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GENERAL INTRODUCTION 

 

ORCHIDS 

 

With more than 22.000 accepted species in 880 genera (Pridgeon et al. 1999), 

the family of the Orchidaceae is the largest family of angiosperm plants. Recently 

discovered fossils document their existence for at least 15 Ma. The last common 

ancestor of all orchids has been estimated to exist about 80 Ma ago (Ramirez et 

al. 2007, Gustafsson et al. 2010). Orchids are cosmopolitan, distributed on all 

continents and a great variety of habitats, ranging from deserts and swamps to 

arctic regions. Two large groups can be distinguished: Epiphytic and epilithic 

orchids attach themselves with aerial roots to trees or stones, mostly halfway 

between the ground and the upper canopy where they absorb water through the 

velamen of their roots. They are typically found in tropical forests of South 

America, Central Africa and South-East Asia. Terrestrial orchids constitute the 

other large group of orchids. Their supply with water and nutrients relies on 

underground roots or rhizomes. Many species form one or more specialized 

repository organs (root tubers); their shape is where the families’ name is 

derived from (gr. ορχισ = testicle). They are generally distributed outside the 

tropics, mainly in temperate and sub-tropical regions of Eurasia, Australia, North 

America and South Africa.  

 

BIOLOGY AND LIFE CYCLE OF TERRESTRIAL ORCHIDS 

 

Eurasian distributed orchids are perennial herbs that produce underground 

rhizomes or tubers to persist the period of hibernal dormancy. The roots are 

mostly short, thick and sparsely ramified. Additional to sexual reproduction, 

many rhizomatous species are able to propagate via vegetative growth and build 

up large clonal patches (e.g. Epipactis palustris, Cypripedium calceolus) while 

only very few tuberous species generate additional root tubers (e.g. Serapias 

lingua, Ophrys bombyliflora). 

Tuberous species have a characteristic life cycle: During the vegetative period 

the under ground repository tuber is used up to generate above ground organs 

from leaves to fruits, while contemporaneously a new tuber is developed to 

persist the dormancy period. In the Mediterranean basin the leaf rosette is 

usually developed in the winter period, but this can be delayed until the early 
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summer, depending on the species and the vertical distribution in Europe. 

Spiranthes spiralis largely deviates from this pattern: The leaves develop in 

autumn, and they wither until the late summer, when the inflorescence arises 

beneath the rosette. Goodyera repens is the only evergreen species. Most 

orchids flower from early spring to the middle of summer, fewer species from 

late summer to autumn (e.g. Epipactis spp.). The plants form only a single 

unbranched (monopodial) erect and racemose inflorescence with generally 

resupinate flowers. Rarely the labellum points upwards (e.g. Nigritella spp.). The 

flowers of the European Species follow the general pattern described above but 

display a great variability regarding shape, color and pollination syndromes. As in 

Asclepiadaceae too, the pollen forms a coherent mass that is dispersed as a 

single unit during pollination. These so-called pollinia are attached with a viscid 

disc to different parts of the pollinators’ body (Darwin 1862).  

Orchid flowers typically have a bilateral-symmetric perianth consistent of two 

circles with three tepals each. The upper, middle tepal of the inner circle is 

usually very differentially shaped. Through resupination in most species it points 

downwards and plays a prominent role in the attraction of pollinators and as 

landing platform. This highly specialized floral organ is an autapomorphy of the 

Orchidaceae and called ‘labellum’ or ‘lip’. Primitive orchids have 3 stamens, 

Apostasia and the Cypripedioideae have two stamens. All other orchids have only 

one stamen with the other two being reduced to staminodia. The filaments are 

fused with the style. They form a typical organ, called column. The column also 

forms the rostellum, a tissue separating the anther(s) from the stigma und thus 

preventing self-fertilization. It can also function as a sort of bag containing the 

adhesive discs of the stalked pollinia. 

Orchids have tricarpellate, inferior ovaries. Fertilized flowers produce fleshy 

capsules with thousands of dust-like seeds (except some members of 

Vanilloideae and Cypripedioideae) that can be transported with the wind over 

long distances, though mostly in a distance of a few meters. An air-filled coat 

surrounds the small embryo. The low weight of the seeds is due to the lack of a 

rigid testa and a nutritive tissue (endosperm) that feeds the developing plantlet 

until the beginning of the photosynthetic phase (Jersakova & Malinova 2007). All 

orchids are myco-heterotrophic, i.e. in the germination and seedling stage they 

are dependent on basidiomycetic fungi that deliver nutrients for root growth and 

leaf development. But some orchid species retain the fungal symbiont throughout 

their lives: e.g. Neottia nidus-avis and Corallorhiza trifida. They are saprophytic 
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orchids that lost the ability to do photosynthesis. Specificity and properties of 

orchid-mycorrhiza symbiotic relationships are hardly explored yet (Rasmussen 

2002). 

 

BREEDING SYSTEM 

 

Most Eurasian species are allogamous with, compared to tropical orchids, 

relatively inconspicuous small flowers. But some taxa changed their breeding 

system and have become autogamous (e.g. Ophrys apifera, Epipactis helleborine 

agg. p.p., see: Squirell et al. 2002, Hollingsworth et al. 2006), cleistogamous 

(e.g. Neotinea maculata) or they flower occasionally underground (e.g. Neottia 

nidus-avis, Epipogium aphyllum). The spectrum of pollinators ranges from small 

flies over ants, all kinds of bees and wasps, to beetles and butterflies, amongst 

others. While generally a reward in form of nectar is offered, some species and 

genera evolved food- and sexually deceptive flowers that offer no reward at all to 

the pollinators.  Food-deceptive species are numerous in Dactylorhiza and Orchis 

s.l.. These have floral traits typical for rewarding species, but they tend to flower 

earlier than sympatric rewarding species (Pellissier et al. 2010), they are 

accompanied by rewarding ‘magnet plants’ (Johnson 2003) or mimic rewarding 

species (Dafni 1981) to overcome the overall lower attractiveness to pollinators. 

Other forms of mimicry in orchids include mimicry of pollen (Calypso bulbosa, 

see: Boyden 1982), green leaf volatiles (Epipactis spp., Brodman et al. 2008) or 

alarm pheromones (Epipactis veratrifolia, see: Stökl et al. 2011). All species of 

the genus Ophrys are sexually deceptive, mimicking morphological 

characteristics and pheromones of female insects. This mechanism likely exhibits 

the most astonishing case of mimicry in orchids. The genus also depicts the only 

occurrence of sexual deceptive plants in Europe and the Mediterranean Basin.  

Many orchids have developed highly specialized pollination systems. Hence 

fertilization can be rare. This is thought to be the reason for the relatively long 

receptivity of their flowers, the delivery of pollen as a unit, and the high number 

of produced seeds.  

 

ECONOMICAL USES 

 

Many species of tropical epiphytes, including their hybrids are cultivated as 

ornamental plants on a large scale (e.g. Phalaenopsis, Epidendrum and Cattleya). 
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Besides that, only few reports for medicinal applications or use as food have 

been reported: The root tubers of several Orchis s.l. spp. (‘Salep’) are used as 

tee herbs and some Epidendrum spp. are employed in traditional Chinese 

medicine (see also: Bulpitt 2005). The dried fruits of some Vanilla spp., mostly V. 

planifolia, are commonly used as flavouring. The worldwide yield of ‘Vanilla’ in 

2006 was as high as 10.5 tons, with Madagascar being the major producer. 

 

TAXONOMY 

 

The Orchidaceae have been earlier attributed to three different families 

(Dahlgren 1985), but they later turned out to be polyphyletic. Based on recent 

molecular and morphological analyses the Orchidaceae have been reunited and 

are now placed in the order Asparagales (APGIII 2009) as sister to the remainder 

of the clade (incl. Hypoxidaceae s.l., Iridaceae, Asphodelaceae, Alliaceae, 

Amaryllidaceae, Agavaceae, etc.). Within the Orchidaceae five subfamilies are 

recognized (Freudenstein et al. 2004): the basal Apostasioideae (3 stamens) and 

the more derived Cyprepedioideae, Vanilloideae, Epidendroideae and 

Orchidoideae (all monandrous). Most European distributed orchids come from the 

subfamilies Epidendroideae (e.g. Epipactis, Listera, Neottia) and Orchidoideae 

(e.g. Orchis s.l., Dactylorhiza, Platanthera).   

 

OPHRYS 

 

Within the Orchidinae the orchid genus Ophrys is morphologically distinct and 

genetically well defined (Bateman et al. 2003). Ophrys species are perennial 

herbs that form a basal rosette in the late autumn and a single few-flowered 

inflorescence in the time of late winter till early summer. Within the vegetative 

period the underground repository tuber is used up to generate above ground 

organs, while contemporaneously a new tuber is developed to persist the 

dormancy period. A large-scale demographic study on O. sphegodes (Hutchings 

2010) revealed medium life spans of 2.25 years, with few individuals living as 

long as 20 years. 30% of plants had dormancy periods of (1—) 2 (—4) years. 

Like closely related genera, Ophrys spp. are generally diploid with a basic 

chromosome number of 2n=36. For a few taxa, mainly of subg. Pseudophrys 

diverging chromosome numbers, as well as different ploidy levels have been 

reported (Bernardos et al. 2003, D’Emerico et al. 2005, Vereecken et al. 2010).  
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POLLINATION BY SEXUAL DECEPTION 

 

Floral features of animal pollinated flowers are the consequence of a co-

evolutionary process in which the plants generally adapt to the pollinators 

preferences for food and evolve visual, tactile and structural features that both 

attract the pollinator(s) and exclude unwanted visitors. A pollination syndrome is 

a suite of floral features that evolved under natural selection imposed by one or 

more pollinators (Fenster et al. 2004). Due to the complexity of extant plant 

flowers, relationships between monophyletic entities are often correlated with the 

pollination syndromes. In contrast to the majority of plant species, no reward in 

the form of nectar or pollen is offered in food-deceptive and sexually deceptive 

species (Jersakova et al. 2006). 

The genus Ophrys is characterized by pollination through sexual deception, which 

was until recently only known for Orchidaceae spp. (Ciotek et al. 2006); but Ellis 

& Johnson (2010) reported a sexually deceptive daisy from South Africa. Ophrys 

orchids mimic morphological features and the female sexual pheromones of 

certain bee species (rarely wasps or beetles) to deceive inexperienced male bees 

into landing and copulating on the flower labellum. The pollinia get attached to 

the head or abdomen of the male bee, which will likely repeat the so-called 

pseudo-copulatory behaviour on another individual, and in this way effectuate 

cross-pollination (Pouyanne 1917).  Each Ophrys species is pollinated by only 

one or very few bee species (Lorella et al. 2002, Gaskett 2010). This pollination 

system is thought to be highly effective and species specific (Kullenberg 1961), 

mainly due to the floral scent which is emitted from the labellum and to a minor 

degree also from other parts of the flower: differential pollinator attraction is 

based on a composition of various semio-chemicals, mostly alkanes and alkenes 

or, within closely related species, often alone on the relative proportions of these 

(Schiestl et al. 1999, Mant et al. 2005) or the position of double bonds in 

pollinator attracting alkenes (Schlüter et al. 2011).  

The model female bee is somewhat simulated by a combination of olfactory, 

visual and tactile cues. After the floral scent has guided the pollinator to the 

flower (long-distance attraction; see: Ayasse et al. 2003), the function of the 

morphological structure of the labellum comes into the game. The role of the 

different components of the complex morphological floral equipment has been 

insufficiently investigated for long time. Recent studies highlighted the 
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importance of visual cues like petal color and speculum structure (Streinzer et al 

2009, 2010; Spaethe et al. 2010) for pollinator attraction at short distances. The 

highly reflective speculum has been interpreted as a mimic of hymenopteran 

wings that also reflect the light. Trichomes can be found on nearly all Ophrys spp. 

labella (Bradshaw et al. 2010). They are reputedly mimicking the female insects’ 

hairs and their direction is leading the pollinator into the right position, i.e. 

pollinia take-up and delivery. Distally aligned hairs force the bee to take up a 

head-up position on the lip (subg. Euophrys), while proximally aligned hairs 

affect the bee to assume a head-down position (subg. Pseudophrys). Also the 

three-dimensional topology of the lip guides the insect to find the right position 

for pollination. 

 

FLORAL ISOLATION 

 

Floral isolation and pollinator shifts are well documented for a variety of plants, 

e.g. Mimulus (Bradshaw & Schemske 2003), Aquilegia (Whitall & Hodges 2007), 

Anacamptis (Dafni & Ivry 1979) and Ophrys (Kullenberg 1961, Paulus & Gack 

1990, Schlüter et al. 2007). Because Ophrys species are interfertile, reproductive 

isolation in this genus mainly relies on floral isolation caused by high pollinator 

specificity. Sexually deceptive plant systems are characterized by strong pre-

zygotic and weak post-mating isolation barriers. Pollinator shifts are thought to 

happen fast (Cozzolino & Widmer 2005). Therefore the potential for speciation 

and the built-up of reproductively isolated populations and new species is high 

compared to generalized, rewarding and food-deceptive taxa (Scopece et al. 

2007). 

Though, floral isolation was shown to be acting almost perfect in a group of 

closely related Ophrys spp. (Xu et al. 2011), hybrids and hybrid zones can be 

met (Souche 2008, Cortis et al 2008, Stoekl et al 2009). Crossing barriers are 

virtually absent (Ehrendorfer 1980, Scopece et al 2007). So far, post-zygotic 

isolation could only be demonstrated for backcrosses of triploid hybrids with the 

di- and tetraploid parental species (Vereecken 2010). Thou, recent experiments 

demonstrated the floral isolation of the investigated taxa to be leaky (unpubl. 

observation 2011). This raises the question whether hybrids backcross with the 

parents, and if so, how much gene flow is tolerated without breaking down 

species boundaries.  

 



 10 

DIVERSITY & TAXONOMY 

 

Hotspots of Ophrys diversity are found in France, Italy and Greece, but the 

distribution area of the genus ranges from the Canary Islands to Iran and from 

Scandinavia to North Africa. According to the many taxonomic treatments 

available, 17 spp. (Sundermann 1980) to more than 250 spp. (Delforge 2006) 

are accepted. The genus is traditionally divided in two subgenera: 1. subg. 

Pseudophrys, where the pollinia are placed on the abdomen of the pollinator, and 

2. subg. Ophrys (syn. Euophrys), where the pollinia are placed on the pollinators 

head. Still, many new species are described every year on the basis of minor 

morphological differences, lacking any significance due to missing pollinator 

records. This contrasts with the widely accepted fact that floral morphological 

characters between and even within populations of a given species can vary 

notably. Therefore the morphological species concept cannot always be applied 

with confidence to closely related taxa (Vereecken et al 2010). Interestingly, all 

of the more widely distributed Ophrys taxa are believed / have been 

demonstrated to be relatively old species at the base of the tree and/or at the 

core of the more diversified Mediterranean groups, e.g. O. bombyliflora, O. 

apifera, O. speculum, O. tenthredinifera, O. insectifera, O. sphegodes and O. 

holoserica. Most of these locally adapted to novel pollinators and became 

reproductively isolated from their ancestors, or at least replaced them locally due 

to the predominance of the novel pollinator or the absence of the ancestors’ 

pollinator. The mechanism involved in this adaptive speciation process is likely a 

selective pressure imposed by a novel pollinator, in which the flowers and their 

scent bouquet evolve towards the preferences of the insect. In contrast to this 

creeping process involving only minor changes in a continuous way, mutations in 

genes responsible for the production of scent components, as well as the 

formation of hybrids exhibit great potential for the recruitment of novel pollinator 

species.  

The most species rich complexes of the genus recruited different groups of bees: 

The O. holoserica group is mainly Eucera pollinated, while the O. sphegodes 

group is predominantly Andrena/Colletes pollinated. The O. fusca group recruited 

a similar set of pollinators as the O. sphegodes group, but the species of the two 

groups are mechanically isolated through the differential pollen placement on the 

insect body. Several minor groups have been described based on similarities of 

morphological features and the respective pollinators, e.g. O. bertolonii group 
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(Chalicodoma pollinated), O. lunulata group (Osmia pollinated) and O. argolica 

group (Anthophora pollinated) (Delforge 2006). It is unknown whether these 

groups are natural units, i.e. monophyletic, because all of their defining 

characteristics are not exclusive to them.  

 

SPECIES CONCEPTS 

 

In biology the species is traditionally seen as the basic evolutionary unit (Mayr 

1982). Though, the question of how to define a species constitutes a long-

standing debate among biologists.  The debate itself has become known as the 

“species problem” (Mayr 1957, Hey 2001). The problems associated with finding 

a universally valid definition are not only based on empirical grounds but also on 

theoretical appraisements and the perception of the subjective individual 

(Gilmour 2008, Hey 2001). The aim is to define a fuzzy-boarded entity, part of a 

continuum from individuals, populations, over varieties and subspecies, to 

genera. 

 

Providing a definition that is adequately applicable to all kinds of organismal 

groups seems impracticable if not impossible, especially when looking at groups 

as different as bacteria, fungi, animals and plants. “No one definition has 

satisfied all naturalists; yet every naturalist knows vaguely what he means when 

he speaks of a species”, Darwin quoted. He viewed speciation as a gradual 

process and used the term species in the sense of a provisional name tag for 

interbreeding organisms: “I look at the term species as one arbitrarily given for 

the sake of convenience to a set of individuals closely resembling each other”. 

Traditionally, species were identified by comparative anatomy and morphology 

(‘classical species’, ‘phenetic concept’, ‘morpho-species’; Linne: see Larson 1968; 

Cronquist 1978), and the grade of variation was used as a measure for 

phylogenetic relatedness [uncertainties about species membership are displayed 

in the use of the terms ‘subspecies’ and ‘variation’]. 

Poulton (1904) was the first to outline the importance of reproductive isolation 

(syngamy vs. asyngamy) in an inclusive species delimitation, but Theodosius 

Dobzhansky and Ernst Mayr are jointly quoted for their modern evolutionary 

syntheses and the ‘biological species concept’ (BSC). They similarly defined a 

species as “… that stage of evolutionary progress at which the once actually or 

potentially interbreeding array of forms becomes segregated into two or more 
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separate arrays, which are physiologically incapable of interbreeding” 

(Dobzhansky 1937) and as "groups of actually or potentially interbreeding 

natural populations, which are reproductively isolated from other such groups" 

(Mayr 1942), respectively. Based on the inclusive BSC, more stringent concepts 

came up. The ‘ecological species concept’ draws the line between species, even 

with ongoing gene flow, if they are ecologically distinct (Van Valen 1976).  

Different to that, the ‘phylogenetic concept’ (or ‘diagnostic concept’) by Cracraft 

(1989) defined a species as “an irreducible (basal) cluster of organisms, 

diagnosable distinct from other such clusters, and within which there is a 

parental pattern of ancestry and descent”. But this strict definition has its 

shortcomings: Good species and its’ populations may or may not be resolved in a 

phylogenetic tree. This depends on the evolutionary rates of the employed 

genetic markers, as well as the divergence times of the analyzed lineages, i.e. 

populations of one species may be resolved, but an array of reproductively 

isolated species may be unresolved, using the same genetic tools. This means 

that levels of resolution in a phylogenetic trees does not necessarily allow for any 

inferences regarding the species status. Less inclusive (diagnostic) concepts for 

plants generally allow for gene flow between species, i.e. they don’t have to be 

reproductively isolated, if “the lineage evolves separately from others with its 

own unitary evolutionary role and tendencies” (Simpson 1951).  

The BSC is historically the most quoted concept in biology, and most of the other 

proposed definitions are conceptionally related to the BSC.  A general criticism in 

the BSC is the practical inapplicability of the concept: artificial crosses and 

checking the offspring’s’ fertility may be inconclusive due to the exclusion of 

many environmental factors, or infeasible in terms of money and time. 

Furthermore, the BSC is not applicable to many lineages of land plants: 

interspecific hybridization between clearly delimited species and the existence of 

autogamous lineages are common phenomena in angiosperms (Mishler 1985, 

Cronquist 1988).  

A different approach is to identify the evolutionary significant unit (ESU). The 

individual and his genes are the smallest possible unit, but the evolution of new 

species necessarily involves other individuals, generations of recombination and 

inheritance, and of course, some kind of isolation mechanism. Therefore, 

“populations are the real units of evolution” (Ehrlich & Raven 1969). This view is 

shared by conservational biologists who seek to protect ESU's (Fraser & 
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Bernatchez 2001). These can be species, by whatever definition, and lower 

taxonomic units. 

The definition of a valid species concept for a given group of organisms ideally 

has to take into account morphological variability, phenology, distribution, 

interfertility between populations and closely related species, fertility of the 

offspring and the composition and the strength of all reproductive isolation 

barriers. As it is an almost impossible exercise to answer all these questions 

satisfactorily, researchers tend do rely only on some components of the above-

mentioned concepts, such as reproductive isolation, phylogenetic resolution, 

ecological distinctness, etc. to define “their” species, which is a highly subjective 

choice.  

 

De Queiroz (1998) argued, that all species concept provide criteria only 

applicable to a certain stage of the speciation process, and that all known species 

concepts agree on the fact that “species are independent lineages”. However, 

this “general lineage concept” factors out all problems associated with the 

splitting process itself and is therefore not helpful for the validation of lineages 

with gene flow. 

 

The lack of a definite species concept poses practical problems to taxonomists. 

The spectrum of possible taxonomic treatments is outlined by two opposed 

approaches: lumping and splitting. Lumpers use a more inclusive concept (e.g. 

BSC) that accepts the existence of polytypic species, i.e. a number of subspecies 

within one big species. Species should keep up their (genetic) integrity, even in 

sympatry. Lumpers legitimate their use of a more conservative and inclusive 

concept with the fact that many factors influencing a species and its integrity are 

unknown. In contrast to that, splitters generally use one of the more diagnostic 

and strict concepts available that allow for gene flow between separate species, if 

these taxa have their “own evolutionary role and tendencies” (Simpson 1951). 

 

As for the genus Ophrys, there is still a spirited debate if (1) morphologically 

slightly dissimilar taxa that share one pollinator species should be treated as 

different diagnostic species when growing in parapatry/allopatry (e.g. O. exaltata 

s.l.), if (2) morphological nearly identical taxa with different pollinators (cryptic 

species) should be treated as a single polytypic species (e.g. O. fusca s.l., see: 

Schlueter et al. 2011), and if (3) genetically barely distinguishable taxa with 
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similar morphology should be treated as polytypic species (Pedersen & Faurholt 

2007, but see: Bradshaw et al 2011, Vereecken et al. 2011).  

AN ETHOLOGICAL SPECIES CONCEPT FOR OPHRYS 

 

Based of the ‘evolutionary species concept’ (Simpson 1951) and the ‘ecological 

species concept’ (Van Valen 1076), a species can be defined as an evolutionary 

unit occupying an ecological niche and an evolutionary role different from any 

other closely related lineages. The only in deep investigated strong isolation 

barrier in sympatric Ophrys is floral isolation imposed by different pollinators (Xu 

et al. 2011). Therefore a modified ecological/evolutionary species concept for 

Ophrys necessarily involving the mechanism of isolation by the pollinating insects 

could be named ‘ethological species concept’. 

 

There is a steadily growing consensus among Ophrys researchers that an 

‘ethological species concept’ seems most appropriate for the discrimination of 

species. This concept means, that a species is defined by having mostly only one 

single pollinator; it includes all morphologically similar populations (varieties); 

morphologically nearly identical populations with different pollinators are 

belonging to different species. But morphologically largely dissimilar populations 

(mechanical isolation through differential pollinia placement or great size 

differences) are different species, even if they share a pollinator.  In short, 

‘species’ can have gene flow, if they occupy an adaptive zone different from 

other lineages (Van Valen 1976) and if they have an own evolutionary role 

(Simpson 1951). 

 

Problems for defining a species in Ophrys result from the difficult cases, where 

taxa/populations are minimally different from each other in terms of morphology 

and/or where reproductive isolation based on different pollinators can be leaky 

due to erroneous/illegitimate pollination or overlap in the spectra of possible 

pollinators. Moreover the pollinator record for almost all Ophrys species is 

fragmentary or missing. This is not surprising at all, as compiling a ‘really 

complete record’ would include field observations over the whole flowering period, 

repeated in subsequent years; doing choice experiments with sympatric species, 

preferentially also translocation studies, etc. 
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As shown with choice experiments in sympatric Italian Ophrys populations 

(unpubl. observations 2011), closely related taxa keep up their integrity even in 

the presence of pollinator overlap and little gene flow (Xu et al. 2011). Even 

though the future of these overlapping lineages is uncertain, they clearly 

represent evolutionary significant units with the potential to become more 

strongly isolated with time. In the authors view, the presence of interfertility and 

the genetic similarity within close relatives in Ophrys doesn’t justify lumping 

them together as polytypic species. This practice is very imprecise, because 

nobody knows whether the populations/subspecies/varieties of a polytypic 

species constitute a monophylum, or if so, whether they will stay monophyletic 

over time. It seems more accurate to judge the ESU’s as the most important 

category: these can be varieties, subspecies or even ‘good species’. Examples:  

 

1. O. archipelagi and O. tyrrhena are morphologically similar, they share one 

pollinator species, but they are distributed on different, opposed sides of the 

Italian peninsula. The two taxa could be treated as diverging populations of only 

one lineage, i.e. a variety.  

2. O. sphegodes and O. argentaria are morphologically and genetically very 

similar, but they have, as far as it is known, different pollinators and a 

distribution like the above given example. These taxa could be treated as 

different species, as long as no pollinator overlap is found.  

3. O. sphegodes from Gargano (Puglia, Italy) and from the province of Naples 

(Campania, Italy) have been treated as belonging to the same species, even if 

minor but constant morphological differences characterize these differentially 

distributed demes. It has been found that the two populations have different 

pollinators. But at least the plants from Naples attract to a minor degree the 

pollinator of the plants from Gargano. This most likely represents a local 

adaptation of O. sphegodes to a novel pollinator, with incomplete reproductive 

isolation from the ancestral species. Both lineages have their own ecological and 

evolutionary attributes, but they would largely hybridize in sympatry. The term 

subspecies explains best the parentage of the ancestor and the distinctness due 

to a pollinator switch and slight morphological divergence. 

4. In Ophrys, O. speculum represents the rare case of a ‘good species’. It is 

pollinated by only a single wasp species that is not shared with any other Ophrys 

lineage. Occasional hybrids with other Ophrys species can be found, though. 
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Alone the presence of a major pollinator, isolating a lineage to a high degree 

from other sympatric lineages, gives the taxon in question a unitary evolutionary 

potential that may lead to total reproductive isolation in the future. One should 

be aware that we are looking at a snap-shot of the speciation of incipiently 

diverging lineages, when trying to delimit Ophrys species.  

As a taxonomist it seems adequate to treat incipient lineages as polytypic species, 

because phylogenetic relationships are to some degree reticulated and 

divergence is incomplete. This means the observed pattern might be well 

different in the future.  

From an evolutionary biologists point of view a polytypic species concept 

overlooks all the processes and different stages from early divergence to total 

isolation.  As the taxonomist too, he needs to use categories. 

 

GENE FLOW & HYBRIDIZATION 

 

Even though the ‘ethological concept’ is perhaps the best approximation to the 

task of defining an appropriate species concept for Ophrys, it is not waterproof. 

The increasing findings of additional, ‘minor pollinators’ for species, that 

previously have been thought being pollinated by a single pollinator, further 

complicates answering the tasks regarding a valid species concept. For example, 

for 5 out of 6 investigated species from the Gargano area in Italy at least one 

novel pollinator has been observed in choice experiments in the field (unpubl. 

observation, 2011). This finding suggests interspecific cross-pollination of species 

that were thought to be reproductively isolated from each other. As the Ophrys 

spp. in question can be distinguished in the field using morphology, it’s likely that 

some gene flow exists without breaking down species boundaries. But this might 

be responsible for some allele sharing that can seriously hinder phylogenetic 

reconstruction, especially when parts of the genome are investigated, that are 

not under selection. Lineage sorting of genes under selection will happen 

relatively fast compared to genomic regions that are not under selection (e.g. 

introns). Other studies on Ophrys and Australian deceptive orchids found 

evidence for possible gene flow between closely related species (Mant et al 2002, 

Soliva & Widmer 2003).  

 

REVIEW OF PREVIOUS PHYLOGENETIC STUDIES 
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In recent years, progress has been made in reconstructing familiar relationships 

within the Orchidinae, a Eurasian distributed subtribe of the Orchideae which 

comprises only terrestrial orchids (Aceto et al. 1999, Bateman et al. 2003). 

Ophrys was shown to be monophyletic and, as well as the sister genus Serapias, 

it is characterized by a relatively long branch, relative to all other taxa of the 

subtribe. Previously, two studies focused on the phylogeny of Ophrys (18 ingroup 

taxa: Soliva et al. 2001, Devey et al. 2008). Traditionally employed gene 

markers for phylogenetic reconstruction were used in these works: Internal 

transcribed spacer 1 and 2 (ITS), as well as the chloroplast markers trnL-trnF 

and trnH-psbA + trnD-trnT, respectively. Ten, well supported species groups 

were revealed by Devey et al. (2008), though the relationships between them 

could not be resolved in most cases or support was low. Notably the placement 

of the O. insectifera group to the remainder of the genus, the relationships 

between the O. speculum, O. tenthredinifera and O. fusca groups and those 

between the species rich O. sphegodes, O. holoserica, O. scolopax and O. 

umbilicata groups remained unresolved or insufficiently supported. No resolution 

was obtained towards the terminals of the tree. Devey et al. (2008) found 

heterozygous individuals in the ITS; the cloned alleles were mostly non-

monophyletic, often grouping with different species groups. Alleles of the 

tetraploid O. dyris even grouped in both of the two subgenera. This finding was 

interpreted as the consequence of hybridization between more distant lineages. 

Even though not directly comparable, the results of AFLP’s were similar to the 

ITS gene tree (Devey et al. 2008). 

 

DATING THE AGE OF ORCHID LINEAGES 

 

The age of the Orchidaceae and it’s various lineages is of major interest for 

systematicists. Previously proposed ages for the family varied between ~26 Ma 

(Wikstroem et al. 2001) and ~110 Ma (Janssen et al. 2004). In recent years, the 

findings of three orchid fossils have enabled calibrations of the orchid phylogeny 

(Ramirez et al. 2007, Gustafsson 2010). The most recent common ancestor of 

the Orchidaceae has been estimated with a relaxed molecular clock (BEAST, 

Drummond et al. 2006, Drummond & Rambaut 2007) approach to exist around 

76 - 84 Ma ago. The latest work using three calibration points and two plastid 

markers estimated the age of the Orchidinae to be ~15 Ma, based on single 

representatives of the two genera Orchis and Platanthera. The high number of 
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species in the genus Ophrys in conjunction with the observed low levels of 

genetic differentiation is thought to be the consequence of either a rapid 

radiation or past gene-flow (shared ancestral polymorphism)/ongoing 

introgressive hybridization, or both. Elucidating this task is essential for 

disclosing the forces driving the immense diversification of the genus Ophrys. 

 

 

 

 

QUOTATION 

 

“One should never quarrel about words, and never get involved in questions of 
terminology. One should always keep away from discussing concepts.” 
 

—Karl Popper, Objective Knowledge: An Evolutionary Approach 
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“MULTI-LOCUS NUCLEAR GENE PHYLOGENY OF 

THE SEXUALLY DECEPTIVE ORCHID GENUS OPHRYS L. (ORCHIDACEAE)” 

 

 

INTRODUCTION 

 

The majority of phylogenetic questions in plant systematics is still addressed by 

use of relatively few molecular tools, namely sequence analysis of only one or 

very few loci from the chloroplast (cpDNA) or nuclear ribosomal genomes 

(rDNA)(Small 2004). The applicability of this approach can reach its limits when 

it comes to the analysis of recently diverging lineages: (1) Chloroplast loci are 

linked and do not recombine due to the genomes uni-parental inheritance. This 

means that all loci contain the same phylogenetic signal for a tree topology that 

must not necessarily reflect the real species tree. Furthermore, only a single 

haplotype is fixed within an individual organism and information about 

paternality and demographic history is lost. (2) Insufficient sequence variation 

can be limiting too, as both the chloroplast and the ribosomal genomes are small 

compared to the nuclear genome which, above that, has synonymous 

substitution rates five-fold higher than cpDNA (Wolfe 1987, 1989, Ossowski 

2010). (3) Due to the likelihood of the occurrence of retained ancestral 

polymorphism, incomplete lineage sorting, and introgression among incipiently 

diverging lineages, gene genealogies of fast radiating groups are predicted to 

yield varying, incongruent topologies (e.g. Hey 1994, Ting 2000). Therefore the 

use of multiple unlinked loci will increase the chance to obtain a tree that reflects 

the underlying demographic history of the organismal group in question 

(Edwards & Beerli 2000). The nuclear genome presents a near infinite source of 

phylogenetic information. Its bi-parental mode of inheritance, an overall faster 

evolutionary rate and the higher likelihood that genes are unlinked, are 

advantageous properties. But the effort of time and money needed for the 

development of nuclear loci that are easily amplifiable over a given set of species, 

and the occurrence of heterozygosity and paralogy have severely hindered their 

regular use in molecular systematics of non-model organisms so far (discussed 

in: Sang 2002, Small 2004, Alvarez 2008). As consequence of these limitations, 

multiple gene phylogenies of plants are still a rare exception and their 
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importance for inferring the history of closely related plant species and 

populations has rarely been tested yet (but see: Marais 2011). 

 

Orchids (Orchidaceae, Order: Asparagales) have fascinated biologists ever since 

(e.g. Darwin 1862). Their extraordinary floral diversity and species richness have 

inspired many studies about their familiar relationships, ecology, and pollination 

biology and are typically considered as prime examples of species radiation. The 

Orchidaceae are likely the most species-rich family in the plant kingdom, only 

challenged by the Asteraceae’s diversity. In the European Flora, particularly the 

genus Ophrys attracted the interest of ‘orchidophile’ amateurs, taxonomists and 

evolutionary biologists, likewise. The conspicuous, insect-like flowers mimic 

morphological characteristics and the female sex-pheromone of certain 

hymenopterans, mostly solitary bees. The emitted floral scent is a bouquet of 

various semio-chemicals, mostly alkanes and alkenes (Schiestl 1999). If a 

conspecific male is successfully deceived it will try to mate with the flowers 

labellum, a behaviour termed pseudo-copulation (Pouyanne 1917). In the 

iteration of this process pollinia can be removed and transported to the stigma of 

another plants flower. This remarkable plant-pollinator relationship is known as 

‘sexual deception’. With the exception of one daisy species from Africa (Ellis & 

Johnson 2010) this mechanism of pollinator attraction is only known from few 

orchid genera, mostly Australian ones (Ciotek 2006).  

 

The specific attraction of only one or very few bee species (Lorella 2002, Gaskett 

2010) is thought to guaranty proper intra-specific pollen transfer (floral isolation), 

and in this way effectuate reproductive isolation between sympatric taxa 

(Kullenberg 1961), that are lacking any inter-specific cytological crossing barriers 

(Ehrendorfer 1980, Scopece 2007). The formation of hybrids is also not 

prevented by different ploidy levels as Ophrys species are generally diploid 

(2n=36); few rare exceptions have been reported (Bernardos 2003, D’Emerico 

2005, Vereecken 2010). Floral isolation has been shown to act near perfect as 

isolation barrier between some closely related sympatric Ophrys (Xu 2011). 

Beneath differing flowering time and spatial isolation, also mechanical isolation 

through size differences of the flower and differential pollinia placement on the 

insects’ body can contribute to reproductive isolation in sympatry. 

This high specific pollinator imposed selection and the demonstrated potential 

easy to shift to a novel pollinator  (PNAS paper) by small genetic changes have 
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been supposed as a driving force generating the species radiation of this orchid 

group and the difficulties in its taxonomic treatment. Indeed, the taxonomy of 

Ophrys is reflected by largely varying numbers of species that are accepted by 

different authors: 16 spp. (Sundermann, 1980), 19 spp. (Faurholdt & Pedersen, 

2007), 49 spp. (Baumann & Künkele, 1982), 150 spp. (Devillers & Devillers-

Terschuren, 1994), or as much as 252 spp. (Delforge, 2006).  

 

Previous molecular phylogenetic studies employed ribosomal nuclear internal 

transcribed spacers (ITS1+2) and chloroplast markers (matK??) to investigate 

interspecific relationships in Ophrys (Bateman 1997, 2003, Soliva 2001, Devey 

2008). While monophyly of the genus is highly supported in all analyses, the 

internal clade resolution was basically lacking. Taken together, major species 

groups have been well defined, but the relationships between them are yet 

largely unresolved. Towards the terminals of the trees, no resolution within 

closely related taxa was achieved.  

 

Lack of genetic differentiation can principally be the result of recent radiation or 

introgressive hybridization. These two different processes go often hand in hand, 

as reproductive barriers generally become stronger with increasing genetic 

differentiation. The contribution of gene flow to the evolution of the terminal 

clades, and connected to that, the nature of species boundaries in Ophrys have 

been sprightly debated (Vereecken 2011, Bateman 2011). The strong floral 

isolation found in sympatric populations can be taken as an argument for the 

hypothesis that most terminal lineages are reproductively isolated from each 

other and therefore represent ecological species. Conversely, the documented 

occurrence of hybrids and hybrid zones (e.g. Cortis et al. 2008), as well as the 

observed low genetic differentiation, could be interpreted as result of the fact 

that terminal lineages are not reproductively isolated enough to diverge as 

separate clades in phylogenetic analyses. Under this light, the genus Ophrys 

encompasses both rapid diversification and the challenge of inferring species 

borders and relationships thus representing a major challenge for molecular 

systematics. For such case study, a multi-locus nuclear gene phylogeny might 

allow to trace down character evolution and get deeper insights into an intriguing 

plant groups’ evolution that is likely to be shaped by the repeated adaption to 

different novel pollinators.  
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Here we present a combined analysis of intron sequences from seven nuclear 

genes and nuclear ribosomal internal transcribed spacers (ITS); five of the gene 

markers were newly developed for this study. We apply these novel tools to 

make inferences on inter-specific relationships, biogeography and the evolution 

of flower-pollinator interactions in the orchid genus Ophrys. A resolved molecular 

phylogeny would allow us to trace down character evolution and provides us with 

deeper insights into the evolution of this intriguing group of plants that is likely 

to be correlated to, and shaped by the spatial and temporal occurrence of its 

species-specific pollinators. 

 

The authors aim to address the following topics: (1) phylogenetic relationships 

between the major species groups, (2) biogeographic history, (3) gene flow vs. 

isolation, and (4) pollination system evolution. 

 

 

MATERIALS & METHODS 

 

For the present study, following an initial exploration of over 100 published and 

newly designed primer combinations a set of seven nuclear gene markers was 

assembled and applied to sequence analysis of 38 species of Ophrys, covering all 

ten species groups previously recognized by ITS analysis (Devey 2008). Notably, 

all cpDNA, and most nrDNA markers tested showed no sequence variation among 

closely related Ophrys species. Sequences were generated for the five newly 

developed gene markers (ACS, BGP, CAD, FAD6, MYB), for LFY/FLORICAULA and 

for ITS. LFY and ITS have been shown to be phylogenetically informative in 

Ophrys (e.g. Soliva 2001, Schlueter 2007), and are here combined with variably 

fast evolving markers to obtain support at the backbone of the tree, as well as 

within terminal lineages. We used the same primers for PCR and sequencing, 

besides for leafy where sequencing was done with nested primers as described in 

Schlüter et al (2007). A list of all employed primers is given in Tab.3.  

 

PRIMER DESIGN, HOMOLOGY ASSESSMENT & MARKER EVALUATION 

 

An EST-library from floral cDNA’s of Ophrys sphegodes has been built up by 

colleagues of the Dept. of Systematic Botany (University of Zürich, Switzerland). 

The EST's were assembled automatically with alignment software; the length of 
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the gathered sequences varied from ~100bp to 1800bp. BLAST searches in 

public databases (e.g. NCBI, TAIR) allowed in many cases an ascertainment of 

the genes identity or an approximation in the sense of high sequence similarity 

to known genes. Sequences of genes that have been useful, i.e. phylogenetically 

informative in other studies, were chosen preferentially as candidates for primer 

design. The EST's contained only coding, exonic sequence. To assess the intron-

exon structure and identify highly conserved regions for primer design, the EST's 

have been aligned with BioEdit Vers.7.0.9.0 (Hall, 2001) to that single, or in 

most cases multiple genomic sequences that were available in online databases, 

and showed the highest similarity (e-Value) with the EST in question. Where 

possible, genomic sequences from more closely related taxa (orchids, rice, 

asparagus) were included in the alignment. Primers have been designed in the 

exonic regions flanking one or more introns, depending on their size predicted by 

the alignment. As intron sizes vary notably within taxa from different families 

and genera, the amplicon size often deviated largely from the prediction. To 

facilitate later applications an amplicon size of 300-900bp length was aspired. 

Primer design was done manually or using the online software ‘Primer3’ 

Vers.0.4.0 (Rozen & Skaletsky, 2000). Primers were checked for their expected 

annealing temperatures, hairpins and loops with ‘OligoCalc’ (Kibbe, 2007). 

Amplification was tested for different annealing temperatures. Primers that 

amplified multiple products were discarded. Single band PCR products were 

sequenced and compared to published sequences in gene bank. After 

confirmation that the primers amplified the gene they were designed for, 

sequence variability and cross amplification was checked for closely, and also 

more distantly related taxa. To assess exon/intron structure and proof homology 

of the PCR products, new sequences were aligned with those used for the primer 

design. A list of the markers selected for this study is given in Tab.1. 
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Tab.1 – Markers used in this study. Supposed gene function, length and primer 
annealing sites in the exon 

 

Gene Sequence     Length    Name / function of sequenced gene      Primer 

           length          aligned                                                                    position 

           [bp]             [bp]                                                                       in exon 

   

ACS 663 - 708 718   Long-chain acyl-CoA-synthase-like        E6/E8 

     

BGP 806 - 1008 1020   Beta-galactosidase-like                         E14/E17 

     

CAD 259 - 303 304   Cynnamyl alcohol dehydrogenase         E1/E3 

        

FAD 427 - 505 505   Fatty acid desaturase                          E3/E5 

     

ITS 628 - 634 640   Ribosomal internal transcribed spacer      E1/E2 

     

LFY 1924 - 2519 2656   LEAFY/FLORICAULA                          E1/E2 

     

MYB 143 - 147 147   Myb transcription factor-like                   ??? 

 

 

SAMPLING & DNA-EXTRACTION 

 

Fresh leaf tissue or flowers have been collected in the field, and either directly 

stored in silica gel, or fresh at -20°C. A list with all species accessions, sampling 

locations and collectors is given in Tab.2, while pictures of the sampled taxa are 

displayed in Fig.1. DNA was extracted with a commercially available kit 

(GenElute Plant Genomic DNA miniprep kit, Sigma) or, for higher yields of DNA 

with a modified CTAB extraction method (Doyle & Doyle, 1990).  
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Tab.2 – Sampled Ophrys taxa, incl. sampling site, sampling date and the respective 
collector(s). 37 ingroup taxa, 1 outgroup taxon. 
 

Species Sampling site 

Date of 

collection Collector 

    

O. apifera Cilento, Campania, Italy Jun-09 

H. Breitkopf 

 

O. arachnitiformis France Apr-03 N. Vereecken 

O. archipelagi Capoiale, Gargano, Puglia, Italy Mar-09 H. Breitkopf 

O. attica S-Elassona, Cyprus, Greece May-02 P. Schlüter 

O. aymoninii La Pezade, Larzac, France May-10 R. Romolini 

O. bertolonii Mte. Veneretta, Sicily, Italy Apr-09 H. Breitkopf 

O. bombyliflora Mte. St. Angelo, Napoli, Italy Apr-09 H. Breitkopf 

O. crabronifera Caserta, Campania, Izaly Apr-09 H. Breitkopf 

O. cretica NW Spili, Crete, Greece Apr-04 

R. 

Bateman/PJR 

O. exaltata Trapani, Sicily, Italy Apr-09 H. Breitkopf 

O. ferrum-equinum Marathea rd., S Pelepon., Greece Apr-05 

R. 

Bateman/PJR 

O. fusca Cilento, Campania, Italy May-09 H. Breitkopf 

O. garganica Marina di Lesina, Gargano, Puglia, Italy Apr-09 H. Breitkopf 

O. heldreichii E Hora Sfakion, Crete, Greece Apr-04 

R. 

Bateman/PJR 

O. holoserica Cilento, Campania, Italy May-10 G. Scopece 

O. incubacea Cilento, Campania, Italy Apr-10 H. Breitkopf 

O. insectifera Mti. Picentini, Campania, Italy May-10 H. Breitkopf 

O. iricolor SW Kyrenia, NC, Greece Mar-10 

R. 

Bateman/PJR 

O. levantina  Akrotiri, Cyprus, Greece Feb-07 H. Paulus 

O. lunulata Passo delle Pontanelle, Sicily, Italy Apr-10 H. Breitkopf 
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O. lutea Pennina di Lupo, Sicily, Italy Apr-09 H. Breitkopf 

O. mammosa Haifa, Israel Mar-10 

N. 

Vereecken/A. 

Dafni 

O. morisii Oristano, Sardegna, Italy May-10 H. Breitkopf 

O. oxyrrhynchos Passo delle Pontanelle, Sicily, Italy Apr-10 H. Breitkopf 

O. pallida La Ficuzza, PA, Sicily, Italy Mar-10 R. Romolini 

O. panormitana SS121 - km140,2, CL, Sicily, Italy Mar-10 R. Romolini 

O. passionis Larzac, France May-10 R. Romolini 

O. promontorii Mte. St. Angelo, Gargano, Italy Apr-10 R. Souche 

O. provincialis Saint Paul Enforet, France Apr-10 R. Souche 

O. reinholdii Marathea rd, S Pelepon., Greece Apr-05 

R. 

Bateman/PJR 

O. scolopax 

NW LA Frayssinede, Guilhaumard, SC 

France Jun-09 

R. 

Bateman/PJR 

O. sicula Mte. Pellegrino, PA, Italia Mar-10 R. Romolini 

O. speculum Sicily, Italy Apr-09 H. Breitkopf 

O. sphegodes Capoiale, Gargano, Puglia, Italy Mar-09 H. Breitkopf 

O. tenthredinifera Capoiale, Gargano, Puglia, Italy Apr-09 H. Breitkopf 

O. tetraloniae Isernia, Italy Jun-10 R. Romolini 

O. umbilicata Kephalos, Kos, Greece Mar-02 H. Paulus 

S. parviflora Capoiale, Gargano, Puglia, Italy Mar-11 H. Breitkopf 
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Fig.1a: Species in the phylogeny and two natural hybrids. 1—Serapias 
parviflora, 2—O.speculum, 3—O.bombyliflora, 4—O.tenthredinifera, 5—O.sicula, 6—
O.lutea, 7—O.fusca, 8—O.iricolor, 9—O.pallida, 10—O.insectifera, 11—O.aymoninii, 
12—O.apifera, 13—O.heldreichii, 14—O.attica, 15—O.umbilicata, 16—O.levantina, 
17—O.holoserica, 18—O.mammosa, 19—O.scolopax, 20—O.reinholdii. 
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Fig.1b continued: Species in the phylogeny and two natural hybrids. 21—
O.crabronifera, 22—O.ferrum-equinum, 23—O.cretica, 24—O.incubacea, 25—
O.provincialis, 26—O.panormitana, 27—O.sphegodes, 28—O.promontorii, 29—
O.oxyrrhynchos, 30—O.tertraloniae, 31—O.garganica, 32—O.exaltata, 33—
O.passionis, 34—O.morisii, 35—O.bertolonii, 36—O.lunulata, 37—O.archipelagi, 38—
O.arachnitiformis; natural hybrids: 39—O.sicula x panattensis, 40—O.bilunulata x 
garganica. 
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PCR & SEQUENCING 

 

Newly designed and previously published primers were tested using polymerase 

chain reaction standard protocols and a 2720 Thermo Cycler (Applied 

Biosystems) with annealing temperatures ranging between 45°C and 63°C. With 

each primer couple at least three PCR's in a range of +- 5°C difference from the 

predicted melting temperatures were performed. Cycling conditions were as 

follows: 3 min initial denaturation at 94°C, followed by 35 cycles of 94°C 45 sec; 

TA 45 sec; 72°C 90 sec and a final extension of 72°C 7 min; 4°C hold. Annealing 

temperatures were 58°C for ACS, FAD and MYB, 59°C for BGP, 60°C for LFY and 

65°C for CAD. 

All PCR reactions were performed in a final volume of 25µl containing 50 – 100 

ng DNA template, 10 pM of each, forward and reverse primer, 200µM of each 

dNTP, 2µl of 10x Taq buffer (50 mM KCl, 10 mM Tris-HCl pH 9), 0.5 µl 1.5mM 

MgCl2 and 0.5 U of Taq polymerase (Pharmacia, Amersham Biotech). PCR 

products were separated on a 1.5 % agarose gel stained with ethidium bromide 

(0.3 mg/l) and photographed under UV light using a Gel Doc 2000 system 

(Biorad). Only primers that yielded discrete bands were further investigated; 

those that yielded a smear or no amplification were discarded.  Products with 

multiple bands were separated in a 1.5 % TBE agarose gel, excised and purified 

using a kit. Those products that gave single bands were purified using IllustraTM 

GFX PCR DNA Purification Kit (GE Healthcare). Quality and concentration of the 

purificates was checked with a NanoDropTM 1000 Spectrophotometer 

(ThermoScientific). Amplificates were further amplified using the BigDye 

Terminator v.3.1 Cycle Sequencing Kit (Applied Biosystems, Inc.) and purified 

following the ethanol-sodium acetate precipitation protocol provided with the kit. 

The amplification of the LFY-genes’ first intron was done as described in Schlüter 

et al. (2007). Sequencing took place on 3130 and 3130xl Genetic Analyzers 

(Applied Biosystems, Inc.). Sequences were then analyzed with Sequence 

Analyzer 5.2 (Applied Biosystems, Inc.) and the chromatograms read out with 

Sequence Scanner 1.0 (Applied Biosystems, Inc.) or Chromas Pro (Technelysium 

Pty Ltd).  
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CLONING & PARALOGY ASSESSMENT 

 

Heterozygosity and paralogy were expected to be issues when dealing with 

nuclear genes of the predominantly outcrossing genus Ophrys. If a sequence was 

partially unreadable due to existence of an indel in one of the two alleles, the 

PCR product was cloned into a bacterial vector (pGEM-T Easy, Promega) and 

inserted into competent E. coli cells by chemical transformation. Ambiguous 

SNP’s were ignored as it was the aim to obtain consensus sequence. Cells were 

plated out on LB growth medium containing Ampicillin, allowing only the 

successfully transformed cells to grow colonies. Colonies were repicked to new 

plates for backup and storage. A small portion of the colonies was used as 

template for a PCR with the conditions following the manufacturer’s protocol 

using the primer couple T7 / SP6 provided with the cloning kit (pGEM-T Easy, 

Promega). Sequencing was done as described above, but using the primers of 

the marker in question. Five to ten clones per accession were sequenced. If more 

than 2 alleles were detected in the cloning procedure the primers were identified 

to amplify at least one other copy of a gene/gene family and consecutively 

excluded. As Ophrys is generally diploid, no more than two alleles of any gene 

should be gathered from a single individual. The few species that have been 

shown to be tetraploid are not included in this study. Cloning was applied for 

unphasing hetereozygotes in ACS, BGP, CAD and FAD. For LFY we used the 

nested primers of Schlueter et al (2007) + three newly developed nested primers. 

ITS and MYB sequences were obtained by direct sequencing. 

 

We detected a notable haplotype differentiation in some genes, i.e. the obtained 

haplotypes could be classified into two or more groups regarding sequence 

similarity. To rule out the possibility that our PCR primers amplify paralogs, 

additional to the cloning procedure differential primers for the two most 

prominent sequence types/haplotype groups were designed for two genes (CAD, 

FAD6) for amplification and sequencing. PCR conditions were as described before 

with an annealing temperature of 59°C. We tested seven species with the new 

primers. Again, no more than two alleles per species could be detected.  
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Tab.3. – Primers used in this study and their respective annealing temperatures. 
*= nested haplotype group specific primers for paralogy assessment. **= nested 
sequencing primers. All other primers can be used for both, PCR and sequencing 
 

ACS-F AGGTTGAGATTGCATTTGTGG   58°C   

ACS-R TTCAACAGCTTTTCTTTCATCG  

BGP-F      GCTGGCAACAATAGGATCTCCA    59°C 

BGP-R      ACTGAGGAGCTTCCATCTAC 

CAD-F      CTACTTCTTCGGCGAGGCTAC   65°C 

CAD-R      AGATGCTGTATGGAAGACACC 

CAD-1F* TGCATTTTGAATTCTGTTACTTAT   59°C 

CAD-1R* AATCAGCTCTATACAAATGCA 

CAD-2F* ACATTTTGGATTGTGTTACTT   59°C 

CAD-2R* AAATCAGCTCTAAACAAATGCAA    

FAD-F ATATCACGCTCAGAGACATTATTACAAC  58°C 

FAD-R ATATGTCTTCCACCAACTTGTTCTTTG 

FAD-1F* CTAGGCTTTGAACGTATCTCTTA   59°C 

FAD-1R* GACCTATGCGCACAATCATGA 

FAD-2F* CTAGGCTTTGAACTTATCTCTTG   59°C 

FAD-2R* GACCTATGCGCACAATCATGG 

ITS-JK14  GGAGAAGTCGTAACAAGGTTTCCG  55°C 

ITS-JK12  CCAAACAACCCGACTCGTAGACAGC 

LFY-E1Cf  ATGGTGCTGGCCACATCGCAGCAACA  60°C 

LFY-E2Gr GAAGAGGTAATCGAGCCCGTTCTTCTTAGCYC 

LFY-I1Hf**ATCGAAACTTATGCATCTTCAGC   60°C 

LFY-I1Sf**TCATGTTTCAATCAGGCGCGAT 

LFY-I1Sr**ATCGCGCCTGATTGAAACATGA 

MYB-F  GGAATTCCCTTGCTCTTTGTGC   58°C  

MYB-R  GAGGTAATTGAGCCACCGAAGC  

 

 

SEQUENCE EDITING & ALIGNMENT 

 

Sequences were assembled and aligned with the software BioEdit (Hall 2001) 

using the implemented ClustalW algorithm (Thompson et al. 1994). As 

computerized algorithms have been found to be inaccurate (Morrison 2009), the 

alignments have been checked by eye for apparent mistakes and manually 
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corrected to minimize homoplasy. Alleles from heterozygous individuals were 

merged into a consensus sequence using IUPAC coding. The alignment followed a 

two step procedure in which (1) all ingroup sequences were aligned to each other, 

followed by (2) alignment of the outgroup. Regions that could not be 

unambiguously aligned were discarded prior to phylogenetic analyses.  

 

PHYLOGENETIC ANALYSIS 

 

The combined dataset was analyzed with three different methods: MrBayes 

(Ronquist & Huelsenbeck 2003) for Bayesian inference, RAxML VI (Stamatakis 

2006) for maximum likelihood, and PAUP* 4.0b10 (Swofford 2002) for parsimony 

reconstruction. As the single gene data sets yielded poorly resolved and 

supported trees, the matrices of all seven genes were combined into just one. As 

gaps are treated as missing data in all analyses, phylogenetic useful information 

from insertion and deletion events was coded as 0/1/- 

(absent/present/inapplicable) as described in Simmons and Ochoterena (2000) 

using the software GapCoder (Young & Healy 2003). The combined dataset had a 

length of 6275 characters:  5990 bp + 285 gap states. For Bayesian and 

parsimony analysis the best fitting model of molecular evolution for each gene 

was chosen using the Akaike information criterion (AIC) as given in the output of 

MrModelTest 2.3 (Nylander 2004). Selected models were: ACS: GTR, BGP: 

HKY+G, CAD: HKY+G, FAD: GTR+I, ITS: SYM+G, LFY: GTR+G, MYB: F81+I. 

RAxML has the GTR+CAT approximation implemented, which “represents an 

efficient computational work-around for the GTR+G model” (Stamatakis 2006b), 

which was proposed by the AIC for the combined dataset. Serapias parviflora 

was used as outgroup in all analyses. 

Bayesian analysis was conducted on an external computer cluster (CBSU BioHPC, 

Cornell University) with 2 separate runs of four Markov-chain Monte Carlo 

(MCMC) chains for 10 million generations with tree sampling every 1000 

generations. 25% of the sampled trees were discarded as burnin and of the 

remaining samples only the 25% best scoring trees were used to calculate the 

species tree and posterior probabilities. Runs reached convergence with standard 

deviation split frequencies below 0.01. ML analysis was computed with the 

software RAxML VI (Stamatakis 2006). Following the heuristic search and a run 

of 1000 bootstrap replicates the best-scoring ML-tree was identified.  
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For the parsimony analysis with PAUP* we conducted a heuristic search with the 

following settings: tree bisection reconnection (TBR) branch swapping, MulTrees, 

‘steepest decent’ and 100 replicates of random sequence addition. Robustness of 

the topology was assessed with 1000 bootstrap replicates and the settings of the 

heuristic search, except the options MulTrees and ‘steepest descent’ turned off.  

We analyzed different alignment types of the combined dataset under ML to 

assess their impact on tree topology and bootstrap support: (1) a matrix 

containing the complete combined dataset (without gap states), (2) a matrix 

with major ambiguous alignment positions excluded, and (3) a matrix with 

ambiguous positions and gaps excluded. Major ambiguous positions were defined 

as columns in the alignment containing ambiguity (IUPAC) codes in more than 

5% of the sequences. As SNP's in heterozygous individuals are treated as 

missing data in respect to homozygotes, the exclusion of these positions from 

the phylogenetic analysis is likely to minimize bias. 

 

DISTRIBUTION, MORPHOLOGY & ECOLOGY DATA 

 

We plotted data from spatial distribution, floral morphology and pollination onto 

the tree topology to infer hypotheses about biogeography, floral trait evolution 

and pollination syndrome evolution in Ophrys.  Various sources of literature were 

screened (e.g. Gaskett 2011, Van der Cingel 1995, Delforge 2006) to extract 

data for four categories of traits that are likely to be correlated to organismal 

history, and therefore the species tree topology: (1) for floral morphology we 

concentrated on petal color and shape. the coloration of the outer petals were 

categorized into four classes of colors/color combinations that have been 

observed to occur within a single species: green, red/white, green/red/white and 

green/white. A helmet-shaped median outer petal, as well as minute inner petals 

are generally found in only few species/species groups, and could therefore 

represent very ancestral or strongly derived floral traits. (2) Pollinators of the 

investigated Ophrys species can be assigned to a modest number of genera and 

families of bees and wasps. Bee pollinators: Eucera, Melecta and Anthophora 

(Anthophoridae); Andrena (Andrenidae); Osmia and Chalicodoma 

(Megachilidae); Colletes (Colletidae). Wasp pollinators: Argogorytes 

(Sphecetidae); Dasyscolia (Scoletidae). (3) After comparing patterns in Ophrys 

an assignment of species to four areas of distribution seemed feasible. Main 

distribution areas are: the West- and Central Mediterranean, the East-
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Mediterranean, the whole Mediterranean, and Central Europe + West 

Mediterranean. (4) As the differential pollinia placement in different groups of 

Ophrys effects mechanical reproductive isolation, this trait was also chosen to be 

compared with the tree topology.  The two mutually exclusive categories are: 

pollinia placement on the insects head, or the abdomen. 

 

 

RESULTS 

 

PHYLOGENETIC ANALYSIS & SPECIES TREE 

 

The combined data set of 6275 characters: 5990 bp and 285 gap states. 1556 

positions were variable, 648 of those potentially parsimony informative. The 

equally most parsimonious trees produced in the parsimony analysis had a 

length of 2249 steps, a consistency index (CI) of 0.74 and a retention index (RI) 

of 0.82. The single gene matrices were analyzed with Bayesian inference (Fig.2) 

and the respective models proposed by AIC. ML analyses under the GTR-CAT 

approximation yielded similar but generally less supported topologies (not 

shown). The genealogies have significantly different tree topologies, with a 

general trend to consensus branching in lower lineages and no 

consensus/resolution towards the terminals (Fig.3).  Bayesian inference, 

parsimony and ML phylogenetic analyses of the combined data set resulted in 

similar topologies. As expected from the pattern observed by comparison of the 

genealogies, the resulting species tree has good support at lower levels in all 

three analysis types, but topology and support at higher levels of the tree are 

highly dissimilar. Bayesian inference produced the most resolved and supported 

species tree (Fig.2). Bayesian posterior probabilities (PP), parsimony bootstrap 

percentages (BPP) and maximum likelihood bootstrap percentages (BPML) are 

given above branches. 

 

Two strongly supported main lineages were discovered in all analyses. (A) a 

clade containing basally branching species of sect. Euophrys (O. speculum, O. 

bombyliflora, O. tenthredinifera) and a crown group of all included taxa of sect. 

Pseudophrys, where O. lutea s.l. (O. sicula + O. lutea) are sister to the 

remainder of the section. Not strongly supported in all analyses are the basal 

positions of O. speculum and O. bombyliflora, as well as the branching order of 
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the O. fusca s.l. taxa (O. fusca, O. iricolor, O. pallida). Though, all splits receive 

strong PP support. (B) a clade containing taxa of only sect. Euophrys. The three 

most basal splits have high support in all analyses:  ((O. insectifera + O. 

aymoninii) (O.apifera (O. heldreichii (remainder on main clade 2)). Most of the 

higher splits receive strong PP support, but mostly very low bootstrap. Some 

species grouping have moderate to strong support in at least two analysis types: 

an East-Mediterranean O. umbilicata group (O. umbilicata, O. attica, O. 

levantina), and some groupings of East- and Central Mediterranean species. O. 

sphegodes + O. promontorii, O. garganica + O. exaltata + O. passionis + O. 

morisii, and O. archipelagi + O. arachnitiformis. The latter two ensembles form a 

strongly supported clade (except ML) together with O. lunulata, O. bertolonii, O. 

tetraloniae, and O. oxyrrhynchos, of which all are Central-Mediterranean 

distributed. 

 

The accuracy of our approach to conduct a combined analysis of all alignment 

positions was reconciled by calculating trees under ML, with or without the 

retention of gaps and/or ambiguous alignment positions. The resulting trees 

topologies are in many parts congruent (Fig.4). As expected, the differential 

impact of the three different approaches is most obvious within higher level 

clades, in which genetic differentiation is generally low. Most striking is the 

positioning of two basally diverging taxa: While in the complete data set (tree 1) 

O. bombyliflora is included with weak support in main clade A, and the position 

of O. speculum regarding to the main lineages is unresolved, we find a different 

situation for the reduced data sets. Excluding major ambiguities (tree 2) leads to 

an inclusion of O. speculum in main clade A, which is even strongly supported 

when also gaps are excluded (tree 3). Similarly, the position of O. bombyliflora is 

unresolved in tree 2, but within tree 3 the taxon is included in main clade A, 

though with weak support. 
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Fig.2 – Ophrys Species tree. Numbers above branches indicate PP (Bayes), MP (PAUP) 
and ML (RAxML) bootstrap values. The tree topology is that of the Bayesian analysis.  
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Fig.3 – Genealogies. 
Phylogenetic bayesian 
analyses with MrBayes and 
the models proposed by AIC. 
2 runs with 4 chains on 
BioHPC cluster at Cornell 
University. 0.7 – 3.0 million 
generations runtime til 
convergence was reached. 
Branches with BPP < 0.50 
collapsed, those with BPP > 
0.75 marked with *. In some 
analyses one or few 
accessions are represented 
with a partial sequence or are 
missing completely: see 
Tab.X. 
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Fig.4 – ML Species trees to 
compare different alignment 
types.  Phylogenetic maximum 
likelihood analyses with RAxML 
unter the GTR-CAT approximation 
and 1000 bootstrap replicates. 
Branches with BS < 75% 
collapsed, those with BS > 0.80 
marked with *. In some gene 
matrices one or few accessions 
are represented with a partial 
sequence or are missing 
completely: see Tab.X. Trees are 
shown for the combined analysis 
of (1) all genes + gap states matrix 
(left), for (2) all genes excluding 
major ambiguous positions* (lower 
left) and for (3)all genes excluding 
major ambiguous and indel 
positions. * = more than 5%. i.e. 2 
sequences of 38 overall. 

ML combined (2) ML combined (3) 
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DISKUSSION 

 

OPHRYS MULTI-LOCUS NUCLEAR GENE PHYLOGENY 

 

The combined analysis of sequences from multiple nuclear genes seems an 

adequate approach to infer a species tree rather than a gene tree. This is even 

more important in a presumably recently radiating plant group, in which gene 

histories are more likely to be obscured by processes of deep coalescence and/or 

introgression (Maddison 2006). The achievement of the phylogenetic 

relationships between the major species groups allows us to infer biogeographic 

history and pollination system evolution in this intriguing plant group. 

 

PREVIOUS MOLECULAR PHYLOGENETIC STUDIES IN OPHRYS 

 

Due to the presumably high degree of homoplasy in morphological characters, 

taxonomic treatments employing a phenetic approach differ substantially. They 

are therefore not further discussed here. Wide acceptance only found a division 

of the genus in two sections (or subgenera): while in sect. Ophrys (or: Euophrys) 

the pollinia are attached to the pollinators head they are attached to the 

abdomen in sect. Pseudophrys; the differential pollinia placement is dictated by 

sets of morphological characters exclusive to the two sections. Arguably most 

important of those is the direction of hairs on the flower labellum.  

Bateman (2003) focussed on the phylogeny of all Orchidinae, including a 

representative set of 32 Ophrys species, but used only ITS. Soliva found no 

significant incongruence in the phylogenetic signals of ITS and trnL-trnF for 18 

species and combined the datasets into one matrix, while Devey (2008) obtained 

differing topologies in the trees of ITS and trnH-psbA/trnD-trnT for 85 accessions. 

The latter study revealed ten well supported species groups: O. insectifera, O. 

tenthredinifera, O. speculum, O. bombyliflora, O. fusca, O. apifera, O. sphegodes, 

O. fuciflora (syn. O. holoserica), O. scolopax and O. umbilicata. The position of O. 

apifera as sister to O. sphegodes + O. fuciflora + O. scolopax + O. umbilicata is 

supported by ITS and ITS + trnL-trnF, but not by trnH-psbA + trnD-trnT. O. 

tenthredinifera, O. speculum and O. bombyliflora are always placed between the 

root of the tree and the O. fusca group, though unresolved or in different order 

with low support. O. insectifera is placed as sister to all other Ophrys (ITS, Devey 

2008), to the large sect. Ophrys clade, or to O. tenthredinifera + O. speculum + 
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O. bombyliflora + O. fusca. Devey cloned accessions found to be heterozygous in 

ITS. Interestingly, different copies of the unphased ITS often group in very 

distant clades. Also some homozygous accessions are placed in groups or even 

sections that are well different from the phenotype of the accessions (e.g. O. 

balearica within the O. scolopax group, O. dyris in the O. holoserica group).  

 

OUR SPECIES TREE TOPOLOGY 

 

In contrast to previous studies we achieved resolution and robust support for the 

branches of all basal lineages up to the O. umbilicata group. We found a strongly 

supported division of the genus into two main lineages with O. insectifera and O. 

speculum as basal branching species of the clades. This is in accordance to the 

findings of Soliva (2001), although the position of O. insectifera was weakly 

supported. Instead, ITS only places this taxon as sister to all other species 

(Bateman 1997, Devey 2008) with only moderate support. Accordingly to 

previous studies we found a monophyletic sect. Pseudophrys nested within 

members of sect. Euophrys, the latter one being paraphyletic. In main clade A, O. 

speculum in the basal position is hierarchically followed by O. bombyliflora, O. 

tenthredinifera, and the O. fusca group (= sect. Pseudophrys), in which O.sicula 

+ O. lutea are sister to O. fusca + (O. pallida + O. iricolor). In main clade B, O. 

insectifera, is followed by O. apifera, O. heldreichii, and the O. umbilicata group, 

which is sister to a crown group of taxa from the O. sphegodes/O. holoserica/O. 

scolopax groups. Resolution in this part of the tree is often only supported by the 

Bayesian and the parsimony analysis. It can be assumed that the latter groups 

are young compared to other lineages in Ophrys. Dating of Ophrys and some of 

its major lineages should be possible (Gustafsson 2010) and would extend our 

knowledge of the timing of evolutionary processes such as lineage sorting and 

the emergence of genetically distinct lineages. 

 

POLLINATION SYNDROME EVOLUTION 

 

The selective pressures imposed by the pollinator species is directly correlated to 

its spatial and temporal occurrence. Strength and direction of selective pressures 

are expected to be more dynamic than in unspecialized pollination systems, as 

the sensitivity of the pollinating insects to environmental and climate change 

adds to that of the plants. Furthermore, alkene production in orchid flowers is a 
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pre-adaptation for the evolution of sexual deception and the attraction of male 

bees as pollinators, which in turn offers numerous chances for divergent 

selection in the genus Ophrys (Schiestl & Cozzolino 2008). For long time O. 

speculum and O. insectifera were the only known wasp-pollinated Ophrys species. 

They are pollinated by Argogorytes mystaceus/combinata (Sphecidae) and 

Dasyscolia ciliata (Scoliidae), respectively. But O. cilicica, a close relative of O. 

cretica, has been found to be pollinated by Argogorytes sp. This also explains the 

morphological convergence to O. insectifera, which has the same wasp pollinator. 

As with O. speculum and O. insectifera at the basis of the two main lineages (see 

Fig.2), we confer that wasp pollination is the ancestral pollination syndrome in 

Ophrys. Bee pollination has evolved two times independently with at least one 

return to wasp-pollination (O. cilicica). On the basis of Malyshev (1968) and 

Michener's (1974) notation, that the two wasp groups in question have evolved 

earlier than the Apoidea, and the fact that adaptive evolutionary processes 

shaped Ophrys pollination syndromes, Kullenberg and Bergström proposed 

already in 1976 the wasp pollinated taxa to be older than bee pollinated ones. 

When we apply this rationale to the observed pattern, that most basal taxa (i.e. 

O. bombyliflora, O. tenthredinifera, O. apifera, O. heldreichii, O. umbilicata 

groups) are pollinated by bees of the genus Eucera (Anthophoridae) (Fig.2), it 

can be assumed that pollination by Eucera bees has evolved prior to other bee 

pollination syndromes in this clade, and that Eucera bees might have 

appeared/radiated earlier than for example the genus Andrena, of which many 

members are known to pollinate Ophrys species of the highly diverse O. 

sphegodes and O. fusca crown groups. As those two groups are species-rich and 

attract a large number of different Andrena species, it can be assumed that the 

radiation of the Andrena bees is positively correlated to the diversification of the 

O. sphegodes and O. fusca groups. A survey of reported pollinators for the great 

part of described taxa in Ophrys showed that the O. umbilicata-holoserica-

scolopax groups are mainly Eucera pollinated (98%); the O. fusca-lutea groups 

are mainly Andrena pollinated (86%) with some switches to Anthophora, 

Chalicodoma and Colletes in the O. dyris/atlantica sub-groups; pollination 

syndromes diversified notably in the O. sphegodes group, with Andrena (44%), 

Chalicodoma (18%), Anthophora (15%), Osmia (7%), Melecta (6%), Colletes 

(6%), and Xylocopa (4%). 
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BIOGEOGRAPHY / RADIATION  

 

The genus is principally Mediterranean distributed, with a handful of species in 

Central Europe and only one species each in Southern Scandinavia (O. 

insectifera) and the Canaries (O. bombyliflora). Centres of diversity are located 

in the Central and Eastern Mediterranean basin (Nelson 1962), where the species 

groups around O. fusca, O. speculum, O. tenthredinifera, O. holoserica and O. 

scolopax diversified notably. Plotting distribution data onto the Ophrys phylogeny, 

an obvious pattern emerges: (1) widely distributed taxa (all-Mediterranean / 

Central-European and Mediterranean) are generally more ancestral species of the 

genus, (2) all-Mediterranean distributed taxa can only be found in main clade A, 

there in ancestral positions, (3) Central-European distributed taxa can only be 

found in clade B, in mostly ancestral positions, (4) East Mediterranean taxa 

cluster at the base of clade B, (5) West- and Central-Mediterranean taxa cluster 

as crown group of clade B. The following scenario could explain the distribution 

pattern: Older species of the genus had sufficient time to spread over large areas 

of the European continent, as the key innovation of sexual deception allowed 

them to enter an open ecological niche. Species then locally adapted to novel 

pollinators, evolving new species. Following the colonisation of the Mediterranean, 

the genus underwent radiations that are likely correlated to the disclosure of new 

groups of bee pollinators. Ancestral members of the mainly Eucera-pollinated O. 

umbilicata, O. scolopax and the mainly Andrena-pollinated O. fusca groups 

diversified in the East-Mediterranean basin with ancestors of O. heldreichii and 

the O. umbilicata group as central figures of early divergence, while later in 

history the mainly Andrena-pollinated O. sphegodes group diversified in the 

Central- and West-Mediterranean basin. We conclude that at least two major 

radiation events in different parts of the Mediterranean contributed to Ophrys 

diversification. In the recent history of Ophrys, larger colonisations through the 

local variants were prevented as ecological niches are already occupied by other 

Ophrys species with the same pollinators. Contact of two distinct species with 

pollinator sharing will likely lead to hybridization, ending up with the absorption 

of the introgressing species. Replacement of the introgressed species through the 

introgressant is less likely due to the presumably smaller effective population 

size of the latter. 
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FLORAL MORPHOLOGY 

 

The correct reconstruction of ancestral morphological character states is hindered 

by the occurrence of homoplasy due to repeated adaptation of different lineages 

to the same pollinator. Nevertheless, correlating some floral characteristics to the 

tree topology gives rise to the hypothesis that their occurrence is linked to 

organismal history. Green (i.e. non-colored) outer petals, mostly in combination 

with minute inner petals only exist in the ancestral lineages of both main clades 

and the O. fusca group. A helmet-shaped median outer petal characterizes O. 

speculum and all members of the O. fusca group. This structure is absent from 

members of main clade B, with the notable exception of O. attica and O. 

umbilicata. The finding of an O. fusca-like allele in the LFY gene of O. umbilicata 

corroborates the hypothesis that this taxon is of hybrid origin or heavily 

introgressed by a member of the O. fusca group. Colored petals are found in O. 

tenthredinifera from clade A and in all members of clade B, except for the basal 

branching O. insectifera. Species with the same petal colors or color 

combinations tend to cluster together (e.g. O. sphegodes and O. panormitana) 

but this trend is not significant over the species ensemble of clade B. Two small 

light-reflecting round structures close to the stigmatic cavity, called pseudo-eyes, 

characterise all Ophrys except the nested O. bombyliflora and the O. fusca group, 

in which they are absent as the result of secondary loss. Green outer petals, 

minute inner petals, pseudo-eyes, and probably also helmet-shaped median 

outer petals represent ancestral morphological character states in Ophrys. 

 

HYBRIDIZATION VS. ISOLATION IN OPHRYS 

 

Species delimitation presents a controversial discussed issue of biology in general, 

with Ophrys being a prime example for the problems associated with finding an 

appropriate species concept. The aim is to define a fuzzy-boarded entity, part of 

a continuum from individuals, populations, over varieties and subspecies, to 

reproductively perfect isolated species. When speaking about species boarders, 

hybridization has to be considered. The relative contribution of hybridization to 

the evolution of Ophrys is yet unknown. Though, a deeper knowledge regarding 

this aspect is needed to inform the decision of taxonomists and scientists, where 

to set species boundaries.  
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Many properties of Ophrys species make hybridization a likely scenario. First of 

all, Ophrys species are inter-fertile. All isolation barriers acting in sympatry have 

been shown to be leaky (Cortis 2008, Xu 2011). Then, many species have more 

than only one pollinator, which increases the likelihood of pollinator sharing in 

sympatry. Also for species that have been thought to attract only one species, 

additional pollinators have been observed. Besides the main pollinator(s), other 

insects are visiting Ophrys flowers. In an investigation of the pollinator spectrum 

for a single species from the Tyrrhenian Coast of Italy (Breitkopf, unpubl.), we 

repeatedly found five different visitor species: the bees Andrena bimaculata, 

Andrena nigroaenea, Melecta sp., Xylocopa violacea and a beetle, Oxythyrea 

funesta (Fig.5b). While A. bimaculata was identified as the main pollinator 

(Fig.5a), and A. nigroaenea as side pollinator, Melecta sp. was observed to 

attempt mating with the flower, though without pollinia removal. X. violacea was 

rarely landing on flowers (Fig.5b), also without pollinia removal. The beetle 

species has repeatedly been observed to use Ophrys flowers as a place to meet 

conspecific mating partners, and occasionally to take up pollinia (Figs. 5b/c). Also 

in a population of species with strong floral isolation at the Adriatic Coast of Italy 

(Xu, 2011), a few pollinators were caught while copulating on the ‘wrong’ Ophrys 

species (Schiestl, unpubl.). Taken together, these results show floral isolation to 

be leaky, at least in the investigated populations, and it indicates the presence of 

gene-flow, though without breaking down species boundaries. 

Soliva (2003) demonstrated the existence of gene-flow between closely related 

Ophrys species with micro-satellites. Devey (2008) found allele sharing in ITS 

between species of more closely, but also far related groups, and took this as 

evidence for more recent hybridization, as ITS is known to have fast lineage 

sorting, i.e. quick homogenisation of different alleles compared to cp- and nrDNA. 

In the same study 165 neutral AFLP markers were scored for a representative set 

of species. The pattern observed is nearly congruent with that of the phylogeny 

presented here: species groups of clade A, and the O. apifera and O. umbilicata 

groups could be discriminated. All later branching species don’t show a clustering 

conform with taxonomical treatments or the species groups discovered in ITS; i.e. 

species from different groups are intermixed in our nuclear gene tree and the 

AFLP’s. In this light, it seems unreasonable that adding more markers to our 

dataset would have had changed the observed pattern. 

We found allele sharing between distantly related taxa in CAD, where O. apifera 

and O. fusca have the same haplotype, and O. iricolor is very similar to members 
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of the O. sphegodes group. Haplotype sharing between members of the O. 

sphegodes, O. holoserica and O. scolopax groups is frequent in ACS, BGP, FAD 

and LFY.  

 

Fig.5.a – Pollination of O. sphegodes s.l. from Cuma … through Andrena bimaculata 

 

Fig.5.b – Flower visitors of O. sphegodes s.l. from Cuma. Melecta sp. (left),  
Xylocopa violacea (middle) and Oxythyrea funesta (right). 

 
Fig.5.c – Pollination of O. archipelagi by Colletes cunicularius (left), O. bilunulata by 
Andrena bimaculata (middle); on the right: mating Oxythyrea funesta beetles on O. 
sphegodes (Moliterno, Basilikata, It.). 
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UTILITY OF NUCLEAR MARKERS FOR RADIATION PHYLOGENETICS 

 

Nuclear genes are not only characterized by an overall higher rate of 

recombination and sequence evolution, but also by their huge range in 

evolutionary rates compared to organellar genomes. A relatively large effort in 

terms of time and money is needed to develop, test and select genes with 

evolutionary rates sufficiently high to identify recently diverging lineages. In such 

groups fast evolving genes are expected to yield different tree topologies. The 

addition of more markers is thought to increase the likelihood to obtain a species 

tree. 

Our phylogeny profoundly increased our knowledge about the early stages of 

Ophrys diversification; the backbone of the tree is well resolved and strongly 

supported. The clades containing taxa from the O. sphegodes, O. holoserica and 

O. scolopax species groups are largely unresolved and/or exhibit some 

unexpected and questionable splits and groupings. This pattern might reflect 

gene flow between spatially closely distributed taxa, as indicated by the presence 

of a West- and Central-Mediterranean distributed crown group comprising taxa 

from different species groups. But this pattern is not consistent over the 

unresolved part of the tree.  

We demonstrated the potential of a combined nuclear gene approach to elucidate 

familiar relationships in a group of plants, where organellar markers alone failed. 

Though, branching in the most complex groups could not be resolved with 

confidence. Also AFLP’s based on 165 markers (Devey 2008) could not 

distinguish between the three most recently radiated species groups. Under this 

light the addition of just a few other nuclear loci to the dataset will probably not 

substantially increase the resolution potential. More likely a next generation 

sequencing approach with hundreds of markers is needed for a more fine-scaled 

species group definition in Ophrys. 
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“ANALYSIS OF VARIATION AND SPECIATION 

IN THE OPHRYS SPHEGODES SPECIES COMPLEX” 

 

 

INTRODUCTION 

 

Studying evolutionary relationships in rapidly radiating complexes of closely 

related plant species presents a major topic in biology, and has its own technical 

and methodological challenges (e.g. Maddison 1997). The advantages of 

organellar DNA (haploidy, copy number, uni-parental inheritance) also hinder its 

use for studying speciation (Sota & Sasabe 2006). The use of diploid nuclear 

gene data is thought to overcome the shortcomings of organellar gene 

genealogies, as nuclear genes have been reported to evolve up to five times 

faster (Wolfe 1989, Ossowski 2010). The nuclear genome contains a vast amount 

of historical demographic information due to its large size and its bi-parental 

inheritance mode, which allows us to detect hybridization. Nevertheless, 

disadvantages in the use of nuclear genes stem from their frequent occurrence in 

gene families (paralogy), recombination, and a general lack of available markers 

for non-model organisms (e.g. Doyle 1997, Posada & Crandall 2002). The 

analysis of recent splitting events is further complicated through the frequent 

existence of retained ancestral polymorphism. The alleles of a heterozygous 

individual must not necessarily be reciprocally monophyletic, i.e. most closely 

related to each other in a collection of alleles. Coalescent theory predicts that the 

noise produced by incomplete lineage sorting can be reduced by sampling 

multiple alleles per species (Edwards & Beerli, 2000). But it also determines that 

genealogies will differ in their topologies, because the unlinked nuclear genes are 

differentially strong affected by introgression and recombination. Analysing 

multiple genes and alleles per species increases the probability, to approximate 

the underlying species tree, supported by the majority of the data (Small et al. 

2004). Another way to analyse the evolutionary history of closely related species 

is the application of population-genetic, model-based approaches to infer the 

number and composition of clusters in a given sample of alleles (Pritchard et al. 

2000, Huelsenbeck et al. 2011). Though un-rooted, they provide information 

about genetic distance and admixture. 

The issue of species definition is a long-standing topic in biology and has been 

sprightly debated ever since (Mayr 1957, Hey 2001). Though, it has become 
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increasingly clear that all the different various species concepts can only be 

adopted for some organismal groups or taxa, but they are not universally 

applicable (Mallet 2007). Especially in plants, a lot of different processes and 

their potential complex interactions contribute to reproductive isolation (Widmer 

et al. 2008), which is the key attribute of ‘good’ species. This makes it difficult to 

rule out species boarders between incipiently diverging lineages. 

The appraisal of results from studies at the border between species- and 

population-genetics often can yield hypotheses that conflict with existing 

classifications, invoking a re-consideration of the inherent species concepts.  

The Mediterranean orchid genus Ophrys has not only attracted the interest of 

taxonomists and botanists ever since (e.g. Darwin 1862, Kullenberg 1961). It 

has become a (non-) model-system to study speciation and reproductive 

isolation. The genus can be split in a large number of lineages that are at least 

locally and temporally reproductively isolated enough to establish some 

morphological differences (Delforge 2006). As post-zygotic barriers are absent, 

reproductive isolation in sympatry is near exclusively based on floral isolation 

through specific male pollinators that are lured by the floral scent, a copy of the 

sexual pheromone of con-specific females, to repeatedly copulate on flowers of 

only a single Ophrys species, and bring by cross-pollination (Kullenberg 1961). 

But gene-flow, from slight introgression, over single hybrids, up to total 

admixture and hybrid speciation?, has been demonstrated (Soliva & Widmer 

2003, Cortis et al. 2008, Souche 2008). Additionally to that, the dependence of 

Ophrys taxa on their specific pollinators, who’s occurrence in turn is correlated to 

instable factors as vegetation succession, land-use and climate changes, is likely 

to be afflicted by strong fluctuations in the composition of the pollinator 

community. The species richness of the terminal clades is likely to be the result 

of a recent radiation that is characterized by dynamic speciation processes due to 

repeated pollinator shifts. An accelerated diversification rate in terminal clades 

could be explained by the exploitation of a novel, species-rich and diverse group 

of pollinators. Differences in sexual pheromone composition among closely 

related possible pollinator species are expected to be less strong developed than 

among well differentiated lineages. 

Therefore, the adoption of pollinators from diversified bee genera as Eucera and 

Andrena might have triggered and facilitated a radiation of the plants. Molecular 

data (Devey et al. 2008) support at least three groups that presumably radiated 

recently: (1) a mainly Andrena pollinated O. fusca group, (2) an Eucera 
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pollinated ensemble of the O. holoserica/scolopax/umbilicata  groups, and (3) a 

O. sphegodes group, in which a number of different bee genera function as 

pollinators. The latter group constitutes the most complex group due to its 

richness in species numbers and different pollination syndromes. 

Under this light, the O. sphegodes complex represents an ideal study group for 

the application of more sophisticated model- and coalescent theory based 

approaches to infer attributes of demographic history from allelic data. The 

investigated taxa are an eligible group to study the utility of fast evolving nuclear 

genes, as traditionally employed organellar markers have failed to exhibit any 

sequence variability. Though, multi-locus analyses of un-phased nuclear gene 

data have been conducted on various groups of closely related animals (e.g. Sota 

& Sasabe 2006, Belfiore et al. 2008, Brumfield et al. 2008), examples from 

plants are still the rare exception (e.g. Städler et al. 2005, Arunyawat 2007). We 

therefore apply the outlined approach to a collection of alleles sampled from 

seven moderate to highly diverse nuclear genes of 19 diploid individuals that, 

based of different species concepts could be assigned just one strict bio-species, 

or 4 inclusive morpho-species (our concept), or as much as 14 eco-species.  

We compare the usefulness of different species concepts in the light of our 

results, and then employ a phylogenetic approach to species delimitation in the O. 

sphegodes group. 

 

 

MATERIALS & METHODS 

 

For the present study, following an initial exploration of over 100 published and 

newly designed primer combinations, a set of nine nuclear gene markers was 

assembled and applied to sequence analysis of 19 accessions of 15 putative 

species of Ophrys, that can be assigned to four species groups from the 

conclusive O. sphegodes group, previously recognized by ITS analysis (Devey 

2008). Notably, all cpDNA, and most nrDNA markers tested showed no sequence 

variation among closely related Ophrys species. Sequences were generated for 

the PISTILLATA/GLOBOSA locus (Cantone et al. 2008) and the eight newly 

developed nuclear gene markers (ACS, BGP, CAD, FAD6, GPX, MYB, OMT). 

Besides MYB, that is included as an example for the majority of investigated 

nuclear gene markers that showed no sequence variation between species of the 

complex O. sphegodes aggregate, all markers exhibit sequence variation 
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justifying to further investigate them. All markers had moderate to high levels of 

heterozygosity. Unphased sequence data was obtained by cloning individuals that 

were shown to be heterozygous in the direct sequencing. 

We conduct basic population genetic analyses on these fast evolving nuclear 

genes, and try to infer attributes of demographic history by the application of 

coalescent and model based approaches. Informations on the investigated loci 

and the employed primers are given in Tabs.1 and 3.  

 

PRIMER DESIGN, HOMOLOGY ASSESSMENT & MARKER EVALUATION 

 

An EST-library from floral cDNA’s of Ophrys sphegodes has been built up by 

colleagues of the Dept. of Systematic Botany (University of Zürich, Switzerland). 

The EST’s were assembled automatically with an alignment software; the length 

of the gathered sequences varied from ~100bp to 1800bp. BLAST searches in 

public databases (e.g. NCBI, TAIR) allowed in many cases an ascertainment of 

the genes identity or an approximation in the sense of high sequence similarity 

to known genes. Sequences of genes that have been useful, i.e. phylogenetically 

informative in other studies, were chosen preferentially as candidates for primer 

design. The EST’s contained only coding, exonic sequence. To assess the intron-

exon structure and identify highly conserved regions for primer design, the EST’s 

have been aligned with BioEdit Vers.7.0.9.0 (Hall, 2001) to that single, or in 

most cases multiple genomic sequences that were available in online databases, 

and showed the highest similarity (e-Value) with the EST in question. Where 

possible, genomic sequences from more closely related taxa (orchids, rice, 

asparagus) were included in the alignment. Primers have been designed in the 

exonic regions flanking one or more introns, depending on their size predicted by 

the alignment. As intron size varies notably within taxa from different families 

and genera, the gathered amplicon size often deviated largely from the 

prediction. To facilitate later applications an amplicon size of 300-900bp length 

was aspired. Primer design was done manually or using the online software 

‘Primer3’ Vers.0.4.0 (Rozen & Skaletsky, 2000). Primers were checked for their 

expected annealing temperatures, hairpins and loops with ‘OligoCalc’ (Kibbe, 

2007). Amplification was tested for different annealing temperatures. Primers 

that amplified multiple products were discarded. Single band PCR products were 

sequenced and compared to published sequences in gene bank. After 

confirmation that the primers amplified the gene they were designed for, 
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sequence variability and cross amplification was checked for closely, and also 

more distantly related taxa. To assess exon/intron structure and proof homology 

of the PCR products, new sequences were aligned with those used for the primer 

design. Lists of the markers selected for this study and their primer sequences 

are given in Tab.1. and Tab.3. 

 

Tab.1 – Markers used in this study. Supposed gene function, length and primer 
annealing sites in the exons, rarely introns of the A. thaliana reference sequence. 
 

Gene Length    Name / function of sequenced gene        Primer 

         aligned                                                                       position 

         [bp]                                                                            in  exon 

   

ACS 671     Long-chain acyl-CoA-synthase-like                    E6/E8 

     

BGP 976     Beta-galactosidase-like                           E14/E17 

     

CAD 282     Cynnamyl alcohol dehydrogenase                     E1/E3 

        

FAD 453     Fatty acid desaturase                                      E3/E5 

 

GGPS 177     Geranyl-geranyl-diphosphate-synthase            I?/E? 

 

GPX 1025     Glutathione peroxydase             I4/E5 

         

MYB 144     Myb transcription factor-like                    E1/E2 

 

OMT 706     O-methyltransferase-2-like                    E1/E2 

 

OrcPI1005     PISTILLATA/GLOBOSA                     E1/E5 
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SAMPLING & DNA-EXTRACTION 

 

Fresh leaf tissue or flowers have been collected in the field, and either directly 

stored in silica gel, or fresh at -20°C. A list with all species accessions, sampling 

locations and collectors is given in Tab.2, while pictures of the sampled taxa are 

displayed in Fig.1.a-d. Fig.2 is a map with the sampling locations. DNA was 

extracted with a commercially available kit (GenElute Plant Genomic DNA 

miniprep kit, Sigma) or, for higher yields of DNA with a modified CTAB extraction 

method (Doyle & Doyle, 1990).  

 

 

Fig.1.a – O. incubacea group (INC). f.l.t.r.: O. incubacea (GAR), O. incubacea (SAR), 
O. incubacea (CA), O. promontorii, O. sipontensis. 
 

 

Fig.1.b – O. exaltata group (EXA). f.l.t.r.: O. arachnitiformis, O. archipelagi, O. 
exaltata s.str., O. splendida, O. tyrrhena. 
 

 

Fig.1.c – O. sphegodes group (SPH). f.l.t.r.: O. argentaria, O. classica, O. sphegodes 
(CA), O. sphegodes (GAR), O. tarquinia. 
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Fig.1.d – O. garganica group (GAR). f.l.t.r.: O. garganica (GAR), O. 
garganica (SIC), O. garganica (TUS), O. passionis. 

 
 
 
Tab.2 – O. sphegodes group accessions used for this study, with sampling site, 
date, and respective collector. 
 

Species Sampling site 

Date of 

collection Collector 

O. apifera 

(Outgroup) Cilento, Campania, Italy Jun-09 H. Breitkopf 

O. arachnitiformis France, exact loc. unknown Apr-03 N. Vereecken 

O. archipelagi Capoiale, Gargano, Puglia, Italy Mar-09 H. Breitkopf 

O. argentaria Caldine-Fiesole, Tuscany, Italy Apr-09 H. Breitkopf 

O. classica Porto San Stefano, Tuscany, Italy Mar-10 R. Souche 

O. exaltata Trapani, Sicily, Italy Apr-09 H. Breitkopf 

O. garganica (GAR) Marina di Lesina, Gargano, Puglia, Italy Apr-09 H. Breitkopf 

O. garganica (SIC) Taormina, Sicily, Italy Mar-09 H. Breitkopf 

O. garganica (TUS) Alberese, Tuscany, Italy Apr-09 H. Breitkopf 

O. incubacea (GAR) Marina di Lesina, Gargano, Puglia, Italy Apr-10 H. Breitkopf 

O. incubacea (SAR) Laconi, Sardegna, Italy Apr-10 H. Breitkopf 

O. incubacea (CA) Cilento, Campania, Italy Apr-10 H. Breitkopf 

O. passionis Larzac, France May-10 R. Romolini 

O. promontorii Mte. St. Angelo, Gargano, Italy Apr-10 R. Souche 

O. sipontensis Siponto, Puglia, Italy Mar-10 R. Romolini 

O. sphegodes (CA) Vesuvio, Campania, Italy Mar-09 H. Breitkopf 

O. sphegodes (GAR) Capoiale, Gargano, Puglia, Italy Mar-09 H. Breitkopf 

O. splendida Le Muy, France Apr-10 R. Souche 

O. tarquinia Monte Argentario, Tuscany, Italy Mar-08 G. Tosi 

O. tyrrhena Marina di Castagneto, Tuscany, Italy Apr-09 H. Breitkopf 
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Fig.2 – Sampling locations in Italy and France (big map). Lower right map: species 
group distributions in Europe. 
 

 

PCR & SEQUENCING 

 

Newly designed and previously published primers were tested using polymerase 

chain reaction standard protocols and a 2720 Thermo Cycler (Applied 

Biosystems) with annealing temperatures ranging between 45°C and 63°C. With 

each primer couple at least three PCR’s in a range of +- 5°C difference from the 

predicted melting temperatures were performed. Cycling conditions were as 

follows: 3 min initial denaturation at 94°C, followed by 35 cycles of 94°C 45 sec; 

TA 45 sec; 72°C 90 sec and a final extension of 72°C 7 min; 4°C hold. Annealing 

temperatures were 58°C for ACS, FAD and MYB, 59°C for BGP, 60°C for LFY and 

65°C for CAD. 

All PCR reactions were performed in a final volume of 25µl containing 50 – 100 

ng DNA template, 10 pM of each, forward and reverse primer, 200µM of each 

dNTP, 2µl of 10x Taq buffer (50 mM KCl, 10 mM Tris-HCl pH 9), 0.5 µl 1.5mM 

MgCl2 and 0.5 U of Taq polymerase (Pharmacia, Amersham Biotech). PCR 
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products were separated on a 1,5 % agarose gel stained with ethidium bromide 

(0.3 mg/l) and photographed under UV light using a Gel Doc 2000 system 

(Biorad). Only primers that yielded discrete bands were further investigated; 

those that yielded a smear or no amplification were discarded.  Products with 

multiple bands were separated in a 1.5 % TBE agarose gel, excised and purified 

using a kit. Those products that gave single bands were purified using IllustraTM 

GFX PCR DNA Purification Kit (GE Healthcare). Quality and concentration of the 

purificates was checked with a NanoDropTM 1000 Spectrophotometer 

(ThermoScientific). Amplificates were further amplified using the BigDye 

Terminator v.3.1 Cycle Sequencing Kit (Applied Biosystems, Inc.) and purified 

following the ethanol-sodium acetate precipitation protocol provided with the kit. 

Sequencing took place on 3130 and 3130xl Genetic Analyzers (Applied 

Biosystems, Inc.). Sequences were then analyzed with Sequence Analyzer 5.2 

(Applied Biosystems, Inc.) and the chromatograms read out with Sequence 

Scanner 1.0 (Applied Biosystems, Inc.) or Chromas Pro (Technelysium Pty Ltd).  

 

CLONING & PARALOGY ASSESSMENT 

 

Heterozygosity and paralogy were expected to be issues when dealing with 

nuclear genes of the predominantly outcrossing genus Ophrys. If a sequence was 

partially unreadable due to existence of an indel in one of the two alleles, the 

PCR product was cloned into a bacterial vector (pGEM-T Easy, Promega) and 

inserted into competent E. coli cells by chemical transformation. Ambiguous 

SNP’s were ignored as it was the aim to obtain consensus sequence. Cells were 

plated out on LB growth medium containing Ampicillin, allowing only the 

successfully transformed cells to grow colonies. Colonies were repicked to new 

plates for backup and storage. A small portion of the colonies was used as 

template for a PCR with the conditions following the manufacturer’s protocol 

using the primer couple T7 / SP6 provided with the cloning kit (pGEM-T Easy, 

Promega). Sequencing was done as described above, but using the primers of 

the marker in question. Five to ten clones per accession were sequenced. If more 

than 2 alleles were detected in the cloning procedure the primers were identified 

to amplify at least one other copy of a gene/gene family and consecutively 

excluded. As Ophrys is generally diploid, no more than two alleles of any gene 

should be gathered from a single individual. The few species that have been 
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shown to be tetraploid are not included in this study. Cloning was applied for 

unphasing hetereozygotes in ACS, BGP, CAD and FAD.  

We detected a notable haplotype differentiation in some genes, i.e. the obtained 

haplotypes could be classified into two or more groups regarding sequence 

similarity. To rule out the possibility that our PCR primers amplify paralogs, 

additional to the cloning procedure differential primers for the two most 

prominent sequence types/haplotype groups were designed for three genes (CAD, 

FAD6, GPX) for amplification and sequencing. PCR conditions were as described 

before with an annealing temperature of 59°C. We tested seven species with the 

new primers. Again, no more than two alleles per species could be detected.  

 

 

Tab.3. – Primers used in this study and their respective annealing temperatures. 
*= nested haplotype group specific primers for paralogy assessment. **= from Cantone 
et al. (XXXX). All other primers can be used for both, PCR and sequencing 
 

ACS-F      AGGTTGAGATTGCATTTGTGG   58°C   

ACS-R     TTCAACAGCTTTTCTTTCATCG  

BGP-F      GCTGGCAACAATAGGATCTCCA    59°C 

BGP-R      ACTGAGGAGCTTCCATCTAC 

CAD-F      CTACTTCTTCGGCGAGGCTAC   65°C 

CAD-R      AGATGCTGTATGGAAGACACC 

CAD-1F* TGCATTTTGAATTCTGTTACTTAT   59°C 

CAD-1R* AATCAGCTCTATACAAATGCA 

CAD-2F* ACATTTTGGATTGTGTTACTT   59°C 

CAD-2R* AAATCAGCTCTAAACAAATGCAA    

FAD-F      ATATCACGCTCAGAGACATTATTACAAC  58°C 

FAD-R      ATATGTCTTCCACCAACTTGTTCTTTG 

FAD-1F* CTAGGCTTTGAACGTATCTCTTA   59°C 

FAD-1R* GACCTATGCGCACAATCATGA 

FAD-2F* CTAGGCTTTGAACTTATCTCTTG   59°C 

FAD-2R* GACCTATGCGCACAATCATGG    

GGPS-F AGAGGTTGAGGCGGTATGC   58°C 

GGPS-r CTTCAGCTGCAACTTGGCCT 

GPX-F  GTGCTGATTTTGGGTTGAGG   58°C 

GPX-R TTGATTTGAGGAACTTGTAGATGG 

GPX-1F* CTTGGGAGTTGGGATAAGATT   59°C 
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GPX-1R* TAATTGGCTGCAAGCATTCCC 

GPX-2F* CTTGGGAGTTGGGATAAGATG   59°C 

GPX-2R* TAATTGGCTGCAAGCATTCCT 

MYB-F   GGAATTCCCTTGCTCTTTGTGC   58°C  

MYB-R GAGGTAATTGAGCCACCGAAGC  

OMT-F ATGTCGAAGGAGATGTGTTTGC   58°C 

OMT-R CGCTCCAGTCATGAAGAATCC 

OrcPI-F ATGGGGCGGGGAAATACGGAG   59°C 

OrcPI-R TCTCAGCATCTTCAAAAAATC 

 

 

SEQUENCE EDITING & ALIGNMENT 

 

Sequences were assembled and aligned with the software BioEdit (Hall 2001) 

using the implemented ClustalW algorithm (Thompson et al. 1994), or manually 

with MacClade (Maddison & Maddison 1992). As computerized algorithms have 

been found to be inaccurate (Morrison 2009), the alignments have been checked 

by eye for apparent mistakes and manually corrected to minimize homoplasy. 

The alignment followed a two step procedure in which (1) all ingroup sequences 

were aligned to each other, followed by (2) alignment of the outgroup. Regions 

that could not be unambiguously aligned were discarded prior to phylogenetic 

analyses.  

 

BASIC POPULATION GENETIC ANALYSES 

 

The generation of polymorphic sites files (DNASP, Librado & Rozas 2009) allowed 

a first assessment of haplotype diversity by eye (see Fig.3 for an example). 

Levels of sequence polymorphism (n, L, S, Pi, ThetaW), haplotype diversity (n, 

h(div)), neutrality (Tajima’s D) and linkage disequilibrium tests, amongst others, 

were inferred with DNASP, for all genes and the four predefined species groups, 

both as single and combined groups analyses. To assess if the observed 

parameter values deviated from predictions based on the proportion of 

segregating sites in the sequences (S) and an estimator of recombination (R) for 

each species group (R = gene length x Theta W), we calculated these values with 

1000 coalescent simulations (DNAsp) under the infinite-sites model.   
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We calculated nucleotide diversity within (Tab.7) and between groups (Tab.8). 

Divergence was assessed by pairwise comparisons of silent substitution rates of 

the species groups (Tab.4).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 – Polymorphic sites file (DNAsp) of the FAD gene dataset. 36 of 435 bp 
variable. Two largely different types of alleles with only little within variation; EXA5 
alleles more derived. 
 

 

 

 

 

 

•  INC1a  GTGGTGGCGTCTAGTCACTCGCGTGCAACTTAGCGG 
•  INC1b  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  INC2a  .....................T.............. 
•  INC2b  .....................T.............. 
•  INC3a  .................................... 
•  INC3b  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  INC4a  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  INC4b  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  INC5a  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  INC5b  .................................T.. 
 
•  EXA1a  CGA..TATAC.AT..AT.CT.T.A.TGCTG...T.. 
•  EXA1b  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  EXA2a  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  EXA2b  .....................T....GC.....T.. 
•  EXA3a  .....................T.............. 
•  EXA3b  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  EXA4a  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  EXA4b  .................................T.. 
•  EXA5a  ....CT..CC.A.A..TT..TG.A..G...A...AA 
•  EXA5b  ...ACT...CAA....T...TTC......G.G..AA 
 
•  SPH1a  CGA..TATAC.AT..AT.CT.T.A.TGCTG...T.. 
•  SPH1b  CGA..TATAC.AT.CAT.CT.T.A.TGCTG..AT.. 
•  SPH2a  .....................T.............. 
•  SPH2b  .....................T.............. 
•  SPH3a  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  SPH3b  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  SPH4a  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  SPH4b  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  SPH5a  CGA..TATAC.AT.CAT.CT.T.AATGCTG..AT.. 
•  SPH5b  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
 
•  GAR1a  CGA..TATAC.AT..AT.CT.T.A.TGCTG...T.. 
•  GAR1b  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  GAR2a  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  GAR2b  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  GAR3a  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  GAR3b  .................................... 
•  GAR4a  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
•  GAR4b  CGA..TATAC.AT.CAT.CT.T.A.TGCTG...T.. 
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COALESCENT PHYLOGENETICS & POPULATION STRUCTURE ANALYSES 

 

We used the software BEST (Bayesian Estimation of Species Trees, Liu 2008) 

that integrates a coalescent theory based algorithm into the MrBayes program, 

to infer species trees from allelic sequence data. The single gene datasets were 

combined into a partitioned supermatrix. The combined dataset had a length of 

5429 characters. The best fitting model of molecular evolution for each gene was 

chosen using the Akaike information criterion (AIC) as given in the output of 

MrModelTest 2.3 (Nylander 2004). Selected models were: ACS: F81+I+G, BGP: 

HKY+I, CAD: HKY+I, FAD: HKY+G, GGPS: GTR+I+G, GPX: HKY+I+G, MYB: GTR, 

OrcPI: HKY+G, OMT: HKY+I+G. O. apifera was used as the outgroup, as this 

species was shown to be genetically distinct and to be sister to the O. 

sphegodes-holoserica crown group. For the Bayesian analysis two consecutive 

runs of 10 million generations were performed on an external computer cluster 

(CBSU BioHPC, Cornell University, USA). The best species tree was compiled by 

the software (see: Liu 2008 for details). 

Population structure was assessed using the programs Structure (Pritchard et al. 

2000) and Structurama (Huelsenbeck et al. 2011). For the Structure analysis 

genotypes were assigned using the software DNASP (Librado & Rozas 2009), and 

coded into a numerical matrix. Prior to the analysis the most likely k (= number 

of populations) was estimated following the method of Evanno et al. (2005). Two 

analyses using the admixture model and different values of k (2 or 4) with 100k 

replicates and a burn-in of 10% were conducted. For the Structure bar-plots, 

individuals were aligned using their q-values. 

We also tried to infer the most likely number of populations and species 

clustering in our sample using the software Structurama. Genotypes were coded 

into a numerical matrix as described before. The program was run for different 

values of k (k=1-20) and 10k generations to obtain posterior probabilities for 

each k. Furthermore, the program can be run for a fixed value of k to assign 

species to a predefined number of populations. We assumed four populations, 

equivalent to our four species groups. We used following settings: 100k 

generations, four MCMC chains, admixture, k=4. 
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HAPLOTYPE GROUPS DIVERGENCE TIME ESTIMATES 

 

A strong haplotype differentiation was found in CAD and FAD, to a lesser extent 

in BGP, GPX and OMT (see Fig.3 for an example). We calculated divergence time 

estimates on the basis of published mutation rates for nuclear genes, generation 

times of Ophrys plants, and substitution rate estimates for our nuclear gene 

markers. The single genes’ substitution rates were calculated as: (median 

number of intron differences between HT-groups [bp] / intron length [bp]) x 

introns’ relative proportion [%]) + (median number of exon differences between 

HT-groups [bp] / exon length [bp]) x (1 – introns’ relative proportion [%])*; (*= 

exon/intron’s relative proportions derived from surveying the A. thaliana 

reference gene). As we investigate divergence of two separately evolving 

lineages, the genes’ substitution rate was multiplied with only 50% of the 

mutation rates values published for nuclear genes (Wolfe et al. 1989, Ossowski 

et al. 2010), using their range extremes as upper and lower values. As the result 

is given as mutation rate per number of generations, we multiplied them with a 

generation time of Ophrys [in years] to obtain a more descriptive estimator. 

Though, little is known about the temporal dimensions between reproduction, 

seed dispersal, germination, vegetative growth, until flowering and newly 

reproduction. All together these processes constitute the steps of the 

reproductive cycle, known as generation time. The time from sowing to flowering 

under artificial conditions was stated to be little less than three years for several 

species of Ophrys (http://www.lidaforsgarden.com/Orchids/ophrys_eng.htm). 

We assumed little longer times under natural conditions, i.e. 3 – 5 years as 

factors for our estimates. 
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RESULTS 

 

SEQUENCING 

 

Neither in the cloning procedure, nor by application of differential primers more 

than two alleles were obtained for any accession. Unphased nuclear sequence 

data was generated for 9 genes, 19 ingroup accessions, and one outgroup (O. 

apifera). More than 1000 sequence reads were obtained to assemble about 220 

sequences in total. An overview of heterozygosity levels over genes and 

accessions is given in Tab.5. 

 

COALESCENT & POPULATION STRUCTURE ANALYSES 

 

The BEST coalescent analysis was repeated three times. It resulted in three 

incongruent tree topologies, all of them with very low bootstrap support. A 

species clustering as expected from the morphology based taxonomic 

classification was not evident. In contrast, a moderate geographical clustering 

was evident in all analyses; i.e. species/accessions showed a trend for clustering 

when growing in sympatry, regardless of their taxonomic affinities (Fig.4). We 

found five geographic clusters, with four of them composed of two to three 

accessions from different species groups. It has to be noted that the observed 

clustering was not constant in our three analysis replicates. But the geographical 

clustering was in all cases obviously more apparent than a species clustering. 

We estimated k (= numpops) for the combined genotype matrix following 

Evanno et al. (2005). The most likely number of populations was found to be two 

(k=2). Accordingly, Structure was run with k=2, and regarding our sampling 

scheme, with k=4. 
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Fig.4 – Species tree. Coalescent theory based species tree obtained with BEST 
(Bayesian Estimation of Species Trees). 10x107 generations runtime, bootstrap at all 
nodes always <=50%. 
 

The results are output as bar-plots (Fig.5). For k=4 no significant clustering 

could be detected. But for k=2 a slight species clustering is apparent. All 

accessions of the O. incubacea group cluster together in one population, while 

the accessions of the O. garganica group cluster in the other population or as 

individuals with mixed ancestry. Individuals from the O. exaltata and O. 

sphegodes groups are scattered over the bar-plot 

Structurama uses the same method as Structure to infer species clustering for a 

fixed k. As expected the program then inferred a similar confusing clustering as 

Structure for k=2 or k=4 (data not shown). In a second step we used to program 

to calculate posterior probabilities for different values of k. The k with the highest 

pp value is the most likely number of populations. But we obtained ever 

increasing values for k=1 up to k=20. Therefore no k value could be estimated 

using our data. 
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ALLELIC VARIATION & HAPLOTYPE DIVERGENCE ESTIMATION 

 

In some genes we observed two largely divergent haplotype groups with only 

little apparent recombination between those allele types, and little to no variation 

within a single haplotype group. We use a descriptive population genetic 

approach to gather information about within and between species groups 

diversity for the employed genes, as well as to determine the observed haplotype 

groups with statistical methods.  

Within group statistics: Nucleotide diversity (Pi) is lowest in ACS (0.002), and 

highest in CAD (0.048), followed by FAD (0.020), GPX (0.017) and OMT (0.017). 

The latter four genes are exactly those genes with the most obvious haplotype 

structure; i.e. the high Pi values express the existence of two very divergent 

alleles, rather than  

 

 

          

 

Fig.5 – Species clustering. Structure cluster analysis for k=4 (left) and k=2 (right). 
red – O. incubacea group, green – O. exaltata group, blue – O. sphegodes group, grey – 
O. garganica group. Sampling localities: GAR – Gargano, Puglia, It; TUS – Tuscany, It; 
CA – Campania, It; SIC 
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INC- 

EXA 

INC- 

SPH 

INC-

GAR 

EXA-

SPH 

EXA-

GAR 

SPH-

GAR IN-OUT 

ACS 0.001 0.002 0.001 0.002 0.002 0.003 0.017 

BGP 0.017 0.018 0.017 0.014 0.014 0.016 0.035 

CAD 0.076 0.044 0.098 0.064 0.055 0.069 0.079 

FAD 0.053 0.047 0.046 0.050 0.048 0.026 0.084 

GGPS 0.032 0.016 0.045 0.027 0.056 0.028 0.041 

GPX 0.018 0.019 0.017 0.017 0.017 0.017 0.028 

MYB 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

OMT 0.023 0.010 0.012 0.023 0.026 0.013 0.069 

OrcPI 0.009 0.010 0.010 0.008 0.010 0.011 0.127 

sum 0.228 0.165 0.247 0.204 0.227 0.184 0.480 

 

Tab.4 – Divergence, pairwise group comparisons. Silent Substitutions (Ks JC-Silent 

/ total sites). 

 

phylogenetically informative polymorphisms. Therefore it doesn’t surprise that in 

CAD and FAD the observed number of alleles (h) is much lower than the number 

of alleles to be expected (DNAsp coalescent simulations) based on the number 

of segregating sites. Similarly, the observed haplotype diversity (hDiv) in CAD 

and FAD is significantly lower than expected from the simulation. For the other 

genes the simulated values are similar to the observed ones, or deviate less 

strong from them; also the results of the Tajima’s D test point out the deviation 

from neutral expectations in CAD and FAD, as in most species groups they are 

high, some of them significantly. Though it has to be said that Tajima’s D and 

Zns values are here only used as rough estimators, because they are prone to 

error when calculated for small sample sizes. Summarized over all genes, 

nucleotide diversity (Pi) is highest in the O.exaltata group (0.147) and lowest in 

the O. incubacea group (0.078). 

Species group statistics comparison: We averaged Pi over all sites and loci, made 

the six possible pairwise comparisons between our four species groups, and 

compared all the ingroup to the outgroup O. apifera (Tab.8). As expected, Pi was 

highest between the outgroup and all the ingroup (0.0132). Pi was only slightly 

lower in the comparisons EXA/SPH (0.0121) and SPH/GAR (0.0120), and lowest 

in INC/EXA (0.0083). Another way to assess divergence between the species 

groups is to make pairwise comparisons of only silent substitutions (Tab.4). 
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Averaged over all loci, following IN/OUT, INC/GAR and INC/EXA were the most 

divergent comparisons, INC/SPH and EXA/SPH the least divergent ones.   

After paralogy had been excluded to be responsible for the unusual haplotype 

structure in the sample (see materials and methods), we proposed the recent 

coalescence of at least two lineages in the common ancestor of the investigated 

species group. The strong genetic differentiation among the haplotype groups 

indicates that they previously were separated over long time, while the bare 

differentiation within one haplotype group suggests recent coalescence. This 

raised the question, how long the two proposed ancestral lineages have been 

separated? CAD and FAD most prominently exhibited the occurrence of two 

strongly divergent alleles, to a lesser degree also OMT, GPX and BGP. We 

calculated estimates for all genes (Tab.6) as described in the materials and 

methods section. Estimates [in Ma] ranged from (13.1) 8.4 (5.2) for CAD, over 

(4.8) 3.1 (1.9) for BGP, to (2.0) 1.3 (0.8) for OrcPI. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 76 

Tab.5 – O. sphegodes group accessions used in this study and their zygosity 
level. Heterozygosity is marked as ‘xx’. For multiple accessions of the same species the 
sampling region in Italy is given as abbreviation, i.e. GAR = Gargano, Puglia, SIC = 
Sicilia, TUS = Tuscany, SAR = Sardinia, CA = Campania.  
 

# Species BGP OrcPI GPX CAD FAD MYB ACS OMT Group 

           

1 O. arachnitiformis X XX XX XX XX X XX XX EXA 1 

2 O. archipelagi X X XX X XX X X X EXA 2 

3 O. argentaria X XX XX X XX X XX X SPH 1 

4 O. classica X XX X X X X X XX SPH 2 

5 O. exaltata s.str. XX X X X XX X X X EXA 3 

6 O. garganica GAR XX X XX X XX X X XX GAR 1 

7 O. garganica SIC XX X X XX X X XX X GAR 2 

8 O. garganica TUS XX X X XX XX X XX XX GAR 3 

9 O. incubacea GAR XX X X X XX X XX XX INC 1 

10 O. incubacea SAR X XX X X X X X XX INC 2 

11 O. incubacea CA X XX XX X XX X X XX INC 3 

12 O. passionis XX X X X X X X X GAR 4 

13 O. promontorii X X X X X X X X INC 4 

14 O. sipontensis XX X X X XX X X XX INC 5 

15 O. sphegodes CA XX XX X X X X X X SPH 3 

16 O. sphegodesGAR X X X X X X X XX SPH 4 

17 O. splendida XX X XX X XX X X X EXA 4 

18 O. tarquinia X XX X XX XX X XX X SPH 5 

19 O. tyrhena X part X XX XX X X XX EXA 5 

 

 

DISCUSSION 

 

Our aim was to shed some light on the issue of species delimitation, and to 

assess the degree of genetic separateness/togetherness in an ensemble of taxa 

that are differentially treated as separate species, subspecies, varieties or 

populations. Following the most conservative taxonomic treatment (Sundermann 

1980) the 19 sampled accessions can be assigned to four subspecies of O. 

sphegodes, namely ssp. arachnitiformis, ssp. atrata (syn. O. incubacea), ssp. 

garganica, and ssp. sphegodes. For such an investigation on a hierarchical level 
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below that of good species, population genetic methods have to be invoked. We 

used two different approaches to infer species clusters. The coalescent theory 

based phylogenetic approach (BEST) yielded species clusters of spatial proximity, 

while the model-based approach (Structure) exhibited a slight clustering of 

individuals that are thought to be very closely related.  

The BEST analysis inferred some clades that are entirely or for the most part 

composed of individuals from close-by or adjacent populations (Fig.4), while no 

clustering of putatively conspecific or very closely related taxa was found. This 

finding clearly indicates gene flow between Ophrys taxa in sympatry, even 

though they ‘should be’ reproductively isolated through different specific 

pollinators. The other possible explanation for this pattern is the repeated de-

novo evolution of morpho-species, i.e. different lineages converge on the same 

phenotype due to adaptation to the same pollinator. Though, the authors favour 

the preceding hypothesis, as it is by far more parsimonious. 

 

SPECIES GROUPS OR POPULATIONS 

 

The O. incubacea (INC) and O. garganica (GAR) groups are the most divergent 

ones in our sample, as shown by Structure (Fig.5) and divergence analyses 

(Tab.4). The allele composition of these two groups is more homogenous than, 

and distant to the O. exaltata (EXA) and O. sphegodes (SPH) groups. On first 

sight, this finding contrasts with the fact that the latter two groups were shown 

to be the most strongly divergent groups in pairwise comparisons of the groups’ 

nucleotide diversity (Tab.8). Furthermore, the O. exaltata group has the highest 

within-group nucleotide diversity (Tab.7). From the results of Structure and 

divergence analyses, INC and GAR were expected to show the strongest 

separateness in pairwise comparisons of Pi. This can be explained by looking at 

the allele distribution within our four groups and nuclear genes: SPH and EXA 

more often contain alleles of both, the two haplotype groups, as well as new 

alleles (see Fig.3 for an example). These two groups are therefore genetically 

more heterogeneous, and their alleles tend to cluster more often with themselves 

and the other two groups. Experiences from the field confirm this finding: INC 

and GAR are morphologically well differentiated and often more easily to 

distinguish from each other than EXA and SPH. But INC and GAR sometimes 

share morphological features of SPH. Again, this finding parallels the results from 
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the divergence analysis (Tab.4), where the couples INC-SPH and GAR-SPH were 

the two least genetically differentiated ones among all comparisons. 

A clear differentiation in species or species groups based on the combined 

analysis of multiple nuclear genes that present the most variable markers under 

more than 100 tested ones, is therefore not possible. In fact, when only 

considering the observed allele sharing pattern and the lack of variation between 

the two allele types, one would expect our sample to come from only two 

recently hybridizing species. 

 

DEMOGRAPHIC HISTORY 

 

We proposed the coalescence of two genetically distinct lineages within a 

common ancestor of the sampled species groups to be responsible for the 

occurrence of two strongly divergent allele types. In turn, little genetic variation 

between these allele types points towards the recentness of the coalescence 

event. The high number of segregating sites in the two allele groups allowed a 

rough approximation of the time needed, to accumulate these differences, i.e. 

the divergence time. In this estimation we incorporated two factors afflicted by 

uncertainties: The generation time of Ophrys plants has not been investigated so 

far and we based them on experiences from artificial Ophrys cultures. Also the 

mutation rates of nuclear genes have large amplitudes of variability, as can be 

seen in our genes, where we find a continuum from no variation, over moderate 

variation, up to genes with strong haplotype structure. Nevertheless, the 

estimated divergence times for the four most haplotype structured genes range 

from 3.4 to 8.4 Ma, with a median value of 6.2 Ma. Even though these estimates 

are probably strongly biased by the aforementioned uncertainties, an effective 

separation of two Ophrys lineages for a few million years is highly plausible. 

Reasons for that can be either reproductive isolation or geographic isolation. We 

favour the latter explanation, as reproductive isolation barriers are expected to 

become stronger over time (e.g. Schluter 2001, Widmer et al. 2008). 

Reproductive isolation barriers in Ophrys are porous, so it can be assumed that 

they were even weaker in past times. 

Our median divergence time estimate of 6.2 Ma closely falls together with the 

Messinian Salinity Crisis. The period of 5.8 to 5.3 Ma ago at the end of the 

Miocene was characterised by the repeated desiccation and flooding of the 

Mediterranean Basin caused by the closure and opening of the Street of Gibraltar. 
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Within the dry periods a desert like area covered the central part of the 

Mediterranean, which could have acted as an effective isolation barrier between 

separated lineages of Ophrys. The spatial isolation might have contributed to the 

evolution of strong reproductive isolation barriers that prevented the two 

lineages from gene flow for some millions of years. If this hypothesis holds true, 

it implies a recent breakdown of the isolation barrier, and an investigation of the 

allele composition in populations from the margin of today’s distribution area 

could allow to detect the spatial origins of the two allele types based on their 

frequencies, and to identify possible refuge areas. The dating of major lineages 

of Ophrys would help to link cladogenesis and radiations to the geographic and 

climatic history of the Mediterranean region. The available methods to test for 

simple evolutionary models and infer time estimates/migration rates for periods 

of gene flow and/or isolation could not be applied to our data. This is due to 

properties of our nuclear gene data that violate some assumptions of the 

models/algorithms implemented in the respective software (IMa2, WH, Migrate), 

such as apparent recombination and the lack of fixed differences and gradual 

segregation of polymorphism among our four species groups. Applications to our 

data resulted in never converging runs or crude results. 

 

SPECIES CONCEPTS FOR OPHRYS 

 

The genus Ophrys constitutes a prime example for the differential approaches to 

species delimitation when largely different species concepts are taken into 

consideration. Let us review the different classifications: strict bio-species 

concept (Mayr 1942) � 1 spp.; phylogenetic species concept (Cracraft 1989) � 

10 spp. (Devey 2008); inclusive phenetic/morphospecies (PM) concept 

(Cronquist 1978) � 16 spp. (Sundermann 1980) / 19 spp. (Faurholdt & Pedersen 

2007); less inclusive PM concept � 49 spp. (Baumann & Künkele 1982); highly 

split PM/ethological species concept (Van Valen 1976), not consistently applied � 

150 spp. (Devillers & Devillers-Terschuren 1994) / 252 spp. (Delforge 2006). Of 

those, the phylogenetic and the ethological species concept are based on 

objective criteria that are at least in theory consistently applicable: genetic 

divergence and isolation through specific pollinators, respectively. A diagnostic 

ethological concept would allow assigning morphological very similar populations 

with different specific pollinators the rank of species. Though, consistently 

applied it is mandatory, to identify the specific pollinator(s) over the whole 



 80 

distribution range and flowering time, to exclude the existence of areas with 

pollinator sharing and hybridization with other sympatric Ophrys lineages, which 

is almost impossible.  

Given the permeability of a reproductive system that is more or less based only 

on floral isolation, and the presumably strong fluctuation in the composition of 

the pollinating insect communities, gene-flow is likely to occur. And in fact, the 

existence of hybrids and hybrid zones is well documented (Souche 2008, Cortis 

et al 2008, Stoekl et al 2009). This parallels our finding of recent allele sharing 

between closely distributed species. 

To our understanding, most entities of the O. sphegodes/O.holoserica/O.scolopax 

complex depict evolutionary significant units, or populations that temporarily 

build up reproductive isolation, but dynamically exchange genes with adjacent 

populations of closely related lineages. Our data suggests that these lineages are 

presumably incipiently speciating, and it cannot be predicted which of these 

lineages will coalesce in the future, and which will become good species. A big 

share of closely related Ophrys therefore presents transient species of a short-

lived nature. We favour a more inclusive and conservative approach to species 

delimitation based on a phylogenetic species concept, as it employs a universally, 

and easily applicable objective criterion: separateness of lineages based on the 

degree of genetic divergence and the amount of gene-flow. The application of 

next-generation-sequencing data with hundreds of nuclear markers will allow for 

a more fine-scaled classification of Ophrys species, i.e. the detection of more 

than 10 minimum resolvable genetic units. Though, it will not help with the 

decision of how much gene-flow is tolerated between, or how much divergence is 

needed to make an Ophrys species.  
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Tab.6 – Divergence time estimates. pink – intron/exon proportion in the A. thaliana reference gene (TAIR); violet – 
intron/exon ratio; grey – substitution rates in exon and intron; dark grey -  overall gene substitution rate; turquoise – mutation 
rates per gene [in number of generations]; blue - mutation rates per gene [in million years]; lower right: medium estimates for 
the four most haplotype structured genes. 
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0.0000000102 3
0.0000000128 4
0.0000000156 5

CAD 1901 951 0.50 300 18 0.060 106 5 0.047 0.054 2.6 2.1 1.7 13.1 8.4 5.2
FAD6 2801 1301 0.54 230 20 0.087 222 2 0.009 0.051 2.5 2.0 1.6 12.4 7.9 4.9
OMT 2051 1101 0.46 695 48 0.069 11 0 0.000 0.032 1.6 1.2 1.0 7.8 5.0 3.1
GPX 1601 651 0.59 1004 37 0.037 71 0 0.000 0.022 1.1 0.9 0.7 5.4 3.4 2.1
BGP 5301 2501 0.53 844 26 0.031 132 1 0.008 0.020 1.0 0.8 0.6 4.9 3.1 1.9
ACS 4851 2001 0.59 619 4 0.006 49 1 0.020 0.012 0.6 0.5 0.4 3.0 1.9 1.2
GGPS 1451 1101 0.24 1 0 0.000 177 2 0.011 0.009 0.4 0.3 0.3 2.1 1.3 0.8
ORCPI 1106 371 0.66 735 8 0.0109 371 1 0.0027 0.008 0.4 0.3 0.3 2.0 1.3 0.8
M YB 2251 701 0.69 94 0 0.000 50 0 0.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0

23314 10679 0.54 4522 161 0.036 1189 12 0.010 0.024 1.2 0.9 0.8 5.9 3.7 2.3
0.0000000051
0.0000000064 1 to 4 9.7 6.2 3.8
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Tab.7 – Descriptive population genetics for seven genes with moderate to high heterozygosity levels in Ophrys. n=number of 
sequences, L=gene length [bp], S=segregating sites, Pi=nucleotide diversity, ThetaW=Watterson estimator, R=recombination level (L [bp] x 
ThetaW), P=probability of x(estimated) <= x(observed), avg=average value of x, h=haplotype number, hDiv=haplotype diversity, 
Rm=minimum number of recombination events, SS=synonymous substitutions, NSS=non-syn. subst., NCP=non coding polymorphisms. green 
filled columns: R, and coalescent simulated values of P and avg. 
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Tab.8 – Species groups comparison of nucleotide diversity (Pi). Species groups: I – O. incubacea group, E – O. exaltata group, S – O. 
sphegodes group, G – O. garganica group. avg=average Pi per site over all genes. 
  ACS BGP CAD FAD GGPS GPX MYB OMT OrcPI all Avg. 

all sites 667 936 258 425 177 907 144 605 962 5081 564.6 

Pi_all 0.200 13.553 0.000 12.665 0.712 14.802 0.000 6.068 7.398 55.398 6.155 

I
 -
 E
 

Pi_all (per site) 0.0003 0.0145 0.0000 0.0298 0.0040 0.0163 0.0000 0.0100 0.0077 0.0826 0.0083 

all sites 666 936 258 425 177 896 144 653 957 5112 568.0 

Pi_all 0.200 13.553 0.000 12.665 0.712 14.802 0.000 6.066 7.398 55.396 6.155 

I
 -
 S
 

Pi_all (per site) 0.0003 0.0145 0.0000 0.0298 0.0040 0.0165 0.0000 0.0093 0.0077 0.0821 0.0108 

all sites 667 938 258 425 177 901 144 653 962 5125 569.4 

Pi_all 0.200 13.554 0.000 12.665 0.712 14.803 0.000 6.066 7.398 55.398 6.155 

I
 -
 G
 

Pi_all (per site) 0.0003 0.0145 0.0000 0.0298 0.0040 0.0164 0.0000 0.0093 0.0077 0.0820 0.0108 

all sites 666 955 258 425 177 896 144 608 957 5086 565.1 

Pi_all 1.625 13.752 12.134 8.487 0.712 12.956 0.000 5.709 5.981 61.356 6.817 

E
 -
 S
 

Pi_all (per site) 0.0024 0.0144 0.0470 0.0200 0.0040 0.0145 0.0000 0.0094 0.0063 0.1180 0.0121 

all sites 667 957 258 425 177 902 144 608 962 5100 566.7 

Pi_all 1.467 14.039 9.035 5.929 0.428 15.181 0.000 7.466 6.320 59.866 6.652 

E
 -
 G
 

Pi_all (per site) 0.0022 0.0147 0.0350 0.0140 0.0024 0.0168 0.0000 0.0123 0.0066 0.1039 0.0117 

all sites 666 957 258 425 177 985 144 656 957 5225 580.6 

Pi_all 1.625 13.752 12.134 8.487 0.428 14.381 0.000 6.114 5.981 62.903 6.989 

S
 -
 G
 

Pi_all (per site) 0.0024 0.0144 0.0470 0.0200 0.0024 0.0146 0.0000 0.0093 0.0063 0.1164 0.0120 

all sites 666 892 224 425 177 821 143 604 950 4902 544.7 

Pi_all 1.126 12.961 9.831 11.122 1.308 11.642 0.000 10.262 6.356 64.607 7.179 

I
 -
 O
 

Pi_all (per site) 0.0017 0.0145 0.0439 0.0262 0.0074 0.0142 0.0000 0.0170 0.0067 0.1315 0.0132 



 87 

“FLORAL ISOLATION IS THE MAIN REPRODUCTIVE BARRIER AMONG 

CLOSELY RELATED SEXUALLY DECEPTIVE ORCHIDS“ 

 

 

ABSTRACT 

 

Floral isolation is an important component of pollinator-driven speciation. 

However, up to now, only a few studies have quantified its strength and relative 

contribution to total reproductive isolation. In this study we quantified floral 

isolation among three closely related, sympatric orchid species of the genus 

Ophrys by directly tracking pollen flow. Ophrys orchids mimic their pollinators’ 

mating signals, and are pollinated by male insects during mating attempts. This 

pollination system, called sexual deception, is usually highly specific. However, 

whether pollinator specialization also conveys floral isolation is currently under 

debate. In this study, we found strong floral isolation: among 46 tracked pollen 

transfers in two flowering seasons, all occurred within species. Accounting for 

observation error rate, we estimated a floral isolation index ≥0.98 among each 

pair of species. Hand pollination experiments suggested that post-pollination 

barriers were effectively absent among our study species. Genetic analysis based 

on AFLP markers showed a clear species clustering and very few F1 hybrids in 

natural populations, providing independent evidence that strong floral isolation 

prevents significant interspecies gene flow. Our results provide the first direct 

evidence that floral isolation acts as the main reproductive barrier among closely 

related plant species with specialized pollination. 

 

KEY WORDS: Floral odor, Ophrys, pollination, reproductive isolation, sexually 

deceptive orchids, speciation. 
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INTRODUCTION 

 

Floral isolation is a form of pre-pollination reproductive isolation that can play an 

important role during the process of plant speciation (Grant 1994; Lowry et al. 

2008; Kay and Sargent 2009; Schiestl and Schlüter 2009). Floral isolation can be 

mediated through the behaviour of pollinators (ethological isolation) or the 

morphology of the flower (mechanical isolation) and work in concert with other, 

later-acting reproductive barriers (Grant 1994; Fulton and Hodges 1999; 

Schemske and Bradshaw 1999; Ramsey et al. 2003; Aldridge and Campbell 

2007; Schiestl and Schlüter 2009). The determination of the relative importance 

of different types of reproductive barriers among species has become a central 

topic in the study of speciation (Ramsey et al. 2003; Coyne and Orr 2004; 

Cozzolino and Scopece 2008; Lowry et al. 2008; Widmer et al. 2009). Previous 

studies have shown that in many plants, prezygotic isolation contributes more to 

total isolation than postzygotic isolation (Rieseberg and Willis 2007; Lowry et al. 

2008; Widmer et al. 2009). In the absence of geographic barriers to gene flow 

(i.e., among sympatric species), floral isolation can be the most important 

prezygotic barrier. However, the relative strength of prezygotic and postzygotic 

isolation may differ between species, and may depend on the pollination system 

(Cozzolino et al. 2004; Cozzolino and Scopece 2008). In orchids, floral isolation 

has been suggested to be strong, because their associations with pollinators are 

often highly specific (Schiestl and Schlüter 2009). Ophrys L. is a genus of 

sexually deceptive orchids, which mainly occurs in the Mediterranean area. To 

attract pollinators, these orchids mimic the olfactory, visual, and tactile signals of 

the females of their associated pollinator insects, and thereby induce so-called 

pseudocopulations in males, leading to pollination (Kullenberg 1961; Kullenberg 

and Bergström 1976; Paulus and Gack 1990a,b; Schiestl et al. 2000). In this 

pollination system, floral odor is the key factor for specific pollinator attraction 

(Schiestl et al. 1999, 2003; Mant et al. 2005a,b; Peakall et al. 2010). One of the 

major characteristics of sexual deception is its high specificity, with each species 

of Ophrys only attracting one or very few species of male insects as pollinator(s) 

(Paulus and Gack 1990b). Therefore, different Ophrys species, which are mostly 

genetically compatible and crossable, are potentially isolated from each other 

due to ethological floral isolation, that is, the nonsharing of pollinator species 

(Ehrendorfer 1980; Paulus and Gack 1990b; Schiestl and Ayasse 2002; Scopece 
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et al. 2007; Schiestl and Schlüter 2009). Mechanical floral isolation is also 

present between some Ophrys species, mainly between the sections Pseudophrys 

and Ophrys (Kullenberg 1950; A° gren et al. 1984; Borg-Karlson 1990; Cortis et 

al. 2009). Among these groups, different Ophrys species can be pollinated by the 

same pollinator in sympatry, because pollinia are attached to different parts of 

the pollinator’s body (head or abdomen), thus preventing pollen transfer 

between species. A recent study by Cortis et al. (2009), however, showed that 

crosspollination can occur in natural population despite mechanical isolation, 

which indicates that mechanical isolation in Ophrys may not be a very strong 

barrier to gene flow. Understanding the process of speciation and diversification 

in Ophrys orchids is challenging due to their high morphological variability, which 

can mean that it is often difficult to reliably identify species in the field. This is 

further complicated by the multiple and often highly divergent taxonomic 

treatments of the group. For example, the number of species in Ophrys listed by 

different authors ranges from 17 species (and 44 subspecies) (Sundermann 

1980) or 19 species (Pedersen and Faurholdt 2007) to 250 species (Delforge 

2006). Moreover, recent genetic and molecular phylogenetic studies of Ophrys 

showed low genetic divergence among species (Soliva et al. 2001; Soliva and 

Widmer 2003; Devey et al. 2008). The pattern of low genetic differentiation 

among species can be explained by two (nonexclusive) hypotheses: (1), the 

genus Ophrys may have undergone (a) recent radiation(s), or (2), there is 

frequent gene flow among species. Under the first scenario, Ophrys species-

diversification is either due to pollinator shifts mediated by a change in key floral 

traits (such as floral odor bouquets; Mant et al. 2005b; Schlüter et al. 2009; 

Vereecken et al. 2010) or habitat adaptation. However, under scenario 1, if the 

time since species diversification is short, neutral genetic structure would not yet 

be expected to show a clear separation among species (Harrison 1991; Klein 

1998). Under scenario 2, it is assumed that the strength of reproductive isolation 

among sympatric Ophrys species is weak, perhaps due to low fidelity of 

pollinators, therefore resulting in frequent gene flow among species, which 

reduces the genetic differentiation among species after their initial divergence 

(Soliva and Widmer 2003; Devey et al. 2008). One fundamental difference 

between these two scenarios is the assumed strength of floral isolation among 

sympatric Ophrys species: the first scenario assumes strong floral isolation, 

whereas the second scenario assumes relatively weak floral isolation. The 
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absolute pollinator specialization (i.e., the number of pollinators visiting each 

species) in Ophrys has previously been investigated (e.g., Paulus and Gack 

1990b; Mant. et al 2005b). 

However, the relative pollinator specialization (pollinator sharing, ethological 

floral isolation) and the resulting proportion of interspecific pollen transfer are 

still unknown. In this study, we directly tracked pollen flow within and among 

three sympatric and co-flowering, closely related Ophrys species, and quantified 

floral isolation as well as components of postmating reproductive barriers among 

these three species. Additionally, the genetic structure was investigated among 

species. Specifically, the following questions are addressed in this article: (1) 

How strong is floral isolation among sympatric Ophrys species? (2) What is the 

contribution of prepollination, postpollination prezygotic, and postzygotic 

isolation barriers to the total reproductive isolation among sympatric Ophrys 

species? (3) What is the proportion of hybrids in natural populations? 

 

 

MATERIALS & METHODS 

 

STUDY SPECIES 

 

To most effectively address the question of the relative importance of the 

different putative isolation mechanisms in Ophrys, a set of species with the 

following criteria are needed: (1) Species should occur and co-flower in 

sympatry; (2) species should have the same ploidy level; (3) species should be 

closely related. According to these criteria, the species Ophrys sphegodes MILLER, 

O. exaltata subsp. archipelagi (GÖLZ & H.R.REINHARD) DEL PRETE, and O. 

garganica NELSON EX O. & E. DANESCH were chosen in this study, because 

these three species co-flower and co-occur sympatrically in Southern Italy, 

phylogenetic analysis indicates that these species are closely related (Devey et al. 

2008), and ploidy levels of these species are expected to be the same and 

confirmed in this study (D’Emerico et al. 2005). 
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PLANT MATERIAL 

 

The species O. sphegodes, O. exaltata, and O. garganica were identified based 

on floral morphology, according to criteria described by Mant et al. (2005b). At 

Capoiale (CAP), where all three species co-occur and co-flower, samples of these 

three species were collected in 2008 and 2009 for both scent and genetic 

analysis; at Marina di Lesina (MDL: 41◦54_N, 15◦20_E), where mostly O. exaltata 

and O. garganica co-occur and co-flower (and only very few individuals of O. 

sphegodes were found), these two species were collected in 2008 and 2009 only 

for floral scent analysis; at the more distant Foce Garigliano (FCG: 41◦13_N, 

13◦46_E), where O. exaltata and O. sphegodes co-occur and co-flower (and O. 

garganica does not occur), these two species were collected in 2008 for both 

scent and genetic analysis. Each study area was about five hectares in size, and 

was estimated to contain 2000–3000 flowering plant individuals (counting all 

three species). For each sampled plant individual, a piece of leaf tissue was 

collected, and placed in a plastic bag filled with silica gel (Sigma, Buchs, 

Switzerland) for subsequent molecular analysis, and one labellum of an 

unpollinated flower was cut, placed in a 2 mL vial (Supelco, Sigma Buchs, 

Switzerland) and rinsed in 500 µL hexane (Fluka, Sigma Buchs, Switzerland) for 

1min while gently shaking. Thereafter, the labellum was removed and all scent 

samples were stored at −28◦C until being analyzed by gas chromatography (GC). 

In total, 73 O. sphegodes (49 from CAP, 24 from FCG), 72 O. exaltata (48 from 

CAP, 24 from FCG), and 26 O. garganica (all from CAP) were sampled for genetic 

analysis; 100 O. exaltata (35 from CAP, 34 from MDL, 31 from FCG); 94 O. 

sphegodes (62 from CAP, 12 from MDL, 20 from FCG) and 56 O. garganica (30 

from CAP, 26 from MDL) were sampled for floral odor analysis.  

 

IN SITU MEASUREMENT OF FLORAL ISOLATION 

 

We used an experimental approach with a plot design to measure floral isolation. 

The plots were set up in the field as follows, at the same localities as naturally 

occurring plants. Two individuals of each species were randomly positioned in 

each plot (six plants for each plot in CAP and MDL, four plants for each plot in 

FCG where O. garganica was absent from the natural populations). The distance 

between neighboring plants was 0.5 m. For each experiment, 20 plots were set 
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up along a transect through the habitat of the orchids. The distance between 

neighboring plots was 20 m, because the average pollinia-carrying distance of 

Colletes pollinators was estimated to be around 5 m (Peakall and Schiestl 2004). 

Plants for the plot experiments were picked from natural populations, each flower 

was checked for pollinia removal or pollen deposition, and pollinia were stained 

alternately with the dyes brilliant green, methylene aniline blue, orange G, and 

trypan red as described previously (Peakall 1989). The color used for each 

species was randomized between experiments to reduce potential effects of 

staining color on pollinator behaviour. The inflorescence was put in a water-filled 

15-mL plastic tube placed in the ground. Pollinia removal and deposition of 

massulae were recorded three days after setting up the plots. Because Ophrys 

massulae are relatively small, and the assessment of their presence requires 

some experience in the field, there is a potential for observation errors to happen. 

Thus, to assess the observation error rate, in a subset of the experiments, plants 

were checked at several time points. For about half of the plant individuals used 

in the plot experiments, one unpollinated flower labellum was removed from the 

inflorescence to collect floral odor as described above. In 2008, two replicates of 

the experiment were performed at each of the following locations: CAP,MDL, and 

FCG (in total six experiments, 120 plots). In 2009, two replicates of the 

experiment were performed at locations CAP and MDL (in total, four experiments, 

80 plots). The experiment at FCG was not repeated in 2009 due to the relatively 

poor overall pollinator activity at this location in 2008 (see Table 1). At each 

location where experiments were performed, the pollination success of naturally 

occurring plants in the surrounding area (within 20 m of the transect) was 

recorded at the end of the flowering season. 

 

MEASUREMENT OF POSTMATING ISOLATION BARRIERS 

 

Manual crosses were performed in spring 2010 in the greenhouse of the 

Department of Structural and Functional Biology, University of Naples Federico II. 

All crossed plants were collected from sympatric natural populations of the three 

investigated species at CAP, where we set up the plot experiments. To prevent 

uncontrolled pollinations, plants were placed in cages covered with a thin net 

prior to flowering. Pollination experiments were performed by removing pollinia 

by touching the viscidia with a plastic toothpick and placing them on the stigmas 
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of other plants of the same species (intraspecies pollinations), or of a different 

species (interspecies pollinations). Care was taken to pollinate no more than two 

flowers per individual to prevent the potential negative effects of over-pollination 

on fruit set and seed viability. All possible crossing combinations among O. 

exaltata, O. garganica, and O. sphegodes were performed bidirectionally 

(yielding a total of 78 crossings, see Table 2). Ripe fruits were collected and 

stored in silica gel. Seeds were then observed under an optical microscope with 

100× magnification and assigned to two mutually exclusive categories: viable 

and inviable seeds, based on the presence or absence of embryos, respectively. 

 

PLOIDY-LEVEL ANALYSIS 

 

Differences in ploidy can provide an important barrier to gene flow. Although we 

expected all three study species to be diploid, with a chromosome number of 2n 

= 36 having been reported from O. sphegodes and O. garganica (Greilhuber and 

Ehrendorfer 1975; D’Emerico et al. 2005), the ploidy level of O. exaltata has not 

previously been reported. Furthermore, ploidy may also be variable within 

species and/or among different populations. Therefore, we investigated the 

ploidy levels of all three species in our study populations. Ploidy levels of the 

three species were analyzed using pollinia. Two pollinia of a single flower per 

individual were collected in spring 2010 from CAP and MDL populations. In total, 

86 O. sphegodes, 71 O. exaltata, and six O. garganica samples were analyzed. 

Using flow cytometry, we analyzed the relative ploidy level for each individual 

separately. For sample preparation and analysis, we followed a two-step protocol 

(Doleˇzel et al. 2007). Two pollinia were chopped and mashed together with 

approximately 25-mm2 leaf material of Phaseolus coccineus (2n, 1C = 1.01 ± 

0.4 pg; Bennett and Leitch 2005), which served as internal standard (IS), with a 

sharp razor blade in 1-mL ice-cold Baranyi’s solution (0.1 M citric acid, 0.5% 

Triton X-100; Baranyi and Greilhuber 1995). After filtering the suspension 

through a 30 µm CellTrics® disposable filter (Partec GmbH, Münster, Germany), 

the filtrate was centrifuged (5 min, 

380 × g, room temperature) using a Sorvall® RMC 14 centrifuge (Kendro Revco 

Lindberg Heraeus Sorvall, Asheville, NC). After removal of supernatant, nuclei 

were resuspended in 40 µL of ice-cold Baranyi’s solution. One hundred and sixty 

micro liters of Otto II solution (0.4 M Na2HPO4) supplemented with DAPI (4_, 6- 
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diamidino-2-phenylindole; final concentration: 4 µgmL−1) were added and 

relative fluorescence intensity was recorded using a Cell Lab QuantaTM SC-MPL 

flow cytometer (Beckman Coulter, Fullerton, Canada) with a mercury arc lamp. 

Only samples with pollinia peaks of at least 1000 counts and a coefficient of 

variation of less than 10% were analyzed. To determine relative ploidy level of 

the three species, the ratio between the median of pollinia peaks and the median 

of IS peaks was calculated. 
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FLORAL ODOR ANALYSIS 

 

GC analysis was performed as described by Mant et al. (2005b) with 300 ng n-

octadecane (C18) added to the floral extracts as an IS. One micro liter of each 

sample was injected into an Agilent 6890 GC at 50◦C, followed by opening of the 

split valve and heating to 300◦C at rate of 4◦C/min. An HP-5 column and flame 

ionization detector (FID) were used, and hydrogen was used as a carrier gas, 

with nitrogen as the makeup gas. For identification of compounds, several 

samples were re-analyzed by GC with a mass selective detector (GC/MSD; 

Agilent 5975) using the same oven and column parameters. Spectrum and 

retention time of compounds were compared with those of synthetic standards, 

that is, alkanes: nonadecane (C19), henicosane (C21), docosane (C22), 

tricosane (C23), tetracosane (C24), pentacosane (C25), hexacosane (C26), 

heptacosane (C27), octacosane (C28), nonacosane (C29); and alkenes: (Z)-7-

heneicosene [(Z)-7-C21], (Z)-9-heneicosene [(Z)-9-C21], (Z)-7-tricosene [(Z)-

7-C23], (Z)-9-tricosene [(Z)-9-C23], (Z)-7- pentacosene [(Z)-7-C25], (Z)-9-

pentacosene [(Z)-9-C25], (Z)- 11-pentacosene [(Z)-11-C25], (Z)-12-

pentacosene [(Z)-12-C25], (Z)-7-heptacosene [(Z)-7-C27], (Z)-9-heptacosene 

[(Z)-9-C27], (Z)-11-heptacosene [(Z)-11-C27], (Z)-12-heptacosene [(Z)-12- 

C27], (Z)-7-nonacosene [(Z)-7-C29], (Z)-9-nonacosene [(Z)-9- C29], (Z)-11-

nonacosene [(Z)-11-C29], (Z)-12-nonacosene [(Z)- 12-C29], where (Z)-number 

indicates the cis double-bond position. For sources of standard compounds see 

Mant et al. (2005a). It is noted that the discrimination of (Z)-11- and (Z)-12-

alkenes was not possible with the GC parameters used. The relative amount of 

each odor compound was calculated as the proportion of the total amount of all 

alkenes and alkanes of a chain length between 18 and 30 carbons. 

 

GENETIC DIVERGENCE AMONG SPECIES 

 

Genomic DNA was extracted using GenElute Plant Genomic DNA Miniprep Kit 

(Sigma-Aldrich, Italy). The AFLP procedure was performed as described by Vos 

et al. (1995), with modifications as reported in Moccia et al. (2007) using 

fluorescent dye-labeled primers. An initial trial using 14 different primer 

combinations on four individuals each of O. sphegodes and O. exaltata was 

conducted to identify those primers that yield the highest number of easily  
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detectable polymorphic peaks that were different between the two species. After 

the screening, six selective primer combinations were chosen: FAM-EcoRIAGC/ 

MseI-ACAC, NED-EcoRI-ACC/MseI-ACTG, HEXEcoRI- AGC/MseI-ATCG, FAM-

EcoRI-ATG/MseI-CGG, NEDEcoRI- AAC/MseI-CGC and HEX-EcoRI-AGC/MseI-

CCAA. For the restriction digestion, the enzymes EcoRI and MseI were used on a 

total of 250 ng of genomic DNA. Ligation of EcoRI and MseI adapters took place 

in the same reaction. Two microliter of the restriction-ligation product were used 

for a preselective PCR with primers having one selective base. For the successive 

selective PCR, 1 µL of a 1:10 dilution of the PCR product was used. Primers were 

the same as in the preselective PCR, but with three or four selective bases. 

Fragment separation and detection took place on a 3130 Genetic Analyzer 

(Applied Biosystems, Foster City, CA). GeneScan-500 LIZ (Applied Biosystems) 

was used as IS. Processing of the raw data and sizing of the fragments were 

done with Genemapper 3.7 software (Applied Biosystems). Absence or presence 

of AFLP bands was carefully scored by eye. To avoid artefacts, only AFLP markers 

that could be unambiguously scored over the whole dataset were included in the 

binary matrix. AFLP analysis was performed as two experiments at different 

dates and runs, and scored independently, preventing us from merging the two 

AFLP datasets. These two separate datasets were therefore analyzed separately: 

the first dataset contains 58 O. sphegodes (34 from CAP, 24 from FCG), 55 O. 

exaltata (31 from CAP, 24 from FCG), and 26 O. garganica (all from CAP) 

individuals; the second dataset contains 30 O. sphegodes (15 from CAP, 15 from 

FCG) and 32 O. exaltata (17 from CAP, 15 from FCG). In the second dataset, 
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both species from population FCG were the same individuals as in the first 

dataset. 

 

EVALUATION OF THE STRENGTH OF INDIVIDUAL ISOLATING BARRIERS 

 

The strength of each type of reproductive isolation barrier was calculated based 

on the quantitative approach suggested by Lowry et al. (2008) and Martin and 

Willis (2007). The floral isolation index was calculated based on the following 

formula: RIfloral =1− (observed/expected inter-species pollen 

flow)/(observed/expected intra-species pollen flow). The precision of this 

estimate of RIfloral is limited by the number of observed events in our 

experiments and any potential observation error introduced when checking 

plants for pollination or pollinia removal. Therefore, RIfloral was recalculated so 

as to account for these errors. Three of our experiments were checked twice, any 

error recorded, and these data were used to estimate the observation error rate. 

For example, on the same flower, massulae might have been recorded at the 

first but not on the second inspection, indicating that one of these two data 

points was probably erroneous. This error rate followed a pattern, that is the 

best fitted curve decreased exponentially with the number of experiments we 

performed, concordant with our expectation that observation error rate 

decreases as the observers’ experience increases [ln(Error rate)=−0.25 × i ± SD, 

where i refers to the number of experiments performed by that time]. Based on 

this formula, the error rate for each experiment was estimated, and the floral 

isolation index recalculated by allowing observation error to occur at the 
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estimated error rate ± SD. We repeated this estimation procedure 1000 times to 

obtain a simulated distribution of floral isolation index values, and used this 

distribution to obtain mean and 95% confidence values for RIfloral. Because in 

orchids, female gametophyte development and fruit set formation usually 

happens after successful pollination with compatible pollen (Zhang and O’Neill 

1993), the postmating prezygotic isolation index can be estimated as the 

proportion of fruit set (i.e., capsules) formed following interspecies pollinations, 

relative to the proportion of fruit set formed following intraspecies pollinations 

with each parental species (Scopece et al. 2007): RIpostmating−prezygotic =1 − 

(ratio of fruit set formed in interspecies crosses)/(average ratio of fruit set 

formed in parental intraspecies crosses). Similarly, the postzygotic isolation 

index was estimated by viable seeds and quantified based on the following 

formula (Scopece et al. 2007): RIpostzygotic = 1 − (proportion of viable seeds in 

interspecies crosses)/(average proportion of viable seeds in parental intraspecies 

crosses). 

 

DATA ANALYSIS 

 

Linear discrimination analysis (LDA) was used for analysis of floral scent based 

on relative amounts of hydrocarbons. Comparison of fruit set formation ratios 

among interspecies crosses and intraspecies crosses was performed by Fisher’s 

exact tests. The significance of different seed viability among interspecies and 

intraspecies crosses was assessed using Student’s t-test, after normality testing 

of the data distribution by the Shapiro test (Royston 1982). Statistical analysis of 

AFLP data was performed in FAMD 1.25 (Φ_ST and PCoA) (Schlüter and Harris 

2006) and Hindex 1.41 (hybrid index; Buerkle 2005). Principal coordinate 

analysis (PCoA) was based on Jacquard’s similarity coefficient. Correlations 

between pairwise floral odor and genetic distance was assessed in a Mantel test 

(10,000 permutations). Here, floral odor distance was calculated as a Euclidean 

distance, and genetic distance was calculated as 1 − Jacquard’s similarity. Except 

for the analysis of AFLP data, all statistical analyses in this study were carried out 

in R 2.11.0 (R Development Core Team 2010). 
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RESULTS 

 

POLLINATION SUCCESS 

 

Among the natural populations, the average pollination success (defined as the 

percentage of pollinated flowers) was 10.8% in O. sphegodes, 18.8% in O. 

exaltata, and 3.2% in O. garganica, based on two flowering seasons (2008 and 

2009). Furthermore, within each species, pollination success varied among 

populations (Fig. 1). No significant differences were found between the two years 

of observations. The overall patterns of pollination success in our plot 

experiments were similar to the natural populations. Pollination success in plot 

experiments was about 7.8%, 9.2%, and 4.1% for O. sphegodes, O. exaltata, 

and O. garganica, respectively. The population variation in pollination success 

was similar for natural populations and plot experiments, except for O. 

sphegodes in MDL where pollination success was much lower than in CAP (3.9%), 

whereas in plot experiments, the pollination success was similar to CAP (8.9%). 

 

FLORAL ISOLATION 

 

The flowering time of O. sphegodes and O. exaltata was similar, whereas the 

peak of O. garganica blooming was 1–2 weeks later (Xu, field observations). 

However, there was a broad overlap in flowering time, with around 70% of O. 

garganica flowers, and around 95% of O. sphegodes and O. exaltata flowers 

open during the experimental period. Of all 1855 flowers and 1686 stained 

pollinaria used in the experiments, 131 flowers (7.1%) were pollinated. Among 

these pollinated flowers, 46 flowers were pollinated with stained pollinia. Fifteen 

O. sphegodes flowers, 21 O. exaltata flowers, and 10 O. garganica flowers 

received stained pollinia (Table 1). All of the 46 pollination events with stained 

pollinia were within species, and we did not observe a single interspecies transfer. 

Thus, because no interspecies pollen flow was observed, the floral isolation index 

equals 1. Likewise, the simulated data incorporating observation error rates (see 

Methods) showed strong prepollination reproductive isolation among each 

species, RIfloral ≥ 0.98 (Table 3 and Fig. S1). 
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POSTMATING ISOLATION 

 

Postmating, prezygotic isolation was estimated as the fruit set ratio after hand 

pollination. Most of the inter- and intraspecies crosses led to the development of 

capsules (Table 2). The lowest fruit set ratio was found for intraspecies crosses in 

O. sphegodes, although this was not statistically significant when compared to 

other crosses. Thus, the postmating prezygotic isolation index among each 

species was estimated to be very low. For species pairs O. sphegodes/O. exaltata 

and O. sphegodes/O. garganica, the isolation indices were negative (however, 

not significantly different from zero), which might indicate that interspecies 

crosses performed better than intraspecies crosses, and for O. garganica/ O. 

exaltata, the isolation indices was close to zero (Table 3). The proportion of 

seeds with embryos (viable seeds) was used to estimate the postzygotic isolation 

index. The number of seeds analyzed for each capsule was 324 ± 103 (mean ± 

SD). Among all fruits, the average percentage of viable seeds was 46.8 ± 21.8% 

(mean ± SD). We did not find a significant difference between any inter- or 

intraspecies crosses (Fig. 2). Similar to postmating prezygotic isolation, the 

mean postzygotic isolation index was also negative between species pairs O. 

sphegodes/O. exaltata and O. sphegodes/O. garganica, whereas for O. 

garganica/O. exaltata, the mean value index was slightly higher (Table 3). 

However, statistical analysis showed that none of these values were significantly 

different from zero. 

 

PLOIDY-LEVEL ANALYSIS 

 

No difference in the ploidy level was detected among the three species. The 

ratios of the relative inflorescence intensity between the pollinia and the IS are 

shown in Figure S2. All samples of these species showed similar relative genome 

size. It is most likely that all three species in our study are diploid, because 

previous studies showed that O. sphegodes and O. garganica are diploid 

(Greilhuber and Ehrendorfer 1975; D’Emerico et al. 2005). 
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FLORAL ODOR BOUQUET 

 

The differences in floral odor bouquets among studied species were similar to 

those reported previously (Mant et al. 2005b). The major floral odor difference 

among the species was the proportion of different alkenes. By LDA, 236 of 250 

samples (94.4%) were classified as the same species as they were identified in 

the field based on floral morphology according to the criteria described by Mant 

et al (2005b). The morphological/chemical identification mismatch rate between 

O. sphegodes and O. exaltata was 4.1%, between O. sphegodes and O. 

garganica 3.3% and between O. garganica and O. exaltata 0.64%. 

 

GENETIC DIVERGENCE AMONG SPECIES 

 

AFLP datasets one and two contained 242 and 322 markers, respectively. 

Genetic divergence among population pairs, as estimated by pairwise Φ _ST, was 

relatively low. For the first dataset, where all three species from CAP were 

analyzed, the lowest Φ _ST value (0.044) was found between O. sphegodes and 

O. garganica, and the highest (0.064) was found between O. garganica and O. 

exaltata (see Table 4). However, the differences among species pairs were very 

small. For the second dataset, where O. sphegodes and O. exaltata from both 

CAP and FCG were analyzed, the highest Φ_ST (0.074) was found between O. 

sphegodes in CAP and O. exaltata in FCG, whereas Φ _ST values between O. 

sphegodes in CAP and O. sphegodes in FCG, and between O. sphegodes in CAP 

and O. exaltata in CAP were lowest (0.059) (Table 4). Overall, Φ _ST values 

were low, within-species Φ _ST values being slightly lower than between-species 

values. Genetic structure among species was investigated by PCoA (Fig. 3). 

These analyses suggest that the genetic similarity between O. sphegodes and O. 

garganica is higher than between the species pairs O. sphegodes/O. exaltata or 

O. garganica/ O. exaltata. Although a few outliers were found for both CAP and 

FCG populations, the three species formed genetically separable clusters (Fig. 

3A,B,C and Table 4). For the O. sphegodes/O. exaltata species pair, floral odor 

showed significant correlation with genetic distance for population FCG (r = 0.42, 

P = 0.0001), but not for population CAP (r = −0.11, P = 0.69). For species pairs 

O. sphegodes/O. garganica and O. garganica/O. exaltata in CAP, significant 

correlations were found in both (r = 0.28, P = 0.0026 and r = 0.17, P = 0.036, 
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respectively). For population CAP, no obvious F1 hybrids were found among the 

three species, as defined by a mean maximum likelihood hybrid index estimate 

between 0.4 and 0.6. In contrast, for population FCG, two samples were 

classified as potential F1 hybrids between O. sphegodes and O. exaltata 

according to the same criteria (Fig. 4). Both samples were classified as O. 

sphegodes based on floral odor discrimination analysis (Fig 3F). Overall, for 

samples from both populations (146 individuals), the percentage of F1 hybrids 

was very low (1.37%). 

 

 

DISKUSSION 

 

Reproductive isolation has been a central topic in the study of speciation (Coyne 

and Orr 1998; Moyle et al. 2004; Rieseberg and Willis 2007; Scopece et al. 2007, 

2008; Schiestl and Schlüter 2009; Widmer et al. 2009). Here, we quantified 

three different kinds of reproductive barriers (floral isolation, postpollination 

prezygotic isolation, and postzygotic isolation), as well as ploidy level among 

three sympatric sexually deceptive Ophrys orchids using experimental 

approaches. Among these potential barriers, floral isolation was found to be very 

strong (RIfloral ≥ 0.98), whereas later-acting barriers were effectively absent in 

our study species. Furthermore, population genetic analysis showed a clear 

separation between species despite low genetic divergence, with few hybrids 

within natural populations. Our results shed light on the role of plant–pollinator 

interactions in the evolution of reproductive isolation and plant speciation. We 

suggest that pollinator adaptation, which conveys strong floral isolation, is the 

main driver of speciation in this plant group with highly specialized pollination. 
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FLORAL ISOLATION IN PLANT SPECIATION 

 

Floral isolation has been found in many plant–pollination systems, such as 

Ipomopsis (Grant 1992), Mimulus (Schemske and Bradshaw 1999; Ramsey et al. 

2003), Nicotiana (Ippolito et al. 2004), Petunia (Hoballah et al. 2007), and Silene 

(Goulson and Jerrim 1997; Wälti et al. 2008), and meta-analyses indicate that 

floral isolation acts as a strong reproductive barrier in various families of 

flowering plants (Grant 1994; Lowry et al. 2008; Schiestl and Schlüter 2009; Kay 

and Sargent 2009; Schiestl, in press). However, there are few examples where 

floral isolation alone is sufficient to maintain species differentiation in sympatry 

(Kay and Sargent 2009; Schiestl, in press). In most studied cases, floral isolation 

acts together with other isolation barriers (postpollination isolation, 

ecogeographic isolation etc.; Lowry et al. 2008). Co-occurrence of floral isolation 

with other isolation barriers may be due to two reasons: (1) in most plant 

systems, it is unlikely that floral isolation has initially evolved in sympatry, 

because the shift to completely new pollinators may require changes in many 
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floral traits (but see Bradshaw and Schemske 2003 and Hoballah et al. 2007). 

Therefore, geographical or habitat-associated barriers would often be involved in 

the evolution of floral isolation; (2) once floral isolation is established, secondary 

isolation barriers can build up over time (Via and West, 2008; Matute et al., 

2010; Moyle and Nakazato, 2010). However, to better understand the 

contribution of floral isolation to plant speciation, as well as its evolutionary 

patterns, cases in which only floral isolation is involved in the speciation process 

are particularly valuable. 

 

REPRODUCTIVE ISOLATION AMONG SYMPATRIC OPHRYS SPECIES 

 

As shown in our study, Ophrys may represent a case in which floral isolation is 

the most important barrier to gene flow among species with a large geographic 

overlap, sympatric occurrence, and flowering time overlap in their given habitats. 

Here investigated Ophrys species showed strong ethological floral isolation and a 

lack of postpollination isolation barriers. Our conservative estimation of the 

strength of floral isolation, which took into account the number of trackable 

pollination events and the observation error, showed that the floral isolation 

index among each Ophrys species pair was higher than 0.98. This estimation is 

consistent with our AFLP data, which indicate 1.37% (two of 146 samples) 

putative F1 hybrids between O. sphegodes and O. exaltata. Our finding of strong 

floral isolation is also consistent with expectations from pollinator-behaviour 

studies often indicating little pollinator sharing among co-flowering species pairs 

(Kullenberg 1961; Paulus and Gack 1990b; Mant et al 2005a, 2005b; Schlüter et 

al. 2009). Although we have only partially quantified postzygotic isolation 

barriers, it is clear from our results that the early acting floral isolation is the 

major (if not the only) reproductive barrier among closely related Ophrys species. 

Recently, floral isolation in Ophrys has come under scrutiny, because studies 

based on genetic markers argued that floral isolation in Ophrys might be weak 

and allow for considerable gene flow across species boundaries (Soliva and 

Widmer 2003; Devey et al. 2008). However, the data presented in these studies 

only allow for an indirect inference on floral isolation. The genetic pattern 

observed by Soliva and Widmer (2003) estimated gene flow among species 

based on FST, however, such estimation can be misleading and should be 

interpreted cautiously (reviewed by Whitlock and McCauley 1999). In the study 
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by Devey et al. (2008), based on phylogenetic analysis, the authors suggested 

that cross-pollination is common among species because no clear phylogenetic 

patterns were found based on DNA sequences (ITS and plastid markers) and 

AFLP markers. However, gene flow cannot be assessed based on phylogenetic 

analysis without proper population genetic data (Slatkin 1985). Interestingly, 

Devey et al. (2008) found no significant genetic differentiation between O. 

exaltata and O. sphegodes (based on their ITS, plastid markers, and AFLP), 

whereas we found a clear clustering pattern with AFLP markers and even more 

so with floral-odor bouquet analyses. This discrepancy is likely because our study 

provides a more fine-grained resolution through the analysis of multiple 

populations and large sample sizes. We suggest one should be careful in drawing 

any conclusions on gene flow from investigations using only molecular markers 

or morphological data (see also discussion on hybridization in Ophrys below). As 

a consequence of the suggested gene flow across putative species boundaries, 

and the typically high variability among individuals in Ophrys, some authors have 

lumped several species together, resulting in a classification of few species and 

many subspecies (Pedersen and Faurholdt 2007). In Ophrys, species 

identification based on morphological characters alone can indeed be difficult. 

Floral scent, however, often shows a specific pattern among closely related, and 

morphologically very similar species (Mant et al. 2005b; Stökl et al. 2009), and 

should thus be taken into consideration when assigning individuals into species 

categories or testing such assignments. To better understand reproductive 

isolation and the implicated taxonomic consequences in Ophrys, we suggest that 

a complementary approach should be taken. This approach should incorporate 

the quantification of floral isolation and later-acting reproductive barriers 

(Ramsey et al. 2003), and combine these results with the analysis of the traits 

under selection (e.g., floral odor) as well as neutral molecular markers. 

 

MECHANISMS OF FLORAL ISOLATION IN OPHRYS 

 

In the studied species only ethological isolation contributes to floral isolation, 

because all three species attach pollinia to their pollinators’ heads, and hence 

there is no evidence of mechanical isolation. In Ophrys, floral odor acts as a key 

trait for specific pollinator attraction (Schiestl et al. 1999; Mant et al. 2005b) and 

is therefore likely responsible for ethological isolation among species. Our 
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discriminant function analysis of floral odor bouquets showed a clear separation 

among each species (Fig. 3 D,E,F). It has been shown that O. sphegodes attracts 

males of Andrena nigroaenea by emitting a hydrocarbon mixture with high 

proportions of (Z)-9 and (Z)-11/12 alkenes (Schiestl et al. 1999) (Fig. 

S3),whereas O. exaltata attracts males of Colletes cunicularius (Fig. S4) by 

emitting high proportions of (Z)-7 alkenes (Mant et al. 2005a). The pollinator of 

O. garganica has been reported to be Andrena carbonaria (Paulus and Gack 

1990b) (Fig. S5); O. garganica emits high proportions of (Z)-9 and (Z)-11/12 

alkenes with different carbon chain lengths (typically longer than in O. 

sphegodes), however, the active compounds for its pollinator have not yet been 

identified. Behavioural tests showed that C. cunicularius was only attracted by 

the floral odor of O. exaltata, but not by the other two species (Mant et al. 

2005b). Recently, Vereecken and Schiestl (2009) showed that floral color 

differences between O. sphegodes and O. exaltata do not contribute to species-

specific pollinator attraction. Collectively, these data suggest that strong 

ethological isolation in Ophrys is primarily due to different floral odor bouquets 

produced by each species, which are linked to the attraction of different, highly 

specific pollinators. 

 

HYBRIDIZATION AMONG OPHRYS SPECIES 

 

Pollinator adaptation may drive floral diversification and speciation in Ophrys, 

however, hybridization has sometimes been considered to be common among 

Ophrys species (Devey et al. 2008). In contrast, putative Ophrys F1 hybrids (as 

identified by morphology) were often found to be solitary, with large number of 

plants from the parental species surrounding them (Stebbins and Ferlan 1956), 

suggesting hybridization may not happen frequently. In accordance with this, we 

found only two putative F1 hybrids among 146 samples (1.37%) of O. sphegodes 

and O. exaltata. Both were found in one population (FCG). Those two putative F1 

hybrids produced a floral odor bouquet similar to O. sphegodes. Possible 

(nonexclusive) reasons for hybrids found in natural population could be the 

following: (1) the strength of floral isolation may be variable among populations 

due to variable specificity in the responses of pollinators to floral odor bouquets; 

(2) Changes of floral odor in Ophrys may happen through occasional changes in 

scent genes, leading to a break-down of floral isolation. To test the first 
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possibility, floral isolation should be assessed in various populations. We found 

consistently strong floral isolation in two adjacent populations, but could not 

precisely estimate floral isolation in the more distant population FCG, because 

the total number of pollination events observed in this population was small (only 

three in total). A study by Vereecken et al. (2010) suggested that floral isolation 

among Ophrys species pollinated by C. cunicularius and Andrena nigroaenea can 

break down in some populations, although the frequency of hybrids in that study 

was always much lower than that of parental species. Break down of floral 

isolation was also found in some populations among Ophrys species pollinated by 

other Andrena species (Stökl et al. 2008; Cortis et al. 2009). Varying strengths 

of floral isolation would suggest a geographical mosaic, with merging of 

populations through hybridization in some areas and divergence through strong 

floral isolation in other areas. This geographic mosaic may help to explain the 

phylogenetic pattern of Ophrys species observed in previous studies (Soliva et al. 

2001; Devey et al. 2008). However, further investigations about geographical 

variation in pollinator behaviour and floral isolation are needed to evaluate this 

hypothesis. A second reason for hybrids occasionally found in nature may be the 

genetic basis of floral odor changes in Ophrys. Because changes in floral odor 

production in Ophrys may be brought about by few genetic changes (Schlüter 

and Schiestl 2008, Schlüter et al. 2011), one would expect that some individuals 

of one species could stochastically evolve the same floral odor as another species 

through mutation or recombination. This would eventually lead to hybridization in 

natural populations, considering that floral odor is the major attractant for 

specific pollinators in this system and postpollination barriers are effectively 

absent. This hypothesis is consistent with the genetic and floral odor analyses in 

this study. Among the samples investigated here, a few plant individuals showed 

mismatches among their assignments from genetic and odor data (samples S07, 

G10, G14, S47 in Fig. 3, summary in Table 4). In other words, these samples 

have the neutral genetic background of one species, but an odor phenotype of 

another species, possibly due to changes in few genes controlling floral odor 

production. However, to further test this hypothesis, detailed studies on the 

genetic basis of floral odor components in Ophrys, and their consequence for 

pollinator attraction are needed. 
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POLLINATOR ADAPTATION AND SPECIATION IN OPHRYS 

 

As a scenario for speciation in Ophrys, we propose that incipient Ophrys species 

adapt to different pollinators by changing floral traits, especially floral odor, that 

convey strong floral isolation and induce the speciation process. In Ophrys, 

pollination success is relatively low due to pollen limitation (compare pollination 

success of natural populations and fruit set rate from hand pollination); a 

sexually deceptive pollination mechanism may thus induce negative density-

dependent selection: high population density may lead to low pollination success 

because pollinators are more likely to learn and avoid the deceptive flowers. 

Therefore, a shift in pollinators mediated by a change in floral scent genes may 

convey a selective advantage by increasing pollination success in the initially few 

novel genotypes. Furthermore, as shown in our study, different pollinators in 

Ophrys are associated with strong floral isolation, which is sufficient to prevent 

significant gene flow in sympatry. Changes of floral odor bouquets may be based 

on changes in few genes involved in the biosynthesis (or regulation) of 

pollinator-attractive floral compounds (Schlüter and Schiestl 2008; Schlüter et al. 

2011). Therefore, speciation in Ophrys could happen rapidly, even in sympatry. 

For example, Vereecken et al. (2010) showed that novel floral odor bouquets in 

Ophrys could evolve rapidly (after only one generation of hybridization), and 

directly lead to pollinator shifts in sympatry. The remarkable plant–pollinator 

interaction in Ophrys orchids provides a particularly interesting system to study 

pollinator adaptation directly involved in species divergence, a process that may 

be important in several other, highly specific pollination systems (Schiestl, in 

press). 

 

 

CONCLUSIONS 

 

By in situ tracking pollen flow and experimental hand pollination, we found floral 

isolation to be very strong among closely related, sympatric Ophrys species, 

whereas later-acting barriers to gene flow were effectively absent. Our results 

provide direct evidence that the reproductive barrier among these closely related 

plant species with specialized pollination consists mostly of floral isolation. In 

such a system, pollinator adaptation could directly lead to floral isolation and 



 110 

speciation. This offers a particular opportunity to study the role of floral isolation 

during the evolution of reproductive isolation and speciation. However, further 

studies that systematically combine neutral traits (such as molecular markers), 

traits under selection (such as floral odor) and their genetic basis, pollinator 

behaviour, as well as quantification of floral isolation in natural habitats will be 

helpful to better understand speciation processes in plants with specialized 

pollination systems. 
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“SPECIATION BY DISTURBANCE: 

A POPULATION STUDY OF CENTRAL ITALIAN 

OPHRYS SPHEGODES LINEAGES” 

 

 

INTRODUCTION 

 

Speciation by selection can be the result of different fixed mutations contributing 

to adaptation, or it is caused by environmental pressures – the latter process is 

known as ecological speciation and has been to shown to be a common force 

driving divergence in parapatry (Schluter 2009). While the basic idea dates back 

to Mary’s evolutionary synthesis (1942), the subject recently gained an 

intensified interest (e.g. Schluter 2009). Ecological speciation can be defined “as 

the process in which barriers to gene-flow evolve between populations as the 

result of ecologically-based divergent selection” (Rundle & Nosil 2005).  

The mechanisms that drive divergence in allopatry are well studied. Allopatric 

speciation involves the simple and easy to proof concept that divergence from a 

common ancestor is due to genetic drift and differential selection pressures over 

time in spatial isolation. While the latter scenario forbids gene-flow, parapatric or 

sympatric speciation necessarily include genetic exchange at least in the early 

steps of divergence. However, we are left with the question what the factors are 

that drive diversification in adjacent populations. This is of special interest in 

saturated plant communities where the ecological niche space is occupied in 

most parts. 

The framework of speciation by disturbance as a sub-concept of ecological 

speciation provides us with an explanation how saturated plant communities can 

be invaded by new species, or how it can promote lineage divergence. Long-term 

or periodic disturbance in the form of climate changes, pathogens, and most of 

all human intrusions leads to the alteration of existing niches and the emergence 

of new ones. The inherent concept implies that human colonisations may not 

only have led to a decrease of biodiversity through deforestation, ground sealing 

and construction activities of any kind. It also will have promoted the 

diversification of lineages into the new disturbed habitats. As evolution is 

happening very slowly from the human perspective, there might have been 

insufficient time for the incipiently diverging lineages to accumulate genetic 
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differentiation that allows detection with genetic tools or phenetic approaches. 

The tempo of speciation is a function of the quality of acting divergent selection 

pressures and the characteristics of the plant system they act on. Therefore, 

highly different mutation rates are expected to mark different situations and 

organisms. Fast evolving plant lineages might allow us to uncover the footprints 

of recent speciation events. 

The genus Ophrys is thought to have undergone a rapid radiation, which is likely 

to be recent as genetic differentiation within closely related taxa is very low. 

Floral isolation represents probably the only reproductive isolation barrier among 

species of that genus.  Isolation can be achieved by minor alterations of the 

scent bouquet responsible for attraction of specific pollinators. The switch to a 

novel pollinator might be based on minor genic changes due to random mutation, 

drift, or even positive selection. The inherent potential to immediately achieve 

reproductive isolation makes Ophrys a potential candidate for fast evolution and 

lineage diversification. As also the respective pollinator community is influenced 

by disturbance, the dynamics of this pollinator-plant system are probably more 

eminent than in most other systems. Among others, ecological speciation driven 

by disturbance is one possible scenario under which lineages of the genus Ophrys 

could have evolved. 

We present an example of a taxon that is likely to have speciated under the 

influence of human disturbance, as a case study for the whole genus, in which 

most taxa grow in disturbed habitats. 

 

 

MATERIALS & METHODS 

 

STUDY SPECIES & POPULATIONS 

 

We studied six populations of the polytypic and widely distributed O. sphegodes 

MILLER in Central Italy with AFLP’s. (1) O. sphegodes s.l. MILLER,  Vesuvio, 

Campania; (2) O. sphegodes s.l. MILLER, Cuma, Campania; (3) O. sphegodes s.l. 

MILLER, Foce Garigliano, Campania; (4) O. sphegodes s.str. MILLER, Gargano, 

Puglia; (5) O. argentaria J. DEVILLERS-TERSCHUREN & P. DEVILLERS (syn. O. 

sphegodes ssp. litigiosa var. argentaria (J. DEVILLERS-TERSCHUREN & P. 

DEVILLERS) N. FAURHOLDT), Marina di Castagneto, Tuscany; (6) O. classica J. 
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DEVILLERS-TERSCHUREN & P. DEVILLERS (O. sphegodes auct. non. MILLER), 

Marina di Castagneto, Tuscany. Scent was analyzed for populations (2) and (4), 

and additionally for (7) O. exaltata s.l. (syn. O. exaltata ssp. archipelagi), Cuma, 

Campania; (8) O. exaltata s.l. (syn. O. exaltata ssp. archipelagi), Gargano, 

Puglia. The same latter four populations were also investigated with pollinator 

choice experiments. 

 

AMPLIFIED FRAGMENT LENGTH POLYMORPHISM METHOD (AFLP) 

 

The amplified fragment length polymorphism procedure was performed as 

described by Vos et al. (1995), with modifications as reported in Moccia et al. 

(2007) and using fluorescent dye-labeled primers. An initial trial using 14 

different primer combinations on four individuals each of O. sphegodes and O. 

exaltata was conducted to identify those primers that yield the highest number of 

easily scorable peaks that were different between the two species. After the 

screening six primer combinations were chosen: AGCfamACAC, ACCnedACTG, 

AGChexATCG, ATGfamCGG, AACnedCGC and AGChexCCAA. For the restriction 

digestion the enzymes EcoRI and MseI were used on a total of 250 ng DNA. 

Ligation of EcoRI and MseI adapters took place in the same reaction. 2µl of the 

restriction-ligation product was used for a preselective PCR with EcoRI and MseI, 

both having one additional selective base. For the successive selective PCR, 1µl 

of a 1:10 dilution of the PCR product was used. Primers were the same as in the 

preselective PCR, but with three or four additional selective bases. Fragment 

separation and detection took place on a 3130 Genetic Analyzer (Applied 

Biosystems, Foster City, USA). 500 LIZ was used as internal standard. Alignment 

of the raw data and detection of the fragment sizes were done with Genemapper 

3.7 software (Applied Biosystems, Foster City, USA). Absence or presence of 

AFLP bands were carefully scored by eye. To avoid artefacts only AFLP markers 

that could be unambiguously scored over the whole data set were included in the 

binary matrix. AFLP analysis was performed as two experiments at different 

dates and runs, and scored independently, preventing us from merging the two 

AFLP datasets. These two separate datasets were therefore analyzed separately: 

the first dataset from 2009 contains 51 samples: 9 O. argentaria (Tuscany TUS), 

12 O. classica (Tuscany TUS), 15 O. sphegodes (Gargano GAR), 15 O. sphegodes 

(Foce Garigliano FCG). The second data set from 2011 contains 95 samples: 17 



 119 

O. sphegodes (Vesuvio VES), 22 O. sphegodes (Cuma CUM), 18 O. sphegodes 

(Foce Garigliano FCG), 18 O. sphegodes (Gargano GAR), 9 O. argentaria 

(Tuscany TUS), 11 O. classica (Tuscany TUS). 

 

FLORAL ODOR ANALYSIS 

 

GC analysis was performed as described by Mant et al. (2005a) with 300 ng n-

octadecane (C18) added to the floral extracts as an IS. One micro liter of each 

sample was injected into an Agilent 6890 GC at 50◦C, followed by opening of the 

split valve and heating to 300◦C at rate of 4◦C/min. An HP-5 column and flame 

ionization detector (FID) were used, and hydrogen was used as a carrier gas, 

with nitrogen as the makeup gas. For identification of compounds, several 

samples were re-analyzed by GC with a mass selective detector (GC/MSD; 

Agilent 5975) using the same oven and column parameters. Spectrum and 

retention time of compounds were compared with those of synthetic standards, 

that is, alkanes: nonadecane (C19), henicosane (C21), docosane (C22), 

tricosane (C23), tetracosane (C24), pentacosane (C25), hexacosane (C26), 

heptacosane (C27), octacosane (C28), nonacosane (C29); and alkenes: (Z)-7-

heneicosene [(Z)-7-C21], (Z)-9-heneicosene [(Z)-9-C21], (Z)-7-tricosene [(Z)-  

7-C23], (Z)-9-tricosene [(Z)-9-C23], (Z)-7- pentacosene [(Z)-7-C25], (Z)-9-

pentacosene [(Z)-9-C25], (Z)- 11-pentacosene [(Z)-11-C25], (Z)-12-

pentacosene [(Z)-12-C25], (Z)-7-heptacosene [(Z)-7-C27], (Z)-9-heptacosene 

[(Z)-9-C27], (Z)-11-heptacosene [(Z)-11-C27], (Z)-12-heptacosene [(Z)-12- 

C27], (Z)-7-nonacosene [(Z)-7-C29], (Z)-9-nonacosene [(Z)-9- C29], (Z)-11-

nonacosene [(Z)-11-C29], (Z)-12-nonacosene [(Z)- 12-C29], where (Z)-number 

indicates the cis double-bond position. For sources of standard compounds see 

Mant et al. (2005a). It is noted that the discrimination of (Z)-11- and (Z)-12-

alkenes was not possible with the GC parameters used. The relative amount of 

each odor compound was calculated as the proportion of the total amount of all 

alkenes and alkanes of a chain length between 18 and 30 carbons. 

 

DATA ANALYSES 

 

The resulting binary matrices from the AFLP scorings were cleaned from columns 

where a marker could only be scored once over the whole data set. GenAlEx  
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Fig.1 – Investigated species and populations. upper left: O. sphegodes s.l. 
MILLER,  Vesuvio, Campania; u.m.: (2) O. sphegodes s.l. MILLER, Cuma, Campania; 
u.r.: (3) O. sphegodes s.l. MILLER, Foce Garigliano, Campania; m.l.: (4) O. 
sphegodes s.str. MILLER, Gargano, Puglia; m.m.: (5) O. argentaria J. DEVILLERS-
TERSCHUREN & P. DEVILLERS (syn. O. sphegodes ssp. litigiosa var. argentaria (J. 
DEVILLERS-TERSCHUREN & P. DEVILLERS) N. FAURHOLDT), Marina di Castagneto, 
Tuscany; m.r.: (6) O. classica J. DEVILLERS-TERSCHUREN & P. DEVILLERS (O. 
sphegodes auct. non. MILLER), Marina di Castagneto, Tuscany; l.l.: (7) O. exaltata 
s.l. (syn. O. exaltata ssp. archipelagi), Cuma, Campania; l.m.: (8) O. exaltata s.l. 
(syn. O. exaltata ssp. archipelagi), Gargano, Puglia; l.r.: Pseudo-copulation of 
Colletes cunicularius on O. exaltata, Marina di Lesina, Gargano, Puglia, It. 
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(Peakall & Smouse 2006) was used as macro in Microsoft Excel to calculate 

genetic distances as basis for generating PCoA graphics. FAMD (Schlüter & Harris 

2006) was used to calculate genetic distances, pairwise -ST values and to  

generate NJ population trees. Linear discrimination analysis (LDA) in R was used 

for analysis of floral scent based on relative amounts of hydrocarbons. 

 

POLLINATOR CHOICE EXPERIMENTS 

 

Fidelity of Ophrys pollinators was investigated in an experimental plot design. 

Plant material was collected in natural populations along the Tyrrhenian (Cuma, 

Vesuvio) and Adriatic Coast (Capoiale, Marina di Lesina) where both, O. 

sphegodes and O. exaltata ssp. archipelagi occur sympatrically. Plots with plants 

of both species from the two coasts were installed in Cuma and the Gargano 

region. Each plot consisted of four plants, with one individual of each of the two 

species from both coasts. The inflorescences were placed in a random order with 

30 cm distance between them in flowering bushes along sandy paths in the 

Macchia vegetation. Male bees are patrolling along sandy foot paths where many 

nesting places of female solitary bees have been observed; the male bees also 

fly up to check for females in flowering bushes (Rosmarinus officinalis, Spartium 

junceum, Hippocrepis sp.), as the female bees are used to forage there on nectar 

and pollen. Plants were exchanged every 30 minutes, regardless of their 

attractivity to pollinators. Pollination events were recorded only when the bee 

was successfully caught after an observed pseudocopulation with pollinia removal. 

The bees were later identified by comparison to a reference collection of Ophrys 

pollinators at the University of Zürich, Switzerland; in many cases the genitals of 

the male bees had to be preparated and checked under the microscope. 

Additionally we caught and identified the pollinators of the O. sphegodes 

population on Vesuvio (CA, It.) and of the O. fusca s.l. population in Gargano, 

which occurs sympatric with O. sphegodes and O. exaltata. 

 

FLORAL ISOLATION PLOTS 

 

An experimental approach with a plot design was used to measure floral isolation. 

The plots were set up in the same location as naturally occurring plants. One 

individual of each species were randomly positioned in each plot (each plot 
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contained one specimen each of O. sphegodes (Gargano), O. sphegodes (Cuma), 

and O. fusca s.l. (Gargano)). The distance between neighbouring plants was 0.5 

m. For each experiment, 20 plots were set up along a transect through the 

habitat of the orchids. The distance between neighbouring plots was 20 m, since 

the average pollinia carrying distance of Colletes cunicularius has been estimated 

to be around 5 m (Peakall and Schiestl 2004). Plants for the plot experiments 

were picked from natural populations. Each flower was checked for pollinia 

removal or pollen deposition. Pollinia have been stained alternately with the dyes 

brilliant green, methylene aniline blue, orange G and trypan red as described in 

Peakall et al. (1989). The colors used for each species were randomized between 

experiments to reduce potential effects of staining color on pollinator behaviour. 

The inflorescence was put in a water-filled 15 ml plastic tube placed into the 

ground. Pollinia removal and deposition on stigmas were recorded three days 

after setting up the plots.  

 

 

RESULTS 

 

POLLINATORS 

 

We set up 10 choice-plots on 8 days in the period of 17/03 – 31/03/2011 for (2—

) 3 (—4) hours each, in the morning hours from 9am until 1pm. The four studied 

populations co-flower at the end of March/beginning of April. Though, it has to be 

noted that the O. sphegodes s.l. population in Cuma starts to flower as early as 

end of January, while the three other populations begin flowering about one 

month later. Three plots were installed in Cuma (9 hours), seven plots in 

Gargano (19 hours). Pollinator activity is negligible in the afternoon, and overall 

activity in Gargano was notably higher than in Cuma. A summary of caught 

pollinators is given in Tab.1. O. exaltata GAR attracted 4 times C. cunicularius, O. 

sphegodes GAR 3 times A. nigroaenea; i.e. both taxa from Gargano attracted 

their legitimate pollinators on both sides of the Italian Peninsula. We found a 

different situation for the two taxa from Cuma: O. sphegodes CUM attracted 6 

times C. cunicularius, but also 2 times a yet unidentified bee of the genus Eucera. 

This was found only in the Cuma population, and it’s the first time that a Eucera 

bee is reported to pollinate a taxon from the O. sphegodes group. O. sphegodes 
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CUM attracted 4 times A. nigroaenea, but 49 times A. bimaculata. Outside of the 

choice-plots we confirmed that O. sphegodes from Vesuvio attracts also A. 

bimaculata, which was caught several times on plants from this population. This 

bee species has been reported to pollinate some East-Mediterranean taxa, but 

has not been reported for any Central- to West-Mediterranean species yet. A. 

bimaculata (2x) A. nigroaenea (1x) and C. cunicularius (2x) were found to 

pollinate Ophrys fusca s.l.. 

 

Tab.1 – Pollinator choice experiment: Bee counts. CUM=Cuma, Napoli, Tyrrhenian 
Coast, It., GAR=Gargano, Marina di Lesina/Capoiale, Adriatic Coast, It. The Eucera taxon 
is yet un-identified. *=yet unreported pollinator species. #=Eucera sp. was only caught 
in Cuma, while all other pollinator species were observed to visit the same species on 
both coasts. 
 

  

Andrena 

bimaculata 

Andrena 

nigroaenea 

Colletes 

cunicularius 

Eucera  

sp. 

O. sphegodes CUM 49 * 4     

O. sphegodes GAR   3     

O. exaltata CUM     6 2 *
#
 

O. exaltata GAR     4   

 

 

GENETIC STRUCTURE  

 

Genetic differentiation between the investigated populations is generally low. The 

first analysis with four populations yielded 322 variable markers. The resolution 

is slightly better than in the second analysis of six populations, where only 148 

markers could unambiguously be scored. The three populations from the 

Tyrrhenian Coast stay close together in the PCoA, but they largely overlap with 

the populations from Tuscany and Gargano. Of the Tyrrhenian populations, FCG 

and CUM are most distant to the Adriatic GAR population, while VES is most close 

to GAR (Fig.3a). The two populations from Tuscany largely overlap with each 

other and take in an intermediate position between the CUM/FCG populations 

and the GAR population (Fig.3b). Analysis of the small dataset revealed two 

possible hybrids: one sample of GAR clusters with the Tuscany populations, 

another sample of ARG-TUS appears far away from all other populations. 

Population NJ trees show a good separation of populations in the small dataset, 
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but strong admixture in the large dataset; this is due to technical problems 

experienced in the fragment detection on the sequencer. The tree generated 

from the small dataset displays SPH-GAR together with some accessions of SPH-

FCG and CLA-TUS as sister to SPH-FCG, the positions of ARG-TUS and CLA-TUS 

are unresolved in a polytomy. 

 

Tab.2 – Pairwise Φ_ST values (Coefficient: Standard Jacquard. Distance 
Transformation: d=1-s) for the 95 ind./6 pops. AFLP dataset. Highest and lowest values 
colored, in italics. 
 

SPH-FCG          SPH-CUM          SPH-VES          SPH-GAR          ARG-TUS          CLA-TUS 

       

0.0000000000  

0.0102326582  0.0000000000  

0.0644884038  0.0504072577  0.0000000000  

0.2511072708  0.2750169381  0.1431484848  0.0000000000  

0.3077216546  0.3484977846  0.3003501691  0.3171436351  0.0000000000  

0.0995553941  0.1742699753  0.0898278018  0.1828787903  0.1111831264  0.0000000000 

 

Fig.2 – Genetic divergence. Pairwise Φ_ST values. SVE=O. sphegodes, Vesuvio, CA; 
SCU=O.sphegodes, Cuma, CA; SFG=O. sphegodes, Foce Garigliano, CA; CLA=O. classica, 
Marina di Castagneto, TU; ARG=O. argentaria, Marina di Castagneto, TU; SGA=O. 
sphegodes, Gargano, PU; 
 



 125 

Genetic divergence between population pairs in the large dataset was assessed 

with Φ_ST value comparisons (Tab.2). Lowest Φ_ST values were found between 

SPH-FCG and CLA-TUS (0.01), highest between SPH-CUM and CLA-TUS (0.35). 

Interestingly, genetic divergence between SPH-VES and the distant SPH-GAR is 

lower than between SPH-VES and the spatially close SPH-CUM/SPH-FCG (Tab.2, 

Fig.2) 

 

 

Fig.3.a – Genetic structure of Italian O. sphegodes group taxa. PCoA from AFLP 
fingerprinting data 148 markers of 95 individuals from six populations: O. sphegodes s.l. 
from Vesuvio, CA (SPH-VES), O. sphegodes s.l. from Cuma, CA (SPH-CUM), O. 
sphegodes s.l. from Foce Garigliano, CA (SPH-FCG), O. sphegodes s.str. from Gargano, 
PU (SPH-GAR), O. argentaria from Marina di Castagneto, TUS (ARG-TUS), O. classica 
from Marina di Castagneto, TUS (CLA-TUS). The first two axes explaining 25.5 and 19.4 
percent of variation, respectively. 
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Fig.3.b – Genetic structure of Italian O. sphegodes group taxa. PCoA from AFLP 
fingerprinting data of 405 markers of 51 individuals from four populations: O. sphegodes 
s.l. from Foce Garigliano, CA (SPH-FCG), O. sphegodes s.str. from Gargano, PU (SPH-
GAR), O. argentaria from Marina di Castagneto, TUS (ARG-TUS), O. classica from Marina 
di Castagneto, TUS (CLA-TUS). The first two axes explaining 23.5 and 17.9 percent of 
variation, respectively. 
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Fig.4 – NJ tree for the 95 ind./6 pops. AFLP dataset (standard Jacquard’s similarity). 
SVE=O. sphegodes, Vesuvio, CA; SCU=O.sphegodes, Cuma, CA; SFG=O. sphegodes, 
Foce Garigliano, CA; CLA=O. classica, Marina di Castagneto, TU; ARG=O. argentaria, 
Marina di Castagneto, TU; SGA=O. sphegodes, Gargano, PU; 
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Fig.5 – NJ tree for the 51 ind./4 pops. AFLP dataset (standard Jacquard’s similarity). 
SFG=O. sphegodes, Foce Garigliano, CA; CLA=O. classica, Marina di Castagneto, TU; 
ARG=O. argentaria, Marina di Castagneto, TU; SGA=O. sphegodes, Gargano, PU; 
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FLORAL ODOR 

 

The linear discrimination analysis plot of O. exaltata and O. sphegodes from the 

opposite Tyrrhenian and Adriatic Coast shows a slight separation between the O. 

exaltata populations, and moderate separation with partial overlap between the 

two O. sphegodes populations. An analysis of physiologically active scent 

compounds revealed the same semio-chemicals in similar proportions in both 

populations of O. exaltata. The comparison between the O. sphegodes 

populations reveals significant differences in the relative proportions of scent 

components in floral extracts. Two components are exclusive for the SPH-CUM 

population: C23.Z7 and C27.Z7. 

 

Fig.6 – Linear discrimination analysis (LDA) of floral scent 
from Italian populations of O. sphegodes s.l. and O. exaltata 
s.l. CAP – Capoiale, PU, CUM – Cuma, CA, GAR – Gargano, PU, MDL 
– Marina di Lesina PU. 

 

 

 

 

 

O. sphegodes  
CUMA 

O. sphegodes  
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O. exaltata  
CUMA 

O. exaltata  
GARGANO 
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Fig.7 – Scent profiles of Italian populations of O. sphegodes s.l. and O. exaltata 
s.l. CUM – Cuma, CA, GAR – Gargano. x-axis: carbon hydrates and one ester, y-axis: 
 

 

FLORAL ISOLATION 

 

As we didn’t record a single transfer of stained pollen this approach was 

discarded. Besides some pollen removals the experiment didn’t yield any results. 

As the plants were placed in the natural populations, we assume a general low 

pollinator activity or climatic phenomena to be responsible. 

 

 

DISKUSSION  

 

Choice experiments with the two putative O sphegodes taxa and another 

sympatrically occurring Ophrys species (O. archipelagi) in two distant populations 

along the Tyrrhenian and Adriatic coasts of Italy revealed the putative O. 

sphegodes from Naples (incl. Vesuvio and Foce Garigliano) as yet undiscovered 

ecological species: its main pollinator was identified as Andrena bimaculata, 

while the pollinator of O. sphegodes from the Adriatic Coast was also responsible 

for about 12% of overall pollinia removal (Tab.1). Floral isolation between was 

found to act as an effective isolation barrier between O. sphegodes and O. 

exaltata on both coasts, as no pollinator caught indicated gene-flow. Lowest 

genetic divergence was detected between the O. sphegodes populations along 

the Campanian coast. No pollinators were caught in the FCG population, but due 
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to the bare genetic differentiation between SPH-CUM and SPH-FCG (Φ_ST = 

0.01), the morphological similarity and the shared coastal habitat, it can be 

assumed that A. bimaculata is the local pollinator in FCG. The Adriatic O. 

sphegodes are not strongly diverged from all Tyrrhenian populations, they are 

genetically most close to CLA-TUS and SPH-VES. 

Results of a GC-analysis of floral scent from O. archipelagi and the O. 

sphegodes-like taxa from both coasts showed stronger differentiation between 

the O. sphegodes-like taxa, than between O. archipelagi from the two distant 

populations (Fig.6). Two active compounds found (C23.Z7 and C27.Z7) are 

exclusive to the O. sphegodes-like taxon from Napoli (Fig.7). These components 

might play a key role in the attraction of A. bimaculata. Interestingly, A. 

nigroaenea is still attracted by the scent of the Tyrrhenian plants, even though 

the composition is quite different from the Adriatic plants. 

 

       

Fig.8 – Leaky Mechanical Isolation 1 (Intersectional hybrid ���� sect. 
Pseudophrys x Euophrys). (middle; picture: Marina di Lesina, 2009), likely 
between O. fusca s.l. (left; picture: Marina di Lesina, 2011) and O. exaltata s.l. 
(right; picture: Marina di Lesina, 2009). Both species (l. r) share Colletes 
cunicularius as pollinator. 

 

 

The Napolitan taxon might be the result of a local adaptation of the Andrena 

nigroaenea pollinated O. sphegodes to a different pollinator, though with 

incomplete reproductive isolation when occurring in sympatry. But all 

investigated populations in Campania are disjunct, and the rarely co-occurring O. 

apifera, O. exaltata and O. bombyliflora are pollinated by rather different Eucera 

and Colletes species.  

The identification on A. nigroaenea, A. bimaculata, and C. cunicularius as 

pollinators of different plants of the local O. fusca s.l. variant could be due to 
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divergent odour phenotypes in a sub-structured population attracting different 

pollinator species. Or this taxon is sufficiently isolated through mechanical 

isolation (i.e. differing pollinia placement on the pollinator’s body) from sympatric 

Ophrys species they share a pollinator with. In this case there is pollinator 

sharing with O. exaltata (C. cunicularius) (Fig.8) and O. sphegodes (A. 

nigroaenea) (Fig.9). In fact we found Hybrids that are clearly the result of a 

cross between an O. fusca s.l. and an Eu-Ophrys species (Fig.8). While the local 

O. fusca s.l. likely represents one progenitor, some morphological characteristics 

point to O. exaltata as the other progenitor: reddish coloration on the labellum 

and a yellow median appendix on the most distal point of the labellum (Fig.8). 

 

 

Fig.9 – Leaky Mechanical Isolation 2 / Cuma Ophrys pollinators. left: A. 
nigroaenea on O. fusca s.l. and O. sphegodes (both: Marina di Lesina, Gargano, PU, It. 
2009). right: A. bimaculata on O. sphegodes s.l., and C. cunicularius on O. exaltata 
(both: Cuma, CA, It., 2010). 
 

 

The existence of hybrid zones of secondary contact with the Adriatic O. 

sphegodes, or a west-east stretched continuum seems plausible, but zones of 

sympatry of the two differentially pollinated lineages have not been found so far. 

Interestingly, all in-deep pollinator studies of Ophrys taxa revealed at least one 

other, minor pollinator, some of the findings indicating gene-flow with other 

sympatric Ophrys species. But in the absence of other Ophrys species and 

pollinator sharing, gene-flow, and/or the reinforcement of reproductive isolation 

barriers are unlikely scenarios. Therefore, also genetic drift could have played a 

role in the evolution of the floral scents’ attractiveness to a novel pollinator. Not 

necessarily excluding the drift scenario, the predominance of A. bimaculata over 

A. nigroaenea as pollinators can also be seen as the driving force of selection 

(density-dependent selection). Spatial absence of A. nigroaenea or quantitative 

dominance of A. bimaculata would have had caused drift, or imposed a positive 
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selection pressure on traits favouring the attraction of the latter pollinating bee 

species, respectively. 

 

SPECIATION BY DISTURBANCE 

 

It has been shown that long-term or repeated disturbance of the environment 

are a pre-requisite for invasive plant species to enter previously saturated plant 

communities (Hobbs 1989). Manmade intrusions contribute to the subdivision of 

the ecological niche-space (Levin 2004), therefore making it more species-rich.  

The coastal vegetation of Campania, which is in parts protected in the Parco 

Regionale Campi Flegrei and particularly the Riserva Naturale Foce Volturno e 

Costa Di Licola in the province of Naples, Campania, Italy, is such a disturbed 

area. Beaches, followed by dunes, garrigue, macchia and oakwoods display a 

vegetation progression typical for the Tyrrhenian Coast. But the formation of the 

terrain and its plant communities is determined by the maintenance of pathways 

through the underwood and manmade constructions as buildings, ruins of the 

antic age, the second world war and the modern times, as well as railways, 

sewers, fences and concrete walls. In north-south direction the railways of the 

Circumflegrea intersect the whole area, parallel guided by a partially covered 

sewer, as well as many footpaths and some constructed walking trails and 

unsurfaced roads. The area east of the railways/waterway mostly consists of 

stone oak woods and dense macchia. The wood area in vicinity of the 

Promontorio di Cuma has recently been supplemented with wooden pathways 

and resting sites. On the western side the macchia merges into garrigue and 

coastal vegetation. The oak wood extends 1 km in northern direction (not shown 

on the map) behind the urbanization/balnearios of Marina di Licola. To a high 

degree the area’s floristical richness is the result of manmade intrusions. As the 

whole area is intersected by major railways, roads and paths from north to south 

and numerous of minor footpaths in east-west direction cut through the 

underwood, a complex net of migration ways between the plant communities has 

been built. In effect, the sum of all these derelict wallings, ruderal sites and 

routes through the underwood increase the space of species rich transitional 

areas between different habitats. 

The orchid genus Ophrys is beneficiating from this artificial situation. A survey of 

the investigation area revealed high densities of Ophrys plants along and on 
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human routes, on construction waste dump sites, and close to concrete grounds. 

They grow in enriched loose sands in open and semi-open situations. Only a few 

individuals grow dispersed in mossy, open spaces between the depressed 

evergreen bushes of the garrigue. As O. sphegodes s.l. is bound to disturbed, 

semi-natural habitats, it can be assumed that the large populations sizes and 

maybe also its existence along the Campanian Coast is dependent on the type of 

land-use. This part of the Campanian Coast (Cuma) is colonized since the 8th 

century BC. by Greeks and later Romans. In this light it seems plausible, that the 

assumed pollinator switch from A. nigroaenea to A. bimaculata happened close to 

Cuma. The bee A. bimaculata lives on sandy grounds. Therefore it is also unlikely 

that A. bimaculata was adopted by the populations on Vesuvio, where it grows 

on magma rocks. But both habitats provide sour grounds, rare in Ophrys. 

Supported by low Φ_ST values a close relationship between the SPH-GAR and 

the SPH-VES populations is indicated. The SPH-VES population is very isolated. 

Drift might have caused a scent alteration as prerequisite for the colonisation of 

the coast, where O. sphegodes s.l. shares the disturbed sandy habitat with its 

pollinator A. bimaculata. In such way displaying a case of progenitor-derivative 

parapatric speciation, where the progenitor is not affected by the descendant 

population. 

As nearly all Ophrys species grow on poor and open soils, the human colonisation 

of the Mediterranean Area and connected to that, deforestation and agricultural 

land-use has surely facilitated the expansion of Ophrys in general, and its 

diversification and occupation of new ecological niches in particular. We propose 

that environmental disturbance due to human activity is the driving force of 

ecological speciation in the genus Ophrys. Secondary contact of previously 

isolated lineages, and the fast radiation into the new semi-natural habitats can 

serve as an explanation for the observed lack of genetic differentiation (Devey 

2008, own unpubl. data), the occurrence of gene-flow (Soliva & Widmer 2003), 

and the sharing of quite different allele types among closely related Ophrys 

species (own unpubl. data). 
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