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Introduction

S ignal acquisition is a fundamental task of most contemporary digital sys-
tems. Due to the time varying nature of most practical signals, a great
deal of adaptive and/or robust techniques as well as a fine tuning are required
to get close to optimal reconstruction performances. A fundamental results
in signal processing is the Nyquist/Shannon sampling theorem, which states
that the number of samples needed to reconstruct a signal without error is de-
termined by its bandwidth. This sampling procedure allows to transform any
bandlimited continuous time signal in a discrete time signal without any loss
of information, and at the same time, provides a direct way of reconstruct-
ing the original signal. However, there are two main problems which arise
with this sampling technique. On one hand, sampling becomes more difficult
when the frequency support of the signal spans through a larger bandwidth,
on the other hand, depending on the entropy of the source, the discrete time
signal produced by the sampling may contain redundant samples, making a
source encoder necessary to describe the signal more compactly. Interestingly,
the Nyquist/Shannon rate sampling theorem, which has dominated digital pro-
cessing in science and technology since its origins, can be surprisingly leaped
over through Compressed Sensing (CS) theory. In fact, because most signals
of practical interest admit a sparse representation in a given basis, the emer-
gent framework of Compressed Sensing (CS) [1],[2], can potentially provide
a practical solution. It exploits the underlying sparsity, like /y and /; mini-
mization techniques as well as all suitable greedy algorithms typical of the CS
literature. Recently, it has shown that [1],[2],[3],[4],[5],[6] a signal having a
sparse representation can be recovered exactly from a small set of linear, non-
adaptive measurements. This result suggests that it may be possible to sense
sparse signals by taking far fewer measurements, hence the name compressed
sensing. However, there are three principal differences between the classi-
cal sampling and the CS. Firstly, sampling theory typically considers infinite
length, continuous-time signals, while CS is a mathematical theory focused on

XV



XVi Introduction

measuring finite-dimensional vectors in R™. Secondly, rather than sampling
the signal at specific points in time, CS systems typically acquire measure-
ments in the form of inner products between the signal and more general test
functions. Thirdly, the two frameworks differ in the manner in which they deal
with signal recovery, i.e., the problem of recovering the original signal from
the compressive measurements. In the Nyquist-Shannon framework, signal
recovery is achieved through sinc-function interpolation, while, in CS, signal
recovery is typically achieved using highly nonlinear methods [7].

In recent years, CS has attracted considerable attention in areas of applied
mathematics, computer science, and electrical engineering by suggesting that it
may be possible to surpass the traditional limits of sampling theory. CS builds
upon the fundamental fact that we can represent many signals using only a few
non-zero coefficients in a suitable basis, i.e. sparse representation in a par-
ticular domain. Sparsity has long been exploited in signal processing and ap-
proximation theory for tasks such as compression [8] and denoising [9], and in
statistics and learning theory as a method for avoiding overfitting [10]. Sparsity
also figures prominently in the theory of statistical estimation and model selec-
tion [11], in the study of the human visual system [12], and has been exploited
heavily in image processing tasks, since the multiscale wavelet transform [13]
provides nearly sparse representations for natural images. The recent results
in [14] have proved insight on the theoretical bounds for the support recovery
error rate of the sparse signal, and at the same time has established a link be-
tween compressed sensing, information theory, statistical physics and random
matrix theory. However, the interdisciplinary nature of CS, as connected to in-
formation theory, signal processing, communications, algorithm design (such
as belief propagation), statistical physics and other related fields, has not been
yet fully explored. In particular, in this thesis we present the application of
CS framework in the field of Digital Holography (DH) [15],[16],[17], that is a
relatively recent interferometric technique. Holographic basic principle is the
recording of an interference pattern on a photographic plate (classical holog-
raphy) or by a charge coupled device (digital holography). In the latter case,
from the reconstructed wavefront, it is possible to manage the amplitude as
well as the phase of the optical wavefield. The capability to perform amplitude
image and phase contrast image makes DH a suitable tool in many application
fields from metrology to 3D display. Some of the applications of CS in DH
are described in [18],[19] for improvements in terms of experimental schemes,
compression and recently for holograms denoising [20]. Therefore, the thesis
is focused on the aforementioned tasks in DH with a particular attention on the
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problem of the denoising in DH for an efficient reconstruction and 3D display.

In the first part of this thesis, the CS theory is described mathematically as
well as the holographic process, then the second part considers the principal
results of the application of CS in DH. More precisely, Chapter 1 includes the
mathematical formulation of CS theory, focused firstly on the property of spar-
sity for the signals, then on the design of a sensing matrices that can be used
to recover the signals from undersampled measurements, and finally on the
noiseless as well as noisy signal recovery. In addition there is a description of
the most popular recovery algorithms that can be applied for both noiseless and
noisy signals. Chapter 2 contains the theoretical description of the full holo-
graphic process (optical and digital), from the recording to the reconstruction,
considering digital holograms recorded in both microscope and lensless con-
figurations. Using the discrete version of the Fresnel integral, the analysis of
the diffracted complex field is achieved through the in-focus numerical recon-
structions for both kind of digital holograms and the BFP reconstructions for
the digital holograms recorded in microscope configuration. It is shown also
the phase reconstructions and is proposed an algorithm of automatic search of
the in-focus reconstruction distance and BFP distance. Chapter 3 addresses
the combination between CS and DH in order to achieve a general imaging
scheme to optimize the digital recording. In particular, through the application
of the CS, we are able to recover the digital holograms using undersampled
measurements. It is also proposed an unified procedure of recovery of both
classes of aforementioned digital holograms, based on the sparsity transform
that is suitable for the different types of digital holograms, i.e. microscope
recording and lensless recording. Several examples are considered to confirm
the choice of the transform domain. In the Chapter 4 we address to the prob-
lem of recovery of the noisy digital holograms and we propose a new greedy
algorithm, based on a simple modification of the sparsity minimization algo-
rithm, that permits to achieve an efficient and robust denoising without any
prior information about the statistics of noise. Also in this case, several exam-
ple are considered to test the proposed method, which is compared with other
two denoising algorithms. In addition, display tests are performed in order to
show the effectiveness of the new denoising algorithm. Finally, upon com-
pletion of the dissertation, there are two appendices. the first one is focused
on a simple review of the Convex Optimization theory, on which the recov-
ery algorithms are based, while in the second one there is a description of the
MATLAB scripts realized to implement the algorithms for DH analysis and
recovery.






Chapter 1

Compressed Sensing

he sampling of continuous-time band limited signals is the theoretical

basis on which it has developed the digital revolution. The works of
Nyquist [21] and Shannon [22] show that the signals can be exactly recovered
from a set of uniformly spaced samples, taken at the Nyquist rate of twice the
highest frequency present in the signal of interest and, capitalizing on this dis-
covery, much of signal processing has moved from the analog to the digital
domain. Unfortunately, in many important applications, the resulting Nyquist
rate is so high that we end up with far too many samples. Therefore, despite ex-
traordinary advances in computational power, the acquisition and processing
of signals in several application areas continues to pose a remarkable chal-
lenge. Using the same concept of transform coding [23],[24], Compressed
Sensing (CS) has emerged as a new framework for signal acquisition. CS en-
ables a potentially large reduction in the sampling and computation costs for
sensing signals that have a sparse or compressible representation. While the
Nyquist/Shannon sampling theorem states that a certain minimum number of
samples is required in order to perfectly capture an arbitrary bandlimited sig-
nal, when the signal is sparse in a known basis we can reduce the number of
measurements that need to be stored. Consequently, when sensing sparse sig-
nals we might be able to do better than suggested by classical results. The
works of Candés, Romberg, Tao and Danoho [1-6] demonstrate that a finite-
dimensional signal having a sparse or compressible representation can be re-
covered from a small set of linear, nonadaptive measurements. In other word,
they claim that it may be possible to sense sparse signals by taking far fewer
measurements. In this chapter, there is a mathematical description of CS. The
first section is focused on the property of sparsity for the signals, then the de-

1



2 CHAPTER 1. COMPRESSED SENSING

sign of a sensing matrices for different applications and finally the description
of the problem of signal recovery in both cases of noiseless and noisy signals.
Finally, there is a description of the most popular algorithms able to solve the
recovery problem.

1.1 Sparse signals

Signals can often be well-approximated as a linear combination of just a few
elements from a known basis or dictionary. When this representation is exact
we say that the signal is sparse. Sparse signal models provide a mathematical
framework for capturing the fact that in many cases these high-dimensional
signals contain relatively little information compared to their ambient dimen-
sion. Mathematically, we say that a signal x, represented by a n-vector, is
k-sparse when it has at most k£ nonzeros

Y ={x: x|, <k} (1.1)

where || - ||o is the [p-norm. ¥, denote the set of all k-sparse signals. Typically,
we will be dealing with signals that are not themselves sparse, but which admit
a sparse representation in some basis W, that is an n X n matrix, and, in this
case we will still refer to x as being k-sparse, with the understanding that we
can express x as x = Wc with ||c||, < k. The vector c represent the set of n
coefficients obtained by the projections of the signal on the basis and they can
be computed as ¢; = (x,v;), ¢ = 1,...,n, where {¢;}!"_, are the vectors of
orthonormal basis.

As a traditional application of sparse models, we consider the problems
of image compression and image denoising. Most natural images are char-
acterized by large smooth or textured regions and relatively few sharp edges.
Signals with this structure are known to be very nearly sparse when represented
using a multiscale wavelet transform [13]. In a wavelet transform of a typical
natural image, most coefficients are very small. Hence, a good approximation
of the signal can be obtain by setting the small coefficients to zero to obtain a
k-sparse representation.

1.1.1 Geometry of sparse signals

Sparsity is a highly nonlinear model, since the choice of which dictionary el-
ements are used can change from signal to signal [25]. This can be seen by
observing that, given a pair of k-sparse signals, a linear combination of the
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two signals will in general no longer be k sparse, since their supports may not
coincide. Thatis, for any x,z € X} we do not necessarily have that x+z € .
The set of sparse signals Y, does not form a linear space. Instead, it consists

of the union of all possible canonical subspaces. For larger values of n

n
k
and k£ we must consider a potentially huge number of subspaces. This will have
significant algorithmic consequences in the development of the algorithms for

sparse approximation and sparse recovery.

1.1.2 Compressible signals

An important point in practice is that few real-world signals are truly sparse.
Rather they are compressible, meaning that they can be well-approximated by
a sparse signal. Such signals have been termed compressible, approximately
sparse, or relatively sparse in various contexts. Compressible signals are well
approximated by sparse signals in the same way that signals living close to a
subspace are well approximated by the first few principal components [26]. In
fact, we can quantify the compressibility by calculating the error incurred in
the approximation of a signal x by some X € ¥,

1) = min [[x — ], (1.2)

where || - ||, is the [,-norm. If x € ¥ then obviously oy ,(x) = 0 Vp.

1.2 Sensing matrices

In this section there is the description of the standard finite-dimensional CS
model. Given a signal x € R" and a measurement systems that acquire m
linear measurements, we can represent this process mathematically as

y = &x (1.3)

where ® is an m X n-matrix and y is a m-vector. The matrix ® represents a di-
mensionality reduction, i.e., it maps R" into R where typically m < n. Note
that in the standard CS framework we assume that the measurements are non-
adaptive, meaning that the rows of ® are fixed in advance and do not depend
on the previously acquired measurements. In certain settings, adaptive mea-
surement schemes can lead to significant performance gains. As noted earlier,
although the standard CS framework assumes that x is a finite-length vector
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with a discrete-valued index (such as time or space), in practice we will often
be interested in designing measurement systems for acquiring continuously-
indexed signals such as continuous-time signals or images. It is sometimes
possible to extend this model to continuously-indexed signals using an in-
termediate discrete representation. For now, we will simply think of x as a
finite-length window of Nyquist-rate samples, and we will temporarily ignore
the issue of how to directly acquire compressive measurements without firstly
sampling at the Nyquist rate. In the following subsection, we give details about
how to design the sensing matrix ® to ensure that it preserves the information
in the signal x and how can be recovered the original signal x from the mea-
surements y. Because we want consider the case in which our data is sparse
or compressible, we will see that we can design matrices ® with m < n that
ensure that we will be able to recover the original signal accurately and effi-
ciently using a variety of practical algorithms. In the following we consider
firstly a few desirable properties that we might wish ® to have and finally we
give a design procedure.

1.2.1 Null space condition

A natural place to begin is by considering the null space of ®, denoted
N(®) ={z: ®z =0} (1.4)

If we wish to be able to recover all sparse signals x from the measurements
®x, then it is immediately clear that for any pair of distinct vectors x, x’ € ¥,
we must have ®x # Px’, otherwise it would be impossible to distinguish x
from x’ based solely on the measurements y. This concept is expressed by the
following theorem

Theorem 1.1: ® uniquely represents all x € Yy if and only if N (®)
contain no vector in Y.
Proof: if ®x = ®x/, then ®(x — x') = 0 withx — x' € .

1.2.2 The restricted isometry property

When the measurements are contaminated with noise or have been corrupted
by some errors such as quantization, it will be useful to consider somewhat
stronger conditions. In [27], Candés and Tao introduced the following isometry
condition on matrices ® and established its important role in CS.
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Definition 1.1: The matrix ® satisfies the restricted isometry property
(RIP) of order k if there exists a oy, € (0, 1) such that

(1= o) lIx]13 < 113 < (1 + ) 113 (1.5)

holds Vx € ¥

If a matrix & satisfies the RIP, then this is sufficient for a variety of algo-
rithms to be able to successfully recover a sparse signal from noisy measure-
ments.

1.2.3 Coherence matrices

While the Null Space Condition (NSP) and RIP all provide guarantees for the
recovery of k-sparse signals, verifying that a general matrix ® satisfies any of
these properties has a combinatorial computational complexity, since in each

case one must essentially consider submatrices. In many cases it is

n
k
preferable to use properties of ® that are easily computable to provide more
concrete recovery guarantees. The coherence of a matrix is one such property
[28],[29].

Definition 1.2: The coherence of a matrix ® is the largest absolute inner
product between any two columns ¢;, ¢ of (P)

p(®) = max Pu9il (1.6)

1<i<i<n || ¢ill2]l 4|2

It is possible to show that the coherence of a matrix is always in the range
w(®) e [m , 1} , where the lower bound is known as the Welch bound
[301,[31].

1.2.4 Sensing matrix construction

The goal of this section is to show the different choice of sensing matrix that
satisfied the three conditions defined above, i.e NSP, RIP and Coherence. De-
spite there are well known matrices that verified the above properties as for
example the Vandermonde matrix [32], the Gabor frame generated from the
Alltop sequence [33] and more general equiangular tight frames [31] and oth-
ers. Unfortunately, in many real-world settings, these results would lead to
an unacceptably large requirement on m dimension. These limitations can
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be overcome by randomizing the matrix construction. For example, it can be
shown that random matrices will satisfy the RIP with high probability if the
entries are chosen according to a Gaussian, Bernoulli, or more generally any
sub-gaussian distribution. In addition, using random matrices to construct &
has a different benefits. It is possible to recover a signal using any sufficiently
large subset of the measurements [34]. More important is that, in practice, we
are often more interested in the setting where x is sparse with respect to some
basis . In this case what we actually require is that the product @ W satisfies
the RIP. If we were to use a deterministic construction then we would need to
explicitly take ¥ into account in our construction of ®, but when @ is chosen
randomly we can avoid this consideration.

Therefore, to recover efficiently the signal x, the much simple choice is to
take ® according to any sub-gaussian distributions and ¥ as an orthonormal
basis. In fact, in this case it can easily show that the matrix W will also have
a sub-gaussian distribution, and so provided that m is sufficiently high ®W¥
will satisfy the RIP with high probability. This property, sometimes referred
to as universality, constitutes a significant advantage of using random matrices
to construct P.

1.3 Signal recovery via /;-minimization

Now we consider a natural first approach to the problem of sparse recovery.
Given measurements y and the knowledge that our original signal x is sparse
(or compressible) in a particular basis W, it is natural to attempt to recover x
by solving the following optimization problem

X = argmin |¥x|[, subjectto x € S(y) (1.7)

where the set S(y) ensures that X is consistent with the measurements. The
objective function in (1.7) is nonconvex, therefore the research of a solution
that approximates the true minimum is an NP-hard problem. However, by
minimizing the ¢;-norm instead, the relaxation leads to the convex problem

X = argmin ||¥x]||; subjectto x € S(y) (1.8)

which makes it computationally feasible if S(y) is convex. The relaxation
is justified to the fact that, within the CS framework, it is well known that
in the absence of additive Gaussian noise, [y and [;-minimization techniques
allow perfect reconstruction of the original sparse signal. This property, in
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conjunction with the Lipschitz continuity of the [y and /; norms, guarantees,
in the presence of low-power noise, a robust performance in terms of signal
reconstruction. In the hypothesis that the constraint S(y) is convex, it can be
formulated the optimization problem (1.8) as a linear programming problem,
that is typically considered computationally tractable. More details about the
relaxation procedure and linear programming is give in Appendix A.1. Now
we consider two different formulation of the optimization problem (1.8) related
to the choice of the constraint.

1.3.1 Noiseless signal recovery

In the case in which the measurements (y) are exact and noise-free, we can
take the set S(y) as

Sly) ={x:y=2¥x} (1.9)
and the optimization problem (1.8) becomes
X = argmin ||¥x]|; subjectto y = ®P¥x (1.10)

In literature several algorithms that permit to solve the problem (1.10) in an
efficient computational time exist. In fact, this problem has been studied in
the signal analysis literature under the name Basis Pursuit (BP) [35]. Other
recent algorithms are Orthogonal Matching Pursuit (OMP) [36] and Stagewise
Orthogonal Matching Pursuit (StOMP) [37], which is a greedy algorithm sim-
ilar to OMP, but faster than it, in the sense that it requires less iterations in the
recovery process. The description of these algorithm is reported in the section
1.4.

1.3.2 Noisy signal recovery

The ability to perfectly reconstruct a sparse signal from noise-free measure-
ments represents a very promising result. However, in most real-world sys-
tems the measurements are likely to be contaminated by some form of noise.
In fact, systems which are implemented in physical hardware will be subject
to a variety of different types of noise depending on the setting. Another im-
portant noise source is on the signal itself. In many settings the signal x to be
estimated is contaminated by some form of random noise. The implications of
this type of noise on the achievable sampling rates has been recently analyzed
in [38],[39],[40]. Therefore, it is very important to consider a much real case
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of recovering in which we have a noisy signals. In this case, we can take the
set S(y) as

Sy) ={x: |y — ®¥x|, <€} (1.11)

where € is a system parameter dependent on the noise variance. Replacing this
constraint in the problem (1.8), it becomes

X = argmin ||¥x||; subjectto [y — PUx|, <e (1.12)

To solve this problem, typically it uses the Least Angle Regression (LARS)
algorithm [41] of which there is a brief description in the following section.

1.4 Algorithms for signal recovery

In this appendix there is a description of different algorithms able to solve the
convex optimization problem (1.10). First of all, it is shown how to reformulate
this problem as a LP. In fact, write it out in an equivalent form, with § = ¥x
being the optimization variable:

min |[|f]|; subjectto y = ®0 (1.13)

This can be formulated as a linear programming problem: let A = [® — P]
be the m x 2n matrix. The following LP

min 17z subjectto y = Az, z>0 (1.14)

has an optimal solution z* € R?" which can be partitioned as z* = [u* v*]
with u*,v* € R™. It is possible to show that [2] the optimal solution of
problem (1.13) is #* = u* — v* and, therefore, x* = ¥76* is the optimal
solution of the problem (1.10). Similar calculations lead to the optimal solution
also for the optimization problem (1.12)

1.4.1 Basis Pursuit

BP [35] finds signal representations in overcomplete dictionaries by convex
optimization. It obtains the decomposition that minimizes the /; norm of the
coefficients occurring in the representation. Because of the non differentiabil-
ity of the [y norm, this optimization principle leads to decompositions that can
have very different properties from the Method of Frames [42]. Because it is
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based on global optimization, it can stably super-resolve in ways that Match-
ing Pursuit (MP) [43] can not. BP can be used with noisy data by solving an
optimization problem trading off a quadratic misfit measure with an /; norm
of coefficients. It can stably suppress noise while preserving structure that is
well-expressed in the dictionary under consideration. The principle of BP is to
find a representation of the signal that solves the optimization problem (1.13).
The BP problem can be reformulated as a LP in the standard form by making
the translations given in Eq. (1.14). Several algorithms from the LP literature
as a candidate for solving the BP optimization problem. Both the simplex and
interior-point algorithms offer interesting insights into BP.

With a simple changes, the optimization problem (1.13) becomes a denois-
ing problem. It is called Basis Pursuit De-Noising [35] (BPDN), and refers to
solution of

o1
min §‘|Y—‘I>9H§+6H9H1 (1.15)

where the solution 6 is a function of the parameter e, that controls the size of
the residual. In [44] is showed that this optimization problem can be solved
using the perturbed linear programming, that is a quadratic programming, but
retains structure similar to LP.

1.4.2 Orthogonal Matching Pursuit

A family of iterative greedy algorithms are shown to have the approximate
reconstruction property, generally with small computational complexity. Such
algorithms include MP [43], OMP [29],[36] and their derivations [45],[46].
OMP iteratively incorporates in the reconstructed signal the component from
the measurement set that explains the largest portion of the residual from the
previous iteration [29]. With reference to the optimization problem (1.13) the
algorithm is

Algorithm 1 (OMP)

INPUT:

e Sensing matrix $ € R"*"
e Vector of measurement y € R™
OUTPUT:

e Signal estimated § € R"
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e Support estimated A, where K is the number of iterations
e Residual r(X) ¢ R™

PSEUDOCODE
e Initialization: r(® =y, A(®) =@

e Repeat until {stopping criteria}
o) = (g1
A) = arg max; \cgk)\
AR = A=1) 5 LRy
Pk — [q)(k)%(k)]
0" = argming ||y — ®*)0]|3
r®) =y — d®)gk)

The stopping criteria can be a fixed number of iterations or iterate until
|r®)||5 < g, with a predeterminate ¢ > 0. The conditions for proper termina-
tion involve knowledge of the signal sparsity or the noise variance to achieve
the desired denoising effect.

1.4.3 Stagewise Orthogonal Matching Pursuit

StOMP [37] aims to achieve an approximate solution to y = ®6, where the
sensing matrix ¢ comes from the Uniform Spherical ensemble (USE). It oper-
ates in S iterations, building up a sequence of approximations 69, ... (%) by
removing detected structure from a sequence of residual vectors r . r9),
Foreach s = 1,..., S, let I(*) the estimation of the locations of the nonzeros
in 0(*), (%) a formal noise level, t(*) a threshold parameter, ® () the m x |1(*)|
matrix with columns chosen using index set 1(®), the algorithm operates as fol-
low

Algorithm 2 (StOMP)

INPUT:

e Sensing matrix & € R"™*"
e Vector of measurementy € R™
OUTPUT:

e Sequence of signal estimated 69, ... 9(%)



1.4. ALGORITHMS FOR SIGNAL RECOVERY 11

e Sequence of the residual r(©), ... r(5)
e Sequence of estimates [ @, ..., 1) of the locations of the nonzeros

PSEUDOCODE
e Initialization: r(® =y, 90 =0

e Repeat until {s < S}
C(S) = @Tr(s_l)
J6) = {5 el > 1o}
16) = 1=y j(s)
(s) T LT
(0%) 0 = (‘I’1<s>‘1’1<s>> Py
r() =y — $G)gls)
si=s+1

The term (9(5)) J(s) Tepresents the approximation 6(*) supported in (%),
StOMP runs much faster than competing proposals for sparse solutions, such
as /1 minimization and OMP, and so is attractive for solving large-scale prob-
lems.

1.4.4 Least Angle Regression method

LARS [41] is a new model selection algorithm that is a useful and less greedy
version of traditional forward selection methods. Both Lasso and Stagewise
are variants of a basic procedure called of Least Angle Regression, abbrevi-
ated LARS (the final S suggesting Lasso and Stagewise). LARS is a stylized
version of the Stagewise procedure that uses a simple mathematical formula to
accelerate the computations. The steps of the LARS algorithm are listed below

e Start with all coefficients equal to zero.

e Atiteration § = 1, find the predictor most correlated with the response,
say pi1.

e At iteration S = 2 take the largest step possible in the direction of this
predictor until some other predictor, say ps, has as much correlation with
the current residual.

e At iteration 5 = 3, proceed in a direction equiangular between the two
predictors until a third variable p3
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e Repeatuntil 5 = B

Therefore, the LARS algorithm proceeds equiangularly between S — 1
predictors, i.e. along the least angle direction, until a Sth variable enters, for
s=1,...,B.



Chapter 2
Digital Holography

olography got its name from the Greek words holos, meaning whole,
H and graphein, meaning to write. It is a means for recording and re-
constructing the whole information contained in an optical wavefront, namely
amplitude and phase, and not just intensity as in photography. Dennis Gabor
invented holography in 1948 as a lensless process for image formation by re-
constructed wavefront with the aim of improving electron microscope images
[47]. Gabor’s ideas was unsuccessful in the field of electron microscopy be-
cause of practical problems but its validity in the optical field was confirmed
by other researches [48], [49]. Because of the superimposition and the poor
quality of the reconstructed images, the interest around holography declined up
to the 1960s when the development of lasers made available a powerful source
of coherent light. Holography is made of two separated processes: the record-
ing of the hologram, and the object retrieval. The first stage is accomplished
by means of a photographic film recording the interference pattern produced
by the light waves scattered by an object and a reference beam derived from
the same coherent light source, as shown in Figure 2.1 (a). Since the inten-
sity at any point in this interference pattern also depends on the phase of the
object wave, the resulting recording (the hologram) contains information on
the phase as well as the amplitude of the object wave. The second stage is
the formation of the object’s image. If the hologram is illuminated once again
with the original reference wave, as shown in Figure 2.1 (b), it reconstructs
the original object wave. Indeed, when the hologram was illuminated with the
original collimated beam, it produced two diffracted waves, one reconstruct-
ing an image of the object in its original location, and the other, with the same
amplitude but the opposite phase, forming a second, conjugate image. A ma-

13
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Figure 2.1: (a) Hologram recording: the interference pattern produced
by the reference wave and the object wave is recorded; (b) Image re-
construction: light diffracted by the hologram reconstructs the object
wave.

jor drawback of the technique proposed in [47] was the poor quality of the
reconstructed image, because it was degraded by the conjugate image, which
was superimposed on it, as well as by scattered light from the directly trans-
mitted beam. The twin-image problem was solved in [50], [51] by developing
of the off-axis reference beam technique. They used a separate reference wave
incident on the photographic plate at an appreciable angle in respect to the ob-
ject wave. As a result, when the hologram was illuminated with the original
reference beam, the two images were separated by large enough angles from
the directly transmitted beam, and from each other, to ensure that they did not
overlap. Holography became a working tool to record and reconstruct whole
wavefields both in amplitude and phase and thanks to this unique feature it
found application in numerous fields. One of the most important is the use
od holographic interferometry in the field of interferometric metrology [52],
[53]. This technique allows the measurement of the changes of the phase of
the wavefield and thus the changes of any physical quantities that affect the
phase. The idea of using computer for reconstructing a hologram was first pro-
posed by Goodman and Laurence in 1967 and then by Kronrod et al. [15], [54].
However, numerical reconstruction of imaged objects has been accomplished
quite recently [17]. The development of computer technology and solid state
image sensors made it possible to record hologram directly on charge cou-
pled device (CCD) cameras. This important step enabled full digital recording
and reconstruction of holograms without the use of photographic media, com-
monly referred to as digital holography (DH). Since then, many spectacular
applications have been demonstrated such as microscopic imaging by phase-
contrast digital holographic microscopy [55], 3D object recognition [56] and
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3D dynamic display [57]. This chapter describes the entire holographic pro-
cess by a detailed analysis of image formation in digital Fresnel holography
[58].

2.1 Hologram formation

Phenomena involved in a digital holographic process are linear processes.
Thus, it seems to be a pertinent way to search for a general relation between
object and image that includes convolution products. The main processes that
must be taken into account are the following: diffraction, interferences, spa-
tial integration and sampling by pixels, and digital reconstruction. The recon-
structed field can be written in the form of a convolution product between the
real object and the impulse response of the full digital holographic process.
Considering a reference system of coordinates {x, y}, attached to the princi-
pal surface of a real object, and a z-axis, perpendicular to this surface, that
corresponds to the propagation direction of the diffracted light beam, we have

where Fr(x,y) is the reconstructed field, F'(x,y) is the real object and
T(z,y) is the full process related to the image formation. The object surface
illuminated by a coherent beam produces the following object wavefront

F(l‘,y) :Fo(l‘,y) exXp (j¢0($,y)) (2.2)

where ¢q(z,y) is related to the roughness of the object surface and can be
modeled as uniformly distributed, i.e. ¢o(x,y) ~ U(—m, 7). Is possible that
the object is not perfectly centered in the reference set of coordinates X,y but it
is slightly laterally shifted at coordinate {xz¢, yo}. Without loss of generality,
we consider the case xg = yg = 0.

The object wavefront propagates through at distance dp, in which the ref-
erence set of coordinates is chosen to be {2, v}, and the diffracted field pro-
duced by the object is given in the Fresnel approximations [59] by

. .27dg
jexp|j=5C

O,y do) = ——g— [ [ Fl@,y)x @.3)
exp { % |(@ = ') + (y—y)’] } dady

X

where )\ is the wavelength of beam. The distance dj is called recording
distance. With a simple mathematical manipulation, we can rewrite Eq. (2.3)
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in terms of Fourier Transform (F7)
O(2',y' do) = Z(2' .y, do) FT {F (2, y)W (2, y,do)} (2.4)
with
; T le 12
Z(a',y', do) = 35 exp {27 [do + & } }
W(:U> Y, dO) = exp {j)\?TTO (:U2 + y2) }

As shown in Eq. (2.4), each optical field consists of an amplitude distri-
bution as well as a phase distribution but all detectors or recording material
only register intensity: the phase is lost in registration process. If two waves of
the same frequency interfere, the resulting intensity distribution is temporally
stable and depends on the phase difference. This is used in holography where
the phase information is coded by interference into a recordable intensity. The
diffracted field produced in Eq. (2.4) interferes with a reference wave having
spatial coordinates {ug, vr} on the plane {z’, '}

R(2',y') = agexp {j27r (uR:B' + vRy') + 70 (1", y')} (2.6)

where the terms ) (2/,y’) corresponds to aberrations of the reference
wavefront. The choice for a plane reference wave is motivated by the fact
that, if the reference wave is spherical, its curvature can be inserted in the
computation of the diffracted field [60], but if the curvature is false, this results
in a focusing error. Furthermore, in off-axis Fresnel holography, the main pa-
rameter is the spatial frequencies of the reference wave, even if it is plane or
spherical. This parameter is related to the angle between the object diffracted
wave and the reference wave (see figure).

Finally, in the interference plane, the hologram H is written as

H(a'y',do) = |0,y do)]”* + |R(«',¢/) " +
+ R, y)0(,y do) + R(2',y")O* (2, ¢/, do)
In the Eq. (2.7) we see three terms, also called diffraction order terms. The
zero order term, indicated by Q (', %/, do) is given by
2 2
Q(z',y',do) = [O(', 5/, do)|” + |R(z", ¢/)]| (2.8)

while the other two orders, noted by H+!(x/,y/, dg) and H='(2/, 4/, dp),
are called +1 order (or real order) and -1 order (or conjugate order)

H'(2'y/,dy) = R*(z',y)O(',y,do)
= ar |02y, do)|exp {jarg [O(z', 3/, do)]} x (2.9)
x exp{—j27 (ugx’ +vry') — jQ (2, y")}

2.5

2.7)
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and, it is simple to note that H~(2',y',dy) = {H* (2,3, dp)}". Fi-
nally, the Eq. (2.7) can be rewritten as

H(xlv y,a dO) = Q(x,a y/a dO) + H+1(SU/, y,’ dO) + H_l(x,a y/a dO) (210)

2.2 Digital recording

In DH, the hologram is recorded with a matrix of pixels. Each pixel induces
a sampling of the hologram and also a spatial integration due to its extended
surface. Generally, the detector includes M x NN pixels of pitches p, and p,,
each of them sized A, x A,. Therefore, the recorded hologram is [61]

Hy(kpa, lpy, do) = [H(2',y/,do) @ Ta, a, (9] 4, 1y 1D
where I1a, A, (2',7') is called pixel function
1 : ! /
a2 < A/2, [l < Ay /2
il )= SaA ] ! v 2.12
Ay (1) { 0 otherwise ( )
Therefore, we can rewritten the Eq. (2.10) in digital form as
Hp(kpxa lpya dO) = Qp(kpxa lpya dO) (213)

+  Hf (kpa,lpy, do) + H, * (kpe, Ipy, do)

where the three diffraction terms are the discrete versions of the terms given
in Eq. (2.8) and Eq. (2.9) obtained by the convolution with the pixel function
(2.12).

2.2.1 Digital holograms recorded in microscope configuration

Quantitative phase-contrast microscopy (QPM) is a highly demanding exper-
imental process used in various disciplines. Among several that can be used,
two major categories exist for full-field, quantitative phase microscopy. One of
these is DH [62], which is used, for example, for silicon microelectromechani-
cal system (MEMS) structures, for biological objects [63] and for microfluidics
[64]. The QPM is obtained conceptually by subtraction of two phase maps via
optical [65] synthetic [66] method, in a manner resembling holographic inter-
ferometry [67].

In this section it shown the recording step for a particular MEMS, reported
in Figure 2.2 (a), and for an in-vitro cell, reported in Figure 2.3 (a). In order
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to compute the phase map (that is shown in the section 2.4.3), two different
digital holograms of both MEMS (see Figure 2.2 (b,c)) and cell (see Figure 2.3
(b,c)) are acquired, in the first case in reflection mode and in the other case in
transmission mode, by means of a Mach-Zehnder interferometric microscope,
superposition unit of which is shown in Figure 2.4. The setup is composed by
the laser with wavelength A\ = 532nm, and the microscope objective (MO)
with a focal length f = 9.0mm. The CCD detector has 1024 x 1024 square
pixels, the size of which is p, = p, = 6.7m and the recording distance for
the MEMS is dy = 205mm, while for the cell is dy = 100mm. Note that, in
order to isolate the in-vitro cell under analysis, holograms of different parts of
the sample are recorded. The size of these holograms are 256 x 256 pixels.

s
-
E

.
.

|
500 um

w

Figure 2.2: (a) Microscopic photo of the MEMS. (b,c) are two
recorded holograms of (a) in different experimental conditions

In addition to the QPM, many other applications can be made of digital
holograms acquired in microscope configuration, the most of which are based
on the property of this kind of digital holograms and its numerical reconstruc-
tions. This last aspect will be clarified in the section 2.4.1.
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Figure 2.3: (a) In-vitro cell’s photo in white light. (b,c) are two
recorded holograms of (a) taken in different location
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(a)  beam (b)

Figure 2.4: Superposition unit of the microscope DH setup in (a)
transmission mode and (b) reflection mode: S, sample; BS, beam split-
ter; MO, microscope objectives.
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2.2.2 Digital holograms recorded in lensless configuration

The lensless configuration is typically used to acquire digital holograms of
macro objects. In fact no lens is needed to magnify the objects, as shown
by the acquisition setup in Figure 2.5 This kind of holograms are suitable to

SF L1
4 I
M1\ mo ! / ccb
@ - Q

Object D\|—‘
-/
L2’ PC

BS M2

Laser

Figure 2.5: Setup for recording the holograms of astronaut puppet and
Venus statuettes

holographic displays [57], that have the unique advantage of representing all
possible visual depth cues, autostereoscopically (without glasses), with both
vertical and horizontal parallax, giving an appropriate medium for unlimited si-
multaneous viewers at arbitrary viewing positions, and without the potentially
nausea-inducing accommodation-vergence rivalry inherent in modern stereo-
scopic 3D cinema. Several macro-objects can be record with this unit, depend-
ing on the dimensions of the objects under consideration. Typically it uses
a laser with visible wavelength such as A = 532nm. Instead, the recording
of objects with size of tens of centimeters is obtained through the same unit
shown in Figure 2.5 but using an infrared laser [68], i.e. A = 10.6um. In this
section two object are considered, the first one is a puppet of astronaut (Fig-
ure 2.6), about 3cm high, and the other one is a statuette of Venus (Figure 2.7),
about 20cm high, whose holograms are acquired with visible laser and infrared
laser respectively. Another difference in the used setups is the resolution of the
detectors. In fact, the recorded hologram of the astronaut puppet is composed
by 1024 x 1024 pixels, with a recording distance dy = 790mm, by using a
CCD camera with pixel size 4.4um x 4.4um, while the recorded hologram of
the Venus statuette is 640 x 480 pixels 25um X 25um in size at the recording
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distance dg = 490mm. In addition, in the recording step, a spherical reference
wave, with curvature radius r = 450mm, is used for the Venus hologram. The
reference beam, in this case, can be written as W (z, y, —r) where W (-) is the
function defined in Eq. (2.5).

Figure 2.6: (a) Photo of the puppet of astronaut. (b) is the recorded
hologram of (a)

2.3 Image formation

According to the diffraction theory, the diffracted fields in the three diffraction
orders at any arbitrary distance d from the recording plane can be computed
with (K, L) > (M, N) data points by evaluating the discrete version of Fres-
nel integral used in Eq. (2.3). Because the Fresnel transform is proportional
to a Fourier transform, as shown in Eq. (2.4), the numerical Fresnel transform
will be proportional to the Discrete Fourier Transform (DF7T). Therefore,
without loss of generality, we can write the numerical diffracted field at dis-
tance d as

Because the (DFT) operator is linear, we can replace the Eq. (2.13) in the
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Figure 2.7: (a) Photo of the statuette of Venus. (b) is the recorded
hologram of (a)

Eq. (2.14) obtaining
Fr(X,Y,d) = A(X,Y,d) + Fi1(X,Y,d) + FR'(X,Y,d)  (2.15)

where A(X,Y,d), Ft'(X,Y,d) and Fj;' (X,Y, d) are the discrete Fresnel
transform of zero order, +1 order and -1 order respectively. When the distance
d corresponds to the in-focus distance, i.e. d = —dy, the Eq. (2.15) is called
the image reconstruction. Note that, using the properties of DF T, the -1 order
can be obtained from the +1 order by the relation

FRH (XY, —d) = {FF'(-X,-Y,d)}* (2.16)

Still, the zero order term transports a redundant information about the
recorded object. Typically, it can be suppressed using different techniques.
There are several methods based on prior information about the object and are
typically iterative algorithms [69]. Other methods don’t use any information,
but in these cases the zero order term is only reduced. The most used of them
is the filter using High-pass kernel [70]. Finally, supposing that the zero order
term was reduced or suppressed and considering the Eq. (2.16), we will focus
only on the +1 order. In [58] is demonstrated that the +1 order can be obtained
as

FRUX,Y,d) = KxF(-X%, -Y%) 0T, a,(X,Y)®
® Wup(X,Y) @ Wy(X,Y) @ Wiy (X, Y)®  (2.17)
®

1) (X + )\uRd, Y + )\URd)
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This relation indicates that the reconstructed object is related to the real one
by a convolution relation with different contribution. The first term is the pixel
function, the second is due to aberrations of the reference wavefront, i.e. if
Q (') = 0 then Wy(X,Y) = §(X,Y), the third is due to the focus-
ing error, i.e. if we consider the in-focus reconstruction distance d = —dy,
Wa(X,Y) = §(X,Y), the fourth is the filtering function of the 2D (DFT)
and it is due to the finite size of the recording [71], [72], [73] and the last con-
volution term is a localization function in the reconstructed field [61]. More-
over K includes irrelevant constants and phase terms. The Eq. (2.17) can be
also written in the general form given in Eq. (2.1) by introducing the impulse
response function of the holographic process

T(X,Y) = KxIa,a,(X,Y)®We(X,Y)®
® Wa(X,Y)® Wi, (X, V) (2.18)

® 0 (X + AuRd,Y + )\URd)

that is called the resolution function of the digital Fresnel holography.

2.3.1 Noise components

The description of the image formation, given in the previous section, does not
consider the real situation of recording. In fact, in each real acquisition system,
always there are some contributions of noise that corrupt the recorded data. In
order to consider the presence of noise in digital holograms, firstly we rewrite
the Eq. (2.10) as follows

H(z',y do) = Q' 1/, do) + 2ar |O(z', ¢/, do)| cos [e(z', 4/, do)] (2.19)
where we have set
o(x',y,do) = arg [O(z',y/, do)] — 27 (qul + vRy’) -0 (x/, y’) . (2.20)

The hologram intensity is normally corrupted by a mixture of speckle noise
[741,[751,[76] ns(z’,y’), and an additive Gaussian noise n,(z’,’) and Eq.
(2.19) becomes

ﬁ(x/aylvd()) - Q(Qf/,y,,d0> +2aR|O($/7y/7d0)’ X

x cos (2’ ', do) + ns(2,y)] + na (2, y") (2.21)

Obviously, repeating the full process of the image formation on the
recorded holograms modeled by Eq. (2.21), the image reconstruction will be
corrupted by noise.



24 CHAPTER 2. DIGITAL HOLOGRAPHY

2.4 Numerical reconstruction

The digital recorded holograms are reconstructed in the image plane using Eq.
(2.22). However, to numerically manage the reconstructed field, it necessary to
compute efficiently the image reconstruction and then we compute the DFT
of the holograms using the Fast Fourier Transform (F 7 )algorithm.

Fr(K pz,Upy,d) = Z(Kpg,Upy,d)x

g 222
x ffT{Hp(kpz,lpy,d)W(kpx,lpy,d)} (2.22)

The Eq. (2.22) shows the numerical diffracted field obtained by the re-
construction with FF 7. Recalling that the size of digital recorded holograms
is M x N, while the size of the diffracted field is L x K, in general results
(K,L) > (N, M) but typically equal dimensions are used. The quantities
Pz, py are the pitches in the reconstruction plane and they are related to the
pitches in the hologram plane by the following equations

Pz = Adg

.

Nk (2.23)
Py = Mp,

In the following are computed the numerical reconstructions of the objects
shown in the sections 2.2.1 and 2.2.2. In order to show the reconstructions we
compute both the amplitude and phase maps of diffracted fields. As told in
the section 2.3, at each holograms is applied an high-pass convolution kernel
able to suppress the zero-order term. A particular considerations is necessary
for the numerical reconstruction of the hologram of the Venus statuette. As
mentioned in the section 2.2.2, this digital holograms was acquired using a
spherical reference beam and in this case the reconstruction formula, given in
Eq. (2.22), becomes

Fr(X,Y,d) = Z(X,Y,d)DFT {Hy(kps, lpy, )W (kpy, lpy, dir)} (2.24)
The reconstruction distance in Eq. (2.24) is given by djr = Tr_dd and results
that

r—d

24.1 Amplitude reconstruction

Firstly we consider the in-focus distance given by d = —dj, i.e. for the holo-
grams recorded in microscope configuration d = —205mm for MEMS and
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d = —100mm for in-vitro cell. In Figure 2.8 are shown the amplitude recon-
structions for the cases of digital holograms recorded in microscope configu-
ration.

Figure 2.8: (a,b) are the amplitude reconstructions of holograms of
MEMS, while (c,d) are the amplitude reconstructions of holograms of
in-vitro cell

Applying the relation (2.16) we obtain the in-focus reconstruction for the
-1 order at distance d = dg for both examples (Figure 2.9).

For both holograms of astronaut and Venus are repeated the same oper-
ations and their amplitude reconstructions are shown in Figure 2.10. There-
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Figure 2.9: (a,b) are the amplitude reconstructions of holograms of
MEMS with focus on the -1 order, while (c,d) are the amplitude recon-
structions of holograms of in-vitro cell with focus on the -1 order
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fore,for the hologram of astronaut, we have d = —790mm (focus on +1 order)
and d = 790mm (focus on -1 order). Instead, as has been said in the pre-
vious section, the hologram of Venus is reconstructed according to the Eq.
(2.24), therefore we consider both in-focus distance d = —490mm and curva-
ture radius of the spherical reference wave » = —450 for the +1 order, while
d = 490mm, r = 450mm for the -1 order).

Figure 2.10: (a,c) are the amplitude reconstructions of holograms with
focus on the +1 order, while (b,d) are the amplitude reconstructions of
holograms with focus on the -1 order

As shown in all amplitude reconstructions, the relation (2.16) is equivalent
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to the rotation of 180" of the complex reconstructed fields. Finally, exist an-
other digital reconstruction distance for the hologram recorded in microscope
configuration exist, called Back Focal Plane (BFP) distance, that has a great
interest in several applications [77],[78]. At this distance, the complex wave-
field is proportional to the 77 F(-,-) of the complex amplitude of the wave
at an input plane, regardless of its distance d from the lens according to the
equation [79]

XY
9(X,Y,dprp) = SiSqF (/\f, >\f> (2.26)

where S; = exp { jm (X2 +Y?) %} is a phase factor depending on d,
S; = /\]—f exp {— j47r§}. and f is called the focal length. For the considered
examples, it results dgpp = —615mm for the MEMS and dgpp = —425mm
for the in-vitro cell. In Figure 2.11 are reported the amplitude BFP recon-

structions for both cases in which the terms that assume the minimum spatial
occupation are the +1 orders.

Figure 2.11: (a) is the amplitude BFP reconstructions of holograms of
MEMS, while (b) is the amplitude BFP reconstructions of holograms
of in-vitro cell



2.4. NUMERICAL RECONSTRUCTION 29

2.4.2 Auto-focusing

The searching and recovery of the correct in-focus distance for the +1 order can
be cumbersome and time-consuming for dynamic measurements or scenes in
which hundreds of holograms are recorded and where the focus can change in
each holographic exposure. Furthermore, the evaluation of the correct in-focus
reconstruction distance is subjective, as it is usually judged by the observer. In
fact, not always the value of recording distance dy is available. When the nu-
merical reconstruction is computed at distance d # —dj, in the Eq. (2.17),
results Wy(X,Y) # 6(X,Y), i.e. an out-focus numerical reconstruction. Dif-
ferent strategies are necessary to detect the correct focal plane according to
the kind of object under investigation and the adopted configuration, i.e., pure
phase objects [80], in-line holography [81], scanning holography [82], or for
detecting depth of objects in multiple planes [83]. Moreover, an algorithm that
maximizes a sharpness metric related to the sparsity of the signal’s expansion
in distance-dependent waveletlike Fresnelet bases has been found in DH [84]
The most popular algorithms to estimate the in-focus distance [85] exploit the
cumulated edge detection to quantify the image sharpness. To this aim, the
total sum of the gradient, the Laplacian, or the variance of gray-value image
distribution is calculated for each distance considered and the maximum value
is computed. It is interesting to note that all the methods mentioned have sev-
eral local maxima points in the range of searching, that can produce a wrong
convergence during the optimization stage. Recently [86] an estimation algo-
rithm for the in-focus distance, based on the contrast texture measure model
[87], is proposed in order to overcome the wrong convergence of the other well
known methods. As a measure of contrast, is an approximation of the Tamura
coefficient is used [88]

_ [e@)
Cs = T (2.27)

where o(I) and (I) represent the image gray-level standard deviation and
mean, respectively. The “image”, in this case is represented by the numerical
reconstruction of hologram, computed at a particular distance J. This method
works well for digital holograms recorded in lensless configuration, while for
the digital holograms recorded in microscope configuration it is able to find the
BFP distance. The optimization problem for the computation of the in-focus
distance is the following
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d = argmax Cy subjectto § € A (2.28)

where A is the interval of the research. The application of this algorithm on
the astronaut and MEMS is showed in the Figure 2.12.
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Figure 2.12: Results of the autofocusing algorithm for the estimation

of the in-focus distance for the astronaut (a) and the BFP distance for
the MEMS (b)

It is possible to note that, even if you chose a range of research that does
not belong to the correct in-focus distance, it can easily understand how to shift
this range by increasing/decreasing the coefficient. In fact, if the coefficient in-

creases, the right extreme must be extended, while, if the coefficient decreases,
the left extreme must be reduced.
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2.4.3 Phase reconstruction

Finally, in order to complete the analysis on the numerical reconstruction of
holograms, we consider the retrieve of the phase map by the subtraction be-
tween a digital hologram and its reference holograms, in the Figure 2.13 are
shown the phase reconstruction obtained by the holograms of MEMS and in-
vitro cell reported in Figure 2.2 and Figure 2.3.

Figure 2.13: (a) is the phase reconstruction of the hologram of MEMS,
while (b) is the phase reconstruction of the hologram of in-vitro cell

In order to remove the 27 ambiguity, that in the Figure 2.13 are represented
by the spatial jump form black to white and viceversa, the unwrapping process
[70], [89] is computed. Obviously, the -1 order cannot be used for phase map
analysis because is out of focus. Therefore, the unwrapping algorithm is ap-
plied only on the spatial region in which there is the +1 order. In Figure 2.14 is
reported the result of the unwrapping applied on the phase maps in Figure 2.13

Figure 2.14: Unwrapped phases of holograms of MEMS (a) and in-
vitro cell (b).
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The phase errors occurred in Figure 2.14(a) are caused by the unwrapping
algorithm that is not able to correct all the phase jumps.



Chapter 3

Digital holograms recovery
using CS

igh resolution holography typically involves dense data acquisition.

Several fields of research aim to reduce the amount of recorded data
limiting, for example, the acquisition in the area where is present the most
information about the signal [90], or using sample illumination [91]. How-
ever, these methods suffer from being image-content dependent for a success-
ful implementation. In the recent years, the sensing problem was performed
in terms of CS, because, as told in the previous chapters, it is independent
of the image content and does not need any feedback loop during the acquisi-
tion. The application of CS paradigm in DH is enveloped through two different
frameworks. The first framework refers to a noiseless scenario where the CS
paradigm is used as a compression method for digital holograms in order to
reduce the stored data. In fact, the possibility to recover the sparse signals us-
ing few noiseless measurements can be used for represent a digital holograms
from few pixels value achieving compression factor around 10-15 preserving
all of the information obtained in the recording step. Note that CS is a loss-
less compression technique that allow to reconstruct perfectly the signal if the
number of sample is higher that 2k where k£ is the sparsity of the signal (see
Eq. (1.1)). However, other recently lossy compression techniques permit to
achieve a compression factor much higher the CS, as shown in [92]. The sec-
ond framework consider a noisy scenario where degraded measurements at
high noise levels in the case of holographic microscopy in low-light condi-
tions. In most of the relevant practical scenarios the knowledge of the noise
statistics is not or only partially available. In all these scenarios CS can be

33
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to use as a powerful method to retrieve the digital holograms as also shown
[18],[19] thanks to the well-known Lipschitz continuity of the reconstruction
method which make the reconstruction algorithm designed for the noiseless
measurements robust with respect to the noise. The advantage of using typi-
cal CS reconstruction technique instead of the classical bayesian approach is
that CS algorithm do not require knowledge of the noise statistics and this
make them extremely robust with respect to imperfect knowledge of the noise
statistics. Thanks to its robustness to the noise the typical CS reconstruction
algorithm can be also used directly as denosing algorithms without exploring
its compressing aspect. Until now, the use of CS in DH has been formulated
only for the microscopy case [18],[19], without consider other kind of possi-
ble recorded objects as, for example, the digital holograms recorded in lensless
configuration, described in the section 2.2.2. This chapter describes the results
about the application of CS framework in DH as a reconstruction method from
randomly undersampled measurements. Therefore, we consider the sensing
problem of noisy data for both digital holograms recorded in lensless configu-
ration and digital holograms recorded in microscope configuration proposing a
new unified general scheme of the recovery, in order to optimize the recording
step. The case of noisy holograms recovery for the optimization of the numer-
ical reconstruction, without consider undersampled measurements but the full
recording ones, will be discussed in Chapter 4.

3.1 Nyquist/Shannon sampling theorem in DH

As shown in section 2.2, the recording process is a sampling of an interference
pattern consisting of spatial frequencies, the highest of which is given by the
largest angle between object and reference wave. The limited resolution of the
CCD chip and similar digital devices decides the maximum frequency allowed
for sampling and severely restricts the experimental set-up configuration. Ac-
cording to the Nyquist/Shannon sampling theorem [21],[22],[59],[93] each pe-
riod must be recorded by at least two detector elements. If A is the fringe spac-
ing and d,, the detector pitch (centre-to-centre spacing between neighbouring
detector elements) in one transversal direction, then

od, < A (3.1)
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A geometrical evaluation of the angle 6 between the object and the reference
wave is
A

Combining Egs. (3.1) and (3.2) gives

0 < 2arcsin <2;\p> (3.3)

where f; = ﬁ is the sampling frequency. This means that, the angular extent
of the object, Gpmax, in Figure 3.1, must not exceed this limit. In order to use the
entire available bandwidth of the recording device, the equal sign in Eq. (3.3)
should be used. Another geometrical evaluation shows that if the distance d
between the CCD and the object is

2d
do ~ TP (3.4)

then the maximum bandwidth is obtained without violating the sampling theo-

rem. D is the transversal size (height or width) of the object, and small angular
values are assumed according to Eq. (3.3)

dy

ccp |—mmm

Optical
D O nax axis

ORBJECT

Figure 3.1: Schematic view of the angular extent of the object: 0 is
the angular extent of the object and the maximum angle between object
and reference wave; dj is the distance along the optical axis between
the CCD chip and the object; D is the transversal size of the object,
normal to the optical axis.

Using the CS paradigm it is possible to reduce the limit imposed by Eq.
(3.3). In fact, as consequence of CS theory, when a generic signal x € R"
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admits a sparse representation, is possible to reduce the number of samples,
needed to reconstruct exactly the signal, below the sampling theorem’s limit.
In the following sections, we apply the CS framework on digital holograms
recorded in both lensless and microscope configurations, providing an unified
procedure, able to recover the numerical reconstruction from randomly under-
sampled measurements for both cases.

3.2 Sparse representation of digital holograms

In order to obtain an unified recovery algorithm, we must find a suitable sparse
representation available for digital holograms recorded in both lensless and mi-
croscope configurations. Recalling that, in the field of image processing, CS
exploits the fact that most images present some compact structure and redun-
dancy and was previously reported in magnetic resonance imaging acquisition
[94] and single-pixel imaging [95]. In these cases the representation of the
image in a sparse domain is obtained principally by a multiscale wavelet trans-
form and the computation of image gradient. The same approaches are used in
DH microscopy. Therefore the sparse hologram is obtained from wavelet trans-
form or gradient computation. Figure 3.2 shows an example of the wavelet
transform of the digital hologram reported in Figure 2.2(b), and the gradient of
its in-focus reconstruction, according to [18].

Figure 3.2: Wavelet transform (a) and gradient image (b) for the
MEMS. The gradient is computed on the magnification of the +1 order.
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Note that, the wavelet transform, computed using 5 decomposition level,
don’t guarantees an high degree of sparsity, instead the gradient image ob-
tained from the magnification of +1 order of MEMS gives a better results.
Moreover, the gradient does not work the same way for the digital holograms
recorded in lensless configuration. In fact, as shown in Figure 3.3, there are a
very few zero values, and then, for this kind of digital holograms, cannot be
applied the recovery algorithm reported in [18].

Figure 3.3: Gradient image of astronaut (a) and Venus (b).

However, exists other ways to represent in a sparse form the digital holo-
grams. First of all, we must consider that each real data acquisitions are corrupt
by noise, then we consider the sparsity for the noiseless data. From this consid-
eration and recalling that a generic digital hologram presents three diffraction
orders in the Fresnel domain, the much intuitively way to obtain the sparse
form of the digital holograms is to use the numerical reconstruction.

Figure 3.4 shows a general scheme of image formation for the three diffrac-
tion orders and is well clear that the noiseless numerical reconstruction is a
sparse signal. In addition, it is considered always the situation of zero-order
suppression through high-pass convolution kernel that permits to achieve a
much higher degree of sparsity. Therefore, in the follow is considered the
Fresnel transform as a basis matrix for the CS.
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Figure 3.4: Schemes of reconstructed field in off-axis configuration
without overlap (a) and with overlap (b)between the diffraction orders

3.3 Recovery of digital holograms using CS

In the section 1.2.4 was present a guideline to choice the sensing matrices
for signal recovery optimization. Obviously, the same considerations can be
adopted for digital holograms, but the size of sensing matrix depend of the
sparsity transform used. In fact if it uses the /; minimization of discrete wavelet
transform (DWT) or gradient function, that is called Total Variation (7))
minimization, 7V(x) = ||grad(x)||1, the choice of number of measurements
(row dimension m of sensing matrix ®) becomes a degree of freedom. In addi-
tion, because the recorded digital holograms are corrupted by noise, we should
use a noisy recovery signal optimization given in Eq. (1.12). The presence of
the parameter € in this optimization problem becomes another degree of free-
dom because it depends of the noise variance, that is an additional information
that not always is available. Therefore, in the first, consider the noiseless for-
mulation given in Eq. (1.10) and rewrite it as a holograms recovery problem.
Given the measurements h = VCC(I:I), that is a M N-vector obtained from the
recorded digital hologram H, which has dimension M x N,

Vv = argmin ||v||; subjectto ®v = dFsh 3.5

with v is the sparse representation of the digital hologram through the Fresnel
transform F, valued at distance §. In order to solve the optimization problem
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(3.5), we use a solver called ”SolveBP.m” that is a MATLAB script implement-
ing the BP method, available online at website http://sparselab.stanford.edu/.
The algorithm is applied on all examples given in sections 2.2.1 and 2.2.2.
Several values of dimension m of sensing matrix are considered, each of them
chosen as a fractions of the original data size n = M N. In particular, we
choose m = {n/16,n/32,n/64}. In the next two sections are shown the re-
sults of the recovery problem from undersampled measurements given in (3.5),
while the case of noisy measurements is treated in the following chapter.

3.3.1 Recovery of lensless holograms

For this kind of digital holograms, the Fresnel transform calculated at in-focus
distance, i.e. = d, is chosen as basis matrix for CS recovery. The recov-
ered amplitude reconstructions of the digital holograms of both astronaut (Fig-
ure 3.5) and Venus (Figure 3.6) are computed at different values of m as indi-
cated in the previous section. In order to quantify the effectiveness of recov-
ered numerical reconstructions, is computed the residual images between the
recovered undersamples ones and original ones and they are shown in the Fig-
ure 3.5(b,d,f) and Figure 3.6(b,d.f). Also we compute a numerically residual
as

(3.6)

where h is the recorded digital hologram while h is the recovered one. The
Table 3.3.1 shows a summary of the residual £ computed for both astronaut
and Venus.

‘ m=n/64 ‘ m=n/32 m=n/16
0.5787 | 0.2623 | 0.0299

Astronaut

Venus 0.6461 | 0.1929 | 0.0267

Table 3.1: Calculation of the residual E for the astronaut and Venus
holograms
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Figure 3.5: Results of recovery algorithm on the astronaut with m =
n/64(a), m = n/32(c) and m = n/16(e) and relatively residual images

(b,d.fH)
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Figure 3.6: Results of recovery algorithm on the Venus with m =
n/64(a), m = n/32(c) and m = n/16(e) and relatively residual images

(b,d.f)
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3.3.2 Recovery of microscope holograms

Also in this case, we set § = d and the results of the recovery algorithm is
shown in the Figure 3.7 and Figure 3.8 for MEMS and in-vitro cell respec-
tively. However, we consider only the holograms reported in Figure 2.2(b) and
Figure 2.3(b) because the other two holograms are the reference holograms of
these ones.

Observing the figures is clear that for the holograms recorded in micro-
scope configuration, don’t get the same quality in terms of recovery with re-
spect the lensless ones and this is related to the fact that the degree of sparsity of
these numerical reconstructions is lower than the lensless case. In other word,
with the same ratio 7, do not get a perfect reconstruction from undersampled
measurements. we could increase the value of m in the recovery stage, but we
can overcome this limitation, applying the recovery algorithm on the BFP re-
constructions. In fact, as has been said, in this particular reconstruction plane,
there is the much higher degree of sparsity. After the recovery in the BFP,
the in-focus reconstructions are computed and compared with the equivalent
ones, obtained by the recovery in the image plane. The Table 3.3.2 shows this
comparison in terms of the residual given in Eq. (3.6)

Figure 3.9(b,d) as well as the values of residual ¥ computed for the BFP
reconstructions demonstrate the improvements obtained.

| m=n/64 | m=n/32 m=n/16 m=n/16 BFP
MEMS | 0.8032 | 0.5605 | 0.2216 | 0.0366

Cell 0.9371 | 0.7478 | 0.3591 | 0.0618

Table 3.2: Calculation of the residual E for the MEMS and in-vitro
cell holograms
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Figure 3.7: Results of recovery algorithm on the MEMS with m =
n/64(a), m = n/32(c) and m = n/16(e) and relatively residual images

(b,d.f)
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Figure 3.8: Results of recovery algorithm on the in-vitro cell with m
=n/64(a), m = n/32(c) and m = n/16(e) and relatively residual images

(b,d.fH)
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Figure 3.9: Results of recovery algorithm on the MEMS (a) and in-
vitro cell (c), with m = n/16(e) in the BFP and relatively residual im-
ages (b,d)






Chapter 4

Denoising of digital holograms
using CS

As has been said in the previous chapters, in most real-world systems the mea-
surements are likely to be contaminated by some forms of noise. The perfect
solution of the noisy signal recovery problem can be obtained using the for-
mulations given in Eq. (1.12) or the BPDN given in Eq. (1.15), in which both
recovery of undersampled measurements and denoising is realized. In order to
obtain a good reconstruction from noisy measurements the parameter € need
to be optimized based usually on the noisy statistics (typically second order
statistics) However in most practical scenarios, the statistic characterization of
the noise isn’t available and typically a way to obtain such knowledge is to
estimate the statistics from several measurements of the signal. However, this
approach requires that the noise is an ergodic process. In most cases this as-
sumption is not always verified. Furthermore, in our specific setting, i.e. in
DH, the digital holograms typically are corrupted by two the components of
noise, speckle noise, that is a multiplicative noise, and an additive Gaussian
noise (see Eq. (2.21)), hence getting a correct estimate of the second order
statistics of the noise is not realistic since we do not knowledge of the second
order statistics of the signal and of the speckle noise, and greedy CS recon-
struction algorithms, like OMP and StOMP, analyzed in Chapter 3, where the
prior knowledge of the noise in not required, reveal as a powerful method to
retrieve the digital hologram from its noisy measuraments. In this chapter, we
focus on the noisy scenario described above and we propose a new greedy al-
gorithm based on a modification of recovery problem for noiseless data given
in Eq. (1.10), without any prior knowledge or estimation about the statistics of

47
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noise. Since the compression properties of the CS techniques applied to DH
has been already analyzed numerical in Chapter 3, in this chapter we only focus
on the denoising capability of the CS algorithms and on their robustness with
respect the lack of knowledge of the noise statistics. This is equivalent to as-
sume the sensing matrix equal to the identity matrix. The proposed algorithm
is tested in several cases for both 1D data and 2D data (digital holograms) and
compared with two denoising algorithms: a recently greedy algorithm based
on CS, described in [96], and a classical Fourier filtering [74]. In the first case,
the comparison, given only for 1D signals, starts with the same hypothesis,
in the sense that both greedy algorithms work without prior knowledge about
the statistics of noise. In the second case we compare the proposed method,
applied on the digital holograms (2D test case), with a Discrete Fourier Fil-
tering (DFF) that is based on the perfect knowledge of the signal bandwidth.
In addition, a reality display of the results obtained on the digital holograms
recorded in lensless configuration, and the comparison with the original noisy
holograms, are realized and the details of the setup for 3D display is described.

4.1 Denoising method

Classic filter-based methods, as Fourier domain denoising [74] and wavelet do-
main denoising [9], have extensively been studied, but they can be applied only
to some transform domains. Moreover, such denoising methods are greatly in-
fluenced by the change of signal parameters like frequency, amplitude, etc.
Great effort has been spent on removing principally the speckle noise in dig-
ital holography [75] and speckle interferometry [76]. In order to effectively
overcome the above-mentioned shortcomings of these denoising methods, it
is relevant to design a reconstruction algorithms which are robust even in the
presence of moderate or high-power noise level. The CS paradigm can be used
as a denosing technique as demonstrate by BPDN or LARS method. The op-
timization problem, formulated for noisy data is given in Eq. (1.10) but it is
based on the knowledge of the noise variance. This information not always
is available and a previous estimation of the variance is necessary to obtain a
good results using the aforementioned methods. Recently [96], an interesting
and very simple procedure, based of an iterative noiseless recovery using the
BP algorithm, has been proposed in order to suppress the zero-mean additive
noise. Consider a signal x written as X = X 4+ w, i.e. composed by a sum of
an ideal noiseless signal X and a zero-mean additive noise w. Let ¥ the basis
matrix such that ¥x is a sparse signal and let ®;,¢ = 1,..., K several m x n
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random sensing matrices. The denoising algorithm proposed in [96] consists
of two steps:

e Compute X;,7 = 1,..., K as a solution of the noiseless recovery prob-
lem give in Eq. (1.10) using ®;

%X; = argmin ||¥x]|; subjectto y; = ®;¥x 4.1)
where y; = ®,¥x.
o The ¢-th recovered signal can be written as
X; =X+ Wy, 4.2)

where w; is a recovered noise. Therefore the denoised signal is given by

K
1 A | .
Xden:EZXi:X-f-EZWi 4.3)
i=1 i=1

Is clear that, when E{w} = 0, the term 7 SOK | Wi goes to zero when
K increase.

Essentially, this algorithm simulates several acquisitions of a signal cor-
rupted by zero-mean additive noise. Although this technique is very interest-
ing, suffers from the problem that, to get a good denoising many simulations
are needed, i.e. K must be very large. In addition, the recovered signal at each
iteration, will be not exactly the signal given in Eq. (4.2), because the recovery
problem (4.1) is optimal for the noiseless data. In other word, there will be a
distortion of the denoised signal in Eq. (4.3) that is added to the approximation
given by the finite dimension of K. To overcome these limitations, we have
developed a new greedy algorithm [20] that produces an high efficient and ro-
bust denoising with a single noiseless recovery algorithm’s execution, using
a particular sensing matrix. In fact, simply placing ® = I, in the noiseless
recovery method in Eq. (1.10), and solving it, is possible to obtain an accurate
and robust denoising of a generic signal x corrupted by a zero-mean additive
noise as well as a multiplicative noise. It is easy to show that the identity ma-
trix satisfied the three conditions defined in the chapter 1, i.e. NSP, RIP and
Coherence, and therefore it is a correct sensing matrix. Also note that it is a
square matrix, i.e. m = n. This consequence of the choice is compatible with
the fact that do not want to recover a signal with a few measurements but clean
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up the signal from noise. Therefore, given a measurement X, the denoising
optimization problem is

Vden = argmin ||v||; subjectto ¥X =v 4.4)

where v is a transform of the noisy signal, with ¥ chosen so that the trans-
formed ideal noiseless signal is sparse. The algorithm that will be used to
solve the denoising problem (4.4) is the StOMP algorithm using the solver
”SolveStOMP.m”, available online at website http://sparselab.stanford.edu/.

4.1.1 1D test case

Now consider an example of a sinusoidal signal f(¢) = sin(207t), with
t € [0,1], that is a sparse signal in the Fourier domain. It is corrupted by a
zero-mean additive Gaussian noise n(t) with standard deviation o = 0.2. Both
the method enveloped in [96], that we call Iterative Greedy Algorithm (IGA)
and the method given in Eq. (4.4), called Identity Sensing Matrix Greedy Al-
gorithm (ISMGA), are tested on the noisy signal. For the IGA we use 1000
iterations. Observing the Figure 4.1, is clear that both method give a good

Noiseless signal Noisy signal
a b 1
05 0 5
0 o]
-0.5
05
1
Y81 6z 03 04 05 06 07 08 88 1 0 0.2 0.4 0.6 0.8 1
Estimated signal with IGA Estimated signal with ISMGA
1 1
c d
0.5 0.5
0 0
05 -0.5
4 A i
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 4.1: Results of the denoising algorithms for 1D example. (a)
is the noiseless signal f(¢), (b) is the noisy signal corrupted by zero-
mean additive Gaussian noise with standard deviation ¢ = 0.2. (c,d)
are the recovered signals form IGA and ISMGA respectively.

results in terms of denoising, but the IGA is worse. This is caused by the
two aforementioned limitations on the value of the number of iterations K
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and the intrinsic distortion as a consequence by the application of the noise-
less recovery algorithm on the noisy data. The ISMGA is obviously more
efficient in terms of the computation time, because it is a one-shot execution,
and it produces a small distortion then the method (4.1) because it considers
all measurements through the identity sensing matrix. The final distortion is
obtained by calculating mean squared error (MSE) between the noiseless si-
nusoidal signal f(¢) and the recovered ones, results MSEjga = 0.1707 and
MSE;smga = 0.1437.

4.2 2D case: denoising of digital holograms

Now we apply the ISMGA on the digital holograms considered in the sec-
tions 2.2.1 and 2.2.2. We solve the denoising optimization problem given in
Eq. (4.4) replacing the measurement with h and the sparse transform with the
Fresnel transform F's. The problem optimization becomes

Vien = argmin |v||; subjectto Fsh=v (4.5)

As has been shown in the chapter 3, the distance of reconstruction ¢ is different
for the examples considered. In fact, because the numerical reconstruction of
digital holograms recorded in microscope configuration has the higher degree
of sparsity in the BFP, for this kind of holograms we set § = dgprp, while
for digital holograms recorded in lensless configuration the best choice is the
plane of focus, i.e. for the astronaut 6 = d and for Venus § = T;dd. This last
setting is related to the fact that the digital hologram of Venus was recorded

using a spherical reference wave of curvature r.

4.2.1 BFP reconstruction optimization

Consider again the digital holograms recorded in microscope configuration
shown in section (2.2.1). We apply the ISMGA for both digital hologram of
the object (MEMS and in-vitro cell) and its reference hologram. The results of
the denoising algorithm are show in Figure 4.2 and Figure 4.3

Is important to note that, it seems that some areas of noise in the BFP
reconstruction of in-vitro cell have not been suppressed by the algorithm but it
is a false sense. In fact these areas that seems noise are the residual zero-order
that high-pass kernel is not able to remove, so it’s part of the useful signal for
the algorithm. The denoised holograms are obtained by the back propagation,
of the denoised complex field, in the hologram plane, using Eq. (2.22) with
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Figure 4.2: Results of the ISMGA denoising (b,d) on the holograms
of MEMS (a,c)
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Figure 4.3: Results of the ISMGA denoising (b,d) on the holograms
of in-vitro cell (a,c)
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d = dprp and pixels pitch according to the Eq. (2.23). Finally the numerical
reconstructions at the in-focus distance is computed. The comparison between
the original in-focus reconstructions and the denoised ones are given for one of
the holograms for both MEMS and in-vitro cell and are showed in Figure 4.4

Figure 4.4: Results of the ISMGA denoising (b,d) on the holograms
of MEMS (a) and in-vitro cell (b) in the in-focus plane

Finally, we consider again the computation of phase maps, as previous
show (section 2.4.3). As show in Figure 2.13 (a), the unwrapping process ap-
plied on the phase reconstruction of MEMS was not able to remove all of phase
jumps. Instead, computing the phase map with the denoised holograms of
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MEMS, the phase jumps are eliminated. This means that, the ISMGA helped
the unwrapping procedure, as shown the Figure 4.5.

Figure 4.5: Unwrapped phase of MEMS without denoising (a) and
after ISMGA denoising (b)

4.2.2 Fresnel reconstruction optimization

For digital holograms recorded in lensless configuration, consider the ISMGA
in which the in-focus distance for the +1 order is placed. The results of the
denoising algorithm are shown in Figure 4.6 for the astronaut puppet and Fig-
ure 4.7 for the Venus statuette.

Also in this case, the denoised images present the residual of zero-order
suppression.

4.3 3D holographic display

The numerical reconstruction of holograms recorded in lensless configuration
can be either performed numerically for a 2D screen or for display in 3D by
a spatial light modulator (SLM) [97], [98], [99]. Since the hologram can be
numerically transformed [100] to change the distance at which it will appear
in focus in the reconstruction process, an observer will see a 3D scene in both
numerical and optical reconstructions, the last one using a SLM device [57].
Figure 4.8 describes the set-up used for the optical projection of the 3D
scene. We use a DPSS laser emitting at A = 532nm. The laser beam is ex-
panded in such a way as to obtain a convergent beam that impinges on the
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Figure 4.6: Original numerical reconstruction of the astronaut (a) and
denoised one(b)

Figure 4.7: Original numerical reconstruction of Venus (a) and de-
noised one(b)
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Figure 4.8: Set-up used for the optical projection of the 3D scene;
MO: microscope objective, SF: spatial filter, L: lens, BS: beam splitter,
SLM: spatial light modulator, M: mirror.

SLM-LCOS (PLUTO-by Holoeye, 8um pixel pitch) that displays the holo-
gram. The real images are projected onto a scattering screen at a certain dis-
tance d from the SLM and, then, acquired by a camera. The distance in which
the projection goes in-focus can be different with respect the numerical in-
focus distance because the physical parameters of SLM (like pixel pitch or
wavelength) differ, in general, from the recording parameters. However it is
possible to compute exactly the distance d as a function of these changes [57].
The aim of this section is to demonstrate that the ISMGA produces an improve-
ment of the quality of the display as well as of the numerical reconstructions
shown in section 4.2.2. Therefore the original recorded holograms of astronaut
and Venus and the denoised ones, obtained simply by hg.,, = Fglvden, i.e.
the back propagation of the denoised complex field in the hologram plane, are
posed as input of SLM and the in-focus projections are acquired. The recorded
projections are showed in Figure 4.9

The projected holograms shows that the ISMGA denoising increases the
quality also of the optical reconstruction. In fact, in this case, the concept of
quality is related to the amount of laser light that reconstructs the object. A
quantitative analysis about the effectiveness of the ISMGA denoising for both
numerical and optical reconstructions is give in the following section.
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Figure 4.9: Projections of lensless holograms using SLM. (a) and (c)
are the magnification of the +1 order projections of the original holo-
grams, while (b) and (d) are the projections of the denoised ones.
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4.4 Analysis of results

In order to quantify the benefits introduced by the ISMGA denoising, two dif-
ferent parameters of efficiency are defined:

e The signal to distortion ratio (SDR) defined as

SDR = NHTHz (4.6)
t-1],

where | - ||2 is the £5-norm, I = ‘Fdﬁ} is the amplitude of the original

in-focus digital reconstruction and I= ‘Fdﬁ‘ is the processed one.

e The measure of contrast given by Eq. (2.27), where I in one case is the
amplitude in-focus digital reconstruction of original hologram and in the
other cases is the amplitude of the processed one.

The ISMGA denoising is compared with the classical DFF [74], that is a
well known denoising technique. For digital holograms, this method consists
into numerically compute the propagation from the discrete hologram plane
to the discrete Fourier planed. Then, the Fourier plane data are filtered and
inverse discrete Fourier transformed to the image plane.

Table 4.1 and Table 4.2 report the computation of the two parameters of
efficiency for the cases under analysis. In particular, for MEMS and in-vitro
cell, it consider only one of the two cases for each one.

DFF | ISMGA
Astronaut | 1.1171 | 2.3691
Venus 1.1126 | 4.6181
MEMS 1.0172 | 3.8394
Cell 1.2427 | 6.2163

Table 4.1: Calculation of SDR

These results show that the ISMGA denoising provides gains both in terms
of SDR and image contrast C' and this shows its effective efficiency and robust-
ness. Finally, in order to evaluate the improvement of projections in the display
test, we compute the percentage increase of intensity, GG, for the recorded pro-
jections reported in Figure 4.9
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Noisy hologram | DFF | ISMGA

Astronaut | 1.2581 1.8694 | 2.5757
Venus 1.4489 2.2017 | 4.8880
MEMS 1.0389 1.6584 | 2.1905
Cell 1.8801 2.8024 | 3.1676

Table 4.2: Calculation of contrast C

S -1
o=t ’y)ESR( _ ) 4.7
Z(z,y)GSRI

where SR means signal regions, i.e. only the +1 order. For the puppet of
astronaut we have G' ~ 31%, while for the statuette of Venus results G ~ 16%,
then provides the improvement also in the display step.



Conclusions

In this thesis, the CS framework has been considered as a new methodology of
signals recovery. In particular, has been described how to recover a signal that
admits a sparse representation in a suitable transform domain from undersam-
pled measurements, and how to overcome the limit imposed by the sampling
theorem for this class of signals. We are focused on the property of sparsity
for the signals, the design of the sensing matrices for different applications
and the description of the problem of signal recovery in both cases of noiseless
signals and noisy signals. Several algorithms have been considered in order
to solve the recovery problem as BP, OMP, StOMP and LARS method. CS
has attracted considerable attention in areas of applied mathematics, computer
science, electrical engineering and other research fields because it is possi-
ble to represent many natural signals using only a few non-zero coefficients
in a suitable basis. The thesis has mainly addressed the issue regarding the
application of CS in the field of DH, that is a relatively recent interferomet-
ric technique that has permitted many spectacular applications such as micro-
scopic imaging by phase-contrast digital holographic microscopy, 3D object
recognition and 3D dynamic display. The full holographic process has been
mathematically treated, from the digital recording to the numerical reconstruc-
tion, considering the two largest classes of digital holograms, those acquired in
the microscope configuration and those acquired in lensless configuration. For
both classes, we have discussed about the numerical reconstruction, obtained
by the discrete version of the Fresnel integral, in order to highlight the physi-
cal properties of the three diffraction orders. The analysis of these diffracted
complex fields is achieved through the in-focus numerical reconstructions for
both kind of digital holograms and also the BFP reconstructions for the class of
digital holograms recorded in microscope configuration. For this purpose, an
algorithm of automatic search of the in-focus reconstruction distance and BFP
distance has been described. Obviously, in order to apply the CS framework on
digital holograms, we have studied the properties of the sparsity of the digital
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holograms. Previous studies have already shown how to combine the off-axis
frequency-shifting DH to perform quadrature-resolved random measurements
of an optical field in a diffraction plane and a sparsity minimization algorithm
to reconstruct the image. The sparsity of digital holograms is obtained by cal-
culating the gradient of the in-focus numerical reconstruction. Moreover, this
CS-based imaging scheme has the limitation that it can be applied only to dig-
ital holograms recorded in microscope configuration. In fact, it is shown that
the gradient of the in-focus numerical reconstruction in the case of holograms
acquired in lensless configuration is not a sparse image. An important contri-
bution of this thesis is to propose a unified scheme for the recovery of digital
holograms belonging to both the aforementioned classes, based on the sparsity
property of the in-focus numerical reconstruction for the lensless case and of
the BFP reconstruction for the microscope case. Two examples for each class
of holograms have been considered and the BP algorithm has been applied
for the recovery from undersampled measurements. The results show that the
Fresnel transform, parameterized in terms of the reconstruction distance, is
a suitable and general sparse domain for digital holograms. However, since
digital holograms are real signals, and then corrupted by noise, it is also con-
sidered the problem of recovery for noisy signals. In this case, the recovery
algorithms, typically used, are BPDN and the modified LARS. In both cases
is necessary the knowledge about the statistics of noise, but this information is
not always available. The principal contribution of the thesis is to design and
implement a new greedy algorithm that does not use any a priori information
about the statistics of the noise. This algorithm can be obtained by the recovery
problem for noiseless signals simply replacing an identity sensing matrix. In
fact, using the total information contained in the recorded digital holograms,
we are able to estimate the support of the useful signal suppressing the noise
components. Also in this case, the sparsity domain considered is the Fresnel
transform of the digital holograms in the in-focus plane and BFP. The proposed
method, called ISMGA, is compared with another greedy algorithm, based on
repeated BP recovery with different random sensing matrices, and the classic
filtering in Fourier domain, which is based on the perfect knowledge of the sig-
nal bandwidth. The results show that the algorithm is better than the other two,
in terms of two parameters of efficiency, SDR and image contrast, demonstrat-
ing its robustness and its effectiveness. In addition, for the digital holograms
recorded in lensless configuration, we have shown that the ISMGA denoising
also produces improvements in the 3D display. We have made the projection
experiments, using the SLM, and quantified the percentage increase of image
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contrast for the originally recorded digital holograms and the processed one
with the ISMGA denoising. For both examples considered, we get a signifi-
cant increase in the image contrast, 31% in one case and 16% in the other one.
Ultimately the thesis work has contributed to the optimization of the processes
of digital recording, numerical reconstruction and 3D display thanks the CS
framework, which will surely be developed in other fields of research based on
the signal processing.
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Appendix

A.1 Review of Convex Optimization

In this appendix there are a description of a special class of optimization prob-
lems called convex optimization. These particular problems can be to solve
“efficiently”, in the sense that we can solve many real-world problems in a
reasonable amount of time. In other words, it means that, theoretically, we
can solve problems in time that depends only polynomially on the problem
size. In the following subsections there are a formulation of a general Convex
Optimization Problem (COP), some special cases of problems and different
example of nonconvex problems that can be transformed in a convex prob-
lems. Most of the material reported in this appendix is heavily based on the
book Convex Optimization [101] by Boyd and Vandenberghe (available for
free online).

A.1.1 Formulation of COP

A mathematical optimization problem has the form
min f(x) subjectto x € C (A.1)
X
where x is a n-vector called optimization variable of the problem, f : R* — R
is the objective function and x € C' is the constraint function. The problem

(A.1)is a COP if C' is a convex set and f is a convex function of x. For the
convex set, the condition is:
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Definition A.1 A set C' is convex if, for any x,y € C and 6 € (0,1)
Ox+(1-0)yeC

In the Figure A.1 there is an example of both convex and non-convex sets.
Instead for the objective function we have:

Definition A.2 Let D(f) the domain of f : R™ — R. The function f
is convex if D(f) is a convex set and if, for all x,y € D(f) and 6 € (0,1)

fox+(1—0)y) <O0f(x)+(1—6)f(y)

In the Figure A.2 there is an example of convex function.

Figure A.1: Examples of a convex set (left) and a non-convex set (right)

Figure A.2: Graph of a convex function. The line connecting two
points on the graph must lie above the function.

Typically, the convex set C'is represented by the inequality constraint func-
tions and equality constraint functions. In this case, the convex optimization
problem (A.1) becomes

min f(x) subject to { =Lep (A.2)
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where g;, for© = 1,...,p, are a convex functions and hg, for k = 1,...,q
are affine functions. Finally, the optimal value of an optimization problem
is denoted x* and is equal to the minimum argument value of the objective
function in the feasible region, identified by the both inequality and equality
constraints.

x" = argmin f(x) subjectto { =L ’pq (A.3)

A.1.2 Special cases of COP

Now it consider several classes of convex optimization problems, based on the
forms that can take both the objective function and the constraints. Because the
following problems can be solved in a polynomial computational time, often
tries to formulate an optimization problem in one of these forms.

e Linear Programming: a convex optimization problem is a linear pro-
gram (LP) if both the objective function f and inequality constraints g;
are affine functions. In other words, these problems have the form

Gx =<h

Ax — b (A4)

min c¢x+d subject to {
X

where ¢ € R",d € R,G € R™*", h € R", A € R*" and b € R!
are defined by the problem, and the symbol ”=<” denotes elementwise
inequality.

e Quadratic Programming: a convex optimization problem is a
quadratic program (QP) if the inequality constraints g; are still all affine,
but if the objective function f is a convex quadratic function. Therefore,
these problems have the form

(A.5)

. 1 T T . ijh
min 5x Px + c¢’'x+d subject to {Ax:b

where P is a symmetric positive semidefinite matrix, i.e. P € S%.

o Semidefinite Programming: this last example is different than the pre-
vious one because the optimization variable of the problem is a n xn ma-
trix. This class of problems is becoming more prevalent in many areas
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of research. We say that a convex optimization problem is a semidefinite
program (SDP) if it is of the form

tl‘(AiX):bi 1=1,...,p

min tr (PX) subject to { X =0 (A.6)
where the symmetric matrices P, A1, ..., A, are defined by the prob-
lem, and the constraint X > 0 means that X must to be positive semidef-

inite.

However, there are other known forms of convex optimization problems,
such as Geometric Programming, and special cases in which there are a par-
ticular functions in the formulation of problems as quasiconvex functions or
log-convex functions. In these latter cases it is always possible to bring to
a convex optimization problem using a suitable change of optimization vari-
able. However, there are many cases where it is not possible to formulate the
problem in a convex or quasiconvex program. The next section analyzes this
situation, providing a solution to the issue.

A.1.3 Nonconvex optimization problems

In the section A.1.1, it was said that the optimization problem (A.2) is convex
if the objective function and the inequality constraint functions are convex,
and the equality constraint functions are affine. Therefore, a problem is a non-
convex optimization problem if if one of these conditions are not met. In this
case it is possible to rewrite the nonconvex optimization problem in a convex
form using the relaxation method. In relaxation, each nonconvex constraint
(i.e. the objective function) is replaced with a looser, but convex, constraint
(i.e. the objective function) and provides a lower bound on the optimal value
of the nonconvex problem. For example, we have applied this technique to the
optimization problem (1.7) obtaining the convex optimization problem (1.8).
Finally, in some situations, it is possible to have that the lower bound of op-
timal value of relaxed problems is equal to the optimal solution of nonconvex
problem.

A.2 MATLAB code’s description

In this appendix are reported the list of scripts, realized in MATLAB, for the
analysis considered in this thesis. The scripts are related to the chapter in which
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they are used. We give only a list of routines used with a simple explanations,
without providing the MATLAB codes.

A.2.1 Scripts for chapter 1

The chapter 1 describes the mathematical formulation of the CS framework
and the there aren’t any simulations. However describes the algorithms that
are used to solve the recovery problem for both noiseless and noisy signals.
The following list contains the MATLAB scrips used for the recovery problem
that are available on the website http://sparselab.stanford.edu/, as is mentioned
several times in the text of the thesis.

e SolveBP.m

function sol = SolveBP(4, y, N, maxlters, lambda, OptTol)

SolveBP: Solves a Basis Pursuit problem

Usage

sol = SolveBP(A, y, N, maxlters, lambda, OptTol)

Input

A: either an explicit n x N matrix, with rank(A) = min(V,n) by as-
sumption, or a string containing the name of a function implementing an
implicit matrix (see below for details on the format of the function).

y: a vector of length n.

N: length of solution vector.

maxlters: maximum number of PDCO iterations to perform, default 20.
lambda: if 0 or omitted, Basis Pursuit is applied to the data, otherwise,
Basis Pursuit Denoising is applied with parameter lambda (default 0).
OptTol: error tolerance, default 1e-3.

Outputs

sol: solution of BP

Description

SolveBP solves the basis pursuit problem by reducing it to a linear pro-
gram, and calling PDCO, a primal-dual log-barrier algorithm. Alter-
natively, if lambda differ to O, it solves the Basis Pursuit Denoising
(BPDN) problem by transforming it to an SOCP, and calling PDCO.
The matrix A can be either an explicit matrix, or an implicit operator
implemented as a function.

e SolveStOMP.m
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function [sol, numlters| = SolveStOMP(A, y, N, thresh, param, maxlters,
verbose, OptTol)

SolveStOMP: Implementation of Iterative Threshold-Selective Projec-
tion algorithm

Usage

[sol, numlters] = SolveStOMP(A, y, N, thresh, param, maxlters, verbose,
OptTol)

Input

A: Either an explicit n x N matrix, with rank(A) = min(N,n) by as-
sumption, or a string containing the name of a function implementing an
implicit matrix (see below for details on the format of the function).

y: a vector of length n.

N: length of solution vector.

thresh: thresholding strategy: FDR or FAR. default is FDR.

param: sensitivity parameter for threshold selection.

maxlters: maximum number of StOMP iterations to perform, default 10.
verbose: 1 to print out detailed progress at each iteration, O for no output
(default).

OptTol: error tolerance, default 1e-5.

Outputs

sol: solution of StOMP.

numlters: total number of steps taken.

Description

SolveStOMP implements the Stagewise Ortogonal Matching Pursuit, as
described in the paper [37].

MatrixEnsemble.m

function Phi = MatrixEnsemble(n,m,ensemble)
MatrixEnsemble: Generates a random matrix of size n by m.
Usage

Phi = MatrixEnsemble(rn,m,ensemble)

Inputs

n: number of rows.

m: number of columns.

ensemble: string containing name of matrix ensemble: "USE”, "RSE”,
“Fourier”, "RST”, "Hadamard”, ”URP”, ”"IR”. Default is "USE’.
Outputs

Phi: n by m matrix from the specified ensemble.

Description
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This function creates a matrix from the specified random matrix ensem-
ble. The following random ensembles are implemented:

”USE” - Uniform spherical ensemble. Columns are n-vectors, uniformly
distributed on the sphere S”~! (default).

”RSE” - Random signs ensemble. Entries in the matrix are chosen from
a Bernoulli +/ — 1 distribution, and columns are normalized to have unit
Euclidean length.

“Fourier” - Partial Fourier ensemble. Matrices in this ensemble are gen-
erated by taking the m by m Fourier matrix, sampling n rows at random,
and scaling columns to have unit Euclidean length.

”RST” - Partial RST (Real Fourier) ensemble. See ’Fourier’ above.
”Hadamard” - Partial Hadamard ensemble. Matrices in this ensemble
are generated by taking the m by m Hadamard matrix, sampling n rows
at random, and scaling columns to have unit Euclidean length.

”URP” - Uniform Random Projection ensemble. Matrices in this ensem-
ble are generated by sampling n rows of an m by m random orthogonal
matrix.

”IR” - Identity and Random ortho-basis. An n by 2n matrix is con-
structed, as the concatenation of the n by n identity and an n by n random
ortho-basis.

A.2.2 Scripts for chapter 2

The chapter 2 describes the full holographic process, from the recorded holo-
gram to the image formation. Therefore we give three routines related to the
numerical reconstruction of the digital holograms, the back propagation of the
numerical reconstruction in the hologram plane and finally the auto-focusing
algorithm.

e RecoHolo.m

function NR = RecoHolo(H,d)

RicoHolo: compute the numerical reconstruction of an hologram.
Usage

NR = RecoHolo(H,d)

Inputs

H: recorded hologram.

d: reconstruction distance (mm).

Output

NR: numerical reconstruction of the hologram at distance d.
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Description
This function implement the discrete version of Fresnel transform given
in Eq. (2.22).

BackProp.m

function H = BackProp(NR,d)

BackProp: compute the back propagation of the reconstructed complex
field in the hologram plane.

Usage

H = BackProp(NR,d)

Inputs

NR: numerical reconstruction of the recorded hologram at distance d,
obtained using "RecoHolo.m”.

d: reconstruction distance (mm).

Output

H: digital hologram.

Description

This function implement the discrete version of Fresnel transform given
in Eq. (2.22) using the distance —d and the pixel pitches given in Eq.
(2.23).

Autofocus.m

function [NRYf,df] = Autofocus(H,dmin,dmax,iter)

Autofocus: compute the in-focus distance for the +1 order when the in-
put is an hologram recorded in lensless configuration; compute the BFP
distance for the +1 order when the input is an hologram recorded in mi-
croscope configuration.

Usage

[NRY,df] = Autofocus(H,dmin,dmax,iter)

Inputs

H: recorded hologram.

dmin: lower bound of the searching interval.

dmax: upper bound of the searching interval.

iter: number of iterations.

Outputs

NRf: numerical reconstruction of the hologram at estimated distance.
df: estimated distance: in-focus plane for digital holograms recorded
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in lensless configuration, BFP for digital holograms recorded in micro-
scope configuration.

Description

This function implement the algorithm given in [86]. It define a
grid of research considering N=iter equally spaced points in the range
[dmin,dmax]. At each point di, it compute the numerical reconstruction
of the hologram using ”"RecoHolo.m” and its Tamura coefficient, given
in Eq. (2.27). At the end, evaluate the maximum value of the N re-
alization of the Tamuta coefficient which corresponds to the output df.
Finally, compute the output NRf as a numerical reconstruction of the
hologram at distance df using "RecoHolo.m”.

A.2.3 Scripts for chapters 3 and 4

In these two chapters there is the description of the CS theory applied in DH.
More precisely, the chapter 3 describes the methodology used for the recovery
of the digital holograms from undersampled measurements, while the chapter
4 addresses the problem of denoising. In both cases, we use all the routines
described above, therefore we give the step-by-step descriptions of the scripts
for recovery and denoising, which are listed below.

e RecoveryBP.m

function [RecHOLO,RecPSIh] = RecoveryBP(H,d,m)

RecoveryBP: compute the recovered hologram form undersampled mea-
surements using BP.

Usage

[RecHOLO,RecPSIh] = RecoveryBP(H,d,m)

Inputs

H: recorded hologram.

d: reconstruction distance (mm).

m: number of samples in the sensing matrix Qutput

RecHOLO: recovered hologram.

RecPSIh: recovered numerical reconstruction.

Description

This function permits to obtain the recovery of a digital hologram from
undersampled measurements. The steps of the algorithm are:

1. Numerical reconstruction of the hologram at distance d: NR = Re-
coHolo(H,d).
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2. Vectorization of the numerical reconstruction: nr=vec(NR).

3. Compute the sensing matrix: PHI = MatrixEnsemble(m,N,’USE"),
where N is the length of the vector nr.

4. Compute the measurements: y=PHlInr.
5. Solve the Basis Pursuit problem: sol = SolveBP(PHL,y,N).

6. Compute the outputs: RecPSIh=reshape(sol), RecHOLO = Back-
Prop(RecPSIh,d).

e ISMGA.m

function [HOLOden,RECden|=ISMGA(H,d)

ISMGA: compute the denoised hologram using the identity sensing ma-
trix in the StOMP.

Usage

[HOLOden,RECden|=ISMGA(H,d)

Inputs

H: recorded hologram.

d: reconstruction distance (mm).

Output

HOLOden: denoised hologram.

RECden: denoised numerical reconstruction.

Description

This function permits to obtain the denoising of a digital hologram using
the ISMGA described in the chapter 4. The steps of the algorithm are:

1. Numerical reconstruction of the hologram at distance d: NR = Re-
coHolo(H,d).
2. Vectorization of the numerical reconstruction: nr=vec(NR).

3. Compute the sensing matrix: PHI = Iy, where N is the length of
the vector nr.

4. Solve the Stagewise Orthogonal Matching Pursuit problem:
[sol, numlters] = SolveStOMP(PHI nr,N).

5. Compute the outputs: RECden=reshape(sol), HOLOden = Back-
Prop(RECden,d).
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