) . (6.24)

∂G

∂uc
=

(
Cload,x

Cres,x
+
Cload,y

Cres,y

)
· Q−1 (uq)

Exp [μLnRb
+ σLnRb

]

·
ac
[

1√
2π
Exp

(
−1

2u
2
c

)]
Φ (uc) · Ln (Φ (uc))

. (6.25)

∂G

∂ug
=

(
Cload,x

Cres,x
+
Cload,y

Cres,y

)
· −σg
Exp [μLnRb

+ σLnRb
]
. (6.26)

∂G

∂up
=

(
Cload,x

Cres,x
+
Cload,y

Cres,y

)
· −σp
Exp [μLnRb

+ σLnRb
]
. (6.27)

∂G

∂ur
=

(
Cload,x

Cres,x
+
Cload,y

Cres,y

)
· σLnRb

Exp [μLnRb
+ σLnRb

· urb ]

·
{
Q−1 (uq) · C−1 (uc) +W−1

P (ug) + P−1 (up)
}
. (6.28)
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Results of FORM analysis for the purlins

Table 6.2 summarizes the probability of failure of the critical sections for

the three structural configurations, which correspond to the sections that

are checked in the deterministic design (highest bending moment section).

These calculations assume that there are no systematic errors in the purlins.

The results confirm that the design reliability is identical for the three con-

figurations, which is expected since they all were designed to have the same

utilization factor. It is furthermore noted that the reliability index is lower

than the target value given in Eurocode 0, which is β = 4.7 for a one-year

reference period. The FORM sensitivity factors presented in table 6.3 show

that the uncertainly in the snow load Q, the shape factor C and the bend-

ing strength R determines the reliability. It is worth to remark that the

shape factor C at design point x∗ assumes values bigger than one due to

the assumed Gumbel distribution to take into account the accumulation of

snow. The difference between the calculated reliability indexes and the tar-

get value of Eurocode 0 might be explained by the significant uncertainty

in the shape factor C.

Configuration Pr
(
Fj(1yr) | D

)
βj

Simply supported 7.4 10−6 4.33

Continuous 7.9 10−6 4.32

Lap-jointed 7.0 10−6 4.34

Table 6.2: Probability of failure of a critical section j, Pr
(
Fj(1yr) | D

)
and corresponding reliability index βj .
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Configuration Q C WP P Rb

Simply supported

α 0.604 0.597 0.0080 0.037 0.526

x∗ 1.003 1.77 0.083 0.40 20.12

Continuous

α 0.604 0.597 0.0078 0.037 0.526

x∗ 0.99 1.76 0.084 0.407 20.16

Lap-jointed

α 0.604 0.597 0.0077 0.037 0.526

x∗ 1.05 1.77 0.084 0.406 20.10

Table 6.3: Probability of failure of a critical section j, Pr
(
Fj(1yr) | D

)
and corresponding design point x∗.

Table 6.4 summarizes the probability of failure in 1 year and in 50 years

for one purlin with multiple critical sections (one every 50cm), given that

there are no systematic errors Pr
(
F | D

)
and for the three purlins config-

urations. The system of critical sections is modeled as series system with

correlation factor ρ = 0.73.

Configuration Pr
(
Fj(1yr) | D

)
Pr
(
Fj(1yr) | D

)
Simply supported 1.95 10−5 9.7 10−4

Continuous 3.4 10−5 1.7 10−3

Lap-jointed 3.4 10−5 1.7 10−3

Table 6.4: Probability of failure of one purlin.

Table 6.5 summarizes the probability of system failure in 1 year and

in 50 years given that there are no systematic errors Pr
(
F | D

)
for the

three purlins configurations. The probability of failure is computed with

the Kang-Song integral [25]. The reliability of the three secondary systems
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is not identical, due to the varying numbers of critical sections. The simply

supported configuration has the largest number of critical sections, since

it contains more purlins and each purlin has one critical section (in the

mid-span). The two static indeterminate configurations have only two crit-

ical sections in each line (the outer spans support section). Furthermore,

lap-jointed configuration has less purlins than the continuous one, due to

the larger possible distance between the purlins. The table 6.5 lists also

the Ditlevsen bounds for the probability of failure (see Appendix B).

Configuration Pr
(
Fj(1yr) | D

)
Ditlevsen bounds 1yr

Simply supported 3.6 10−4 8.0 10−5 ÷ 1.6 10−3

Continuous 2.9 10−4 1.5 10−4 ÷ 3.1 10−3

Lap-jointed 2.6 10−4 1.4 10−4 ÷ 2.8 10−3

Configuration Pr
(
Fj(50yr) | D

)
Ditlevsen bounds 50yr

Simply supported 1.81 10−2 4.0 10−3 ÷ 7.7 10−2

Continuous 1.45 10−2 7.7 10−3 ÷ 14.5 10−2

Lap-jointed 1.32 10−2 7.0 10−3 ÷ 13.1 10−2

Table 6.5: Probability of failure of secondary system, Pr
(
Fj(1yr) | D

)
and

corresponding Ditlevsen bounds.

6.2.2 Monte Carlo sampling for the analysis of the purlins

Monte Carlo Simulations (MCS) with 105 samples are computed. The

software used to compute the simulation is implemented in Matlab and it

enables the evaluation not only of the probability of failure but also to ob-

tain numerical data to compute the full distribution of the damaged area,

fAF |F as required for the robustness assessment.
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For the system of purlins according to the three static configurations, com-

putations are made both in absence and in presence of systematic weak-

nesses. This comparison will enable to evaluate the sensitivity of the static

configuration to the presence of systematic weaknesses.

The limit state function defined in Eq. 3.4 for purlins in biaxial bending

with Km = 0.7 is valid only for rectangular sections. It is worth to compare

how this factor changes the probability of failure for the system of purlins.

MCS Results for the purlin system without systematic weak-

nesses

Table 6.6 lists the probability of biaxial bending failure, with the related

statistics and confidence bounds, for the purlin system with Km = 1, while

table 6.7 lists the results for km = 0.7. As expected, the probability of

failure in the case of km = 0.7 is lower, while it seems quite surprising

that the probability of failure decreases of 50% only for simply supported

and for the lap-jointed configurations. The probability of failure for the

continuous configuration does not change with km because the effect of the

high bending moment on the support is dominant.

Configuration Pr
(
Fj(50yr) | D

)
σ 95% confidence bounds

Simply supported 4.63 10−2 6.8 10−4 4.5 10−2 ÷ 4.76 10−2

Continuous 1.84 10−2 4.3 10−4 1.75 10−2 ÷ 1.92 10−2

Lap-jointed 1.46 10−2 3.8 10−4 1.39 10−2 ÷ 1.54 10−2

Table 6.6: Probability of biaxial bending failure of secondary system for

km = 1.

Despite the three configurations are all designed to achieve the same reli-
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Configuration Pr
(
Fj(50yr) | D

)
σ 95% confidence bounds

Simply supported 2.4 10−2 4.9 10−4 2.3 10−2 ÷ 2.5 10−2

Continuous 1.98 10−2 4.45 10−4 1.9 10−2 ÷ 2.1 10−2

Lap-jointed 0.7 10−2 2.6 10−4 0.65 10−2 ÷ 0.75 10−2

Table 6.7: Probability of biaxial bending failure of secondary system for

km = 0.7.

ability at the most critical section, the system reliability of the three config-

urations is different because of the varying number of elements/components

in the series system model.

To assess the robustness criterion and compute the risk, it is needed to

organize the data from the MCS with respect to the area failed. Figure 6.2

shows the trend of mean and standard deviation of the area failed for the

case km = 1 and figure 6.3 the trend of mean and standard deviation of the

area failed for the case km = 0.7. The failure rate is approximately constant

over the considered service life period (50yr), because the degradation of

the timber material has not been considered. In addition, the lap-jointed

configuration shows a lower standard deviation for both cases.

The expected value of area failed AF conditioned to the absence of sys-

tematic weaknesses D is listed in table 6.8.

Configuration E
[
AF | F,D

]
Simply supported 17.22

Continuous 24.24

Lap-jointed 32.34

Table 6.8: E
[
AF | F,D

]
of secondary system for km = 1.
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Figure 6.2: Mean and Standard Deviation respect to time for km = 1.
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Figure 6.3: Mean and Standard Deviation respect to time for km = 0.7.
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Figures 6.4 and 6.5 show the histograms of the area failed AF given the

events F,D for the case km = 1 and km = 0.7 respectively. In the case of

km = 1 a higher occurrence of small failures is possible. In addition, for the

system of continuous purlins is possible to reach bigger values of area failed

upon a failure than the simply supported and lap-jointed configurations.

Figure 6.4: Histogram of AF given
(
F,D

)
for km = 1.
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Figure 6.5: Histogram of AF given
(
F,D

)
for km = 0.7.
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Figures 6.6 and 6.7 show the cumulative density function of the area

failed AF conditional on the system having failed F and on the absence of

systematic errors D for the case km = 1 and km = 0.7 respectively. For

the case km = 1 the CDF for the three purlins configurations has a more

near trend and shows a better behavior (more stiff trend). This is because

a higher number of failure with small area failed correspond to the case

km = 1.

Figure 6.6: CDF of AF given
(
F,D

)
for km = 1.
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From figures 6.6 and 6.7, it can be observed that a failure in the struc-

tural system with simply supported purlins results in smaller damages than

the other configurations. In the simply supported configuration, a smaller

number of purlins (and consequently a smaller proportion of the roof area)

will fail. In the statically indeterminate configurations, progressive collapse

mechanisms lead to a larger number of purlin failed once the first section

has failed. Between the static indeterminate configurations, the continuous
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Figure 6.7: CDF of AF given
(
F,D

)
for km = 0.7.
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purlin behaves better than the lap-jointed purlin. Indeed, in the lap-jointed

purlin configuration a bigger number of elements fail at the same time.

MCS Results for the purlin system with systematic weaknesses

As described in section 4.7, systematic weaknesses are introduced in the

secondary element system in order to assess which of the three purlin con-

figurations has the best behavior with respect to robustness. Table 6.9 lists

the probability of system failure given that there is a systematic weaken-

ing of the system, Pr(F | D), for the three structural configurations. As

expected, the higher is the process rate p, the bigger is the increase in the

probability of system failure, compared to the case of no systematic weak-

ening.

Figures 6.8, 6.9 and 6.10 show the histogram of area failed AF condi-
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Configuration Pr (Fj(50yr) | D) σ 95% confidence bounds

Simply supported

p=1% 4.9 10−2 7.0 10−4 4.77 10−2 ÷ 5.04 0−2

p=10% 6.4 10−2 8.0 10−4 6.28 10−2 ÷ 6.59 0−2

p=30% 9.4 10−2 9.7 10−4 9.19 10−2 ÷ 9.57 10−2

Continuous

p=1% 1.92 10−2 4.4 10−4 1.84 10−2 ÷ 2.01 10−2

p=10% 3.09 10−2 5.5 10−4 2.99 10−2 ÷ 3.20 10−2

p=30% 5.36 10−2 7.3 10−4 5.21 10−2 ÷ 5.50 10−2

Lap-jointed

p=1% 1.5 10−2 3.8 10−4 1.43 10−2 ÷ 1.58 10−2

p=10% 1.9 10−2 4.5 10−4 1.90 10−2 ÷ 2.08 10−2

p=30% 3.0 10−2 5.5 10−4 2.94 10−2 ÷ 3.15 10−2

Table 6.9: Probability of biaxial bending failure of secondary system for

km = 1 and with systematic weaknesses with rate p = 1%, 10%, 30%.

tioned on failures F and systematic weaknessesD for the p = 1%, 10%, 30%

rate of Bernoulli Process.

The expected value of area failed AF conditioned on the presence of

systematic weaknesses D is listed in table 6.10 for p = 1%, 10%, 30%. The

average area failed is higher for the static indeterminate purlins system. In

addition the average area failed decreases with the weaknesses rate. This

is explained by the fact that, the presence of systematic weaknesses in-

creases the uncertainty in the capacity. This means that the capacity has a

stronger influence on the behavior of the system. In addition, this leads to a

decrease in the statistical dependence among failures of individual sections

and, therefore, large numbers of purlin failures become less likely.
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Figure 6.8: Histogram of AF given F,D for km = 1 and p = 1%.
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Figure 6.9: Histogram of AF given F,D for km = 1 and p = 10%.
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Configuration E [AF | F,D]

p = 1% p = 10% p = 30%

Simply supported 15.36 14.40 13.62

Continuous 17.52 16.02 16.44

Lap-jointed 20.40 18.30 19.08

Table 6.10: E [AF | F,D] of secondary system for km = 1.
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Figure 6.10: Histogram of AF given F,D for km = 1 and p = 30%.
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Figures 6.11, 6.12 and 6.13 show the computed CDF of the failed area

AF conditional on the system having failed F and on the presence of sys-

tematic weakening F (AF |F,D) with rate p = 1%, 10%, 30%.

The three configurations show the same trend as in the case of the system

without systematic weakening.

Figure 6.11: CDF of AF given (F,D) for km = 1 and p = 1%.
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Figure 6.12: CDF of AF given (F,D) for km = 1 and p = 10%.
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Figure 6.13: CDF of AF given (F,D) for km = 1 and p = 30%.
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Comparison for the purlin system with and without systematic

weaknesses

Two separate models were employed to compute the pdf and CDF of area

failed AF in absence and in presence of systematic weaknesses: fAF |D(a)

and fAF |D(a). The unconditioned PDF of the failed area is then given by

Eq. 6.29.

fAF
(a) = fAF |D(a) · Pr

(
D
)
+ fAF |D(a) · Pr (D) . (6.29)

where Pr (D) is the probability that a systematic weakening of the struc-

ture is present.

It is important to remember that regular design procedures are based

on the assumption that systematic errors are prevented by quality control

and other measures. This means that it is assumed that Pr (D) = 0. Since

robustness can be interpreted as the ability of the structure to sustain

unforeseen actions, an indicator for robustness is the difference between

the total risk, calculated with Eqs. 3.19 and 6.29 and Pr (D) > 0, and

the risk conditional on no errors, calculated with Eqs. 3.19 and 6.29 and

Pr (D) = 0. Therefore, we need to compute FAF |F the distribution of the

failed area when it is unknown whether a systematic weakening of the sys-

tem is present or not by unconditioning on the variable D. This is made

by applying the Total Probability Theorem and the Bayes’ Rule as:

FAF |F = AF | F,D · Pr
(
D | F

)
+AF | F,D · Pr (D | F ) . (6.30)
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The probability Pr (D | F ) is computed by Bayes’ rule as:

Pr (D | F ) = Pr (F | D) · Pr (D)

Pr (F )
. (6.31)

Due to the fact that two separate models were employed to compute the

probability of failure in absence and presence of weakening, the probability

of failure obtained is conditioned on the variable D. The total probability

of failure of the secondary system is computed as:

Pr (F ) = Pr
(
F | D

)
· Pr

(
D
)
+ Pr (F | D) · Pr (D) . (6.32)

The computed values of Pr (F ) are listed in table 6.11.

Configuration Pr (F )

Pr(D) = 0.01 Pr(D) = 0.10

Simply supported 0.0468 0.0510

Continuous 0.0188 0.0219

Lap-jointed 0.0148 0.0162

Table 6.11: Pr (F ) for the secondary system configurations for Pr(D) =

1%, 10% and weakening rate of 30%.

Figures 6.14 and 6.15 show the CDF of the failed area AF conditional

on the system having failed F, when the probability of having systematic

errors is assumed as Pr(D) = 0.01 and Pr(D) = 0.10 respectively and ob-

viously with the Pr(D) = 1−Pr(D). However, it can be observed that the

difference between the results obtained with these two values of the Pr(D)
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is small. This is because the effect of the weakness on the conditional dis-

tribution is low. This can be already seen from comparing figure 6.6 with

figures 6.11, 6.12, 6.13.

Figure 6.14: CDF of AF for km = 1 and Pr(D) = 0.01.
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Figure 6.15: CDF of AF for km = 1 and Pr(D) = 0.10.
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To check this ”robustness” criterion, the probability that the failed area

is less than 15% of the total area given a failure is computed (table 6.12).
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Configuration Pr
(
AF < 0.15 · Aroof |F

)
Pr(D) = 0.01 Pr(D) = 0.10

Simply supported 0.9711 0.9728

Continuous 0.9690 0.9684

Lap-jointed 0.9561 0.9559

Table 6.12: Pr (AF < 0.15 · Aroof | F ) for the secondary system configura-

tions for Pr(D) = 1%, 10% and weakening rate of 30%.

With respect to the defined robustness criterion, the roof system config-

uration with simply supported purlins is the optimal one, because a failure

in this configuration leads to the smallest failed area (table 6.8 and 6.10)

and it has the lowest probability of not fulfilling the 15% area requirement

(table 6.12).

Likewise, the expected value of the area failed upon a failure E [AF | F ]
must be computed by unconditioning the average computed above and

listed in table 6.10 on the variable D, as shown in Eq. 6.33.

E [AF | F ] = E
[
AF | F,D

]
· Pr

(
D | F

)
+

+E [AF | F,D] · Pr (D | F ) . (6.33)

The values of E [AF | F ] for the three purlins configurations are listed

in table 6.13.

Finally the risk is computed from the E [AF | F ] by unconditioning on

the failure event F as E [AF | F ] · Pr(F ). The risk computed for the three
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Configuration E [AF | F ]

Pr(D) = 0.01 Pr(D) = 0.10

Simply supported 17.16 16.86

Continuous 25.24 24.00

Lap-jointed 32.34 32.22

Table 6.13: Risk as E [AF ] for the secondary system configurations for

Pr(D) = 1%, 10% and weakening rate of 30%.

roof systems is given in table 6.14.

Configuration E [AF ]

Pr(D) = 0.01 Pr(D) = 0.10

Simply supported 0.78 0.84

Continuous 0.48 0.54

Lap-jointed 0.48 0.54

Table 6.14: Risk E [AF ] for the secondary system configurations for

Pr(D) = 1%, 10% and weakening rate of 30%.

The risk calculated for simply supported configuration is higher than

for continuous and lap-jointed configurations. This is due to the fact that

the probability of system failure is higher for the system with simply sup-

ported purlins, even though the consequences are lower. In addition, the

lap-jointed configuration is the cheapest, thus supporting this choice of this

configuration from a risk (or rather expected cost) perspective. Therefore,

despite the fact that the simply supported configuration is more robust,

static indeterminate configurations are more optimal. This points to a gen-

eral problem in the definition of robustness: a more robust system might
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often be less optimal from a risk analysis point-of-view. These results are

also dependent on the fact that the distances between the purlins were

adapted in order to receive the same utilization factor for all three sys-

tems, while usually the distances are based on requirements from the roof

cladding. If the same distances would be applied to all systems, assuming

a consistent utilization factor, the three systems would show a more similar

behavior. If continuous and lap-jointed configurations would be modified

to have the same distance between purlins than simply supported config-

uration, they would become slightly more robust but would also have a

higher probability of system failure and thus exhibit a higher risk.

6.3 Primary beams analysis (FORM, MCS)

6.3.1 First Order Reliability Method formulation for the

primary beam

Also for the system of six primary beams, the reliability index β is computed

by implementing the HLRF algorithm to solve the FORM optimization

problem. The system is modeled as series system of sections. Differently

from the purlins’ case, the beams’ check is done only at the two most loaded

sections and in addition, the random variables for the formulation of FORM

for the beams are different according to the limit state chosen.

The ultimate limit state conditions considered for the primary beams are:

• bending failure;

• shear failure;
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• tension perpendicular to the grain.

Differently to the MCS the limit state function for combined tension per-

pendicular to the grain and shear is not considered, due to the fact that the

SIA limit state function is not linear and it has also a point of discontinuity

(cusp). Therefore the first order approximation with Taylor series is not

possible.

According to the three purlins static configurations chosen, the load is

transferred from the purlins to the primary beams in different percentage.

For the simply supported purlins configuration each beam is equally loaded,

while for the two static indeterminate configurations the distribution of the

load among the beams is different.

First Order Reliability Method: primary beam bending failure

The bending limit state function depends on the following random vari-

ables: bending resistance Rb, snow load on the ground Q, roof shape factor

C, self weight of the beam WB , self weight of the purlins WP and perma-

nent load P . To each of them corresponds a standard normal variable.

The transformation functions for the snow load on the ground and roof

shape factor are given in Eqs. 6.18 and 5.13, for the purlins self weight and

permanent load are given in Eqs. 6.20 and 6.21, for the bending resistance

in Eq. 6.22. The expression of transformation functions for the self weight

of the primary beam WB is similar to the expression of WP .

Let’s write the equation of the limit state function in the standard normal

space, given the vector U = {uq, uc, ugP , ugB , up, urb} of the standard nor-
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mal variables corresponding to the variables in the ordinary space.

The limit state function G in the ordinary space is given by the difference

between bending strength and bending demand as g(R,S) =MR −MS .

The limit state function G for the beam for bending failure at the location

of maximum effect in the standard normal space is given in Eq. 6.34.

Gb (U) = Cres · R−1
b − Cload1

[
W−1

B (uwb
)+

+Cload2

(
C−1 (uc) ·Q−1 (uq) + P−1 (up)

)

+Cload3 ·W−1
P

(
uwp

)]
. (6.34)

The constants Cload1 depends on the location of the critical section, while

Cload2, Cload3 in Eq. 6.34 depend on the static configuration of the purlins.

The constant are listed below.

Cload1 =
1

2
[1 + tan (δ − α)] ·

(
Lz − z2

)
. (6.35)

Cload2 =
lp
L
(np − 1) · ti. (6.36)

Cload2 =
lp
L
np · ti. (6.37)

In Eqs. 6.35, 6.36, 6.37 the angle (δ − α) is the difference between upper

and lower inclination of the beam edge, L is the beam length, lp the purlin

length, np the number of the purlins according to the static configuration
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chosen and ti is the factor that corresponds to the load that is carried by

the beam. The section of maximum effect of bending moment for the beam

is located at a distance equal to z =
L·hapex

2·ha
.

For the roof system with simply supported purlins the coefficients are

Cload1 = 34.44, Cload2 = 5.7 and Cload3 = 6.

For the roof system with continuous purlins the coefficients are Cload1 =

34.44, Cload2 = [2.133, 6.112, 5.254] and Cload3 = [1.896, 5.433, 4.670]. For

the roof system with continuous purlins the coefficients are Cload1 = 34.44,

Cload2 = [2.275, 6.520, 5.604] and Cload3 = [1.422, 4.075, 3.502]. The coeffi-

cients are related to forces in kN and distance in m. The bending strength

factor Cres,b in Eq. 6.34 is equal to b·h2
z

6 , where hz is the depth of the cross

section at location z.

As reported in section 2.5.2, the computation of the components of the

gradient is needed. For the bending failure limit state function the compo-

nents are listed below.

∂G

∂uq
= Cload1 · Cload2

aq [bc − acLn (−Ln (Φ (uc)))] · ϕ(uq)
λ · Φ (uq) Ln

[
1 + Ln(Φ(uq))

λ

]
·
[
1 + Ln(Φ(uq))

λ

] .

(6.38)

∂G

∂uc
= Cload1 · Cload2

ac [bq − aqLn (−Ln (1 + Φ (uq)))] · ϕ(uc)
Φ (uc) Ln (Φ (uc))

(6.39)

∂G

∂uwb

= −Cload1 · σwb
. (6.40)

∂G

∂uwp

= −Cload1 · Cload3 · σwp . (6.41)
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∂G

∂up
= −Cload1 · Cload2 · σp. (6.42)

∂G

∂urb
= Cres,b · σrb · Exp (μrb + σrb · urb) . (6.43)

FORM Results for primary beam bending failure

Tables 6.15, 6.17 and 6.19 list the value of reliability index and probability

of failure for the most loaded section of the primary beam according to the

different location of the beam inside the system. The static configuration

of the purlins determines a different distribution of the load on the primary

beams. Generally, external beams are less loaded both in the case of simply

supported purlins and continuous or lap-jointed purlins (see figure 6.16 for

the terminology). Tables 6.16, 6.18 and 6.20 list the α coefficients and the

value of the r.v. at optimum.

The results for the beam with the chosen purlins configurations are listed

below.

Beam Location βj Pr (Fj(1yr))

External beam 7.86 8.24 10−16

Internal beam 4.67 1.52 10−6

Table 6.15: Probability of failure of the most loaded section of the primary

beam, Pr (Fj(1yr)) and corresponding reliability index βj with the simply

supported secondary elements.

Table 6.21 lists the probability of bending failure in 1yr Pr (Fj(1yr))

and in 50yr Pr (Fj(1yr)) for the most loaded primary beams as series sys-
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Figure 6.16: Roof system configurations.
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beam 1 beam 2 beam 3

Beam Location Q C WP P WB R

External beam

α coeff. 0.659 0.652 0.0021 0.0099 0.0055 -0.374

x∗ 2.3 4.04 0.084 0.403 0.637 19.66

Internal beam

α coeff. 0.669 0.649 0.0066 0.0316 0.0088 -0.359

x∗ 1.17 2.07 0.084 0.406 0.637 23.88

Table 6.16: Importance coefficients and values of the r.v. at design point x∗

for the most loaded section of the primary beam with the simply supported

secondary elements.
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Beam Location βj Pr (Fj(1yr))

Beam 1 6.95 1.868 10−12

Beam 2 4.55 2.72 10−6

Beam 3 4.89 4.88 10−7

Table 6.17: Probability of failure of the most loaded section of the pri-

mary beam, Pr (Fj(1yr)) and corresponding reliability index βj with the

continuous secondary elements.

Beam Location Q C WP P WB R

Beam 1

α coeff. 0.662 0.653 0.0029 0.0137 0.0055 -0.366

x∗ 1.89 3.34 0.084 0.404 0.639 20.977

Beam 2

α coeff. 0.669 0.649 0.007 0.033 0.0086 -0.359

x∗ 1.14 2.02 0.084 0.406 0.637 24.04

Beam 3

α coeff. 0.669 0.651 0.0061 0.0289 0.0087 -0.356

x∗ 1.24 2.18 0.084 0.406 0.637 23.65

Table 6.18: Importance coefficients and values of the r.v at design point

x∗ for the most loaded section of the primary beam with the continuous

secondary elements.

Beam Location βj Pr (Fj(1yr))

Beam 1 7.00 1.23 10−12

Beam 2 4.58 2.29 10−6

Beam 3 4.93 4.10 10−7

Table 6.19: Probability of failure of the most loaded section of the primary

beam, Pr (Fj(1yr)) and corresponding reliability index βj with the lap-

jointed secondary elements.
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Beam Location Q C WP P WB R

Beam 1

α coeff. 0.662 0.653 0.0028 0.0135 0.0103 -0.366

x∗ 1.92 3.38 0.084 0.404 0.639 20.92

Beam 2

α coeff. 0.669 0.650 0.0068 0.033 0.0087 -0.356

x∗ 1.15 2.03 0.084 0.406 0.637 24.03

Beam 3

α coeff. 0.669 0.652 0.0059 0.028 0.0088 -0.354

x∗ 1.25 2.20 0.084 0.405 0.637 23.65

Table 6.20: Importance coefficients and values of the r.v. at design point

x∗ for the most loaded section of the primary beam with the lap-jointed

secondary elements.

tem of two symmetrical critical sections with correlation factor ρ = 0.87.

Purlins configuration Pr (F (1yr)) Pr (F (50yr))

Simply supported 2.74 10−6 1.37 10−4

Continuous 4.87 10−6 2.44 10−4

Lap-Jointed 4.04 10−6 2.02 10−4

Table 6.21: Probability of bending failure of the most loaded primary beam

respect to the three configurations, Pr (F (1yr)) and Pr (F (50yr)).

Table 6.22 lists the probability of bending failure in 1yr Pr (Fj(1yr))

and in 50yr Pr (Fj(1yr)) for the entire system of primary beams as se-

ries system of twelve symmetrical critical sections with correlation factor

ρ = 0.87. As expected the system of six primary beams shows to have a

similar reliability respect to the three purlins configurations.
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Purlins configuration Pr (F (1yr)) Pr (Fj(50yr))

Simply supported 8.13 10−6 4.06 10−4

Continuous 9.18 10−6 4.59 10−4

Lap-Jointed 7.74 10−6 3.87 10−4

Table 6.22: Probability of bending failure of the system of six primary

beams respect to the three configurations, Pr (F (1yr)) and Pr (F (50yr)).

First Order Reliability Method:primary beam shear failure

The random variables for shear limit state function are the shear resistance

Rv, the snow load on the ground Q, the roof shape factor C, the self weight

of the beam WB , the self weight of the purlinsWP and the permanent load

P . The transformation function for the loads acting on the beam are the

same as in the bending failure case. The transformation function for the

shear strength has the same law given for the bending resistance, because

they both are lognormal distributed random variable. The limit state func-

tion for shear failure is written as difference between shear resistance TR

and shear action TS at the support location, g(R,S) = TR − TS.

The limit state function in the standard normal space is given in Eq. 6.44.

The expression in Eq.6.44 is equivalent to the one in Eq. 6.34 except for the

constants and therefore the components of the gradient of the limit state

function Gv are the same given for Gb.
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Gv (U) = Cres,v · R−1
v − Cload1

[
W−1

B (uwb
)+

+Cload2

(
C−1 (uc) ·Q−1 (uq) + P−1 (up)

)
+

+Cload3W
−1
P

(
uwp

)]
. (6.44)

In Eq. 6.44, the constants Cload1 is equal to 1.5
2 L, while the constants

Cload2 and Cload3 are the same given for the bending limit state function.

The coefficient Cres,v is equal to 2
3bh.

FORM Results for primary beam shear failure

Tables 6.23, 6.25 and 6.27 list the value of reliability index and probability

of failure for the most loaded section of the primary beam according to the

different location of the beam inside the system. Tables 6.24, 6.26 and 6.28

list the α coefficients and the value of the r.v. at optimum.

Table 6.29 lists the probability of shear failure in 1yr Pr (F (1yr)) and in

50yr Pr (F (1yr)) for the most loaded primary beams as series system of

two symmetrical critical sections with correlation factor ρ = 0.87.

Table 6.30 lists the probability of bending failure in 1yr Pr (Fj(1yr)) and in

50yr Pr (Fj(1yr)) for the entire system of primary beams as series system

of twelve symmetrical critical sections with correlation factor ρ = 0.87. As

expected the system of six primary beams shows to have a similar reliability
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respect to the three purlins configurations.

Beam Location βj Pr (Fj(1yr))

External beam 6.10 5.35 10−10

Internal beam 4.43 4.71 10−6

Table 6.23: Probability of shear failure of the most loaded section of the

primary beam, Pr (Fj(1yr)) and corresponding reliability index βj with the

simply supported secondary elements.

Beam Location Q C WP P WB R

External beam

α coeff. 0.657 0.625 0.0115 0.0549 0.0305 -0.416

x∗ 1.59 2.8 0.254 0.404 0.638 3.19

Internal beam

α coeff. 0.668 0.649 0.0069 0.0328 0.0011 -0.361

x∗ 1.10 1.94 0.255 0.406 0.637 3.47

Table 6.24: Importance coefficients and values of the r.v. at design point x∗

for the most loaded section of the primary beam with the simply supported

secondary elements.

First Order Reliability Method:primary beam tension perpendic-

ular to the grain failure

The random variables for tension perpendicular to the grain limit state

function are the tension perpendicular to the grain resistance Rt90, the

snow load on the ground Q, the roof shape factor C, the self weight of the

beamWB, the self weight of the purlinsWP and the permanent load P . The
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Beam Location βj Pr (Fj(1yr))

Beam 1 6.87 3.45 10−12

Beam 2 4.43 4.70 10−6

Beam 3 4.78 8.71 10−7

Table 6.25: Probability of shear failure of the most loaded section of the

primary beam, Pr (Fj(1yr)) and corresponding reliability index βj with the

continuous secondary elements.

Beam Location Q C WP P WB R

Beam 1

α coeff. 0.663 0.653 0.003 0.0142 0.0105 -0.366

x∗ 1.87 3.28 0.084 0.404 0.639 3.07

Beam 2

α coeff. 0.669 0.648 0.0073 0.035 0.0091 -0.361

x∗ 1.11 1.96 0.084 0.406 0.637 3.52

Beam 3

α coeff. 0.669 0.651 0.0063 0.0303 0.0091 -0.357

x∗ 1.2 2.13 0.084 0.406 0.637 3.46

Table 6.26: Importance coefficients and values of the r.v. at design point

x∗ for the most loaded section of the primary beam with the continuous

secondary elements.

Beam Location βj Pr (Fj(1yr))

Beam 1 6.91 2.28 10−12

Beam 2 4.49 3.43 10−6

Beam 3 4.84 6.30 10−7

Table 6.27: Probability of shear failure of the most loaded section of the

primary beam, Pr (Fj(1yr)) and corresponding reliability index βj with the

lap-jointed secondary elements.
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Beam Location Q C WP P WB R

Beam 1

α coeff. 0.663 0.653 0.0029 0.014 0.0106 -0.366

x∗ 1.89 3.33 0.084 0.404 0.639 3.06

Beam 2

α coeff. 0.669 0.649 0.0071 0.034 0.0090 -0.358

x∗ 1.13 1.99 0.084 0.406 0.637 3.52

Beam 3

α coeff. 0.669 0.651 0.0062 0.029 0.0091 -0.355

x∗ 1.22 2.16 0.084 0.405 0.637 3.46

Table 6.28: Importance coefficients and values of the r.v. at design point

x∗ for the most loaded section of the primary beam with the lap-jointed

secondary elements.

Purlins configuration Pr (F (1yr)) Pr (F (50yr))

Simply supported 8.35 10−6 4.17 10−4

Continuous 8.35 10−6 4.17 10−4

Lap-Jointed 6.33 10−6 3.16 10−4

Table 6.29: Probability of shear failure of the most loaded primary beam

respect to the three configurations, Pr (F (1yr)) and Pr (F (50yr)).

Purlins configuration Pr (F (1yr)) Pr (F (50yr))

Simply supported 2.32 10−5 1.15 10−3

Continuous 1.52 10−5 7.59 10−4

Lap-Jointed 1.16 10−5 5.78 10−4

Table 6.30: Probability of shear failure of the system of six primary beams

respect to the three configurations, Pr (F (1yr)) and Pr (F (50yr)).
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limit state function in the ordinary space is written as difference between

resistance and demand in terms of stresses in direction perpendicular to

the grain g(R,S) = σRt90 −σSt90 and it is related to the middle-span of the

beam where the effect of tension perpendicular to the grain is maximum.

The resistance in direction perpendicular to the grain takes into account

also the volume effect.

The transformation function for the strength perpendicular to the grain is

given in Eq. 6.45.

R−1
t90 (urt90) = at90 [−Ln (1−Φ (ut90))]

1
kt90 (6.45)

The limit state function in the standard normal space is given in Eq. 6.46.

Gt90 (U) = Cres,t90 ·R−1
t90 − Cload1

[
W−1

B (uwb
)+

+Cload2

(
C−1 (uc) ·Q−1 (uq) + P−1 (up)

)
+

+Cload3W
−1
P

(
uwp

)]
. (6.46)

In Eq. 6.46, the load constant Cload1 is given by Blumer expression at

the midspan location and it is equal to 17.412. The constants Cload2 and

Cload3 are the same given for the bending limit state function. The coeffi-

cient Cres,v is equal to kdis · kvol · bhapex, where kdis = 1.4 for curved beams

and kvol = 0.648 for the used beam geometry. The final value of Cres,v is

907.2.
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The computation of the components of the gradient is required. The ex-

pression in Eq. 6.46 is equivalent to the 6.34 except for the constants and

the components of the gradient respect to the strength perpendicular to

the grain variable Rt90. Therefore, all the components of the gradient are

the same given for Gb, except the last component that is given in Eq. 6.47 .

∂G

∂ut90
= at90 · Cres,t90

1

kt90
[−Ln (1− Φ (ut90))]

1
kt90

−1 ·

−1

1− Φ (ut90)

1√
2π

Exp

(
−1

2
u2t90

)
. (6.47)

FORM Results for primary beam tension perpendicular to the

grain failure

Tables 6.31, 6.33 and 6.35 list the value of reliability index and probability

of failure for the most loaded section of the primary beam according to the

different location of the beam inside the system. Tables 6.32, 6.34 and 6.36

list the α coefficients and the value of the r.v. at design point x∗.

Beam Location βj Pr (Fj(1yr))

External beam 4.41 5.05 10−6

Internal beam 3.96 3.73 10−5

Table 6.31: Probability of tension perp. failure of the most loaded section

of the primary beam, Pr (Fj(1yr)) and corresponding reliability index βj

with the simply supported secondary elements.
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Beam Location Q C WP P WB R

External beam

α coeff. 0.15 0.116 0.007 0.034 0.018 -0.980

x∗ 0.45 0.848 0.254 0.405 0.639 0.07

Internal beam

α coeff. 0.192 0.151 0.0087 0.0415 0.00115 -0.968

x∗ 0.484 0.897 0.084 0.406 0.637 0.114

Table 6.32: Importance coefficients and values of the r.v. at design point x∗

for the most loaded section of the primary beam with the simply supported

secondary elements.

Beam Location βj Pr (Fj(1yr))

Beam 1 4.77 8.83 10−7

Beam 2 3.91 4.67 10−5

Beam 3 4.05 2.54 10−5

Table 6.33: Probability of tension perp. failure of the most loaded section

of the primary beam, Pr (Fj(1yr)) and corresponding reliability index βj

with the continuous secondary elements.

Beam Location Q C WP P WB R

Beam 1

α coeff. 0.136 0.103 0.006 0.031 0.023 -0.984

x∗ 0.46 0.866 0.084 0.405 0.641 0.048

Beam 2

α coeff. 0.198 0.157 0.0089 0.043 0.011 -0.966

x∗ 0.487 0.903 0.084 0.406 0.637 0.12

Beam 3

α coeff. 0.188 0.149 0.0085 0.0407 0.012 -0.969

x∗ 0.48 0.899 0.084 0.406 0.638 0.105

Table 6.34: Importance coefficients and values of the r.v. at design point

x∗ for the most loaded section of the primary beam with the continuous

secondary elements.
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Beam Location βj Pr (Fj(1yr))

Beam 1 4.81 7.65 10−7

Beam 2 3.94 4.07 10−5

Beam 3 4.1 2.14 10−5

Table 6.35: Probability of tension perp. failure of the most loaded section

of the primary beam, Pr (Fj(1yr)) and corresponding reliability index βj

with the lap-jointed secondary elements.

Beam Location Q C WP P WB R

Beam 1

α coeff. 0.136 0.104 0.0065 0.031 0.0235 -0.984

x∗ 0.46 0.868 0.084 0.406 0.642 0.05

Beam 2

α coeff. 0.200 0.159 0.0089 0.043 0.0113 -0.965

x∗ 0.49 0.907 0.0842 0.406 0.637 0.12

Beam 3

α coeff. 0.190 0.151 0.0086 0.0407 0.0126 -0.969

x∗ 0.49 0.09 0.084 0.405 0.638 0.01

Table 6.36: Importance coefficients and values of the r.v. at design point

x∗ for the most loaded section of the primary beam with the lap-jointed

secondary elements.
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Table 6.37 lists the probability of tension perp. failure in 1yr Pr (Fj(1yr))

and in 50yr Pr (Fj(1yr)) for the entire system of primary beams as se-

ries system of twelve symmetrical critical sections with correlation factor

ρ = 0.05. As expected the system of six primary beams shows to have a

similar reliability respect to the three purlins configurations.

Purlins configuration Pr (F (1yr)) Pr (F (50yr))

Simply supported 1.59 10−4 7.97 10−3

Continuous 1.46 10−4 7.29 10−3

Lap-Jointed 1.26 10−4 6.27 10−3

Table 6.37: Probability of tension perp. failure of the of the system of

six primary beams respect to the three configurations, Pr (F (1yr)) and

Pr (F (50yr)).

6.3.2 Monte Carlo sampling for the analysis of the primary

beams

Monte Carlo Simulations (MCS) with 105 samples are computed. The

software used to compute the simulation is implemented in Matlab and

it enables the evaluation not only of the probability of failure but also to

obtain numerical data regarding the number of failed primary beams.

As described in section 3.4, only the bending failure leads to a real collapse

of the beam, while failure due to tension perpendicular to the grain, shear

and combination of shear and tension perpendicular stresses cause a loss of

capacity and stiffness. This damage is also taken into account by uploading

the resistance of the element, as described in section 3.5.
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MCS are computed both for the most loaded primary beam (internal beam

for simply supported configuration and beam 2 for static indeterminate

configurations in figure 6.16) and for the entire primary system (series sys-

tem of six primary beams). In the case of primary beams no systematic

weaknesses is considered.

Table 6.38 lists the probability of failure for the most loaded primary

beam in the roof system, with the corresponding purlin configuration, and

for the three independent failure mode considered: bending failure, shear

failure, tension perpendicular to the grain failure and combination of ten-

sion perpendicular to the grain and shear failure (SIA limit state function).

Bending Failure Pr (F (50yr)) σ 95% confidence bounds

Simply supported 1.2 10−3 1.1 10−4 9.7 10−4 ÷ 1.4 10−3

Continuous 2.1 10−3 1.4 10−4 1.8 10−3 ÷ 2.3 10−3

Lap-jointed 1.6 10−3 2.3 10−4 1.4 10−3 ÷ 1.8 10−3

Shear Failure Pr (F (50yr)) σ 95% confidence bounds

Simply supported 7.3 10−4 8.50 10−5 5.6 10−4 ÷ 8.9 10−4

Continuous 1.1 10−3 1.05 10−4 9.0 10−4 ÷ 1.3 10−3

Lap-jointed 9.7 10−4 7.7 10−4 7.8 10−4 ÷ 1.2 10−3

Tension perp. Failure Pr (F (50yr)) σ 95% confidence bounds

Simply supported 5.3 10−3 2.3 10−4 4.9 10−3 ÷ 5.8 10−3

Continuous 7.5 10−3 2.7 10−4 7.0 10−3 ÷ 8.1 10−3

Lap-jointed 6.0 10−3 2.5 10−4 5.5 10−3 ÷ 6.5 10−3

Shear and Tension perp. Pr (F (50yr)) σ 95% confidence bounds

Simply supported 4.4 10−3 2.1 10−4 4.0 10−3 ÷ 4.8 10−3

Continuous 6.2 10−3 2.5 10−4 5.7 10−3 ÷ 6.6 10−3

Lap-jointed 4.7 10−3 2.2 10−4 4.2 10−3 ÷ 5.1 10−3

Table 6.38: Probability of failure of the most loaded primary beam respect

to the choosen limit state.
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Although the bending failure is the only mechanism that leads to the

collapse of the beam, the results show that the highest probability corre-

sponds to the failure due to tension perpendicular to the grain direction.

As explained in section 3.4, tension perpendicular to the grain failure leads

to longitudinal crack development in the curved part across the mid-span.

The crack path can develop progressively until the complete splitting of

the section in two parts, leading therefore to a loss of capacity and stiffness

that must be taken into account in the capacity assessment.

Therefore, a second model that takes into account the reduction of the ca-

pacity due to crack development in the curved part when the limit state

for tension perpendicular to the grain occurs. The probability of bending

failure obtained with this second model is listed in table 6.40 for the three

configurations.

Bending Failure Pr (F (50yr)) σ 95% confidence bounds

Simply supported 1.6 10−3 1.3 10−4 1.4 10−3 ÷ 1.9 10−3

Continuous 1.9 10−3 1.4 10−4 1.6 10−3 ÷ 2.2 10−3

Lap-jointed 1.4 10−3 1.2 10−4 1.2 10−3 ÷ 1.7 10−3

Table 6.39: Probability of failure of the most loaded primary beam respect

to bending failure when considering the splitting of section due to tension

perp.

Comparing the results of table 6.38 and 6.39, it is clear that the mean

value of the probability of bending failure for a single beam does not change.

A higher value is found only for the beam with simply supported purlins.

In order to consider the effect of this cracking on the entire system, it is

needed to compare the probability of failure and the extension of the failure
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for the entire primary system of six beams.

Table 6.40 lists the results in terms of probability of failure for the primary

system (beams) with independent failures.

Comparing the results of the MCS with the FORM results in tables 6.22,

6.30 and 6.37, it can be noted that the probability of failure obtained with

Monte Carlo sampling is higher, due to the different number of critical

sections (= variables). Indeed, FORM analysis is computed only consid-

ering the most loaded sections inside the beams according to the failure

mechanism considered (12 variables for bending and shear mechanisms, 6

variables for tension perpendicular to the grain in a series system model).

Monte Carlo analysis is computed considering a deterministic discretization

of critical sections with one potential critical section every 50cm (i.e. 60

variables for the series system model of six beams). Indeed, the number

of variables and the degree of correlation among them is important to the

accuracy of the solution in FORM analysis.

Table 6.41 lists the probability of bending failure when the loss of capacity

due to failure for tension perpendicular to the grain occurs.

According to the results obtained with Monte Carlo simulations, the

probability of bending failure for the system of six primary beams increases

of about five times when considering the possibility of having a reduced ca-

pacity due to cracking in case a previous failure for tension perpendicular

to the grain occur.

Even if degradation of material is here not considered, the results obtained

considering a damaged section show the importance of considering the life
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Bending Failure Pr (F (50yr)) σ 95% confidence bounds

Simply supported 2.5 10−3 1.6 10−4 2.2 10−3 ÷ 2.8 10−3

Continuous 2.6 10−3 1.6 10−4 2.3 10−3 ÷ 2.9 10−3

Lap-jointed 2.0 10−3 1.4 10−4 1.7 10−3 ÷ 2.2 10−3

Shear Failure Pr (F (50yr)) σ 95% confidence bounds

Simply supported 1.5 10−3 1.22 10−4 1.2 10−3 ÷ 1.2 10−3

Continuous 1.2 10−3 1.09 10−4 9.86 10−4 ÷ 1.4 10−3

Lap-jointed 9.0 10−4 9.5 10−5 7.15 10−4 ÷ 1.1 10−3

Tension perp. Failure Pr (F (50yr)) σ 95% confidence bounds

Simply supported 2.7 10−2 5.3 10−4 2.64 10−2 ÷ 2.85 10−2

Continuous 1.9 10−2 4.4 10−4 1.82 10−2 ÷ 1.99 10−2

Lap-jointed 1.8 10−2 4.3 10−4 1.75 10−2 ÷ 1.92 10−2

Shear and Tension perp. Pr (F (50yr)) σ 95% confidence bounds

Simply supported 2.0 10−2 4.5 10−4 1.93 10−2 ÷ 2.1 10−2

Continuous 1.43 10−3 3.8 10−4 1.36 10−2 ÷ 1.51 10−2

Lap-jointed 1.41 10−2 3.7 10−4 1.33 10−2 ÷ 1.48 10−2

Table 6.40: Probability of failure of the system of six primary beams respect

to the choosen limit state.

Bending Failure Pr (F (50yr)) σ 95% confidence bounds

Simply supported 1.62 10−2 4.03 10−4 1.54 10−2 ÷ 1.7 10−2

Continuous 1.33 10−2 3.64 10−4 1.26 10−2 ÷ 1.4 10−2

Lap-jointed 1.17 10−2 3.42 10−4 1.11 10−2 ÷ 1.24 10−2

Table 6.41: Probability of bending failure for the system of six primary

beams upon tension perp. failure.
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time managing and inspection planning as a tool to avoid the likelihood of

the failure event to increase strongly.
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Chapter 7

Structural Interaction

As described in section 3.5, the roof system is modeled as a series system of

two subsystem: primary system (beams) and secondary system (purlins).

System failure will occur when at least one primary or secondary element

fails. Both primary beams and purlins will be considered failed when at

least one section is failed in bending.

Hereby, the roof assessment is carried out considering the structural inter-

action according to the model described in section 3.5. Some assumptions

on the capacity and redistribution ability of the connections are made on

the basis of data from the Timber Chair of TU-München.

7.1 Numerical results for the roof system (MCS)

Monte Carlo Simulations (MCS) with 105 samples are computed. MCS

enable the evaluation of the behavior of the roof system under the load
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process in 50yr according to the event tree of figure 3.16. This means that

according to the element that fails first, between purlins and beams, differ-

ent path of consequences are taken into account.

As already explained for the assessment of secondary system in section 3.5,

when a section inside a purlin fails, the failure does not have any effect for

the static determinate purlins, while in case of static indeterminate purlins,

the evolution of the static scheme is considered and the purlins checked for

the new bending moments until no other section fails.

When a primary beam fails, according to the failure mechanism, the con-

sequences on the roof system are different.

If the beam fails for tension perpendicular to the grain it will exhibit both

a loss of capacity and stiffness. The loss of capacity will increase the prob-

ability of failure of the beam. The loss of stiffness will cause an additional

imposed displacement at the support for the purlins that are supported by

the beam. Therefore, additional bending moments are taken into account.

If the beam fails for bending mechanism it will collapse. Before the total

collapse, it will be able to redistribute the load to the lateral beam due to

the ductility of the connections between purlins and beam, in different per-

centage according to the purlin configuration as described in section 3.5.

An uncommon but possible event, found during some inspections made

on different structures by the research group of the Timber Chair of TU-

München, is that the beam is failed in bending due to inadequate capacity,

but the high capacity of purlins and ductility reserve of connections can

hide this failure, leading to have the beam still hanging to the purlins. The

occurrence of this event will be also verified.
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Table 7.1 lists the probability of bending failure of the roof system and

related statistics for the bending failure mechanisms. The results refer to

the primary beam system with the simply supported, continuous and lap-

jointed purlins and with redistribution factors according to section 3.5. The

highest value of the probability of failure (lowest reliability) corresponds to

the roof system with continuous purlins.

Tables 7.2, 7.3, 7.4 list the probability of shear failure, tension perpendic-

ular to the grain failure and probability of failure for the combined stress

condition of tension perpendicular and shear stresses (SIA limit state) of

the primary beam system.

The interaction between primary and secondary system does not change

significantly the probability of failure for shear and tension perpendicular

to the grain, because they depend only on the capacity of the single beams.

On the contrary, the probability of bending failure increases of 30% pro-

portionally to the increasing redistribution factor.

The increasing occurrence of bending failure explains the slight decrease in

the shear probability of failure with the increase of redistribution factor.

The results also show a higher value of the probability of failure for all

mechanisms for the primary beams’ system with continuous purlins, due to

the slight higher weight of the secondary system respect to the lap-jointed

configuration.

Table 7.5 lists the probability of failure for the secondary system (purlins)

for the three configurations chosen when the interaction with the primary

system (beams) is considered. As expected, the secondary system with sim-

ply supported configuration does not have a big change in the probability
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of failure, due to the limited interactions with the primary system. The

probability of failure for continuous and lap-jointed purlins increases, due

to the effect of the interaction, of 50% and 37% respectively. The difference

mostly depends on the fact that continuous purlins are more sensitive to

the additional displacement at the support caused by the loss of stiffness of

primary beams. Indeed, the higher bending moment on the support caused

by the imposed displacement has a lower effect on lap-jointed purlins due

to the coupling of the two section across the support.

Beams & Simply Supp. Purlins Pr (F50yr) σ 95% confidence bounds

10% redistribution 3.00 10−3 1.72 10−4 2.6 10−3 ÷ 3.3 10−3

20% redistribution 4.00 10−3 1.98 10−4 3.6 10−2 ÷ 4.3 10−2

30% redistribution 5.60 10−3 2.36 10−4 5.1 10−3 ÷ 6.0 10−3

40% redistribution 6.60 10−3 2.60 10−4 6.1 10−3 ÷ 7.1 10−3

Beams& Continuous Purlins Pr (F50yr) σ 95% confidence bounds

40% redistribution 1.00 10−2 3.16 10−4 9.4 10−3 ÷ 1.06 10−2

Beams & Lap-Jointed Purlins Pr (F50yr) σ 95% confidence bounds

40% redistribution 4.7 10−3 2.12 10−4 4.35 10−3 ÷ 5.1 10−3

Table 7.1: Probability of Bending Failure for the primary beams system.

Figures 7.1 and 7.2, show the trend of mean and standard deviation of

the area failed in the 50yr period, computed considering only purlins and

only the beams respectively. The area failed follow a constant trend due to

the fact that no degradation of materials is considered.

For a redistribution factor of 20% (total redistribution of 40%) and more,

the behavior of simply supported purlins does not change both in the mean

value and in the standard deviation.
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Beams & Simply Supp. Purlins Pr (F50yr) σ 95% confidence bounds

10% redistribution 1.10 10−3 1.06 10−4 9.13 10−3 ÷ 1.3 10−3

20% redistribution 1.40 10−3 1.80 10−4 1.2 10−3 ÷ 1.6 10−3

30% redistribution 1.20 10−3 1.10 10−4 9.8 10−4 ÷ 1.4 10−3

40% redistribution 9.50 10−4 9.70 10−5 7.6 10−4 ÷ 1.1 10−3

Beams& Continuous Purlins Pr (F50yr) σ 95% confidence bounds

40% redistribution 2.20 10−3 1.47 10−4 1.9 10−3 ÷ 2.5 10−3

Beams & Lap-Jointed Purlins Pr (F50yr) σ 95% confidence bounds

40% redistribution 6.5 10−4 8.06 10−5 4.9 10−4 ÷ 8.1 10−4

Table 7.2: Probability of Shear Failure for the primary beams system.

Beams & Simply Supp. Purlins Pr (F50yr) σ 95% confidence bounds

10% redistribution 2.70 10−2 5.2 10−4 2.6 10−2 ÷ 2.8 10−2

20% redistribution 2.57 10−2 5.1 10−4 2.47 10−2 ÷ 2.67 10−2

30% redistribution 2.74 10−2 5.2 10−4 2.63 10−2 ÷ 2.84 10−2

40% redistribution 2.75 10−2 5.2 10−4 2.64 10−2 ÷ 2.85 10−2

Beams& Continuous Purlins Pr (F50yr) σ 95% confidence bounds

40% redistribution 2.45 10−2 4.9 10−4 2.36 10−2 ÷ 2.55 10−2

Beams & Lap-Jointed Purlins Pr (F50yr) σ 95% confidence bounds

40% redistribution 1.72 10−2 4.15 10−4 1.64 10−2 ÷ 1.80 10−2

Table 7.3: Probability of Tension perp. Failure for the primary beams

system.
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Beams & Simply Supp. Purlins Pr (F50yr) σ 95% confidence bounds

10% redistribution 2.03 10−2 4.5 10−4 1.94 10−2 ÷ 2.12 10−2

20% redistribution 1.98 10−2 4.45 10−4 1.89 10−2 ÷ 2.06 10−2

30% redistribution 2.07 10−2 4.5 10−4 1.98 10−2 ÷ 2.16 10−2

40% redistribution 2.10 10−2 4.5 10−4 1.98 10−2 ÷ 2.16 10−2

Beams& Continuous Purlins Pr (F50yr) σ 95% confidence bounds

40% redistribution 1.92 10−2 4.4 10−4 1.83 10−2 ÷ 2.00 10−2

Beams & Lap-Jointed Purlins Pr (F50yr) σ 95% confidence bounds

40% redistribution 1.28 10−2 3.6 10−4 1.21 10−2 ÷ 1.35 10−2

Table 7.4: Probability of Failure for combination of Shear and Tension

Perp. for the primary beams system.

Simply Supp. Purlins Pr (F50yr) σ 95% confidence bounds

10% redistribution 2.31 10−2 4.8 10−4 2.22 10−2 ÷ 2.40 10−2

20% redistribution 2.25 10−2 4.7 10−4 2.16 10−2 ÷ 2.35 10−2

30% redistribution 2.35 10−2 4.8 10−4 2.26 10−2 ÷ 2.45 10−2

40% redistribution 2.35 10−2 4.8 10−4 2.26 10−2 ÷ 2.45 10−2

Continuous Purlins Pr (F50yr) σ 95% confidence bounds

40% redistribution 2.96 10−2 5.44 10−4 2.85 10−2 ÷ 3.06 10−2

Lap-Jointed Purlins Pr (F50yr) σ 95% confidence bounds

40% redistribution 9.60 10−3 3.1 10−4 9.00 10−3 ÷ 1.02 10−2

Table 7.5: Probability of bending Failure for the purlin system.
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Also for the primary beams (figure 7.2), the value of 20% of the redistri-

bution represents a limit above which the behavior of the system does not

change.

Figure 7.1: Mean and Standard deviation of the failed area for the simply sup-

ported purlins with redistribution 10%- 20%- 30%- 40%.
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Figures 7.3, 7.4 and 7.5, 7.6 show the path of the mean and standard

deviation for purlins and beams separately, when the roof is built with

continuous and lap-jointed purlin configurations. For both static indeter-

minate configurations, the behavior is similar with a slight higher mean

value of the percentage of area failed for the roof with continuous configu-

ration, due to a slightly higher weight of the roof.

Figures 7.7, 7.8 and 7.9, 7.10 show the histogram of the frequency for

the percentage of area failed for the three roof configurations. Results for
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Figure 7.2: Mean and Standard deviation of the failed area for the beams with

simply supp. purlins with redistribution 10-20-30-40%.
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Figure 7.3: Mean and Standard deviation of the failed area for the continuous

purlins.
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7.1 Numerical results for the roof system (MCS)

Figure 7.4: Mean and Standard deviation of the failed area for the beams with

continuous purlins.
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Figure 7.5: Mean and Standard deviation of the failed area for the lap-jointed

purlins.
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Structural Interaction

Figure 7.6: Mean and Standard deviation of the failed area for the beams with

lap-jointed purlins.
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purlins and beams are presented separately. In all cases, the increase in

the redistribution factor causes an increase in the frequency of highest val-

ues of area failed. For the purlins, the diagrams show a high frequency

of small area failed for static indeterminate purlins, while the simply sup-

ported purlins show also a not negligible frequency of high values of area

failed that increases with the redistribution factor.

The histograms for the primary beams show the highest frequency at the

value of 60% of area failed for the roof with simply supported purlins and

at the value of 40% for the roof with continuous and lap-jointed purlins.

In figure 7.11 the CDf of area failed for the simply supported secondary

system is reported for the different values of redistribution factor. The path

shows that the less is the redistribution ability, the better is the behavior

of the secondary system. Indeed, a small redistribution ability together

with compartmentalization should contain the extension of the failure. The
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7.1 Numerical results for the roof system (MCS)

Figure 7.7: Histograms of the failed area for the simply supported purlins with

redistribution 10-20-30-40%.
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Figure 7.8: Histograms of the failed area for the beams with simply sup. purlins

with redistribution 10-20-30-40%.
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Figure 7.9: Histograms of the failed area for the continuous purlins.
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Figure 7.10: Histograms of the failed area for the lap-jointed purlins.

20 30 40 50 60 70 80
0

50

100

150

200

250

% area

p A
F|

F(a
)

Beams with Lap−jointed Purlins

0 5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

% area

p A
F|

F(a
)

Lap−jointed purlins

182



7.1 Numerical results for the roof system (MCS)

primary system with simply supported purlins with low redistribution ca-

pacity (see figure 7.12), also behaves better for high values of area failed,

because the probability of exceeding the highest values is smaller. In addi-

tion, the range 40%-50% of the area failed represents a range of inversion

of the behavior for the primary system. This happens because the pri-

mary system can withstand small area failed also if a high percentage of

the load is redistributed (compartmentalization effect), while for big area

failed the system will be already collapsed and no redistribution is possible

(compartmentalization becomes inefficient).

Figure 7.11: CDF of the failed area for the simply supported purlins.
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In figures 7.13 and 7.14 the CDF of the percentage of area failed for both

purlins and beams with static indeterminate purlins is plotted. The CDF

for continuous configuration is more stiff. This implies a higher probabil-

ity to have small values of area failed. The primary system has the same

behavior in both cases.
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Figure 7.12: CDF of the failed area for beams with simply supported purlins and

redistribution 10-20-30-40%.
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Figure 7.13: CDF of the failed area for the beams and continuous purlins.
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Table 7.6 lists the statistics of the percentage of area failed computed

considering only the secondary system.

Table 7.7 lists the statistics of the percentage of area failed computed

considering only the primary system.
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7.1 Numerical results for the roof system (MCS)

Figure 7.14: CDF of the failed area for the beams and lap-jointed purlins.
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Secondary System - Purlins

Configuration min % max % E [AF | F ] median % st.dev. Pr (F (50yr))

Simply Supp. 10% 1 100 13.95 1 31.72 2.31 10−2

Simply Supp. 20% 1 100 18.38 1 35.98 2.25 10−2

Simply Supp. 30% 1 100 24.16 1 40.37 2.35 10−2

Simply Supp. 40% 1 100 25.18 1 40.58 2.64 10−2

Continuous 1.2 61.2 5.8 3.6 6.24 2.96 10−2

Lap-jointed 1.6 43.2 3.95 3.2 3.89 0.96 10−2

Table 7.6: Statistics of the percentage of area failed for the secondary

system.
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Primary system - Beams

Configuration min % max % E [AF | F ] median % st.dev. Pr (F (50yr))

Simply Supp. 10% 20 100 52.50 40.0 32.26 3.0 10−3

Simply Supp. 20% 20 100 55.08 40.0 31.24 4.0 10−3

Simply Supp. 30% 20 100 53.32 40.0 28.71 5.6 10−3

Simply Supp. 40% 20 100 50.10 40.0 28.54 6.6 10−3

Continuous 20 80 40.22 40.0 21.86 1.0 10−2

Lap-jointed 20 80 37.7 40.0 20.68 4.7 10−3

Table 7.7: Statistics of the percentage of area failed for the primary system.

Table 7.8 lists the statistics of the percentage of area failed computed

considering the entire roof system. The probability of failure in 50yr is

quite high because it strongly depends on the probability of failure of the

purlins. However, in terms of expected value of area failed, the roof with

simply supported purlins behaves better for low value of redistribution abil-

ity. Between the two static indeterminate configurations the continuous one

behaves better in terms of expected area failed.

Roof system

Configuration min % max % E [AF | F ] median % st.dev. Pr (F (50yr))

Simply Supp. 10% 1 100 13.90 1 31.87 2.61 10−2

Simply Supp. 20% 1 100 18.54 1 36.32 2.65 10−2

Simply Supp. 30% 1 100 24.30 1 40.58 2.91 10−2

Simply Supp. 40% 1 100 25.32 1 40.82 3.30 10−2

Continuous 1.2 80 14.24 4.80 20.06 3.28 10−2

Lap-jointed 1.6 80 16.25 4.80 21.18 1.19 10−2

Table 7.8: Statistics of the percentage of area failed for the roof system.
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7.1 Numerical results for the roof system (MCS)

Figure 7.15 shows the CDF of the area failed for the entire roof system

with simply supported purlins. Again, the roof system with low redistribu-

tion ability behaves better (upper path) because high values of area failed

have a lower probability to be exceeded.

Figure 7.16 shows the CDF path for the entire roof with the three purlin

configurations for the redistribution factor of 40% (total redistribution of

80%). For small area failed, the system with simply supported purlins

behaves better, while, for high values of area failed, the roof with static

indeterminate purlins shows a better behavior. The value of 20% of area

failed represents the value of area failed that corresponds to this change of

behavior.

This effect is clearly shown from tables 7.6, 7.7 and 7.8 that lists the ex-

pected area failed upon a failure E [AF | F ]. The roof with simply supported

purlins has an expected area failed that increases with the redistribution

factor. However, the two static indeterminate configurations show a lower

value of area failed.

Table 7.9 lists the values of the Risk computed according to Eq. 3.19

considering secondary system and primary system separately and then the

entire roof. The roof system with the lowest risk is the roof system with

lap-jointed purlins, while the roof system with continuous purlins shows the

worst behavior. The roof with simply supported purlins has an interme-

diate behavior with a lower risk, when the secondary system is built with

low capacity of redistributing the loads.
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Figure 7.15: CDF of the failed area for the roof system with simply supported

purlins with redistribution 10%- 20%- 30%- 40%.
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Figure 7.16: CDF of the failed area for the roof system with simply supported

continuous and lap-jointed purlins with redistribution 40%.
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7.1 Numerical results for the roof system (MCS)

E [AF ]

Configuration Purlins Beams Roof system

Pr (F (50yr))

Simply Supp. 10% 193.35 94.50 217.67

Simply Supp. 20% 248.13 132.19 294.78

Simply Supp. 30% 340.65 179.15 424.27

Simply Supp. 40% 398.85 198.39 501.34

Continuous 103.01 241.32 280.24

Lap-jointed 22.75 106.31 116.02

Table 7.9: Risk for the secondary system, primary system and of the timber

roof.

Table 7.10 lists the values of the Robustness computed according to Eq.

3.20. It can be noted that the simulations for the roof system with all the

interactions give results in terms of robustness of secondary system that

are in contrast to the simple model assessed in the previous chapter.

Pr
(
AF < 0.15 ·Aroof | F

)
Configuration Purlins Beams Roof system

Pr (F (50yr))

Simply Supp. 10% 0.869 0.368 0.87

Simply Supp. 20% 0.822 0.294 0.82

Simply Supp. 30% 0.762 0.271 0.76

Simply Supp. 40% 0.747 0.326 0.74

Continuous 0.930 0.415 0.71

Lap-jointed 0.977 0.464 0.61

Table 7.10: Robustness for the secondary system, primary system and the

timber roof.

Finally, in table 7.11, an overview of the results in terms of Reliability,

189



Structural Interaction

Risk and Robustness of the entire timber roof is presented.

Configuration Pr (F (50yr)) Risk Pr
(
AF < 0.15 ·Aroof | F

)
Simply Supp. 10% 2.61 10−2 217.67 0.87

Simply Supp. 20% 2.65 10−2 294.78 0.82

Simply Supp. 30% 2.91 10−2 424.27 0.76

Simply Supp. 40% 3.30 10−2 501.34 0.74

Continuous 3.28 10−2 280.24 0.71

Lap-jointed 1.19 10−2 116.02 0.61

Table 7.11: Reliability, Risk and Robustness for the timber roof.

The roof with simply supported purlins has an high probability of failure

and a high risk, but also it is the most robust according to the chosen ro-

bustness criterion. In addition, risk and likelihood of failure event increase

with the redistribution ability and interaction among the components of

primary and secondary system. The roof with continuous purlins has the

highest probability of failure and therefore a high risk. It is also less robust

than the roof with simply supported purlins, with the same redistribution

ability. The roof system with lap-jointed purlins has the lowest probability

of failure and the lowest risk, but is has the lowest robustness. Indeed,

figure 7.16 already shows this different behavior.

It may also be noted, (see figure 7.16), that the chosen threshold of 15%

of area failed in the definition of the robustness criterion, compete to the

range of area failed in which the compartmentalization effect is still active.

This can be seen from the inversion of the path of the CDF at the threshold

of 20% of AF . This inversion means that for wide failures the compartmen-

talization becomes ineffective, while the redundancy of static indeterminate

systems allow to have lower damages (risk), although already a wide area
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7.1 Numerical results for the roof system (MCS)

of the roof is collapsed.

In addition, according to the model of section 3.5, for the statically

determinate purlins, the failure of the primary beams leads to an additional

axial tension force. On the set of simulations it happens in the 98% of the

cases that the failure of the beam leads also to the failure of the purlins,

instead the primary beam will be hanging only in the 2% of the cases.
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Chapter 8

Conclusions

A comparative study of reliability, robustness and risk of large span timber

structure is presented. Although reliability and risk analysis are widely

studied in the scientific community, robustness is still a tough subject. In-

deed, a unique definition of structural robustness still has to be stated and

different studies attempt to provide a measure to structural robustness.

While structural design rules and existing codes ensure that none of the

limit state conditions is violated, providing an acceptable reliability, no

rule assure that the system has been designed for robustness. In addition,

from a decision-theory point of view, the optimal structural design should

minimize the total expected cost (design and maintenance cost plus risk),

thus, in order to achieve an optimal solution between additional cost to

increase robustness and the reduction of failure consequences, only a prob-

abilistic approach can be used.

In this study, a wide-span timber roof with different configurations of sec-
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ondary structures is investigated. All three purlin configurations comply

with the code requirements and the critical sections all have the same re-

liability. However, the system reliability of the three configurations is dif-

ferent because of the varying number of critical section inside each compo-

nent/element and due to the fact that system failure is defined through a

series system model. In terms of reliability of the secondary system, the

purlin system with simply supported configuration has the lowest reliabil-

ity due to the higher number of elements, but it also represents the system

with compartmentalization. Between the two static indeterminate purlins

configurations (redundancy), the lap-jointed is the most reliable due to a

lower number of element.

In terms of robustness of the secondary system, it can be argued the config-

uration consisting of simply supported purlins with low load redistribution

ability, is the optimal one, because a failure in this configuration leads to

the smallest failed area and it has the lowest probability of not fulfilling

the 15%-area requirement (probability based robustness criterion). These

calculations include the possibility of a random but systematic reduction of

strength (e.g. due to gross errors) and different redistribution ability. How-

ever, the calculated risk for the static determinate configuration is higher

than for the statically indeterminate configurations. This is due to the fact

that the probability of system failure is higher for simply supported con-

figuration, even though the consequences are lower.

Obviously, the secondary system assessment is not sufficient to state which

one is the optimal configuration for secondary structures in wide-span tim-

ber structures, because the primary beams were considered intact. A fur-
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ther complete investigation of the roof system showed the importance of

load redistribution capacity due to connection and residual strength of the

elements. The roof system with simply supported purlins shows always

the highest risk due to a too high probability of failure (low reliability).

For failure events characterized by small area failed, the roof with simply

supported purlins has the highest probability of fulfilling the 15%-area re-

quirement, due to the compartmentalization effect. This allows to contain

the extension of the failure even for high redistribution ability.

The roof with continuous purlins has very low reliability due to the inter-

action between beam failure mechanisms and purlins failure mechanism.

From the risk and robustness point of view, this configuration has a lower

risk but also a lower robustness. The roof configuration with lap-jointed

purlins has the lowest probability of failure and risk, even if is has the lowest

robustness. However, the roof with simply supported purlins can eventu-

ally be subjected to the complete failure of the roof, while the maximum

collapsed area for both static indeterminate configurations is 80%. This

happens because for small area failed the compartmentalization of simply

supported purlins has the effect of contain the failure event, while for fail-

ures with big collapsed area, the redundancy effect of static indeterminate

configurations is more effective. this is shown by the inversion of the path

in the Cumulative Density Function of the area failed, upon a failure, for

the entire roof system.

Therefore, it is argued that despite the fact that the secondary system with

simply supported purlins is more robust, this study indicates that static in-

determinate configurations, and mostly the roof with lap-jointed purlins,
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are more optimal. In addition, lap-jointed purlins represent the cheapest

configuration, thus supporting the choice of this configuration also from a

risk (or rather expected cost) perspective. This points to a general problem

in the definition of robustness because a more robust system might often

be less optimal from a risk analysis point of view.

These conclusions, are also dependent on the fact that the distances be-

tween the purlins were adapted in order to receive the same utilization

factor for all systems. In common practice, the distances are based on re-

quirements from the roof cladding. If the same distances would be applied

to all systems, assuming a consistent utilization factor, the three systems

would show a more similar behavior. If the two static indeterminate config-

urations would be modified to have the same distance between purlins than

simply supported configuration, they would become slightly more robust,

but would also have a higher probability of system failure and thus exhibit

a higher risk. However, the risk-based approach presented in this study

do provide a tool for optimal design of wide-span timber roofs and the re-

sults obtained from this study might also hold for other systems. Indeed,

this comparative study shows how robustness and risk can be contradictory

criteria.
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Appendix A

The Fault Tree of the Failure

Event

In order to analyze with a logical mathematical approach the failure event

with its causes and consequences, not only the occurrences of failures should

be considered, but also the possibility that the failure event to be condi-

tioned by errors. The theory of fault tree can be used for this kind of

assessment. Fault tree approach allows to consider both probability of fail-

ure of the structure (reliability of the structure) and the possible failure

scenarios. It is possible to include also the evidence of a monitoring activ-

ity according to which the error or the damage can be detected or not.

The simple event tree suggested in Ellingwood [12] is drawn in figure A.1.

In figure A.1, F denotes the failure event of the structure (or of a component

of the structural system). The failure event can be defined as F = FS ∪FE

, i.e. as union of the failure event FS related to stochastic variability and
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The Fault Tree of the Failure Event

of the failure event FE related to the presence of errors E. E indicates the

absence of errors. The event tree shows also that failure due to stochastic

variability can occur both in presence and in absence of errors E, but also

when an error occur and it is not detected.

Figure A.1: Event-Tree of Failure Event.

E
Error 

occurrs

E
Error does 
not occurr

F
Failure due to

errors 

F
Failure due to 

stochastic variabiity

F
No Failure

F
Failure due to 

stochastic variabiity

F
No Failure

Pr(E)  Pr(FE|E)

Pr(E)  Pr(FS|E)

Pr(E)  Pr(F|E)

Pr(E)  Pr(F|E)

Pr(E)  Pr(F|E)

For the Total Probability Theorem, the probability of failure Pr(F ) can

be computed as in Eq. A.1.

Pr (F ) = [Pr(FE | E) + Pr(FS | E)] · Pr(E) +

+Pr
(
FS | E

)
· Pr(E). (A.1)
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The Pr(FS | E) is usually assumed to be zero because it is generally rec-

ognized that a structure, in presence of errors, will not fail due to stochastic

variability of load and capacity. Under this hypotheses the Eq. A.1 can be

written as:

Pr (F ) = Pr(FE | E) · Pr(E) + Pr
(
FS | E

)
· Pr(E). (A.2)

Due to the Bayes’ Theorem, the following equivalence is stated:

Pr(F | E) · Pr(E) = Pr(E | F ) · Pr(F ) (A.3)

Therefore, the Eq. A.2 can be written as:

Pr(F ) = Pr(F | E) ·
Pr
(
E
)

[1− Pr(E | F )] . (A.4)

The quantity
Pr(E)

[1−Pr(E|F )] in Eq. A.4 is also defined in [12] as human

error factor.

However, the Pr(F | E) is a predominant quantity in the expression of

the total probability theorem, while the term Pr(F | E) represents a base

value, according to which load and resistance factor can be chosen, and

the term Pr(F | E) is the base value for choosing among different design

concepts and construction procedures.

The possibility of different failure scenario can be included in the total

probability theorem.

Let’s denote with n the number of possible failure scenarios. The failure
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The Fault Tree of the Failure Event

event FE is then defined as union of the failure event Fi caused by an error

and within a certain scenario as in Eq. A.5, where Oi is the event that the

i− th error occurs and Di is the event that the i− th error is detected and

repaired.

FE =
n⋃

i=1

(
F ∩Di ∩Oi

)
. (A.5)

Due to Eq. A.5, the probability of failure event FE due to errors be-

comes:

FE =
n∑

i=1

(
F | Di, Oi

)
· Pr

(
Di | Oi

)
· Pr(Oi). (A.6)

According to Eq. A.6, the effect of design and construction errors on the

probability of failure can be reduced either by reducing their incidence or

by reducing their impact on the structural performance, while it is useless

to increase the safety factors.
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Appendix B

Computation of Ditlevsen

bounds for a series system

As reported in section 2.6.1, the upper and lower bound of the probability

of failure of a series system can be defined with the Ditlevsen Bounds.

The upper and lower bounds of probability of failure Pr(F ) for a series

system of np components are defined in Eqs. B.1 and B.2 respectively.

Pr(F ) ≥ P (F1) +

np∑
i=2

max

⎡
⎣0, P r(Fi)−

i−1∑
j=1

Pr(Fi ∩ Fj)

⎤
⎦ . (B.1)

Pr(F ) ≤
np∑
i=1

[
P (Fi)−

np∑
i=2

max
j<1

Pr (Fi ∩ Fj)

]
. (B.2)

In Eqs. B.1 and B.2, the probability of failure of the component i and the

joint probability of the pair of cut set ij can be computed knowing the

reliability index βi of each component and the correlation coefficient ρij of
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Computation of Ditlevsen bounds for a series system

the pair of cut set (see Eqs. B.3 and B.4).

Pr(Fi) = Φ (−βi) . (B.3)

Pr (Fi ∩ Fj) = Φ2 (−βi,−βj , ρij) , j = 1, · · · , np. (B.4)

By writing the Eq. B.1 in explicit form, the following expression for the

lower bound can be derived.

Pr(F ) ≥ Pr(F1) + 0 +max {0, P r(F2)− Pr (F2 ∩ F1)}+

+max {0, P r(F3)− [Pr (F3 ∩ F2) + Pr (F2 ∩ F1)]}+

+max {0, P r(F4)− [Pr (F4 ∩ F3) + Pr (F3 ∩ F2) + Pr (F2 ∩ F1)]}+

+ · · ·+max
{
0, P r(Fnp)−

[
Pr
(
Fnp ∩ Fnp−1

)
+ · · ·+ Pr (F2 ∩ F1)

]}
.

(B.5)

By writing the Eq. B.2 in explicit form, the following expression for the

upper bound can be derived.

Pr(F ) ≤ Pr(F1)− 0 + Pr(F2)− Pr (F2 ∩ F1)+

Pr(F3)− [max {Pr (F3 ∩ F2) , P r (F2 ∩ F1)] +

+Pr(F4)− [max {Pr (F4 ∩ F3) , P r (F3 ∩ F2) , P r (F2 ∩ F1)] + · · ·+

Pr(Fnp)−
[
max

{
Pr
(
Fnp ∩ Fnp−1

)
, · · · , P r (F2 ∩ F1)

]
.

(B.6)
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If the components of the series system have all the same reliability and

the system is equicorrelated with number of components np ≥ 5 and corre-

lation factor ρij near to 1, the joint probabilities of the pairs of cut set have

negligible values. Therefore, the expression in Eq. B.5 assumes the sim-

ple form of Eq. B.7 and expression in Eq. B.6 assumes the form of Eq. B.8.

Pr(F ) ≥ 5 · Φ (−β)− 10 · Φ2 (−β,−β, ρ) . (B.7)

Pr(F ) ≤ np · Φ (−β)− (np − 1) · Φ2 (−β,−β, ρ) . (B.8)

In addition, the probability of failure of the component i and the joint

probability in B.7 and B.8 are simply computed as follows.

Pr(F1) = Pr(F2) = · · · = Pr(Fnp) = Φ (−β) . (B.9)

Pr (F2 ∩ F1) = Pr (F3 ∩ F2) = Pr (F4 ∩ F3) =

= · · · = Pr
(
Fnp ∩ Fnp−1

)
= · · · = Φ2 (−β,−β,R) . (B.10)

where the correlation matrix of the bivariate-normal distribution R =

[ρ, 1; 1, ρ].
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