Capuano, Guglielmo (2011) STRUCTURE AND DYNAMICS OF MODEL POLYMER NANOCOMPOSITES. [Tesi di dottorato] (Unpublished)

[img]
Preview
PDF
CAPUANO_GUGLIELMO.pdf

Download (5MB) | Preview
[error in script] [error in script]
Item Type: Tesi di dottorato
Lingua: English
Title: STRUCTURE AND DYNAMICS OF MODEL POLYMER NANOCOMPOSITES
Creators:
CreatorsEmail
Capuano, Guglielmoguglielmo.capuano@unina.it
Date: 30 November 2011
Number of Pages: 103
Institution: Università degli Studi di Napoli Federico II
Department: Ingegneria dei materiali e della produzione
Scuola di dottorato: Ingegneria industriale
Dottorato: Ingegneria dei materiali e delle strutture
Ciclo di dottorato: 24
Coordinatore del Corso di dottorato:
nomeemail
Mensitieri, Giuseppemensitie@unina.it
Tutor:
nomeemail
Acierno, Domenicoacierno@unina.it
Date: 30 November 2011
Number of Pages: 103
Uncontrolled Keywords: polymer nanocomposites, silica, rheology
Settori scientifico-disciplinari del MIUR: Area 09 - Ingegneria industriale e dell'informazione > ING-IND/22 - Scienza e tecnologia dei materiali
Date Deposited: 13 Dec 2011 11:20
Last Modified: 20 Dec 2015 02:00
URI: http://www.fedoa.unina.it/id/eprint/8830

Abstract

We study the structure and linear viscoelasticity of interacting polymer-nanocomposites based on mixtures of polyethylene-oxide and fumed silica particles. The filler is dispersed within the polymer using different techniques which lead to different dispersion states. The analysis of the dynamic response of our systems, highlights the formation of a stress-bearing network above a critical volume fraction, Фc. Extending a two-phase model used to describe weakly interacting systems, we show that above Фc the melt-state elasticity of the composites arises from the independent contributions of a polymer-particle network and a viscous matrix. We also find that while Фc depends on the initial state of dispersion, the network elasticity scales with volume fraction following a universal power-law, with an exponent ν≈1.8. Such scaling law has been recently predicted for the stress-bearing mechanism governed by polymer-mediated interactions.

Actions (login required)

View Item View Item