
+ via Claudio, 21- I-80125 Napoli - ([#39] (0)81 768 3813 - 4 [#39] (0)81 768 3816

 UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II
 Dottorato di Ricerca in Ingegneria Informatica ed Automatica

ACHIEVING REPRESENTATIVE FAULTLOADS

IN SOFTWARE FAULT INJECTION

ROBERTO NATELLA

Tesi di Dottorato di Ricerca

(XXIV Ciclo)

Novembre 2011

Il Tutore Il Coordinatore del Dottorato

Prof. Domenico Cotroneo Prof. Franco Garofalo

Il Co-Tutore

Prof. Henrique Madeira (University of Coimbra)

Dipartimento di Informatica e Sistemistica

Comunità Europea

Fondo Sociale Europeo A. D. MCCXXIV

ACHIEVING REPRESENTATIVE FAULTLOADS IN SOFTWARE

FAULT INJECTION

By

Roberto Natella

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

VIA CLAUDIO 21, 80125, NAPLES, ITALY

NOVEMBER 2011

c© Copyright by Roberto Natella, 2011

Abstract

Given the complexity of modern software systems and its pervasiveness in many aspects of

our lives, software faults (i.e., bugs) are a dangerous threat. Unfortunately, it is impossible

to assure that software is perfect despite of advances in software engineering. Therefore,

mission- and safety-critical systems have to provide fault tolerance algorithms and mech-

anisms to mitigate this threat. Software Fault Injection emerged in the last decades as a

means for testing and improving fault-tolerant systems. This approach deliberately intro-

duces faults in a software in order to assess its behavior in the presence of software faults.

In order to be adopted by practitioners in the development of critical systems, and to

assure an effective and trustworthy evaluation of fault tolerance, the realism of faults being

injected (fault representativeness) need to be assured, i.e., the injected faults should reflect

the residual faults that escape the development process and that can affect the system. This

thesis addresses fault representativeness with respect to three aspects. First, it proposes an

approach for selecting code locations in which to inject software faults in a complex soft-

ware system. The approach identifies locations in which faults are more likely to hide from

testing, in order to focus the injection on the most representative locations and to reduce

the number and cost of experiments at the same time. Second, it proposes a method for

improving the accuracy of faults injected in binary code, which is required when the source

code is not available as in the case of third-party software. Finally, this thesis proposes a

technique for emulating concurrency faults, which are a significant part of faults affecting

complex software. These contributions are instrumental to advance Software Fault Injection

and make it an effective and practical approach for developing fault-tolerant systems.

Keywords: Software Faults, Fault Representativeness, Software Reliability, Fault Tolerance

ii

Acknowledgements

I would like to thank Domenico Cotroneo for his support and guidance that greatly con-

tributed to my professional and personal growth, and to professors Stefano Russo and Hen-

rique Madeira, which are role models for me. I am also grateful to all my friends/colleagues

of the MobiLab research group, of the CINI laboratory, and of the University of Coimbra

for the time we enjoyed together. Last but certainly not least, I would like to thank Maria

for her help, patience and love, and my family. Grazie!

Napoli, Italy Roberto

30/11/2011

iii

Folklore in Software Engineering

Murphy’s General Law
If something can go wrong, it will go wrong.

Murphy’s Constant
Damage to an object is proportional to its value.

Naeser’s Law
One can make something bomb-proof, not jinx-proof.

Troutman Postulates
1. Any software bug will tend to maximize the damage.
2. The worst software bug will be discovered six months after the field test.

Green’s Law
If a system is designed to be tolerant to a set of faults, there will always exist an idiot so
skilled to cause a nontolerated fault.

Corollary
Dummies are always more skilled than measures taken to keep them from harm.

Johnson’s First Law
If a system stops working, it will do it at the worst possible time.

Sodd’s Second Law
Sooner or later, the worst possible combination of circumstances will happen.

Corollary
A system must always be designed to resist the worst possible combination of circumstances.

Source: G.C. Buttazzo, Hard Real-Time Computing Systems, Kluwer Academic Publishers, 2nd Ed., 2010

iv

Table of Contents

Table of Contents v

List of Tables viii

List of Figures xi

1 Introduction 1

1.1 Context and motivations . 1

1.2 Open issues . 7

1.3 Thesis contributions . 10

2 Software Fault Injection: Background and related work 16

2.1 Introduction . 16

2.2 Basic concepts and definitions . 18

2.3 Characterization of software faults . 26

2.3.1 IEEE Standard Classification for Software Anomalies 27

2.3.2 Orthogonal Defect Classification . 28

2.3.3 Bohrbugs, Mandelbugs, and Aging-Related Bugs 37

2.4 Software Fault Injection techniques and tools 43

2.4.1 Data error injection . 44

2.4.2 Interface error injection . 58

2.4.3 Fault injection through code changes 73

2.5 Applications of Software Fault Injection . 84

2.5.1 Evaluation and improvement of fault tolerance 85

2.5.2 Dependability Benchmarking . 94

v

2.5.3 Other emerging applications . 103

2.6 Relationship with Mutation Testing . 107

3 Improving the representativeness of injected software faults 111

3.1 Introduction . 111

3.2 Evaluation of fault representativeness . 115

3.2.1 Systems used in the case studies . 116

3.2.2 Experimental Software Fault Injection setup 118

3.2.3 Result discussion . 120

3.2.4 Validation of fault representativeness 125

3.3 Improvement of fault representativeness . 127

3.3.1 Representativeness across fault types 127

3.3.2 Representativeness across components 129

3.4 The proposed fault selection approach . 131

3.4.1 Characterization of software components 132

3.4.2 Evaluation measures . 136

3.4.3 Fault Selection by using decision trees 139

3.4.4 Fault selection by using clustering . 143

3.5 Summary . 150

4 Improving the accuracy of software faults injected in binary code 152

4.1 Introduction . 152

4.2 Proposed method . 155

4.2.1 Fault Matching . 158

4.2.2 Fault Sampling . 160

4.3 Case study . 164

4.4 Results . 166

4.5 Summary . 176

5 A technique for the emulation of concurrency faults 179

5.1 Introduction . 179

5.2 Case study . 182

vi

5.2.1 CARDAMOM middleware . 183

5.2.2 FDPS . 184

5.3 Evaluation of G-SWFIT . 186

5.3.1 Modeling FDPS . 186

5.3.2 Experimental setup . 188

5.3.3 Result discussion . 190

5.4 Concurrency fault injection . 193

5.4.1 Fault model . 193

5.4.2 Overview of the concurrency injection technique 195

5.4.3 Fault injection phase . 196

5.4.4 Trigger injection phase . 199

5.5 Evaluation of concurrency fault injection . 205

5.6 Summary . 207

6 Conclusions and future work 209

Bibliography 213

vii

List of Tables

2.1 Defect attributes in the IEEE Standard Classification for Software Anomalies. 29

2.2 Failure attributes in the IEEE Standard Classification for Software Anomalies. 30

2.3 ODC defect types. 32

2.4 ODC defect triggers for system tests. 33

2.5 ODC fault triggers for unit and function testing. 34

2.6 ODC fault triggers for document review and code inspection. 34

2.7 Comparison between distributions of ODC defect types of two field data studies. 35

2.8 Refined fault types from ODC defect types. 36

2.9 Most common fault types found in several software systems. 38

2.10 SWIFI error models used for CPU, bus and memory faults. 46

2.11 SWIFI error models used for communication faults. 50

2.12 Joint distribution of faults and errors found in the field in the IBM MVS

operating system. 55

2.13 Fault distribution across components in the IBM MVS operating system. . . . 57

2.14 Defect trigger distribution in the IBM MVS operating system. 57

2.15 Ballista data types for testing the write system call. 66

2.16 Fault model for software faults adopted by FINE. 78

2.17 Fault model for software faults proposed by Ng and Chen. 79

2.18 Fault operators of G-SWFIT. 82

2.19 Description of the OMFC fault operator. 83

2.20 Description of the OMIFS fault operator. 84

viii

2.21 Corruption rate of file cache designs. 89

2.22 Proportional weighting of fault types. 90

2.23 Analysis of failure tolerance in a safety-critical software for medical applications. 92

2.24 Classification of failure modes in Microsoft operating systems with respect to

faulty device drivers. 100

2.25 Dependability and performance measures of theWeb-DB dependability bench-

mark. 103

2.26 Comparison between the Apache and Abyss web servers. 104

3.1 The case studies used in this analysis. 116

3.2 The case studies used in this analysis. 118

3.3 Faults and failures using TPC-C. 126

3.4 Kolmogorov-Smirnov likelihood test for representative and non-representative

fault distributions across fault types. 128

3.5 Kolmogorov-Smirnov likelihood test for representative and non-representative

fault distributions across components. 131

3.6 Characterization of the datasets (All components, MR components, and LR

components). 135

3.7 Software complexity metrics. 136

3.8 Performance of decision trees in terms of precision and recall (mean ± stan-

dard deviation). 141

3.9 Percentage of representative faults before and after component selection using

decision trees. 142

3.10 Performance of clustering (mean ± standard deviation), using FanOut for

selecting the target cluster. 147

3.11 Performance of clustering (mean ± standard deviation), using FanIn for se-

lecting the target cluster. 148

ix

3.12 Percentage of representative faults before and after component selection using

clustering. 149

4.1 Comparison of average software complexity metrics of functions in RTEMS

and CDMS code. 171

5.1 Messages exchanged within the FDPS. 188

5.2 Shared variables and critical sections in the FDPS. 198

5.3 Inputs, message sequences and critical sections in the FDPS. 201

5.4 Critical section pairs leading to a failure. 206

x

List of Figures

1.1 Insertion and removal of defects during the software development lifecycle . . 3

2.1 Scope of this thesis. 17

2.2 Conceptual schema of fault injection. 19

2.3 States of a fault injection experiment. 21

2.4 Relationships between software fault tolerance and Bohrbugs, Mandelbugs,

and Aging-Related Bugs. 40

2.5 Proportion of Bohrbugs in NASA missions. 42

2.6 The Fault Injection based Automated Testing environment (FIAT). 48

2.7 Software trap mechanism adopted by the Fault and ERRor Automatic Real-

time Injector (FERRARI). 49

2.8 The Fault Tolerance And Performance Evaluator (FTAPE). 52

2.9 Comparison between Interface Error Injection and Fault/Error Injection in a

component. 60

2.10 Approaches for interface error injection. 61

2.11 Analysis of error propagation in microkernel system using MAFALDA. 68

2.12 Techniques adopted in MAFALDA to inject faults in the system call interface

of microkernels. 69

2.13 Emulation of an Assignment fault using SWIFI. 74

2.14 Emulation of a Checking fault using SWIFI. 74

2.15 An Algorithm fault that SWIFI cannot emulate. 74

xi

2.16 Code blocks in source code and their corresponding machine code. 84

2.17 Generalized Discrete Markov Model adopted for evaluating and comparing

four software fault tolerance techniques. 87

2.18 Fault propagation models of the SunOS operating system. 88

2.19 Wrapper code for the asctime UNIX function. 95

2.20 System Under Benchmark (SUB), Benchmark Target (BT), and Fault Injec-

tion Target (FIT). 98

2.21 Reference model of dependability benchmarking. 99

2.22 Comparison between the Windows NT, Windows 2000 and Windows XP op-

erating systems. 101

3.1 Process for generating faulty versions of the target program. 119

3.2 Overview of experimental campaigns. 120

3.3 Examples of analysis of injected faults with respect to the percentage of failed

and correctly executed test cases. 121

3.4 Analysis of injected faults in MySQL and PostgreSQL. 122

3.5 Analysis of injected faults in RTEMS. 123

3.6 Percentage of representative faults across threshold values. 124

3.7 Fault distributions across fault types. 129

3.8 Fault distributions across files. 130

3.9 Percentage of representative faults for files and functions in the three case

studies. 134

3.10 Measures adopted for assessing classification algorithms. 138

3.11 Decision trees learned from the "function" datasets. 144

3.12 Scatter plot of MR and LR functions with respect to LinesOfCode and FanOut.149

4.1 Overview of the method adopted for the evaluation of G-SWFIT. 158

4.2 Fault matching procedure. 160

xii

4.3 Example of Spurious and Omitted faults due to the occurrence of a C pre-

processor macro within a program. 162

4.4 Architecture of the case study. 165

4.5 Distributions of software faults injected at the binary and source code level,

respectively. 166

4.6 Number of Correctly Injected, Spurious, and Omitted faults. 168

4.7 Causes of incorrect fault injection in the case study. 169

4.8 Number of faults (correctly injected, spurious, and omitted) in OS and appli-

cation code. 169

4.9 Causes of incorrect fault injection in OS and application code. 170

4.10 Spurious MFC fault in CDMS. 174

4.11 Omitted MFC fault in CDMS. 174

4.12 Omitted MIA fault in CDMS. 175

4.13 Number of faults (correctly injected, spurious, and omitted) when fixing im-

plementation issues of the G-SWFIT tool. 176

5.1 CARDAMOM overview. 183

5.2 Simplified architecture of FDPS. 185

5.3 A Finite State Machine that models the FDPS. 189

5.4 Failure and fault activation distributions of the G-SWFIT campaign. 192

5.5 Distribution of faults leading to failures across workloads. 192

5.6 Memory and lock profiling. 197

5.7 Input timing that triggers a fault in state 2:1:0. 200

5.8 An example of path in the FSM that can trigger a fault in 2:1:0. 204

5.9 Fault activation distribution of the concurrency fault injection campaign. . . . 206

xiii

Chapter 1

Introduction

1.1 Context and motivations

Our society is increasingly dependent on software, which is nowadays an integral part of

devices and systems we interact with in our everyday life. Software-intensive systems range

from small systems for entertainment and domotics, to large systems and infrastructures that

provide fundamental services such as telecommunication, health, transportation, financial,

and power supply systems. Given the pervasiveness of software in real-world scenarios, it

becomes essential to assure that the software is dependable, that is, the software must be

able to deliver service that can justifiably be trusted, in terms of readiness and continuity

of correct service [16]. This is especially important in the case of safety-critical systems, in

which a failure may cause death or injury to people, harm to the environment, or economical

loss. These systems, and the software they include, are therefore required to be highly

dependable.

Unfortunately, we are still far from achieving perfect software, due to two striving and

1

Chapter 1. Introduction 2

opposing forces, which are the growth of software complexity and the reduction of time and

resources available for software development [130]. On the one hand, the number and the

complexity of software requirements and functionalities tend to increase, given the ambitious

expectations on software of users and designers and the raise of awareness in its potentialities.

An example of this growth is provided by NASA flight software [66]: the size of flight software

used in space missions to Mars in terms of Lines of Code (LoCs), which is a rough yet

indicative measure of complexity, increased exponentially from 5 thousands of LoCs (Viking

mission, 1975) to 555 thousands of LoCs (Mars Exploration Rover mission, 2004). On the

other hand, time and budget allocated to software development are finite and are kept at a

minimum due to market constraints. These constraints limit the resources and reduce the

effectiveness of rigorous analysis and design practices, which are intended to prevent the

introduction of defects in the software product, and of verification and validation (V&V)

activities, which aim to detect and remove defects (Figure 1.1). Market constraints also

lead to the adoption of reused and third-party software components, such as Commercial

Off-The-Shelf (COTS) components, which reduce the efforts required to develop and test

whole parts of the software: however, this kind of components increase the likelihood of

residual defects in the final product, since they are used in a new environment that was not

previously foreseen, and they are significantly more difficult to test and debug due to the

lack of source code and/or expertise on their internals and specification [204].

Chapter 1. Introduction 3

Residual defects in
the released product Analysis Design Coding Testing

Defect insertion

Defect removal
Defect propagation

Figure 1.1: Insertion and removal of defects during the software development lifecycle [67].

As a result, the presence of defects in the software (which are also referred to as software

faults or bugs) cannot be avoided in practice. Faulty software represents a threat to safety-

critical systems and to their users, and it emerged as a major cause of failure in modern

systems [83, 84, 122]. This fact is attested by the occurrence of several accidents caused

by software faults, that provoked loss of a significant amount of money and even of human

lives. In June 4th 1996, during the first test flight of the Ariane 5 rocket, the vehicle veered

off its flight path and exploded less than one minute after take-off, causing a loss of half-

billion dollars. The explosion was caused by a wrong data conversion in the software from

64-bit floating point to 16-bit signed integer representation. The bug resulted from the reuse

of a software subsystem, without substantial re-testing, from the Ariane 4 mission, which

developers assumed to be compatible with the new system [204]. Another software fault

provoked, in August 14th 2003, the blackout of the General Electric energy management

system, which left 50 million people in the northeastern America without power and cost

Chapter 1. Introduction 4

around 6 billion dollars of financial loss. The bug affected an alarm and logging software

system, and it was triggered by a unique combination of events and alarm conditions on the

equipment being monitored. The failure of the alarm system led to a cascade of computer

and equipment failures and to the blackout [79]. In 2002, a study commissioned by the US

National Institute of Standards and Technology (NIST) estimated that the cost of software

failures due to inadequate testing ranges between $22.2 and $59.5 billion [169].

The complexity of modern software and the limitations of software engineering force

safety-critical systems to coexist with software faults, which will eventually provoke faulty

conditions that have not been foreseen during testing. To face this problem, it is well known,

even recommended by safety standards [4, 78], that software developers adopt software fault

tolerance algorithms and mechanisms. Software fault tolerance is achieved by masking

software faults through the adoption of diverse and redundant implementations of the same

software (e.g., N-version programming, recovery blocks, N-self checking programming) [15,

132], and detecting a wrong state of the system, in order to provide a fail-stop behavior

or a degraded mode of service (e.g., concurrent error detection, checkpointing and recovery,

exception handling) [83, 84, 49].

In order to assess the effectiveness of fault tolerance mechanisms, and to gain adequate

confidence that the system will be safe during operation, it is necessary to evaluate the system

behavior under unforeseen faulty conditions. This can be done by deliberately injecting

Chapter 1. Introduction 5

faults into the system. The process of introducing faults in a system in order to evaluate its

behavior and to measure the efficiency (coverage, latency, etc.) of fault tolerance is referred

to as fault injection [10, 37, 203]. It is recommended by software safety standards, such as

the ISO/DIS 26262 standard for automotive safety [78], which prescribes the use of error

detection and handling mechanisms in software and their verification through fault injection,

and the NASA standard 8719.13B for software safety [4], which recommends fault injection

to evaluate system behavior in the presence of faulty off-the-shelf software.

Many fault injection approaches have been proposed in the last decades. The first

approaches consisted in injecting physical faults into the target system hardware (e.g., using

radiation, pin-level, power supply disturbances, etc. [89, 10]). The growing complexity of the

hardware turned the use of these physical approaches quite difficult or even impossible, and a

new family of fault injection approaches based on the runtime emulation of hardware faults

through software (Software Implemented Fault Injection - SWIFI) become quite popular,

as it is generally well accepted that simple fault models such as bit-flip or bit stuck-at

do represent real hardware faults [156, 114, 167, 12]. Some examples of SWIFI tools are

Xception [28], NFTAPE [184], and GOOFI [6]. However, all these tools have been proposed

for the emulation of hardware faults and their potential to emulate more complex faults such

as software faults is very limited [133, 103].

The use of fault injection to emulate software faults, namely Software Fault Injection

Chapter 1. Introduction 6

(SFI), is relatively recent when compared to the first fault injection proposals [37, 203].

Unfortunately, in spite of decades of fault injection research, the fact is that the accurate

emulation of residual software faults through fault injection remains largely unknown. Soft-

ware faults are intrinsically difficult to be modeled, since they are caused by human mistakes

occurring during the software development process (Figure 1.1). This reflects in the lack

of understanding about how software faults affect a software artifact, and about how these

faults can be introduced by intent in order to emulate the real software faults that are hidden

in the software. The realism of the faults being injected, namely fault representativeness, is a

key property of fault injection for assessing fault-tolerant systems. The faultload (i.e., the set

of faults to be injected in a given software component/system) should reproduce the faults

that are actually experienced in the field, that is, the residual faults that are overlooked by

rigorous design and testing and that actually affect the mission of the system as evidenced

by recent accidents in safety-critical systems, in order to obtain a realistic evaluation of fault

tolerance in face of runtime faulty conditions. Fault representativeness is required to obtain

accurate dependability measures, such as coverage factors of fault tolerance that take into

account the likelihood of faults to exist in the field [163, 50, 161], and it is also important

to analyze the complex failure modes that can be exhibited by a software system or com-

ponent, which are not known a priori. If the injected software faults are not representative

of residual faults, then it is risky to assert the effectiveness of software fault tolerance. The

Chapter 1. Introduction 7

goal of this thesis is to evaluate and to improve the representativeness of faultloads in SFI,

in order to achieve confidence in the assessment of fault-tolerant systems. This aim, in turn,

is instrumental to make Software Fault Injection an effective and practical approach for

developing fault-tolerant systems, and to favor its adoption in the software industry.

1.2 Open issues

Several attempts have been made towards the realistic injection of software faults. The

first Software Fault Injection approaches adopted SWIFI to emulate the effects of software

faults, by corrupting the system state (e.g., wrong or uninitialized pointers and flags, or an

incorrect control flow). This is an indirect form of fault injection, as what is being injected is

not the fault itself but only a possible effect of the fault. However, it is difficult to justify the

representativeness of this type of injection, since it is difficult to relate errors with specific

defects in the code.

Most recent approaches inject faults in a program by changing its code. They are based

on a set of fault types that define which programming structures can be injected, and how

they should be changed to introduce a realistic fault. The state-of-the-art is represented

by the Generic Software Fault Injection Technique (G-SWFIT) [65], as its fault types are

derived from the most frequent fault types found in widely-deployed complex systems in

order to achieve fault representativeness.

One open issue, which has been neglected by existing approaches, is the selection of

Chapter 1. Introduction 8

fault locations in which to inject in terms of modules and/or routines. Complex systems

have a huge number of locations in which to inject, and only few of them could be suitable to

inject a realistic software fault. Existing techniques inject a fault type in every code location

containing a given programming structure, without accounting for the complexity of code

in the module/routine surrounding the code location and the testing efforts that have been

spent on that part of code. This aspect is important for achieving fault representativeness,

since it is well-known that residual software faults are not equally likely to exist in every code

location, but their occurrence is related to software complexity and to the testing

activities performed during software development [20, 201, 70]. Moreover, injecting

defects in every location of complex software leads to a dramatic increase of the cost of

the SFI campaign, in terms of number of experiments to be executed. For example,

the software systems considered in this thesis have tenths of thousands of potential fault

locations, and injecting faults in all of them could make impractical the fault injection

campaign.

The injection of software faults by mutating the binary executable code of a program

is another open issue in the field. SFI in binary code enables the experimental depend-

ability evaluation of systems for which the source code is not available, which is

often the case when third-party and COTS software is adopted. However, assuring the

accuracy of binary-level SFI is a major concern for its adoption in real-world

Chapter 1. Introduction 9

scenarios. This kind of injection requires that programming constructs used in the source

code are identified by looking only at the binary code, since the injection is performed at

this level. Unfortunately, binary-level SFI is a difficult and error-prone task due to the

complexity of programming languages and of modern compilers, which make difficult and

in some cases impossible to accurately recognize where to inject faults. For this reason, it

is important to assure that binary-level SFI is able to correctly emulate software faults to

an acceptable degree.

Finally, an important but still unresolved issue is the injection of software faults related

to timing and synchronization in concurrent programs (concurrency faults). These soft-

ware faults manifest their effects in a non-deterministic way, depending on thread scheduling,

timing of events, and interactions with the system state as a whole (hardware, OS, other

software). For this reason, this kind of faults is referred to as transient software faults or

“Mandelbugs”. These faults are very difficult to detect and remove during software devel-

opment, and they represent a significant share of residual faults in complex software sys-

tems due to the shift towards multithreaded software and multicore hardware architectures

[83, 84, 34, 86, 35]. Nevertheless, these faults were overlooked by fault injection studies (e.g.,

this fault type was deliberately not encompassed in G-SWFIT) due to the relative scarcity

of documentation about them, and to their complex nature and interactions with the envi-

ronment (scheduling, timing, and interactions with the system state) that are difficult to

Chapter 1. Introduction 10

be accurately emulated through SFI.

1.3 Thesis contributions

This dissertation works on three directions to address the problem of fault representativeness

in Software Fault Injection. More specifically, this thesis contributes to the state-of-the-art

on Software Fault Injection by:

1. Evaluating and improving the representativeness of injected fault locations.

This dissertation proposes an approach for selecting the most representative fault

locations in a complex software, which takes into account the complexity and the

relationships of software components, and the testing activities that are performed

to remove faults, in order to better emulate residual faults that escape the software

development process. An extensive experimental analysis (more than 3.8 millions of

individual experiments in three real systems) shows that a significant share (up to 72%)

of faults injected by G-SWFIT cannot be considered representative of residual software

faults, as they are consistently detected by test cases, and that representativeness of

injected faults is affected by the fault location within the system. The approach refines

the faultload by selecting a subset of fault locations that are suitable for emulating

residual software faults. This filtering is essential to assure meaningful results and to

reduce the cost (in terms of number of faults) of software fault injection campaigns in

Chapter 1. Introduction 11

complex software. The proposed approach is based on classification algorithms, is fully

automatic, and can be used for improving fault representativeness of existing Software

Fault Injection approaches.

2. Evaluating and improving the accuracy of faults injected at binary level. In

this dissertation, a method is proposed for assessing the accuracy of binary-level fault

injection techniques and tools in large and complex systems, i.e., faults injected in the

binary code correctly emulate software defects in the source code. This assessment is

important to gain confidence that results from binary-level fault injection are accurate,

and to test, debug and improve SFI techniques and tools with respect to real-world

software. This thesis provides an extensive experimental evaluation of a R&D fault

injection tool produced by Critical Software S.A.1 based on G-SWFIT, in order to

assess issues and limitations that are faced when injecting faults in a real-world complex

software system (a satellite data handling system). More than 12 thousand binary-

level faults in the OS and application code of the system were injected, and they

were compared with faults injected in the source code by using the same fault types

of G-SWFIT. The method was effective at highlighting the pitfalls that can occur in

the implementation of G-SWFIT, and the limitations of this technique. The analysis
1This research has been made in the context of the European project CRITICAL-STEP (”CRITI-

CAL Software Technology for an Evolutionary Partnership”, http://www.critical-step.eu), Marie Curie
Industry-Academia Partnerships and Pathways (IAPP) number 230672 of the Seventh Framework Pro-
gramme (FP7).

Chapter 1. Introduction 12

shows that G-SWFIT can achieve an improved degree of accuracy if these pitfalls are

avoided.

3. Extending Software Fault Injection to concurrency faults. This dissertation

proposes a technique for the injection of concurrency faults in multithreaded software.

These faults, which are not encompassed by G-SWFIT, are a relevant part of residual

faults in complex software. First, this thesis analyzes the limitations of G-SWFIT re-

garding its ability to emulate the transient nature of Mandelbugs, in the context of a

fault-tolerant software system for Air Traffic Control2. It is found that injected faults

do not realistically emulate Mandelbugs, since most of them are activated in the early

phases of execution, and they deterministically affect process replicas in the system.

Moreover, this behavior impacts on the verification of fault tolerance, as 35% of system

states are not covered during the fault injection campaign. A technique is then pro-

posed to emulate concurrency faults in a fully representative way, by controlling the

environment conditions that make these faults to activate and manifest themselves.

The analysis shows that controlling fault activation can also increase the confidence

in fault tolerance, since it is possible to reduce the amount of untested states down to

5%.
2This research has been made in the framework of the private-public laboratory COSMIC (”Centro di

ricerca sui sistemi Open Source per le applicazioni ed i Servizi MIssion Critical”, DM23318, http://www.
cosmiclab.it) and of the Italian research initiative Iniziativa Software, which involves the Finmeccanica
group and several Italian universities (http://www.iniziativasoftware.it).

Chapter 1. Introduction 13

This thesis includes materials from the following research papers, already published in

peer-reviewed conferences and journals or submitted for review:

• R. Natella, D. Cotroneo, H.S. Madeira, J.A. Duraes, On Fault Representativeness
of Software Fault Injection, IEEE Transactions on Software Engineering, under
minor revision

• R. Natella, D. Cotroneo, H.S. Madeira, J.A. Duraes, Representativeness Analy-
sis of Injected Software Faults in Complex Software, Proc. of the 40th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), pp. 437-446, June 2010, Chicago, Illinois, USA, Acceptance Rate:
25% (PDS Track)

• D. Cotroneo, A. Lanzaro, R. Natella, R. Barbosa, Experimental Analysis of Binary-
Level Software Fault Injection in Complex Software, Proc. of the 9th European
Dependable Computing Conference (EDCC), May 2012, Sibiu, Romania, under
review

• R. Natella, D. Cotroneo, Emulation of Transient Software Faults for Dependability
Assessment: A Case Study, Proc. of the 8th European Dependable Computing
Conference (EDCC), pp. 23-32, April 2010, Valencia, Spain, Acceptance Rate: 32%

• D. Cotroneo, R. Natella, Fault Injection e Robustness Testing, book chapter in
L’Analisi Quantitativa dei Sistemi Critici, A. Bondavalli editor, pp. 233-270, 2011

The following research papers are related to this thesis but were not included. These pa-

pers adopt Software Fault Injection and Robustness Testing for the dependability evaluation

and improvement of complex software systems:

• G. Carrozza, D. Cotroneo, R. Natella, A. Pecchia, S. Russo, Memory Leak Analysis
of Mission-Critical Middleware, Journal of Systems & Software (JSS), vol. 83,
no. 9, pp. 1556-1567, 2010

• A. Bovenzi, G. Carrozza, M. Cinque, D. Cotroneo, R. Natella, OS-Level Hang De-
tection in Complex Software Systems, Intl. Journal of Critical Computer-Based
Systems (IJCCBS), Vol. 2, No. 3/4, pp. 352-377, 2011

Chapter 1. Introduction 14

• G. Carrozza, R. Natella, A Recovery-Oriented Approach for Software Fault Diag-
nosis in Complex Critical Systems, Intl. Journal of Adaptive, Resilient and
Autonomic Systems (IJARAS), Vol. 2, No. 1, pp. 77-104, 2011

• D. Cotroneo, R. Natella, R. Pietrantuono, Predicting Aging-Related Bugs using Soft-
ware Complexity Metrics, Performance Evaluation–An International Journal,
under review

• M. Cinque, D. Cotroneo, R. Natella, A. Pecchia, Assessing and Improving the Effec-
tiveness of Logs for the Analysis of Software Faults, Proc. of Intl. Conference on
Dependable Systems and Networks (DSN), pp. 457-466, June 2010, Chicago,
Illinois, USA, Acceptance Rate: 25% (PDS Track)

• D. Cotroneo, D. Di Leo, R. Natella, R. Pietrantuono, A Case Study on State-Based
Robustness Testing of an Operating System for the Avionic Domain, Proc. of the
30th Intl. Conf. on Computer Safety, Reliability and Security (SAFE-
COMP), pp. 213-227, September 2011, Naples, Italy, 2011

• D. Cotroneo, R. Natella, R. Pietrantuono, S. Russo, Software Aging Analysis of the
Linux Operating System, Proc. of Intl. Symp. on Software Reliability Engi-
neering (ISSRE), pp. 71-80, November 2010, San Jose, California, USA, Acceptance
Rate: 32.3%

• D. Cotroneo, R. Natella, S. Russo, Assessment and Improvement of Hang Detection
in the Linux Operating System, Proc. of Intl. Symp. on Reliable Distributed
Systems (SRDS), pp. 288-294, September 2009, Niagara Falls, New York, USA,
Acceptance Rate: 28%, 2009

• D. Cotroneo, R. Natella, R. Pietrantuono, S. Russo, Software Aging and Rejuvena-
tion: Where we are and where we are going, Third Intl. Workshop of Software
Aging and Rejuvenation (WoSAR) (co-located with ISSRE 2011)

• D. Cotroneo, R. Natella, R. Pietrantuono, Is Software Aging related to Software Met-
rics?, Second Intl. Workshop of Software Aging and Rejuvenation (WoSAR)
(co-located with ISSRE 2010)

• D. Cotroneo, D. Di Leo, R. Natella, Adaptive Monitoring in Microkernel OSs, DSN
Workshop on Proactive Failure Avoidance, Recovery andMaintenance (PFARM)
(co-located with DSN 2010)

Chapter 1. Introduction 15

• M. Cinque, R. Natella, A. Pecchia, S. Russo, Improving FFDA of Web Servers
through a Rule-Based Logging Approach, Intl. Workshop on Field Failure Data
Analysis (F2DA) (co-located with SRDS 2009)

• D. Cotroneo, R. Natella, A. Pecchia, S. Russo, An Approach for Assessing Logs
by Software Fault Injection, DSN Workshop on Proactive Failure Avoidance,
Recovery and Maintenance (PFARM) (co-located with DSN 2009)

• G. Carrozza, D. Cotroneo, R. Natella, A. Pecchia, S. Russo, An Experiment in
Memory Leak Analysis with a Mission-Critical Middleware for Air Traffic Control,
ISSRE Intl. Workshop of Software Aging and Rejuvenation (WoSAR) (co-
located with ISSRE 2008)

• D. Cotroneo, M. Cinque, G. Carrozza,R. Natella, Operating System Support to Detect
Application Hangs, Second Intl. Workshop on Verification and Evaluation of
Computer and Communication Systems (VeCOS), July 2008, Leeds, UK

The thesis is organized as follows. Chapter 2 provides basic concepts on fault injection,

and surveys previous relevant work on the emulation of software faults and its applications

to the assessment and improvement of dependable systems. Chapter 3 presents an empirical

assessment of the problem of fault representativeness in real-world complex software, and

the proposed approach for improving fault representativeness by careful selection of fault

locations. Chapter 4 provides a method for assessing the accuracy of binary-level fault in-

jection, along with lessons learned from the assessment of an industrial fault injection tool.

Chapter 5 focuses on the emulation of concurrency faults, and presents the proposed ap-

proach and results obtained from an Air Traffic Control system. The dissertation concludes

with final remarks and the indication of the lesson learned and future research directions.

Chapter 2

Software Fault Injection: Background
and related work

2.1 Introduction

Many threats affect computer systems dependability, that originate from the several parts

that compose a system, including hardware and software faults, and from the environment

and from people and other systems that interact with the computer system during operation.

The characterization of faults and of the way they can affect the dependability of critical

computer-based systems is a complex subject, and it is instrumental for understanding how

we can improve the dependability of these systems and our confidence that dependability can

be justifiably trusted. This characterization is especially important in the context of fault

injection, in order to reproduce faults into an experimental setting and to achieve a realistic

assessment of fault-tolerant systems. Our focus (Figure 2.1) is on the characterization and

the emulation of software faults, which are a complex and still not well understood class of

faults, that emerged in the last decades as a major cause of failures. Therefore, significant

16

Chapter 2. Software Fault Injection: Background and related work 17

efforts have been spent towards the characterization of software faults, with the aim to

prevent them during software development activities, and to design and to assess fault-

tolerant systems able to coexist with their unavoidable occurrence.

Faults

Hardware

Software

Environment

Requirements

Design

Coding

Wear-out
Interferences
Design
...

Approaches

Applications

Improvement of fault
tolerance algorithms
and mechanisms

Forecasting of
dependability measures

Dependability benchmarking

Injection of fault effects
(errors, failures)

Injection of
actual faults

Power outages
Operator mistakes
Overload
...

Software
Fault

Injection

Figure 2.1: Scope of this thesis.

This chapter first provides some preliminary concepts about fault injection, which are

the foundations of Software Fault Injection. Subsequently, the characterization of software

faults is discussed, along with some key results that emerged from the empirical analysis

of software faults in real software systems. In doing so, we give emphasis to the problem

of artificially emulate these faults by Software Fault Injection. We then survey several

techniques and tools that have been proposed in the past for emulating software faults,

and how they evolved to achieve fault representativeness, non-intrusiveness, repeatability,

practicability and portability in Software Fault Injection experiments. Finally, relevant

Chapter 2. Software Fault Injection: Background and related work 18

applications of Software Fault Injection are described, with the aim to highlight which kinds

of result can be obtained from Software Fault Injection, and how it can support the design

of fault-tolerant systems.

2.2 Basic concepts and definitions

According to [16], a fault is the adjudged or hypothesized cause of an incorrect system state,

which is referred to as error. A failure is an event that occurs when an incorrect service

is delivered, that is, an error state is perceived by the users or external systems. These

concepts have clearly a great relevance for fault injection, as the results of fault injection

in a system reflect the class of faults that have been injected. There are many kinds of

fault that can affect computer systems, which can be grouped in hardware, software, and

environment faults (Figure 2.1). Fault injection can be adopted to assess the reaction of a

system with respect to any of these fault classes. Therefore, fault injection is usually divided

in Hardware Fault Injection, Software Fault Injection, and Environment Fault Injection. A

fault model is a formal description that specifies the set of faults that the system is expected

to experience during operation, and that are injected to assess and validate fault tolerance.

The fault model depends on the system requirements, the environment in which the system

will operate, and the development process that has been adopted.

Although there are several fault injection approaches and fault models, it is possible to

recognize a common conceptual schema of fault injection [95], shown in Figure 2.2. The

Chapter 2. Software Fault Injection: Background and related work 19

system under analysis is usually referred to as target. There are two entities that stimulate

the system, respectively the load generator and the injector. The former exercises the target

with inputs that will be processed during a fault injection experiment, while the latter

introduces a fault in the system. The set of inputs and faults submitted to the system are

respectively referred to as workload and faultload, which are typically specified by the tester

in a descriptive form (library) to the load generator and to the injector. The introduction of

a fault is performed by tampering with the structure or the state of the system or with the

environment in which it executes. Fault injection usually involves the execution of several

experiments or runs, which form a fault injection campaign, and only one or few faults from

the faultload are injected during an individual experiment.

Controller	

Injector	

Target	

Load	 Generator	 Monitor	

Workload
library

Faultload
library

Readouts Inputs Fault(s)

Commands

Figure 2.2: Conceptual schema of fault injection [95].

Chapter 2. Software Fault Injection: Background and related work 20

The monitor entity collects from the target the raw data (readouts or measurements)

that are needed to evaluate the effects of injected faults. The choice of readouts depends

on the kind of system considered and on the properties that have to be evaluated. They

may include the outputs of the target (e.g., messages sent to users or to other systems) and

the internal state of the target or its parts (e.g., the contents of a specific area of memory).

Readouts are used to assess the outcome of the experiment: for instance, the tester can

extrapolate whether the injected fault has been tolerated, or the system has failed. In order

to obtain information about the outcome of an experiment, readouts are usually compared

to the readouts obtained from fault-free experiments (also referred to as golden runs or

fault-free runs). Finally, the controller entity coordinates the other entities. Typically, the

controller is also responsible for iterating through several fault injection experiments that

form the fault injection campaign, and to store the results of each experiment to be used

for subsequent analysis.

Figure 2.3 depicts the states of a fault injection experiment. A fault is injected when

the target is in a correct state. The target stays in a correct state until the fault causes an

error: in this case, the fault has been activated, or triggered. For instance, fault activation

may occur when an external input stimulates a part of the system affected by the fault. An

error may propagate, that is, other portions of the target state get corrupted, until a failure

occurs. It may also happen that the target returns in a correct state, since the error can be

Chapter 2. Software Fault Injection: Background and related work 21

masked or corrected by redundant devices and logic (fault tolerance), or erroneous data can

be overwritten by correct data or reinitialized. A fault injection experiment can terminate

without producing a failure: either the fault has not been activated (the fault is dormant)

or an error is present but it has not become a failure (the error is latent).

Correct	 Error	 Failure	

Fault activation

Error
propagation

Correction

Dormant	
fault	

Latent	
error	

Termination Termination

Fault injection

Figure 2.3: States of a fault injection experiment.

Another form of fault injection is represented by error injection, in which the effects of

faults are introduced (in place of the hypothesized faults that may cause them) by corrupting

the state of the target. This approach accelerates the occurrence of failures, since it avoids

to wait for fault activation. Moreover, error injection can be cheaper or more feasible than

fault injection: this is the case of Software-Implemented Fault Injection (SWIFI), in which

the effect of hardware faults (e.g., CPU or memory faults) are reproduced by corrupting the

Chapter 2. Software Fault Injection: Background and related work 22

state of the software, instead of physically tampering with hardware devices.

The results collected from a fault injection experiment can be used to obtain measures

that characterize the behavior of the target system in the presence of faults. There exist

several kinds of measures and only few of them are usually relevant, depending on the fault

model and the kind of target system. In general terms, these measures describe the system

from the point of view of its ability to tolerate faults. In fact, the sole presence of fault

tolerance algorithms and mechanisms does not guarantee that a system cannot fail, and

fault injection is a means to assess and improve fault tolerance. The effectiveness of a fault

tolerance mechanism or algorithm, namely the coverage [26, 163, 50], is defined as

c = Pr{H = 1 | (f, a) ∈ F ×A } , (2.1)

that is, the conditional probability that a fault is correctly handled (H = 1) given the

occurrence of a fault f and a sequence of inputs a. In other terms, the coverage factor c can

be viewed as the expected value of a discrete random variable H that take the values 0 or

1 for each pair (f, a), denoted with h(f, a). The coverage can be expressed in an equivalent

way as

c =
∑

(f,a)∈F×A

h(f, a) · p(f, a) , (2.2)

where p(f, a) denotes the relative probability of occurrence of (f, a). Another measure of

Chapter 2. Software Fault Injection: Background and related work 23

fault tolerance effectiveness is the mean coverage time (also referred to as latency) [10, 11],

that is, the expected value τ of a random variable Tp representing the time required to

handle a fault, which can expressed as

τ = E[Tp] =

∫ ∞
0

t · fTp(t)dt . (2.3)

where fTp(t) denotes the probability density function of Tp.

Deficiencies in fault tolerance can be due to development faults affecting the design

or implementation of fault tolerance algorithms and mechanisms (error and fault handling

coverage [14, 26]), or to fault assumptions differing from the faults faced during operation

(fault assumption coverage [162]), that is, incorrect assumptions about the behavior of a

failed component or about the independence between component failures.

Fault injection is adopted for coping with these deficiencies, specifically for the fault

removal and fault forecasting of fault tolerance [16, 10]. In the case of fault removal [17],

fault injection is used to define test cases, in which faults represent the inputs of test cases:

the results of this analysis are qualitative and are used to improve the implementation of

fault tolerance algorithms and mechanisms. In the case of fault forecasting [10, 11], fault

injection is aimed at quantitatively estimating the effectiveness of fault tolerance that will

be provided during operation, to provide feedback to the development process on the design

of fault tolerance and to compare the effectiveness of different designs. Fault injection can

Chapter 2. Software Fault Injection: Background and related work 24

assess coverage factors and latency (i.e., the time needed for recovering from a fault) of fault

tolerance, which in turn can be used in analytical models to obtain dependability measures

(e.g., availability, performability). Other measures of interest for fault forecasting are related

to the occurrence of specific failure modes, such as the probability of a fail-stop behavior

and the probability of catastrophic failures from the point of view of safety. For both the

fault removal and fault forecasting goals, it is necessary or desirable to achieve a set of key

properties [10, 24]:

• Representativeness refers to the ability of the faultload and the workload to repre-

sent the real faults and inputs that the system will experience during operation. In the

case of fault removal, this property is important to avoid focusing development efforts

towards tolerating faults that cannot realistically occur in practice. This property is

also important for fault forecasting, since it is a necessary condition to assure that the

estimates obtained from experiments reflect the operational behavior of the system.

Representativeness of faultloads is achieved by defining a realistic fault model, and by

accurately reproducing this fault model when faults are injected.

• Non-intrusiveness requires that the instrumentation adopted in the fault injection

process (such as fault insertion and data collection) should not significantly alter the

behavior of the system, and that perturbations on the obtained measures are kept at

a minimum. For instance, intrusiveness can be caused by the execution of additional

Chapter 2. Software Fault Injection: Background and related work 25

code in the case of software-implemented fault injection.

• Repeatability is the property that guarantees statistically equivalent results when a

fault injection campaign is executed more than once using the same procedure in the

same environment. This property is not trivial to achieve due to the many sources of

non-determinism in computer systems, such as thread scheduling and timing of events,

and it requires to isolate the fault injection environment from external disturbances.

• Practicability refers to the effectiveness of fault injection in terms of cost and time.

These factors include the time required to implement and setup the fault injection

environment, the time to execute the experiments, and the time for the analysis of

results. This property requires that experiments are supported by tools and can achieve

an high degree of automation, in order to fulfill the time and budget constraints of

software development.

• Portability requires that a fault injection technique or tool is applicable with low

effort to different systems, in order to allow their comparison. The portability of a

fault injection tool also refers to the ability of the tool to support several fault models

or to be extended with new fault models.

Chapter 2. Software Fault Injection: Background and related work 26

2.3 Characterization of software faults

Software faults, on which this thesis focuses, are a inherently complex class of faults since

they are human mistakes affecting the requirements, design, and implementation of the

software. According to the taxonomy of Avizienis et al. [16], software faults can be defined

as permanent faults in the software that occur during its development1. Due to the complex

nature of software development, it is not trivial to characterize how software faults originate

during the several phases of the development process (including requirement analysis, high-

level and low-level design, coding, and even testing), and in which way they affect the

structure of the software and its behavior during execution. Software faults are the result

of the process and technologies adopted by developers, and they also depend on the kind of

system being considered.

This complexity reflects in the many efforts that have been spent for understanding and

characterizing software faults in order to better cope with them. This section reviews some

models of software faults that have been proposed in past work, each with different purposes

and in different contexts, and discusses how these models relate with fault injection.
1It should be noted that the term error is also adopted by the software engineering community and in

the IEEE Standard Glossary of Software Engineering Terminology [1] to refer to the concept of software
defect. This thesis complies to the taxonomy of Avizienis et al. [16], in which the term error refers to an
incorrect system state produced by a software defect.

Chapter 2. Software Fault Injection: Background and related work 27

2.3.1 IEEE Standard Classification for Software Anomalies

The analysis of software faults occurring during the software lifecycle is widely adopted for

assessing and improving the software development process. Data about software faults are

used for identifying and mitigating the root causes of software faults, such as by adopting

better practices and improving the scheduling and assignment of project activities. The

analysis of the software development process is recommended by software quality standards

and frameworks such as the Capability Maturity Model Integrated (CMMI) [40], and it is

particularly important for the development of safety- and mission-critical software, which

rely on rigorous processes in order to assure that an acceptable safety level is achieved.

However, several kind of data can be collected for this purpose, which can vary across

organizations.

The IEEE Standard Classification for Software Anomalies (published in 1994 [2] and

revised in 2010 [5]) is a document providing guidance on how to characterize software faults.

It provides a set of mandatory defect and failure attributes that are nowadays commonly

collected and used (in this form or a similar one) by software development processes and

supporting tools, such as Bugzilla2 and JIRA3, for the purposes of problem tracking and

process improvement. In its original version [2], the standard enumerated in detail the
2http://www.bugzilla.org/
3http://www.atlassian.com/software/jira/

Chapter 2. Software Fault Injection: Background and related work 28

possible defect types, which included logic problems (e.g., forgotten cases or steps, iterat-

ing loop incorrectly, misinterpretation), computation problems (e.g., equation insufficient or

incorrect, sign convention), interface/timing problems (interrupts handled incorrectly, sub-

routine/module mismatch), and others. However, the enumeration of software fault types is

affected by several limitations. Although the standard is built on the experience of several

experts, it is impossible to assure that the list of fault types is complete, and that there

exists no further fault type. Moreover, many of the fault types are related to a specific

technology or type of system (e.g., faults in interrupt handling are related to OSs; incorrect

equation faults are related to control systems), and are not applicable in many cases.

The standard does not include anymore a classification of fault types in its latest revision

[5], and provides a set of attributes (Table 2.1) without mandating a set of fault types. In

a similar way, it provides attributes for software failures (Table 2.2) for supporting the

analysis of field failure data and the resolution of problems at the customer site. However,

this kind of characterization still leaves open the problem of characterizing software faults

and providing a related fault model for dependability assessment.

2.3.2 Orthogonal Defect Classification

The Orthogonal Defect Classification (ODC) [36] is a framework for classifying software

faults in order to obtain measurements and feedback from the development process. ODC

represents a trade-off between classical quantitative approaches used for reliability growth

Chapter 2. Software Fault Injection: Background and related work 29

Table 2.1: Defect attributes in the IEEE Standard Classification for Software Anomalies.

Attribute Definition

Defect ID Unique identifier for the defect.

Description Description of what is missing, wrong, or unnecessary.

Status Current state within defect report life cycle.

Asset The software asset (product, component, module, etc.) containing the defect.

Artifact The specific software work product containing the defect.

Version detected Identification of the software version in which the defect was detected.

Version corrected Identification of the software version in which the defect was corrected.

Priority Ranking for processing assigned by the organization responsible for the evaluation, res-
olution, and closure of the defect relative to other reported defects.

Severity The highest failure impact that the defect could (or did) cause, as determined by (from
the perspective of) the organization responsible for software engineering.

Probability Probability of recurring failure caused by this defect.

Effect The class of requirement that is impacted by a failure caused by a defect.

Type A categorization based on the class of code within which the defect is found or the work
product within which the defect is found.

Mode A categorization based on whether the defect is due to incorrect implementation or
representation, the addition of something that is not needed, or an omission.

Insertion activity The activity during which the defect was injected/inserted (i.e., during which the artifact
containing the defect originated).

Detection activity The activity during which the defect was detected (i.e., inspection or testing).

Failure reference(s) Identifier of the failure(s) caused by the defect.

Change reference Identifier of the corrective change request initiated to correct the defect.

Disposition Final disposition of defect report upon closure.

Chapter 2. Software Fault Injection: Background and related work 30

Table 2.2: Failure attributes in the IEEE Standard Classification for Software Anomalies.

Attribute Definition

Failure ID Unique identifier for the failure.

Status Current state within failure report life cycle.

Title Brief description of the failure for summary reporting purposes.

Description Full description of the anomalous behavior and the conditions under which it occurred,
including the sequence of events and/or user actions that preceded the failure.

Environment Identification of the operating environment in which the failure was observed.

Configuration Configuration details including relevant product and version identifiers.

Severity As determined by (from the perspective of) the organization responsible for software
engineering.

Analysis Final results of causal analysis on conclusion of failure investigation.

Disposition Final disposition of the failure report.

Observed by Person who observed the failure (and from whom additional detail can be obtained).

Opened by Person who opened (submitted) the failure report.

Assigned to Person or organization assigned to investigate the cause of the failure.

Closed by Person who closed the failure report.

Date observed Date/time the failure was observed.

Date opened Date/time the failure report is opened (submitted).

Date closed Date/time the failure report is closed and the final disposition is assigned.

Test reference Identification of the specific test being conducted (if any) when the failure occurred.

Incident reference Identification of the associated incident if the failure report was precipitated by a service
desk or help desk call/contact.

Defect reference Identification of the defect asserted to be the cause of the failure.

Failure reference Identification of a related failure report.

Chapter 2. Software Fault Injection: Background and related work 31

models and qualitative ones for defect root cause analysis. Reliability growth models provide

a statistical characterization of a software product and its development process, by identi-

fying trends in the number of detected faults or field failures [146], although these trends

are identified in the late phases of the software lifecycle and can provide little feedback to

the development process. Qualitative approaches consist in the investigation of causes of

individual defects by a specialized team in order to define actions that can prevent defects,

although this investigation may require significant resources and it is not intended to provide

statistical trends or for quantitative analysis.

ODC provides quantitative means for gaining insights on the development process, by

obtaining inferences from the analysis of the empirical distributions of defects. Differing

from reliability growth models, defects are divided among different classes and the per-class

distribution along the development process is analyzed. The division among classes is moti-

vated by the observation that there is a cause-effect relationship between the development

process and the kind of defects found during development [38]. ODC proposes a set of defect

types based on the defect fix made by the programmer that corrects the fault (Table 2.3).

The main benefit of this classification is that defect types can be associated with the ac-

tivities of the different stages of development. For instance, the occurrence of a significant

number of Function defects can point out that the development process should be improved

in the high-level design phase. Defect types are associated to different process stages (high-

Chapter 2. Software Fault Injection: Background and related work 32

Table 2.3: ODC defect types.

Defect type Definition

Assignment Value(s) assigned incorrectly or not assigned at all.

Checking Missing or incorrect validation of parameters or data in conditional statements.

Algorithm Efficiency or correctness problems that affect the task and can be fixed by
(re)implementing an algorithm or local data structure without the need for requesting
a design change.

Timing/Serialization Necessary serialization of shared resources is missing, wrong resource has been serialized
or wrong serialization technique employed.

Interface Communication problems between users, modules, components or device drivers and
software.

Function Affects a sizeable amount of code and refers to capability that is either implemented
incorrectly or not implemented at all.

and low-level design, coding, documentation, high- and low-level design inspections, code

inspections, unit/function/system test), and their distribution measured along stages is ex-

ploited to provide feedback on the process. Another benefit of ODC is that the classes are

mutually exclusive (i.e., orthogonal) and that they are close to the programmer, since they

are based on the correction of the defect: therefore, defects can be easily and unambiguously

classified, and measurements lend themselves to quantitative analysis. Several pilot projects

confirmed the usefulness of ODC to provide feedback [36].

ODC also proposes a classification scheme for providing insights on the verification pro-

cess [36, 31]. To this aim, it defines a set of defect triggers, that is, the condition(s) allowing

a defect to surface during V&V activities or in the field (Table 2.4, Table 2.5 and Table 2.6).

Defect triggers are independent from defect types: for instance, Checking defects can be

triggered when the system is executed under a new hardware platform, as well as when the

Chapter 2. Software Fault Injection: Background and related work 33

Table 2.4: ODC defect triggers for system tests.

Defect trigger Definition

Startup/Restart The system was being initialized or restarted due to an earlier shutdown
or failure.

Workload volume/Stress The system was operating near some resource limit, either upper or lower.

Recovery/Exception An exception handler or a recovery procedure was active. The fault would
not have surfaced if some earlier exception had not invoked the handler or
the procedure.

Hardware/Software configuration Triggers related to unusual or unanticipated configurations.

Normal mode A trigger that says that no special conditions must exist for the fault to
surface, i.e., the system was working well within upper and lower resource
limits.

system activates a recovery procedure. Ideally, the distribution of triggers of field defects

should be similar to the distribution of defects found by system tests (Table 2.4). If this

is not the case, the difference can highlight issues in system tests. In a similar way, the

distribution for document review and code inspection (Table 2.6) can point out weaknesses

in the review process: this feedback is useful to assign reviews to people with skills in a

specific product area.

The concept of defect type revealed to be quite useful for formulating a model of software

faults, since defect types are unambiguous and directly related to the code. The approach

proposed in [41] defines a faultload representative of software faults occurring in the field,

based on failure data of the system under analysis. The faultload reflects the proportion

of defect types found in the field, and errors are injected associated to these defect types.

Subsequent field data studies [61, 65] extended the analysis of defect types to several software

systems (including user/OS and young/mature software written using the C language). An

Chapter 2. Software Fault Injection: Background and related work 34

Table 2.5: ODC fault triggers for unit and function testing.

Defect trigger Test model Definition

Simple path coverage White-box The test case that found the defect was created by the tester
with the specific intention of exercising branches in the code.

Combinatorial path coverage White-box The tester attempted to invoke the execution of branches under
several different conditions.

Side effects White-box The defect surfaced because of some unanticipated behavior
not specifically tested for.

Test coverage Black-box The test case that found the defect was a straightforward at-
tempt to exercise a single body of code using a single input.

Test sequencing Black-box The test case that found the defect executed, in sequence, two
or more bodies of code each of which can be invoked indepen-
dently by the tester.

Test interaction Black-box The test case that found the defect initiated an interaction
between two or more bodies of code each of which can be in-
voked independently by the tester. The interaction was more
involved than a simple sequence of the executions.

Test variation Black-box The test case that found the defect was a straightforward at-
tempt to exercise a single body of code using different inputs.

Side effects Black-box The defect surfaced because of some unanticipated behavior
not specifically tested for.

Table 2.6: ODC fault triggers for document review and code inspection.

Defect trigger Definition

Design conformance The document reviewer or the code inspector detects the defect while
comparing the design element or code segment being inspected with its
specification in the preceding stage(s).

Understanding details The inspector detects the defect while trying to understand the details
of the structure and/or operation of a component.

Backward compatibility The inspector used extensive product experience to determine an in-
compatibility between the functionality described by the design docu-
ment or the code and that of earlier versions of the same product.

Lateral compatibility The inspector with broad-based experience detected an incompatibility
between the functionality described by the design document or the code
and the other (sub)systems and services with which it must interface.

Rare situation The inspector used extensive experience or product knowledge to fore-
see some system behavior not considered or addressed by the docu-
mented design or code under review.

Document consistency/completeness The defect surfaces because of some inconsistency or incompleteness
within the document or code.

Language dependancies The developer detects the defect while checking the language-specific
details of the implementation of a component or a function.

Chapter 2. Software Fault Injection: Background and related work 35

important finding from these analyses is that defect types follow the same trend across

field data studies and software systems (Table 2.7): Algorithm defects are the largest part,

Assignment and Checking defects have approximately the same weight, and Interface and

Function defects are the less frequent ones. This result has an important implication on fault

injection: the distribution of ODC defect types is independent from the particular system,

therefore field failure data about the system under analysis (which are usually not available)

are not needed to define a faultload for fault injection.

Table 2.7: Comparison between distributions of ODC defect types of two field data studies.

ODC defect type Distribution
[65] [41]

Assignment 21.1% 21.98%
Checking 25.0% 17.48%
Interface 7.3% 8.17%
Algorithm 40.1% 43.41%
Function 6.1% 8.74%

Furthermore, the field data study in [65] looked in detail at the faults in order to achieve

a more precise characterization. To this aim, ODC defect types were extended to provide

additional details and relate the faults with the programming language construct that is

either missing, wrong, or extraneous (Table 2.8). In this context, a programming language

construct is any building block of the program, such as statements and expressions. This

classification is more oriented towards fault injection, since it gives an indication on how

to manipulate a program in order to introduce a fault (for instance, the construct to be

Chapter 2. Software Fault Injection: Background and related work 36

removed in order to inject a missing construct fault).

Table 2.8: Refined fault types from ODC defect types [65].

ODC type Nature Examples # faults % of total

Assignment

Missing A variable was not assigned a value, a variable
was not initialized, etc.

62 9.3%

Wrong A wrong value (or expression result, etc.) was
assigned to a variable

70 10.5%

Extraneous A variable should not have been subject of an
assignment

11 1.6%

Checking

Missing An if construct is missing, part of a logical
condition is missing, etc.

113 16.9%

Wrong Wrong logical expression used in a condition
in branch and loop construct

53 7.9%

Extraneous An if construct is superfluous and should not
be present

1 0.1%

Interface

Missing A parameter in a function call was missing;
incomplete expression was used as parameter

11 1.6%

Wrong Wrong information was passed to a function
call (value, expression result, etc.)

38 5.7%

Extraneous Surplus data is passed to a function 0 0%

Algorithm

Missing Some part of the algorithm is missing (e.g.,
function call, a iteration construct, etc.)

222 33.2%

Wrong Algorithm is wrongly coded or ill-formed 40 6.0%
Extraneous The algorithm has surplus steps; a function

was being called
6 0.9%

Function

Missing New program modules were required 21 3.1%
Wrong The code structure has to be redefined to cor-

rect functionality
20 3.0%

Extraneous Portions of code were completely superfluous 0 0%

The refined fault types have then been used to classify 668 faults from the field [65]. The

analysis found that few fault types account for most of the faults, and that the remaining

fault types each encompasses a small number of faults. Therefore, the study identified a

set of fault types to be considered as being representative of faults in the field, based on

two criteria: (i) the number of occurrences of the fault type must be at least as high as

Chapter 2. Software Fault Injection: Background and related work 37

the average, and (ii) the occurrences should not be restricted to only one or two of the

programs. The fault types fulfilling these criteria are reported in Table 2.9. This set of fault

types represent a total of 67.6% of all faults collected. The study argues that these types

should be addressed in the first place when emulating software faults. It also notes that

although other fault types may occur in the field, they are probably very rare since they

were not observed among the considered field faults, and would not affect the analysis of

the most frequent fault types.

This analysis represents an important result towards the characterization of software

faults: it identified the fault types that are likely affect a software system during operation,

and provides a generic empirical distribution of fault types (i.e., it holds for several software

systems). These fault types are applicable to other procedural programming languages,

since they are not tied to specific features of the C language. Other studies were made to

extend this fault model to the Java object-oriented language [21, 173]: they found that the

fault types in Table 2.9 are still the most frequent ones, and that they can be extended with

a set of object-oriented fault types when an object-oriented language is considered.

2.3.3 Bohrbugs, Mandelbugs, and Aging-Related Bugs

Another dimension which is often adopted for characterizing software faults is represented

by the fault activation reproducibility, since this dimension has important implications on

software fault tolerance. Reproducibility refers to the ability to identify and replicate the

Chapter 2. Software Fault Injection: Background and related work 38

Table 2.9: Most common fault types found in several software systems [65].

Fault types # ODC defect type
Ass. Chk. Int. Alg. Fun.

Missing

if construct plus statements 71 X

AND sub-expr in expression used as branch condition 47 X

function call 46 X

if construct around statements 34 X

OR sub-expr in expression used as branch condition 32 X

small and localized part of the algorithm 23 X

variable assignment using an expression 21 X

functionality 21 X

variable assignment using a value 20 X

if construct plus statements plus else before statements 18 X

variable initialization 15 X

Wrong

logical expression used as branch condition 22 X

algorithm - large modifications 20 X

value assigned to variable 16 X

arithmetic expression in parameter of function call 14 X

data types or conversion used 12 X

variable used in parameter of function call 11 X

Extrane-
ous variable assignment using another variable 9 X

Total 452 93 135 25 192 41

Coverage relative to each ODC type (%) 68% 65% 81% 51% 72% 100%

activation pattern of a fault that had caused one or more errors. Faults that are easily

reproducible are called solid, or hard, faults, otherwise they are called elusive, or soft, faults

[16]. Fault activation reproducibility explains the fact that although software faults are

permanent in nature, many software failures exhibit a transient behavior and are difficult

to diagnose, since it is difficult to reproduce and analyze the chain of events that exposed

the fault during testing or production.

Chapter 2. Software Fault Injection: Background and related work 39

This fact has been experienced by programmers since a long time [87], and appeared in

print for the first time in a seminal work of Jim Gray [83]. In that work, Gray hypothe-

sized that most production software faults are soft, since industrial software goes through

rigorous design and testing (structured design, design reviews, quality assurance, alpha test,

beta test) and years of production that get rid of hard faults. In analogy to the Heisen-

berg Uncertainty Principle, soft faults are referred to as Heisenbugs, since these faults do

not manifest themselves when trying to debug them due to perturbations introduced by

debuggers (e.g., initialization of unused memory, influence on CPU scheduling and timing

of events). Conversely, solid bugs are referred to as Bohrbugs (in analogy to the Bohr atom

model), since they are easy to diagnose once detected. In the most recent taxonomies of

software faults, Heisenbugs are included in the more general class of Mandelbugs, where the

former are the bugs that change their behavior when probed using a debugger, and the

latter encompass all the bugs whose activation condition is related to timing and to complex

interactions with the system state as a whole, including hardware, operating system, and

other software such as middleware, virtual machines, libraries and remote services [86].

The distinction between Bohrbugs and Mandelbugs is relevant for architecting fault-

tolerant software systems (Figure 2.4). Bohrbugs always produce a failure every time the

failed operation is repeated, and can only be tolerated by adopting design diversity, that

is, different design/implementations of the same functionality are used to mask faults in

Chapter 2. Software Fault Injection: Background and related work 40

individual implementations [129]. Conversely, Mandelbugs can be tolerated by reinitializing

the software state and retrying the failed operation, because their activation conditions

tend to disappear due to their transient nature [83, 34, 88]. This finding enables to devise

fault-tolerant architectures that are more cost-effective, since several software failures can be

avoided without the additional costs of the design diversity, in which the same functionality is

implemented several times by different teams and using different processes and technologies.

It is also advisable to detect and remove Bohrbugs during development via systematic and

thorough testing [88].

So#ware	 (OS,	 middleware,	 applica2ons)	

Bohrbugs	 Mandelbugs	 Aging-‐
related	 bugs	

Debugging	 Design	
diversity	

Retry	
opera3on	

Restart	
applica3on	

Reboot	
node	

Development	
phase	 Opera3onal	 phase	

Figure 2.4: Relationships between software fault tolerance and Bohrbugs, Mandelbugs, and
Aging-Related Bugs [192].

Several field data studies found evidence that Mandelbugs account for a significant part

Chapter 2. Software Fault Injection: Background and related work 41

of complex software systems, although the share of Mandelbugs varies with the kind and

maturity of system. The analysis of field failures in Tandem computer systems [84, 126]

shown that most of software failures were caused by Mandelbugs and were successfully

tolerated by process pairs, in which a critical function is replicated on two processing units,

respectively a primary and a backup process that replaces the primary when its failure

is detected. More recent studies found that although Bohrbugs represent the majority of

software faults, Mandelbugs account for a significant share (in the 20-40% range) [34, 86, 35].

Figure 2.5 shows the proportion of Bohrbugs in NASA missions [86]: this proportion seems to

stabilize around almost the same value for all the considered missions. This result emphasizes

the importance of Mandelbugs in mission-critical systems. At the same time, it highlights

that even in mission-critical and well-tested software a large proportion of Bohrbugs can

still be present in the operational system, and that testing strategies have still room for

improvement in order to reduce the number of Bohrbugs in complex software.

It is worth mentioning that an important subclass of faults of Mandelbugs has been

identified by field data studies, namely Aging-Related Bugs. These bugs are the root cause

of the software aging phenomenon, in which software systems running continuously for a

long time tend to show degraded performance and an increased failure occurrence rate [96].

This kind of fault causes the accumulation of internal error states, or their activation and/or

error propagation is influenced by the total time the system has been running [86]. In early

Chapter 2. Software Fault Injection: Background and related work 42

Figure 2.5: Proportion of Bohrbugs in NASA missions [86].

taxonomies, Aging-Related Bugs were overlapped both to Bohrbugs and to Mandelbugs,

depending on the influence of the environment on the faults [195]. More recent studies

framed these faults within Mandelbugs [87, 88], since they manifest themselves only after

a long execution time and therefore their activation and/or error propagation should be

considered complex. For their nature, these faults can be handled by proactively bringing

the system to a state free from aging errors before an aging failure occurs (Figure 2.4):

this approach is referred to as software rejuvenation. An example is represented by system

Chapter 2. Software Fault Injection: Background and related work 43

reboot, which brings the system to its initial state. Software rejuvenation can improve

system availability since the the downtime due to scheduled maintenance is lower than

downtime due to unexpected failures. It should be noted that software aging revealed to be

an issue for many long-running software systems (such as web servers [85], telecommunication

systems [18], military systems [88], middleware [180, 30], and operating systems [47]), and

that Aging-Related Bugs represent a non-negligible share of faults even in mission-critical

software (4.4% of faults found in NASA missions were actually aging-related [86]).

Even if the distinction between Bohrbugs and Mandelbugs has a great relevance for

fault-tolerant systems, it has not been carefully taken into account in past work on fault

injection. Most error injection approaches implicitly or explicitly assumed that Mandelbugs

generate transient errors analogous to SWIFI error models [19, 160]. However, no evidence

is available assuring that the injected errors emulate Mandelbugs. Conversely, fault injection

approaches based on changes in the program code do not encompass fault types related to

Mandelbugs, such as the Timing/Serialization ODC type, and do not try to reproduce the

complex activation and error propagation dynamics that characterize Mandelbugs. This

aspect is still an open issue for fault injection, and part of this thesis focuses on this issue.

2.4 Software Fault Injection techniques and tools

The emulation of software faults has been pursued in several ways, and many techniques

and tools have been developed in more than 20 years. We here illustrate and discuss these

Chapter 2. Software Fault Injection: Background and related work 44

efforts, by distinguishing between two fundamental approaches: the injection of faults effects

(also referred to as error injection), in which an error is introduced by perturbing the system

state, and the injection of actual faults, in which the program code is changed in order to

emulate a software fault in the code. The following subsections review Software Fault Injec-

tion techniques and tools, respectively: (i) the earliest approaches for ”data error injection”

(subsection 2.4.1) that were based on hardware fault injection techniques existing at that

time; (ii) approaches for ”interface error injection” (subsection 2.4.2), that were specifically

aimed at testing the robustness of components with respect to interactions with other com-

ponents; (iii) approches for the injection of actual faults, that introduce small faulty changes

in the program code (subsection 2.4.3).

2.4.1 Data error injection

The early approaches for the injection of fault effects have grown in the context of studies

on hardware faults through Software-Implemented Fault Injection (SWIFI). SWIFI aims

at reproducing the effects (i.e., errors) of hardware faults (such as CPU, bus, and memory

faults) by perturbing the state of memory or hardware registers through software. SWIFI is

a low cost and easy-to-control approach for injecting hardware faults, that overcomes several

problems associated with physical fault injection techniques (e.g., pin-level injection [10] and

heavy-ion radiation [89]), such as controllability and repeatability of experiments [12]. This

approach has been adopted for Software Fault Injection with the assumption that injected

Chapter 2. Software Fault Injection: Background and related work 45

errors are representative of errors generated by software faults.

SWIFI approaches replace the contents of a memory location or register with a cor-

rupted value. In order to perform this operation, three aspects need to be defined (see also

Table 2.10):

• What to inject. This aspect is related to the kind of errors to be injected, by

replacing a correct value with an incorrect one. SWIFI tools modify the contents of

an individual bit, byte, or word in a memory location or register. Several error types

have been defined from the analysis of errors generated by faults at the electrical or

gate level [114, 167, 156]. For example, one common error type is the replacement of

a bit or byte with a fixed value (stuck-at-0 and stuck-at-1 faults) or with the opposite

value (inverted faults).

• Where to inject. There are many locations in memory or register banks that can be

targeted by SWIFI. Errors injected in memory typically target random locations, due

to the large amount of potential memory location. The selection of memory locations

can be focused on specific memory areas (e.g., stack, heap, global data) or user-selected

locations (e.g., a specific variable in memory). Errors injected in registers can target

those registers that are accessible through software (e.g., data and address registers).

• When to inject. The instant in which an error is injected can be time or event

Chapter 2. Software Fault Injection: Background and related work 46

Table 2.10: SWIFI error models used for CPU, bus and memory faults.

What to inject Bit/byte set, Bit/byte reset, Bit/byte toggle, AND/OR/XOR with a user-defined
bitmap

Where to inject Stack memory, Heap memory, Global data memory, User code, Kernel code, User-
defined memory location, Data registers, Address registers, Stack pointers, Pro-
gram counters, Status register

When to inject First access to memory location or register, Every access to memory location or
register, Random time, User-defined time

dependent. In the former case, an error is injected after that a given experiment time

is elapsed, where the time is selected by the user or through a random distribution.

In the latter case, the error is injected when a specific event occurs during execution,

such as at the first access or at every access to the target location. These approaches

are adopted for emulating three types of hardware faults, respectively transient (i.e.,

occasional), intermittent (i.e., recurring several times), and permanent faults.

It should be noted that hardware errors injected by SWIFI tools can be injected both

in the program state (e.g., data and address registers, stack and heap memory) and in

the program code (e.g., in memory areas where code is stored, before or during program

execution). This is a relevant distinction for Software Fault Injection. Corruptions in the

program state aim to reflect the effects of software faults, i.e., an error caused by the

execution of a faulty program, such as a wrong pointer, flag, or control flow. SWIFI tools

can introduce this kind of errors in a straightforward way. Corruptions in the program

code aim to reflect actual software faults in the code, although the adoption of SWIFI tools

Chapter 2. Software Fault Injection: Background and related work 47

for this purpose is not trivial, and it is discussed later in the context of ”code changes”

approaches (subsection 2.4.3).

Early studies on SWIFI focused on the design of techniques and tools with the aim to

provide a flexible and non-intrusive support to fault injection. The same error model was

adopted for both hardware and software faults (Table 2.10). The Fault Injection based Au-

tomated Testing environment (FIAT) [177, 19] was one of the first SWIFI tools aimed at the

injection of errors caused by both hardware and software faults. Errors are injected in a OS

process through the support of library routines that are linked to the task executable during

compilation, and alter process memory on request from an external program. Library code

is also adopted for observing the process behavior and collect data. This solution is aimed

to overcome OS protection mechanisms that prevent external processes from modifying the

state of a target process. A limitation of this approach is represented by the need for the

object code or the source code of the target, since object/source code may not be available

in the case of third-party and COTS software, and additional effort is required to link the

library and recompile the target. The FIAT system also provides an user interface and

an hardware/software architecture (Figure 2.6) for assisting the definition of workload and

faultload libraries, for controlling remote experiments and for data analysis (e.g., computing

the coverage of error detection).

Chapter 2. Software Fault Injection: Background and related work 48

Target	 task	

Workload	
monitor	

Fault	
injector	

Error	
detec6on/	
repor6ng	

Fault	
tolerance	

Fault	 Injec6on	 Manager	
	

Experiment	 Planning,	
Control	 and	 Data	 Reduc7on	

Fault	 Injec6on	 Receptor	
	

Workload	 monitoring	 and	 Fault	
Injec7on	

...

...

LAN

Figure 2.6: The Fault Injection based Automated Testing environment (FIAT) [177].

In order to overcome the need for the object/source code, the Fault and ERRor Auto-

matic Real-time Injector (FERRARI) [113, 115] SWIFI tool injects errors by corrupting the

binary executable of the target program before execution, and by corrupting the in-memory

image of a process during execution. The latter mode is achieved through the ptrace POSIX

system call, provided by UNIX operating systems for debugging purposes, that allows a

process to read and to write the memory of another process. This system call is used by

an ”error injection process” to control the execution of a target process, in a similar way

to a debugging tool (Figure 2.7): it interrupts the execution of the target when a given

instruction is executed (by replacing the instruction with a ”software trap” instruction) or a

given time elapsed, injects an error while the target is stopped, and lets the target execute

Chapter 2. Software Fault Injection: Background and related work 49

again in order to observe its behavior in the presence of an error. Compared to FIAT, this

approach does not require the object/source code of the target, although it is more intrusive

since the ”error injection process” and the software trap mechanism introduce some context

switches (which can still be considered a negligible overhead for most applications).

Program code

...	

Program code

TRAP	 Faulty	 inst.	

Inst.	

...	

...	

Inst.	 	 TRAP	

Inst.	

...	

Program
Counter

...	

Program code

Faulty	 inst.	 	 Inst.	

Inst.	

...	

Program
Counter

1. The target
instruction is
replaced with
a special
TRAP
instruction

2a. When the CPU executes
the TRAP instruction, an
interrupt is generated
2b. The interrupt service
routine replaces the TRAP with
a faulty instruction
2c. The CPU debug mode is
enabled (i.e., the next
instruction will generate an
interrupt)

3a. The faulty instruction
is executed, and an
interrupt is generated
3b. The original
instruction is restored,
and debug mode is
disabled

Figure 2.7: Software trap mechanism adopted by the Fault and ERRor Automatic Real-time
Injector (FERRARI) [115].

The integrateD sOftware fault injeCTiOn enviRonment (DOCTOR) [91] SWIFI tool ex-

tended the SWIFI approach for emulating communication faults (see Table 2.11 summarizes

this error model). The injection of communication faults takes advantage of the x-kernel,

which is a OS kernel in which DOCTOR is implemented. This OS allows to introduce a

layer between any two protocol layers in the protocol stack, in order to perform additional

Chapter 2. Software Fault Injection: Background and related work 50

Table 2.11: SWIFI error models used for communication faults.

What to inject Lose message(s), Duplicate message(s), Alter message header, Alter message
body, Delay message(s)

Where to inject Faulty link, Faulty direction, Single message

When to inject Random time, User-defined time, User-defined message

processing on any network message. A fault injection layer is inserted below the protocol or

user program to be tested, and it intercepts operations between the target and protocol at

lower levels. For instance, in order to cause a delayed outgoing message, the fault injection

layer stops a message and schedules a future message with the same contents to be sent later.

This approach was also adopted by the ORCHESTRA fault injection environment [52, 51],

which introduced a programming support (script-driven probing) for specifying message fil-

ters able to inject faults in complex protocols (e.g., a fault is injected can be injected in a

specific protocol state). Memory and CPU faults are injected using the software trap mech-

anism, with the exception of permanent CPU faults that are injected by replacing assembly

instructions in the executable.

Since it was observed that many experiments produce latent errors that do not affect

the target system, the Fault Tolerance And Performance Evaluator (FTAPE) [194, 193]

was developed for improving the efficiency of SWIFI in terms of experiments that actually

exercise fault tolerance mechanisms. It combines SWIFI with a workload generator and a

workload activity monitoring tool (MEASURE), and injects errors in a system component

Chapter 2. Software Fault Injection: Background and related work 51

(CPU, memory, or disk) based on the amount of stress that the workload places on each

component, exploiting the fact that errors are more likely to propagate and produce a failure

behavior in the presence of a stressful workload (stress-based injection). FTAPE generates

synthetic CPU, memory and disk operations, and it monitors the actual workload activity

to determine the time and location for fault injection (Figure 2.8). CPU and memory

faults are emulated in a similar way to other SWIFI tools; disk faults are emulated using a

modified device drivers that returns SCSI and disk errors. A path-based injection approach

was also proposed [193], that is based on the preliminary analysis of resource usage (e.g.,

CPU registers and memory locations) in order to injects faults in time periods during which

a resource is ”live” and being used. The FTAPE tool has been engineered from scratch in

subsequent efforts, with the aim to provide greater flexibility (i.e., the ability to introduce

new fault models in the tool) and portability (i.e., most of the tool code can be reused when

a new platform is targeted), and to support distributed systems. These efforts led to the

Networked Fault Tolerance And Performance Evaluator (NFTAPE) [184], which introduced

the concept of LightWeight Fault Injector, i.e., small programs to be invoked by NFTAPE

in order to inject a fault, that embeds the logic needed to implement a fault model for a

given target platform. Using this approach, NFTAPE was able to successfully perform fault

injection on several platforms using several fault models.

SWIFI techniques and tools evolved accordingly with the increase in complexity and

Chapter 2. Software Fault Injection: Background and related work 52

Workload	
generator	

Fault	
injec2on	

CPU	 Memory	 I/O	

Workload
specifications

Fault injection
specifications

Workload	 ac2vity	 monitoring	

Workload
activity

Workload specifications

Figure 2.8: The Fault Tolerance And Performance Evaluator (FTAPE) [194].

functionalities of the underlying hardware. The Xception tool [29, 28] was developed to

exploit the debugging and performance monitoring features existing in most modern CPUs,

in order to allow a less-intrusive and more flexible fault injection and execution monitoring

without increasing the cost of the experimental setup. Xception makes use of these features

to improve the software trap approach adopted by previous tools. A breakpoint register is

setup in order to trigger an exception handler when a given instruction is executed by the

target. Using this feature, context switches are avoided since the handler is implemented

and executed as a kernel routine, with a significant reduction of intrusiveness. This approach

can inject errors in both user and kernel memory. Moreover, breakpoint registers also allow

to inject faults when a specific data address is loaded or stored, which was not possible using

Chapter 2. Software Fault Injection: Background and related work 53

the software trap mechanism (the only way to trigger a fault was the access to a specific

instruction address where the software trap is placed), therefore extending the flexibility of

SWIFI. Finally, performance counters in the CPU are used for time-based fault triggering,

by registering an exception handler to be executed after a given number of processor clock

cycles have elapsed, and for obtaining time measures such as error latency. Performance

counters are more accurate than the system clock and can reduce time uncertainties of

the measures. The Generic Object-Oriented Fault Injection (GOOFI) [6] tool is another

SWIFI tool based on hardware support commonly available in modern systems. In order

to inject errors at run-time, it makes use of boundary and internal scan chains, that is,

built-in test-logic present in modern VLSI circuits to send and read data and instructions to

integrated circuits and their interconnections in a hardware board. This approach is referred

to as Scan-Chain Implemented Fault Injection (SCIFI). GOOFI provides an object-oriented

software architecture for achieving flexibility and portability, and has been implemented

using a platform-independent language (Java) and an SQL DBMS for storing and analyzing

experimental data.

The main issue behind the approaches previously described is that they overlook the

representativeness of errors with respect to software faults, by assuming that software faults

cause state perturbations similar to hardware faults (e.g., bit-flips). This assumption is ques-

tionable since the state manipulations performed by a faulty program can be much different

Chapter 2. Software Fault Injection: Background and related work 54

than those caused by random physical faults, such as wear-out and electromagnetic inter-

ferences. Therefore, the representativeness of fault injection needs to be justified in order to

achieve credible results about software fault tolerance. Christmansson and Chillarege [41]

proposed a procedure for defining error models such that injected errors emulate software

faults and not hardware faults. This property is achieved by defining a mapping between

injectable errors and representative software faults, using field failure data about the system

under analysis. The procedure is aimed to fault forecasting purposes, such as to estimate

coverage of software fault tolerance to be used in analytical dependability models. It makes

use of the following data for each software fault that has been found in the field and fixed:

• the ODC defect type of the fault;

• the ODC defect trigger of the fault;

• the error type caused by the fault;

• the software component in which the fault has been fixed.

Based on these data, the procedure defines what error types should be injected, and

where the errors should be injected. Table 2.12 provides the set of error types used in [41]

to describe the procedure, and the joint distribution of fault and errors found in the field.

Error types are grouped in Single address (i.e., the software fault caused an incorrect address

word), Single Non-Address (i.e., a non-address word is affected, such as data), Multiple (i.e.,

Chapter 2. Software Fault Injection: Background and related work 55

a combination of single errors, or a data structure is affected), and Control (i.e., errors

affecting memory in a very subtle and non-deterministic way or not affecting memory at all,

such as wrong interaction with a user or terminal communication). It is important to note

that many of these error types are specific to the kind of system considered (a mature OS),

and their distribution does not necessarily apply to other systems.

Table 2.12: Joint distribution of faults and errors found in the field in the IBM MVS
operating system [41].

ODC defect types

Error types # Chk. Ass. Alg. Tim. Int. Fun.

Single Address (A) 78 (19.1%) 13 27 26 4 5 3
Control block addr. 48 9 16 17 3 2 1
Storage pointer 14 1 5 3 1 2 2
Module addr. 9 3 3 3 0 0 0
Linkage of data structure 4 0 0 3 0 1 0
Register 3 0 3 0 0 0 0

Single Non-Address (N) 155 (38.0%) 30 38 53 12 15 7
Value 38 10 6 12 3 2 5
Parameter 38 8 11 10 1 6 2
Flag 37 7 10 17 0 3 0
Length 15 4 4 4 0 3 0
Lock 11 0 1 2 8 0 0
Index 8 1 3 4 0 0 0
Name 8 0 3 4 0 1 0

Multiple (M) 69 (16.9%) 9 6 32 6 4 12
Values 4 0 1 2 0 0 1
Parameters 3 0 0 0 0 3 0
Address + 7 1 1 3 0 0 2
Flag + 10 2 1 4 2 0 1
Data structure 37 6 3 20 3 1 4
Random 8 0 0 3 1 0 4

Control error (C) 106 (26.0%) 10 7 43 32 5 9
Program management 35 4 0 19 8 2 2
Storage management 33 3 7 12 5 1 5
Serialization 16 0 0 2 14 0 0
Device management 11 2 0 7 2 0 0
User I/O 6 0 0 2 0 2 2
Complex 5 1 0 1 3 0 0

Total 408 62 78 154 54 29 31
100% 15.2% 19.1% 37.8% 13.2% 7.1% 7.6%

Chapter 2. Software Fault Injection: Background and related work 56

The joint distribution of faults and errors is used by the procedure to establish a con-

nection between the injected errors and software faults they intend to emulate. The locations

where to inject errors (e.g., variables or data structures) are defined by scanning the pro-

gram code (e.g., using a parser) to identify, for each statement, (i) the ODC defect type that

applies to the statement (e.g., the ”Assignment” defect type in the case of an assignment

statement), and (ii) the error type that applies to that statement (e.g., the ”Storage pointer”

error type in the case that the assignment involves a storage pointer). This processing pro-

vides a list of triplets (location, defect type, error type). The list is randomly sampled to

select where to inject errors, by following the relative frequency of defect and error types

in the joint distribution. Moreover, errors should be sampled by taking into account the

relative number of faults for each software component, which is also provided by the field

failure data (Table 2.13). Finally, a workload representative of field usage is defined on the

basis of field failure data on ODC defect triggers (Table 2.14), that is used in fault injection

experiments to exercise the target system. As for when to inject errors, it is argued in [41]

that error injection must be synchronized with the execution of the emulated faulty state-

ment (i.e., an error should be injected every time the location selected for error injection

is executed) in order to emulate the permanent nature of software faults. The injection of

errors through a SWIFI tool is suggested by the authors, by using a software trap in the

code location selected for error injection.

Chapter 2. Software Fault Injection: Background and related work 57

Table 2.13: Fault distribution across components in the IBM MVS operating system [41].

Component # of faults # of affected modules Fault / module

A 43 (10.5%) 33 1.30
B 35 (8.6%) 31 1.13
C 33 (8.1%) 20 1.65
D 32 (7.8%) 28 1.14
E 30 (7.4%) 24 1.25
F 25 (6.1%) 17 1.47
G 25 (6.1%) 23 1.09
H 20 (4.9%) 14 1.43

Others 165 (40.5%) 108 1.53

Total 408 (100%) 298 1.37

Table 2.14: Defect trigger distribution in the IBM MVS operating system [41].

Error types

ODC defect trigger # A N M C

Normal mode 284 (69.6%) 47 120 49 68
Startup/Restart 14 (3.4%) 2 1 5 6
Workload/Stress 27 (6.6%) 4 11 3 9
Recovery/Exception 75 (18.4%) 24 19 12 20
HW/SW Configuration 8 (2.0%) 1 4 0 3

Total 408 78 155 69 106
100% 19.1% 38.0% 16.9% 26.0%

An experimental comparison between the injection of representative errors and generic

time-triggered errors [42] shown that there can be noticeable differences in the distribu-

tions of failure behaviors obtained by these two kind of errors. Therefore, the injection of

representative errors should be preferred to obtain more trustworthy results. A procedure

similar to [41] has been defined later in [43] for fault removal purposes. In this case, errors

to be injected are selected by accounting for (i) the failure severity of as perceived by the

Chapter 2. Software Fault Injection: Background and related work 58

customers, and (ii) the correlation with fault tolerance deficiencies (i.e., an exception han-

dler or a recovery procedure was active when the fault surfaced in the field, as indicated by

Recovery/Exception defect trigger).

Procedures for the injection of representative errors [41, 43] enable the adoption of SWIFI

tools for the accurate emulation of software faults. Nevertheless, there are some limitations

that prevent the adoption of these procedures in practice. The main limitation is the need

for field failure data about the system under analysis. These data are not available in the

early phases of the software lifecycle. It is necessary that software has been in usage for long

time periods to obtain such data, since failures are rare events. Moreover, field failure data

are typically not available for third-party and COTS software. Another issue is that SWIFI

tools can accurately inject only a limited number of error types, since error types caused by

software faults are in some cases more complex than those caused by hardware faults, as in

the case of software faults involving more than one statement, and error types tend to be

specific for the system under analysis. These limitations have been faced by approaches for

the injection of actual faults in the program code, which are discussed in subsection 2.4.3.

2.4.2 Interface error injection

The injection of interface errors is a particular form of error injection that corrupts the inputs

values provided to a target software component, or the output values that the target provides

to other software components, to the hardware or to the environment. The injection of errors

Chapter 2. Software Fault Injection: Background and related work 59

at input parameters is aimed to emulate the effects produced by faults outside the target,

including the effects of software faults in external software components, and to evaluate the

ability of the target to detect and handle corrupted inputs. In a similar way, the corruption

of output values is adopted to emulate the outputs of faulty components, such as a COTS

components, and can be used to assess the impact of faults on the rest of the system.

The corruption of input parameters can reveal deficiencies in the design and implemen-

tation of error detection and recovery mechanisms of the target (e.g., input handling code).

It is commonly adopted in the context of robustness testing, which evaluates "the degree

to which a system or component can function correctly in the presence of invalid inputs or

stressful environmental conditions" [1]. It should be noted that robustness testing and inter-

face error injection are quite different than functional testing techniques, such as black-box

testing: they are concerned with assess the robust behavior of a software module in face of

corrupted inputs (e.g., a process crash is avoided, or a warning signal is produced), rather

than with functional correctness of the target.

The injection of interface errors at input parameters is especially useful for testing soft-

ware components that provide a generic Application Programming Interface (API). In such

components, which are generic and not developed with a specific system in mind, interface

errors are likely to arise when they are integrated with other fault-prone software, such as

Chapter 2. Software Fault Injection: Background and related work 60

C4	

System	

C1	 C2	

C3	

C5	

Interface Error
Injection

Fault/error
Injection in a
component

Inputs
Outputs

Figure 2.9: Comparison between Interface Error Injection and Fault/Error Injection in a
component.

COTS and third-party software, or can be provoked by an incorrect usage of the API. An ex-

ample is represented by operating systems that provide an API for developing device drivers:

drivers are typically provided by third-party suppliers in order to support new devices, and

tend to be much more fault-prone than other OS components [39, 80]. Therefore, APIs

provide error detection and recovery mechanisms to prevent interface errors from further

propagating through the component.

Interface error injection can be performed in two ways (Figure 2.10). The first approach

is based on a test driver program that is linked to the target component (e.g., a program

that uses the API exported by the target), and that generates test cases by submitting

invalid inputs. This approach resembles unit testing, where robustness rather than functional

correctness is evaluated. The second approach consists in intercepting and corrupting the

Chapter 2. Software Fault Injection: Background and related work 61

interactions between the target and the rest of the system, i.e., an interceptor program is

notified when the target component is being invoked, and it modifies the original inputs in

order to introduce a corrupted input. In this scenario, the target component is tested in the

context of the whole system that integrates the target. This approach resembles SWIFI,

since the original data (in this case, interface inputs) flowing through the system is replaced

with corrupted data.

Target	
component	 Test	 driver	

faulty inputs

(a) Test driver.

Target	
component	

System	
component	

Interceptor	

correct inputs faulty inputs

(b) Interceptor.

Figure 2.10: Approaches for interface error injection.

In interface error injection experiments, typically only one input parameter and one

invocation is corrupted, among the several input parameters and the several invocations of

the target API that take place during the experiment. There are three common approaches

for generating invalid input values:

1. Fuzzing. The original value is replaced with a randomly generated value.

2. Bit-flipping. The corrupted value is generated by inverting the value of one or more

bits of the original value.

Chapter 2. Software Fault Injection: Background and related work 62

3. Data-type based injection. The original value is replaced with an invalid value,

which is selected on the basis of the type of input parameter being corrupted, where

the types are derived from the programming language interface exported by the target.

This approach defines a pool of invalid values for each data type, which are selected

from the analysis of the type domain.

One of the earliest study on interface error injection has been presented in [141], which

evaluated the robustness of UNIX basic utilities in the presence of random inputs (i.e., the

occurrence of a process crash or stall). Two tools, respectively Fuzz and ptyjig, are proposed

to submit a random stream of data to the target through the standard input and through

the terminal device. The study found that a significant number of utility programs on

three UNIX systems (between 24% and 33%) is vulnerable to interface errors. Moreover,

error injection was instrumental in pointing out several bugs, such as buffer overruns and

unchecked return codes. A subsequent experiment [140] found that the same utilities were

still affected by a significant part of faults found in [141] 5 years before, and that similar

issues were present in network and graphical applications.

Although the fuzzing approach is simple to implement and can reveal deficiencies in error

handling and recovery, its efficiency is questioned by several studies, since it relies on many

trials and "luck". This approach has been extended in the Random and Intelligent Data

Design Library Environment (RIDDLE) [82], that has been designed for robustness testing

Chapter 2. Software Fault Injection: Background and related work 63

of Windows NT utilities. To generate erroneous inputs, RIDDLE adopted an approach

based on the input grammar of the component under test, described in a form similar to

the Backus-Naur form. The grammar is used to generate erroneous inputs (random and

boundary values) that are syntactically correct, since unstructured random tests tend to

focus on the input handling code of the program.

In order to improve the effectiveness of robustness testing, other studies investigated the

data-type based error injection approach, which focuses on invalid values that are typically

problematic to handle. In [57], a data-type based approach is proposed to test a Real-Time

OS adopted in a fault-tolerant aerospace system. The RTOS is tested against invalid inputs

passed to its system call interface, in order to assess the ability to handle errors generated

by faulty user-space programs. The study considers system calls related to the file system

(e.g., create, read, and write files), the memory system (e.g., allocation and deallocation of

memory blocks), and the inter-process communication system (e.g., post a message and wait

for a message). Each experiment consists of a system call invocation with a combination of

both valid and invalid parameters, which are performed by a test driver. For each group of

system calls and data type, the study defines a set of input values (e.g., closed or read-only

files, and NULL or wrong pointers to memory areas). The test outcome is determined by

recording the error code returned by the system call (e.g, the error code reflects or not the

invalid input, or an error code is not returned at all), and by monitoring system processes

Chapter 2. Software Fault Injection: Background and related work 64

using a watchdog process (e.g., a process unexpectedly terminates during the experiment,

or it is stalled). The test campaign found several deficiencies in the target RTOS, some of

them leading to severe consequences on the RTOS and tasks other than the test driver (e.g.,

a cold restart of the whole system is needed).

A general framework for designing benchmarks of software robustness, based on interface

error injection, was proposed in [145] in order to allow the comparison of different systems.

This work discussed for the first time the aspects to be taken into account for a disciplined

comparison of software dependability, which are described in detail in subsection 2.5.2.

Moreover, this study proposed a hierarchical approach to define the inputs to be injected,

in which the different kinds of resources (e.g., log or storage) are abstracted away from

their implementation in a specific system or subsystem under test (e.g., a storage object can

denote a file or a memory buffer), in order to improve the portability and extensibility of a

benchmark.

Subsequent studies on robustness testing and benchmarking of operating systems [125,

123, 55, 124] proposed the Ballista approach for testing and comparing operating systems

compliant to the POSIX system call interface [3]. Ballista is a highly scalable approach,

as only 20 data types had to be defined to test 233 system calls of the POSIX standard.

Data types are used to automatically generate a test driver program for each test case. For

each data type, Ballista considers a subset of exceptional values from the data type domain.

Chapter 2. Software Fault Injection: Background and related work 65

These values are suggested by the testing literature or selected based on the experience

of developers, and represent situations that are likely to be exceptional in some contexts.

Examples of three data types used in the write system call are provided in Table 2.15 [124].

This system calls takes in input three parameters, namely a file descriptor, a pointer to

a memory buffer, and an integer representing the buffer size. Exceptional values for a file

descriptor parameter include a file that has opened and delete from the file system, and a file

with insufficient access permissions. In a similar way, exceptional values for a memory buffer

parameter include extremely large buffers, or a buffer that has been previously deallocated.

It is important to note that the definition of data types is not tied to the semantic of a specific

system call (e.g., the "memory buffer" data type can be used for both the write system calls

and other system calls involving memory buffers). A test case for the write system call is

represented by any combination of values from the three columns of Table 2.15.

Moreover, Ballista provides a failure severity scale, which is referred to as C.R.A.S.H.,

to be used for categorizing test results and compare different systems:

• Catastrophic. The OS state becomes corrupted or the machine crashes and reboots.

• Restart. The OS never returns control to the caller of a system call, and the calling

process is stalled and needs to be restarted.

• Abort. The OS terminates a process in an abnormal way.

Chapter 2. Software Fault Injection: Background and related work 66

Table 2.15: Ballista data types for testing the write system call [124].

File descriptor Memory buffer Size

FD_CLOSED BUF_SMALL_1 SIZE_1
FD_OPEN_READ BUF_MED_PAGESIZE SIZE_16
FD_OPEN_WRITE BUF_LARGE_512MB SIZE_PAGE
FD_DELETED BUF_XLARGE_1GB SIZE_PAGEx16
FD_NOEXIST BUF_HUGE_2GB SIZE_PAGEx16plus1
FD_EMPTY_FILE BUF_MAXULONG_SIZE SIZE_MAXINT
FD_PAST_END BUF_64K SIZE_MININT
FD_BEFORE_BEG BUF_END_MED SIZE_ZERO
FD_PIPE_IN BUF_FAR_PAST SIZE_NEG
FD_PIPE_OUT BUF_ODD_ADDR
FD_PIPE_IN_BLOCK BUF_FREED
FD_PIPE_OUT_BLOCK BUF_CODE
FD_TERM BUF_16
FD_SHM_READ BUF_NULL
FD_SHM_RW BUF_NEG_ONE
FD_MAXINT
FD_NEG_ONE

• Silent. The OS does not return an indication of an error in the presence of exceptional

inputs.

• Hindering. The OS returns an incorrect error code, i.e., the error code reports a

misleading exceptional condition.

A robustness testing campaign using Ballista, reported in [124], allowed the comparison

of 15 COTS OS. A total of 1,082,541 test cases were automatically executed. Several Abort

and Restart failures were observed, along with some Catastrophic failures that affect the

system as a whole. The most prevalent sources of robustness failures were illegal pointer

values, numeric overflows, and end-of-file overruns. On the one hand, these results are useful

for improving exception handling in OS; on the other hand, they highlight the importance

Chapter 2. Software Fault Injection: Background and related work 67

of robustness testing for complex software, and in particular for COTS components. The

Ballista approach was also adopted in subsequent studies on robustness testing of Microsoft

Windows operating systems APIs [178], and of CORBA ORB implementations [157].

The injection of interface errors has also been adopted for testing microkernel-based op-

erating systems by the Microkernel Assessment by Fault injection AnaLysis and Design Aid

(MAFALDA) [168, 13]. MAFALDA is aimed at injecting both errors in the executable code

of a microkernel (in order to emulate hardware errors or software faults in OS code), and in-

terface errors at the API of the microkernel. Interface error injection in MAFALDA is based

on the interception of system call invocations during the execution (see also Figure 2.10).

MAFALDA has been adopted to analyze the propagation of errors through microkernel com-

ponents, such as task synchronization, inter-process communication, memory management

(see Figure 2.11), and to validate error handling mechanisms in microkernel APIs.

Two techniques are supported by MAFALDA, to be adopted in trap-based and library-

based microkernels respectively (Figure 2.12). In trap-based microkernels, user applications

are running in an address space separated from the microkernel. When a system call has

to be called, the program issues a software interrupt using a special CPU instruction. The

CPU execution mode is then switched to supervisor mode, the microkernel handles the

interrupt through an interrupt service routine and performs a specific system call. In library-

based microkernels, the microkernel is provided as a set of library functions to be linked at

Chapter 2. Software Fault Injection: Background and related work 68

SYN	 IPC	 MEM	

Microkernel	 System	 Call	 API	

Workload processes

SYN	 IPC	 MEM	

Microkernel components

Error
injection

Error
propagation

Figure 2.11: Analysis of error propagation in microkernel system using MAFALDA [168].

compile or load time to user software. In some systems, both mechanisms are adopted for

implementing system calls, by servicing part of the system call in library code, and another

part in supervisor mode. In order to inject interface errors in trap-based microkernels,

MAFALDA adopts the software trap mechanism also adopted in SWIFI tools: a trap is

set in the interrupt service routine that handles system calls (with the support of hardware

debugging features, similarly to Xception), and another trap handler is invoked in order to

corrupt an input parameter of the system call. The trap handler then returns the control to

the system call interrupt service routine. As for library-based microkernel, interface errors

are injected by linking to the user application a fault injection library, which provides the

same API of the microkernel library, and which in turn invokes the microkernel library by

corrupting input values. Errors are generated through the bit-flipping approach.

Chapter 2. Software Fault Injection: Background and related work 69

Microkernel	

System	 call	 API	

Process	

Trap	

Handler	
(fault	 injector)	

(a) Trap-based microkernel.

Microkernel	

System	 call	 API	

Process	

Fault	 injec7on	
layer	

System	 library	

(b) Library-based microkernel.

Figure 2.12: Techniques adopted in MAFALDA to inject faults in the system call interface
of microkernels [168].

Other studies focused on the injection of errors at the interface between device drivers

and the OS. The extension of the Ballista approach to test the robustness of the device driver

interface has been proposed in [7, 108] in the context of Linux and Windows CE, in which

input parameters of kernel functions are corrupted using a data-type based approach. They

found that OSs are more prone to failures in case of faulty device drivers rather than faulty

applications, since developers tend to omit checks in the device driver interface to improve

performance, and because they trust device drivers more than applications. Subsequent

studies were focused on improving the ability of interface error injection to reveal robustness

issues, by carefully selecting the error model to be adopted [110, 205] and the time in which

to inject an error [109]. Johansson et al. [110] compared the bit-flipping, fuzzing, and

data-type based approaches with respect to their effectiveness in detecting vulnerabilities,

and the efforts required to setup and execute experiments. They found that bit-flipping

Chapter 2. Software Fault Injection: Background and related work 70

is the more effective approach, although it incurs a high execution cost due to the large

number of experiments. Instead, data-type based injection and fuzzing are more efficient,

although they incur in a higher implementation cost (e.g., in the case of the data-type based

approach, the user has to define exceptional values for each data type). Finally, they found

that the best trade-off between effectiveness and cost is obtained by combining fuzzing with

selective bit-flipping (i.e., focused on a subset of bits), since the two techniques tend to

find different vulnerabilities. In [109], the effectiveness of robustness testing is analyzed

with respect to the time in which an error is injected. The approaches typically adopted

for interface error injection, namely first occurrence (i.e., at the first time in which a code

location is executed) and time-triggered injection, are compared to a novel approach. The

target device driver is profiled in order to analyze the usage profile of functions exported

by that driver. The sequence of function calls is divided in subsequences: each subsequence

represents a recurring sequence of calls, namely call blocks, that denotes a driver state, such

as “reading data”, or “setting connection parameters”. Interface errors are injected at every

first occurrence of a function call in each call block. This approach revealed to be useful

to improve the effectiveness of robustness testing, since some vulnerabilities are detected

only during specific call blocks, and that the workload state has a noticeable impact on the

results.

The injection of interface errors has also been adopted for testing the robustness of

Chapter 2. Software Fault Injection: Background and related work 71

applications with respect to faults in third-party and COTS software. This goal is achieved

by injecting errors in the outputs produced by the target component, in order to assess the

ability of the system to handle erroneous values and exceptional conditions. An approach has

been proposed in [81] for testing the robustness of software running on Windows NT systems

against exceptional conditions (e.g., memory allocation errors, network failures, I/O errors,

improper use of OS system calls). This kind of error injection is useful to test error handling

code in the program, which is difficult to test and debug with traditional testing approaches.

The approach proposed in [81] performs error injection by intercepting and corrupting values

exchanged between OS library code and the user program (in the case of Windows NT, these

libraries are referred to as dynamic-link libraries, DLL). The interception is performed by

modifying the Import Address Table (IAT) of the user program executable, which is used

at run-time in order to look-up DLLs to be linked to the program. The IAT is modified

by replacing the original addresses (that point to DLL functions) with addresses pointing

to a wrapper library : it is a library with the same API of the original DLL that forwards

any function call to the original DLL, and that performs fault injection by returning an

error code or exception. A similar approach is adopted by the FIG tool [27], which injects

error codes in library function calls in UNIX systems, by using a wrapper library that is

dynamically linked to the user program. A limitation of these tool is the need for manually

specifying error codes to be injected, which are hardcoded in the wrapper library. This

Chapter 2. Software Fault Injection: Background and related work 72

operation is time consuming, since a new wrapper library has to be developed in order to

injects errors for a different target library, and also error-prone since documentation about

the library can be missing or wrong. The Library Fault Injector (LFI) [137, 136] mitigates

this problem by identifying the error codes of a library by static analysis of library code. The

results of static analysis are used to produce fault injection scenarios, where each scenario is

used to automatically generate a wrapper library for injecting an error. The fault injection

scenario specifies the library function which should return an error, the error to be returned,

and the number of function calls after that the error is triggered.

Another approach for injecting interface errors, proposed in [138, 144] and implemented

in the Jaca tool, is based on reflective programming, which is a support provided by modern

programming languages that allows a program to inspect and manipulate its own structure

and behavior at runtime [134]. Jaca injects interface errors in Java programs, by modifying

input and output values of class methods through reflection mechanisms provided by the

Java Virtual Machine (JVM), which are used to introduce class wrappers that intercept

and modify input and output values. Moreover, Jaca avoids the need for source code by

performing reflection at the bytecode level, it is designed to be portable across JVM im-

plementations, and it adopts an extensible architecture that allows the introduction of new

fault models.

Chapter 2. Software Fault Injection: Background and related work 73

2.4.3 Fault injection through code changes

The studies discussed in previous subsections emulate software faults by the injection of

fault effects (errors) using SWIFI approaches, although they are limited by the issue that

the injected errors (e.g., bit-flips and stuck-at errors) do not necessarily represent errors

generated by software faults. To tackle this issue, more recent studies focused on the injection

of actual faults in the program code, based on the observation that changing the code of the

target to introduce a fault is the closest thing to having the fault there in the first place.

However, this is not easily achieved as it requires to know exactly where in the target code

one might apply such change, and knowing exactly what instructions should be placed in

the target program.

The experimental study reported in [133] analyzed whether it is possible to inject faults

in a program by applying SWIFI on the code memory area of a process or, equivalently,

on the binary executable before running the experiment. To this aim, the study considered

a set of programs developed during a programming contest, and that were believed to be

correct by the contest judges. The authors identified a set of representative software faults,

by thoroughly testing these programs. They then tried to emulate these faults by using the

Xception SWIFI tool on the PowerPC 601 hardware architecture.

This experiment highlighted that SWIFI tools can inject software faults only to a limited

extent, and that tools and techniques specifically tailored to Software Fault Injection are

Chapter 2. Software Fault Injection: Background and related work 74

for(i=0; i<n; i++)!
{!
 visited[x[i]][y[i]] = TRUE;!
}!

i=1!

(a) Source code.

L..26:!
 .line 12!
 addi r3,r0,0!
 stw r3,24(sp)!
 lwz r4,T.n(toc)!
 lwz r4,0(r4)!
 cmp 0x7,0x0,r3,r4!
 bc 0x4,0x1c,L..28!
L..27:!

addi r3,r0,1!

(b) Machine code.

Figure 2.13: Emulation of an Assignment fault using SWIFI [133].

if ((depth < time[x][y]) ||!
 (time[x][y]== -1)) {!

!...!
}!

(depth <= time[x][y])!

(a) Source code.

L..94:!
 .line 23!
 ...!
 cmp 0x6,0x0,r3,r4!
 bc 0x4,0x18,L..96!
 lwz r4,112(sp)!
 ...!
L..96:!

bc 0x4,0x19,L..96!

(b) Machine code.

Figure 2.14: Emulation of a Checking fault using SWIFI [133].

int dist (int x1,int y1,int x2,int y2) {!
 int dx = x1-x2;!
 int dy = y1-x2;!
 return ((dx>0)?dx:-dx)+((dy>0)?dy:-dy);!
}!

max((dx>0)?dx:-dx)+((dy>0)?dy:-dy)!

(a) Source code.

...!
add r3,r3,r4!
.line 5!
.ef 69!
addi sp,sp,48!
bclr 0x14,0x0!
...!

bl .max!
nop!
.line 5!
.ef 69!
lwz r0,88(sp)!
addi sp,sp,80!
mtspr lr,r0!
bclr!

(b) Machine code.

Figure 2.15: An Algorithm fault that SWIFI cannot emulate [133].

Chapter 2. Software Fault Injection: Background and related work 75

needed. In particular, SWIFI was able to correctly emulate the Checking and Assignment

ODC defect types, as the injected code is very close to the intended fault (see the examples

in Figure 2.13 and 2.14). However, there were issues in the injection of some Assignment

faults when the faulty assignment caused the relocation of many variables in stack memory:

to inject this kind of Assignment faults using SWIFI, many software traps or breakpoint

registers would be required, therefore increasing the intrusiveness and the hardware support

required for injection. Moreover, manual intervention would be needed to identify fault

locations and to define the bit-level operations to be performed. While the Assignment and

Interface ODC defects types could potentially be emulated by extending SWIFI tools, the

study points out that SWIFI cannot inject faults belonging the Algorithm, Function, and

Timing ODC defect types. An example of Algorithm fault is presented in Figure 2.15, in

which the fault (a missing invocation of the max function) affects the translation of several

statements, and therefore complex code manipulations and large manual intervention would

be required in order to inject this fault through SWIFI.

Another experimental study conducted in [104, 105] compared interface errors, that were

injected at the system call interface of the Linux kernel, to errors injected at the interfaces

of internal kernel functions, and to real software faults found by static code analyzers. The

study compared these faults/errors by (i) the distributions of failure modes, (ii) the return

codes of system calls, and (iii) the effects on internal assertions that were introduced in the

Chapter 2. Software Fault Injection: Background and related work 76

kernel to monitor its behavior, such as the amount of memory allocations in the kernel. The

analysis revealed that external interface errors (i.e., injected at the system call interface)

cause a different behavior than internal errors, which are in turn different than real software

faults. Therefore, it is concluded that interface errors do not necessarily represent the effects

of software faults. The comparative analysis presented in [142] on two complex systems (a

real-time OS and an object-oriented DBMS) confirmed the result of [104, 105]. It analyzed

interface errors produced by a component when software faults are injected in its code, and

compared these errors with those produced by techniques for interface error injection. It

observed that injected interface errors and injected software faults produce different errors

and failure modes, and they should be regarded as complementary, rather than alternative,

means for the assessment of software systems.

The first attempt to inject software faults in a program code for dependability evalua-

tion purposes roots back to [97], in which a program mutation tool (FAUST) has been used

to assess the effectiveness of several fault-tolerant techniques by introducing defects in the

source code of target programs. It should be noted that, although previous studies proposed

the injection of faults in the code of a program for defining and evaluating test cases (this ap-

plication is referred to as mutation testing [90, 54, 121]), the suitability of this approach for

assessing fault-tolerant systems is unclear. The mutations adopted in [97] targeted the con-

trol flow, array boundaries, mathematical expressions, and pre/post increment/decrement

Chapter 2. Software Fault Injection: Background and related work 77

operations. Although the adoption of mutations broadens the scope of fault injection to

software faults, the representativeness of mutations with respect to real software faults was

still a neglected issue, which is required for achieving trustworthy results. Moreover, muta-

tion testing tools usually assume the availability of the source code, which is likely the case

since mutation testing is adopted on the software being developed. However, the absence of

source code is a limitation for fault injection, since fault injection should be applicable to

third-party software for which the source code is not available, such as COTS components.

The relationship between fault injection and mutation testing is further discussed in section

2.6.

The Fault Injection and Monitoring Environment (FINE) [119] was the first tool specifi-

cally aimed to the injection of actual faults, by introducing faults in the executable (binary)

code of a target program. FINE was developed to analyze the behavior of UNIX operating

systems in the presence of hardware and software faults. This tool has been later extended

by the DEFINE tool [118] to support the execution of experiments in a distributed envi-

ronment, and included additional fault types related to hardware and communication. The

FINE and DEFINE tools have been used to study the impact and propagation of faults

respectively in the SunOS UNIX operating system and in the SUN NFS distributed filesys-

tem.

The fault model for software faults that was adopted by FINE (Table 2.16) encompassed

Chapter 2. Software Fault Injection: Background and related work 78

Table 2.16: Fault model for software faults adopted by FINE [119].

Fault type Description

Initialization The initialized value is replaced with an incorrect value, or no initial value is given (the corre-
sponding instructions are changed to nops)

Assignment The assignment destination is assigned a wrong value, the evaluated expression is assigned to
the wrong destination (and the right destination is not assigned the evaluated value), or the
assignment is not executed (the corresponding instructions are changed to nops)

Checking The branch instruction is replaced with nop for a missing condition check, or the condition
check is changed for an incorrect condition check

Function A user-defined sequence of instructions is replaced with another user-defined sequence of in-
structions (faulty instructions should fit into the space of the original instructions)

a set of defect types that were proposed in an early version of the Orthogonal Defect Clas-

sification [38], namely Initialization, Assignment, Checking, Function, and Documentation.

The Initialization, Assignment, and Checking types were actually implemented in FINE,

while the definition of the Function type (for which there were no special fault patterns)

was left to the user. The tool aimed to provide some confidence on the results by covering

these fault types that reflect most of the defects found in the field. The faults are injected

by changing the executable code of the target, in order to avoid the need for the source

code and the costs of mutating and recompiling the source code several times. However, the

studies on FINE and DEFINE [119, 118] lacked a precise description of a procedure about

how these fault types should be injected, such as how to select an incorrect value or variable

to be injected in an incorrect initialization/assignment, how to introduce an incorrect branch

instruction, or how Function faults should be injected.

Another approach for injecting software faults was proposed in the context of a work

Chapter 2. Software Fault Injection: Background and related work 79

Table 2.17: Fault model for software faults proposed by Ng and Chen [152, 153].

Fault type Example
Correct code Faulty code

Initialization function () { int i=0; ... } function () { int i; ... }

Missing random instruction for(i=0; i<10; i++,j++) { body } for(i=0; i<10; i++) { body }

Incorrect destination register numFreePages = numPages =
count(freePageHeadPtr) count(freePageHeadPtr)

Incorrect source register numPages = numPages =
physicalMemorySize/pageSize virtualMemorySize/pageSize

Incorrect branch while(flag) { body } while(!flag) { body }

Corrupt pointer ptr = ptr->next->next ptr = ptr->next

Allocation management ptr = malloc(N); use ptr; use ptr; ptr = malloc(N); use ptr;
free(ptr); free(ptr); use ptr again;

Copy overrun for(i=0; i<sizeUsed; i++) for(i=0; i<sizeTotal; i++)
{ a[i] = b[i]; } { a[i] = b[i]; }

Synchronization getWriteLock; write(); write();
freeWriteLock;

Off-by-one for(i=0; i<size; i++) for(i=0; i<=size; i++)

Memory leak ptr = malloc(N); use ptr; ptr = malloc(N); use ptr;
free(ptr); return; return;

Interface results = strcmp(str1, str2); results = strcmp(str1, str3);

on the design and verification of a fault-tolerant write-back file cache in the FreeBSD OS

[152, 153]. The fault model proposed in that work (Table 2.17) was based on a field failure

data study on operating systems that preceded the Orthogonal Defect Classification [187].

Some of these fault types are injected by modifying instructions and their operands in the

machine code, in a similar way to FINE (e.g., missing initialization, incorrect source or

destination register, incorrect branch, pointer corruption). The remaining fault types are

injected by modifying the behavior of kernel functions: (i) in the case of faults in allocation

management, the malloc kernel function occasionally frees the memory after a delay; (ii)

Chapter 2. Software Fault Injection: Background and related work 80

in the case of synchronization and memory leak faults, kernel functions such as free do not

perform the required operation; (iii) in the case of copy overrun faults, kernel functions for

copying data occasionally increase the number of copied bytes, according to the distribution

reported in [187]. This approach is an important step towards the injection of representative

faults, since its fault model is based on empirical data on real faults in a operating system.

The same authors in [151] take into account the likelihood of faults (in quantitative terms)

in order to probabilistically estimate coverage factors (see Equation 2.2): in that case,

the coverage express the ability of the OS to prevent data corruptions in the case of an

OS crash. However, this fault model is not general and do not necessarily apply to other

systems. Moreover, some important aspects regarding the implementation of the fault model

are overlooked, such as the selection of incorrect operands to be used for replacing correct

ones. If not properly implemented, this problem could lead to the injection of meaningless

faults. For instance, if a register operand is replaced with another register that does not store

a program variable (e.g., a register with a temporary variable introduced by the compiler),

then the fault in the machine code does not reflect a fault in the source code.

The problems of defining a representative fault model, and of accurately injecting faults

in the machine (binary) code were investigated more in depth in [60, 61, 65], in which the

Generic Software Fault Injection Technique (G-SWFIT) was proposed. This technique is

based on a fault model representative of the most common faults found in the field. The fault

Chapter 2. Software Fault Injection: Background and related work 81

model was initially defined based on common C programming bugs from various sources such

as programming manuals, best practice tutorials and error reports [60]. The fault model

was later improved in [61, 65] through the rigorous analysis of an extensive set of field data

on software faults found in open-source and commercial software, which has been described

in subsection 2.3.2. A key point of the fault model is that it is generic, since it holds for

several software systems and it can be adopted in the absence of field data about the specific

system under analysis.

G-SWFIT injects faults in the binary code of the target, which is inspected in order

to recognize key programming structures at the machine code-level where high-level soft-

ware faults (i.e., faults in the source code) can be emulated. The technique is based on

a fault library that defines a set of machine code patterns corresponding to programming

constructs in the source code, which the technique uses for introducing faults into the binary

executable. These patterns are carefully designed by taking into account a specific hardware

platform, and assuming that a specific source code compiler has been used to compile the

target binary (the patterns are tailored to a specific hardware architecture and compiler).

More specifically, the fault library of G-SWFIT provides a set of fault emulation operators

(Table 2.18). Each fault operator defines:

• A search pattern: a sequence of machine code instructions that relate to the high-

level constructs where faults can be emulated.

Chapter 2. Software Fault Injection: Background and related work 82

• A code change: the mutation to be introduced in a location to emulate of the

intended fault type.

Table 2.18: Fault operators of G-SWFIT [65].

Fault operator Description

OMFC Missing function call
OMVIV Missing variable initialization using a value
OMVAV Missing variable assignment using a value
OMVAE Missing variable assignment with an expression
OMIA Missing IF construct around statements
OMIFS Missing IF construct + statements
OMIEB Missing IF construct + statements + ELSE construct
OMLAC Missing AND in expression used as branch condition
OMLOC Missing OR in expression used as branch condition
OMLPA Missing small and localized part of the algorithm
OWVAV Wrong value assigned to variable
OWPFV Wrong variable used in parameter of function call
OWAEP Wrong arithmetic expression in function call parameter

The proposed fault operators emulate valid faults in terms of programming language,

i.e., changed code reproduces high-level faults that are syntactically correct. Fault operators

also provide additional rules (“constraints”) for selecting fault locations in order to better

reproduce the fault types observed in the field. For example, the OMFC fault operator

(Table 2.19) only affects function calls that do not return any value or do not make use of

the return value (C01), and that are not the only statement in a code block (C02). Constraint

C01 is implemented by checking that the CALL instruction is not followed by instructions

that represent the usage of the returned value (e.g., by reading the EAX register in the

Intel architecture). Constraint C02 is implemented by scanning the binary code around the

Chapter 2. Software Fault Injection: Background and related work 83

function call, to find the boundaries of the code block where the call is located. The following

instructions mark block boundaries: module entry/exit points, unconditional jumps, and

conditional jumps to backward location. Figure 2.16 shows an example of binary code that

satisfies C02, but not C01 (the return value is assigned to a variable). Other examples are

the OMIFS faults operator (Table 2.20), which removes IF constructs containing no more

that 5 statements, the OMLPA fault operator, which removes between 2 and 5 consecutive

statements that are not control or loop statements, and the OWPFV fault operator, in which

an function parameter is replaced with a variable that must reside in the stack frame and

that represents a local variable in the module.

Table 2.19: Description of the OMFC fault operator [65].

Example function(...);

Example with fault function(...);

Search pattern CALL target-address

Code change CALL instruction removed

Contraints Return value of the function must not be used (C01)
Call must not be the only statement in the block (C02)

G-SWFIT currently represents the state-of-the-art technique for injecting actual software

faults in a program, with the respect to both the representativeness of the fault model (based

on field data) and the accuracy of faults injected in the binary code (based on a carefully

designed fault library). For this reason, G-SWFIT is studied in this thesis in order to

evaluate and to improve the representativeness of faults that are injected by this technique.

Chapter 2. Software Fault Injection: Background and related work 84

if (a==123) {!
 b = function(c);!
 c++;!
}!

(a) Source code.

mov off-A[ebp], 123!
cmp off-A[ebp], 0!
je loc-01:!
!
mov eax,off-C[ebp]!
push eax!
call function-address!
add esp,4!
mov off-B[ebp], eax!
!
mov ecx,off-C[ebp]!
add ecx,1!
mov off-C[ebp],ecx!
!
loc-01:!

(b) Machine code.

Figure 2.16: Code blocks in source code and their corresponding machine code [65].

Table 2.20: Description of the OMIFS fault operator [65].

Example if(expression) { statements }

Example with fault if(expression) { statements }

Search pattern CMP reg, ...
JMP after
...
CMP reg, ...
JMP after
statements
after:

Code change All the conditional jumps to the address after are made into unconditional jumps

Contraints The IF construct must not be the only statement in the block (C02)
The IF construct must not be associated to an ELSE construct (C08)
statements must not include more than 5 statements and not include loops (C09)

2.5 Applications of Software Fault Injection

This section reviews a selection of relevant past studies that adopted Software Fault In-

jection, in order to highlight its applications and usage scenarios in the assessment and

development of fault-tolerant software systems.

Chapter 2. Software Fault Injection: Background and related work 85

2.5.1 Evaluation and improvement of fault tolerance

The main application of fault injection, including Software Fault Injection, is the evaluation

and improvement of Fault Tolerance Algorithms and Mechanisms (FTAMs). Examples of

FTAMS include N-version programming, recovery blocks, and N-self-checking programming

that mask software fault through design diversity [15, 132], and concurrent error detection,

checkpointing/recovery, and exception handling that detect an error state and switch to a

degraded mode of service [83, 84, 49]. Fault injection aims to validate FTAMs with respect to

faults that will be experienced by the system during operation, in order to obtain confidence

that the system will be able to deliver a proper service. One means to achieve this confidence

is fault removal in the design and implementation of FTAMs, that is, detection and removal

of deficiencies that cause an incorrect behavior of FTAMs when they are faced with the

faults they are intended to handle. Another important means is fault forecasting, which

aims to rate the efficiency of the operational behavior of the FTAMs, by estimating the

parameters that characterize FTAMs, such as coverage factors and latencies.

An early study on rating the effectiveness of software fault tolerance [97] evaluated and

compared several fault tolerance techniques through the injection of hardware and software

faults. Several teams implemented the same target application following the same specifica-

tions. Moreover, each team implemented, along with the software, a different fault tolerance

technique, namely N-version programming, recovery blocks, concurrent error detection, and

Chapter 2. Software Fault Injection: Background and related work 86

algorithmic fault tolerance. The different implementations were executed using several test

vectors and injecting a fault at each execution. In order to identify the outcomes of the

experiments (Figure 2.17), the outputs and the internal states are compared to the ones

produced by a golden standard (i.e., a fault-free reference implementation that was thor-

oughly tested before experiments). From the analysis of the behavior of the software in the

presence of faults, the following probabilities are evaluated:

• Coverage: Pr{detecting an error | a fault is active},

• Recovery: Pr{recovering successfully after error detection},

• Aborting: Pr{aborting | successful recovery is not possible}.

From these probabilities, other figures of merit can be derived, such as the probability

of correct execution and the probability that the software will behave in a fail-stop manner,

that can be used to compare different fault tolerance techniques in terms of reliability and

cost effectiveness.

In [119], the injection of both hardware and software faults has been adopted to analyze

the propagation of faults in the SunOS operating system and their impact on performance.

For this purpose, a Markov model is defined (Figure 2.18), and its transition probabilities and

mean state holding times are populated with experimental results. Each state is assigned a

reward, that is, a numeric evaluation of the performance level provided by the system in that

Chapter 2. Software Fault Injection: Background and related work 87

Recovered	

Good	

Error	 Fail	

Pass	

Crash	 Abort	

Detected	

Figure 2.17: Generalized Discrete Markov Model adopted for evaluating and comparing four
software fault tolerance techniques [97].

state. A transient Markov reward analysis is performed in order to evaluate the expected

performance level in the presence of faults. Bondavalli et al. [25] reported a performability

analysis (i.e., evaluation of joint metrics that account for both performance and availability)

of a fault-tolerant architecture based on legacy and off-the-shelf software. The architecture

is modeled using Stochastic Activity Networks (SAN) [174], whose parameters are populated

through fault injection experiments. The model is then analyzed to assess the effectiveness

of fault tolerance (in terms of long-term performability of the overall system) and for tuning

system parameters (e.g., thresholds used to detect failures).

The estimation of reliability measures obtained by Software Fault Injection can provide

useful feedback to the development process for improving the design of fault-tolerant soft-

ware. An example is provided in [152, 153], in which a write-back file cache (i.e., data are

Chapter 2. Software Fault Injection: Background and related work 88

Fault	
Injec,on	

Unini,alized/
Misassigned	

Non-‐pointer	 data	

Missing	
Condi,on	 Check	

Incorrect	
Condi,on	 Check	

Misassigned	
Pointer	

Unini,alized	
pointer	

Further	 Data	
Corrup,on	

Incorrect	 Control	
Flow	

System	 Failure	
with	 Self-‐Reboot	 System	 Hung	

Mul,ple	 User	
Applica,on	
Failure	

Fault	 Avoided	

Figure 2.18: Fault propagation models of the SunOS operating system [119].

flushed to the disk asynchronously) is designed with the requirement to be as reliable as

a write-through file cache (i.e., data are synchronously written to the disk) in spite of OS

crashes. To this aim, an iterative design process is adopted. At each iteration, software

faults are injected in the OS in order to induce OS crashes and measure the reliability of

the file cache in terms of number of data corruptions caused by the OS crash (Table 2.21).

If the file cache is still less reliable than a write-through file cache, then the system behavior

under failure is analyzed in detail and the design of the file cache is revised in order to

tolerate more crashes. Another example of reliability measure is the percentage of fail-stop

violations, that is, the system does not immediately halt in case of a failure and exhibits

Chapter 2. Software Fault Injection: Background and related work 89

an erratic behavior (e.g., it writes erroneous data to stable storage or sends incorrect infor-

mation to other systems). The absence of fail-stop violations is an underlying assumption

of several fault-tolerant techniques [185, 111, 175]. The validity of this property has been

evaluated in a DBMS through Software Fault Injection in [33], where it is observed that

the percentage of fail-stop violations (7%) can be reduced by a factor of 3 (2%) using the

transaction mechanism to undo recent changes before a crash.

Table 2.21: Corruption rate of file cache designs [153].

Fault type Write-Through
File Cache

Write-Back File Caches
Default

FreeBSD Sync
Basic Safe

Sync
Enhanced Safe

Sync
BIOS Safe

Sync

Bit-flips text area 3 51 7 5 2

Bit-flips heap area 0 3 3 2 0

Bit-flips stack area 5 28 8 3 1

Initialization 10 45 9 7 4

Missing random
instruction

4 43 8 2 4

Incorrect destination
register

4 42 9 5 2

Incorrect source
register

4 43 10 3 1

Incorrect branch 4 51 14 4 5

Corrupt pointer 3 38 5 4 2

Allocation
management

0 100 5 0 0

Copy overrun 4 36 1 3 2

Synchronization 0 3 1 0 0

Off-by-one 4 59 16 9 3

Memory leak 0 0 0 0 0

Interface 1 47 8 3 2

Corruption rate 46/1500
(3.1%)

589/1500
(39.3%)

104/1500
(6.9%)

50/1500
(3.3%)

28/1500
(1.9%)

95% Confidence
Interval

2.2-3.9% 36.8-41.8% 5.6-8.2% 2.4-4.3% 1.2-2.6%

Chapter 2. Software Fault Injection: Background and related work 90

The applications of Software Fault Injection previously described highlight the need for

a representative fault model of software faults: if the injected faults do not reflect the real

faults affecting the system, then the reliability estimates can be misleading. In [151], the

corruption rate of the file cache due to OS crashes is evaluated by taking into account the

likelihood of injected faults. The probability of occurrence and activation of each fault type

has been derived from field failure data studies on the MVS [187] and Tandem NonStop-UX

[189] operating systems (Table 2.22). These probabilities have influence on the estimated

corruption rate by accounting for the weight of each fault type (see also Equation 2.2).

Table 2.22: Proportional weighting of fault types [151].

Fault type Equal weights MVS Tandem NonStop-UX

Bit-flips text area 7.69% 0.7% 6.2%

Bit-flips heap area 7.69% 1.4%

Bit-flips stack area 7.69% 1.4%

Incorrect destination register 7.69% 2.7% 6.2%

Incorrect source register 7.69% 2.7% 6.2%

Incorrect branch 7.69% 0.7% 26.0%

Missing random instruction 7.69% 0.7% 6.2%

Initialization 7.69% 5.4% 4.0%

Corrupt pointer 7.69% 14.9% 28.0%

Allocation management 7.69% 2.7% 11.0%

Copy overrun 7.69% 2.7%

Off-by-one 7.69% 0.7% 6.2%

Synchronization 7.69% 63.5%

Disk corruption rate 1.08%±0.87% 0.18%±0.17% 1.25%±1.29%

Memory corruption rate 1.54%±1.03% 0.60%±0.68% 1.46%±1.71%

Chapter 2. Software Fault Injection: Background and related work 91

Other works pursued the assessment and improvement of fault tolerance through the in-

jection of faults effects (rather than actual faults in the code). On the one hand, the results

of error injection do not translate in probabilistic reliability measures since the representa-

tiveness of injected error is difficult to assert. On the other hand, error injection is useful

to force ”corner cases” in the software that are not easily produced by actual faults in the

code, and that can point out weaknesses in the software. An application of error injection

is represented by the Extended Propagation Analysis (EPA) technique [203]. EPA uses er-

ror injection to assess the possibility of unsafe or unacceptable outcomes, and to point out

where the software can be extended for preventing error propagation. Given a statement in

the source code, the EPA inject errors in the data produced by that statement, in order to

evaluate the sensitivity of software to faults in that location. A location producing software

failures is a candidate for an assertion that prevents the occurrence or propagation of wrong

data states at that location.

A case study on the application of EPA involved a software that controls a device for

performing human neurosurgery [203]. The software adjusts the current level in a coil in

order to move a seed in a specific location in the brain. The control software communicates

with the device by reading and setting coil parameters, and must assure that the current

level falls within a specified range in order to prevent patient injury. By using error injection,

EPA computes a failure tolerance score of a source code location (i.e., percentage of error

Chapter 2. Software Fault Injection: Background and related work 92

injection experiments leading to an acceptable outcome). The score of a function or file is

defined as the lowest score of locations in that function or file. Table 2.23 shows the failure

tolerance score of a subset of locations in the target control software. A sharp decrease in

the failure tolerance score can be noticed at line 90. After the inspection of that code, it was

found that the variable representing the current value is checked by an assertion before line

90, but the variable is processed (including by a function call to amps_to_dac) and sent to

the hardware without an additional assertion to check its validity. This problem was fixed

by moving the assertion, such that it occurs after all value transformations have been made.

Table 2.23: Analysis of failure tolerance in a safety-critical software for medical applications
[203].

Source code location Failure tolerance score

test_servo1.sfr 0.48008386
coil.cc 1
basic_functions.c 1
ramp_mdl.cc 1
servoamp.cc 0.48008386

servoamp::servoamp 1
servoamp:: servoamp 1
servoamp::set_current 0.48008386

Line 89 1
Line 90 0.48008386
Line 94 0.83857442
Line 95 1
Line 96 0.95387841

servoamp::get_actual_current 1
servoamp::get_current_settings 1
servoamp::read_fault 1
servoamp::inhibit 1
servoamp::uninhibit 1
servoamp::get_amp_status 1
servoamp::read_config_file 1
servoamp::adc_to_amps 1
servoamp::amps_to_adc 1
servoamp::amps_to_dac 0.83857442

Line 350 0.83857442
servoamp::dac_to_amps 1

Chapter 2. Software Fault Injection: Background and related work 93

The Propagation Analysis Environment (PROPANE) [93, 94, 191] has been later pro-

posed for the analysis of error propagation in component-based software. PROPANE injects

errors using SWIFI at the inputs of a component (e.g., by corrupting messages or function

parameters), and logs its outputs in order to identify an error propagation by comparing

outputs to a golden run. Experimental results are used to compute the error permeability

of components, that in turn can be used to identify vulnerable or critical components that

deserve more attention during design (e.g., for selecting suitable locations for error detection

and recovery mechanisms).

The injection of errors at component interfaces has also been exploited for designing

protective wrappers, i.e., additional software layers interposed between a component and the

rest of the system. Error injection can be used to identify inputs that are not gracefully

handled by the component, which can be rejected or handled by introducing input wrappers

(Figure 2.19), or component outputs that are not tolerated by the system, which are filtered

by output wrappers [202]. In [172, 168], a COTS microkernel was extended with protective

wrappers, in order to prevent error propagation through the microkernel. In this case, wrap-

pers are manually derived from specifications of its functional classes (e.g., synchronization,

scheduling, memory) and validated through error injection. Xept [200] is a tool for generat-

ing wrapper libraries that perform exception handling, which are specified by the user using

a C-like language.

Chapter 2. Software Fault Injection: Background and related work 94

An automated approach for deriving protective wrappers (HEALERS) was proposed in

[74, 73] for C and C++ libraries, in which error injection experiments (using the BALLISTA

approach) are performed to identify inputs handled in a robust manner, and to automatically

generate a library wrapper that serves as input filter. In a similar way, the approach proposed

in [186, 188] (AutoPatch) aims to enhance the robustness of applications with respect to error

codes returned by external libraries, by injecting error codes in order to find and to patch

bad error handling in application code. Another approach for improving error handling has

been proposed in [72], in which exceptions are injected in C++ and Java program in order

to identify exception handlers that leave an object in an inconsistent state (e.g., a file or

socket handler opened by a method are left opened if an exception occurs).

2.5.2 Dependability Benchmarking

An important field of application for fault injection, which has been developed in the last

decade [101, 117], is represented by dependability benchmarking. A dependability benchmark

is a means to characterize and to compare the dependability of a computer component or

system in the presence of faults. A key aspect of dependability benchmarking, which makes it

different from existing dependability evaluation techniques, is that it represents an agreement

that is widely accepted both by the computer industry and by the user community. The

technical agreement states the measures, the way and conditions under which the measures

are obtained, and the domain in which these measures are considered valid and meaningful.

Chapter 2. Software Fault Injection: Background and related work 95

char* asctime (const struct tm* a1) {
char* ret;

if (in_flag) {
return (*libc_asctime)(a1);

}

in_flag = 1;

if (!check_R_ARRAY_NULL(a1,44)) {
errno = EINVAL;
ret = (char*) NULL;
goto PostProcessing;

}

ret = (*libc_asctime)(a1);

PostProcessing:;
in_flag = 0;
return ret;

}

Figure 2.19: Wrapper code for the asctime UNIX function [74]. The wrapper checks that
the a1 parameter is a string pointer to correctly allocated memory, and returns an error if
this is not the case.

This agreement implies that the benchmark should specify in detail the procedures and rules

to be followed in order to enable users to implement the benchmark for a given system, and

to interpret the benchmark results.

A general framework for dependability benchmarking has been defined in the context of

the DBench European project [101]. This effort was followed by several studies that defined

and refined dependability benchmarks for many kind of systems (e.g., OLTP systems, general

purpose and real-time operating systems, engine control applications), and resulted in the

Chapter 2. Software Fault Injection: Background and related work 96

recent publication of a book [117] on this topic. The general framework of a dependability

benchmark identifies three main dimensions that have to be considered in a dependability

benchmark:

• Categorization. This dimension describes the benchmarked system (Benchmark Tar-

get, BT) and the context of the benchmark, which determine the requirements and the

objectives of the benchmark and are used to define realistic experimental conditions.

It includes the domain in which the system is adopted, the operating environment in

which the system will work, the life cycle phase of the BT in which the benchmark

is executed, the benchmark performer and the benchmark user, and the benchmark

purpose (e.g., comparing systems, tuning system configuration, improving fault toler-

ance).

• Measure. This dimension defines the measures that are relevant for the dependability

benchmark. It specifies whether measures are qualitative or quantivative, whether they

are dependability or performance related (e.g., to assess performance degradation in

the presence of faults), whether they are comprehensive (i.e., measures of interest for

the end-user that characterize system at the service delivery level, such as the number

of transactions per minute) or specific (i.e., associated to a particular feature of the

system, such as coverage and latency of fault tolerance mechanisms).

Chapter 2. Software Fault Injection: Background and related work 97

• Experimentation. This dimension describes the aspects related to the experiments

to be performed on the BT. It includes the faultload and the workload (which should

be representative of faults and of operational profile that are experienced by the BT

in its operating environment), and the measurements (i.e., readouts) to be collected.

Moreover, this dimension should clearly identify and specify the System Under Bench-

mark (SUB), that is, the wider system that is necessary to execute the BT, and to

perform the series of experiments defined by the benchmark.

The relationship between the SUB and the BT is clarified in Figure 2.20. The SUB

provides the hardware and software support and resources to execute the BT. Moreover, the

SUB is also used to apply the workload and faultload, and to collect measurements. In the

case of benchmarking of software systems through Software Fault Injection, a fundamental

aspect is the clear separation between the BT and the Fault Injection Target (FIT), i.e.,

the component subject to the injection of faults. This separation is required to avoid the

problem of changing the BT, as the injection of software faults introduces small changes or

perturbations in a component. The BT should not be modified directly by the faultload in

order to assure the credibility of the dependability benchmark, especially from the point of

view of the provider of the BT.

It is important to note that fault injection is an important aspect of dependability

benchmarking, but it is not the only dependability assessment approach that can be involved.

Chapter 2. Software Fault Injection: Background and related work 98

C4	

System	 Under	 Benchmark	 (SUB)	

C1	 C2	

C3	

C5	
Fault
Injection

Benchmark	 Target	 (BT)	 Fault	 Injec:on	 Target	 (FIT)	

Errors

Errors

Figure 2.20: System Under Benchmark (SUB), Benchmark Target (BT), and Fault Injection
Target (FIT).

In the general case, benchmark measures are obtained from the combination of experimental

results (e.g., fault injection) and of the analysis of models (Figure 2.21). An example of

measure that is obtained through modelling is the steady-state availability of the system,

where parameters in the model, such as the coverage of fault tolerance, can in turn be

obtained from experiments.

An early study on the use of Software Fault Injection for dependability benchmarking

of operating systems appeared in [59, 63]. This study compared three COTS operating

systems, namely Windows NT4, Windows 2000, and Windows XP (which represent the

BT) with respect to software faults in device drivers (which represent the FIT). Software

faults are injected in device driver code by using G-SWFIT. This dependability benchmark

Chapter 2. Software Fault Injection: Background and related work 99

Modeling	

Dependability	
model	 of	 the	

system	

Experimenta1on	

Real	 system	 or	
prototype	

Model	
processing	

Experimental	
result	

processing	

Modeling
measures

Experimental
measures

Benchmark
measures

Workload

Faultload

Figure 2.21: Reference model of dependability benchmarking [117].

ranks the target operating systems with respect to the failure modes they exhibit. In order

to rank the severity of failure modes, i.e., an ordering of the failure modes from the "worst"

to the "better", the benchmark defines three perspectives (Table 2.24), namely:

• Availability : the failure modes that cause the unavailability of system functionalities

or of the whole system are considered the worst ones;

• Feedback : the failure modes that provide few or no information to the user about the

system state are considered the worst ones;

• Stability : the failure modes in which the system is working but provides an incorrect

service are considered the worst ones.

Figure 2.22 provides the distribution of failure modes according to the three perspectives

of Table 2.24. A low number of severe failure modes denotes the ability of the operating

system to gracefully react to faulty device drivers. The Windows XP exhibited the best

Chapter 2. Software Fault Injection: Background and related work 100

Table 2.24: Classification of failure modes in Microsoft operating systems with respect to
faulty device drivers [59].

Availability Feedback Stability

A1 The machine is completely
unusable (not available)

F1 There is no warning and
data is lost

S1 There is no warning and
data is lost

A2 The machine is available if
use of the faulty device is
not attempted.

F2 The systems fails without
giving any clue to its be-
havior

S2 The system seems to be in
order, but it is not, and it
may cause data loss

A3 Sub-systems interacting
with the faulty device
become unavailable

F3 The drive is not identi-
fied by the systems, how-
ever the instant when the
system or application fails
may help its identification

S3 As S2, but with less side-
effects (only parts of the
systems are affected)

A4 The machine is usable ex-
cept for the faulty device

F4 Although some clue is
given to the user, it is up
to him to realize that a de-
vice is not working prop-
erly

S4 The system refuses to pro-
ceed, preventing further
damage

A5 The entire system is avail-
able

F5 The faulty driver is identi-
fied only when first used

S5 The system avoids usage
of the malfunctioning part

F6 The faulty driver has no
effect on the OS or is iden-
tified, allowing for quick
corrective measures

S6 The system behaves nor-
mally according to the ob-
servations made

behavior for all the three perspectives. The same approach can be adopted to compare the

target systems with respect to other perspectives, such as performance and safety. In [7], a

similar experiment is performed on the Linux kernel, by injecting data-type based errors at

the interface between device drivers and the Linux kernel.

In [112, 116], the concept of dependability benchmarking was further refined, by carefully

taking into account the role of the workload. The Windows NT, Windows 2000 and Windows

XP operating systems were benchmarked in the presence of faults in user applications. These

systems were compared with respect to both their failure modes and their performance in

the presence of faults, in terms of their reaction time (i.e., time to execute a system call) and

Chapter 2. Software Fault Injection: Background and related work 101

0.00%	

20.00%	

40.00%	

60.00%	

80.00%	

100.00%	

A1	
(Worst)	

A2	 A3	 A4	
A5	 	 	 	

(Best)	

NT	

2K	

XP	

(a) Availability perspective.

0.00%	

20.00%	

40.00%	

60.00%	

80.00%	

100.00%	

F1	
(Worst)	

F2	 F3	 F4	 F5	 F6	
(Best)	

NT	

2K	

XP	

(b) Feedback perspective.

0.00%	

20.00%	

40.00%	

60.00%	

80.00%	

100.00%	

S1	
(Worst)	

S2	 S3	 S4	 S5	 S6	
(Best)	

NT	

2K	

XP	

(c) Stability perspective.

Figure 2.22: Comparison between the Windows NT, Windows 2000 and Windows XP op-
erating systems [59].

restart time (i.e., duration of OS restart). Software faults are emulated by interface error

injection targeted at corrupting the input parameters of system calls. In order to perform

error injection in the context of a realistic workload, errors are injected by intercepting

system call invocations performed by a realistic workload rather than by using a synthetic

test driver. Moreover, workload representativeness is an important aspect since the workload

affects the propagation of errors and the reaction of the system in terms of performance and

failure modes. Therefore, the definition of a representative workload is instrumental to

Chapter 2. Software Fault Injection: Background and related work 102

extend the validity of results to real-world systems. The first definition of the dependability

benchmark [112] used as workload the TPC-C performance benchmark for transactional

systems [48], in order to take advantage of an already established and agreed workload. The

benchmark has later been extended by considering the PostMark workload [120], which is

representative of large Internet electronic mail servers, and included Linux-based operating

systems among the benchmarked systems.

The first proposal for a complete dependability benchmark based on the injection of ac-

tual software faults appeared in [62, 64]. This dependability benchmark, namely Web-DB,

aims to evaluate and compare web servers with respect to dependability and performance

measures (Table 2.25). The faultload is composed by software faults in the operating system

code, which are emulated using G-SWFIT in order to achieve fault representativeness, and

by operator faults affecting network equipment, and process, connectivity and server man-

agement. The workload is represented by the SPECweb99 performance benchmark for web

servers [46]. In a similar way to SPECweb99, the Web-DB benchmark includes an initial

ramp-up phase, in which the system is exercised to reach its maximum processing through-

put, a sequence of injection slots in which one fault at time is injected, and a ramp-down

phase in which the workload is terminated. This procedure is generic and has also been

adopted to benchmark OLTP systems [198, 197, 117].

Table 2.26 provides the results of Web-DB for the Apache and Abyss web servers, in three

Chapter 2. Software Fault Injection: Background and related work 103

Table 2.25: Dependability and performance measures of the Web-DB dependability bench-
mark [64].

Measure Description

SPEC Number of simultaneous conforming connections as defined in the SPECweb99 bench-
mark (i.e., an average bit rate of at least 320kbps and less than 1% of errors)

Throughput (THR) Number of operations per second

Responsivity (RTM) Average response time

Autonomy (AUT) Percentage of cases in which an administration intervention would not be needed to
restore the service (100˘(No. interventions/No. faults) · 100)

Accuracy (ACR) Error rate (100˘(No. requests with errors/No. requests) · 100)

Availability (AVL) The percentage of time in which the system is available to execute the workload
(Amount of time the system is available during a run/the total duration of that run)

different operating system environments. Results obtained from the injection of software

faults and operator faults are averaged and compared to baseline results obtained in fault-

free experiments. There is not single configuration that is better to the others with respect

to every measure. Therefore, having several measures is useful to evaluate the systems with

respect to the aspects most relevant to the user, and it is possible to weight these measures

in order to reflect the importance of each of them. Nevertheless, it can be noted that the

Apache web server provides better results with respect to 5 out of 6 measures (underlined

in the table).

2.5.3 Other emerging applications

This section comments on recent and ongoing work on new forms of Software Fault Injection,

and new applications differing from the traditional assessment of fault tolerance. A novel

form is represented by the integration of Software Fault Injection and formal methods in

Chapter 2. Software Fault Injection: Background and related work 104

Table 2.26: Comparison between the Apache and Abyss web servers [64]. Best results for
each measure are underlined. Times are expressed in milliseconds.

Apache Abyss
SPEC THR RTM AUT ACR AVL SPEC THR RTM AUT ACR AVL

Windows 2000

Baseline 31 90 345,9 100 100 100 28 82,7 344,4 100 100 100
Software faults 10,64 83,65 362,18 92,63 94,63 96,72 4,97 75,96 359,69 90,7 90,07 95,61
Operator faults 17 74,83 402,23 95,32 99,79 93,84 15,67 75,96 367,75 98,02 99,48 97,09
Average 13,82 79,24 382,2 93,98 97,21 95,28 10,32 75,96 363,7 94,36 94,78 96,35

Windows XP

Baseline 26 74,5 348,9 100 100 100 25 73,3 343,4 100 100 100
Software faults 13,8 71,67 357,12 93,68 95,56 97,84 10,74 68,69 356,68 93,51 89,42 96,62
Operator faults 22,33 71,59 362,33 97,28 99,63 98,04 16,67 67,74 367,4 98,43 99,57 98
Average 18,07 71,63 359,7 95,48 97,6 97,94 13,71 68,22 362 95,97 94,5 97,31

Windows 2003

Baseline 30 82,4 363,9 100 100 100 24 70 345,8 100 100 100
Software faults 13,79 78,82 371,48 94,72 95,5 97,43 10,4 66,09 355,08 93,55 91,49 96,69
Operator faults 8,75 79,59 374,77 98,81 99,07 97,81 15,42 66,26 362,27 98,94 99,6 98,37
Average 11,27 79,21 373,1 96,77 97,29 97,62 12,91 66,18 358,7 96,25 95,55 97,53

the Symbolic Program-Level Fault Injection and Error Detection Framework (SymPLFIED)

[159]. This framework uses symbolic execution and model checking to verify error detectors

in a program, and to expose error cases (single and multiple bit-flips) that would potentially

escape detection and cause a failure. SymPLFIED explores the states that can be assumed

by a program, and evaluates whether a transient error occurring in each state can evade

detection mechanisms and lead to an incorrect result. In this way, SymPLFIED can prove

the effectiveness of error detection, and it can point out non-detected errors in order to aid in

the design of error detection. This approach (and in general symbolic execution) tends to be

computationally costly since it requires the exploration of a large set of states, although it is

affordable for verifying small programs and algorithms. Moreover, this approach can reveal

corner cases that are not found by traditional fault injection due to its inherent statistical

nature.

Chapter 2. Software Fault Injection: Background and related work 105

Another novel form of Software Fault Injection is concerned with the emulation of faults

in software requirements [196]. Although requirement faults do not directly affect software

artifacts, it is recognized that wrong requirements (e.g., incomplete, conflicting, incorrect)

have a strong impact on software safety, and that they may cause severe accidents [127].

Moreover, is is much more costly and difficult to mitigate these faults during the late phases

of the software lifecycle [23]. The emulation of faults in requirement documents consists

in introducing, removing or modifying requirements, in order to emulate the presence of

incomplete, contradicting, or incorrect requirements. This procedure can be useful to provide

feedback to the requirement review process: the effectiveness of reviews can be evaluated

by asking reviewers to inspect a document with injected faults. The field data study of

requirement faults in space software in [196] provides a basis to the definition of realistic

fault types and of an approach for the automated emulation of these faults.

The use of Software Fault Injection in the context of software security has been recently

investigated. In this context, SFI emulates security vulnerabilities existing in web applica-

tions, that is, software defects that may cause unauthorized accesses to confidential data

rather than affecting software correctness [16]. The field data study in [75] analyzed the

types of software defect that are related to two common software vulnerabilities in web ap-

plications, namely SQL injection and Cross Site Scripting vulnerabilities, and found that

most of these software defects are represented by the missing validation and sanitization of

Chapter 2. Software Fault Injection: Background and related work 106

input variables, corresponding to an extended version of the MFC fault type of G-SWFIT

(Table 2.18). This finding has been exploited to inject vulnerabilities in web applications,

in order to train security assurance teams that are responsible for code inspection and pen-

etration testing [76], and to evaluate the effectiveness of intrusion detection systems and

vulnerability scanners [77].

Finally, Software Fault Injection is currently being investigated in the context of online

failure prediction in complex software systems. Online failure prediction aims to anticipate

during runtime the occurrence of failures in the near term future, in order to prevent po-

tential accidents and to limit the impact of failures, and can be seen as a proactive form of

fault tolerance [171, 170]. Prediction is achieved by monitoring and analyzing the current

system state in order to spot symptoms that a failure is likely to occur soon, such as an

anomalous sequence of events or consumption of system resources. Due to the complexity of

systems and to the random nature of failures, failure prediction requires the use of heuristic

rules or statistical models, that have to be trained and validated using symptom and failure

data. Unfortunately, this kind of data is typically scarce, since failures are rare events and

must be collected over a long time. In [199, 100], Software Fault Injection is indicated as a

promising approach for accelerating the data collection process by generating realistic failure

occurrences. This data can be exploited to train and to evaluate prediction algorithms in a

limited amount of time.

Chapter 2. Software Fault Injection: Background and related work 107

2.6 Relationship with Mutation Testing

The injection of software faults consists of the introduction of small changes in the target

program code, creating different versions of a program (each version has one injected software

fault). The way faults are injected resembles the well-known mutation testing technique [90,

54, 121] but the injection of software faults has completely different goals. While mutation

testing has been used in software verification to identify the best sets of test cases, the

injection of software faults is meant to validate fault-handling mechanisms at runtime and

to evaluate the way a system behaves in the presence of the injected faults [10, 201, 41, 65].

This difference of goals reflects on the approaches and fault models adopted by SFI.

Mutation testing is a technique for software quality improvement used during the soft-

ware development phase. The main goal is to improve the ability of test cases to detect faults

while maintaining testing time as low as possible [90, 54, 121]. This approach evaluates the

effectiveness of test cases (namely, the mutation adequacy score) by executing tests with

versions (mutants) of the program containing a code mutation (i.e., copies of the original

program each containing a small faulty change). These mutations, or faults, are hand-seeded

or generated by a set of mutation operators (i.e., rules followed for introducing changes in

the code). Test cases are then defined such that they detect as many of the injected faults

as possible. The effectiveness of test cases is evaluated by measuring the ratio of mutants

that have been killed (i.e., the output of the mutant differs from the original program for

Chapter 2. Software Fault Injection: Background and related work 108

at least one test case). This approach is based on the assumption that test cases effective

against mutants are also effective to detect real faults (this is referred to as the coupling

hypothesis [54]). Empirical studies confirmed that mutants are suitable for estimating the

fault detection ability of test cases, and that automatically-generated mutants are an accu-

rate and more practical support compared to hand-seeded (i.e., manually inserted) faults

[9, 58].

There are issues that make this approach costly, and that have been investigated since

its birth (a thorough survey is presented in [106]). The foremost issue is the large number of

experiments required to run each test case on each mutant. This is due to the large number

of mutants that can be generated from a program, since mutation operators encompass many

language constructs that can be potentially affected by defects (e.g., “constant replacement”

[121]).

It has been found that mutants can be reduced while preserving testing effectiveness. The

state-of-the-art of this problem is the selection of a sufficient set of mutation operators. This

can be achieved by omitting the mutation operators that generate most of the mutants [155,

154], or by only including operators that are considered the most effective [207]. A Bayesian

selection approach has been recently proposed, that iteratively prioritizes mutation operators

with respect to their ability to produce hard-to-kill mutants, which make necessary to extend

the test suite and thus can improve testing effectiveness [182]. Other approaches randomly

Chapter 2. Software Fault Injection: Background and related work 109

select a subset of mutants (mutation sampling), or remove mutants that are detected by

similar inputs (mutation clustering) [106]. Hard-to-kill mutants do not aim to emulate

residual faults such as the ones studied in this thesis: while mutants are concerned with the

improvement of test suites, SFI aims to emulate faults that escape the software development

process in real systems.

Software Fault Injection is used in several (typically post-development) scenarios: to val-

idate the effectiveness and to quantify the coverage of software fault tolerance, to assess risk,

to perform dependability evaluation [10, 201, 41, 65]. The application scenario constitutes

the first difference from mutation testing and software fault injection: the former is used

mainly during software development and is focused on test cases, while the latter is mostly

used in post-development scenarios and has a strong requirement of fault representativeness.

Since SFI is concerned with the analysis of the system behavior during operation, the con-

duction of experiments closely emulates the real operational scenario of the target system.

Instead of a test set, a workload representative of operational usage is used. Moreover, fault

representativeness is a chief concern, in the sense that faults should emulate the residual

faults that go with the deployed system.

Compared to mutation operators proposed in the literature for the C language, the fault

emulation operators used in Software Fault Injection are more selective and only encompass

fault types found in the field: G-SWFIT provides 13 fault types (Table 2.18) against 71

Chapter 2. Software Fault Injection: Background and related work 110

mutation operators proposed in [53]. This reflects the fact that mutation operators inject

many kinds of fault that can occur before and during coding and are used to assess the

thoroughness of test cases, while fault operators represent faults that escape the whole

development process (including testing) and are not designed for improving test suites but

assessing fault tolerance. Another difference relies in how fault operators are defined, since

they provide additional rules (“constraints”) for selecting fault locations in order to better

reproduce the fault types observed in the field (see subsection 2.4.3). The proposal of fault

operators that reflect the relative occurrence of software faults is instrumental for obtaining

a trustworthy evaluation of fault tolerance, and for defining standard and widely agreed

procedures for the comparison of software components such as dependability benchmarks

[117].

Chapter 3

Improving the representativeness of
injected software faults

3.1 Introduction

Fault representativeness is an important concern in Software Fault Injection. As discussed

in the previous chapters, the representativeness of faults being injected is needed to obtain

confident results from the assessment of fault-tolerant systems, otherwise what is observed

from the experiments would not represent what will happen during the operational phase

of the system. Moreover, focusing on representative faults (and avoiding to perform non-

representative experiments) improves the time and cost effectiveness of the fault injection

process.

To achieve fault representativeness, the faultload should emulate the real faults that the

system will experience in the field. We refer to these faults as residual faults, since they are

the ones that escape rigorous design and testing efforts and that actually affect the system

during operation. From a practical point of view, fault representativeness implies that

111

Chapter 3. Improving the representativeness of injected software faults 112

Software Fault Injection should carefully select fault types (“what to inject in the software”)

and fault locations (“where to inject in the software”) to reflect in statistical terms the types

and locations of residual faults.

Existing Software Fault Injection approaches [119, 153, 65], including the state-of-the-art

technique G-SWFIT, propose a set of realistic fault types, which are derived from the most

frequent types of software faults that caused failures of real systems during operation. These

approaches neglect the problem of selecting realistic fault locations, and inject faults in every

location or randomly select a subset of locations. However, this aspect is a concern for

Software Fault Injection since complex systems have a huge number of locations

in which to inject, and only few of them could be suitable to inject a realistic

software fault. It is a matter of fact that residual software faults are not equally likely

to exist in every code location, but they are more likely to exist in those modules/routines

where the code is more complex and testing activities are less effective [20, 201, 70].

In this chapter, a new Software Fault Injection strategy is proposed for carefully select-

ing fault locations to achieve representative faultloads. The proposed approach is

based on the results of an extensive experimental campaign (more than 3.8 million individual

experiments) aimed to evaluate and improve the representativeness of injected faults (using

the state-of-the-art technique G-SWFIT), as a function of fault types and locations. The

definition of representative faultloads is accomplished through the following steps. First, we

Chapter 3. Improving the representativeness of injected software faults 113

choose three real world software systems, including two Data Base Management Systems

(MySQL and PostgreSQL) and a Real-Time Operating System (RTEMS) largely adopted

in business- and safety-critical applications. Second, we conduct extensive SFI campaigns

using as workload the actual test cases adopted by developers, in order to assess whether

injected faults are representative of residual faults or not. The driving idea is that faults

disclosed by the test cases do not represent residual faults, as they would be easily detected

and fixed by developers. Third, from the results of SFI campaigns we identify the faults

that are difficult to find by testing and thus worth considering for SFI, as they are represen-

tative of residual faults. Fourth, we conduct a statistical analysis on representative faults

to understand how to define a representative faultload for a given software. To this aim, we

propose an approach based on classification algorithms and software complexity metrics to

identify suitable fault locations for emulating residual software faults. Key findings are:

1. The issue of non-representative faults can significantly affect SFI, even using state-of-

the-art techniques, such as G-SWFIT [65]. Considering the experiments done in the

RTEMS operating system, it is observed that non-representative faults are the majority

of injected faults (72.23%) using the G-SWFIT technique. Even if we consider less-

tested and large systems in which the chance of faults to escape testing is higher,

such as MySQL and PostgreSQL, the percentage of non-representative faults is still

noticeable (respectively, 14.57% and 23.13%).

Chapter 3. Improving the representativeness of injected software faults 114

2. The analysis of the distribution of faults across components (files and modules) reveals

that the representativeness of injected faults is significantly affected by fault locations.

This result confirms that the careful selection of fault locations is required to improve

faultload representativeness.

3. Fault locations can be selected in an effective way by using classification algorithms

and software metrics. The proposed approach is a novel compared to existing ones that

focus on the selection of fault types [119, 153, 65]. We evaluated both a supervised

(i.e., trained using examples) algorithm, namely decision trees, and an unsupervised

one, namely k-means clustering. In particular, we found that the faultload can be

improved using either the supervised algorithm (4.10%-26.08%) or the unsupervised

one (2.16%-16.24%). At the same time, the proposed approach can significantly reduce

the faultload size (filtering out up to 69.43% of faults), thus reducing the cost and the

time of SFI campaigns in complex software.

This chapter is organized as follows. Section 3.2 presents the experimental evaluation

of the representativeness of faults injected by G-SWFIT on three systems. Section 3.3

discusses how representativeness can be improved and shows that there is a clear difference

in the distribution of representative/non-representative faults across files and functions. This

result leads to the proposal, in Section 3.4, of a new fault selection approach that improves

fault representativeness. Section 3.5 summarizes the main contributions of this chapter.

Chapter 3. Improving the representativeness of injected software faults 115

3.2 Evaluation of fault representativeness

This section presents an evaluation of representativeness of the faults injected by G-SWFIT

in complex software. In the remainder of this section we discuss the details and the results of

this analysis on three case studies. In particular, we analyze the ability of injected faults to

escape testing, as they should emulate residual faults that escaped testing and that manifest

themselves during the operational phase. The analysis consists of the following steps:

1. We apply G-SWFIT to generate faulty versions of the systems under study. The

targets are mature programs that are already well tested and for which real test suites

are available.

2. For each injected fault, we evaluate its ability to escape testing (since residual faults,

which we aim at emulating, escape testing by their own nature) by running the target

with the provided tests cases. Each injected fault will cause a number of the test cases

to fail (i.e., the fault is detected). A key aspect here is the fact that we are using the

same test cases as the development team of the target system, in order to gain insights

about how difficult to detect is a fault.

3. We evaluate if each injected fault can be considered representative or not. If the fault

is detected by many test cases, we can assume that the fault is not representative as

it is easily discovered by testing. If the fault is not detected by most of the test cases,

Chapter 3. Improving the representativeness of injected software faults 116

then we can assume that the fault is hard to discover and representative of residual

faults.

3.2.1 Systems used in the case studies

The case studies considered in this analysis are the MySQL and PostgreSQL DBMSs, and the

RTEMS Real-Time Operating System. MySQL is one of the most used DBMSs, accounting

for a large share of installations among IT organizations [45]. PostgreSQL is also widely

used, including many commercial database applications [68]. RTEMS is an open-source

RTOS targeted at embedded systems, and it is also adopted in safety-critical systems [102].

The three software systems considered in our analysis are adopted in real business- and

safety-critical contexts, and are a potential target for fault injection (see also past works on

fault injection in OSs and DBMSs discussed in Chapter 2 [33, 153, 59, 7, 116, 198]).

Table 3.1: The case studies used in this analysis.

LoC Files Functions Test cases Statement coverage

MySQL 231,851 223 10,426 469 76.30%
PostgreSQL 366,844 585 9,863 122 66.39%
RTEMS 5,863 555 828 151 96.41%

Software characteristics are depicted in Table 3.1. Statement coverage of test suites was

measured using the GCC 3.4.4 compiler and the GCOV tool [164]. MySQL (v. 5.1.34) is

made up of more than 230K Lines of Code (LoC) distributed among 223 files and a little over

than 10K functions. PostgreSQL (v. 9.0.1) has more than 360K LoC distributed among 585

Chapter 3. Improving the representativeness of injected software faults 117

files and nearly 10K functions. RTEMS (v. 4.9.4) is not as large as the two DBMSs; however,

it is still complex software, and, most important, it is supplied with test cases covering more

than 96% of the code (running in the QEMU x86 emulator [22]). For the DBMSs, we focus

on the DBMS engine, which is the largest and most fundamental part of the DBMS (it

is in charge of managing threads and connections, SQL query parsing and optimization);

other parts are not considered (e.g., client code, additional plug-ins). Regarding RTEMS,

we strictly focus on the kernel code (including task scheduling, time and synchronization,

memory management), and do not consider library code (e.g., C library, networking).

All these systems are provided with source code and test cases. Test cases are actu-

ally adopted by developers for automating functional and regression testing, and they are

augmented as new functionalities are added or unknown faults are found. Test cases are

grouped based on the specific part of the system or functionality under test, and we consider

only the test cases targeted at the part of the systems we focus on. Since many experiments

are conducted for each test case (one experiment per faulty version and test case, see Ta-

ble 3.2), we selected a sample of 50 test cases for each case study. This sampling reduces

the time required for experiments, and can still provide insights about how difficult is to

detect faults. Test cases were randomly sampled, and we checked that selected test cases

were not too similar. Moreover, test cases achieve at least 50% of statement coverage for

all systems. In the case of DBMSs, test cases populate a database and perform several

Chapter 3. Improving the representativeness of injected software faults 118

SQL commands with different variants; they also test specific functionalities of the DBMSs

such as triggers and stored procedures. In the RTEMS case study, test cases define a set

of tasks to exercise real-time scheduling and system calls. All test cases provided with the

case studies are correctly executed (i.e., the system passes the tests in no fault is injected).

Table 3.2: The case studies used in this analysis.

Faults Test cases Statement coverage Total experiments

MySQL 39,539 50 51.12% 1,976,950
PostgreSQL 32,915 50 57.91% 1,645,750
RTEMS 3,962 50 71.52% 198,100

3.2.2 Experimental Software Fault Injection setup

We used an automated fault injection tool to handle the experiments of this study [148].

The tool injects software faults in a program according to the most common fault types

(Table 2.18) found in the field [65]. The tool adopts the same fault operators of G-SWFIT,

although faults are introduced in the source code instead of the binary code (Figure 3.1).

First, a C pre-processor translates all the C macros in a source code file (e.g., “include”

directives), producing a self-contained compilation unit. A C/C++ front-end then analyzes

the file and builds an Abstract Syntax Tree representation of the code. This representation

guides the identification of locations where a fault type can be introduced in a syntactically

correct manner, and that comply to fault type constraints (see Subsection 2.4.3). The tool

produces a set of faulty source code files, each containing a different software fault (faulty

Chapter 3. Improving the representativeness of injected software faults 119

versions). Each faulty version is then compiled.

Figure 3.1: Process for generating faulty versions of the target program.

Among the faults generated by the tool, we consider faults in the parts of the system

exercised by at least one test case (i.e., source files that are covered during execution). This

choice reduces the bias of test case selection, since we draw conclusions about representative-

ness of faults in the modules that are targeted by the selected test cases. Table 3.2 reports

the number of injected faults and experiments for each case study. More than 76 thousands

faults were injected, and a total of 3.8 million experiments were performed, which is a very

large number when compared to experiments typically found in the literature, and which

brings confidence on the validity of results.

The experimental setup is shown in Figure 3.2. In each experiment, the Test Manager

executes a test case on a faulty version and collects the test result. Since we are interested in

whether the test case is able to detect a given fault (i.e., to cause a failure), we only need a

simple failure model (i.e., a pass/fail outcome). DBMS failures are the crash of the DBMS,

an incorrect answer to an SQL query, and the timeout of the test. RTEMS failures are the

crash of the system or task running, an incorrect output, and the timeout of the test case.

Chapter 3. Improving the representativeness of injected software faults 120

Experiments were performed on 4 workstations equipped with an Intel Core 2 Duo 2.4GHz

CPU, 4 Gb RAM, and a SATA 3 Gb/s disk.

Figure 3.2: Overview of experimental campaigns.

3.2.3 Result discussion

We analyzed the number of test cases that were able to detect the existence of each fault,

in order to identify which injected faults can be considered representative. We also analyze

whether the fault location has been executed during a test, by collecting data about state-

ment coverage produced by testing tools. Figure 3.3 shows examples of outcomes occurred

in our analysis (not related to a specific system). The horizontal axis represents injected

faults (F1, F2, and F3); the vertical axis provides:

1. the percentage of test cases that activated the fault and caused a failure (dark gray);

Chapter 3. Improving the representativeness of injected software faults 121

2. the percentage of test cases that did not detect the fault (i.e., no failure observed),

and executed the fault location at least one time (light gray);

3. the percentage of test cases that did not detect the fault and never executed the fault

location (white).

Since a faulty version is run against all the 50 test cases selected for that system, it can

cause a number of failures from 0 to 50. For instance, from the figure it can be noted that

fault F1 is detected by 1 out of 50 test cases, fault F2 is detected by 3 out of 50 test cases

and its fault location is covered by 40 out of 50 test cases, and fault F3 is detected by almost

all test cases (45 out of 50).

0

10

20

30

40

50

60

70

80

90

100

 Faults (Fi)

Pe
rc

en
ta

ge
 o

f t
es

t c
as

es
 (%

)

1/50

49/50

3/50

40/50

7/50

45/50

5/50

F1 F2 F3

Failed runs
Correct runs
Fault not covered

Figure 3.3: Examples of analysis of injected faults with respect to the percentage of failed
and correctly executed test cases.

The results are shown in Figure 3.4 (DBMSs) and Figure 3.5 (RTEMS). Faults are

ordered by percentage of failures; due to the high number of faults, bars are displayed as

Chapter 3. Improving the representativeness of injected software faults 122

lines. A significant part of the faults is detected by most of the test cases (i.e., by more than

50% test cases): 14.57% and 23.13% for DBMSs, and 72.23% for RTEMS (faults on the

right side of the axis). These faults should be considered as non-representative; given that

the test suites are adopted by developers for detecting faults before a release, we can say

that faults that easily cause the system to fail should not be considered as representative.

This behavior does not resemble residual faults, which are not caught by testing and remain

in the released product.

Figure 3.4: Analysis of injected faults in MySQL and PostgreSQL.

Conversely, faults that hardly cause any failure are much more difficult to detect. Part of

these faults (the ones under the gray areas) tends to remain undetected even if their location

is executed many times. They cause a failure only when the faulty location is executed under

specific conditions, which could be easily missed during testing. For instance, the failure

Chapter 3. Improving the representativeness of injected software faults 123

Figure 3.5: Analysis of injected faults in RTEMS.

condition can be related to specific values took by input and state variables. The remaining

faults (the ones under the white areas) are detected only by a small number of test cases

since the fault location is not executed in the remaining test cases. The portions of code

where they reside are hard to cover and exercise, and therefore faults injected there are prone

not to be detected by testing activities. These faults should be considered as representative

of residual faults existing in the field and useful to inject for assessing fault tolerance.

In order to identify more precisely which faults are “detected by few test cases” and those

“detected by many test cases”, we analyzed how the percentage of representative faults varies

with the threshold value used to discriminate between these two cases. The resulting chart

is represented in Figure 3.6. The horizontal axis represents the threshold value; the vertical

axis represents the percentage of representative faults detected by a number of test cases

Chapter 3. Improving the representativeness of injected software faults 124

below the threshold.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Threshold (%)

Pe
rc

en
ta

ge
 o

f r
ep

re
se

nt
at

iv
e

fa
ul

ts
 (%

)

MySQL
PostgreSQL
RTEMS

Figure 3.6: Percentage of representative faults across threshold values.

It can be noted that the curves sharply increase when the threshold is below 20%, and

then stabilize around a fixed value. The curves sharply increase again when the threshold

is over than 90%. This behavior means that in the majority of faults is detected by less

than 20% of tests (these faults can be regarded as representative), or by more than 90%

of tests. This can be noticed in Figure 3.4 and Figure 3.5. Conversely, only a minority

of faults is detected by a percentage of tests between 20% and 90%. Therefore, faults

detected by “few” and “many” test cases can be easily identified, that is, the identification

of “representative faults” is negligibly affected by the choice of the threshold. Since there

is no further evidence that could support the choice of a specific threshold, we opted for

the simplest choice of considering half the number of test case sets that we used in our

Chapter 3. Improving the representativeness of injected software faults 125

study. Using this threshold, we can see that 85.43% of the injected faults in MySQL are

representative as they are detected by less than 50% of the test cases. We can also observe

that 76.87% of the faults injected in PostgreSQL are representative, and that only 27.77% of

the fault injected in RTEMS are representative. The difference between the DBMSs (which

have similar values) and the RTOS is reasonable: MySQL and PostgreSQL are similar

systems, and their test coverage is also similar and not as high as the coverage of the test

cases of a much smaller system (in code size) such as RTEMS. In fact, RTEMS has a high

test coverage, making harder to inject representative faults into it.

3.2.4 Validation of fault representativeness

The results previously presented are based on the assumption that faults escaping the set of

test cases are able to represent residual faults that are shipped with the software. However,

the faults could still be easily detected before release by using other kind of workloads not

necessarily included in the test cases, since test cases tend to assess a specific functionality

and not the system as a whole. If this were true, the faults that we consider as representative

would be easily detected by using a more complex and comprehensive workload. In order

to validate our results, we performed an additional SFI campaign using an implementation

of the TPC-C benchmark [48] as a workload for the MySQL case study (we focused only

on MySQL due to space and time constraints). The TPC-C performance benchmark is an

On-Line Transaction Processing (OLTP) workload that includes a mixture of read-only and

Chapter 3. Improving the representativeness of injected software faults 126

update intensive transactions that emulate the activities found in complex OLTP application

environments. With TPC-C the DBMS is now being exercised with a long-running and more

demanding workload in terms of resources and data manipulation.

We selected one third of the faults that in the previous experiments were detected by

at most three test cases. They are the faults that are most difficult to discover (because

they seldom cause a failure), therefore we expected that most of them will not be detected

in this test. We randomly selected 4 samples of the injected faults, described in Table 3.3.

For instance, Sample 2 includes a third of the faults that caused exactly 2 failed test cases.

For each selected faulty version, the TPC-C workload has been continuously executed for

30 minutes. The percentage of failures observed when executing TPC-C is given in the

rightmost column. From these results it can observed that faults that were difficult to find

using the developer test suite were also difficult to find using a more stressful workload (the

TPC-C benchmark). This result supports the assumption that faults avoiding test cases are

difficult to find, and our use of test cases to decide if faults are representative.

Table 3.3: Faults and failures using TPC-C.

Faults in the sample % TPC-C Failures

Sample 0 (0 failed tests) 3,960 0.96%
Sample 1 (1 failed tests) 3,775 3.31%
Sample 2 (2 failed tests) 993 4.03%
Sample 3 (3 failed tests) 480 4.58%
All samples 9,280 2.44%

Chapter 3. Improving the representativeness of injected software faults 127

3.3 Improvement of fault representativeness

Results of the previous section gave evidence that SFI campaigns can be affected by a signifi-

cant amount of faults that are not representative. However, it is not feasible for practitioners

to conduct a campaign such as the ones in Section 3.2 to identify which faults are represen-

tative for a given system. Therefore, we devise a method to identify representative faults

with no need to perform a preliminary experimental analysis. In this way, we would be able

to keep fault injection campaigns both feasible and accurate. Since a fault being injected is

characterized by its type (“what to inject”) and by its location (“where to inject”), we have

to assess the relationships between these characteristics and fault representativeness. This

would allow to improve the selection of faults to inject, by identifying beforehand which

faults are representative and which are not. In the remainder of this section and in the next

one we explore how to perform this fault selection. The first step is to understand if and how

representative faults can be identified, by analyzing i) the distribution of representative/non-

representative faults across fault types, and ii) the representative/non-representative fault

distribution across source code locations.

3.3.1 Representativeness across fault types

Figure 3.7 depicts the distribution of representative and non-representative faults across

fault types. If fault representativeness were influenced by fault types, we would observe

a difference between these distributions. In order to quantitatively evaluate if differences

Chapter 3. Improving the representativeness of injected software faults 128

are statistically significant (i.e., they are not caused by random factors), we performed a

statistical test, by testing the null hypothesis H0 that the faults follow the same distribution.

To this purpose, we adopted the two-sample Kolmogorov-Smirnov (KS) test [179], which is a

non-parametric procedure1 for evaluating if two samples are drawn from the same underlying

probability distribution. The results of the test are reported in Table 3.5; p-values are the

probability that observed differences could occur, given that the null hypothesis is true. The

test confirms that for all systems the distributions are the same (i.e., H0 cannot be rejected),

with a reasonable degree of confidence (e.g., to reject the null hypothesis with a 90% or 95%

significance level, p-values should be lower than 0.1 or 0.05, respectively). Thus there is no

statistically significant difference in the distributions of representative/non-representative

faults across fault types. Thus, the results confirm that the type of faults does not

affect the representativeness of the faultload.

Table 3.4: Kolmogorov-Smirnov likelihood test for representative and non-representative
fault distributions across fault types.

Null Hypothesis MySQL PostgreSQL RTEMS

Same distribution across
fault types (p-value)

0.4333 0.4889 0.9950

Reject Null Hypothesis No No No

1This test was preferred over parametric procedures, such as the t-test, in order not to rely on assumptions
about distributions (e.g., normal distributions with same variance).

Chapter 3. Improving the representativeness of injected software faults 129

(a) MySQL. (b) PostgreSQL.

(c) RTEMS.

Figure 3.7: Fault distributions across fault types.

3.3.2 Representativeness across components

As in the case of fault types, we test if there is a statistically significant difference in the

distribution of representative/non-representative faults across locations. In particular, we

considered fault distributions across source code files and functions of the target systems.

Figure 3.8 presents the histograms of fault distributions for each case study. We test the null

hypothesis H0 that the distributions are the same. Table 3.5 presents the resulting p-values.

Chapter 3. Improving the representativeness of injected software faults 130

All the p-values obtained are extremely small (less than 0.0001), so we can reject the

null hypothesis with a high confidence degree and conclude that there is a significant

difference in the distribution of representative/non-representative faults across

components (both files and functions). The focus of the next section will be the

identification of locations more likely to have representative faults, in order to focus fault

injection on them.

(a) MySQL. (b) PostgreSQL.

(c) RTEMS.

Figure 3.8: Fault distributions across files.

Chapter 3. Improving the representativeness of injected software faults 131

Table 3.5: Kolmogorov-Smirnov likelihood test for representative and non-representative
fault distributions across components.

Null Hypothesis MySQL PostgreSQL RTEMS

Same distribution across
files (p-value)

7.2862e-07 1.1742e-20 5.1124e-04

Same distribution across
functions (p-value)

< smallest
float number

< smallest
float number

4.0775e-06

Reject Null Hypothesis Yes Yes Yes

3.4 The proposed fault selection approach

We found in the previous section that there is a relationship between fault representative-

ness and fault locations, and that in some components the percentage of representative

faults tends to be higher than the percentage of non-representative faults. This result is

due to complexity of the software and its architecture, since fault activation and propaga-

tion through the system is affected by the code surrounding the fault. In order to define

more representative faultloads and, at the same time, to reduce the cost of fault injection

campaigns (in terms of number of injected faults), we propose an approach for identifying

components in which to perform the injection campaign, among the set of all components

belonging to the target system. The approach analyzes software complexity metrics to de-

cide whether a component is appropriate or not for injecting representative faults. It is

based on binary classification algorithms, where software metrics (e.g., size and degree of

connection of a component) [71] are the classification features. Classification algorithms are

useful for making decisions based on complex data (in this case, software metrics), and have

Chapter 3. Improving the representativeness of injected software faults 132

also been adopted in other software engineering problems, such as defect predictors [139] or

estimation of software development effort [183]. The approach works as follows:

1. Software metrics are collected for every component (files or functions).

2. A classification algorithm is trained with examples (i.e., components for which the

percentage of representative faults is known); this step is unnecessary when using an

unsupervised classification algorithm (this aspect is discussed in Section 5.4).

3. The classification algorithm is used to identify those components where most of the

injected faults are representative, that will be selected for fault injection.

In the following, we first describe how to characterize components, by detailing which

components should be selected and which metrics can be analyzed for component selection

(Subsection 3.4.1). We then define evaluation criteria to evaluate the effectiveness of the

approach, in terms of faultload representativeness and size (Subsection 3.4.2). Finally, we

evaluate two classification algorithms for component selection (Subsections 3.4.3 and 3.4.4).

3.4.1 Characterization of software components

In the context of this study, the objects to classify are represented by components. We

introduce two classes:

1. Class "Most Representative" (MR): components with high percentage of representa-

tive faults. These components are thus suitable to be injected.

Chapter 3. Improving the representativeness of injected software faults 133

2. Class "Least Representative" (LR): the components with low percentage of represen-

tative faults. Injections on these components should be avoided.

There are two possible criteria for dividing components between MR and LR. The first

criterion is to assign to the MR class those components where the percentage of representa-

tive faults is higher than a fixed threshold; the remaining components are assigned to the LR

class. The second criterion is to divide the components such that the MR class includes the

components with a percentage of representative faults above the average, and the remaining

are assigned to the LR class. Figure 3.9 shows the division according to the latter criterion:

it shows the percentage of representative faults in each component (components are sorted

by increasing percentage of representative faults), and the vertical line separates the MR

class (components “above the average”, on the right) from the LR class (components “below

the average”, on the left).

The latter criterion is adopted in this study to assign a class to components rather than

using a fixed threshold on the percentage of representative faults, which would lead to an

unbalanced division of the components (in the case of MySQL functions, any threshold less

than 100% would lead to a very small LR class), and would not take into account that the

notion of "high percentage of representative faults" is dependent on the case study (e.g.,

for RTEMS, any threshold greater than 0% could be considered "high", since about 50% of

components have 0% of representative faults).

Chapter 3. Improving the representativeness of injected software faults 134

Figure 3.9: Percentage of representative faults for files and functions in the three case studies.
The "Most Representative" (MR) components are the points of the X-axis on the right of
the vertical line (i.e., percentage of representative faults above the average), and the "Least
Representative" (LR) components are those on the left side.

We obtained 6 datasets (two datasets for each case study), which are summarized in

Table 3.6. It reports the number of faults in each dataset, and the ratio of representative

faults in the set. Columns “All” provide these data for all components in the dataset;

the remaining columns are obtained by only looking at components of the MR or the LR

class, respectively. Since the MR class is made up of components that have a percentage of

representative faults above the average, this class has a higher ratio of representative faults

than the full dataset (e.g., in the case of MySQL/files, 98.51% of faults in MR components

is representative, against 85.49% when all components are considered). MR percentages

represent an upper bound to the improvement that can be gained by perfect component

Chapter 3. Improving the representativeness of injected software faults 135

selection, i.e., if all MR components could be correctly identified and the others are discarded.

Additionally, MR components represent a subset of the faults, therefore component selection

can also lead to smaller faultloads. The approach classifies components of a target system

as either MR or LR (of course, the membership of components is unknown before a fault

injection campaign).

Table 3.6: Characterization of the datasets (All components, MR components, and LR
components).

Dataset % of representative faults Number of faults

All MR LR All MR LR

MySQL/Files 85.49% 98.51% 80.65% 39,539 10,708 28,831

MySQL/Functions 85.49% 100.00% 65.62% 39,539 22,816 16,723

RTEMS/Files 28.24% 72.10% 0.00% 3,962 1,158 2,804

RTEMS/Functions 28.24% 82.21% 0.19% 3,962 1,166 2,796

PostgreSQL/Files 77.08% 95.12% 62.04% 32,915 14,969 17,946

PostgreSQL/Functions 77.08% 100.00% 51.75% 32,915 17,248 15,667

A set of metrics (Table 3.7) has been selected for analyzing software complexity, which

are commonly used by researchers and practitioners. Lines of Codes and Cyclomatic Com-

plexity represent the number of statements and the number of paths in a component: they

are traditionally regarded as indicators of complexity since they characterize the size and

structure of functionalities implemented by a program [20, 71, 70]. FanIn and FanOut,

which count the connections between components, provide insights the complexity of the

system structure and of the information flow among components [71, 92]. We do not con-

sider other metrics such as Software Science (Halstead) and Object-Oriented metrics (e.g.,

Chapter 3. Improving the representativeness of injected software faults 136

Chidamber-Kemerer), since 1) metrics tend to be correlated with each other, therefore lim-

iting the benefits of considering many metrics [71] (although our approach does not prevent

the inclusion of more metrics), 2) some of them are not generic (e.g., they only apply to

object-oriented systems), and 3) they cannot be estimated in the absence of source code2,

which is often the case of third-party software. Metrics were collected using the Understand

tool [176].

Table 3.7: Software complexity metrics.

Metric Description

Lines of Code (LoC) The number of executable lines of code in a program. For files,
we consider both the average and the total LoC of functions in
the file. For functions, we consider the number of lines of code of
individual functions.

McCabe’s cyclomatic complexity The number of linearly independent paths through a function.
For files, we consider the sum, the average and the maximum
cyclomatic complexity of functions in the file.

FanIn and FanOut The count of unique functions that call (or are called by) a given
function, either directly, or ultimately, via other functions. For
files, these metrics are based on the unique functions that call (or
are called by) any of the functions defined in the file, and exclude
calls between functions within the same file.

3.4.2 Evaluation measures

We introduce a set of measures for assessing the ability of the proposed approach to correctly

classify components and, ultimately, to improve faultload representativeness. Since the

purpose of our approach is to avoid injecting non-representative faults, the primary measure
2The binary code can potentially be used for estimating the size of functions and the dependencies between

functions, but it lacks information about symbols (e.g., variables) in the source code, which is needed for
computing Halstead metrics. We do not focus on how to estimate complexity metrics from binary code,
since this aspect is outside the scope of the present work.

Chapter 3. Improving the representativeness of injected software faults 137

for assessing the approach is the percentage of representative faults within the faultload:

%Representative =
Representative faults in the faultload

Faults in the faultload
; (3.1)

in particular, we denote with %Representativefiltering the percentage of representative

faults in the faultload using the proposed approach, and with %RepresentativeMR and

%RepresentativeLR the percentage computed for the MR and LR classes, respectively (see

Table 3.6). In a similar way, we evaluate the number of faults in the faultload, namely

#Faultsfiltering, #FaultsMR, and #FaultsLR.

Additionally, we consider measures specifically aimed at evaluating classification algo-

rithms, namely precision and recall [206]. These measures compare the set of objects that

should be selected (i.e., the MR class) with the set of objects actually selected by the clas-

sifier (see Figure 3.10). The measures are based on the following quantities, that is, the

number of objects correctly or wrongly classified:

1. True Positives (TP): Number of MR components correctly identified as MR.

2. False Positives (FP): Number of LR components wrongly classified as MR.

3. False Negatives (FN): Number of MR components wrongly classified as LR.

In turn, precision and recall are computed as follows:

Chapter 3. Improving the representativeness of injected software faults 138

1. Precision = TP/((TP+FP)): Percentage of True Positives with respect to the whole

set of selected components (which includes both TPs and FPs).

2. Recall = TP/((TP + FN)): Percentage of True Positives with respect to the set of

MR components (which includes both TPs and FNs).

TP FP FN

Components
actually
selected by the
classifier

Components
ideally selected
for fault
injection
(the MR class)

Recall =
TP/(TP+FN)

Precision =
TP/(TP+FP)

Figure 3.10: Measures adopted for assessing classification algorithms.

Ideally, a classifier should have high precision (as close as possible to 1), to keep low the

number of non-representative faults in the faultload (due to False Positives), and they should

also have high recall (as close as possible to 1), to keep low the number of representative

faults missed (due to False Negatives). Both precision and recall are related to the percentage

of representative faults that can be obtained by filtering components through a classifier.

The expected percentage of representative faults after selection is

Chapter 3. Improving the representativeness of injected software faults 139

%Representativefiltering = Precision·%RepresentativeMR+(1−Precision)·%RepresentativeLR,

(3.2)

which is the weighted average between the densities of representative faults in MR and LR

classes: the higher the precision, the closer the average to the MR class. The expected

number of faultload size after filtering is

#Faultsfiltering = #FaultsMR ·
Recall

Precision
. (3.3)

It should be noted that #Faultsfiltering is inflated with False Positives when Precision

is low. When Recall is low, #Faultsfiltering is low due to False Negatives (i.e., some MR

components are not recognized by the classifier).

3.4.3 Fault Selection by using decision trees

The first algorithm that we adopt for component classification is a technique commonly

used in data mining problems, namely decision trees [206]. A decision tree is a hierarchical

set of questions that are used to classify an element. In our study, questions are based on

software metrics (for instance "Is LoC greater than 340?"), and the components are the

elements to be classified. This algorithm is a supervised classifier, since it requires to be

trained with examples in order to classify unknown elements. Decision trees have been

preferred over other supervised classifiers because they are simple to interpret, therefore

Chapter 3. Improving the representativeness of injected software faults 140

they can provide insights on the relationship between complexity metrics and component

classes. This classifier is provided by most machine learning tools, such as the WEKA tool

used in this work [206].

A decision tree is obtained from a training dataset using the C4.5 algorithm [206]. The

C4.5 algorithm iteratively splits the dataset in two parts, by choosing the individual attribute

(i.e., complexity metric) and a threshold that best separates the training data into the classes;

this operation is then repeated on the subsets, until the classification error (estimated on

the training set) cannot be reduced anymore. The root and inner nodes represent questions

about complexity metrics, and leafs represent class labels. To classify a component, a metric

of the component is first compared to the threshold specified in the root node, to choose

one of the two children nodes; this operation is repeated for each selected node, until a leaf

is reached.

The performance of decision trees was evaluated on the 6 datasets (Subsection 3.4.1)

through cross-validation. Each dataset is divided in a training set (one third of the data) and

a test set (two thirds of the data); evaluation metrics (Subsection 3.4.2) are then computed by

classifying the components of the test set. Since the dataset split can affect the performance

of the classifier, we considered 10 random splits for each dataset. The results of cross-

validation are provided in Table 3.8. It is worth noting that the average precision is higher

than 0.6 for every dataset (i.e., TPs are more than FPs), therefore we expect that the

Chapter 3. Improving the representativeness of injected software faults 141

percentage of representative faults is increased in the filtered faultload. Moreover, since

the recall ranges between 0.63 and 0.93, the filtered faultload includes most of the MR

components (i.e., TPs are more than FNs) and therefore most of the representative faults.

It should be observed that decision trees provide better performance on the "functions"

datasets than on the "files" datasets (with respect to all the metrics and the case studies),

since a smaller granularity can enable a more precise filtering (e.g., if most of the non-

representative faults in a file are in a few functions, only these functions can be removed).

Table 3.8: Performance of decision trees in terms of precision and recall (mean ± standard
deviation).

Type of MySQL PostgreSQL RTEMS Average

component Precision Recall Precision Recall Precision Recall Precision Recall

Files 0.63 ± 0.09 0.74 ± 0.14 0.65 ± 0.02 0.68 ± 0.14 0.61 ± 0.11 0.63 ± 0.24 0.63 ± 0.08 0.68 ± 0.18

Functions 0.77 ± 0.03 0.93 ± 0.04 0.66 ± 0.02 0.87 ± 0.08 0.61 ± 0.07 0.64 ± 0.19 0.68 ± 0.08 0.81 ± 0.17

Table 3.9 analyzes the faultload size and percentage of representative faults when using

decision trees. The first two columns describe the original datasets (they report data from

Table 3.6 for the sake of readability). The last two columns describe the expected number

of faults and ratio of representative faults when a subset of components is selected using

a decision tree with precision/recall as estimated through cross-validation (see Table 3.8

and Eq. 3.2 and 3.3). Faultload representativeness increases in all cases (see the column

on the right side). The improvement is more significant for RTEMS (up to 26.08%), since

the difference between %RepresentativeMR and %RepresentativeLR (Table 3.6) is more

Chapter 3. Improving the representativeness of injected software faults 142

significant in this case study (e.g., there are several components with 0% of representative

faults), therefore the benefit of faultload filtering is greater in this case. After filtering, a

large share of faults is removed from the faultload (between 30.30% and 69.43%); at the

same time, due to the high recall, we are confident that most of the representative faults in

the initial faultload are still present in the filtered faultload.

Table 3.9: Percentage of representative faults before and after component selection using
decision trees.

Dataset G-SWFIT G-SWFIT + decision trees

Faultload size % of repr. faults Faultload size % of repr. faults

MySQL/Files 39,539 85.49% 12,578 (-67.94%) 91.90% (+6.41%)

MySQL/Functions 39,539 85.49% 27,557 (-30.30%) 92.09% (+6.60%)

RTEMS/Files 3,962 28.24% 1,211 (-69.43%) 46.87% (+18.63%)

RTEMS/Functions 3,962 28.24% 1,537 (-61.21%) 54.32% (+26.08%)

PostgreSQL/Files 32,915 77.08% 15,460 (-53.03%) 82.22% (+5.14%)

PostgreSQL/Functions 32,915 77.08% 18,096 (-45.02%) 81.18% (+4.10%)

Figure 3.11 shows the decision trees that are automatically learned using the C4.5 al-

gorithm from the “function” datasets. Leafs contain the class labels (MR and LR), along

with the number of components of the dataset that are correctly and wrongly classified by

the leaf, respectively. By analyzing the structure of the tree, it can be noticed that the

complexity metrics involved in the classification are FanIn, FanOut, and LinesOfCode, and

that the cyclomatic complexity is not present. This is due to a correlation existing between

cyclomatic complexity and the other metrics, which makes it a redundant metric [71]; it can

also be an artifact of this particular classification algorithm. The FanIn and FanOut seem

Chapter 3. Improving the representativeness of injected software faults 143

to be the metrics most relevant for discriminating between components:

1. In the MySQL case study, most of the MR components (1,189 out of 1,653) have FanIn

lower than 62; conversely, several LR components (401 out of 604) have FanIn greater

than 62.

2. In the PostgreSQL case study, most of the MR components (2,041 out of 2,418) have

FanIn lower than 962; conversely, several LR components (436 out of 1,539) have FanIn

greater than 962.

3. In the RTEMS case study, most of the MR components (110 out of 159) have FanOut

lower than 15; conversely, several LR components (98 out of 161) have FanOut greater

than 15.

The relevance of FanIn and FanOut might be explained by the higher "exposure" of

faults in a component with a large number of connections to other components; it is thus

more difficult to inject “difficult-to-detect” faults in these components, and faultload repre-

sentativeness can be improved by looking at these metrics.

3.4.4 Fault selection by using clustering

In the previous subsection, we concluded that complexity metrics can be exploited to identify

components in which to inject faults, using a supervised classifier. However, the main limi-

tation of that algorithm is represented by the need for a training set, since getting a training

Chapter 3. Improving the representativeness of injected software faults 144

FanIn <= 62: MR (1,189 correct, 203 wrong)
FanIn > 62
| LinesOfCode <= 81
| | FanIn <= 195: MR (300 correct, 160 wrong)
| | FanIn > 195: LR (171 correct, 142 wrong)

(a) MySQL.

FanIn <= 962
| FanIn <= 93
| | FanIn <= 22: MR (737 correct, 280 wrong)
| | FanIn > 22
| | | FanIn <= 36: LR (93 correct, 42 wrong)
| | | FanIn > 36
| | | | LinesOfCode <= 21
| | | | | FanIn <= 74: MR (40 correct, 8 wrong)
| | | | | FanIn > 74: LR (3 correct)
| | | | LinesOfCode > 21: LR (37 correct, 26 wrong)
| FanIn > 93: MR (1,294 correct, 682 wrong)
FanIn > 962: LR (436 correct, 279 wrong)

(b) PostgreSQL.

FanOut <= 15
| FanIn <= 4
| | FanIn <= 0: MR (5 correct, 1 wrong)
| | FanIn > 0: LR (15 correct, 2 wrong)
| FanIn > 4: MR (103 correct, 47 wrong)
FanOut > 15
| FanIn <= 813: LR (94 correct, 38 wrong)
| FanIn > 813
| | FanOut <= 61: MR (11 correct, 1 wrong)
| | FanOut > 61: LR (3 correct)

(c) RTEMS.

Figure 3.11: Decision trees learned from the "function" datasets.

set would require an experimental analysis similar to the one in Section 3.2. Therefore, a

practitioner would need to identify representative faults for a subset of components, to train

the algorithm, and to classify the remaining components. To overcome this limitation, we

consider an unsupervised classifier (i.e., that does not require a preliminary training phase),

namely a clustering algorithm. This approach is based on the finding that MR components

have low FanIn or FanOut and tend to be aggregated below a threshold.

Chapter 3. Improving the representativeness of injected software faults 145

A clustering algorithm partitions a dataset into subsets (clusters) such that data in

each subset are similar (according to some distance measure). Therefore, it can be used to

partition the components into two sets, and then to select only one subset for fault injection.

Two aspects need to be defined to adopt this strategy: a distance measure, and a criterion

for selecting the target cluster.

• Define a distance measure: we define the distance measure as the euclidean distance

in the space of software complexity metrics, in order to discriminate between “low” and

“high” values of software metrics. In the following, we evaluate several combinations

of software complexity metrics for this purpose; we focus on LinesOfCode, FanIn, and

FanOut, since they turned out to be the most relevant metrics in the previous analysis.

• Define a criterion for selecting the target cluster: a clustering algorithm can

split the data set in two subsets; however, only one subset has to be selected for

fault injection. Since the MR components are characterized by the lowest FanIn and

FanOut, we select the cluster in which to inject faults by computing the mean value

of FanIn and FanOut of components in each cluster. We then select the cluster with

the lowest average FanOut or the lowest average FanIn (both criteria were evaluated).

Among the clustering algorithms proposed in the literature, we adopt the Lloyd k-means

clustering algorithm, which is well known and simple to understand [206]. K-means clustering

Chapter 3. Improving the representativeness of injected software faults 146

identifies k clusters that minimize the variance of distance of elements within the same

cluster. In our approach, we adopt the fixed value k = 2 when applying clustering (even if

the samples could be divided in more clusters), since we aim at discriminating between only

two classes. The algorithm is an iterative procedure. It randomly selects k elements (namely

centroids), each representing the “mean” of a cluster, and assigns the remaining elements

to the cluster of the nearest centroid. The procedure is repeated by computing the means

of the clusters obtained in the previous iteration, that are used as new centroids. It stops

when clusters do not change between iterations or after a maximum number of iterations.

The clustering algorithm is executed 10 times, by varying the random selection of the initial

k elements. Data were normalized in the range [0, 1] before clustering.

Table 3.10 and Table 3.11 show the performance of the k-means clustering algorithm

with respect to the three case studies; for the sake of brevity, results are only provided

with respect to "function" components. For each case study, we evaluated the effectiveness

of different distance measures and cluster selection criteria. The best results (in terms of

high average and low standard deviation of both precision and recall) are obtained when

(i) selecting the cluster with the lowest FanOut, and (ii) the distance measure is based on

LoC or FanOut (highlighted in Table 3.10). It can be observed that the clustering algorithm

is close to decision trees in terms of precision (respectively, 0.63 and 0.68 in average) and

recall (0.81 for both decision trees and clustering using FanOut and LinesOfCode). Instead,

Chapter 3. Improving the representativeness of injected software faults 147

cluster selection using the lowest FanIn is not effective in the case of RTEMS (precision is

less than 50%), although this criterion still gives good results for MySQL and PostgreSQL.

Therefore, although the FanIn was selected by decision trees learned from the MySQL and

PostgreSQL datasets, the FanOut turned out to be more useful than FanIn to provide a

common selection criteria among all the systems. This result is due to a correlation existing

between FanIn and FanOut (i.e., high FanIn and high FanOut tend to occur at the same

time, and vice versa). For this reason, both FanIn and FanOut are effective for the MySQL

and PostgreSQL systems, but the FanOut metric should be preferred as a generic criterion

for identifying components in which to inject faults.

Table 3.10: Performance of clustering (mean ± standard deviation), using FanOut for se-
lecting the target cluster.

Metrics MySQL PostgreSQL RTEMS Average

Precision Recall Precision Recall Precision Recall Precision Recall

LoC,
FanIn,
FanOut

0.68 ± 0.12 0.77 ± 0.35 0.56 ± 0.10 0.52 ± 0.27 0.71 ± 0.00 0.28 ± 0.00 0.65 ± 0.11 0.52 ± 0.32

FanIn,
FanOut

0.68 ± 0.12 0.76 ± 0.36 0.57 ± 0.08 0.55 ± 0.23 0.71 ± 0.00 0.28 ± 0.00 0.65 ± 0.10 0.53 ± 0.31

LoC,
FanOut

0.74 ± 0.00 0.94 ± 0.00 0.61 ± 0.00 0.63 ± 0.04 0.54 ± 0.00 0.86 ± 0.00 0.63 ± 0.08 0.81 ± 0.13

FanOut 0.74 ± 0.00 0.94 ± 0.00 0.61 ± 0.00 0.66 ± 0.08 0.54 ± 0.00 0.86 ± 0.01 0.63 ± 0.08 0.82 ± 0.13

LoC,
FanIn

0.46 ± 0.07 0.13 ± 0.20 0.47 ± 0.03 0.23 ± 0.06 0.71 ± 0.00 0.28 ± 0.00 0.54 ± 0.13 0.21 ± 0.14

FanIn 0.44 ± 0.00 0.08 ± 0.00 0.46 ± 0.04 0.22 ± 0.07 0.71 ± 0.00 0.28 ± 0.00 0.54 ± 0.13 0.19 ± 0.09

LoC 0.74 ± 0.00 0.99 ± 0.00 0.62 ± 0.00 0.95 ± 0.00 0.51 ± 0.00 0.87 ± 0.01 0.63 ± 0.09 0.94 ± 0.05

Average 0.61 ± 0.11 0.57 ± 0.34

Figure 3.12 shows the distribution of components with respect to FanOut and LinesOf-

Code metrics. The cross marks represent the centroids of the clusters; a cluster is composed

Chapter 3. Improving the representativeness of injected software faults 148

Table 3.11: Performance of clustering (mean ± standard deviation), using FanIn for selecting
the target cluster.

Metrics MySQL PostgreSQL RTEMS Average

Precision Recall Precision Recall Precision Recall Precision Recall

LoC,
FanIn,
FanOut

0.70 ± 0.06 0.36 ± 0.42 0.62 ± 0.01 0.45 ± 0.23 0.44 ± 0.00 0.72 ± 0.00 0.59 ± 0.11 0.51 ± 0.31

FanIn,
FanOut

0.68 ± 0.05 0.23 ± 0.35 0.63 ± 0.01 0.46 ± 0.22 0.44 ± 0.00 0.72 ± 0.00 0.58 ± 0.11 0.47 ± 0.31

LoC,
FanOut

0.65 ± 0.00 0.06 ± 0.00 0.62 ± 0.00 0.35 ± 0.07 0.35 ± 0.00 0.14 ± 0.00 0.54 ± 0.14 0.18 ± 0.13

FanOut 0.65 ± 0.00 0.06 ± 0.00 0.62 ± 0.00 0.34 ± 0.08 0.33 ± 0.00 0.14 ± 0.01 0.54 ± 0.14 0.18 ± 0.13

LoC,
FanIn

0.78 ± 0.00 0.92 ± 0.00 0.66 ± 0.01 0.78 ± 0.07 0.44 ± 0.00 0.72 ± 0.00 0.63 ± 0.14 0.81 ± 0.09

FanIn 0.78 ± 0.00 0.92 ± 0.00 0.66 ± 0.02 0.80 ± 0.09 0.44 ± 0.00 0.72 ± 0.00 0.62 ± 0.14 0.81 ± 0.10

LoC 0.74 ± 0.00 0.99 ± 0.00 0.44 ± 0.01 0.05 ± 0.00 0.51 ± 0.00 0.87 ± 0.01 0.57 ± 0.13 0.64 ± 0.43

Average 0.58 ± 0.13 0.51 ± 0.34

by the nearest elements to its centroid. The cluster to be selected is the one on the bottom-

left corner of the plots (lowest FanOut). The high precision and recall of the clustering

algorithm is due to the density of MR functions being higher than the density of LR func-

tions in that cluster; in other words, when only the target cluster is selected, a high amount

of MR functions is retained, while several LR functions are avoided at the same time.

Table 3.12 summarizes the results of the clustering algorithm in terms of percentage of

representative faults and faultload size. The clustering algorithm is able to improve the fault-

load representativeness, and the best results are achieved when clustering at the "function"

granularity (the improvement ranges between 4.10% and 16.24%). Compared to decision

trees, the clustering algorithm provides a lower performance; nevertheless, the clustering

algorithm does not require to be trained using examples (which can be costly to obtain),

since it exploits the relationship between the FanOut metric and fault representativeness

Chapter 3. Improving the representativeness of injected software faults 149

500 1000 1500 2000
0

500

1000

1500

2000

2500

3000

3500

LinesOfCode

Fa
nO

ut
MySQL

200 400 600
0

1000

2000

3000

4000

5000

LinesOfCode

Fa
nO

ut

PostgreSQL

20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

LinesOfCode

Fa
nO

ut

RTEMS

Figure 3.12: Scatter plot of MR (non-filled circles) and LR (filled circles) functions with
respect to LinesOfCode and FanOut. Cross marks identify cluster centroids.

(shown in Figure 3.11). Therefore, clustering is a valuable approach for both improving

representativeness and keeping experimental effort low.

Table 3.12: Percentage of representative faults before and after component selection using
clustering.

Dataset G-SWFIT G-SWFIT + clustering

Faultload size % of repr. faults Faultload size % of repr. faults

MySQL/Files 39,539 85.49% 16,159 (-59.13%) 90.47% (+4.98%)

MySQL/Functions 39,539 85.49% 28,982 (-26.70%) 91.06% (+5.57%)

RTEMS/Files 3,962 28.24% 1,816 (-54.16%) 36.77% (+8.53%)

RTEMS/Functions 3,962 28.24% 1,857 (-53.13%) 44.48% (+16.24%)

PostgreSQL/Files 32,915 77.08% 25,620 (-22.16%) 79.24% (+2.16%)

PostgreSQL/Functions 32,915 77.08% 17,813 (-45.88%) 81.18% (+4.10%)

Chapter 3. Improving the representativeness of injected software faults 150

3.5 Summary

In this chapter, we analyzed the representativeness of injected faults in three complex, real-

world software systems, and proposed an approach for improving fault representativeness.

This aspect is important for obtaining a realistic assessment of fault tolerance. The SFI

technique considered in this thesis, G-SWFIT, aims to achieve fault representativeness by

emulating the most frequent fault types found in operational systems. In this chapter, we

analyzed fault representativeness with respect to an additional criterion, that is, the ability

of faults to escape real test suites, which characterizes residual faults that affect operational

systems and that should be tolerated.

After analyzing a large set of injected faults and real test cases (up to 3.8 million ex-

periments), we concluded that the percentage of representative faults ranges from a minor

share in the case of DBMSs (14.57% and 23.13%) to a significant share in the case of a

RTOS (72.23%). The proposed approach selects a subset of components suitable for inject-

ing representative faults, by analyzing their complexity and relationships using classification

algorithms and software metrics. The first considered algorithm, decision trees, is a super-

vised classifier, which is trained by providing examples of components to be selected. The

second algorithm, k-means clustering, is an unsupervised classifier, which does not require

to be trained with examples but relies on the observation that suitable components have the

lowest FanIn and FanOut, as they are less exposed to testing. We found that both these

Chapter 3. Improving the representativeness of injected software faults 151

algorithms can accurately classify components for all the case studies (ranging from small

and well-tested to large and less-tested software), and that it is possible to improve fault

representativeness and reduce faultload size at the same time. In the light of these results,

the proposed approach can be regarded as an effective and practical means for improving

the realism of SFI.

The approach and the results reported in this study are based on empirical data, which

limits the generality of the conclusions. The considered case studies are open-source systems,

and results could not apply to software developed under other paradigms. Nevertheless, all

the considered systems were developed with the support of commercial organizations, and

they were tested using common practices also adopted in commercial software. In the cases

of MySQL and PostgreSQL, a request- and bug-tracking system is adopted, which is also

used to some degree for introducing test cases to cope with new features or documented

faults that should be avoided in future development. In the case of RTEMS, the system

has been engineered and tested to fulfill the requirements of industrial safety standards,

for its adoption in space applications by the European Space Agency [102]. Since there

are similarities between these systems and industrial ones, we believe that the results can

potentially be extended to other kinds of system.

Chapter 4

Improving the accuracy of software
faults injected in binary code

4.1 Introduction

The market competition and time-to-market deadlines impose strict constraints on the time

and resources available for software development. For this reason, we are witnessing the

massive adoption of Commercial Off-The-Shelf software, i.e., third-party software compo-

nents not developed for a specific system, that software firms buy from others in order

to avoid the cost of developing the same functionality by their own. A similar trend to-

wards code reuse from previous product versions can be noticed. Industries involved in the

development of business- and safety-critical systems are not an exception to these trends.

Unfortunately, COTS and reused software are harmful to software dependability, since they

are used in a new environment that was not foreseen when they were originally developed,

leading to incorrect interactions between the reused component and the environment, or to

the activation of hidden faults that never manifested themselves in the past. Moreover, it

152

Chapter 4. Improving the accuracy of software faults injected in binary code 153

is unpractical, and often unfeasible, to test and debug them due to the lack of source code

and/or expertise on their internals and specification [204].

The widespread use of COTS and the risk of software faults emphasize the importance of

Software Fault Injection in this kind of software components. SFI can be adopted to assess

during development what will be the impact of software faults in COTS components, and to

take countermeasures by adopting fault tolerance mechanisms. However, their source code

is often not available and only their executable code (also referred to as binary or machine

code) can be accessed. Therefore, it is necessary to be able to inject software faults within

the binary code, as in the case of G-SWFIT [65]. This approach requires that programming

constructs used in the source code are identified by looking only at the binary code, since

the injection is performed at this level.

Unfortunately, binary-level SFI is a difficult and error-prone task due to the complexity

of programming languages and of modern compilers, which make difficult and in some cases

impossible to accurately recognize where to inject faults. Therefore, an important issue

concerning the injection of software faults at binary level is to assure the accuracy of the

injection campaign, that is, the degree of confidence that a fault injected in the binary

code correctly emulates a software defect in the source code. For instance, if we aim to

emulate the absence of a variable assignment in the source code, we could remove a "move"

instruction at binary level. But, if we consider the emulation of a bug in a C preprocessor

Chapter 4. Improving the accuracy of software faults injected in binary code 154

macro (i.e., a piece of source code that is replicated several times in the binary code), the

problem cannot be resolved by simply looking at the binary code (which lacks information

about preprocessor macro).

Assuring the accuracy of binary-level SFI techniques is therefore a major

concern for their adoption in real-world scenarios. This assessment is important to

gain confidence that results from binary-level fault injection are accurate, and to test, debug

and improve SFI techniques and tools with respect to real-world software. Unfortunately,

only a few studies evaluated the accuracy of binary-level SFI, which were limited to small

programs or to a small number of faults [60, 65, 107], and there is not an approach for

analyzing this problem comprehensively.

In this chapter, we propose a method for assessing the accuracy of binary-level

fault injection in complex software, and perform an extensive experimental campaign

in order to assess the accuracy of G-SWFIT. The proposed method performs two fault

injection campaigns on the same target system, respectively injecting faults in its binary code

and source code, where the latter is used as a term of comparison. During these campaigns

we keep track of code locations targeted by fault injection. We then compare for each fault

type the locations affected by source-level injection with the ones affected by binary-level

injection. In this way, we are able to identify: (i) binary-level faults which correctly emulate

software faults (this happens when we experience the same fault type in the same location

Chapter 4. Improving the accuracy of software faults injected in binary code 155

both from binary-level injection and from source-level injection); (ii) binary-level faults that

do not emulate any software fault (this happens when a binary-level fault is injected in a

location in which the fault could not exist in the source code); and (iii) binary-level faults

that have not been injected in a location where they could have been injected.

The experimental evaluation of G-SWFIT consists of the injection of about 30 thousand

faults, 12 thousand binary-level faults and 18 thousand source-level faults, in a real world

system from the space domain, i.e., a satellite data handling system. The proposed method

was effective at highlighting the pitfalls that can occur in the implementation of G-SWFIT

and affect the accuracy of fault injection. In particular, issues were found in the identifi-

cation of code blocks and control structures, and in enforcing fault constraints. Moreover,

the analysis shows that if identified pitfalls are avoided, the accuracy of G-SWFIT can be

significantly improved.

This chapter is structured as follows. Section 4.2 describes the proposed method. Section

4.4 discusses the obtained results by applying the method on a complex system, which is

described in Section 4.3. Lessons learned are summarized in Section 4.5.

4.2 Proposed method

As previously discussed, the assessment of binary-level SFI is motivated by the fact that its

accuracy is limited by the impossibility to correctly recognize some programming constructs

in a binary program. The proposed method is aimed to assess the accuracy binary-level SFI

Chapter 4. Improving the accuracy of software faults injected in binary code 156

in the context of real-world complex software, in order to understand the limitations and the

accuracy of the results that can be obtained by a realistic fault injection scenario.

An example of wrongly injected fault is represented by a C program containing a

SWITCH construct with two branches; in some architectures and compilers (this is the

case of GNU’s compiler GCC for PowerPC architectures), it may happen that the SWITCH

is translated in binary code using the same opcode sequence of an IF-ELSE construct, since

they both consist of a logical condition (which is translated using an opcode that compares

two values) and two branches (which are translated using branch opcodes). Therefore, a

MIEB (see Table 2.18) fault could erroneously be injected in a code location in which there

is not an IF-ELSE construct. It may also happen that a code location suitable for fault

injection cannot be recognized in the binary code. For instance, a compiler may translate

a function call as inline code (i.e., the function call is replaced with the body of the called

function); in this case, a fault injection tool would not be able to recognize the function

call, thus omitting to inject an MFC fault in that location. The experimental validation in

this chapter aims i) to assess the relative occurrence of this kind of problems in real-world

complex software; and ii) to point out issues that may arise when implementing G-SWFIT,

by highlighting cases in which faults are not correctly injected. From the previous consider-

ations, it is clear that binary-level fault injection tools are difficult to implement, since they

have to encompass all potential ways in which programming constructs are translated. This

Chapter 4. Improving the accuracy of software faults injected in binary code 157

problem is further exacerbated if we consider the complexity of modern CPUs, programming

languages and compilers (whose inner working is usually unknown). Thus it is likely that

developers may not correctly implement the handling of some binary code patterns, thus

leading to a defective fault injection tool.

The proposed method evaluates the accuracy of G-SWFIT by comparing the faults it

generates with the ones injected in the source code. Indeed, since a software fault is a defect

in the code of a program, it is clear that fault injection at source code level is more accurate.

Based on this consideration, we compare the faults injected by the two techniques and we

classify faults in the following three categories:

1. Correctly Injected faults: correct faults generated by both techniques. The larger

is the set of common faults, the higher is the accuracy of G-SWFIT.

2. Omitted faults: faults injected only at source-code level. They correspond to pro-

gramming constructs in which a fault could exist, but which have not been identified

in the binary code.

3. Spurious faults: faults injected only by G-SWFIT at binary level that do not match

any fault at source-code level. Therefore, they are not considered as representative

software faults.

It is important to note that source-level faults can be used as a term of comparison

Chapter 4. Improving the accuracy of software faults injected in binary code 158

for binary-level faults because (i) the same fault types are adopted for both binary- and

source-level fault injection (shown in Table 2.18), and (ii) binary- and source-level faults

are injected in every potential location (i.e., fault injection campaigns are exhaustive). The

method (depicted in Figure 4.1) consists of two phases, namely (i) automatic matching of

binary-level and source-level faults (Section 4.2.1), in order to identify Correctly Injected

faults, and (ii) fault sampling and manual analysis (Section 4.2.2), in order to identify which

issues affect the accuracy of G-SWFIT. As a real-world case study, we consider CDMS

(Command and Data Management System), a real-time embedded system developed by

Critical Software for the space domain, which is described in Section 4.3.

Fault	
Injec,on	 Binary-

level faults

Source-
level faults

1)
1) Repeat until all source-level faults are fixed
2) Increase sample until significance level is

reached

Fault	
Matching	

Fault	
Sampling	

2)

Figure 4.1: Overview of the method adopted for the evaluation of G-SWFIT.

4.2.1 Fault Matching

Fault Matching is based on the assumption that if both techniques inject the same fault

type in the same location (e.g., an assignment or function call is removed both in the source

code and in the corresponding location in the machine code), then they are injecting the

same fault. It is reasonable to make this assumption since if a fault location is identified

Chapter 4. Improving the accuracy of software faults injected in binary code 159

both at the binary and source levels, then that fault location is valid and correctly handled.

In order to be sure that this assumption holds (and therefore the results are valid), we

manually analyzed a sample of Correctly Injected faults using the Fault Sampling procedure

(explained in the next subsection). Following this observation, binary-level and source-level

faults are compared with respect to their fault types and their locations in the source code

(i.e., the source file, the function and the line of code in which a fault is injected). A binary-

level fault matches a source-level fault if they have the same fault type and they are injected

in the same code location.

The procedure shown in Figure 4.2 has been adopted to identify Correctly Injected

faults. If a binary-level fault matches a source-level fault, and only one binary-level fault

and only source-level fault exist for the code location under analysis, then the binary-level

fault is considered as Correctly Injected. In some cases (e.g., when there are more than

one statement in the same line of code), more than one binary-level fault (N), or more

than one source-level fault (M) may occur in the same code location. If there are more

binary-level faults than source-level faults in the same location (N > M), then there are M

Correctly Injected faults, and N −M Spurious faults. Similarly, if source-level faults are

more than binary level faults (M > N), then there are M − N Omitted faults. It follows

that if a binary-level fault does not match any source-level fault, then it is considered a

Spurious fault, and that if a source-level fault does not match any binary-level fault, then

Chapter 4. Improving the accuracy of software faults injected in binary code 160

it is considered an Omitted fault. In the examples of Figure 4.2, the proposed procedure

identifies one Correctly Injected fault (location A-10), one Spurious fault (location A-20),

and one Omitted fault (location B-5).

Source	
code	

Binary	
code	

File	 Line	 no.	 #	 faults	

A	 10	 1	

A	 20	 0	

B	 5	 1	

...	 	
fault
operators

File	 Line	 no.	 #	 faults	

A	 10	 1	

A	 20	 1	

B	 5	 0	

...	 	

Source-level
fault injection

Binary-level
fault injection

Correctly Injected
Spurious
Omitted

for each fault operator!
 for each fault location!
 M = Source-level Faults!
 N = Binary-level Faults!
 if M<N then!
 Correctly Injected Faults += M!
 Spurious Faults += N-M!
 if M>N then!
 Correctly Injected Faults += N!
 Omitted Faults += M-N!
 if M==N then!
 Correctly Injected Faults += M!

Figure 4.2: Fault matching procedure.

4.2.2 Fault Sampling

After the Fault Matching procedure, we perform a detailed analysis of faults in order to

investigate the causes of Spurious and Omitted faults, and to verify that Correctly Injected

faults are actually correct. Moreover, we aim to understand whether Omitted and Spurious

faults are due to inherent limitations of G-SWFIT or not. Indeed, these faults may occur

due to design issues in G-SWFIT as previously discussed; the identification of these issues is

useful to provide guidelines for improving G-SWFIT, and to obtain a more precise figure of

merit of the G-SWFIT technique. For these reasons, we manually analyze a random sample

of Omitted and Spurious faults, and classify them into the following categories:

1. C preprocessor macros. When the G-SWFIT technique was proposed, preprocessor

Chapter 4. Improving the accuracy of software faults injected in binary code 161

macros have been recognized as a frequent cause of Omitted and Spurious faults [65].

A preprocessor macro consists of a piece of code that is replicated for each time the

macro is referred within the program. Therefore, when a preprocessor macro has a

software fault, the faulty code is replicated several times in the binary code. Since

the binary code lacks information about macros, G-SWFIT cannot recognize that

macro code is replicated elsewhere within the program: therefore, a Spurious fault is

injected for each replica of the macro, and source-level faults that could be injected

into macro represent Omitted faults since G-SWFIT cannot correctly injected them

(see also Figure 4.3).

2. Inline functions. In a similar way to preprocessor macros, inline functions are repli-

cated each time the function is called within the program. Since G-SWFIT does not

recognize inline functions within binary code, they lead to Spurious and Omitted faults

as well.

3. Various causes. In this category, we include all the other causes of Spurious and

Omitted faults that are not related to macros or inline functions.

4. Issues in the SAFE tool. Even if source-level fault injection can be considered accurate,

we did not exclude this possibility that the source-level fault injection tool we adopt

could inject faults incorrectly. Therefore, during the manual analysis, we also look

Chapter 4. Improving the accuracy of software faults injected in binary code 162

for issues in the SAFE tool that caused faults to erroneously appear as Spurious or

Omitted faults. Since we need to assure that source-level faults are correctly injected,

we fix the SAFE tool when an issue is found and repeat the whole analysis (including

both Fault Matching and Fault Sampling) until this category becomes empty.

#define MACRO(x) ((x)+=1)!
!
...!
MACRO(a);!
...!
MACRO(b);!
...!

#define MACRO(x) ((x)+=1)!
!
...!
MACRO(a);!
...!
MACRO(b);!
...!

Spurious Fault #1

Spurious Fault #2

Omitted
Fault

Source-level Fault Injection Binary-level Fault Injection

Figure 4.3: Example of Spurious and Omitted faults due to the occurrence of a C prepro-
cessor macro within a program.

Because of the high number of the generated faults, the manual analysis is conducted

on a sample of faults and then conclusions are drawn about the whole set of faults. In order

to generalize the results from the sample, we have to address the problem of choosing a

sample of appropriate size, such that it could be considered representative of a population

with more than two categories (i.e., a multinomial distribution, where we define πi as the

proportion of the ith category). The sample should be large enough to assure that all of the

estimated proportions πi are within a given confidence interval with significance level 1−α.

Assuming that the population and the sample are large enough to use the normal ap-

proximation, the probability αi that the proportion πi lies outside an interval of width 2di

Chapter 4. Improving the accuracy of software faults injected in binary code 163

is given by (see [190] for more details about sampling)

αi = Pr
{
|Zi| ≥ di

√
n/

√
πi(1− πi)

}
(4.1)

where 1 ≤ i ≤ k and Zi is a standard normal random variable. By Bonferroni’s inequality

[190], the probability that one or more of the k estimates will fall outside its interval will be

less than or equal to
∑k

i αi. Equation (4.1) allows to assess if the sample size is large enough

to achieve accurate results. If
∑k

i αi > α, then a larger sample size is required, otherwise

the estimated proportions are considered accurate.

This method was applied to the populations of Omitted and Spurious faults by consid-

ering k = 4 categories (C preprocessor macros, inline functions, various causes, issues in the

SAFE tool), assuming a confidence interval of half-width di = 0.05 and a significance level

1 − α = 0.9. This method was also applied to the population of Correctly Injected faults,

in order to analyze whether they are truly correct or not (k = 2 categories are considered).

For each population, we extract a sample of 5% of faults and then we manually analyze

each fault in order to obtain an initial estimate of the proportions; the sample size is grad-

ually increased and analyzed until the required significance level is reached. The results are

described in the Section 4.4.

Chapter 4. Improving the accuracy of software faults injected in binary code 164

4.3 Case study

The case study considered in this chapter is a satellite data handling system named Com-

mand and Data Management System (CDMS). A satellite data handling system is responsi-

ble for managing all data transactions (both scientific and satellite control) between a ground

system and a spacecraft (Figure 4.4), based on the ECSS-E-70-41A standard [69] adopted

by the European Space Agency. In this system, a space telescope is being controlled and

the data collected is sent to a ground system. As shown in the Figure, the CDMS, which

executes on the spacecraft (on-board system), is composed by several subsystems: the TC

Manager receives a series of commands from the ground control requesting telemetry in-

formation; the TM Manager sends back telemetry information for each command sent; the

other modules (PC, PL, OBS, RM, DHS) perform tasks for the data management and the

telescope handling. The importance of the accuracy of SFI in mission-critical systems like

CDMS has been demonstrated in [143], in which two OSs (RTLinux and RTEMS) were

compared with respect to the risk of failures of the CDMS due to OS faults, in order to

select the most reliable OS for this scenario.

The CDMS application was developed in C and runs on top of an open-source, real-time

operating system, namely RTEMS1. The CDMS makes use of the RTEMS API for task

management, communication and synchronization, and for time management. This software
1http://www.rtems.org

Chapter 4. Improving the accuracy of software faults injected in binary code 165

Co
m
m
an
ds
	

Te
le
m
et
ry
	

	 	 Ground	 System	

	 	 On	 Board	 System	
	 	 CDMS	

PC	 PL	 DHS	 RM	 OBS	

TC	 TM	

RTEMS	 RTOS	

Figure 4.4: Architecture of the case study.

system is compiled to run on a PowerPC hardware board by using the GCC compiler and

disabling compiler optimization settings, which is the setup currently supported by the G-

SWFIT tool.

In this case study, faults are injected in both the OS (i.e., RTEMS) and application

(i.e., CDMS) code. We only consider the code which is actually compiled and linked in

the executable running on the on-board system. A small part of the code (1.90%), which

is written in assembly language to provide board-specific support, is not targeted by our

source-level fault injection tool, but its influence on the results can be considered negligible.

Chapter 4. Improving the accuracy of software faults injected in binary code 166

4.4 Results

In this section, software faults injected at the binary and source-level in a complex case

study are analyzed using the method proposed in Section 4.2. Faults at the binary level

were generated with the G-SWFIT technique, by using a R&D prototype tool provided by

Critical Software [181]. Faults at the source code level were generated using the SAFE

fault injection tool (described in Subsection 3.2.2). In total, 18,183 source-level faults and

12,380 binary-level faults were generated, respectively. Their distribution across fault types

is shown in Figure 4.5. The two distributions exhibit noticeable differences: more binary-

level faults are injected with respect to some fault operators (such as OMLPA, OWVAV,

OWPFV, and OWAEP), whereas in other cases more source-level faults are injected (such as

OMIEB and OMVA, where the latter groups together the OMVAV, OMVIV, and OMVAE

operators).

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

(!!!"

)!!!"

*+,-" *+./" *+0/" *+0,1"" *+023" *+4/-" *+4*-" *+45/" *6./." *65,." *6/25"

!
"#

$%
&'(

)')
*"

+,-
'

.*"+,',/0%-'

3789:;"<=>=<"

1?@:A="<=>=<"

Figure 4.5: Distributions of software faults injected at the binary and source code level,
respectively.

The Fault Matching procedure (Section 4.2.1) identified the subset of Correctly Injected

faults (i.e., common to both techniques), which we further analyzed in order to assure the

Chapter 4. Improving the accuracy of software faults injected in binary code 167

correctness of our method. Correctly Injected faults have been sampled (see Section 4.2.2),

and then analyzed by comparing i) the faulty binary-code generated by G-SWFIT, and ii)

the one produced by faults injected in the corresponding source-code location. This analysis

revealed that the binary-level faults match the source-level faults for each fault type and for

each sampled fault, except the OWPFV operator. We found that 40.69% of OWPFV faults

at the binary level do not match OWPFV faults at the source-code level even if they affect

the same locations, since there are several functions parameters and possible replacements

for a given location. In order to take into account this aspect, results shown in Figure 4.6

have been updated by reducing the number of Correctly Injected faults for the OWPFV

operator and increasing the number of Omitted and Spurious faults by the same amount.

Correctly Injected faults turned out to be 5,927 (Figure 4.6). They represent 47.88% of

faults injected by G-SWFIT. The remaining faults injected by G-SWFIT (52.12%) in the

binary code do not match to a software fault in the source code, therefore most of G-SWFIT

faults are Spurious. Correctly injected faults represent 32.60% of faults injected in the source

code, so the remaining faults at the source level (67.40%) are not emulated by G-SWFIT

and they result as Omitted faults. The experimental campaign confirms that the accurate

injection at the binary level is a challenging task, at least when a complex software system

is considered.

The distribution of the causes of inaccuracies (for both Omitted and Spurious faults) are

Chapter 4. Improving the accuracy of software faults injected in binary code 168

!"#$%

&##!'%

'(!)%

*%

#***%

(***%

'***%

+***%

&****%

&#***%

&(***%

!
"#

$%
&'(

)')
*"

+,-
'

.(,*+'

,-../0123%456/01/7%

89:;/7%

<=>.:->?%

Figure 4.6: Number of Correctly Injected, Spurious, and Omitted faults.

presented in Figure 4.7. These distributions have been obtained by applying the sampling

procedure described in Section 4.2.2. Most of spurious faults (Figure 4.7b) are caused by C

macros (56%) and inline functions (17%). In these cases, every time that a macro or inline

function has been replicated in the binary code, G-SWFIT generated an individual binary-

level fault; this led to a large number of Spurious faults (i.e., Spurious faults are repeated

for each replica of a macro or inline function). In a similar way, macros and inline functions

are a noticeable part of Omitted faults (27% and 1%, respectively); this percentage is low

when compared to Spurious faults, since one Omitted fault in a macro or inline function

leads to several Spurious faults, one for each replica of the code (see also Figure 4.3).

In order to gain more insights into the results, we separately analyzed the faults injected

in the OS and application code, respectively. Figures 4.8 and 4.9 show from a different

perspective the data of Figures 4.6 and 4.7, by dividing the results between faults in RTEMS

(i.e., OS code) and in CDMS (i.e., application code). It can be noted that faults follow a

Chapter 4. Improving the accuracy of software faults injected in binary code 169

!"#$%&'()*+#*%,'
-.'

!"#$%&'
(/01#234,'
56.'

!"#$%&'
(70812,'
65.'

!"#$%&'
()*+,'

(a) Omitted faults.

!"#$%&#'()*+,%+-.(
/01(

!"#$%&#'(
)23$%&#'.(
401(

!"#$%&#'(
)536$&.(
781(

!"#$%&#'(
)&*+,(

(b) Spurious faults.

Figure 4.7: Causes of incorrect fault injection in the case study.

similar trend in OS and application code, since in both cases the number of spurious faults

is close to the number of correctly injected faults, and the number of omitted faults is

predominant. Nevertheless, omitted faults seem to be much more in the case of CDMS

(Figure 4.8b).

!"#$%

$&&#%

'&()%

*%

)***%

#***%

!***%

'***%

$***%

&***%

!
"#

$%
&'(

)')
*"

+,-
'

./012'

+,--./012%345./0.6%

789:.6%

;<=-9,=>%

(a) RTEMS code.

!""!#

$%&'#

())!#

"#

("""#

!"""#

*"""#

'"""#

%"""#

$"""#

)"""#

!
"#

$%
&'(

)')
*"

+,-
'

./01'

+,--./012#345./0.6#

789:.6#

;<=-9,=>#

(b) CDMS code.

Figure 4.8: Number of faults (correctly injected, spurious, and omitted) in OS and applica-
tion code.

Figure 4.9 shows that omitted and spurious faults due to various causes (i.e., not related

to macro or inline functions) are more frequent in CDMS than in RTEMS. The constructs

not correctly recognized at the binary level (e.g., see the examples in Figures 4.11 and

Chapter 4. Improving the accuracy of software faults injected in binary code 170

4.12 discussed later in this section) likely occur more often in application code due to higher

complexity of that code, thus causing an higher number of omitted faults. Moreover, macros

and inline functions are more frequent for RTEMS; this is due to the fact that several RTEMS

functions are exported as macros and inline functions in order to be used by external code

(i.e., user and library code that is compiled and linked with RTEMS code).

!"#$%&'()*+#*%,'
-.'

!"#$%&'
(/01#234,'
56.'

!"#$%&'
(70812,'
-9.'

!"#$%&'
()*+,'

(a) Omitted faults in RTEMS.

!"#$%&#'()*+,%+-.(
/01(

!"#$%&#'(
)23$%&#'.(
/41(

!"#$%&#'(
)536$&.(
701(

!"#$%&#'(
)*+,!(

(b) Spurious faults in RTEMS.
!"#$%&'()*+#*%,'

-.'

!"#$%&'
(/01#234,'
56.'

!"#$%&'
(70812,'
9:.'

!"#$%&'
()*+'

(c) Omitted faults in CDMS.

!"#$%&#'()*+,%+-.(
/0(

!"#$%&#'(
)12$%&#'.(
340(

!"#$%&#'(
)526$&.(
470(

!"#$%&#'(
)*+!(

(d) Spurious faults in CDMS.

Figure 4.9: Causes of incorrect fault injection in OS and application code.

Software complexity metrics collected from the case study code (see Table 4.1) confirm

that functions in the application code tend to be more complex than those in the OS code

(in term of size, cyclomatic complexity and input/output dependencies). This is a common

trend in embedded systems, in which the OS is kept as simple as possible in order to

Chapter 4. Improving the accuracy of software faults injected in binary code 171

reduce the overhead and the number of potential defects [165]. Moreover, the number of

preprocessor statements per function confirms that RTEMS makes a more extensive use

of macros that CDMS. Therefore, we conclude that it is even more important to fix the

implementation issues mentioned above if a fault injection tool is intended to be used with

complex software.

Table 4.1: Comparison of average software complexity metrics of functions in RTEMS and
CDMS code.

Metric RTEMS CDMS

Lines of Code 17.30 30.71

Preprocessor Statements 0.64 0.15

Cyclomatic number 5.63 6.61

Number of inputs 5.50 7.38

Number of outputs 4.12 6.84

The "various causes" behind spurious and omitted faults are numerous and specific to

each fault operator. We cannot provide a precise estimate of the relative percentage of each

cause, since it would require to manually analyze an extremely large sample of injected faults.

Instead, we tried to identify which part of incorrectly injected faults are due to unavoidable

limitations of G-SWFIT, and which of them can be avoided by improving the G-SWFIT fault

injection tool. We do so by excluding from the sample those faults not related to macros

or inline functions, and by diagnosing (with the support of Critical Software developers)

the reasons why omitted faults were not injected, and why spurious faults were erroneously

Chapter 4. Improving the accuracy of software faults injected in binary code 172

injected. We found that 26.02% of omitted and spurious faults were due to causes that are

impossible to avoid when injecting at the binary code level, including:

• Low-level translation of C operators. Some C expressions (like sizeof and array and

struct accesses using -> and []) are translated by introducing arithmetic operations and

constants in the binary code; these operations are recognized as arithmetic expressions

by fault operators such as OMVA, OWVAV, and OWAEP.

• Switch and goto constructs. These constructs are translated in a similar way to IF

constructs using branches in the binary code; therefore, IF constructs are not always

correctly identified by operators such as OMIA, OMIEB, and OMIFS.

• Forced function inlining. Some functions (e.g., memcpy, memset) are compiled as

inline functions, although they are not declared as inline.

Since the binary code lacks information about high-level constructs, the causes mentioned

above cannot be avoided. In practice, these inaccuracies have to be accepted as limitations

of fault injection at binary level, and should be taken into account when conclusions are

drawn from fault injection experiments.

Nevertheless, during the manual analysis we observed several Omitted and Spurious

faults not related to intrinsic limitations of fault injection at binary level, but were due

to limitations of the fault injection tool; they represent the 73.98% of the sample that we

Chapter 4. Improving the accuracy of software faults injected in binary code 173

analyzed. These inaccuracies occurred since some checks have not been implemented yet in

the tool, and some fault operators diverge in some cases from the fault types encompassed by

G-SWFIT due to choices that simplify the implementation. Therefore, part of the Omitted

and Spurious faults could be avoided by improving the implementation of binary-level fault

injection.

An example of Spurious fault is provided in Figure 4.10, which shows a fault location in

the source code (monospace font) along with its machine code translation (italic font). It is

a spurious MFC fault in CDMS that has been injected in a wrong location. In this example,

the function call should not be removed since it is the only statement within a block of code,

and a fault in that location would not be realistic. The OMFC operator imposes a constraint

(Table 2.19) to avoid fault injection in this kind of location [65]. Instead, the fault has been

injected by the tool since the block containing the function call is not recognized (i.e., the

constraint is not enforced by the tool).

Figure 4.11 and Figure 4.12 provide two examples of Omitted faults that were caused

by limitations in G-SWFIT implementation. In Figure 4.11, a function call which could be

removed by the OMFC fault operator is not identified. As confirmed by Critical Software

developers, the TcMakePacket function is not recognized as returning a value that is stored

and used later in the program. Therefore, a fault is not injected due to a constraint of the

OMFC operator requiring that the return value of a function should not be in use (Table

Chapter 4. Improving the accuracy of software faults injected in binary code 174

static void HousekeepingAction (TmPacket ∗STm) {
stwu r1,-24(r1)
mflr r0
stw r31,20(r1)
stw r0,28(r1)
mr r31,r1
stw r3,8(r31)

SendTmMsg (pbtBuffer ,
TmGetPacketTotalLength (STm)) ; ← MFC fault location

lwz r3,8(r31) (to be avoided)
bl 00006184 <TmGetPacketTotalLength>
mr r0,r3
lis r9,7
addi r3,r9,-21944
mr r4,r0
bl 0000a3b4 <SendTmMsg>

}
lwz r11,0(r1)
lwz r0,4(r11)
mtlr r0
lwz r31,-4(r11)
mr r1,r11
blr

Figure 4.10: Spurious MFC fault in CDMS.

2.19).

TcMakePacket (pbtBuffer , &STc) ; ← MFC fault location
addi r0,r31,24 (not identified)
lis r9,9
addi r3,r9,-21492
mr r4,r0
bl 000056b8 <TcMakePacket>

bOk = CheckAppIdTypeSubtype(&STc) ;
addi r0,r31,24
mr r3,r0
bl 00011a10 <CheckAppIdTypeSubtype>
mr r0,r3
stw r0,20(r31)

Figure 4.11: Omitted MFC fault in CDMS.

In Figure 4.12, the fault location has been omitted for an even more subtle reason. In

this example, the return statement within the IF construct is translated with a branch to

the end of function, and the tool incorrectly believes that the IF construct includes all the

statements until the end of the current function. A fault is not injected since the IF construct

Chapter 4. Improving the accuracy of software faults injected in binary code 175

should not contain more than 5 statements [65]. Although the tool is provided with checks

to avoid these mistakes, a check to avoid this specific case was not implemented. This kind

of issue seems to be more relevant for Omitted faults than for spurious faults given the high

number of omitted faults due to various causes, as depicted in Figures 4.6 and 4.7.

rtems_status_code sc ;
n32Size = TcGetAppData (STc , &pbtData) ;

lwz r3,120(r31)
lis r9,7
addi r4,r9,-23004
bl 00005934 <TcGetAppData>
mr r0,r3
lis r9,7
stw r0,-22992(r9)

sc = rtems_semaphore_obtain (rtems_mon_Mutex ,
RTEMS_WAIT ,
RTEMS_NO_TIMEOUT) ;

lis r9,7
lwz r0,-22948(r9)
mr r3,r0
li r4,0
li r5,0
bl 0003d504 <rtems_semaphore_obtain>
mr r0,r3
stw r0,64(r31)

if (sc != RTEMS_SUCCESSFUL) ← MIA fault location
lwz r0,64(r31) (not identified)
cmpwi cr7,r0,0
bne- cr7,0000c69c <AddMonitoringAction+0x97c>
return ;

if (n32Size >= 10) {
lis r9,7
lwz r0,-22992(r9)
cmplwi cr7,r0,9
ble- cr7,0000c680 <AddMonitoringAction+0x960>

Figure 4.12: Omitted MIA fault in CDMS.

Other incorrect behaviors were also found in the prototype tool, which were due to the

incomplete implementation of contraints or the identification of code blocks and control

structures. In Figure 4.13, we provide an evaluation of the results that can be obtained

by improving the mentioned aspects. The improvements prevent the occurrence of several

Chapter 4. Improving the accuracy of software faults injected in binary code 176

Omitted and Spurious faults: Correctly Injected faults represent the majority of faults

potentially injectable in the source code (i.e., only a minor part of faults is omitted), and

they also represent the majority of faults actually injected by G-SWFIT (i.e., only a minor

part of faults is spurious). We conclude that the evaluation of a binary-level fault injection

tool on real-world complex software is useful to identify implementation issues, and should

be adopted to assure that a tool does not omit valid fault locations, and that spurious faults

are not generated.

!"#$#%

&'"(%
&!##%

(%

"(((%

)(((%

$(((%

'(((%

!((((%

!"(((%

!)(((%

!
"#

$%
&'(

)')
*"

+,-
'

.(,*+'/0,1'23%-'

*+,,-./01%234-./-5%

6789-5%

:;<,8+<=%

Figure 4.13: Number of faults (correctly injected, spurious, and omitted) when fixing im-
plementation issues of the G-SWFIT tool.

4.5 Summary

In this chapter, we evaluated the accuracy of a software fault injection technique (G-SWFIT)

that injects faults in the binary code of a program. The accuracy of faults injected at binary

level has been assessed by comparing the faults injected in the source code by using the

same fault injection rules. The analysis pointed out improvements to both tools involved in

the comparison. Results can be summarized as follows:

Chapter 4. Improving the accuracy of software faults injected in binary code 177

• The accurate injection of software faults in the binary code is challenging in complex

software systems. A large number of omitted and spurious faults was observed in the

first analysis: for each injected fault there is about 1 omitted fault that has not been

injected, and about half of the injected faults were spurious. Moreover, the problem is

more significant where the code complexity is greater, as in the case of application-level

code in the case study.

• Several omitted and spurious faults are due to the lack of high-level information in the

binary code, and most of them are due to macros and inline functions. These inaccu-

racies have to be accepted as limitations of fault injection at binary level, and should

be taken into account when conclusions are drawn from fault injection experiments.

In some cases, such limitations can be considered acceptable: for instance, when the

aim of fault injection is a coarse-grained analysis of failure modes (e.g., the relative

percentage of crashes or stalls of the system), the results can be adequately estimated

even in the presence of inaccurate injected faults [65, 107]. Instead, fault injection at

the source level is advisable when the source code is available and a more fine-grained

analysis of the effects of injected faults on the system is needed.

• Several omitted and spurious faults are not related to limitations of fault injection at

binary level, but they are due to the incomplete or simplified implementation of G-

SWFIT. In particular, issues are related to the implementation of constraints in fault

Chapter 4. Improving the accuracy of software faults injected in binary code 178

operators and the identification of code blocks and control structures. These issues

are not due to the G-SWFIT technique, and they can be avoided if an experimental

evaluation of the fault injection tool is performed to improve the implementation. If

these aspects are improved, then omitted and spurious faults represent the minority of

cases. A future research direction consists in extending the proposed method in order

to support the development of software fault injection tools at binary level, since

such tools need to be re-engineered or developed from scratch when fault injection is

performed in a new hardware architecture or in a system adopting a different compiler.

To this aim, faults injected at the source code level can be potentially exploited to

understand how software faults are translated in binary code and how fault operators

can be implemented.

Chapter 5

A technique for the emulation of
concurrency faults

5.1 Introduction

In the last decades, several studies on software systems contributed to better understand

software faults and how to deal with them [83, 126, 187, 128, 34, 86]. As these studies

confirmed, dealing with software faults is a difficult task: the main problem is the repro-

ducibility of the failure, that is, the ability to identify the conditions that make the fault

activate, which is required to track down and fix a fault. Faults whose activation is re-

producible are called Bohrbugs. They are typically detected and then fixed during testing

phases. Mandelbugs, instead, are faults whose activation is not systematically reproducible

and they typically lead to transient failure manifestations [88]. Their activation conditions

(namely, fault triggers) depend on complex combinations of user inputs, the internal state,

and the external environment, i.e., the set composed by other programs, services, libraries,

179

Chapter 5. A technique for the emulation of concurrency faults 180

virtual machines, middleware and operating system the application interact with. The acti-

vation conditions of Mandelbugs (e.g., a thread schedule that triggers a concurrency fault)

can be very difficult to reproduce. For this reason, testing activities reveal to be not effective

for dealing with such a kind of faults. As a result, Mandelbugs manifest themselves only

during the operational phase, and account for a significant part of failures in critical software

systems [126, 88, 86].

Although it is almost unfeasible to avoid the occurrence of Mandelbugs, their transient

behavior makes it possible to mask them by retrying the failed operation [166] (temporal

redundancy), or by switching to a backup process [126, 135] (spatial redundancy). These

fault tolerance approaches are effective against Mandelbugs since their activation conditions

are complex and rare, and thus they are unlikely to occur again when the operation is retried.

Despite the relevance of Mandelbugs and of fault tolerance mechanisms used

to deal with them, the emulation of these faults was overlooked by Software Fault

Injection studies, due to the lack of data about these faults (since they are difficult to

reproduce, it is also difficult for user and developers to diagnose and to document them), and

to their complex nature and interactions with the environment (scheduling, timing of events,

and interactions with the system state) that are difficult to be emulated through SFI. For

instance, G-SWFIT deliberately excludes the ODC fault type Timing/Synchronization [65].

Other studies, such as the ones by Ng et al. [151, 152, 153], adopt a simplistic approach

Chapter 5. A technique for the emulation of concurrency faults 181

to mimic these faults, for instance by causing the procedures that acquire/free a lock to

return without acquiring/freeing the lock: this approach is not efficient since it relies on the

random occurrence of conditions that make these faults to activate (in this case, a specific

thread schedule). This problem is not easy to be solved, since emulation of Mandelbugs,

in addition to fault injection into the executable code, also requires the emulation of fault

triggers that activate them.

In this chapter, a technique is proposed for the injection of concurrency faults

in multithreaded software. The technique emulates these faults in a fully representative

way, by controlling the environment conditions that make these faults to activate and mani-

fest themselves. We focus on concurrency faults as they represent a critical sub-class of Man-

delbugs, because (i) they are the most frequent and severe kind of Mandelbugs [187, 128, 86],

and (ii) we are experiencing a shift towards multithreaded software and multicore hardware

architectures, which are prone to this kind of faults [56]. The representativeness of emulated

faults is assured by a field data study on real concurrency faults observed in the field, and by

the precise emulation of their activation conditions using a technique specifically designed

for this purpose.

First, we analyze the limitations of the state-of-the-art technique G-SWFIT regarding

its ability to emulate the transient nature of Mandelbugs, in the context of a fault-tolerant

software system for Air Traffic Control. It is found that injected faults do not realistically

Chapter 5. A technique for the emulation of concurrency faults 182

emulate Mandelbugs, since most of them are activated in the early phases of execution,

and they deterministically affect process replicas in the system. Moreover, this behavior

impacts on the verification of fault tolerance, as 35% of system states are not covered

during the fault injection campaign. Subsequently, by means of an experiment, we show

how concurrency faults can be emulated in the same system in a representative way. The

emulation of concurrency faults reveals to be useful for improving the assessment of fault

tolerance mechanisms, since controlling fault activation can reduce the amount of untested

states down to 5% and therefore increase the confidence in fault tolerance.

This chapter is organized as follows. Section 5.2 describes the case study considered in

this chapter. In section 5.3, G-SWFIT is analyzed. In section 5.4, we describe a technique

for emulating concurrency faults, which is evaluated in section 5.5. Section 5.6 summarizes

the chapter.

5.2 Case study

The case study considered in this chapter consists of a mission-critical system for ATC,

namely Flight Data Processor System (FDPS), and the middleware on which it is based,

namely CARDAMOM [44]. This section describes this system, with emphasis on the fault

tolerance mechanisms that are adopted. This system will be considered for analyzing both

G-SWFIT and the proposed technique, with respect to the representativeness of SFI and its

effectiveness for assessing fault tolerance.

Chapter 5. A technique for the emulation of concurrency faults 183

5.2.1 CARDAMOM middleware

CARDAMOM is a middleware platform that provides features to configure, deploy and

execute near real-time, distributed and fault-tolerant applications [44]. It is a CORBA-

based, OMG compliant platform supporting both the object- and the component-based

programming models.
Li

fe
 C

yc
le

N
am

in
g

Sy
st

em

M
an

ag
em

en
t

Ti
m

e,
 C

lo
ck

Lo
ad

 B

al
an

ci
ng

Fa

ul
t

To
le

ra
nc

e

Ev
en

t

Build

Code
Generation

CCM
Deployment

Foundation

Configuration
and Plugging

XML Server

Trace

Container

application
component

ORB
(TAO)

Third Party COTS

Tools

Core services

Pluggable
services D

D
S

Figure 5.1: CARDAMOM overview.

The high-level architecture of the middleware is sketched in Figure 5.1. Its features are

provided in the form of support tools and services. The former aim to simplify the task

of application development (e.g., automatic code generation tools). The latter are further

divided in core (i.e., mandatory) and pluggable (i.e., optional) services.

CARDAMOM relies on several off-the-shelf components; in particular, it makes use

of the Linux operating system, and the ACE ORB (TAO) [98]. Moreover, the platform

includes an implementation of the OMG Data Distribution Service (DDS) standard for

Chapter 5. A technique for the emulation of concurrency faults 184

publish-subscribe communication, namely RTI DDS [99]. DDS enables data sharing among

distributed processes, without concern for their actual physical deployment.

Two CARDAMOM services are relevant in the context of this thesis: the Fault Tolerance

(FT) and Load Balancing (LB) services. The FT Service is compliant to the FT CORBA

Specification. It provides redundancy by means of CORBA object replication: when a faulty

primary replica is detected (e.g., a replica is terminated unexpectedly), the FT Service elects

a new primary replica from a pool (namely object group). CARDAMOM implements the

warm passive replication schema, i.e., when the state of the primary replica is modified,

it gets recorded and transferred to other members in the object group. The fault-tolerant

application is responsible for maintaining consistency between replicas, by means of an API

provided by CARDAMOM.

The LB Service allows the distribution of CORBA requests among the members of an

object group. A request is redirected to one of the servers, according to an user-defined

policy (e.g., Round-Robin, Random). The LB Service is transparent from the client point

of view.

5.2.2 FDPS

FDPS is a C++ application based on CARDAMOM. It represents the part of an ATC

system in charge of managing Flight Data Plans (FDPs). An FDP is a data structure

containing information about a flight, and the goal of FDPS is to keep FDPs up-to-date

Chapter 5. A technique for the emulation of concurrency faults 185

with respect to the flight status. For example, FDPS has to analyze the actual position

of aircrafts (retrieved from radar tracks) and update flight routes consequently, in order to

efficiently allocate the flight space and to avoid flight collisions. A simplified view of FDPS

architecture is shown in Figure 5.2.

Load Balancing Service

FDPs Table

FDPs Table

Fault Tolerance Service

Checkpointing

Client Primary Façade

Backup Façade

Processing Server

Processing Server

Processing Server

FDP
Request Façade

Request

Data Distribution Service

Key: CORBA
object

CORBA
interaction

DDS
interaction

State
transfer

Figure 5.2: Simplified architecture of FDPS.

FDPS is composed by a Façade component, replicated by the FT Service, and a set of

Processing Servers (PSs), managed by the LB Service. The Façade is in charge of interfacing

the FDPS with external systems (e.g., a graphical user client), and to manage the state of

FDPs. When the Façade receives an FDP request, it locks the FDP (at most one request at

a time for the same FDP can be processed) in an internal data structure (namely, the FDPs

table), and it sends a processing request to a PS. The PS retrieves the FDP and radar tracks

from the DDS, processes the FDP, and returns the FDP to the Façade. The Façade then

Chapter 5. A technique for the emulation of concurrency faults 186

updates the FDP on DDS and unlocks it. If several requests are sent to the same PS, they

are executed one at a time. The Façade is responsible for queueing concurrent requests for

the same FDP, and for checkpointing the FDPs table. The most important FDP operations,

that we take into account, are the insertion, deletion, and update of an FDP.

5.3 Evaluation of G-SWFIT

In this section, we investigate whether faults injected by G-SWFIT are representative of

Mandelbugs. In order to better understand the behavior of injected faults, the analysis is

supported by a Finite State Machine (FSM) model of the system, which is described in

Subsection 5.3.1. Subsections 5.3.2 and 5.3.3 describe respectively the experimental setup

and results.

5.3.1 Modeling FDPS

In this section, a Finite State Machine model of the FDPS is presented. This model is used

to analyze the system behavior in the presence of injected faults, which is compared to the

expected behavior that would be induced by Mandelbugs. The model takes into account the

different states in which the system operates, since it is well-known that the ability of the

system to correctly handle a fault is dependent on the system state in which it is operating

[32, 8, 109]. Moreover, the current system state contributes to the activation of Mandelbugs,

along with interactions with the environment (e.g., external events and thread scheduling).

Chapter 5. A technique for the emulation of concurrency faults 187

For these reasons, it is important for injected faults to cover as much states as possible, in

order to assess fault-tolerance in the several conditions in which faults can manifest and in

which the system operates.

In a FSM, each state represents a different combination of internal system variables.

States are connected by transitions, which represent events (e.g., an external input) that

change the value of internal variables. When the state is changed, the system performs a

computation in answer to the occurred event.

The choice of internal variables is a trade-off between the level of detail and the com-

plexity of the model. A too accurate model suffers from the explosion of the number of

states, which makes the analysis unfeasible. Therefore, we select a proper subset of system

variables and of their possible values, in order to keep the number of states low, and to still

take into account the features of the system most relevant to fault tolerance testing. The

considered variables are:

• #QF : Number of FDP requests queued by the Façade;

• #UP : Number of Façade requests under processing;

• #QP : Number of Façade requests queued by PSs.

Moreover, we consider messages exchanged within the FDPS (shown in Table 5.1) as

transition events, because they are easy to be collected, and they enable to track the values

Chapter 5. A technique for the emulation of concurrency faults 188

took by the considered variables.

Table 5.1: Messages exchanged within the FDPS.

Name Description

CR A Client request for an FDP not already requested
CRQ A Client request for an FDP already requested
FR A Façade request for an FDP request not in the Façade queue
FRQ A Façade request for an FDP request in the Façade queue
PSC A PS returns an FDP, and no other Façade requests are queued by the PS
PSCQ A PS returns an FDP, and there are Façade requests queued by the PS

To make the model finite, the number of requests that can be queued by the Façade is

bounded (#QF ≤ 3), without any loss of generality. For the same reason, we also choose

to assign only two possible values to #UP , respectively the absence of requests queued by

PSs (#UP = 0), and the presence of one or more requests queued (#UP = 1). Instead,

the number of requests under processing is bounded by the number of PSs (#UP ≤ 3 in

the current FDPS architecture). The chosen internal variables and events do not take into

account which particular FDPs or FDP operations are under processing, but only how many

FDPs or FDP operations are involved, and whether a FDP operation involves an already

queued FDP (CRQ, FRQ, PSCQ) or not (CR, FR, PSC). This choice reduces the number

of states from several thousands to 20 (Figure 5.3).

5.3.2 Experimental setup

In order to study the manifestation of injected faults with respect to system states, the

application has been instrumented to log the contents of input and output messages of the

Chapter 5. A technique for the emulation of concurrency faults 189

Figure 5.3: A Finite State Machine that models the FDPS.

Façade (Table 5.1). Moreover, a log message is produced before a faulty piece of code is

executed. By analyzing these logs after a fault injection experiment, it is possible to trace

which states were reached during an experiment. A failure has occurred if the sequence of

Façade states does not match the state sequence of faulty-free runs.

Regarding the workload used for SFI experiments, we designed a set of 3 workloads.

Each workload makes the system to reach all states in the FSM (starting from 0:0:0). The

workloads differ in the direction in which the FSM is visited (e.g., row-by-row, column-by-

column) and the type of the requests (insert, update, delete).

As for the faultload, fault operators encompassed by G-SWFIT (Table 2.18) are used

to inject faults into the business logic of the Façade. Fault injection is focused on the

Chapter 5. A technique for the emulation of concurrency faults 190

Façade, since it is the most complex component in the FDPS, and therefore the most fault-

prone [143]. Moreover, it represents a fundamental entity in the FDPS architecture. Faults

were injected using the SAFE fault injection tool (described in Subsection 3.2.2). The

experimental campaign encompasses 533 faults, and 1599 fault injection experiments; in 521

cases we noticed a failure of the primary Façade.

5.3.3 Result discussion

For each experiment in which a failure occurs, we consider the state of the system before

the failure, and the state in which the faulty piece of code is executed before the failure.

Figure 5.4 shows the distributions of these events across system states. A detailed analysis

of these distributions reveals that:

• A great amount of faults (55.85%) manifest themselves before the Façade is ready to

receive and to process requests, or when the Façade receives the first request (state

0:0:0). Although these faults are useful to test fault tolerance during the initialization

phase of FDPS, they are not well representative of Mandelbugs, which can unexpect-

edly manifest themselves in any state during the operational phase of a system.

• Faults injected by G-SWFIT are still useful to test fault tolerance with respect to a

subset of important system states. In particular, faults that manifest when at least one

request is queued by Façade (#QF > 0) allow testing of the checkpointing mechanism

Chapter 5. A technique for the emulation of concurrency faults 191

(i.e., whether the FDPs table is correctly sent to the backup Façade) and failure

detection mechanisms.

• In most of cases (93.3%) in which the backup Façade is activated, the fault causes

the failure also of the replica. This suggests us that injected faults are activated

deterministically. In these cases, the fault activation is simple to reproduce (as in the

case of Bohrbugs). This result biases evaluation of FTMs, which should instead focus

on Mandelbugs in well-tested critical software.

• A significant part of states (35%) is not covered by the SFI campaign. Moreover, there

are some states in which the percentage of activated faults is very low (i.e., 1:2:0, 2:2:0,

3:3:0), or the faults are activated only under 1 out of 3 workloads (i.e., 3:1:0, 0:3:1).

Thus, these states are not well tested, since it is unlikely that they would be covered

under a different workload. The same holds true for those states that were not covered.

• Part of the injected faults (15.36%, Figure 5.5) causes a failure only under 1 workload,

and a significant part of faults (56.93%) do not cause a failure. Therefore, even if

several of the injected faults could be representative of Mandelbugs, they are seldom

(or never) activated due to the missing occurrence of their activation conditions.

Although these results are influenced by the particular FSM model and workloads, we

can conclude that G-SWFIT alone does not easily allow testing of FTMs under some specific

Chapter 5. A technique for the emulation of concurrency faults 192

Figure 5.4: Failure and fault activation distributions of the G-SWFIT campaign. The
percentage of failures for each state is shown in bold; the percentage of faults activated in
each state is shown within the node.

11.24%

26.78%

1.87% 2.25%

0.37% 0.56%

0%

Workload 1

Workload 2 Workload 3

No failure:

56.93%

Figure 5.5: Distribution of faults leading to failures (230 out of 534) across workloads.
Overlapping areas are faults activated by more than 1 workload.

Chapter 5. A technique for the emulation of concurrency faults 193

states. In particular, no fault manifests itself when one or more requests are queued by the

PSs (#QP > 0). This fact prevents testing of whether the system correctly tolerates a

failure in this scenario. We believe that the problem is due to the lack of control on the fault

activation. This result justifies the study of whether faults can manifest in the remaining

states, and how they can be activated.

5.4 Concurrency fault injection

The factors that lead to a transient manifestation of Mandelbugs, and the related nature of

faults, can be identified by analyzing the scientific literature on field data about software

faults. Results of field data analysis guided us to the design of a SFI technique which able

to precisely emulate the manifestation of faults, by taking into account the fault activation

process.

5.4.1 Fault model

From past works on field data [187, 126, 34, 131], we identified the following transient fault

triggers:

• concurrency;

• timing of external events (e.g., from hardware);

• wrong memory state;

• faulty error handling routines (the fault is triggered by another one);

Chapter 5. A technique for the emulation of concurrency faults 194

• complex input sequences;

• software aging (e.g., resource leaks).

As discussed in Section 5.1, we focus on faults related to concurrent programming. In

order to emulate the most frequent concurrency faults, we take into account the results of

a study on concurrency faults [131], which analyzed 105 faults from 4 real complex and

concurrent systems. This study pointed out that the most frequent synchronization faults

are:

• atomicity-violation faults (48.57%), i.e., non-atomic execution of concurrent memory

accesses;

• deadlock faults (29.52%);

• order-violation faults (22.86%), i.e., execution of a set of operations in the wrong

order1.

In particular, we focus on atomicity-violation faults, since they occur most frequently.

Moreover:

• non-deadlock faults involved one variable (66.22%);

• 2 threads are needed for triggering a fault (89.52%).
12.86% of the faults are classified as both atomicity- and order-violation.

Chapter 5. A technique for the emulation of concurrency faults 195

There are several strategies to enforce the atomicity of a group of memory accesses.

However, it is well known that the use of locks is the most common strategy used by pro-

grammers. Atomicity-violation faults are fixed by programmers using lock primitives, i.e.,

by adding lock operations before and after accessing shared variables. Although there also

exist other fix strategies, the field study [131] points out that they are mostly applied in

the case order-violation bugs. Since we focus on atomicity-violation faults, we will consider

faults related to the missing usage of lock primitives.

To emulate the features of atomicity-violation faults, we adopt the following fault model:

the access to a shared variable by 2 threads is non-atomic due to missing lock operations,

where at least one of the accesses is a write to the variable. This kind of fault is more usually

referred to as race condition.

5.4.2 Overview of the concurrency injection technique

In order to emulate the considered fault model, we propose a SFI technique consisting of

two phases. In the first phase, namely fault injection phase, (Subsection 5.4.3), we identify

critical sections in which same shared variable is accessed. A critical section is a piece of

code that atomically accesses shared memory variables, which begins with a lock acquisition

and ends with a lock release. The fault model requires the removal of lock operations before

and after a critical section.

Chapter 5. A technique for the emulation of concurrency faults 196

Since concurrency faults (and Mandelbugs in general) have a low probability to be acti-

vated by random scheduling, the proposed technique includes a second phase, namely trigger

injection phase (Subsection 5.4.4), for activating the injected fault. A fault is triggered when

a thread that is executing the critical section is preempted and another thread that over-

writes the same shared variable is scheduled. Since the shared variable accessed by a critical

section is not intended to be accessed by other threads, this thread schedule corrupts the

software state. Trigger injection controls thread scheduling during an experiment, in order

to cause an interference between threads.

5.4.3 Fault injection phase

In the fault injection phase, information about memory accesses and lock operations is col-

lected and analyzed to identify critical sections in which concurrency faults can be injected.

This information is obtained by monitoring the execution of the system in fault-free runs.

During execution, we profile shared memory accesses and lock usage (Figure 5.6). Memory

and lock profiling is performed using the Valgrind profiling tool [150, 149]. This profiling

is performed by submitting only one input message for each run, in order to identify which

memory accesses are made under each individual input in a given set I of inputs. The inputs

in the set I will be used to trigger a concurrency fault during the trigger injection phase.

More specifically, the following information is collected:

• The set of critical sections accessed for each input i;

Chapter 5. A technique for the emulation of concurrency faults 197

Target

System

Memory & lock profiling

1(W), 2(R), 3(R), 4(R), …

Input message

tracing

CR(INSERT, 1),
CR(UPDATE, 1), …

Output message

tracing

FR(INSERT, 1),
FR(UPDATE, 1), …

•! List of critical sections and accesses to shared variables

•! Correlations between inputs, critical sections and accesses

to shared variables

Figure 5.6: Memory and lock profiling.

• The locks acquired before each critical section j;

• The set of memory accesses to shared variables made in each critical section j;

• The shared variable sva accessed by the access a in the critical section j;

• The type (read or write) of each access a, that is, type(a) = R or type(a) =W .

Table 5.2 shows the shared variables for the case study, by using their symbolic name in

the source code (although no information about the source code is required by the proposed

fault injection technique). Moreover, 15 critical sections are identified. For each shared

variable, the table shows the critical section accessing to that variable, and the type of

access (e.g., if critical section 11 both reads and writes a shared variable, we write “11-RW”).

The locks variable is an array representing the FDPs table. Each element stores a set of

attributes related to an FDP request (e.g., the callback attribute is an identifier of the client

making the request). The shared variable state is used by the FT Service for checkpointing;

Chapter 5. A technique for the emulation of concurrency faults 198

m_state_changed is a boolean flag which is set when state is updated.

Table 5.2: Shared variables and critical sections in the FDPS.

Shared variable Critical sections and access type

locks 1-RW 2-R 3-R 4-R 5-R 10-R 11-R 12-R 13-R 15-R

locks[i].id 1-W 2-R 11-R 15-R

locks[i].flag 1-W 2-RW 3-RW 11-RW 12-W 15-W

locks[i].callback 1-W 4-W 10-R 15-W

locks[i].mutex 1-W 2-R 3-R 11-R 12-R 15-W

locks[i].cond 1-W 2-R 3-R 11-R 12-R 15-W

state 5-W 8-R 11-R 12-R 13-W

m_state_changed 6-W 7-R 9-W 12-W 14-W

Subsequently, data on locks and memory accesses are used to identify faults to be in-

jected. A fault injection experiment consists of the following steps:

1. Select any pair of critical sections such that:

(a) They contain an access (respectively, a′ and a′′) to the same shared variable, that

is, sva′ = sva′′ ;

(b) The accesses a′ and a′′ are conflicting, that is type(a′) =W and type(a′′) = R;

(c) The same lock l is acquired by the critical sections.

2. Remove the acquisition of lock l before the critical section, and its release after the

critical section;

3. Run the test using the trigger injection technique.

Chapter 5. A technique for the emulation of concurrency faults 199

Removal of lock operations can be made statically, i.e., by modifying the binary or source

code. Another option is to make lock operations ineffective at run-time, by wrapping func-

tions for lock acquisition and release. Wrappers can be programmed to skip a lock operation

when it is made from a particular code location (i.e., before entering and after leaving the

critical section). This technique can be easily ported to several hardware/software platforms,

and it introduces a negligible overhead [137]. Moreover, as discussed in the following, this

option is convenient for controlling fault triggering, and it is therefore used in the proposed

technique.

5.4.4 Trigger injection phase

The trigger injection phase controls thread scheduling in order to activate an injected fault.

Moreover, since we aim to achieve state coverage, the trigger injection phase provides a

procedure to identify the inputs that bring the system in a desired target state when the

fault is activated.

Figure 5.7 shows an example of inputs (provided by the proposed procedure) that trigger

a fault in the target state 2:1:0. In order to trigger a fault in that state, a CRQ UPDATE

input should be submitted when the system is in state 1:1:0. In answer to this input, the

Façade executes the critical section with the memory access a′′. In order to enforce a specific

thread scheduling to trigger the fault, we block the thread that is going to make the a′′ access

(by means of a breakpoint). Subsequently, a CR DELETE input is sent after that the system

Chapter 5. A technique for the emulation of concurrency faults 200

reached state 2:1:0. The system then performs the memory access a′ (which conflicts with

a′′); this event is intercepted by means of another breakpoint, in order to unblock the thread

that is going to make the access a′′. From this moment, the fault is active: in this example,

threads interfere with each other because a shared variable is overwritten by thread 2 before

being read by thread 1. The inputs are properly selected such that the system moves to

state 2:1:0 when the conflicting accesses occur.

CRQ

(UPDATE)

thread 1

thread 2

state

lock

CR

(DELETE)

FR PSC lock

read

a’’
thread 1

blocked

faulty

execution

write

a’

STOP

STOP

1:1:0 2:1:0 2:1:0 2:2:0 2:1:0

time

time

Figure 5.7: Input timing that triggers a fault in state 2:1:0.

To avoid fault activation before the target state is reached, lock operations are made

ineffective at run-time by means of wrappers (Section 5.4.3). In particular, wrappers enable

lock operations when fault triggering should be avoided, and disable them when the fault

triggering procedure begins. It should be noted that this solution does not affect fault

representativeness, as this scenario is equivalent to a dormant fault, i.e., thread scheduling

never preempts a thread when it executes a non-atomic critical section. In this way, it is

possible to trigger a fault in a specific state.

Input selection. To identify inputs for triggering a fault in a target state, we design

Chapter 5. A technique for the emulation of concurrency faults 201

a procedure based on the FSM model of the system (described in Subsection 5.3.1). The

procedure is based on the relationship between input messages and memory accesses, which

is obtained during the fault injection phase (Subsection 5.4.3). This information is needed

to identify which inputs the tester should submit in order to a reach a specific target state

when the fault is triggered.

Table 5.3: Inputs, message sequences and critical sections in the FDPS.

Input Messages and Memory Accesses

CR/CRQ CR/CRQ FR/FRQ PSC/PSCQ
INSERT 1, 2, 3, 4, 5, 6 7, 8, 9 10, 11, 12, 13, 14, 7, 8, 9

CR/CRQ CR/CRQ FR/FRQ PSC/PSCQ
DELETE 2, 3, 4, 5, 6 7, 8, 9 10, 11, 12, 13, 14, 15, 7, 8, 9

CR/CRQ CR/CRQ FR/FRQ PSC/PSCQ
UPDATE 2, 3, 4, 5, 6 7, 8, 9 10, 11, 12, 13, 14, 7, 8, 9

Table 5.3 shows the relationship between inputs, message sequences (see Table 5.1), and

critical sections occurring after each input. A CR/CRQ message is followed by a FR/FRQ

message, which in turn is followed by a PSC/PSCQ message. However, depending on the

type of request (INSERT, DELETE, or UPDATE), a different sequence of critical sections

is executed. Executions of the same critical section are represented by the same integer

number (e.g., critical section 2 is executed under every input, while critical section 1 is

executed only under an INSERT input). Given a pair of conflicting accesses a′ and a′′, the

proposed procedure performs the following steps:

Chapter 5. A technique for the emulation of concurrency faults 202

1. Find the message sequence in Table 5.3 that causes the memory access a′;

2. For this message sequence, find a sub-path (first backward path, FBP) in the FSM that

ends in the target state, and that contains the message sequence (recall that edges in

the FSM is associated to messages exchanged within the system); let S be the first

state of this sub-path;

3. Find the message sequence in Table 5.3 that makes the memory access a′′;

4. For this message sequence, find a sub-path (second backward path, SBP) in the FSM

that ends in the state S, and that contains the message sequence;

5. The final path is obtained by connecting the SBP to the FBP in the state S.

The sequences of messages and critical sections may also depend on the current state of the

system. This issue can be solved during the preliminary analysis by repeating, under every

state of the system, the analysis of sequences caused by each input. Using the additional

information about states, the algorithm can be extended to cope with state dependence (by

exploring only those paths allowed under a given state). However, the sequences in the

FDPS do not exhibit any state dependence, and this extension was left as future work.

Fault triggering. The inputs to be submitted by the tester for fault triggering are the

initial messages of the SBP and the FBP, respectively. More specifically, the tester has to:

1. Send the first message associated to the SBP ;

Chapter 5. A technique for the emulation of concurrency faults 203

2. Wait until the thread is blocked by a breakpoint before the access a′′;

3. Send the first message associated to the FBP ;

4. Wait until the memory access a′ (detected using a breakpoint); subsequently, both

threads are unblocked.

Breakpoint setup. Breakpoints are exploited to drive thread scheduling, in order to

cause a faulty interleaving between memory accesses. The first breakpoint is inserted before

the memory access a′′, in order to stop the execution of a thread until another thread makes

the memory access a′. The second breakpoint is inserted after a′, in order to re-enable the

thread interrupted by the previous breakpoint. It should be noted that the intrusiveness

due to breakpoints is negligible, since their delay (less than 1 ms in modern CPUs) is much

littler than other delays in complex systems (e.g., communication and processing delays).

An example of concurrency fault trigger. We describe an example of fault trigger

identified by the proposed procedure. The fault triggering path is shown in Figure 5.8, which

contains a subset of the FSM in Figure 5.3. Let suppose to inject a fault in the state 2:1:0

between the critical section 8 that follows a PSC DELETE message, and critical section 2

that follows a CRQ UPDATE message (as in Figure 5.7). The two critical sections make

respectively a write (a′) and a read (a′′) memory access to the same shared variable. First,

the procedure finds a sub-path (FBP) ending with a PSC transition in 2:1:0 (steps 1, 2).

Chapter 5. A technique for the emulation of concurrency faults 204

The sub-path should start with a CR or a CRQ transition, since all message sequences in

Table 5.3 start with a CR or a CRQ request. In the example, a suitable FBP is: 2:1:0 →

CR → 2:1:0 → FR → 2:2:0 → PSC → 2:1:0. Subsequently, the procedure finds a second

sub-path (SBP) ending with a CRQ transition in S = 2:1:0, and starting with a CR or

CRQ transition (steps 3, 4). In the example, the SBP is: 1:1:0 → CRQ → 2:1:0. The final

path is obtained by connecting the two sub-paths in reverse order (step 5): 1:1:0 → CRQ

→ 2:1:0 → CR → 2:1:0 → FR → 2:2:0 → PSC → 2:1:0.

Figure 5.8: An example of path in the FSM that can trigger a fault in 2:1:0.

To trigger the fault using this path (Figure 5.8), the tester has to send to the system a

CRQ UPDATE and a CR DELETE request, in accordance to the timing shown in Figure

5.7. The system should first reach the initial state of the path (1:1:0 in our example). The

choice of the workload used to reach the initial state does not affect the experiment; in

our case study, we use the workloads described in Section 5.3. The sequence of inputs and

messages in Figure 5.7 are the same of the SBP and FBP, respectively.

There can be several paths that can be used to trigger a fault in a given state. However,

Chapter 5. A technique for the emulation of concurrency faults 205

it is better to choose the shortest path. In fact, it is possible that blocking a thread may

cause the stall of the program, even if lock operations are made ineffective. For example,

the thread may have acquired a logical resource by means of a boolean flag, which prevents

further execution of other threads. By choosing the shortest path, such a scenario will be

less likely. Nevertheless, it is neither possible to avoid this issue in all cases, nor to know a

priori if it will happen. Therefore, a timeout has to be enforced when it is not possible to

cause a specific thread scheduling [147, 158]. If memory accesses are not made within the

timeout, the experiment is aborted.

5.5 Evaluation of concurrency fault injection

The concurrency fault injection technique has been used to evaluate the FDPS in those states

not adequately tested during the first campaign (i.e., states in which the fault activation

distribution is null or very low). To this aim, we applied the triggering technique (Section

5.4.4) in those states. From the experimental campaign, we identified four pairs of critical

sections that are able to cause a failure in at least one state (Table 5.4). Figure 5.9 shows

a detailed view of states in which one or more conflicting critical sections caused a failure.

During the experiments, all failures occur in the same state in which a fault is activated,

and the failures manifest through invalid pointer dereference.

From the analysis of results, we conclude that:

Chapter 5. A technique for the emulation of concurrency faults 206

Table 5.4: Critical section pairs leading to a failure.

Shared variable Critical sec-
tions

Messages

locks[i].cond 2-R, 1-W CRQ, CR

locks[i].cond 11-R, 15-W PSC, PSC

locks[i].mutex 2-R, 15-W CR, PSC

locks[i].mutex 11-R, 15-W PSC, PSC

Figure 5.9: Fault activation distribution of the concurrency fault injection campaign.

• There are some conflicts that can be activated only in specific states (e.g., in 2:3:0,

only 1 out of 4 failure-prone conflicts is activated). This is due to relationship that

exist between the system state and fault activation: it may not be possible to find a

fault activation path in those target states for some conflicts.

• By proper fault triggering, it is possible to trigger a fault in almost all states not

Chapter 5. A technique for the emulation of concurrency faults 207

adequately tested by G-SWFIT. Even if these states are actually failure-prone, faults

injected by G-SWFIT are seldom activated in them. Instead, the proposed technique

allows to cover these states.

• Only the state 0:3:0 is not covered by both experimental campaigns. It is still possible

that the system can be affected by software faults in state 0:3:0 (e.g., by different kinds

of Mandelbugs). However, the increased state coverage (95%) brings a significant

improvement on the confidence of the overall SFI campaign.

5.6 Summary

In this chapter, we analyzed the problem of emulating Mandelbugs, in the context of a real-

world fault-tolerant system for Air Traffic Control (ATC). The state-of-the-art SFI technique

G-SWFIT was evaluated. The analysis pointed out that faults injected by G-SWFIT are

not representative of Mandelbugs, because most of them manifest in the early phase of the

execution, and they deterministically affect both replicas. This has negative effects on the

state coverage, because not covered states (35%) can potentially be affected by software

faults, as demonstrated by the second SFI campaign. The technique for concurrency fault

injection was able to inject and trigger faults in most of the states, reducing non-covered

states down to 5%, and thus improving the confidence in the assessment of fault tolerance.

Future work will encompass a broader analysis of G-SWFIT on different systems, to confirm

Chapter 5. A technique for the emulation of concurrency faults 208

that SFI campaigns suffer the same limitations of the ones observed in this work, due to

lack of control on fault activation by G-SWFIT. Moreover, the technique could be easily

extended to include deadlocks, which can be emulated by the incorrect acquisition of a set

of locks in a similar way to race conditions.

Chapter 6

Conclusions and future work

This dissertation investigated the problem of fault representativeness in Software Fault In-

jection. This property is required in order to obtain confident conclusions about the ef-

fectiveness of fault tolerance and the safety of the overall system, by emulating the faulty

conditions that the system will experience during the operational phase. In particular, this

thesis addressed the problem of fault representativeness with respect to three aspects: (i)

improving the representativeness of the fault model, by taking into account the location in

which faults should be injected; (ii) improving the accuracy of techniques and tools that

inject faults in the binary code of the target; (iii) extending Software Fault Injection to the

relevant class of concurrency faults.

Along the direction of improving the representativeness of the fault model, this thesis

analyzed the following important aspect: do the injected faults represent the residual faults

that escape the development process, which actually affect the system? If this property is

not achieved, the results from Software Fault Injection would be misleading, as they would

209

Chapter 6. Conclusions and future work 210

not reflect the real software fault tolerance of the system. This property is determined

by two factors, namely what type of fault is injected, and where the fault is injected. Past

work mainly focused on the first factor, and proposed a set of realistic fault types. This

thesis focused on the problem of fault locations: these should be selected based on the

testing activities that are performed, and on the complexity and the relationships of soft-

ware components. Experimental results from three real-world complex systems found that

fault locations actually affect fault representativeness, since a significant part of faults in-

jected using G-SWFIT are consistently detected by test cases (these faults would be easily

detected and removed by developers, and thus cannot be considered as representative of

residual faults). The proposed approach improves fault representativeness by selecting the

most suitable components (files or functions) in which to inject faults, by using software

complexity metrics and classification algorithms. The approach was effective at improving

the representativeness of faultloads and reducing the faultload size (i.e., the number of fault

injection experiments) at the same time.

The accuracy of Software Fault Injection in binary code is another relevant issue towards

its application in real-world scenarios, such as systems based on Commercial Off-The-Shelf

software, for which the source code is usually not available. However, injecting faults in

binary code requires that programming constructs are recognized by looking only at the

binary code, which is a difficult and error-prone task. Therefore, this thesis proposed a

Chapter 6. Conclusions and future work 211

method for assessing the accuracy of binary-level fault injection, in order to provide con-

fidence that faults can be accurately be injected, and to debug and to improve techniques

and tools for injecting binary-level faults. The method was adopted for assessing G-SWFIT

and an industrial tool based on this technique, by evaluating the accuracy of faults injected

in a real-world complex software system. The analysis found several pitfalls that can occur

in the implementation of G-SWFIT, that need to be avoided in order to achieve an ac-

ceptable degree of accuracy. The results highlight that it is difficult to develop an accurate

binary-level fault injection tool. Therefore, significant efforts could be required to develop

a tool tailored to a new CPU architecture or compiler. This problem could be mitigated

by a systematic approach for analyzing how software faults are translated in binary code

for a given CPU and compiler, in a similar way to the proposed method. In future work,

the proposed method could be extended to support the development of new fault injection

tools, in order to reduce development efforts.

Finally, this thesis investigated the problem of emulating concurrency faults. It is un-

feasible to remove these software faults during development, since they manifest themselves

depending on complex interactions with the environment (e.g., thread scheduling) and with

the state of the system. In fact, these faults represent a significant part of faults affecting

complex software. Moreover, fault tolerance mechanisms are often specifically tailored for

this kind of faults. Therefore, it becomes important to assess a system through the injection

Chapter 6. Conclusions and future work 212

of concurrency faults, which instead have been overlooked by existing techniques. This thesis

proposed a new technique for emulating these faults: it injects both faults in the executable

code and the triggering conditions that make these faults manifest themselves, by controlling

locking operations and thread scheduling. An experiment in a fault-tolerant system for Air

Traffic Control confirms that this is a promising approach towards the emulation of concur-

rency faults, since the proposed technique more closely emulates the behavior of concurrency

faults than traditional techniques such as G-SWFIT. In future work, the technique could

include both race conditions and deadlocks, which represent the vast majority of concur-

rency faults, and the effectiveness and scalability of this technique could be evaluated in

other complex software systems.

Bibliography

[1] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990, 1990.

[2] IEEE Standard Classification for Software Anomalies. IEEE Std 1044-1993, 1994.

[3] IEEE Standard for Information Technology–Portable Operating System Interface (POSIX)
Part 1: System Application Program Interface (API) Amendment 1: Realtime Extension [C
Language]. IEEE Std 1003.1b-1993, 1994.

[4] NASA Software Safety Guidebook. NASA-GB-8719.13, 2004.

[5] IEEE Standard Classification for Software Anomalies. IEEE Std 1044-2009 (Revision of IEEE
Std 1044-1993), 2010.

[6] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. GOOFI: Generic Object-Oriented Fault
Injection Tool. In Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and Networks, pages
83–88, 2001.

[7] A. Albinet, J. Arlat, and J.C. Fabre. Characterization of the Impact of Faulty Drivers on the
Robustness of the Linux Kernel. In Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and
Networks, pages 867–876. IEEE Computer Society, 2004.

[8] A.M. Ambrosio, F. Mattiello-Francisco, VA Santiago, W.P. Silva, and E. Martins. Designing
Fault Injection Experiments Using State-Based Model to Test a Space Software. Lecture Notes
in Computer Science, 4746, 2007.

[9] J.H. Andrews, L.C. Briand, and Y. Labiche. Is mutation an appropriate tool for testing
experiments? In Proc. Intl. Conf. on Software Engineering, pages 402–411. ACM, 2005.

[10] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.C. Fabre, J.C. Laprie, E. Martins, and D. Powell.
Fault Injection for Dependability Validation: A Methodology and Some Applications. IEEE
Transactions on Software Engineering, 16(2):166–182, 1990.

[11] J. Arlat, A. Costes, Y. Crouzet, J.C. Laprie, and D. Powell. Fault injection and dependability
evaluation of fault-tolerant systems. IEEE Transactions on Computers, 42(8):913–923, 1993.

[12] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G.H. Leber. Comparison of phys-
ical and software-implemented fault injection techniques. IEEE Transactions on Computers,
pages 1115–1133, 2003.

[13] J. Arlat, J.C. Fabre, M. Rodríguez, and F. Salles. Dependability of COTS Microkernel-Based
Systems. IEEE Transactions on Computers, pages 138–163, 2002.

[14] T.F. Arnold. The Concept of Coverage and Its Effect on the Reliability Model of Repairable
Systems. IEEE Transactions on Computers, 22(6):251–254, June 1973.

213

Bibliography 214

[15] A. Avizienis. The N-version approach to fault-tolerant software. IEEE Transactions on Soft-
ware Engineering, SE-11(12):1491–1501, 1985.

[16] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr. Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Transactions on Dependable and Secure Computing,
1(1):11–33, 2004.

[17] D. Avresky, J. Arlat, J.C. Laprie, and Y. Crouzet. Fault Injection for Formal Testing of Fault
Tolerance. IEEE Transactions on Reliability, 45(3):443–455, 1996.

[18] Meera Balakrishnan, Antonio Puliafito, Kishor S. Trivedi, and Yannis Viniotis. Buffer losses
vs. deadline violations for ABR traffic in an ATM switch: A computational approach. Telecom-
munication Systems, 7(1-3):105–123, 1997.

[19] J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewiorek. Fault Injection Experiments using
FIAT. IEEE Transactions on Computers, 39(4):575–582, 1990.

[20] V.R. Basili and B.T. Perricone. Software Errors and Complexity: An Empirical Investigation.
Communications of the ACM, 27(1):42–52, 1984.

[21] T. Basso, R. Moraes, B.P. Sanches, and M. Jino. An Investigation of Java Faults Operators
Derived from a Field Data Study on Java Software Faults. In Workshop de Testes e Tolerância
a Falhas, pages 1–13, 2009.

[22] Fabrice Bellard. QEMU virtualization software. http://qemu.org, year=2011,.

[23] B.W. Boehm. Verifying and Validating Software Requirements and Design Specifications.
IEEE Software, 1(1):75–88, Jan. 1984.

[24] A. Bondavalli, A. Ceccarelli, L. Falai, and M. Vadursi. Foundations of Measurement Theory
Applied to the Evaluation of Dependability Attributes. In Proc. IEEE/IFIP Intl. Conf. on
Dependable Systems and Networks, pages 522–533. IEEE, 2007.

[25] A. Bondavalli, S. Chiaradonna, D. Cotroneo, and L. Romano. Effective Fault Treatment for
Improving the Dependability of COTS and Legacy-Based Applications. IEEE Transactions
on Dependable and Secure Computing, 1(4):223–237, 2004.

[26] W.G. Bouricius, W.C. Carter, and P.R. Schneider. Reliability Modeling Techniques for Self-
Repairing Computer Systems. In Proc. 24th Nat’l Conf. ACM, pages 295–309, 1969.

[27] P. Broadwell, N. Sastry, and J. Traupman. FIG: A prototype tool for online verification of
recovery mechanisms. In Workshop on Self-Healing, Adaptive and self-MANaged Systems,
2002.

[28] J. Carreira, H. Madeira, and J.G. Silva. Xception: A technique for the experimental eval-
uation of dependability in modern computers. IEEE Transactions on Software Engineering,
24(2):125–136, 1998.

[29] Joao Carreira, Henrique Madeira, and Joao Gabriel Silva. Xception: Software Fault Injection
and Monitoring in Processor Functional Units. In Proc. Intl. Conf. on Dependable Computing
for Critical Applications, pages 135–149, 1995.

[30] G. Carrozza, D. Cotroneo, R. Natella, A. Pecchia, and S. Russo. Memory Leak Analysis in
Mission-Critical Middleware. Journal of Systems and Software, 83(9), 2010.

[31] J.K. Chaar, M.J. Halliday, I.S. Bhandari, and R. Chillarege. In-Process Evaluation for Software
Inspection and Test. Software Engineering, IEEE Transactions on, 19(11):1055–1070, 1993.

Bibliography 215

[32] R. Chandra, R.M. Lefever, K.R. Joshi, M. Cukier, and W.H. Sanders. A Global-State-
Triggered Fault Injector for Distributed System Evaluation. IEEE Transactions on Parallel
and Distributed Systems, 15(7):593–605, 2004.

[33] S. Chandra and PM Chen. How Fail-Stop are Faulty Programs? In Proc. Intl. Symp. on
Fault-Tolerant Computing, pages 240–249, 1998.

[34] S. Chandra and P.M. Chen. Whither Generic Recovery from Application Faults? A Fault
Study using Open-Source Software. In Proc. IEEE/IFIP Intl. Conf. on Dependable Systems
and Networks, pages 97–106. IEEE, 2000.

[35] R. Chillarege. Understanding Bohr-Mandel bugs through ODC Triggers and a case study
with empirical estimations of their field proportion. In IEEE Third International Workshop
on Software Aging and Rejuvenation, IEEE Intl. Symp. on Software Reliability Engineering.

[36] R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus, B.K. Ray, and M.Y.
Wong. Orthogonal Defect Classification–A Concept for In-Process Measurements. IEEE
Transactions on Software Engineering, 18(11):943–956, 1992.

[37] R. Chillarege and N.S. Bowen. Understanding large system failures-a fault injection experi-
ment. In Proc. Intl. Symp. on Fault-Tolerant Computing, pages 356–363. IEEE, 1988.

[38] R. Chillarege, W.L. Kao, and R.G. Condit. Defect Type and its Impact on the Growth Curve.
In Proc. 13th Intl. Conf. on Software Engineering, pages 246–255, 1991.

[39] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical study of operating systems
errors. In Proc. ACM Symp. on Operating Systems Principles. ACM, 2001.

[40] M.B. Chrissis, M. Konrad, and S. Shrum. CMMI: Guidelines for process integration and
product improvement. Addison-Wesley Professional, 2003.

[41] J. Christmansson and R. Chillarege. Generation of an Error Set that Emulates Software Faults
based on Field Data. In Proc. Intl. Symp. on Fault-Tolerant Computing, pages 304–313, 1996.

[42] J. Christmansson, M. Hiller, and M. Rimen. An Experimental Comparison of Fault and Error
Injection. In Proc. Intl. Symp. on Software Reliability Engineering, pages 369–378, 1998.

[43] J. Christmansson and P. Santhanam. Error Injection Aimed at Fault Removal in Fault Toler-
ance Mechanisms–Criteria for Error Selection using Field Data on Software Faults. In Proc.
of Intl. Symp. on Software Reliability Engineering, pages 175–184, 1996.

[44] ObjectWeb Consortium. CARDAMOM—An Enterprise Middleware for Building Mission and
Safety Critical Applications. http://cardamom.ow2.org/, 2011.

[45] Oracle Corporation. MySQL Market Share. http://www.mysql.com/why-mysql/
marketshare/, 2011.

[46] Standard Performance Evaluation Corporation. SPECweb99 v1.02. http://www.spec.org/
web99/, 2009.

[47] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo. Software Aging Analysis of the
Linux Operating System. In Proc. IEEE Intl. Symp. on Software Reliability Engineering,
pages 71–80. IEEE, 2010.

[48] Transaction Processing Performance Council. TPC Benchmark C (TPC-C) v5.11. http:
//www.tpc.org/tpcc/, 2010.

Bibliography 216

[49] F. Cristian. Exception handling and software fault tolerance. IEEE Transactions on Comput-
ers, C-31(6):531–540, 1982.

[50] M. Cukier, D. Powell, and J. Ariat. Coverage estimation methods for stratified fault-injection.
IEEE Transactions on Computers, 48(7):707–723, 1999.

[51] S. Dawson, F. Jahanian, and T. Mitton. Experiments on six commercial TCP implementations
using a software fault injection tool. Software Practice and Experience, 27(12):1385–1410, 1997.

[52] S. Dawson, F. Jahanian, T. Mitton, and T.L. Tung. Testing of Fault-Tolerant and Real-
Time Distributed Systems via Protocol Fault Injection. In Proc. Intl. Symp. on Fault-Tolerant
Computing, 1996.

[53] M.E. Delamaro and J.C. Maldonado. Proteum—A Tool for the Assessment of Test Adequacy
for C Programs. In Proc. Conf. Performability in Computer Systems, pages 79–95, 1996.

[54] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints on test data selection: Help for the
practicing programmer. Computer, 11(4):34–41, 1978.

[55] J. DeVale, P. Koopman, and D. Guttendorf. The Ballista software robustness testing service.
In Testing Computer Software Conference, 1999.

[56] D. Dig, J. Marrero, and M.D. Ernst. Refactoring Sequential Java Code for Concurrency via
Concurrent Libraries. In Proc. Intl. Conf. on Software Engineering, pages 397–407, 2009.

[57] CP Dingman and J. Marshall. Measuring Robustness of a Fault-Tolerant Aerospace System.
In Proc. Intl. Symp. on Fault-Tolerant Computing, pages 522–527. IEEE Computer Society,
1995.

[58] H. Do and G. Rothermel. On the use of mutation faults in empirical assessments of test case
prioritization techniques. IEEE Transactions on Software Engineering, pages 733–752, 2006.

[59] J. Durães and H. Madeira. Characterization of Operating Systems Behavior in the Presence
of Faulty Drivers through Software Fault Emulation. In Proc. IEEE Pacific Rim Intl. Symp.
on Dependable Computing, pages 201–209. IEEE Computer Society, 2002.

[60] J. Duraes and H. Madeira. Emulation of Software Faults by Educated Mutations at Machine-
Code Level. In Proc. Intl. Symp. on Software Reliability Engineering, pages 329–340, 2002.

[61] J. Duraes and H. Madeira. Definition of Software Fault Emulation Operators: A Field Data
Study. In Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and Networks, pages 105–114,
2003.

[62] J. Durães and H. Madeira. Generic Faultloads Based on Software Faults for Dependability
Benchmarking. In Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and Networks, 2004.

[63] J. Durães, M. Vieira, and H. Madeira. Multidimensional Characterization of the Impact of
Faulty Drivers on the Operating Systems Behavior. IEICE Transactions on Information and
Systems, 86(12):2563–2570, 2003.

[64] J. Durães, M. Vieira, and H. Madeira. Dependability benchmarking of web-servers. In Com-
puter safety, reliability, and security: 23rd international conference, SAFECOMP 2004, Pots-
dam, Germany, September 21-24, 2004: proceedings, volume 3219, pages 297–310. Springer-
Verlag New York Inc, 2004.

[65] J.A. Durães and H.S. Madeira. Emulation of Software faults: A Field Data Study and a
Practical Approach. IEEE Transactions on Software Engineering, 32(11):849–867, 2006.

Bibliography 217

[66] D.L. Dvorak. NASA Study on Flight Software Complexity. NASA Office of Chief Engineer,
2009.

[67] S.G. Eick, C.R. Loader, M.D. Long, L.G. Votta, and S. Vander Wiel. Estimating Software
Fault Content Before Coding. In Proc. Intl. Conf. on Software Engineering, pages 59–65.
ACM, 1992.

[68] EnterpriseDB. EnterpriseDB’s Postgres Plus users by Application Type. http://www.
enterprisedb.com/customer-success/customers-by-application-workload, 2011.

[69] European Cooperation for Space Standardization. ECSS-E-70-41A – Ground Systems and
Operations: Telemetry and Telecommand Packet Utilization, 2003.

[70] N.E. Fenton and N. Ohlsson. Quantitative Analysis of Faults and Failures in a Complex
Software System. IEEE Transactions on Software Engineering, 26(8):797–814, 2000.

[71] N.E. Fenton and S.L. Pfleeger. Software Metrics: A Rigorous and Practical Approach. PWS
Publishing Co., 1998.

[72] C. Fetzer, P. Felber, and K. Högstedt. Automatic Detection and Masking of Nonatomic
Exception Handling. IEEE Transactions on Software Engineering, 30:547–560, 2004.

[73] C. Fetzer and Z. Xiao. HEALERS: a toolkit for enhancing the robustness and security of
existing applications. In Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and Networks,
pages 317–322. IEEE.

[74] C. Fetzer and Z. Xiao. An automated approach to increasing the robustness of C libraries.
In Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and Networks, pages 155–164. IEEE,
2002.

[75] J. Fonseca and M. Vieira. Mapping software faults with web security vulnerabilities. In Proc.
IEEE/IFIP Intl. Conf. on Dependable Systems and Networks, pages 257–266. Ieee, 2008.

[76] J. Fonseca, M. Vieira, and H. Madeira. Training Security Assurance Teams Using Vulnerability
Injection. In Proc. IEEE Pacific Rim Intl. Symp. on Dependable Computing, pages 297–304,
2008.

[77] J. Fonseca, M. Vieira, and H. Madeira. Vulnerability & Attack Injection for Web Applications.
In Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and Networks, pages 93–102. IEEE,
2009.

[78] International Organization for Standardization. Product development: software level.
ISO/DIS 26262-6, 2009.

[79] U.S.-Canada Power System Outage Task Force. Final Report on the August 14, 2003 Blackout
in the United States and Canada: Causes and Recommendations. U.S. Energy Department,
2004.

[80] A. Ganapathi, V. Ganapathi, and D. Patterson. Windows xp kernel crash analysis. In Proc.
USENIX Large Installation System Administration Conf., pages 101–111, 2006.

[81] A.K. Ghosh and M. Schmid. An approach to testing COTS software for robustness to operating
system exceptions and errors. In Proc. IEEE Intl. Symp. on Software Reliability Engineering,
pages 166–174, 1999.

[82] A.K. Ghosh, M. Schmid, and V. Shah. Testing the Robustness of Windows NT Software. In
Proc. Intl. Symp. on Software Reliability Engineering, pages 231–235, 1998.

Bibliography 218

[83] J. Gray. Why Do Computers Stop and What Can Be Done About It? In Proc. Symp. on
Reliability in Distributed Software and Database Systems, pages 3–11, 1985.

[84] J. Gray. A Census of Tandem System Availability between 1985 and 1990. IEEE Transactions
on Reliability, 39(4):409–418, 1990.

[85] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi. Analysis of Software Aging in a Web
Server. IEEE Transactions on Reliability, 55(3):480–491, 2006.

[86] M. Grottke, A.P. Nikora, and K.S. Trivedi. An empirical investigation of fault types in space
mission system software. In Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and Net-
works, pages 447–456. IEEE, 2010.

[87] M. Grottke and K.S. Trivedi. Software Faults, Software Aging and Software Rejuvenation.
Journal of the Reliability Engineering Association of Japan, 27(7):425–438, 2005.

[88] M. Grottke and K.S. Trivedi. Fighting Bugs: Remove, Retry, Replicate, and Rejuvenate.
IEEE Computer, 40(2):107–109, 2007.

[89] U. Gunneflo, J. Karlsson, and J. Torin. Evaluation of error detection schemes using fault
injection by heavy-ion radiation. In Proc. Intl. Symp. on Fault-Tolerant Computing, pages
340–347. IEEE, 1989.

[90] R.G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions on Software
Engineering, 3(4):279–290, 1977.

[91] S. Han, KG Shin, and HA Rosenberg. DOCTOR: An IntegrateD SOftware Fault InjeCTiOn
EnviRonment. In Proc. Intl. Computer Performance and Dependability Symp., pages 204–213,
1995.

[92] S. Henry and D. Kafura. Software Structure Metrics Based on Information Flow. IEEE
Transactions on Software Engineering, pages 510–518, 1981.

[93] M. Hiller, A. Jhumka, and N. Suri. An approach for analysing the propagation of data errors
in software. In Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and Networks, pages
161–170, 2001.

[94] M. Hiller, A. Jhumka, and N. Suri. EPIC: Profiling the propagation and effect of data errors
in software. Computers, IEEE Transactions on, 53(5):512–530, 2004.

[95] M.C. Hsueh, T.K. Tsai, and R.K. Iyer. Fault injection techniques and tools. IEEE Computer,
30(4):75–82, 1997.

[96] Y. Huang, C. Kintala, N. Kolettis, and N.D. Fulton. Software Rejuvenation: Analysis, Module
and Applications. In Proc. Intl. Symp. on Fault-Tolerant Computing, 1995.

[97] JJ Hudak, B.H. Suh, DP Siewiorek, and Z. Segall. Evaluation and Comparison of Fault-
Tolerant Software Techniques. IEEE Transactions on Reliability, 42(2):190–204, 1993.

[98] Object Computing Inc. The ACE ORB. http://www.theaceorb.com/, 2011.

[99] Real-Time Innovations. RTI Data Distribution Service. http://www.rti.com/, 2011.

[100] I. Irrera, J. Durães, M. Vieira, and H. Madeira. Towards Identifying the Best Variables for
Failure Prediction Using Injection of Realistic Software Faults. In Proc. IEEE Pacific Rim
Intl. Symp. on Dependable Computing, pages 3–10. IEEE, 2010.

[101] Dependability Benchmarking Project (IST-2000-25425). DBench final report. 2004.

Bibliography 219

[102] M. Coutinho S. Santos J. Rufino, S. Filipe and J. Windsor. ARINC 653 Interface in RTEMS.
In Data Systems in Aerospace Conf., 2007.

[103] T. Jarboui, J. Arlat, Y. Crouzet, and K. Kanoun. Experimental Analysis of the Errors Induced
into Linux by Three Fault Injection Techniques. In Proc. IEEE/IFIP Intl. Conf. on Dependable
Systems and Networks, pages 331–336. IEEE Computer Society, 2002.

[104] T. Jarboui, J. Arlat, Y. Crouzet, K. Kanoun, and T. Marteau. Analysis of the Effects of Real
and Injected Software Faults: Linux as a Case Study. In Proc. IEEE Pacific Rim Intl. Symp.
on Dependable Computing, pages 51–58. IEEE Computer Society, 2002.

[105] T. Jarboui, J. Arlat, Y. Crouzet, K. Kanoun, and T. Marteau. Impact of internal and ex-
ternal software faults on the linux kernel. IEICE Transactions on Information and Systems,
86(12):2571–2578, 2003.

[106] Yue Jia and Mark Harman. An Analysis and Survey of the Development of Mutation Testing.
IEEE Transactions on Software Engineering, pages 649–678, 2001.

[107] A. Jin and J. Jiang. Fault Injection Scheme for Embedded Systems at Machine Code Level
and Verification. In Proc. IEEE Pacific Rim Intl. Symp. on Dependable Computing, pages
55–62. IEEE, 2009.

[108] A. Johansson and N. Suri. Error propagation profiling of operating systems. In Proc. IEEE/I-
FIP Intl. Conf. on Dependable Systems and Networks, pages 86–95. IEEE, 2005.

[109] A. Johansson, N. Suri, and B. Murphy. On the impact of injection triggers for OS robustness
evaluation. In Proc. IEEE Intl. Symp. on Software Reliability Engineering, pages 127–126.
IEEE, 2007.

[110] A. Johansson, N. Suri, and B. Murphy. On the selection of error model(s) for OS robustness
evaluation. In Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and Networks, pages
502–511. IEEE, 2007.

[111] D.B. Johnson and W. Zwaenepoel. Sender-based message logging. In Proc. Intl. Symp. on
Fault-Tolerant Computing, pages 14–19. Citeseer, 1987.

[112] A. Kalakech, K. Kanoun, Y. Crouzet, and J. Arlat. Benchmarking The Dependability of
Windows NT4, 2000 and XP. In Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and
Networks, pages 681–686. IEEE Computer Society, 2004.

[113] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham. Ferrari: A tool for the validation of
system dependability properties. In Proc. Intl. Symp. on Fault-Tolerant Computing, pages
336–344. IEEE, 1992.

[114] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham. Emax - an automatic extractor of high-
level error models. In AIAA Computing in Aerospace Conference, pages 1297–1306, 1993.

[115] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham. FERRARI: A Flexible Software-Based
Fault and Error Injection System. IEEE Transactions on Computers, 44(2):248–260, 1995.

[116] K. Kanoun, Y. Crouzet, A. Kalakech, A.E. Rugina, and P. Rumeau. Benchmarking the
Dependability of Windows and Linux Using PostMark Workloads. In Proc. Intl. Symp. on
Fault-Tolerant Computing, pages 11–20. IEEE Computer Society, 2005.

[117] K. Kanoun and L. Spainhower. Dependability Benchmarking for Computer Systems. Wiley-
IEEE Computer Society, 2008.

Bibliography 220

[118] W.-I. Kao and R.K. Iyer. DEFINE: A Distributed Fault Injection and Monitoring Environ-
ment. In Proc. IEEE Workshop on Fault-Tolerant Parallel and Distributed Systems, pages
252–259, 1994.

[119] W.-I. Kao, R.K. Iyer, and D. Tang. FINE: A Fault Injection and Monitoring Environment for
Tracing the UNIX System Behavior under Faults. IEEE Transactions on Software Engineering,
19(11):1105–1118, 1993.

[120] J. Katcher. Postmark: A New File System Benchmark. Network Appliance Technical Report
TR-3022, 1997.

[121] K.N. King and A.J. Offutt. A Fortran Language System for Mutation-based Software Testing.
Software: Practice and Experience, 21(7):685–718, 1991.

[122] J.C. Knight. Safety critical systems: challenges and directions. In Proc. Intl. Conf. on Software
Engineering, pages 547–550. IEEE, 2002.

[123] P. Koopman and J. DeVale. Comparing the Robustness of POSIX Operating Systems. In
Proc. Intl. Symp. on Fault-Tolerant Computing, pages 30–37. IEEE Computer Society, 1999.

[124] P. Koopman and J. DeVale. The Exception Handling Effectiveness of POSIX Operating Sys-
tems. IEEE Transactions on Software Engineering, 26(9):837–848, 2000.

[125] N.P. Kropp, P.J. Koopman, and D.P. Siewiorek. Automated robustness testing of off-the-
shelf software components. In Proc. Intl. Symp. on Fault-Tolerant Computing, pages 230–239.
IEEE, 1998.

[126] I. Lee and RK Iyer. Faults, Symptoms, and Software Fault Tolerance in the Tandem
GUARDIAN90 Operating System. In Proc. Intl. Symp. on Fault-Tolerant Computing, pages
20–29, 1993.

[127] N.G. Leveson. Role of software in spacecraft accidents. Journal of Spacecraft and Rockets,
41(4):564–575, 2004.

[128] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have Things Changed Now?: An Empir-
ical Study of Bug Characteristics in Modern Open Source Software. In Proc. 1st workshop on
Architectural and System Support for Improving Software Dependability, pages 25–33, 2006.

[129] B. Littlewood, P. Popov, and L. Strigini. Modeling software design diversity: a review. ACM
Computing Surveys (CSUR), 33(2):177–208, 2001.

[130] B. Littlewood and L. Strigini. Software Reliability and Dependability: A Roadmap. In Proc.
Conf. on the Future of Software Engineering, pages 175–188. ACM, 2000.

[131] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes — A
Comprehensive Study on Real World Concurrency Bug Characteristics. In Proc. Intl. Conf.
on Architecture Support for Programming Languages and Operating Systems, 2008.

[132] M.R. Lyu. Software Fault Tolerance. John Wiley & Sons, 1995.

[133] H. Madeira, D. Costa, and M. Vieira. On the Emulation of Software Faults by Software
Fault Injection. In Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and Networks, pages
417–426, 2000.

[134] P. Maes. Concepts and experiments in computational reflection. In Proc. Conf. on Object-
Oriented Programming Systems, Languages and Applications. ACM, 1987.

Bibliography 221

[135] S. Maffeis and DC Schmidt. Constructing Reliable Distributed Communication Systems with
CORBA. IEEE Communications Magazine, 35(2):56–60, 1997.

[136] P.D. Marinescu, R. Banabic, and G. Candea. An extensible technique for high-precision
testing of recovery code. In Proc. USENIX Annual Technical Conf., pages 23–23. USENIX
Association, 2010.

[137] P.D. Marinescu and G. Candea. LFI: A practical and general library-level fault injector. In
Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and Networks, pages 379–388. IEEE,
2009.

[138] E. Martins, C.M.F. Rubira, and N.G.M. Leme. Jaca: A Reflective Fault Injection Tool based
on Patterns. In Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and Networks, pages
483–487, 2002.

[139] T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn defect
predictors. IEEE Transactions on Software Engineering, pages 2–13, 2007.

[140] B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy, A. Natarajan, and J. Steidl. Fuzz
Revisited: A Re-examination of the Reliability of UNIX Utilities and Services. Technical
report, 1998.

[141] B.P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of UNIX utilities.
Communications of the ACM, 33(12):32–44, 1990.

[142] R. Moraes, R. Barbosa, J. Durães, N. Mendes, E. Martins, and H. Madeira. Injection of Faults
at Component Interfaces and Inside the Component Code: Are They Equivalent? In Proc.
IEEE European Dependable Computing Conf., pages 53–64, 2006.

[143] R. Moraes, J. Durães, R. Barbosa, E. Martins, and H. Madeira. Experimental Risk Assessment
and Comparison using Software Fault Injection. In Proc. IEEE/IFIP Intl. Conf. on Dependable
Systems and Networks, pages 512–521, 2007.

[144] R. Moraes and E. Martins. An Architecture-based Strategy for Interface Fault Injection. In
Workshop on Architecting Dependable Systems, IEEE/IFIP Intl. Conf. on Dependable Systems
and Networks, 2004.

[145] A. Mukherjee and D.P. Siewiorek. Measuring software dependability by robustness bench-
marking. Software Engineering, IEEE Transactions on, 23(6):366–378, 1997.

[146] J.D. Musa, A. Iannino, and K. Okumoto. Software Reliability: Measurement, Prediction,
Application. McGraw-Hill, Inc., 1987.

[147] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P.A. Nainar, and I. Neamtiu. Finding and Re-
producing Heisenbugs in Concurrent Programs. In Proc. Symp. on Operating Systems Design
and Implementation, pages 267–280, 2008.

[148] Roberto Natella. SAFE SoftwAre Fault Emulation tool. http://wpage.unina.it/roberto.
natella/, 2011.

[149] N. Nethercote and J. Seward. How to shadow every byte of memory used by a program. In
Proc. Intl. Conf. on Virtual Execution Environments, pages 65–74. ACM, 2007.

[150] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic binary instru-
mentation. ACM SIGPLAN Notices, 42(6):89–100, 2007.

Bibliography 222

[151] W.T. Ng, CM Aycock, G. Rajamani, and PM Chen. Comparing disk and memory’s resistance
to operating system crashes. In Proc. IEEE Intl. Symp. on Software Reliability Engineering,
pages 185–194. IEEE Computer Society, 1996.

[152] W.T. Ng and PM Chen. The Systematic Improvement of Fault Tolerance in the Rio File
Cache. In Proc. 29th Intl. Symp. on Fault-Tolerant Computing, pages 76–83, 1999.

[153] W.T. Ng and P.M. Chen. The design and verification of the rio file cache. IEEE Transactions
on Computers, 50(4):322–337, 2001.

[154] A.J. Offutt, A. Lee, G. Rothermel, R.H. Untch, and C. Zapf. An experimental determination
of sufficient mutant operators. ACM Transactions on Software Engineering and Methodology,
5(2):99–118, 1996.

[155] A.J. Offutt, G. Rothermel, and C. Zapf. An experimental evaluation of selective mutation.
In Proc. Intl. Conf. on Software Engineering, pages 100–107. IEEE Computer Society Press,
1993.

[156] J. Ohlsson, M. Rimen, and U. Gunneflo. A study of the effects of transient fault injection into
a 32-bit risc with built-in watchdog. In Proc. Intl. Symp. on Fault-Tolerant Computing, pages
316–325. IEEE.

[157] J. Pan, P. Koopman, D.P. Siewiorek, Y. Huang, R. Gruber, and M.L. Jiang. Robustness
Testing and Hardening of CORBA ORB Implementations. In Proc. IEEE/IFIP Intl. Conf.
on Dependable Systems and Networks, pages 141–150. IEEE Computer Society, 2001.

[158] S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing Atomicity Violation Bugs from Their
Hiding Places. In Proc. Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems, 2009.

[159] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, and R. Iyer. SymPLFIED: Symbolic program-level
fault Injection and error detection framework. In Proc. IEEE/IFIP Intl. Conf. on Dependable
Systems and Networks, pages 472–481. IEEE, 2008.

[160] K. Pattabiraman, G.P. Saggese, D. Chen, Z. Kalbarczyk, and R. Iyer. Automated derivation of
application-specific error detectors using dynamic analysis. IEEE Transactions on Dependable
and Secure Computing, 2010.

[161] P. Popov and L. Strigini. Assessing Asymmetric Fault-Tolerant Software. In Proc. Intl. Symp.
on Software Reliability Engineering, pages 41–50, 2010.

[162] D. Powell. Failure Mode Assumptions and Assumption Coverage. In Proc. Intl. Symp. on
Fault-Tolerant Computing, pages 386–395, 1992.

[163] D. Powell, E. Martins, J. Arlat, and Y. Crouzet. Estimators for Fault Tolerance Coverage
Evaluation. IEEE Transactions on Computers, 44(2):261–274, 1995.

[164] GNU Project. GCC documentation. http://gcc.gnu.org/onlinedocs/gcc/, year=2011,.

[165] Kai Qian, David den Haring, and Li Cao. Embedded Software Development with C. Springer,
2009.

[166] Feng Qin, Joe Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. Rx: Treating Bugs as
Allergies—A Safe Method to Survive Software Failures. In Proc. ACM Symp. on Operating
Systems Principles, 2005.

Bibliography 223

[167] G.L. Ries, G.S. Choi, and R.K. Iyer. Device-level transient fault modeling. In Proc. Intl.
Symp. on Fault-Tolerant Computing, pages 86–94. IEEE, 1994.

[168] M. Rodríguez, F. Salles, J.C. Fabre, and J. Arlat. MAFALDA: Microkernel assessment by
fault injection and design aid. Dependable Computing—EDCC-3, pages 143–160, 1999.

[169] Research Triangle Institute (RTI). The Economic Impacts of Inadequate Infrastructure for
Software Testing. National Institute of Standards and Technology (NIST), 2002.

[170] F. Salfner, M. Lenk, and M. Malek. A survey of online failure prediction methods. ACM
Computing Surveys (CSUR), 42(3):10, 2010.

[171] F. Salfner and M. Malek. Using hidden semi-markov models for effective online failure pre-
diction. In Proc. IEEE Intl. Symp. on Reliable Distributed Systems, pages 161–174. IEEE,
2007.

[172] F. Salles, M. Rodriguez, J.-C. Fabre, and J. Arlat. MetaKernels and Fault Containment
Wrappers. In Proc. Intl. Symp. on Fault-Tolerant Computing, pages 22–29, 1999.

[173] B.P. Sanches, T. Basso, and R. Moraes. J-SWFIT: A Java Software Fault Injection Tool. In
Proc. Latin American Symp. on Dependable Computing, 2011.

[174] W. Sanders and J. Meyer. Stochastic Activity Networks: Formal Definitions and Concepts.
Lectures on Formal Methods and Performance Analysis, pages 315–343, 2001.

[175] A. Schiper, K. Birman, and P. Stephenson. Lightweight causal and atomic group multicast.
ACM Transactions on Computer Systems (TOCS), 9(3):272–314, 1991.

[176] Inc. Scientific Toolworks. SciTools Understand. http://www.scitools.com, 2011.

[177] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton, R. Dancey, A. Robin-
son, and T. Lin. Fiat-fault injection based automated testing environment. In Proc. Intl. Symp.
on Fault-Tolerant Computing, pages 102–107. IEEE, 1988.

[178] C.P. Shelton, P. Koopman, and K. Devale. Robustness testing of the Microsoft Win32 API.
In Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and Networks, pages 261–270. IEEE,
2000.

[179] D. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. Chapman and
Hall/CRC, 2004.

[180] L. Silva, H. Madeira, and JG Silva. Software Aging and Rejuvenation in a SOAP-based Server.
In Proc. IEEE Intl. Symp. on Network Computing and Applications, pages 56–65, 2006.

[181] Critical Software. Critical Software products and services. http://www.criticalsoftware.
com/, 2011.

[182] M. Sridharan and A.S. Namin. Prioritizing Mutation Operators Based on Importance Sam-
pling. In Proc. IEEE Intl. Symp. on Software Reliability Engineering, pages 378–387. IEEE.

[183] K. Srinivasan and D. Fisher. Machine Learning Approaches to Estimating Software Develop-
ment Effort. IEEE Transactions on Software Engineering, pages 126–137, 1995.

[184] D.T. Stott, B. Floering, Z. Kalbarczyk, and R.K. Iyer. A Framework for Assessing Depend-
ability in Distributed Systems with Lightweight Fault Injectors. In Proc. Intl. Computer
Performance and Dependability Symp., pages 91–100, 2000.

Bibliography 224

[185] R. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM Transactions on
Computer Systems (TOCS), 3(3):204–226, 1985.

[186] M. Subkraut and C. Fetzer. Automatically finding and patching bad error handling. In
Dependable Computing Conference, 2006. EDCC’06. Sixth European, pages 13–22. IEEE, 2006.

[187] M. Sullivan and R. Chillarege. Software Defects and their Impact on System Availability:
A Study of Field Failures in Operating Systems. In Proc. Intl. Symp. on Fault-Tolerant
Computing, pages 2–9, 1991.

[188] M. Susskraut and C. Fetzer. Robustness and security hardening of COTS software libraries.
In Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and Networks, pages 61–71. IEEE,
2007.

[189] A. Thakur, R.K. Iyer, L. Young, and I. Lee. Analysis of failures in the Tandem NonStop-UX
operating system. In Proc. IEEE Intl. Symp. on Software Reliability Engineering, pages 40–50.
IEEE, 1995.

[190] S.K. Thompson. Sample Size for Estimating Multinomial Proportions. The American Statis-
tician, 41(1):42–46, 1987.

[191] Dependable Computing Systems: Paradigms, Performance Issues, and Applications, pages
407–429. John Wiley & Sons, 1st edition, 2005.

[192] K.S. Trivedi. Keynote Talk: Software Aging and Rejuvenation: Modeling and Analysis. In
Workshop on Self-Healing, Adaptive and Self-MANaged Systems, 2002.

[193] T.K. Tsai, M.C. Hsueh, H. Zhao, Z. Kalbarczyk, and R.K. Iyer. Stress-based and path-based
fault injection. Computers, IEEE Transactions on, 48(11):1183–1201, 1999.

[194] T.K. Tsai and R.K. Iyer. Measuring Fault Tolerance with the FTAPE Fault Injection Tool. In
Proc. Intl. Conf. on Modelling Techniques and Tools for Computer Performance Evaluation:
Quantitative Evaluation of Computing and Communication Systems, 1995.

[195] K. Vaidyanathan and K.S. Trivedi. A comprehensive model for software rejuvenation. IEEE
Transactions on Dependable and Secure Computing, 2(2):124–137, 2005.

[196] P.C. Véras, E. Villani, A.M. Ambrosio, N. Silva, M. Vieira, and H. Madeira. Errors on Space
Software Requirements: A Field Study and Application Scenarios. In Proc. IEEE Intl. Symp.
on Software Reliability Engineering, pages 61–70. IEEE.

[197] M. Vieira and H. Madeira. Benchmarking the Dependability of Different OLTP Systems. In
Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and Networks, pages 305–310, 2003.

[198] M. Vieira and H. Madeira. A dependability benchmark for oltp application environments. In
Proceedings of the 29th international conference on Very large data bases-Volume 29, pages
742–753. VLDB Endowment, 2003.

[199] M. Vieira, H. Madeira, I. Irrera, and M. Malek. Fault injection for failure prediction methods
validation. In Workshop on Hot Topics in System Dependability, IEEE/IFIP Intl. Conf. on
Dependable Systems and Networks, 2009.

[200] K.P. Vo, Y.M. Wang, PE Chung, and Y. Huang. Xept: A software instrumentation method
for exception handling. In Proc. IEEE Intl. Symp. on Software Reliability Engineering, pages
60–69. IEEE Computer Society, 1997.

Bibliography 225

[201] J. Voas, L. Morell, and K. Miller. Predicting where faults can hide from testing. Software,
IEEE, 8(2):41–48, 1991.

[202] J.M. Voas. Certifying off-the-shelf software components. IEEE Computer, 31(6):53–59, 1998.

[203] J.M. Voas, F. Charron, G. McGraw, K. Miller, and M. Friedman. Predicting How Badly
"Good" Software Can Behave. IEEE Software, 14(4):73–83, 1997.

[204] E.J. Weyuker. Testing component-based software: A cautionary tale. IEEE Software, 15(5):54–
59, 1998.

[205] S. Winter, C. Sârbu, N. Suri, and B. Murphy. The impact of fault models on software robust-
ness evaluations. In Proc. Intl. Conf. on Software Engineering, pages 51–60. ACM, 2011.

[206] I. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann, 2005.

[207] W.E. Wong and A.P. Mathur. Reducing the cost of mutation testing: An empirical study.
Journal of Systems and Software, 31(3):185–196, 1995.

