
Dottorato di Ricerca
Scienze Computazionali ed Informatiche

Ciclo XXIV

Università degli Studi di Napoli - Federico II

Synthesis of Switching Controllers

for Linear Hybrid Systems

Stefano MINOPOLI

Novembre 2011

Coordinatore: Relatori:

Prof. Ernesto BURATTINI Prof. Massimo BENERECETTI
Dott. Marco FAELLA



2

.



To my Family



Abstract

This thesis is focused on the problem of automatically generating switching

controllers for the class of Linear Hybrid Game, with respect to safety and

reachability objectives.

In order to solve the safety control problem, a sound and complete sym-

bolic fix-point procedure on the so-called controllable predecessor operator for

safety, called CPreS and based on polyhedral abstractions of the state space,

are provided and the termination of each iteration is proved.

Some inaccuracies contained in previous characterizations of the problem

are identified and solved. In particular, this work shows that the algorithm

provided by Wong-Toi [WT97] does not work in some case which are very likely

to occur in practice. The error is identified in the heart of this algorithm (the

operator flow avoid), and is here fixed by proposing a sound and complete

procedure, based on a novel algorithm for computing, within a given location of

the automaton, the may reach while avoiding operator RWAm, that is the set

of states that may reach a given polyhedral region while avoiding another one.

The reachability control problem for hybrid games was never considered in

the literature, and the task is not trivially due the fact that, unlike classical

results for discrete and real-timed case, the reachability control problem is not

dual to the safety control problem. Hence, in order to solve this problem an

entirely new study was necessary. This thesis proposed a sound and complete

fix-point procedure based on a novel algorithm for computing, within a given

location of the automaton, the set of must reach while avoiding operator RWAM,

that is the set of states that must reach a given polyhedral region while avoiding

another one.

The theoretical results of this thesis are then effectively and efficiently im-

plemented on the top of the open source tool PHAVer. The obtained tool, called

PHAVer+, is used to present some promising experimental results at the end of

this thesis.

1



2



Contents

Abstract 1

Introduction 9

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

I Control Problems for Several Classes of Games 17

1 Control Problems for Discrete Systems 19

1.1 Game Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.2 Acceptance Conditions . . . . . . . . . . . . . . . . . . . . 22

1.1.3 Forgetful and Memoryless Strategies . . . . . . . . . . . . 24

1.2 Safety and Reachability Control Problems . . . . . . . . . . . . . 25

1.3 Solving Safety and Reachability Control Problems . . . . . . . . 27

2 Control Problems for Timed Games 33

2.1 Timed Games (TGs) . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Safety and Reachability Control Problems for Timed Games . . . 39

2.3 Solving Safety and Reachability Control Problems . . . . . . . . 40

3 Hybrid Games (LHGs) and Control Problems 43

3.1 Hybrid Games (HGs) . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.2 Control Problems for LHGs . . . . . . . . . . . . . . . . . 53

II Solving the Control Problems for LHGs 55

4 Solving the Safety Control Problem for LHGs 57

4.1 Safety Control: the Abstract Algorithm . . . . . . . . . . . . . . 58

3



4 CONTENTS

4.2 Computing the Predecessor Operator on LHGs . . . . . . . . . . 62

4.3 Computing the RWAm Operator on Polyhedra . . . . . . . . . . 66

4.4 Previous Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Soundness and Completeness of the Fixpoint Procedure of The-

orem 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Termination of the Fixpoint Procedure in Theorem 2. . . . . . . 75

4.7 Exact Computation of Pre-Flow . . . . . . . . . . . . . . . . . . 78

5 Solving the Reachability Control Problem for LHGs 83

5.1 The Global Semi-Algorithm . . . . . . . . . . . . . . . . . . . . . 84

5.2 Computing the Predecessor Operator for Reachability . . . . . . 88

5.3 The Local Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Computing a Suitable Over-Approximation . . . . . . . . . . . . 94

5.5 On Bounded and Thin Polyhedra . . . . . . . . . . . . . . . . . . 95

5.6 Computing the RU Operator . . . . . . . . . . . . . . . . . . . . 101

5.6.1 Testing for Boundedness w.r.t. the Flow . . . . . . . . . . 101

III Implementation and Experiments 105

6 Implementations of Algorithms for the Safety 107

6.1 Implementation of the Global Fixpoint for Safety . . . . . . . . . 108

6.2 Efficient Computation of SORM . . . . . . . . . . . . . . . . . . . 111

6.2.1 Introducing Adjacency Relations . . . . . . . . . . . . . . 113

6.2.2 Further Improving the Performance (1) . . . . . . . . . . 116

6.2.3 Further Improving the Performance (2) . . . . . . . . . . 118

6.3 Implementation of the Global Fixpoint for Reachability . . . . . 120

7 Experiments with PHAVer+ 123

7.1 Macro Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Micro Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Conclusion and Future Works 135

References 135



List of Figures

1 Schema of a control diagram. . . . . . . . . . . . . . . . . . . . . 10

2 The anti-lock braking system (ABS). . . . . . . . . . . . . . . . . 11

1.1 A Game Graph as Arena. . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Algorithm for the safety. . . . . . . . . . . . . . . . . . . . . . . . 29

1.3 How fix-point algorithm for reachability works. . . . . . . . . . . 31

2.1 A Timed Game (adapted from [CDF+05]). . . . . . . . . . . . . 37

2.2 Three TG fragments. Locations contain the invariant. Solid

(resp., dashed) edges represent controllable (resp., uncontrollable)

transitions. Guards are true. . . . . . . . . . . . . . . . . . . . . 38

3.1 ABS modeled as AHG. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Example of LHG. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Dynamics for the LHG of Figure 3.2. . . . . . . . . . . . . . . . . 49

3.4 Three HG fragments. Locations contain the invariant (first line)

and the flow constraint (second line). Solid (resp., dashed) edges

represent controllable (resp., uncontrollable) transitions. Guards

are true. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 The pre-flow operator. . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 The may reach while avoid operator. . . . . . . . . . . . . . . . . 64

4.3 Basic properties of RWAm. The boxes on the left represent the

convex polyhedron F = Flow(l) in the (ẋ, ẏ) plane. Thick arrows

represent the extremal directions of flow. . . . . . . . . . . . . . . 66

4.4 Boundary between Polyhedra G and G′. . . . . . . . . . . . . . . 68

4.5 The entry region from P to P ′. . . . . . . . . . . . . . . . . . . . 69

4.6 Example showing that entry(P,G) ̸= bndry(P,G) ∩ G ↙l, for

non-convex G. Flow is deterministic and horizontal. . . . . . . . 69

4.7 One step of RWAm computation. . . . . . . . . . . . . . . . . . . 72

5



6 LIST OF FIGURES

5.1 Basic properties of RWAM. The boxes on the left represent the

convex polyhedron F = Flow(l) in the (ẋ, ẏ) plane. Thick arrows

represent the extremal directions of flow. . . . . . . . . . . . . . . 90

5.2 Definition of l-bounded and l-thin . . . . . . . . . . . . . . . . . 91

5.3 Relationship between RWAM and RWAm. . . . . . . . . . . . . . 93

5.4 Relationships between properties of convex polyhedra. Arrows

represent implications and F = Flow(l). . . . . . . . . . . . . . . 97

5.5 On the right, a polyhedron which is bounded w.r.t. Flow(l) but

not l-bounded, and an activity that remains forever in it. . . . . 98

5.6 Test for boundness w.r.t. the flow. . . . . . . . . . . . . . . . . . 102

6.1 One step of SORM computation. . . . . . . . . . . . . . . . . . . 112

6.2 Unnecessary boundary checks. . . . . . . . . . . . . . . . . . . . . 113

6.3 New entry regions. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 The local approach. . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5 Comparision between global and local approach. . . . . . . . . . 118

7.1 TNC modeled as LHGs. . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Evolution of the fixpoint in the case of two pits. All figures are

cross-sections for t = 0. Dashed arrows represent flow direction. . 125

7.3 Performance for different implementations. . . . . . . . . . . . . . 126

7.4 Deterministic and not-deterministic flow allowed by the two dif-

ferent versions of TNC. . . . . . . . . . . . . . . . . . . . . . . . 127

7.5 Schema of the system. . . . . . . . . . . . . . . . . . . . . . . . . 129

7.6 Two tanks modeled as LHG. . . . . . . . . . . . . . . . . . . . . 129

7.7 Output for Water Tank Control example. . . . . . . . . . . . . . 130

7.8 Structure of the maze. . . . . . . . . . . . . . . . . . . . . . . . . 131

7.9 Number of boundary checks of basic and global algorithms for

SORM w.r.t. the size of the input. . . . . . . . . . . . . . . . . . . 132

7.10 Number of boundary checks of global and local algorithms for

SORM w.r.t. the size of the input. . . . . . . . . . . . . . . . . . . 133

7.11 Run time (in sec.) of algorithms basic, global and local for SORM

w.r.t. the size of the input. . . . . . . . . . . . . . . . . . . . . . 133

7.12 Size of PotentialEntry in the global and the Local algorithms. . . 134



List of Tables

1.1 Acceptance conditions over runs . . . . . . . . . . . . . . . . . . 23

3.1 Hybrid Games hierarchy . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 HG fragments and Control Problems . . . . . . . . . . . . . . . . 58

7.1 Performance with respect to number of pits . . . . . . . . . . . . 124

7.2 Performance for non-deterministic TNC with respect to number

of pits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3 Performance for three-dimensional TNC with respect to number

of pits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7



8 LIST OF TABLES



Introduction

This thesis is focused on the problem of automatically synthesizing a switching

controller for linear hybrid systems with respect to safety and reachability ob-

jectives. In Computer Science, this kind of problem is studied in the context

of synthesis, where the considered systems are “open”, in the sense that they

cooperate with an environment.

This is the main difference with respect to other context, like verification

(e.g. model checking), where the considered systems are generally “closed” by

the environment and need a complete system model which is verified toward

satisfying a set of properties.

Open systems can be seen as compositions of elements, whose relations and

interactions are governed by known laws (e.g. a mechanical system governed

by Newton’s laws), where the environment generates input events triggering

actions on the system that cause a change of the system state, which may in

turn produce output events that affect the environment.

The model of this kind of systems can be considered “incomplete” in the

sense that it describes a more liberal behavior and usually the question arises

of restricting the choices of the system so that some desired goals are met, by

means of appropriate control. The control of the system is governed by an

appropriate device, called controller.

Based on the characteristics of the system components and their interac-

tions, systems can be classified as discrete or continuous, time-invariant or

time-varying, linear or nonlinear, deterministic or nondeterministic etc. Also,

the controller can be classified as discrete or continuous, depending on the type

of device (e.g. actuators) on which the controller acts.

This work is focused on continuous open systems (namely, hybrid systems

whose definition will be given later) and digital controllers.

This category of systems is one of the most studied in the field of Control

Theory, where the system together with the environment in which it is located

can be referred to a plant (e.g. the subject of control). Its correct behavior

9



10 LIST OF TABLES

is achieved by designing the controller that will interact with the plant, whose

behaviors are modeled by means of differential equations over variables that

describe the plant properties.

The control diagram representing this situation is shown in Figure 1. Since

the open loop behavior of the plant is often unsatisfactory, the role of the feed-

back after determining the current state of the plant is to take corrective action

by issuing appropriate control commands. It is of fundamental importance to

take into account the environment in which our system operates in order to

deal with unknown actions (or disturbances) caused by the environment. These

disturbances may have disastrous consequences when they are not taken into

account.

...

Plant

.

Controller

.

disturbances

.

measurements

..

feedback control

Figure 1: Schema of a control diagram.

In everyday life it is easy to find such systems, where the controller interact

with discrete actuators (digital controller). Digital controllers represent in fact a

pervasive technology in our societies. Civil and industrial automation, as well as

transportation systems are the main domains where such devices are employed.

For instance, in a modern car, up to 50 different controllers may be operating at

the same time, directing crucial, potentially life-saving car features like braking,

anti-lock braking system (ABS), electronic stability program (ESP), etc. The

job of each of these controllers is to generate a signal that guides the evolution of

the physical system toward a desired goal. The controller may base its decisions

on a set of signals received by sensors or by the user (the meta-controller, in a

sense).

Open systems as the above are loosely defined as hybrid systems. From an

abstract point of view, a hybrid system is an open system whose state variables

are partitioned into discrete and continuous ones. Typically, continuous vari-

ables represent physical quantities like temperature, speed, etc., while discrete

ones represent control modes, e.g., states of the controller.



LIST OF TABLES 11

For example, consider the case of anti-lock braking system (ABS), that is

a system governed by a controller whose objective is to avoid the blocking of

the wheels, regardless of the behavior of the driver, that can be viewed as the

external environment. Figure 2 shows the schema of an ABS: several speed

sensors (e.g. phonic wheels) read the instantaneous speed of each wheel. The

controller reads these values (dotted arrows in the figure) and compares them. In

this way it may evaluate the level of locking of each single wheel. If some wheel

is close to the locked state, the controller acts (thicked arrows in the figure)

immediately on the actuators, e.g. by reducing the pressure on the brake of the

almost locked wheel. In this way the controller avoids the locking of the wheels

and when the behavior of the vehicle returns to the ideal condition it restores

the normal pressure of the brake involved. The cycle “reduce pressure-maintain

the right pressure-restore pressure” is repeated several times each second and,

in emergency braking, allows to keep all wheels on the right speed, ensuring the

optimal braking. Notice that this goal is achieved regardless of the behavior of

the driver (represented by the dashed arrows in the figure): the controller may

reduce the brake power even if the driver is performing a brake.

Environment
Controller Actuator (Brake)

Actuator (Brake)

Actuator (Brake)

Actuator (Brake) Sensor (phonic wheel)

Sensor (phonic wheel)

Sensor (phonic wheel)

Sensor
(phonic wheel)

Figure 2: The anti-lock braking system (ABS).

Notice that the global actions of the whole systems can be divided into those

that the controller can govern, e.g. reducing the related pressure of a brake

(controllable actions) and those that are not under its responsibility, e.g. the

pressure on the brake pedal (uncontrollable actions, or environment actions). In

addition, the variables that describe the state of the systems can be divided into

discrete ones, e.g. on-off status of a LED indicating the entry into operation of

the ABS, and into continuous ones, e.g. the values of the wheels speed.



12 LIST OF TABLES

While in control theory discrete variables are hard to model as differential

equations, computer science in the opposite is typically specialized on discrete

systems. In particular, in order to model also continuous time dynamics, com-

puter science proposes the formalism of hybrid automata [Hen96], that is the

most common syntactic variety of hybrid system: a finite set of locations, similar

to the states of a finite automaton, represents the value of the discrete variables,

used to model modes of operation of the system, such as braking mode in a car

equipped with ABS. Change of location happens via discrete transitions (change

of control modes) that can model the evolution of the discrete variables, while

the evolution of the continuous variables is governed by differential equations

attached to each location and, for example, can model the continuous response

of the car wheels to the force of brake pedal (corresponding to the handle of

sensors and actuators in control theory).

Depending on which kind of differential equations are allowed, it is possible

to distinguish several classes and related subclasses of hybrid automaton.

The instantaneous description of an hybrid automata is formed by the cur-

rent location together with the current value of the (continuous) variables.

In work to date, a number of problems for hybrid automata have been stud-

ied:

1. Optimal Control : roughly speaking, the optimal control problem is to

drive the system to a desirable state while minimizing a cost function

that depends on the path followed. It typically involves a terminal cost

(depending on the terminal state), an integral cost accumulated along

continuous evolution, and a series of jump costs associated with discrete

transitions. This is a classical problem for continuous systems, extended

more recently to discrete systems [SL98], and to classes of hybrid sys-

tems with simple continuous dynamics [AM99]. The approach has been

extended to general hybrid systems both for the dynamic programming

formulation [BBM98] and for the variational formulation, extending the

maximum principle [Gra99].

2. Hierarchical Control : this describes the systematic decomposition of con-

trol tasks so that the resulting hierarchical controller guarantees a certain

performance [CW98, PLS00];

3. Distributed, Multiagent Control : here, optimal control problems are de-

composed so that they can be solved in a distributed way by a collection

of agents with a specified communication and information architecture

[KN93].



LIST OF TABLES 13

4. Least Restrictive Controllers for Specifications Such as Safety and Reach-

ability : here it is required that all trajectories of the system satisfy certain

goals, as safety (for example, requiring that the system remains in a certain

set of safe states) and reachability (requiring that the system eventually

enter in a certain set of target states).

This thesis is focused on the last problem for the subclass of Linear Hybrid

Automaton (LHA), where the allowed differential equations are in fact differen-

tial inclusions of the type ẋ ∈ P , where ẋ is the vector of the first derivatives

of all variables and P ⊆ Rn is a convex polyhedron. Notice that differential

inclusions are non-deterministic, allowing for infinitely many solutions.

Due the fact that the considered systems are open systems, it is needed to

extend the formalism of LHAs, in order to take into account also the actions of

the environment. To this aim the formalism of Linear Hybrid Games (LHGs),

defined as LHAs whose discrete transitions are partitioned into controllable and

uncontrollable ones, is introduced.

The main goals of this work is to compute the set of states from which

the controller can ensure a given goal, regardless the behavior of the envi-

ronment that may affect the trajectory followed by the continuous variables

and may choose to issue any enabled uncontrollable discrete transition. Hence,

the problem can be viewed as a two player game [TLSS00]: on one side the

controller, who can only issue controllable transitions, on the other side the

environment, who can choose the trajectory of the variables and can take un-

controllable transitions whenever they are enabled. The considered goals are

safety and reachability. The safety goal consists in the objective of keeping the

systems within a given set T of so-called “safe” states. While the reachability

goal consists in the objective of reaching a given set T of so-called “target”

states. Both problems are known to be undecidable, being at least hard as

the standard reachability verification (i.e., 1-player reachability) for triangular

hybrid automata [HKPV95], a special case of LHAs.

While the reachability control problem for linear hybrid games was never

considered in the literature, for the safety control problem, there is an extensive

literature describing approximate solutions [ABD+00], or solutions claimed to

be exact [WT97], based on a fix-point procedure 1 on the so-called controllable

predecessor operator (CPre).

The main contributions of this thesis may be listed below:

1. Previous solutions proposed (e.g. Wong Toi et other) for the safety control

1In this work the term “procedure” means a step-by-step procedure that may or may not
terminate.



14 LIST OF TABLES

problem of linear hybrid games, are showed not to not work in several cases

which are very likely to occur in practice.

2. A sound a complete procedure is proposed that fixes inaccuracies of the

Wong Toi procedure, that solve the safety control problem for linear hybrid

games.

3. A sound a complete procedure is proposed that solves the reachability

control problem for linear hybrid games.

4. The algorithms are implemented on the top of the verification tool PHAVer

[Fre05], based on the polyhedral abstraction provided by the Parma Poly-

hedra Library [BHZ08]. The obtained tool is called PHAVer+.

5. Several techniques required to efficiently implement the above algorithms,

are discussed.

6. Some need operators on polyhedra are introduced, and some existing PPL

operators are or refining, in order to exact implement the above algo-

rithms.

At the end of the thesis, several meaningful example of linear hybrid games

are defined and tested by the tool PHAVER+, and the corresponding experi-

mental evaluation is showed.

Summary

The rest of this thesis is divided into three parts: Part I describes the states

of the art, first for the class of discrete systems and then for the real-time sys-

tems. The last chapter of Part I introduces the formalism used to model hybrid

systems. Part II introduces the original contributions of this research: the so-

lutions of the controller synthesis problem for linear hybrid games, w.r.t. safety

and reachability goals. Part III shows the implementations of the proposed al-

gorithms and then shows the results and the performance of the implemented

tool on some examples.

Part 1. The topic of Chapter 1 is to introduce some basic notions about two-

players games, in order to correctly address the reader to the representation of an

open system as a game. The considered systems are discrete, and the formalism

of the Game Graphs (GGs) is introduced in order to model this kind of systems.

Notions such as strategy, winning strategy and memoryless strategy are formally

defined. Then the control problem is defined as the problem of finding a winning



LIST OF TABLES 15

strategy for the corresponding game. Finally, fix-point algorithms that solve the

control problems, based on the controllable predecessor operator, are showed.

Chapter 2 is an introduction to the control problems for open continuous

systems, where the considered continuous systems are in fact real-time systems.

Several notions are given and extended in order to correctly handle the real-time

properties of these systems, modeled by the formalism of Timed Games (TG)

(an extension of the formalism of the Timed Automata). For example, it is

defined the notion of timed strategy and the controllable predecessor operator

is redefined in order to take into account the real-time properties of a timed

game.

The core of Chapter 3 is to fully explain a more powerful kind of continu-

ous systems than real-time, called hybrid systems, that allow to express more

complete interaction between the environment and the system. The formalism

of Hybrid Games (HGs) is introduced by giving the syntax and the semantics,

and then some proper subclasses are identified and classified. Also, it is shown

how the problem of Zeno is managed. At the end of the chapter, the safety and

the reachability control problem are formally defined.

Part 2. Chapter 4 and Chapter 5 describe solutions of the control problem

for linear hybrid games w.r.t. safety goals and reachability goals, respectively.

In order to implement the proposed algorithms, several operators on polyhedra

are introduced, whose implementation is proved to be sound and complete.

Part 3. Techniques required to efficiently implement these algorithms on the

top of the tool PHAVer are showed in Chapter 6, while Chapter 7 shows some

experimental results, divided into two parts: the first one shows performance

of the obtained tool (PHAVer+) on examples for safety and reachability. The

second one shows performance of single calls to the different implementations

of the basic operator used by the algorithms.



16 LIST OF TABLES



Part I

Control Problems for
Several Classes of Games

17





Chapter 1

Control Problems for
Discrete Systems

This chapter is focused on open discrete systems and on the computation of a

controller that achieves some goal regardless of the behavior of the environment.

This is the controller synthesis problem[RW87] for discrete systems. Pnueli

and Rosner [PR89] addressed this problem as a two-player game, where one of

the players is the controller which plays against the other player, that is the

environment. This situation is also known as “game against nature” [Mil51].

Typically, a game is expressed by a direct graph, also called arena. Based on

the characteristics of the considered system, one may choose the most appropri-

ate arena to model the whole system. An example of arena [Maz02] is the triple

consisting of an edge relation (the set of players moves) and two disjoint set of

vertices, one for the controller and the other one for the environment. In such

a game, a player may move only if the current vertex belongs to its associated

set of vertices.

This thesis is focused on an another kind of game, defined by an arena

consisting in a single set of vertices and two disjoint sets of moves, one for the

controller and the other one for the environment. In such a game, a player may

move whenever in the current vertex there exists an edge belonging to its set

of moves. This kind of arena is introduced in this chapter, by means of Game

Graphs (GGs)[TA99], that is a finite graph whose discrete transitions are labeled

as controllable or uncontrollable, to model the actions of the controller and the

environment, respectively. A game graph allows controller and environment to

make choices that determine the next state of the system, by means of locations.

In Section 1.3 it is formally defined the controller synthesis problem for

game graphs, with respect to safety and reachability goals. This problem is

equivalent to find a memoryless winning strategy, i.e. a function that gives the

19



20 CHAPTER 1. CONTROL PROBLEMS FOR DISCRETE SYSTEMS

right next move of the controller, based only on the current state of the system.

Algorithms to synthesize such a strategy have been given based on a backward

fix-point calculation [Maz02] of the so called controllable predecessor operator

CPre [MPS95, AMP95]. Given a set of states X (or, equivalently, a set of

locations, since in the discrete case the two sets coincide), CPre(X) computes

the set the states from which the controller can force the game into X in a single

step.

The last section of the chapter formally defines the CPre operator and then

shows these fix-point algorithms, that work on the exploration of the full game

graph in input, for safety and reachability objectives.

There exists also newer algorithms that are on-the-fly, in the sense that they

return a memoryless winning strategy as soon as one is found, which avoids the

fully exploration of the input graph, which can result in significant saving in

performance [TA99]. This kind of approach is not shown, because it is not very

relevant for the topic of this thesis (it is not possible to reduce the whole set of

states of a hybrid systems into a finite graph, and then an on-the-fly approach

it is not practicable).

1.1 Game Graph

This thesis is focused on a model of game whose players are free to choose a

move, regardless of the current vertex, taken from two disjoint set of moves.

The arena of such a game is a finite automaton that allows to explicitly dis-

tinguish the actions of the controller from the actions of the environment.

This finite automaton is called Game Graph (GG). A game graph is a tuple

G = (Loc,Edgc,Edgu, l0), consists of the following:

• A finite set Loc of locations. A state is the current location l.

• A finite set Edgc of controllable transitions, that describe changes of loca-

tions, governed by the Controller.

• A finite set Edgu of uncontrollable transitions, that describe changes of

locations, governed by the Environment.

• An initial location l0 ∈ Loc.

The abbreviations S = Loc is used to indicate the set of all states and Edg =

Edgc∪Edgu is the whole set of moves. Notice that, being a game graph a discrete

system, it is possible to refer indiscriminately to a location or to a state.



1.1. GAME GRAPH 21

Each transition consists in a pair ⟨l, l′⟩ ∈ Edg , where l ∈ Loc is called the

source location, and l′ ∈ Loc is called the target location.

A game graphG = (Loc,Edg ′c,Edg
′
u, l0) is called to be dual toG = (Loc,Edgc,

Edgu, l0) if Edg
′
c = Edgu and Edg ′u = Edgc. In other words, G is a game graph

in which the controller and the environment will exchange the roles they had in

G.

..l0. l1.

l2

.

l4

.

l3

.

l5

.

l6

.u .

u

.

u

.

c

.

c

.

c

.

u

.

u

.

c

.

c

.

c

Figure 1.1: A Game Graph as Arena.

Example 1. Let G = (Loc,Edgc,Edgu, l0) be a game graph, whose components

are defined as follows:

• Loc = {l0, l1, l2, l3, l4, l5, l6}, is the set of locations.

• Edgc = {⟨l1, l0⟩, ⟨l2, l0⟩, ⟨l2, l4⟩, ⟨l5, l2⟩, ⟨l6, l3⟩, ⟨l6, l5⟩}, is the set of con-

trollable transitions.

• Edgu = {⟨l0, l0⟩, ⟨l0, l1⟩, ⟨l0, l2⟩, ⟨l3, l2⟩, ⟨l4, l6⟩}, is the set of uncontrollable

transitions.

Figure 1.1 showes the graphical representation of the game graph G, where

controllable transitions are represented by solid arrows labeled by c, and uncon-

trollable transitions are represented by dashed arrows labeled by u.



22 CHAPTER 1. CONTROL PROBLEMS FOR DISCRETE SYSTEMS

1.1.1 Semantics

The behavior of a game graph is based on discrete transitions corresponding to

the Edg component, and produce an instantaneous change in the location.

Runs. Given two states l, l′ ∈ S, and a transition e ∈ Edg , we have a discrete

step l
e−→ l′ with source state l and target state l′ iff e = ⟨l, l′⟩.

Depending on the type of e, we can distinguish the following steps:

• If e ∈ Edgc, we have a controllable step l
c−→ l′, and l′ is called a controllable

successor.

• If e ∈ Edgu, we have an uncontrollable step l
u−→ l′, and l′ is called an

uncontrollable successor.

Given the set X ⊆ S, Succc(X) denotes the set of all controllable successors

of states l ∈ X, namely Succc(X) = {l′ ∈ S | l c−→ l′, and l ∈ X}, and Succu(X)

denotes the set of all uncontrollable successors of states l ∈ X, namely Succu =

{l′ ∈ S | l u−→ l′, and l ∈ X}. In addition, the set Succ(X) = Succc(X) ∪
Succu(X) is the set of all successors of locations in X.

A run is a sequence

r = l0
e0−→ l1

e1−→ l2 · · · ln · · · (1.1)

of discrete steps, such that either the sequence is infinite, or it ends with a

discrete step of the type ln−1
en−1−−−→ ln, with Succ({ln}) = ∅.

The length of the run r is denoted by len(r), and it is defined as follows:

len(r) =

{
n if the run r is finite

∞ otherwise

The set R(G) denotes all possible runs of G, and States(r) is the set of all

states visited by r. Formally, States(r) is the set of all states li, for all 0 ≤ i ≤
len(r). The set Inf(r) denotes all the locations that occur infinitely often in r.

Formally, if r is the run of Equation 1.1 then Inf(r) = {l ∈ States(r) | ∀i ≥
0 ∃j ≥ i such that lj = l}.

1.1.2 Acceptance Conditions

Let G = (Loc,Edgc,Edgu, l0) be a game graph. An acceptance condition for G

is a set of runs Ω ⊆ R(G).

Let T ⊆ Loc be a set of states of G and T ⊆ 2Loc be a power-set of states

of G, Table 1.1 lists three set of runs, namely Reach(G,T ), Safety(G,T ) and



1.1. GAME GRAPH 23

Muller(G, T ) that are the set of the accepted runs of G w.r.t. the reachability,

the safety and the Muller acceptance conditions, respectively.

Reach(G,T ) = {r ∈ R(G) | States(r) ∩ T ̸= ∅} r eventually visits T
Safety(G,T ) = {r ∈ R(G) | States(r) ⊆ T} r always remains in T
Muller(G, T ) = {r ∈ R(G) | Inf(r) ∈ T } r eventually visits (for ever)

all elements of a T ∈ T

Table 1.1: Acceptance conditions over runs

Example 2 shows when a run is called winner for a player according to a

Muller acceptance condition.

Example 2. Let G = (Loc,Edgc,Edgu, l0) be the arena presented in Figure 1.1,

T =
{
{l2, l4}, {l2, l3, l4, l5, l6}

}
and let Muller(G, T ) the acceptance condition.

A possible infinite run in this game is r = l3l2l4(l6l5l2l4l6l3l2l4)
ω. This run

is winning for the controller because Inf(r) = {l2, l3, l4, l5, l6} ∈ T . While, the

run r′ = (l2l4l6l3)
ω yields Inf(r′) = {l2, l3, l4, l6} /∈ T . Hence r′ is not winning

for the controller.

Strategies. Let G be a game graph as usual. A strategy is a partial function

σ : Loc∗ → 2EdgP \ ∅, where P ∈ {c, u}, such that for all l0 . . . lil ∈ Loc∗ such

that SuccP (l) ̸= ∅, the following conditions hold:

• σ is defined at l1 . . . lnl, and

• if e ∈ σ(l0 . . . lnl), then there exists l′ ∈ Loc such that l
e−→ l′.

These condition ensures that a strategy can only choose transitions allowed

by the game graph.

If EdgP = Edgc (resp. EdgP = Edgu), σ is called a strategy for the controller

(resp. a strategy for the environment).

A prefix of a run r = l0
e0−→ l1

e1−→ l2 · · · ln is said to be consistent with a

strategy σ if for every i with 0 ≤ i < n, if ei ∈ EdgP then ei ∈ σ(l0 . . . li).

Let G be an arbitrary game graph as usual, Ω be an acceptance condition,

σ be a strategy for the controller (resp. the environment), and U ⊆ Loc be a

set of states. The strategy σ is said to be a winning strategy for the controller

(resp. environment) on U if all runs which are consistent with σ and start in

a location from U are wins for the related player, according to the acceptance

condition Ω.

The controller (or the environment) is said to be the winner of the game (or

win the game) on U ⊆ Loc if it has a winning strategy σ on U .

Every game defined as above has at most one winner.



24 CHAPTER 1. CONTROL PROBLEMS FOR DISCRETE SYSTEMS

Remarke 1. [Maz02] For any game graph G, if the controller wins on U0 and

the environment wins on U1, then U0 ∩ U1 = ∅.

Example 3. Considering the game of Example 2. When the environment moves

from l0 to l0 every time the token is located on l0, then the environment will

win every run that visits l0. This means, in particular, that a strategy for the

environment defined by σu(yl0) = ⟨l0, l0⟩, where y ∈ Loc∗, is a winning strategy

for the environment.

Each run that does not begin in l0 or l1, visit the location l2 at some point.

The controller should under no circumstances move the token from l2 to l0

because the environment could win as described above. Hence, his only chance

is to move the token from l2 to l4.

The situation for the controller in location l6 is a bit more complicated. If it

always decides for moving the token to l3, then the resulting run has the form

r = . . . (l2l4l6l3)
ω and is a loss for it. Similarly, it will loose if always moves

the token to l5. But he is able to win if it alternates between l3 and l5. To sum

this up, consider the function σc defined by

σc(r) =


⟨l2, l4⟩ if r ∈ Loc∗l2

⟨l6, l3⟩ if r ∈ Loc∗l5l2l4l6

⟨l6, l5⟩ if r ∈ Loc∗l3l2l4l6

This is a winning strategy for the controller.

1.1.3 Forgetful and Memoryless Strategies

The objective of this section is to introduce some notions that help to explain

how complex a winning strategy can be.

As a motivation, consider the game from Example 1 again, where in order

to win it is necessary for the controller to alternate between moving the token

to l3 and l5 when it is on l6. More precisely, it is necessary not to stick to one

of the two locations from some point onwards. This means that the controller

has to remember at least one bit, namely whether it moved to l3 or l5 when the

token was on l6 the last time. It is clear that it is not necessary to remember

more than that. In other words, the controller needs a finite memory to carry

out its strategy, that in this case it is called a forgetful strategy. The situation is

much easier for the environment, that does not need to remember anything; it

simply moves to l0 every time the token is on l0: the environment has a winning

strategy called memoryless or positional.

In order to formally define the meaning of forgetful and memoryless strategy,

consider a game graph G as usual. A strategy σp is said to be finite memory

or forgetful if there exists a finite set M , an element mI ∈ M , and functions



1.2. SAFETY AND REACHABILITY CONTROL PROBLEMS 25

α : Loc × M → M and g : Loc × M → 2EdgP such that the following is

true. When r = l0l1 . . . ln−1 is a prefix of a run in the domain of σp and the

sequence m0m1 . . .mn is determined by m0 = mI and mi+1 = α(li,mi), then

σp(r) = g(ln,mn).

Forgetful strategies that do not need memory at all, that is, where one can

choose M to be a singleton, are called memoryless or positional.

Example 4. In Example 3, the strategy σu for the environment is memoryless.

To see this, observe that it is possible to choose M to be a singleton, say M =

{m}, and set g(l0,m) = ⟨l0, l0⟩. So, the environment has a memoryless winning

strategy. Using the simplified notation, it is possible to write σu(l0) = ⟨l0, l0⟩.
The controller needs to store which location between l3 and l5 it visited last.

This can be done with a memory M = {3, 5}. choose mI = 3,

α(l,m) =


3 if l = l3

5 if l = l5

m otherwise
and

g(l,m) =


⟨l2, l4⟩ if l = l2

⟨l6, l3⟩ if l = l6 and m = 5

⟨l6, l5⟩ if l = l6 and m = 3
Thus, the controller has a forgetful winning strategy.

Example 3 also stated that the controller must not move from l6 to the same

successor every time he visit l6. So, the controller can’t have memoryless win-

ning strategies.

1.2 Safety and Reachability Control Problems

Given a game graph G = (Loc,Edgc,Edgu, l0) and a set os states T ⊆ Loc,

this thesis is focused in the computation of a winning strategy for the controller

with respect to the acceptance conditions Safety(G,T ) and Reach(G,T ). The

former defines the safety control problem, and the set T is called the set of “safe

states”. The latter defines the reachability control problem, and the set T is

called the set of “target states”.

Now, the safety and the reachability control problems for game graph can

be formally defined.

Safety control problem. Given a game graph G = (Loc,Edgc,Edgu, l0)

and a set of the so-called “safe” states T ⊆ Loc, the safety control problem

consists in checking whether exists a winning strategy σ (for the controller) on

l0 w.r.t. Safety(G,T ), i.e. σ is such that, for all runs r ∈ Runs(l0, σ) it holds

States(r) ⊆ T .



26 CHAPTER 1. CONTROL PROBLEMS FOR DISCRETE SYSTEMS

Reachability control problem. Given a game graphG = (Loc,Edgc,Edgu, l0)

and a set of the so-called “target” states T ⊆ Loc, the reachability control prob-

lem consists in checking whether exists a winning strategy σ (for the controller)

on l0 w.r.t. Reach(G,T ), i.e. σ is such that, for all runs r ∈ Runs(l0, σ) it holds

States(r) ∩ T ̸= ∅.
These problems are stated to be dual, in the sense that given a game graph

G the safety control problem w.r.t. the set of safe states T can be solved by

considering the reachability control problem for the game graph G dual to G

w.r.t. the set of target states T (see [CES86]). Formally

Safety(G,T ) = Reach(G,T ).

An important result about the reachability control problem, that leads to

the computation of a solution, is stated by the following proposition.

Proposition 1. [Maz02] Given a game graph G = (Loc,Edgc,Edgu, l0) and a

set of states T ⊆ loc, if there exists a winning strategy σ w.r.t. Reach(G,T )

then there exists also a memoryless winning strategy σ′ w.r.t. Reach(G,T ).

Hence, by Proposition 1 and by the dual nature of the problems, the safety

(resp., reachability) control problems w.r.t. the set of safe (resp., target) states

T is equivalent to checking whether exists a memoryless winning strategy w.r.t.

Safety(G,T ) (resp., Reach(G,T )). Also, now the notion of strategy can be

refined by restricting the domain of the function from the set loc∗ to the set

of locations Loc (for the memoryless property), and by restricting the possible

moves considering only the set Edgc (because the only interesting strategies are

those of the controller). Formally, a memoryless strategy is a partial function

σ : Loc → 2Edgc \ ∅, such that for all l ∈ Loc such that Succc(l) ̸= ∅, the

following conditions hold:

• σ is defined at l, and

• if e ∈ σ(l), then there exists l′ ∈ Loc such that l
e−→ l′. This condition

ensures that a strategy can only choose controllable transitions allowed by

the game graph.

Clearly, the notion of run consistency with a strategy, is slightly different.

A run like 1.1 is consistent with a memoryless strategy σ, if for all i ≥ 0 the

following condition holds:

• if ei ∈ Edgc then ei ∈ σ(li).

The set Runs(l, σ) denote the set of runs starting from the location l and

consistent with the strategy σ.



1.3. SOLVING SAFETY AND REACHABILITY CONTROL PROBLEMS27

1.3 Solving Safety and Reachability Control Prob-
lems

This section shows sound and complete algorithms that compute the winning

states and a memoryless winning strategy to solve the safety and the reachability

control problem.

In [Maz02] it is showed a constructive proof of the Proposition 1. The proof

is constructive in the sense that on a game graph it can be immediately turned

into an algorithm which computes a memoryless winning strategy and the set

of winning states. In the proof, a memoryless winning strategy and the winning

states are defined inductively on the so-called controllable predecessor operator

CPre. For a set of states A, the controllable predecessor operator CPre(A)

returns the set of states from which the controller can ensure that the system

remains in A during the next transition. The controllable predecessor operator

is the function CPre : 2Loc → 2Loc , defined as follows

CPre(A) =
{
l ∈ Loc

∣∣ (Succc({l}) ∩A ̸= ∅) ∧ (Succu({l}) ⊆ A)
}
.

Then, the following proposition holds

Proposition 2. The answer to the reachability control problem for target set

T ⊆ Loc is positive if and only if

l0 ∈ µW . T ∪ CPre(W ). (1.2)

In a dual manner, the following proposition also holds

Proposition 3. The answer to the safety control problem for safe set T ⊆ Loc

is positive if and only if

l0 ∈ νW . T ∩ CPre(W ). (1.3)

In the following, the algorithm to compute the CPre operator and algorithms

that implement the above fix-point procedures are showed.

Given a game graph G = (Loc,Edgc,Edgu, l0), a set of states X ⊆ Loc, and

a set of safe (resp. target) states T ⊆ Loc, the Algorithm 1 on parameters G

and X computes the set of the controllable predecessors of X, CPre(X). The

Algorithm 2 (ref. Algorithm 3) on parameter G and T computes the winning

states of the safety (resp. reachability) control problem for G w.r.t. T .



28 CHAPTER 1. CONTROL PROBLEMS FOR DISCRETE SYSTEMS

Algorithm 1: CPre(X)

Input: Game Graph G = (Loc,Edgc,Edgu, l0), Set of States X
Output: Set of States CPre
foreach l ∈ Loc do

Succc := ∅;
foreach ⟨l, l′⟩ ∈ Edgc do

Succc := Succc ∪ {l′}
Succu := ∅;
foreach ⟨l, l′⟩ ∈ Edgu do

Succu := Succu ∪ {l′}

if
((

Succc ∩W ̸= ∅
)
and

(
Succu ⊆W

))
then

CPre := CPre ∪ {l};

return CPre;

Algorithm 2: safety(G,T )

Input: Game Graph G = (Loc,Edgc,Edgu, l0), Set of safe states
T ⊆ Loc.

Output: Set of States W
W0 := T ;
repeat

Wi+1 := T ∩ CPre(Wi);
i := i+ 1;

until Wi+1 = Wi;
return W := Wi;

Algorithm 3: reachability(G,T )

Input: Game Graph G = (Loc,Edgc,Edgu, l0), Set of target states
T ⊆ Loc.

Output: Set of States W
W0 := T ;
repeat

Wi+1 := T ∪ CPre(Wi);
i := i+ 1;

until Wi+1 = Wi;
return W := Wi;

Given a game graph G and a set of states T , Example 5 show how Algorithm

2 works in order to solve the safety control problem for G w.r.t. the set of safe

states T , while Example 6 show how Algorithm 3 works in order to solve the

reachability control problem for G w.r.t. the set of target states T .

Example 5. Consider the safety control problem for the game graph showed in

the Figure 1.2(a) w.r.t. the set of safe states T = {l0, l2, l3, l4}, showed in Figure

1.2(b)

Figure 1.2 shows how Algorithm 2 works. Each subgraph of the figure repre-

sents a single step of the fix-point procedure.



1.3. SOLVING SAFETY AND REACHABILITY CONTROL PROBLEMS29

..l0.

l1

.

l2

.

l3

.

l4

.

u

.
c

.
c

.

c

.

c

.

c

.

u

.

c

.

u

.

c

(a) The Game Graph G in input.

..l0.

l1

.

l2

.

l3

.

l4

(b) Safe states T in input.

..l0.

l1

.

l2

.

l3

.

l4

.

u

.
c

.
c

.

c

.

c

.

c

.

u

.

c

.

u

.

c

(c) First step. Computation of W1.

..l0.

l1

.

l2

.

l3

.

l4

.

u

.
c

.
c

.

c

.

c

.

c

.

u

.

c

.

u

.

c

(d) Fix-point. Computation of W2 = W1.

Figure 1.2: Algorithm for the safety.

The algorithm set W0 = T = {l0, l2, l3, l4}. In the first step, the fix-point

algorithm computes the set W1 = T ∩ CPre({l0, l2, l3, l4}), hence the control-

lable predecessors of W0 must be computed. The location l0 does not belong

to CPre, due the uncontrollable transition ⟨l0, l1⟩, that would lead the sys-

tem in a location not in W0. From l1 there are not uncontrollable transi-

tions and there exists several controllable transitions, whose target is a loca-

tion in W0. Hence, l1 belongs to CPre(W0). Also the location l2 belongs to

CPre(W0): the only transition whose source location is l2, has l4 as target lo-

cation and l4 ∈ W0. From the location l3 the environment may choose the

transition ⟨l3, l1⟩, that would lead the system into the location l1 /∈ W0. Hence,

l3 /∈ CPre(W0). From the location l4, there is only a self-loop. Since l4 be-

longs to W0, then l4 belongs also to CPre(W0). Now, the algorithm computes

W1 = T ∩CPre(W0) = {l0, l2, l3, l4}∩{l1, l2, l4} = {l2, l4}. Figure 1.2(c) depicts

the situation at the end of the first step.

In the second step (see Figure 1.2(d)), the algorithm computes W2 = T ∩
CPre(W1 = {l2, l4}). The set CPre(W1), besides the location belonging to W1,

contains also the location l1, due the controllable transition ⟨l1, l2⟩ that would

lead the system into a location in W1. Notice that there are not uncontrol-



30 CHAPTER 1. CONTROL PROBLEMS FOR DISCRETE SYSTEMS

lable transitions whose source location is l1. Hence, W2 = T ∩ CPre(W1) =

{l0, l2, l3, l4}∩{l1, l2, l4} = {l2, l4}. Since the set of states W2 is the same of W1

(W2 = W1), the fix-point is reached and the locations in W2 are winning.

Example 6. Consider the reachability control problem for the game graph of

Example 5, showed again in Figure 1.3(a) w.r.t. the set of target states T = {l4}.
Figure 1.3 shows how Algorithm 3 works, in order to compute the winning

states. Each subgraph of the figure represents a single step of the fix-point pro-

cedure.

In the first step the algorithm computes the set W1 = T ∪ CPre(W0 = T =

{l4}. The only locations from where the controller can enforce the system to

reach the location l4 in one step are l2 (by the controllable transition ⟨l2, l4⟩) and
l4 by the (controllable) self-loop ⟨l2, l4⟩. Hence, W1 = {l4} ∪ {l2, l4} = {l2, l4}.
Figure 1.3(c) shows the result of the first step.

In the second step the algorithm computes the set W2 = T ∪ CPre(W1 =

{l2, l4}. Now, l1 belongs to CPre(W1), because the controller may take the

transition ⟨l1, l2⟩ to enforce the system to lead the location l2 ∈ W1, while l0

(resp. l3) does not belongs to CPreW1, due the uncontrollable transition ⟨l0, l1⟩
(resp. ⟨l3, l1⟩) that would lead the system in the location l1 /∈ W1. Hence, at

the end of the second step, the algorithm computes W2 = T ∪ CPre({l2, l4}) =
{l4} ∪ {l1, l2, l4} = {l1, l2, l4}. Figure 1.3(d) shows the result of the second step.

In the next step, also the location l0 belongs to CPre(W2), because the con-

troller may take the transition ⟨l0, l2⟩ in order to reach the location l2 ∈ W2,

while the only move (⟨l0, l1⟩) for the environment also lead the system in a

location belonging to W2 (l1 ∈ W2). Hence, W3 = T ∪ CPre({l1, l2, l4}) =

{l4} ∪ {l0, l1, l2, l4} = {l0, l1, l2, l4}. Figure 1.3(e) shows the result of this step.

Now, the only location that could be added to W4, is l3. But there are not

controllable transitions whose source location is l3 and whose target location is

one belonging to W3. Hence, W4 = W3 and the fix point is reached (see Figure

1.3(f)).



1.3. SOLVING SAFETY AND REACHABILITY CONTROL PROBLEMS31

..l0.

l1

.

l2

.

l3

.

l4

.

u

.
c

.
c

.

c

.

c

.

c

.

u

.

c

.

u

.

c

(a) The Game Graph G in input.

..l0.

l1

.

l2

.

l3

.

l4

(b) Sef of target states T in
input.

..l0.

l1

.

l2

.

l3

.

l4

.

u

.
c

.
c

.

c

.

c

.

c

.

u

.

u

.

u

.

c

(c) First Step (computation of W1).

..l0.

l1

.

l2

.

l3

.

l4

.

u

.
c

.
c

.

c

.

c

.

c

.

u

.

u

.

u

.

c

(d) Second Step (computation of W2).

..l0.

l1

.

l2

.

l3

.

l4

.

u

.
c

.
c

.

c

.

c

.

c

.

u

.

u

.

u

.

c

(e) Third Step (computation of W3).

..l0.

l1

.

l2

.

l3

.

l4

.

u

.
c

.
c

.

c

.

c

.

c

.

u

.

u

.

u

.

c

(f) Fix-point. Computation of W4 = W3.

Figure 1.3: How fix-point algorithm for reachability works.



32 CHAPTER 1. CONTROL PROBLEMS FOR DISCRETE SYSTEMS



Chapter 2

Control Problems for
Timed Games

While in Chapter 1 the considered dynamical systems are discrete, in the rest

of the thesis the considered systems are only continuous. In this chapter the

results showed in Chapter 1 are extended to one of the first kind of continuous

systems studied in computer science, i.e. real-time systems. Such a system is

typically modeled by the formalism of Timed Automata (TAs)[AD94]. A timed

automaton is a finite automaton augmented with a finite set of variables, or

clocks, over a continuous domain. The behavior of a TA is described by the

time elapse in a location (timed step), and by instantaneous discrete transitions

(discrete step). A clock can be reset to zero simultaneously with any transition.

At any instant, the reading of a clock equals the time elapsed since the last time

it was reset. Each transition is associated with a clock constraint (or guard),

and it is required that the transition can be taken only if the current values of

the clocks satisfy this constraint.

This chapter introduces a particular kind of timed automaton, in order

to model explicitly the disjoint actions of the controller and of the environ-

ment. This is done by the formalism of Timed Games (TGs) [MPS95, ACD93,

HNSY92], that is a timed automaton whose set of transitions is partitioned in

two disjoint sets: the set of the controllable transitions, governed by the con-

troller, and the set of uncontrollable transitions, governed by the environment.

Once introduced the formalism of timed games, the related notion of strategy

is redefined and the controller synthesis problem for timed games is formally

introduced. The main idea behind the resolution of this problem is to find a

way that allows to view the continuous behavior of a TG as discrete, in order

to use the same algorithms seen in Chapter 1. For example, Maler and others

[MPS95] proposed an appropriate version of the (timed) controllable predecessor

33



34 CHAPTER 2. CONTROL PROBLEMS FOR TIMED GAMES

operator CPre, that takes into account the real-time properties of the systems,

based on a special kind of step, called “joint step” (a timed step followed by

a discrete step). The use of joints steps as basic game steps allows to abstract

away from the infinitely many time progress occurring between two consecutive

discrete steps, and hence a discretization is obtained.

In the literature, the most used discretization is given by another technique,

based on appropriate equivalence relations that allow to reduce the whole (infi-

nite) set of states of a timed games into a finite number of equivalence classes.

Examples of such relations are the region-graph equivalence [AD94] and the ta-

bisimulation [TA99]. These relations abstract away from the exact amount of

time elapsed and they are therefore referred to as time-abstracting equivalences.

By using one of the above relations, a finite automaton (e.g. a game graph)

equivalent to the considered timed game, can be obtained. There exist several

algorithms [TA99, BFH+94, LY92] to this aim. Tools likeUppaal [BLP+96] and

Kronos [DOTY96] (for verification), or like Uppaal-Tiga [BCD+05, JRLD07]

(for synthesis), using these algorithms and then, once obtained the correspond-

ing game graph, the algorithms showed in Chapter 1 are used.

This thesis is focused on the first kind of approach (the timed version of

CPre). In fact algorithms based on time-abstracting equivalence have no prac-

tical relevance for the purpose of this work: they cannot be extended in order to

correctly handle control problems for hybrid games, because there does not ex-

ists a finite abstraction for the latter. Hence, the chapter ends by showing only

the controllable predecessor operator for the real-time games (see [AD94, TA99])

for a complete picture of time-abstracting equivalence approachs).

2.1 Timed Games (TGs)

A Timed Game (TG) [MPS95, ACD93, HNSY92] is a game graph augmented

with a finite set X = {x1, . . . , xn} of (real-valued) clocks. Let R≥0 denote the

set of nonnegative real numbers, and let Q≥0 denote the set of nonnegative

rational numbers.

For a set X of clocks, the set Φ(X) of clock constraints g is defined by the

grammar

g := x ≤ c | x ≥ c | x < c | x > c | g ∧ g

where x ∈ X and c ∈ Q≥0.

A valuation is a function v : X → R≥0. For every δ ∈ R≥0, v′ = v + δ is a

valuation such that v′(x) = v(x) + δ, for all x ∈ X. Given µ ⊆ X, v[µ := 0] is

the valuation v′, such that



2.1. TIMED GAMES (TGS) 35

• v′(x) = 0, for each x ∈ µ, and

• v′(x) = v(x), otherwise.

Let Val(X) denote the set of valuations over X, and let Πg ∈ 2Val(X) de-

note the set of valuation that satisfy the guard g, i.e. Πg = {v ∈ Val(X) |
v satisfies g}.

A Timed Game A = (Loc, X,Edgc,Edgu, Inv , Init) consists of the following:

• A finite set Loc of locations.

• A finite set X = {x1, . . . , xn} of clocks. A state is a pair ⟨l, v⟩ of a location

l and a valuation v ∈ Val(X).

• Two sets Edgc and Edgu of controllable and uncontrollable reset transi-

tions, respectively. They describe instantaneous changes of locations, in

the course of which variables may be reset. Each transition (l, g, µ, l′) ∈
Edgc ∪ Edgu consists of a source location l, a target location l′, a guard

g ∈ Φ(X) that describes the valuations for which the transition is enabled

and a jump relation µ ⊆ X, that specifies the clocks to reset when the

transition occurs.

• A mapping Inv : Loc → Φ(X), called the invariant.

• Amapping Init : Loc → Φ(X), contained in the invariant, which allows the

definition of the initial states from which all behaviors of the automaton

originate.

The abbreviation S = Loc × Val(X) is used to denotes the set of all states

and Edg = Edgc ∪ Edgu is used for the set of all transitions. Moreover,

InvS =
∪

l∈Loc{l} × ΠInv(l) is the set of all admissible valuations and InitS =∪
l∈Loc{l} × ΠInit(l) is the set of all initial states. Notice that InvS and InitS

are sets of states.

2.1.1 Semantics

The behavior of a timed game is based on two types of steps:

1. discrete or reset steps correspond to the Edg component, and produce an

instantaneous change in both the location and the variable valuation;

2. timed steps describe the time progress of the clocks in X.



36 CHAPTER 2. CONTROL PROBLEMS FOR TIMED GAMES

Given a state s = ⟨l, v⟩, we set loc(s) = l and val(s) = v. Additionally, for

a valuation v ∈ Val(X), the span of v in l, denoted by span(v, l), is the set of

all values δ ≥ 0 such that ⟨l, v + δ′⟩ ∈ InvS , for all 0 ≤ δ′ ≤ δ. Intuitively, δ

is the span of v iff v never leaves the invariant in the first δ time units. If all

non-negative reals belong to span(v, l), we write ∞ ∈ span(v, l).

Runs. Given two states s, s′, and a transition e ∈ Edg , there is a discrete step

s
e−→ s′ with source s and target s′ iff (i) s, s′ ∈ Invs, (ii) e = (loc(s), g, µ, loc(s′)),

(iii) val(s) ∈ g, i.e. val(s) satisfies the guard g, and (iv) val(s′) = val(s)[µ :=

0]).

There is a timed step s
δ−→ s′ with duration δ ∈ R≥0 iff (i) s+ δ′ ∈ InvS , for

each 0 ≤ δ′ ≤ δ, and (ii) s′ = ⟨loc(s), val(s) + δ⟩.
For technical convenience, timed transitions of duration zero are admitted

1.

A special timed step is denoted by s
∞−→ and represents the case when the

system remains in the location loc(s) forever. This is only allowed if val(s)+δ ∈
InvS , for all δ ≥ 0.

Finally, a joint step s
δ,e−−→ s′ represents the timed step s

δ−→ ⟨loc(s), val(s)+δ⟩
followed by the discrete step ⟨loc(s), val(s) + δ⟩ e−→ s′.

A run is a sequence

r = s0
δ0−→ s′0

e0−→ s1
δ1−→ s′1

e1−→ s2 . . . sn . . . (2.1)

of alternating timed and discrete steps, such that either the sequence is

infinite, or it ends with a timed transition of the type sn
∞−→.

The length of the run r is denoted by len(r), and it is defined as follows:

len(r) =

{
n if the run r is finite

∞ otherwise

The set States(r) denotes the set of all states visited by r. Formally, States(r)

is the smallest set containing all states ⟨loc(si), fi(δ)⟩, for all 0 ≤ i ≤ len(r) and

all 0 ≤ δ ≤ δi.

Notice that the states from which discrete steps start (states s′i in (2.1))

appear in States(r). Moreover, if r contains a sequence of one or more zero-

time timed steps, all intervening states appear in States(r).

Example 7. Let A = (Loc, X,Edgc,Edgu, Inv , Init) be a timed game, whose

components are defined as follows:

1Timed transitions of duration zero can be disabled by adding a clock variable t to the
automaton and requesting that each discrete transition happens when t > 0 and resets t to 0
when taken.



2.1. TIMED GAMES (TGS) 37

• Loc = {l1, l2, l3, l4, l5, l6}.

• X = {x}.

• Edgc =
{
(l1, x ≥ 1, ∅, l2), (l2, x ≥ 2, ∅, l6), (l4, x ≤ 1, ∅, l2)

}
.

• Edgu =
{
(l1, x < 1, {x}, l3), (l1, x > 1, ∅, l5), (l2, x < 1, ∅, l3)

}
.

• Inv(l) = true, for all l ∈ Loc.

• Init(l1) = true and Init(l) = false, for all l ̸= l1.

Figure 2.1 shows the graphical representation of the timed game A. Notice

that, controllable transitions are represented by solid arrows, while uncontrollable

transitions are represented by dashed arrows. The arrows are labeled with the

guards and the set of the clock to reset of the corresponding transition.

..l1. l2. l3. l4.

l5

.

l6

.
⟨x ≤ 1, ∅⟩

.

⟨x < 1, {x}⟩

.

⟨x > 1, ∅⟩

.
⟨x < 1, ∅⟩

.

⟨x ≥ 2, ∅⟩

.
⟨True, ∅⟩

.

⟨x ≤ 1, ∅⟩

Figure 2.1: A Timed Game (adapted from [CDF+05]).

Zenoness and well-formedness. A well-known problem that affect contin-

uous systems, and hence also real-time, is that definitions like the above admit

runs that take infinitely many discrete steps in a finite amount of time, even

if such behaviors are physically meaningless. Such runs are called Zeno runs

(from the “paradoxes of Motion” proposed by the greek philosopher Zeno).

On the other hand, a run of the form (2.1) is called non-Zeno if, for all δ ≥ 0,

there exists i ≥ 0 such that
∑i

j=0 δj > δ. In other words, a run is non-Zeno if

time diverges along the run.

In this thesis it is assumed that the timed game under consideration does

not generate Zeno runs. This is easily achieved by using an extra clock t to



38 CHAPTER 2. CONTROL PROBLEMS FOR TIMED GAMES

ensure that the delay between any two discrete steps is bounded from below by

a constant c (all transitions can only be taken when t ≥ c and then they reset t

to zero).

Moreover, it is assumed that the timed game under consideration is non-

blocking, i.e., whenever the automaton is about to leave the invariant there

must be an uncontrollable transition enabled. Formally, for all states s in the

invariant, if the valuation v = val(s) eventually leave the invariant, there exists a

time δ ∈ span(v, loc(s)) such that there is an uncontrollable transition enabled in

⟨loc(s), v+δ⟩, i.e., there exist s′ ∈ InvS and e ∈ Edgu such that ⟨loc(s), v+δ⟩ e−→
s′.

If a timed game is non-Zeno and non-blocking, is said to be well-formed. In

the following, all timed games are assumed to be well-formed.

Example 8. Consider the timed game in Figure 2.2. The fragment in Fig-

ure 2.2(a) is blocking, because eventually the clock valuation leaves the invariant

and there is not uncontrollable transitions to ensure the progress of the game.

The fragment in Figure 2.2(b) is non-blocking, because the system cannot remain

in l forever, but an uncontrollable transition leading outside is always enabled.

Finally, the fragment in Figure 2.2(c) is blocking, because the system cannot

remain in l forever, and no uncontrollable transition is enabled.

..0 ≤ x ≤ 1.

l

(a) Blocking.

..0 ≤ x ≤ 1.

l

. .... u

(b) Non-blocking.

..0 ≤ x ≤ 1.

l

. .... c

(c) Blocking.

Figure 2.2: Three TG fragments. Locations contain the invariant. Solid (resp.,
dashed) edges represent controllable (resp., uncontrollable) transitions. Guards
are true.

Strategies. In order to take into account the density of the time domain, the

notion of non-deterministic and memoryless strategy shown in Chapter 1 needs

to be redefined.

In the real-time context, the controller may choose also to do nothing. Hence,

the strategy can associate the null action to any states, denoted by the symbol

⊥.
A (timed) strategy is a function σ : S → 2Edgc∪{⊥} \ ∅ such that:

(a) for all s ∈ S, if e ∈ σ(s)∩Edgc, then there exists s′ ∈ S such that s
e−→ s′;

(b) if ⊥ ∈ σ(s), then there exists δ > 0 such that for all 0 < δ′ < δ it holds

val(s) + δ′ ̸∈ Inv(loc(s)) or ⊥ ∈ σ(⟨loc(s), val(s) + δ′⟩).



2.2. SAFETY ANDREACHABILITY CONTROL PROBLEMS FOR TIMEDGAMES39

In the rest of the chapter, when one says strategy, refers to a timed strategy.

Condition (a) ensures that a strategy can only choose transitions allowed by

the automaton. Condition (b) requires that if a strategy chooses the null action,

then it must continue to do so for a positive amount of time that remains in the

invariant.

A run like (2.1) is consistent with a strategy σ if for all 0 ≤ i < len(r) the

following conditions hold:

• for all δ ≥ 0 such that
∑i−1

j=0 δj ≤ δ <
∑i

j=0 δj , we have⊥ ∈ σ(⟨loc(si), val(si)+
δ −

∑i−1
j=0 δj⟩);

• if ei ∈ Edgc then ei ∈ σ(s′i).

The set Runs(s, σ) contains all runs starting from the state s and consistent

with the strategy σ.

2.2 Safety and Reachability Control Problems
for Timed Games

In the following, the definitions of safety and reachability control problems given

in Chapter 1, are extended in order to take into account the real-time properties

of the systems considered in this chapter.

Safety control problem. Given a timed game A = (Loc, X,Edgc,Edgu, Inv ,

Init) and a set of safe states T ⊆ S, the safety control problem for A consists in

checking whether exists a winning strategy σ (for the controller) such that, for

all initial states s ∈ InitS and all runs r ∈ Runs(l, σ), it holds States(r) ⊆ T .

Reachability control problem. Given a timed gameA = (Loc, X,Edgc,Edgu,

Inv , Init) and a set of target states T ⊆ S, the reachability control problem for

A consists in checking whether exists a winning strategy σ (for the controller)

on such that, for all initial states s ∈ InitS and all runs r ∈ Runs(l, σ) it holds

States(r) ∩ T ̸= ∅.

Example 9. Consider the reachability control problem for the timed game of

Example 7, w.r.t. the set of target states T = {(l6, v) | v ∈ InvS}.
A winning strategy would consist in taking the transition (l1, x ≤ 1, ∅, l2)

immediately in all states (l1, val) with val ≤ 1; taking (l2, x ≥ 2, ∅, l6) immedi-

ately in all states (l2, val) with val ≥ 2; taking (l3, T rue, ∅, l4) immediately in

all states (l3, val) and delaying in all states (l4, val) with val < 1 until the value

of x is 1 at which point the transition (l4, x ≤ 1, ∅, l2) is taken.



40 CHAPTER 2. CONTROL PROBLEMS FOR TIMED GAMES

2.3 Solving Safety and Reachability Control Prob-
lems

The fix-point algorithm showed in Chapter 1, can be applied also in the real-

time context in order to solve control problems, using joint steps as the basic

game steps. In particular, Algorithm 2 can be used to compute the winning

states for a safety control problem, and Algorithm 3 can be used to compute

the winning states for a safety control problem.

Clearly, the difference consists in the computation of the appropriate version

of controllable predecessor operator CPre for real-time systems. In the following

the CPre operator is formally defined.

Controllable predecessor operator. For a set of states A, the operator

CPre(A) returns the set of states from which the controller can ensure that the

system remains in A during the next joint transition. This happens if for all

delays δ, one of two situations occurs:

• either the systems stays in A up to time δ, while all uncontrollable tran-

sitions enabled up to time δ (included) also lead to A, or

• there exists a time δ′ < δ, such that the system stays in A up to time δ′,

all uncontrollable transitions enabled up to time δ′ (included) also lead to

A, and the controller can issue a transition at time δ′ leading to A.

To improve readability, before formally defining the controllable predecessor

operator, some preliminary operators are defined.

For a set of states A and x ∈ {c, u}, the predecessors Prex(A) is defined as:

Prex(A) = {s ∈ S | s e−→ s′, with s′ ∈ A and e ∈ Edgx},

and denotes the set of states where some discrete transition belonging to

Edgx is enabled and leads to A.

For a set of states A and a time delay δ ≥ 0 (including infinity), the set of

states from where waiting δ time units keeps the system in A, and any uncontrol-

lable transition taken meanwhile also leads into A, is denoted by While(A, δ).

Formally,

While(A, δ) =
{
s ∈ S

∣∣∣∀0 ≤ δ′ ≤ δ : ⟨loc(s), val(s) + δ′⟩ ∈ A \ Preu(A)
}
.

Now, it is possible to formally define the CPre operator.



2.3. SOLVING SAFETY AND REACHABILITY CONTROL PROBLEMS41

CPre(A) =
{
s ∈ S

∣∣∣∀δ ∈ span(val(s), loc(s)) : s ∈While(A, delta)

or ∃0 ≤ δ′ < δ : s ∈While(A, δ′) and ⟨loc(s), val(s) + δ′⟩ ∈ Prec(A)
}
.

This is the correct version of the operator CPre in order to handle the real-

time properties of the considered systems.

Algorithms to compute the CPre operator are less efficient than the approach

based on the time-abstracting equivalence, that usually using on-the-fly tech-

nique for the construction of the region graphs. For reasons already explained

in the introduction of this chapter, these algorithms are not relevant for the

purpose of this thesis and therefore will not be explained. Notice that, being a

timed game a proper subclass of hybrid game (see Chapter 3), the related safety

and reachability control problem can be solve by using the algorithms for hybrid

games that will be introduced in Chapter 4 and in Chapter 5, respectively.



42 CHAPTER 2. CONTROL PROBLEMS FOR TIMED GAMES



Chapter 3

Hybrid Games (LHGs) and
Control Problems

The real-time systems introduced in Chapter 2 are an example of relatively

simple continuous systems. Simple in the sense that the trajectory of the systems

always faithfully follows the trend of the time, i.e. each continuous variable x

has a constant rate of growth, equal to 1. This can be easily expressed by saying

that in a timed game the first derivative of each continuous variable is equal to

1.

This chapter is focused on hybrid systems, a particular kind of continuous

systems, whose trajectories may be expressed by laws more complicated than

the real-time case. Also in hybrid systems, state variables are partitioned into

discrete and continuous ones. Given the ability to define a wide variety of

evolution of the continuous variables, these can be used to represent physical

quantities like temperature, speed, etc. As the case of timed, discrete variables

may be used to represent control modes, i.e., states of the controller.

The formalism of Hybrid Automata (HAs) [Hen96] is the most common syn-

tactic variety of hybrid system: a finite set of locations, similar to the states of

a finite automaton, represents the value of the discrete variables. The current

location, together with the current value of the (continuous) variables, form the

instantaneous description of the system. Change of location happens via dis-

crete transitions, and the evolution of the variables is governed by differential

equations attached to each location.

Depending on the class of differential equations attached to the locations,

several different classes of hybrid automata can be identified.

The most studied problem for hybrid systems is reachability : computing the

set of states that are reachable from the initial states, in any amount of time.

For a general class of hybrid automata, the reachability problem was proved

43



44 CHAPTER 3. HYBRID GAMES (LHGS) AND CONTROL PROBLEMS

undecidable in [HKPV95], indicating that no exact discrete abstraction exists.

Considering some restriction on the allowed differential equations (see Section

3), semi-decidable or decidable fragments of hybrid automata [WT97, HKPV95]

can be found.

In a similar way as already seen for continuous and discrete systems, this the-

sis is focused on hybrid automata whose discrete transitions are partitioned into

controllable and uncontrollable ones. This is the formalism of Hybrid Games

(HGs), in which the controller governs the controllable transitions, while the en-

vironment governs not only the uncontrollable transitions, but also may choose

a trajectory, according to the differential equations attached to the current lo-

cation. The resulting control problem is to compute a strategy for the controller

to satisfy a given goal, regardless of the evolution of the continuous variables

and of the uncontrollable transitions.

In this chapter the formalism of Hybrid Games, its related subclasses, and

the control problem (w.r.t. safety and reachability goals) are formally defined.

3.1 Hybrid Games (HGs)

Given an ordered set X = {x1, . . . , xn} of variables, a valuation is a function

v : X → R. Let Val(X) denote the set of valuations over X, Ẋ = {ẋ1, . . . , ẋn}
denote the set of dotted variables, used to represent the first derivatives, and

X ′ to denote the set {x′
1, . . . , x

′
n} of primed variables, used to represent the new

values of variables after a transition. Let Val(X) denote the set of valuations

over X.

The set of dotted variables Ẋ = {ẋ1, . . . , ẋn} is used to represent the first

derivatives, and the set of the primed variables X ′ = {x′
1, . . . , x

′
n} of primed

variables, is used to represent the new values of variables after a transition.

Arithmetic operations on valuations are defined in the straightforward way. An

activity over X is a differentiable function f : R≥0 → Val(X).

Let Acts(X) denote the set of activities over X. The derivative ḟ of an

activity f is defined in the standard way and it is an activity over Ẋ.

An Hybrid Games H = (Loc, X,Edgc,Edgu,Flow , Inv , Init) consists of the

following:

• A finite set Loc of locations.

• A finite set X = {x1, . . . , xn} of continuous, real-valued variables. A state

is a pair ⟨l, v⟩ of a location l and a valuation v ∈ Val(X).

• Two sets Edgc and Edgu of controllable and uncontrollable transitions, re-



3.1. HYBRID GAMES (HGS) 45

spectively. They describe instantaneous changes of locations, in the course

of which variables may change their value. Each transition (l, µ, l′) ∈
Edgc ∪ Edgu consists of a source location l, a target location l′, and a

jump relation µ ∈ 2Val(X∪Ẋ), that specifies how the variables may change

their value during the transition. The projection of µ on X describes the

valuations for which the transition is enabled; this is often referred to as

a guard.

• A mapping Flow : Loc → 2Val(X∪Ẋ) attributes to each location a set of

valuations over the variables and their derivatives, which determines how

variables can change over time.

• A mapping Inv : Loc → 2Val(X) called the invariant. All behaviors is

constrained to the invariant at all times.

• A mapping Init : Loc → 2Val(X), contained in the invariant, defining the

initial states of the hybrid game.

In the rest of the thesis the abbreviation S = Loc×Val(X) is used for the set of

states and Edg = Edgc ∪ Edgu for the set of all transitions. Moreover, InvS =∪
l∈Loc{l} × Inv(l) is the set of all invariants, and InitS =

∪
l∈Loc{l} × Init(l)

is the set of all the initial states. Notice that InvS and InitS are sets of states.

Given a set of states A and a location l, the set A�l denotes the projection of A

on l, i.e. {v ∈ Val(X) | ⟨l, v⟩ ∈ A}.
This is a very general definition of hybrid games, where valuations associated

to a single location by Flow , Inv and Init mappings are not specified. Notice

that the mapping Flow is given by a set of valuations over the variables and

their derivatives, i.e. is given by a means of a general differential equation.

When these mappings are carefully specified, i.e. by constraining the associated

valuations into a specified subset of Val(X), a number of proper subclasses of

hybrid games can be identified. In order to formally define these subclasses,

additional notations are given.

A convex polyhedron is a subset of Rn that is the intersection of a finite

number of strict and non-strict affine half-spaces. A polyhedron is a subset of

Rn that is the union of a finite number of convex polyhedra. For a general (i.e.,

not necessarily convex) polyhedron G ⊆ Rn, the polyhedron cl(G) denotes its

topological closure, and [[G]] ⊆ 2R
n

denotes its representation as a finite set of

convex polyhedra. Notice that there is an obvious bijection between Val(X) and

Rn, allowing to extend the notion of (convex) polyhedron to sets of valuations.

In addition, CPoly(X) (resp., Poly(X)) denotes the set of convex polyhedra

(resp., polyhedra) on X.



46 CHAPTER 3. HYBRID GAMES (LHGS) AND CONTROL PROBLEMS

ẋ ∈ [−accmin, accmax] ẋ = −βy

0 ≤ y ≤ bmax

0 ≤ x ≤ velmax 0 < x ≤ velmax

0 ≤ x ≤ c3

N B

ABS

0 < y ≤ bmax

ẋ = 0

x = 0
L

x ≥ c3

0 ≤ y ≤ bmax

y = 0

ẏ = −c

−1 ≤ ẏ ≤ 1

x := c1

x := 0

−1 ≤ ẏ ≤ 1

y := 0

y := 0 y > 0

ẋ = −βy

y := c2

Figure 3.1: ABS modeled as AHG.

Now several subclasses of HGs can be identified. The subclass of Affine

Hybrid Games (AHGs) is a HG, whose mapping are defined as following:

• The jump relation of each transition is defined on polyhedra on X ∪X ′,

i.e. µ ∈ Poly(X ∪X ′). .

• Flow : Loc → CPoly(X ∪ Ẋ), that allows to model dynamics of the form

ẋ = Ax+ b, with the elements of A and b given by intervals1.

• Inv : Loc → Poly(X).

• Init : Loc → Poly(X).

Example 10. Consider a simplified version of the ABS device of Figure 2 shown

in the introduction. The driver (viewed as environment) may choose to brake

at any time, with magnitude (modeled by the continuous variable y) between 0

and the constant value bmax > 0. The angular speed of the wheels is considered

to be the same for all wheels, and can be modeled by the continuous variable

x. Clearly, the speed is affected by the braking power. The normal running of

the vehicle, i.e. when no brake is performed by the driver, is modeled by the

location N , while the braking state is modeled by the location B. The dynamics

associated to B is expressed by ẋ = −βy (with β > 0) to model that the decrease

of wheels speed is proportionally to the intensity of the braking. In addition,

the differential equation ẏ ∈ [−1, 1] represents the ability to change the braking

power. When the driver performs a braking (location B), a wheel lock could

occur. This situation is modeled by the uncontrollable transition that leads the

system into the location L (representing the locking state), whose update function

1This is the semantics adopted by Frehse ([Fre05]).



3.1. HYBRID GAMES (HGS) 47

µ is such that it assigns the zero value to the speed of the wheels (x := 0). In this

state, the controller may act on the brake in order to restore the normal running

of the vehicle: this is modeled by the controllable transition that leads the system

into the location ABS, that represents the state in which the ABS device begins

its work, i.e. the reduction of the braking power. This reduction is modeled by

the differential equation ẏ = −c, with c > 0. Falling off the braking force, the

vehicle eventually returns in the normal running state, i.e. eventually x > 0.

The ABS device ends its work if (i) the speed reaches a given threshold (x ≥ c3,

with c3 < 0) and the driver is still using the brake or (ii) the driver ends the use

of the brake. In the former, the system returns into the braking state (location

B) while in the latter, the system returns into the normal running state. The

whole system described in this example can be modeled as the affine hybrid game

depicted in Figure 3.1.

Inv: x1 ≥ 0

1 ≤ ẋ1 ≤ 2

1 ≤ ẋ2 ≤ 2
ẋ1 + ẋ2 ≤ 3

〈x1 ≥ 4, x2 := 1〉 〈x2 ≥ 1, x2 := 0〉
l1 l2 l3

Flow :

P (Convex polyhedron)

Figure 3.2: Example of LHG.

The formalism of Linear Hybrid Games (LHGs) is a subclass of AHGs, where

the only allowed differential equations are in fact differential inclusions of the

type ẋ ∈ P , where ẋ is the vector of the first derivatives of all variables and P

is a convex polyhedron. Formally

Flow : Loc → CPoly(X).

The hybrid game depicted in Figure 3.2 belongs to the subclass of LHGs.

A Rectangular Hybrid Game (RHG) is a subclass of a LHG, where the first

derivative of each continuous variable x is bounded by constants from below

and above, that is ẋ ∈ [a, b]. Notice that a timed game is a special subclass of

a RHG where the first derivative of each continuous variable x are equal to 1,

i.e. ẋ ∈ [1, 1].

Notice that affine, linear and rectangular hybrid games are non-deterministic,

allowing for infinitely many solutions. Hence, the environment may choose non-

deterministic trajectories. In the opposite, trajectories of a timed games can be



48 CHAPTER 3. HYBRID GAMES (LHGS) AND CONTROL PROBLEMS

Class Differential equations Non-determinism

Affine HGs ẋ = Ax+ b Yes

⊆ ⊆

Linear HGs ẋ ∈ P ⊆ Rn Yes

⊆ ⊆

Rectangular HGs ẋ ∈ [a, b], ∀ẋ ∈ Ẋ Yes

⊆ ⊆

Timed Games ẋ = 1, ∀ẋ ∈ Ẋ No

Table 3.1: Hybrid Games hierarchy

only deterministic. See Table 3.1 to have the general picture of classes of hybrid

games and their relationship.

Figure 3.3 shows the dynamics of the linear hybrid game depicted in Figure

3.2. The differential equation attached to the location l1 is of the form ẋ ∈
P , where P is the convex polyhedron shown in Figure 3.3(a), whose extremal

directions are shown in Figure 3.3(b). Consider the valuation represented by the

point q in Figure 3.3(c), the gray area in Figure 3.3(d) denotes all the possible

evolutions of the system, and the dashed arrow is one of the possible admissible

trajectory.

3.1.1 Semantics

The behavior of a HG is based on two types of steps:

• discrete steps correspond to the Edg component, and produce an instan-

taneous change in both the location and the variable valuation;

• timed steps describe the change of the variables over time in accordance

with the Flow component.

Given a state s = ⟨l, v⟩, loc(s) denotes the location l and val(s) denotes the

valuation v.

An activity f ∈ Acts(X) is called admissible from s if (i) f(0) = v and (ii)

for all δ ≥ 0 it holds ḟ(δ) ∈ Flow(l).

The set Adm(s) contains all the activities that are admissible from s. Ad-

ditionally, for f ∈ Adm(s), the span of f in l, denoted by span(f, l) is the set

of all values δ ≥ 0 such that ⟨l, f(δ′)⟩ ∈ InvS for all 0 ≤ δ′ ≤ δ. Intuitively, δ is

in the span of f iff f never leaves the invariant in the first δ time units. If all

non-negative reals belong to span(f, l), one can write ∞ ∈ span(f, l).

Runs. Given two states s, s′, and a transition e ∈ Edg , there is a discrete step

s
e−→ s′ with source s and target s′ iff (i) s, s′ ∈ InvS , (ii) e = (loc(s), µ, loc(s′)),



3.1. HYBRID GAMES (HGS) 49

ẋ1

ẋ2

1 2

1

2
P

(a) Polyhedral inclusion: ẋ ∈ P .

ẋ1

ẋ2

1 2

1

2
P

(b) Extremal directions of the flow.

ẋ1

ẋ2

1 2

1

2

q = (1, 1)

(c) A possible valuation.

ẋ1

ẋ2

1 2

1

2

{q + δc | c ∈ P, δ ≥ 0}

(d) Possible evolutions.

Figure 3.3: Dynamics for the LHG of Figure 3.2.

and (iii) (val(s), val(s′)[X ′/X]) ∈ µ, where val(s′)[X ′/X] is the valuation in

Val(X ′) obtained from s′ by renaming each variable inX with the corresponding

primed variable in X ′.

There is a timed step s
δ,f−−→ s′ with duration δ ∈ R≥0 and activity f ∈

Adm(s) iff (i) s ∈ InvS , (ii) δ ∈ span(f, loc(s)), and (iii) s′ = ⟨loc(s), f(δ)⟩.
For technical convenience, timed steps of duration zero are admitted.

Comparison with other models I. Some authors prohibit such time steps [ABD+00,

BBV+03]. The formalism used in this thesis is more general, because timed steps

of duration zero can be disabled by adding a clock variable t to the hybrid game

and requesting that each discrete transition is enabled when t > 0 and resets t

to 0 when taken.

A special timed step is denoted s
∞,f−−−→ and represents the case when the

system follows an activity forever. This is only allowed if ∞ ∈ span(f, loc(s)).

Finally, a joint step s
δ,f,e−−−→ s′ represents the timed step s

δ,f−−→ ⟨loc(s), f(δ)⟩
followed by the discrete step ⟨loc(s), f(δ)⟩ e−→ s′.

A run is a sequence

r = s0
δ0,f0−−−→ s′0

e0−→ s1
δ1,f1−−−→ s′1

e1−→ s2 . . . sn . . . (3.1)



50 CHAPTER 3. HYBRID GAMES (LHGS) AND CONTROL PROBLEMS

of alternating timed and discrete steps, such that either the sequence is

infinite, or it ends with a timed step of the type sn
∞,f−−−→.

The length of the run r is denoted by len(r), and it is defined as follows:

len(r) =

{
n if the run r is finite

∞ otherwise

The set States(r) denotes the set of all states visited by r. Formally, States(r)

is the smallest set containing all states ⟨loc(si), fi(δ)⟩, for all 0 ≤ i ≤ len(r) and

all 0 ≤ δ ≤ δi.

Notice that the states from which discrete steps start (states s′i in (3.1))

appear in States(r). Moreover, if r contains a sequence of one or more zero-

time timed steps, all intervening states appear in States(r).

Zenoness and well-formedness. As seen in Chapter 2, the above definitions

admit Zeno runs. Also for the hybrid case, this thesis assumes that the hybrid

game under consideration does not generate Zeno runs (see Chapter 2 for the

definition of non-Zeno run). This is easily achieved by using an extra variable t,

representing a clock (ṫ = 1), to ensure that the delay between any two discrete

steps is bounded from below by a constant c (all transitions can only be taken

when t ≥ c and then they reset t to zero).

The non-blocking definition seen in Chapter 2, must be replaced in order to

take into account all admitted activities in a state of an hybrid game, instead of

the only, deterministic, possible flow in thereal-time case. Formally, for all states

s in the invariant, if all activities f ∈ Adm(s) eventually leave the invariant,

there exists one such activity f and a time δ ∈ span(f, loc(s)) such that there is

an uncontrollable transition enabled in ⟨loc(s), f(δ)⟩, i.e., there exist s′ ∈ InvS

and e ∈ Edgu such that ⟨loc(s), f(δ)⟩ e−→ s′. If a hybrid game is non-Zeno and

non-blocking, is said to be well-formed. In the following, all hybrid games are

assumed to be well-formed.

Example 11. Consider the LHGs in Figure 3.4. The fragment in Figure 3.4(a)

is non-blocking, because the system may choose derivative ẋ = 0 and remain

indefinitely in location l. The fragment in Figure 3.4(b) is also non-blocking,

because the system cannot remain in l forever, but an uncontrollable transition

leading outside is always enabled. Finally, the fragment in Figure 3.4(c) is

blocking, because the system cannot remain in l forever, and no uncontrollable

transition is enabled.



3.1. HYBRID GAMES (HGS) 51

..x ∈ [0, 1]
ẋ ∈ [−1, 1]

.

l

(a) Non-blocking.

..x ∈ [0, 1]
ẋ ∈ [1, 2]

.

l

. .... u

(b) Non-blocking.

..x ∈ [0, 1]
ẋ ∈ [1, 2]

.

l

. .... c

(c) Blocking.

Figure 3.4: Three HG fragments. Locations contain the invariant (first line)
and the flow constraint (second line). Solid (resp., dashed) edges represent
controllable (resp., uncontrollable) transitions. Guards are true.

Comparison with other models II. In the work of Wong-Toi [WT97], the

property called “control δ-positivity” plays the role of our non-blocking condi-

tion. Such property states that there is a (global) δ > 0 such that if a con-

trollable transition is enabled in state s, it is also possible to let δ time unit

pass from s, without leaving the invariant. Essentially, this property constrains

the guards of the controllable transitions to be detached from the boundary

of the invariant by the equivalent of at least δ time units. The objective is

to enable the controller to choose the null action even when the system is on

the invariant boundary. The approach used in this thesis achieves the same

effect by restricting the guards of the uncontrollable transitions. This is in line

with the standard interpretation of the invariant: since it is an internal system

constraint, system transitions alone should be able to enforce it.

Strategies. In the hybrid context, the notion of strategy can be defined has

the same form of the strategy defined in 2. Hence, a non-deterministic and

memoryless (hybrid) strategy is a function σ : S → 2Edgc∪{⊥} \ ∅, where ⊥
denotes the null action. A strategy can only choose a transition which is allowed

by the hybrid game. Formally, for all s ∈ S, if e ∈ σ(s)∩Edgc, then there exists

s′ ∈ S such that s
e−→ s′. Moreover, when the strategy chooses the null action,

it should continue to do so for a positive amount of time, along each activity

that remains in the invariant. If all activities immediately exit the invariant,

the above condition is vacuously satisfied. Formally,

• if ⊥ ∈ σ(s), for all f ∈ Adm(s) there exists δ > 0 such that for all

0 < δ′ < δ it holds δ′ ̸∈ span(f, loc(s)) or ⊥ ∈ σ(⟨loc(s), f(δ′)⟩).

If all activities starting from s immediately leave the invariant, the above con-

dition is vacuously satisfied.

Comparison with other models III. The strategies considered by Wong-

Toi [WT97] are deterministic, i.e., of the type σ : S → Edgc∪{⊥}, and subject to



52 CHAPTER 3. HYBRID GAMES (LHGS) AND CONTROL PROBLEMS

the following condition: the set of states from which any given discrete transition

is chosen is a closed polyhedron. As a consequence, these strategies satisfy the

condition 3.1.1 on the null action. However, this condition is less restrictive,

putting no restriction on the shape of the set of states where a given discrete

transition is chosen.

Notice that a strategy can always choose the null action. The well-formedness

condition ensures that the system can always evolve in some way, by a timed

step or an uncontrollable transition. In particular, even on the boundary of the

invariant, the strategy allows the controller to choose the null action, because

by the interpretation used in this thesis (the invariant is part of the system spec-

ification), the controller is not the responsible for ensuring that the invariant

is not violated. The non-blocking assumption ensures that when all activities

immediately leave the invariant, an uncontrollable transition is enabled.

A run like (3.1) is said to be consistent with a strategy σ if for all 0 ≤ i <

len(r) the following conditions hold:

• for all δ ≥ 0 such that
∑i−1

j=0 δj ≤ δ <
∑i

j=0 δj , we have ⊥ ∈ σ(r(δ));

• if ei ∈ Edgc then ei ∈ σ(s′i).

The set Runs(s, σ) denotes the set of runs starting from the state s and consis-

tent with the strategy σ.

The following result ensures that each strategy has at least one run that is

consistent with it, otherwise the controller may surreptitiously satisfy the safety

objective by blocking the system.

The result can be proved by induction by considering that: as long as the

strategy chooses the null action, the system may continue along one of the

activities that remain within the invariant; if a state is reached from which all

activities immediately leave the invariant, the non-blocking assumption ensures

that there exists an uncontrollable transition that is enabled; finally, if the

strategy chooses a discrete transition, that transition is enabled.

Theorem 1. Given a non-blocking hybrid game, for all strategies σ and states

s ∈ InvS, there exists a run that starts from s and is consistent with σ.

Proof. Let

r = s0
δ0,f0−−−→ s′0

e0−→ s1
δ1,f1−−−→ s′1

e1−→ s2 . . . sn

be a finite prefix of a run that starts in s0 = s and is consistent with σ (as

base case, consider r = s). One can show that r can be extended with either

an infinite timed step, or a timed step followed by a discrete step. If there



3.1. HYBRID GAMES (HGS) 53

exists an activity f ∈ Adm(sn) that never leaves the invariant (i.e., such that

∞ ∈ span(f, loc(sn))), then r can be completed by the infinite timed transi-

tion sn
∞,f−−−→. Otherwise, since the hybrid game is non-blocking, there exists

an activity f ∈ Adm(sn), a time δ ∈ span(f, loc(sn)), and an uncontrollable

transition eu ∈ Edgu such that eu is enabled in the state ⟨loc(sn), f(δ)⟩. If, for

all 0 ≤ δ′ < δ, we have ⊥ ∈ σ(⟨loc(sn), f(δ′)⟩), then r can be extended with the

steps sn
δ,f−−→ s′

eu−→ s′′.

Otherwise, let δ̂ be the infimum of the delays 0 ≤ δ′ < δ such that ⊥ ̸∈
σ(⟨loc(sn), f(δ′)⟩). Notice that δ̂ ∈ span(f, loc(sn)). Now will be proved that

⊥ ̸∈ σ(⟨loc(sn), f(δ̂)⟩), so that δ̂ is in fact the minimum of the above set. By

definition of strategy, if by contradiction ⊥ ∈ σ(⟨loc(sn), f(δ̂)⟩), there exists

δ∗ > δ̂ such that for all δ̂ < δ′ < δ∗ it holds ⊥ ∈ σ(⟨loc(sn), f(δ′)⟩), against
the definition of δ̂. Hence, ⊥ ̸∈ σ(⟨loc(sn), f(δ̂)⟩). Since σ(⟨loc(sn), f(δ̂)⟩) ̸= ∅,
let ec ∈ σ(⟨loc(sn), f(δ̂)⟩). It is easy to verify that r can be extended with the

steps sn
δ̂,f−−→ s′

ec−→ s′′.

3.1.2 Control Problems for LHGs

Now safety and reachability control problems for linear hybrid games can be

formally defined.

Safety control problem. Given a hybrid gameH = (Loc, X,Edgc,Edgu,Flow ,

Inv , Init) and a set of safe states T ⊆ InvS , the safety control problem asks

whether exists a winning strategy σ (for the controller) such that, for all initial

states s ∈ InitS and all runs r ∈ Runs(s, σ) it holds States(r) ⊆ T .

Reachability control problem. Given a hybrid gameH = (Loc, X,Edgc,Edgu,

Flow , Inv , Init) and a set of target states T ⊆ InvS , the reachability control prob-

lem asks whether exists a winning strategy σ (for the controller) such that, for

all initial states s ∈ Init and all runs r ∈ Runs(s, σ), it holds States(r)∩ T ̸= ∅.
The solutions for safety and reachability control problems are fully explained

in Chapter 4 and Chapter 5, respectively.



54 CHAPTER 3. HYBRID GAMES (LHGS) AND CONTROL PROBLEMS



Part II

Solving the Control
Problems for LHGs

55





Chapter 4

Solving the Safety Control
Problem for LHGs

This chapter shows the proposed fix-point procedure in order to solve the safety

control problem for linear hybrid games, i.e. the objective of keeping the system

within a given region of safe states. This problem is known to be undecidable,

for the general case of hybrid games. The complexity standing of the problem

for the subclass of linear hybrid games was further refined to semi-decidable

in [WT97], whose results allows the exact computation of the set of states that

are reachable within a bounded number of discrete transitions (bounded-horizon

reachability). Asarin et al. investigate the synthesis problem for hybrid systems

where all discrete transitions are controllable and the trajectories satisfy given

linear differential equations of the type ẋ = Ax [ABD+00]. The expressive

power of these constraints is incomparable with the one offered by the differential

inclusions occurring in LHGs. In particular, linear differential equations give rise

to deterministic trajectories, while differential inclusions are non-deterministic.

In control theory terms, differential inclusions can represent the presence of

environmental disturbances.

The most powerful class of hybrid games whose control problem is decidable

are initialized rectangular hybrid games1. Table 4.1 shows characterizations of

control problems for several fragments of hybrid games (see [HKPV95] for more

details).

For undecidable classes, there is an extensive literature describing approxi-

mate solutions [WT97, ABD+00]. For example, Wong Toi proposed a fix-point

procedure based on an appropriate version of the controllable predecessor oper-

ator CPre for hybrid games. Given a set of states X, the set CPreS(X) (in the

1A RHG is said initialized if, whenever a continuous variables changes its dynamics, its
value is nondeterministically reinitialized according to the invariant of the target location.

57



58CHAPTER 4. SOLVING THE SAFETY CONTROL PROBLEM FOR LHGS

Class Safety and Reachability Control Problems

Affine HGs Undecidable [HKPV95]
Linear HGs Semi-decidable [WT97]

Rectangular HGs Semi-decidable [WT97]
Initialized RHGs Decidable [HHM99]
Timed Games Decidable [AMP95]

Table 4.1: HG fragments and Control Problems

hybrid case) contains all and only the states from which the controller can force

the game into X in a single step2. The heart of the procedure lies in the op-

erator flow avoid(U, V ), which computes the set of system configurations from

which a continuous trajectory may reach the set U while avoiding the set V .

In this chapter it is proved that the flow avoid operator provided by Wong-

Toi does not work for non-convex V , a case which is very likely to occur in

practice, even if the original safety goal is convex. The correct version of this

operator, here called may reach while avoiding operator RWAm, is then showed.

The operator RWAm takes as input two sets of states U and V , and computes

the set of points from which there exists a trajectories that leads to the region

U , while avoiding the region V .

One of the main contribution of this work is the sound and complete semi-

algorithm for the safety control problem, based on the (sound and complete)

implementation of the operator RWAm, showed in this chapter.

4.1 Safety Control: the Abstract Algorithm

In this section, a fixed linear hybrid game are considered in order to present a

sound and complete procedure to solve the safety control problem.

In order to formally define the correct version of the controllable predeces-

sor for safety CPreS (for hybrid games), some preliminary operators are now

defined. For a set of states A and x ∈ {u, c}, the predecessor Prex(A) is the set:

Prex(A) = {s ∈ S | s e−→ s′, with s′ ∈ A and e ∈ Edgx},

and contains the states where some discrete transition belonging to Edgx is

enabled and leads to A. Let A be the set complement of A.

Controllable predecessor operator. Now the CPreS operator can be for-

mally defined. For a set of states A, the operator CPreS(A) returns the set of

2A single “step” consists of a timed evolution of the system followed by one discrete tran-
sition.



4.1. SAFETY CONTROL: THE ABSTRACT ALGORITHM 59

states from which the controller can ensure that the system remains in A dur-

ing the next pair of timed and discrete steps. This happens if for all activities

chosen by the environment and all delays δ, one of the following two situations

occurs:

• either the systems stays in A up to time δ, while all uncontrollable tran-

sitions enabled up to time δ (included) also lead to A, or

• there exists a time δ′ < δ, such that the system stays in A up to time δ′,

all uncontrollable transitions enabled up to time δ′ (included) also lead to

A, and the controller can issue a transition at time δ′ leading to A.

To improve readability, for a set of states A, an activity f , and a time delay δ ≥ 0

(including infinity), the operator While showed in Chapter 2 is now redefined.

In particular, While(A, f, δ) is the set of states from where following the activity

f for δ time units keeps the system in A all the time, and any uncontrollable

transition taken meanwhile also leads into A. Formally,

While(A, f, δ) =
{
s ∈ S

∣∣∣∀0 ≤ δ′ ≤ δ : ⟨loc(s), f(δ′)⟩ ∈ A \ Preu(A)
}
.

The CPreS operator is formally defined by:

CPreS(A) =
{
s ∈ S

∣∣∣∀f ∈ Adm(s), δ ∈ span(f, loc(s)) : s ∈While(A, f, δ)

or ∃0 ≤ δ′ < δ : s ∈While(A, f, δ′) and ⟨loc(s), f(δ′)⟩ ∈ Prec(A)
}
.

The following theorem shows that the controllable predecessor operator can

be used to characterize the safety control problem. This result is classical for all

game-theoretic approaches to safety control [MPS95, ABD+00, Mal02]. Being

classical, the details of its proof are often taken for granted in the literature,

although they strongly depend on the precise definitions of the game model, its

semantics and the notion of strategy. Hence, here a detailed proof is provided.

Theorem 2. The answer to the safety control problem for safe set T ⊆ InvS

is positive if and only if

InitS ⊆ νW . T ∩ CPreS(W ).

Proof. [if ] First a winning strategy is built in two steps. Let W ∗ = νW . T ∩
CPreS(W ) and let σ be a strategy defined as follows, for all states s:

• ⊥ ∈ σ(s) and



60CHAPTER 4. SOLVING THE SAFETY CONTROL PROBLEM FOR LHGS

• if s
e−→ s′, s, s′ ∈W ∗ and e ∈ Edgc, then e ∈ σ(s).

While σ is clearly a strategy, it is not necessarily a winning strategy, as it may

admit runs which delay controllable actions either beyond the safety set W ∗

or beyond their availability. However, a winning strategy can be recovered by

restricting σ in appropriate ways. For all states s ∈ S and activities f ∈ Adm(s),

let

Df,s =
{
δ > 0 |

∀0 ≤ δ′ ≤ δ : ⟨loc(s), f(δ′)⟩ ∈W ∗ and σ(⟨loc(s), f(δ′)⟩) ∩ Edgc ̸= ∅
}
.

denote the set of positive time units for which the system can follow activity

f , starting from s, always remaining in W ∗ with some controllable transition

enabled and available to the controller.

Starting from σ, one can define a new strategy σ′ which coincides with σ

on all the states, except for the states s ∈ W ∗ with Edgc ∩ σ(s) ̸= ∅, where it

satisfies σ′(s) ⊆ σ(s) and the following two conditions:

a) If there is f ∈ Adm(s) such that Df,s = ∅, then ⊥ ̸∈ σ′(s);

b) for all f ∈ Adm(s), if Df,s ̸= ∅ then there exists a δ ∈ Df,s with ⊥ ̸∈
σ′(⟨loc(s), f(δ)⟩) and ∀0 ≤ δ′′ < δ, ⊥ ∈ σ′(⟨loc(s), f(δ′′)⟩).

Intuitively, the new strategy σ′ ensures that following any activity from a state

s ∈ W ∗ in which some controllable action is enabled, a controllable action will

always be taken before none of them is available and before leaving W ∗.

One can prove that σ′ is winning, by showing that for every s ∈ InitS and

every r ∈ Runs(σ′, s), States(r) ⊆ T . Let

r = s0
δ0,f0−−−→ s′0

e0−→ s1
δ1,f1−−−→ s′1

e1−→ s2 . . . sn . . .

be a run consistent with σ′. The following properties can be proved:

1. if si
δi,fi−−−→ s′i occurs in r, with δi > 0 and si ∈W ∗, then for all 0 ≤ δ′ ≤ δi,

it holds ⟨loc(si), fi(δ′)⟩ ∈W ∗;

2. if si
∞,fi−−−→ occurs in r and si ∈W ∗, then for all δ′ ≥ 0, it holds ⟨loc(si), fi(δ′)⟩ ∈

W ∗;

3. if si
e−→ s′i occurs in r and si ∈W ∗, then s′i ∈W ∗.

Now, the property (1) will be proved, as (2) can be proved similarly. Since

δi > 0, by the consistency of r with σ′, then ⊥ ∈ σ′(si). Assume, by contra-

diction, that ⟨loc(si), fi(δ′)⟩ ̸∈ W ∗ for some 0 < δ′ < δi. Since si ∈ W ∗ =



4.1. SAFETY CONTROL: THE ABSTRACT ALGORITHM 61

CPreS(W ∗), then si ∈ While(W ∗, fi, δ) for some δ ∈ R≥0 ∪ {∞}, and either

δ =∞ or si
δ,fi−−→ s and s ∈ Prec(W

∗).

If δ ≥ δ′, an immediate contradiction is obtained, since it would imply

si ∈While(W ∗, fi, δ
′) and, therefore, ⟨loc(si), fi(δ′)⟩ ∈W ∗.

Assume, then, δ < δ′. Then ⟨loc(si), fi(δ)⟩ ∈ Prec(W
∗), i.e., ⟨loc(si), fi(δ)⟩

e−→
s′ for some e ∈ Edgc and s′ ∈ W ∗. Therefore, both e ∈ σ′(⟨loc(si), fi(δ)⟩)
and, by the consistency of r with σ′, ⊥ ∈ σ′(⟨loc(si), fi(δ)⟩). Since ⊥ ∈
σ′(⟨loc(si), fi(δ)⟩), by definition of σ′ the premise of property a) cannot hold.

Therefore, by property b), there must be a δ ≤ δ∗ < δ′ with⊥ ̸∈ σ′(⟨loc(si), fi(δ∗)⟩).
On the other hand, the consistency of r requires that ⊥ ∈ σ′(⟨loc(si), fi(δ̂)⟩)
for all 0 ≤ δ̂ < δi, which is a contradiction. Therefore, for all 0 ≤ δ′ < δi,

⟨loc(si), fi(δ′)⟩ ∈W ∗.

Finally, proceed again by contradiction, is proved that s′i ∈W ∗. Assume s′i ̸∈
W ∗ and let 0 < δ′ < δi, then ⟨loc(si), fi(δ′)⟩ ∈W ∗. Therefore, ⟨loc(si), fi(δ′)⟩ ∈
CPreS(W ∗) and there exists δ′ ≤ δ∗ < δi with ⟨loc(si), fi(δ′)⟩ ∈While(W ∗, fi, δ

∗)

and ⟨loc(si), fi(δ∗)⟩ ∈ Prec(W
∗). Hence, there is a controllable transition

e ∈ Edgc enabled in ⟨loc(si), fi(δ∗)⟩ and leading to W ∗. As a consequence,

{e,⊥} ⊆ σ(⟨loc(si), fi(δ∗)⟩) and, by condition b), ⊥ ̸∈ σ′(⟨loc(si), fi(δ)⟩), for
some δ∗ < δ < δi, which contradicts consistency of r with σ′, hence s′i ∈W ∗.

Let us consider property (3). There are two cases. If e ∈ Edgc, then the

consistency of r ensures that e ∈ σ′(si) which, by definition of σ′, requires that

si+1 ∈ W ∗. Assume then that e ∈ Edgu. Then ⊥ ∈ σ′(si). Since si ∈ W ∗ =

CPreS(W ∗), it must hold si ∈ While(W ∗, f, 0), for every f ∈ Adm(si). This,

in turn, ensures that si ∈ W ∗ \ Preu(W ∗), therefore, all the uncontrollable

transitions enabled in si lead to W ∗. Hence the thesis.

To complete the proof, notice that W ∗ ⊆ T and s0 ∈ Inits ⊆ W ∗. An easy

induction on the length of r, using properties (1), (2) and (3), gives the result.

[only if ] Let s ̸∈ W ∗, the fact that for all strategies there is a run that

starts in s, that is consistent with the strategy and leaves T , is now proved. Let

• W0 = T ,

• Wα = T ∩ CPreS(Wα−1), for a successor ordinal α, and

• Wα =
∩

β<α Wβ for a limit ordinal α.

The proof proceeds by induction on the smallest ordinal λ such that s ̸∈Wλ.

If λ = 0, it holds s ̸∈ T and the thesis is immediate.

The fact that if λ > 0 then λ cannot be a limit ordinal, will be now shown.

Assume by contradiction that λ is a limit ordinal. Since λ is the smallest



62CHAPTER 4. SOLVING THE SAFETY CONTROL PROBLEM FOR LHGS

ordinal such that s ̸∈ Wλ, we have s ∈ Wα, for all α < λ: this means that

s ∈
∩

α<λ Wα. But, since λ is a limit ordinal, Wλ =
∩

α<λ Wα and we have that

s ∈Wλ, obtaining a contradiction.

Otherwise, if λ > 0 is a successor ordinal, then s ∈ Wλ−1 \ Wλ and s ̸∈
CPreS(Wλ−1). According to the definition of CPreS, there exists an activity

f ∈ Adm(s) and δ ∈ span(s, f) such that s ̸∈ While(Wλ−1, f, δ) and for all

0 ≤ δ′ < δ either s ̸∈While(Wλ−1, f, δ
′) or ⟨loc(s), f(δ′)⟩ ̸∈ Prec(Wλ−1).

Let δ∗ be the infimum of those δ′ such that s ̸∈While(Wλ−1, f, δ
′), i.e.,

δ∗ = inf{δ | s ̸∈While(Wλ−1, f, δ)}. (4.1)

Clearly 0 ≤ δ∗ ≤ δ and, for all 0 ≤ δ < δ∗, ⟨loc(s), f(δ)⟩ ̸∈ Prec(Wλ−1). Hence,

any controllable transition enabled in ⟨loc(s), f(δ)⟩, for any such δ, leads outside

Wλ−1. Therefore, any strategy choosing a controllable transition in some of the

states ⟨loc(s), f(δ)⟩ has a consistent run leading outside Wλ−1. By inductive

hypothesis, the thesis is obtained.

If, on the other hand, the strategy allows the controller to stay inactive in

all those states, there is a consistent run that reaches δ∗. Then there are two

cases. If δ∗ is in fact the minimum of the above set, according to the definition

of While, there exists δ1 < δ∗ such that ⟨loc(s), f(δ1)⟩ ∈ Wλ−1 ∪ Preu(Wλ−1).

Therefore, since the controller may not act before δ∗ along this strategy, there is

a consistent run that reaches ⟨loc(s), f(δ1)⟩, which either is in Wλ−1 or reaches

it after an uncontrollable transition. In both cases, the thesis follows from the

inductive hypothesis.

Finally, there is the case in which δ∗ is the infimum but not the minimum

of the above set. In this case 0 ≤ δ∗ < δ and ⟨loc(s), f(δ)⟩ ̸∈ Prec(Wλ−1),

for all 0 ≤ δ ≤ δ∗. Consider the choice of σ in state ⟨loc(s), f(δ∗)⟩. If ⊥ ̸∈
σ(⟨loc(s), f(δ∗)⟩), the controller issues a discrete move which leads into Wλ−1.

If, instead, ⊥ ∈ σ(⟨loc(s), f(δ∗)⟩), since δ∗ < δ ∈ span(s, f), by the definition

of strategy σ will keep choosing ⊥ for a non-zero amount of time γ. By (4.1),

there exists δ∗ < δ̂ < δ∗+γ such that s ̸∈While(Wλ−1, f, δ̂). As a consequence,

there is a consistent run that reaches a state which either is in Wλ−1 or reaches

it after an uncontrollable transition. Once again, the thesis is obtained by

inductive hypothesis.

4.2 Computing the Predecessor Operator on LHGs

This section shows how the value of the predecessor operator on a given set of

states A is computed, assuming that the hybrid game is a LHG and that the

following operations on arbitrary polyhedra G and G′ can be computed:



4.2. COMPUTING THE PREDECESSOR OPERATOR ON LHGS 63

GG

G ↙l

(a) Preflow of G in l (G↙l).

..

F

(b) The Flow of l,
Flow(l).

Figure 4.1: The pre-flow operator.

1. the Boolean operations G ∪G, G ∩G, and G;

2. the topological closure cl(G) of G;

3. for a given location l ∈ Loc, the pre-flow of G in l:

G↙l= {u ∈ Val(X) | ∃δ ≥ 0, c ∈ Flow(l) : u+ δ · c ∈ G}

i.e. the set of all valuations from which, for an amount of time δ and a flow c

on the location l, eventually leads the region G. For example, the gray pattern

area in Figure 4.1(a) represents the pre-flow operator of the polyhedron G w.r.t.

the flow shown in Figure 4.1(b).

Notice that, for two convex polyhedra P and P ′, if P ⊆ P ′ then P↙l⊆ P ′↙l

(monotonicity), and (P↙l) ↙l = P ↙l (idempotence). In the following, the

basic components of CPreS are first considered, and then the full operator will

be treated. For all A ⊆ InvS and x ∈ {c, u}, it holds:

Prex(A) = InvS ∩
∪

(l,µ,l′)∈Edgx

µ−1(A�l′),

where µ−1(Z) = {v ∈ V al(X) | (v, v′[X ′/X]) ∈ µ, with v′ ∈ Z} denotes the

pre-image of Z w.r.t. µ. Also the auxiliary operator may reach while avoiding

RWAm is introduced. The implementation of RWAm is one of the main topic of

the thesis, being the core of the fix-point procedure to solve the safety control

problem. Given a location l and two sets of variable valuations U and V ,

RWAm
l (U, V ) contains the set of valuations from which there exists a system

trajectory that reaches U while avoiding V ∩U 3. Notice that on a dense time

domain this is not equivalent to reaching U while avoiding V : If an activity

3In Atl notation, RWAm
l (U, V ) ≡ ⟨⟨env⟩⟩(V ∪U)U U , where env is the player representing

the environment.



64CHAPTER 4. SOLVING THE SAFETY CONTROL PROBLEM FOR LHGS

RWAm(U, V ) V

U

RW

U

Am(U, V )

(a) The area computed by
RWAm(U, V ).

..

F

(b) The flow in l.

Figure 4.2: The may reach while avoid operator.

avoids V in a right-closed interval, and then enters U ∩ V , the first property

holds, while the latter does not. Formally:

RWAm
l (U, V ) =

{
u ∈ Val(X)

∣∣∣ ∃f ∈ Adm(⟨l, u⟩), δ ≥ 0 :

f(δ) ∈ U and ∀ 0 ≤ δ′ < δ : f(δ′) ∈ V ∪ U
}
.

Figure 4.2 shows the may reach while avoiding RWAm operator on the poly-

hedra U and V . The filled gray area in Figure 4.2(a) contains all the points

from which it is not possible to avoid the region V . Hence, these points do not

belong to the output of the operator. On the other hand, the gray-pattern area

in Figure 4.2(a) contains those points that may reach the region U meanwhile

avoiding the region V , following any admitted activities according to the flow

depicted in Figure 4.2(b).

An algorithm for effectively computing RWAm on polyhedral arguments is

presented in the next section, while the following lemma states the relationship

between CPreS and RWAm.

Intuitively, consider the set Bl of valuations u such that from state ⟨l, u⟩ the
environment can take a discrete transition leading outside A, and the set Cl of

valuations u such that from ⟨l, u⟩ the controller can take a discrete transition

into A. The RWAm operator can be used to compute the set of valuations from

which there exists an activity that either leaves A or enters Bl, while staying

in the invariant and avoiding Cl. These valuations do not belong to CPreS(A),

as the environment can violate the safety goal within (at most) one discrete

transition.

Before to formally define the relation between CPreS and RWAm an auxiliary

definition is needed: a set of states A ⊆ S is said to be polyhedral if for all

l ∈ Loc, the projection A�l is a polyhedron.



4.2. COMPUTING THE PREDECESSOR OPERATOR ON LHGS 65

Lemma 1. For all polyhedral sets of states A ⊆ InvS, the following holds

CPreS(A) =
∪

l∈Loc

{l} ×
(
A�l \RWAm

l

(
InvS�l ∩

(
A�l ∪Bl

)
, Cl ∪ InvS�l

))
, (4.2)

where Bl = Preu
(
A
)
�l and Cl = Prec(A)�l.

Proof. In the following, let Il = InvS�l.
[⊆] Let s = ⟨l, u⟩ ∈ CPreS(A) and let f ∈ Adm(s). By definition, 0 ∈

span(f, l) and hence s ∈ While(A, f, 0). In particular, this implies that s ∈ A

and u ∈ A�l.
Assume by contradiction that s does not belong to the r.h.s. of (4.2). Since

u ∈ A�l, it must be

u ∈ RWAm
l

(
Il ∩

(
A�l ∪Bl

)
, Cl ∪ Il

)
.

Then, by definition there exists f∗ ∈ Adm(s) and δ∗ ≥ 0 such that: (i) f∗(δ∗) ∈
Il ∩ (A�l ∪Bl), and (ii) for all 0 ≤ δ < δ∗ it holds f∗(δ) ∈ Il ∩

(
Cl ∪ A�l ∪Bl

)
.

In particular, this implies that δ∗ belongs to span(f∗, l). On the other hand,

by applying the definition of CPreS(A) to the activity f∗, we obtain that for

all δ ∈ span(f∗, l) either s ∈ While(A, f∗, δ) or there exists δ′ < δ such that

s ∈While(A, f∗, δ′) and ⟨l, f∗(δ′)⟩ ∈ Prec(A). This implies that either f∗(δ∗) ∈
A�l ∩Bl or there exists δ′ < δ∗ such that f∗(δ′) ∈ A�l ∩Bl ∩ Cl, which is a

contradiction.

[⊇] Let l ∈ Loc and u ∈ A�l \RWAm
l

(
Il ∩ (A�l ∪ Bl), Cl ∪ Il

)
. By comple-

menting the definition of RWAm, we obtain that for all activities f that start

from s = ⟨l, u⟩ and for all times δ ≥ 0, either f(δ) ∈ Il ∪ (A�l ∩Bl) or there

exists δ′ < δ such that

f(δ′) ∈
(
Il ∪

(
A�l ∩Bl

))
∩ (Cl ∪ Il) = Il ∪

(
A�l ∩Bl ∩ Cl

) ∆
= El.

First, assume that for all δ ≥ 0 it holds f(δ) ∈ Il ∪ (A�l ∩Bl). In this case,

for all δ ∈ span(f, l), the point f(δ) belongs to A �l ∩Bl. In other words,

s ∈While(A, f, δ) and hence s ∈ CPreS(A).

Otherwise, there exists δ′ such that f(δ′) ∈ El. Let δ
∗ be the infimum of the

δ′ with the above property, i.e., δ∗ = inf{δ′ | f(δ′) ∈ El}. Notice that it holds

f(δ) ∈ Il ∪
(
A�l ∩Bl

)
for all δ ≤ δ∗, which implies s ∈While(A, f, δ∗). If there

exists δ ≤ δ∗ such that f(δ) ∈ Il, again we conclude that for all δ ∈ span(f, l)

it holds f(δ) ∈ A�l ∩Bl and hence s ∈ CPreS(A). In the rest of the proof, the

property f(δ) ∈ Il for all δ ≤ δ∗, and therefore δ∗ ∈ span(f, l), is assumed to be

true.

If δ∗ is in fact the minimum of the above set, i.e., f(δ∗) ∈ El, then according

to the current assumptions we have in particular f(δ∗) ∈ Cl = Prec(A) �l.



66CHAPTER 4. SOLVING THE SAFETY CONTROL PROBLEM FOR LHGS

Accordingly, s ∈ CPreS(A). Finally, it remains the case in which f(δ∗) ̸∈ El.

By definition, in any neighborhood of δ∗ there is a time δ such that f(δ) ∈ El.

Due to the fact that El is a polyhedron and that f is differentiable, there exists

δ′ > δ∗ such that f(δ) ∈ El for all δ
∗ < δ ≤ δ′. Therefore, s ∈ While(A, f, δ′),

and ⟨l, f(δ′)⟩ ∈ Cl = Prec(A). Again, we obtain that s ∈ CPreS(A).

4.3 Computing the RWAm Operator on Polyhe-
dra

It’s clear, from Lemma 1, that the computation of the RWAm operator is the

heart of the synthesis procedure proposed in this thesis. This section shows

the algorithm to correctly compute the RWAm operator, fixing some inaccu-

racies (4.4) of the similar flow avoid operator proposed by Wong-Toi and its

implementation in HoneyTech.

The first step of this section is check whether RWAm for non-convex argu-

ments can be expressed in terms of RWAm for convex arguments. It is easy

to verify that the first argument of RWAm distributes over union, i.e., for all

polyhedra U1, U2 and V it holds

RWAm
l (U1 ∪ U2, V ) = RWAm

l (U1, V ) ∪ RWAm
l (U2, V ).

Hence, in the following one can assume that the first argument of RWAm is a

convex polyhedron.

..

U

.

V1

.

V2

.
F

(a) Avoiding the non-convex region V1∪V2 can-
not be reduced to separately avoiding V1 and
V2.

..

U

.

V1

.

V2

.

F

(b) Straight-line activities are not sufficient
to avoid V1 ∪ V2.

Figure 4.3: Basic properties of RWAm. The boxes on the left represent the
convex polyhedron F = Flow(l) in the (ẋ, ẏ) plane. Thick arrows represent the
extremal directions of flow.

Regarding the second argument (the set to be avoided), a run avoids V1∪V2

if and only if it avoids both V1 and V2. On the other hand, if there exists a run



4.3. COMPUTING THE RWAM OPERATOR ON POLYHEDRA 67

that avoids V1 (i.e., s ∈ RWAm
l (·, V1)) and a (possibly different) run avoiding V2

(i.e., s ∈ RWAm
l (·, V2)), it does not mean that there exists a run that avoids both

(i.e., s ∈ RWAm
l (·, V1 ∪V2)). For instance, in the case pictured in Figure 4.3(a),

the runs starting from the dotted area can avoid either V1 or V2 and reach

U , but they cannot avoid both. Hence, the dotted area does not belong to

RWAm
l (U, V1 ∪ V2), while it belongs to RWAm

l (U, V1) ∩ RWAm
l (U, V2).

Additionally, it is not possible to restrict the analysis from arbitrary activi-

ties (i.e., any differentiable function which stays in the invariant and whose slope

belongs to Flow(l)) to straight-line activities. In Figure 4.3(b), the dotted area

contains the set of points that cannot avoid V1∪V2 following straight-line activ-

ities. On the other hand, RWAm
l (U, V1 ∪ V2) = V1 ∩ V2, because all other points

(including those in the dotted area) can avoid V1 ∪ V2 by passing through the

gap between V1 and V2. In fact, those points can avoid V1∪V2 via a sequence of

two straight-line activities. The following result shows that this observation can

be generalized: if the system can move from point u to point v while avoiding

a given polyhedral region, it can also do so via a finite sequence of straight-line

activities.

Lemma 2. [WT97] Let l be a location, u and v be two valuations, and V a

polyhedron. If there is an activity f ∈ Adm(⟨l, u⟩) and a time δ ≥ 0 such that

f(δ) = v and f(δ′) ̸∈ V for all 0 ≤ δ′ ≤ δ, then there is a finite sequence

f0, . . . , fk of straight-line activities and a finite sequence of delays δ0, . . . , δk

such that f0 ∈ Adm(⟨l, u⟩), fk(δk) = v for all i = 0, . . . , k − 1 it holds fi+1 ∈
Adm(⟨l, fi(δi)⟩), and for all i = 0, . . . , k and 0 ≤ δ′ ≤ δi it holds fi(δ

′) ̸∈ V .

Now the algorithm for computing RWAm can be presented. Given two poly-

hedra G and G′, their boundary is defined to be

bndry(G,G′) = (cl(G) ∩G′) ∪ (G ∩ cl(G′)).

which identifies a boundary between two (not necessarily closed) polyhedra.

Clearly, bndry(G,G′) is not empty only if G and G′ are adjacent to one an-

other or if they overlap; it is empty, otherwise. Moreover, for any two convex

polyhedra P and P ′, if bndry(P, P ′) is not empty, then it is a convex polyhedron.

Figure 4.4 shows three possible cases: in Figure 4.4(a) polyhedra G and G′

have no boundary, i.e. bndry(G,G′) = ∅, because they are disjoint. Figure

4.4(b) shows the case in which G and G′ are adjacent, and then their non-

empty boundary is identified by the thick black line in the figure. The last case

shown by Figure 4.4(c), is when G and G′ are overlapped, and then the resulting

boundary is the black pattern area in the figure.



68CHAPTER 4. SOLVING THE SAFETY CONTROL PROBLEM FOR LHGS

G G′

(a) No boundary.

G G′

(b) Lined-shaped bound-
ary.

G G′

(c) Area-boundary.

Figure 4.4: Boundary between Polyhedra G and G′.

Lemma 3. For all convex polyhedra P and P ′, bndry(P, P ′) is a convex poly-

hedron.

Proof. Let x and y be two points in bndry(P, P ′), and za be a convex combi-

nation of x and y, i.e., za = ax + (1 − a)y, with 0 < a < 1. We prove that za

belongs to bndry(P, P ′).

Let L = (P ∩ cl(P ′)) and R = (cl(P ) ∩ P ′), so that bndry(P, P ′) = L ∪ R.

Notice that L and R are convex polyhedra. Moreover, each point in P ∩ P ′

belongs to both L and R, and therefore to bndry(P, P ′). Now, two cases can be

identified:

1. If both x and y belong to L (resp., R), the thesis is a consequence of the

convexity of L (resp., R).

2. Otherwise, assume w.l.o.g. that x ∈ L and y ∈ R. By definition, we have

that: (i) x ∈ P and y ∈ cl(P ), hence za ∈ P , and (ii) x ∈ cl(P ′) and

y ∈ P ′, hence za ∈ P ′. Therefore, za ∈ (P ∩ P ′) ⊆ bndry(P, P ′), which

concludes the proof.

Given a location l and two polyhedra G and G′, let entry(G,G′), the entry

region from G to G′, denote the set of points of the boundary between G and

G′, which can reach G′ by following some straight-line activity in location l,

while always remaining in G ∪G′. Formally:

entry(G,G′) =
{
p ∈ bndry(G,G′) | p+ δ · c ∈ G′, for some c ∈ Flow(l)

and δ ≥ 0, and for all 0 ≤ δ′ < δ, p+ δ′ · c ∈ G ∪G′}.
(4.3)

For two convex polyhedra P and P ′, entry(P, P ′) can easily be computed as

follows:

entry(P, P ′) = bndry(P, P ′) ∩ P ′↙l . (4.4)



4.3. COMPUTING THE RWAM OPERATOR ON POLYHEDRA 69

Figure 4.5 shows how the entry region between the topological closed poly-

hedron P and the polyhedron P ′ (the open side is represented by the dashed

line in Figure 4.5(b)) is computed. Figure 4.5(c) depicts the boundary between

P and P ′, while Figure 4.5(d) shows the pre-flow of P ′, represented by the dark

gray area. Finally, the entry region between P and P ′, i.e. entry(P, P ′), is the

intersection between P ′↙l and the boundary. The results of this intersection is

still the boundary shown in Figure 4.5(c).

..
F

(a) Flow.

P P ′

(b) Adjacent polyhedra.

P P ′

(c) Boundary between P
and P ′.

P
P ′ ↙

(d) The pre-flow of
P ′.

P

P ′ ↙

(e) The boundary
and the pre-flow.

Figure 4.5: The entry region from P to P ′.

Indeed bndry(P, P ′) ⊆ P ∪ P ′ is a convex polyhedron and, by definition

of P ′ ↙l, bndry(P, P
′) ∩ P ′↙l is the set of points which can reach P ′ along

a straight-line activity, while always remaining in bndry(P, P ′) ⊆ P ∪ P ′, as

required by equation (4.3).

Notice, however, that equation (4.4) does not lift to general polyhedra. In-

deed, while equation (4.4) holds even when P is not convex, it may not hold

if the second argument is a non-convex polyhedron as demonstrated by the

following example.

..

Z

.

U

.

V

.

P

Figure 4.6: Example showing that entry(P,G) ̸= bndry(P,G) ∩ G↙l, for non-
convex G. Flow is deterministic and horizontal.



70CHAPTER 4. SOLVING THE SAFETY CONTROL PROBLEM FOR LHGS

Example 12. Consider Figure 4.6 where U and Z are two convex polyhedra

represented by gray boxes. Taking G = U ∪ Z and applying equation (4.4)

to compute entry(P,G) would result in the thick solid line between P and Z.

However, this line does not belong to entry(P,G) (in fact, entry(P,G) = ∅ in

this case), since all of its points cannot avoid exiting from both P and G before

eventually reaching U ⊆ G. Therefore, entry(P,G) ̸= bndry(P,G) ∩G↙l.

On the other hand, the second argument of entry() distributes over union.

Lemma 4. For all polyhedra G, G1 and G2, it holds:

entry(G,G1 ∪G2) = entry(G,G1) ∪ entry(G,G2).

Proof. By monotonicity of entry() w.r.t. the second argument, it follows imme-

diately that entry(G,G1) ∪ entry(G,G2) ⊆ entry(G,G1 ∪G2).

As to the other direction, let p ∈ bndry(G,G1 ∪ G2) be such that for some

c ∈ Flow(l) and δ ≥ 0, it holds p + δ · c ∈ G1 ∪ G2, and for all 0 ≤ δ′ < δ, it

holds p+ δ′ · c ∈ G ∪G1 ∪G2. Clearly, p ∈ bndry(G,G1) or p ∈ bndry(G,G2).

Now, for any polyhedron G′, let us define:

∆c
p(G

′) = {δ ≥ 0 | p+ δ · c ∈ G′}.

Intuitively, ∆c
p(G

′) is the set of delays during which the straight-line activity

with slope c that starts in p stays in G′. Consider δ∗ = inf ∆c
p(G1∪G2). Clearly,

δ∗ ≤ δ. Moreover, by polyhedricity of G1 and G2, either δ∗ = inf ∆c
p(G1) or

δ∗ = inf ∆c
p(G2). Two cases can be identified:

i. if δ∗ is the minimum of ∆c
p(G1 ∪G2), then either we have p+ δ∗ · c ∈ G1

or p + δ∗ · c ∈ G2, and for all 0 ≤ δ′ < δ∗, p + δ′ · c ∈ G. Moreover,

if p + δ∗ · c ∈ G1 (resp., p + δ∗ · c ∈ G2) then p ∈ bndry(G,G1) (resp.,

p ∈ bndry(G,G2)). In either case, p ∈ entry(G,G1) ∪ entry(G,G2);

ii. if δ∗ ̸∈ ∆c
p(G1 ∪G2), then for all 0 ≤ δ′ ≤ δ∗, p+ δ′ · c ∈ G. Assume δ∗ =

inf ∆c
p(G1) (the case where δ∗ = inf ∆c

p(G2) is similar), then δ∗ ̸∈ ∆c
p(G1)

either. Since, however, δ∗ is the infimum of the set, in any neighbourhood

of δ∗ there must be a δ̂ > δ∗ such that for all δ∗ < δ′′ ≤ δ̂ we have p+δ′′·c ∈
G1. From the above reasoning, p + δ̂ · c ∈ G1 and, for all 0 ≤ δ′ < δ̂,

p+ δ′ · c ∈ G∪G1, can be concluded. Moreover, p+ δ∗ · c ∈ bndry(G,G1)

and, since for all 0 ≤ δ′′ ≤ δ∗ it holds p+δ′′ ·c ̸∈ G2, it follows that also p ∈
bndry(G,G1). Hence, p ∈ entry(G,G1) ⊆ entry(G,G1) ∪ entry(G,G2).



4.3. COMPUTING THE RWAM OPERATOR ON POLYHEDRA 71

As a consequence of Lemma 4, for any convex P and any general polyhedron

G, entry(P,G) can be computed by simply collecting the entry regions from P

to each convex polyhedron in [[G]], as follows:

entry(P,G) =
∪

P ′∈[[G]]

entry(P, P ′). (4.5)

where entry(P, P ′) is computed according to equation (4.4).

Now the RWAm operator can be computed by the following fixpoint charac-

terization.

Theorem 3. For all locations l and sets of valuations U , V , and W , let

τ(U, V,W ) = U ∪
∪

P∈[[V ]]

(
P ∩ entry(P,W )↙l

)
. (4.6)

Hence, RWAm
l (U, V ) = µW . τ(U, V,W ).

Roughly speaking, τ(U, V,W ) represents the set of points which either belong

to U or do not belong to V and can reach W along a straight line which does

not cross V . The fixpoint expression µW . τ(U, V,W ) can be interpreted as an

incremental refinement of an under-approximation to the desired result. The

process starts with the initial approximation W0 = U . One can easily verify

that U ⊆ RWAm
l (U, V ). Additionally, notice that RWAm

l (U, V ) ⊆ U ∪ V . The

equation refines the under-approximation by identifying its entry regions, i.e.,

the boundaries between the area which may belong to the result (i.e., V ), and

the area which already belongs to it (i.e., W ).

Example 13. Figure 4.7 shows a single step in the computation of equation

(4.6), for a fixed pair of convex polyhedra P in V and P ′ in W , assumung that

Flow(l) is the plolyhedron F displayed in Figure 4.7(e). In all the figures, dashed

lines represent topologically open sides. In Figure 4.7(a), the thick segment

between P and P ′ represents bndry(P, P ′), which, in the example, is contained in

P . Since P ′ is topologically open (denoted by the dashed contour), the rightmost

point of bndry(P, P ′) cannot reach P ′ along any straight-line activity. Being P ′

open, so is P ′↙l, and its intersection with P , namely entry(P, P ′), does not

contain the rightmost point of the boundary (see Figure 4.7(b)).

Now, any point of P that can reach entry(P, P ′) (displayed in Figure 4.7(c))

following some activity can also reach P ′. The set Cut = P ∩ entry(P, P ′)↙l

contains precisely those points (see Figure 4.7(d)). All these points must then

be added to W , as they all belong to RWAm
l (U, V ).



72CHAPTER 4. SOLVING THE SAFETY CONTROL PROBLEM FOR LHGS

..

P ′

.

P

(a) Initial input with
bndry(P, P ′) highlighted.

..

P ′

.

P

.

P ′↙l

(b) Pre-flow of P ′. ..

P ′

.

P

.

entry(P, P ′)↙l

(c) Pre-flow of the entry re-
gion.

..

P ′

.

Pnew

.

Cut

(d) The region cut from P
and the resulting polyhe-
dron.

..
F

(e) Flow(l).

Figure 4.7: One step of RWAm computation.

4.4 Previous Algorithms

As said many times, previous algorithms to solve the safety control problem

for linear hybrid games, are wrong. This section shows these algorithms, and

compares them with procedure proposed in this thesis.

In the literature, the standard reference for safety control of linear hybrid

games is [WT97], where the proposed model and the abstract algorithm are

essentially similar to that shown in this thesis.

As to the computation of CPreS, they introduce an operator flow avoid ,

which corresponds to our RWAm operator. They propose to compute RWAm
l (U, V )

using the following fixpoint formula:

flow avoid(U, V ) =
∪

U ′∈[[U ]]

∩
V ′∈[[V ]]

(
µW . U ′ ∪

∪
P∈[[V ′]]

(
cl(P ) ∩ V ′ ∩ (W ∩ P )↙l

))
(4.7)

The example in Figure 4.3(a), already discussed in Section 4.3, shows that (4.7)

is different from (in particular, larger than) RWAm
l (U, V ) when V is non-convex.

The problem lies in the fact that Formula (4.7) treats each convex part of V

separately, and then takes the intersection of the resulting sets. Considering

the situation in Figure 4.3(a) and taking V = V1 ∪ V2, Formula (4.7) would

reduce to flow avoid(U, V1) ∩ flow avoid(U, V2), and would include the dotted



4.5. SOUNDNESS AND COMPLETENESS OF THE FIXPOINT PROCEDUREOF THEOREM 3.73

area depicted in that figure. As explained in Section 4.3, this is an incorrect

result.

In [DMT+01], Deshpande et al. report about an implementation of Wong-

Toi’s algorithm in the tool HoneyTech, obtained as an extension of HyTech

[DMT+01]. The fixpoint formula that is meant to capture RWAm
l (U, V ) is the

following:

µW . U ∪
∪

P∈[[V ]]

(
P ∩

(
cl(W ) ∩ cl(P ) ∩ V ∩W↙l

)
↙l

)
(4.8)

Differently from (4.7), Formula (4.8) correctly treats the case of non-convex

V . However, it suffers from another issue, related to the computation of the en-

try regions between polyhedra. First, notice that Formula (4.8) can be compared

to (4.6), once observed that (cl(W )∩ cl(P )∩V ∩W↙l) is meant to correspond

to the definition given here of entry regions. In particular, (cl(W )∩ cl(P )∩ V )

essentially corresponds to bndry(P,W ), except for subtle, though non crucial,

differences. Once computed the boundaries between P and W , Formula (4.8)

computes the entry regions from P to the polyhedron W , by intersecting them

with W ↙l, the pre-flow of W . This corresponds to using equation (4.4) with

polyhedron W as the second argument. However, Example 12 shows that this

may lead to errors when W is not convex. Indeed, consider again Figure 4.6,

and assume that W is the union of U and the Z. The result of applying

(cl(W ) ∩ cl(P ) ∩ V ∩W↙l) is, in this case, the thick solid line between P and

Z. This is precisely the wrong entry region computed by bndry(P,W ) ∩W↙l

in Example 12. Since this thick line is contained in P , Formula (4.8) ends up

adding it to RWAm
l (U, V ). However, this line does not belong to RWAm

l (U, V ),

since all its points cannot avoid hitting V before eventually reaching U .

4.5 Soundness and Completeness of the Fixpoint
Procedure of Theorem 3.

The first step of this section is to show that the τ operator is monotonic w.r.t.

its third argument, so that the least fixpoint

µW . τ(U, V,W ) is well defined.

Lemma 5. For all polyhedra U , V , and W ⊆ W ′, it holds τ(U, V,W ) ⊆
τ(U, V,W ′).

Proof. It is sufficient to observe that, for all P ∈ [[V ]], the expression P ∩
entry(P,W )↙l is monotonic w.r.t. W , since it is composed by monotonic oper-

ators.



74CHAPTER 4. SOLVING THE SAFETY CONTROL PROBLEM FOR LHGS

Theorem 3 is an immediate consequence of the following two lemmas.

Lemma 6. For all locations l and polyhedra U and V , it holds RWAm
l (U, V ) ⊆

µW . τ(U, V,W ).

Proof. Let u ∈ RWAm
l (U, V ) and W ∗ = µW .τ(U, V,W ). By definition, u ∈ V ∪

U . If u belongs to U , then it belongs to W ∗ by definition. If u belongs to V \U ,

there must be an activity that starts in u and reaches a point u′ ∈ U without

visiting V \ U . By Lemma 2, there is a finite sequence of straightline segments

leading from u to u′ and avoiding V \U . Let u0, u1, . . . , uk be the corresponding

sequence of intermediate corner points, where u0 = u and uk = u′. The proof

proceeds by induction on k. If k = 0, it holds u = u′ ∈ U , and the thesis is

trivially true. If k > 0, the inductive hypothesis is applied to u1, and then

u1 ∈ W ∗. Consider the straight path from u0 ∈ V \ U to u1 ∈ W ∗. This

path crosses into W ∗ in a given point v. Formally, v is the first point along the

path which belongs to cl(W ∗). Hence, there is at least one convex polyhedron

P ′ ∈ [[W ∗]] such that v ∈ cl(P ′). If there is more than one such polyhedron,

pick the one that contains at least one point of the straight path from v to u1.

In this way, we have v ∈ P ′↙l⊆W ∗↙l.

Let n be the number of convex polyhedra in [[V ∪ U ]] that are crossed by

the straight path from u0 to v. The proof proceeds by a new induction on n. If

n = 1, the whole line segment from u0 to v is contained in a given P ∈ [[V ∪U ]].

Hence, v ∈ bndry(P, P ′), where P ′ is a suitable element of [[W ∗]], which ensures

that v ∈ bndry(P,W ∗) as well. Summarizing, we have v ∈ bndry(P, P ′)∩P ′↙l=

entry(P, P ′) ⊆ entry(P,W ∗), and u0 ∈ {v}↙l⊆ entry(P,W ∗)↙l. Hence one

can conclude that u0 ∈ W ∗. If n > 1, the straight path from u0 to v is

divided into n segments, defined by the intermediate points v1, . . . , vn−1, and

the inductive hypothesis is applied to v1, obtaining that v1 ∈ W ∗. Finally, an

argument analogous to the one for n = 1 is used to conclude that u0 ∈W ∗.

Lemma 7. For all locations l and polyhedra U and V , it holds RWAm
l (U, V ) ⊇

µW . τ(U, V,W ).

Proof. It suffices to show that RWAm
l (U, V ) is a fixpoint of r, in other words

that RWAm
l (U, V ) = τ(U, V,RWAm

l (U, V )). Let u ∈ τ(U, V,RWAm
l (U, V )), the

fact that u ∈ RWAm
l (U, V ) must be proved. If u ∈ U , the thesis is obvious.

Otherwise, there exist P ∈ [[V ]] such that u ∈ P ∩ entry(P,RWAm
l (U, V ))↙l.

Hence, there is a straightline activity f ∈ Adm(⟨l, u⟩) that reaches a point

v ∈ RWAm
l (U, V ), while remaining in P ∪RWAm

l (U, V ) ⊆ V . Therefore, we have

found an activity from u to RWAm
l (U, V ) which avoids V \U and the thesis fol-

lows. Finally, let u ∈ RWAm
l (U, V ), the property that u ∈ τ(U, V,RWAm

l (U, V ))



4.6. TERMINATION OF THE FIXPOINT PROCEDURE IN THEOREM 2.75

is now proved. First, notice that u ∈ U ∪ V . If u ∈ U , the thesis is obvi-

ous. Otherwise, u ∈ P for some P ∈ [[RWAm
l (U, V )]]. Then, P ⊆ V . Since P ⊆

bndry(P,RWAm
l (U, V )) and P ⊆ P↙l, we have that P ⊆ bndry(P,RWAm

l (U, V ))∩
P↙l. Therefore, there is a straight-line activity f ∈ Adm(⟨l, u⟩) that reaches
RWAm

l (U, V ), starting from u, while remaining in P∪RWAm
l (U, V ) = RWAm

l (U, V ).

Hence, u ∈ P ∩ entry(P,RWAm
l (U, V ))↙l and, by (4.6), the thesis holds.

4.6 Termination of the Fixpoint Procedure in
Theorem 2.

In order to prove termination of the fixpoint procedure defined in Theorem 3,

an equivalent but finer grained formulation of the τ operator is now provided.

Observe that distribution over union of ↙l ensures that, for any convex

polyhedron P and any polyhedron G, the following holds:

P ∩ entry(P,G)↙l = P ∩
( ∪

P ′∈[[G]]

entry(P, P ′)
)
↙l=

= P ∩
∪

P ′∈[[G]]

(
entry(P, P ′)↙l

)
=

=
∪

P ′∈[[G]]

(
P ∩ entry(P, P ′)↙l

)
.

(4.9)

As a consequence, equation (4.6) can be equivalently reformulate as follows:

τ(U, V,W ) = U ∪
∪

P∈[[V ]]

∪
P ′∈[[W ]]

(
P ∩ entry(P, P ′)↙l

)
. (4.10)

The following theorem ensures that the fixpoint defined in Theorem 3 always

terminates.

Theorem 4. The fixpoint procedure for RWAm defined as µW . τ(U, V,W )

terminates in a finite number of steps.

In order to prove Theorem 4, some additional definitions and notation are

required.

Given two polyhedra E and G and two convex polyhedra P ∈ [[E]] and P ′ ∈
[[G]], if the entry region R from P to P ′ is not empty, the notation G

P,R−−→E G′,

where [[G′]] = [[G]] ∪ {P ∩R↙l}, is used to denote a refinement step.

Intuitively, according to equation (4.10), the fixpoint procedure to compute

RWAm applies, at each iteration k ≥ 1, all the refinement steps of the form

G
P,R−−→E G′, with E = V and G = τk−1(U, V, U) (where τ0(U, V, U) = U

and τ i+1(U, V, U) = τ(U, V, τ i(U, V, U))) for every entry region R of the current



76CHAPTER 4. SOLVING THE SAFETY CONTROL PROBLEM FOR LHGS

under-approximation G, following a breadth-first policy. For example, Fig-

ure 4.7 shows a single refinement step of the form W
P,entry(P,P ′)−−−−−−−−−→V W ∪{Cut},

where P ∈ [[V ]] and P ′ ∈ [[W ]].

The following lemma can easily be proved exploiting idempotence and mono-

tonicity of ↙l.

Lemma 8. Assume G
P,R−−→E G′. For all entry regions R′ of G′ that are not

entry regions of G it holds R′ ⊆ R↙l.

Proof. By definition of entry region, R′ = bndry(P ′, P ∩R↙l)∩ (P ∩R↙l)↙l,

with P ′ ∈ [[E]] and P ∩ R↙l∈ [[G′]]. Hence, we can write R′ ⊆ (P ∩R↙l)↙l.

Moreover, from (P ∩ R ↙l) ⊆ R ↙l and by monotonicity and idempotence

properties of ↙l it follows that (P ∩R↙l)↙l⊆ R↙l. Hence the thesis R′ ⊆
(P ∩R↙l)↙l⊆ R↙l.

Now the relationship between sequences of refinement steps and it iteretions

of the operator τ(·) can be formally defined with the following lemma.

Lemma 9. If π = G0
P1,R1−−−−→E G1

P2,R2−−−−→E . . .
Pm,Rm−−−−−→E Gm is a sequence

of refinement steps with R entry region of Gm, then R is an entry region of

τm(G0, E,G0).

Proof. Let π = G0
P1,R1−−−−→E G1

P2,R2−−−−→E . . .
Pk,Rk−−−−→E Gk be the shortest prefix of

π such that R is entry region of Gk. Clearly, k ≤ m. The proof now proceeds

by induction on k. If k = 0, then R is entry region of G0 = τ0(G0, E,G0) and,

by monotonicity of the operator τ , the thesis holds.

Assume k > 0. Since R is entry region of Gk but not in Gk−1 and [[Gk]] =

[[Gk−1]]∪{Pk∩Rk↙l}, it must be R = bndry(P, (Pk∩Rk↙l))∩(Pk ∩Rk↙l)↙l,

with P ∈ [[E]] and Rk entry region in Gk−1. By induction hypothesis, Rk is

entry region of τk−1(G0, E,G0). Since Pk ∈ [[E]], by definition of τ we have

(Pk ∩ Rk↙l) ∈ τ(G0, E, τk−1(G0, E,G0)) = τk(G0, E,G0). Therefore, R is an

entry region in τk(G0, E,G0). Again, by monotonicity of τ , the thesis follows.

In the following the fact that the number of different entry regions employed

by the fixpoint procedure for RWAm is finite and the fact that the number of

its iterations is bounded is now proved, thus establishing termination of the

procedure itself.

Before proceeding, some properties about sequences of refinement steps are

required. Given a sequence π = G0
P1,R1−−−−→E G1

P2,R2−−−−→E . . .
Pk,Rk−−−−→E Gk,

let last(π) denotes Gk. Moreover, for a convex polyhedron R, let prune(π,R)



4.6. TERMINATION OF THE FIXPOINT PROCEDURE IN THEOREM 2.77

be the sequence obtained from π by removing all those edges
Pi,Ri−−−→E which

depend on R, i.e. such that Ri ⊆ R↙l. Formally, prune(π,R) = G0
P ′

1,R
′
1−−−−→E

G′
1

P ′
2,R

′
2−−−−→E . . .

P ′
m,R′

m−−−−−→E G′
m is the largest subsequence of π which is a sequence

of refinement steps and such that R′
i ̸= R, for all 1 ≤ i ≤ m. Clearly, we have

m ≤ k.

The following lemma states that prune(π,R) preserves all the entry regions

of last(π) which do not depend on R.

Lemma 10. Let π = G0
P1,R1−−−−→E G1

P2,R2−−−−→E . . .
Pk,Rk−−−−→E Gk be a sequence

of refinement steps and let R be an entry region of Gk, such that R ̸⊆ R1↙l.

Then, there exists a subsequence π′ of prune(π,R1) such that R is an entry

region of last(π′).

Proof. The proof proceeds by induction on k. If k = 1, then R is an entry region

of G1, with R ⊆ R1↙l. By Lemma 8 R must be entry region of G0.

If k > 1, let j be the smallest index such that R is an entry region in

Gj . If j = 0, the thesis holds. Otherwise, by Lemma 8 we have R ⊆ Rj ↙l.

Consequently, Rj ̸⊆ R1 ↙l (otherwise, by monotonicity it would hold R ⊆
R1↙l). Applying the inductive hypothesis to the prefix G0

P1,R1−−−−→E G1
P2,R2−−−−→E

. . .
Pj−1,Rj−1−−−−−−−→E Gj−1 and to Rj . We obtain that there exists a sequence π′ that

starts from G0, does not use R1, and ends in a polyhedron G′ such that Rj is

an entry region of G′. Hence, for the sequence π′ Pj ,Rj−−−−→E G′′, R is an entry

region of G′′ and the thesis holds.

Now the main property relating entry regions and sequences of refinement

steps can be stated.

Lemma 11. Let π = G0
P1,R1−−−−→E G1

P2,R2−−−−→E . . .
Pn,Rn−−−−→E Gn be a sequence

of refinement steps and let R be an entry region of Gn. Then, there exists a

subsequence π′ = G0
P ′

1,R
′
1−−−−→E G′

1

P ′
2,R

′
2−−−−→E . . .

P ′
m,R′

m−−−−−→E G′
m, such that: R is an

entry region of G′
m and P ′

i ̸= P ′
j for all 1 ≤ i < j ≤ m.

Proof. Let π = G0
P1,R1−−−−→E G1

P2,R2−−−−→E . . .
Pk,Rk−−−−→E Gk be the shortest prefix of

π such that R is an entry region of Gk. We proceed by induction on k. If k = 0

or k = 1, the thesis immediately follows. If k > 1, then Rk is an entry region

of Gk−1 and R is an entry region in Gk. Since k is the first index for which R

is an entry region in Gk, then also holds that R ⊆ Pk ∩ Rk↙l. The inductive

hypothesis is now applied on G0
P1,R1−−−−→E G1

P2,R2−−−−→E . . .
Pk−1,Rk−1−−−−−−−→E Gk−1 to

obtain the subsequence π′ = G0
P ′

1,R
′
1−−−−→E G′

1

P ′
2,R

′
2−−−−→E . . .

P ′
h,R

′
h−−−−→E G′

h, where

P ′
i ̸= P ′

j , for all 1 ≤ i < j ≤ h, and Rk is still an entry region of G′
h.

Hence, π∗ = π′ Pk,Rk−−−−→E G′
h+1 is a sequence of refinement steps, and R ⊆



78CHAPTER 4. SOLVING THE SAFETY CONTROL PROBLEM FOR LHGS

Pk∩Rk↙l implies that R is an entry region of G′
h+1. Assume P ′

j = Pk for some

1 ≤ j ≤ h. Considering the subsequence π̂ = G′
j−1

P ′
j ,R

′
j−−−−→E G′

j

P ′
j+1,R

′
j+1−−−−−−−→E

. . .
Ph,Rh−−−−→E G′

h, two cases may occur:

1. if Rk ̸⊆ R′
j↙l, then substituting prune(π̂, R′

j) for π̂ in π∗, by Lemma 10,

the desired sequence of refinement steps is obtained;

2. if Rk ⊆ R′
j ↙l, then the subsequence G0

∗−→E G′
j of π′ is the desired

sequence. Indeed, by idempotence of ↙l, Rk ⊆ R′
j ↙l implies Rk ↙l⊆

R′
j ↙l. Since P ′

j = Pk, then also Pk ∩ Rk ↙l⊆ P ′
j ∩ R′

j ↙l. Therefore,

R ⊆ Pk ∩Rk↙l⊆ P ′
j ∩R′

j↙l. Hence, R is an entry region of G′
j .

An immediate consequence of the previous lemma is that for any entry region

R there is a sequence π of refinement steps discovering R (i.e. with R entry

region of last(π)) whose length is bounded by |[[E]]|.

Now, the termination of the fixpoint procedure to compute RWAm can be

established.

Proof of Theorem 4 Notice that [[V ]] and [[U ]] are finite sets of convex

polyhedra, therefore so is the number of initial entry regions from the convex

polyhedra of [[V ]] to [[U ]]. At each iteration, the fixpoint procedure of Theorem 3

applies the refinement steps in a breadth-first manner, starting from these initial

entry regions. Therefore, in every iteration each entry region discovered so far

is employed in a refinement step. As a consequence of Lemma 11, taking E = V

and G0 = U , for every entry region there is a sequence of refinement steps which

discoverd it and whose length is bounded by |[[V ]]|. Therefore, by Lemma 9,

after at most |[[V ]]| iterations of the procedure all the entry regions have been

discovered, and the fixpoint is reached at the next iteration.

4.7 Exact Computation of Pre-Flow

As seen in the previous section, one of the basic operations on polyhedra that

are needed to compute RWAm is the pre-flow operator ↙. It is sufficient to

compute P↙F for convex P and F , for two reasons:

1. For a given location l and a convex polyhedron Flow(l), the polyhedron

F is always defined as F = Flow(l).



4.7. EXACT COMPUTATION OF PRE-FLOW 79

2. The pre-flow of a general polyhedron is the union of the pre-flows of its

convex polyhedra, namely, (P1 ∪ P2)↙F = P1↙F ∪ P2↙F .

The pre-flow of P w.r.t. F is equivalent to the post-flow of P w.r.t. −F ,

defined as:

P↗−F = {x+ δ · y | x ∈ P, y ∈ −F, δ ≥ 0}.

The post-flow operation coincides with the time-elapse operation introduced

in [HPR97] for topologically closed convex polyhedra. Notice that for convex

polyhedra P and F , the post-flow of P w.r.t. F may not be a convex polyhedron:

following [ABD+00], let P ⊆ R2 be the polyhedron containing only the origin

(0, 0) and let F be defined by the constraint y > 0, then the post-flow P↗F =

{(0, 0)} ∪ {(x, y) ∈ R2 | y > 0} is not a convex polyhedron (although it is a

convex subset of R2). The Parma Polyhedral Library (PPL, see [BHZ08]), for

instance, only provides an over-approximation of the post-flow operator, that

we denote by ↗PPL . Precisely, P↗PPL F is the smallest convex polyhedron

containing P↗F .

On the other hand, the post-flow of a convex polyhedron is always the union

of two convex polyhedra, according to the equation

P↗F = P ∪
(
P↗>0F

)
,

where P↗>0F is the positive post-flow of P , i.e., the set of valuations that can

be reached from P via a straight line of non-zero length whose slope belongs to

F . Formally,

P↗>0F = {x+ δ · y | x ∈ P, y ∈ F, δ > 0}.

Hence, in order to exactly compute the post-flow of a convex polyhedron, the

exact computation of the positive post-flow is needed.

Convex polyhedra admit two finite representations, in terms of constraints

or generators. Libraries like PPL maintain both representations for each convex

polyhedron and efficient algorithms exist for keeping them synchronized [Che68,

Ver92]. The constraint representation refers to the set of linear inequalities

whose solutions are the points of the polyhedron. The generator representation

consists in three finite sets of points, closure points, and rays, that generate all

points in the polyhedron by linear combination. More precisely, for each convex

polyhedron P ⊆ Rn there exists a triple (V,C,R) such that V , C, and R are

finite sets of points in Rn, and x ∈ P if and only if it can be written as∑
v∈V

αv · v +
∑
c∈C

βc · c+
∑
r∈R

γr · r, (4.11)



80CHAPTER 4. SOLVING THE SAFETY CONTROL PROBLEM FOR LHGS

where all coefficients αv, βc and γr are non-negative reals,
∑

v∈V αv+
∑

c∈C βc =

1, and there exists v ∈ V such that αv > 0. The triple (V,C,R) is called a

generator for P .

Intuitively, the elements of V are the proper vertices of the polyhedron P , the

elements of C are vertices of the topological closure of P that do not belong to

P , and each element of R represents a direction of unboundedness of P .

The following result shows how to efficiently compute the positive post-flow

operator, using the generator representation.

Theorem 5. Given two convex polyhedra P and F , let (VP , CP , RP ) be a gen-

erator for P and (VF , CF , RF ) a generator for F . The triple (VP ⊕ VF , CP ∪
VP , RP ∪VF ∪CF ∪RF ) is a generator for P↗>0F , where ⊕ denotes Minkowski

sum.

Proof. The first step of the proof is to show that, let z ∈ P ↗>0 F , there are

coefficients αv, βc and γr such that z can be written as (4.11), for V = VP ⊕VF ,

C = CP ∪ VP , and R = RP ∪ VF ∪ CF ∪RF .

By definition, there exist x ∈ P , y ∈ F , and δ > 0 such that z = x + δy.

Hence, there are coefficients αx
v , β

x
c , and γx

r witnessing the fact that x ∈ P , and

coefficients αy
v , β

y
c , and γy

r witnessing the fact that y ∈ F . Moreover, there is

i ∈ VP and j ∈ VF such that αx
i > 0 and αy

j > 0. Let ε = min{αx
i , δα

y
j } and

notice that ε > 0. It holds

αx
i · i+ δ · αy

j · j = (αx
i − ε)i+ εi+ (δ · αy

j − ε)j + εj =

= ε(i+ j) + (αx
i − ε)i+ (δ · αy

j − ε)j.

Hence,

z =
∑
v∈VP

αx
v · v +

∑
c∈CP

βx
c · c+

∑
r∈RP

γx
r · r+

+ δ

( ∑
v∈VF

αy
v · v +

∑
c∈CF

βy
c · c+

∑
r∈RF

γy
r · r

)

= ε(i+ j) +

(
(αx

i − ε)i+
∑

v∈VP \{i}

αx
v · v +

∑
c∈CP

βx
c · c

)
+

(
(δ · αy

j − ε)j +
∑
r∈RP

γx
r · r +

∑
v∈VF \{j}

αy
v · v +

∑
c∈CF

βy
c · c+

∑
r∈RF

γy
r · r

)
.

One can easily verify that: (i) all coefficients are non-negative; (ii) the sum of

the coefficients of the points in V and C is 1; (iii) there exists a point in V ,

namely i+ j, such that its coefficient is strictly positive.



4.7. EXACT COMPUTATION OF PRE-FLOW 81

Conversely, let z be a point that can be expressed as (4.11), for V = VP⊕VF ,

C = CP ∪ VP , and R = RP ∪ VF ∪ CF ∪ RF . We prove that z ∈ P ↗>0 F by

identifying x ∈ P , y ∈ F and δ > 0 such that z = x+ δy.

Notice that (a)
∑

v∈VP⊕VF
αv +

∑
c∈CP∪VP

βc = 1, and (b) there exists v∗ ∈
VP ⊕ VF such that αv∗ > 0. Let

x =
∑

v1∈VP
v2∈VF

αv1+v2 · v1 +
∑

c∈CP∪VP

βc · c+
∑
r∈RP

γr · r.

The point x is claimed to belong to P (x ∈ P ): first, x is expressed as a linear

combination of points in (VP , CP , RP ); second, all coefficients are non-negative;

third, the sum of the coefficients of the points in VP and in CP is 1, due to (a)

above; finally, since αv∗ > 0, there is a point in VP whose coefficient is positive.

Then, let

δ =
∑

v∈VP⊕VF

αv +
∑

r∈VF∪CF

γr, and

y =
1

δ
·

( ∑
v1∈VP
v2∈VF

αv1+v2 · v2 +
∑

r∈VF∪CF∪RF

γr · r

)
.

Since αv∗ > 0, we have δ > 0. The point y is claimed to belong to F (y ∈ F ):

first, y is a linear combination of points in (VF , CF , RF ); second, all coefficients

are non-negative; third, the sum of the coefficients of the points in VF and in

CF is 1, due to our choice of δ; finally, since αv∗ > 0, there is a point in VF

whose coefficient is positive.

Now the discussion about the safety control problem for linear hybrid games

is complete. The implementation of the operators introduced in this chapter is

the focus of Chapter 6.



82CHAPTER 4. SOLVING THE SAFETY CONTROL PROBLEM FOR LHGS



Chapter 5

Solving the Reachability
Control Problem for LHGs

This chapter is focused on the solution of the reachability control problem for

linear hybrid games. The reachability goal is the the objective to lead the system

in a given set of the so-called “target” states T , regardless of the evolution

of the continuous variables and the uncontrollable transitions, i.e. regardless

the behavior of the environment. The problem is known to be undecidable,

being almost harder than the standard reachability verification (i.e., 1-player

reachability) for triangular hybrid automata [HKPV95], that is a special case

of LHGs.

Here, a sound and complete semi-algorithm 1 for the problem is proposed.

This procedure is a fixpoint similar to that seen for the safety goal but, unlike

discrete and real-time cases, the controllable predecessor for reachability is now

different from CPreS: the core of the former is based on a novel algorithm for

computing, within a given location, the set of states that must reach a given

polyhedral region while avoiding another one, the RWAM operator, while the

core of the latter is the RWAm operator. Along the way the relationship between

the two operators will be clear. The operator RWAM takes as input two sets of

states U and V , and computes the set of points from which all the trajectories

leads to the region U , while avoiding the region V . Hence, the reachability

control problem has a proper version of the controllable predecessor, called

CPreR, which is different from the one proposed for the safety control problem.

The reason for this lies in the fact that the hybrid game model is asymmetric:

the environment may govern also the evolution of the continuous variables,

besides the fact that it can choose proper transitions. As the conseguence of

1In other words, a procedure that may or may not terminate, and that provides the correct
answer whenever it terminates.

83



84CHAPTER 5. SOLVING THE REACHABILITY CONTROL PROBLEM FOR LHGS

this game asymmetry, although the reachability goal (as a language of infinite

traces) is the dual of safety, the corresponding synthesis problems are not dual.

Hence, it is not possible to solve the control problem with reachability goal T

by exchanging the roles of the two players and then solving the safety control

problem with goal T (i.e., the complement of T ).

In work to date, the reachability control problem was never considered for

the class of linear hybrid games. Hence, the procedure shown here seems to be

the first known solution for the safety control problem for LHGs.

The computation of the RWAM operator is not trivial, and requires the

introduction of some additional operator on the polyhedra. This chapter shows

these operator and their properties, in order to implement the RWAM operator.

5.1 The Global Semi-Algorithm

In the introduction of the chapter, it was said that the controllable predecessor

operator defined for the reachability goal, is different from the one defined for

the safety goal. The controllable predecessor operator for reachability CPreR

is formally defined in the following section. The following theorem states the

general procedure for solving the reachability control problem, based on the

controllable predecessor operator for reachability CPreR(·).

Theorem 6. The answer to the reachability control problem for target set T ⊆
InvS is positive if and only if

InitS ⊆ µW . T ∪ CPreR(W ). (5.1)

Controllable predecessor operator for reachabilty. Now the controllable

predecessor operator for reachability can be formally defined. For a set of states

A, the operator CPreR(A) returns the set of states from which the controller

can ensure that the system reaches A within the next joint step. Based on the

activity chosen by the environment, this may happen for three reasons:

1. at some point during the activity a controllable transition is enabled that

leads into A, and all uncontrollable transitions enabled in the meanwhile

also lead to A;

2. the activity naturally enters A, and all uncontrollable transitions enabled

in the meanwhile also lead to A;

3. the activity eventually leaves the invariant, and all uncontrollable transi-

tions that are ever enabled along the activity lead to A.



5.1. THE GLOBAL SEMI-ALGORITHM 85

Notice that in case (3) the system is forced to reach A because, by well-

formedness, an uncontrollable transition must be enabled before the activity

leaves the invariant.

The three cases can be formalized as the following predicates Φi, on an

activity f , location l, and target set A. For a set of states A and x ∈ {u, c}, let
Prex(A) be the set of states in InvS where some discrete transition belonging

to Edgx is enabled, which leads to A.

Φ1(f, l, A) = ∃δ ∈ span(f, l) : ⟨l, f(δ)⟩ ∈ Prec(A) and

∀0 ≤ δ′ ≤ δ : ⟨l, f(δ′)⟩ ̸∈ Preu(A)

Φ2(f, l, A) = ∃δ ∈ span(f, l) : ⟨l, f(δ)⟩ ∈ A and

∀0 ≤ δ′ < δ : ⟨l, f(δ′)⟩ ̸∈ Preu(A)

Φ3(f, l, A) =∞ ̸∈ span(f, l) and

∀δ ∈ span(f, l) : ⟨l, f(δ)⟩ ̸∈ Preu(A)

Now the controllable predecessor for reachability is formally defined, as the

following:

CPreR(A) =
{
⟨l, u⟩ ∈ InvS

∣∣∣∀f ∈ Adm(⟨l, u⟩) :

Φ1(f, l, A) or Φ2(f, l, A) or Φ3(f, l, A)
}
.

In discrete games (see Chapter 1), the CPre operator used for solving reach-

ability games is the same as the one used for the safety goal [Mal02]. In both

cases, when the operator is applied to a set of states T , it returns the set of

states from which the controller can force the game into T in one step. In hy-

brid games, the situation is different: a joint step represents a possibly complex

behavior, extending over a (possibly) non-zero time interval. While the CPreR

operator for reachability only requires T to be visited once during such inter-

val, CPre for safety requires that the entire behavior constantly remains in T .

Hence, a novel algorithm for computing CPreR is presented in Section 5.2.

Clearly, as first step, the Theorem 6 need to be proved, as follows.

Proof. [if ] Assume equation 1.2 holds, a winning strategy is built in two steps.

Let

• W0 = T ,

• Wα = T ∪ CPreR(Wα−1), for a successor ordinal α, and



86CHAPTER 5. SOLVING THE REACHABILITY CONTROL PROBLEM FOR LHGS

• Wα =
∪

β<α Wβ for a limit ordinal α.

Moreover, let W ∗ = µW .T ∪CPreR(W ). By Knaster-Tarski theorem, if s ∈W ∗

then there exists a least ordinal α such that s ∈ Wα. If α is a limit ordinal,

by definition of Wα there exists β < α such that s ∈ Wβ , which contradicts

minimality of α. Hence α is either 0 or a successor ordinal.

Let σ be a strategy defined as follows, for all states s:

• ⊥ ∈ σ(s) and

• for all s ∈ W ∗, let α = β + 1 be the smallest ordinal such that s ∈ Wα;

for all e ∈ Edgc, we have e ∈ σ(s) if and only if s
e−→ s′ and s′ ∈Wβ .

While σ is clearly a strategy, it is not necessarily a winning strategy, as it

may admit consistent runs which delay a controllable action either beyond the

winning set W ∗ or beyond its availability. However, a winning strategy can

be recovered by removing the null action ⊥ from certain states. Let σ′ be any

strategy which coincides with σ on all the states, except for the states s ∈ W ∗

with σ(s) ∩ Edgc ̸= ∅, where it satisfies σ′(s) ∩ Edgc = σ(s) ∩ Edgc and the

following two conditions (a) and (b). For all f ∈ Adm(s), let Df,s = {δ > 0 |
∀0 ≤ δ′ ≤ δ : ⟨loc(s), f(δ′)⟩ ∈Wα and σ(⟨loc(s), f(δ′)⟩) ∩ Edgc ̸= ∅}:

(a) If there is f ∈ Adm(s) such that Df,s = ∅ then ⊥ ̸∈ σ′(s);

(b) For all f ∈ Adm(s), if Df,s ̸= ∅ then there exists δ ∈ Df,s such that

⊥ ̸∈ σ′(⟨loc(s), f(δ)⟩) and ⊥ ∈ σ′(⟨loc(s), f(δ′)⟩) for all 0 ≤ δ′ < δ.

Intuitively, the new strategy σ′ ensures that following any activity from a state

s ∈W ∗ in which some controllable action is enabled, such an action will always

be taken before none of them is available and before leaving W ∗.

Showing that for every s ∈ InitS and every r ∈ Runs(σ′, s), it holds that

States(r) ∩ T ̸= ∅, allowing us to prove that σ′ is winning.

In particular, the proof proceeds by transfinite induction on the least ordinal

α such that s ∈ Wα and show that by following the strategy σ′ the set T is

reached from s within a finite number of joint steps. The statement is trivially

true for α = 0. Since α cannot be a limit ordinal, the only remaining case is

if α is a successor ordinal. Let s
δ,f−−→ s′

e−→ s′′ be a joint step starting from s

and consistent with σ′ (steps of infinite length are discussed later). If e ∈ Edgc,

by construction we have s′′ ∈ Wα−1, and the thesis follows from the induction

hypothesis. Otherwise, e ∈ Edgu and ⊥ ∈ σ′(⟨l, f(δ′)⟩) for all 0 ≤ δ′ < δ. Now,

it is necessary to prove that either s′′ ∈ Wα−1 or there is δ′ ≤ δ such that

⟨l, f(δ′)⟩ ∈ Wα−1. Assume that s′′ ̸∈ Wα−1, i.e., s
′ ∈ Preu(Wα−1), and hence

s′ ̸∈Wα. Since s ∈ CPreR(Wα−1), one of the following holds:



5.1. THE GLOBAL SEMI-ALGORITHM 87

1. If Φ1(f, l,Wα−1) holds, the following contradiction are obtained: Consid-

ering the current assumption, we have that there is δ∗ < δ, with s∗ =

⟨l, f(δ∗)⟩ ∈ Prec(Wα−1), and, for all 0 ≤ δ′ ≤ δ∗, ⟨l, f(δ′)⟩ ̸∈ Preu(Wα−1).

As a consequence, s∗ ∈ CPreR(Wα−1) and, therefore, s∗ ∈ Wα. Notice

that s∗ is an intermediate point along the activity f between s and s′,

and it holds ⊥ ∈ σ′(s∗). Let f∗ be the suffix of f starting from s∗ (i.e.,

f∗(γ) = f(γ + δ∗)), and consider the set Df∗,s∗ defined in rule (b) in the

above construction of σ′. If Df∗,s∗ = ∅, rule (a) in the construction of σ′

applies, and we obtain the contradiction that ⊥ ̸∈ σ′(s∗). Otherwise, rule

(b) applies, and there exists δ′ ∈ Df∗,s∗ such that ⊥ ̸∈ σ′(⟨l, f∗(δ′)⟩) =

σ′(⟨l, f(δ′ + δ∗)⟩). By definition of Df∗,s∗ , it holds δ′ + δ∗ < δ, because

⟨l, f(δ)⟩ ̸∈Wα. Hence, it also holds ⊥ ∈ σ′(⟨l, f(δ′+δ∗)⟩), a contradiction.

2. If Φ2(f, l,Wα−1) holds, by definition there is δ∗ < δ such that ⟨l, f(δ∗)⟩ ∈
Wα−1 and for all 0 ≤ δ′ < δ∗, ⟨l, f(δ′)⟩ ̸∈ Preu(Wα−1). Since s′ =

⟨l, f(δ)⟩ ∈ Preu(Wα−1), we have δ∗ ≤ δ, which proves the claim.

3. If Φ3(f, l,Wα−1) holds, an immediate contradiction is obtained: by def-

inition, ⟨l, f(δ′)⟩ ̸∈ Preu(Wα−1) for all δ′ ∈ span(f, l), contradicting the

fact that s′ = ⟨l, f(δ)⟩ ∈ Preu(Wα−1).

Finally, consider the case of an infinite step s
∞,f−−−→. Clearly, since∞ ∈ span(f, l)

it cannot be Φ3(f, l,Wα−1). If it is assumed that Φ1(f, l,Wα−1), a contradic-

tion is obtained by following a similar argument to case 1 above. Assuming

Φ2(f, l,Wα−1), it follows immediately that Wα−1 is eventually reached along f .

In any of the above cases, the induction hypothesis ensures that after a finite

number of joint transitions T is reached from s ∈Wα.

[only if ] Let s ̸∈ W ∗, It will be proved that prove that for all strategies

there is a run that starts in s, is consistent with the strategy and remains in

W ∗ indefinitely. By induction, it is sufficient to show that there is a joint step

starting from s and entirely contained in W ∗. Since W ∗ = CPreR(W ∗), accord-

ing to the definition of CPreR, there exists an activity f ∈ Adm(s) such that

Φi(f, l,W
∗) is violated for all i ∈ {1, 2, 3}, where l = loc(s). By complementing

Φ2 we have that for all δ ≥ 0 either ⟨l, f(δ)⟩ ∈ W ∗ or there exists δ′ < δ such

that ⟨l, f(δ′)⟩ ∈ Preu(W ∗). Hence, if f eventually reaches W ∗, earlier than that

an uncontrollable transition is enabled which leads to W ∗.

Consider the behavior of an arbitrary strategy σ along f . First, assume

that ⊥ ∈ σ(f(δ)), for all δ ∈ span(f, l), i.e., the strategy may not take any

controllable transition throughout f . If∞ ∈ span(f, l) and f never reaches W ∗,

the infinite step s
∞,f−−−→ witnesses the claim. If ∞ ∈ span(f, l) and f eventually



88CHAPTER 5. SOLVING THE REACHABILITY CONTROL PROBLEM FOR LHGS

reachesW ∗ at time δ, the environment takes an uncontrollable transition leading

to W ∗ before δ. If ∞ ̸∈ span(f, l), by complementing Φ3 we have that even if

f does not reach W ∗ there exists δ ∈ span(f, l) such that ⟨l, f(δ)⟩ ∈ Preu(W ∗).

The thesis follows as before.

Finally, it remains the case that there exists a time δ ∈ span(f, l) where

⊥ ̸∈ σ(f(δ)). Hence, σ prescribes at least one controllable transition in δ. If

⟨l, f(δ)⟩ ̸∈ Prec(W
∗), the environment allows the controller to take the desired

transition, and the claim is proved. Otherwise, by complementing Φ1 we obtain

that an uncontrollable transition leading to W ∗ is enabled at a time δ′ ≤ δ. By

taking this transition, the witnessing joint step is obtained.

5.2 Computing the Predecessor Operator for Reach-
ability

Similarly to the safety problem, where the CPre operator is based on the com-

putation of the RWAm operator, the computation of the controllable predeces-

sor for reachability, lie in the Must Reach While Avoiding operator, denoted

by RWAM. Given a location l and two sets of variable valuations U and V ,

RWAM
l (U, V ) contains the set of valuations from which all continuous trajecto-

ries of the system reach U while avoiding V 2. The RWAM operator is formally,

as follows:

RWAM
l (U, V ) =

{
u ∈ Val(X)

∣∣∣∀f ∈ Adm(⟨l, u⟩) ∃δ ≥ 0 :

f(δ) ∈ U and ∀ 0 ≤ δ′ ≤ δ : f(δ′) ̸∈ V
}
. (5.2)

By rephrasing the definition of CPreR, one can observe that s = ⟨l, u⟩ ∈
CPreR(A) iff all activities f starting from u reach a set of “good” points while

avoiding a set of “bad” points. Good points include Cl = Prec(A)�l according
to Φ1(f, l, A), A�l according to Φ2(f, l, A), and Inv(l) according to Φ3(f, l, A).

As to the bad points, all predicates Φi require that the activity avoids Bl =

Preu(A)�l, with subtle distinctions at the instant when a good point is reached.

According to Φ1, Bl must be avoided also in that instant (when Cl is reached),

while Φ2 permits the activity f to reach Bl at the same time as A�l. Since

satisfaction of one Φi is enough for an activity to comply with the requirements

of CPreR, the least restrictive avoidance condition prevails, namely, Bl \ A�l.
The following lemma formalizes the above argument, recalling the polyhedral

definition introduced in the last chapter.

2In Atl notation [AHK97], we have RWAM(U, V ) ≡ ⟨⟨ctr⟩⟩V U (U ∧ V ), where ctr is the
player representing the controller.



5.3. THE LOCAL ALGORITHM 89

Lemma 12. For all polyhedral sets of states A ⊆ InvS, the following holds:

CPreR(A) = InvS ∩
∪

l∈Loc

{l} × RWAM
l

(
A�l ∪Cl ∪ Inv(l), Bl \A�l

)
,

where Bl = Preu(A)�l and Cl = Prec(A)�l.

Proof. [⊆] Let s = ⟨l, u⟩ ∈ CPreR(A) and let f ∈ Adm(s). If Φ1(f, l, A) holds,

there is δ ∈ span(f, l) such that f(δ) ∈ Cl and for all 0 ≤ δ′ ≤ δ it holds

f(δ′) ̸∈ Bl and hence f(δ′) ̸∈ Bl \A�l, satisfying the requirements of (5.2).

If Φ2(f, l, A) holds, there is δ ∈ span(f, l) such that f(δ) ∈ A �l and for all

0 ≤ δ′ < δ it holds f(δ′) ̸∈ Bl. Since f(δ) ̸∈ Bl \ A�l, the requirements of (5.2)

are satisfied again.

Finally, if Φ3(f, l, A) holds, we have∞ ̸∈ span(f, l) and ⟨l, f(δ)⟩ ̸∈ Bl for all δ ∈
span(f, l). Pick a time δ∗ when f has left Inv(l) and it has never re-entered it.

Formally, we have δ∗ ̸∈ span(f, l), f(δ∗) ̸∈ Inv(l), and f(δ) ∈ span(f, l)∪ Inv(l)
for all δ ≤ δ∗. We obtain f(δ∗) ∈ Inv(l) and f(δ) ̸∈ Bl for all 0 ≤ δ ≤ δ∗,

satisfying (5.2) once again.

[⊇] Let l ∈ Loc and u ∈ RWAM
l (A�l ∪Cl ∪ Inv(l), Bl \ A�l). For all f ∈

Adm(⟨l, u⟩), let Df be the set of all δ ≥ 0 such that f(δ) ∈ A�l ∪Cl∪ Inv(l) and
for all 0 ≤ δ′ ≤ δ it holds f(δ′) ̸∈ Bl \ A�l. By definition of RWAM

l , we have

Df ̸= ∅. Let δ∗ = infDf and assume for simplicity that δ∗ ∈ Df , as the other

case can be treated similarly.

For all 0 ≤ δ′ < δ∗ we have both f(δ′) ∈ (A�l ∩ Cl ∩ Inv(l)) since δ′ ̸∈
Df , and f(δ′) ∈ (Bl ∪ A �l) since δ′ < δ∗ and δ∗ ∈ Df . Moreover, (A�l ∩
Cl ∩ Inv(l)) ∩ (Bl ∪ A�l) = Bl ∩ A�l ∩ Cl ∩ Inv(l), and we can conclude that

f(δ′) ∈ Bl ∩ A�l ∩ Cl ∩ Inv(l). If f(δ∗) ∈ A�l, we have δ∗ ∈ span(f, l) and

Φ2(f, l, A). If f(δ∗) ∈ Cl, we have δ
∗ ∈ span(f, l) again and Φ1(f, l, A). Finally,

if f(δ∗) ∈ Inv(l) we have Φ3(f, l, A). Therefore, it holds ⟨l, u⟩ ∈ CPreR(A).

5.3 The Local Algorithm

Lemma 12 reduces the solution of the reachability control problem to the com-

putation of the operator RWAM. In order to show the correct implementation

of RWAM, let l be a fixed location, Example 14 shows some basic properties of

RWAM.

Example 14. As witnessed by Figure 5.1(a), the first argument of RWAM does

not distribute over union, in other words RWAM
l (U1∪U2, V ) ̸= RWAM

l (U1, V )∪
RWAM

l (U2, V ). In particular, in Figure 5.1(a) we have RWAM
l (U1, V ) = U1∪R1,

RWAM
l (U2, V ) = U2 ∪ R2, and RWAM

l (U1 ∪ U2, V ) = U1 ∪ U2 ∪ R1 ∪ R2 ∪ R3.



90CHAPTER 5. SOLVING THE REACHABILITY CONTROL PROBLEM FOR LHGS

Hence, computing RWAM
l (U, V ) for convex U (a relatively simple task) does not

extend to general polyhedra.

Additionally, it is not possible to restrict the analysis from arbitrary activ-

ities (i.e., any differentiable function which stays in the invariant and whose

slope belongs to Flow(l)) to straight-line activities. In Figure 5.1(b), the dotted

area contains the set of points that must reach U1 ∪ U2 following straight-line

activities. On the other hand, RWAM
l (U1 ∪ U2, ∅) = U1 ∪ U2, because all other

points (including those in the dotted area) can avoid U1 ∪U2 by passing through

the gap between U1 and U2.

..

V

.

U1

.

U2

.

R1

.

R2

.

R3

.

F

(a) RWAM
l (U1 ∪ U2, V ) ̸=

RWAM
l (U1, V ) ∪ RWAM

l (U2, V ). ..

U1

.

U2

.

F

(b) Straight-line activities are not suffi-
cient to avoid U1 ∪ U2.

Figure 5.1: Basic properties of RWAM. The boxes on the left represent the
convex polyhedron F = Flow(l) in the (ẋ, ẏ) plane. Thick arrows represent the
extremal directions of flow.

The RWAM operator is related to the May Reach While Avoid operator

RWAm used to solve the safety control problem, shown in the last chapter. In

particular, it will be shown (see Theorem 7, that it is possible to compute RWAM

using the RWAm operator. Recall briefly that, given the polyhedra U and V ,

RWAm(U, V ) returns the set of states from which there exists a trajectory that

reaches U while avoiding V , i.e.

RWAm
l (U, V ) =

{
u ∈ Val(X)

∣∣∣ ∃f ∈ Adm(⟨l, u⟩), δ ≥ 0 :

f(δ) ∈ U and ∀ 0 ≤ δ′ < δ : f(δ′) ∈ V ∪ U
}
.

In safety control problems, RWAm is used to compute the states from which the

environment may reach an unsafe state (in U) while avoiding the states from

which the controller can take a transition to a safe state (in V ) (see Chapter 4).

This is a classical operator in the literature, known under different names such

as Reach [TLSS00], Unavoid Pre [BBV+03], and flow avoid [WT97].

Notice that RWAM differs from RWAm only on the quantification of the

activity f and on the inequality δ′ ≤ δ, which is strict in RWAm. The latter

difference is connected to the fact that the controller must prevent “bad” uncon-



5.3. THE LOCAL ALGORITHM 91

trollable transitions even if they occur at the same time as a “good” controllable

transitions.

To show the relation between RWAm and RWAM, some additional notations

will be introduced. Let l ∈ Loc a fixed location. For a polyhedron G and p ∈ G,

p is said l-bounded in G (resp., l-thin in G) if all admissible activities starting

from p eventually (resp., immediately) exit from G. Formally, p is l-bounded if

for all f ∈ Adm(⟨l, p⟩) there exists δ ≥ 0 such that f(δ) ̸∈ G; p is l-thin if for

all f ∈ Adm(⟨l, p⟩) and all δ > 0, it holds f(δ) ̸∈ G.

For example, considering the flow depicted in Figure 5.2(a), the point p

shown in Figure 5.2(b) is l-bounded in G, while the point p shown in Figure

5.2(c) is l-thin in G. Notice that, the flow does not contain the origin: otherwise,

by choosing the origin as activity, it would be possible to remain forever in G

and then the point p in Figure 5.2(b) (resp., 5.2(c)), would be not l-bounded

(resp., l-thin).

..

F

(a) Flow

p

G

(b) p is l-bounded in G

p
G

(c) p is l-thin in G

Figure 5.2: Definition of l-bounded and l-thin

The set of points of G that are l-bounded in it, is denoted by bounded l(G),

and if all points p ∈ G are l-bounded (resp., l-thin) in G, G is called to be

l-bounded (resp., l-thin) in G.

Now, the following result that connects RWAM to RWAm, can be shown by

exploiting the following idea. All points in U \ V belong to RWAM
l (U, V ) by

definition. Accordingly, let the set Under = U \ V be an under-approximation.

The content of RWAM
l (U, V ) can be partitioned into two regions: the first

region is Under ; the second region must be l-bounded, because each point in the

second region must eventually reach Under . If one can find a polyhedron Over

that over-approximates RWAM
l (U, V ) and such that Over \Under is l-bounded,

one can use RWAm to refine it. Precisely, the operator RWAm is used to identify

and remove the points of Over that may leave Over without hitting U first.

If Over \ Under was not l-bounded, the above technique would not work,

because RWAm cannot identify (and remove) the points that may remain forever

in Over without ever reaching Under .



92CHAPTER 5. SOLVING THE REACHABILITY CONTROL PROBLEM FOR LHGS

The following Theorem states the relation between RWAm and RWAM.

Theorem 7. For all polyhedra U and V , let Under = U \ V and let Over be a

polyhedron such that: (i) RWAM
l (U, V ) ⊆ Over ⊆ V and (ii) Over \ Under is

l-bounded. Then,

RWAM
l (U, V ) = Over \ RWAm

l (Over , U). (5.3)

⊆. Let u ∈ RWAM
l (U, V ). By assumption (i), it holds u ∈ Over . Now, the

fact that u ̸∈ RWAm
l (Over , U) will be proved. Assume the contrary; according

to the definition of RWAm
l , there exist an activity f ∈ Adm(⟨l, u⟩) and a delay

δ ≥ 0 such that f(δ) ∈ Over and f(δ′) ∈ U ∪ Over for all 0 ≤ δ′ < δ. Since

Over ⊆ RWAM
l (U, V ), the activity f leads from u to a point in RWAM

l (U, V ),

without passing through Under .

Let f ′ be an activity witnessing the fact that f(δ) ̸∈ RWAM
l (U, V ). If U

is never reached by f before time δ, the activity obtained by starting with

f and then switching to f ′ from time δ is a witness for u ̸∈ RWAM
l (U, V )

(contradiction). If instead f reaches U at time δ′ < δ, it also holds f(δ′) ∈ V .

Then, let D = {δ′ | f(δ′) ∈ V } ̸= ∅ and let δ∗ = infD. For all δ′ < δ∗, it

holds f(δ′) ∈ U . If δ∗ ∈ D then f(δ∗) ∈ V , and f is a witness to the fact that

u ̸∈ RWAM
l (U, V ) (contradiction).

Finally, if δ∗ ̸∈ D, let δ̄ be any time when f visits U . This time must

be strictly greater than δ∗. By definition of δ∗, there exists another time be-

tween δ∗ and δ̄ where f visits V , proving once again that u ̸∈ RWAM
l (U, V )

(contradiction). We conclude that u ̸∈ RWAm
l (Over , U), and the thesis.

[⊇] Let u ̸∈ RWAM
l (U, V ). It is immediate that u ̸∈ Under . Now it will be

proved that u ̸∈ Over \ RWAm
l (Over , U). If u ̸∈ Over , we are done. Hence,

assume that u ∈ Over . Since u ̸∈ RWAM
l (U, V ), there is an activity f ∈

Adm(⟨l, u⟩) such that for all δ ≥ 0 either (a) f(δ) ̸∈ U , or (b) there exists δ′ ≤ δ

such that f(δ′) ∈ V . Two cases can be identified:

• First, assume that the activity f never reaches U (and hence, Under).

By assumption (ii), there exists δ′ ≥ 0 such that f(δ′) ̸∈ Over \ Under .
Since f(δ′) ̸∈ Under , then f(δ′) ̸∈ Over . As a consequence, it holds

u ∈ RWAm
l (Over , U), and we are done.

• Otherwise, let DU = {δ ≥ 0 | f(δ) ∈ U} ̸= ∅ and δU = infDU . There

can be two cases: first assume δU ∈ DU ; by (b) there exists δ′ ≤ δU

with f(δ′) ∈ V . This implies that f reaches V (and hence Over) at

time δ′ while remaining in U up until δ′ (included). As a consequence,

u ∈ RWAm
l (Over , U) and we are done.



5.3. THE LOCAL ALGORITHM 93

Next, assume δU ̸∈ DU . Let DV = {δ | f(δ) ∈ V }. We have DV ̸= ∅ due
to DU ̸= ∅ and property (b) above. Let δV = infDV . If δV < δU , there

exists a time between δV and δU when f reaches V (and hence Over).

Since f remains in U until δU , then u ∈ RWAm
l (Over , U).

Otherwise, δV ≥ δU . For all δ
′ such that f(δ′) ∈ U , δV ≤ δ′ by (b) and the

fact that δV = infDV . As a consequence, since all possible intermediate

points between δU and δV cannot belong to U , and δU = infDU , no such

point exists, i.e., δV = δU .

Now, if δV ∈ DV , then it immediately follows that u ∈ RWAm
l (Over , U).

Otherwise, there are elements of DV arbitrarily close to δV . Since V is a

polyhedron and f is differentiable, there exists δ′ > δV such that f(δ) ∈
V ⊆ Over for all δV < δ ≤ δ′. Therefore, at all times up to δ′ (included),

f remains in U ∪Over , once again it holds that u ∈ RWAm
l (Over , U).

..

R1

.

R2

.

X1

.

X2

.

V

.

U

.

Over

.

F

(a) Illustrating Theorem 7.

..

X1

.

V

.

U

.

Over

.

F

(b) When Over \Under is not l-bounded,
Equation (5.3) fails.

Figure 5.3: Relationship between RWAM and RWAm.

Example 15. An example of the application of Theorem 7 is depicted in Fig-

ure 5.3(a), where U and V are the gray boxes and Over is the outer box, exclud-

ing V . The set RWAm
l (Over , U) can be divided in two areas: area X1 contains



94CHAPTER 5. SOLVING THE REACHABILITY CONTROL PROBLEM FOR LHGS

the points that may reach V (which is a part of Over) while avoiding U , and

area X2 contains the points that may exit Over through its top and right sides.

Following Equation 5.3, X1 and X2 are removed from Over. The remaining

regions are U \ V and the two regions R1 and R2, whose points are forced to

enter U while avoiding V , as requested by RWAM
l (U, V ). On the other hand,

Figure 5.3(b) presents a case in which Over is not l-bounded, thus violating one

of the conditions of Theorem 7. The set RWAm
l (Over , U) comprises only the

region X1. Hence, the dotted area, which does not belong to RWAM
l (U, V ), is

not removed from Over, because those points cannot exit from Over.

5.4 Computing a Suitable Over-Approximation

According to Theorem 7, in order to compute RWAM operator by using RWAm,

it is necessary to compute a polyhedron Over satisfying certain assumptions.

First to show how such a polyhedron can be computed, some preliminary notions

will be introduced.

Given a polyhedron G and a convex polyhedron F , the positive pre-flow

operator G↙>0F is defined are

G↙>0F = {u− δc | u ∈ G, c ∈ F, δ > 0}.

Intuitively, G↙>0F contains the points that may reach G via a straight trajec-

tory of non-zero length whose slope is in F . The abbreviation G↙>0 is used to

denote G↙>0Flow(l).

For a (not necessarily convex) polyhedron G and a convex polyhedron F ,

we say that G is bounded w.r.t. F if for all p ∈ G and all c ∈ F there exists a

constant δ ≥ 0 such that p + δc ̸∈ G. Intuitively, G is bounded w.r.t. F if all

straight lines starting from G and whose slope belongs to F eventually exit from

G. The relationship between this definition of boundedness and the notion of

l-boundedness is explored in Section 5.5.

The first step to compute the over approximation that satisfies conditions

of Theorem 7, is the introduction of the operator RU (for Remove Unbounded)

that, given a polyhedron G, removes some convex regions of G that are not

l-bounded, in such a way that the resulting set is l-bounded, and every point

that was l-bounded in G belongs to the resulting set. Let B be the subset of

[[G]] containing the convex polyhedra that are bounded w.r.t. cl(Flow(l)), the

RU operator is formally defined as

RU(G) =
∪
P∈B

P ∪
∪

P∈[[G]]\B

(
P \ P↙>0

)
. (5.4)



5.5. ON BOUNDED AND THIN POLYHEDRA 95

The following result summarizes the main properties of the RU operator and it

is proved in Section 5.5.

Theorem 8. For all polyhedra G, the following hold: (i) RU(G) is l-bounded,

and (ii) bounded l(G) ⊆ RU(G).

Let’s start by proving how it is possible to choose over and under-approximati-

ons that satisfying conditions of Theorem 7. Given two polyhedra U and V ,

define Under = U \ V and

Over = Under ∪ RU(U ∩ V ).

The polyhedra Under and Over satisfy the two assumptions of Theorem 7

namely: (i) RWAM
l (U, V ) ⊆ Over ⊆ V and (ii) Over \ Under is l-bounded, in

fact Theorem 8 ensures that Over \ Under is l-bounded. The following lemma

proves the other assumption.

Lemma 13. It holds RWAM
l (U, V ) ⊆ Over ⊆ V .

Proof. For the first inclusion, let u ∈ RWAM
l (U, V ). If u ∈ Under = U \ V , we

are done. Otherwise, u ∈ U ∪V . Moreover, by definition of RWAM, u ∈ V (and

hence u ∈ U ∩ V ) and for all activities f ∈ Adm(⟨l, u⟩) there exists δ ≥ 0 such

that f(δ) ∈ U . Hence, u is l-bounded in U ∩ V . By property (ii) of Theorem 8,

u ∈ RU(U ∩ V ) ⊆ Over .

For the second inclusion, let u ∈ Over . If u ∈ Under = U \V , clearly u ̸∈ V .

Otherwise, u ∈ RU(U ∩ V ) ⊆ U ∩ V ⊆ V , and we are done.

Section 5.6 shows how to effectively compute RU(·), and hence Over , us-

ing basic operations on polyhedra. Moreover, RWAm
l (·, ·) is shown to be com-

putable in Section 4.3 of Chapter 4. Therefore, RWAM
l (U, V ) can be computed

using equation (5.3). In turn, this allows the computation of CPreR(·) using

Lemma 12.

Theorem 9. For all polyhedral sets of states A, CPreR(A) is computable.

Notice that the above result provides no guarantee of termination for the

global fixpoint (5.1). In particular, it does not imply semi-decidability of the

reachability control problem, as fixpoint (5.1) may not be reached within ω

iterations of CPreR.

5.5 On Bounded and Thin Polyhedra

The objective of this section is to prove the properties of the RU(·) operator

pertaining l-boundedness, which are stated by Theorem 8. Since l-boundedness



96CHAPTER 5. SOLVING THE REACHABILITY CONTROL PROBLEM FOR LHGS

is hard to directly reason about, we relate it to geometric boundedness, i.e.,

boundedness w.r.t. straight-line activities.

Let us first recall the following lemma, which is an adaptation of Lemma 4.1

in [AHH96], and states that any point reached by an admissible trajectory can

be reached with a straight-line admissible trajectory as well.

Lemma 14 ([AHH96]). For all points p ∈ Inv(l), activities f ∈ Adm(⟨l, p⟩)
and δ > 0, there exists c ∈ Flow(l) such that f(δ) = p+ δc.

The following is a trivial observation.

Proposition 4. If F is a convex polyhedron containing the origin, then no

polyhedron is bounded w.r.t. F .

A polyhedronG is said thin w.r.t. F if for all p ∈ G, c ∈ F , and δ > 0, it holds

p + δc ̸∈ G. Intuitively, G is bounded (resp., thin) w.r.t. F if all straight lines

starting from G and whose slope belongs to F eventually (resp., immediately)

exit from G. The relationships between the geometric concepts defined in this

section and the notions of l-thin and l-bounded are summarized in Figure 5.4.

Obviously, being thin w.r.t. F implies being bounded w.r.t. F . Moreover,

being l-thin implies being thin w.r.t. Flow(l), since straight-line activities are a

special case of general activities. The following lemma shows that the converse

also holds.

Lemma 15. For all convex polyhedra P , if P is thin w.r.t. Flow(l) then P is

l-thin.

Proof. Assume that P is not l-thin. Then, there exists a point p ∈ P , an activity

f ∈ Adm(⟨l, p⟩) and a time δ > 0 such that f(δ) ∈ P . By Lemma 14, there

exists c ∈ Flow(l) such that f(δ) = p + δc ∈ P . Hence, P is not thin w.r.t.

Flow(l).

The following lemma shows that all points of G that are removed by RU(G)

are not l-bounded in G (i.e., RU(G) does not “remove too much”).

Lemma 16. If a convex polyhedron P is not bounded w.r.t. cl(Flow(l)) then

each point in P ∩ P↙>0 is not l-bounded in P .

Proof. Since P is not bounded w.r.t. cl(Flow(l)), there are p ∈ P and c ∈
cl(Flow(l)) such that for all δ ≥ 0 it holds p + δc ∈ P . Let p′ be a point in

P ∩P↙>0. If c ∈ Flow(l), let f be the activity defined by f(δ) = p′+δc. Clearly,

f ∈ Adm(⟨l, p′⟩). Since P is convex, f(δ) ∈ P for all δ ≥ 0, and the thesis is

obtained.



5.5. ON BOUNDED AND THIN POLYHEDRA 97

...thin w.r.t. F.

l-thin

.

Lemma 15

.

by def.

.

l-bounded

.

bounded w.r.t. cl(F )

.

bounded w.r.t. F

.

by def.

.

Lemma 18

.

by def.

Figure 5.4: Relationships between properties of convex polyhedra. Arrows rep-
resent implications and F = Flow(l).

Consider now the case c ∈ cl(Flow(l)) \ Flow(l), and define an activity f

that starts in p′, remains in P forever, and whose slope tends asymptotically

to c, without ever reaching it. Since p′ ∈ P ∩ P ↙>0, there is c′ ∈ Flow(l) and

δ′ > 0 such that p′ + δ′c′ ∈ P . By convexity, it also holds p′ + δ′′c′ ∈ P for all

0 ≤ δ′′ ≤ δ′. For all δ ≥ 0, the activity f is defined as follows.

f(δ) = p′ + δc+ δ′
(
1− e−

δ
δ′
)
(c′ − c).

Notice that f(0) = p′ and, for all δ ≥ 0, f(δ) can be expressed as p′ + αc+ βc′,

where α ≥ 0 and β ∈ [0, δ′). The point p′ + βc′ belongs to P . Since P is convex

and not bounded w.r.t. {c}, then f(δ) = p′ + αc + βc′ ∈ P . Next, it must be

verified that the slope of f is always contained in Flow(l). We have:

ḟ(δ) = c− e−
δ
δ′ · c+ e−

δ
δ′ · c′ =

(
1− e−

δ
δ′
)
c+ e−

δ
δ′ · c′.

Since, for all δ ≥ 0, it holds e−
δ
δ′ ∈ (0, 1], we have that ḟ is a convex combination

of c and c′, different from c. By the convexity of Flow(l) it is possible to conclude

that ḟ(δ) ∈ Flow(l).

In addition, the fact that the result of RU(G) is l-bounded (i.e., RU(G) does

not “remove too little”), will be now proved. In order to obtain this result

(stated as Lemma 20), a few preliminary lemmata are necessary.

The following result show that if the origin does not belong to the topological

closure of the flow, then there is a flow direction u such that all possible flows

advance in the direction u by at least |u| for each time unit. Hereinafter, the

origin, i.e., the point whose coordinates are 0, are denoted by 0.



98CHAPTER 5. SOLVING THE REACHABILITY CONTROL PROBLEM FOR LHGS

Lemma 17. Assume 0 ̸∈ cl(Flow(l)). Then there exists u ∈ cl(Flow(l)) such

that for all v ∈ Flow(l) the scalar projection of v onto u is at least |u| (i.e.,
u·v
|u| ≥ |u|, where · denotes the inner product).

Proof. Let F = cl(Flow(l)). Let u be a point in F with minimal distance from

the origin (equivalently, minimal length |u|). The topological closeness of F

ensures that such a point exists. The convexity of F ensures that such a point

is unique (i.e., u hasminimum length). Let v be an arbitrary element of Flow(l).

Let v′ be the vector projection of v on the direction u, i.e., v′ = u·v
|u|2u. The fact

that |v′| ≥ |u| will be shown. Assume by contradiction that |v′| < |u|. By the

convexity of F , any convex combination of u and v belongs to F . Considering

the triangle with vertices u, v and the origin, the angle of vertex u is less than

90◦. Hence, there is a convex combination of u and v which is closer to the

origin than u, which is a contradiction.

The following fact is obvious, since straight lines are a special case of activ-

ities.

Proposition 5. If a polyhedron is l-bounded, then it is bounded w.r.t. Flow(l).

Being bounded w.r.t. Flow(l) is necessary but not sufficient for a polyhedron

to be l-bounded, as shown by the following example.

Example 16. Consider the unbounded polyhedron P shown on the r.h.s. of

Figure 5.5. The dashed contour of F (on the l.h.s. of the figure) indicates

that F (i.e., Flow(l)) is topologically open, so that its extremal directions (1, 0)

and (0, 1) are not proper (i.e., they do not belong to F ). It turns out that P

is bounded w.r.t. Flow(l), because all straight lines whose slope belongs to F

eventually exit from it, but it is not l-bounded. The figure shows an activity that

remains forever in P . Its slope approaches asymptotically the extremal direction

(1, 0) (similarly to the proof of Lemma 16).

Lemma 18 presents a sufficient condition for being l-bounded.

..
F

Figure 5.5: On the right, a polyhedron which is bounded w.r.t. Flow(l) but not
l-bounded, and an activity that remains forever in it.

Lemma 18. If a polyhedron is bounded w.r.t. cl(Flow(l)) then it is l-bounded.



5.5. ON BOUNDED AND THIN POLYHEDRA 99

Proof. Let F = cl(Flow(l)). By Proposition 4, F does not contain the origin.

By Lemma 17, there exists u ∈ F such that for all v ∈ Flow(l) it holds u·v ≥ |u|2.
Let G be a polyhedron which is bounded w.r.t. F , and let p ∈ G and f ∈

Adm(⟨l, p⟩). For all δ ≥ 0, it holds ḟ(δ) ∈ Flow(l). From the above argument,

the vector projection of ḟ(δ) on the direction u has length at least |u|. Hence,

for each time unit, the activity f advances in the direction u by at least |u|.
Since G is bounded w.r.t. {u}, the thesis is obteined.

The following results shows that two l-thin polyhedra cannot be adjacent in

a direction of the flow.

Lemma 19. Let L1 and L2 be two l-thin polyhedra. For all p ∈ L1, c ∈ Flow(l)

and δ > 0 there exists 0 < δ′ ≤ δ such that p+ δc ̸∈ L2.

Proof. By contradiction, assume that there is p ∈ L1, c ∈ Flow(l) and δ > 0

such that for all 0 < δ′ ≤ δ it holds p + δc ∈ L2. Let p1 = p + δ
2c and

p2 = p + δc = p1 +
δ
2c. We have that p1, p2 ∈ L2, which contradicts the fact

that L2 is thin w.r.t. Flow(l).

The following lemma lifts l-boundedness from convex polyhedra to general

polyhedra.

Lemma 20. Let G be a polyhedron such that each P ∈ [[G]] is l-bounded. Then,

G is l-bounded.

Proof. If G is empty, the result is trivially true. If 0 ∈ cl(Flow(l)), by Propo-

sition 4 no polyhedron is bounded w.r.t. cl(Flow(l)). As a consequence, by

Lemma 16, for every convex polyhedron in P ∈ [[G]], we have that each point

in P ∩ P↙>0 is not l-bounded. Since, however, P is l-bounded by assumption,

it must be P ∩ P ↙>0= ∅, and this can only hold if P is thin w.r.t. Flow(l).

Since, by Lemma 15, every convex polyhedron thin w.r.t. Flow(l) is also l-thin,

it is possible to conclude that each P ∈ [[G]] is l-thin. By Lemma 19, two l-thin

polyhedra cannot be adjacent in a direction of flow. Therefore, any activity that

starts in G immediately exits from it, and the thesis is obtained.

Assume now that 0 ̸∈ cl(Flow(l)). The proof proceeds by induction on the

cardinality of [[G]]. If the cardinality is 1, the thesis immediately follows.

Let |[[G]]| > 1, and pick an arbitrary P ∈ [[G]]. By inductive hypothesis,

G \ P is l-bounded. By contradiction, assume that G is not l-bounded, and

let p ∈ G and f ∈ Adm(⟨l, p⟩) be such that f(δ) ∈ G for all δ ≥ 0. If f

eventually remains forever in G\P (i.e., there is δ ≥ 0 such that for all δ′ ≥ δ it

holds f(δ′) ∈ G \ P ), then G \ P is not l-bounded, contradicting the inductive



100CHAPTER 5. SOLVING THE REACHABILITY CONTROL PROBLEM FOR LHGS

hypothesis. If f eventually remains forever in P , the contradiction follows form

the assumption that P is l-bounded. Therefore, f enters and exits from P

infinitely often. Formally, for all δ ≥ 0 there exist δ′, δ′′ ≥ δ such that f(δ′) ∈ P

and f(δ′′) ∈ G \P . Since [[G \P ]] is a finite set of convex polyhedra, there must

be a convex polyhedron P ′ ∈ [[G \ P ]] which is adjacent to P and such that f

crosses the boundary between P and P ′ infinitely often.

Let, now, b = bndry(P, P ′) be the boundary between P and P ′, such that f

crosses b infinitely often, i.e., for all δ ≥ 0 there is δ′ > δ such that f(δ′) ∈ b.

Since both P and P ′ are convex and l-bounded by assumption, then b is both

convex and l-bounded. Let {δi}i∈N be a sequence of time instants such that (i)

f(δi) ∈ b and (ii) δi+1 ≥ δi + 1.

The fact that b must be bounded w.r.t. cl(Flow(l)) will be proved. Assume,

by contradiction, that it is not, then b must be l-thin. Consider now any i ∈
N. By Lemma 14, there is a c ∈ Flow(l), with f(δi+1) = f(δi) + δ · c and

δ = (δi+1 − δi) ≥ 1, by the choice of {δi}i∈N. For all 0 < δ′ < δ, the point

f(δi)+ δ′ · c is different from f(δi) and f(δi+1) since c ̸= 0, and, by convexity of

b, belongs to b, contradicting the fact that b is l-thin. Therefore, b is bounded

w.r.t. cl(Flow(l)).

Now, by Lemma 17, let u ∈ cl(Flow(l)) be such that, for all for all v ∈
Flow(l), the scalar projection of v on u is at least |u|. Hence, for each i ∈ N,
when going from f(δi) to f(δi+1) the activity f progresses by at least |u| in the

direction of u. This contrasts with the fact that b is bounded w.r.t. {u}, and
the thesis is obtained.

Now, there are all the results and the notions in order to prove Theorem 8.

Proof of Theorem 8. (i) RU(G) is l-bounded. For a convex polyhedron P ,

the set P \(P↙>0) is l-thin, as may be easily verified from the definitions. Hence,

each convex polyhedron in [[RU(G)]] is either bounded w.r.t. cl(Flow(l)) or l-

thin. Since each l-thin polyhedron is l-bounded by definition, and by Lemma 18,

we obtain that each convex polyhedron in [[RU(G)]] is l-bounded. By Lemma 20,

RU(G) is l-bounded.

(ii) bounded l(G) ⊆ RU(G). Let p ∈ bounded l(G). Then there must be

at least one convex polyhedron P ∈ [[G]] with p ∈ P . If P is bounded w.r.t.

cl(Flow(l)) then, by equation (5.4), p ∈ RU(G). If, on the other hand, P is

not bounded w.r.t. cl(Flow(l)), by Lemma 16 we have that P ∩ P ↙>0 is not

l-bounded in P and, a fortiori, not l-bounded in G . Therefore, p ∈ P \ P↙>0

and, by equation (5.4), p ∈ RU(G). Hence the conclusion.



5.6. COMPUTING THE RU OPERATOR 101

5.6 Computing the RU Operator

As shown in the previous section, let G be a polyhedra, the operator RU (remove

unbounded) removes some convex regions of G that are not l-bounded, in such

a way that the remaining set is l-bounded. In order to compute RWAM
l (U, V ),

it is necessary to be able to (i) compute the positive-preflow P ↙>0 F of a

convex polyhedron P w.r.t. another convex polyhedron F , and (ii) collect, for

any polyhedron G, the convex polyhedra P ∈ [[G]] which are bounded w.r.t.

the convex polyhedron F . The first operation is explained in Section 4.7 of

Chapter 4, while next section shows how the second operation can be efficiently

implemented employing a canonical representation of convex polyhedra.

5.6.1 Testing for Boundedness w.r.t. the Flow

For a convex polyhedron P , let OP = ({0}, ∅, RP ) denote its characteristic cone,

i.e., the closed polyhedron generated by the origin 0 and all the rays of P . The

following theorem (see Figure 5.6) shows how one can effectively and efficiently

test whether P is bounded w.r.t. F .

Theorem 10. For all convex polyhedra P and F , P is bounded w.r.t. F iff

OP ∩ F = ∅.

Proof. [⇒] By hypothesis, for all p ∈ P and for all c ∈ F there exists δ ≥ 0 such

that p + δ · c /∈ P . By Proposition 4 we have that 0 /∈ F . Let c ∈ F , the fact

that c /∈ OP will be now shown. Assume by contradiction that c ∈ OP , we can

write c = 1 · 0 +
∑

r∈Rp
βrr =

∑
r∈Rp

βrr. Now, let x ∈ Vp be a vertex of P ,

the point x′ = x+ γc belongs to P , for all γ ≥ 0. Indeed,

x′ = x+ γc = 1 · x+ γ
∑
r∈Rp

βrr = 1 · x+
∑
r∈Rp

γβrr.

Therefore, x′ ∈ P , i.e. P is not bounded w.r.t. F , contradicting the hypothesis.

[⇐] Assume by contradiction that c ∈ F ∩OP . By the decomposition theo-

rem for convex polyhedra [Sch86], since OP is the characteristic cone of P , there

exists a non-empty convex polyhedron P ′ such that P = P ′ ⊕ OP . Moreover,

since c ∈ OP , also δc ∈ OP for all δ ≥ 0. We can then conclude that for all

p′ ∈ P ′, it holds p′ + δc ∈ P for all δ ≥ 0. Therefore, P is not bounded w.r.t.

{c} and a fortiori w.r.t. F .

Theorem 10 and Proposition 4 identify three different cases, depicted in

Figure 5.6, as follows:



102CHAPTER 5. SOLVING THE REACHABILITY CONTROL PROBLEM FOR LHGS

F

P

(a) 0 ∈ F . P is not bounded w.r.t. F .

F P

OP

q

(b) F ∩OP = ∅. P is bounded w.r.t. F .

F

P

OP

q

(c) F ∩OP ̸= ∅. P is not bounded w.r.t. F .

Figure 5.6: Test for boundness w.r.t. the flow.



5.6. COMPUTING THE RU OPERATOR 103

1. Figure 5.6(a) shows the first case, where the origin belongs to the flow

F . Hence P is not bounded w.r.t. F because one may choose the activity

corresponding to the origin, and then it is no possible to leave P .

2. Figure 5.6(b) shows the second case, where the origin does not belong to

F and the characteristic cone of P , namely OP , is disjoint from F . When

such conditions are verified, it is never possible to remain forever in P

(e.g., starting from the point q in the figure each activity eventually leads

out of P ). Then P is bounded w.r.t. F .

3. Figure 5.6(c) shows the last case, when the flow F and OP have common

points: under this condition, one may choose an activity f ∈ F such that

all points in P always remain in P following f (e.g., from the point q,

following the activity shown in the figure by the internal arrow, it is never

possible to leave P ). In particular, such f belongs to the intersection

between OP and F . Then P is not bounded w.r.t. F .

Now the discussion about the reachability control problem for linear hybrid

games is complete. The implementation of the operators introduced in this

chapter is the focus of Chapter 6.



104CHAPTER 5. SOLVING THE REACHABILITY CONTROL PROBLEM FOR LHGS



Part III

Implementation and
Experiments

105





Chapter 6

Implementations of
Algorithms for the Safety

In this Chapter, techniques require to efficiently implement the algorithms

shown in Chapter 4 and Chapter 5, are discussed. First sections are dedicated

to the implementation of the general fixpoint algorithm to solve the safety con-

trol problem that, as in the case for both discrete (see Chapter 1) and timed

(see Chapter 2), is based on the computation of the controllable predecessor op-

erator (for safety) CPreS. This operator requires, in turn, the implementation

of the may reach while avoiding RWAm operator. Actually, instead of RWAm,

this thesis shows the implementation of the dual operator must stay or reach

SORM that, given two polyhedra Z and V , contains the points which either

remain in Z forever or reach V along a system trajectory that does not leave Z.

Section 6.2 shows several implementations of SORM, starting from that result-

ing directly from the fixpoint characterization of the algorithm (derived from

the dual operator RWAm) and introducing along the way a number of efficiency

improvements.

The second part of this chapter is dedicated to the implementation of the

general fixpoint algorithm to solve the reachability control problem. Also this

algorithm is based on the controllable predecessor operator but, unlike discrete

and continuous cases, in the hybrid context the controllable operator for reacha-

bility (here called CPreR) is different from that for safety (CPreS) (see Chapters

4 and 5). In order to compute the CPreR operator, the implementation of the

must reach while avoiding operator RWAM is required. In Chapter 5 is shown

a connection between RWAM and RWAm. Hence, the RWAM operator can be

implemented by using the SORM implementation done for the safety and by

using some additional operators as RU and the positive preflow, in order to

compute a suitable over-approximation that allows the computation of RWAM

107



108CHAPTER 6. IMPLEMENTATIONS OF ALGORITHMS FOR THE SAFETY

based on SORM.

Operators and algorithms presented here are implemented on the top of the

tool PHAVer. PHAVer is an open tool for the verification of hybrid automata

that, being based on polyhedra abstraction, makes an extensive use of operators

made available by the Parma Polyhedra Library (PPL) [BHZ08]. Extending

PHAVer with algorithms seen in previous chapters a new tool, called PHAVer+,

comes out with additional synthesis features.

Notice that, contrary to most recent literature on the subject, this work is

focused on exact algorithms. Although it is established that exact analysis and

synthesis of realistic hybrid systems is computationally demanding, it can be

used as solid ground for the ongoing research effort on approximate techniques.

For instance, a tool implementing an exact algorithm, like PHAVer+, may serve

as a benchmark to evaluate the performance and the precision of an approximate

tool.

6.1 Implementation of the Global Fixpoint for
Safety

Theorem 2 gives a fix-point characterization of the safety control problem for

linear hybrid games, that can be easily turned into the Algorithm 4.

Algorithm 4: Safety(H,T )

Input: LHG H = (Loc, X,Edgc,Edgu,Flow , Inv , Init), Set of States T .
Output: Set of winning states W .
Data: Set of states Wnew, Boolean fix point .
fix point := false;
W := T ;
while (fix point = false) do

Wnew := T ∩ get CPreS(H,W );
fix point := get fixpoint(W,Wnew,Loc);

return W ;

The auxiliary function get fixpoint check if the fixpoint is reached. In this

version it is trivially fixed that

get fixpoint(W,Wnew,Loc) =

{
true if W = Wnew

false otherwise

Given the linear hybrid game H = (Loc, X,Edgc,Edgu,Flow , Inv , Init) and

the set of safe states T , the safety control problem for H w.r.t. T can be solved

by calling Algorithm 4 on parameters G and T . The heart of this algorithm

involves into the computation of the operator CPreS. Since, by Equation 4.2,

CPreS can be expressed as



6.1. IMPLEMENTATION OF THE GLOBAL FIXPOINT FOR SAFETY109

CPreS(A) =
∪

l∈Loc

{l} ×
(
A�l \RWAm

l

(
InvS�l ∩

(
A�l ∪Bl

)
, Cl ∪ InvS�l

))
, (6.1)

the implementation of CPreS requires the computation of the operator RWAm.

Actually, instead of computing RWAm, the implementation proposed in this

thesis is based on the computation of the dual operator must stay or reach

SORM

l (Z, V ). This operator contains the points which either remain in Z for-

ever or reach V along a system trajectory that does not leave Z, and can be

formally defined as follows:

SORM

l (Z, V ) = RWAm
l (Z, V ). (6.2)

As a consequence, CPreS(A) can be expressed as∪
l∈Loc

{l} ×
(
A�l ∩SORM

l

(
Inv�l ∪

(
A�l \Bl

)
, Cl ∪ Inv�l

))
.

The implementation of CPreS is done by Algorithm 5 that takes in input

the hybrid game H and the set of safe states T .

Algorithm 5: get CPreS(H,W )

Input: LHG H = (Loc, X,Edgc,Edgu,Flow , Inv , Init), Set of States W .
Output: Set of States CPreS(W ).
Data: Set of States CPresafe, Poly A, B, C.
CPresafe := ∅;
foreach (l ∈ Loc) do

A := W�l;
B := ∅;
C := ∅;
foreach (t ∈ Edgc | t = ⟨l, µ, l′⟩) do

C := C ∪ get pre(W�l′ , Inv(l′), µ);
foreach (t ∈ Edgu | t = ⟨l, µ, l′⟩) do

B := B ∪ get pre(W�l′ , Inv(l′), µ);
CPresafe :=
CPresafe ∪

{
l, A ∩ get SORM

(
Inv(l) ∪ (A \B), C ∪ Inv(l),Flow(l)

)}
;

return CPresafe;

The core of this algorithm is a loop over the set of locations Loc: for each

location l ∈ Loc, Algorithm 7 (the implementation of SORM) is called on pa-

rameters (i) Inv(l) ∪ (A \B), (ii) C ∪ Inv(l) and (iii) Flow(l), where:

• The polyhedron A = A�l is the projection of A on l and represents an

over-approximation of the “good” region for the location l (the points in

A potentially belong to SORM).



110CHAPTER 6. IMPLEMENTATIONS OF ALGORITHMS FOR THE SAFETY

• The polyhedron B (for “bad” region) contains the set of all valuations v

such that there exists an uncontrollable transition t = ⟨l, µ, l′⟩ ∈ Edgu,

whose guard is satisfied by v, that leads the system immediately outside

of the good region A, i.e. by taking t the system immediately reaches A.

In other words, B is the projection of Preu(A) on l, obtained by calling

Algorithm 6 on parameter W and t, for each t ∈ Edgu whose source

location is l.

• The polyhedron C (for “controllable” region) contains the set of all valua-

tions v such that there exists a controllable transition t = ⟨l, µ, l′⟩ ∈ Edgc,

whose guard is satisfied by v, that leaves the system into the safe region

A, i.e. by taking t the system remains in A. In other words, C is the

projection of Prec(A) on l, obtained by calling Algorithm 6 on parameter

W and t, for each t ∈ Edgc whose source location is l.

Notice that Algorithm 6 is called in order to compute polyhedra B and

C. Before of proceeding to the detailed explanation of this algorithm, some

additional notions are introduced.

Given a polyhedron α, a set of continuous variables X = {x1, . . . , xn} and

a set of continuous (primed) variables X ′ = {x′
1, . . . , x

′
n}, the notation α[X]

(resp., α[X ′]) explicates that the polyhedron α is defined over the set X (resp.,

X ′). Moreover, given a polyhedron α[X], the notation α[X/X ′] identifies the

operation of renaming the variable xi ∈ X with the variable x′
i ∈ X ′, for all

1 ≤ i ≤ n. Given a polyhedron Z ⊆ X, the notation exists(α[X], Z) denotes

the projection of α over Z. Formally, for all polyhedra α[X] and Z ⊆ X

exists(α[X], Z)) = ∃Z.α[X].

Using such notations, Algorithm 6 on parameters α[X], I and µ[X ∪ X ′],

computes the polyhedron Pre defined as follows:

Pre = I ∩ {∃x′.(α[X/X ′] ∩ µ)}.

Notice that, the existential quantifier on the expression above can be in-

terpreted geometrically as the projection of α[X/X ′] ∩ µ over the variable in

X ′. The Parma Polyhedra Library provides primitives for both operations in-

volved in the computation of Pre, i.e. (i) renaming the variables and (ii) the

existential quantifier. Algorithm 6 refers to these functions by reneame and

exists, respectively. The former takes as input the polyhedron α[X], the set

X = {x1, . . . , xn} and the set X ′ = {x1, . . . , xn} of the new variables, and gives



6.2. EFFICIENT COMPUTATION OF SORM 111

in output the polyhedron α[X/X ′]. The latter takes as input a polyhedron α[X]

and a set of variables Z ⊆ X and gives in output the projection of α on Z.

Algorithm 6: get pre(α, I, t)

Input: Poly α[X], I, µ[X ∪X ′].
Output: Poly Prex(α).
Pre := I ∩ exists(reneame(α,X,X ′) ∩ µ);
return Pre;

This ends the discussion about the global algorithms, and now the focus

becomes the local fixpoint algorithm for SORM. The next two sections show

several implementation of this operator.

6.2 Efficient Computation of SORM

This section shows how the must stay or reach operator SORM

l (Z, V ) is com-

puted, given two polyhedra Z and V .

From (6.2), the following fixpoint characterizes the operator SORM

l :

SORM

l (Z, V ) = RWAm
l (Z, V ) = µW . Z ∪

∪
P∈[[V ]]

∪
P ′∈[[W ]]

(
P ∩ entry(P, P ′)↙l

)
=

= νW . Z ∩
∪

P∈[[V ]]

∪
P ′∈[[W ]]

(
P ∩ entry(P, P ′)↙l

)
=

= νW . Z \
∪

P∈[[V ]]

∪
P ′∈[[W ]]

(
P ∩ entry(P, P ′)↙l

)
. (6.3)

The fixpoint equation (6.3) can easily be converted into an iterative algo-

rithm, consisting in generating a (potentially infinite) sequence of polyhedra

(Wn)n∈N, where W0 = Z and

Wi+1 = Wi \
∪

P∈[[V ]]

∪
P ′∈[[Wi]]

(
P ∩ entry(P, P ′)↙l

)
. (6.4)

Theorem 4 proves that such sequence converges to a fixpoint within a finite

number of steps.

The naive implementation of the algorithm is done by an outer loop over the

polyhedra P ∈ [[V ]] and an inner loop over P ′ ∈ [[Wi]]. As a first improvement,

one can observe that each iteration of the outer loop removes from Wi a portion

of P ∈ [[V ]]. Hence, the portion of P that is not contained in Wi is irrelevant,

and Equation (6.4) may be replaced with:

Wi+1 = Wi \
∪

P∈[[Wi∩V ]]

∪
P ′∈[[Wi]]

(
P ∩ entry(P, P ′)↙l

)
. (6.5)



112CHAPTER 6. IMPLEMENTATIONS OF ALGORITHMS FOR THE SAFETY

Moreover, it is possible to avoid the need to intersectWi with V at each iteration,

by starting with W0 = Z ∩ V and setting:

Wi+1 = Wi \
∪

P∈[[Wi]]

∪
P ′∈[[Wi]]

(
P ∩ entry(P, P ′)↙l

)
. (6.6)

..

P ′

.

P

(a) Initial input with
bndry(P, P ′) highlighted.

..

P ′

.

P

.

P ′↙

(b) Pre-flow of P ′.

..

P ′

.

P

.

entry(P,P ′)↙

(c) Entry region.

..

P ′

.

Pnew

.

Cut

(d) The region cut from P
and the resulting polyhe-
dron.

..

F

(e) Flow(l).

Figure 6.1: One step of SORM computation.

Consider the Figure 6.1. At the beginning, all points in W0 = Z (light gray

in Figure 6.1(a)) are considered to be safe. Then, for each P ∈ [[W0]], the set of

points p ∈ P that might reach some polyhedron P ′ ∈W 0, is identified. In order

to compute this area the algorithm check, for each P ′ ∈ W 0, if P and P ′ are

adjacent: let b = bndry(P, P ′) be the polyhedron
(
cl(P ) ∩ P ′) ∪ (P ∩ cl(P ′)

)
,

P and P ′ are called to be adjacent iff b ̸= ∅ (b is represented by the thick line

in Figure 6.1(a)). If P and P ′ are adjacent then the algorithm computes the

related entry region from P to P ′, that is entry(P, P ′) = b ∩ P ′↙l. This entry

region contains all the points of b that may reach the polyhedron P ′ by following

some straight-line activity in the considered location l (see Figure 6.1(c)). Now,

the algorithm can computes the effective set of points belong to P that may

reach P ′ by following a straight-line activity. This set of points is defined by



6.2. EFFICIENT COMPUTATION OF SORM 113

P

P ′
1

P ′
2

P ′
3

P ′
4

Figure 6.2: Unnecessary boundary checks.

Cut = P ∩ entry(P, P ′)↙l. Clearly, the polyhedron Cut must be removed from

P , and the resulting safe polyhedra is Pnew = P \ Cut (Figure 6.1(d)). In the

next step, W1 will contain the polyhedra Pnew (notice that, if entry(P, P ′) = ∅,
W1 will still contain the polyhedron P ). Notice that (i) Pnew , being the result of

a set-difference operation, may be non-convex, and (ii) Cut becomes an unsafe

area (will belong to W 1).

The implementation described so far is called the basic approach in the

following.

6.2.1 Introducing Adjacency Relations

In the basic approach, the inner loop is repeated for each P ′ ∈ [[Wi]], even if the

convex polyhedra P ′ is not adjacent to P (i.e., entry(P, P ′) = ∅). For example,

the polyhedra P ′
1, P

′
2, P

′
3, P

′
4 ∈ [[Wi]] shown in Figure 6.2 are not adjacent to the

considered P ∈ [[Wi]]. In such situation the basic approach performs a number

of irrelevant boundary checks.

In order to avoid these unnecessary checks, the binary relation of external

adjacency Ext i, which associates a polyhedron P ∈ [[Wi]] with its entry regions

entry(P, P ′) ̸= ∅, for all P ′ ∈ [[W i]], is introduced. Formally,

Ext i =
{
⟨P, entry(P, P ′)⟩ | P ∈ [[Wi]], P

′ ∈ [[W i]], and entry(P, P ′) ̸= ∅
}
.
(6.7)

Once Ext i is introduced and properly maintained, it allows to optimize the outer

loop: this is achieved by considering only those polyhedra that are associated

with at least one entry region R in Ext i, instead of all polyhedra in [[W ]]. Then,

by using Ext i the Equation (6.6) can be replaced with

Wi+1 = Wi \
∪

⟨P,R⟩∈Exti

(
P ∩R↙l

)
. (6.8)

Comparing Equation 6.6 and Equation 6.8, one can conclude that by using

the external adjacency, the number of steps performed by Algorithm 7 can be



114CHAPTER 6. IMPLEMENTATIONS OF ALGORITHMS FOR THE SAFETY

reduced, because Ext i contains only polyhedra that have a non-empty entry

region. Formally, fixing Expose =
∪

⟨P,R⟩∈Exti

(
P ∩R↙l

)
, the following holds

∣∣Expose| ≤
∣∣Wi

∣∣ ∗ ∣∣W i

∣∣.
More, experimental evidence shows that the cardinality of the l.h.s. is much

less than the cardinality of the r.l.h. This allows a large performance gain by

using the external adjacency relation.

Clearly, some extra effort is required to initialize and maintain Ext i. Initial-

ization is performed by simply applying (6.7). The maintenance requires the

efficient computation of Ext i+1, that is now briefly discussed.

During the i-th iteration, certain convex polyhedra P ∈ [[Wi]] are cut by

removing the points that may directly reach a convex polyhedron P ′ ∈ [[W i]].

These cuts may expose other convex polyhedra in [[Wi]], that were previously

covered by P . These exposed polyhedra will be the only ones to have associated

entry regions in Ext i+1. In order to be exposed by a cut made to P , a convex

polyhedron must be adjacent to P .

For example, the non-exposed polyhedron P1 shown in Figure 6.3(a), could

become exposed only if some polyhedron adjacent to it (one of the polyhedron

belongs to the lighter gray area in the figure), are cut during an iteration. This

situation is depicted in Figure 6.3(b) where the polyhedron P2, adjacent to P1,

has a non-empty entry region to P ′. Then, the area Cut shown in Figure 6.3(c)

is removed from P2. This cutting generates the non-empty entry region from P1

to Cut, (i.e. P1 is now exposed) represented by the thick line in Figure 6.3(d).

Hence, in order to compute Ext i+1 it is useful to have information about

the adjacency among the polyhedra in [[Wi]]. To this aim, the binary relation of

internal adjacency Int i between polyhedra in [[Wi]] is introduced:

Int i =
{
⟨P1, P2⟩ | P1, P2 ∈ [[Wi]], P1 ̸= P2 and bndry(P1, P2) ̸= ∅

}
. (6.9)

The computation of Int0 requires the complete scan of all P1, P2 ∈ [[W0]], while

Int i+1 is obtained incrementally from Int i and Ext i. Given ⟨P,R⟩ ∈ Ext i, let

Cut = P ∩
(
R↙l

)
and Pnew = P \ Cut . Notice that Pnew may be non-convex,

being the result of a set-theoretical difference between two convex polyhedra.

The relation Int i+1 is obtained by adding to Int i the pairs of adjacent convex

polyhedra (P1, P2) such that either (i) both P1 and P2 belong to [[Pnew ]], or (ii)

one of them belongs to [[Pnew ]] and the other is adjacent to P according to Int i.

Moreover, once Pnew replaces P in Wi+1, it is necessary to remove all the pairs

⟨P, P ′⟩ from Ext i and Int i.



6.2. EFFICIENT COMPUTATION OF SORM 115

P1P1

(a) P1 is not exposed.

P1P1

P ′

P2

(b) P2 (adjacent to P1) is exposed.

P1P1

P ′

P2Cut
Pnew

(c) P2 is replaced by Pnew.

P1P1

P ′

P2Cut
Pnew

(d) P1 is now exposed by Cut .

Figure 6.3: New entry regions.

Algorithms 7,8 and 9 represent a concrete implementation of the technique

described so far. In Algorithm 7, Ext old and Int old represent the old adjacency

relations, while Extnew and Intnew the new ones. The first “for each” loop initial-

izes both relations, followed by a “while” loop that iterates until the external

adjacency relation is empty. Maintenance of the adjacency relations is delegated

to Algorithms 8 and 9, that receive as input the relation they have to update,

the convex polyhedron P whose adjacencies need to be examined, and a general

polyhedron Candidates containing the convex polyhedra that may be adjacent

to P . Additionally, Algorithm 9 also needs to know the input set V (region to

be avoided) and the location flow F = Flow(l).

The auxiliary function PotentialEntry returns the potential entry region for

P , namely the set of convex polyhedra contained in Z̄ that can have non-empty

entry region from P . In this version, it is simply fixed that

PotentialEntry(P, Int0, F ) = [[Z̄]].

In the following, the implementation described so far is called the global

approach, and it will be improved in Section 6.2.2.



116CHAPTER 6. IMPLEMENTATIONS OF ALGORITHMS FOR THE SAFETY

Algorithm 7: get SORM(Z, V, F )

Input: Poly Z, V , CPoly F
Output: Poly SORM(Z, V, F )
foreach CPoly P ∈ [[Z]] do

Intnew ← UpdInt(Intnew , P, Z);
E ← PotentialEntry(P, Intnew , F );
Extnew ← UpdExt(Extnew , P,E, F, V );

while Extnew ̸= ∅ do
Ext old ← Extnew ;
Int old ← Intnew ;
Extnew ← ∅;
foreach P s.t. ⟨P,R⟩ ∈ Ext old do

B ←
∪{

R | ⟨P,R⟩ ∈ Ext i
}
;

Cut ← P ∩ (B↙l);
if Cut ̸= ∅ then

Pnew ← P \ Cut ;
foreach P ′ ∈ [[Pnew ]] do

Intnew ← UpdInt(Intnew , P
′, Pnew );

foreach P ′ s.t. ⟨P, P ′⟩ ∈ Int old do
Intnew ← UpdInt(Intnew , P

′, Pnew );
Extnew ← UpdExt(Extnew , P

′,Cut , F, V );

Intnew ← Intnew \ {⟨P,Q⟩ ∈ Int old};

return {P | ⟨P, P ′⟩ ∈ Intnew};

Algorithm 8: UpdInt(Int , P,Candidates)

Input: Set of CPoly pairs Int ; CPoly P ;
Poly Candidates;

Output: Set of CPoly pairs Int ;

Int ← Int ∪ {⟨P, ∅⟩};
foreach CPoly P ′ ∈ [[Candidates]], with P ′ ̸= P do

if bndry(P, P ′) ̸= ∅ then
Int ← Int ∪ {⟨P, P ′⟩};

return Int ;

6.2.2 Further Improving the Performance (1)

Recall that PotentialEntry(P, Int0, F ) returns Z̄, regardless of its inputs. Ex-

perimental evidence (see Chapter 7) shows that Z̄ is often a very large set

of convex polyhedra. On the other hand, it is often the case that the por-

tion of Z̄ which is relevant to computing the entry regions of a given a convex

polyhedron P is much smaller than the whole set Z̄. This often leads to a

large number of attempts to compute entry regions which end up empty. To



6.2. EFFICIENT COMPUTATION OF SORM 117

Algorithm 9: UpdExt(Ext , P,Candidates, F, V )

Input: Set of CPoly pairs Ext ; CPoly P, F ;
Poly Candidates, V ;

Output: Set of CPoly pairs Ext ;

if P ̸⊆ V then
foreach CPoly P ′ ∈ [[Candidates]] do

R← entry(P, P ′);
if R ̸= ∅ then

Ext ← Ext ∪ {⟨P,R⟩};

return Ext ;

avoid this, for each P in [[Z]] (see Figure 6.4(a)), another approach are now

explained. The first step consists in computing the polyhedra Padj (see Figure

6.4(b)) that contains P and all convex polyhedra in [[Z]] that are adjacent to it:

Padj = {P} ∪ {P ′ | ⟨P, P ′⟩ ∈ Int0}.

Then the polyhedra that contains all and only the convex polyhedra of Z

which, if adjacent to P , contain a non empty entry region, is computed as

PotentialEntry(P, Int0, F ) = (P ↗ F ) \ Padj .

Notice that, all the convex polyhedra in [[Z̄]] \ PotentialEntry(P, Int0, F ) must

have an empty entry region from P , since they cannot be reached from P fol-

lowing a straight-line activity in F . Moreover, all the convex polyhedra in

PotentialEntry(P, Int0, F )∩ [[Z]] cannot be adjacent to P , since, otherwise, they

would belong to Padj as well. Hence, all their entry regions from P are empty.

Therefore, the resulting polyhedron PotentialEntry(P, Int0, F ) contains all and

only the convex polyhedra which, if adjacent to P , belong to Z̄ and have a

non-empty entry region from P .

Figure 6.4(d) shows the resulting polyhedra, computed by removing from

P ↗ F (see Figure 6.4(c)) the polyhedra Padj . The implementation based on

the computation of PotentialEntry(P, Int0, F ) = (P ↗ F ) \ Padj is called the

local approach in the following.

The comparison between PotentialEntry computed in global and in local

approaches is shown in Figure 6.5, where the former is represented by the

falling-pattern area while the latter is represented by the raining-pattern area:

one can argue that (generally) the local approach works on a smaller set of

PotentialEntry with respect to the global approach, and this improves the per-

formance (see Chapter 7).



118CHAPTER 6. IMPLEMENTATIONS OF ALGORITHMS FOR THE SAFETY

Z
Z

P

(a) The considered P .

Z
Z

PadjPadj

(b) Polyhedra Padj .

Z
P ↗P ↗

(c) Post-flow of P .

Z
PotentialEntry

(d) The potential entry regions.

Figure 6.4: The local approach.

Z
PotentialEntry

ZZ

Figure 6.5: Comparision between global and local approach.

6.2.3 Further Improving the Performance (2)

Notice that each call to Algorithm 7 involves into the construction of completely

news adjacency relations (performed by the first three instructions of the algo-

rithm). Actually, after the first call to Algorithm 5, this can be avoided by using,

for each location l ∈ Loc, the last relations carried out by Algorithm 7 that com-

putes SORM

l . The idea behind this approach is now explained, but first some

additional notions are required. First of all, each location l ∈ Loc is associated

to the last Int and Ext computed by SORM

l . The mapping Intrel returns the

associated internal relation to the location l, and similarly the mapping Extrel

returns the associated external relation to the location l. Each call to Algorithm



6.2. EFFICIENT COMPUTATION OF SORM 119

7 after the first CPreS (implemented by the Algorithm 5), instead of rebuild the

relations, uses the relations Int = Intrel(l) and Ext = Extrel(l). Notice that,

once performed the first CPreS, Int contains adjacency between polyhedra be-

longing to A (by construction of algorithms, A = W�l= {P | ⟨P, P ′⟩ ∈ Intold}),
while the new internal relation that Algorithm 7 would build, would contains

the adjacency between polyhedra belonging to Inv(l) ∪ (A \ B). The relation

Int contains only the points of Inv(l) that were not removed by the last call

to SORM

l . Hence, take into account the whole Inv(l), in the next step, is not

necessary. Moreover, Int may also contain some points of B, because B can in-

crease, by definition, and then B may overlap some polyhedron belongs to Int .

This means that Int may contain not desired points (i.e. points from which it

is possible to reach a bad area). But such points can be removed if one builds

the Ext relation by calling, for each P1 ∈ {P | ⟨P, P ′⟩ ∈ Int}, the Algorithm 9

on parameters Extrel(l), P1, B, F and V . By following this way, Algorithm 7

removes from Int all the “bad” points, obtaining the same results of the three

previous approaches described above. In the remainder of the thesis, this new

approach is called local+ and requires a little bit different version of Algorithm

7 used after the first call to CPreS. In particular, this different version is carried

out by removing the first two instructions, and by replacing one parameter of

the function called in the third instruction (Algorithm 9). In particular, instead

of E = PotentialEntry(P, Intnew, F ), one calls the algorithm on the parameter

E = B.

An Alternative Implementation of the Function getfix point . Notice

that, by associating to each location the last two computed polyhedra B (called

Bold and Bnew, resp.) and C (called Cold and Cnew, resp.) by Algorithm 5, one

can change the technique in order to check whether the fixpoint of the global

algorithm is reached. Recall that the function getf ixpoint, called by Algorithm

5, simply verifies whether Wi = Wi+1. The last is a highly computational de-

manding operation, due the fact that it is performed on set of states. Actually,

the fixpoint is reached when, for each l ∈ Loc, Bold = Bnew and Cold = Cnew

(indicating that there is nothing more to do, i.e. all the bad points was re-

moved). The check whether Bold = Bnew and Cold = Cnew are less expensive

w.r.t. the check if Wi = Wi+q because it is performed on polyhedra, instaed

of set of states. This is achieved by using Algorithm 10, that is a different

implementation of the function get fixpoint (called by Algorithm 5).



120CHAPTER 6. IMPLEMENTATIONS OF ALGORITHMS FOR THE SAFETY

Algorithm 10: get fixpoint(W,Wnew,Loc)

Input: Set of states W , Wnew, Set of locations Loc.
Output: Boolean fix point .
forall the (l ∈ Loc) do

if (Bl
old ̸= Bl

new) And (Cl
old ̸= Cl

new) then
return false;

return true;

6.3 Implementation of the Global Fixpoint for
Reachability

Theorem 6 gives a fix-point characterization of the reachability control problem

for linear hybrid games, that can be easily turned into the Algorithm 11.

Algorithm 11: Reach(H,T )

Input: Hybrid Game H = (Loc, X,Edgc,Edgu,Flow , Inv , Init), Set of
States T .

Output: Set of winning states W .
Data: Set of states Wnew, Boolean fix point .
fix point := false;
W := T ;
while (fix point = false) do

Wnew := T ∪ CPre(W );
if (Wnew = W ) then

fix point := true;

return W ;

Given the linear hybrid game H = (Loc, X,Edgc,Edgu,Flow , Inv , Init) and

the set of safe states T , the reachability control problem for H w.r.t. T can

be solved by calling Algorithm 11 on parameters G and T . The heart of this

algorithm involves into the computation of the controllable predecessor operator

for reachability CPreR. Since, by Equation 4.2, CPreR can be expressed as

CPreR(A) = InvS∩
∪

l∈Loc

{l}×RWAM
l

(
A�l ∪Prec(A)�l ∪Inv(l),Preu(A)�l \A�l

)
,

then the implementation of CPreR, done by Algorithm 12, requires the com-

putation of the operator RWAM. By Theorem 7, the computation of RWAM

requires (i) the implementation of the RWAm operator and (ii) the implemen-

tation of the operator RU (see Chapter 5) in order to correctly compute the

over-approximation Over . For the first point, similarly to the case of the safety,



6.3. IMPLEMENTATIONOF THEGLOBAL FIXPOINT FOR REACHABILITY121

instead of RWAm, the implementation is based on the computation of the dual

operator SORM, that has been widely discussed in Section 6.2. Hence, Algo-

rithm 12 calls Algorithm 7.

Algorithm 12: get CPreR(H,W )

Input: LHG H = (Loc, X,Edgc,Edgu,Flow , Inv , Init), Set of States W .
Output: Set of States CPreR(W ).
Data: Poly A, B, C, Over , Under .
CPrereach := ∅;
foreach (l ∈ Loc) do

A := W�l;
B := ∅;
C := ∅;
foreach (t ∈ Edgc | t = ⟨l, µ, l′⟩) do

C := C ∪ get pre(W�l′ , Inv(l′), µ);
foreach (t ∈ Edgu | t = ⟨l, µ, l′⟩) do

C := C ∪ get pre(W�l′ , Inv(l), µ);
Under := A \B;

Over := Under ∪ get RU
(
A ∩B);

CPrereach := CPrereach ∪
{
l,Over ∩ get SORM(Over, C)

}
;

return CPrereach;

Notice that, for the sake of efficiency, the called Algorithm 7 is whose that

use the local approach. The local+ approach can not be used, because too

specific for the safety objectives (see Section 6.2.3)

About the operator RU, implemented by Algorithm 13, Equation 5.4 shows

that it is based on the positive pre-flow operator (see Chapter 4) and on the

additional operator is bounded . Algorithm 14 shows the effective implementa-

tion of the operator is bounded that, given in input the polyhedron G and the

convex polyhedron F , test whether P is bounded w.r.t. F (see Theorem 10).

Algorithm 13: get RU(G,F )

Input: Poly G, CPoly F .
Output: Poly RU(G,F ).
Gnew := ∅;
foreach CPoly P ∈ [[G]] do

if is bounded(P, F ) = true then
Gnew := Gnew ∪ P ;

return Gnew;

The first step performed by the algorithm is checking whether the origin 0

belongs to F : if the answer is positive, then it returns false (that means that P



122CHAPTER 6. IMPLEMENTATIONS OF ALGORITHMS FOR THE SAFETY

Algorithm 14: is bounded(P, F )

Input: CPoly P , F .
Output:
if 0 ∈ F then

return false;

Prays = get rays(P );
OP = 0;
foreach CPoly r ∈ Prays do

OP = OP .add ray(r);

if (OP ∩ F ) = ∅ then
return true;

return false;

is not bounded). Otherwise, it checks whether the characteristic cone OP and

F are disjoint: in this case the Algorithm returns true (that means that P is

bounded), else returns again false. Notice that the called function get rays(P )

is a common operation over convex polyhedron that return the extremal rays

of the convex specified as parameter. In a similar manner, the called method

.add rays(r) is a common operation over convex polyhedron in order to add

the ray specified as parameter to the convex polyhedron. Both function and

method are provided by the PPL library.

All the operators seen in this chapter are implemented on the top of the

tool PHAVer. Now, by the extensions described in the thesis, the obtained

tool PHAVer+ can be used also for the task of the synthesis, and the main

contribution of this thesis is achieved.

Next Chapter is dedicated to several experiments on the use of PHAVer+,

tested on some examples, both for the safety control problem and the reacha-

bility control problem.



Chapter 7

Experiments with
PHAVer+

This chapter shows some experiments on safety and reachability control prob-

lem, performed with several implementations of the procedures described in

Chapter chap:impl. The synthesis procedures are been implemented on the

top of the open-source tool PHAVer [Fre05]. For the purpose of evaluating the

present thesis, a binary pre-release of this implementation, called PHAVer+, can

be downloaded at http://people.na.infn.it/minopoli/phaver. The exper-

iments were performed on an Intel Xeon (2.80GHz) PC.

7.1 Macro Analysis

Truck Navigation Control (adapted from [DMT+01]). Consider an au-

tonomous toy truck, which is responsible for avoiding some 2 by 1 rectangular

pits. The truck can take 90-degrees left or right turns: the possible directions are

North-East (NE), North-West (NW), South-East (SE) and South-West (SW).

One time unit must pass between two changes of direction. The control goal

consists in avoiding the pits. Notice that the TNC proposed in [DMT+01] is

limited to one turn only, while our analysis is extended to the complete case

(an unlimited number of turns is allowed). Figure 7.1 shows the linear hybrid

game that models the system: there is one location for each direction, where

the derivative of the position variables (x and y) are set according to the cor-

responding direction. The variable t represents a clock (ṫ = 1) that enforces a

one-time-unit wait.

Figure 7.2 shows the three iterations needed to compute the fixpoint in

Theorem 2, in the case of two pits. The safe set is the white area, while the

gray region contains the points wherefrom all admitted activities leads into the

123



124 CHAPTER 7. EXPERIMENTS WITH PHAVER+

NW
ẋ = −1
ẏ = 1

ṫ = 1

NE
ẋ = 1
ẏ = 1

ṫ = 1

SW
ẋ = −1
ẏ = −1
ṫ = 1

SE
ẋ = 1
ẏ = −1
ṫ = 1

〈t ≥ 1, t := 0〉

〈t ≥ 1, t := 0〉

〈t ≥ 1, t := 0〉

〈t
≥

1,
t
:=

0〉

〈t
≥

1,
t
:=

0〉

〈t
≥

1,
t
:=

0〉

〈t
≥

1,
t
:=

0〉

〈t ≥ 1, t := 0〉

Figure 7.1: TNC modeled as LHGs.

obstacle (pit) and then are not winning for the controller.

The input safe region T is the area outside the gray boxes 1 and 2 in Fig-

ure 7.2(a). The first iteration (Figure 7.2(b)) computes CPre(T ) and extends

the unsafe set to those points (areas 3, 4, and 5) that will inevitably flow into

the pits, before the system reaches t = 1 and the truck can turn. The second

iteration (Figure 7.2(c)) computes CPre(CPre(T )) and extends the unsafe set

by adding the area 6: those points may turn before reaching the pits, but after

the turn they end up in CPre(T ) anyway (for instance, if turning left, they end

up in area 4 of Figure 7.2(d)). The third iteration reaches the fixpoint.

The implementations was tested on progressively more complex control goals,

by increasing the number of obstacles. Table 7.1 shows the run time required

by the different approaches, i.e. basic, global and local, in order to solve the

safety control problem for TNC, up to 10 obstacles.

Table 7.1: Performance with respect to number of pits

Pits num.: 2 3 4 5 6 7 8 9 10

Basic 5,2 26,9 121,7 206,6 607,9 1177,3 2328,4 4390,7 6047,5
Global 4,5 14,5 44,6 71,9 127,8 217,8 386,0 423,4 647,5
Local 3,1 9,6 23,0 38,8 57,0 86,5 124,7 132,8 177,3
Local+ 1,0 2,3 4,4 9,1 14,8 24,8 34,8 58,8 78,1

The graph shown in Figure 7.3(a) is a rapid way to compare the run time

required by the different implementations of the algorithm. In particular, the

thin solid line represents the run times for the basic approach, the thin dotted

line represents the run times for the global approach, the harder solid line is for



7.1. MACRO ANALYSIS 125

..
1

.

2

(a) The pits to avoid (i.e., T ).

..
1

.

2

.

3

.
4

.
5

(b) CPre(T ), SW direction.

..
1

.

2

.

3

.
4

.
5

.

6

(c) CPre(CPre(T )), SW direction.

..
1

.

2

.

3

.
4

.
5

.

6

(d) CPre(T ), SE direction.

Figure 7.2: Evolution of the fixpoint in the case of two pits. All figures are
cross-sections for t = 0. Dashed arrows represent flow direction.

the local approach and the hard dotted line is for the local+ approach.

Moreover, the performance of the basic and local+ implementations have

been compared with the implementation given in [DMT+01]. Figure 7.3(a)

depicts these performances comparison, where the thin dotted line represents

the performance reported in [DMT+01]), the solid line stay for the basic im-

plementation and the dotted line stay for the local+ approach. Since Hon-

eyTech is not publicly available, it was no possible to replicate the experiments

in [DMT+01]. Notice that the time axis is logarithmic. Because of the different

hardware used, only a qualitative comparison can be made: going from 1 to

6 pits (as the case study in [DMT+01]), the run time of HoneyTech shows

an exponential behavior, while PHAVer+ (in particular the local+ approach)

exhibits an approximately linear growth, as shown in Figure 7.3(b), where the

performance of PHAVer+ is plotted up to 10 pits.

Truck Navigation Control with Non-Deterministic Flow. The TNC

version described above is defined only by a deterministic flow, according to the

work in [DMT+01] (see Figure 7.4(a)). In this thesis a version of TNC with



126 CHAPTER 7. EXPERIMENTS WITH PHAVER+

1

10

100

1000

10000

2 4 6 8 10 12

Basic

+

+

+
+

+

+

+

+
+ +

Global

×

×

×
×

×
×

× ×
×

×
Local

∗

∗

∗
∗

∗
∗

∗ ∗ ∗

∗
Local+

2

2

2

2
2

2
2

2
2

2

(a) Run times for TNC required by the different implementations.

1

10

100

1000

10000

100000

2 4 6 8 10 12

HoneyTech

+

+

+
+

+

+
+

Basic

×

×

×
×

×
×

×
× ×

×
Local+

∗
∗

∗
∗

∗
∗ ∗

∗ ∗

∗

(b) Comparision with HoneyTech performance on TNC.

Figure 7.3: Performance for different implementations.

non-deterministic continuous flow, was also considered. In such version, the

possible directions of the truck, in a given location, are expressed by differential

equations as following:

• SE location: ẋ = 1, −1.5 ≤ ẏ ≤ −0.5.

• SW location: ẋ = −1, −1.5 ≤ ẏ ≤ −0.5.



7.1. MACRO ANALYSIS 127

• NE location: ẋ = 1, 0.5 ≤ ẏ ≤ 1.5.

• NW location: ẋ = −1, 0.5 ≤ ẏ ≤ 1.5.

Notice that, such flow allows some uncertainty on the exact direction taken

by the vehicle, as shown in Figure 7.4(b) for the NE direction.

p = (1, 1)

y = x

(a) The only allowed trajectory in the
deterministic case for NE direction.

p = (1, 1)

0.5x ≤ y ≤ 1.5x

(b) The several allowed trajectories in
the non-deterministic case for NE direc-
tion.

Figure 7.4: Deterministic and not-deterministic flow allowed by the two different
versions of TNC.

Table 7.2: Performance for non-deterministic TNC with respect to number of
pits

Pits num.: 1 2 3 4 5

Basic 0.5 9.3 51,8 241.1 580.0
Global 0,6 8,1 35,0 107,6 268,6
Local 0,6 5,0 15,5 46,4 69,2
Local+ 0,2 1,4 3,5 8,9 17,7

Table 7.2 shows the run time required by the different approaches in order

to solve the safety control problem for the non-deterministic TNC, up to 5

obstacles.

Three Dimensional Truck Navigation Control. This thesis also intro-

duces a three dimensional extension of the TNC proposed in [DMT+01]. The

considered obstacles are some rectangular box whose x, y and z dimensions are

respectively 2, 2 and 1. The 90-degrees left or right turns are extended by also

taking into account the vertical direction (up and down). Hence, the possible

directions are Up-North-East (UNE), Up-North-West (UNW), Up-South-East

(USE), Up-South-West (USW), Down-North-East (DNE), Down-North-West



128 CHAPTER 7. EXPERIMENTS WITH PHAVER+

(DNW), Down-South-East (DSE), Down-South-West (DSW). Also in this ver-

sion, one time unit must pass between two changes of direction. The LHG that

model the system has one location for each direction, where the derivative of

the position variables (x, y and z) are set according to the corresponding di-

rection. The variable t represents a clock (ṫ = 1) that enforces a one-time-unit

wait. In such version, the possible directions of the truck, in a given location,

are expressed by differential equations as following:

• DSE location: ẋ = 1, ẏ = −1, ż = −1.

• DSW location: ẋ = −1, ẏ = −1, ż = −1.

• DNE location: ẋ = 1, ẏ = 1, ż = −1.

• DNW location: ẋ = −1, ẏ = 1, ż = −1.

• USE location: ẋ = 1, ẏ = −1, ż = 1.

• USW location: ẋ = −1, ẏ = −1, ż = 1.

• UNE location: ẋ = 1, ẏ = 1, ż = 1.

• UNW location: ẋ = −1, ẏ = 1, ż = 1.

Table 7.3 shows how many time (in seconds) the local and the local+ ap-

proaches require to solve the three-dimensional TNC problem.

Table 7.3: Performance for three-dimensional TNC with respect to number of
pits

Pits num.: 2 3 4 5 6 7 8

Local 126,9 289,2 529,8 1240,5 1853,2 2552,5 3692,5
Local+ 33,8 80,8 142,7 246,9 359,3 539,6 650,4

Water Tank Control (adapted from [LLL09]). Consider a system where

two tanks — A and B — are linked by a one-directional valve mid (from A to

B). There are two additional valves: the valve in to fill A and the valve out to

drain B. The two tanks are open-air: the level of the water inside also depends

on the potential rain and evaporation. It is possible to change the state of

one valve only after one second since the last valve operation. Figure 7.5 is a

schematic view of the system.

The in and mid flow rate, pin and pmid resp., are set to 1, the out flow rate

pout to 3, the maximum evaporation rate b to 0.5 and maximum rain rate a to 1.

The goal consists in to solve the synthesis problem for the safety specification



7.1. MACRO ANALYSIS 129

Rain

Evaporation

In

Mid

Out

Figure 7.5: Schema of the system.

CCC
ẋ ≤ b

ẏ ≤ b

ṫ = 1

OCC
ẋ ≤ b+ pin

ẏ ≤ b

ṫ = 1

CCO

ẏ ≤ b− pout
ṫ = 1

COC

ẋ ≤ b− pmid

ẏ ≤ b+ pmid

ṫ = 1

COO

ẋ ≤ b− pmid

ẏ ≤ b+ pmid − pout

ṫ = 1

OCO

ṫ = 1

ẋ ≤ b+ pin

ẏ ≤ b− pout

OOC
ẋ ≤ b+ pin − pmid

ẏ ≤ b+ pmid

ṫ = 1

OOO
≤ ẋ ≤ b+ pin − pmid

ẏ ≤ b+ pmid − pout

ẋ ≥ a+ pin

ẏ ≥ a

ẋ ≥ a

ẏ ≥ a

ẋ ≥ a− pmid

ẏ ≥ a+ pmid

ẋ ≤ b

ẋ ≥ a

ẏ ≥ a− pout

ẋ ≥ a+ pin − pmid

ẏ ≥ a+ pmid

ẋ ≥ a+ pin

ẏ ≥ a− pout

ẋ ≥ a− pmid

ẏ ≥ a+ pmid − pout

ẋ ≤ a+ pin − pmid

ẏ ≥ a+ pmid − pout

ṫ = 1

Figure 7.6: Two tanks modeled as LHG.

requiring the water levels to be between 0 and 8. The corresponding hybrid

game, depicted in Figure 7.6 has eight locations, one for each combination of

the state (open/closed) of the three valves, and three variables: x and y for

the water level in the tanks, and t as the clock that enforces a one-time-unit



130 CHAPTER 7. EXPERIMENTS WITH PHAVER+

wait between consecutive discrete transitions. Since the tanks are in the same

geographic location, rain and evaporation are assumed to have the same rate in

both tanks, thus leading to a proper LHG, that is not rectangular (see Chapter

3 and [HHM99]).

Figure 7.7(a) (resp., 7.7(b)) shows the fixpoint result in the case of all valves

closed (resp., in and out open and mid closed). Due to the necessity of one

second wait before taking a discrete action, in the case of Figure 7.7(a), x and y

must be between 0.5 and 7: otherwise, for example with a level greater than 7

and maximum rain, after one second the level will exceed the limit. In a similar

way, with a level less than 0.5 and maximum evaporation, after one second the

level would go below the lower bound. The result is computed after 5 iterations

in 11 seconds, using the local+ approach.

1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y
8

(a) Result for all valves closed and t = 0.

1 2 3 4 5 6 7

1

2

3

4

5

6

7

x

y
8

(b) Result with only mid valve closed
and t = 0.

Figure 7.7: Output for Water Tank Control example.

The maze example. A vehicle navigates in a spiral-shaped labyrinth, by

taking 90-degree left or right turns: the possible directions are North (N), South

(S), West (W) and East (E). One time unit (say, second) must pass between

two changes of direction, while the vehicle speed is 2 unit of length per second.

The corridors of the maze are 1 unit wide, so that the vehicle can never u-turn

without hitting a wall. The goal consists in reaching a target area positioned

along the corridors. The implementation based on the local approach, was tested

on progressively more complex mazes, by increasing the number of corridors (the

angle between consecutive corridors is 90-degrees). The r.h.s. of the Figure 7.1

shows the shape of the maze: in the case of the first two corridors, the target

is T1. In the case of three, the target is T2, and so on. The LHG modeling



7.1. MACRO ANALYSIS 131

the system contains three continuous variables: x and y for the position of the

vehicle, and a clock t, to enforce the wait between consecutive turns. The walls

are modeled by uncontrollable transitions leading to a sink location.

The l.h.s. of the Figure 7.1 shows the section of the solution for t = 0, in

the case of a maze with two corridors and the vehicle initially going along the

North direction: the light-gray areas (A and B) contain the points that can

reach the target T1. If the vehicle is located in A, it can reach the target by

turning East and then North again. Notice that the area A covers only half

the width of the vertical corridor. In fact, if the vehicle is located in the other

half of the corridor, when turning East it will be too close to the target and

will not be able to take the second turn towards the target in time. The area A

ends 2 units of length before the north wall, as beyond that the vehicle cannot

avoid hitting the wall before being able to turn East. Finally, the points in the

area B are trivially winning, as they can reach the target by proceeding North.

The example of maze described above was also extended to a three-dimensional

version. In addition to the horizontal directions of the 2D case, in the 3D

version the vehicle can perform 90-degree turns upwards (UP) and downwards

(DOWN). The resulting LHG model includes two additional locations to move

up and down, and one additional continuous variable z for the position of the

vehicle along the third dimension, for a total of four variables. Table 7.4 shows

the run time in seconds for the two different versions of maze of increasing size,

in terms of number of corridors and targets along them. Although still limited

in scope, the results show that the proposed approach is practical, at least for

relatively small problems.

..

T1

.

T2

.
T3

.

T4

.

T5

.

T1

.

A

.

B

Figure 7.8: Structure of the maze.



132 CHAPTER 7. EXPERIMENTS WITH PHAVER+

# of corridors Time (sec.) 2D Time (sec.) 3D

3 0.9 2.3
5 5.9 11.8
7 24.7 42.1
9 85.6 137.7

Table 7.4: Performance.

7.2 Micro Analysis

This section shows the behavior of individual calls to SORM(Z, V ), implemented

by using basic, global and local approach described in Section 6.2 of this chap-

ter. The local+ approach was not take into account, because the corresponding

implementation involves in a different implementation of the global fixpoint al-

gorithm (in particular, in a different check on the fixpoint). The evaluation of

the efficiency of the three versions is carried out based on the number of com-

parisons that the three algorithms perform in order to identify the boundaries

between polyhedra in Z and polyhedra in PotentialEntry , with respect to the

size of the input, i.e. |[[Z]]| + |[[V ]]|. The choice to to highlight the number of

computed boundaries derives from the idea that led to the realization of the

local version of the algorithm is precisely to avoid unnecessary adjacency checks

(hence the idea of introducing the adjacency relations).

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 1000 2000 3000 4000 5000

#
of

ca
ll
s
to

bn
d
ry

(·,
·)

|[[Z]]|+ |[[V ]]|

’BasicSORM’

++++++++++++++++++++++++ +
+++++++++++ +

+

+
+ ++ +++

+
++ +

+

+

+ ++ +++
+
++ +

+

+
+

+

++
+

+

++ +

+

+

+

+

++

+

+

+
+

++

+

+

+

+
+

+

+
+

++

+

+

+

+++++++++++++++++ ++++++++ +++

+
’GlobalSORM’

×××××××××××××××××××××××× ×××××××××××× ×× ×× ×× ×××××× ×× ×× ×× ×××××× ×× ×× ×× ××××××
×× ×× ×× ××

××××
×× ×× ×× ××

××××

×× ×
× ×

× ×
×

××××××××××××××××××××××××××××× ×××××××× ×××

×

Figure 7.9: Number of boundary checks of basic and global algorithms for SORM

w.r.t. the size of the input.



7.2. MICRO ANALYSIS 133

0

20000

40000

60000

80000

100000

120000

140000

160000

0 1000 2000 3000 4000 5000

#
of

ca
ll
s
to

bn
d
ry

(·,
·)

|[[Z]]|+ |[[V ]]|

’GlobalSORM’

++++++++++++++++++++++++ ++++++++++++
++ ++

+
+ ++

++++

+
+ +

+
+

+ +
+

++++

+

+
+

+
+

+ +
+

++++

+
+ ++

++ +

+

++++

+
+ +

+

++

+

+

++++

+

+
+

+

+

+ +

+

+++++++++++++++++++++++++++++ ++++++++ +++

+
’LocalSORM’

×××××××××××××××××××××××××××××××××××× ×× ×× ×× ×××××× ×× ×× ×× ×××××× ×× ×× ×× ×××××× ×× ×× ×× ×××××× ×× ×× ×× ×××××× ×× ×× ×× ××××××××××××××××××××××××××××××× ×××××××× ×××

×

Figure 7.10: Number of boundary checks of global and local algorithms for
SORM w.r.t. the size of the input.

0.01

0.1

1

10

100

1000

10000

0 50 100 150 200

se
c.

|[[Z]]|+ |[[V ]]|

’BasicSORM’

+++ +

++
+

+
+++

+

+

+
+

+

+

+

++
+

++

+

+

+
+ +

+
+

++
++ +

+

+

+
+ +

+

+

++
+

+ +

+

+

+
+ +

+

+

+
+

+
+ +

+

+

+
+ +

+

+

+

+

+
+ +

+

+

+
+ +

+
+

++

+

+ +

++++

+
’GlobalSORM’

××××
×
××
×

××

×××
×× ××
×

×
××
×

×××××××
×

×××
×

××× ×××
× ×

×××
×

×××
×× ××
×

×××
×

××× ××
×× ×

×××
×

×××
×× ××
×

×

×

×
’LocalSORM’

Figure 7.11: Run time (in sec.) of algorithms basic, global and local for SORM

w.r.t. the size of the input.

Figure 7.9 and Figure 7.10 shows the number of boundary computations

made by the three approaches. As expected, the number of calls made by the ba-

sic algorithm is higher than those made by the global approach (see Figure7.9),

which in turn is higher then those made by the algorithm that implements the



134 CHAPTER 7. EXPERIMENTS WITH PHAVER+

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000

∑ P
∈
[[
Z
]]
|P

ot
en

z
ia
lE

n
tr
y
(P

,I
n
t,
F
)|

|[[Z]]|

’Ratio’

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
++++++++++++++++++++

+
++
+
+
+
+

++++++++++
+
++++
+
++
+
+++
++++
+++
+
+
++

+

+

+

+

+
++

+ + +

+

Figure 7.12: Size of PotentialEntry in the global and the Local algorithms.

local approach (see Figure7.10). This is reflected in the execution times of the

three procedures, as shown in Figure 7.11.

One also notices a certain instability in the case of the basic algorithm, due

to the fact that in some instances of the problem, even with small inputs, the

algorithm can cut an individual polyhedron in many parts: this dramatically

increases the size of the sets Z and Z̄ in the next steps and consequently the

number of comparisons required. This instability is held much more under con-

trol with the introduction of the adjacency relations, that potentially preventing

unnecessary checks. Note that in the local version the number of comparisons

required is much lower: this fact can easily explain, recalling that PotentialEntry

in the global version returns the whole Z̄, forcing Algorithm 9 to perform |Z̄|
iterations of its “foreach” loop.

Figure 7.12 shows, for the same inputs, the relationship between the size of

PotentialEntry in the basic and in the global versions (i.e., Z̄) and in the local

version: the ratio is 1 to 10, which reduces drastically the number of checks,

and consequently the overall run time.



Conlusion and Future
Works

In this thesis, the problem of automatically synthesizing a switching controller

for an LHG w.r.t. safety objectives is revisited and the same problem w.r.t.

reachability objectives is introduced.

For the safety goal, the synthesis procedure is based on the RWAm operator,

for which a novel fixpoint characterization is proposed and whose termination

is formally proved.

For the reachability goal, the synthesis procedure is based on the RWAM

operator, for which a novel fixpoint characterization is proposed and whose

termination is formally proved.

To the best of our knowledge, these represents the first sound and complete

procedures for the tasks in the literature.

The open source tool PHAVer was extended with the synthesis procedures

showed in the thesis, and a series of promising experiments are performed and

shown.

One of the possibile future work is to work on the automatic construction

of a concrete control strategy, which, coupled with the hybrid system, would

result in a closed system, amenable to automatic verification by state-of-the-art

analysis tools. Another interested future scenario could be to focus on a more

general technique involves modifying the goal in order to take the Zenoness

phenomenon into account.

We leave it to future work to combine our results with more sophisticated

approaches to Zenoness known in the literature [BBV+03, dAFH+03].

135



136 CHAPTER 7. EXPERIMENTS WITH PHAVER+



Bibliography

[ABD+00] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli. Effective

synthesis of switching controllers for linear systems. Proceedings of

the IEEE, 88(7):1011–1025, 2000.

[ABM04] R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability

for weighted times games. In 31th International Colloquium on

Automata, Languages and Programming, volume 3142 of Lecture

Notes in Computer Science. Springer, 2004.

[ACD93] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense

real-time. Information and Computation, 104:2–34, 1993.

[AD94] L. Alur and D. L. Dill. A theory of timed automata. Theoretical

Computer Science, 126:183–235, 1994.

[ADM02] E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of

hybrid systems. In Proceedings of the 14th International Conference

on Computer Aided Verification, CAV ’02, pages 365–370, London,

UK, UK, 2002. Springer-Verlag.

[AHH96] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic ver-

ification of embedded systems. IEEE Transactions on Software

Engineering, 22, 1996.

[AHK97] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time

temporal logic. In Symposium on Foundations of Computer Science,

pages 100–109. IEEE Computer Society Press, 1997.

[ALW89] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable

concurrent program specifications. In Proceeding of the 16th Int.

Colloq. Aut. Lang. Prog, volume 372 of Lecture Notes in Computer

Science, pages 1–17. Springer, 1989.

137



138 BIBLIOGRAPHY

[AM99] E. Asarin and O. Maler. As soon as possible: Time optimal control

for timed automata. In Proceeding of the 2nd International Work-

shop on Hybrid Systems: Computation and Control, volume 1569

of Lecture Notes in Computer Science, pages 19–31. Springer, 1999.

[AMP95] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis

for discrete and timed systems. In Hybrid Systems II, volume 999

of Lecture Notes in Computer Science, pages 1–20. Springer, 1995.

[BB95] T. Basar and P. Bernhard. H-Infinity Optimal Control and Related

Minimax Design Problems. Springer-Verlag, 1995.

[BBM98] M.S. Branicky, V.S. Borkar, and S.K. Mitter. A unified framework

for hybrid control: Model and optimal control theory. IEEE trans-

action on automatic control, 43:31–45, 1998.

[BBV+03] A. Balluchi, L. Benvenuti, T. Villa, H. Wong-Toi, and

A. Sangiovanni-Vincentelli. Controller synthesis for hybrid systems

with a lower bound on event separation. International Journal of

Control, 76(12):1171–1200, 2003.

[BCC+06] A. Balluchi, A. Casagrande, P. Collins, A. Ferrari, T. Villa, and

A. Sangiovanni-Vincentelli. Ariadne: a framework for reachability

analysis of hybrid automata. In Proceeding of the international

symposium on mathematical theory of networks and systems, 2006.

[BCD+05] G. Behrmann, A. Cougnard, R. David, E. Fleury, K.G. Larsen,

and D. Lime. Uppaal-Tiga: Timed games for everyone. In In

Proceeding of the 17th Nordic Workshop on Programming Theory,

2005.

[BDM+98] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and

S. Yovine. Kronos: A model-checking tool for real-time systems.

In Computer Aided Verification, pages 546–550, 1998.

[BFH+94] A. Bouajjani, J-C. Fernandez, N. Halbwachs, P. Raymond, and

C. Ratel. Minimal state graph generation. In Science of Computer

Programming, 1994.

[BFM11a] M. Benerecetti, M. Faella, and S. Minopoli. Revisiting synthesis

of switching controllers for linear hybrid systems. In Proceeding of

the 50th IEEE Conference on Decision and Control (CDC 2011),

2011. To appear.



BIBLIOGRAPHY 139

[BFM11b] M. Benerecetti, M. Faella, and S. Minopoli. Towards efficient ex-

act synthesis for linear hybrid systems. In Proceeding of the 2th

International Symposium on Games, Automata, Logics and Formal

Verification, pages 263–277, 2011.

[BFM12] M. Benerecetti, M. Faella, and S. Minopoli. Reachability games

for linear hybrid systems. In Proceeding of The 15th International

Conference on Hybrid Systems: Computation and Control (HSCC

2012), 2012. Submitted to.

[BHZ08] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra

Library: Toward a complete set of numerical abstractions for the

analysis and verification of hardware and software systems. Science

of Computer Programming, 72(1–2):3–21, 2008.

[BL69] J.R. Buchi and L.H. Landweber. Solving sequential conditions by

finite state strategies. In Proceeding of American Mathematial So-

ciety, pages 295–311, 1969.

[BLMR06] P. Bouyer, K.G. Larsen, N. Markey, and J.I. Rasmussen. Almost

optimal strategies in one clock priced timed games. In In Proceed-

ing of the 26th International Conference on Foundations of Soft-

ware Technology and Theoretical Computer Science, pages 345–356,

2006.

[BLP+96] J. Bengtsson, F. Larsson, P. Pettersson, W. Yi, P. Christensen,

J. Jensen, P. Jensen, K. Larsen, and T. Sorensen. Uppaal: a

tool suite for validation and verification of real-time systems. In

Proceedings of the DIMACS/SYCON workshop on Hybrid systems

III : verification and control, pages 232–243, Secaucus, NJ, USA,

1996. Springer-Verlag New York, Inc.

[BO97] T. Basar and G.J. Olsder. Dynamic noncooperative game theory,

2nd ed. Journal of Economic Dynamics and Control, 21(6):1113–

1116, 1997.

[Bou06] P. Bouyer. Weighted timed automata: model-checking and games.

Electronic Notes in Theoretical Computer Science, 158:2006, 2006.

[BS89] R. Back and K. Sere. Stepwise refinement of action systems. In

Mathematics of Program Construction, volume 375 of Lecture Notes

in Computer Science, pages 115–138. Springer Berlin / Heidelberg,

1989.



140 BIBLIOGRAPHY

[BT00] O. Botchkarev and S. Tripakis. Verification of hybrid systems with

linear differential inclusions using ellipsoidal approximations. In

Proceedings of the 3th International Workshop on Hybrid Systems:

Computation and Control, HSCC ’00, pages 73–88, London, UK,

2000. Springer-Verlag.

[CDF+05] F. Cassez, A. David, E. Fleury, K.G. Larsen, and D. Lime. Efficient

on-the-fly algorithms for the analysis of timed games. In Conference

on concurrency theory, volume 3653 of Lecture Notes in Computer

Science, pages 66–80. Springer, 2005.

[CES86] E.M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verifica-

tion of finite-state concurrent systems using temporal logic specifi-

cations. ACM Transactions on Programming Languages and Sys-

tems, 8:244–263, 1986.

[Che68] N. V. Chernikova. Algorithm for discovering the set of all the so-

lutions of a linear programming problem. USSR Computational

Mathematics and Mathematical Physics, 8(6):282–293, 1968.

[Chu62] A. Church. Logic, arithmetic and automata. In Proceeding In-

ternational Congress of Mathematicians, pages 23–35, Djursholm,

Sweden, 1962. Inst. Mittag-Leffler.

[CPPSV06] L.P. Carloni, R. Passerone, A. Pinto, and A.L. Sangiovanni-

Vincentelli. Languages and tools for hybrid systems design. Found.

Trends Electron. Des. Autom., 1:1–193, 2006.

[CW98] P.E. Caines and Y.J. Wei. Hierarchical hybrid control systems:

a lattice theoretic formulation. IEEE Transaction on automatic

control, 43:501–508, 1998.

[dAFH+03] L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, and

M. Stoelinga. The element of surprise in timed games. In Proceed-

ing of the 14th International Conference con Concurrency Theory,

volume 2761 of Lecture Notes on Computer Science, pages 144–158.

Springer, 2003.

[DJW97] S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. How much

memory is needed to win infinite games? In Proceedings of the 12th

Annual IEEE Symposium on Logic in Computer Science, LICS ’97,

pages 99–110, 1997.



BIBLIOGRAPHY 141

[DMT+01] R.G. Deshpande, D.J. Musliner, J.E. Tierno, S.G. Pratt, and R.P.

Goldman. Modifying hytech to automatically synthesize hybrid

controllers. In 40th IEEE Conference on Decision and Control,

pages 1223–1228. IEEE Computer Society Press, 2001.

[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos.

In Proceeding of Hybrid Systems III, volume 1066 of Lecture Notes

in Computer Science, pages 208–219. Springer Verlag, 1996.

[EJ91] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and de-

terminacy. In Proceedings of the 32nd annual symposium on Foun-

dations of computer science, SFCS ’91, pages 368–377, Washington,

DC, USA, 1991. IEEE Computer Society.

[Far02] B. Farwer. ω automata. In Automata, logics and infinite games,

pages 3–22. Springer-Verlag, London, UK, 2002.

[Fre05] G. Frehse. PHAVer: Algorithmic verification of hybrid systems

past hytech. In Proceeding of the 8th International Workshop on

Hybrid Systems: Computation and Control (HSCC), volume 3414

of Lecture Notes on Computer Science, pages 258–273. Springer,

2005.

[GH82] Y. Gurevich and L. Harrington. Trees, automata, and games. In

Symposium on Theory of Computing (STOC), pages 60–65, 1982.

[Gra99] G. Grammel. Maximum principle for a hybrid system via singular

perturbations. SIAM J. on Control and Optimization, 37:1162–

1175, 1999.

[GZ05] H. Gimbert and W. Zielonka. Games where you can play optimally

without any memory, pages 428–442. Springer-Verlag, London, UK,

2005.

[Hen96] T.A. Henzinger. The theory of hybrid automata. In Proceedings of

the 11th Annual IEEE Symposium on Logic in Computer Science,

pages 278–292, New Brunswick, New Jersey, 1996. IEEE Computer

Society Press.

[HHM99] T.A. Henzinger, B. Horowitz, and R. Majumdar. Rectangular hy-

brid games. In Proceeding on the 10th international conference on

concurrency theory, volume 1664 of Lecture Notes on Computer

Science, pages 320–335. Springer, 1999.



142 BIBLIOGRAPHY

[HHWT95] T.A. Henzinger, P.H. Ho, and H. Wong-Toi. HyTech: The next

generation. In In Proceedings of the 16th IEEE Real-Time Systems

Symposium, pages 56–65. IEEE Computer Society press, 1995.

[HKPV95] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s

decidable about hybrid automata? In Symposium on Theory of

Computing, STOC ’95, pages 373–382. ACM, 1995.

[HM97] F.L. Heymann and G. Mayer. Controller synteshis for a class of

hybrid systems subject to configuration-based safety constraints.

Hybrid and RealTime Systems, 1201:376–391, 1997.

[HNSY92] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic

model checking for real-time systems. Information and Computa-

tion, 111:394–406, 1992.

[HPR97] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-

time systems using linear relation analysis. Formal Methods in

System Design, 11:157–185, 1997.

[HWT92a] G. Hoffman and H. Wong-Toi. Symbolic synthesis of supervisory

controllers. In Proceeding of the American Control Conference,

pages 2789 – 2793, Chicago, IL, 1992. IEEE Computer Society

Press.

[HWT92b] G. Hoffmann and H. Wong-Toi. The input-output control of real-

time discrete event systems. In Proceeding of the 13th Real-Time

Systems Symposium, pages 256 – 265, Phoenix, AZ, 1992. IEEE

Computer Society Press.

[JRLD07] J.J. Jessen, J.I. Rasmussen, K.G. Larsen, and A. David. Guided

controller synthesis for climate controller using uppaal-tiga. In

Proceedings of the 5th international conference on Formal modeling

and analysis of timed systems, pages 227–240, Berlin, Heidelberg,

2007. Springer-Verlag.

[KN93] W. Kohn and A. Nerode. Multiple-agent hybrid control architec-

ture. In Hybrid Systems, volume 763 of Lecture Notes in Computer

Science, pages 297–316. Springer, 1993.

[KO94] E. Knuth and M.J. Osborne. A course in game Theory. MIT Press,

1994.



BIBLIOGRAPHY 143

[Kop07] E. Kopczynski. Omega-regular half-positional winning conditions.

In Proceeding of 16th Computer Science Logic (CSL), pages 41–53,

2007.

[LB93] M. Le Borgne. Dynamical Systems over finite fields. PhD thesis,

Université de Rennes, 1993.

[Lew94] J. Lewin. Differential Games. Springer-Verlag, 1994.

[LLL09] J. Lunze and F. Lamnabhi-Lagarrigue. Handbook of Hybrid Systems

Control - Theory, Tools, Applications. Cambridge University Press,

Cambridge, United Kingdom, 2009.

[LY92] D. Lee and M. Yannakakis. Online minimization of transition sys-

tems. In Proceedings of the 24th annual symposium on Theory of

computing, pages 264–274, New York, NY, USA, 1992. ACM.

[Mal02] O. Maler. Control from computer science. Annual Reviews in Con-

trol, 26(2):175–187, 2002.

[Maz02] R. Mazala. Infinite games. In Automata, logics and infinite games,

pages 23–42. Springer-Verlag, London, UK, 2002.

[Mil51] J. Milnor. Games against Nature. John Wiley, 1951.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete

controllers for timed systems. In Proceeding of the 12th Annual

Symposium on Theoretical Aspects of Computer Science, volume

900 of Lecture Notes on Computer Science. Springer, 1995.

[MW99] C. Meder and W. Wonham. The TTCT tool. Personal communi-

cation., 1999.

[NYY92] A. Nerode, A. Yakhnis, and V. Yakhnis. Concurrent programs as

strategies in games. Logic from computer science, pages 405–480,

1992.

[PLS00] G.J. Pappas, G. Lafferriere, and S. Sastry. Hierarchically consis-

tent control systems. IEEE Transactions on Automatic Control,

45:1144–1160, 2000.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In

Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, POPL ’89, pages 179–190,

New York, NY, USA, 1989. ACM.



144 BIBLIOGRAPHY

[Rab72] M.O. Rabin. Automata on Infinite Objects and Church’s Problem.

American Mathematical Society, Boston, MA, USA, 1972.

[RS07] S. Ratschan and Z. She. Safety verification of hybrid systems by

constraint propagation-based abstraction refinement. ACM Trans-

actions in Embedded Computing Systems, 6, February 2007.

[RW87] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of

discrete-event processes. SIAM Journal of Control and Optimiza-

tion, 25:206–230, 1987.

[Sch86] A. Schrijver. Theory of linear and integer programming. John Wiley

and Sons, 1986.

[SL98] R. Sengupta and S. Lafortune. An optimal control theory for dis-

crete event systems. SIAM Journal on Control and Optimization,

36:488–541, 1998.

[TA99] S. Tripakis and K. Altisen. On-the-fly controller synthesis for dis-

crete and dense-time systems. In Proceeding of Formal Methods,

volume 1708 of Lecture Notes in Computer Sciences, pages 233–

252. Springer Verlag, 1999.

[Tho95] Wolfgang Thomas. On the synthesis of strategies in infinite games.

In In Proceeding of the 12th Annual Symposium on Theoretical As-

pects of Computer Science (STACS), pages 1–13, 1995.

[TLSS00] C.J. Tomlin, J. Lygeros, and S. Shankar Sastry. A game theoretic

approach to controller design for hybrid systems. Proceeding of the

IEEE, 88(7):949–970, 2000.

[Tri98] S. Tripakis. The formal analysis of timed systems in practice. PhD

thesis, Université Joseph Fourier de Grenoble, 1998.

[TW94] J.G. Thistle and W.M. Wonham. Control of infinite behavior

of finite automata. SIAM Journal of Control and Optimization,

32:1075–1097, 1994.

[TY96] S. Tripakis and S. Yovine. Analysis of timed systems based on time-

abstracting bisimulations. In Formal Methods in System Design,

pages 232–243. Springer-Verlag, 1996.

[Ver92] H. Le Verge. A note on Chernikova’s algorithm. Technical Report

635, IRISA, Rennes, 1992.



BIBLIOGRAPHY 145

[vNM47] J. von Neumann and O. Morgenstern. Theory of Games and Econ-

imic Behaviour. Princeton University Press, Princeton, NJ, USA,

1947.

[WT97] H. Wong-Toi. The synthesis of controllers for linear hybrid au-

tomata. In Proceeding of the 36th IEEE Conference on Decision

and Control, pages 4607 – 4612, San Diego, CA, 1997. IEEE Com-

puter Society Press.


