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INTRODUCTION 

 

 
The process of the evolution on earth during the last approximately 3.4 billion years 

resulted in a vast variety of living structures. The organisms were able to 

dynamically adapt  to various environmental conditions. It is therefore the principal 

goal of biomimetics to provide an in-depth understanding of the solutions and 

strategies, having evolved over time and their possible implementation into 

technological practice.(Bar-Cohen 2006) 

Engineers, scientists, and business people are increasingly turning toward Nature for 

design inspiration. 

Nature, through billions of years of trial and error, has produced effective solutions 

to innumerable complex real-world problems.  

The rigorous competition of natural selection means that waste and efficiency are not 

tolerated in natural systems, unlike many of the technologies devised by humans. 

Nature has developed materials, objects and processes that function from the 

macroscale to the nanoscale. 

The understanding of the functions provided by objects and processes found in 

Nature can guide us to imitate and produce nanomaterials, nanodevices and 

processes. The inspiration from a natural system, also referred to as bio-inspiration, 

is now becoming a widespread  practice in design: in spite of the limited number of 

patented products which can be considered fully inspired to Nature, the incorporation 

of biological concepts and functions in design objects is increasingly common 

(Vincent 2009). Bio-inspiration is not to be intended as a formal imitation of the 

natural geometry, aimed at mimicking functions and morphologies of natural 

structures. In contrast, bio-inspiration would rather imply transferring to the culture 

of design new qualities and strategies inspired by Nature, this process requires to 

establish a correlation between the design issues and the solutions offered by Nature. 

The analogy between the problem to be solved and the natural solution may be 

conceived at different levels, as suggested in the chapter IV of this thesis.  
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In this work we have classified the structures into two main areas: experimental 

observation on time and experimental observation on scale. As regard the 

classification on time, time rangings were considered from ere to seconds.  

As regards, the experimental observations on scale, it has been referred to the 

hierarchical structures, whereas, therefore, a macro, micro and nano-scale. 

Once the  classification has been made, we divided them according to their ability to 

imitate Nature: they could be observed for simple imitation or for applying 

functioning logic. The last sub-division is related to the complexity of the problem 

and, therefore, the number of variables involved. The problems  are divided, 

therefore, in the classical  and non classical. 

The evolution principle, provides an explanation for the differences in structures, 

functions, and behaviors among organisms and describes the adaptation process that 

ensures the survival of different species in their environment. As examples of this 

kind of optimization, we have studied the structures of mole-rat burrows and the 

objective of this study consists in exploring the possible mechanical-based 

relationship between the geometry of burrows and geo-mechanical characteristics of 

the soil that have evolved over time. 

Biological materials, over millions of years of evolution, were developed into 

hierarchical structures with intricate architectures from nm to m that often extend 

into macro scale resulting in unique, species-specific overall morphology with 

characteristic functions that provide an advantage for the organism in its 

environment. As example of optimization over space, we have studied fiber-

rinforced cartilage structures showing how the biological tissues are made to 

minimized the strain energy function. 

As a final example, the poroelastic solution by Cowin (Cowin 1994) obtained for  

homogeneous plates was generalized  to the case where the material is constituted by 

two components. The variation of the response function, in terms of stresses, 

pressure and fluid content and velocity, was analyzed by using several parametric 

values of permeabilities values, Young’s moduli and   Poisson’s ratios. The results 

allow to better interpret the adaptive processes governing many biological tissue, in 
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which the hierarchical heterogeneous features result from optimization logics aimed 

to obtain best varying stiffness and permeability features. 

Additionally, the analytical solution could be helpfully employed for designing 

controlled release systems of drugs, as those named “ .mechanically activated drug 

delivery devices” 

The present dissertation, within a mechanical framework aims to highlight how 

Nature always finds the best way to join a goal by optimizing the use of resources 

and by changing accordingly to external stimuli. 

It is felt that this contribution can be addressed to investigate and better understand 

the principles that Nature exploits for determining its functions and shapes, at the 

different scale levels, in this manner paving the way for overcoming imitation of 

Nature and designing new  intelligent materials and structures. 

 

 

 

 

. 

 

 

 

 

 

 

 

 

 

 



Chapter I – Remarks on the Theory of Elasticity 

 

 

 

1 

 

CHAPTER I 

 

 
REMARKS ON THE THEORY OF ELASTICITY 

 
1. Deformation Theory 
 

 

A central problem in nonlinear, three-dimensional elasticity consists in finding the 

equilibrium position of an elastic body that occupies a reference configuration Ω  in 

the absence of applied forces, where Ω  is a bounded open connected subset of 3
   

with a Lipschitz-continuos boundary. When subjected to applied forces, the body 

occupies a deformed configuration ( )Ωϕϕϕϕ , characterized by mapping 3: Ω → ϕϕϕϕ that 

must be in particular orientation-preserving in the set Ω  and injective on the set Ω , 

in order to be physically acceptable. 

Such mapping ϕϕϕϕ  are called deformations, and in the next sections their geometrical 

properties are studied. It is shown in particular that the changes in volume, surfaces 

and lengths associated with a deformation ϕϕϕϕ , are respectively governed by the scalar 

ϕϕϕϕ∇∇∇∇ , the matrix Cof ϕϕϕϕ∇∇∇∇  and the right Cauchy-Green strain tensor Τ=C ϕ ϕϕ ϕϕ ϕϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇ .  

 

1.1 Deformation in 
3

  

 

We assume once and for all that an origin o and an orthonormal basis { }1 2 3, ,e e e have 

been chosen in three-dimensional Euclidean space, which will therefore be identified 

with the space 3
 . From the notational viewpoint, we identify the point x  with the 

vector ox . Whenever we consider components of vectors in 3
 , or elements of 

matrices in 3
! , we make the convention that Latin indices (i, j, p,….) always take 

their values in the set {1, 2, 3}, and we combine this rule with the standard 

summation convention.  
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Let there be given a bounded, open, connected, subset Ω  of 3
  with a sufficiently 

smooth boundary (specific smoothness assumptions will be made subsequently). We 

shall think of the closure Ω  of the set Ω  as representing the volume occupied by a 

body “before it is deformed”; for this reason, the set Ω  is called the reference 

configuration. 

A deformation of the reference configuration Ω  is a vector field: 

 

 3: Ω → ϕϕϕϕ  (1.1) 

 

that is smooth enough, injective possibly on the boundary of the set Ω , and 

orientation–preserving. 

We denote by x  a generic point in the set Ω , by 
i

x  its components with respect to 

the basis { }ie , and by 
i i

x∂ = ∂ ∂  the partial derivative with respect to variable 
i

x . 

Given a deformation 
i i

ϕ= eϕϕϕϕ , we define at each point of the set Ω  the matrix  

 

 
1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

:

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

∂ ∂ ∂ !
" #

= ∂ ∂ ∂" #
" #∂ ∂ ∂$ %

ϕϕϕϕ∇∇∇∇ . (1.2) 

 

The matrix ϕϕϕϕ∇∇∇∇  is called the deformation gradient. Since a deformation is 

orientation-preserving by definition, the determinant of the deformation gradient 

satisfies the orientation-preserving condition: 

 

 ( )det 0>xϕϕϕϕ∇∇∇∇ for all x∈Ω  (1.3) 

 

In particular, the matrix ( )xϕϕϕϕ∇∇∇∇  is invertible at all points x  of the reference 

configuration Ω . 

Together with a deformation ϕϕϕϕ , it is often convenient to introduce the displacement 

u , which is the vector field: 

 



Chapter I – Remarks on the Theory of Elasticity 

 

 

 

3 

 

 3: Ω →u   (1.4) 

 

defined by the relation 

 

 = +id uϕϕϕϕ , (1.5) 

 

where id  denotes the (restriction to Ω  of the ) identity map from 3
  onto 3

 . 

Notice that the displacement gradient  

 

 
1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

:

u u u

u u u

u u u

∂ ∂ ∂ !
" #

= ∂ ∂ ∂" #
" #∂ ∂ ∂$ %

u∇∇∇∇  (1.6) 

 

and the deformation gradient are related by the equation 

 

 = + ∇I uϕϕϕϕ∇∇∇∇ . (1.7) 

 

Given a reference configuration Ω  and a deformation 3: Ω → ϕϕϕϕ , the set ( )Ωϕϕϕϕ  is 

called a deformed configuration. At each point 

 

 ( ):ϕ =x xϕϕϕϕ  (1.8) 

 

of a deformed configuration, we define the three vectors (Fig. 1.1)  

 

 ( ) ( )j j i iϕ∂ = ∂x x eϕϕϕϕ . (1.9) 

 

Each vector ( )j∂ xϕϕϕϕ  measures the “local deformation in the direction of the vector 

je ” in the sense that, to within the first order with respect to dt , the vector jdte  is 

transformed into the vector ( )j dt∂ xϕϕϕϕ . Equivalently, the vector ( )j∂ xϕϕϕϕ  is the tangent 
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vector to the jth coordinate line passing through the point ϕx  (i.e. the image by the 

deformation ϕϕϕϕ  of a segment parallel to the vector je  containing the point x  in its 

interior, and parametrized by t). Since the vector ( )j∂ xϕϕϕϕ  is precisely  the jth column 

of the matrix ϕϕϕϕ∇∇∇∇ , the knowledge of the deformation gradient completely define the 

local deformation to within the first order. 

We next compute the volume, area, and length elements in the deformed 

configuration. In each case, the objective is, for a given deformation, to express 

quantities (volumes, surfaces, lengths) defined over the deformed configuration in 

terms of the same quantities, but defined over the reference configuration. To 

emphasize the crucial distinction between both types of quantities, we adopt the 

following notational device: the superscript “ϕϕϕϕ ”is systematically attached to a 

quantity defined over the deformed configuration, while the related quantity over the 

reference configuration is designed by the same letter, but without the superscript 

“ϕϕϕϕ ”; this rule has already been applied, for denoting a generic point ∈Ωx  and the 

corresponding point ( ) ( )ϕ ∈ ∈ Ωx xϕ ϕϕ ϕϕ ϕϕ ϕ . 

This correspondence between a quantity defined as a function of the Lagrange 

variable x , and a similar quantity defined as a function of the Euler variable 

( )ϕ ∈x xϕϕϕϕ , can be extended to other quantities than volume, surfaces, and lengths. As 

we shall see, it applies equally well to divergences of tensor fields and applied 

forces. 
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Figure 1.1.  

Geometry of a deformation: the volume element, the area element, the unit outer normal, are denoted 

dx , da , n  in the reference configuration Ω , and dx
ϕ , da

ϕ , ϕn  in the deformed configuration 

( )Ωϕϕϕϕ . The vectors ( )j
∂ xϕϕϕϕ  define the deformation at a point x ∈ Ω  to within the first order. 

 

1.2  Volume element in deformation configuration 

 

Let ϕ  be a deformation. If dx denotes the volume element at the point x  of the 

reference configuration, the volume element dx
ϕ at the point ( )ϕ =x xϕϕϕϕ  of the 

deformed configuration (Fig. 1.1) is given by 

 

 ( )detdx x dx
ϕ = ϕϕϕϕ∇∇∇∇ , (1.10) 

 

since ( ) ( )det det 0x x= >ϕ ϕϕ ϕϕ ϕϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇  by assumption. 

The volume element dx
ϕ  is used for computing volumes in the deformed 

configuration: If A denotes a measurable subset of the reference configuration Ω , the 

volume of the set A and the volume of the deformed set ( ):A A
ϕ = ϕϕϕϕ  are respectively 

given by: 

 

 ( ): , : det
A AA

vol A dx vol A dx x dx
ϕ

ϕ ϕ= = =& & & ϕϕϕϕ∇∇∇∇ . (1.11) 
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Notice that the last equality is nothing but a special case of the formula for changes 

of variables in multiple integrals: Let ( ): A A A
ϕ→ =ϕ ϕϕ ϕϕ ϕϕ ϕ  be an injective, continuously 

differentiable mapping with a continuous inverse 1 : A A
ϕ− →ϕϕϕϕ . Then a function 

:u x A
ϕ ϕ∈ → R  is dx

ϕ -integrable over the set Aϕ if and only if the function 

 

 ( )( ) ( )detx A u x x∈ → !ϕ ϕϕ ϕϕ ϕϕ ϕ∇∇∇∇  (1.12) 

 

is dx-integrable over the set A and if this is the case,  

 

 ( )
( )

( )( ) ( )det
AA A

u x dx u x x dx
ϕ

ϕ ϕ

ϕ=

=& & !ϕ ϕϕ ϕϕ ϕϕ ϕ∇∇∇∇ . (1.13) 

It should be remembered that the validity of this formula hinges critically on the 

assumption that the mapping ϕϕϕϕ  is injective. Otherwise, it must be replaced by the 

more general relation: 

 

 ( ) ( ) ( )( ) ( )
( )

1
' ' ' det

A A

u x card x dx u x x dx
ϕ

− =& & !ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ∇∇∇∇  (1.14) 

where card B denote in general the number of elements in a set B. For details, see 

Schwartz (1967), Rado & Reichelderfer (1955), Federer (1969), Smith (1983), 

Bojarski & Iwaniec (1983), Marcus & Mizel (1973), Vodopyanov, Goldshtein & 

Reshetnyak (1979) for its extension to Sobolev space-valued mappings. 

These properties hold in n
 , for arbitrary n. The volume 

A

dx&  of a dx-measurable 

subset of n
  is denoted dx-means A. 

 

1.3 The Piola transform; area element in the deformed 

configuration 
 

 

As a preparation for computing the area element in the deformed configuration in 

terms of the area element in the reference configuration, it is convenient to introduce 
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a particular transformation between tensors defined over the reference configuration 

Ω  and tensors defined over the deformed configuration ϕΩ . Besides, this transform 

plays a crucial role in the definition of the first Piola-Kirchhoff tensor, following 

introduced. 

Let us first review some definitions and results pertaining to tensor fields defined 

over either sets Ω  or ϕΩ . By a tensor, we mean here a second-order tensor 

( )ij
T=T , i: row index, j: column index. 

Since we ignore the distinction between covariant and controvariant components, the 

set of all such tensors will be identified with the set 3
!  of all square matrices of 

order three. 

Given a smooth enough tensor field 3: Ω →T !  defined over the reference 

configuration Ω , we define at each point of Ω  its divergence divT  as the vector 

whose components are the divergences of the transposes of the row vectors of the 

matrix T . More explicitly, 

 

11 12 13 1 11 2 12 3 13

21 22 23 1 21 2 22 3 23

31 32 33 1 31 2 32 3 33

:
ij j ij i

T T T T T T

T T T T T T T T

T T T T T T

∂ + ∂ + ∂ !  !
" # " #

= = ' = ∂ + ∂ + ∂ = ∂" # " #
" # " #∂ + ∂ + ∂$ % $ %

T divT e . (1.15) 

 

Of course, a similar definition holds for the divergence ϕ ϕdiv T  of tensor fields 

3:ϕ ϕ →T B !  defined over the deformed configuration: 

 

 ( ) :
ij j ij i

T div T T
ϕ ϕ ϕ ϕ ϕ ϕ= ' = ∂T e  (1.16) 

 

where :j jx
ϕ ϕ∂ = ∂ ∂  denote the partial derivatives with respect to the variables jx

ϕ . 

A Simple application of the fundamental Green’s formula over the set Ω  shows that 

the divergence of a tensor field satisfies: 

 

 j ij i ij j idX T dx T n da
Ω Ω ∂Ω

 ! !
= ∂ = " #" #
$ % $ %

& & &divT e e  (1.17) 
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or equivalently in matrix form: 

 

 dx da
Ω ∂Ω

=& &divT Tn  (1.18) 

 

Recall that a vector is always understood as a column vector when viewed as a 

matrix; thus the notation Tn  in the previous formula represents the column vector 

obtained  by applying the matrix T to the column vector n . This Green formula is 

called the divergence theorem for tensor fields. A tensor field 3ϕ ϕ= Ω →T !  likewise 

satisfies: 

 

 dx da
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

Ω ∂Ω

=& &div T T n , (1.19) 

 

where ϕn denotes the unit outer normal vector along the boundary of the deformed 

configuration. 

We now come to an important definition. Let ϕϕϕϕ  be a deformation that is injective on 

Ω , so that the matrix ϕϕϕϕ∇∇∇∇  is invertible at all points of the reference configuration. 

Then if ( )ϕ ϕT x  is a tensor defined at the point ( )ϕ =x xϕϕϕϕ  of the deformed 

configuration, we associate with ( )ϕ ϕT x  a tensor ( )T x  defined at the point x  of the 

reference configuration by: 

 

                
( ) ( )( ) ( ) ( ) ( ) ( )( )

( )

: det ,

.

T
x x x

ϕ ϕ ϕ ϕ

ϕ

−
= =

=

T x T x T x Cof

x x

ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ

ϕϕϕϕ

∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇
 (1.20) 

 

In this fashion, a correspondence, called the Piola transform, is established between 

tensor fields defined over the deformed and reference configurations, respectively. 

The reason we proceed the other way is that the starting point in elasticity is a tensor 

field defined over the deformed configuration (the Cauchy stress tensor field), and it 
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is its Piola transform over three reference configuration (the first Piola –Kirchhoff 

stress tensor field) that subsequently plays a key role. 

 

As shown in the next theorem, the main interest of the Piola transform is that it yields 

a simple relation between the divergences of the tensors ϕT  and T  and (as a 

corollary) the desires relation between corresponding area elements da
ϕ  and da . 

 

 

1.4 Length element in the deformed configuration; Strain   

Tensor 

 
 

If a deformation ϕϕϕϕ  is differentiable at a point x ∈Ω , then (by definition of 

differentiability) we can write, for all points x + ∈Ω x : 

 

 ( ) ( ) ( ) ( )x x x o+ − = + x  x  xϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ∇∇∇∇  (1.21) 

and whence 

 

 ( ) ( ) ( ) ( ) ( )2 2T
x x x x o+ − = + x  x  x  xΤΤΤΤϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇  (1.22) 

The symmetric tensor 

 

 :C = ΤΤΤΤϕ ϕϕ ϕϕ ϕϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇  (1.23) 

 

found in the above expression is called in elasticity the right Cauchy-Green strain 

tensor. Notice that the associated quadratic form:  

 

 ( ) ( ) ( )3 3 2, T
x x∈ × → =R R ! C ! !ξ ξ ϕξ ξ ϕξ ξ ϕξ ξ ϕ∇∇∇∇  (1.24) 
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is positive definite at all points x∈Ω , since the deformation gradient ϕϕϕϕ∇∇∇∇  is 

everywhere invertible by assumption. As expected, this quadratic form is used for 

computing lengths: Let 

 ( ) , : , :compact interval off I f I Iγ = → Ω   (1.25) 

 

be a curve in the reference configuration (Fig. 1.2). Denoting by 
i

f  the components 

of the mapping f , the length of the curve γ  is given by ( )' /f df dt= : 

 

 ( ) ( ) ( ){ }
1/ 2

length : ' ' '
L L

f t dt f t f t dtγ = =& & , (1.26) 

while the length of the deformed curve ( ):ϕγ γϕϕϕϕ  is given by 

 ( ) ( )( ) ( ) ( ){ }
1/ 2

length : ' ' '
ij

L L

f t dt C f t f t f t dt
ϕγ = =& &!ϕϕϕϕ  (1.27) 

Consequently, the length elements dl  and dl
ϕ  in the reference and deformed 

configurations may be symbolically written as: 

 { } { }
1/ 2 1/ 2

,T T
dl dl

ϕ= =dx dx dx Cdx . (1.28) 

If in particular jdt=dx e , the corresponding length element in the deformed 

configuration is { }
1/ 2

jj j
dt dt= ∂C ϕϕϕϕ .  

 
 

Figure. 1.2. 

The length elements { }
1/ 2

T
dl = dx dx  and { }

1/ 2
T

dl
ϕ = dx Cdx  in the reference and deformed 

configurations. The tensor =C ΤΤΤΤϕ ϕϕ ϕϕ ϕϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇  is the right Cauchy-Green tensor. 



Chapter I – Remarks on the Theory of Elasticity 

 

 

 

11 

 

Although is has no immediate geometric interpretation, the left Cauchy-Green strain 

tensor 

 :B
ΤΤΤΤϕ ϕϕ ϕϕ ϕϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇  (1.29) 

 

which is also symmetric, is equally important; in particular, it plays an essential role 

in the representation theorem for the response function of the Cauchy stress tensor. 

For the time being, we simply notice that the two matrices T=C F F  and T=B FF  

have the same characteristic polynomial, since this is true in general of the products 

FG  and G F  of two arbitrary matrices F  and G  of the same order. When T=G F , 

this result is a direct consequence of the polar factorization theorem. 

In view of showing that the tensor C  is indeed a good measure of “strain”, 

understood here in its intuitive sense of “change in form or size”, let us first consider 

a class of deformations that induce no “strain”: A deformation is called a rigid 

deformation if it is of the form 

 

 ( ) 3, , , for allx o x+= + ∈ ∈ ∈Ωa Q x a R Q Oϕϕϕϕ , (1.30) 

 

where 3

+"  denotes the set of rotations in 3
 , i.e., the set of orthogonal matrices of 

order 3 whose determinant is +1. In other words, the corresponding deformed 

configuration is obtained by rotating the reference configuration around the origin by 

the rotation Q  and by translating it by the vector a : this indeed corresponds to the 

idea of a “rigid” deformation, where the reference configuration is “moved”, but 

without any “strain” (Fig. 1.3). Observe that the rotation Q  may be performed 

around any point 3∈x"   (Fig. 1.3), since we can also write  

 

 ( ) ( )x x= + Q x x" "ϕ ϕϕ ϕϕ ϕϕ ϕ  (1.31) 

 

If ϕϕϕϕ  is a rigid deformation, then ( ) 3
x += ∈Q "ϕϕϕϕ∇∇∇∇  at all points x∈Ω , and therefore 
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 ( ) ( )in , i.e., for all
T

x x I xΩ = ∈ΩC = I ϕ ϕϕ ϕϕ ϕϕ ϕ∇ ∇∇ ∇∇ ∇∇ ∇ . (1.32) 

 

It is remarkable that conversely, if C = I  in Ω  and det 0>ϕϕϕϕ∇∇∇∇ , the corresponding 

deformation is necessarily rigid.  

 

Theorem 1.2. (characterization of rigid deformations). Let Ω  be an open 

connected subset of  n , and let there be given a mapping  

 

 ( )1 ,∈ Ω nϕϕϕϕ  C  (1.33) 

 

that satisfies  

 

 ( ) ( ) =x x I
ΤΤΤΤ

∇ ∇∇ ∇∇ ∇∇ ∇ϕ ϕϕ ϕϕ ϕϕ ϕ  for all ∈Ωx  (1.34) 

 

then there exists a vector ∈ na R and an orthogonal matrix ∈ nQ O such that  

 

 ( ) = +x oϕϕϕϕ a Q x  for all ∈Ωx . (1.35) 

 

The result of theorem 1.2 can be viewed as a special case (let " be any rigid 

deformation in the theorem 1.3) of the following result, which shows that two 

deformations corresponding to the same tensor C  can be obtained from one another 

by composition with a rigid deformation. 

 

Theorem 1.3. Let Ω  be an open connected subset of  n , and let here be given two 

mappings  

 ( )1, ,∈ Ω nϕ ψϕ ψϕ ψϕ ψ  C  (1.36) 

 

such that  

 ( ) ( ) ( ) ( )∇ ⋅∇ = ∇ ⋅∇
T T

ϕ ϕ ψ ψϕ ϕ ψ ψϕ ϕ ψ ψϕ ϕ ψ ψx x x x  for all ∈Ωx  (1.37) 
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: Ω → nψψψψ   is injective, and let ( ) 0∇ ≠ψψψψ x  for all ∈Ωx . 

Then here exist a vector ∈ n
a   and an orthogonal matrix ∈ n

OQ  such that : 

 

 ( ) ( )= +x xϕ ψϕ ψϕ ψϕ ψa Q  for all ∈Ωx . (1.38) 

 

The previous two theorems are useful for understanding the role played by the tensor 

C . First, theorem 1.2. shows that the difference 

 

 2 := −E C I  (1.39) 

 

is a measure of the “deviation” between a given deformation and a rigid deformation, 

since =C I  if and only if the deformation is rigid. Secondly, theorem 1.3. shows that 

the knowledge of the tensor field 3: >Ω →C #  completely determines the deformation, 

up to composition with rigid deformations (the question of proving the existence of 

deformations for which the associated tensor field 3: >Ω →C #  is equal to a given 

tensor field is quite another matter). These considerations are illustrated in figure 1.3. 

 

 

Figure. 1.3. 

The right Cauchy-Green tensor C  is equal to #  if and only if the deformation is rigid. Two 

deformations corresponding to the same tensor C differ by a rigid deformation. 

 

The tensor E  is called the Green-St Venant strain tensor. Expressed in terms of the 

displacement gradient u∇∇∇∇ , in lieu of the deformation gradient uϕϕϕϕ∇ = Ι + ∇∇ = Ι + ∇∇ = Ι + ∇∇ = Ι + ∇  (recall 

that id uϕϕϕϕ = += += += + ), the strain tensor C  becomes  
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 2= + + + = +T TC # u u u u # EΤΤΤΤϕ ϕ =ϕ ϕ =ϕ ϕ =ϕ ϕ =∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇ ∇  (1.40) 

 

with  

 

 ( ) ( )1
2

:= = + +T TE u E u u u u∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇  (1.41) 

 

whose “first order” part ( )1
2

+Tu u∇ ∇∇ ∇∇ ∇∇ ∇  coincide with the linearized strain tensor, 

which played a key role in the earlier linearized theories that prevailed in elasticity.  

 

 

2. The Equation of Equilibrium 

 

 

A body occupying a deformed configuration ϕΩ , and subjected to applied body 

forces in its interior ϕΩ  and to applied surfaces forces on a portion ( )1 1

ϕ ϕΓ = Γ  of its 

boundary, is in static equilibrium if the fundamental stress principle of Euler and 

Cauchy is satisfied. This axiom, which is the basis of continuum mechanics, implies 

the celebrated Cauchy theorem, according to which there exists a symmetric tensor 

field 3:ϕ ϕΩ →T #  such that 

 

 
1

in

on

div
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

(− = Ω)
*

= Γ)+

T

T n

f

g
 (2.1) 

 

where ϕf  and ϕg  denote the densities of the applied body and surface forces 

respectively, and ϕn  is the unit outer normal vector along 1

ϕΓ . These equation are 

called the equilibrium over the deformed configuration, and the tensor ϕT  is called 

the Cauchy stress tensor. 

A remarkable feature of these equations is their “divergence structure”, which makes 

them amenable to a variational formulation; a disadvantage is that they are expressed 

in terms of the unknown ( )ϕ ϕ=x x . In order to obviate this difficulty while retaining 
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the divergence structure of the equations, we use the Piola transform 3: Ω →T !  of 

the Cauchy stress tensor field, which is defined by ( ) ( ) ( )Cof
ϕ ϕ=T x T x xϕϕϕϕ∇∇∇∇ . In this 

fashion, it is found that the equilibrium equations over ϕΩ  are equivalent to the 

equilibrium equations over the reference configuration Ω , 

 

 
1

in

on

div− = Ω(
*

= Γ+

T

Tn

f

g
 (2.2) 

 

where n  denotes the unit outer normal vector along 1Γ , and the fields 3: Ω →f   and 

3

1: Γ → g  are related to the fields 3:ϕ ϕΩ → f  and 3

1:ϕ ϕΓ → g  by the simple 

formulas dx dx
ϕ ϕ=f f  and dx dx

ϕ ϕ=g g . Because they are still in divergence form, 

these equations can be given a variational formulation, known as the principle of 

virtual work. This principle plays a key role as the starting point of the theory of 

hyperelastic materials, as well in the asymptotic theory of two-dimensional plate 

models. 

The tensor T  is called the first Piola-Kirchhoff stress tensor. We also introduce the 

symmetric second Piola-Kirchhoff stress tensor 1− TϕϕϕϕΣ = ∇Σ = ∇Σ = ∇Σ = ∇ , which naturally arises in 

the expression of the constitutive equations of elastic materials. 

 

2.1 Applied Forces 
 

 

We assume that in the deformed configuration ϕΩ  associated with an arbitrary 

deformation ϕϕϕϕ , the body is subjected to applied forces of two types: 

(i) applied body forces, defined by a vector field 

 

 3:ϕ ϕΩ → f , (2.3) 

 

called the density of the applied body forces per unit volume in the deformed 

configuration; 
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(ii) applied surface forces, defined by a vector field 

 

 3

1:ϕ ϕΓ → g  (2.4) 

 

on a da
ϕ -measurable subset 1

ϕΓ  of the boundary  

 

 :ϕ ϕΓ = ∂Ω  (2.5) 

 

called the density of the applied surface force per unit area in the deformed 

configuration. 

Let :ϕ ϕρ Ω →  denote the mass density in the deformed configuration, so that the 

mass of every dx
ϕ -measurable subset Aϕ of ϕΩ  is given by the integral 

( )
A

x dx
ϕ

ϕ ϕ ϕρ& . We assume that  

 

 ( ) 0 for allx x
ϕ ϕ ϕρ > ∈Ω  (2.6) 

 

The applied body forces can be equivalently defined by their density 3:ϕ ϕΩ →b   

per unit mass in the deformed configuration, which is related to the density ϕf  by 

the equation 

 

 ϕ ϕ ϕρ= bf  (2.7) 

 

The applied forces describe the action of the outside world on the body: An 

elementary force ( )x dx
ϕ ϕ ϕf  is exerted on the elementary volume dx

ϕ  at each point 

x
ϕ  of the deformed configuration. For example, this is the case of the gravity field, 

for which ( ) ( ) 3x g x
ϕ ϕ ϕρ= − ef  for all x

ϕ ϕ∈Ω  (assuming that the vector 3e  is vertical 

and oriented “upward”), where g  is the gravitational constant. Another example is 

given by the action of electrostatic forces. 
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Likewise, an elementary force ( )x dx
ϕ ϕ ϕg  is exerted on the elementary area da

ϕ  at 

each point x
ϕ  of the subset 1

ϕΓ of the boundary of the deformed configuration (Fig. 

1.3). Such forces generally represent the action of another body (whatever its nature 

its may be) along the portion 1

ϕΓ  of the boundary. 

 

 

Figure 1.3. 

Applied forces comprise applied body forces ( ) ,x dx x
ϕ ϕ ϕ ϕ∈ Ωf  and applied surface forces 

( ) 1
,x dx x

ϕ ϕ ϕ ϕ∈ Γg . The stress principle of Euler and Cauchy asserts in addition the existence of 

elementary surface forces ( ), ,da x A
ϕ ϕ ϕ ϕ ϕ ϕ∈ ∂t x n , along the boundary A

ϕ∂ , with  unit outer 

normal vector ϕn , of any sub-domain Aϕ of the deformed configuration ϕΩ . 

 

2.2 The stress principle of Euler and Cauchy 

 

Continuum mechanics for static problems is founded on the following axiom, named 

after the fundamental contributions of Euler (1757,1771) and Cauchy (1823,1827a). 

Note that the exterior product in 3
  is denoted ∧ . 

Axiom 1. (stress principle of Euler and Cauchy). Consider a body occupying a 

deformed configuration ϕΩ , and subjected to applied forces represented by densities 

3:ϕ ϕ= Ω →  f  and 3:ϕ ϕ= Ω →  g . Then there exists a vector field 
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 { }3 3

1 1: , where ; 1S S v
ϕ ϕΩ × → = ∈ =t v  , (2.8) 

 

such that: 

(a) For any sub-domain Aϕ of ϕΩ , and at any point 1 A
ϕ ϕ ϕ∈Γ ∩ ∂x  where the unit 

outer normal vector ϕn  to 1 A
ϕ ϕΓ ∩ ∂  exists: ( ) ( ),ϕ ϕ ϕ ϕ ϕ=t x n g x . 

(b) Axiom of force balance: For any sub-domain Aϕ of ϕΩ ,  

 

 ( ) ( ),

A A

dx dx
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

∂

+ =& &f x t x n 0  (2.9) 

 

where ϕn  denotes the unit outer normal vector along A
ϕ∂ . 

(c) Axiom of moment balance: For any sub-domain Aϕ  of ϕΩ ,  

 

 ( ) ( ),

A A

dx dx
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

∂

∧ + ∧ =& &ox f x ox t x n 0 . (2.10) 

 

The stress principle thus first asserts the existence of elementary surface forces 

( ), da
ϕ ϕ ϕ ϕt x n  along the boundaries of all domains of the reference configuration 

(Fig. 1.3.). 

Secondly, the stress principle asserts that at a point ϕx of the boundary A
ϕ∂  of a sub-

domain Aϕ , the elementary surface force depends on the sub-domain Aϕ , only via 

the normal vector ϕn  to A
ϕ∂  at ϕx . While it would be equally conceivable a priori 

that the elementary surface force at ϕx  be also dependent on other geometrical 

properties of the sub-domain Aϕ , for instance the curvature of A
ϕ∂  at ϕx , etc., it is 

possible to rigorously rule out such further geometrical dependences by constructing 

a general theory of surfaces forces, as shown by Noll (1959). 

Thirdly, the stress principle asserts that any sub-domain Aϕ  of the deformed 

configuration ϕΩ , including ϕΩ  itself, is in static equilibrium, in the sense that the 

torsor formed by the elementary forces ( ), ,da x A
ϕ ϕ ϕ ϕ ϕ ϕ∈∂t x n , ϕn  normal to A

ϕ∂  at 
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ϕx , and the body forces ( )d
ϕ ϕ ϕf x x , Aϕ ϕ∈x , is equivalent to zero. This means that 

its resultant vector vanishes (axiom of force balance) and that its resulting moment 

with respect to the origin (and thus with respect to any other point, by a classical 

property of torsos) vanishes (axiom of moment balance). 

Hence the stress principle mathematically express, in the form of an axiom, the 

intuitive idea that the static equilibrium of any sub-domain Aϕ of ϕΩ , already 

subjected to given applied body forces ( )d
ϕ ϕ ϕf x x , Aϕ ϕ∈x , and (possibly) to given 

applied surface forces ( )da
ϕ ϕ ϕg x  at those points 1 A

ϕ ϕ ϕ∈Γ ∩ ∂x  where the outer 

normal vector to 1 A
ϕ ϕΓ ∩ ∂  exists, is made possible by the added effect of elementary 

surfaces forces of the specific form indicated, acting on the remaining part of the 

boundary A
ϕ∂ . 

 

2.3 Cauchy’s theorem; The Cauchy stress tensor 
 

 

We now derive consequences of paramount importance from the stress principle. The 

first one, due to Cauchy (1823,1827a), is one of the most important results in 

continuum mechanics. It asserts that the dependence of the Cauchy stress vector 

( ),ϕ ϕ ϕt x n  with respect to its second argument 1S∈n  is linear, i.e., at each point 

ϕ ϕ∈Ωx , there exists a tensor ( ) 3ϕ ϕ ∈T x !  such that ( ) ( ),ϕ ϕ ϕ ϕ ϕ=t x n T x n  for all 

1S∈n ; the second one asserts that at each point ϕ ϕ∈Ωx , the tensor ( )ϕ ϕT x  is 

symmetric; the third one, again due to Cauchy (1827b, 1828), is that  the tensor field 

3:ϕ ϕΩ →T !  and the vector fields 3:ϕ ϕΩ → f  and 3

1:ϕ ϕ= Γ → g  are related by a 

partial differential equation in ϕΩ , and by a boundary condition on 1

ϕΓ , respectively. 

 

Theorem 1.2. (Cauchy’s theorem). Assume that the applied body force density 

3:ϕ ϕΩ → f  is continuous, and that the Cauchy stress vector field  

 

 ( ) ( ) 3

1: , ,S
ϕ ϕ ϕ ϕ ϕ ϕ∈Ω × → ∈t x n t x n   (2.11) 
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is continuously differentiable with respect to the variable ϕ ϕ∈Ωx  for each 1S∈n  and 

continuous with respect to the variable 1S∈n  for each ϕ ϕ∈Ωx . Then the axioms of 

force and moment balance imply that there exists a continuously differentiable tensor 

field 

 

 ( ) 3:ϕ ϕ ϕ ϕ ϕ∈Ω → ∈T x T x ! , (2.12) 

 

such that the Cauchy stress vector satisfies 

 

 ( ) ( ) 1, for all and all S
ϕ ϕ ϕ ϕ ϕ ϕ= ∈Ω ∈t x n T x n x n , (2.13) 

 

and such that  

 ( ) ( ) for alldiv
ϕ ϕ ϕ ϕ ϕ ϕ ϕ− = ∈ΩT x f x x , (2.14) 

 ( ) ( ) for all
Tϕ ϕ ϕ ϕ ϕ ϕ= ∈ΩT x T x x , (2.15) 

 ( ) ( ) 1for allϕ ϕ ϕ ϕ ϕ ϕ ϕ= ∈ΓT x n g x x  (2.16) 

 

where ϕn  is the unit outer normal vector along 1

ϕΓ . 

The symmetry tensor ϕT  is called the Cauchy stress tensor at the point ϕ ϕ∈Ωx . It is 

helpful to keep in mind the interpretation of its elements ( )ϕ ϕ
ij

T x : Since 

( ) ( ),ϕ ϕ ϕ ϕ= ⋅
j ij i

xt e T x e , the elements of the j-th row of the tensor ( )ϕ ϕ
xT  represent the 

components of the Cauchy stress vector ( ),ϕ ϕ
xt n   at the point ϕx  corresponding to 

the particular choice = jn e  (Fig. 1.4. where  the case j=1 is considered). The 

knowledge of the three vectors ( ),ϕ ϕ
j

xt e  in turn  completely determines the Cauchy 

stress vector ( ),ϕ ϕ
xt n  for an arbitrary  vector 1= ∈

i i
n Sn e , since  
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 ( ) ( ), ,ϕ ϕ ϕ ϕ=
j j

x n xt n t e  (2.17) 

 

This observation is used in the drawing of figures, where the Cauchy stress vector is 

often represented on three mutually perpendicular faces of a rectangular 

parallelepiped. 

 

e3

e1

2e

xda T21 2e

T11 1e

T31 3e

t ( )x e1, =Ti1
e

 

Fig. 1.4. 

Interpretation of the elements 
1

ϕ
i

T  of the Cauchy stress tensor ( )ϕ ϕ= ijTT . 

 

3. Linear Anisotropic Elastic Media 
 

 

The relation between stress and strain in an anisotropic elastic material are presented 

in this section. A linear anisotropic elastic material can have as many as 21 elastic 

constants. This number is reduced when the material possesses a certain material 

symmetry. The number of elastic constants is also reduced, in most cases, when a 

two-dimensional deformation is considered. An important condition on elastic 

constants is that the strain energy must be positive. This condition implies that the 

6x6 matrices of elastic constants presented herein must be positive definite. 

 

3.1  Elastic Stiffnesses 

 

Referring to a fixed rectangular coordinate system 1x , 2x , 3x , let ijσ  and ijε  be the 

stress and strain, respectively, in an anisotropic elastic material. The stress-strain law 

can be written as  
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 ij ijkl klCσ ε=  (3.1) 

 

in which ijhkC , are the elastic stiffnesses which are components of a fourth rank 

tensor. They satisfy the full symmetry conditions 

 

 , ,ijkl jikl ijkl ijlk ijkl klijC C C C C C= = = . (3.2) 

 

Before we present justifications for the three conditions in (3.2), we show that (3.2)1 

and (3.2)3 imply (3.2)2. Using (3.2)3, (3.2)1 and (3.2)3 in that order we have  

 

ijkl klij lkij ijlkC C C C= = =  

 

which proves (3.2)2. Therefore the three conditions in (3.2) are written as 

 

 ijkl jikl klijC C C= = . (3.3) 

 

One can also show that (3.2)2 and (3.2)3 imply (3.2)1.  

The first equation of (3.2) follows directly from the symmetry of the stress tensor 

ij jiσ σ= . The second equation of (3.2) does not follow directly from the symmetry of 

the strain tensor ij jiε ε= . However, if the ijklC  in (3.2) do not satisfy (3.2)2, we rewrite 

(3.2) as  

 

1 1 1 1
2 2 2 2ij ijkl kl ijkl kl ijkl kl ijlk lkC C C Cσ ε ε ε ε= + = +  

 

or since 
lk kl

ε ε= , 

 

 ( )1
2ij ijkl ijlk kl

C Cσ ε= + . (3.4) 
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The coefficients of 
kl

ε  are symmetric with the subscripts kl. We can therefore 

redefine the coefficients of 
kl

ε  in (3.4) as the new ijklC  which satisfy (3.2)2.  

The third equation follows from the consideration of strain energy. The strain energy 

W  per unit volume of the material is 

 

 
0 0

pq pq

ij ij ijkl kl ij
W d C d

ε ε
σ ε ε ε= =& & . (3.5) 

 

We demand that the integral be independent of the path ijε  takes from 0 to pqε .  

If not, say path 1 yields a larger integral than path 2, one can consider loading the 

material from 0 to pqε  through path 1, and unloading from pqε  to 0 through the 

reverse of path 2. The energy gained is the difference between the W ’s for path 1 

and path 2. If we repeat the process we can extract unlimited amount of energy from 

the material, which is physically impossible for a real material. Therefore the integral 

in (3.5) must be independent of the path taken by ijε , and W  depends on the final 

strain pqε  only. This implies that the integrand must be the total differential dW , i.e.,  

 

 ijkl kl ij ij

ij

W
C d dW dε ε ε

ε

∂
= =

∂
. (3.6) 

Since ijdε  is arbitrary we must have  

 

 ij ijkl kl

ij

W
Cσ ε

ε

∂
= =

∂
 (3.7) 

in which the first equality follows from (3.1). Differentiation of (3.7) with 
kl

ε  leads 

to  

2

ijkl

kl ij

W
C

ε ε

∂
=

∂ ∂
 

The double differentiations on the right are interchangeable. Therefore 
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ijkl klijC C=  

is the condition for the integral in (3.5) to be Independent of the loading path.  

This proves (3.2)3. With (3.2), (3.6) is written as 

 

( )1
2ijkl kl ij ijkl ij kl

dW C d d Cε ε ε ε= = . 

Hence 

 1 1
2 2ijkl ij kl ij ijW C ε ε σ ε= = . (3.8) 

 

and since the strain energy must be positive, it results 

 

 0ijkl ij klC ε ε >  (3.9) 

for any real, nonzero, symmetric tensor 
kl

ε . 

 

3.2  Elastic Compliances 

 

 

The inverse of (3.1) is written as 

 

 ij ijkl klSε σ=  (3.10) 

 

where ijklS  are the elastic compliance which are components of a four rank tensor. 

They also possess the full symmetry  

 

 , ,ijkl jikl ijkl ijlk ijkl klijS S S S S S= = =  (3.11) 

 

or, as in (3.3)  

 

 ijkl jikl klijS S S= = . (3.12) 
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The justifications of the first and second equations in (3.11) are similar to their 

counterparts in (3.3). The justification of (3.11)3 also follows from the energy 

consideration. Integration by parts of (3.12)1 leads to  

 

0 0

pq pq

pq pq ij ij pq pq ijkl kl ij
W d S d

σ σ
σ ε ε σ σ ε σ σ= − = −& & . 

 

If W depends on the final strain pqε  it depends on the final stress pqσ . The last 

integral which represents the complementary energy must be independent of the path 

ijσ  takes from 0 to the final stress pqσ . Following a similar argument for ijklC , we 

deduce that(3.12) 3 must hold for the integral to be path independent. Since the strain 

energy must be positive, the substitution of the (3.10) into the (3.8) yields  

 

 0ijkl ij klS σ σ >  (3.13) 

3.3  Contracted Notations 
 

 

Introducing the contracted notation (Voigt, 1928; Lekhnitskii, 1963; Christensen, 

1979) 

 

 
11 1 22 2 33 3

32 4 31 5 12 6

, , ,

, , ,

σ σ σ σ σ σ

σ σ σ σ σ σ

= = =

= = =
 (3.14) 

 
11 1 22 2 33 3

32 4 31 5 12 6

, , ,

2 , 2 , 2 ,

ε ε ε ε ε ε

ε ε ε ε ε ε

= = =

= = =
 (3.15) 

 

the stress-strain law (3.1) and (3.2) can be written as 

 

 ,C C Cα αβ β αβ βασ ε= = , (3.16) 

 

or, in matrix notation,  
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 , T= =$ $ $T E . (3.17) 

 

In the above T  and E  are 6 1×  column matrices and $  is the 6 6×  symmetric 

matrix given by 

 

 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

, -
. /
. /
. /

= . /
. /
. /
. /
. /0 1

$  (3.18) 

 

The transformation between ijklC  and Cαβ  is accomplished by replacing the subscripts 

ij (or kl) by α  (or β ) using the following rules: 

 

 

( )(or ) or

11 1

22 2

33 3

32 or 23 4

31 or 13 5

12 or 21 6

ij kl α β↔

↔

↔

↔

↔

↔

↔

 (3.19) 

 

The presence of the factor 2 in (3.15)4-5-6 but not in (3.14)4-5-6 6 is necessary for the 

symmetry of $ . 

Analogously, with reference to the equation (3.14) and(3.15), the stress-strain law in 

the form (3.10) may be expressed in a matrix form, as it follows: 

 

 , T= =# # #E T  (3.20) 

 



Chapter I – Remarks on the Theory of Elasticity 

 

 

 

27 

 

where the compliance tensor #  is expressed in form of the 6 6×  symmetric matrix, 

given by: 

 

 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

, -
. /
. /
. /

= . /
. /
. /
. /
. /0 1

#  (3.21) 

 

Note that the transformation between ijklS  and Sαβ  is similar to that one between ijklC  

and Cαβ  except the following: 

 

 

if both , 3

2 if either or 3

4 if both , 3.

ijhk

ijhk

ijhk

S S

S S

S S

αβ

αβ

αβ

α β

α β

α β

= ≤

= ≤

= >

 (3.22) 

 

From (3.17)1 and (3.20)1, it is obtained the expression of the strain energy, the strain 

energy W becomes:  

 

 1 1
2 2

T T T
W = = =T E E E T T$ #  (3.23) 

 

and, for the positiveness of W, it must be: 

 

 
0

0

T

T

>

>

E E

T T

$

#
 (3.24) 

This implies that the matrices $  and #  are both positive definite. Moreover, the 

substitution of the (3.20)1 into the (3.17)1 yields: 

 

 = =$ # % #$  (3.25) 
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where the second equality follows from the first one which says that $  and #  are 

the inverses of each other and, hence their product commute. 

 

3.4  Material Symmetry 

 

The 6 6×  matrices $  and #  contain 21 independent elastic constants. The number 

of independent constants is reduced when the material possesses a certain material 

symmetry.  

Under an orthogonal transformation  

 

 * *ori ij jx Q x= = Qx x  (3.26) 

 

in which Q  is an orthogonal matrix that satisfies the relations: 

 

 T T⋅ = =Q Q Q QΙΙΙΙ , (3.27) 

 

the four rank elasticity tensor *

ijklC , referred to the *

i
x  coordinate system becomes  

 

 *C Cijkl ip jq kr ls pqrsQ Q Q Q=  (3.28) 

 

If it results *

ijkl ijklC C= , i.e.,  

 

 C Cijkl ip jq kr ls pqrsQ Q Q Q=  (3.29) 

 

material is said to possess a symmetry with respect to Q . 

An anisotropic material possesses the symmetry of central inversion if (3.29) is 

satisfied for  

 



Chapter I – Remarks on the Theory of Elasticity 

 

 

 

29 

 

 

1 0 0

0 1 0

0 0 1

−, -
. /= − = −. /
. /−0 1

Q I . (3.30) 

 

It is obvious that the (3.29) is satisfied by the Q  given in the (3.30) for any ijklC . 

Therefore, all the anisotropic materials have the symmetry of central inversion. 

If Q  is a proper orthogonal matrix, the transformation (3.26) represents a rigid body 

rotation about an axis. So, an anisotropic material is said to possess a rotational 

symmetry if the (3.29) is satisfied for: 

 

 ( )
cos sin 0

sin cos 0

0 0 1

r

θ θ

θ θ θ

, -
. /= −. /
. /0 1

Q  (3.31) 

 

which represents, for example, a rotation about the 3x -axis an angle θ .  

An orthogonal transformation Q  is a reflection if  

 

 2 T= − ⊗Q I n n  (3.32) 

 

where n  is a unit vector normal to the reflection plane. If m  is any vector on the 

plane,  

 

 ,= − = −Qn n Qm m . (3.33) 

 

Thus a vector normal to the reflection plane reverses its direction after the 

transformation while a vector on the reflection place remains unchanged. When 

(3.29) is satisfied by the Q  of (3.32), the material is laid to possess a symmetry 

plane. For example, let  
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 [ ]cos ,sin ,0T θ θ=n  (3.34) 

 

 

the symmetry plane. In this case, the orthogonal matrix Q  of the (3.32) has the 

following expression 

 

 ( )
2 cos 2 sin 2 0

sin 2 2 cos2 0 ,
2 2

0 0 1

θ θ
π π

θ θ θ θ

+, -
. /= − − < ≤. /
. /0 1

Q , (3.35) 

 

which is an improper orthogonal matrix. Since θ  and θ π+  represent the same 

plane, θ  is limited to the range shown in (3.35)2.  

When 0θ = , Q  becomes: 

 

 ( )
1 0 0

0 0 1 0

0 0 1

−, -
. /= . /
. /0 1

Q  (3.36) 

 

which represents a reflection about the plane 1 0=x . When (3.29) is satisfied by 

(3.36), the material has a symmetry plane at 1 0x = . If (3.29) is satisfied by (3.35) for 

any θ , the material is transversely isotropic. The 3x -axis is the axis of symmetry. 

Two extreme cases of anisotropic elastic materials are triclinic materials and 

isotropic materials. A triclinic material possesses no rotational symmetry or a plane 

of reflection symmetry. An isotropic material possesses infinitely many rotational 

symmetries and planes of reflection symmetry.  

 

3.5 The Elasticity Tensor for Materials with Symmetry 

Planes 
 

 

Depending on the number of rotations and/or reflection symmetry a crystal 

possesses, Voigt (1928) has classified crystals into 32 classes. (See also Gurtin, 
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1972; Cowin and Mehrabadi, 1987; and Mehrabadi and Cowin. 1990). In terms of 

the 6 6×  matrix $  however there are only 8 basic groups. For a non-crystalline 

material the structure of $  can also be represented by one of the 8 basic groups. We 

list below the 8 basic groups for $  according to the number of symmetry planes that 

each group has. Consideration of rotational symmetry does not change the structure 

of $  in each group. Without loss in generality we choose the symmetry plane (or 

planes) to coincide with the coordinate planes whenever possible. We will therefore 

employ the orthogonal matrix Q  (3.35) which represents a reflection with respect to 

a plane whose normal is on the ( )1 2,x x  plane making an angle θ  with the 1x -axis. 

We will also employ the orthogonal matrix  

 

 ( )
1 0 0

ˆ 0 cos2 sin 2 ,
2 2

0 sin 2 cos2

π π
ψ ψ ψ ψ

ψ ψ

, -
. /= − − − < ≤. /
. /−0 1

Q  (3.37) 

 

which represents a reflection with respect to a plane whose normal is on the ( )2 3,x x  

plane making an angle ψ  with the 2x -axis, (Fig. 1.6.). The plane 2 0x =  can be 

represented by either 2θ π=  or 0ψ = .  

 

Figure. 1.6. 

I. Triclinic Materials. No symmetry planes exist. 
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11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

21

C C C C C C

C C C C C C

C C C C C C
n

C C C C C C

C C C C C C

C C C C C C

, -
. /
. /
. /

= =. /
. /
. /
. /
. /0 1

$  (3.38) 

 

 

II.  Monoclinic Materials. One symmetry plane. 

 

(a) Symmetry plane at 1 0x = , i.e., 0θ = . 

 

 

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

55 56

56 66

0 0

0 0

0 0
13

0 0

0 0 0 0

0 0 0 0

C C C C

C C C C

C C C C
n

C C C C

C C

C C

, -
. /
. /
. /

= =. /
. /
. /
. /
. /0 1

$  (3.39) 

 

 

(b) Symmetry plane at 2 0x = , i.e., 2θ π=  or 0ψ = . 

 

 

11 12 13 15

12 22 23 25

13 23 33 35

44 46

15 25 35 55

46 66

0 0

0 0

0 0
13

0 0 0 0

0 0

0 0 0 0

C C C C

C C C C

C C C C
n

C C

C C C C

C C

, -
. /
. /
. /

= =. /
. /
. /
. /
. /0 1

$  (3.40) 

 

 

 

(c) Symmetry plane at 3 0x = , i.e., 2ψ π= . 
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11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

0 0

0 0

0 0
13

0 0 0 0

0 0 0 0

0 0

C C C C

C C C C

C C C C
n

C C

C C

C C C C

, -
. /
. /
. /

= =. /
. /
. /
. /
. /0 1

$  (3.41) 

 

 

II. Orthotropic (or Rhombic) Materials. The three coordinate planes 0θ = , 

2π , and 2ψ π=  are the symmetry planes. 

 

 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0

0 0 0

0 0 0
9

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C
n

C

C

C

, -
. /
. /
. /

= =. /
. /
. /
. /
. /0 1

$  (3.42) 

 

III. Trigonal Materials. Three symmetry planes at 0θ =  and 3π± . 

 

 

11 12

11 12 13 14

12 11 13 14

13 13 33

14 14 44

44 14

14 2

0 0

0 0

0 0 0
6

0 0 0

0 0 0 0

0 0 0 0
C C

C C C C

C C C C

C C C
n

C C C

C C

C
−

, -
. /−. /
. /

= =. /
−. /

. /

. /

. /0 1

$  (3.43) 

 

 

IV. Tetragonal Materials. Five symmetry planes at 0θ =  4π± , 2π  and 

2ψ π= . 
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11 12 13

12 11 13

13 13 33

44
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66

0 0 0
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0 0 0
6

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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C C C
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C

C

C

, -
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. /
. /
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. /
. /
. /
. /0 1

$  (3.44) 

 

 

 

 

V. Transversely Isotropic (or Hexagonal) Materials. The symmetry planes 

are the 3 0x =  plane and any plane that contains the 3x -axis. The 3x -axis is 

the axis of symmetry.  

 

 

11 12

11 12 13

12 11 13

13 13 33

44

44

2

0 0 0

0 0 0

0 0 0
5

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
C C

C C C

C C C

C C C
n

C

C

−

, -
. /
. /
. /

= =. /
. /
. /
. /
. /0 1

$  (3.45) 

 

 

VI. Cubic Materials. Nine planes of symmetry whose normals are on the 

three coordinate axes and on the coordinate planes making an angle 4π  

with the coordinate axes. 

 

 

11 12 12

12 11 12
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$  (3.46) 
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VII. Isotropic Materials. Any plane is a symmetry plane.  

 

 
11 12

11 12

11 12

11 12 12

12 11 12

12 12 11

2

2

2

0 0 0

0 0 0

0 0 0
2
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0 1

$  (3.47) 

 

 

Note that while the number of nonzero elements in $  may increase when different 

coordinate system are employed, the number of independent elastic constants n does 

not depend on the choice of the coordinate systems. 

 

 

 

3.6 Restrictions on Elastic Constants 
 

 

As shown above, the positiveness of the strain energy, yields that the stiffness tensor 

$  is positive defined, as well as, the positive definiteness of the stress energy, yields 

that the compliance tensor #  is defined positive. In particular, in the contracted 

notation, the (3.9) is equivalent to the (3.24)1 which implies that the 6 6×  matrix $  

is also positive definite and, therefore, all its principal minors are positive, i.e.: 

 

( )0 not summediiC i> , 

( )0 , not summed
ii ij

ij jj

C C
i j

C C
> , 

( )0 , , not summed

ii ij ih

ij jj jh

ih jh hh

C C C

C C C i j k

C C C

> , 

#  
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where i, j, h are distinct integers which can have any value from 1 to 6. 

In particular, according to the theorem which states that a real symmetric matrix is 

positive definite if and only if its leading principal minors are positive, the necessary 

and sufficient conditions for the 6 6×  matrix $  to be positive definite are the 

positivity of its 6 leading principal minors. Same considerations may be applied to 

the compliance tensor # . By imposing these conditions of positivity on the minors 

of the matrices, some restrictions on the elastic coefficients can be found. 
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CHAPTER II 

 

 

HETEROGENEOUS MATERIALS 

 
1. Inhomogeneous solids: SAS/DAS Theorems 
 

 

 

It is well known the difficulty to find solutions to anisotropic inhomogeneous 

material problems. A very few restricted classes of these problems are solved in a 

general way.  

One example of these solutions is for cylinders subjected to pure torsion and 

possessing cylindrical orthotropy, with a variation of the shear moduli with the local 

normal direction to the family of curves of which the lateral boundary is a member 

(Cowin, 1987). This solution is a generalization, to a set of arbitrary cross-sectional 

shapes, of a problem solved by Voigt (Voigt, 1928) for a circular cross-section with 

radial variation of its cylindrical anisotropy. These cylinders are said to possess 

shape intrinsic orthotropy since it is the boundary of the cylinder that establishes the 

possible directional variation of the elastic moduli. A second example was given by 

Chung & Ting (Chung & Ting, 1995) who presented an exact solution for the case of 

an anisotropic half-space with elastic moduli dependent upon one coordinate, the 

angle θ , when the loads on the half-space are represented by a straight line of force. 

These kinds of problems were called angularly inhomogeneous problems by the 

authors. Closely related to these solutions is a third example called radially 

inhomogeneous problems (Alshits and Kirchner, 2001). As the name suggests, the 

variation of the elastic constants is in the radial direction in this case.  

In spite of this difficulty, in the last years, it has been a growing interest about the 

mechanical behaviour of anisotropic and inhomogeneous solids, above all in 

biomechanics. Moreover, the necessity to build thermodynamically consistent 
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theories for this kind of materials, by means the employment of the mathematical 

theory of the homogenization, has determined the necessity to find exact analytical 

solutions in the ambit of this more complex section of the theory of elasticity, (Lions, 

1985), (Maugin, 1993). 

In the next sections, it is presented a useful method enables one to find solutions for 

inhomogeneous, anisotropic elastostatic problems under particular conditions by 

means of the use of two theorems, S.A.S. theorem and D.A.S. theorem (Fraldi and 

Cowin, 2004).  

 

 

1.1 Stress Associated Solutions (SAS) Theorem for 

inhomogeneous elasticity 
 

 

The Stress Associated Solution Theorem lets to find solutions for inhomogeneous, 

anisotropic elastostatic problems if two conditions are satisfied: (1) a knowledge of 

the solution for a homogeneous elastic reference problem (the associated problem) 

whose solution has a stress state with a zero eigenvalue everywhere in the domain of 

the problem, and (2) an inhomogeneous anisotropic elastic tensor related to the 

homogeneous anisotropic elastic tensor of (1) by 

 

 ( ) , ( ) , ( ) 0,I H
Bϕ ϕ ϕ α α += ∀ ∈ > > ∈ x x x x! !  (2.1) 

 

where 
TH H=! !  is the elasticity tensor of a generic anisotropic homogeneous elastic 

material of the reference problem, I
!  is the elasticity tensor of the corresponding 

anisotropic inhomogeneous elastic problem, B  is the domain occupied by both the 

homogeneous object HB  and the inhomogeneous one IB , α +∈  is an arbitrary 

positive real number, while ( )ϕ x  is a 2 ( )C B  scalar function. The assumption (2.1) 

means that the inhomogeneous character of the material is due to the presence of a 

scalar parameter producing the inhomogeneity in the elastic coefficients. 

This method makes it possible to find analytical solutions for an inhomogeneous 

anisotropic elastic problem if the elastic solution of the corresponding homogeneous 
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anisotropic reference problem is known and characterized everywhere by a stress 

state with a zero eigenvalue. The solutions to the inhomogeneous anisotropic elastic 

problem are called the associated solutions of the homogeneous problem. 

 

1.1.a  Zero-eigenvalue stress and zero-eigenvalue strain fields 
 

A zero-eigenvalue stress state (zero-eigenvalue strain state) is characterized by the 

condition that the determinant of the stress (strain) is zero 

 

 det 0, (det 0)T = E = . (2.2) 

 

It is easy to show that a zero-eigenvalue stress (strain) state is a necessary condition 

for a plane stress (strain) state. The components of the stress tensor T  (strain tensor 

E ) are denoted by ijσ  ( ijε ). The strain tensor E  is related to the displacement field 

u  by  

 

 
1

) ) ]
2

T
= sym B[( ⊗ + ( ⊗ = ⊗ ∀ ∈E u u u x∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇  (2.3) 

 

in which     grad u= (∇∇∇∇ ⊗ u)  and the symbol ⊗  represents the tensor product. In 

components we have 

 

 , ,

1
( )

2
ij i j j i

u uε = + , (2.4) 

 

where the comma denotes differentiation and u  is the displacement field. 

 

 

1.1.b  Stress Associated Solutions (SAS) Theorem 
 

Consider the following mixed boundary-value elastostatic homogeneous and 

anisotropic problem HP  in the absence of action-at-a-distance forces 
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 0( ) in , ( ) on ,  on H H H

t u
B B B⋅ = ⋅ = ∂ = ∂0T u T u n t u u∇∇∇∇  (2.5) 

 

where HB  is the domain occupied by the homogeneous elastic object, 

{ }H H H

t uB B B∂ = ∂ ∪ ∂  is its boundary and t  and 0u are the traction field and the 

displacements assigned on the corresponding partition of the boundary, respectively 

(Barber, 1992; Gurtin, 1972). The notation for the divergence of the stress tensor is 

  ∇∇∇∇ ⋅T(u) = divT (u) , where the del operator is a vectorial differential operator 

defined by   ∇∇∇∇ ≡ ∂ iei , ∂ i ≡ ∂ / ∂x i = (∗),i  is the partial differential operator and   e i  is the 

base unit vector of the i-axis. 

The anisotropic Hooke’s law is written  

 

                                   ( ) : ( ) : ( ) : ( )H H H
sym= = ⊗ = ⊗T u E u u u! ! !∇ ∇∇ ∇∇ ∇∇ ∇  (2.6) 

or, in components 

 

 ,

H H

ij ijhk hk ijhk h kC C uσ ε= = . (2.7) 

 

Let { , , }H H H H= u E T  be the solution of the homogeneous problem (2.5).  

Consider now an associated anisotropic elastic inhomogeneous problem IP , 

described by modifying the system (2.5), with     t
I

= ϕ t  representing the traction field 

applied on I

tB∂  and the inhomogeneous anisotropic elasticity tensor given by (2.1), 

thus 

 0( ) in , ( ) on ,  on I I I I

t u
B B B⋅ = ⋅ = ∂ = ∂0T u T u n t u u∇∇∇∇  (2.8) 

 

The solid domains HB  and IB , as well as their corresponding boundary partitions 

made on H
B∂  and I

B∂ , are geometrically the same in the homogeneous and 

inhomogeneous problems. Then, if we expand the equation (2.8)1 it is possible to 

write 
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:

: :

( ) [ ( ) ( ) ]

( ) [ ( ) ] [ ( ) ] ( )

ϕ

ϕ ϕ

⋅ = ⋅ =

= ⋅ + ⋅ =

∇ ∇∇ ∇∇ ∇∇ ∇

∇ ∇∇ ∇∇ ∇∇ ∇

T u x E u

x E u E u x

!

! !

H

H H 0
 (2.9) 

where ∇∇∇∇(∗) = grad(∗)  is the gradient operator applied on a generic scalar-valued 

function ( )∗ . Consider now the situation in which the displacements are equal for the 

homogeneous and inhomogeneous problems. Then, by substituting the displacement 

solution Hu  obtained for the homogeneous problem HP  in (2.9) in place of the 

displacement vector u , we have that 

 

      H H H H Hϕ ϕ⋅ = ⋅ ] + ⋅ = 0T u x T u T u x∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇( ) ( ) [ ( ) [ ( ) ] ( )  (2.10) 

 

But, since [ ( )] [ : ( )]H H H H⋅ = ⋅ =C 0T u E u∇ ∇∇ ∇∇ ∇∇ ∇ , it follows that 

 

 [ ( )] ( )H H I
Bϕ⋅ = ∀ ∈0T u x x∇∇∇∇  (2.11) 

 

By excluding the trivial case in which ( ) constantϕ =x , it follows that 

 

 det 0,H H
B= ∀ ∈T x  (2.12) 

 

This means that the stress state at x of the reference homogeneous problem is 

required to be a zero eigenvalue stress state everywhere in the domain. To investigate 

the geometrical meaning of the equation (2.11), since (2.11) must be true everywhere 

in IB , we consider, without loss of generality, the local principal stress reference 

system { }1 2 3 ,  ,  , in which the stress tensor HT  takes the component form 

 

 

1

2

3

H

 

H H

 

H

 

! 0 0

T = 0 ! 0

0 0 !

 !
" #
" #
" #
" #$ %

. (2.13) 

 

Representing the gradient of the scalar function ϕ  as 
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 T

ξ ξ ξϕ ϕ ϕ ϕ=∇∇∇∇
1 2 3, , ,( ) [ ]ξξξξ , (2.14) 

the three scalar equations implied by (2.11) are written as 

 

 
1 2 2 3 3, , ,= 0, = 0, = 0H H H

ξ ξ ξ ξ ξ ξσ ϕ σ ϕ σ ϕ
1

   (2.15) 

 

The system (2.15) is satisfied if the stress tensor HT  for the reference homogeneous 

problem HP  is, at each internal point H
B∈x , a locally variable zero eigenvalue 

stress state. If there is only one zero eigenvalue, say in the 3ξ -direction, the only 

non-zero component of the vector ϕ∇ , is 
3

,ξϕ  at the corresponding points I
B∈x . If 

there are two zero eigenvalues there can be two non-zero components of ϕ∇ . The 

case of three zero eigenvalues of the stress tensor HT  is trivial and will not be 

mentioned further. It follows that, at each internal point, the equipotential surfaces of 

ϕ  admit as a tangent plane the plane whose normal is coaxial with the eigenvector 

associated with the zero stress eigenvalue (or a direction, in the case of two zero 

stress eigenvalues). This is illustrated in Figure 2.1. for the case of one zero 

eigenvalue of stress.  

I I
 B

tangent plane at x to the

equipotential surfaces of  

B

stress plane in x

2

inhomogeneous object

elementary

volume in x

equipotential

surfaces of  

!

x
1

! !
I H

2
3

2

11

3 = 0

 

Fig. 2.1.  

Geometrical interpretation of the relationship between the equipotential surfaces of ϕ  and the 

distribution of the planes of stresses in the associated anisotropic problem 
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The geometrical relationship (2.11) between the stress tensor HT  and the vector ϕ∇  

may be rewritten in the form 

 

 { } { , : ( ) 0}H H
Vϕ ϕ⋅ = ⇔ ∀ ∈ ⊗ =0T v T v∇ ∇∇ ∇∇ ∇∇ ∇  (2.16) 

 

where   v  is any unit vector defined in the three-dimensional Euclidean space 3
"  and 

V  represents the corresponding vector space. It follows that the stress vector on the 

plane whose normal is   v  is always orthogonal to the vector ϕ∇ .  

 

2 Anisotropic media: volume fraction and Fabric Tensors 

 

 

In multiphase or damage materials, mechanical properties are closely related to the 

underlying microstructure or crack distribution. Although the volume fraction is the 

primary parameter in the geometric characterization of the microstructure of such 

materials, it does not provide information about the arrangement and the orientation 

of the microstructure. It is therefore necessary to introduce further parameters able to 

describe such orientations. The approach commonly use to modelling the material 

microstructure consists on introducing tensors of higher rank which characterize the 

microstructural architecture. In particular, in many application, microstructural 

anisotropy seems to be sufficiently well described by a scalar and a symmetric 

second rank fabric tensor, which restricts the material symmetry to orthotropy.  

Fabric tensors may be defined in a wide number of ways but it is required to be a 

positive define tensor that is a quantitative stereological measure of the 

microstructural architecture, a measure whose principal axes are coincident with the 

principal microstructural direction and whose eigenvalues are proportional to the 

distribution of the microstructure in the associated principal direction. The fabric 

tensor may be measure on a finite test volume and it is considered a continuous 

function of the position in the material. It should be highlight that since the fabric 

tensor is a continuum point property, its applicability to solve real problem is really 

difficult because would require a wide number of measures. In other words it would 

be necessary evaluate the fabric tensor in each point of the material.  
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In the next sections, some way to construct fabric tensors proposed in scientific 

literature are illustrate.  

 

2.1 Mean Intercept Length (MIL) Tensor 

 

 

In order to characterize the microstructural anisotropy in orthotropic materials, 

Harrigan and Mann (1984) proposed a particular second order tensor – the so-called 

mean intercept length (MIL) tensor – related to the stereological measurement of the 

microstructural arrangement. In particular, the MIL in a material is define as the 

average distance, measured along a particular straight line, between two interfaces of 

the two different constituents. The value of the MIL is a function of the slope θ  of 

the line along which the measurement is made in a specific plane. If, by plotting in a 

polar diagram the MIL – measured in the selected plane passing through a particular 

point in the specimen – as function of θ , the polar diagram produced ellipses (see 

Figure 2.4), than the values of all MILs in the plane may be represented by a second-

order tensor in two dimension. By extending these consideration to a three-

dimensional case, the MILs in all direction would be represented by an ellipsoid that 

is by a positive define second rank tensor M  which is commonly related to the mean 

intercept length ( )L n  by the relationship ( )21/ = ⋅L n n M n , where n  is the unit vector 

in the direction of the mean intercept length measurement.  

 

 

Fig. 2.4.  

Polar diagram of the Mean Intercept Length function of a cancellous bone  
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The MIL approach as well as other stereological methods – e.g. the volume 

orientation method, the star volume distribution method – were proposed to construct 

the fabric tensor for biphasic materials, with particular reference to a specific porous 

material, the cancellous bone (Odgaard et al., 1997). However, it is worth to 

highlight that for particular microstructure – e.g. planar fibre networks or materials 

made of a set of plates – the MIL distribution is not in general elliptic and so it may 

not be analytically expressed in terms of a second-order tensor (Tözeren and Skalak, 

1989).  

Cowin (Cowin,1986) defined a fabric tensor H  related to the MIL tensor M  by 

-1/2=H M . Such tensor is well defined being the positive square root of the inverse of 

the positive define symmetric tensor M . The difference between H  and M  is in the 

shape of ellipsoid while the principal axes coincide.  

 

 

2.2 Fabric Tensor and Microcrack Distribution 
  

 

In the characterization of mechanical response of damaged materials, a central 

problem is represented by the development of the formalism which enables a 

traditional continuum representation of the statistical distribution of microcracks 

compiled from the stereological data measured on a statistically homogeneous 

volume of damaged microstructure. The selection of the damage parameter 

approximating the measured data is not unique due to the contradictory requirements 

of accuracy and simplicity.  

In the framework of damage mechanics, the effective continuum theories 

(Krajcinovic, 1996) are based on the assumption that the exact location of a 

microcrack within a representative volume element is not very important for the 

determination of the effective properties. This statement is, rigorously speaking, 

valid only in the dilute concentration limit. In other case, it is necessary to determine 

the distribution of crack surface densities as a function, for example, of the 

orientation of their bedding planes. For this purpose, the damage at a material point 

x  is defined by a finite set of doublets [ ],ρi in  ( )1,2,...,=i m  where ρ
i
, is the 
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microcrack density in a plane with normal 
i

n . Geometrically this set of doublets 

represents a binned histogram. Each bin defines the microcrack density in planes 

with orientations belonging to a particular range of angles. To determine the density 

of microcracks sharing a particular orientation (defined by a normal n  to their 

bedding plane) it is necessary to make a large number of parallel cuts through a 

representative volume element of the actual material which maps on the observed 

material point in the effective continuum. In the limit of a very large number of 

orientations the density function ( )ρ n  tends to a continuous distribution of the 

densities of microcracks in planes with normals n  passing through the material point 

0x  (Ilankamban and Krajcinovic 1987, Curran, et al. 1987).  

The principal problem in the formulation of an analytical representation of the 

experimental data is related to the representation of the raw statistical data in a frame 

indifferent (objective) manner. This question was explored and answered by 

Kanatani (1984) and later elaborated upon in connection to the damage distribution 

by Budiansky and O'Connell (1976), Onat and Leckie (1984), Wong (1985) and 

Lubarda and Krajcinovic (1993). The central task is to establish a procedure relating 

a measured distribution of microcrack densities as a function of their orientation 

( )ρ n  to an appropriate damage measure in form of a tensor invariant to coordinate 

transformations. This procedure must provide a criterion needed to measure the fit 

between the experimental data and various analytical descriptions of the microcrack 

distributions. The empirical function ( )ρ n , typically determined for a limited 

number of bedding planes and samples, is seldom smooth. Depending on the 

heterogeneity of the material, size of the representative volume element, 

experimental technique, available equipment and finally the chance itself the 

function ( )ρ n  may substantially change from one sample to the other. A large 

number of samples and sections may be needed for a statistically valid 

characterization of the function ( )ρ n . In most cases a task like this is not cheap 

enough to be feasible. It is possible to utilize the measured or conjectured directional 

dependence of the crack surface area density ( )ρ n  directly into an appropriately 
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formulated computational model (Ilankamban and Krajcinovic 1987, Curran, et al. 

1987). For the present purposes it is obviously advantageous to use a tensor function 

which approximates the distribution ( )ρ n  with sufficient accuracy. The procedure, 

shown in the previous section, is developed in order to derive a tensor approximation 

of the raw data arranged into the histogram, expanding the function ( )ρ n  into a 

Fourier-type series of certain families of Laplace spherical harmonics (Kanatani 

1984, Onat and Leckie 1988) which represent the dyadic products of the unit vector 

n  and the Kronecker delta tensor δ . Since a surface is defined by an axial vector the 

analytical expression for the distribution ( )ρ n  can involve only even order tensors. 

A rigorous approximation of an empirical or actually measured function ( )ρ n  

involves an infinite series of tensors of even order. In many cases the details of this 

distribution may not have a discernible effect on the macro properties and may not be 

reproducible when testing "identical" specimens under "identical" circumstances. For 

purely practical purposes this series must be truncated to a rather moderate number 

of terms limited to the lowest order tensors. The truncation introduces inevitable 

errors into the selected representation and some non-physical effects which were not 

noticed until recently.  

 

 

 

Fig. 2.5.  

Geometry of a penny-shaped crack 

 

With reference to penny-shaped cracks defined by their radii a  and two Euler angles 

( ),θ φ , shown in Figure 2.5., it is possible to write (Krajcinovic, 1996) the average 

crack density within a selected unit sphere centered at a material point as  
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( ) ( )

( ) ( )
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π π

π
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π

ϑ ρ φ θ φ θ φ
π

ρ φ θ φ θ φ ρ
π

+

− −

−

= =

=

& & &

& &

a

a
w a a da d d

N a d d N a n

 (2.1) 

 

where ( )3 3ϑ
+

−
= &

a

a
N a a a da  is the non-dimensional microcracks density. To be able 

to compare different microcrack distributions with respect to the orientations 

( ) ( ) ( )3 3 ,ρ ρ φ θ= =w N a N an n  the product 3 1=N a  will be fixed in the sequel.  

 

Scalar Representation of the Damage Variable. The microcrack distribution can be 

assumed to be approximately isotropic when the microcrack density is a weak 

function of the plane orientation (defined by the normal n  to the bedding plane 

through the material point). In this special case (which is preferred primarily by 

analysts if not by the geometry, nature and the physics of defect nucleation and 

growth) the microcrack distribution is fully defined by a single scalar 0ρ  which 

represents the total microcrack density or by the density ρ  averaged over the solid 

angle. These two scalar measures of the crack distribution are related by the well 

known formula 

 

 ( )0 0 4ρ ρ πρ
Ω

≡ = Ω =&D n d . (2.2) 

 

The integration in (2.2) is extended over all orientations within the solid angle 

4πΩ = . In this, simplest of all cases, the damage is defined by a single parameter 0ρ  

(microcrack density). All symmetries of the original solid are preserved. The scalar 

damage variable (2.2) is introduced for the sake of consistency and uniformity. Due 

to its simplicity the scalar damage variable representation has been extensively 

utilized in the past (see, for example, Lemaitre and Chaboche 1978, Lemaitre 1986, 

1992).  
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Second Order Tensor Representation of the Damage Variable. The isotropic 

distribution of microcracks is a relatively rare phenomenon which may occur in 

rocks in crustal conditions (i.e. well confined in all directions) which are exposed to 

large temperatures and internal pressures and/or expansive exothermic reactions. In a 

general case the microcracks distribution is characterized by a varying degree of 

anisotropy. In a frequently encountered class of problems and tests the microcrack 

distribution may render the specimen statistically (macro) orthotropic. The 

orthotropy may also be a function of the variations of strength and stiffness with 

direction. This may happen in sedimentary rocks characterized by a strong 

dependence of the cohesive strength on the primary depositional petrofabric and also 

in laminate composites made of fiber reinforced laminae. The microcrack induced 

orthotropy can also be stress induced. The damage density in an initially isotropic 

solid subjected to proportional loading will reach maximum densities in the planes 

perpendicular to the largest principal stress. Similarly, the microcrack densities will 

be minimal in planes which are orthogonal to the minimum principal stress. The 

principal planes of the damage density will often be perpendicular assuming that the 

state of stress is simple and the loads proportional. This class of microcrack 

distributions may be adequately represented by a second order tensor. The 

microcrack density in planes with a normal n  can be in this case defined by the 

expression 

 

 ( )ρ ρ= ij i jn nn  (2.3) 

 

(Lubarda, Krajcinovic 1993) where ρij  is a symmetric second order tensor. 

Integrating (2.3) over the entire solid angle, and using the identity 

 

 
4

3

π
δ

Ω
Ω =& i j ij

n n d  (2.4) 
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where δ ij  is the Kronecker (identity) delta tensor, it follows that the first invariant 

(trace) of the second order tensor ρij  is  

 

 03

4
ρ ρ

π
=

kk
 (2.5) 

 

The scalar damage variable 0ρ  in (2.5) is defined by (2.2). Multiplying both sides of 

(2.3) by 
m n

n n  and integrating the product over the solid angle while making use of 

the identity 

 

 
4

5

π
Ω

Ω =& i j m n ijmn
n n n n d I  (2.6) 

 

leads to the following expression 

 

 ( )
8 1

15 2

π
ρ ρ δ ρ

Ω

' (
+ = Ω) *

+ ,
&ij kk ij i jn n n d . (2.7) 

 

The fourth order tensor #  in (2.6) is defined by the tensor products of two delta 

second order tensors as  

 

 ( )1

3
δ δ δ δ δ δ= + +

ijmn ij mn im jn in jm
I  (2.8) 

 

The microcrack density tensor can now be derived by substituting (2.5) into (2.7)  

 

 
015

8 5

ρ
ρ δ

π

' (
= −) *

+ ,
ij ij ijD  (2.9) 

where  

 

 ( )ρ
Ω

= Ω&ij i j
D n n n d  (2.10) 
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is referred to as the second order damage tensor. The microcrack density distribution 

(2.3) is, in view of (2.9), a function of the scalar and second order tensor damage 

parameters  

 

 ( ) 015 3

8 8
ρ

π π
= −

i j ij
n n n D D . (2.11) 

 

2.3 Relationship between Fabric Tensor and Elasticity 

Tensor 

 

 

From a mathematical point of view, identifying the dependence of the elastic 

behaviour of the material on its microstructure consists in analyzing the formal 

relationship between the fabric tensor and the elasticity tensor.  

The main attempt to relate a fabric tensor describing microstructure to a fourth rank 

elasticity tensor – with specific reference to porous materials – is due to Cowin 

(Cowin, 1985). He proposed a model based on a normalized second rank fabric 

tensor and developed a general representation of C  as a function of the solid volume 

fraction γ  and of the invariants of the fabric tensor H  based on the notion that the 

matrix material of the porous elastic solid is isotropic and that the anisotropy of the 

porous elastic solid itself is due only to the geometry of microstructure represented 

by the fabric tensor. The mathematical statement of this notion is that the stress 

tensor T  is an isotropic function of the strain tensor E  and the fabric tensor H  as 

well as the solid volume fraction γ . Thus, the tensor valued function 

 

 ( ), ,γ=T T E H  (2.12) 

 

has the property that  

 

 ( ), ,γ=T T TQTQ T QEQ QHQ  (2.13) 
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for all orthogonal tensors Q . This definition of an isotropic tensor valued function is 

given, for example, by Truesdell and Noll (1965). In accord with the isotropy 

assumption, the stress tensor T  has the representation  

 

               
( )

( ) ( ) ( )
2 3 4 5 6

7 8 9

+ + + + + +

+ + + + + +

2 2

1

2 2 2 2 2 2 2 2

= f f f f f f

f f f

T I H H E E HE EH

H E EH HE E H H E E H
 (2.14) 

 

where 
1

f  through 
9

f  are function of the ten invariants TrH , 2TrH , 3TrH , TrE , 

2TrE , 3TrE , TrHE , 2TrH E , 2TrHE , 2 2TrE H . This representation is reduced by the 

requirement that T  be linear in E  and that T  vanish when E  vanishes, thus 

 

        ( ) ( )2 3 4 6 7+ + + + + + +2 2 2

1
= f f f f f fT I H H E HE EH H E EH  (2.15) 

 

 

 

 

where 
1

f , 
2

f , 
3

f  must be of the form  

 

 

1 2 3

1 1 2

2 3 3

,

,

,

= + +

= + +

= + +

2

1

2

2

2

3

f a Tr a Tr a Tr

f d Tr b Tr b Tr

f d Tr d Tr b Tr

E HE H E

E HE H E

E HE H E

 (2.16) 

 

and where 1a , 2a , 3a , 1b , 2b , 3b , 1d , 2d  and 3d , are function of TrH , 2TrH  and 

3TrH . It follows then that  

 

    

( ) ( )
( ) ( )

( )

1 2 3 1 1 2

2 3 3 1 2

3

2 2

2

+ + + + +

+ + + + + +

+ +

2 2

2 2

2 2

= a Tr a Tr a Tr d Tr b Tr b Tr

d Tr d Tr b Tr c c

c

T I E HE H E H E HE H E

H E HE H E E HE EH

H E EH

 (2.17) 
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where we have set 4 12=f c , 6 22=f c  and 7 32=f c . This result may be expressed in 

indicial notation as 

 

 

( ) ( )
( ) ( )

( )

1 2 3 1 1 2

2 3 3 1 2

3

2 2

2

δ= + + + + +

+ + + + + +

+ +

ij ij kk rp pr rq qp pr ij kk rp pr rq qp pr

is sj kk rp pr rq qp pr ij ir rj ir rj

ip pr rj ir rp pj

T a E a H E a H H E H d E b H E b H H E

H H d E d H E b H H E c E c H E E H

c H H E E H H

 (2.18) 

 

Comparison of this result with the constitutive equation =ij ijhk hkT C E  suggests that 

ijhkC  should be of the form 

 

           

( ) ( )
( )

( ) ( )

1 1 2 2 1 3

3 2 3 1

2 3

2

2 2 .

δ δ δ

δ δ δ

δ δ δ δ

= + + + + +

+ + + +

+ + + +

ijhk ij ij is sj hk ij ij is sj hk

ij ij is sj hq qk hi kj

ih kj ih kj ip pk kj ih kp ps

C a d H d H H a b H d H H H

a b H b H H H H c

c H H c H H H H

 (2.19) 

 

In order to satisfy the symmetry conditions (1.90) we must set 1 2=d a , 2 3=d a , and 

3 2=d b  and take the symmetric parts of the terms multiplied by 12c , 22c , and 32c  

with respect to hk and ij. The final results may be express as follow 

 

           

1 2 3

1 2 3

1 2

3

( ) ( )

( )

( ) ( )

(

δ δ δ δ δ δ

δ δ δ δ δ δ δ δ

δ δ δ δ

= + + + + +

+ + + + +

+ + + + + + +

+ + + +

ijhk ij hk ij ij hk hk ij hq qk hk iq qj

ij hk ij hq qk is sj hk is sj hq qk

hi kj ki hj ih kj hj ki ik hj kj hi

ir rh kj rj hr ki ir rk hj kr rj ih

C a a H H a H H H H

b H H b H H H H H H b H H H H

c c H H H H

c H H H H H H H H )

 (2.20) 

 

where 1a , 2a , 3a , 1b , 2b , 3b , 1c , 2c  and 3c  are functions of γ  and TrH , 2TrH  and 

3TrH . 

It is possible to show that the representation (2.20) for the fourth rank elasticity 

tensor is not capable of representing all possible elastic material symmetry. The last 

material symmetry that may be represented by is orthotropy. In fact, expanding in 
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indicial notation in the coordinate system that diagonalized the fabric tensor 

( 12 13 23 0= = =H H H ), only the following nine components of the elastic tensor are 

non-zero and are function of the nine coefficient 1a , 2a , 3a , 1b , 2b , 3b , 1c , 2c , 3c  and 

of the three eigenvalues of H , 11H , 22H  and 33H   

 

 

2 3 4

1111 1 1 2 2 11 3 1 3 11 2 11 3 11

2 3 4

2222 1 1 2 2 22 3 1 3 22 2 22 3 22

2 3 4

3333 1 1 2 2 33 3 1 3 33 2 33 3 33

2
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2 2( 2 ) (2 4 ) 2

2 2( 2 ) (2 4 ) 2

2 2( 2 ) (2 4 ) 2
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= + + + + + + + +
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3 11 22

2 2 2 2
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( ) ( ) ( )
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+

=
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b H H
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( ) ( )

+ + + +

= + + + +
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c H H c H H

C c c H H c H H

C c c H H c H H

(2.21) 

 

Note that these nine components of the elasticity tensor are distinct if and only if the 

eigenvalues of H  are distinct. In fact, it is easy to see that by setting 22 33=H H  in the 

(2.21), only the following six constants are different  
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and only five of which are independent being 
2222 2233 23232= +C C C . Thus, the 

represented material symmetry is the transversely isotropy. In the same way, if the 

eigenvalues of H  are all equal the represented material symmetry is the isotropy, 

being only the following three constant different  

 

       

2

1111 2222 3333 1 1 2 2 11 3 1 3 11

3 4

2 11 3 11

2 2

1122 1133 2233 1 2 11 22 3 11 22 1 11 22

2 2 2 2

2 11 22 22 11 3 11 22

2 2

1212 1313 3232 1 2 11 22 3 11 22

2 2( 2 ) (2 4 )

2

( ) ( )

( )

( ) (

= = = + + + + + +

+ +

= = = + + + + +

+ + +

= = = + + + +

C C C a c a c H a b c H

b H b H

C C C a a H H a H H b H H

b H H H H b H H

C C C c c H H c H H )

 (2.23) 

 

and only two of which are independent, being 
1111 1122 12122= +C C C .  

The nine functions 1a , 2a , 3a , 1b , 2b , 3b , 1c , 2c  and 3c  depending upon γ , TrH , 

2TrH  and 3TrH , can be determine by means of experimental tests.  
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CHAPTER III 

 

 
THEORY OF HOMOGENIZATION & MICROMECHANICS 

 

 
1.  Thermodynamic framework and mathematically well-

posed homogenization approaches 
 

 

Homogenization is the modelling of a heterogeneous medium by means of a unique 

continuous medium. A heterogeneous medium is a medium of which material 

properties (e. g., elasticity coefficients) vary pointwise in a continuous or 

discontinuous manner, in a periodic or nonperiodic way, deterministically or 

randomly. While, obviously, homogenization is a modelling technique that applies to 

all fields of macroscopic physics governed by nice partial differential equations, we 

focus more particularly on the mechanics of deformable bodies.  

 

1.1 Representative Volume Element (RVE) 
 

Two different scales are used in the description of heterogeneous media. One of 

these is a macroscopic (x) scale at which homogeneities are weak. The other one is 

the scale of inhomogeneities and is referred to as the microscopic (y) scale. The 

latter defines the size of the representative volume element (Fig. 3.1). The basic cell 

of a periodic composite is an example of RVE.  
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Fig. 3.1. 

Representative Volume Element 

 

From the experimental point of view, we can say that there exists a kind of statistical 

homogeneity in the sense that any RVE at a specific point looks very much like any 

other RVE taken at random at another point. 

The mathematical problem presents itself in the following manner. Let ( )yσσσσ  and 

( )yεεεε  be the stress and strain at the micro scale in the framework of small-

perturbation hypothesis. We denote by ΣΣΣΣ  and ΕΕΕΕ  the same notion at the macro scale. 

Let ...  indicate the averaging operator. For a volume averaging we have  

 

 

( ) ( )

( ) ( )

1

1

V

V

x, y dy
V

x,y dy
V

= =

= =

 

 

ΣΣΣΣ

ΕΕΕΕ

x

x

σ σσ σσ σσ σ

ε εε εε εε ε

 (3.1) 

 

where V is the volume of the RVE.  

It is important to notice that any quantity that is an additive function is averaged in 

the micro-macro transition. Thus, if ρ ρ=  denotes the averaged density, then we 

have 
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, internal energy,

, entropy,

, dissipation.

E e

S

ρ ρ

ρ ρη

φ

=

=

Φ =

 (3.2) 

 

1.2  Localization Problem 

 

We can state the following 

• the process that relates ( ),Σ ΕΣ ΕΣ ΕΣ Ε  by means of equations (3.1) and (3.2) and the 

microscopic constitutive equations is called homogenization; 

• the inverse process that consists in determining ( )yσσσσ  and ( )yεεεε  from ΣΣΣΣ  and ΕΕΕΕ  is 

called localization. 

Therefore, the data are ΣΣΣΣ  and ΕΕΕΕ  in the localization process which corresponds to the 

following problem: 

 

 ( )
div

! =
"

=#
"

=$ 0

σσσσ

εεεε

σσσσ

ΣΣΣΣ

ΕΕΕΕP L  (3.3) 

 

This problem is original, because of the following two reasons: 

i. the load is the averaged value of a field and not a prescription at points in the 

bulk or at a limiting surface; 

ii. there are no boundary conditions. 

It follows from (ii) that the problem (3.3) is ill-posed. The missing boundary 

condition must, in some way, reproduce the internal state of the RVE in the most 

satisfactory manner. They therefore depend on the choice of RVE, more specifically 

on its size. As a rule, different choices of RVE will provide different macroscopic 

laws. 

The following give some examples of boundary conditions: 

 

 on uniform traction onV V⋅ = ⋅ ∂ − ∂σσσσ n n   ΣΣΣΣ ; (3.4) 

 on uniform traction onV V= ⋅ ∂ − ∂u y   ΕΕΕΕ . (3.5) 
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With this and div = 0σσσσ , in V, it is verified that (3.1) holds good. Indeed, for (3.5) we 

have 

 

     ( ) ( )1 1 1

2 2 2

ji

i j j i ik k j jk k i
V V V

j i

uu
dv u n u n ds y n y n ds

y y ∂ ∂

% &∂∂
+ = + = Ε + Ε' (' (∂ ∂) *

   (3.6) 

 

or 

 

 ( ) =εεεε ΕΕΕΕu  (3.7) 

 

The proof for (3.4) is self-evident. 

The above reasoning does not apply to the case of a periodic structure. In that case, 

σσσσ  and εεεε  are locally periodic (they are only quasi-periodic for a large sample) and 

the periodicity condition read as follows: 

• the traction ⋅σσσσ n  are opposite on opposite faces of V∂  (where n  corresponds to 

-n ); 

• the local strain ( )εεεε u  is made of two part, the mean ΕΕΕΕ  and the fluctucation part 

( )εεεε u*  such that  

 ( ) ( ) ( ), 0= =ε ε εε ε εε ε εε ε εu u* u*Ε +Ε +Ε +Ε + , (3.8) 

 

where u*  can be shown to be periodic. Therefore, the condition are 

 

 
is antiperiodic,

, periodic.

⋅!
#

⋅$ = Ε += Ε += Ε += Ε +

n 

u y u* u*

σσσσ
 (3.9) 

 

On account of (3.4), (3.5) and (3.9), the problem (3.3) now is theoretically well-

posed, but this must be verified for each constitutive behaviour. 

 

 



Chapter III – Theory of  Homogenization & Micromechanics 

 

 

 

60 

 

1.3  The example of pure elasticity 
 

In this section the localization problem in the case of anisotropic linear elastic 

components are examined.  

 

1.3.a  The localization problem 
 

This problem is written in the following form (here ( )y  is the tensor of elasticity 

coefficient at the micro scale): 

 

( ) ( ) ( ) ( ) ( )( ): :

div

boundaryconditions

y y y y * y! + ,= = +- .""
=#

"
"$

0

σ ε εσ ε εσ ε εσ ε ε

σσσσ

uΕΕΕΕ  

                   (3.10) 

 

where ΕΕΕΕ  or ΣΣΣΣ  is prescribed. Accordingly, the fluctuation displacement u*  is the 

solution of the following problem:  

 

 
( )( ) ( )div : div :

boundaryconditions

*! = −"
#
"$

εεεε u ΕΕΕΕ  
 (3.11) 

 

Whenever ΕΕΕΕ  is constant for each constituent component, it can be shown that 

 

 ( )  !( ) ( )div : : Sδ= nΕ ΕΕ ΕΕ ΕΕ Ε  , (3.12) 

 

where  != + −−   , ( )Sδ  is Dirac’s distribution, and n  is the unit normal oriented 

from the ‘ − ’ to the ‘ + ’ side of the surface S separating components. Then we can 

state the following: 

Proposition. Under classical working hypotheses applying to   (symmetry and 

positivity), the problem (3.11) admits a unique solution for all three types of 

boundary condition. 
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To prove this we must distinguish whether it is ΕΕΕΕ  or ΣΣΣΣ  which is prescribed. 

 

1.3.b  Case where ΕΕΕΕ  is prescribed 
 

For the existence and uniqueness proofs one can see Suquet (1981b). We shall only 

give the representation of the solution. As the problem is linear, the solution ( )εεεε u*  

depends linearly on the prescribed field ΕΕΕΕ . The latter can be decomposed into six 

elementary states of macroscopic strains (stretch in three directions and three shears). 

Let ( )klχεεεε  be the fluctation strain field induced by these six elementary states at the 

microscopic level. The solution ( )εεεε u*  for a general macrostrain ΕΕΕΕ  is the 

superposition of the six elementary solutions, so that we can write (summation over k 

and l) 

 

 ( ) ( )kl klχ= Εε εε εε εε εu* . (3.13) 

 

In all we have 

 

 ( ) ( ) ( )( )= + = +ε ε ε χε ε ε χε ε ε χε ε ε χu u*Ε Ε ΙΕ Ε ΙΕ Ε ΙΕ Ε Ι  (3.14) 

 

or, in components, 

 

 ( ) ( ):
ij ijkl kl ij

Dε = Ε =u D ΕΕΕΕ  (3.15) 

 

where  

 

 ( )ijkl ijkl ij klD I ε χ= +  (3.16) 

Here ( )1
2klij ik jl il jk

I δ δ δ δ= +  is the tensorial representation in 3
!  of the unity of 6

!  

and ijklD  is called, depending on the author, the tensor of strain localization, or 

tensor of concentrations (Mandel, 1971) or the tensor of influence (Hill, 1967). 
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Homogenization  

We can write in an obvious manner 

 

 ( ): : : : := = =σ εσ εσ εσ ε u D DΣ = Ε ΕΣ = Ε ΕΣ = Ε ΕΣ = Ε Ε    (3.17) 

 

so that 

 

 hom hom: :, = DΣ = ΕΣ = ΕΣ = ΕΣ = Ε   . (3.18) 

 

We note that  

 

, T= =D I D I . 

 

Equation (3.18)2 shows that the tensor of ‘macro’ elasticity coefficients is obtained 

by taking the average of ‘micro’ elasticity coefficients, the latter being weighted by 

the tensor of strain localization. It is possible to prove that the tensor hom
  is 

symmetric. For a direct proof we compute :T σσσσD  for an admissible field σσσσ , 

obtaining thus 

( ): :T T

ijkl kl ijkl kl ij kl ij
ij

D Iσ ε χ σ+ ,= = + =- .σσσσD ΣΣΣΣ  

i.e.,  

 

( ): : : : : :T T T= =σ εσ εσ εσ εD D u D DΣ = ΕΣ = ΕΣ = ΕΣ = Ε  , 

so that 

 hom : :T= D D  , (3.19) 

which is symmetric. 

 

1.3.c  Case where ΣΣΣΣ  is prescribed 
 

The localization problem than reads  
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( ) ( ) :

div

boundaryconditions

*! = +
"

="
#

="
"
$

0

Ε =Ε =Ε =Ε =

ΣΣΣΣ

u uε ε σε ε σε ε σε ε σ

σσσσ

σσσσ

"

 (3.20) 

 

where "  is the tensor of the ‘micro’ elastic compliance and ΕΕΕΕ  is an unknown. The 

existence and uniqueness of the solution may be proved (Suquet, 1981b). Thus, here, 

we assume that a unique solution σσσσ  exists. This solution depends linearly on data by 

virtue of the linearity of the problem. Let us call 
kl

S  the solution of the problem 

(3.20) for the datum 
kl

Σ =Σ =Σ =Σ =   - note that ( )ijkl kl ij
 ====  .  

Then the general solution, obtained by superposition, is written 

 

 
( ) ( )

( )

: , i.e., ,

or , ,

kl kl

ij ijkl kl ijkl kl ij

= y = A y

A Aσ

Σ

= Σ =

ΣΣΣΣA

A

σ σσ σσ σσ σ
 (3.21) 

 

where A  is the tensor of stress localization. 

The homogenized compliance tensor hom
"  is evaluated thus. We have directly 

 

 ( ) hom
: : : := = =Ε Σ = ΣΕ Σ = ΣΕ Σ = ΣΕ Σ = Σu Aε σε σε σε σ" " " , (3.22) 

whence 

 hom := A" " . (3.23) 

We note that  

 T =A I , (3.24) 

and for any admissible field ( )uεεεε  we can write  

 

( ) ( ) ( ) ( ) ( ) ( )T T: ijkl kl ij kl ij kl ijkl klij
A A Aε ε ε= = = = ΕA u u u uεεεε  

 

so that  
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( )T T T: : : : : := =Ε = ΣΕ = ΣΕ = ΣΕ = ΣA u A A Aε σε σε σε σ" " , 

 

whence 

 

 hom T : := A A" "  (3.25) 

 

and thus hom
"  is symmetric. 

 

 

1.3.d  Equivalence between ‘prescribed stress’ and ‘prescribed 

strain’ 
 

First we note that hom
  and hom

"  are inverse tensors (in 6
! ) of one another if they 

correspond to the same choice of boundary conditions in the localization problem. 

Indeed, using the symmetry of hom
  we can write 

 

 ( )hom hom hom hom: : : : :
T

T= = D A "  "  " #  (3.26) 

in which the first factor is an admissible stress field (from the definition of D  and 

A ) and the second factor is an admissible strain field.  

Applying the prinpiple of macrohomogeneity of Hill and Mandel (Hill, 1965a, 

Mandel 1971) about which, let σσσσ  and u  be, respectively, a statistically admissible 

(SA) stress field and a kinematically admissible (KA) displacement field, it is 

possible to prove that 

 

 ( ): = :σ εσ εσ εσ ε u Σ ΕΣ ΕΣ ΕΣ Ε . (3.27) 

 

therefore applies we can write ( ): = " $   

 

 hom hom: : : : : :T T T= = = =D A D A D A I "  "                .(3.28) 
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However, if different boundary conditions are used, one then has the estimate of Hill 

(1967) and Mandel (1971), 

 

 ( )( )3hom hom: O d l= + " $ , (3.29) 

 

where hom
  is evaluated by using the condition (3.5), while hom

"  is computed 

through use of the condition (3.4), d is a characteristic size of an inhomogeneity and l 

is the typical size of the RVE. If l d" , then the choice of boundary condition is 

hardly important. For periodic media where ( )1d l O= , this choice is most 

important. 

  

 

2. Micromechanics of porous materials: j-tensor and dilute 

distribution of voids cases 
 

 

In this section, the overall stress-strain/strain stress relations are developed with 

reference to an RVE consisting of a linearly elastic material which contains stress-

free cavities.  

Consider an RVE with total volume V, bounded externally by surface V∂ . On this 

surface, either uniform tractions, 

 

0 0 on V= ⋅ ∂σσσσt n , (3.30) 

 

or linear displacements, 

 

 0 0 on V= ⋅ ∂εεεεu x , (3.31) 

 

are assumed to be prescribed, where 0σσσσ  and 0εεεε  are second-order symmetric constant 

stress and strain tensors for the macro-element. It is emphasized that either (3.30) or 



Chapter III – Theory of  Homogenization & Micromechanics 

 

 

 

66 

 

(3.31) (4.1.1 a), but not both, can be prescribed. In other words, if the traction 

boundary data (3.30) corresponding to the constant macrostress 0= σσσσΣΣΣΣ , are 

prescribed, then the surface displacements on V∂ , corresponding to these tractions, 

in general, are not spatially linear, being affected by the microstructure of the RVE. 

Similarly, if the linear displacement boundary data (3.31) corresponding to the 

constant macrostrain 0= εεεεΕΕΕΕ , are prescribed, then the surface tractions on V∂ , 

produced by these displacements, are not, in general, spatially uniform. In the sequel, 

therefore, the two cases are treated separately and independently, and then the 

relation between the results is discussed.  

 

 

Fig. 3.2.  

Matrix M and microcavities αΩ  

Assume that the material of the RVE is linearly elastic and homogeneous (but not 

necessarily isotropic). The inhomogeneity, therefore, stems solely from the presence 

of cavities. Denote a typical cavity by αΩ , with the boundary α∂Ω  ( )1,2,...,nα = , so 

that there are a total of n individual cavities in V. The union of these cavities is 

denoted by Ω , having the boundary ∂Ω  which is the union of all α∂Ω , i.e., 

 

 1 1

n n

α α α α= =Ω ≡ ∪ Ω ∂Ω ≡ ∪ ∂Ω  (3.32) 

 

The remainder of the RVE (i.e, when Ω  is excluded) is called the matrix. The matrix 

is denoted by M. The boundary of M is the sum of V∂  and ∂Ω , Figure 3.2.,  
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 M V M V≡ − Ω ∂ ≡ ∂ − ∂Ω . (3.33) 

 

 

 

Fig. 3.3.  

M

α∂Ω  and c

α∂Ω  

 

The total boundary surface of the RVE can include some portion of ∂Ω . For 

simplicity, however, exclude this possibility. Thus, all cavities are within the RVE, 

each being fully surrounded by the matrix material. For a typical cavity, αΩ , two 

faces of its surface boundary, α∂Ω , may be distinguished, as follows: 

• the exterior face of the cavity, denoted by c

α∂Ω  which is the face toward the 

matrix material, denned by the direction of the exterior unit normal n  of the 

cavity;  

• the exterior face of the surrounding matrix, denoted by M

α∂Ω , which is the face 

toward the interior of the cavity, denned by the direction of the exterior unit 

normal ( )−n  of the matrix (i.e., the interior unit normal of the cavity). α∂Ω  

coincides with c

α∂Ω , for the cavity αΩ , while M∂  at the cavity αΩ  coincides 

with M

α∂Ω  (Fig. 3.3). In view of this convention, the integral of a surface quantity 

taken over M∂  can always be decomposed as 

•  

 

( ) ( ) ( )

( ) ( ) ( ) ( )

M

c

n

M
1

n

1

. . .

. . . . .

V

V V

dS dS dS

dS dS dS dS

α

α

α

α

∂ ∂ ∂Ω
=

∂ ∂Ω ∂ ∂Ω
=

= + =

= − = −

/   

/    
(3.34) 
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Thus ∂Ω  always stands for the union of c

α∂Ω  ( )1,2,...,nα = . 

To distinguish the boundary of M at the cavities from that at the exterior of the RVE, 

which is V∂ , the exterior unit normal on V∂  is systematically denoted by n  (as 

before), and the exterior unit normal on the surface α∂Ω  for a typical cavity αΩ , by 

n , pointing from the inside of the cavity toward the matrix M. 

The matrix material is linearly elastic and homogeneous. Denote the corresponding 

constant elasticity tensor by   and the compliance tensor by " . 

 

 

2.1  Average strain for prescribed macro-stress 

 

 

Suppose that uniform tractions 0 0= ⋅σσσσt n  are prescribed on V∂ , associated with the 

constant symmetric macrostress 0= σσσσΣΣΣΣ . If the RVE is homogeneous, having no 

cavities, then the corresponding average strain associated with the average stress 0σσσσ  

would be 

 0 0:=ε σε σε σε σ" # , (3.35) 

 

and hence, in conjunction with 0σ σσ σσ σσ σ==== , the average strain would be 0εεεε . The presence 

of cavities disturbs the uniform stress and strain fields, producing the variable stress 

field ( )=σ σσ σσ σσ σ x  and strain field ( )=ε εε εε εε ε x , in M, with =σσσσ 0000  in Ω . Nevertheless, from 

the (3.1) 

 
1 1

V M
dv dv

V V

0= = = =  σ σ σ σ σσ σ σ σ σσ σ σ σ σσ σ σ σ σ . (3.36) 

 

On the other hand, the average strain is not, in general, equal to 0εεεε . Instead,  

 

 0 c= = +ε ε ε εε ε ε εε ε ε εε ε ε ε , (3.37) 

 

where 0εεεε  is defined by (3.35), and cεεεε  is the additional strain due to the presence of 

cavities. 
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To calculate the additional strain cεεεε  due to cavities, one may apply the reciprocal 

theorem, as follows. Consider two sets of loads, one defined by 

 

 
0

(1)

0

on

on

Vδ

δ

! ⋅ ∂"
= #

− ⋅ ∂Ω"$

σσσσ

σσσσ

n
t

n
 (3.38) 

 

which corresponds to uniform virtual stress 0δσσσσ  and strain 0 0:δ δ=ε σε σε σε σ"  within the 

entire RVE (as illustrated in Figure 3.3, −n  is the interior unit normal on the cavity 

surface ∂Ω , or the exterior unit normal to the boundary of the matrix), and the other 

defined by 

 

 
0

(2) on

on

V! ⋅ ∂
= #

∂Ω$0

σσσσn
t  (3.39) 

which is the actual loading considered for the RVE. 

Denote the displacement, strain, and stress fields associated with the first loading 

(3.38) by  

 

 { } ( ){ }(1) (1) (1) 0 0 0, , , ,δ δ δ=ε σ ε ε σε σ ε ε σε σ ε ε σε σ ε ε σu x .  (3.40) 

 

which follows from the fact that, for loading (3.38), the strain and stress fields are 

both uniform throughout the matrix M. And denote the fields associated with the 

second (i.e., the actual) loading (3.39) by  

 

 { } { }(2) (2) (2), , , ,=ε σ ε σε σ ε σε σ ε σε σ ε σu u . (3.41) 

 

From the reciprocal theorem, it follows that  

 

 ( ) ( ) ( ) ( )0 0 0 0

V V
ds ds dsδ δ δ

∂ ∂ ∂Ω
⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅   σ ε σ σσ ε σ σσ ε σ σσ ε σ σn x . n u n u (3.42) 
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which can be written as 

 

 ( ){ }{ }0 0: : 0
V V

ds ds dsδ
∂ ∂ ∂Ω

⊗ ⋅ − ⊗ + ⊗ =   σ σσ σσ σσ σx n n u n u" .(3.43) 

 

Since 0δσσσσ  is an arbitrary symmetric tensor, the symmetric part of the quantity within 

the braces must vanish identically. Noting that the first integral within the braces 

yields 

 

 ( ){ } { }0 0 01
: :

V
ds

V ∂
⊗ ⋅ = ⋅ = σ Ι σ εσ Ι σ εσ Ι σ εσ Ι σ εx n" " , (3.44) 

 

and using the averaging scheme, it follows that 

 

 ( ){ } ( )01 1 1 1

2 2

T

V
+ dv + ds

V V ∂Ω
= ∇ ⊗ ∇ ⊗ = + ⊗ ⊗  u u n u u nε εε εε εε ε .(3.45) 

Comparison with (3.37) shows that the additional strain cεεεε  due to cavities, is given 

by 

 

 ( )
1 1

2

c
+ ds

V ∂Ω
= ⊗ ⊗ εεεε n u u n . (3.46) 

 

 

 

2.2  Overall compliance tensor for porous elastic solids 
 

 

Define the overall compliance "  of the porous RVE with a linearly elastic 

homogeneous matrix, through 

 

 0: = :ε σ σε σ σε σ σε σ σ"#% "#%==== , (3.47) 

 

where the macrostress, 0= σσσσΣΣΣΣ , is regarded prescribed, and the average strain is given 

by (3.37). To obtain the overall compliance in an explicit form, the strain cεεεε  due to 
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cavities will now be expressed in terms of the applied stress 0σσσσ . Since the matrix of 

the RVE is linearly elastic, for a given microstructure the displacement ( )u x  at a 

point x  on ∂Ω  is linearly dependent on the uniform overall stress 0σσσσ , as show 

following. By remembering that the displacement field may be expressed in terms of 

Green function as  

 

 ( ) ( ) ( ),
V

ds
∂

= ⋅ u x G x y t y  (3.48) 

 

where ( )t y  are the self-equilibrating surface traction prescribed on the boundary V∂  

of the RVE, if the applied tractions (3.30) are substituting into (3.48), to arrive at 

 

 ( ) ( ) ( ){ }0,
V

ds
∂

= ⋅ ⋅ σσσσu x G x y n y , (3.49) 

 

where the integration is taken with respect to y  over the boundary V∂  of the RVE. 

Since 0σσσσ  is a symmetric constant tensor, (3.49) can be expressed as 

 

 ( ) ( ) 0

i ijk jku K σ=x x  (3.50) 

 

where the third-order tensor,  

 

           ( ) ( ) ( ) ( ) ( ) ( ){ }1
, ,

2
ijk ijk ij k ik j

V
K K G n G n dS

∂
= = + x x x y y x y y , (3.51) 

 

depends on the geometry and the elastic properties of the matrix of the RVE.  

To obtain the additional overall strain, cεεεε , due to the presence of cavities in terms of 

the prescribed overall stress, 0σσσσ , substitute from (3.51) into (3.46), to arrive at 

 

 0c

ij ijkl klHε σ= , (3.52) 
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where the constant fourth-order tensor, & , is given by  

 

               ( ) ( ) ( ) ( ){ }1 1

2
ijkl jikl ijlk i jkl j ikl

H H H n K n K dS
V ∂Ω

≡ ≡ ≡ + x x x x . (3.53) 

 

Hence, for an RVE with a linearly elastic matrix containing cavities of arbitrary 

shapes and sizes, the following general result is obtained, when the overall 

macrostress is regarded prescribed (Horii and Nemat-Nasser, 1983): 

 

 :c 0=ε σε σε σε σ& . (3.54) 

 

It should be noted that this exact result is valid whether or not the linearly elastic 

constituent of the RVE is homogeneous. The requirements are:  

• the matrix of the RVE is linearly elastic; 

• the microstructure of the RVE remains unchanged under the applied macrostress 

0= σσσσΣΣΣΣ . 

To obtain the overall elastic compliance tensor " , in terms of the constant 

compliance of the matrix, " , and the constant tensor & , substitute (3.35), (3.47) 

and (3.54) into (3.37), and noting that the resulting equation must hold for any 

macrostress 0σσσσ , arrive at 

 

 = +"# " & , (3.55) 

 

Note that in many situation, the tensor &  can be computer directly, using the (3.46). 

 

2.3  Average stress for prescribed macro-strain 
 

 

Suppose that the linear displacements 0 0= ⋅εεεεu x  (associated with the constant 

symmetric macrostrain 0= εεεεΕΕΕΕ ) are prescribed on V∂ . The matrix of the RVE is 

assumed to be homogeneous, as marked before. In the absence of cavities, the 
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corresponding average stress associated with the prescribed macrostrain, 0εεεε , would 

be 

 

 0 0:=σ εσ εσ εσ ε # . (3.56) 

 

Due to the presence of cavities, the actual field quantities are nonuniform. From 

the (3.6),  

 

 ( ) 01 1 1

2V V
dv ds

V V ∂
= = = ⊗ + ⊗ =  ε ε ε εε ε ε εε ε ε εε ε ε εn u u n  (3.57) 

which is valid for any RVE of any material and microstructure. Note that the surface 

integral in (3.57) extends over the exterior boundary, V∂ , of the RVE only. It does 

not include the cavity boundaries ∂Ω . Equation (3.57) is the direct consequence of 

the fact that the average strain for an RVE is given in terms of its boundary 

displacements which are prescribed here to be 0 0= ⋅εεεεu x .  

In general, for a prescribed macrostrain, the average stress is not equal to 0σσσσ  but 

 

 0 c= = +σ σ σ σσ σ σ σσ σ σ σσ σ σ σ , (3.58) 

 

where 0σσσσ  is defined by (3.56), and cσσσσ  is the decrement in the overall stress due to 

the presence of cavities.  

As in Subsection 3.1., the reciprocal theorem will be applied to calculate the average 

stress a in (3.58). To this end, a third set of boundary data defined by 

 

 
(3) 0

(3)

on

on .

V= ⋅ ∂

= ∂Ω0

u n

t

σσσσ
 (3.59) 

 

The displacement, strain, and stress fields associated with these boundary conditions 

are denoted by 
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 { } { }(3) (3) (3), , , ,=u uε σ ε σε σ ε σε σ ε σε σ ε σ  (3.60) 

 

which are actual fields, in general, different from those given by (3.41) for the 

boundary conditions (3.39). The actual tractions on the boundary of the RVE now are 

 

 ( ) ( ) ( )= ⋅t x n x xσσσσ , (3.61) 

 

where x  is on V∂ . These tractions are required in order to impose the boundary 

displacements prescribed by (3.59). 

Applying the reciprocal theorem to the two sets of loads, (3.38) and (3.59), it follows 

that  

 

           ( ) ( ) ( ) ( )0 0 0 0

V V
ds ds dsδ δ δ δ

∂ ∂ ∂Ω
⋅ = ⋅ ⋅ − ⋅ ⋅   t x . n x . n uε σ ε σε σ ε σε σ ε σε σ ε σ  (3.62) 

 

which can be written as  

 

     ( ){ } ( ){ }0 0: : : 0
V V

ds ds dsδ
∂ ∂ ∂Ω

⊗ − ⊗ ⋅ + ⊗ =   t x x n n uε εε εε εε ε   (3.63) 

 

where, in using loading (3.40), the quantity 0δεεεε  is regarded as a virtual spatially 

constant strain field with the corresponding stress field, 0 0:δ δ=σ εσ εσ εσ ε # . Since 0δεεεε  is an 

arbitrary symmetric tensor, the symmetric part of the quantity within the braces in 

(3.63) must vanish identically. Noting that the second integral within the parentheses 

can be expressed as 

 ( ){ } { }0 0 01
: :

V
ds

V ∂
⊗ ⋅ = ⋅ = x n ε Ι ε σε Ι ε σε Ι ε σε Ι ε σ  , (3.64) 

 

and using the averaging procedure, it now follows that 
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 ( )01 1 1
:

2V
ds + ds

V V∂ ∂Ω

! 0
= ⊗ = − ⊗ ⊗# 1

$ 2
  t x n u u nσ σσ σσ σσ σ                  (3.65) 

 

Comparison with (3.58) shows that the decremental stress cσσσσ  due to the presence of 

cavities, is given by 

 :c c= −σ εσ εσ εσ ε  (3.66) 

 

where cεεεε  is the strain due to the presence of cavities given by (3.46), which now 

must be computed for the prescribed boundary displacements 0 0= ⋅u x εεεε . 

2.4  Overall elasticity tensor for porous elastic solids 
 

 

When the overall macrostrain is regarded prescribed, 0= εεεεΕΕΕΕ , designate the overall 

elasticityJensor of the porous RVE with a-linearly elastic and homogeneous matrix, 

by  , and define it through 

 0= :σ εσ εσ εσ ε #% . (3.67) 

 

Substitution of (3.56), (3.66), and (3.67) into (3.58) then yields 

 

 ( ) 0: : c− + =ε εε εε εε ε #%  #  0000 . (3.68) 

 

For a given microstructure (i.e., for existing cavities with fixed shapes, sizes, and 

distribution), the response of the RVE is linear. Hence, the displacement field 

anywhere within the linearly elastic matrix of the RVE is a linear and homogeneous 

function of the prescribed overall constant strain 0εεεε . Therefore, in line with results 

(3.50) and (3.51) for the case when the macrostresses were considered to be 

prescribed, at a typical point x  on the boundary of the cavities, ∂Ω , 

 

 ( ) ( ) 0

i ijk jku L ε=x x  (3.69) 
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where ( )L x  is a is a third-order tensor-valued function with the symmetry property, 

ijk ikjL L= . Now, from the definition of cεεεε , given by the (3.46),  

 

 0c

ij ijkl klJε ε= , (3.70) 

 

where the constant fourth-order tensor, ' , is given by 

 

           ( ) ( ) ( ) ( ){ }1 1

2
ijkl jikl ijlk i jkl j ikl

J J J n J n J dS
V ∂Ω

≡ ≡ ≡ + x x x x . (3.71) 

 

Hence, for an RVE with a linearly elastic matrix (whether homogeneous or not) 

containing cavities of arbitrary shapes and sizes, the following general result is 

obtained, when the overall macrostrains are regarded prescribed: 

 

 :c 0=ε εε εε εε ε' . (3.72) 

To obtain an expression for the overall elastic moduli of the porous RVE, substitute 

(3.72) into (3.68) and, noting that the resulting expression must be valid for any 

constant symmetric macrostrain 0εεεε , arrive at  

 

 := −   ' . (3.73) 

 

It should be noted that in many practical problems the tensor J, similarly to the tensor 

& , can be calculated directly from (3.46), and therefore, the overall elastic moduli 

can be estimated from (3.73). 

It may, however, be instructive to seek to construct the tensor '  in terms of the 

Green functions ( ),G x y  and ( ),-1G x y . 

To this end, for the linear displacements, 0 0= ⋅u z εεεε , prescribed on the outer boundary 

V∂  of the RVE, by remembering that the resulting tractions, ( )t y , may be written as 
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 ( ) ( ) ( ),-1 0

V
ds

∂
= ⋅ ⋅ t y G y z z εεεε , (3.74) 

 

where the integration is taken with respect to z  over the outer boundary V∂  

(excluding the traction-free cavity boundaries) of the RVE. Substituting (3.74) into 

(3.48), the displacement field for points on ∂Ω  is obtained in terms of the prescribed 

macrostrain 0εεεε , as 

 

 ( ) ( ) ( ) ( ){ }0, ,-1

V V
ds ds

∂ ∂
= ⋅ ⋅ ⋅  u x G x y G y z z εεεε  (3.75) 

 

where both the y - and z -integral are taken over V∂ . Noting that 0εεεε  is a symmetric 

tensor, tensor L  in (3.69) may now be written in terms of G  and -1G , as 

 

          ( ) ( ) ( ) ( ){ }1 11
, , ,

2
ijk im mj k mk j

V V
L G G z G z ds ds

− −

∂ ∂

! 0
= +# 1

$ 2
  x x y y z y z .           (3.76) 

 

Therefore, from comparison of (3.72) with (3.76), a fourth-order tensor, ( ),j x y , can 

be introduced as  

 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1

, , , ,1
,

4 , , , ,

i jm mk l i jm ml k

ijkl
V

j im mk l j im ml k

n G G z n G G z
j dS

n G G z n G G z

− −

− −∂

! 0+ +" "
= # 1

+ +" "$ 2
 

x x y y z x x y y z

x x y y z x x y y z
(3.77) 

 

where the integral is taken with respect to z  over V∂ . The constant tensor '  in 

(3.72) now becomes 

 

 ( )
1

,
V

ds ds
V ∂Ω ∂

=   ' j x y , (3.78) 

 

where the y -integration is over V∂ , and the x -integration is over ∂Ω . 

 



Chapter III – Theory of  Homogenization & Micromechanics 

 

 

 

78 

 

3 Micromechanics 

 

Composite materials are one of the strongest candidates as a structural material for 

many  automobile, aerospace and other applications (D. Agarwal 1974). Recently, 

short fiber-reinforced composite materials have been extensively investigated 

because they are more economical and impact resistant (M. Taya  1989). One of the 

earliest attempts to explain the reinforcing effect of fibers was described by [3], and 

is now referred to as the shear lag theory, which considers long straight 

discontinuous fibers completely embedded in a continuous matrix (Cox 1952). 

Fiber-reinforced composites are often characterized by their high specific strength 

and specific modulus parameters (i.e., strength to weight ratios), and are widely used 

for applications in low-weight components. The high strength and damage resistance 

of the composites are very important for a number of practical applications. In order 

to predict the strength and other properties of composites, a number of mathematical 

models of deformation, damage and failure of fiber reinforced composites have been 

developed. 

Short fiber reinforced composites have several attractive characteristics that make 

them worthy of consideration for other applications. Therefore, short fiber reinforced 

composite materials have been extensively investigated because they are more 

economical and impact resistant. 

 

3.1 Unidirectional short fiber composite 

 

A unidirectional fibre composite is highly anisotropic. Stiffness and strength in the 

fibre direction are of the order of the fibre value, and thus very large, while normal to 

the fibre direction they are of the order of the matrix value and are thus much lower. 

In an injection-moulded discontinuous-fibre composite, stiffness and strength are 

much more complex owing to the multitude of fibre orientations. The resultant 

properties are largely controlled by material parameters e.g. 
f

E (fibre elastic 
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modulus), 
m

E (matrix elastic modulus), 
f

ν  (fibre volume fraction), FLD (fibre length 

distribution) and FOD (fibre orientation distribution) and test conditions. The 

prediction of the elastic properties of discontinuous fibre reinforced materials has 

received much attention in the past. Three of the most commonly used methods are: 

(i) aggregate model, (ii) Cox shear-lag theory , and (iii) the rule of mixtures. 

The aggregate model uses the concept of subunits, each of which possess the elastic 

properties of a reinforced composite in which the fibres are continuous and fully 

aligned. In this way, elastic moduli have been estimated for various composite 

systems (Halpin JC, Pagano NJ 1969). Brody and Ward (Brody H, Ward, IM  1971) 

have compared measured moduli for compression moulded 30% w/w short glass and 

carbon fibre polyethylene and polypropylene composites with those determined by 

using the aggregate model. Reasonable correlation was found although it should be 

remembered that the FOD was fairly isotropic compared with that produced during 

the injection moulding process.  

More recently (Toll S. 1992) a modified aggregate model was applied to plaque 

mouldings, identifying limitations of the previous aggregate models as: (1) the unit-

cell stiffnesses require estimation by micromechanical approximations, since the 

unidirectional composite is normally unavailable; (2) it is reasonably accurate only at 

nearly unidirectional orientations. To overcome these short-comings a two-parameter 

model was developed which describes the unit-cell stiffnesses, which are easily 

determined from elastic constants measured for a material in a known but arbitrary 

orientation state. When measured moduli were compared with predicted 

values,excellent agreement was found. 

Other methods have been based on various forms of the rule of mixtures (RoM): 

 

/ /

f m

f f m m

m f f m

E E
E E E and E

E E
ν ν

ν ν
⊥= + =

+
                                                (3.79) 

where E
#
and E⊥ are moduli determined parallel and normal to the principle fibre 

orientation direction in a continuous unidirectional fibre system. 

These equations were modified by Halpin and Tsai (Halpin JC, Tsai SW 1967) for 

discontinuous-fibre materials to yield longitudinal and transverse moduli, 
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, ,
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η ν
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                              (3.80) 

1
1

, ;
1

f

f m

m

ff

m

E

E
E E where

E

E

αη ν
η

η ν
α

⊥

⊥ ⊥

⊥

+ ,% &
−3 4' (+ ,+ ) *3 4= =3 4 3 4− % &3 4- . +3 4' (

3 4) *- .

                                        (3.81) 

η
#
and η⊥  describe longitudinal and transverse efficiency factors, 

l

d

% &
' (
) *

the fibre 

aspect ratio and α  a geometric factor. 

Further modifications were made to the rule of mixtures by Cox (H. L. Cox  1952) to 

derive the shear lag analysis, 

( )
tanh

2
1 1

2

c m f f f

l

E E E
l

β

ν ν
β

% &% &
' (' (
) *' (= − + −

% &' (
' (' (
) *) *

                                                          (3.82) 

where the last term in brackets is described as a fibre-length correction factor, l  is 

the fibre length and β ,which governs the rate of stress build up at the fibre ends, is 

given by 

( )

1
2

1

1 ln

m

f

E

Rr
E

r

β

ν

+ ,
3 4
3 4=

% &3 4+ ' (3 4) *- .

                                                                             (3.83) 

 
 

where
m

E  is the matrix modulus, ν  is Poisson's ratio, r  is the fibre radius and 2R  

the mean inter-fibre spacing. For a square fibre packing system, the inter-fibre 

spacing is related to the volume fraction by 
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4
f

R r
π

ν
=                                                                                                        (3.84) 

 

 

so that β  may be written as 

 

( )

1

1 ln
4

m

f

f

E

r
E

β
π

ν
ν

=

+

                                                                              (3.85) 

 

Several assumptions were made: (1) the fibre and the matrix remain elastic in their 

mechanical response; (2) the interface between the fibre and the matrix is perfect; 

and (3) no axial force is transmitted through the fibre ends. 

 

3.2 Random Short Fiber Composite 

 

To account for fibre orientation effects in short fibre materials, the RoM is adapted as 

 

( ) 01
c m f f f L

E E Eν ν η η= − +                                                                                   (3.86) 

 
 

L
η is a fibre-length correction factor, and 0η often described as the Krenchel 

orientation efficiency factor (Krenchel 1964), is given by the general form, 

 
4

0 cos , 1
fn n fn fn

n n n

a a where aη α= =/ / /                                                   (3.87) 

 

and where  
fn

a is the ratio between the cross-sectional area presented by a group of 

fibres orientated at an angle 
n

α to the applied load direction and the total area of all 

the fibres at a given cross-section of the composite. The number of groups are 

designated by 1, 2 .n n= $ Eq. (9) was further modified (O'Donnell B. 1990) to yield 

the through-thickness fibre orientation  efficiency, 

 

3 3 3

1 1 2 2

0

1 1 2 2 1

cos cos cos

sec sec sec

f f fn n

f f f n

N N N

N N N

α α α
η

α α α

+ + +
=

+ + +

$

$
                                                  (3.88) 
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where the notations given above apply, and 1f
N is the fraction of the total number of 

fibres orientated at angle 1α  in any field of view. Thus measuring the through- 

thickness fibre orientation angles, using a series of layers of fields-of-view and 

determining corresponding effciency factors will allow the composite stiffness to be 

determined through the moulding thickness. 
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CHAPTER IV 

  

 
CLASSIFICATION OF BIOLOGICAL STRUCTURES: DESIGN 

OPTIMIZATION STRATEGIES 

 
1. INTRODUCTION 

 

 
Nature has gone through evolution over the 3.8 Gyr since life is estimated to 

have appeared on the Earth (Gordon 1976). Nature has evolved objects with high 

performance using commonly found materials. The understanding of the functions 

provided by objects and processes found in Nature can guide us to imitate and 

produce nanomaterials, nanodevices and processes. Biologically inspired design or 

adaptation or derivation from Nature is referred to as ‘biomimetics’. It means 

mimicking biology or Nature. Biomimetics is derived from the Greek word 

biomimesis. The word was coined by polymath Otto Schmitt in 1957, who, in his 

doctoral research, developed a physical device that mimicked the electrical action of 

a nerve. Other words used include bionics (coined in 1960 by Jack Steele of Wright-

Patterson Air Force Base in Dayton, OH), biomimicry and biognosis. 

Nature has always been an invaluable source of inspiration for technological 

progress. Great scientific revolutions were started by the work of men such as 

Leonardo da Vinci and Galileo Galilei, who were able to learn from Nature and 

apply their knowledge most effectively 

The field of biomimetics is highly interdisciplinary. It involves the under standing of 

biological functions, structures and principles of various objects found in Nature by 

biologists, physicists, chemists and material scientists, and the design and fabrication 

of various materials and devices of commercial interest by engineers, material 

scientists, chemists and others. The word biomimetics first appeared in Webster’s 

dictionary in 1974 and is defined as ‘the study of the formation, structure or function 
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of biologically produced substances and materials (as enzymes or silk) and biological 

mechanisms and processes (as protein synthesis or photosynthesis) especially for the 

purpose of synthesizing similar products by artificial mechanisms which mimic 

natural ones’. Biological materials are highly organized from the molecular to the 

nanoscale, microscale and macroscale, often in a hierarchical manner with intricate 

nanoarchitecture that ultimately makes up a myriad of different functional  elements 

(Alberts et al. 2008). Nature uses commonly found materials. Properties of the 

materials and surfaces result from a complex interplay between the surface structure 

and the morphology and physical and chemical properties. Many materials, surfaces 

and devices provide multifunctionality. Molecular-scale devices, 

superhydrophobicity, self-cleaning, drag reduction in fluid flow, energy conversion 

and conservation, high adhesion, reversible adhesion, aerodynamic lift, materials and 

fibres with high mechanical strength, biological self-assembly, antireflection, 

structural coloration, thermal insulation, self-healing and sensoryaid mechanisms are 

some of the examples found in Nature that are of commercial interest. (B. Bhunshan 

2010) 

 
1.1 Biological materials vs engineering materials 
 

Biological materials are omnipresent in the world around us. They are the main 

constituents 

in plant and animal bodies and have a diversity of functions. A fundamental function 

is obviously mechanical providing protection and support for the body. But 

biological materials may also serve as ion reservoirs (bone is a typical example), as 

chemical barriers (like cell membranes), have catalytic function (such as enzymes), 

transfer chemical into kinetic energy (such as the muscle), etc. 

Nature has developed a large number of ingenious solutions which still wait to be 

discovered 

and serve as a source of inspiration (Aksay 1998). This subject was pioneered by 

Schwendener (Schwendener S 1874) and D’Arcy Wentworth Thomson in the 

classical book from 1917 (revised and reprinted in 1942) ‘‘On Growth and Form’’, 
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which has been republished almost a century later (Thomson 1992). This early text 

mostly relates the ‘‘form’’ (or shape) of biological objects to their function. A similar 

approach specifically focusing on trees has been pursued in the book by Mattheck 

and Kubler (Mattheck C 1995) with the specific aim to extract useful engineering 

principles from their observations. Adapting the form (of a whole part or organ, such 

as a branch or a vertebra) is one aspect of functional adaptation. A second, which 

relates more directly to Materials Science, is the functional adaptation of the 

microstructure of the material itself (such as the wood in the branch or the bone in 

the vertebra). This dual optimization of the part’s form and of the material’s 

microstructure is well known for any engineering problem. However, in natural 

materials shape and microstructure are intimately related due to their common origin, 

which is the growth of the organ. Growth implies that ‘‘form’’ and ‘‘microstructure’’ 

are created in the same process. The shape of a branch is created by the assembly of 

molecules to cells, and of cells to wood with a specific shape. Hence, at every size 

level, the branch is both form and material – the structure becomes hierarchical. 

It is not evident at all that the lessons learned from hierarchical biological materials 

will be applicable immediately to the design of new engineering materials. The 

reason arises from striking differences between the design strategies common in 

Engineering and those used by Nature (see Fig. 4.1). These differences are 

contributed by the different sets of elements used by Nature and the Engineer – with 

the Engineer having a greater choice of elements to choose from in the ‘‘toolbox’’. 

Elements such as iron, chromium, nickel, etc. are very rare in biological tissues and 

are certainly not used in metallic form as, for example, in steels. Iron is found in red 

blood cells as an individual ion bound to the protein hemoglobin: its function is 

certainly not mechanical but rather chemical, to bind oxygen. Most of the structural 

materials used by Nature are polymers or composites of polymers and ceramic 

particles. Such materials would not be the first choice of an engineer who intends to 

build very stiff and long-lived mechanical structures. Nevertheless, Nature makes the 

best out of the limitations in the chemical environment, adverse temperatures and 

uses polymers and composites to build trees and skeletons (Gibson LJ 1995). 

Another major difference between materials from Nature and the Engineer is in the 
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way they are made. While the Engineer selects a material to fabricate a part 

according to an exact design, Nature goes the opposite direction and grows both the 

material and the whole organism (a plant or an animal) using the principles of 

(biologically controlled) self-assembly. Moreover, biological structures are even able 

to remodel and adapt to changing environmental conditions during their whole 

lifetime. This control over the structure at all levels of hierarchy is certainly the key 

to the successful use of polymers and composites as  structural materials. 

 

 
 

Fig. 4.1 

Biological and engineering materials are governed by a very different choice of base elements and by 

a different mode of fabrication. From this are resulting different strategies for materials choice and 

development (under the arrow). 

 
Different strategies in designing a material result from the two paradigms of 

‘‘growth’’ and ‘‘fabrication’’ are shown in Fig. 4.1. In the case of engineering 

materials, a machine part is designed and the material is selected according to the 

functional prerequisites taking into account possible changes in those requirements 
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during service (e.g. typical or maximum loads, etc.) and considering fatigue and 

other lifetime issues of the material. Here the strategy is a static one, where a design 

is made in the beginning and must satisfy all needs during the lifetime of the part. 

The fact that natural materials are growing rather than being fabricated leads to the 

possibility of a dynamic strategy. Taking a leaf as an example, it is not the exact 

design that is stored in the genes, but rather a recipe to build it. This means that the 

final result is obtained by an algorithm instead of copying an exact design. This 

approach allows for flexibility at all levels. Firstly, it permits adaptation to changing 

function during growth. A branch growing into the wind may grow differently than 

against the wind without requiring any change in the genetic code. Secondly, it 

allows the growth of hierarchical materials, where the microstructure at each position 

of the part is adapted to the local needs (Jeronimidis G 2000). Functionally graded 

materials are examples of materials with hierarchical structure. Biological materials 

use this principle and the functional grading found in Nature may be extremely 

complex. Thirdly, the processes of growth and ‘‘remodeling’’ (this is a combination 

of growth and removal of old material) allow a constant renewal of the material, thus 

reducing problems of material fatigue. A change in environmental conditions can be 

(partially) compensated for by adapting the form and microstructure to new 

conditions. One may think about what happens to the growth direction of a tree after 

a small land-slide occurs .In addition to adaptation, growth and remodeling, 

processes occur which enable healing allowing for self-repair in biological materials. 

 

1.2 Simple geometry in complex organism 
 

Many cultures throughout history have used the regularities of numbers and 

patterns as a means of describing their environment. The ancient Greeks believed 

that just five archetypal forms e the ‘platonic solids’ e were part of natural law and 

could describe everything in the universe because they were pure and perfect (Fuller, 

1975) .This platonic conception of Nature persisted up until the mid nineteenth 

century when Charles Darwin published his revolutionary ‘Origin of Species’, 

‘‘After Darwin the whole lawful scheme was overthrown and organic forms came to 
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be seen as contingent mutable assemblages of matter e ‘clever artefact like 

contrivances’ e put together gradually during the course of evolution primarily by 

natural selection for biological function’’ (Denton et al., 2003). A recognition of 

natural patterns and shapes derived from physical laws seemed to reassert itself in 

1917 when d’Arcy Thompson published his classic ‘On Growth and 

Form’(Thompson, 1961), but in the scientific mainstream this remained little more 

than interesting. Using simple geometry to describe a complex organism is likely to 

generate a certain amount of skepticism, as esoteric and occult descriptions seem 

rather simplistic compared to modernscientific thinking. However, in 1928 Frank 

Ramsey proved that every complex or random structure necessarily contains an 

orderly substructure. His proof established the fundamentals of a branch of 

mathematics known as Ramsey theory, which is used to study the conditions under 

which order must appear, such as in large communication networks and the 

recognition of patterns in physical systems. The theory suggests that much of the 

essential structure of mathematics consists of extremely large numbers (with very 

complicated calculations) derived from problems which are deceptively simple 

(Graham and Spencer, 1990; Fuller, 1975, sec.227.00). From the perspective of the 

human body, Ramsey theory implies that simple shapes might form part of that 

underlying substructure, and an examination of how these could arise through the 

interactions of physical forces is presented. This supports recent research which 

reinstates physical law, and not natural selection, as the major determinant of 

biological complexity in the subcellular realm (Denton et al., 2003). The 

development of these shapes into more complex structures, and how they model 

biology, with implications for manual therapy then follows. 

One of the problems that Nature seems to solve repeatedly is that of the most 

efficient ways of packing objects close together. A circle drawn on a piece of paper, 

i.e. in two dimensions (2D), demonstrates this. The circle encloses the largest area 

within the minimum boundary, which makes it a ‘minimal-energy’ shape (requiring 

the least amount of energy to maintain). Circles enclose space, as well as radiate out 

into it, as can be seen in a drop of oil floating on water, the growth of fruit mould, 

and the ripples in a pond.  
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Figure 4. 2 

The tessellation of different shapes on a flat plane showing the appearance of the hexagon (shaded). 
 

 
 

However, this efficiency is  everely compromised when several circles are put next 

to each other as gaps are left in between (Figure 4.2). Other shapes, such as squares 

and triangles will both fill the space completely, but the proportion of area to 

boundary is not as good as with the circle. A square is inherently unstable; while 

triangles are very stable, even with flexible joints (Figure 4.2). Structures that are not 

triangulated can generate torque and bending moments at their joints, and must be 

rigidly fixed to prevent them from collapsing. The best compromise between 

efficient space filling of the circle and stability of the triangle is the hexagon (Figure 

4.2).  

 

 
Figure  4.3  

show that square trusses are inherently unstable at their joints, whereas triangular trusses are rigid. 
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Isolated hexagons are also liable to collapsing, but when several hexagons are packed 

together, they support each other as stresses balance at their 3-way junctions (Figure 

4.3). 

 
Figure 4.4  

The relationship between hexagons, circles and triangles. 
 

Soap bubbles spontaneously join together with outside surfaces that always meet at 

120, just like hexagons, whether the bubbles are equal in size or not (Figure 5.4). 

This is because soap molecules hold together through their surface tension, which 

tries to minimize itself and  reduce the surface area (Fuller, 1975, sec.825.20; 

Stewart, 1998,). Some examples of naturally occurring hexagons are shown in Figure 

7 (Bassnett et al., 1999; Weinbaum et al.,2003; Sanner et al., 2005). All this would 

seem to make the hexagon the obvious choice for close-packing in two dimensions. 

In 3D, however, a structure which fulfills the same purpose may not be so readily 

apparent. The ancient Greeks recognized the importance of the five regular 

polyhedra because of their intriguing properties (Fuller, 1975). 

 
Figure  4.5 

 Hexagonal close-packing and a hierarchy of hexagons. 
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Their outer faces are made from shapes which are all the same; a sphere 

circumscribed around each one will touch all the corners, while one inscribed within 

will touch the centre of all the faces; and they all have 3, 4 or 5 sides. Joining up the 

face centres creates the ‘dual’ of that shape, i.e. the octahedron and cube are duals of 

each other; and the dodecahedron and  icosahedron similarly; the tetrahedron is 

unique in that it is a dual of itself. Not a hexagon in sight. yet! Just as the circle is the 

most efficient shape for enclosing space in 2D, so its equivalent in 3D is the sphere. 

Atoms, bubbles, oranges, and planets all approximate to spheres. Putting lots of 

spheres next to each other still leaves all those wasteful spaces in  between, just like 

the circles did; but there is a more efficient solution. In order to tease out some of the 

consequences of packing spheres closely together, plastic balls have been glued 

together (Figure 8). The same arrangements are also shown as lattices of steel balls, 

with coloured magnetic sticks representing the inherent ‘minimal-energy’ 

characteristic of close-packing (i.e. their centres of mass are at the minimum possible 

distance apart) (Connelly and Back, 1998). Adding more spheres to a particular 

shape creates higher-order structures of the same shape, numbered according to the 

[magnetic] connections on their outer edge (Fuller, 1975). 

 
 

 
Figure  4.6 

Some examples of hexagons in natural structures: (a) honeycomb (Wikipedia); (b) close-packing of 

Polio virus (Fred Murphy & Sylvia Whitfield, Wikipedia); (c) Basalt blocks on the Giants Causeway 

in Ireland, formed from cooling lava (Matthew Mayer, Wikipedia); (d) stacked layers of carbon atoms 

in graphite (Benjah-bmm27, Wikipedia); (e) hexagonal close-packing of actin and myosin in a muscle 

fibril; (f) hexameric complexes of uroplakin covering the epithelial lining of the urinary bladder 

(redrawn after Sanner et al., 2005); (g) idealized diagram of the sub-cortical cytoskeleton (redrawn 

after Weinbaum et al., 2003); and (h) cells in the optic lens arranged as hexagons (redrawn after 

Bassnett et al., 1999). 



Chapter IV – Classification of biological structures: Design optimization strategies 
 

 
 

 
 

92

1.3 The Bee’s Cell 
 

The most famous of all hexagonal conformations, and one of the most 

beautiful, is the bee’s cell. As in the basalt or the coral, we have to deal with an 

assemblage of co-equal cylinders, of circular section, compressed into regular 

hexagonal prisms. 

The axes of honeycomb cells are always quasi-horizontal, and the non-angled rows 

of  honeycomb cells are always horizontally (not vertically) aligned. Thus, each cell 

has two vertical walls, with "floors" and "ceilings" composed of two angled walls. 

The cells slope slightly upwards, between 9 and 14 degrees, towards the open ends. 

There are two possible explanations for the reason that honeycomb is composed of 

hexagons, rather than any other shape. One, given by Jan Bro ek, is that the hexagon 

tiles the plane with minimal surface area. Thus a hexagonal structure uses the least 

material to create a lattice of cells within a given volume. Another, given by D'Arcy 

Wentworth Thompson, is that the shape simply results from the process of individual 

bees putting cells together: somewhat analogous to the boundary shapes created in a 

field of soap bubbles. In support of this he notes that queen cells, which are 

constructed singly, are irregular and lumpy with no apparent attempt at efficiency. 

(Wikipedia). If a single cell be isolated, it will be seen that the sides rise from the 

outer edges of the three lozenges, so that there are, of course, six sides, the transverse 

section of which gives a perfect hexagon. Many years ago, Maraldi, being struck 

with the fact that the lozenge-shaped plates always had the same angles, took the 

trouble to measure them, and found that in each lozenge the large angles measured 

109 degrees 28!, and the smaller 70 degrees 32!, the two together making 180 

degrees, the equivalent of two right angles. He also noted the fact that the apex of the 

three-sided cup was formed by the union of three of the greater angles. The three 

united lozenges are seen in the figure below. 

Some time afterward, Reaumur, thinking that this remarkable uniformity of angle 

might have some connection with the wonderful economy of space which is 

observed in the bee-comb, hit upon a very ingenious plan. Without mentioning his 

reasons for the question, he asked Koenig, the mathematician, to make the following 
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calculation: Given a hexagonal vessel terminated by three lozenge-shaped plates, 

what are the angles which would give the greatest amount of space with the amount 

of material? 

 

Figure  4. 7  

Honeycomb 

Koenig made his calculations, and found that the angles were 109 degrees 26! and 70 

degrees 34!, almost precisely agreeing with the measurements of Maraldi. Reaumur, 

on receiving the answer, concluded that the bee had very nearly solved the difficult 

mathematical problem, the difference between the measurement and the calculation 

being so small as to be practically negative in the actual construction of so small an 

object as the bee-cell.  

Mathematicians were naturally delighted with the results of the investigation, for it 

showed how beautifully practical science could be aided by theoretical knowledge; 

and the construction of the bee-cell became a famous problem in the economy of 

Nature. In comparison with the honey which the cell is intended to contain, the wax 

is a rare and costly substance, secreted in very small quantities, and requiring much 

time and a large expenditure of honey for its production. It is, therefore, essential that 
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the quantity of wax employed in making the comb should be as little, and that of the 

honey which could be stored in it as great, as possible. 

 

1.4 Mathematics in Nature: Fibonacci Numbers 
 

The Fibonacci numbers are Nature's numbering system. They appear 

everywhere in Nature, from the leaf arrangement in plants, to the pattern of the 

florets of a flower, the bracts of a pinecone, or the scales of a pineapple. The 

Fibonacci numbers are therefore applicable to the growth of every living thing, 

including a single cell, a grain of wheat, a hive of bees, and even all of mankind 

 

 

2 Classification of biological structures 
 

Nature has an enormous pool of inventions that passed the harsh test of 

practicality and durability in changing environment. In order to harness the most 

from Nature’s capabilities, it is critical to bridge between the fields of biology and 

engineering and to see cooperation of experts from both fields. This bridging effort 

can help in turning Nature’s capabilities into engineering capabilities, tools and 

mechanisms. 

It was necessary a first step in which we are interested in a classification of 

biological structures, providing for a code assignment for an immediate 

discrimination. This classification provides a first upstream division into two main 

areas: experimental observation on time (T) and experimental observation on scale 

(S) and in sub-sequent division as shown in fig.4.8. 
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Figure  4. 8  

Classification of biological structures 

2.1 Classification of biological structures: experimental 

observation on time 
 

As regard the classification on time, were considered time ranging from 

ere(1), for example, human evolution, pangea or evolution of solar system to 1000 

yeas (2). More specifically, Nature, through billions of years of trial and error, has 

produced effective solutions to innumerable complex real-world problems. The 

rigorous competition of natural selection means waste and efficiency are not 

tolerated in natural systems, unlike many of the technologies devised by humans. 

Every living form emerges from 2 strongly coupled processes, operating over 

maximally differentiated time spans: the rapid process of embryological development 

from a single cell to adult form, and the long slow process of evolution of diverse 
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species of forms over multiple generations. (Hensel M., Menges A. and Weinstock 

M. 2010)  

The perfection and variety of natural forms is the result of relentless experimentation 

of evolution. By means of profligate prototyping and ruthless rejection of flawed 

experiments, Nature has evolved a rich biodiversity of interdependent species of 

plants and animals that are in metabolic balance with their environment. Analogy of 

evolutionary architecture should not be taken just to imply a form of development 

through natural selection. Other aspects of evolution such as the tendency to self 

organization are equally or even more significant. (Frazer J. 1995) 

Ecosystems optimise the system rather than its components” the relationship between 

form and function is emphasized, and as a result, form and behaviour are equally 

important.  

Biological forms and their behaviour emerge from process. It is process that 

produces, elaborates and maintains the form and structure of biological organisms 

(and non-biological things), and that process consists of a complex series of 

exchanges between the organism and its environment. Furthermore, the organism has 

a capacity for maintaining its continuity and integrity by changing aspects of its 

behaviour. Form and behaviour are intricately linked. (Hensel M., Menges A. and 

Weinstock M. 2010) 

The form of an organism affects its behaviour in the environment, and a particular 

behaviour will produce different result in different environments. Behaviour is non 

linear and context specific. (Hensel M., Menges A. and Weinstock M. 2010) 

For times comparable to 1000 years an example is helical tree. Helices, in-fact, 

appear at every anatomical level across the nine orders of magnitude that span the 

range of size between molecules and the biggest organisms. They provide solutions 

to any number of the challenges of growth and form, structure and function including 

significantly movement, that evolution has thrown up, in particular, in this case, the 

tree trunk wheel to have the same amount of light at every point.  

 Also, were considered time ranging from 100 to 10 yeas (3) as growth and muscle 

development and times ranging from 1 hour to second (4) as meiosis and mitosis. 
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2.2 Classification of biological structures: experimental 

observation on scale 
 

As regards, however, the experimental observations on scale, has been 

referred to the hierarchical structures, whereas, therefore, a macro (1), micro (2) and 

nano-scale (3). The  classification made, then a subsequent division related to their 

ability to discriminate the structures on the way in which they are inspired by Nature: 

to observe for simple imitation (Im) or to observe for applying functioning logic 

(log).The last sub-division is related to the complexity of the problem and, therefore, 

the number of variables involved. The problems  are divided, therefore, in the 

classical (C) and non classical (NC). 

 
 

2.3 Classification of biological structures: experimental 

observation on scale- hierarchical structures 
 

Many biological tissues are fiber composites with a hierarchical structure. 

The following are three examples of hierarchically structured biogenic tissues with 

entirely different chemical compositions: the wood cell wall, an almost pure 

polymeric composite, the skeleton of a glass sponge, which is composed of almost 

pure silica mineral, and bone, an organic–inorganic composite consisting of roughly 

half polymer and half mineral. 

 
 

2.3.a Wood 
 

At the macroscopic level, spruce wood can be considered as a cellular solid, 

mainly composed of parallel hollow tubes, the wood cells. The cell wall is a fiber 

composite made of cellulose microfibrils embedded into a matrix of hemicelluloses 

and lignin. 

Wood can be regarded as a cellular material at the scale of hundred micrometers to 

centimetres . Parameters which can be varied at this hierarchical level (and, 

therefore, used for adaptation to biological and mechanical needs) are the diameter 

and shape of the cell cross-section, as well as the thickness of the cell wall. In 
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particular, the ratio of cell-wall thickness to cell diameter is directly related to the 

apparent density of wood which, in turn is an important determinant of the 

performance of light weight structures. The distribution of microfibril angles is used 

by the plant to introduce property gradients into the material and to tune the 

mechanical properties according to needs. 

 

2.3.b Bone 
 

The hierarchical structure of bone has been described in a number of reviews 

Starting from the macroscopic structural level, bones can have quite diverse shapes 

depending on their respective function. Long bones, such as the femur or the tibia, 

are found in our extremities and provide stability against bending and buckling. In 

other cases, for instance for the vertebra or the head of the femur, the applied load is 

mainly compressive. In such cases, the bone shell can be filled with a ‘‘spongy’’ 

material called trabecular or cancellous bone The walls of tube-like long bones and 

the walls surrounding trabecular bone regions are called cortical bone.  

At the lower levels of hierarchy, bone is a composite of collagen and mineral 

nanoparticles made of carbonated hydroxyapatite. 

Mineralized fibrils in cortical bone self-assemble into fibril arrays (sometimes called 

fibers) on the scale of 1–10 lm. While a diversity of structural motifs exist between 

bone tissues, the most common in bone is the lamellar unit. While the existence of 

the lamellar unit in bone has been known for over a century, the internal structure of 

this basic building block and its correlation to mechanical function have remained 

unclear for a long time. . The fiber axis orientation varies periodically with a period 

of 5 lm corresponding approximately to the width of a single lamella. This implies 

that each lamella consists of a series of fibril layers oriented at different angles to the 

osteon axis. What is more surprising is that the angles are always positive, implying 

that on average each lamellae has a non-zero spiral fibril angle with respect to the 

long axis of the osteon, with a right-handed helicity. These results thus show that 

osteonal lamellae are built as three-dimensional helicoids around the central blood 

vessel. Such helicoidal structures have been found in other connective tissues, for 

example in the secondary wood cell wall and in insect cuticle. 



Chapter IV – Classification of biological structures: Design optimization strategies 
 

 
 

 
 

99

 

2.3.c Glass sponge skeletons 

 

Glass is widely used as a building material in the biological world despite its 

fragility.Organisms have evolved means to effectively reinforce this inherently brittle 

material. It has been shown that spicules in siliceous sponges exhibit exceptional 

flexibility and toughness compared with brittle synthetic glass rods of similar length 

scales. The mechanical protection of diatom cells is suggested to arise from the 

increased strength of their silica frustules. Structural and optical properties of 

individual spicules of the glass sponge Euplectella, a deep-sea, sediment-dwelling 

sponge from the Western Pacific are recently described. Not only do these spicules 

have optical properties comparable to man-made optical fibers, but they are also 

structurally resistant. The individual spicules are, however, just one structural level 

in a highly sophisticated, nearly purely mineral skeleton of this siliceous sponge. 

 
 

2.4 Mathematics and growth: fractal structures 
 

Fractals have wide applications in biology, computer graphics, quantum 

physics and several other areas of applied sciences Fractal sets are mathematical 

models of non-integer dimensional sets satisfying certain scaling properties. These 

may be thought of as objects that are obtained by an infinite recursive or inductive 

process of successive microscopic refinements. 

A mathematical fractal looks the same at all scales of magnification. This is an 

approximation to physical fractals which appear similar to the original object only 

for a certain range of scales. Self-similar sets are special class of fractals and there 

are no objects in Nature which have exact structures of self similar sets. These sets 

are perhaps the simplest and the most basic structures in the theory of fractals which 

should give us much information on what would happen in the general case of 

fractals 
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A fractal often has a fine structure at arbitrarily small scales, it has a Hausdorff 

dimension which is greater than its topological dimension (although this requirement 

is not met by space-filling curves such as the Hilbert curve).  

 

Figure 4.9  

Fractal structure of respiratory system, fractal geometry of  roman broccoli,  fractal fern and fractal 

growth pattern of a leaf 

Examples in Nature include clouds, river networks, fault lines, mountain ranges, 

craters, snow flakes, crystals, lightning, cauliflower or broccoli, and ocean waves. 

DNA and heartbeat can be analyzed as fractals. Even coastlines may be loosely 

considered fractal in Nature.But in particular, the respiratory, circulatory, and 

nervous systems are remarkable instances of fractal architecture 

Careful analysis of the lungs reveal fractal scaling, and it has been noted that this 

fractal structure makes the lungs more fault-tolerant during growth. 

In addition to falut-tolerance during growth, fractal branching makes available much 

more surface area for absorption and transfer in bronchial tubes, capallaries, 

intestinal lining, and bile ducts. 

 

2.5 To observe for imitation 
 

Skin is the largest organ in the body, a highly dynamic network of cells, nerves and 

blood vessels. 

Thirty years ago, National Institutes of Health-funded burn surgeons determined that 

badly burned skin should be removed as quickly as possible, followed by immediate 

and permanent replacement of the lost skin. This seemingly simple idea ultimately 
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became standard practice for treating major burn injuries and led to the development 

of an artificial skin system called Integra® Dermal Regeneration Template. 

When skin is damaged or lost due to severe injury or burns, bacteria and other 

microorganisms have easy access to warm, nutrient-rich body fluids. Loss of these 

vital fluids can lead to shock. Also known as “circulatory collapse,” shock can occur 

when the blood pressure in a person’s arteries is too low to maintain an adequate 

supply of blood to organs and tissues. To treat a severe burn, surgeons first remove 

the burned skin and then quickly cover the underlying tissue, usually with a 

combination of laboratory-grown skin cells and artificial skin. 

 

 
 

Figure 4.10  
3D schema of the skin and artificial skin 

 

After removing burn-damaged skin, surgeons blanket a wound with a covering like 

Integra®, then apply a skin graft on top of this biomaterial to encourage the growth 

of new skin to close the wound. Ideally, surgeons obtain skin grafts from an 

unburned area of skin elsewhere on the body. But when the burn is severe and covers 

80 to 90 percent of a person’s body surface, there is not enough skin to use for this 

purpose. There are two types of skin grafts. An autologous skin graft transfers skin 

from one part of the body to another. In contrast, an allograft transfers skin from 

another person, sometimes even a cadaver. Allografts offer only temporary cover, as 

they are quickly rejected by a person’s immune system. 

New epidermal skin can be produced by taking cells from a non-burned epidermal 

layer of skin, growing them into large sheets of cells in a laboratory, then placing the 
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cell sheets on top of Integra®. Scientists do not yet know how to grow the lower, 

dermal layer of skin in the lab.Integra® is an artificial substance that contains no 

living components. It is not designed to be a replacement skin. Rather, Integra® 

supplies a protective covering and a pliable scaffold onto which a person’s own skin 

cells can regenerate the lower, dermal layer of skin destroyed by burn. 

 

2.6 To observe for applying functioning logic 
 

Sharks may conjure up notions of great and fear some predators, but one day, 

people may think of sharks equally as great teachers. Medical technologists to 

swimsuit designers today are scrutinizing sharks for design ideas. Pre-dating the 

dinosaurs, the design solutions generated over their 400-million-year evolutionary 

odyssey and embodied in their contemporary form give us plenty of reason to think 

sharks may hold design lessons for us. Over this enormous time period, shark 

evolution has successfully addressed a number of design challenges that turn out to 

relate directly to technological challenges currently facing humanity in our own quest 

to become a sustainable species.   

Shark skin is a multifunctional marvel. Seawater and the countless potential ecto-

parasites within it (barnacle larvae, algae, bacteria, etc.) are a constant flow hazard 

for sharks, for whom moving efficiently through water is an imperative. Most shark 

species move through water with high-efficiency in order to catch fast-moving prey, 

obtain sufficient oxygen through largely passive gills, and maintain buoyancy. 

Through its ingenious design, their skin turns out to be an essential aid in this 

behavior by reducing friction drag and auto-cleaning ecto-parasites from their 

surface. Boat manufacturers have recently taken an interest in how sharks achieve 

their unimpeded movement through water both because friction drag and the 

attachment of organisms on a ship’s hull are major sources of energy inefficiency.  

 

For decades, modern designers and engineers concerned with movement efficiency 

focused on the coarse shape and smoothness of an object. Howard Hughes’ H-1 

Racer, for example, an aircraft which broke numerous speed records in the 1930s, 
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sported revolutionary design features such as retractable landing gear and flush 

rivets. More recently, armed with greater tools for observation (such as scanning 

electron microscopes) and manufacturing, designers and engineers are developing an 

appreciation for the impact of finer-scale surface interaction dynamics. For example, 

while a shark’s coarse shape is famously hydrodynamic, shark skin is anything but 

smooth. The very small individual scales of shark skin, called dermal denticles 

(“little skin teeth”), are ribbed with longitudinal grooves which result in water 

moving more efficiently over their surface than it would were shark scales 

completely featureless. Over smooth surfaces, fast-moving water begins to break up 

into turbulent vortices, or eddies, in part because the water flowing at the surface of 

an object moves slower than water flowing further away from the object. This 

difference in water speed causes the faster water to get “tripped up” by the adjacent 

layer of slower water flowing around an object, just as upstream swirls form along 

riverbanks. The grooves in a shark’s scales simultaneously reduce eddy formation in 

a surprising number of ways: (1) the grooves reinforce the direction of flow by 

channeling it, (2) they speed up the slower water at the shark’s surface (as the same 

volume of water going through a narrower channel increases in speed), reducing the 

difference in speed of this surface flow and the water just beyond the shark’s surface, 

(3) conversely, they pull faster water towards the shark’s surface so that it mixes with 

the slower water, reducing this speed differential, and finally, (4) they divide up the 

sheet of water flowing over the shark’s surface so that any turbulence created results 

in smaller, rather than larger, vortices.  

 

At the same time, three factors appear to help prevent marine organisms from being 

able to adhere to (“foul”) shark skin: (1) the accelerated water flow at a shark’s 

surface reduces the contact time of fouling organisms, (2) the roughened nano-

texture of shark skin both reduces the available surface area for adhering organisms 

and creates an unstable surface repellant to microbes, and (3) the dermal scales 

themselves perpetually realign or flex in response to changes in internal and external 

pressure as the shark moves through water, creating a “moving target” for fouling 

organisms 
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Figure  4.11 

 Silky shark skin photograph and Speedo’s swimsuit 
 

 

In late 1996, Speedo set out to develop the best and fastest swimsuits possible by 

improving upon the award winning Speedo Aquablade swim suit.  They created the 

Fastskin.  In 2004, they did it one better with the introduction of the Fastskin FSII.  

By reducing the total amount of drag over the surface of the swimsuit, and moving 

away from the traditional style of swimwear,  SPEEDO looked to designs from 

Nature to produce suits that allow swimmers to move through water faster than ever 

before to achieve their personal best.  Speedo focused upon managing existing forces 

to make better use of talents an athlete already has. 

The shark, a creature that is fast in water but not naturally hydrodynamic, was 

used as a model for the Fastskin and Fastskin FSII swimsuits.  The shark's quickness 

is attributed to V-shaped ridges on its skin called dermal denticles.  Dentricles 

decrease drag and turbulence around the shark's body allowing the surrounding water 

to pass over the shark more effectively.  Due to the drag effect that occurs when an 

object travels through water, Fastskin fabric was constructed with built in ridges 

emulating sharkskin.  Fastskin is composed of super stretch fabric made to improve 

the suit's fit and compress muscles.  The result is a reduction of drag and muscle 

vibration, which increases productivity 

Speedo used a revolutionary body scanning process to define and understand each 

swimmers' body shape.  By scanning digital images of swimmers in eight different 

positions, Speedo engineers were able to identify exactly how the body moves and 

stretches.  Using this information, Speedo created a suit with a much closer fit. 
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Using this technology, Speedo has created the only three dimensional swim suit 

pattern in existence.  It emphasizes good position in the water and reduces drag.  

With no excess fabric and a maximum stretch, Speedo has produced a swimsuit that 

allows a full range of motion for a swimmer. 

Since muscles work in groups, the Fastskin suits aid in connecting muscles through a 

combination of panels and unique seaming.  Speedo created an anatomic/dynamic 

pattern where seams act like tendons and provide tension in the suit while the fabric 

panels act like muscles, stretching and returning to their original shape. Seams are an 

instrumental element in minimizing drag and optimizing performance. 

 

 

 
Figure  4.12  

Lotus leaves and an example of self cleaning surface or usual surface 

 

 

In the past few decades, the Nelumbo nucifera, better known as the lotus, has 

been intensively investigated for its self-cleaning properties. Known as the “Lotus effect”, 

the cuticle of this flower exhibits extreme water repellency known as 

superhydrophobicity which allows the plant to remove dirt passively (Solga, Cerman, 

Striffler, Spaeth & Barthlott, 2007). The cuticle is a waxy layer that surrounds a plant and 

prevents uncontrolled water loss. It is mainly made up of the biopolymer cutin among 

other lipids. Unlike other plants, the cuticle of superhydrophobic plants usually possesses 

an additional dense layer of epicuticular waxes which is composed of mainly 

hydrocarbons, alcohols, and ketones, thus making the surface hydrophobic (Solga et al, 

2007). As hydrophobicity increases with an increased contact angle, superhydrophobic 

surfaces generally have static contact angles greater than 140°. In order to achieve this 

phenomenon, the lotus has many micro and nano surface structures and it is these papillae 

that enhance the self-cleaning ability of the lotus. Solga et al (2007) indicated that if the 
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plant cuticle is “structured in the micro or nanometre range, the water-air interface of a 

droplet lying on it is enlarged and the capillary forces between droplet and surface are 

significantly reduced. Thus, the droplet takes a spherical shape and rolls off easily.  

            Superhydrophobicity is an advantage to plants as it enables plants to get rid of dust 

as well as pathogenic spores thus enhancing the plant’s photosynthetic rate and prevents 

pathogenic fungi from penetrating the leaf’s surface (Solga et al, 2007). The self-cleaning 

property of the lotus leaf has been successfully applied to several industrial products, such 

as the façade paint Lotusan. A study was carried out on the effect of Lotusan and the 

results demonstrated that after 6 years of exposure under deciduous trees, tiles painted 

with Lotusan were significantly covered with less green algae than tiles covered with 

conventional paints (Spaeth, Solga, Barthlott & Cerman, 2006, cited in Solga et al, 2007). 

Other possible applications that are currently being investigated include self-cleaning 

glasses and various textiles, as well as employing superhydrophobicity to medical 

technology and laboratories as this will help to maintain sterility in a healthcare setting 

(Bhushan, Yong & Koch, 2009). 

Despite the fact that superhydrophobicity has been heavily investigated in the 

lotus, there are still many answers that remain to be answered regarding the cuticle of a 

plant. In fact, the 3-D structure of the cuticle is still a puzzle as little is known regarding 

the molecular biology of this structure. Model species such as Arabidopsis thaliana have 

shed new light on the molecular biology and biosynthesis of the plant cuticle but since the 

chemical composition and structure of the cuticle and its waxes vary amongst different 

plant species, one cannot generalize the molecular mechanisms of the cuticle of model 

species to non-model species. Furthermore, the current model of wax tubule formation is 

“assumed to be based on a rolling-in process of plate-like wax structures. Tubules might 

rise from spontaneous folding of wax platelets but this proposed folding has never been 

observed experimentally” (Barge, Koch, Cerman & Neinhuis, 2006). Thus, more research 

needs to be done on the structure of the cuticle and this is important as filling these gaps 

of knowledge can revolutionize self-cleaning technology as demonstrated by the lotus.  
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2.7 Classical model 
 

The last subdivision is related to the problem’s complexity and, therefore, the 

number of variables involved. The problems are divided, therefore, in the classical 

(C), statistical problems, and non-classical (NC), characterized by a large number of 

variables, for which it is necessary to use probabilistic algorithms 

The classical model are mathematical model characterized by few parameters in 

which ones understand the principles these are simply applied. 

 

2.8 Non classical model 
 

 

In the field of computer science, the study of bionics has produced artificial 

neural networks and swarm intelligence. Evolutionary computation was also 

motivated by bionics ideas but it took the idea further by simulating evolution in 

silico and producing well-optimized solutions that had never appeared in Nature 

Evolutionary Computing is the collective name for a range of problem-solving 

techniques based on principles of biological evolution, such as natural selection and 

genetic inheritance.  These techniques are being increasingly widely applied to a 

variety of problems, ranging from practical applications in industry and commerce to 

leading-edge scientific research. 

2.8.a Artificial neural networks 

An artificial neural network ,is a mathematical model or computational model that is 

inspired by the structure and/or functional aspects of biological neural networks. A 

neural network consists of an interconnected group of artificial neurons, and it 

processes information using a connectionist approach to computation. Modern neural 

networks are non-linear statistical data modeling tools. They are usually used to 

model complex relationships between inputs and outputs or to find patterns in data. 

The original inspiration for the term Artificial Neural Network came from 

examination of central nervous systems and their neurons, axons, dendrites, and 

synapses, which constitute the processing elements of biological neural networks 
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investigated by neuroscience. In an artificial neural network, simple artificial nodes, 

variously called "neurons", are connected together to form a network of nodes 

mimicking the biological neural networks , hence the term "artificial neural 

network". 

Artificial Neural Networks (ANN) are currently a 'hot' research area in medicine at 

the moment, the research is mostly on modelling parts of the human body and 

recognising diseases from various scans (e.g. cardiograms, CAT scans, ultrasonic 

scans, etc.). Neural networks are ideal in recognising diseases using scans since there 

is no need to provide a specific algorithm on how to identify the disease. Neural 

networks learn by example so the details of how to recognise the disease are not 

needed.  

They are used experimentally to model the human cardiovascular system. Diagnosis 

can be achieved by building a model of the cardiovascular system of an individual 

and comparing it with the real time physiological measurements taken from the 

patient. If this routine is carried out regularly, potential harmful medical conditions 

can be detected at an early stage and thus make the process of combating the disease 

much easier.  

A model of an individual's cardiovascular system must mimic the relationship among 

physiological variables (i.e., heart rate, systolic and diastolic blood pressures, and 

breathing rate) at different physical activity levels. The reason that justifies the use of 

ANN technology, is the ability of ANNs to provide sensor fusion which is the 

combining of values from several different sensors. Sensor fusion enables the ANNs 

to learn complex relationships among the individual sensor values, which would 

otherwise be lost if the values were individually analysed. In medical modelling and 

diagnosis, this implies that even though each sensor in a set may be sensitive only to 

a specific physiological variable, ANNs are capable of detecting complex medical 

conditions by fusing the data from the individual biomedical sensors.  
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ANNs are used experimentally to implement electronic noses. Electronic noses have 

several potential applications in telemedicine. The electronic nose would identify 

odours in the remote surgical environment. These identified odours would then be 

electronically transmitted to another site where an door generation system would 

recreate them. Because the sense of smell can be an important sense to the surgeon, 

telesmell would enhance telepresent surgery.  

An application developed in the mid-1980s called the "instant physician" 

trained an autoassociative memory neural network to store a large number of medical 

records, each of which includes information on symptoms, diagnosis, and treatment 

for a particular case. After training, the net can be presented with input consisting of 

a set of symptoms; it will then find the full stored pattern that represents the "best" 

diagnosis and treatment. Business is a diverted field with several general areas of 

specialisation such as accounting or financial analysis. Almost any neural network 

application would fit into one business area or financial analysis. There is some 

potential for using neural networks for business purposes, including resource 

allocation and scheduling. There is also a strong potential for using neural networks 

for database mining, that is, searching for patterns implicit within the explicitly 

stored information in databases. Most of the funded work in this area is classified as 

proprietary. Thus, it is not possible to report on the full extent of the work going on. 

Most work is applying neural networks, such as the Hopfield-Tank network for 

optimization and scheduling  

2.8.b Swarm Intelligence 

Swarm Intelligence (SI) is the emerging branch of Artificial Intelligence. It is 

normally used to refer to techniques that are inspired by social insects' behaviour. 

The swarm intelligence system usually comprises numerous agents interacting with 

one another and with their environment. These interactions often lead to emergent 

behaviour without any centralised control, that is, no one directs how the individuals 

should behave. We can easily find examples of such systems in Nature, for example 



Chapter IV – Classification of biological structures: Design optimization strategies 
 

 
 

 
 

110

bird flocks, termite mounds, wolf packs, fish schools, bee hives and ant colonies, to 

name a few. 

Ant colony behavior has been one of the most popular models of swarm 

behavior. Ants by themselves may seem to act randomly and without any discernible 

purpose, but when the collective interactions among ants are taken together, there 

will emerge a collective intelligence and behavior that has the capacity of solving a 

lot of problems. Through swarm intelligence, ants can determine the shortest path to 

a food source, feed the whole colony, build large structures, and adapt to situations. 

Particle swarm optimization, on the other hand, is a type of swarm 

intelligence inspired by bird flocks and fish schools. This type of swarm optimization 

gives individual agents within the swarm the ability to change its position depending 

on its own limited intelligence and in comparison to other agents in the population. 

This enables individual agents to modify their paths depending on the success of the 

other agents in the population in finding the correct solution. 

Swarm intelligence has applications in decentralized controls of unmanned 

vehicles for the military so single operators can control more unmanned vehicles. 

The use of swarm intelligence in medical nanobots may also help combat cancer. 

Using a swarm paradigm to model for traffic patterns, making the road longer and 

manipulating the speed limits has been shown to reduce gridlock and actually 

decrease travel time in certain cases. 

Optimizing scheduling or distribution tasks can be very time consuming, or 

even virtually impossible in some instances. Southwest Airlines has used swarm to 

develop a more efficient model of cargo handling, saving the company $2 million per 

year in labor costs. General Motors Corp. implemented software using adaptive 

technology to schedule car paint jobs and to avoid the scheduling conflicts from 

which the manual system suffered. The new system resulted in a 30% productivity 

improvement and 35% fewer business-process changes.  
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2.9 Bio-mimesis: Systematic technology  transfer from 

biology to engineering 
 

Biological hard tissues (bone, teeth, spicules, shells, spines, particles) have 

intricate hierarchical structures and unique combination of physical properties with 

engineering characteristics (Lowenstam, 1981). These biological materials are 

composites of minerals and 

organic macromolecules, a combination of proteins, polysaccharides, and lipids. 

Normally, hard tissues are mechanical devices (skeletal units, protective armor, and 

anchoring devices), but they also have other physical functions, such as magnetic, 

optical, and piezoelectric (Simkiss &Wilbur, 1989). Mechanical properties of 

biocomposites are often superior to human-made materials with similar phase 

compositions (Wainwright et al., 1976). They are often made of simple and common 

materials, e.g., carbonates, oxides, sulfides). Regardless of their simple material 

components, biological composites have multifunctional properties. For example for 

a given material, both strength and toughness could be better than a synthetic 

material with the same phase composition (e.g., calcium carbonate). Furthermore, 

biomaterials may not only be superior to man-made materials in terms of mechanical 

properties, but also in other physical aspects. 

The superiority of biological materials as engineering systems over the synthetic 

ones has a basis in their structural design and control of its formation by the 

organism. Furthermore, over 

the lifetime of organisms, these materials are also monitored and self-repaired 

leading to durability that is much longer than that is possible in synthetic systems. 

 

Nature has an enormous pool of inventions that passed the harsh test of 

practicality and durability in changing environment. In order to harness the most 

from Nature’s capabilities, it is critical to bridge between the fields of biology and 

engineering and to see cooperation of experts from both fields. This bridging effort 

can help in turning Nature’s capabilities into engineering capabilities, tools and 

mechanisms. In order to approach Nature in engineering terms, it is necessary to sort 

biological capabilities along technological categories. Namely, one can take 
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biologically identified characteristics and seek an analogy in terms of engineering as 

shown in table 5. 1. 

 

 
Tab 4.1: 

 Characteristic similarities of biology and engineering systems. 

 

 
 

Biomimetic process can be classified in four livel: 

 

• first step,  mere mimesis; 

• second step,Why does Nature act in this way?  

• third step How does Nature reach the goal ? 

• Fourth step Apply Nature’s logic to other fields.  

 

Some of Nature’s capabilities can inspire new mechanisms, devices and robots. 

Examples may include the woodpecker’s ability to impact wood while suppressing 

the effect from damaging its brain. Another inspiring capability is the ability of 

numerous creatures to operate with multiple mobility options including flying, 

digging, swimming, walking, hopping, running, climbing, crawling. Increasingly, 
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biologically inspired capabilities are becoming practical including collision 

avoidance using whiskers or sonar, controlled camouflage, and materials with self-

healing 

 

2.9.a The Bionic Car   
 

An example of  technology  transfer from biology to engineering is 

DaimlerChrysler‘s prototype Bionic Car In order to create a large volume, small 

wheel base car, the design for the car was based on the boxfish (ostracion 

meleagris), a surprisingly aerodynamic fish given its box like shape. The chassis and 

structure of the car are also biomimetic, having been designed using a computer 

modelling method based upon how trees are able to grow in a way that minimises 

stress concentrations. The resulting structure looks almost skeletal, as material is 

allocated only to the places where it is most needed. (Vincent et al., 2006). 

 

 
Figure 4.13 

 DaimlerCrysler bionic car inspired by the box fish and tree growth patterns. 
( Pedersen Zari, M. 2007). 

 

The possible implications of architectural design where biological analogues are 

matched with human identified design problems are that the fundamental approach to 

solving a given problem and the issue of how buildings relate to each other and the 

ecosystems they are part of is not examined. The underlying causes of a non-

sustainable or even degenerative built environment are not therefore necessarily 

addressed with such an approach.  

The Bionic Car  is more efficient in terms of fuel use because the body is more 

aerodynamic due to the mimicking of the box fish. It is also more materials efficient 

due to the mimicking of tree growth patterns to identify the minimum amount of 

material need in the structure of the car. The car itself is however not a new approach 

to transport. Instead, small improvements have been made to existing technology 



Chapter IV – Classification of biological structures: Design optimization strategies 
 

 
 

 
 

114

without a re-examination of the idea of the car itself as an answer to personal 

transport. (Pedersen Zari, M. 2007) 

 

Designers are able to research potential biomimetic solutions without an in depth 

scientific understanding or even collaboration with a biologist or ecologist if they are 

able to observe organisms or ecosystems or are able to access available biological 

research. With a limited scientific understanding however, translation of such 

biological knowledge to a human design setting has the potential to remain at a 

shallow level. It is for example easy to mimic forms and certain mechanical aspects 

of organisms but difficult to mimic other aspects such as chemical processes without 

scientific collaboration. (Pedersen Zari, M. 2007) 

 

Despite these disadvantages, such an approach might be a way to begin transitioning 

the built environment from an unsustainable to efficient to effective paradigm 

(McDonough, 2002). 

2.9.b Thermoregulation process in penguins  
 

Penguins are a specialized group of non-flying, aquatic birds that live in the 

southern  hemisphere, most famously in the Antarctic. The ability of some species to 

withstand extreme cold whilst fasting for up to 120 days (during egg incubation) has 

excited much attention. Several studies have investigated the thermal resistance of 

penguin “coats'' (feather and skin assembly). 

 

For insulation the penguin requires a thick, air-"filled, windproof coat (similar to an 

open-cell foam covered with a windproof layer) that eliminates convection and 

reduces radiative and convective heat losses to a minimum. 

Mimicking this logic has been made winter sportswear  
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Figure 4.14 

Penguins as example of the thermal resistance for realizing winter sportwear 

 

2.9.c Namibian beetle 
 

Species of living organisms have typically been evolving for millions of 

years. Those organisms that remain on Earth now have the survival mechanisms that 

have withstood and adapted to constant changes over time. Humans therefore have 

an extensive pool of examples to draw on to solve problems experienced by society 

that organisms may have already addressed, usually in energy and materials effective 

ways. This is helpful for humans, particularly as access to resources changes, the 

climate changes and more is understood about the consequences of the negative 

environmental impact that current human activities have on many of the world‘s 

ecosystems. (Alberti et al., 2003)  

An example is the mimicking of the Namibian desert beetle, stenocara (Garrod et al., 

2007). The beetle lives in a desert with negligible rainfall. It is able to capture 

moisture however from the swift moving fog that moves over the desert by tilting its 

body into the wind. Droplets form on the alternating hydrophilic – hydrophobic 

rough surface of the beetle‘s back and wings and roll down into its mouth (Parker 

and Lawrence, 2001). Matthew Parkes of KSS Architects demonstrates process 

biomimicry at the organism level inspired by the beetle, with his proposed fog-

catcher design for the Hydrological Center for the University of Namibia  (Killeen, 

2002). Ravilious (2007) and Knight (2001) discuss a more specific material 

biomimicry at the organism level, where the surface of the beetle has been studied 

and mimicked to be used for other potential applications such as to clear fog from 

airport runways and improve dehumidification equipment for example. 
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Figure 4.14 

the beetle has been mimicked to be used for other potential applications such asclear fog. 

 

Nicholas Grimshaw & Partners' design for the Waterloo International Terminal 

demonstrates an example of form and process biomimicry at the organism level . The 

terminal needed to be able to respond to changes in air pressure as trains enter and 

depart the terminal. The glass panel fixings that make up the structure mimic the 

flexible scale arrangement of the Pangolin so they are able to move in response to the 

imposed air pressure forces. (Aldersey-Williams, 2003)  

Mimicking an organism alone however without also mimicking how it is able to 

participate in and contribute to the larger context of the ecosystem it is in, has the 

potential to produce designs that remain conventional or even below average in terms 

of environmental impact (Reap et al., 2005). Because mimicking of organisms tends 

to be of a specific feature, rather than a whole system, the potential also remains that 

biomimicry becomes technology that is added onto buildings rather than being 

integral to them, particularly if designers have little biological knowledge and no not 

collaborate with biologists or ecologists during the early design stages. While this 

method may result in new and innovative building technologies or materials, 

methods to increase sustainability are not necessarily explored. (Pedersen Zari, M. 

2007). 

 

2.9.d Micro-air vehicles 
 
 
The wing motion in free flight has been described for insects ranging from 1 to 100 

mm in wingspan. To support the body weight, the wings typically produce 2–3 times 

more lift than can be accounted for by conventional aerodynamics. Some insects use 

the fling mechanism: the wings are clapped together and then flung open before the 
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start of the downstroke, creating a lift-enhancing vortex around each wing. Most 

insects, however, rely on a leadingedge vortex (LEV) created by dynamic stall 

during flapping; a strong spanwise flow is also generated by the pressure gradients 

on the flapping wing, causing the LEV to spiral out to the wingtip. Technical 

applications of the fling are limited by the mechanical damage that accompanies 

repeated clapping of the wings, but the spiral LEV can be used to augment the lift 

roduction of propellers, rotors and micro-air vehicles (MAVs). Design characteristics 

of insect-based flying machines are presented, along with estimates of the mass 

supported, the mechanical power requirement and maximum flight speeds over a 

wide range of sizes and frequencies. To support a given mass, larger machines need 

less power, but smaller ones operating at higher frequencies will reach faster speeds. 

 

The first appearance of winged insects is shrouded in the past, but they probably took 

to the air almost 350 million years ago (Wootton, 1981; Ellington, 1991a). 

Wingspans of the early fossils ranged from 10 to 710 mm, and the form of the wings 

suggests a variety of adaptations in flight style. The Protodonata, which were the 

ancestors of dragonflies, were among the early fliers; their wings were similar 

enough to modern forms to suggest comparable flight capabilities, although perhaps 

with less refinement. Through natural selection, the insects have been experimenting 

successfully with wings, kinematics, aerodynamics, control and sensory systems for 

hundreds of millions of years.  

 

 
Figure 4.16 

MAVs take inspiration from flying insects or birds to achieve unprecedented flight capabilities 

 
Much more recently, interest has developed in small autonomous flying vehicles, 

largely motived by the need for aerial reconnaissance robots inside buildings and 

confined spaces. Industry, commerce and the military have all identified potential 
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roles for such micro-air vehicles (MAVs).Research on MAVs is primarily conducted 

by aerodynamic and robotic engineers who are attempting to improve the 

performance at small sizes of conventional fixed wings and rotary wings. However, 

there already exists a very successful design for intelligent MAVs with much better 

aerodynamic performance than conventional wings and rotors: the insects.(Ellington 

1999). 

 

2.9.e Spiderman gloves 
 
 
The gecko’s ability to “run up and down a tree in any way", was firstly observed by 

Aristotle in his Historia Animalium, almost 25 centuries ago. A comparable adhesive 

system is found in spiders and in several insects. In general, when two solid (rough) 

surfaces are brought into contact with each other, physical/chemical/mechanical 

attraction occurs. Suction cups operate under the principle of air evacuation, i.e., 

when they come into contact with a surface, air is forced out of the contact area, 

creating a pressure difference. The adhesive force generated is simply the pressure 

difference multiplied by the cup area. Thus, in our (sea level) atmosphere the 

achievable suction strength is coincident with the atmospheric pressure, i.e. about 

0.1MPa. Such an adhesive strength is of the same order of magnitude of those 

observed in geckos and spiders, even if their adhesive mechanisms are different, 

mainly due to van der Waals attraction  and also capillarity. Thus, although several 

insects and frogs rely on sticky fluids to adhere to surfaces, gecko and spider 

adhesion is fully dry. 

Hierarchical miniaturized hairs (without adhesive secretions) are characteristic 

features of both spiders and geckos. 

A replication of the characteristics of gecko (Geim et al 2003) or spider feet would 

enable the development of a self-cleaning, like the lotus leaves, superadhesive and 

releasable hierarchical material and, with the conjunction of large invisible cables 

(Pugno 2006b), of a preliminary Spiderman suit 
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Figure 4.17 

A replication of gecko or spider feet characteristics would enable the development of a preliminary 

Spiderman suit 

 

Theoretical van der Waals gloves could generate an adhesion force comparable to the 

body weight of ~500 men. Even if such a strength remains practically unrealistic 

(and undesired, in order to achieve an easy detachment), due to the presence of 

contact defects, e.g. roughness and dust particles, its huge value suggests the 

feasibility of Spiderman gloves. The scaling-up procedure, from a spider to a man, is 

expected to decrease the safety factor (body weight over adhesion force) and 

adhesion strength, that however could remain sufficient for supporting a man. 

Scientists are developing new biomimetic materials, e.g. gecko-inspired, capable of 

supporting ~10 kilograms each on vertical walls. New Adhesive Optimization Laws 

are derived and applied for increasing the capability of the scaling-up. 
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CHAPTER V 

  

 
TOPOLOGICAL OPTIMIZATION IN STRUCTURAL MECHANICS 

 
1. INTRODUCTION 

 
 

The design process of an object is a coherent set of operations that starts from 

the structure’s conception and ends with its realization. One of the most important 

steps in designing a structure or a element is the definition of its form. Usually, the 

traditional approach to this problem is to use geometries that have already been tried 

or solutions already adopted  before; this approach is insufficient in many 

engineering areas, where, on the contrary, the development of new products or new 

solutions in researching the best structural morphology in relation to design 

requirements, are very important. A rational approach to this type of problem is 

known as “optimization”. 

In a simple way, the word “optimization” can be defined as the rational 

procedure that allows reaching the best solution among all admissible ones, 

according with the required targets and with the physical and geometric constraints 

and limitations. It is easy to imagine that this concept is not just about the structural 

field, but it concerns a multitude of fields including bioengineering, fluid mechanics, 

electromagnetism, optics, natural sciences, economics and many others. The 

optimization provides engineers a means to determine optimal designs in terms of 

admissible structural responses (deformation, stress, etc.), through mathematical 

algorithms. Due to this multidisciplinary approach, most of the results today are 

obtained by experts from different fields working together. The preliminary 

operation is to define the geometry of the object, element or structure to be built and 

it is the most important moment as it can influence all following design choices.  
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Since the ‘50s, the evolution of the optimization has produced four main 

classes of distinct problems: sizing optimization, shape optimization, material 

optimization and topology optimization; the last one is the subject of this thesis 

work.  

Actually, these four classes of problems have developed at different times. At 

the beginning, the optimization was the search for the “best” sectional properties, 

after having fixed topology and structural configuration. Later on, in 1950-60, thanks 

to the development of the Finite Element Method (FEM), shape optimization was 

introduced; then, in 1980, the topology optimization was developed. Now, the four 

techniques above mentioned will be briefly described (Cinquini C., Rovati M., 

1995). 

In the sizing optimization, geometry, material properties and loads are 

assigned; the designer task is to select the size of the section of all the various parts 

of the structure. So, the goal is to determine the optimal distribution of the area and 

the thickness of the structure we want to study. 

Figure 5.1 “sizing optimization” 

In this case (Fig 5.1), the configuration and topology of the structure are 

defined beforehand and the optimization process is restricted to research the optimal 

size of the cross sections of the rods. 
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In the shape optimization the structural topology is established, i.e. the 

connection level of project domain; optimization becomes the search for “optimal” 

form, such as inner holes in general or the border of project domain. 

 

Figure 5.2  

“shape optimization” 

Material optimization can be considered as part of a class of problems, but it 

can be related to topology optimization. 

In the case of topology optimization, the connection degree of domain is 

not fixed beforehand: we only know the form, the constraints and the 

loads. Therefore, the aim is to determine the distribution of material (or material 

properties), that minimizes or maximizes the objective function given for 

an assigned loads condition and observing appropriate constraints. The topology 

optimization is the latest in order of development, and compared to 

other optimization procedures, it offers several advantages; the most important one 

consists in the ability to design the domain’s level of connection without the need to 

determine a specific topology in advance, as it occurs in the case of shape 

optimization. Moreover, a great operational advantage lies in not modifying the 

discretization of the domain at every step of an iterative process; in this way we have 

the resolution of the problem (for example through the finite element 

method). Furthermore, topology optimization can act on several structural levels, 

allowing the definition of optimal shape at both microstructural 

(definition of material characteristics) and macrostructural (definition of 

the structural morphology) (Michell A. J., 1904) levels. 



Chapter V– Topological optimization in structural mechanics 

 

 

 

 

 

 

123 

Now we have identified the contents of general references, and in the 

following chapters we will discuss the general aspects of topology optimization, and 

we will describe different techniques proposed in literature. 

 

1.1 Topology Optimization: Etymology and History  

 

Topology optimization is the search for optimal distribution in the project 

domain of one or more structural parameters such as density, mechanical properties 

such as rigidity, microstructural parameters, thickness, and other geometrical and 

mechanical parameters; for its versatility and potential, this design procedure 

represents the link between size and shape optimization (Eschenauer H.A. e Olhoff 

N., 2001) 

The word “topology” comes from the Greek word “topos” and it means 

location, space or domain. In mathematical terms, the topology is linked to objects 

that are deformable in a manner called “rubber-like” (i.e. as a gum). “Topological 

transformations” and “topological mapping” indicate the 

topological transformations of a domain in another one that does not destroy or 

create close links. Two topological domains are called topologically equivalent if 

there is a topological mapping of one of the other two domains (Fig5 .3) 

 

Figure 5.3   

“topological transformations (or topological mapping)” 

In addition, a topological property is the invariance of all topological mappings. In 

general, transformations can be formulated as a topological transformation of the 
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continuous, whose inverse transformations are still continuous. Finally, there is the 

homomorphism property, by which transformations are reversibly and continuous. 

The word “optimization” comes from the Greek word “optimus” and it can be 

defined as the rational procedure that allows reaching the best solution among all 

admissible ones, according with the required objective and with the physical and 

geometric constraints and limitations. 

Topology optimization is a relatively new and rapidly expanding field of 

structural mechanics that can result in much greater savings than mere cross-section 

or shape optimization. Owing to its complexity, it is an intellectually challenging 

field; its progress, however, has often been hampered by conceptual inconsistencies 

and terminological confusion. For this reason, a critical and systematic re-

examination of the relevant issues seems needed. This section deals mainly with 

mechanical, structural and computational aspects, whilst investigations of purely 

mathematical interest are outside its scope.  

For very low volume fractions, important principles of topology optimization were 

established already at the beginning of the century, in the context of trusses, by the 

versatile Australian inventor Michell (1904) (Rozvany, G.I.N. 2001)hese were 

extended to grillages (beam systems) more or less seventy years later by Rozvany. 

Drawing on these applications, the basic principles of optimal layout theory were 

formulated by Prager and Rozvany (Prager, W.; Rozvany, G.I.N. 1977)and 

generalized considerably by the latter in the eighties and nineties.  

Topology optimization for higher volume fractions is now called Generalized 

Shape Optimization (GSO) or Variable Topology Shape Optimization. It involves the 

simultaneous optimization of the topology and shape of internal boundaries in porous 

and composite continua. 

In the context of discretized mechanics, this development was prompted by 

the observation of Cheng and Olhoff (Cheng, K.-T.; Olhoff, N. 1981) that optimized 

solid plates containing systems of ribs which are similar to optimized grillages. For 

compliance design of perforated plates (disks) in plane stress, optimal 

microstructures were studied by various mathematicians. The first exact analytical 

solutions for optimal perforated plates and the correct expressions for the rigidity 
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tensor of homogenized optimal microstructures were obtained by Rozvany, Olhoff, 

Bendsøe et al. (1985/87), and Ong, Rozvany and Szeto (1988). 

The birth of practical, FE-based topology optimization for higher volume 

fractions was brought about by extensive pioneering research of Bendsøe (Bendsøe, 

M.P. 1989), and his “homogenization” school. This was followed by a parallel 

exploration of the SIMP approach, suggested originally by Bendsøe (1989) and used 

extensively by Zhou and the author Rozvany, who also suggested the term “SIMP”. 

 

1.2 Formulation Problem 
 

In the mathematical formulation of optimal design problems, we must consider four 

fundamental aspects (Cinquini C., Rovati M., 1995) : 

I. Object function definition 

The object function (or functional) is represented by a measure indicator (to 

maximize or minimize) of the structure quality, where quality is referred to the 

satisfaction of an assigned requirement. Among the structural properties most often 

used to define the objective of the optimization procedure, there are: 

- the cost (the cost of materials, manufacturing cost, maintenance cost and 

usage); 

- the mechanical properties (global or local); 

- the aesthetic qualities. 

If more objectives are considered, not in conflict among them, it generates a problem 

much more complex, precisely defined as a multi-objective optimization problem. 

II. Choice of design variables 

The design variables are related to the geometry of the structure. The geometry is 

usually defined by topological variables representing the numerical and spatial 

sequence of structural elements and nodes’ position, or through mechanical variables 
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related to structural behavior. The shape of the structure can be considered as design 

variables. 

III. The formulation of equations governing the problem 

The equations controlling the problem, such as the equilibrium and consistency 

equations and the material’s constitutive laws, depend on its characteristics.   

IV. Definition of the constraints and limitations  

From a mathematical point of view, constraints can be classified in equality or 

inequality and in global or local; from a structural point of view, we can have 

behavior or geometric constraints. Constrains limit the domain of admissible 

solutions. 

In summary, in optimal problems all the constraints are 

written as mathematical expressions (equality or inequality) in order to define the set 

of possible projects, and then to look for the optimal solution through the 

minimization (or maximization) of the objective function. 

In topology optimization of structure, material and mechanisms, 

parameterization of geometry is often performed by a grey-scale density-like 

interpolation function (Bendsøe M. P., Sigmund O., 1999). In the next section 

different approaches to this concept are analyzed and compared, in light of 

variational bounds on effective properties of materials are analyzed and compared. 

This allows to derive simple necessary conditions for the possible realization of grey-

scale via composites, leading to a physical interpretation of all feasible designs as 

well as the optimal one. Thus it is shown that, in many circumstances, the so called 

artificial interpolation model actually falls within the framework of microstructurally 

based models. In many applications, the optimal topology of a structure should 

consist solely of a macroscopic variation of material and void, meaning that the 

density of the structure is given by a “0±1” integer parameterization (often called 

“black and white” design). Unfortunately, this class of optimal design problems is ill-

posed in that, for example, non convergent, minimizing sequences of admissible 

design with finer and finer geometrical details can be found. Existence of “black and 

white” solutions can be achieved by confining the solution space to limit the 
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complexity of the admissible designs, making them dependent on the choice of 

parameters in the geometrical constraint. For reasonable raster representations of the 

“0±1” black and white design, the solution of the resulting large scale integer 

programming problem becomes a major challenge. 

Recently, dual methods have been shown to be effective, in the absence of 

local constraints (Beckers M., 1999). However, the most commonly used approach is 

to replace the integer variables with continuous variables, and then introduce some 

form of penalty that steers the solution to discrete “0±1” values.  

A key part of these methods is the introduction of an interpolation function 

that expresses various physical quantities, for example material stiffness, cost, etc., 

as a function of continuous variables. The continuous variables are often interpreted 

as material densities, as in the so-called penalized, proportional fictitious material 

model. 

 

1.3 Basic problem statement 
 

The continuum topology design problems considered are defined on a fixed 

reference domain   in R
2
 or R

3
. In this domain, one tries the optimal distribution of 

material, with the term “optimal” being defined through choice of objective and 

constraint functions, and through choice of design parameterization. The objective 

and constraint functions involve some kind of physical modelling that provides a 

measure of efficiency within the framework of a given area of applications, for 

example structural mechanics. 

The basis for our discussion is the minimum compliance problem for a 

linearly elastic structure in 2-D. Thus one consider a mechanical element as a body 

occupying a domain  
m
 which is part of a the reference domain  , on which applied 

loads and boundary conditions are defined Fig 5.4.  
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Figure 5.4 

 “The generalized shape design problem of finding the optimal material distribution” 

This reference domain is often referred to as the ground-structure, in analogy 

with terminology in truss topology design (Bendsøe, M. P., 1995). Referring to the 

reference domain   it can define the optimal topology shape design problem as a 

minimization of force times displacement, over admissible designs and displacement 

fields satisfying equilibrium: 
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Here, the equilibrium equation is written in its weak, variational form, with U 

denoting the space of kinematically admissible displacement fields, u the equilibrium 

displacement, p the body forces, t boundary tractions and  (u) linearized strains. 
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Moreover, Geo( 
m
) denotes a constraint function limiting the geometric complexity 

of the domain  
m
, imposed here to obtain a well-posed problem. 

In problem (1.1), C
0

ijkl denotes the stiffness tensor of a given elastic material 

from which the structure is to be manufactured, with a total amount of material V; 

(x) denotes the pointwise volume fraction of this material, and for a “black and 

white” design this can only attain the values 0 or 1.  

Problem (6.1) is a discrete optimization problem, and for many applications it 

is useful to consider reformulations in terms of continuous variables, with the goal of 

using derivative based mathematical programming algorithms. This means that one 

changes the model for material properties, i.e., the relations defined in (5.1) as 

 

0

0
0            

 
oppure       0

ijkl
ijkl ijkl

C
C Cθ

! "# #
= = $ %

# #& '
          (5.2) 

to a situation where the volume fraction is allowed any value between zero and one. 

It may also involve finding an appropriate method for limiting geometric complexity, 

for example, exchanging the total variation of a density for the perimeter of a 

domain. 

 

1.4 Isotropic models for solid-void interpolation in elasticity 
 

In the subsequent sections one we will concentrate solely on the interpolation 

models for the material properties, and will not address in further detail other aspects 

of the modelling and solution procedures connected with various choices of objective 

and constraint functions, physical modelling, discretization schemes, and 

optimization algorithms (Bendsøe M. P., Sigmund O., 1999) 

 

1.4.1 The SIMP model 

In order to set the scene for recent discussions of the various popular 

interpolation schemes, the first step is to start by studying the so-called penalized, 



Chapter V– Topological optimization in structural mechanics 

 

 

 

 

 

 

130 

proportional “fictitious material” model, also names as the solid isotropic material 

with penalization model (SIMP). Here, a continuous variable !, 0!!!1 is introduced, 

resembling a density of material by the fact that the volume of the structure is 

evaluated as             

( )Vol x dρ
Ω

= Ω                                                                                                       (5.3) 

In computations, a small lower bound, 0 < !min!!, is usually imposed, in order to 

avoid a singular FEM problem, when solving for equilibrium in the full domain  .             

The relation between this density and the material tensor Cijkl(x) in the 

equilibrium analysis is written as 

0( ) p

ijkl ijklC Cρ ρ=                                 (5.4) 

where the given material is isotropic, so C
0
ijkl is characterized by just two variables, 

here chosen as the Young' s modulus E
0
 and the Poisson ratio !

0
. The interpolation 

(1.4) satisfies that 

(0) 0,ijklC =   
0(1)ijkl ijklC C=                  (5.5) 

This means that if a final design has density 0 or 1 in all points, this design is 

a black and white design for which the performance has been evaluated with a 

correct physical model. For problems where the volume constraint is active, 

experience shows that optimization does actually result in such designs if one 

chooses p sufficiently big (in order to obtain true “0±1” designs, ! " 3 is usually 

required). The reason is that, for such a choice, intermediate densities are penalized; 

volume is proportional to !, but stiffness is less than proportional. 

 

1.4.2 Microstructures realizing the SIMP-model 

 

For the SIMP interpolation (5.4) it is not immediately apparent that areas of 

grey can be interpreted in physical terms. However, it turns out that, under fairly 

simple conditions on p, any stiffness used in the SIMP model can be realized as the 

stiffness of a composite made of void and an amount of the base material 
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corresponding to the relevant density. Thus using the term density for the 

interpolation function ! is quite natural. 

The stiffness tensor Cijkl(!) of the SIMP model is isotropic, with a Young's 

modulus varying with ! and a constant Poisson ratio, independent of !. If this tensor 

is to correspond to a composite material constructed from void and the given material 

at a real density !, the bulk modulus " and the shear modulus µ  of the tensor Cijkl(!) 

should satisfy the Hashin-Shtrikman bounds for two-phase materials (Torquato, S.; 

Gibiansky, L. V.; Silva, M. J.; Gibson, L. J., 1998), written here for plane elasticity 

and for the limit of one phase being void 

0 0

0 0
0 ,

(1 )

K
K

K

ρ µ

ρ µ
≤ ≤

− +
 

0 0

0 0 0
0

(1 )( 2 )

K

K K

ρ µ
µ

ρ µ
≤ ≤

− + +
   (in 2D)             (5.6) 

Here "
0
 and µ

0
 are the bulk and shear moduli, respectively, of the base material. This 

implies that the Young modulus should satisfy 

0

0
3 2

E
E E

ρ

ρ
≤ ≤ ∗ =

−
                   (5.7) 

From (5.7), the SIMP model should satisfy 

   

0
0

     per 0                                                                                   
3 2

ρ
ρ ρ

ρ
≤ ≤ ≤1

−

p E
E  (5.8) 

which is true if and only if p " 3. However, the SIMP model presumes that the 

Poisson's ratio is independent of the density, and this leads to a stronger condition. 

From the relationship 

( ) ( )

0 0
0

0 0
,              (in 2-D)

2 1 2 1

E E

v v
κ µ= =

− +
                                                 (5.9) 

the condition (1.6) for the SIMP model can be written for all 0 ! ! ! 1 as  

( ) ( )

( ) ( ) ( ) ( )

0 0

0 0

0 0

0 0 0

0 ,    
2 1 4 2 1

0
2 1 2 1 3 2 1

E E

v v

E E

v v v

ρ ρ

ρ

ρ ρ

ρ

0

0

≤ ≤
− − +

≤ ≤
+ − − + +

                                                     (5.10) 

After some algebra, this leads to a condition on the power p in the form  
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( )* 0

0 0

2 4
max ,            (in 2-D) 

1 1
p p v

v v

! "
≥ = $ %

− +& '                                         (5.11)

 

which in itself implies p " 3. The inequality p #2/ (1- !
0
) comes from the bulk 

modulus 

bound, while the inequality p # 4=(1 + !
0
) is due to the shear modulus bound.  

Example values of p
*
 are 

( )

* 0 * 0

* 0

1 1
3;      4;

3 2

 1     (in 2-D)

p v p v

p v

( ) ( )
= = = =* + * +

, - , -

= − = ∞
                                                                 

 (5.12) 

and p
* 

= 3 holds only for !
0
 = 1/3. 

It is important to note that the condition (5.11) implies that the SIMP model 

can be made to satisfy the Hashin-Shtrikman bounds, so that it makes sense to look 

for composites which realize the stiffness tensor for the model. The form of this 

composite can be computed through a design process, where the desired material 

properties of a periodic medium are obtained by an inverse homogenization process 

(Sigmund O.,1994). The geometry of the composite may depend on the density, and 

one can normally not expect to obtain the wanted properties by analytical methods. 

It is still an open problem if all material parameters satisfying the bounds also 

can be realized as composites of the given materials. For two materials, one infinitely 

stiff, one infinitely soft, it is shown in that composites can be build for any positive 

definite material tensor. However, in topology design the stiffness is restricted and 

the density specified.  

In order to illustrate the realization of the SIMP model we use an example 

with a base material with !
0
 = 1/3. For this case the requirement on the power p is p 

" 3, and the bulk and shear bounds as well as the Young's modulus bound (5.8) all 

give rise to this condition. As the Young's modulus bound (5.8) is achieved by a 

composite for which both the maximum bulk and shear modulus is attained, and as 

this material will also have Poisson ratio ! = 1/3, independent of density, we can 
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compare the bounds and the SIMP model in one diagram which shows the values of 

Young's modulus as a function of density, Fig 6.5 and Fig 6.6.  

 

Figure 5.5    

“A comparison of the SIMP model and the Hashin-Strikhman upper bound for an isotropic material 

with Poisson ratio 1/3 mixed with void. For the H-S upper bound, microstructures with 

properties almost attaining the bounds are also shown” 
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Figure 5.6 

“Microstructures of material and void realizing the material properties of the SIMP model with p = 3 

Eq. (1.11), for a base material with Poisson's ratio ! = 1/3. As stiffer material 

microstructures can be constructed from the given densities, non-structural areas are seen 

at the cell centers” 

 

In these figures we also show the geometry of the base cell of a periodic 

medium that realize the relevant corresponding Young's moduli and ! = 1/3. These 

geometries are obtained through the methodology of inverse homogenization 

(material design) described in. An illustration of typical microstructures which 

realize the SIMP model with p = 4 and for Poisson's ratio ! = 0 and ! = 1/2 are 

shown in Fig 5.7. 
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Figure 5.7    

“Microstructures of material and void realizing the material properties of the SIMP model with p = 4, 

Eq. (1.11), for a base material with Poisson's ratio ! = 0 and ! = 0.5, respectively. As in 

Fig 1.6, non structural areas are seen at the centers of the cells” 

 

The discussion above holds for planar problems. In 3-D, there is, in a sense, 

more geometric freedom to construct microstructures, and here the Hashin-

Shtrikman bounds lead to the condition 

0 0

0 0

1 3 1
max 15 ,

7 5 2 1 2

v v
p

v v

! "− −
≥ $ %

− −& '
 (in 3D)                           (5.13) 

on the power p in the SIMP model. This condition can be derived as outlined above, 

but as the algebra is rather lengthy this is omitted here. Example bounds are here 
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0 0 0

0 0

1 1 15
3      per ;        2      per ;             per 0;   

3 5 7

5 1
p       per 1;         per     (in 3-D)

2 2

p v p v p v

v p v

≥ = ≥ = ≥ =

≥ → − → ∞ →

       (5.14) 

so some lower values of p are possible in dimension three. Note, however, that for        

! = 1/3 we have the same bounds in 2-D and in 3-D. 

 

1.4.3 Variable thickness sheets  -  the Voigt bound 

Design of variable thickness sheets allows for a physical given linear 

interpolation of stiffness through the thickness variable of the sheet 

                        
( ) ( )0 2,   0 1,      ,           ijkl ijklC hC h x x R Vol h x d

Ω

= ≤ ≤ ∈ Ω ⊂ = Ω  (5.15) 

Here, the maximal thickness is set equal to 1, in order to maintain the setting of an 

interpolation scheme. This problem was first studied as a basis for computational 

topology design (Rossow M. P., Taylor  J. E., 1973). Mathematically, the linear 

dependence of stiffness and volume on the thickness h leads to the existence of 

solutions for the compliance problem also in the case where geometric constraints 

are not imposed. Optimal designs within this framework of variable thickness sheets 

customarily possess large areas of intermediate thickness, but topology may also be 

identified from areas with h = 0. The discrete computational form of the variable 

thickness problem is analogous to what is seen in optimal truss topology design, and 

very efficient algorithms can be devised.  

The variable thickness sheet problem is in essence a problem in “dimension 

2
1/2

”. For purely planar and purely three dimensional problems, an interpolation of 

the form 

( ) ( )0 ,        0 1,                  ijkl ijklC C x Vol x dρ ρ ρ
Ω

= ≤ ≤ = Ω                           (5.16) 
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where ! is a density of material, corresponds to using the Voigt upper bound on 

stiffness, which cannot be realized by composites of material and void. The use of 

the Voigt upper-bound interpolation for general topology optimization is 

nevertheless fairly popular, especially in the so-called evolutionary design methods 

(Xie Y. M., Steven G. P., 1997) Also note that striving for “black and white” designs 

requires some form of penalization of  “grey”, and such measures necessitates the 

reintroduction of geometric constraints in order to obtain a well-posed problem.  

It is worth noting that the variable-thickness sheet problem plays an important 

role as an equivalent subproblem in the design labelled “free-material optimization”. 

Here, the design problem is defined over all possible material tensors, with a 

generalized, linear cost expressed in terms of tensor invariants.  

 

1.4.4 The Hashin-Shtrikman bound 

In light of the importance of the Hashin-Shtrikman bounds for the realization 

of intermediate densities and noting that the bounds have a similar penalization of 

intermediate density as does the SIMP model, it is rather surprising that these bounds 

have so far not been used as interpolation functions for topology design. Using these 

bounds one will have an interpolation of Young's modulus and of Poisson's ratio in 

the form 

( )

( )
( )

0

0

3 2

1
       

3 2

E
E

v
v

ρ
ρ

ρ

ρ
ρ

ρ

=
−

− 1−
=

−

                                        (5.17) 

where not only Young's modulus, but also Poisson's ratio, depends on density. 

Observe that independent of the Poisson ratio of the base material, the low volume 

fraction limit has a Poisson ratio equal to 1/3. The interpolation (5.17) corresponds to 

the material parameters of a composite that achieves simultaneously the Hashin-

Shtrikman upper bounds on bulk and shear moduli, and such a material can be 

realized by, for example, an isotropic rank-3 lamination. 
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1.4.5 Other models 

The Voigt upper-bound model (5.16) has been combined with the Reuss 

lower bound for mixtures of materials in order to obtain alternative schemes (Swan 

C. C., Kosaka I.,1997) For a mixture of void and material, the Reuss lower bound is 

zero, and in this case the interpolation (called the Reuss-Voigt interpolation in the 

sequel) reads 

( )

( )

0

0

            se   1

                 se   

     

ijkl

ijkl

ijkl

C
C

C

Vol x d

αρ ρ
ρ

ρ

ρ
Ω

! "<# #
= $ %

=1# #& '

= Ω 
                                                            

  (5.18) 

Here, $ is a parameter which weighs the contribution by the Voigt and Reuss bounds. 

The interpolation introduces a jump at ! = 1 (a potential problem in computations), 

but this is not the case when void is exchanged with a material with higher stiffness. 

Similarly to the analysis for the SIMP model above, one can check the range 

of the parameter $ for which the Hashin-Shtrikman bounds are satisfied. For 2-D 

elasticity this leads to the condition 

( )
0 0

* 0 1 1
min ,  

2 4

v v
vα α

! "− +
≤ = $ %

& '                                                                  (5.19)

 

 

The largest value of $ is thus 1/3, and this is only possible if !
0
 = 1/3. For 

comparison, the Young's modulus of the Hashin-Shtrikman bounds, the Reuss-Voigt 

interpolation and the Voigt bound, as a function of density, is illustrated in Fig 6.8; 

for consistence  !
0
 = 1/3 choose,  as this results in a constant Poisson ratio of ! = 1/3 

for all three cases.                       
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Figure 5.8     

“A comparison of the Voigt upper bound, the Hashin-Strikhman upper bound and the Reuss-Voigt 

interpolation for a mixture of material and void (Poisson's ratio ! = 1/3)” 

 

1.4.6 Example designs 

The interpolation schemes described above are, in essence, computational 

approximations to the “black and white” 0-1 problem. As the problems are different 

in form, the results obtained with the various methods are, as expected, not the same. 

Conceptually, there are strong similarities, but the differences in detail can be quite 

significant. This is not a major problem when employing the techniques in a design 

context, as long as these differences are understood and acknowledged.  

In implementations of topology design schemes based on density 

interpolation it is often seen that a too severe penalization of intermediate density can 

lead to designs which are local minima, and which are very sensitive to the choice of 

the initial design for the iterative optimization procedure. Thus, a continuation 

method is often advisable, which, for example, for the SIMP method means that the 

power p is slowly raised through the computations, until the final design is arrived at 

for a power satisfying (5.11) or (5.13).This procedure is thus a compromise, since 

initial designs will be analyzed using an interpolation which is not realizable as a 

composite structure. 
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Fig 6.9 shows examplary optimal designs for a simple, planar, minimum-

compliance design problem using the Voigt upper-bound interpolation, the Hashin-

Shtrikman upper-bound interpolation and SIMP for various powers of p. For the 

latter cases, the power is maintained fixed in the iterative optimization scheme, 

except in one situation. Note that the Voigt upper-bound interpolation does not 

satisfy our goal of  finding a “black and white” design. The computations for all 

cases were here carried out with a filter technique for maintaining a limited 

geometric resolution, and in order to avoid checkerboard-like areas in the solution. 

 

Figure 5.9    

“Optimal design results for material and void, using various powers p in the SIMP interpolation 

scheme, and using the Hashin-Shtrikman upper bound. Problem definition as in Fig 

5.4” 

1.5 Homogenization models with anisotropy 

 

The initial work on numerical methods for topology design of continuum 

structures used composite materials as the basis for describing varying material 

properties in space. This approach was strongly inspired by theoretical studies on 

generalized shape design in conduction and torsion problems, and by numerical and 

theoretical work related to plate design (Goodman J., Kohn R. V., Reyna L., 1986). 

Initially, composites consisting of square or rectangular holes in periodically 
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repeated square cells were used for planar problems. Later so-called ranked 

laminates (layers) have become popular, both because analytical expressions of their 

effective properties can be given and because investigations proved the optimality of 

such composites, in the sense of bounds on effective properties. Also, with layered 

materials existence of solutions to the minimum compliance problem for both single 

and multiple load cases is obtained, without any need for additional constraints on 

the design space e.g. without constraints on the geometric complexity. For all the 

models mentioned here, homogenization techniques for computing effective moduli 

of materials play a central role. Hence the use of the phrase “the homogenization 

method” for topology design for procedures involving this type of modelling.  

The homogenization method for topology design involves working with 

orthotropic or anisotropic materials. This adds to the requirements of the finite 

element analysis code, but the main additional complication are the extra design 

variables required to describe the structure. Thus, a microstructure with rectangular 

holes in square cells requires three distributed variables, as the material properties at 

each point of the structure will depend on two size-variables characterizing the hole 

and one variable characterizing the angle of rotation of the material axes (the axes of 

the cell). 

In topology design based on homogenization of periodic media, one always 

works with microstructures of a given type, so the realization of the interpolation is 

not an issue. However, a key question also in this case is a comparison of the 

stiffness parameters of the microstructure at hand with bounds on such parameters. 

For anisotropic materials, such bounds are expressed in terms of strain or 

complementary energies.  

For planar problems, any composite, constructed from void and an isotropic, 

linearly elastic material with Young's modulus E
0
 and Poisson ratio !

0
, has an 

elasticity tensor C which satisfies the lower complementary energy bound 

( )
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2 2 0
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2 1           se  0
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for any stress tensor   with principal stresses %I , %II . The inequalities (5.20) express 

an upper bound on the stiffness of the composite. This bound can also be expressed 

in terms of strain energy 

( )

( ) ( ) ( )

( )

( ) ( ) ( )

2 2

2 2

2

2 1
         se   

2 1 2 1

2 11
         se   

2 2 1 2 1

                                                     a
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I II I II I II
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E v

v v v

E v
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v v v
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. /+ + − + +0 1 <
− − + −

. /+ − − − −0 1≤ <
+ − − +

ltrimenti
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# #
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# #
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# #
# #
# #
# #
& ' (5.21)

 

This holds for any strain tensor e with principal strains  I ,  II ordered such that               

| I | & |  II |. As void is allowed, the lower bound on stiffness is zero. 

The bounds (5.20) and (5.21) can be attained by so-called rank-2 laminates, 

consisting of a layering at two length scales and with the layers (and axes of 

orthotropy) directed along the principal strain or principal stress axes (they coalesce). 

For stresses with %I%II  " 0, single-scale, single inclusion microstructures (named after 

Vidgergauz) which attain the bounds. In a recent study it is shown that for %I%II  ! 0 

no single-scale periodic  composite obtain the bounds, and any composite obtaining 

the bound (in 2-D) must be degenerate (i.e. has a singular stiffness tensor). For 

illustration, Fig 6.10 shows a range of single inclusion Vigdergauz-like 

microstructures for a range of positive as well as negative values of %II/%I  ; these 

structures have been computed by the inverse homogenization methodology. 
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Figure 5.10 

“The shape of single inclusions of void in a cell of a homogenized, periodic medium minimizing 

complementary energy (Vigdergauz-like structures for  ! = 1/3 and a density !=0.5). 

Results for a range of principal stress ratios of a macroscopic stress field” 

 

For their use in optimal topology design it is useful to compare energies 

attainable by other microstructures and interpolation schemes with the bound (5.20).    

Fig 6.11 thus shows a comparison of the optimal bound for ! = 0.5, achievable by the 

ranked layered materials, with the range of minimal complementary energies which 

can be obtained by the SIMP interpolation, by microstructures with square holes, by 

microstructures with rectangular holes, and by the Vigdergauz microstructures.  

What is noticeable, is how close the various energies are for stress fields close to 

pure dilation, while shearing stress fields demonstrate a considerable difference. In 

the latter case, the microstructural based models are considerably stiffer than the 

SIMP model, an effect which can to a large extent be attributed to the possibility of 

rotation for the orthotropic microstructures. Moreover, the microstructure with 

square holes is notably less stiff for uniaxial stresses compared to the other 

microstructures, since the imposed symmetry of this microstructure here hinders an 

efficient use of material. 
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Figure 5.11  

  “Comparison of the optimal (minimal) complementary energy as a function of the ratio of the 

principal stresses, for a density ! = 0.5, and for various types of microstructures and 

interpolation schemes (material and void mixtures). The Vidgergauz- like structures 

are shown in Fig 5.10 “ 

 

The plots of the complementary energy explain many features of 

computational experience with various interpolation schemes. For compliance 

optimization, the complementary energy should be minimized. As ranked laminates 

are efficient also at intermediate densities, optimal design with this material model 

leads to designs with typically rather large areas of intermediate density. This is also 

the case when using the microstructures with rectangular holes and the Vigdergauz 

microstructures. Thus if such materials are used for obtaining “black and white” 

designs, some other form of penalization of intermediate density has to be 

introduced. One possibility is adding a term to the objective function (with K large).

  
( ) ( )( )1K x x dρ ρ

Ω

− Ω                                                                                     (5.22) 

On the other hand, the SIMP model and the microstructure with square holes 

usually lead to designs with very little “grey”, as intermediate values of density tend 

to give poor performance in comparison with cost. 
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1.6 Multiple materials in elasticity 

1.6.1 Two materials with non-vanishing stiffness 

 

For a topology design problem, where the aim is to seek the optimal 

distribution of two isotropic, linearly elastic materials with non-vanishing stiffness, 

the stiffness tensor of the problem (1.1) takes the form 

( )
1

1 2

2

0             
1

oppure    

ijkl

ijkl ijkl ijkl

ijkl

C
C C C

C
θ θ

! "# #
= + − = $ %

# #& '
                                                  (5.23) 

where the two materials are characterized by the stiffness tensors C
1

ijkl , C
2

ijkl. Here 

the material 1 is the stiffer, i.e., C
1
 ijkl ij kl # C

2
 ijkl ij kl for any strain  . Note that the 

volume constraint now signifies the amount of material 1 which can be used, as the 

total amount of material amounts to the total volume of the domain  .  

The two-material problem has been the focal point of theoretical works on 

generalized shape design problems, as the possible singularity of stiffness is not an 

issue. Computational studies are scarcer, with early numerical work concentrating on 

conduction problems, but this variant of the topology design problem has gained 

recent interest, mainly as a method for generating microstructures with interesting 

(and extreme) behaviour. 

An analysis of various interpolation schemes can follow exactly the same 

lines as above, as the bounds on effective properties used there are actually just 

special cases of the general results for mixtures of any two materials. The “special” 

case was here treated first, as the material-void problems is the most studied for 

topology design applications. Moreover, the algebra for this case is more transparent.              

For the two-material problem, the SIMP model can be expressed 

 

( ) ( )

( ) ( )

1 21 ,

materiale 1                  

p p
ijkl

ijkl ijkl
C C C

Vol x d

ρ ρ ρ

ρ
Ω

= + −

= Ω 
                                                         (5.24)

 

while the Reuss-Voigt interpolation model takes the form 



Chapter V– Topological optimization in structural mechanics 

 

 

 

 

 

 

146 

( ) ( ) ( ) ( ) ( )( )

( ) ( )

1
1 1

1 2 1 21 1 1 ,

materiale 1                                                                         

ijkl ijkl ijkl ijklC C C C C

Vol x d

ρ α ρ ρ α ρ ρ

ρ

−
− −

Ω

. /. /= + − + − + −0 1 2 30 1

= Ω 
         (5.25)

 

For the two-material problem, the lower Hashin-Shtrikman bound for 

isotropic composites is non-zero, so here a goal of realization with microstructures 

means that both lower and upper bounds will impose constraints on the interpolation 

models. In order to clarify the fundamental effects of these bounds, the discussion 

here will be limited to the 2-D case, where both base materials as well as the 

interpolations have Poisson's ratio equal to 1/3. In this case, the Hashin-Shtrikman 

bounds on the bulk and shear moduli for isotropic composites reduce to one and the 

same condition, which can be expressed as a condition on the Young's modulus

    

( ) ( )

( ) ( )
( )

( )

( )

1 2 1 2

2 1           

1 2 1 2

2 1 3
(in 2-D)

2 1 1 2 3 2 2

E E E E
E E E

E E E E

ρ ρ ρ ρ
ρ

ρ ρ ρ ρ

+ + − + −
≤ ≤

− + + − +
(5.26) 

 

where E1, E2 denotes the Young's moduli of the two materials, for which E1 " E2.  

The derivative at zero density of the lower bound in (5.25) is positive. Thus, 

condition (5.25) implies that a SIMP model in the form (5.23)will never satisfy the 

Hashin-Shtrikman bounds for all densities. However, it is possible to keep the SIMP 

model fairly close to the behaviour governed by these bounds, see Fig 6.12. 

Moreover, it can be shown that the Reuss-Voigt interpolation model (with !=1/3)  

satisfies the bounds if and only if $=1/3. For comparison of the various models it is 

possible look  Fig 5.13. 
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Figure 5.12    

 A comparison of the Voigt upper and the Reuss lower bound, the Hashin-Strikhman upper and lower 

bound, SIMP models, and the Reuss-Voigt interpolation for mixtures of two material with 

equal Poisson's ratio !=1/3, and with Young's moduli E1= 1 and E2= 0.1 

 

Figure 5.13    

Optimal design results for two-materials design (for E1=1, E2=0.1, and !1=!2=1/3), using various 

interpolation schemes. The geometry and loading of the problem as in Fig 5.4, comp. Fig 

5.9. 

1.6.2 Three-materials design 

Topology design involving void and two materials with non-vanishing stiffness has 

so far been used for design of sandwich-like structures and for design of multi-phase 

composites with extreme behaviour (Sigmund O., Torquato S., 1997).  
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In this case isotropic interpolation schemes can be compared to the 

multiphase Hashin-Shtrikman bounds for isotropic composites. As above, this is 

done here in the case of Poisson's ratio equal to 1/3 for all phases as well as the 

interpolation scheme. As one phase is 0, the bounds, expressed in terms of Young's 

modulus are (with E1 # E2)       

 

1 1 2 1 2 2
1 2

1 2 1 1 1 2 2

( (3 ) )
0 ( , )

(3 2 ) (6 6 2 )

E E E
E

E E

ρ ρ ρ
ρ ρ

ρ ρ ρ ρ ρ

+ −
≤ ≤

− + − +
   if  1 1ρ <  (in 2D)              (5.27) 

 

Here !1, 0 ! q1 !1 is the density of the mixture of the two materials with stiffness, 

and 

q2,  0 ! q2 !1 is the density of material 1 in this mixture, such that 

 

1 2( 1) ( ) ( )Vol material x x dρ ρ
Ω

= Ω  

1 2( 2) ( )(1 ( ))Vol material x x dρ ρ
Ω

= − Ω 
  

             (5.28) 

1( )TotalVolumeOfMaterial x dρ
Ω

= Ω  

For a SIMP-like interpolation model, it is most convenient to interpolate first 

between the two nonzero phases and then between this material and void. The 

resulting model is   

           

1 2 2

1 2 1 2 2(1 )p p p
E E Eρ ρ ρ. /= + −0 1                         (5.29) 

 

which for example for p1 = p2 = 3 is compatible with(5.26) ,i.e., for !1 = !2 =1/3. 

Note, 

however, that for !1=1 the bounds (5.25) should be satisfied, and there is a natural 

singularity in the conditions when shifting from a solid mixture to a mixture 

involving void. Designs obtained using (5.28) are shown in Fig 5.14. 
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Figure 5.14    

“Optimal design results for three-materials design (two materials with !1= !2 =1/3 and with stiffness 

E1 = 1, E2 = 0.1, and void), using various powers p in the interpolation scheme (5.28). The 

geometry and loading of the problem as in Fig 5.4 

 

1.7 Multiple physics, nonlinear problems and anisotropic 

phases 

1.7.1 Multiple physics 

 

The phrase `multiple physics' is used here to cover topology design where 

several physical  phenomena are involved in the problem statement, thus covering 

situations where for example elastic, thermal and electromagnetic analyses are 

involved.  
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When modelling such situations, the basic concept of the homogenization 

method for topology design provides a general framework for computing 

interpolation schemes. As the theory and computational framework of 

homogenization of composite media is not limited to elasticity, choosing a specific 

class of composites and computing effective elastic, thermal and electromagnetic 

properties will lead to the required relationships between intermediate density and 

material properties. However, direct links between specific classes of composites and 

proofs of existence for such coupled problems have yet to be discovered.  

The reduced complexity of the design description achieved by the SIMP 

approach has also lead to the development of such interpolation schemes for multiple 

physics problems. Microstructures with extreme thermal expansion are designed by 

combining the three-materials interpolation of (5.28) for the elastic properties with 

an interpolation of the thermal expansion coefficients in the form     

1 2

2 2(1 )p p

ij ij ijα ρ α ρ α= − +                       (5.30) 

Here $ij is the thermal strain tensor which does not depend on the total density !1 of 

the mixture of the two materials 1 and 2. In recent work on topology design of 

thermo-electromechanical actuators, an interpolation of isotropic, thermal as well as 

electric conduction properties, with d
0
 denoting the conductivity of the solid material

  

0( ) pd dρ ρ=                    (5.31) 

has with success been combined with the basic SIMP interpolation (5.4). The 

condition (1.11) for the power p is sufficient for compatibility also with the Hashin-

Shtrikman bounds for conduction   

0( )
2

d d
ρ

ρ
ρ

≤
−

                   (5.32) 

as well as the cross-property bounds                  

0 0 0 0

0
1 1

2

K K d

K d

µ

µ

. /+
− ≥ −2 3

0 1
;     

0 0 0 0

0
1 1

K d

K d

µ µ

µ

. /+
− ≥ −2 3

0 1
                (5.33) 

Topology design methods have also been implemented for the design of 

piezoelectric composites, which involves a coupled electrostatic and elastic analysis. 
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Here, material interpolation has been performed using a homogenized medium, as 

well as by a Voigt-type interpolation of the stiffness tensor, the piezoelectric tensor 

and the dielectric tensor, with a separate penalization of intermediate density. 

 

1.7.2 Nonlinear problems 

For nonlinear problems (elasto-plasticity etc.) both the “homogenization 

method” and the SIMP approach to topology design provide an even greater 

theoretical challenge, mainly due to the less developed and more involved theory of  

homogenization and to difficulties in deriving bounding theorems for such problems. 

It is here important to underline that micromechanical considerations should always 

play a role in the development of interpolation schemes, as experience shows that the 

computational feasibility of such schemes can be closely related to how faithfully the 

interpolations mimic physical reality. 

For geometrically nonlinear problems, the constitutive laws remain linear so 

it is here natural to use the interpolation schemes developed for the linear problems. 

This has been done for large displacement problems, using the SIMP model to design 

structures and compliant mechanisms. 

For materially nonlinear problems, a fundamental question is a reasonable 

description (interpolation) of the yield limit at intermediate densities, a problem that 

also is to be addressed for stress-constrained design problems. The stress-constrained 

problem is treated in the linear elastic domain. A micromechanical study of rank-2 

laminates together with numerical experiments lead to a SIMP interpolation of the 

stiffness and  stress limit in the form   

0( ) p
E Eρ ρ= ,    

0( )Y p Yσ ρ ρ σ=                      (5.34) 

It is here convenient to interpret (5.34) as an interpolation between physical 

properties, which are relevant if material is present, and which should vanish when 

material is not present, and in order not to introduce bias, all properties are based on 

the same interpolation. For topology design involving damage models, a similar 

scheme is to express the linear and nonlinear strain energies in a form   
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0( ) pρ ρΨ = Ψ ,    
0( )D p Dρ ρΨ = Ψ                (5.35) 

which is consistent for a “black and white” design (an index 0 indicates the energy 

expression valid at density 1). 

 

1.7.3 Anisotropic phases 

It is straight forward to extend the SIMP model to encompass also topology 

design with anisotropic materials, but for such cases the rotation of the base material 

should also be included as a design variable. The design of laminates (as stacks of 

plies of fiber-reinforced materials) can be seen as a topology design problem, where 

a combination of the Voigt bound (for the membrane stiffness), SIMP with p = 2 

(coupling stiffness) and SIMP with p = 3 (bending stiffness) describes the design. 

This analogy allows for the application of a range of the theoretical tools developed 

for the homogenization method for topology design. 

 

1.8 Conclusions and perspectives 

The analyses presented here demonstrates that various approaches to “black 

and white” topology design can in many situations all be interpreted within the 

framework of micromechanically based models, thus clarifying a long ongoing 

discussion in the structural optimization community regarding the physical relevance 

of different interpolation schemes. However, it remains an important issue to 

examine models in relation to micromechanics, and to be fully aware of limitations 

or approximations used in the numerical schemes which are devised for solving 

topology design problems. Moreover, it is in this context crucial to recognize if a 

topology design study is  supposed to lead to “black and white” designs or if 

composites can constitute part of the solution. It should again be emphasized that, if 

a numerical method leads to “black and white” designs, one can, in essence, choose 

to ignore the physical relevance of “grey”, and in many situations a better 

computational scheme can be obtained if one allows for a violation of the bounds on 
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properties of composites. This is especially the case where the bounds do not allow 

for a high enough penalization of intermediate density. The alternative is to introduce 

an explicit penalization of the density.  

It is also evident from an overview of current methodologies that despite the 

abundance of results, here are still complicated theoretical and practical questions to 

overcome. Thus, the precise relationship between relaxation, microstructures, and 

existence of solutions is open for most classes of problems, and closely related to this 

are questions of bounds on properties for coupled and nonlinear problems. From a 

practical point of view, the most pressing question is no doubt the development of a 

general framework for devising interpolation schemes for coupled and nonlinear 

problems. 
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CHAPTER VI 

 

 
OPTIMIZATION PROCESSES IN NATURE 

 

 
1 Mechanical-based motivation of evolutionary process in 

moles: “optimization over time”  

 
1.1  Introduction 
 

 

Darwin's theory of natural selection has been able to explain optimization in biology: 

more efficient individuals leave more offspring. 

The evolution principle, thus, provides an explanation for the differences in structure, 

functions, and behavior among organisms and describes the adaptation process that 

ensures the survival of different species in their environment.  

The strategies adopted by Nature have attracted much attention in the study and 

design of the engineering systems and in the development of modern technology. 

According to the literature mole rats assume a cylindrical shape to dig tunnels with 

diameters proportional to their size sand this fact can be linked to the collapse 

mechanisms in tunnels, which has been recently treated in an analytical fashion in 

the case of Hoek-Brown soils. 

As an example of optimization over time, we have studied burrow systems dug by 

mole-rats and the objective of this work consists in exploring the possible 

mechanical-based relationship between the geometry of burrows and geo-mechanical 

characteristics of the soil. 

1. 2  Failure Criteria 
 

Traditionally, civil engineering has most relied on empirical methods to estimate the 

degree of safety of a dig. On the contrary, Failure Criteria are used at a theoretical 
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level to predict the conditions under which solid materials lose their resisting under 

the action of external loads. 

Several criteria are available in literature, but the most widely employed in rock 

mechanics are the Morh-Coulomb and the Hoek-Brown. 

The first  failure criterion was proposed by Coulomb in the late 1700’s. The 

Coulomb failure criterion is given by the linear envelope obtained from a plot of the 

shear strength of a material versus the applied normal stress. This relation is 

expressed as 

 tan ct s f= +  (6.1) 

where τ is the shear strength, σ is the normal stress, c is the  cohesion and φ is the 

angle of internal friction .  

The Mohr–Coulomb criterion is based on the observation that failure occurs when 

Mohr's Circle at a point in the body exceeds the envelope created by the two Mohr's 

circles for uniaxial tensile strength and uniaxial compression strength. 

Another widely used criterion is the Hoek-Brown. 

It was originally developed for the design of underground excavations and in contrast 

to Mohr–Coulomb criterion it is based on parameters that can be estimated by simple 

geological observations.  

The Hoek–Brown generalized criterion can be written in the Mohr’s plane ,n ns t , see 

Fig. 1, with the unit vector n representing the normal to the failure plane, 

  

1[ ( ) ] { , (0,1) , 0}        
B

n c n t c c tA A Bt s s s s s s- += ± + Î Ì ³  (6.2) 

 

Where A and B are dimensionless parameters characterizing the rock mass and 

cs and 
ts are the compressive and tensile stresses at failure, respectively. 

The Hoek-Brown criterion is made coincident with Mohr-Coulomb’s (fig.6.1) M C

nt - if 

1, tanB A f= = and 1(tan )t cs f -= : 

 ( ) tanM C

n n t nA ct s s s f- = ± + = ± ±  (6.3) 
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Figure  6.1:  

Hoek-Brown generalized criterion in the Mohr’s plane 
n ns t-  

 

On the basis of the Hoek–Brown failure criterion, Fraldi and Guarracino (Fraldi and 

Guarracino, 2009, 2010) have recently proposed an exact solution for the prediction 

of collapse in tunnels and natural cavities in the realm of the plasticity theory with 

the aid of classical tools of the calculus of variations. 

The shape and dimensions of a rock bank which can actually collapse from the roof 

of the cavity for effect of the gravitational field (Fig. 7.2) is useful to estimate the 

stability of ceiling in tunnels and natural cavities in rock . 

 
Figure 6.2 

Generic Collapse mechanism 
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The formula which allows to evaluate the possible collapse of the tunnel roof 

provides the height and width of the collapsing block. 

 

 ( ) ( ) ( )111
B BBB

c tL AB B pr s s- -- -= + -  (6.4) 

 ( )( )1 1 tH B B ps-= + -  (6.5) 

 

Where L and H are respectively the width and height of the collapsing block, r is the 

rock mass density and 
1 ,t ts r s-º 1 ,c cs r s-º 1p pr-º , p  is the generalized 

pressure. 

 

Special attention is given to circular tunnels. In such a case the formula is : 

 

( ) ( )
2

1 21
1 arcsin 1 0

2

B

B BB

c t

L L L
L AB B R

L R R R
s s--

æ öé ùæ öç ÷ê ú- + - - - =ç ÷ç ÷ê úè øë ûè ø

 (6.6) 

Where R is the radius of a circular tunnel. 

In the present work special attention is paid to circular tunnels since subterranean 

rodents dig burrows with a  circular shape. Indeed, a tunnel boring machine is  called 

“Mole” because it  imitates not only the cylindrical shape of  the animals but also 

their technique of excavation. 

 

 

6.3 Classification of mole rats 

 

 

Digging animals belong to four classes of vertebrate: amphibians, reptiles, birds, 

mammalians. 

The main advantages offered by digging consists in the microhabitat creation for 

hibernation, aestivation, reproduction or simply dugout, in the abundant underground 

presence of insects, roots of the plants and tubers that represent  the main food 

resources, in the possibility to make  food storage and places of retreat when the 

animals are alarmed or threatened. 

Mole rats represent a special case among mammals. Over time, natural selection 

generated mole-rats showing convergent morphological features: compact bodies, 
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short necks and tails, large and powerful forefeet and microphthalmic eyes because 

vision had no survival advantage for them (Luna et al. 2009) 

Following the natural evolution affected by the soil structure, the subterranean 

rodents have learnt to dig the compact soil with limbs and teeth and the 

unconsolidated one with limbs and head.  

Subterranean rodents inhabit  every continental land mass except Australia.  

Mole rats can be split into two orders: Rodentia and Insectivora. 

Because of the great number of mole rats belonging to the order Rodentia, they have 

been divided in 8 families (Table 6. 1), according to the geographical area they live 

in. Each family is characterized by different genera identified by the features of soil 

type and by their size. 

Most of these mole rats live in open areas like steppes, grasslands, meadows or 

savannas even though  few species occur in densely vegetated shrub ( Wilson, 

Reeder 1993). 

Also mole rats belonging to the same family can live in different kinds of soils. Luna 

et al.(2009) investigated the habitat characteristics of different species of Ctenomys, 

noting that they can live in very different soil types. C. Australis, for example, 

inhabits Coastal Grassland in Soft Soil, while C. Talararum in Medium Soil and C 

Tuconax lives in Highland Grassland in Hard Soil. 

 . 
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Table 6. 1 

Classification of mole rats in family, genera, body weight, habitat  and geographic range 

 (Wilson, Reeder 1993)  
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Moreover, subterranean rodents have completely different size, small, medium or 

large, according to their weight.  

Within the same family, such as Bathergydae, mole rats may have different weights. 

For example, Bathergus  can reach 850-1500 g and live in wet soil while Cryptomys 

have a very low weight (200 g) and inhabit  sandy and more compact soil.  
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Table 6.2 

 Classification of Insectivora mole rats 

 

Mole rats in the order Insectivora belong to the family Talpida and they share very 

similar physical characteristics ( weight from 40 to 140 g). 

According to the geographical area  where they live in, mole rats show different 

digging techniques. For example, the Golden Mole, also known as sand swimmer, 

exhibit small dimensions, short limbs, shovel legs that allow them to swim in the 

soil. On the other hand, European moles, that have larger dimensions, long limbs and 

big claws through which they break up the soil are also called “scratch diggers”. 
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6.4 Soil and burrows characteristics 

 

As anticipated, burrows play an important role for subterranean rodents, supplying 

them with shelter and access to food resources. The underground environment 

imposes constraints on physiology and morphology. (Luna and Antinuchi 2007)  

Mole rats that spend most of their life in underground self-made burrows and forage 

(predominantly) above ground, are called fossorials. (Luna and Antinuchi 2007) 

The construction of burrow systems, composed by a main tunnel connected to lateral 

branches that reach the soil surface (Antinuchi and Busch 1992; Busch et al. 2000), 

needs a very high energetic effort (Vleck 1979; Lovegrove 1989; Luna et al. 2002).  

Mole rats inhabit in a structurally simple environment (Nevo 1999), characterized by 

several foraging tunnels connected to a single central deep tunnel (Busch et al. 2000).  

As mole rats belong to the fossorial specie, soil substrate properties influence their 

biological and ecological features.  

Habitat type influences the burrow architecture. Soil type, in fact, may have an effect 

on the burrow architecture as a mechanism to compensate the differences in the cost 

of excavating and  diffusion rate of gases (Jackson et al. 2008). Moreover, soil 

granulometry affects the diameter and depth of the tunnels, while soil humidity 

influences the main tunnel length of burrow (Antinuchi and Busch., 1992). There are 

also some further relations among the size of burrow occupants, hardness and food 

supply to burrow length, but the most important factor influencing the burrowing 

efficiency is represented by the relationship between soil hardness and the cost of 

tunneling. (Luna & Antinuchi, 2006). 

Also extrinsic factors, such as porosity, water-holding capacity of the soil and 

humidity, as well as food availability, may determine burrow’s location and design 

because, there is a connection between these factors and soil hardness and, hence, the 

digging cost (Busch et al. 2000; Luna and Antinuchi 2006). 

Usually, a classic burrow system is composed of nest chambers, food stores, 

defecation sites and bolt holes, which serve as a place of retreat when the animal is 

alarmed or threatened. Males tend to realize linear-shaped burrow systems, whereas 

the burrows of females are more grid (Herbst and Bennett 2006). 
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Mole rats, generally, occur in dank and dark environments, with low primary 

productivity and low ventilation . 

Mole rats exhibit morpho-physiological properties that allow them to sustain the high 

cost of  expanding their tunnel systems.(Luna and Antinuchi 2007 ) 

Besides, low primary productivity, or low porosity and soil transmittance, both 

related to soil hardness, might govern the absence of bigger subterranean rodents 

from arid deserts (Vleck, 1981). Thus, the bigger species inhabit soft soils with high 

primary productivity, as a strategy to lower the cost of digging in such soils (Vleck, 

1979) or because the possibility to dig  a deeper layer of the soil, and avoid 

overheating. 

Sumbera et al. (2004) observed the changes in burrow architecture occurred in 

Heliophobius argenteo cinereus due to density soil. 

In particular, in a hard and compact soil like in Blantyre ( bulk density valore) the 

foraging tunnels have a range between 7-20 cm while in a light and soft soil like in 

Mulanje the range is between 19-30 cm as shown in  table 6.3 

Heliophobius 

argenteocinereus 
Blantyre Mulanje 

Foraging tunnels 11.9 + 2.8 cm 24.8 + 3.8 cm 

Nest chambers 15.8 + 5.0 cm 38.6 + 13.5 cm 

Food chambers 13.6 + 3.3 cm 30.2 + 15.6 cm 

Table 6.3 

 Mean dimensions (cm) of Heliophobius argenteocinereus burrow system and differences of particular 

components between burrows system in Blantyre and Mulanje. (Sumbera et al. 2004) 

 

 

Thomas H.G. et al. (2009) studied African mole rats, in particular, the Cape dune 

mole rats of the genus Bathyergus. Thomas H.G. et al have measured the burrow 

characteristics of B. suillus and they  related them to  sex of mole rats and their body 

properties. They have shown that males excavated significantly longer burrow 

systems with higher fractal dimensions, larger burrow areas and dig deeper burrows 

than females. In fact, males dug superficial and deep tunnels at a depth greater than 

females because sexual dimorphism in body size is shown in this specie (Table 6.4) 
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Cape dune mole rats male female 

Superficial tunnels 17 0,7 cm±  16 1cm±  

Deep tunnels  32 7,8 cm±  29 7,8 cm±  

 
Table 6.4 

 Burrow characteristics (cm) of male and female Bathyergus suillus. 

(Thomas et al. 2009) 

 

 

The objective of the present work is to identify the allowable range of diameters to 

ensure the borrow stability. To that purpose, the Mohr-Coulomb and Hoek-Brown 

criteria have been plotted first  to identify the necessary conditions for the structure 

stability. Then, the relationship existing between the tunnel width and radius have 

been represented to obtain the desired range.  

First of all, the Mohr-Coulomb criterion has been applied in a t s-  Mohr plane, 

as shown in the relationship (6.1), employing the characteristic values of the soils 

where mole rats usually dig, as reported in Table 7.5. 

Moreover,since the presence of mole rats is influenced by the soil characteristics, in 

particular by the size distribution of sand particles, the values of the cohesion, c, and 

friction angle, φ have been chosen from the typical values of the environment. For 

example, the juliana’s golden mole is confined to sandy soil characterized by a 

cohesion varying between 0 and 0.5 kg/cm
2
 as reported in literature; t he angle of 

internal friction, instead,  for a sandy soil  varying between 25° and 35° 

 

 
Cape dune mole rats Friction Cohesion kg/cm

2
                    

Loose sand 20° 0 

Cohesive Sand  27° 0,5 

Table 6.5: 

Soil characteristics 

     

On the basis of these values, it is possible to identify an area constrained by 

two lines representing the limit cases of the Mohr-Coulomb criterion, as illustrated in 

Figure 7.3.  

In the same graphics, the Hoek-Brown criterion has been also plotted with the 

parameter A kept costant, and B varying between 0.5 and 0.9, in order to keep  the 
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Hoek-Brown curve whithin the area of interest of the plane s-t. The plots reported 

in the following have been obtained for st = 0,01 kg/cm
2
.         

 
Figure 6.3 

 Comparison between results from Hoek–Brown and  Mohr–Coulomb criteria. 

 

Figure 6.3 shows that the Hoek-Brown curves tend to lie inside in the area of interest 

when the parameter A increases. A= 0.35 represents a limit case because the curves 

lie only partially in the Mohr-Coulomb area. For different values of the parameter A, 

instead, all the curves belong to the analyzed area. 

 A= ¾ is nearly equal to the limit value of the Mohr-Coulomb with a fiction angle 

and the cohesion of 27° and 0.5 kg/cm
2
 . 

The relationship between the tunnel width and radius (eq.(6.6)) has been then 

plotted to show that the characteristic dimensions of the mole rats tunnels tend to 

obey to this condition.  

In this case r is 3 31,610 kg cm-

, a
 

typical bulk density for mole rats 

environment, as shown by Luna, Antinuchi e Busch, 2002. The parameters A and B 
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have been chosen considering the limitation imposed by Mohr-Coulomb e Hoek-

Brown criteria as shown in figure 6.4. 

 

 
Figure 6.4 

Plotting of  eq (6.6) 

 

When the parameter A increases the range of diameters which ensure the borrow 

stability,aslo increases. 

For example, when the parameter A is 0.35 the borrow allowable diameters vary 

between 4 to 6 cm with B=0.9. Instead, when A is equal to ¾ the allowable range of 

diameters increases, varying between 6 to 8 cm. 

The plots show that mole rats can build tunnels with a diameters varying between 7 

and 14 cm.  

In these analysis r is 3 31,610 kg cm-  as reported by Luna et al. (2002). 
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Similar graphics can beobtained  by  varying A and keeping constant the parameter B 

or increasing the stress. In such cases shows it is found that mole rats can build the 

tunnels a diameters varying between 16 and 30 cm.  

Sumbera et al., 2004, have measured mean depth and burrow system 

components of silver mole rats of Heliophobius argenteocinereus in two mesic areas 

in Malawy. The study was carried out in Mulanje and Blantyre.  In Mulanje, the soil, 

at depths where most of the burrow systems were situated, was light and soft with a 

bulk density that are 1.06 or 1.29 3g cm instead in Blantyre the soil was hard and 

compact with a bulk density that are 1.5 or1.72 3g cm . 

 

The friction angle was set at 14°
and 28 , as for the sandy loam, instead the cohesion 

value was defined at 0 kg/cm
2
 (lack of cohesion) and 0,5  kg/cm

2
  (semisolid clay).                                     

Setting   st= 0,01 kg/cm
2
  and A= 0,3: the result is shown in the fig.6.5 

 

 
Figure 6.5: 

Comparison between results from Hoek–Brown and  Mohr–Coulomb criteria. 

 

Plotting the relationship between the tunnel width and radius (eq.(6.6)) the 

result is: 
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Figure 6.6 

Plotting of eq (6.6)            

 

The range of stability is 5-13 cm in the Blantyre zone and 6-14 cm in the Mulanje 

one. 

Comparing the range of diameters considered by Sumbera et al. ( 5-8 cm e 6-8,5 cm 

in the Blantyre e Mulanje soil respectively) with our results, it can be concluded  that 

the Heliophobius argenteocinereus, dig tunnels with different diameters in relation 

with bulk density. 

In the following histogram the burrow diameters reported in articles of different 

authors are shown. Comparing these data with the range of diameters obtained in the 

present study, with the bulk density at the typical value 3 31,610 kg cm- , the range 

predicted includes the actual values of burrow diameters. 
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Figure 6.7  

Comparison between burrows diameter found in literature  and admissible diameter calculated with 
our model 

 

 

 

6.5  Conclusions 
 

Mole rats are the best excavator among subterranean rodents. Their tunnels are 

constructed obeying to optimal criteria and are realized with the aim of ensuring an 

adequate oxygen and nutrients supply as well as to avoid collapse mechanisms of the 

networks. 

With this purpose, the objective of this work has consisted in exploring the possible 

mechanical relationships between the geometry of the burrows and the soil 

geomechanical characteristics. This approach could be utilized for investigating the 

possibility to formulate a new mechanical-based evolutionary hypothesis for which 

the overall dimensions of the mole rats also depend on the quality of soils. This 

would mean that the natural evolutionary process preserves and genetically select 

mole rat species able to reach and to excavate at depth such that the geo-mechanical 

quality of the resident soil increases as a result of the consolidation. This possible 

scenario would also allow to explain, within a mechanically perspective, the 

observed significant differences in size among the mole rat species. In-fact, the study 
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has confirmed that mole-rats dig tunnels with different diameters into the allowable 

range of diameters to ensure the borrow stability 

 

2 Mechanical-based design of “fiber-rinforced”cartilage 

structures: “optimization over space” 

Biological tissues, over millions of years of evolution, were developed into 

hierarchical structures with intricate architectures from nm to m that often extend 

into macro scale resulting in unique, species-specific overall morphology with 

characteristic functions that provide an advantage for the organism in its 

environment. As example of optimization over space we have studied fiber-rinforced 

cartilage structures 

 

 2.1 Cartilage 

 
Articular cartilage is located in joints between articulating bones (fig. 6.8). It 

provides an almost frictionless surface for smooth joint movement, aided by the 

lubrication of the surrounding synovial fluid. In the knee, the meniscus lies between 

load bearing joint surfaces. The two menisci (fig. 6.8) absorb part of the loads that 

the joint experiences. 
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Figure 6.8  

Schematic presentation of a knee joint. Frame of the knee is presented with dashed 

line. In this projection, only one of the two menisci is visible. 

 
The main functions of articular cartilage are to decrease the contact stresses in the 

joint (Askew MJ, Mow VC, 1978) and to allow motion of the opposing surfaces with 

minimum friction and wear (Mow VC, Mak AF 1987) The tissue is composed of two 

phases, an interstitial fluid and a solid matrix. The solid matrix, accounting for 20-

30% of the wet weight of the tissue, is composed of collagen fibers (65% of dry 

weight) proteoglycans (PGs) (25% of dry weight), chondrocytes, and other 

glycoproteins and lipids. The remaining 70-80% of tissue is water, most of which is 

freely exchangeable by diffusion, with the outside medium. 

It is well known that the biochemical composition of cartilage varies significantly 

over the joint surface (Kiviranta I, Jurvelin J. et al., 1987) and appears to be related 

to joint loading (Caterson B, Lowther D.A. 1978). Many  investigators have studied 

the effects of high and low loading on articular cartilage biochemistry. 
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Chondrocytes organize the collagen, proteoglycans and non-collagenous proteins 

into a unique and highly specialized tissue, suitable for carrying out the functions 

stated above. 

The composition, structure and functions of chondrocytes vary depending on the 

depth from the surface of the cartilage. Morphologically there are four named zones, 

from top to bottom: 

1. Superficial zone 

2. Transitional zone 

3. middle (radial) or deep zone and 

4. calcified cartilage zone 

Superficial zone 

 

This is the thinnest of all layers (10-20% of the cartilage thickness) , composed of 

flattened ellipsoid cells. They lie parallel to the joint surface, and are covered by a 

thin film of synovial fluid, called ‘lamina splendens’ or ‘lubricin’. This protein is 

responsible for providing an ultimate gliding surface to the articular cartilage. 

Parallel arrangement of the fibrils are responsible for providing the greatest tensile 

and shear strength. Disruption of this zone alters the mechanical properties of the 

articular cartilage and thus contributes to the development of osteoarthritis. This 

layer also acts as a filter for the large macromolecules, thereby protecting the 

cartilage from synovial tissue 

immune system. 

 

Transitional zone 

 

In the middle zone, 60% of the cartilage thickness, the cell density is lower, with 

predominantly spheroid-shaped cells, embedded in abundant extracellular matrix. 

The large diameter collagen fibres are randomly arranged in this zone.  

 

The radial zone 

 

In the deep zone that takes up the 30% of the cartilage thickness, cells are arranged 

perpendicular to the surface and are spheroidal in shape. This zone contains the 
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largest diameter of collagen fibrils and highest concentration of proteoglycans. 

However, the cell density is lowest in this zone. 

 

Calcified cartilage zone 

 

This mineralized zone contains small volume of cells embedded in a calcified matrix 

and thus showing a very low metabolic activity. The chondrocytes in this zone 

express hypertrophic phenotype. (Abhijit M. Bhosale, James B. Richardson, 2008) 

 

Figure 6.9 

Cross sections cut through the thickness of articular cartilage on two mutually orthogonal planes. 
These planes are oriented parallel and perpendicular to split lines on the cartilage surface. The 

background shows the four zones of the cartilage: superficial, intermediate, radiate, and calcified. 

The foreground shows the organization of collagen fibers into “leaves” with varying structure and 

organization through the thickness of the cartilage. The leaves of collagen are connected by small 

fibers not shown in the figure. 

 

The human knee joint is distinguished by its complex three dimensional geometry 

and multibody articulations that generate complex mechanical responses under 

physiological loads. The knee joint compliance and stability required for optimal 

daily function are provided by various articulations, menisci, ligaments and muscle 

forces.(M.Z. Bendjaballah et al. 1995) 

Knee joint mechanics have consequently been the subject of a large number of 

studies, the majority of which are experimental and aim at the measurement of the 
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gross multidirectional load-displacement response of the joint under both intact and 

perturbed states. (Kurosawa et al. 1980). 

Measurements have also been reported on the biomechanical role of the ligaments 

and menisci as well as the mechanism of load transfer and contact areas and 

pressures at the tibiofemoral and patellofemoral joints.( Maquet 1975). In spite of the 

continuing accumulation of experimental results, it is recognized that measurements 

alone are not sufficient to delineate the detailed biomechanics of the human knee 

joint. Various applications in orthopaedic biomechanics have long demonstrated that 

realistic mathematical modelling is an appropriate tool for the simulation and 

analysis of complex biological structures such as the human knee joint. During the 

last two decades, a number of analytical model studies with different degrees of 

sophistication and accuracy have been presented in the literature, These have mainly 

attempted to model the tibiofemoral joint (Rahaman 1993), while a few studies have 

aimed at modelling the patellofemoral joint  and more recently at both the 

tibiofemoral and patellofemoral joints. As for finite element model investigations, no 

study of the entire tibiofemoral joint is yet reported in the literature. A few model 

studies of the menisci are found assuming simplified axisymmetric geometries for 

the femoral condyles, tibial plateau, and menisci with no consideration of any of the 

cartilage layers or of ligamentous contribution. More recently, using similar 

axisymmetric geometries, an analysis has been carried out considering femoral and 

tibia1 articular cartilage layers of uniform thickness .(M.Z. Bendjaballah 1995). 

 

2.2 Mathematical model 
 

The articular cartilage has been modeled as an orthotropy tube composed by three 

layers. Dmitriev et al. analyze stress distribution in a long tube with polar orthotropy. 

The exact elasticity solution for stress distributions in long tubes suggest that, at 

some combinations of elastic properties, stresses can change rapidly in radial 

direction or can be even of oscillatory type. They analyze the thermodynamic 

stability of orthotropic body and demonstrate that the oscillatory solutions can appear 

only in thermodynamically unstable bodies and thus, they do not have physical 

meaning. 
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In polar coordinates, the equilibrium equations in a state of plane strain in radial r , 

and  circumferential q directions, respectively, are 

 ( ) 0r
rr

r

J
J

t
s s

J
¶¶

- + =
¶ ¶

 (6.7) 

 ( ) 0r rr
r

J
J J

s
t t

J
¶ ¶

+ + =
¶ ¶

 (6.8) 

Plane strain components in terms of radial ru , and circumferential uJ  displacements 

are 

 
1 1

, , .r r r
r r

u u uu u u

r r r r r r

J J J
J Je e g

J J
¶ ¶¶ ¶

= = + = - +
¶ ¶ ¶ ¶

 (6.9) 

 

 

The strain compatibility equation is given as 

 

 
2 22

2 2 2 2

1 2 1 1 1
0.r rr r

r r r r r r r r r

J J J Je e g ge e
J J J

¶ ¶ ¶ ¶¶ ¶
+ + - - - =

¶ ¶ ¶ ¶ ¶ ¶ ¶
  (6.10) 

They consider a long tube with the axis oriented along the z-direction, subjected to 

axisymmetric (θ-independent) loading, and made of a material with polar orthotropy. 

In this case, for a cross-section situated far from the ends of the tube, one can 

consider only radial displacements of material points, i.e., one has 0uJ = and all 

unknown stress and strain fields are the functions of radial coordinate only. Then, 

Eqs. (6.7)–(6.10) equation reference goes here reduce to 

 

 ( ) ' 0,rr Js s- =  (6.11) 

 ( )' , , 0,r
r r r

u
u r

r
J Je e g= = =  (6.12) 

 '' ' '2 1
0r

r r
J Je e e+ - =  (6.13) 

Here and in the following ( ) '  denotes differentiation with respect to r. 

For their purposes it is sufficient to take instead of Eq. (6.13) here the strain 

compatibility condition in the following form, which follows from the two first 

expressions of Eq. (6.12), 
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'

r rJ Je e e- =  (6.14) 

 

Hooke’s law for the orthotropic material in the polar axisymmetric case is 
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where has been  introduced the short notations for the compliance coefficients. The 

compliance matrix is assumed to be symmetric with six independent elastic 

constants, say , , , , ,r Z r rz zE E Eq J Jn n n . With the help of Eq. (6.15) , the Eq. (6.14) can 

be expressed in terms of stresses as 

 ( ) ( ) ( ) ( )' ' '

r z r za d d b e f r d b fJ Js s s s s s- + - + - = + +  (6.16) 

The tube can be loaded in axial direction and, for the regions remote from the tube 

ends, this will result in r-independent, generally speaking, nonzero axial 

strain ( ) 0

z zre e= , and the following relation between stress components can be 

deduced from Eq. (6.15): 

 

 
0.r z ze f c rJs s s e+ + =  (6.17) 

 

Thus, we have three equations  (6.11), (6.16) and (6.17), with respect to three 

unknown stress components, ( ) ( ),r r rJs s and ( )z rs . 

For the plane stress solution they have solved Eqs. (6.11), (6.16) and (6.17),  in 

( )r rs  to obtain 

 ( )2 '' ' 03 1 0r r r zr rs s f s le+ + - + =  (6.18) 

 

Where 
 

 
2

2 2
,
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l f

- -
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 (6.19) 
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Note that for the isotropic material, when a b c= = and d e f= = , we have 

1f = and 0l = . Equation (6.18) reduces to  which can be integrated to give the 

classical solution 1
22r

C
C

r
s = + , where 

1 2,C C are the integration constants. The 

analyses will be carried out for the orthotropic case. 

Equation (6.18) is the Euler equation which, with the help of substitution tr e= , can 

be reduced to the equation with constant coefficients having the characteristic 

equation 2 2 1 0r r f+ + - = with the roots 

 1,2 1r f= - ±  (6.20) 

 

It will be demonstrated in the following that complex ir
 

correspond to 

thermodynamically unstable elastic constants and thus, they will not be considered. 

For 0f > we have two real roots, 1 2r r¹ , and the solution to Eq. (6.18) is 

 ( ) 1 2 0

1 2
1

r zr C r C rr r l
s e

f
= + -

-
 (6.21) 

with the integration constants 1 2,C C . Having found rs  , be found Js from Eq. (6.11) 

and then zs from Eq (6.17)  

The result is 
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 (6.22) 
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Where 

 

 
1,2 1,2,
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= = +  (6.24) 

For 0f = , there are a multiple root, 1 2 1r r= = - , and the solution to Eq. (6.18) is 

 ( ) 01
2 lnr z

C
r C r

r
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è ø
   (6.25) 
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As one can see from Eq. (6.19), 0f = when 2ac e=  or, from Eq.(6.15), when 

2

z zr rE En=  (Dimitriev et al 2010). 

These results have been modified for studying the articular cartilage. In  particular 

three different compliance matrixes have been considered, identifying three layers in 

which the cartilage is divided and which have different orientations of collagen 

fibers. In fact, the whole tube is made of three tube one inside the other. 

In the inner layer, where the collagen fibers are oriented in the direction of the load, 

, ,r v z h r zE E E E E and E EJ= = = >
 

where v hE and E
 
are respectively the Young’s modulus in vertical and horizontal 

direction 
 

In the middle zone, where the collagen fibers are oriented randomly 

, ,r R z h r zE E E E E and E E EJ J= = = = >
 

where RE
 
is the Young’s modulus of random fibres 

 

In the upper layer, in which the collagen fibers are oriented horizontally to the load 

direction:  

, ,r z h v r zE E E E E and E E EJ J= = = > =
 

 

Since the cartilage is composed mainly of an isotropic matrix and collagen fibers, the 

shear lag theory can be used to study this kind of tissue as a composite material. 

The elastic modulus of composite is 

( ) 01c m f f f LE E En n h h= - +  

The parameter Lh
 
as shown above  
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 is set equal 1 because for different values of the parameters , ,m fe r r  varying 

between the admissible range for this model, it results 1» .  
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 Figures 6.11,6.126,7.13  provide an illustration of Lh in function of other parameters
  

 

 

Figure 6.10 

Plot of  Lh  varying ff for two value of r  

 
Figure 6.11 

Plot of  Lh  varying r for two value of fr  
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Figure 6.12 

Plot of  Lh  varying me for two value of fr  

Refering to the Cox’s model we show explicitly the elastic moduli variation 

, ,R h vE E E  pointing out that collagen fibers are differently oriented in three cartilage 

layers
 

 ( )1h m fE E f= -  (6.30) 

 ( ) 2 41R m f f fE E E Cosf f a= - +  (6.31) 

 ( ) 21v m f f fE E Ef f= - +  (6.32) 

 

 

This example aims to demonstrate that collagen fibers orientation in the matrix and  

the thickness of different cartilage  layers is the optimal one to minimize the strain 

energy function 

We consider a  tube  under internal pressure intp  (bone-cartilage contact pressure) 

and external pressure extp  (cartilage-cartilage contact pressure). 

The solution for ( ) ( ),r r rJs s and ( )z rs expressed by Eqs. (6.25)-(6.23)contains two 

integration constants for each tube ( 11 12 21 22 31 32, , , , ,C C C C C C ) and another parameter, 

the axial strain 
0

ze
 

The other three integration constants ( 1 2 3, ,u u uC C C ) derived from zu for each layer 

since 

 
z zu dze= ò  (6.33) 
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To find these constants we considered the congruence equations for each layer 

 

( ) ( )1 1

I II

r rr rs s=
 

( ) ( )2 2

II III

r rr rs s=
 

( ) ( )1 1

I II

r ru r u r=
 

( ) ( )2 2

II III

r ru r u r=
 

( ) ( )1 1

I II

z zu r u r=
 

( ) ( )2 2

II III

z zu r u r=
 

Where 1r  and 2r  are the radius of the first and second layer and I,II, III indicate the 

first, second and the third layer .
 

To find the other constants we subject the solution to the following boundary 

conditions: 

 ( ) ( )int , ,r i r e extR p R ps s= - = -  (6.34) 

Where iR  and eR  are the inner and outer radii of the whole tube.  In the case of zero 

axial strain,
0 0ze =

 

 

To determine the stain energy function for the whole  tube, we calculate each strain 

energy function for single tube representing the single layer of cartilage 
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 (6.35) 

Where U1,U2 and U3 are the strain Energy function for each tube. 

To complete the cartilage model we need values of the elastic moduli of matrix and 

collagen fibres, Poisson ration, volumetric fraction of collagen and the pressure 

acting  on  the cartilage. 

In the fibers-reinforced models of cartilage, the tissue is assumed to be biphasic  

and the solid matrix is divided into a fibrillar and non-fibrillar part. The fibrillar part 

mimics collagen fibrils, while the non-fibrillar part describes mainly PGs.
  

The  matrix of articular cartilage was assumed to be isotropic The material properties 

used for the cartilage are  reported by  Julkunen et al. 2008 and K.B. Gu, 2010..
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The applied pressure are shown by Pena et al. 2005. 

For different percentage of collagen volumetric fraction, varying in the usually range 

find in literature,  the strain energy function has been calculate and the minimum has 

been found in function of the radius r1 and r2 for determinate the thickness of each 

cartilage layers. 

As shown in the figure 6.14, 6.15 and 6.16 the thickness of the cartilage layers 

calculated with the mathematical model is contained in the range found in literature. 

In-fact the first layers in this model, varying between 10 to 20 % of the cartilage 

surface, the second one varying between 30-70% and the third layer varying 30%
 

 

Figure 6.13 

Plot of ff  whit respect to  r1 

 

Figure 6.14 

Plot of ff  whit respect to central cartilage layer 
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Figure 6.15 

Plot of ff  whit respect to  inner cartilage layer 

 

 

 

Figure 6.16 

Plot of ff  whit respect to  superficial cartilage layer 

2.3 Conclusions 

 
Biological materials were developed into hierarchical structures with intricate 

architectures. This example shows how the biological tissue, in particular the 

articular cartilage, are made to minimized the strain energy function, in-fact the 

thickness of cartilage layer optimize the use of resources and by change accordingly 

to external stimuli. 
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3 Mechanical-based design of Bi-layer poroelastic plates: 

“optimization over space” 

 

 

The poroelastic solution by Cowin (Cowin 1994) obtained for  homogeneous plates 

was generalized  to the case where the media is constituted by two components.  

 

3.1 Introduction 

 

 The poroelasticity theory originated with the geomechanics applications to describe 

soils behaviour. In 1923, Therzaghi proposed a model of one dimensional 

consolidation to analyze the influence of pore fluid on soil deformation, but the first 

author who introduced a complete theory of linear poroelasticity was Biot in his 

papers (in 1935 and 1941). Poroelasticity has been widely used also to model 

biological tissues, such as bone, cartilage, arterial walls, brain and osteons, because 

almost all tissues have an interstitial fluid in their pores. The interstitial fluid plays 

the role of actor in many crucial functions, like the transport of nutrients from the 

vasculature to the cells in the tissue or of waste products for removal. As highlighted 

so far the  Poroelasticity theory allows the study of the behaviour of fluid-saturated 

elastic porous media. A porous material is a solid containing an interconnected 

network of pores (voids) filled with a fluid (liquid or gas). The Biot formulation of 

the constitutive equations for a fluid-filled porous material started with the 

introduction of two new variables: the pore pressure, p, representing another stress 

component, and the variation in fluid content, ζ , which is a strain component. ζ  

represents the volume of fluid added or removed from a control volume and, so, the 

increment in fluid content is, essentially, the “fluid strain”.  Also, by introducing of 

the variation of fluid content, it is necessary to introduce another constitutive 

equation 

 ( )uK B
p ζ αe

α
= -  (6.36) 
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Of course, the introduction of a new constitutive equation need another 

equation to solve. For this purpose we use  the continuity equation. The 

other constitutive equation of the pore theory of elasticity is the Darcy's law which 

links  the fluid velocity to the pressure gradient. According to this law, the fluid 

flow is directly proportional to the permeability of the material and the pressure 

gradient, which drives the fluid, while it is inversely proportional to the viscosity of 

the fluid 

                                          ( )1 P

fluid

fluid

p ρ
μ

= - Ñ -q Κ g                                (6.37) 

where fluidμ  is the fluid viscosity, ρ  is the fluid density, g  is the gravity 

acceleration and the minus sign ensures that fluid flows from high to low pressure. 

The tensor PΚ  is the anisotropic permeability tensor, because the permeability of the 

solid through which the fluid is flowing is not necessarily the same in all directions. 

In the hypothesis of permeability isotropy we obtain, P κ=Κ I , where κ  is a 

constant. The permeability has dimension of length squared and it is related to the 

pore geometry. It depends strongly on the porosity, defined as f = fluid

tot

V

V
. The 

permeability is generally linked to the porosity through a power law, strictly 

depending on pore. Finally, the fluid velocity within the pores is related to the flux 

by the porosity:  

                                                                  
fluid

f
=

q
v                                             (6.38) 

The flux is divided by porosity to take into account that only a fraction of the total 

volume is available for flow. Now consider the limiting cases of this theory, the 

Skempton coefficient that measures how load is distributed between solid and fluid is 

1B = , if the solid is incompressible uK = ¥  while if the solid matrix 

is incompressible, the coefficient of Biot  is 1α = .Combining these  assumptions we 

obtain that the coefficient of Storage, which represents the ratio of the variation of 
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fluid content compared to pressure change under different porous conditions , is
 

1
0

M
=   and the variation of fluid content is equal to the trace of strain tensor ζ e=   

3.2  Formulation and solution                                      

 

This theory of Biot, is used to describe the behavior of two poroelastic plates , loaded 

with an axial force and a bending moment, both of which are applied cyclically in 

time. The assumptions made to obtain a poro-elastic solution are that: 

(1) the material is isotropic;  

(2) the stress-strain relations are linear and reversible;  

(3) the strains are small; 

(4) both the liquid phase and the solid phase are compressible;  

(5) the pore fluid pressure and the pore fluid velocity are related by Darcy’s law;  

(6) the deformation is quasi-static, i.e. the inertia terms are neglected; 

Therefore, consider two poroelastic plates shown in (Fig.6.17), with a width w, a 

thickness 2d and a length L. 

 

Fig. 6.17 

The plates and the coordinate system employed 

 

The boundary conditions applied at the top of the first plate and at the bottom of the 

second plate link the pressure gradient at the boundary to the pressure at the 

boundary, where h  is called the leakage coefficient. This boundary condition is a 

combination of 
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( , ) ( , )p t d p t d

y d

¶ ± ±
= h 

¶
                    (6.39) 

When h = 0  there is no leakage at the boundaries. This corresponds to the case when 

the surface tension at the pores on the surface of the plate is so large that no fluid 

communication between the plate and the environment occurs (Salzstein and Pollack, 

1987). When  h ® ¥  there is a free leakage at the boundaries, i.e. p = 0 at the 

boundaries. This corresponds to the case when the plate is immersed in a bath of the 

same fluid as that inside the plate so that a free interchange of fluid occurs between 

the plate and its environment. Generally h  is a finite constant at each surface point. 

In this study, h  is assumed to be a single constant (varying from 0 to ¥ ) on the top 

and bottom surfaces y d= ± . On the other eight surfaces of the plate the pressure 

gradient is assumed to be zero in the direction normal to each of them. The following 

assumption, which employs the coordinate system of Fig.6.17, is made to solve the 

problem: all the physical quantities involved depend only on the spatial coordinate y 

and time t.  

Because applied loadings are related to the stress components 
(1)

xxs  and 
(1)

zzs  of the 

stress tensor 1T
 
and  

(2)

xxs  and 
(2)

zzs  of the stress tensor 2T  ,the loading conditions 

on the two plates are 

0 0
(2) (1)

0
0

d

x xx xx
d

N dy dys s
-

é ù= - + =ê úë ûò ò                                                               (6.40)
 

0 0
(1) (2) (2) (1)

0
0

1
( ) sin

d

z zz zz zz zz
d

A

N dA dy dy N t
w

s s s s w
-

é ù= - + = - + =ê úë ûò ò ò  (6.41)
 

0 0
(2) (1)

0
0

d

x xx xx
d

M y dy y dys s
-

é ù= - + =ê úë ûò ò                                                              (6.42)

0

(1) (2) (2) (1)

0

0

1
( ) sin

d

z zz zz zz zz

A d

M y y dA y dy y dy M t
w

s s s s w
-

é ù
= - + = - + =ê ú

ë û
ò ò ò  (6.43)

 

 Using the elastic plate theory we can write, for each of the four loading above, 

the following displacement fields  : 

From  (6.40)  we have                                                                   
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(1) (1)

1 1

(1) (1)

1 1 1

(1) (1)

1 1 1
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n
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=
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From (6.41) 

(1) (1)

2 1 2

(1) (1)

2 1 2

(1) (1)

2 2

( )

( )

( )

x

y

z
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2 2 2
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From (6.42) 

( )

(1) (1)

3 1 3

(1)
(1) 2 2 23
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Form (6.43) 
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where ( )(1)

1C t , ( )(2)

1C t , ( ) ( ) ( ) ( ) ( ) ( )(1) (2) (1) (2) (1) (2)

2 2 3 3 4 4, , , , ,C t C t C t C t C t C t , are 

arbitrary functions of time. 

 
To obtain an analytical solution is considered the whole displacement field like the 

sum of four single components plus a further displacement field attributable to the 

pore fluid pressure: 

                                           

1

1

1

(1) (1) (1) (1)
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1 2 3 4
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y
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z
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u

u

    (6.44) 

Then we assume that the pore fluid pressure of the first plate and the pore fluid 

pressure of the second plate are  the derivative with respect to y of an arbitrary 

potential function 1x e  2x :  

                

           ( ) ( )1

1

,
,

y t
p y t

y

x¶
=

¶
        ( ) ( )2

2

,
,

y t
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y

x¶
=

¶
           (6.45) 

So, the displacement fields due to the pressure are: 
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 where 1L  and  2L  are              

( )
( )( )

1 1

1

01 1 1

6

1 1

u

uB

n - n
L =

- n + n
                                      

( )
( )( )

2 2

2

02 2 2

6

1 1

u

uB

n - n
L =

- n + n
  (6.47) 

 

To solve our problem, we consider: 

The conditions at the interface:  
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(1) (2)

(1) (2)
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1 2

1 1 2 2

x x
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z z

u u

u u

u u

p p

k p k p

=

=

=

=

Ñ = Ñ

                                         (6.48) 

showing that at the interface the three components of the displacement field, pore 

pressure and fluid velocity along the two plates are equal. 

Recalling the fluid mass conservation equation 

2 (1) (1)

1 1 1

01 01

3 3
kk kkc p p

B t B
s s

æ ö æ ö¶
Ñ + = +ç ÷ ç ÷¶è ø è ø

    where    
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2 2

1 1 11 1
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1 1 1 1

(1 ) 1 22 (1 )

1 9 1
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u u
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c k
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  (6.49) 

and 

2 (2) (2)

2 2 2

02 02

3 3
kk kkc p p

B t B
s s

æ ö æ ö¶
Ñ + = +ç ÷ ç ÷¶è ø è ø

     

where  
( )

( )
( )( )

2 2

2 2 22 2
2 2

2 2 2 2

(1 ) 1 22 (1 )

1 9 1

u

u u

BG
c k

é ù é ù+ n - n- n
= ê ú ê ú

- n - n n - në û ë û
                       (6.50) 

With 1 1 1kk m= and 2 2 2kk m=  are the permeability, ratio between specific 

permeability 1 2,k k  and viscosity 1 2,m m  and 01 02,B B  are Skempton’s coefficients. 

Due to the harmonic form of the loads, we can use Euler's formula, to interpret each 

load and, consequently, each field displacement component, like the sum of two 

exponential functions (i.e. 0 0

0 sin
2 2

i t i tN N
N t e e

i i

w ww -= - ). 

Then, it is possible to assume that the potential functions 1x  and 2x , introduced by 

(6.47), is like the product of two functions, a function of time and the another one 

with only space variability: 

( ) ( ) ( ) ( ) ( )1 1 1 3 3,y t g y q t g y q tx = +                 ( ) ( ) ( ) ( ) ( )2 1 2 4 4,y t g y q t g y q tx = +   (6

where 
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  (6

Where A1,A2,A3,A4,A5,A6,A7,A8,B1, B2, B3, B4, B5, B6, B7,B8 are the first sixteen 

unknowns of our problem. 

Particularly, we can write,  

(1)
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  (6

Where D1,D2, D3, D4, D5, D6, D7, D8, E1, E2, E3, E4, E5, E6, E7, E8  are further sixteen 

unknowns. 

To calculate the values of the thirty-two unknowns we have to consider the load 

conditions, the two boundary conditions  and conditions at the interface, putting in 

evidence with respect to y, i te w  and i te w-  and using polynomial identity principle we 

obtain thirty-two equations in thirty-two unknowns. Solving this system we 

have 1A , 2A , 3A , 4A , 5 6 7 8, , ,A A A A , 1B , 2B , 3B , 4B , 5 6 7 8, , ,B B B B , 1D 2D ,

3 4 5 6 7 8, , , , , ,D D D D D D
 1E , 2E , 3 4 5 6 7 8, , , , ,E E E E E E  and the analytical solution is 

completely determined. 
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For this study the software Mathematica 8 has been used, to graphically show that 

the profiles of the pore pressure, fluid velocity, variation of the fluid content and the 

stress components are the same either when we consider two coupled plates or we 

consider one. We use the values typical of the lacunar-canalicular level of bone as 

used by Cowin in his paper in the case of single poroelastic plate. 

  

3.3  Values of the parameters 

 

The values used  are the same employed by Cowin in the case of single poroelastic 

plate except for the Young’s moduli, which are given by two different values for 

both the first and second plate , chosen as the average of Young’s modulus for the 

lacunar-canalicular level of  bone  (18 GPa) , the Poisson’s ratios, for which we have 

chosen three different values of the first plate, 1n , (0.499,  0.0 and -0.5) , while for 

the second plate 2n , the value remains unchanged (0.25) and the permeability, which 

assume three different values, whose average is always equal to one. The bulk 

modulus fK
 
for salt water is given as 2.3 GPa.  sK , the bulk modulus of the solid 

phase, is estimated to be 16 GPa. The values of the drained shear moduli 
1G  and 2G  

are about 7.2 GPa. 1L  and  2L  are evaluated by (2.13) and they are 0.35 .  

Permeability 1 2,k k  and viscosities are taken equal to 1. fr  and 0fr  - effective and 

reference value of the fluid density – are respectively 0.8 and 1. The porosity for both 

the first plate and  the second plate is chosen equal to 0.05. The thickness of the 

plates considered is 2 2d = mm. Lastly, 0N  and 0M , amplitudes of the loading, are 

imposed equal to 1. 

 

3.4  Result and qualitative remarks                         

              

In order to demonstrate the behavior of the two plates analyzed and to be able to do 

an efficacious comparison with the results obtained by Cowin, the pore fluid 



Chapter VI – Optimization processes in Nature 

 

 

 

192 

 

pressure, the velocity flow profile, the variation of fluid content and the stress 

components zs  and xs  are plotted across the thickness of the plates and versus time 

for three different ratios of the  Young’s moduli  (for the four values of frequency 

and for the four values of leakage coefficient) and – then - for four different ratios of 

Poisson’s ratio (for the four values of frequency and for the four values of leakage 

coefficient).   The three different values of 
1E  employed are 20, 22 and 18, and 

consequently 
2E  is equal 16, 14 and 18 respectively. The four different values of 

1n  

employed are 0.499, 0.0, -0.5 and 0.25 (assuming 2n =0.25). The four frequencies are 

2.693, 26.93, 269.3 and 2693, fixing the leakage coefficient 1h = . In the plot versus 

y, the functions are taken at the instant 2 / 3t p= . 

Furthermore, the average entities considered, calculated with respect to the thickness, 

are plotted versus time for value of loading frequency 269.3w =  fixing 1h =  

 

 

Figure. 6.18 

The pore fluid pressure distribution for 1h =  and 2 / 3t p=   

For different ω 

 

Figure. 6.19 

The pore fluid pressure distribution for 1h =  and 2 / 3t p=   
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Fig.6.18, and Fig.6.19 show the pressure profile for four different values of 

frequencies fixed the leakage coefficient equal 1 and for two different values of ratio 

of Young’s moduli and considering 2 / 3t p= . From the graphs we can see that the 

pressure profiles maintain the same trend obtained in the homogeneous case 

represented by a curve piecewise. 

 

Figure 6.20 

The velocity flow profile ( )v y  versus  y  for 1h =  and 2 / 3t p=  

For different ω 

 
Fig. 6.21 

The velocity flow profile ( )v y  versus  y  for 1h =  and 2 / 3t p=  

 

Fig.6.20, and Fig 6.21 represent the behavior of velocity flow profile. Its distribution 

over the thickness is strongly not linear. Infact, as the ratio of Young’s moduli 

increases the velocity decreases. A very important aspect is that for 269.3w =  we 

have a change of sign, which means that the fluid does not pass from low to high 

pressure (from medium 1 to medium 2)  but it flows from low to high pressure (from 

medium 2 to medium 1). Also for high frequencies the fluid velocity at the interface 

decreases. 
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Fig.ure  6.22 

The variation of fluid content distribution for 1h =  and 2 / 3t p=  

 

 

The significance of these representations is related to the possibility of deducing 

helpful information about the distribution of the fluid, in order to predict its paths and 

concentrations, particularly important in many applications in poroelasticity. Graphs 

show a discontinuity passing from one medium to another, therefore we have the 

condition in which a medium is filled more than the other. 

 

  

Figure 6.23 

 The stress zs  distribution for 1h =  and 2 / 3t p=  
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Fig 6.23, represent the profile of the stress tensor zs . The curves obtained for 

different Young’s moduli are similar to those obtained in the homogeneous case. 

 

 

Figure 6.24 

The average pressure, velocity, variation in fluid content and  zs respect to the thickness versus t  for 

1h =
 

The plots in Fig.6.18 represent the spatially averaged entities above considered 

versus time for a loading frequency 269.3w = (fixed 1h = ). These profile show that 

the average pressure decreases with increasing the ratio of Young’s moduli while the 

velocity of fluid increases with increasing the ratio. Now, we consider the results 

obtained for different values of the ratio of the Poisson’s ratios. 
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Figure 6.25 

The pore fluid pressure distribution for 1h =  and 2 / 3t p=  

The Fig.6.25, show the variation of the pore pressure for different values of the 

Poisson’s ratio. 

 

Figure 6.26 

The velocity flow profile ( )v y  versus  y  for 1h =  and 2 / 3t p=  

The Fig.6.26 represent the behavior of velocity flow profile. Its amplitude  increases 

with increasing the frequencies. For 269.3w =  and 2693.05w =  the amplitude of 

velocity  change of sign so the fluid flows from medium 2 to medium 1. 
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Figure 6.27 

The variation of fluid content distribution for 1h =  and 2 / 3t p=  

The graphs represent the variation of the fluid content and  the trends highlight a 

greater concentration of fluid in a medium than the other. In the homogeneous case 

we had a homogeneous  distribution of the fluid. 

 

Fig. 6.28 

The stress zs  distribution for 1h =  and 2 / 3t p=  

The plots in Fig 6.28 demonstrate that for high  frequencies the zs increases with 

increases the ratio of the Poisson’s ratios. 
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Finally the pore fluid pressure, the velocity flow profile, the variation of fluid content 

and the stress components zs  and  xs  are plotted across the thickness of the plates 

for four different permeability (for the three values of frequency).   

The four different values of 
1k  employed are 1.95, 1.9, 1.5 and 1, and consequently 

2k  is equal 0.05, 0.1, 0.5 and 1 respectively. The three different values of  

frequencies employed are 2.693, 26.93 and 269.3 (fixing 1h = ). In the plot versus y, 

the functions are taken at the instant 2 / 3t p= . 

 

Figure.  6.29 

The pore fluid pressure distribution for 2.69305, 26.9305 269.305andw =  and 2 / 3t p=  

 

 
Figure.  6.30 

The velocity flow profile  for 2.69305, 26.9305 269.305andw =  and 2 / 3t p=  
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Figure 6.31 

The variation of fluid content distribution  for 2.69305, 26.9305 269.305andw =  and 

2 / 3t p=  

 

 

 
Figure 6.32 

The stress s z  distribution  for 2.69305, 26.9305 269.305andw =  and 2 / 3t p=  

Furthermore, the average entities considered, calculated with respect to the thickness, 

are plotted versus time for different values of permeability  fixing 269.3w =  and  

1h =  
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Figure 6.33 

The average of pressure, fluid velocity, variation in fluid content and zs respect to the thickness 

versus t for 1h =                   

                         

3.5 Conclusions 

   
The variation of the response function, in terms of stresses, pressure and fluid content 

and velocity, was analyzed by using several parametric values of permeabilities 

values, Young’s moduli and   Poisson’s ratios. The results allow to better interpret 

the adaptive processes governing many biological tissue, in which the hierarchical 

heterogeneous features result from optimization logics aimed to obtain best varying 

stiffness and permeability features. 

Additionally, the analytical solution could be helpfully employed for designing 

controlled release systems of drugs, as those named “ .mechanically activated drug 

delivery devices” 
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CONCLUSIONS 

 
Nature has always inspired human achievements and has led to effective materials, 

structures, tools, mechanisms, processes, algorithms, methods, systems, and many 

other benefits. 

Biomimicry is a design discipline that seeks sustainable solutions by emulating 

nature. Through evolution, nature has ‘experimented’ with various solutions to its 

challenges and has improved the successful ones 

Biomimetics is addressed to the design and development of new  materials and 

structures using strategies adopted by living organisms to produce biological 

materials. 

Specifically, Nature, or biology, experimented with the principles of physics, 

chemistry, mechanics, materials science, mobility, control, sensors, and many other 

fields that we recognize as science and engineering. The process has also involved 

scaling from nano and micro to macro and mega. Living systems archive the evolved 

and accumulated information by coding it into the species’ genes and passing the 

information from one generation to another through self-replication.  

Nature has an enormous pool of inventions that passed the harsh test of practicality 

and durability in changing environment. In order to harness the most from Nature’s 

capabilities, it is critical to bridge between the fields of biology and engineering and 

to see cooperation of experts from both fields. In order to approach nature in 

engineering terms, it is necessary to sort biological capabilities along technological 

categories. Namely, one can take biologically identified characteristics and seek an 

analogy in terms of engineering as shown in chapter IV. 

In this Phd thesis, the biological structures were classified into two main areas: 

experimental observation over time and experimental observation over scale. 

Once the classification has been made, the biological structures were divided  

according to their ability to imitate Nature: they could be observed for simple 

imitation or for applying functioning logic. The last sub-division is related to the 

complexity of the problem and, therefore, the number of variables involved. 
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As examples of this kind of optimization, the structures of mole-rat burrows have 

been studied. 

The Mole rats tunnels are constructed obeying to optimal criteria  because they are 

the best excavator among subterranean rodents. The tunnels are realized with the aim 

of ensuring an adequate oxygen and nutrients supply as well as to avoid collapse 

mechanisms of the networks. 

The objective of this example consists in exploring the possible mechanical-based 

relationship between the geometry of burrows and geo-mechanical characteristics of 

the soil that have evolved over time. 

This approach could be utilized for investigating the possibility to formulate a new 

mechanical-based evolutionary hypothesis for which the overall dimensions of the 

mole rats also depend on the quality of soils. This would mean that the natural 

evolutionary process preserves and genetically select mole rat species able to reach 

and to excavate at depth such that the geo-mechanical quality of the resident soil 

increases as a result of the consolidation. This possible scenario would also allow to 

explain, within a mechanically perspective, the observed significant differences in 

size among the mole rat species. In-fact, the study has confirmed that mole-rats dig 

tunnels with different diameters into the allowable range of diameters to ensure the 

borrow stability. 

Nature develops biological objects by means of growth or biologically controlled 

self-assembly adapting to the environmental condition and by using the most 

commonly found materials. As a result, biological materials and tissues are created 

by hierarchical structuring at all levels in order to adapt form and structure to the 

function, which have the capability of adaptation to changing conditions and self-

healing. 

As example of optimization over space, we have studied fiber-rinforced cartilage 

structures showing how the biological tissues are organized to minimized the strain 

energy function. In particular, the thickness of three layers of cartilage varying in the 

range of values that minimize the strain energy function. 

As a final example, the poroelastic solution by Cowin (Cowin 1994) obtained for  

homogeneous plates was generalized  to the case where the material is constituted by 
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two components. In order to demonstrate the behavior of the two plates analyzed and 

to be able to do an efficacious comparison with the results obtained by Cowin, the 

pore fluid pressure, the velocity flow profile, the variation of fluid content and the 

stress components are plotted across the thickness of the plates and versus time for 

different elastic  moduli  and Poisson’s ratio  

The results of this example allow to better interpret the adaptive processes governing 

many biological tissue, in which the hierarchical heterogeneous features result from 

optimization logics aimed to obtain best varying stiffness and permeability features. 

The analytical solution could be used for designing controlled drug delivery system. 

The core idea of this thesis, is that Nature always optimize the use of resources to 

reach a goal changing its shape accordingly to the functions that the structures or 

materials have to explicate. 

In this manner it is possible design new intelligent materials and structures that 

mimic the rules and principles that govern Nature. 
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