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INTRODUCTION 

 

1. Cancer incidence and mortality in Italy 

Cancer is the leading cause of death in economically developed countries and the 

second leading cause of death in developing countries (World Health 

Organization, 2008). The burden of cancer is increasing in economically 

developing countries as a result of population aging and growth as well as, 

increasingly, an adoption of cancer-associated lifestyle choices including 

smoking, physical inactivity, and „„westernized‟‟ diets.  The total number of 

cancer deaths by country are collected annually and are made available by the 

World Health Organization (WHO) (World Health Organization Databank WHO 

Statistical Information System, 2010).   

In the last edition of Cancer Incidence in 5 Continents, the presence of 

population-based cancer registries in European Countries varied widely. In some 

Countries (e.g.Greece) cancer registries were not present, in others they extended 

nationally. In Italy, as in several other Countries (Portugal, Spain, France, 

Belgium, Germany, Poland, Switzerland and The United Kingdom) cancer 

registries have a regional coverage. The Graph1 shows the mean number of 

citizens in each European Country who are observed by cancer registries. The 

United Kingdom ranks first with about 56 million citizens, Italy is second with 

more than 17 million. Italian cancer registries are part of the Italian Network of 

cancer registries – AIRTUM (www.registri-tumori.it). AIRTUM has a common 

centralized data-base where data from all the Italian cancer registries are uploaded 

after quality checks. After the publication of Cancer Incidence in 5 Continents 

vol. IX, cancer registration in Italy has also extended, with the support of 

AIRTUM, to include new registries. Nowadays, the cancer registration in Italy 

involves almost 20 million citizens and several others are under the control of 

Specialized (for age, or type of cancer) ones. In Italy there is no national cancer 

registry, but AIRTUM puts our Country among the European leaders with regard 

to the capacity to provide information on cancer epidemiology. 
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Graph 1: mean number of citizens in each European Country 

 

A cancer incidence rate is the number of new cancers of a specific site/type 

occurring in a specified population during a year, usually expressed as the number 

of cancers per 100,000 population at risk. That is, 

Incidence rate = (New cancers / Population) × 100,000 

The numerator of the incidence rate is the number of new cancers; the 

denominator is the size of the population. The number of new cancers may 

include multiple primary cancers occurring in one patient. The primary site 

reported is the site of origin and not the metastatic site. In general, the incidence 

rate would not include recurrences. 

In the area of the Italian Network of Cancer Registries there were, on yearly 

average during 1998-2002, 783.4 cancer cases diagnosed every 100,000 males 

and 613.1 every 100,000 females. The most frequently diagnosed cancers were 

non-melanoma skin cancers (15.2%), prostate (14.4%), lung (14.2%), urinary 

bladder (9.0%), and colon cancer (7.7%) among males and breast (24.9%), non-

melanoma skin cancer (14.8%), colon (8.2%), lung (4.6%), and stomach cancer 

(4.5%) among females. In Italy, 162,756 new cancers among males and 129,247 
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among females have been estimated to be diagnosed yearly. As regards mortality, 

there were 89,561 cancer deaths among males and 66,471 among females in 2002. 

The cumulative risk (0-74 years) of developing a cancer is 1 case every 3 men and 

1 case every 4 women. 

 

Fig. 1: incidence e mortality for cancer in Italy 

 

1.1 Cancer in enfants 

Recent data coming from AIRTUM Working group about children cancer 

incidence (Epidemiol Prev 2008; 32(2) Suppl 2: 1-112) indicate that there is a 

growth trend of both all new cases of cancer and mean tumor sites at 0-14 years. 

Particularly, there are 168,5 cancer cases diagnosed every 1.000.000 children and 

the most frequently diagnosed are leukemia (52,1) and acute lymphatic leukemia 

(40,5). 

 

Fig. 2: cancer incidence at age 0-14 years (AIRTUM) 
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2. Chemotherapy and radiotherapy 

Two-thirds of women <40 years at diagnosis will have a tumor is >2 cm in size 

and/or involved axillary lymph nodes (stage II or higher) (Rosenberg R. et al., 

2003). Almost all women with stage II tumors and even most with stage I disease 

with a tumor greater than 1 cm in size will be advised to have gonadotoxic 

chemotherapy (Goldhirsch A. et al., 2009). At least two-thirds of women under 40 

will have a hormone receptor positive tumor and in addition to chemotherapy (or 

as a single modality in women with favorable tumors) will be advised to undergo 

5 years of antihormone therapy with a GnRH agonist. Adjuvant treatment is 

selected based on both the risk of recurrence and the biologic characteristics of the 

tumor. The 15-year risk of recurrence and death for women under 50 not receiving 

adjuvant systemic therapy is 53% and 42%, respectively, irrespective of stage or 

biologic characteristics according to Early Breast Cancer Trialists (EBCTCG) 

meta-analyses with the latest major published outcomes in 2005 (EBCTCG, 

2005). These figures dramatically differ by stage and biomarker variables, with a 

12.5% breast cancer mortality rate at 15 years for women under 50 with low-risk 

node-negative tumors, 25% for women with high-risk node-negative tumors, and 

50% for node-positive tumors (EBCTCG, 2005). Biologic characteristics with the 

greatest impact on treatment selection include estrogen and progesterone receptors 

(ER and PR), proliferation (usually measured by Ki-67), and presence of the 

growth factor receptors, such as HER-2 neu (Perou CM et al., 2000).  

 

2.1 Drug effect and their toxicity 

Specifically, anticancer drugs diminish the primordial follicle pool, cause ovarian 

atrophy, and harm the ovarian blood vasculature (Reulen RC et al., 2009). 

Possible mechanisms of damage include follicular apoptosis and cortical fibrosis. 

Recent hypothesis suggests increased activation of follicles from the resting pool, 

resulting in accelerated atresia, and eventually a premature „„burn-out‟‟ of the 

primordial follicle reserve. However, the exact mechanism of injury still remains 

unclear. Importantly, the magnitude of anticancer drug-induced damage is 

variable: in some instances, therapy can be sterilizing, whereas often instead, 
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women suffer from partial ovarian injury. The extent of damage is related to 

patient‟s age, chemotherapeutic agent, and drug regimen used (Critchley HOD et 

al., 2005). When treated with radiation, variable effects are also related to the 

location of the irradiation field. Although achieving a pregnancy years after 

cancer treatment is safe (Wallace WH et al., 2010), exposure to anticancer drug 

therapies may harm the quality of maturing eggs and therefore, concern has been 

raised regarding pregnancy and the health of future offspring conceived with 

oocytes exposed to chemotherapy in a non dormant state. Radiation to the uterus 

can interfere with implantation and uterine growth during pregnancy, resulting in 

poor obstetric outcome (Nicosia S et al., 1985). As cancer treatment improves, the 

number of childhood cancer survivors wishing to have healthy children has 

grown. As a result, it has become imperative to fully understand the mechanisms 

that lead to ovarian damage in the prepubertal and adult state and the impact 

variables such as age and treatment regimen have on the magnitude of injury for 

the physicians to effectively counsel patients in future attempts at successful 

pregnancies. 

 

2.2 Chemotherapy induced ovarian damage 

At birth, the ovary contains a finite number of oocytes that are surrounded by a 

single layer of pregranulosa cells to form primordial follicles (about 2 millions). 

By 5 months of gestational age, the female ovary establishes a fixed number of 

primordial follicles and therefore, the number of primordial follicles is a direct 

indication of fertility reserve. Throughout the life cycle, there is an ongoing 

decline in the number of primordial follicles that is the result of apoptotic cell 

death. Eventually, this loss of primordial follicles results in menopause at an 

average age of 50 to 51 years. In a recent study, the first model of human ovarian 

reserve from conception to menopause that best fits the combined histologic 

evidence has been described (Wallace WH et al., 2010). This model suggests that 

81% of the variance in primordial follicle population is exclusively owing to age 

and analysis showed that 95%of the fluctuation in follicular reserves is owing to 

age alone for ages up to 25 years. When ovarian functioning is disrupted by 
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anticancer drugs, the effects can be devastating. Clinically, patients may suffer 

from complete ovarian failure resulting in amenorrhea, climacteric symptoms, an 

increase in gonadotropins, and low estradiol levels (Meirow D, 2000). Histologic 

studies show that the end stage effects of chemotherapy are ovarian atrophy, a 

depletion of the primordial follicle stockpile, diminished ovarian weight, and 

stromal fibrosis (Nicosia S et al., 1985). Alternatively, chemotherapy‟s effects 

may be partial and patients may experience a reduction in their primordial follicle 

stockpiles, menstrual irregularities, and hormonal disturbances, but may still be 

able to maintain menses post-treatment. In animal studies, chemotherapy has been 

shown to cause a significant loss in both maturing follicles and dormant 

primordial follicles. In mice, chemotherapy causes the destruction of growing 

follicles (Utsunomiya T et al., 2008). Chemotherapy also results in diminished 

primordial follicle stockpiles in mice in a dose-dependent manner (Meirow D et 

al., 1999) and has been correlated to a reduction in primordial follicles in the 

rhesus macaque (Ataya K et al., 1995). Chemotherapy has differential effects on 

primordial, dormant follicles and growing, larger ovarian follicles. Chemotherapy 

targets actively dividing cells, and therefore, destroys mature ovarian follicles 

during treatment, specifically by inducing apoptosis in granulosa cells. Mice 

exposed to combination chemotherapy (Ironotecan HCl) show TUNEL positive 

granulosa cells in large ovarian follicles (Utsunomiya T et al., 2008; Meirow D et 

al., 1999; Ataya K et al., 1995; Philosof-Kalich L et al., 2009).However, the 

effects that chemotherapy has on primordial, dormant follicles are variable and the 

question remains as to whether the same effect is observed in these follicles. 

Clinically, patients exposed to chemotherapy initially stop menses as a result of 

the destruction of growing follicles and resume cycling after a period of recovery. 

Even low doses of chemotherapy can wipe out the population of maturing 

follicles, but partial ovarian reserve remains intact, allowing for the eventual 

resumption of menses. The means by which chemotherapy induces damage to the 

primordial follicle stockpiles, which represent future fertility potential, remains 

unclear. It is therefore, of paramount importance to understand the mechanisms by 

which chemotherapy injures the follicular stockpile to develop ways to improve 

fertility post anticancer drug exposure. 
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2.3 Follicular apoptosis 

Chemotherapy has been suggested to induce damage to primordial follicles by 

inducing apoptosis. Electron microscopy has shown that within hours of 

chemotherapy exposure, primordial follicles become surrounded by abnormally 

thick basal lamina (Familiari G et al., 1993). A substantial body of evidence has 

documented in vitro evidence of primordial follicle apoptosis (Meirow D et al., 

1999) and chemotherapy treatment in vitro has also been shown to cause 

primordial follicle architecture disruption and pregranulosa cell swelling. 

Preliminary in vivo studies using human ovarian xenografts in SCID mice have 

also shown indications of primordial follicle apoptosis (Oktem O et al., 2007). 

More research is needed to verify that primordial follicle apoptosis does indeed 

occur in true in vivo conditions, and whether the oocyte or surrounding granulosa 

cells are the primary target. Alternatively, other mechanisms of damage, such as 

cortical fibrosis and follicular „„burn-out‟‟ have been suggested to explain the 

variable loss of follicular reserves. 

 

2.4 Cortical fibrosis 

It is clear that chemotherapy results in ovarian cortical fibrosis and blood vessel 

damage (Nicosia S et al., 1985). In a study conducted on human ovarian tissue 

exposed to combination chemotherapy in vivo, hyalinization of cortical blood 

vessels, neovascularization, and cortical fibrosis were observed. These modes of 

injury result in local ischemia, thereby affecting the growth and survival of 

primordial follicles. Triangular areas of fibrosis have been observed to coincide 

with a depletion of primordial follicles, indicating that blood vessel damage 

results in primordial follicle injury. This may also impair the processes of new 

vessel formation that are critical for normal follicle growth within the territory of 

the damaged vasculature. If apoptosis had initially led to a diminished need for 

blood vasculature, then a uniform pattern of primordial follicle loss would be 

expected; this however, is not the observed trend (Meirow D et al., 2007).  
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2.5 Follicular “BURN-OUT” hypothesis 

A novel hypothesis to explain the loss of primordial stockpiles is the „„burn-out‟‟ 

mechanism. When exposed to chemotherapy, growing follicles are destroyed and 

therefore, there is a possible decrease in granulosa cell-derived paracrine growth 

factors that inhibit primordial follicle recruitment, such as anti Mullerian hormone 

(AMH). AMH null mice show increased activation of primordial follicles, 

resulting in greater numbers of large follicles that undergo atresia, and eventually 

resulting in a premature „„burn-out‟‟ of the primordial follicle reserve (Durlinger 

ALL et al., 1999). As a result, a possible mechanism by which chemotherapy may 

cause a depletion of primordial follicles is by increasing the recruitment of 

dormant follicles into the pool of actively growing follicles. An expected result of 

chemotherapy would, therefore, be an increase in large follicles and a decrease in 

primordial follicles. When mice were exposed to cyclophosphamide, an increase 

in the ratios of both primary and secondary follicles to primordial follicles was 

observed, thus supporting the „„burn-out‟‟ hypothesis (Philosof-Kalich L et al., 

2009). Premature activation may therefore, contribute to the deleterious effects of 

chemotherapy on the ovary. 

 

Table 1: cytotoxic agents according to degree of gonadotoxicity 

 

2.6 DRUG EFFECT  

There are 6 main classes of chemotherapeutic drug groups: alkylating agents, 

platinum derivatives, antibiotics, antimetabolites, plant alkaloids, and the taxanes. 

The extent of ovarian damage is influenced by the type of drug being 
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administered (Lee SJ et al., 2006). Alkylating agents are often and effectively 

used in combination chemotherapy treatment but they are also associated with 

particularly high levels of premature ovarian failure. Indeed, alkylating agents are 

responsible for the highest age-adjusted odds ratio of ovarian failure rates, 

followed by other drug families (Meirow D., 2000) (Fig. 3).  

 

Fig. 3: age-adjusted odds ratio of ovarian failure rates 

 

There are limited data surrounding the effects the taxane family has on ovarian 

failure rates, however; it has been documented that patients suffer from gonadal 

toxicity and high FSH levels (Anderson RA et al., 2006). In addition, the 

inclusion of paclitaxel, a member of the taxane family, to traditional AC 

(doxorubicin, cyclophosphamide) treatment significantly increases ovarian 

damage after treatment as measured by recovery of regular menstrual cycling 

(Petrek JA et al., 2006). Cancer patients usually undergo combination 

chemotherapy treatment, and a number of studies have reported the effects 

treatment protocols have on ovarian function. In breast cancer patients, 

individuals who underwent combination chemotherapy with regimens containing 

cyclophosphamide, methotrexate, and fluorouracil suffer from the highest 

amenorrhea rates. CAF (cyclophosphamide, doxorubicin, and fluorouracil) 
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treatment also induced high rates of ovarian failure whereas AC (doxorubicin and 

cyclophosphamide) treatment resulted in a greater eventual recovery of ovarian 

function after treatment (Meirow D et al., 2004). In a study of the incidence of 

menstrual bleeding after chemotherapy treatment in breast cancer patients, there 

was a 48% bleeding rate in individuals 1 month after cyclophosphamide, 

methotrexate, and fluorouracil treatment. This rate declined significantly over 

time. Alternatively, patients that underwent AC with or without paclitaxel had an 

initial significant decline of menstrual bleeding, slow recovery, and eventual 

restoration of regular menstrual bleeding in approximately 50% of patients (Petrek 

JA et al., 2006) (Table 2). Patients treated for Hodgkin lymphoma experience 

varying impacts on fertility potential based on the course of their treatment. 

Treatment with protocols containing alkylating agents such as MVPP (Nitrogen 

Mustard, vinblastine, procarbazine, and prednisolone), COPP (cyclophosphamide, 

vincristine, procarbazine, and prednisolone), or ChlVPP (chlorambucil, 

vinblastine, procarbazine, and prednisolone) had relatively high rates of ovarian 

damage, with amenorrhea rates between 38% and 57%. Alternatively, in treatment 

with ABVD chemotherapy, (doxorubicin, bleomycin, vinblastine, and 

dacarbazine) significantly less ovarian damage is reported (Meirow D et al., 2004; 

Brougham MFH et al., 2005). In the study of Hodgkin lymphoma survivors 

attempting to achieve pregnancy, it was found that ABVD treatment did not 

hinder fertility potential, as pregnancy rates were comparable with controls 

(Hodgson DC et al., 2007) (Table 2). Variable results have been reported 

regarding the effects treatment protocols have on non-Hodgkin lymphoma 

patients. Patients treated with a variety of drug regimens have documented 

relatively high ovarian failure rates, with sterilization rates of 44%. Patients 

treated for leukemia have low rates of reproductive failure after treatment and in a 

study of 47 patients, only 15% of the cohort experienced ovarian failure after 

treatment with combinations of the drugs ARA-C, daunorubicin, mitoxantrone, 

and VP-16 (Meirow D et al., 2004). Patients that undergo bone marrow 

transplantation (BMT) have extremely high ovarian failure rates. The risk of 

ovarian failure after treatment with total body irradiation (TBI) as conditioning for 

a bone marrow transplant is significant, but less predictable. In a large study of 



Introduction 
 

11 
 

718 long-term survivors, treated with chemotherapy and/or TBI as conditioning 

treatment before a bone marrow transplant, 532 had received TBI (10 to 15.75 Gy, 

single exposure or fractionated) and 186 chemotherapy, with either 

cyclophosphamide or busulphan. After TBI, 90% developed ovarian failure and 

after cyclophosphamide or busulphan 60% failed. There were 16 spontaneous 

pregnancies to 13 women who had received TBI, 6 of these women were 

prepubertal at the time of their radiotherapy (Sanders JE et al., 1996). In an 

additional study of 63 cancer patients who had undergone BMT, only 5 

individuals did not experience a premature menopause, giving a failure rate of 

92%.3 Additional studies further document this high risk of damage, with BMT 

inducing ovarian failure rates ranging from 72% to 100% (Meirow D. et al., 2004) 

(Table 2). It is clear that chemotherapeutic regimens, drugs, and age all have 

differential impacts on ovarian function. It is important for clinicians to fully 

realize the variable effects treatment can have on a patient‟s ability to resume 

menses after completing therapy to effectively consult patients in fertility 

preserving options, especially in the case of young patients that hope to continue 

building their families in the future. 
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Table 2: ovarian failure rates tables 

 

2.7 Radiation induced ovarian damage 

High-dose ionizing radiation is used to treat many types of cancer, and central 

nervous system and hematologic malignancies. Whenever possible, the gonads are 

shielded from radiation, however, this is not possible when the radiation field 

overlaps with the ovaries or when total body irradiation is required as a 

conditioning treatment for bone marrow transplantation. Radiotherapy to the 

pelvis results in ovarian injury and diminished follicle reserve; the extent of 

damage is largely based on patient‟s age, treatment dose, and the irradiation field. 

The location of the radiation field impacts the degree of ovarian damage with total 

body irradiation observed to result in ovarian failure in 90% of patients in long-

term follow-up (Sanders JE et al., 1996). After abdominal radiation, ovarian 
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failure rates may be as high as 97% (Wallace WH et al., 1989). Irradiation dosage 

and patient age also largely determine the degree of follicular loss and the 

likelihood of developing premature menopause. Approximately, half of the total 

number of nongrowing follicles are lost at doses of 2Gy (Wallace WHB et al., 

2003) (LD50). In female cancer survivors, the relative risk of developing 

premature ovarian failure and infertility rates have both been observed to increase 

with increasing doses of abdominal pelvic radiation. In addition, older patients are 

more susceptible to radiation-induced damage. Lower doses of radiation cause 

ovarian failure in older patients whereas young patients are more resilient, and 

succumb to ovarian failure at higher doses. 

 

2.8 Radiation induced Uterine Damage 

In addition to ovarian injury, childhood cancer survivors that were exposed to 

radiotherapy reportedly suffer from uterine damage, resulting in an increase in 

premature deliveries and miscarriage rates. These effects are likely the result of 

disruption to uterine blood vasculature and a decrease in uterine weight and 

length; with the extent of damage related to the radiation field and dose. In 

women who were treated with whole abdominal radiotherapy, the mean uterine 

length of 10 women was 4.1 cm when compared with 7.3 cm found in controls 

(Critchley HOD et al., 1992). Endometrial thickness is diminished in women who 

had earlier undergone abdominal radiation and when treated with exogenous sex 

steroid replacement, no increase in thickness was reported. In a later study, 

women who had undergone total body irradiation did show some improvement in 

endometrial thickness and uterine volume in response to sex steroids (Bath LE et 

al., 1999). It is likely that the high irradiation doses used in abdominal and 

directed uterine irradiation result in irreversible damage to the uterus. This is 

particularly worrisome for women hoping to become pregnant, and even those 

individuals who decide to use oocyte donors as a result of ovarian failure must 

realize the higher risk of miscarriage and premature deliveries. 
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2.9 Determinants of ovarian damages 

The primary determinants of chemotherapy-induced amenorrhea and/or loss of 

fertility are age of the woman at the time of chemotherapy, dose and number of 

cycles of the alkylating agent received, and, to a lesser extent, exposure to 

anthracyclines, taxanes, and platinum analogs (Petrek JA et al., 2006; Walshe JM 

et al., 2006; Gerber B et al., 2008; Hickey M et al., 2009). The aklylating agent, 

cyclophosphamide, is also one of the most potent in reducing ovarian follicular 

reserve. A woman who takes the equivalent of 2.4–3 g/m
2
 of cyclophsophamide 

over 12–16 weeks can count on adding an approximate 10 years to her ovarian 

reproductive age or 1.5–3.0 years per cycle (Petrek JA et al., 2006; Walshe JM et 

al., 2006; Gerber B et al., 2008; Hickey M et al., 2009). A woman who is 30 at 

chemotherapy initiation may have an equivalent ovarian age of 40 after 4–6 cycles 

of cyclophosphamide containing polychemotherapy. Women with a good 

prognosis breast cancer (stage I node negative) who received either six cycles of 

CMF or four cycles of AC experienced an estimated 33% rate of amenorrhea 

(Goldhirsch A et al., 1990; Bonadonna G et al., 1995; Fisher B et al., 1990; Bines 

J et al., 1996; Jones S et al., 2009). Rates of amenorrhea for more aggressive 

regimens given to women with poorer prognosis tumors such as six cycles of 

fluorouracil plus epirubicin or doxorubicin and cyclophosphamide (FEC or FAC), 

six cycles of AC or four cycles of AC followed by four of docetaxel are higher 

ranging from 50% to 65% (Levine MN et al., 1998; Hortobagyi GN et al., 1986; 

Swain SM et al., 2009; Fornier MN et al., 2005; Tham YL et al., 2007). Fifteen to 

50 percent of women younger than age 40 at diagnosis will recover menses. 

Amenorrhea is likely to be permanent in 90% of women over 40 and in 95% of 

women over 45 (Swain SM et al., 2009; Fornier MN et al., 2005; Tham YL et al., 

2007; Perez-Fidalgo JA et al., 2010). 

 

2.10  Age effect and fertility potential 

Age plays a crucial role in determining how resilient the ovary will be to 

chemotherapy treatment. Older patients are more likely to develop a premature 

menopause after chemotherapy, than are younger individuals. Petrek et al (Petrek 
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JA et al., 2006) found that age correlated to a decrease in the prevalence of 

menstrual bleeding as a result of chemotherapy exposure. Breast cancer patients 

younger than 35 had an approximately 85% recovery in monthly bleeding 

whereas women aged between 35 and 40 ranged from a 45% to 61% recovery rate 

and women over 40 years had an even lower recovery rate, with many individuals 

in this age group never regaining regular menses (Graph. 2). 

 

Graph. 2: recovery in monthly bleeding after chemotherapy as a function of age 

 

In an additional study of 168 individuals, patients who maintained ovarian 

function post treatment were found to be significantly younger (27.4+ 8.3 y) than 

those that lost ovarian function (34.7+ 8 y) (Meirow D et al., 2004). Patients 

treated for Hodgkin lymphoma suffer from significantly less gonadotoxicity when 

under the age of 25 (Brusamolino E et al., 2000). This age effect is mostly owing 

to the strong negative correlation between age and the nongrowing follicle (NGF) 

population, representing ovarian reserve (Wallace WH et al., 2010) (graph. 3). 
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Older women have diminished primordial follicle stockpiles and therefore, the 

effects of chemotherapy seem more marked. 

 

 

Graph. 3: correlation between age and the nongrowing follicle 

 

2.11 Alternative chemotherapy treatment regimens that may reduce 

follicular damage 

Chemotherapy regimens can usually be altered somewhat to reduce 

gonadotoxicity. For example, three cycles of FEC followed by three cycles of 

docetaxel provides similar chemotherapeutic efficacy as six cycles of FEC with 

less ovarian damage due to reduced amount of the alkylating agent (Berliere M et 

al., 2008). For most Her- 2þ tumors, preliminary evidence suggests that taxane 

and carboplatin are as effective as anthracycline, cyclophosphamide, and taxane 

combinations, completely avoid cyclophosphamide, and are probably not as likely 

to result in sterility (Slamon D et al., 2001; Costa RB et al., 2010). Triple negative 

breast cancers (ER-, PR-, Her-2 negative) often have multiple deficits in DNA 

repair pathways, and women with these tumors may selectively benefit from 

treatment with cis- or carboplatin regimens in combination with Poly-(ADP-

ribose) polymerase (PARP) inhibitors (Ismail-Khan R et al., 2010). Trials are 
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ongoing, but again platin-based regimens in combination with PARP are likely to 

be less gonadotoxic than cyclophosphamide-based regimens. 

 

3. Preservation of fertility 

 

3.1 Preserving ovarian tissue and function 

Three core strategies are employed to preserve fertility and to protect ovaries from 

the insults discussed earlier. First, the cryopreservation of immature oocytes, 

mature eggs, or embryos is a favored strategy because high survival rates post-

thawing are becoming commonplace (Saragusty J. et al., 2011). However, this 

strategy can be unavailable as embryo production necessarily requires a partner. 

Further, the production of significant numbers of mature eggs requires time for a 

stimulation cycle, and can require hormonal stimulation that is incompatible with 

treatment (Rodriguez-Wallberg K.A. et al., 2010). Even considering these 

contraindications, freezing eggs and embryos remains the most effective course of 

action, as women who survive their treatment with global reproductive tract 

function intact routinely achieve pregnancy. If these options are unavailable, the 

removal and cryopreservation of ovarian tissue is a reasonable but experimental 

strategy. In the second strategy, ovarian tissue containing primordial and primary 

follicles can be isolated, cryopreserved, and replaced after treatment and recovery. 

Here, it is hoped that the grafted tissue will allow the resumption of ovarian 

function and possible conception. The freezing of whole human ovaries and the 

freezing of small pieces of ovarian cortex, referred to as “cortical strips” are 

considered in more detail later (Table 3). The third strategy involves protecting 

intact ovaries from damage. The most common example of this “ovarian 

transposition,” where an ovary is surgically and mechanically displaced from its 

normal position so as to minimize direct irradiation during treatment (Chargari C 

et al., 2009; Dursun P et al., 2009; Bloemers M C et al., 2010). 
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Table 3: fertility preservation strategies 

 

3.2 Oocyte cryopreservation 

 

3.2.1 Cryobiology 

Historically, interdisciplinary researches networked together with the aim of 

maintaining long-term viability in living cells after cryopreservation. It is well 

known that biological material show a decrease or loss of viability above – 135°C 

because of biochemical reactions; consequentially the temperature that is 

generally used for mammalian cell storage is – 196°C, the same as liquid nitrogen. 

This should prevent reactions from taking place, because water at this temperature 

just exists in a solid state and the only possible alteration may be related to DNA 

damage caused by background reactions. This does not seem to compromise the 

chance of survival and development of human oocytes or embryos, anyhow. As 

cells are alive at 37°C and are almost totally inactive at – 196°C, the difficult steps 

to overcome are related to temperature decrease and the rewarming phase. 

These passages represent the key points responsible for cell survival. Chemically, 

when water is cooled below its freezing point, it solidifies, thus becoming ice. 

This can cause damages to the cells mainly because of intracellular ice crystal 

formation. As ice takes more space inside the cell than liquid water and spreads 

through, it may cause stress and subcellular alterations, eventually, resulting in a 
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loss of viability after rewarming. The main issue to overcome in any 

cryopreservation procedure is to consequentially avoid ice crystal formation. All 

biological systems respond to lowering of the temperature and water solidification 

in a different manner. Mazur in 1984 (Mazur P., 1984) was the first author who 

determined, through specific equations, the kinetics of water exchange in the cell 

and predicted the likelihood of intracellular freezing as a function of the cooling 

rate. This quantitative description can be explained qualitatively considering that, 

by definition, water below its freezing point is supercooled showing higher vapor 

pressure, activity, and chemical potential at a given subzero temperature than that 

of ice or of an ice-water equilibrium solution. As a consequence, as far as the cell 

remains supercooled the vapor pressure or the chemical potential difference will 

allow the water to leave the cell and freeze externally. This causes dehydration 

during cryopreservation with a rate and extent dependent on the permeability of 

the specific cell to water and the cooling rate. Generally speaking the slower is the 

cooling rate the higher extent of dehydration will be obtained. Thus, it is obvious 

that one of the most important points in cryopreservation procedures is to 

dehydrate the cell correctly before or during the freezing procedure to reduce the 

damages caused by intracellular ice formation. If dehydration is inadequate, large, 

intracellular ice crystals may form, which can be lethal to the cells. Although the 

avoidance of intracellular freezing is important to improve survival rates, it is not 

the only aspect to overcome. In fact, ice also forms outside the cell leaving the 

residual unfrozen medium to form channels and increase solute concentration 

causing shrinkage. To overcome these issues, cryoprotectans (CPAs) have been 

introduced in laboratory practices. This family of compounds can be classified 

into two main categories:  

 Permeating agents: can enter the cell and includes glycerol, dimethyl 

sulfoxide (DMSO), ethylene glycol, and 1,2-propanediol (PROH) and 

generally have a molecular weight lower than 100. 

 Nonpermeating agents: cannot enter the cell because of their size and 

polarity. They include large sugar molecules such as sucrose, ficoll, and 

raffinose, and also proteins and lipoproteins. 



Introduction 
 

20 
 

The protective properties of cryoprotectants are related to their ability to lower the 

freezing point of the solution in a concentration-dependent way and to their 

chemical property. They form hydrogen bonds with water molecules eliminating 

ice formation. Moreover, they prevent damages caused by high salt concentration. 

The search for suitable cryoprotectants and their appropriate concentrations has 

been a priority in all the freezing protocols. It seems that low molecular weight 

agents such as glycerol have a protective effect because of their ability to increase 

the unfrozen fraction and reduce cell volume excursion during cooling and 

rewarming procedures. Moreover, they also reduce the toxic effects of high 

concentrations of other compounds (colligative properties). The cryoprotectants 

enter the cells by osmosis while the water leaves. This might cause shrinkage as 

the water rapidly leaves the cells to dilute the high concentration of extracellular 

solutes or more serious issues when cryoprotectants need to be removed. On the 

contrary, high molecular weight cryoprotectants cannot enter the cells and are, 

instead, involved in the stabilization of the plasma membrane by solute-specific 

interactions with the bilayer phospholipids. This is the main reason why in almost 

all the slow freezing protocols the cryoprotectant mixture is made up of a 

penetrating agent and a non penetrating agent. 

 

3.2.2 Slow freezing 

The slow cooling protocol is based on a very slow rate of decreasing temperature 

(< l°C/min) over time (graph 4).  

 

Graph 4: slow freezing curve 
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Freezing solutions are cooled from room temperature (around 20°C) to – 8°C at a 

rate of 2°C/min. Manual seeding within straws is performed at near – 8°C and this 

temperature is maintained for 10 minutes to allow uniform ice propagation. This 

process prevents supercooling and starts the dehydration process. If ice formation 

is not initiated by seeding, the solution will remain unfrozen until a much lower 

subzero temperature is reached, which can be detrimental for oocyte survival. 

After this hold ramp the temperature is decreased to –30°C at a rate of 0.3°C/min 

and then rapidly brought to – 150°C at a rate of 50°C/ min. The straws are then 

directly plunged into liquid nitrogen at – 196°C and are stored. The thawing 

procedure consists of rapid rewarming, subsequent stepwise dilution of the 

cryoprotectants, and finally, return to 37°C for culture. The solutions that are 

commonly used during slow cooling procedures are a mixture of a penetrating 

cryoprotectant (usually PROH) and a nonpenetrating one (usually sucrose). 

 

3.2.3 Vitrification  

Vitrification is a recently developed alternative protocol that might become the 

elective method to freeze oocytes and ovarian tissue. It is based on the concept of 

avoiding ice crystal formation by using higher cryoprotectant concentrations, 

which causes the water to form a glassy state around the cell rather than ice 

crystals.  

Nevertheless, although these higher concentrations of cryoprotectants may 

prevent mechanical damages, they can also be toxic for the cell or create an 

osmotic shock. To design a vitrification protocol the main points to consider are 

the cooling and warming rates, the cryoprotectant concentrations, and the sample 

volume. Reducing the volume and raising the freezing rate requires a lower 

concentration of CPAs in the solution leading to lower side damages. On the 

contrary, if the volume is larger the likelihood of ice nucleation is higher causing 

the entire specimen to freeze instantaneously. Yavin and Arav (Yavin S et al., 

2007) expressed the probability of vitrification as a direct relationship between the 

cooling/warming rate and viscosity and, as an inverse relationship with the 

volume. Increasing the viscosity or the cooling/warming rates or decreasing the 
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volume will raise the probability of vitrification. It is well known that CPAs at 

high concentrations might have toxic consequences. This was, in fact, one of the 

main controversial aspects in vitrification procedures. To improve the outcome 

without using very high concentration of cryoprotectants, it is suitable to lower 

the cooling rate or to reduce the volume of sample storage to a very small drop 

that will prevent ice crystal formation. The cooling rate can be increased using 

liquid nitrogen slush at – 210°C whereas the loading volume can be reduced to 

less than 1 mL using newly developed devices. The cryoprotectants in the 

vitrification procedure are involved in two main actions: they should remove the 

water from the cell and, at the same time, enter the cell to form the amorphous 

state in the cytoplasm and prevent the cell from damage caused by low 

temperature. Initially, only penetrating agents were used in vitrification mixtures 

but, more recently, the protocols have been changed and the solutions are made by 

using both penetrating and nonpenetrating agents, and this has increased the 

survival rate and made significant advancements in the procedure. The general 

methodology involves a 2-step sequential exposure to vitrification solutions 

containing one or more cryoprotectants in increasing concentrations up to 40% 

(vol/vol), loading the cerlls in a minimal volume (<1 mL) of solution onto a 

carrier device (open or closed system), and very rapid cooling by plunging 

directly into liquid nitrogen. The time and temperature of exposure to such 

solutions are critical to avoid toxicity. Conversely, warming rates must also be 

rapid to prevent ice nucleation during the warming process and achieve optimal 

results. After warming, the cells are then moved through at least three solutions 

with decreasing concentrations of sucrose to effectively remove the 

cryoprotectants and rehydrate the cells. Vitrification can be defined as a physical 

process by which a highly concentrated solution of cryoprotectants creates a 

glasslike state during rapid cooling without the formation of ice crystals. This 

glassy state is an extremely viscous supercooled solution. Vitrification shows 

certain advantages over conventional slow freezing because it avoids damages 

caused by intracellular ice crystals and osmotic effects caused by extracellular ice 

formation. Moreover, it is a very fast procedure that does not require any 

electronic equipment and allows the freezing of specimens in a very short time. 
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3.3 Freezing of mature oocytes 

The major issue with the MII oocyte is related to the particular cell characteristics. 

The mature human oocyte is distinguished by the presence of the first polar body 

in the perivitelline space and the meiotic spindle in the cytoplasm. Several studies 

using slow freezing and vitrification protocols have been conducted to analyze the 

possible damages to the subcellular structures such as meiotic spindle, 

mitochondria, or cortical granules. It has been shown that the meiotic spindle is a 

very dynamic and sensitive structure, which is able to disappear and reform 

during cryopreservation and after thawing. This is regulated by fine 

polymerization and depolymerization of the tubulin, a very delicate equilibrium; if 

altered, it can lead to abnormal configuration of the spindle after thawing. The 

chromosomes are aligned on this structure tightly in contact with the 

microfilaments and even when the spindle disassembles, they are not found to be 

dispersed in the cytoplasm. Possible damages to the meiotic spindle are more 

related to abnormal fertilization than chromosomal abnormalities in the embryos. 

Another feature is represented by the zona pellucida and cortical granules, which 

are responsible for the correct oocyte fertilization by preventing multiple sperm 

penetration. Normally, the zona pellucida hardens after penetration of one sperm 

to block polyspermy as a consequence of the release of the cortical granules. The 

sperm, in fact releases a protein that causes an increase in intracellular calcium, 

which leads to the release of the cortical granules. The cryopreservation affects 

the normal process because it causes premature release of the cortical granules 

and zona pellucida hardening, which is why ICSI (intra-cytoplasmatic sperm 

injection) has been used routinely for the insemination of thawed oocytes. 

Although the zona pellucida seems to be compromised by cooling, the membrane 

of mature oocytes show a different lipidic composition compared with immature 

oocytes giving a better resistance to low temperature and cryogenic injuries. The 

cumulus is another feature of the mature oocyte: it is involved in the fine 

communication between the inside and outside of the egg. Even though evidence 

suggested that its maintenance does not improve the freezing outcome, this is still 

under debate. Over the past 10 years several satisfactory results have been 

published, yet there is not a defined, generally accepted approach that guarantees 
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a safe routine application. The first protocol used to cryopreserve oocytes was 

based on a slow cooling/rapid thawing method that had already been applied 

successfully for embryo cryopreservation. Since the first pregnancy in 1986, 

several advancements have been made with the aim of improving the original 

protocol. Most of the studies were focused around the choice of cryoprotectant 

and concentration or the exposure time. The freezing curve designed for the 

programmable freezer is basically unchanged from the original protocol first 

designed by Lassalle et al (Lassalle B et al., 1985) for embryo freezing. The CPAs 

generally used are PROH and sucrose. These two CPAs have been modified in 

concentration and exposure time during freezing/thawing procedure in different 

protocols developed in the last two decades. Clinical outcomes have been 

determined for all the different protocols. As already said the first protocol used 

was exactly the same as formulated for embryo freezing. It is based on 

1.5MPROH (equilibration solution) and 1.5M PROH+0.1M sucrose (loading 

solution) in the freezing mixture and a stepwise dilution of PROH (1.0M to 0.5 

M) with an unvaried 0.2M sucrose concentration in the thawing solutions. This 

protocol applied on 68 patients resulted in poor survival (37%), poor fertilization 

(45.4%), but good cleavage rate (86.3%). The pregnancy rate was relatively high 

(22% per patient) even though the implantation rate per oocyte was only 2.3% 

(Borini A et al., 2004).   

As regards the first report of vitrification in embryology, it was with mouse 

embryos in 1985 (Rall WF et al., 1985), followed by the successful vitrification of 

oocytes in 1991 (Kono T et al., 1991), yet the general application of vitrification 

in assisted reproduction has been rather limited until recently. The use of 

vitrification has been described in the literature for several mammalian species, 

including humans, with varying degrees of success depending upon the wide 

variety of tools and procedures applied (Liebermann J et al., 2002; Kuwayama M 

et al., 2005). Different recent publications have shown outstanding results for 

survival and clinical outcomes using vitrification compared with slow cooling 

(Vajta G et al., 2006). Vitrification methods have been modified over the years to 

optimize results in humans, by using minimal volumes and very rapid cooling 

rates, allowing lower concentrations of cryoprotectants to reduce injuries related 
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to chemical toxicity, osmotic shock, chilling sensitivity, and ice nucleation (Vajta 

G et al., 2006; Kuwayama M et al., 2005). The most widely used vitrification 

protocol involves gradual exposure of oocytes to the equilibration solution [7.5% 

ethylene glycol, 7.5% DMSO, and 20% serum substitute supplement (SSS) in 

HEPES buffered medium 199 (M199- H)] for approximately 8 minutes and then 

in the vitrification solution (15% ethylene glycol, 15% DMSO, 0.5M sucrose, and 

20% SSS in M199-H) for up to 110 seconds. Samples are then loaded onto a 

carrier device and plunged into liquid nitrogen. The thawing solutions are based 

on a series of solutions with decreasing sucrose concentrations (1.0, 0.5, and 0M) 

with 20% of SSS in M199-H. 

 

3.4 Cryopreservation of immature oocytes 

To circumvent issues associated with the MII structures, immature oocyte 

cryopreservation may represent an alternative. Oocytes arrested at prophase I of 

the meiotic process have different features than MII oocytes: they display a 

prominent nucleus called germinal vesicle (GV) that contains the chromosomes 

that are still decondensed even though they are transcriptionally active. Immature 

oocytes do not have microtubules organized in the spindle but rather dispersed 

mainly around the GV; this avoids possible damage during freezing procedures as 

opposed to MII oocytes. The cumulus and granulosa cells play a key role here 

because they are still tightly connected to the egg through transzonal projections 

and the plasma membrane is characterized by a reduced content in cholesterol and 

fatty acids so its permeability to CPAs is very different than that of MII oocytes. 

Immature oocyte cryopreservation may represent an alternative for fertility 

preservation in a selected group of patients who cannot undergo ovarian 

stimulation because of cancer-related issues. Generally speaking, this technique 

has not been extensively used because of the low success rates. This might be 

related either to the difficulties to overcome during freezing procedure that 

probably affect the transzonal projections negatively leading to irreversible 

damages or the poor results obtained with in vitro maturation (IVM) methods after 

freezing/ thawing. The immature oocytes are, in fact, characterized by this strict 
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communication between the cumulus and the egg and consequently, the freezing 

process can cause stress that destroys the tight gap junctions and corresponding 

communication. The penetration of cryoprotectants and any extracellular ice 

formation can result in cumulus-granulosa cell loss. 

 

3.5 Embryo cryopreservation 

The successful cryopreservation of surplus embryos after IVF and resultant 

pregnancy following frozen-thawed embryo transfer (FET) was first reported in 

1983, and the first child after embryo freezing was born in 1984 (Trounson A et 

al., 1983; Zeilmaker GH et al., 1984). For more than two decades, embryo 

cryopreservation (EC) has played an important role in assisted reproduction 

treatment (ART), providing couples with more than one attempt at embryo 

transfer after a single ovarian stimulation cycle with IVF, thus improving 

cumulative pregnancy rates while decreasing exposure to gonadotropins and 

reducing treatment costs. It is estimated that almost one quarter of the children 

born after ART are born following cryopreservation of mostly cleavage-stage 

embryos and, less commonly, blastocysts and oocytes (ICMART, 2008). Most 

recent data from the Society for Assisted Reproductive Technology and the 

European IVF Monitoring Program report a pregnancy rate of 34% following FET 

in women younger than 35 years and an overall pregnancy rate of 19%, 

respectively (Society for Assisted Reproductive Technology, 2009; Nyboe 

Andersen A et al., 2005). Slow-freezing has been the most widely applied 

technique for the cryopreservation of embryos, while vitrification has been used 

more frequently recently. A recent review assessing the medical outcome of ART 

children born after cryopreservation reported reassuring results (Wennerholm UB 

et al., 2009). The rate of preterm birth, birth defects and chromosomal 

abnormalities was not significantly different between children born after transfer 

of fresh or cryopreserved embryos. Similarly, these children demonstrated similar 

growth and mental development (Wennerholm UB et al., 2009). A recent 

systematic review of randomized trials comparing laboratory and clinical outcome 

with SF or vitrification conclude that pregnancy rates were not statistically 
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significantly different between the two methods (odds ratio (OR): 1.66, 95% 

confidence interval (CI): 0.98 –2.79, in favour of vitrification) (Kolibianakis E et 

al., 2009). However, vitrification was associated with significantly higher post-

thawing survival rates, both for cleavage-stage embryos (OR: 6.35, 95% CI: 1.14–

35.26) and for blastocysts (OR: 4.09, 95% CI: 2.45–6.84). Moreover, post-

thawing blastocyst development of embryos cryopreserved at the cleavage stage 

was significantly higher with vitrification than with slow freezing (OR: 1.56, 95% 

CI: 1.07–2.27). Similar to IVF embryos, we achieved higher survival and 

pregnancy rates following vitrification of cleavage stage IVM embryos as 

compared with slow-freezing (Son WY et al., 2009). Although the 

cryopreservation of embryos following a stimulated IVF cycle is considered the 

only established method of fertility preservation for female cancer patients, 

several points raise concern about this option. As reported before, these are: (1) a 

possible delay of two to five weeks in treatment of the primary disease due to 

ovarian stimulation depending on the timing of the first consultation with the 

reproductive endocrinologist in relation to onset of the next menstrual cycle (2) 

exposure to supraphysiologic estrogen levels induced by ovarian stimulation (3) 

the requirement for a male partner or willingness to use donor sperm for embryo 

production (4) legal, ethical, religious issues related to cryopreservation of 

embryos in general.  

 

3.5.1 Is it possible to overcome the limits of IVF-embryo cryopreservation? 

A retrospective study addressing the above question concluded that having a 

reproductive medicine consult and subsequent ovarian stimulation followed by 

oocyte collection did not significantly delay the start of adjuvant chemotherapy in 

young patients with breast cancer (Baynosa J et al., 2009). However, the actual 

time required for completion of the fertility preservation procedure, which starts 

with the initial reproductive medicine consultation and technically ends with 

oocyte collection, depends on the conditions of any particular clinic. Ovarian 

stimulation takes between 2 and 5 weeks, depending on the stimulation protocol 

employed and the timing of the following menstrual cycle of the patient. Studies 
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assessing the effect of the length of time between surgery and the initiation of 

chemotherapy on the survival of women with breast cancer report no detrimental 

effect of a delay in treatment if chemotherapy is started within 12 weeks after 

surgery (Cold S et al., 2005; Jara Sanchez C et al., 2007; Lohrisch C et al., 2006). 

However, it must be emphasized that the external validity of these studies is 

limited to their inclusion criteria, and the potential effect of any delay in oncologic 

treatment due to fertility preservation procedures must be evaluated on a case-by-

case basis together with the treating oncology team. In order to minimize any 

preventable delay, it is prudent to inform patients about the effects of treatment on 

fertility and the options for fertility preservation as early as possible in the course 

of oncologic diagnosis and treatment procedures. The effect of elevated estrogen 

levels on underlying disease. The risk of breast cancer is consistently found to be 

associated with persistently elevated blood estrogen levels (Yager JD et al., 2006). 

Serum estradiol (E2) levels are increased during ovarian stimulation for IVF and 

can reach levels twenty times higher than those of a natural cycle (Cahill DJ et al., 

2000). Although the effect of a temporary increase in serum E2 levels on the risk 

of recurrence of breast cancer is controversial, these facts cause concern among 

both physicians and patients. Such concerns should not be limited to women with 

estrogen receptor positive breast cancer, because recent findings also suggest the 

presence of an indirect mitogenic effect of estrogen on hormone receptor negative 

breast cancer (Gupta PB et al., 2006). Moreover, increased E2 levels can be 

relevant for patients undergoing fertility preservation treatment due to other 

oncologic or non-oncologic diseases considered to be estrogen sensitive, such as 

desmoids tumours, systemic lupus erythematosus or severe endometriosis. In 

order to minimize the rise in estradiol levels in breast cancer patients undergoing 

IVF, Oktay et al. developed an ovarian stimulation protocol involving the 

concomitant use of an aromatase inhibitor, letrozole, with gonadotropins (Azim 

AA et al., 2008). Briefly, letrozole was started at a dose of 5mg/day on the second 

day of the menstrual cycle and gonadotropins were initiated two days later. A 

gonadotropin releasing hormone antagonist was used to prevent premature 

ovulation, and human chorionic gonadotropin (HCG) was administered when at 

least two follicles reached 19mm in diameter. Letrozole was reinitiated on the day 
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of oocyte collection in order to prevent a rebound increase in E2 level. 

Themeanpeak E2 level was 406 pg/ml (range 58 to 1,166 pg/ml) in 79 women 

with breast cancer undergoing ovarian stimulation for embryo or oocyte 

cryopreservation (Azim AA et al., 2008). An average of 10.3±7.75 oocytes were 

retrieved and 5.97±4.97 embryos/oocytes cryopreserved per patient. Compared to 

136 women who opted against ovarian stimulation, the recurrence and relapse-free 

survival rates were similar after a median follow up of 23.4 months after 

definitive surgery. However, it is interesting to note that with the same centre 

63.3% of breast cancer patients referred for REI consultation declined ovarian 

stimulation and IVF due to concerns about delay of chemotherapy, effect of 

ovarian stimulation on cancer or costs associated with treatment. 

 

3.5.2 Ethical and legal issues associated with embryo cryopreservation 

When embryos are cryopreserved in a fertility preservation program, the 

patient/couple should make an advance decision on the fate of these embryos in 

the event that they are not transferred for any reason including the patient‟s failure 

to survive cancer. It should be documented whether the remaining partner is 

entitled to use the embryos for his own reproductive end or whether they are to be 

donated to a third party, used for research or discarded. Considering these issues 

and making such decisions can be particularly difficult for a patient who has been 

recently diagnosed with a life-threatening disease and is facing a demanding 

treatment period. Therefore, patients should be given appropriate counselling 

using a multidisciplinary approach involving a psychologist and a legal advisor. 

 

3.6 Whole ovary and cortical strip freezing 

3.6.1 Whole ovary transplantation  

It has been almost two decades since fresh whole ovary autotransplantation was 

reported in human studies. In those reports, ovaries were removed from their 

pelvic location and immediately transplanted into other sites. The use of 

heterotopic sites for ovarian autotransplantation dates back to 1988, when the first 
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case was reported (Muller G et al., 1988). Whole ovary transplantation with a 

vascular anastomosis was proposed as a mechanism to reduce ischemic time and, 

in theory, prolong the longevity of the graft (Jeremias E et al., 2002). In this 

technique, the whole ovary with its vascular pedicle is removed, cryopreserved, 

thawed, and then transplanted with a microvascular anastomosis into a heterotopic 

or orthotopic site. Transplantation of an intact ovary with vascular anastomosis 

reduces the ischemic interval between transplantation and revascularization by 

allowing immediate revascularization of the transplanted tissue (Jadoul P et al., 

2007). 

 

3.6.2 Whole Fresh Ovary Transplantation 

Fresh whole ovary transplantation with vascular anastomosis has been 

successfully performed experimentally in animal models using a wide variety of 

orthotopic and heterotopic-recipient sites. In addition, a number of vessels have 

been used in a wide variety of animal models. These include pelvic vessels such 

as the ovarian artery and iliac artery, parietal vessels such as the inferior epigastric 

vessels and extrapelvic vessels such as the carotid vessels (Wang X et al., 2002; 

Goding JR, 1966). The revascularization process was compromised in 

approximately 50% of the cases when fresh ovaries were transplanted (Jeremias E 

et al., 2002) . A limited number of human studies with transplantation of fresh 

whole ovaries in orthotopic (Silber SJ et al., 2008; Mhatre P et al., 2005) and 

heterotopic sites (Leporrier M et al., 1987; Hilders CG et al., 2004) have been 

attempted with some success. Silber et al culminated his efforts in ovarian 

transplantation in monozygotic twins discordant for premature ovarian failure 

(POF) by reporting the first full-term pregnancy obtained using orthotopic whole 

fresh ovary transplantation with microvascular anastomosis. A fresh ovary from 

the fertile twin was implanted in her monozygotic twin with POF.  
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3.6.3 Whole Frozen-thawed Ovary Transplantation 

Whole frozen ovary transplantation with microvascular anastomosis was first 

described in rats by Wang et al (Wang X et al., 2002). They described successful 

vascular transplantation of frozen-thawed rat ovaries, which were transplanted 

along with the reproductive tract in 4 of 7 (57%) transplants; these transplants 

survived for Z60 days, were ovulatory and resulted in one pregnancy. Ovarian 

function was restored in 100% of cases when fresh organs were transplanted (Yin 

H et al., 2003). The first report of successful cryopreservation and transplantation 

of an intact ovary in sheep (defined as return of hormonal functions) occurred 

with a vascular anastomosis using the inferior epigastric vessels in 2003 (Bedaiwy 

MA et al., 2003). Successful pregnancy and delivery of a lamb in sheep was 

reported by Imhof et al in 2006 after autotransplantation of whole cryopreserved 

ovaries with microanastomosis of the ovarian vascular pedicle. The challenge of 

whole ovary cryopreservation and transplantation technology is not only the 

surgical technique but the cryopreservation protocol for an entire organ. Such a 

protocol should ensure that the cryoprotectant(s) evenly diffuses throughout the 

entire ovary. In addition, the frozen ovary should survive the thawing process and 

maintain functionality after transplantation. We have found evidence of 

endothelial cell damage caused by the freeze-thaw process or by the ischemic time 

until successful reanastomosis. Imhof et al reported that 18 months after 

transplantation, the follicular survival rate was less than an 8%. Other authors 

reported an even lower follicular survival rate (6%) and the depletion of the entire 

follicular population after whole ovary cryopreservation and transplantation 

(Courbiere B et al., 2009). Although ovarian vessel thrombosis is a potential 

complication of a vascular anastomosis, its incidence may be higher with different 

freezing techniques such as vitrification. Similarly, in a more recent study in 

ewes, it was shown that immediate vascular patency was achieved in all ewes and 

maintained in 7 of 8 cryopreserved and 3 of 4 control grafts. Functional corpora 

lutea were identified in 3 ewes (1 control and 2 cryopreserved) 18 to 25 weeks 

after grafting. In addition, inhibin-A levels indicated resumption of follicular 

development in 4 cryopreserved and 1 control ewes, however, castrate 

gonadotrophin levels persisted in 5 cryopreserved and 2 control ewes. The main 
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prominent feature of this whole ovary transplantation experiment is the fact that 

primordial follicle density was significantly reduced after grafting in both 

cryopreserved and nonfrozen ovaries (Onions VJ et al., 2009). Although 

transplantation of whole cryopreserved-thawed ovary was not performed in 

humans, cryopreservation of a whole ovary using a slow freezing protocol has 

been successfully attempted (Bedaiwy MA et al., 2006). The results showed both 

vascular and follicular integrity after freezing and thawing. More recently, a 

multigradient freezing device was recently used with promising results (Bromer 

JG et al., 2008). In that study, a high follicular viability, normal histologic 

architecture, and preserved vessel integrity were reported, supporting the potential 

for vascular reanastomosis. Martinez-Madrid et al in 2007 evaluated apoptosis by 

the terminal deoxynucleotidyl transferase-mediated biotinylated deoxyuridine 

triphosphates nick endlabeling method and by immunohistochemistry for active 

caspase-3 in fresh ovaries, after whole ovary freezing. Ultrastructure was also 

assessed by transmission electron microscopy in the thawed tissue. They found 

that primordial or primary follicles were not positive for either terminal 

deoxynucleotidyl transferase-mediated biotinylated deoxyuridine triphosphates 

nick end-labeling or active caspase-3 after whole ovary freezing indicating the 

feasibility of whole ovary freezing. 

 

3.6.4 Potential Techniques 

An intact human ovarian autotransplantation was reported in 38-year-old 

monozygotic twins discordant for POF (Silber SJ et al., 2008). The donor ovary 

was removed laparoscopically from the fertile sister by dividing the 

infundibulopelvic ligament at its base to maximize the length. Using 

minilaparotomy, the donor‟s ovarian veins (3.0 mm in diameter) were 

anastomosed to the recipient‟s ovarian veins with 9-0 nylon sutures, and the 

donor‟s ovarian arteries (0.5mm in diameter) were anastomosed to the recipient‟s 

ovarian arteries with 10-0 nylon interrupted sutures. A normal- appearing blood 

flow through the ovarian vessels of the transplanted ovary was observed after an 

ischemic period of 100 minutes. Subsequently, the recipient twin had 11 regular 

menstrual cycles. At days 427 after transplantation, she became pregnant and gave 



Introduction 
 

33 
 

birth to a normal healthy baby girl. This case showed the feasibility of using 

whole-ovary transplantation between monozygotic twins who are discordant for 

POF to restore fertility in the affected twin. Should intact human ovary 

cryopreservation be optimized, the same approach could be adopted for 

autotransplantation of intact cryopreserved-thawed ovary with a vascular pedicle. 

Although the likelihood of whole ovary cryopreservation and later reimplantation 

into a patient continues to increase, whole ovary freezing has two critical 

challenges to overcome. First, vascular re-anastomosis of the ovarian arteries in 

particular makes for very challenging surgery. Thus, an elevated risk of ischemia 

during reintroduction of the ovaries post-thaw is inherent in the procedure. 

Second, and most importantly, whole ovary handling means that there is only one 

chance for every step to go optimally. If handling, cryopreservation, or thawing 

and reimplantation are compromised at any step, the entire organ could be lost. 

For these reasons, whole ovary freezing and transplantation should be viewed as 

an experimental strategy for the time being. By comparison, the removal and 

storage of ovarian cortex (“cortical strips”) has several advantages. 

 

3.6.5 Prevention of Post transplantation Ischemic Ovarian Damage 

Many strategies have been devised to minimize the initial post transplantation 

ovarian ischemia However, the majority of them lack standardization, 

reproducibility, and long-term success. 

 

MECHANICALLY INDUCED NEOANGIOGENESIS 

Surgically induced tissue injury is associated with neoangiogenesis and 

inflammation. Consequently, transplantation in the context of an inflammatory 

reaction could expedite the revascularization of ovarian grafts. This approach was 

tested by Donnez et al in 2004 who used a multistep process to create a peritoneal 

pocket 1 week before transplantation. Similarly, this hypothesis was further 

supported by the early perfusion of ovarian cortical strips upon their 

transplantation into granulation tissue (Israely T et al., 2006). 
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THE USE OF ANITOXIDANTS 

Reactive oxygen species (ROS) are produced as a result of the ischemia perfusion 

process. They have the potential to damage cell membranes, endothelial 

membranes, and mitochondrial function (Kupiec-Weglinski JW et al., 2005). The 

use of antioxidants may reduce ROS-associated tissue damage and follicular loss 

after transplantation. The use of exogenous antioxidants to augment ovarian 

transplant resistance to ROS-associated damage has been evaluated by many 

investigators. In various animal models, a wide variety of antioxidants were 

attempted including ascorbic acid, mannitol (Sagsoz N et al., 2002), 

oxytetracycline (Sapmaz E et al., 2003), and vitamin E (Nugent D et al., 1998) 

with variable successes. In a human in-vitro model, Kim et al in 2004 found that 

incubating ovarian tissue with ascorbic acid for up to a maximum of 24 hours 

reduced apoptosis. 

 

GROWTH FACTORS-INDUCED NEOANGIOGENESIS 

Neoangiogenesis is an integral part in the establishment of graft function. 

Therefore, it is expected that neoangiogenic growth factors such as fibroblast 

growth factor, transforming growth factor, and vascular endothelial growth factor 

(VEGF) somehow aid in the establishment of graft function. In lower animals, it 

was shown that the invasion of the rat cortex by vessels was associated with a 

significant increase in the expression of mRNA in the outer cortex for both 

transforming growth factor and VEGF.11 However, systemically administered 

VEGF was not associated with improved graft function in an animal model 

(Schnorr J et al., 2002). Local administration at the transplant site may be more 

beneficial. 

 

HORMONAL TREATMENT 

Data from several animal experiments showed that pretreating the graft recipient 

and/or the donor with gonadotrophin stimulation before and after transplantation 

may have a positive effect on the viable growth follicle rate (Nugent D et al., 
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1998; Imthurn B et al., 2000; Wang X et al., 2002). However, the impact of such 

treatments on long-term ovarian function and fertility is still questionable and 

needs further investigation. 

 

3.7 Ovarian cortex and ovarian follicles 

The transplantation of pieces of ovaries and ovarian cortex (which can contain 

thousands of immature follicles) has been performed successfully in different 

mammals since early in the last century (Lamond DR, 1959; Simmer HH et RT 

Morris, 1970). Use of the sheep, whose ovaries are anatomically similar to the 

human, resulted in important proof-concept studies (Gosden RG et al.; Baird DT 

et al., 1999) that later would be applied to the human. That work showed that 

pieces of sheep ovarian cortex could be removed, optionally cryopreserved, and 

then reintroduced surgically to the surface of a recipient‟s ovary. Strikingly, 

ovarian function resumed long-term in graft recipients, and pregnancies, 

ostensibly from oocytes in graft tissue, were achieved. Grafting human ovarian 

cortex back to the ovary has been similarly successful. The first notable example 

of this was shown in a patient treated for Hodgkin‟s lymphoma who had ovarian 

cortex removed and stored prior to treatment. After recovery, the patient‟s cortical 

strips were thawed and grafted orthotopically, after which recovery of regular 

ovulatory cycles occurred. This patient later became pregnant, resulting in a live 

birth (Donnez, J et al., 2004). A second similar resumption of ovarian function 

using frozen/thawed autografts was seen in a patient treated with chemotherapy 

for sickle cell anemia (Donnez J et al., 2006). More recently, this technique was 

applied to cases of premature ovarian failure (POF) (Silber S et al., 2010). Nine 

women with POF received ovarian tissue donated by their monozygotic twin 

sisters whose ovaries were still functional. Ovarian function resumed in all nine 

women, and eight live births are obtained. Although the effectiveness of such 

grafts are unquestionable, there are situations where this approach would not be 

appropriate. If there is any chance of reintroducing cancer or another malignancy, 

ovarian cortex (or indeed, whole ovary) cryopreservation and grafting should be 

avoided (Shaw  JM et al., 1996; Shaw J. et A. Trounson, 1997; Dolmans MM et 
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al., 2010). For such cases, the experimental strategy of maturing ovarian follicles 

in vitro, in hopes of producing mature eggs, offers promise. 

 

3.8 In vitro culture techniques 

In vitro mammalian ovarian follicle culture has been performed successfully for 

more than 15 years. Multiple groups have cultured mouse preantral follicles to an 

ovulatory state, produced mature eggs, and subsequently, embyros and offspring. 

Originally, follicles were isolated and cultured in plastic culture dishes (Cortvrindt 

R et al., 1996; Smitz J et al., 1996) (Fig. 4 ). To improve the morphological 

characteristics of cultured follicles and the efficiency of development to maturity, 

new approaches making use of bioengineered materials have been developed. 

Embedding follicles in a three-dimensional matrix can improve follicle growth 

performance in vitro (Fig. 4). 

..

 

Fig. 4: 2D and 3D in vitro culture of follicles 
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Particularly, the use of alginate matrices (West ER et al., 2007) has resulted in 

promising follicle development in vitro, up to large antral stages. Such matrices 

are thought to provide an improved mechanical environment better approximating 

growth in vivo. In combination with cryopreservation, this technique holds 

striking promise for cancer survivors at risk for reintroduction of the disease (if 

orthotopic transplantation was performed) (Xu M et al., 2009). The growth of 

frozen/thawed follicles and their cytoskeletal properties approximated those seen 

in non-cryopreserved follicles (Barrett SL et al., 2010). One day, a patient might 

have the entire continuum of oocyte development, from the primordial oocyte to 

the mature MII egg, take place in vitro, with only an embryo transferred back for 

attempted pregnancy. An interesting technique where cortical strips are 

(optionally cryopreserved) cultured in vitro first, and then maturing follicles are 

isolated for further culture (Fig. 4 ), has also been developed. Telfer et al in 2008 

have shown that a two-step procedure can result in the generation of large antral 

follicles. Cortical strips are first cultured intact, and then growing follicles are 

mechanically isolated and cultured singly potentially within a matrix as discussed 

earlier. This technique has the benefit of allowing follicles to grow surrounded by 

native ovarian tissue, potentially more like conditions in vivo. Further, it is likely 

that many of the growing follicles isolated will have started their growth in the 

primordial follicle stage. Primordial follicles are notoriously difficult to 

mechanically isolate, and their growth, first within the cortical strip, would help 

address this problem. Given the need for in vitro methodologies, we turn to recent 

advances in our understanding of the molecular control of follicle growth. If we 

can understand the mechanisms that control follicle growth to maturity, we will be 

able to optimize the above in vitro culture techniques. 

 

3.9 Potential applications of cryopreserved ovarian tissue 

 

3.9.1 Xenotransplantation 

At present, xenotransplantation of the ovarian tissue is the only grafting option 

described for endangered species. It has often been combined with ovarian tissue 
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cryopreservation, and in all models tested so far, good post-thaw survival of the 

graft and its primordial follicles were reported (Paris et al., 2004; Paris and 

Schlatt, 2007). Independent of the species-specific differences, host environment 

can support, in most tested cases, the resumption of ovarian function and 

subsequent follicular development. In a wide range of species, including 

wallabies, wombats, elephants, cats, dogs, pigs, cows and marmoset monkeys, the 

formation of antral-sized follicles has been reported and the oocytes looked 

morphologically healthy (reviewed by Paris et al., 2004). What is unknown is 

whether the oocytes following development in such a different host environment 

are still normal from a functional point of view, and further studies are needed to 

answer this question. Another limiting factor is that, at present, it is possible to 

grow antral follicles from a certain species within an immunocompromised host 

but not mature and fertilize them in the in vivo host environment. The oocyte is 

thus rescued, and then IVM and IVF are still needed before an embryo is available 

for transfer. This is a problem, as for many endangered species, IVM, IVF and 

embryo transfer technologies have not been yet developed and significant hurdles 

are currently still envisioned. In species where IVM and IVF are well-established 

procedures, the next step is to obtain live offspring following ovarian tissue 

xenotransplantation. At present, this has only been done bridging the concordant 

xenogenetic barrier from rats to mice (Snow et al., 2002). Ovarian 

xenotransplantation has other limitations given the only successful recipients that 

have been immunocompromised are rats and mice (Snow et al., 2002), which 

have to be housed under sterile, pathogen free conditions: the overall procedure 

(until the harvest of an antral follicle) is expensive and technically demanding. 

Moreover, since follicles from larger animals do not develop up to their normal 

size in small hosts (Nottola et al., 2008), such as immunodeficient mice, we do not 

know if they could have a healthy oocyte capable of fertilization. Other available 

approaches for ovarian transplantation, such as allotransplantation, have so far 

received little consideration for animal conservation. However, this may change if 

developments in the area of tolerance induction take place. In practice, this would 

mean that if a genetically valuable animal dies, the ovaries could be rescued and 

grafted to several young recipients, and offspring from this specific female 
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germline could be indirectly produced. Thus, close collaborations between zoo 

workers and researchers are needed to bridge these gaps in time. 

 

3.9.2 Fine control of human ovarian follicle development in vivo and in vitro 

There are two key features of follicle development relevant to fertility 

preservation: primordial follicle growth activation and subsequent growth and 

survival. Ensuring that a subset of the many primordial follicles in a given piece 

of ovarian cortex productively grow, and that a subset of growing follicles go on 

to survive and reach the preovulatory stage, will be required to treat patients in 

need. 

 

3.9.3 Follicular growth arrest 

New information is available about the mechanisms that enforce growth arrest 

within primordial follicles. In 2003, Castrillon et al. made a striking initial 

observation that knockout of the FoxO3a gene in mice results in the simultaneous 

growth activation of all primordial follicles. Thus began several studies to 

determine how the process is controlled by signals upstream of FoxO3a. The 

mTOR signaling pathway (Hay N et al., 2005; Wullschleger S et al., 2006) was 

then implicated as a critical regulator of the growth activation of primordial 

follicles (Liu L et al., 2007; Adhikari D et al., 2009; Adhikari D et al., 2010; 

Reddy P et al., 2010; Li  J et al., 2010) (Fig. 5). Increased mTOR activity is 

associated with protein translation, an active cell cycle, and tissue growth. When 

mTOR activity was increased specifically in the oocyte by using a tissue-specific 

knockout of its negative regulators Tsc1 or Tsc2, the entire pool of primordial 

follicles growth-activated around puberty. This resulted in nearly complete follicle 

loss by early adulthood, and thus POF. The importance of mTOR signaling in the 

control of primordial follicle growth activation was further confirmed by Li et al. 

Those investigators targeted the Phosphatase with TENsin homology deleted in 

chromosome 10 (PTEN) phosphatase, known to act as a negative regulator of 

mTOR signaling. Inhibition of PTEN, resulted in increased primordial follicle 
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growth activation in mouse and human ovarian grafts. This was consistent with 

the initial result with FoxO3a knockout mice (Castrillon DH et al., 2003), as 

PTEN inhibition was found to result in Fox03a export from the nucleus. 

Interestingly, the mTOR pathway has also been implicated in the control of the 

follicle growth and survival to preovulatory stages. 

 

Fig. 5: mTORC1 signaling 

 

3.9.4 Follicle growth and granulosa cell proliferation 

Signaling agents that control ovarian follicle growth, including follicle stimulating 

hormone (FSH) and members of the TGF- signaling family (Elvin JA et al., 2000; 

Chang H et al., 2001), are well known. Until recently, how the information from 

growth-stimulatory (and in some cases, growth inhibitory) factors is integrated 

within granulose cells was less clear. The mTOR pathway was an attractive 

candidate due to its function downstream of many growth factors, and the use of 

the mTOR specific inhibitor Rapamycin (red rectangle, Fig. 5) was found to 

antagonize mouse follicle growth in vitro at an accepted bioactive concentration, 

100nM (Yaba A et al., 2008). As these follicles were cultured in the presence of 

FSH, this suggests that mTOR may act downstream of known follicle growth 

factors to foster growth and maturation. Because mTOR has been shown to be a 

positive regulator of the cell cycle (Fig. 5) via interactions with aurora B kinase 
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(Song J et al., 2007), granulosa cell cycle control by mTOR could underlie the 

control of follicle growth. Interestingly, culture in highly dilute (0.01pM) 

Rapamycin resulted in enhanced follicle growth. Whether such treatment can 

enhance human follicle growth in vitro remains to be seen. 

 

4. Hydrogels: biomaterials mimicking the extracellular matrix 

Cells and tissues are routinely cultured in vitro on 2D substrates (Ni Y et Chen R, 

2009; Porro D et al., 2005; Zhang X et al., 2009). However, it has been 

demonstrated that cells or tissues cultured on 2D substrates (e.g., tissue culture 

plates or flasks) do not mimic cell growth in vivo, and fail to express certain 

tissue-specific genes and proteins at levels comparable to those found in vivo. For 

instance, it has been found that cell–drug interactions in a 2D culture system do 

not represent the actual working mechanism in vivo. Thus, 2D culture is not 

appropriate to be used in in vitro drug testing models. This is due to the fact that 

cells and tissues in vivo are immersed within a 3D network constituting a complex 

extracellular environment with a highly porous nanotopography, while a 2D 

culture system is too simple to mimic the native environment.  

 

Graph. 5: development of tissue engineering and hydrogels 
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From a tissue engineering (TE) standpoint, constructing a culture environment 

that closely mimicks the native tissue, which is composed of the extracellular 

matrix (ECM), soluble bioactive factors, and products of homo- and hetero-typical 

cell–cell interactions, is desirable to replicate tissue functions in vitro. However, 

this remains as one of the major challenges in TE, given the complexity of cell–

ECM interactions as well as multicellular architectural features such as repeating 

tissue units and proper vascular structure. Cells commit to their fate by deriving a 

vast amount of information from this environment. As a part of the cell 

environment, ECM has been the most emulated component in TE studies. In 

native tissue, ECM is mainly a mixture of two classes of macromolecules, 

glycosaminoglycans and fibrous proteins (e.g., collagen, elastin, fibronectin and 

laminin), which self-assemble into nanofibrillar supramolecular networks that fill 

the extracellular space between cells (Baker EL et al., 2009). ECM is a dynamic 

structure, which provides structural and anchoring support to the cells to improve 

tissue architecture. It also contributes to signaling, directing cell fate and function 

through cell–matrix interactions. In addition, the ECM is constantly remodeled by 

cells during development, homeostasis and wound healing by balancing its 

synthesis and degradation by a variety of enzymes (e.g., matrix 

metalloproteinases) (Hong H et al., 2007; Tibbitt MW et al., 2009). Significant 

advances in the design of artificial matrices have led to an evolution from a simple 

supporting scaffold to a more complex dynamic biomaterial environment. Ideally, 

the artificial matrices should: support cell growth and maintenance; provide 

appropriate mechanical, chemical and biological characteristics mimicking native 

ECM; and facilitate effective nutrient transfer, gas exchange (i.e., O2 and CO2), 

metabolic waste removal and signal transduction. Scaffolds in various forms, such 

as, hydrogel and nanofibers, have been studied and employed for different tissue 

regeneration purposes. A significant growth of interest in hydrogels started around 

the 1990s, partly due to the rapid emergence of the TE field, as hydrogels possess 

characteristics of native ECM (Du Y et al., 2008; Ling Y et al., 2007; Liu Tsang V 

et al., 2007; Khademhosseini A et al., 2007; Lutolf MP, 2009; Baroli B, 2007; 

Federovich NE et al., 2007; Jabbarzadeh E et al., 2008; Jay SM et Saltzman WM, 

2009; Peppas NA et al., 2006), paving the way for functional tissues (graph. 5) 
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(Burdick JA et Vunjak-Novakovic G, 2009; Mano JF et al., 2007; Seunarine K et 

al., 2006). The biocompatibility of various hydrogels (e.g., collagen, agarose and 

polyethylene glycol) is well characterized and the state-of-the-art nano- and 

microfabrication technologies (e.g., lithography, nano- and micro-fluidics, 

micromolding and biopatterning) provide the techniques to engineer scaffolds 

with intricate structures (Kopecek J, 2007; Saunders BR et al., 2009; Lee WH et 

al., 2009; Seidlits SK et al., 2008, Rodriguez-Cabello JC et al., 2006; 

Madurantakam PA et al., 2009). However, challenges remain when it comes to 

engineering functional tissues. Hydrogel-based cell-encapsulating constructs with 

embedded microchannels have recently been investigated, and became a 

promising tool to generate active tissue mimics by improving nutrient and gas 

transport. Such cell-encapsulating hydrogel platforms could be employed for other 

applications, such as in vitro models for drug testing and toxicological assays. 

Given the intricate nature of the problem, the ultimate success of all these 

applications requires an interdisciplinary approach involving engineering, 

chemistry, materials science and cell biology. 

 

4.1 Engineered hydrogel scaffolds as ECM mimics 

The efforts to engineer a cell microenvironment that mimics the dynamic native 

ECM have been driven by the clinical demand for tissue (or organ) repair and 

replacement (Slaughter BV et al., 2009). Construction of functional tissues relies 

on the structural environment, cell–biomaterial interactions and incorporated 

biological signals (e.g., growth factors encapsulated in hydrogels) (Kim BS et al., 

1998). Thus, the scaffolds must offer properties (i.e., mechanical and chemical) 

that lead to cellular function in a native manner. In this sense, hydrogels have 

advantages when utilized as scaffolds for TE as one can easily adjust their 

physico-chemical (electrical charge and pore size) (Schneider GB et al., 2004; 

Ford MC et al., 2006; Dadsetan M et al., 2008; Bryant SJ et al., 2007; Singh M et 

al., 2008), and mechanical (stiffness, tensile strength) (Anseth KS et al., 1996; 

Wenger MP et al., 2007) properties to levels that are desirable for tissue scaffolds 

(Choi NW et al., 2007; Tu C et al., 2003), cell encapsulation (Nicodemus GD et 
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Bryant SJ, 2008; Mcguigan AP et al., 2008; Tan W-H et Takeuchi S, 2007; Moon 

S et al., 2010), immobilization (Liu J et al., 2009) and drug delivery (Gao D et al., 

2008; Qiu Y et Park K, 2001; Soppimath KS et al., 2002; Kretlow JD et al., 2007). 

Hydrogels are 3D cross-linked insoluble, hydrophilic networks of polymers that 

partially resemble the physical characteristics of native ECM. Polymers in 

hydrogel format can absorb a large amount of water or biological fluid (up to 

99%) due to the presence of interconnected microscopic pores. Some hydrogels 

possess features of fluid transport and stimulus responsive characteristics (e.g., 

pH, temperature and light) (Bettinger CJ et al., 2005). Another appealing feature 

of hydrogels as scaffolds for TE is their biomechanical similarity to native ECM. 

The limitation of hydrogel mechanical properties is well known (Burdick JA, 

2009). A hydrogel with the desired mechanical properties (in terms of stiffness 

and tensile strength) can be achieved by adjusting various parameters including 

the type of polymers used, their concentrations and the crosslinking density. 

Biocompatible hydrogel scaffolds can be obtained by selecting biocompatible 

synthetic or natural polymers and crosslinkers (Rivest C et al., 2007). A variety of 

natural and synthetic polymers have been used to fabricate hydrogels. Collagen 

(Gillette BM et al., 2008), hyaluronic acid (Sahoo S et al., 2008), chondroitin 

sulfate (Li Q et al., 2004), fibrin (Eyrich D et al., 2007), fibronectin (Fukuda J et 

al., 2006), alginate (Smidsrod O et Skjak-Braek G, 1990), agarose, chitosan (Azab 

AK et al., 2006) and silk (Kim HJ et al., 2008) have been the most commonly 

used natural polymers for TE and regenerative medicine applications. Among all 

these natural polymers, collagen has been the most widely investigated since it is 

the most abundant structural protein of ECM in multiple tissues (Black LD et al., 

2008), including bladder (Bolland F et al., 2007), heart valve (Schenke-Layland K 

et al., 2003), blood vessel (Uchimura E et al., 2003), skin (Chen RN et al., 2004) 

and the liver (Lin P et al., 2004). Synthetic biodegradable polymers, such as 

poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA), poly(acrylic acid) (PAA), 

poly(propylene furmarate-co-ethylene glycol) (P(PF-co-EG)), poly(ethylene 

glycol) (PEG) (Park Y et al., 2004), poly(lactic acid) (PLA), poly(glycolic acid) 

(PGA) (Hiraoka Y et al., 2003), and a copolymer poly(lactic-glycolic) acid 

(Uematsu K et al., 2005) have also been used for engineered scaffolds. To 
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increase the biological (e.g., hydrophilicity, cell-adhesiveness, degradability), 

biophysical (e.g., porosity, branched vasculature) and mechanical (e.g., stiffness, 

viscoelasticity) properties of tissue scaffolds, combinations of natural or synthetic 

hydrogels (i.e., hybrid hydrogels) have also been utilized (Chen GP et al., 2004). 

Such „bioartificial‟ scaffolds possess desirable mechanical properties and 

biocompatibility due to the coexistence of both synthetic and biological 

components. The biological properties of such scaffolds can further be improved 

by surface chemistry as the biomaterial composition makes them amenable to 

surface modification and biomimetic coatings (Savina IN et al., 2009; Teo WE et 

al., 2006; Hasirci V et al., 2006). Several approaches have been utilized to 

examine the mechanical (e.g., tension, compression, indentation, swelling) 

(Ahearne M et al., 2008; Ahearne M et al., 2005) and physicochemical (e.g., 

porosity, interconnectivity) properties of both natural and synthetic hydrogels, 

including extensiometry (Drury JL et Mooney DJ, 2003), compression test (Awad 

HA et al., 2004) and bulge test. However, these techniques are invasive and 

destructive. They are not appropriate to characterize mechanical properties of cell 

encapsulating hydrogels during culture. To overcome these specific problems, two 

techniques involving spherical indentation have been developed (Ahearne M et 

al., 2009); long focal microscopybased spherical microindentation and optical-

coherence tomography-based spherical microindentation techniques. Both 

monitoring techniques can be utilized to determine the mechanical properties of 

cell-encapsulating hydrogels for in vitro engineering of soft tissues. While the 

former involves the central indention of a circumferentially suspended hydrogel 

using a sphere of a known weight and measurement of the resulting central 

deformation displacement, the latter is a noninvasive imaging technique based on 

Hertz contact theory, where the depth of indentation of a sphere into a hydrogel 

resting on a substrate can be used to calculate the mechanical properties of the 

hydrogel.  
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4.2 Properties of hydrogels 

 

4.2.1 Synthetic materials   

Synthetic hydrogels are appealing for tissue engineering because their chemistry 

and properties are controllable and reproducible. For example, synthetic polymers 

can be reproducibly produced with specific molecular weights, block structures, 

degradable linkages, and crosslinking modes. These properties in turn, determine 

gel formation dynamics, crosslinking density, and material mechanical and 

degradation properties. PEO is currently FDA approved for several medical 

applications and is one of the most commonly applied synthetic hydrogel 

polymers for tissue engineering. PEO and the chemically similar poly(ethylene 

glycol) (PEG) are hydrophilic polymers, that can be photocrosslinked by 

modifying each end of the polymer with either acrylates or methacrylates (Cruise 

GM et al., 1998; West JL et Hubbell JA, 1999; Mann BK et al., 2001). Hydrogels 

are then formed when the modified PEO or PEG is mixed with the appropriate 

photoinitiator and crosslinked via UV exposure (Bryant SJ et Anseth KS, 2001). 

Thermally reversible hydrogels have also been formed from block copolymers of 

PEO and poly(l-lactic acid) (PLLA) (Jeong B et al., 1997) and PEG and PLLA 

(Huh KM et Bae YH, 1999). In addition to the thermally reversible hydrogels, 

degradable PEO and PEG hydrogels have been formed by synthesizing block 

copolymers containing hydrolytically degradable poly(lactic acid) (PLA) (Metters 

AT et al., 2000) and enzyme specific cleavage sequences of oligopeptides. 

Another synthetic hydrophilic polymer widely explored for use in space filling 

and drug delivery applications is PVA. It can be physically crosslinked by 

repeated freeze-thawing cycles of aqueous polymer solutions (Cascone MG et al., 

1995) or chemically crosslinked with glutaraldehyde (Nuttelman CR et al., 2001), 

succinyl chloride, adipoyl chloride, and sebacoyl chloride (Orienti I et al., 2001) 

to form hydrogels. It can also be blended with other water-soluble polymers and 

again crosslinked either physically or chemically (Cascone MG et al., 2001; 

Cauich-Rodriguez JV et al., 1996; Cauich-Rodriguez JV et al., 2001). It these 

forms, it is not dissolvable in aqueous solutions. A newer, synthetic hydrogel 

block copolymer, P(PFco- EG) has been created for use as an injectable carrier for 
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bone and blood vessel engineering (Suggs LJ et Mikos AG, 1999). The 

homopolymer poly(propylene fumarate) (PPF) is a hydrophobic, linear polyester 

which undergoes degradation by hydrolysis of the ester linkage. It can form 

hydrogels when synthesized as a block copolymer with hydrophilic PEG and 

crosslinked either chemically (Suggs LJ et al., 1999) or via UV exposure (He S et 

al., 2000). 

 

4.2.2 Naturally derived materials 

Naturally derived hydrogel forming polymers have frequently been used in tissue 

engineering applications because they are either components of or have 

macromolecular properties similar to the natural ECM. For example, collagens are 

the main protein of mammalian tissue ECM and comprise 25% of the total protein 

mass of most mammals (Alberts B et al., 1994; Lee CH et al., 2001) . Similarly, 

HA is found in varying amounts in all tissues of adult animals. Like HA, both 

alginate and chitosan are hydrophilic, linear polysaccharides (SmidsrǾd O et 

Skjak-Bræk G, 1990; Suh J-KF et Matthew HWT, 2000). They have also been 

shown to interact in a favorable manner in vivo and thus have been utilized as 

hydrogel scaffold materials for tissue engineering.  

Collagen is an attractive material for biomedical applications as it is the most 

abundant protein in mammalian tissues and is the main component of natural 

ECM. There are at least 19 different types of collagen, but the basic structure of 

all collagen is composed of three polypeptide chains, which wrap around one 

another to form a three-stranded rope structure. The strands are held together by 

both hydrogen and covalent bonds. Collagen strands can self aggregate to form 

stable fibers. In addition, collagen fibers and scaffolds can be created and their 

mechanical properties enhanced by introducing various chemical crosslinkers (i.e. 

glutaraldehyde, formaldehyde, carbodiimide) (Lee CR et al., 2001; Park S-N et 

al., 2002), by crosslinking with physical treatments (i.e. UV irradiation, freeze-

drying, heating) (Schoof H et al., 2001), and by blending it with other polymers 

(i.e. HA, PLA, poly(glycolic acid) (PGA), poly(lactic-coglycolic acid) (PLGA), 

chitosan, PEO) (Tan W et al., 2001; Chen G et al., 2001; Huang L et al., 2001). 

Collagen is naturally degraded by metalloproteases, specifically collagenase, and 
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serine proteases, allowing for its degradation to be locally controlled by cells 

present in the engineered tissue. HA is the simplest glycosaminolglycan (GAG) 

and is found in nearly every mammalian tissue and fluid. It is especially prevalent 

during wound healing and in the synovial fluid of joints. It is a linear 

polysaccharide composed of a repeating disaccharide of (1–3) and (1–4)-linked b-

d-glucuronic acid and N-acetyl-b-dglucosamine units. Hydrogels of HA are 

formed by covalent crosslinking with hydrazide derivatives (Vercruysse KP et al., 

1997; Prestwich GD et al., 1998; Oerther S et al., 2000), by esterification 

(Mensitieri M et al., 1996, Borzacchiello A et Ambrosio L, 2001; Gamini A et al., 

2002), and by annealing (Fujiwara J et al., 2000). Additionally, HA has been 

combined with both collagen and alginate to form composite hydrogels (Oerther S 

et al., 1999; Miralles G et al., 2001). HA is naturally degraded by hyaluronidase, 

again allowing cells in the body to regulate the clearance of the material in a 

localized manner. Alginate has been used in a variety of medical applications 

including cell encapsulation and drug stabilization and delivery, because it gels 

under gentle conditions, has low toxicity, and is readily available. It is a linear 

polysaccharide copolymer of (1–4)-linked b-d mannuronic acid (M) and a-l-

guluronic acid (G) monomers, and is derived primarily from brown seaweed and 

bacteria (Johnson FA et al., 1997). Within the alginate polymer, the M and G 

monomers are sequentially distributed in either repeating or alternating blocks 

(Draget KI et al., 2000). The amount and distribution of each monomer depends 

on the species, location, and age of seaweed from which the alginate is isolated. 

Gels are formed when divalent cations such as Ca
2+

, Ba
2+

, or Sr
2+

 cooperatively 

interact with blocks of G monomers to form ionic bridges between different 

polymer chains. The crosslinking density and thus mechanical properties and pore 

size of the ionically crosslinked gels can be readily manipulated by varying the M 

to G ratio and molecular weight of the polymer chain. Gels can also be formed by 

covalently crosslinking alginate with adipic hydrazide and PEG using standard 

carbodiimide chemistry (Eiselt P et al., 1999; Lee KY et al., 2000). Ionically 

crosslinked alginate hydrogels do not specifically degrade but undergo slow, 

uncontrolled dissolution. Mass is lost through ion exchange of calcium followed 

by dissociation of individual chains, which results in loss of mechanical stiffness 
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over time (Le Roux MA et al., 1999). Hydrolytically degradable forms of alginate 

have been synthesized by partial oxidation of alginate and an alginate derivative, 

polyguluronate (Bouhadir KH et al., 1999), to form oxidized alginate (Bouhadir 

KH et al., 2001) and poly (aldehyde guluronate) (PAG) (Lee KY et al., 2000), 

respectively.   

Chitosan has been investigated for a variety of tissue engineering applications 

because it is structurally similar to naturally occurring GAGs and is degradable by 

enzymes in humans. It is a linear polysaccharide of (1–4)-linked d-glucosamine 

and N-acetyl-d-glucosamine residues derived from chitin, which is found in 

arthropod exoskeletons (Zhang Y et Zhang M, 2001; VandeVord PJ et al., 2002). 

The degree of N-deacetylation usually varies from 50% to 90% and determines 

the crystallinity, which is greatest for 0% and 100% N-deacetylation. Chitosan is 

soluble in dilute acids which protonate the free amino groups (Chenite A et al., 

2000). Once dissolved, chitosan can be gelled by increasing the pH or extruding 

the solution into a nonsolvent. Chitosan derivatives and blends have also been 

gelled via glutaraldehyde crosslinking (Mi F-L et al., 2000; Shen F et al., 2000), 

UV irradiation (Ono K et al., 2000), and thermal variations. Chitosan is degraded 

by lysozyme; the kinetics of degradation are inversely related to the degree of 

crystallinity (Lee KY et al., 1995; Varum KM et al., 1996; Tomihata K et al., 

1997). 

 

4.2.3 Scaffold design variables 

Selection or synthesis of the appropriate hydrogel scaffold materials is governed 

by the physical property, the mass transport property, and the biological 

interaction requirements of each specific application. These properties or design 

variables are specified by the intended scaffold application and environment into 

which the scaffold will be placed. For example, scaffolds designed to encapsulate 

cells must be capable of being gelled without damaging the cells, must be 

nontoxic to the cells and the surrounding tissue after gelling, must allow 

appropriate diffusion of nutrients and metabolites to and from the encapsulated 

cells and surrounding tissue, and require sufficient mechanical integrity and 
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strength to withstand manipulations associated with implantation and in vivo 

existence (Lim F, 1984). Here, the defined physical properties include mechanical 

strength and gel formation dynamics, while diffusion requirements specify the 

mass transport properties. In addition, the biological properties are designated by 

the required non-toxicity. What follows are definitions and discussions of the 

physical, mass transport, and biological design variables relevant to the design of 

hydrogel scaffolds for tissue engineering. 

 

4.3 Physical properties 

Many scaffolds for tissue engineering initially fill a space otherwise occupied by 

natural tissue, and then provide a framework by which that tissue may be 

regenerated. In this capacity, the physical properties of the material are inherent to 

the success of the scaffold. Specific physical properties include gel formation 

mechanisms and dynamics, mechanical characteristics, and degradation behavior. 

In hydrogels, these properties are prescribed by the intrinsic properties of the main 

chain polymer and the crosslinking characteristics (i.e. amount, type, and size of 

crosslinking molecules), as well as environmental conditions. Gel formation 

mechanisms and dynamics dictate how molecules and cells are incorporated into a 

scaffold and how that scaffold is then delivered. Common fabrication processes 

and reagents such as temperature increases, pH changes, and various solvents can 

denature proteins (Creighton TE,1993) and cause cell damage or death. One 

approach to bypass this issue is to process the material and create a scaffold prior 

to incorporating bioactive molecules and cells. However, an exciting feature of 

many hydrogels is their ability to be mixed with cells and molecules prior to 

injection and in vivo gel formation. Injectable, in vivo gelling forms of alginate 

(Paige KT et al., 1995; Marler JJ et al., 2000; Alsberg E et al., 2001; Lee KY et 

al., 2001), PEO (Elisseeff J et al., 1999), chitosan, and P(PF-co-EG) have all been 

successfully combined with cells and/or bioactive molecules and delivered in a 

minimally invasive manner. The success of this approach depends on the ability to 

control both pre- and post-gel properties including gel formation rates and liquid 

flow properties. Once the scaffold is produced and placed, formation of tissues 

with desirable properties relies on scaffold material mechanical properties on both 
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the macroscopic and the microscopic level. Macroscopically, the scaffold must 

bear loads to provide stability to the tissues as it forms and to fulfill its volume 

maintenance function. On the microscopic level, evidence suggests that cell 

growth and differentiation and ultimate tissue formation are dependent on 

mechanical input to the cells (Kim B-S et al., 1999; Butler DL et al., 2000; Cowin 

SC, 2000; Sikavitsas VI et al., 2001). As a consequence, the scaffold must be able 

to both withstand specific loads and transmit them in an appropriate manner to the 

surrounding cells and tissues. Adequate mechanical performance of a scaffold 

depends on specifying, characterizing, and controlling the material mechanical 

properties including elasticity, compressibility, viscoelastic behavior, tensile 

strength, and failure strain. For hydrogels, these properties are affected by 

polymer and crosslinker characteristics, gelling conditions (e.g. temperature and 

pH), swelling, and degradation (Anseth KS et al., 1996). For example, the 

mechanical strength and compression modulus of alginate hydrogels increase with 

increasing ratios of G to M subunits as well as increasing lengths of G blocks. In 

addition, increasing the volume fraction of alginate from 1% to 3% results in an 

increase in both the compression modulus and equilibrium shear modulus. Similar 

increases in compression modulus were observed for PEG gels when the weight 

fraction of PEG was increased from 10% to 40% (Bryant SJ et Anseth KS, 2002) 

and for PVA hydrogels (Stammen JA et al., 2001). Hydrogel mechanical 

properties are also affected by the crosslinker type and density. The mechanical 

strength of ionically crosslinked alginate hydrogels increases when the ion 

concentration is increased and when divalent ions that have a higher affinity for 

alginate are used for crosslinking. Similarly, the mechanical shear modulus of 

covalently crosslinked alginate is dependent on the crosslinker density. In addition 

to the polymer and crosslinker characteristics, gel swelling usually results in a 

decrease in the mechanical strength of hydrogels. However, the mechanical 

properties and swelling have been independently controlled in covalently 

crosslinked alginate hydrogels by varying both the crosslinker type and density. 

Hydrogel degradation and dissolution usually lead to a weakening of the gels 

unless tissue in growth acts to strengthen them or these properties are decoupled. 

The desired kinetics for scaffold degradation depends on the tissue engineering 



Introduction 
 

52 
 

application. Degradation is essential in many small and large molecule release 

applications and in functional tissue regeneration applications. However, it may 

not be warranted if the application is related to cell encapsulation for 

immunoisolation. Ideally, the rate of scaffold degradation should mirror the rate 

of new tissue formation or be adequate for the controlled release of bioactive 

molecules. Thus, it is important to understand and control both the mechanism 

and the rate by which each material is degraded. For hydrogels, there are three 

basic degradation mechanisms: hydrolysis, enzymatic cleavage, and dissolution. 

Most of the synthetic hydrogels are degraded through hydrolysis of ester linkages 

(Saito N et al., 2001). As hydrolysis occurs at a constant ratein vivo and in vitro, 

the degradation rate of hydrolytically labile gels (e.g. PEG-PLA copolymer) can 

be manipulated by the composition of the material but not the environment. As 

discussed in the materials section above, collagen, HA, and chitosan are all 

degraded by enzymatic action. Synthetic linkages have also been introduced into 

PEO to render it susceptible to enzymatic degradation. The rate of enzymatic 

degradation will depend both on the number of cleavage sites in the polymer and 

the amount of available enzymes in the scaffold environment (West JL et al., 

1999; Mann BK et al., 2001). Ionically crosslinked alginate normally undergoes 

dissolution, but can also undergo controlled hydrolysis after partial oxidization. 

The rate of dissolution of ionically crosslinked alginate depends on the ionic 

environment in which the scaffold is placed (LeRoux MA et al., 1999). 

 

4.4 Mass transport properties 

The success of scaffolds for tissue engineering are typically coupled to the 

appropriate transport of gases, nutrients, proteins, cells, and waste products into, 

out of, and/or within the scaffold. Here, the primary mass transport property of 

interest, at least initially, is diffusion. In a scaffold, the rate and distance a 

molecule diffuses depend on both the material and molecule characteristics and 

interactions. Gel properties such as polymer fraction, polymer size, and 

crosslinker concentration determine the gels nanoporous structure (Lu S et Anseth 

KS Lu S, Anseth KS, 2000). As a consequence, diffusion rates will be affected by 

the molecular weight and size of the diffusion species (defined by Stokes radii) 
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compared to these pores. For example, molecules such as glucose, oxygen, and 

vitamin B12, with molecular weights less than 1300 Da and Stokes radii less than 

1 nm, are able to freely diffuse into and from ionically crosslinked alginate 

microspheres (Tanaka H et al., 1984; Li RH et al., 1996). However, higher 

molecular weight molecules, including myoglobin, albumin, and fibrinogen are 

not able to freely diffuse, and their rate of diffusion is further decreased by 

increases in alginate concentration, in Ca
2+

 concentration, and/or in extent of 

gellation. The diffusion rates of molecules through glutaraldehyde crosslinked 

chitosan gels are also decreased when the crosslinker concentration is increased. 

For PEO hydrogels the size and molecular weight of molecules that are able to 

diffuse and the rate at which they diffuse both increase as functions of increasing 

polymer molecular weight and hydrolysable linkages. Interestingly, for alginate 

and likely other charged polymers, the diffusion rates of charged molecules are 

not solely size-dependent (Stewart WW et Swaisgood HE, 1993). Rather, they are 

also affected by charge interactions with the negatively charged alginate chains. 

Ultimately, diffusion requirements and subsequent material choice depend on the 

scaffold application. In the case of small and large molecule delivery, limiting free 

diffusion out of the scaffold may be a priority. In contrast, enhancing the supply 

of oxygen and nutrients and the removal of waste products is essential to the 

survival of implanted cells. In vivo, most cells exist within 100 mm of a capillary 

(Vander AJ et al., 1990), and diffusion is usually adequate for cell and tissue 

survival over this distance. However, for larger distances, other means of transport 

(e.g. simultaneous angiogenesis) must be incorporated. 

 

4.5 Biological properties 

Materials used to form gels engineered to exist in the body must simultaneously 

promote desirable cellular functions for a specific application (i.e. adherence, 

proliferation, differentiation) and tissue development, while not eliciting a severe 

and chronic inflammatory response. Hydrogel forming polymers are generally 

designed to be non toxic to the cells they are delivering and to the surrounding 

tissue. Both collagen and HA are major components of the native ECM and 

tissues (Alberts B et al., 1994; Lee CH et al., 2001). Both should theoretically 
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interact favorably with the body, provided that they have not been contaminated 

during processing and that there are no cross-species immunological issues (both 

are typically derived from bovine sources). PEO is currently FDA approved for 

many medical applications, while P(PF-co- EG) has been shown to be slightly 

toxic to cultured cells in vitro and to not induce a significant inflammatory 

response in vivo (Suggs LJ et al., 1999). Chitosan has also been shown to be 

nontoxic despite its chemotaxic effect on neutrophils (Lee KY et al., 1995; Ueno 

H et al., 2001). For alginate, it was thought that high M content induced an 

immune response, but recent data suggest that contaminants were the more likely 

cause of the response (Klock G et al., 1997). When purified, alginate is relatively 

immune quiescent; however, the purity of commercially available alginate 

continues to be a problem (Zhang WJ et al., 2001). While many hydrogels are non 

toxic and do not activate a chronic immune response, they also do not readily 

promote cellular adhesion and function. With the exception of collagen, which is a 

natural ECM protein, most cells do not have receptors to hydrogel forming 

polymers and thus cannot adhere. Furthermore, because of the hydrophilic nature 

of hydrogels, ECM proteins such as laminin, fibronectin, and vitronectin typically 

do not readily absorb to the gel surface (West JL et Hubbell JA, 1997). This fact 

has been exploited in the application of post-operative adhesion barriers (West JL 

et al., 1996) and in the design of specific adhesion surfaces (Hubbell JA, 1990). A 

common approach to design a highly specific adhesive surface is to covalently 

couple an entire ECM protein or peptide sequences capable of binding to cellular 

receptors (Rowley JA et al., 1999) to the polymer. The most common peptide 

used in this approach is the amino acid sequence arginine–glycine–aspartic acid 

(abbreviated Arg–Gly–Asp or more commonly, RGD), derived from numerous 

ECM proteins including fibronectin, laminin, vitronectin, and collagen. Other 

common peptides include arginine–glutamic acid–aspartic acid–valine (REDV) 

(from fibronectin), tyrosine–isoleucine–glycine–serine–arginine (YIGSR) (from 

laminin), and isoleucine–lysine–valine–alanine–valine (IKVAV) (from laminin). 

Most cell types are able to bind to RGD, thus both alginate and PEG (Hern DL et 

Hubbell JA, 1998; Mann BK et al., 2001) have been modified with this peptide to 

promote cellular adhesion. In an alternative approach, PVA was modified with the 
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complete fibronectin protein to promote cell adhesion. Growth factor tethering 

and incorporation are other avenues available by which hydrogels can be modified 

to regulate the functions of interacting cells. As with adhesion proteins and 

peptides, growth factors and growth factor derived peptides have been covalently 

attached to hydrogel polymers. For example, transforming growth factor-b (TGF-

b) was tethered to PEG to enhance smooth muscle cell ECM production (Mann 

BK et al., 2001). Alternatively, an oligopeptide derived from bone morphogenetic 

protein-2 (BMP-2) was covalently attached to alginate to promote osteoblast 

migration into gels and subsequent calcification of the scaffolds (Suzuki Y et al., 

2000). Multiple factors may also be incorporated into hydrogels to manipulate 

tissue formation (Elisseeff J et al., 2001). 

 

 

5. In vitro culture of isolated follicles 

 

5.1 Importance of maintaining of follicular architecture  

Folliculogenesis within the ovary is a complex process requiring interaction 

between somatic cell components and the oocyte. At birth the human ovary 

contains 1-2 million primordial follicles, each containing an oocyte in meiotic 

arrest at the prophase stage (Baker TG, 1963). The oocyte is surrounded by a layer 

of somatic granulosa cells. Follicular growth from the primordial to the pre-

ovulatory stage occurs in two distinct stages. The first growth phase occurs very 

slowly and is not directly dependent on gonadotrophin levels (Abir R, 2006). 

There is proliferation of the granaulosa cell layer surrounding the oocyte and an 

increase in both follicle and oocyte diameter. This stage can take weeks in rodents 

and months in larger animal species, including humans. In the human, follicles 

increase in size from 30-50 μm in primordial resting follicles, to 100-200 μm in 

pre-antral follicles (Gosden RG et al., 1993). The second phase of follicular 

growth is far more rapid and culminates with the ovulation of a mature oocyte. 

Follicles are now responsive to follicle stimulating hormone (FSH) and luteinizing 

hormone (LH). The formation of a fluid filled antrum and synthesis of steroid 

hormones marks the transition to the antral phase of follicle development. Human 
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follicles are over 18 mm when they reach the pre-ovulatory or Graafian stage and 

the oocyte is close to its final size, around 120 μM (Griffin J et al., 2006). The 

multi-layer follicle is now surrounded by a basement membrane that separates it 

from the underlying vascularized thecal cell layer. Oocyte growth and cytoplasmic 

meiotic competence are dependent on the gap junctions between the oocyte and 

the granulosa cells (Carabatsos MJ et al., 2000). Knock out mice lacking the gene 

encoding for gap junction protein connexin-37 have impaired folliculogenesis 

(Simon AM et al., 1997). The gap junctions connecting the granulosa cells and the 

oocyte enable sharing of secreted paracrine factors that promote the growth of 

both cell types (Eppig JJ et Schroeder AC, 1989; Herlands RL et Schultz RM, 

1984; Murray A et Spears N, 2000; Diaz FJ et al., 2007) (reviewed in Buccione R 

et al., 1990; Su YQ et al., 2009). Evidence suggests that granulosa cell 

proliferation and certain metabolic processes are controlled by oocyte-derived 

secretions (Eppig JJ et al., 2005). The oocyte is unable to transport certain amino 

acids, carry out glycolysis and cholesterol biosynthesis without the cooperation of 

granulosa cells in providing necessary factors (Eppig JJ, 1991). The oocyte 

overcomes these metabolic deficiencies by stimulating expression of specific 

genes in the cumulus cells that control synthesis of enzymes and amino acids that 

it needs. Severing of the gap junction and intercellular communication during in 

vitro culture triggers premature ovulation and eventual degeneration of the 

released oocyte. Maintenance of the intricate 3-D architecture and granulosa-

oocyte interaction may therefore be critical for successful in vitro maturation of 

follicles. In conventional 2-dimensional (2-D) tissue culture systems, the follicle 

tends to flatten and granulosa cells surrounding and nurturing the growing oocyte, 

migrate away, leaving it naked and unable to complete the maturation process 

(West ER et al., 2007). This is especially true when dealing with human 

primordial follicles, which may need as long as three months in culture (Gougeon 

A, 1986). 

 

5.2 Culture systems for follicle growth 2-D versus 3-D 

The majority of early and ground breaking work on in vitro follicle culture was 

undertaken using conventional 2-D culture methodology. Pre-antral follicle 
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growth in multi-well plates as well as in microdrop culture (Nation A et Selwood 

L, 2009; Cortvrindt R et al., 1996; Adam AA et al., 2004; Mousset-Simeon N et 

al., 2005) yields mature oocytes. Eppig and Schroeder were able to achieve live 

births after in vitro maturation of mouse pre-antral follicles on a collagen 

impregnated gel and in vitro fertilization of the IVM oocytes. By including eight 

days of in situ culture of the intact newborn mouse ovary, the same collagen 

culture methodology could also be used to successfully mature primordial follicles 

and produce live offspring (Eppig JJ et O‟Brien MJ, 1996). Other 2-D systems 

used for follicle culture include membranes coated with extracellular matrix 

proteins (Oktem O et Oktay K, 2007; Hovatta O et al., 1997; Berkholtz CB et al., 

2006; Figueiredo JR et al., 1995). Despite the successes achieved with these 2D 

systems, they have been sub-optimal for sustained culture of cow, sheep and 

human follicles (reviewed in West ER et al., 2007). Culture on treated membranes 

or tissue culture substrata, impedes preservation of the spatial arrangements of 

cells seen in vivo. Follicular flattening due to granulosa cell attachment to the 

tissue culture vessel is problematic making the follicle complex extremely 

vulnerable to disruption of gap junctions. With enzymatic follicle isolation 

techniques, perturbation of the basal lamina surrounding the follicle can lead to 

granulose cell migration away from the oocyte. Establishing an in vitro culture 

model that can more accurately mimic the in vivo ovarian growth environment 

has therefore been the focus of much research. To this end, a tissue 

bioengineering approach has attracted much interest. The recognition of the 

importance of spatial arrangements between cells has spurred research in to 3-D 

culture systems. Data from a variety of different cellular models indicate that 3-D 

culture modulates cell behavior, growth, secretions, response to stimuli and 

communication with surrounding cells. In a landmark study, investigators were 

able to block the cell surface receptor b-1 integrin and completely alter the 

behavior of breast cancer cells grown in 3-D culture, in a manner never observed 

during conventional 2-D culture (Weaver VM et al., 1996; Bissell MJ et al., 

2003). Others have noted that the gene expression profile of cells grown in 3-D 

culture more closely resembles that seen in vivo (Hwa AJ et al., 2007) and 

distinctly differs from that found after conventional 2-D culture. In addition to the 
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spatial arrangement of the cells it is becoming increasingly evident that the 

extracellular matrix support structure (ECM) plays a defining role in organizing 

communication between cells, controlling cell differentiation and modulating 

response to biochemical signals from the cellular microenvironment (reviewed in 

Griffith LG et Swartz MA, 2006). Scaffolding, matrix proteins and 3-D culture 

systems to maintain follicular architecture are avenues of research currently being 

explored by numerous investigators to gain further insight on the growth 

requirements of follicles. These 3-D systems are characterized by their ability to 

maintain the spherical morphology of the ovarian follicle and preserve the critical 

cell-cell and cell-matrix interactions within the surrounding stromal tissue, 

thereby allowing follicles to successfully complete the maturation process. Figure 

4 depicts growth of pre-antral follicles in a 2-D vs 3-D culture system. 

Encapsulation of follicles may protect them from gap junction disruption through 

shear stress (Heise M et al., 2005; Heise MK et al, 2009) and may preserve 

expression of the gene encoding for the gap-junction protein connexin (De Paola 

N et al., 1999). Contiguous assembly of granulosa cells around the oocyte also 

prevents the follicles from undergoing premature ovulation (Xu M et al., 2006). 

Another advantage may be that trophic factors released by granulosa cells remain 

in close proximity to the oocyte exerting a positive effect on oogenesis and 

possibly fostering new local gap junctions. This is an advantage not shared by 2-D 

culture vessels where the volume of medium in culture vessels and polarization of 

granulosa cells towards the culture substrata may result in a more diffuse and less 

uniform exposure to secreted factors. Despite the potential advantages with 3-D 

culture, there is still a good deal of controversy as to how best to achieve such a 

culture system. The questions revolve around the type of biomaterials available, 

their characteristics, permeability, toxicity and ability to be molded and handled 

with ease during follicle loading and harvest. In addition, their biologically 

usefulness ultimately depends on survival of the follicle and maturation of the 

oocyte in vitro. The animal species and the length of time needed for follicular 

culture also warrant consideration in determining whether 3-D culture will be 

beneficial. In humans, in vitro follicle maturation from primary to the antral stage 

can take more than 120 days (Eppig JJ, 1991), in contrast to 30 or so days for 
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follicle maturation in rodent species (reviewed in McGee EA et Hsueh AJ, 2000). 

Moreover, by the early antral stage human follicles measure 2-5 mm in diameter. 

Active perfusion systems may therefore prove necessary to assure sufficient 

nutrient supply to multilayered follicles if cultured in a 3-D environment. 

 

5.3 Design parameters for biomaterials for 3-D culture 

Chemical and physical properties of biomaterials present certain design 

limitations that must be meshed with the physiologic needs of the follicular unit. 

First and foremost, the chemical composition must be non-cytotoxic, allowing 

sustained cell viability for extended culture periods. Growth of follicular diameter 

during the course of in vitro maturation dictates materials with a certain amount of 

elasticity allowing expansion of the granulose cell layers, yet providing enough 

support to retain spherical shape and prevent inadvertent denudation of the oocyte. 

This is especially important in 3-D culture systems that physically encapsulate the 

follicle within a biomaterial. In addition to maintaining structural integrity, this 

biomaterial must allow adequate gas exchange, diffusion of nutrients and removal 

of cellular waste. Within the ovary there is an increase in vascularization as one 

moves deeper in to the ovarian cortex where secondary and pre-antral follicles 

grow (van Wezel IL et Rodgers RJ, 1996). This suggests a stronger need for 

oxygen diffusion during the final stages of follicle maturation. The need for 

oxygenation may also require an active perfusion system when dealing with 

longer in vitro maturation intervals. Diffusion across the biomaterial during 3-D 

culture is controlled by creating specific pore sizes (Eiselt P et al., 2000). The 

mechanical properties of the biomaterial, such as viscosity and its ability to be 

molded also contribute to its usefulness for follicle culture and are dependent on 

molecular weight (Wee S et Gombotz WR, 1998). Another important attribute is 

the biomaterial‟s rigidity, also referred to as shear modulus. The shear modulus of 

a biomaterial is a mathematical description of its elastic properties-that is its 

ability to resist deformation with the application of a force. Biomaterial rigidity 

and its effect on follicle diameter, theca formation, antrum formation, estradiol 

production, and rate of meiotic resumption (GVBD and metaphase II oocyte 

formation) can all be used to compare outcomes with follicle encapsulation in 3-D 
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culture models (Kong HJ et al., 2004; West ER et al., 2007; Xu M et al., 2006). 

The ideal biomaterial for in vitro follicle maturation would also be one that could 

mimic the extracellular matrix (ECM) found within the ovary (Abbott A, 2003). It 

has been suggested that since ovarian stromal composition can vary, the selected 

ECM for follicle culture should ideally share the inherent properties of the 

particular species being cultured (Xu M et al., 2009). A final consideration is 

whether to individually or coculture follicles. Culturing follicles in clusters allows 

sharing of autocrine/paracrine secretions, increasing follicle-to-follicle 

communication and possibly enhancing the culture environment (Hovatta O et al., 

1999). However, some disadvantages of co-culture systems include the potential 

sharing of growth-inhibiting hormones, like AMH (anti-Mullerian hormone), 

amongst follicles (Durlinger AL et al., 1999). Also co-culture can interfere with 

the monitoring, tracking and harvesting of individual follicles during the 

maturation process. 

 

 

5.4 Current 3-D culture models 

 

5.4.1 In situ culture 

In vitro culture of ovarian tissue pieces as a technique for in situ 3-D follicle 

maturation has not been very effective. While primordial follicle growth can be 

supported in this manner, development of follicles past the pre-antral stage is 

inhibited. To obtain complete in vitro maturation of follicles and the release of a 

metaphase II oocyte it is necessary to remove the follicle from the ovarian cortex 

(Abir R et al., 2001; Telfer EE et al., 2008). Two-step culture systems in which 

follicles are first grown from the primordial stage in situ and then mechanically or 

enzymatically isolated and grown in vitro have been investigated with mouse as 

well as human ovarian tissue. Models for human in vitro follicle maturation from 

primordial or even pre-antral stages to a mature oocyte are still in the early phase. 

Recently, Li and colleagues were able to induce maturation of primordial follicles 

in ovarian tissue fragments from cancer patients. Human ovarian tissue fragments 

were treated with PTEN gene inhibitor and transplanted to immunodeficient mice 
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(Li J et al., 2010). The PTEN (phosphatase and tensin homolog) gene plays a 

pivotal role in cell regulation and apoptosis. Interestingly, in this study, inhibition 

of the PTEN gene allowed primordial follicles to advance to the pre-ovulatory 

stage. The ability to activate dormant ovarian follicles may play a pivotal role in 

establishing a successful in vitro culture model for maturing primordial follicles. 

A much deeper understanding of factors regulating human folliculogenesis is still 

needed to successfully mature human follicles to the Graafian stage and to be able 

to assess fertilization potential. Progress in this arena may well depend on 

establishing adequate 3-D culture systems that preserve the normal follicular 

architecture and allow extended in vitro culture intervals. 

 

5.4.2 Matrices for follicle culture 

Synthetic and biologic matrices for the support of follicle growth and maturation 

have been studied in several animal models as well as in humans. Table 4 presents 

various 3-D systems and matrices that have been applied to the culture of rodent 

pre-antral follicles.  

 

Table 4: studies examining matrices for 3D culture of pre-antral ovarian follicles from rodents 

 

Table 5 summarizes 3-D culture models for follicles from larger animals, primates 

and humans. All of the matrices adopted for 3-D culture essentially permit 

spherical growth of the follicle, preserving the physical integrity of granulosa cell 
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and oocyte‟s interaction. Nayadu et al in 1992 accomplished this using a Millicell 

hydrophobic insert.  

 

Table 5: summary of 3D culture studies with follicles from human, primate and large domestic 

animal species 

 

The non-tissue culture treated surface prevented granulosa cell migration that 

could disrupt follicle architecture. A variety of optically clear gels have also been 

applied towards follicle culture in different animal models. Follicles have either 

been completely encapsulated to create a 3-D environment or grown on a gel 

membrane with medium bathing both surfaces to simulate 3-D culture. Gels that 

have been used for tissue engineering include hydrogels like agar/agarose, 

calcium alginate, and hyaluronan, all from naturally derived polymers, as well as 

synthetic polymers such as PEG and PVA (reviewed in Tibbitt MW et al., 2009). 

Gels containing collagen alone as well as compounds containing collagen in 

combination with ECM proteins have also been applied to in vitro follicle growth. 

The physical characteristics of each of these matrices permit physical expansion 
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of the follicular unit during growth. Hydrogels contain polymers that cross-link or 

self assemble into hydrophilic structures. The 3-D crosslinking is what gives the 

gel its stiffness. The temperature and conditions for this cross-linking can be a 

critical factor in determining subsequent development of the follicle. For instance 

agar, derived from seaweed, requires exposure to elevated non-physiologic 

temperatures for melting before the cross-linking or gelling step, potentially 

damaging the follicle (Sawhney AS et al., 1994). Higher rates of atresia were 

observed in follicles grown on agar as compared to those placed in microdrop 

culture or in 3-D culture on a hydrophobic membrane insert. In contrast, Huanmin 

et al. (2000) described active follicular growth and antrum formation with caprine 

follicles embedded within agar (Huanmin Z et Yong Z, 2000). Their data did 

however show that secondary follicles survived better than primary follicles in 

this 3-D agar culture system. Agar embedding has also been applied to human and 

hamster pre-antral follicles (Roy SK et Greenwald GS, 1989; Roy SK et 

Greenwald GS, 1996). Follicles were biologically competent, secreting steroids 

and synthesizing DNA. Low melting point agarose may be a better matrix for 

follicle embedding, permitting encapsulation at temperatures more conducive to 

continued cell growth. Collagen is rich in glycine and proline and can be 

hydrolyzed in to a gel by boiling. This biomaterial has been widely applied to 

follicular culture. Eppig and colleagues used collagen membrane inserts as 

substrata in an attempt to simulate 3-D follicle culture. The membrane inserts with 

follicles were suspended in wells, and follicles were exposed to culture medium 

from below as well as above (Eppig JJ et Telfer EE, 1993). The biomaterial was 

not tissue culture treated. It did however allow follicle attachment but minimized 

granulosa cell migration. In vitro follicle maturation resulted in the formation of 

metaphase II oocytes, with the capability of producing live young after in vitro 

fertilization, growth and transfer to foster mothers. Despite this achievement, 

follicle growth on collagen treated membranes had limited potential in terms of 

maintaining spheroid follicle structure and follicles were susceptible to flattening 

over time in culture and to premature oocyte ovulation. To create a more spatially 

uniform 3-D culture system, follicles have also been embedded in collagen gel 

(Torrance C et al., 1989). Spontaneous follicle disruption as a result of 
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discontinuous or distorted basal lamina and granulose cell migration was 

decreased in the 3-D collagen system compared to control 2-D culture systems 

(Gomes JE et al., 1999). Follicle growth rate has also been reported to be superior 

(Loret de Mola JR et al., 2004). Granulosa-cell oocyte complexes embedded in 

collagen matrix remained rounded and compacted with neuronal- like outgrowths 

towards the oocytes (Combelles CM et al., 2005). Two limitations of the collagen 

gel have however been noted. The collagen gel is susceptible to shrinkage over 

time, affecting the gel‟s natural properties as well as reducing visibility during 

microscopic assessment. Also, follicle extraction from the collagen requires 

enzymatic digestion of the gel, with the potential for subsequent damage to the 

oocyte (Telfer E, 1996). The natural scaffolding upon which cells are organized in 

vivo, known as the extracellular matrix (ECM), is composed of collagen, along 

with laminin and fibronectin. ECM has been shown to play an important role in 

regulating cell behavior, differentiation and secretory activity (reviewed in 

Berkholtz CB et al., 2006). One commercially available ECM tested for follicle 

growth is matrigel (Buyuk E, 2003; Xu M et al., 2009). This ECM product is 

derived from the Engelbreth- Holm-Swarm (EHS) mouse sarcoma. Matrigel is 

composed of collagen IV, laminin, fibronectin, entactin, heparin sulfate 

proteoglycans, and a variety of growth factors such as EGF, FGF, IGF-1, PDGF 

and TGF-b (Martin GR et Timpl R, 1987; Kleinman HK et Martin GR, 2005). 

Murine pre-antral follicles in 3-D culture in matrigel exhibited higher growth and 

survival rates than those in conventional culture. Hovatta et al demonstrated 

higher survival of follicles in frozen-thawed human ovarian tissue placed in 

culture on matrigel coated inserts. Autocrine and paracrine signaling by ECM 

molecules and associated growth factors likely affect folliculogenesis. The 

interactions between ECM proteins and follicles from different animal models 

needs to be further studied. The source and type of ECM could also play a role in 

regulating follicle growth during 3-D culture. The size of ECM molecules can 

present problems and an alternative solution has been to adsorb known sequences 

of matrix peptides, such as RGD (Arg-Gly-Asp) or laminin-derived peptide 

sequences on to synthetic matrices (reviewed in Berkholtz CB et al., 2006). To 

date the most widely applied system for follicle encapsulation and 3-D culture has 
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been alginate (Pangas SA et al., 2003; Kreeger PK et al., 2005; Amorim CA et al., 

2009; Xu M et al., 2009), because of its possibility to form hydrogels in very mild 

conditions. This property facilitates encapsulation of follicles under physiologic 

conditions. Pangas et al. (2003) first applied this system to the 3-D culture of 

granulosa-cell oocyte complexes (GOC) from 12-day old mouse pre-antral 

follicles. GOCs were embedded in alginate beads ranging in size from 0.5 to 1 

mm in diameter. Light microscopic and TEM ultra-structure studies suggested 

that the alginate did not interfere with oocyte or granulose cell growth 

development over a 10 day culture interval. Moreover, oocytes recovered from the 

encapsulated GOCs were able to resume meiosis, undergo fertilization and 

produce viable offspring. This 3-D system has also been applied to secondary 

follicles. Follicles embedded in alginate hydrogels responded to FSH stimulation 

in a dose-dependent fashion, secreting estradiol and progesterone. Alginate matrix 

stiffness and density can affect secondary follicle expansion, hormone production 

and oocyte maturation. Non-human primate follicles have also been successfully 

cultured in calcium alginate gels for up to 30 days. The encapsulated monkey pre-

antral follicles secreted estrogen, progesterone and androstenedione and 

responded to FSH in the culture milieu. Interestingly, follicles cultured in 0.5% 

alginate performed better than those in 0.25% alginate, suggesting that primate 

follicles may require more physical support. One concern however is that denser 

matrices could potentially limit access to hormones and other nutrients. Heise et 

al. (2005) reported inhibited delivery of FSH to microencapsulated follicles. 

Follicle diameters increased with inclusion of FSH in the hydrogel but still did not 

reach that observed in un-encapsulated controls. Clearly, the physical attributes of 

the 3-D matrix selected for follicle culture needs to be tailored towards the species 

and follicle stage being cultured. In humans, pre-antral follicle growth in vitro 

offers an avenue through which cryopreserved ovarian tissue can be utilized 

without the need for transplantation. Human follicles isolated from fresh or 

cryopreserved ovarian tissue have been successfully cultivated in calcium alginate 

hydrogels but functionality needs to be further characterized. Initial data with 

frozen mouse ovarian tissue certainly suggests that meiotically competent oocytes 

can be recovered after in vitro maturation of isolated follicles in this 3-D culture 
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system. To further simulate the in vivo environment, ECM molecules have been 

combined with calcium alginate to construct synthetic ECM matrices for 3D 

culture (Kreeger PK et al., 2003). The adhesion peptide sequence arginine-

glycine-aspartic acid (RGD) common to ECM proteins has been synthetically 

created and coupled to calcium alginate to construct such a synthetic matrix for 

follicle growth. Hormone secretion by follicles was directly related to adhesion 

peptide concentration and a three-fold increase in progesterone and estradiol 

secretion could be induced by adjusting matrix parameters. In a separate study, 

these investigators combined calcium alginate with additional ECM components 

such as collagen I, collagen IV, laminin and fibronectin (Kreeger PK et al., 2006). 

Matrix effect on growth from two-layered to multi-layered follicles as well as 

oocyte maturation to metaphase II was compared. Transition to the multi-layered, 

secondary follicle was enhanced in alginate matrices with RGD or collagen I. 

Final maturation of oocytes and resumption of meiosis was promoted by presence 

of fibronectin, laminin or RGD peptide. 

 

5.4.3 Criteria for biomaterial evaluation 

Increasing follicular diameter is typically used as a measure of follicle maturation. 

During in vitro growth, especially in traditional 2-D culture systems where there 

is granulosa cell expansion, an increase in horizontal diameter of the follicle does 

not necessarily correlate to overall follicular growth. With 3-D culture the 

biomaterial presents equal counter-forces in all directions, minimizing flattening 

and allowing equal growth along all axes. Follicle volume as well as diameter 

should therefore be taken into account when comparing different substrata. 

Another outcome measure indicative of follicle functionality and growth is antrum 

formation. This accumulation of fluid within the follicle complex has been shown 

to vary with 2- versus 3-D culture systems, as well as the biomaterial used for 

follicle encapsulation. The shear elastic modulus and diffusion characteristics of 

the biomaterial must be carefully balanced. Torrance et al. (1989) noted no antrum 

formation in follicles cultured in collagen, despite an apparent increase in 

follicular diameter over the 14 day culture interval. It was suggested that the 

double gelling of the collagen during follicle encapsulation allowed just enough 
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flexibility for some granulosa cell proliferation, but that the overall high shear 

elastic modulus (increased stiffness) inhibited antrum formation. Interestingly, 

this was not observed when follicles were individually cultured in collagen 

microbeads (Sharma GT et al., 2009). A relationship between decreased gel 

stiffness and greater antrum formation was also observed with calcium alginate 

hydrogel when tested at concentrations of 3%, 1.5% and 0.7%. The study of Xu et 

al. (2006) most clearly illustrates the opposing influences of the rigidity of the 

biomaterial at high gel concentration and its interference with diffusion and 

optimal growth. Oocytes obtained from follicles encapsulated in 0.25% alginate 

had a higher developmental capacity than those cultured in 1.5% alginate. In vitro 

maturation and fertilization of oocytes in 0.25% vs 1.5% calcium alginate were 

significantly higher (41% vs 5%, respectively). Moreover oocytes derived from 

the stiffer gel were clearly impaired and unable to undergo in vitro blastulation. 

Interestingly, follicles from primates showed the opposite relationship between 

gel rigidity and follicle growth. Follicle survival and diameter were increased with 

culture in 0.5% calcium alginate as compared to 0.25%. Ovarian stroma of 

primates is more rigid than that found in rodents and it has been suggested that 

perhaps primate as well as human follicles may require a stiffer biomaterial to 

optimize in vitro culture and growth. The 100% survival rate and 75% antrum 

formation observed with human secondary follicles grown in 3-D culture in 0.5% 

calcium alginate matrix further support this supposition. 

 

5.4.4 Non-gel culture systems 

Despite the aforementioned benefits of follicle encapsulation as a model for 3-D 

culture, there are also difficulties. The process of encapsulation as well as the 

removal of follicles from the gel can be problematic, sometimes resulting in loss 

of healthy follicles. Alternatives methods for 3-D culture of follicles that do not 

involve encapsulation have therefore also been explored. Suspension culture of 

follicles in orbiting test tubes, rotating-wall vessels, and roller bottle systems can 

maintain the 3-D morphology of the follicles without encapsulation. 

Unfortunately these systems have not been extremely effective. The rate of 

rotation necessary to keep the follicles from descending to the bottom of the 
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vessels imposes shear stress on the follicles causing follicle degeneration 

(Rowghani NM et al., 2004). Moreover, the only way to negate this effect was to 

encapsulate the follicles before subjecting them to suspension culture with 

rotation. Suspension culture in rotating systems with its accompanying shear 

stress resulted in more follicle loss than that observed with embedding and 

removal of follicles from gels. Follicle survival with culture in a rotating wall 

culture vessel was only 9% as compared to the 15% observed after embedding 

and removal from collagen gel culture. With marsupial follicles, survival rate in 

the roller culture system was higher; nearly 49%, but follicles exhibited no antrum 

formation. Other non-gel approaches have included serial culture of follicles in 

new wells each day to prevent attachment (Boland NI et al., 1993) and flattening, 

or culture in simple microdrop under an oil overlay (Bishonga C et al., 2001). 

Inverted microdrop suspension culture has also been tested as a means to maintain 

the 3-D architecture of follicles (Wycherley G et al., 2004). Follicles are placed in 

microdrops under oil on the bottom of a tissue culture plate and then hung upside 

down during culture. Oil is ideally suited as a biomaterial for microculture 

environments, allowing maintenance of pH and temperature around the follicle 

and free gas exchange (Tae JC et al., 2006). However, its hydrophobic properties 

could potentially allow the escape of lipid soluble follicle secretions and growth 

factors in to the oil layer, ultimately hindering growth (Miller KF et Pursel VG, 

1987). It should however be noted that while inverted suspension culture yielded 

survival rates similar to that observed with alginate gels, the meiotic maturation 

rate was only 10%, far less than that what has been achieved with gel 

encapsulation of follicles. Handling large numbers of follicles in inverted 

suspension culture would also be a delicate and labor intensive process. This 

method would be especially unsuitable for follicles from the human ovary, which 

might require as long as three months of culture. 

 

5.4.5 Microfluidic culture 

The final aspect of follicle culture that needs some attention is the development of 

culture vessels or systems that maximize diffusion of nutrients and gases through 
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the selected biomaterial while allowing retention of the delicate micro-

environment of the follicle and the concentration of essential trophic factors 

around the oocyte. To accurately mimic the in vivo ovarian environment, fluid 

flow across the encapsulated follicle is vital. Also, within the ovarian environment 

follicles are grown in close proximity of each other, allowing sharing and 

concentration of secreted factors. The logistics of co-culturing numerous 

encapsulated follicles can perhaps be aided by the use of microfluidics that allow 

precise control and manipulation of fluids using microchannels. Microchannels 

increase the surface areato-volume (SAV) ratio, implementing laminar fluid flow 

(Beebe D et al., 2002) (reviewed in Suh RS et al., 2003). Diffusion across 

biomaterials has been shown to be influenced by not only the biomaterial and its 

concentration but also by its shape or presentation. Encapsulating in microbeads 

of gel may allow more uniform diffusion across all surfaces as compared to 

culture with follicles embedded in a single continuous layer of gel. Survival and 

antrum formation by cultured pre-antral buffalo follicles was demonstrated to be 

better after culture in collagen microbeads as compared to a continuous layer of 

collagen matrix. Tiny microbeads containing follicles in a biomatrix, combined 

with a system of microchannels could be used to create a network of individual 

follicles sharing nutrients. A dynamic medium exchange could therefore be 

applied to follicle culture in a manner that avoids the shear stress observed with 

rotating culture systems and preserves a “coculture” atmosphere. A variety of 

microfluidic culture systems have been described. Cell immobilization with 

continuous media flow is the common goal. This can be accomplished with 

microposts on the culture surface to entrap cells and create a matrix support while 

still allowing laminar flow of fluid to pass by (Chen X, 2009; Hashimoto, 2008) 

or by entrapping cells between walls of PDMS with continuous flow of culture 

medium above the cells. Microwells can also be used as architectural supports in 

microfluidic systems and act as nests for cells to culture in while fluid is 

exchanged above or below (Khademhosseini A et al., 2005; Moeller HC et al., 

2008). Microfluidics in combination with valves and micro-scale pumps provide 

the option of continuous media flow in ways similar to that seen in vivo (Heo YS 

et al., 2007; Lee PJ et al., 2007). Microfluidics thus permits dynamic culture 
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conditions and medium flow without disturbing the cell itself. Application of 

microfluidics to the field of reproductive biology has gained much attention. It has 

been applied to sperm sorting (Schuster TG et al., 2003; Chung Y et al., 2006), 

oocyte handling and fertilization (Sadani Z et al., 2005; Hogan B et al., 1994; Suh 

RS et al., 2006; Clark SG et al., 2005) and embryo culture (Glasgow IK et al., 

2001; Raty S et al., 2004; Walters EM et al., 2004; Walters E, 2007; Bormann C 

et al., 2008). Follicle culture in microfluidic devices needs to be explored. This 

type of system may be ideal for providing the 3-D environment necessary for 

maintaining follicle architecture over long intervals in culture, allowing adequate 

oxygenation and nutrient exchange and at the same time permitting sequestration 

of autocrine/paracrine factors within the vicinity of the growing follicle. The ideal 

microfluidic model would allow monitoring and harvest of individual follicle but 

also a sharing of the microenvironment to attain the benefit of “coculture”. 
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AIM OF RESEARCH 

 

 

Aim of my PhD research project is development of innovative strategies of 

fertility preservation in cancer women. Currently, different biotechnologies have 

been developed for these patients as oocytes or embryos cryopreservation before 

chemo/radiotherapy dramatically reduces patients fertility. However, oocyte or 

embryo cryopreservation are not an option for pre-pubertal girls and for women 

who do not have enough time before beginning of cancer therapy. In order to give 

these patients the possibility to restore their fertility, I have focused my attention 

on development of two alternative strategies. The first one, more feasible, is 

ovarian tissue cryopreservation: it avoids the delay needed for obtaining mature 

oocytes, but the subsequent potential for establishing pregnancies is unknown 

However, cryopreservation methods have to be still investigated to improve their 

experimental efficiency. The second strategy is isolation of  follicles from ovarian 

tissue and in vitro culture, allowing to avoid also the risk of transmitting  residual 

malignant cells in cryopreserved tissue, but until now this biotechnology is still 

undeveloped and only a few studies have been performed. To this aim in these 

three years of my PhD thesis, I have focused my interest in development of: 

1. new  protocols for  ovarian tissue cryopreservation;   

2. new strategies for  follicle isolation and  in vitro follicle culture.  

 

To improve cryopreservation efficiency the effect of choline chloride as substitute 

of sodium in freezing solutions will be studied. Sodium ion is one of  the major 

cause of electrolyte accumulation within frozen cells, which induces cellular 

damages. Choline ion is, instead, larger and unable to across cell membrane. The 

effect of sodium-depleted choline supplemented cryopreservation protocols will 

be investigated through use of different imaging analysis, such as histological, 

immunohystochemical and ultrastructural analysis.  

A different  biotechnological approach will be used to develop an efficient method 

for follicle isolation and subsequent  in vitro culture. To reproduce in vitro the 

architecture of follicle interactions the effects of alginate matrix on in vitro culture 
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of isolated follicles will be studied. Follicles will be firstly cultured for up to 10 

days in alginates at different concentration to determine which one best supports 

follicle survival and growth. The efficiency of method will be investigated 

monitoring daily follicular growth through a NIS software imaging analysis and 

viability assays, using fluorescent dies. Since the physical properties of alginate 

hydrogels vary widely depending on their composition (e.g., the proportion of 

guluronic to mannuronic acid residues) and the sequential order of these residues, 

next step will be to investigate which factor could influence the growth 

characteristics of encapsulated follicles. Ovarian follicle culture systems provide 

an ideal tool to study the physical properties of a three-dimensional hydrogel 

matrix in follicle development. The hormonal regulation of folliculogenesis has 

been widely investigated, yet the role of the physical properties of the follicle 

microenvironment has not. Understanding the role of the physical environment on 

follicle development will be useful for the development of biomimetic matrices 

for the in vitro culture of follicles and other hydrogel-encapsulated cell culture 

systems. To this end, the following biomaterials will be tested: alginate SLG 20 

1.5% (69% guluronic acid, 75kDa), alginate SLG 100 1.5% (68% guluronic acid, 

200kDa), alginate 1.5% (50% guluronic acid, 50% mannuronic acid); As 

extracellular matrix (ECM) is essential for follicular development, to further 

simulate the in vivo environment, ECM molecules will be combined with calcium 

alginate to build synthetic ECM matrices for 3D culture. To this end, alginate 

1.5% will be combined with collagen type IV 0.3mg/mL, as the latter is the main 

ECM component present during follicologenesis. Similarly, the efficiency of 

method will be studied through viability assays, growth monitoring and analysis at 

confocal microscope.  

After, the development of follicles and their ability to survive to cryopreservation 

will be analysed. Particularly, two different protocols will be tested and validity of 

vitrification will be studied analyzing morphologically follicles after thawing. 

Moreover, viability assays will be applied.  

Finally, to understand whether frozen thawed isolated follicles were able to 

undergo growth and development after transplantation, in the present study, in 

collaboration with the Research Laboratory on Human Reproduction in Brussels, 
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after in vitro culture and vitrification/thawing alginate encapsulated follicles will 

be xenografted to the kidney capsule or the back muscle in immunodeficient mice. 

Grafts will be removed after 3 months and analysed by histological assay in order 

to evaluate the physiological status of xenografted follicles. 
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MATERIALS AND METHODS 

 

Tissue collection and dissection 

Ovarian tissue has been collected as small biopsy pieces from 20 women donors 

with a median age of 31 years (range 22–40 years). All women have been 

informed about the ongoing project, and they signed an informed consent form. 

Ovarian tissue has been transferred in sterile 50 ml Falcon Tube containing 20 ml 

of pre-warmed gamete buffer (Cook Italy) and immediately transported at 37°C to 

the laboratory. The ovarian cortical tissue has been manually dissected from 

medullar tissue and divided into strips of about 1 mm
3
. Two small pieces of fresh 

tissue have been fixed directly and subsequently used as non-frozen controls for 

light microscopy and transmission electron microscopic evaluation. The others 

have been randomly distributed into vitrification and slow-freezing groups.  

 

 

 

 

Fig. 6: ovarian dissection 
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Tissue cryopreservation 

Freezing and thawing solutions have been dissolved in two different basal media: 

the first one was conventional Dulbecco Phosphate Buffered Saline (DPBS), the 

second one consisted of modified phosphate buffered saline in which chloride 

sodium has been replaced by choline chloride on an equimolar basis (CPBS). 

 

Vitrification and warming 

Basal media have been supplemented with 10 mg/ml human serum albumin 

(HSA). 

The first vitrification protocol (VH and VHC) consisted of three incubation steps 

in solutions with increasing concentrations of DMSO (Sigma-Aldrich, Sweden), 

1,2-propanediol (PrOH) and ethylene glycol (EG) dissolved in basal mediums. 

After washing for 5 min in basal media, pieces of ovarian cortex have been 

transferred for 5 min sequentially to 1 ml of vitrification incubation solutions VS1 

(0.35 M DMSO, 0.38 M PrOH, 0.38 M EG), VS2 (0.7 M DMSO, 0.75 M PrOH, 

0.75 M EG) at room temperature and VS3 (1.4 M DMSO, 1.5 M PrOH, 1.5 M 

EG) at 4°C. At the third step, VS3 has been supplemented (10% w/v) with 

polyvinylpyrrolidone (PVP; Sigma-Aldrich, Sweden) (Keros et al., 2009). The 

samples have been directly plunged into liquid nitrogen (-196°C) and placed in a 

pre-cooled 5.0 ml Nunc cryotube (Nunclon, Roskilde, Denmark), closed and 

stored in liquid nitrogen.  

In the second vitrification protocol (VYB and VYBC) the strips have been 

dehydrated by using a two-step regimen: (1) 2.0 mol/L dimethyl sulfoxide 

(DMSO) + 0.1 mol/L sucrose for 5 minutes; (2) 2.0 mol/L DMSO + 2.0 mol/L 

propanediol (PROH) + 0.2 mol/L sucrose for 5 minutes. The samples have been 

directly plunged into liquid nitrogen as reported before (LI Yu Bin et al., 2007).   

For warming, the vitrified pieces have been taken out of the cryovials in a 

container filled with liquid nitrogen, quickly immersed into a 38°C water bath, 

and gently agitated until the ice melted nearly completely. Afterwards, the tissues 

have been moved quickly into 0.5 mol/L sucrose in basal media for 5 minutes at 

room temperature, and then taken through 0.25 mol/L and 0.125 mol/L sucrose in 

basal media each for 5 minutes at room temperature. Finally, the warmed strips 
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have been rinsed three times in basal media and put into a 37°C, 5 % CO2 

humidified incubator for 15 minutes for following procedures.  

 

Slow freezing and warming 

Basal media have been supplemented with 25 mg/ml human serum albumin 

(HSA). 

The first slow freezing cryopreservation protocol (Hovatta et al., 1996) (CLH and 

CLHC) consisted of three steps of incubation in cryopreservation solutions with 

PrOH as a permeating cryoprotectant and sucrose as non-permeating 

cryoprotectant. The tissue pieces have been first incubated for 5 min in 1 ml of 

basal media, then for 10 min in the first slow cooling solution (SC1) containing 

1.5 M PrOH, and finally for 15 min in SC2 which contained 1.5 M PrOH and 0.1 

M sucrose. The third incubation step has been performed in 1.8 ml Nunc cryovials 

(Nunclon, Roskilde, Denmark), which have been placed in a programmable 

freezer. Subsequently, the samples have been cooled from room temperature to -

6.5°C at a rate of 2°C/min. Seeding has been performed by means of forceps pre-

cooled in liquid nitrogen. After a 10-min holding period, the samples have been 

cooled to -35°C at a rate of -0.3°C/min, and after holding for 10 min they have 

been plunged directly into liquid nitrogen. For thawing, the cryovials have been 

first taken from liquid nitrogen and exposed for 30 s to room temperature. They 

have been then plunged for 2 min into a warm (37°C) water bath until the ice has 

been melted. Then pieces have been transferred to different thawing solutions 

(TS) in basal mediums. The first step has been 5 min in TS1 which contained 1.0 

M PrOH and 0.2 M sucrose, then 5 min in TS2 containing 0.5 M PrOH and 0.2 M 

sucrose, then 10 min in TS3 with 0.2 M sucrose and finally 10 min in TS4 which 

consisted in pre-warmed basal media in 37°C, 5 % CO2 air.  

The second slow freezing cryopreservation protocol (CLYB and CLYBC) 

consisted of two incubation steps respectively in SC1 supplemented with 1.5 M 

DMSO for 5 min and in SC2 supplemented with 1.5 M DMSO and 0.1 M sucrose. 

This one has been performed in 1.8 ml Nunc cryovials (Nunclon, Roskilde, 

Denmark), which have been placed in a programmable freezer. The samples have 

been cooled as follows: from 4°C to -8°C at -2°C/min; soaked for 10 minutes at    
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-8°C, then seeded manually with prechilled forceps, continually held for 10 

minutes; cooled to -40°C at -0.3°C/min and to -150°C at -50°C/min; finally 

samples have been plunged immediately into liquid nitrogen and stored until 

thawing. For warming, the pieces have been taken out of the cryovials in a 

container filled with liquid nitrogen, quickly immersed into a 38°C water bath, 

and gently agitated until the ice melted nearly completely. Afterwards, the tissues 

have been moved quickly into 0.5 mol/L sucrose in basal media for 5 minutes at 

room temperature, and then taken through 0.25 mol/L and 0.125 mol/L sucrose in 

basal media each for 5 minutes at room temperature. Finally, the warmed strips 

have been rinsed three times in basal media and put into a 37°C, 5 % CO2 

humidified incubator for 15 minutes for following procedures. 

 

 

 

Histological analysis  

For histological investigation, all tissue pieces have been fixed for 4h in Bouin’s 

solution (15% picric acid, 5% formaldehyde, 1% acetic acid glacial) (Sigma). 

Next, pieces have been repeatedly washed in current water, in order to remove the 

exceeded fixative, and dehydrated through sequential passages in ethanol at 

increasing concentrations. Particularly pieces have been sequentially transferred in 

ethanole 75% for 24h, ethanole 95% for 24h and finally three times in ethanole 

100%, 10’ each one. Pieces have been then clarified by two sequential passages, 

of 30’ each one, in Hystolemon, transferred in Hystolemon-paraffin 1:1 at 46°C 

for 45’ and finally embedded in paraffin wax for 24h at 60°C. Embedded pieces 

have been serially sectioned at 5 μm. 

Sections have been then stained with hematoxylin/eosin, and analyzed under a 

microscope. For staining, sections have been deparaffinized, by two passages of 

5’ each one in Xylene (blot excess xylene before going into ethanol), rehydrated 

through sequential passages, of 2’ each one, in ethanole 100%, 95%, 75% and 

50% and then transferred in deionised water (blot excess water before going into 

hematoxylin). At this point, sections have been stained for 7’ in hemalum, rinsed 

in tap water, stained for 7” in eosin 0.5%, dehydrated and mounted with 
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Hystovitrex (Carlo Erba).  Hemalum is a complex formed from aluminium ions 

and oxidized haematoxylin. This colors nuclei of cells (and a few other objects, 

such as keratohyalin granules) blue. Instead, eosin colors eosinophilic structures 

in various shades of red, pink and orange. 

The staining of nuclei by hemalum does not require the presence of DNA and is 

probably due to binding of the dye-metal complex to arginine-rich basic 

nucleoproteins such as histones. The mechanism is different from that of nuclear 

staining by basic (cationic) dyes such as thionine or toluidine blue. Staining by 

basic dyes is prevented by chemical or enzymatic extraction of nucleic acids. Such 

extractions do not prevent staining of nuclei by hemalum. The eosinophilic 

structures are generally composed of intracellular or extracellular protein. Most of 

the cytoplasm is eosinophilic.  

The number of follicles of different developmental stages has been evaluated. 

Follicles with an oocyte surrounded by a single layer of flat granulosa cells have 

been defined as primordial. Follicles with the oocyte surrounded by one layer of 

only cuboidal granulosa cells have been defined as primary. Follicles with the 

oocyte surrounded by two or more layers of cuboidal granulosa cells have been 

classified as secondary. Eosinophilia of the ooplasm, contraction and clumping of 

the chromatin material, and wrinkling of nuclear membrane of the oocytes have 

been regarded as the signs of atresia (Gougeon A., 1986). The qualities of follicles 

have been graded from one to three. A follicle of grade 1 is spherical and is 

randomly distributed around oocytes granulosa cells, with homogenous cytoplasm 

and slightly granulated nucleus, in the center of which condensed chromatin in the 

form of dense spherical structure is detected. A follicle of grade 2 has the same 

peculiarities, but the granulosa cells cover irregular oocytes; these cells can be flat 

and condensed chromatin is not detected in cytoplasm. A follicle of grade 3 has 

partly or fully disrupted granulosa or cytoplasm and picnotic nucleus. Follicles of 

grades 1 and 2 have been denoted as normal and those of grade 3 have been 

denoted as degenerated. To illustrate the changes caused by different 

cryopreservation protocols, also oocyte germinative vescicle diameter and 

undamaged and pyknotic stromal cells have been considered.  

 

http://en.wikipedia.org/wiki/Haematoxylin
http://en.wikipedia.org/wiki/Eosinophilic
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Cytoplasm


Materials and methods 

 

79 

 

Transmission electron microscopic analysis  

For TEM, small pieces of all samples were fixed in 2.5% glutharaldehyde (SIC, 

Rome, Italy) in 0.1 M sodium cacodylate at pH 7.3 for 1.5 hour, washed three 

times for 10 minutes in the same buffer, postfixed in 1% osmium tetroxide (SIC) 

in 0.1 M sodium cacodylate at pH 7.3 on ice and washed three times for 10 

minutes in the same buffer. Glutharaldehyde kills cells quickly by crosslinking 

their proteins and is usually employed alone or mixed with formaldehyde as the 

first of two fixative processes to stabilize specimens such as bacteria, plant 

material, and human cells. Osmium tetroxide is used in order to crosslink and 

stabilize cell and organelle membrane lipids.  Samples were then treated in 0.1% 

tannic acid in cacodylate for 10 minutes and dehydrated in ascending series of 

ethanol (Carlo Erba Reagenti, Milan, Italy) on ice. All samples were treated twice 

for 5 minutes with propylene oxide (FLUKA, Milan, Italy), infiltrated in 1:1 

propylene oxide/Epon 812 (Agar Scientific, Stansted, United Kingdom) 

overnight, and individually embedded in fresh resin. Thick (0.5–1 mm) and thin 

sections (60–80 nm) were cut with a diamond knife (Diatome, Biel, Switzerland) 

at a Reichert-Jung Ultracut E ultramicrotome and collected on glass slides or 200-

mesh thin bar copper grids (SIC). Thick sections were stained with 0.1% toluidine 

blue in sodium borax, examined by light microscopy (LM) and photographed 

using a Nikon DS-cooled camera head DS-5Mc connected to a Nikon DS camera 

control unit DS-L1. Thin sections were stained with saturated uranyl acetate in 

methanol and Reynold’s lead citrate and observed and photographed with a 

Philips (Eindhoven, The Netherlands) EM 208 S electron microscope (EM) at 80 

KV. Uranyl acetate is the acetate salt of uranium and is a yellow crystalline solid 

made up of yellow rhombic crystals and has a slight acetic odor. Uranyl acetate is 

slightly radioactive, the precise radioactivity depends on the isotopes of uranium 

present. This compound is a nuclear fuel derivative, and its use and possession are 

sanctioned by international law. Uranyl acetate is used as a positive stain for 

TEM. Uranyl ions react strongly with phosphate and amino groups, staining DNA 

and some proteins. Organelles composed of membranes are not stained well. Note 

that the starting material is radioactive. Lead citrate may also be employed as a 

positive stain. Reynolds lead citrate stain binds lead ions to negative ions, 
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producing a general increase in contrast. Lead is a cumulative toxin, so skin 

contact must be avoided.  

In the oocytes we studied the chromatin structures, the integrity of nuclear 

membranes, the density and integrity of the mitochondrial cristae, density of the 

cytoplasm, the size and numbers of vesicles in the cytoplasm, integrity of the 

cytoplasmic membrane and attachment of the oocyte to the granulosa cells. The 

same parameters were evaluated for assessment of granulosa cells. The nuclear 

and cytoplasmic membranes, nuclear chromatin of stromal cells, the attachment 

between granulosa cells and attachment to the basement membrane were also 

evaluated.  

 

 

Immunohistochemical analysis  

For immunohistochemical investigation, all procedures were carried out at room 

temperature unless otherwise stated. The paraffin-embedded ovary sections of all 

samples were deparaffinizated, rehydrated and then incubated for 5 minutes with 

3% hydrogen peroxide in methanol (Sigma Aldrich), in order to inhibit the 

activity of endogen peroxidases. Samples are washed three times for 10 minutes 

in PBS supplemented with 0.1 % TRITON X100 (TPBS), incubated for 1 hour in 

blocking solution, containing 0.5% normal goat serum in TPBS and then washed 

three times for 10 minutes in TPBS. Triton X100 is used to permeabilize 

eukaryotic cell membranes and reduce the surface tension of aqueous solutions 

during immunostaining. Ovary sections were incubated with the following 

primary antibodies at 37 °C for 1 hour: mouse monoclonal p53 and p63 (8μg/mL); 

rabbit polyclonal p21 (8μg/mL) and rabbit polyclonal Apaf-1 (5μg/mL) (Santa 

Cruz Biotechnology). P53 plays a role in apoptosis, genomic stability, and 

inhibition of angiogenesis. In its anti-cancer role, p53 works through several 

mechanisms: 1) It can activate DNA repair proteins when DNA has sustained 

damage; 2) It can induce growth arrest by holding the cell cycle at the G1/S 

regulation point on DNA damage recognition (if it holds the cell here for long 

enough, the DNA repair proteins will have time to fix the damage and the cell will 

be allowed to continue the cell cycle); 3) It can initiate apoptosis, the programmed 
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cell death, if DNA damage proves to be irreparable. Activated p53 binds DNA 

and activates expression of several genes including WAF1/CIP1 encoding for 

p21. p21 (WAF1) binds to the G1-S/CDK (CDK2) and S/CDK complexes 

(molecules important for the G1/S transition in the cell cycle) inhibiting their 

activity. When p21(WAF1) is complexed with CDK2 the cell cannot continue to 

the next stage of cell division. Apaf 1 is an apoptotic protease activating factor 1. 

This gene encodes a cytoplasmic protein that forms one the central hubs in the 

apoptosis regulatory network.  

Control sample was incubated with TBS alone. All sections are then washed three 

times for 10 minutes in TPBS. Bound antibodies were detected by incubating the 

sections with horseradish peroxidase-labeled secondary antibodies at 37°C for 2 

hours. Sections are then washed three times for 10 minutes in TPBS and for 5 

minutes in TRIS HCl 50mM pH7.4; reaction was then revealed with 0.7 mg/mL 

of 3,3’ –diaminobenzidine tetrahydrocloride in TRIS HCl 50mM pH 7.4 for 20 

seconds. After color development, the sections were washed three times in water, 

dehydrated and finally mounted for light microscopy. Sections were then 

dehydrated and mounted with Hystovitrex. 

 

 

Ovarian follicle isolation 

Ovary was transported to the lab in 0.9% NaCl solution at 4°C. Medullar tissue 

was removed  using sterile blades and cortical portion was dissected in small 

pieces of about 1mm
3
. Ovarian fragments obtained were transferred to 50 ml 

conical tubes containing 10 ml of Leibovitz medium L15 (Sigma) supplemented 

with 1% fetal calf serum (Sigma) (FBS), 1 mg/ml collagenase type IA (Sigma), 

0.25mg/ml Dnase I (Roche) and incubated in a water bath at 37°C for 30 min with 

gentle agitation. The ovarian digest was periodically (every 15 min) shaken with a 

pipette to mechanically disrupt the digested tissue. Digestion was completed by 

the addition of an equal volume of L15 medium supplemented with 10% FBS. 

The solution was transferred to Petri dishes and investigated for follicles under a 

stereomicroscope (Leica, Van Hopplynus Instruments, Brussels, Belgium). The 

follicles were picked up using a 135-μm-diameter flexipet (COOK) and washed 
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three times in L15 medium supplemented with 10% FBS in order to avoid 

introduction of stromal cells into the alginate matrix. Follicles were then 

transferred in culture medium, consisting of α- MEM supplemented with 20% 

FBS, 0.47mM pyruvic acid (Sigma), 1% insulin-transferrin-selenium (GIBCO) 

and 1% penicillin-streptomicin (Sigma), for 30’ at 38°C. Follicle diameter was 

measured using NIS elements advanced software (Nikon). Two to five follicles 

were subsequently processed for live/dead assays in order to evaluate follicular 

viability after isolation. The remaining follicles were embedded in an alginate 

matrix (2-3 follicles/group).  

 

 

Follicle viability 

Follicles were incubated in 0.5ml of culture medium containing 50μg/ml 

propidium iodide (Sigma) for 30’ at 38°C in the dark. Propidium iodide enters 

cells with damaged membranes and then binds to DNA with high affinity, 

resulting in a red fluorescence in dead cells. After exposure to propidium iodide 

(Excitation at 488 nm, emission at 617 nm), 10μg/ml Hoechst 33342 was added to 

the same medium and follicles were incubated for other 10’ in the dark. Hoechst 

33342 nucleic acid stain (excitation/ emission maxima ~350/461 nm) is a popular 

cell-permeant nuclear counterstain that emits blue fluorescence when bound to 

dsDNA.  

At the end of incubation with fluorescent dyes, follicles were washed in fresh 

culture medium for three times, of 10’ each one and observed under an inverted 

fluorescence microscope (Nikon).  

 

 

3D confocal staining and imaging 

Follicles for confocal microscopy studies were fixed in 4% PFA at 37°C for 1 h, 

followed by 1 h in wash buffer, consisted in PBS supplemented with 2% normal 

goat serum, 1% BSA, 0.1 M glycine, and 0.1% Triton X-100 (Xu et al., 2009; 

Barrett and Albertini, 2007). They were then stained overnight at 4°C with 
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Rhodamine-Phalloidin (1:50 Molecular Probes, Invitrogen, Eugene, Oregon), that 

labels F-actin in connections between somatic cells and the oocyte called 

transzonal projections (TZPs), and 1 μg/ml Hoechst 33342 (Sigma) for 

chromatin/DNA. Follicles were mounted in 5–10 ml of a 50% glycerol/PBS 

solution. The coverglass was placed on glass shards, to prevent the compression 

of the follicle. Follicles were imaged at a Leica TCS SP5 laser scanning confocal 

microscope, using a 40x or 63x oil objective. Overlapping 1–3 μm sections were 

taken throughout each follicle imaged. 

 

 

Follicle Encapsulation  

 

Materials 

Alginate is a linear polysaccharide consisting of (1,4)-linked b-D-mannuronate 

(M) and its C-5 epimer α-L-guluronate (G). The monomers can appear in 

homopolymeric blocks of consecutive G-residues (G-blocks), consecutive M-

residues (M-blocks), alternating M and G-residues (MG-blocks) or randomly 

organized blocks. Chemical composition, primary structure and average block 

lengths are conveniently determined by NMR spectroscopy. Commercial alginates 

are extracted from brown algae, and the relative amount of each block type varies 

with the origin of the alginate. Physical-chemical and biological properties of 

alginate vary widely with chemical composition. G-blocks form stable cross-

linked junctions with divalent cations (e.g. Ca2+, Ba2+, Sr2+, among others) 

leading to a three-dimensional gel network. Alginate can also form gels under 

acidic conditions without cross-linking agents. Thickening properties are mainly 

dependent upon the average molecular weight, which can be determined by size 

exclusion chromatography combined with light scattering detection (Fig. 7) 
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Fig. 7: chemical structure of alginate 

 

 

Encapsulation  

Morphologically normal follicles with centrally located spherical oocytes 

surrounded by a layer of granulose cells were used for further in vitro culture. The 

isolated follicles were transferred into 1.5% of sodium alginate solution. Droplets 

of alginate (~2–3 μL) were suspended on a cover of a 6 cm Petri dish. 2-3 follicles 

were pipetted into each droplet in a minimal amount of media, using a flexipet 

(Cook). Different types of alginate were used. Particularly, four different matrices 

were tested: 

1. Alginic acid sodium salt from brown algae (Sigma), viscosity 4-12 cP 

(ALG). It is a straight-chain, hydrophilic, colloidal, polyuronic acid 

composed of 50 % glucuronic and 50% mannuronic acid residues. 

Alginate is an anionic polysaccharide distributed widely in the cell walls 

of brown algae. Alginate is biocompatible and gels making it useful for 

cell encapsulation and immobilization. A 3% (w/v) solution of sodium 

alginate was stripped using activated charcoal (0.5 g charcoal/g alginate) 

to remove organic impurities, sterile filtered using 0.22 μm filters. Sodium 

alginate was reconstituted to 1%, 2% (w/v) alginate in PBS1x for use. 

Alginate solutions were stored at 4°C. 



Materials and methods 

 

85 

 

2. ALG modified with collagen type IV (Sigma) (ALG-COLL). Particularly, 

collagen type IV was choose because it is the only component of 

extracellular matrix to be preserved during follicular development (RJ 

Rodgers et al., 2003). Lyophilized human placental collagen type IV 

(5mg) (Sigma) was dissolved in 1mL of glacial acetic acid (0.5%) and 

stored at -20°C. Aliquots of charcoal-stripped and sterilized sodium 

alginate were diluted to either 1% in 0.3 mg/mL collagen type IV solution, 

and vortexed well to mix. ALG-COLL solution was stored at 4°C.  

3. Alginate SLG 100 (PRONOVA FMC Biopolymer) is made from an 

alginate where over 60% of the monomer units are guluronate and is a 

highly purified and well-characterized sodium alginate. One of the 

functional properties of alginate is viscosity. The viscosity of an alginate 

solution can be manipulated by changing the concentration of the alginate 

or by using materials with varying chain length (i.e. molecular weight). 

Typically, the molecular weight for PRONOVA SLG100 is in the 200000 

– 300000 g/mol range. The ultra low levels of endotoxins, proteins and 

product sterility allows for a big variety of in vitro and in vivo 

applications. PRONOVA sterile alginate products are manufactured and 

documented in compliance with ISO 9001:2008 and ISO 13485:2003 

(medical device directive) and in accordance with ICH Q7 guidelines. The 

products are characterized using validated analytical methods. 

4. Alginate SLG20 (PRONOVA FMC Biopolymer) is also made from an 

alginate where over 60% of the monomer units are guluronate but in this 

case the molecular weight for PRONOVA SLG20 is in the 75000 – 

220000 g/mol range.  

 

After, all droplets had been filled, the cover was immersed in a 6 cm Petri dish, 

containing sterile 50 mM CaCl2 and 140 mM NaCl encapsulation solution for 2 

minutes to cross-link the alginate, and then rinsed in culture media. The 

composition of medium is reported before. The beads were transferred into four-

well multidish for 10 days at 38°C in 5% CO2. Every two days, half of the media 
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volume was exchanged and follicles were examined for survival and size 

measurements.  

 

 

Follicle Vitrification And Thawing  

At day 2 of culture period, encapsulated follicles were vitrified as follows: 

 

Protocol 1 

Encapsulated follicles were vitrified using a modified ethylene glycol (EG)-

sucrose-based protocol, as reported by Desay et al. 2011. The basal media for the 

preparation of equilibration and vitrification solutions was L15 + 20% FCS. 

Follicles were equilibrated for 5 min in 2M EG followed by a 30–60-s incubation 

in vitrification solution containing 6M EG + 0.3M sucrose. All equilibration and 

vitrification steps were performed at room temperature. Follicles were then 

pipetted on the surface of a cryoleaf, held for 2 min in the vapor phase, just above 

the surface of the LN2, before immersion into LN2. Vitrified follicles were 

warmed by immersion in basal medium containing 1M sucrose. Follicles were left 

in the warming solution for 10 min at room temperature and then washed at 37°C. 

After 5 min, follicles were pipetted into fresh basal medium at 37°C for another 

5–10 min before processing for viability assays, as reported before. 

 

 

 

Protocol 2 

Second vitrification and thawing protocol was modified from the method 

described by Xing et al., 2010. Briefly, encapsulated follicles were initially 

exposed to the first vitrification solution (4% EG in DPBS + 10% FBS) for 15 

min. Subsequently, they were rinsed three times in the second vitrification 

solution (35% EG and 0.5 M sucrose in DPBS + 10% FBS) and equilibrated at 

room temperature for 20-30 sec. Then follicles were directly dropped onto the 

surface of a cryoleaf. Droplets containing the vitrification solution and follicles 
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were instantaneously vitrified into transparent spherical droplets, by direct 

immersion in LN2. Cryoleafs were closed and stored in LN2. 

Warming was achieved by direct transfer into warming solution containing 0.25 

M sucrose and 10% FBS in DPBS at 37°C for 5-10 min followed by three washes 

in DPBS. Then, follicles were transferred in 0.5 mL of culture medium and 

incubated for 15-20’, before processing for follicular viability, as reported before.  

 

 

Xenotransplantation of alginate beads into SCID mice 

Xenotransplantation of encapsulated follicles was performed in collaboration with 

the Lab of Research in Human Reproduction, in Brussels (ULB: universitè libre 

de Bruxelles). 

 

Animals 

All animals were obtained by Harlan laboratories. The scid (severe combined 

immunodeficiency) mutation was discovered in a C.B-17/Icr congenic strain in 

1980 by Dr. M.J. Bosma at the Fox Chase Cancer Center (Philadelphia, PA). 

Harlan SCID® models are licensed under agreement with the Fox Chase Cancer 

Center, produced within flexible-film isolators and monitored for microbiologic 

integrity. SCID mice accept xenografts, making them a useful model for 

oncology, immunology, HIV pathology, and other fields of biomedical research. 

A total of ? nude 6-week-old female mice were used. The animals were housed in 

ventilation cabinets at a positive pressure of 6 cm H2O. They had unlimited access 

to gamma-irradiated food pellets and sterile water, and were inspected daily. The 

oophorectomy and transplantation procedure were executed in a laminar flow 

cabinet to provide a sterile environment for the immunocompromised animals. 
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Fig. 8: SCID mouse 

 

 

Subcutaneous grafting 

The recipient animals were anesthetized by intraperitoneal (IP) injection of 

ketamine (75 mg/kg; ketamine 1000; CEVA Sant e Animale, Brussels, Belgium) 

and xylazine HCl (10 mg/kg; Rompun; Bayer Animal Health, Brussels, Belgium). 

Analgesia was obtained by IP administration of buprenorphine (0.1 mg/kg; 

Temgesic; Schering Plough, Brussels, Belgium). A single dorsal transverse skin 

incision of 0.5 cm was made, allowing sufficient access to both left and right 

abdominal cavity, and the abdominal wall was incised in the lumbar fossa. Before 

the actual transplantation procedure, the animals were bilaterally 

oophorectomized. Each ovary was exteriorized, the top of the cornus uteri was 

ligated with polyglactin (Vicryl 6/0, Ethicon, Somerville, 

NJ), and the ovary was excised. The transplantation procedure was performed 

with the aid of a binocular microscope (Motic SMZ168; Motic China Group Co. 

Ltd., Xiamen, People’s Republic of China) at ×7.5 magnification. The left kidney 

was exteriorized, and a small slit was made in the kidney capsule with a 27-gauge 

needle. Encapsulated follicles were pipetted under the kidney capsule. The kidney 

was returned to its normal anatomical position, the abdominal wall was sutured 

with polyglactin (Vicryl 6/0), and the skin defect closed with polypropylene 

(Prolene 6/0). Similarly, encapsulated follicles were grafted under the back 

muscle. All the procedure was performed at 37°C. Recovery was unproblematic, 

and no signs of abdominal discomfort or infection were noted. After 3 months 
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from xenografting, mice were sacrified and xenografts were collected and 

analysed by histological assays, as reported before. 

 

 

Fig. 9: xenografting 

 

 

Statistical analysis 

The data are presented as mean±SD. Overall analysis was performed by the 

estimate model of analysis of variance (ANOVA) followed by the Tukey’s 

honestly significant difference test for pairwise comparisons when overall 

significance was detected. Percentage data were compared by χ
2
 or Fisher’s exact 

test. Statistical significance was defined as P<.05. 
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RESULTS  

 

Light microscopy 

A total of 892 follicles was analysed by LM to evaluate the viability and the 

developmental stages in non-frozen, slowly cryopreserved and vitrified tissues. 

Particularly, 406 follicles were slow cooled and 247 were vitrified. Most of the 

follicles were at primordial, intermediary and primary stages in all samples. 

Difference between the total numbers of follicles in different samples is not 

attributed to different protocols, since large variation in the distribution of the 

follicles between patients and pieces from the same ovary were observed (table-

graph 6).  

 

K 34.9±7.3 

SCH 28.7±14.7 

SCHC 48.8±19.5 

SCYB 50.5±2.1 

SCYBC 54,5±14.8 

VH 33±11.3 

VHC 24.5±3.5 

VYB 9.5±0.7 

VYBC 13±0.6 
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Table-graph 6: total number of analyzed follicles in different samples 
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As reported previously, eosinophilia of the ooplasm, contraction and clumping of 

the chromatin material, and wrinkling of nuclear membrane of the oocytes were 

regarded as the signs of atresia (Gougeon A., 1986). The qualities of follicles were 

graded from one to three. A follicle of grade 1 is spherical and is randomly 

distributed around oocytes granulosa cells, with homogenous cytoplasm and 

slightly granulated nucleus, in the center of which condensed chromatin in the 

form of dense spherical structure is detected (Fig. 10). A follicle of grade 2 has 

the same peculiarities, but the granulosa cells cover irregular oocytes; these cells 

can be flat and condensed chromatin is not detected in cytoplasm (Fig. 11A). A 

follicle of grade 3 has partly or fully disrupted granulosa or cytoplasm and 

picnotic nucleus (Fig. 11B).  Follicles of grades 1 and 2 were denoted as normal 

and those of grade 3 were denoted as degenerated.  

 

 

Fig. 10: follicle of grade 1 
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Fig. 11: (A) follicle of grade 2; (B) follicle of grade 3 
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Microscopic visualization of haematoxylin/eosin-stained sections reveal clear 

differences in the structures of the follicles cryopreserved using the different 

protocols. Particularly, in SCYB follicles oocyte is separated from surrounding 

picnotic granulosa cells, and ooplasm is highly eosinophile; in contrast, SCYBC 

follicles are better preserved. However, germinative vescicle is not well 

condensed. SCH and SCHC follicles show a more regular morphology, 

characterised by a more homogeneous cytoplasm and follicular cells well 

distributed around the oocyte, but only in SCHC follicles, no intercellular spaces 

are present in stromal tissue and germinative vescicle shows a well condensed 

chromatine (Fig. 12).  

 

                    

 

                    

 

Fig. 12: frozen/thawed follicles. Different superscripts indicate slow freezing protocol 

 

The percentages of different grade follicles in slowly cooled samples are showed 

in table 7. In fresh tissue, 51.86±12.85 of total follicles were of grade1. In slow 

freezing groups percentage of morphologically normal follicles were significantly 

higher in choline modified protocols than in conventional ones (graph. 7) 

Particularly, for both first and second slow cooling protocols, percentages of 

SCYB SCYBC 

SCH SCHC 20 µm 20 µm 

20 µm 20 µm 
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follicles of grade 1 were 50.5±13.43 and 51.3±12.75 vs 21.17±15.69 and 

30.25±14.72.  

 

 % follicles of grade 1 % follicles of grade 2 % follicles of grade 3 

K 51.86±12.85 30±15.95 18.14±13.51 

SCH 21.17±15.69** (vs K) 26.67±1.63 50.33±16.44* (vs K) 

SCHC 50.5±13.43** (vs SCH) 17.5±5.2 32±16.06 

SCYB 30.25±14.72* (vs K) 15.05±2.56* (vs K) 54.7±15.52* (vs K) 

SCYBC 51.3±12.75 15.35±6.33* (vs K) 33.35±14.56 
* p<0.05 

** p<0.01 
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Table-graph 7: percentages of follicles of different grade in all slowly cooled samples 

 

In vitrification groups percentage of morphologically normal follicles were also 

higher in choline modified protocols than in conventional ones, but follicular 

morphology is not well preserved (Fig. 13). In fact, all follicle are characterised 

by vacuolization and intercellular spaces. Moreover, nuclei of granulosa cells are 

picnotic and germinative vescicle is highly damaged. 

 

** 

* 

* 
* 

* 
* 



95 

 

                   

 

                   

Fig. 12: frozen/thawed follicles. Different superscripts indicate vitrification protocol 

 

 

Particularly as showed in table 8, percentages of follicles of grade 1 were 

3.5±4.95 and 24±9.26 vs 28±7.07 and 29.95±5.52. After thawing, the proportion 

of the morphologically intact follicles were significantly reduced in the two 

vitrification groups. 

 

 % follicoles of grade 1 % follicles of grade2 % follicles of grade3 

K 61±11.31 15±9.9 24±1.41 

HV 3.5±2.95** (vs K) 26±8.49 70.5±3.54** (vs K) 

HVC 28±7.07* (vs K) 23.5±12.02 48.5±4.95 

YBV 24±9.26** (vs K) 23.6±1.98 42.4±7.28* (vs HV) 

YBVC 29.95±5.52* (vs K) 15.4±2.55 49.2±12.44 
* p<0.05 

** p<0.01 
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Table-graph 8: percentages of follicles of different grade in all vitrified samples
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Moreover, diameter of fresh and cryopreserved follicles germinative vescicle was 

measured and there are no significative differences between all samples, as shown 

in Table 9.  

 

K 22.7±2.6 

SCH 20.4±2.4 

SCHC 20.5±2.6 

SCYB 21.3±2.8 

SCYBC 21±3.1 

VH 17.9±2.9 

VHC 18.3±2.7 

VYB 17.1±2.8 

VYBC 18.5±1.4 
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Table-graph 9: diameter of germinative vescicle in all samples
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Immunohistochemical analysis 

 

In an immunohistochemical study, three different situations were retrieved.  

Follicles of grade 1 are negative for p53, p21 and Apaf1 (Fig. 14).    

 

     

Fig. 14: Immunohistochemistry of follicles of grade 1 

 

Follicles of grade 2 are immunoreactive for p53, and p21 but staining for Apaf-1 

is revealed only in 50±24.04% of them (Fig. 15).  

 

     

     

Fig. 15: Immunohistochemistry of follicles of grade 2 
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Follicles of grade 3 are immunoreactive for all tested markers (Fig. 16).  

 

     

Fig. 16: Immunohistochemistry of follicles of grade 3 

 

In the control sections, replacing the primary antibody with only phosphate 

buffered saline, resultes in the complete inhibition of staining in oocyte and 

follicular cells, indicating the specificity of immunoreaction.  

 

Ultrastructural analysis  

 

All follicles analyzed by TEM are at a primordial stage. Follicles at a different 

developmental stage are not revealed.  

In fresh human ovarian biopsies, the oocyte and the follicular structures generally 

are well preserved. Follicles are characterised by an intact and well defined 

oolemma, an homogeneous cytoplasm and nucleus with well condensed 

chromatine. There are no lipid droplets, vesicles or lysosomes found in these 

follicles (Fig. 17). Particularly, mitochondria had the typical morphological 

features described in human oocytes (Sathananthan AH et al., 2000; Motta PM et 

al., 2000). They occur as spherical/oval elements, approximately 0.5 mm in 

diameter, and typically contain a few short cristae rarely crossing a highly electron 

dense matrix 
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Fig. 17: Control follicle 

 

Compared to fresh follicles, in cryopreserved follicles, mitochondria have a 

decreased electron density of the matrix or irregular shape. However, choline 

slowly freezed follicles, for both protocols, are characterised by a more 
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homogeneous cytoplasm both in oocyte and in follicular cells, well defined 

oolemma and nuclear membrane, mitochondria of regular shape and at a 

cytoplasmatic level typical structures called anulatae lamellae are well preserved 

(Fig. 18).  

 

 

          

 

Fig. 18A : SCYB follicle 
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Fig. 18B : SCYBC follicle 
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Fig. 18C : SCH follicle 

 
 
 

SCH 

SCH 



104 

 

 
 

 
 
 

 
 

Fig. 18D : SCHC follicle 
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Follicles from vitrified tissue are characterised by lipid droplets, vesicles or 

lysosomes not revealed in control samples. However, choline vitrified follicles 

have no intercellular spaces between follicular cells, mitochondria are better 

preserved and at a cytoplasmatic level typical structures called anulatae lamellae 

are well visible (Fig. 19).   

 

 

 
 

  

Fig. 19A : VYB follicle 
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Fig. 19B : VYBC follicle 
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Fig. 19C : VH follicle 
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Fig. 19D : VHC follicle 
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Mitochondrial analysis 

 

Density of mitochondria has been evaluated by counting number of mitochondria 

inside an area of 50µm
2
. Results demonstrated no significant difference between 

control and slowly cooled samples. Instead, in all vitrified a significant decrease 

of mitochondrial density has been reported. (Table-Graph 10) 

 

K 72±3.5 

SCH 52±13.2 

SCHC 58±9.3 

SCYB 54±12.5 

SCYBC 53±8.2 

VH 32±10.3 

VHC 35±7.5 

VYB 49±7.2 

VYBC 36±5.6 

 

 

 

 

Table-Graph 10: Number of mitochondria / µm2 in all samples 
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Mitochondrial areas have been classified in two categories: 

1. Elongated mitochondria, characterised by an extended shape and 

numerous mitochondrial cristae; 

2. Round mitochondria, characterised by a circular shape and few 

mitochondrial cristae. 

 

Results demonstrated that, in all analysed follicles, no significant differences 

between elongated mitochondria areas have been found, except for SCYB 

follicles, in which case an increase has been recovered. However, round 

mitochondria areas have been significantly decreased after vitrification/thawing, 

for both protocols. (Graph 11)  

 

 

Graph 11: mitochondria areas in all samples. * p<0.05 
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Isolation of ovarian follicles 

 

In order to assess the ability of ovarian follicles to grow in 3D matrices, I isolated 

follicles from 30 different ovarian tissues The mean number of isolated follicles is 

200±35 (Fig. 20).  

 

      
 

Fig. 20: Isolated follicles 

 

The initial mean diameter was 41.9±5.20µm and fluorescent assays through 

staining with propidium iodide and Hoechst 33342 show that viable follicles are 

87.7±5.4% (Fig. 21).  

 

    

Fig. 21: Imaging of a viable follicle 
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Effect of Alginate Rigidity on Follicle Survival and Growth 

 

Follicles were firstly cultured for up to 10 days in alginates at different 

concentration to determine which one best supports follicle survival and growth. 

Particularly follicles were encapsulated in alginate 1%, 2% and 3%. At the end of 

the culture, mean follicular growths are 33.2±6.5% for ALG1%, 20±3.4% for 

ALG2% and 10±2% for ALG3% (Graph 12). Furthermore, at day 10 of culture, 

fluorescent assays show that viable follicles are 83.2±6% after encapsulation in 

ALG1%, 75±3% for follicles encapsulated in ALG2% and 58±4% after 

encapsulation in ALG3% (Graph 13). 
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Graph 12: follicular growth at day 10 of culture in alginates at different concentration 
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follicular viability (%) during culture
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Graph 13: follicular viability at day 10 of culture in alginates at different concentration 

 

 

 

 

 

Effect of Alginate Physical properties on Follicle Survival and Growth 

 

Next step was to study the effects of physical properties of alginate matrix on in 

vitro culture of isolated follicles. In order to improve the efficiency of culture 

system, four matrices were tested, which differ for percentage of guluronic acid, 

molecular weight, viscosity and combination with ECM molecules. Particularly, 

as reported previously, follicles were encapsulated in: SLG20 1%, SLG100 1%, 

ALG 1% and ALG-COLL 1%. All matrices were able to support follicular growth 

and able to preserve tridimensional structure of follicles. In fact, at day 10 of 

culture, follicles observed by brightfield microscopy significantly increase their 

initial diameter (Fig. 22-23). However, no antral cavity is revealed.  
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Fig. 22: follicle at day 0 

 

    

Fig. 23: follicle at day 10 of culture 

 

 

 

Similarly, follicular growths and viabilities in different culture conditions were 

investigated.  Results demonstrated that at the end of culture period, mean 

follicular growths were 49.7±2.8% for SLG 20 1.5%, 52.7±6.2% for SLG 100 

1.5%, 33.2±6.8% for ALG 1.5% and 103.8±9.3% for ALG-COLL (graph 14).  
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Graph 14: follicular growths at day 10 of culture in different alginates. Different superscripts 

denote significant differences among treatment groups 

 

Moreover, follicular viabilities, at day 10, were respectively 73.7±3.2% for SLG 

20 1.5%, 72.3±10.1% for SLG 100 1.5%, 52.2±10.81% for ALG 1.5% and 

85.7±6.2% for ALG-COLL (graph 15). 
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Graph 15: follicular viabilities at day 10 of culture in different alginates. Different superscripts 

denote significant differences among treatment groups 
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Analysis at confocal microscope 

Follicles were also stained for F-actin with rhodamine-phalloidin and Hoechst 

33342 for analysis at confocal microscope. Results demonstrated a marked and 

significant increase of follicular diameter, due to the presence, at the end of the 

culture period, of  multilayered granulosa cells. In fact, after isolation, follicles 

display at most two cell layers of granulosa cells (Fig. 24). Oocyte is centred and 

show a clear germinative vescicle. Nuclei of granulosa cells are well visible and 

regularly distributed around the oocyte.   

 

 

 

 

 

Fig. 24: follicles at day 0. In blue nuclei (Hoechst 33342); in red actin (Rhodaminate Phalloidin) 
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At day 10 of culture, follicles increase their size and a multilayered granulosa 

cells is well visible. Moreover, the oocyte size also increases in culture as the 

follicle grow three-dimensionally and preserve e regular morphology (Fig. 25).  

 

 

 

 

Fig. 25: follicle at day 10. In blue nuclei (Hoechst 33342); in red actin (Rhodaminate Phalloidin) 
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Vitrification of follicles 

 

A total of 285 encapsulated follicles were vitrified. Particularly, 140 follicles were 

vitrified immediately after enzymatic digestion and 145 follicles were vitrified 

after 2 days of in vitro culture in ALG-COLL matrix. Morphological features and 

viability of follicles before (control) and after vitrification were investigated. 

At day 0, after thawing, no viable follicles were recovered and 91.2±3.5% of 

follicles extruded their oocytes, with both vitrification protocols (Fig. 26-27). 

 

 

Fig. 26: frozen/thawed follicle after vitrification as reported by Xing et al. Oocyte has been 

extruded.  

 

        

Fig. 26: frozen/thawed follicle after vitrification as reported by Xing et al. In blue Hoecsht 33342; 

in red propidium iodide. 
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At day 2 of in vitro culture, in the control group, 87.7±5.4% of encapsulated 

follicles were morphologically normal and viable. After thawing, there was a 

significative difference in terms of morphologically normal and viable follicles 

relative to the control in the two different tested protocols (Fig. 28). 

 

          

 

              

Fig. 28: frozen/thawed follicle after vitrification as reported by Desai et al. In blue Hoecsht 33342; 

in red propidium iodide. 

 
 
 

Particularly, follicles vitrified as reported by Desai et al. 2011 show, after 

thawing, a viability of 84.53±3.51% and 80±2.4% of them are morphologically 

normal. Instead, there was a significantly lower proportion of morphologically 

normal follicles after vitrification as reported by Xing et al. 2010. Moreover, in 

this case viable follicles are 20±7.2% (Graph 15). Furthermore, follicles, after 

thawing, were able to restore their growth ability. In fact, thawed follicles, after 5 

days of in vitro culture, show a growth of 10%.  
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Graph 15:follicular viabilities after vitrification/thawing. * p<0.01; ** p<0.05 
 

 

 

Xenotransplantation of encapsulated follicles in immunodeficient mice 

 

In collaboration with Research Laboratory on Human Reproduction in Brussels, at 

day 2 of in vitro culture, after monitoring viability and growth of encapsulated 

follicles, four different alginate beads (ten follicles/bead) were xenotransplanted 

to the kidney capsule or the back muscle of two immunodeficient mice. After 

three months, grafts were readily identifiable and removed. No follicles could be 

identified after histological analysis of kidney and back muscle. 

 
 
 

** 
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DISCUSSION AND CONCLUSIONS 

 

 

In recent years cancer incidence is constantly increasing as a result of population 

aging and growth as well as, increasingly, an adoption of cancer-associated 

lifestyle choices including smoking, physical inactivity, and ‘‘westernized’’ diets. 

(World Health Organization Databank WHO Statistical Information System, 

2010). Moreover, recent data coming from AIRTUM Working group about 

children cancer incidence (Epidemiol Prev 2008; 32(2) Suppl 2: 1-112) indicate 

that there is a growth trend of both all new cases of cancer and mean tumor sites 

at 0-14 years. In contrast, early detection of cancer and progresses in diagnosis 

and enhanced effectiveness of chemotherapy and radiotherapy has increased the 

survival rate of young female cancer patients (von Wolff et al., 2009). 

Unfortunately these growing population of adolescent and adult long-term cancer 

survivors may experience infertility problems due to induced premature ovarian 

failure (POF) caused by cancer therapies, in a manner dependent on the age of the 

patient at the time of diagnosis and dependent on the type and  quantity of drugs 

used for therapies. In fact, the ovaries, containing a definite number of follicles 

from the birth, are very sensitive to cytotoxic treatment, especially to alkylating 

agents, which are classified as high risk for gonadal dysfunction (e.g. 

cyclophosphamide, busulfan, melphalan, chlorambucil, dacarbazine, procarbazine, 

ifosfamide, thiotepa and nitrogen mustard) (Warne et al., 1973; Koyama et al., 

1977; Fisher et al., 1979; Viviani et al., 1985; Mackie et al., 1996; Teinturier et 

al., 1998; Legault and Bonny, 1999; Meirow et al., 1999; Blumenfeld et al., 2000; 

Kenney et al., 2001; Tauchmanova et al., 2002). The follicular destruction 

following these treatments generally results in the loss of both endocrine and 

reproductive functions. Enthusiasm has therefore generated for young female 

patients, in which case the improvement of cancer therapies allows that young 

cancer patients can survive and undergo a normal reproductive life. In order to 

preserve their fertility, advances on biology of reproduction and Assisted 

Reproductive Technologies have opened a wide range of options. There are a few 

options available to preserve fertility in these patients. These include 
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cryopreservation of embryos, oocytes (Yang et al., 2007; Porcu et al., 2008) or 

ovarian tissue (Hovatta et al., 1996; Nugent et al., 1997; Donnez et al., 2000; Kim, 

2006). Embryo cryopreservation is the most mature technology available for 

fertility preservation and it is the most effective strategy to date. Human embryos 

can survive the freezing and thawing process up to 95% of the time, and 

cumulative pregnancy rates can be greater than 60% if multiple embryos are 

available (Oktay et al., 2003, 2005; Rao et al., 2004; Juretzka et al., 2005; Lee et 

al., 2006; Seli et al., 2005). Recently, oocyte cryopreservation has improved 

significantly allowing better survival and fertilization rate (Fabbri et al., 2001; 

Oktay et al., 2006). However, clinical pregnancy and live birth rates are lower 

than those observed with unfrozen oocytes. On the other hand, both methods 

require a delay in cancer treatment and hormonal stimulation. Furthermore, there 

are ethical problems for embryos cryopreservation. Thus, these methods are not 

an option for patients who need to start immediately cytotoxic treatments, for 

patients who have an estrogen sensitive cancer, such as breast cancer and for pre-

pubertal patients. Moreover, embryo cryopreservation couldn’t be performed for 

single women. In order to preserve fertility in these patients, ovarian tissue 

cryopreservation followed by transplant is a promising fertility preservation 

approach. The advantages of the ovarian tissue cryopreservation are the possibility 

to: preserve a large number of primordial follicles present in the cortex of the 

ovarian tissue, preserve  both steroidogenic and gametogenic functions, avoid 

postponement of cancer treatment, collect ovarian tissue independently of the 

stage of the menstrual cycle and in a non invasive manner, through laparoscopy, 

and finally restore the natural state, when the  graft is transplanted in fully remised 

patients allowing conception in vivo with their own germ cells. 

Autotransplantation of ovarian cortical strips has resulted in viable offspring in 

animal models (Bordes et al. 2005) and human. Worldwide, 14 live births have 

been reported as a result of autotransplanting frozen/thawed ovarian tissues 

(Donnez et al., 2004, 2011; Meirow et al., 2005; Demeestere et al., 2007; 

Andersen et al., 2008; Silber et al., 2008; von Wolff et al., 2009; Piver P et al., 

2009; Ernst et al., 2010; Sanchez-Serrano et al., 2010; Roux et al., 2010). Despite 

these promising findings, transplantation of cryopreserved tissue carries the risk 
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of re-introducing cancer cells into the patient (Shaw and Trounson, 1997; Meirow 

et al., 1998, 2008). In order to avoid this risk, the only possibility to preserve 

fertility is represented by the in vitro growth of the oocytes from the primordial 

stage. However, until now, only in a murine model, isolated follicle culture using 

a 3-dimensional alginate matrix has yielded mature oocytes capable of 

fertilization and delivery of healthy mouse pups (Abir et al., 2006). Thus, even 

though the risks of transmitting disease in grafted tissue carrying malignant cells 

related to ovarian tissue cryopreservation is still an open question up to now, and 

even if only a few studies about in vitro culture of human isolated follicle have 

been performed, these ones represent the only suitable technology for fertility 

preservation for pre-pubertal girls and women who cannot delay the start of 

chemotherapy. In this scientific contest, aim of my PhD research was 

improvement of these two alternative strategies. In fact, cryopreservation methods 

have to be still investigated in order to improve their experimental efficiency, and, 

to date, isolation of  follicles from ovarian tissue and in vitro culture is still 

undeveloped.  

As first step, in the present study I studied the development of new protocols for 

ovarian tissue cryopreservation in order to improve the efficiency of the method. 

Main results demonstrated a beneficial effect of replacement of sodium with 

choline in freezing media. Two studies have already reported the efficacy of 

sodium-depleted slow freezing for cryopreservation of human oocytes. In a series 

of 12 patients, a total of 144 oocytes were cryopreserved and thawed (Quintans C 

et al., 2002). The median survival was 63%. Nonetheless, based on the surviving 

oocytes, a fertilization rate of 59%, an implantation rate of 25%, six clinical 

pregnancies, and two live births were obtained. Boldt et al. (Boldt J et al., 2003) 

compared two slow freezing protocols: oocytes cryopreserved in the sodium-

depleted freezing medium resulted in a significantly higher survival rate than 

oocytes in the sodium-based freezing group after thawing. In the sodium-depleted 

group, 59% fertilization rate was obtained, and out of 11 women who received 

embryo transfer four pregnancies and five live births were reported. Two potential 

explanations have been proposed (Stachecki et al., 1998, 2000, 2002, 2006). The 

first theory relates to the ‘‘solute effect’’, involving the transport of a large 
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quantity of sodium ions cross the cell membrane through the plasma membrane–

associated sodium-potassium (Na-K) pump. During equilibration in PBS-based 

freezing media which contains a relative high concentration of Na, an excess Na 

may be pumped into the ooplasm. However, the functions of Na-K pumps may be 

impaired during freezing and thawing, resulting in an intracellular accumulation 

of Na and ultimately in cell death. An alternative explanation is that the choline 

may have a direct cryoprotective effect by stabilizing the cell membrane (Toner et 

al., 1993). Unlike the sodium ion, choline is thought not to cross the cell 

membrane and therefore would not be expected to contribute to the intracellular 

solute load.  

In the present study, the improvement of ovarian tissue cryopreservation after 

replacing of sodium with choline has been demonstrated by histological, 

immunohystochemical and ultrastructural analysis. The ovarian cortex contains 

follicles mainly at primordial and primary stages, which are particularly resistant 

to cryopreservation procedures (Hovatta, 2005). At these stages, the follicles 

possess certain characteristics that make them less sensitive to cryoinjury, such as 

a low metabolic rate and number of granulosa cells, absence of a ZP and 

peripheral cortical granules, and a small immature oocyte (arrested in the 

prophase of the first meiotic division) with low amounts of intracytoplasmic 

lipids. In the present study, microscopic visualization of haematoxylin/eosin-

stained sections revealed clear differences between non frozen, slowly cooled and 

vitrified follicles. Results demonstrated that in slow freezing groups percentage of 

morphologically normal follicles were higher in choline modified protocols than 

in conventional ones, according to criteria reported by Gougeon A in 1986. In 

vitrification groups percentage of morphologically normal follicles were also 

higher in choline modified protocols than in conventional ones, but follicular 

morphology is not well preserved and the proportion of the morphologically intact 

follicles were significantly reduced in the two vitrification groups.  

To deepen these data, an ultrustructural study has been performed. Different 

studies have demonstrated that cryopreservation of ovarian tissue may injure 

follicular structure (Cortvrindt et al., 1996; Oktay et al., 1997; Gook et al., 1999; 

Nisolle et al., 2000; Abir et al., 2001; Hreinsson et al., 2003; Eyden et al., 2004; 
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Imhof et al., 2004; Lucci et al., 2004; Martinez-Madrid et al., 2004a; Rodrigues et 

al., 2004a,b; Camboni et al., 2005; Fabbri et al., 2006a,b; Santos et al., 2006; 

Nottola et al., 2007b; Fauque et al., 2007). In fact, the structure and functionality 

of the follicles present in the ovarian cortex might be altered by inadequate 

cryopreservation procedures. Microorganelles responsible for a specific biological 

event has a different susceptibility to be damaged from freezing, and follicles 

cryodamaged may be responsible of retard follicle growth and oocyte maturation 

after transplantation. Particularly, alterations in mitochondrial morphology, as 

well as in the association between mitochondria and smooth endoplasmic 

reticulum (SER) elements (membranes and vesicles), may influence the 

developmental competence of human oocytes (Van Blerkom, 2004). Decrease in 

temperature appears to have an influence on oocytes. Chilling has been implicated 

in the modification of membranes (Ghetler et al., 2005), which may affect their 

integrity, while freezing has been shown to cause mitochondrial enlargement and 

alterations in the relationship of SER elements with mitochondria in bovine 

oocytes (Schmidt et al., 1995). Sathananthan et al. (1988) also observed 

mitochondrial swelling and SER element damage after cooling human oocytes to 

0°C. In the present study, electron microscopy investigations showed that, 

compared to fresh follicles, in cryopreserved follicles, mitochondria have a 

decreased electron density of the matrix or irregular shape. Particularly, 

mitochondrial area and number of mitochondria/µm
2
 have been analyzed. 

Moreover, two categories of mitochondria have been investigated: elongated and 

round mitochondria, different for shape and respectively more or less 

mitochondrial cristae. Results demonstrated that all slowly freezed follicles, for 

both protocols, have been characterised by a similar density of mitochondria, if 

compared with non frozen samples, but elongated mitochondria areas significantly 

decreased in conventional freezing, while these ones have been well preserved in 

sodium depleted choline-supplemented slow freezing techniques. Furthermore, at 

an ultrastructural level, follicles slowly cooled with both choline modified 

protocols, have been characterised also by a more homogeneous cytoplasm both 

in oocyte and in follicular cells, well defined oolemma and nuclear membrane 

and, at a cytoplasmatic level, only in choline cryopreserved follicles, typical 
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structures called anulatae lamellae are well preserved. Instead, all follicles from 

vitrified tissue have been characterised by an inferior mitochondrial density and 

increased round mitochondria areas if compared with non frozen samples. 

Similarly, follicles vitrified with choline modified protocols, if compared with 

follicles vitrified with conventional protocols, have no intercellular spaces 

between follicular cells and at a cytoplasmatic level, also in this case, anulatae 

lamellae are well visible. However,  in vitrified follicles, different injuries have 

been found, not revealed in control samples, such as lipid droplets, vesicles or 

lysosomes. Finally, I further investigated whether cryopreservation affects 

primordial follicle physiology and functionality, specifically the p53-p21-Apaf1 

pathway, which has been shown to play an important role in regulating ovarian 

apoptosis. Several studies demonstrated that p53 expression was not altered after 

slow-freezing (Hussein et al. 2006) and no significant difference between the p53 

mRNA level in vitrified and non-vitrified tissue (Mazoochi et al., 2009). 

However, expression of p53 is the result of DNA damage (Lu X and Lane DP, 

1993) and the expression of p53 protein in the apoptotic granulosa cells of atretic 

follicles suggests its possible role in atresia (Kim et al., 1999). p21 is an important 

p53 target, which gene product associates with and inhibits cyclin-Cdk complex 

kinase and thereby blocks the transition from G1 to S in the cell cycle (EI-Deiry 

WS et al., 1993; Harper JW et al. 1993). Moreover, in the mitochondrial 

signalling pathway, it is generally believed that when the cells receive a stressful 

stimulus which leads to mitochondrial damage, cytochrome c is released from the 

mitochondria (Green and Reed, 1998; Wang, 2001) and binds with Apaf1 (Zou et 

al., 1997; Robles et al., 1999), and then the Apaf1–cytochrome c complex binds 

with procaspase- 9 (Cecconi et al., 1998; Qin et al., 1999). The Apaf1– 

cytochrome c–procaspase-9 complex plays a key role in mitochondrion-dependent 

apoptosis (Cecconi, 1999; Grutter, 2000;Wang, 2001). In this project research, 

expression of p53, p21 and Apaf1 have been investigated by 

immunohistochemical approach. Results showed that three different situations 

have been observed. Follicles of grade 1 are negative for p53, p21 and Apaf1. 

Follicles of grade 2 are immunoreactive for p53, and p21 but staining for Apaf-1 

is revealed only in part of them. Finally, follicles of grade 3 are immunoreactive 
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for all tested markers. Thus, immunohistochemical analysis confirms histological 

and ultrustructural ones and demonstrated that morphology of follicles is highly 

related to their functionality. Overall, data herein indicated that sodium-depleted 

choline-supplemented cryopreservation preserves ovarian tissue better than 

conventional sodium based one.   

A new biotechnological approach has been used to develop an efficient method 

for follicle isolation and subsequent  in vitro culture. Conventional culture, as 

reported by different studies, is unable to support follicular growth and hormone 

production. In conventional 2-dimensional (2-D) tissue culture systems, the 

follicle tends to flatten and granulosa cells surrounding and nurturing the growing 

oocyte, migrate away, leaving it naked and unable to complete the maturation 

process (West ER et al., 2007). In the first stages of follicologenesis, interactions 

between oocyte and granulosa cells are necessary (Carabatsos MJ et al., 2000) and 

only a tridimensional culture system can preserve this condition. Encapsulation of 

follicles may protect them from gap junction disruption through shear stress 

(Heise M et al., 2005; Heise MK et al, 2009) and may preserve expression of the 

gene encoding for the gap-junction protein connexin (De Paola N et al., 1999). 

Contiguous assembly of granulosa cells around the oocyte also prevents the 

follicles from undergoing premature ovulation (Xu M et al., 2006). Another 

advantage may be that trophic factors released by granulosa cells remain in close 

proximity to the oocyte exerting a positive effect on oogenesis and possibly 

fostering new local gap junctions. To reproduce in vitro the architecture of follicle 

interactions, in this research project, the effects of  alginate matrix on in vitro 

culture of isolated follicles has been studied. In the alginate system, follicles have 

been able to grow (Pangas et al., 2003), produce fluid-filled antral cavities (Xu et 

al., 2006), and produce meiotically competent oocytes (Kreeger et al., 2006; 

2005), which were successfully fertilized and implanted to yield multiple live 

births of healthy mouse pups (Xu et al., 2006). Moreover, alginate is one of the 

most used biomaterials for microencapsulation, for its biocompatibility, high 

affinity to water and ability to form hydrogels in very mild conditions (Pangas SA 

et al., 2003; Kreeger PK et al., 2005; Amorim CA et al., 2009; Xu M et al., 2009). 

The properties of alginate hydrogels vary widely depending on different physical 
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and mechanical properties. Ovarian follicle culture systems provide an ideal tool 

to study the properties of a three-dimensional hydrogel matrix in follicle 

development. The hormonal regulation of folliculogenesis has been widely 

investigated, yet the role of the physical properties of the follicle 

microenvironment has not. Understanding the role of the environment on follicle 

development will be useful for the development of biomimetic matrices for the in 

vitro culture of follicles and other hydrogel-encapsulated cell culture systems. 

The mechanical properties of alginate are dependent on several factors, such as 

the mass of polymer and the extent of cross-linking (Anseth KS et al., 1996). 

Decreasing the percentage of alginate reduces the extent of cross-linking within 

the gel, thereby decreasing the modulus for the material (Kong HJ et al., 2004). 

Less rigid hydrogels deform more readily, which would create space as the 

follicle increases in size. The other mechanism by which the alginate percentage 

may affect follicle growth is the extracellular transport of macromolecules (Wee S 

et al., 1998; Peters MC et al., 1998). The culture media contains macromolecules 

necessary for follicle growth, and cells within the follicle are producing and 

secreting factors that affect the maturation process. Decreasing the percentage of 

alginate increases the mean mesh size within the hydrogel, which may enhance 

macromolecular transport through the hydrogel. However, natural and synthetic 

matrices, such as the negative-charged polysaccharide alginate, can also bind 

macromolecules to serve as reservoirs for growth factors (Peters MC et al., 1998). 

Decreasing the percentage of alginate would reduce binding sites for these 

macromolecules and increase transport. Therefore, factors added to the culture 

media would be transported through the gel more easily with a reduction in the 

alginate percentage. In addition, factors produced by the follicle, which may affect 

growth positively and negatively, would more effectively escape from the follicle.  

In this contest, different studies show that the strength of the alginate gel network 

is an important factor that influences the growth characteristics of encapsulated 

cells. Xu et al. in 2006 reported that follicles encapsulated in 0.5% and 0.25% 

alginate had increased to more than 300μm, significantly larger than those 

cultured in 1.5% alginate. Also, follicles encapsulated in 1.5% alginate were less 

likely to develop an antrum, did not develop laminar-like teca cells, and produced 
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lower androstenedione levels. Thus, alginate concentration not only affected theca 

cell proliferation and differentiation but also regulated granulosa cell proliferation 

and differentiation. Interestingly, different studies demonstrated, instead, that 

follicles cultured in 0.5% alginate performed better than those in 0.25% alginate, 

suggesting that primate follicles may require more physical support. One concern 

however is that denser matrices could potentially limit access to hormones and 

other nutrients. Heise et al. (2005) reported inhibited delivery of FSH to 

microencapsulated follicles. 

Three different concentrations of alginate were chosen for the present study: 

primordial and primary follicles have been enzimatically isolated and cultured for 

up to 10 days in alginates 1%, 2% and 3% to determine which one best supports 

follicle survival and growth. Viability of follicles has been detected using a 

double staining with Hoechst 33342 and propidium iodide; follicular growth has 

been instead monitored daily through a NIS element imaging software. All 

alginates were able to support in vitro follicular culture. However, results 

demonstrated opposing influences of the rigidity of the biomaterial at high gel 

concentration and its interference with diffusion and optimal growth. In fact, best 

results have been obtained with encapsulation of follicles in ALG1%. At the end 

of the culture, mean follicular growths and follicular viability are higher for 

follicles encapsulated in ALG1% and they decrease at increasing of alginate 

concentration. 

Next step, in this research project, has been studying the effects of physical 

properties of alginate matrix on in vitro culture of isolated follicles. The physical 

properties of alginate hydrogels vary widely depending on their composition (e.g., 

the proportion of guluronic to mannuronic acid residues) and the sequential order 

of these residues. Briefly, alginates possessing a high guluronic acid content 

develop stiffer, more porous gels which maintain their integrity for longer periods 

of time. During cationic cross-linking, they do not undergo excessive swelling and 

subsequent shrinking, thus they better maintain their form. Conversely, alginates 

rich in mannuronic acid residues develop softer, less porous gels that tend to 

disintegrate with time. Alginates with a high mannuronic acid content are also 

plagued by a high degree of swelling and shrinking during cationic crosslinking. 
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In the present study, different matrices have been tested, which differ for 

percentage of guluronic acid, molecular weight and viscosity. To date the most 

widely applied system for follicle encapsulation and 3-D culture has been alginate 

produced by brown algae (Xu M  et al., 2006; West ER et al., 2007; Xu M et al., 

2006, 2009a,b,c; Pangas SA et al., 2003; Kreeger PK et al., 2005; Amorim CA et 

al., 2009). To further simulate the in vivo environment, ECM molecules have 

been combined with calcium alginate to construct synthetic ECM matrices for 3D 

culture (Kreeger PK et al., 2003). In a separate study, these investigators 

combined calcium alginate with additional ECM components such as collagen I, 

collagen IV, laminin and fibronectin (Kreeger PK et al., 2006). Transition to the 

multi-layered, secondary follicle was enhanced in alginate matrices with RGD or 

collagen I and final maturation of oocytes and resumption of meiosis was 

promoted by presence of fibronectin, laminin or RGD peptide. 

In the present study, the following biomaterials have been tested: alginate SLG 20 

1% (69% guluronic acid, 75kDa), alginate SLG 100 1% (68% guluronic acid, 

200kDa), alginate 1% (50% guluronic acid, 50% mannuronic acid). Moreover, 

alginate 1% has been combined with collagen type IV 0.3mg/mL, as the latter is 

the main ECM component present during follicologenesis. At day 10 of culture, 

all follicles observed by brightfield microscopy increase significantly their initial 

diameter but no antral cavity is revealed. However, at the end of culture period, 

improvement of mean follicular growths and viability were obtained for SLG 20 

1% and for SLG 100 1%, showing a beneficial effect of a major percentage of 

guluronic acid in alginate molecule and, moreover, follicular growth and viability 

percentages have been significantly improved after encapsulation in ALG-COLL. 

In fact, although all follicles are able to grown, only follicles encapsulated in 

alginate combined to collagen IV double their initial diameter and viability is 

better preserved during culture period. Follicles were also stained for F-actin with 

rhodamine-phalloidin and Hoechst 33342 for analysis at confocal microscope. 

Results demonstrated a marked and significant increase of follicular diameter, due 

to the presence, at the end of the culture period, of multilayered granulosa cells. 

Under these conditions oocytes retained a normal morphology. Thus, although all 

matrices were able to support follicular growth, the presence of components of 
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ECM, such as collagen, improves the efficiency of in vitro culture of isolated 

follicles, better preserving follicular growth and viability. As a result, new 

prospectives in fertility preservation in cancer women could be opened, because 

follicles cultured in vitro could be cryopreserved and re-implanted at the 

pathology remission, in order to avoid also the risk of re-introduction of malignant 

cells associated to ovarian tissue cryopreservation. Isolated follicles can be 

cryopreserved by slow-freezing or by vitrification. Vitrification is a method with a 

high concentration cryoprotectant combined with a fast cooling rate, which avoids 

ice crystal formation during the cryopreservation process (Fahy GM et al., 1984). 

The recent advance of ultrarapid vitrification procedures has been attributed to 

new devices which enabled high cooling rates, such as electron microscopic 

copper grids (Martino A et al., 1996), OPS (Vajta G et al., 1997), cryoloop (Lane 

M et al., 1999), microdrops (Papis K et al., 2000), SSV (Dinnyes A  et al., 2000) 

and nylon mesh (Matsumoto H et al., 2001). Xing et al. (2010) demonstrated, in 

rat, that the rate of totally viable follicles of the SSV group was slightly higher 

than that of the OPS group and significantly higher than that of the slow-rate 

freezing group. Moreover, after in vitro culture, the increase of follicle diameter of 

SSV group was significantly higher than that of the slow-rate freezing group. 

Desai et al. 2011 reported that EG-raffinose vitrification protocol resulted in 

excellent post-warming survival. About 95% of mouse follicles were 

morphologically intact immediately post warming and 65% survived to the end of 

the in vitro culture interval period, with 41% of oocytes maturing to the MII stage. 

However, after collection, isolated follicles could be stressed by the enzymatic 

digestion and 2-3 days of in vitro culture after encapsulation in a tridimensional 

matrix could allow the recovery of follicle physiological functions after enzymatic 

digestion. In this study, follicles were vitrified immediately after enzymatic 

digestion and after 2 days of in vitro culture in ALG-COLL matrix and their 

ability to survive to cryopreservation has been analysed by fluorescent assays. 

Particularly, two different vitrification methods have been tested (Desai et al. 

2011; Xing et sl. 2010) and thawed follicles have been stained and imaged at the 

fluorescence microscope to detect eventual damages induced by the 

cryopreservation. At day 0, after thawing, no viable follicles have been recovered 
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and the most part of follicles extruded their oocytes, with both vitrification 

protocols. At day 2 of in vitro culture, after thawing, a significative difference in 

terms of morphologically normal and viable follicles relative to the control have 

been retrieved in the two different tested protocols. Results demonstrated that, 

after thawing, follicles vitrified according to Desai et al had a higher viability 

compared to the protocol of Xing et al. Morphological analysis of follicles 

confirmed these data. Furthermore, follicles, after thawing, have been able to 

restore their growth ability. In fact, thawed follicles, after 5 days of in vitro 

culture, showed a growth of 10%.  

Thereafter, to understand whether frozen thawed isolated follicles were able to 

undergo growth and development after transplantation three potential possibilities 

exist: heterotopic autografting, orthotopic autografting and xenografting. In 

transplantation experiments with isolated follicles to the ovarian bursa of mice, 

Gosden (1990) had resorted to the plasma clot procedure to retain follicles in situ. 

Also, Dolmans et al. (2007) reported 58.3% recovery rate for isolated follicles 

xenografted to the murine ovarian bursa in a plasma clot. Ovarian tissue is 

commonly grafted to the kidney capsule or the back muscle of immunodeficient 

mice because these sites favour rapid revascularization due to its rich capillary 

bed. Recently (Aerts et al., 2010) a novel transplantation technique, consisted in 

microinjecting follicles underneath the kidney capsule to prevent follicle extrusion 

from the renal membrane into the abdomen, thus avoiding the need for a plasma 

clot as a vehicle for transplantation, resulted in 100% of grafted follicles 

recovered from the kidney capsule, indicating that the microinjection technique 

successfully retains the transplants in situ. 

In the present study, after in vitro culture and vitrification/thawing alginate 

encapsulated follicles have been xenografted in immunodeficient mice. Thus, in 

collaboration with Research Laboratory on Human Reproduction in Brussels, after 

monitoring viability and growth of encapsulated follicles, four different alginate 

beads (ten follicles/bead) have been xenotransplanted to the kidney capsule or the 

back muscle of two immunodeficient mice. After three months, grafts were 

readily identifiable. The grafts have been removed after 3 months and analysed by 

light microscopy. Unfortunately, until now, no follicles could be identified after 
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histological analysis of kidney and back muscle. However, observations on the 

physiological status of xenografted follicles are currently under way. Thus, data 

obtained in this PhD thesis encourage the development of new strategies to 

preserve fertility in cancer women. Improvements to in vitro follicle culture 

systems, along with improved cryopreservation and follicle isolation techniques, 

may provide a viable avenue for the maturation of cryopreserved immature 

ovarian follicles in vitro for subsequent fertilization and implantation to preserve 

reproductive options for female cancer patients. In addition to germline 

preservation, follicle culture techniques may also revolutionize approaches to treat 

female infertility. In addition, ovulation induction requested for actual fertility 

preservation methods produces a limited number of oocytes, many of which may 

not produce viable embryos. In vitro culture systems may allow for the maturation 

of immature follicles for subsequent oocyte collection and fertilization. If a viable 

human in vitro follicle culture system is developed, a small portion of the ovary 

could be removed by laparoscopy, and follicles could be cultured and observed to 

yield fertilizable germ cells. This approach may also potentially allow women to 

delay childbearing until later in life due to lifestyle or other reasons. In vitro 

follicle culture systems have many potential clinical and research applications, but 

improvements to current technologies are needed to make these applications a 

reality. The application of tissue engineering techniques to follicle culture have 

already led to improvements to culture system technologies, and further 

improvements may one day produce culture systems capable of producing 

successfully maturing human ovarian follicles. 

 

 

    

  

 



References 
 

134 
 

REFERENCES 

 

Abbott A: Cell culture: biology’s new dimension. Nature 2003, 424:870-872. 

 

Abir R, Fisch B, Nitke S, Okon E, Raz A, Ben Rafael Z: Morphological study of fully 

and partially isolated early human follicles. Fertil Steril 2001, 75:141-146. 

 

Abir R, Nitke S, Ben-Haroush A, Fisch B: In vitro maturation of human primordial 

ovarian follicles: clinical significance, progress in mammals, and methods for growth 

evaluation. Histol Histopathol 2006, 21:887-898. 

 

Adam AA, Takahashi Y, Katagiri S, Nagano M: In vitro culture of mouse preantral 

follicles using membrane inserts and developmental competence of in vitro ovulated 

oocytes. J Reprod Dev 2004, 50:579-586. 

 

Adhikari D et K Liu. mTOR signaling in the control of activation of primordial follicles. 

Cell Cycle 2010; 9: 1673–1674. 

 

Adhikari D, G Flohr, N Gorre, et al. Disruption of Tsc2 in oocytes leads to overactivation 

of the entire pool of primordial follicles. Mol. Hum. Reprod. 2009; 15: 765–770. 

 

Adhikari D, W Zheng, Y Shen, et al. Tsc/mTORC1 signaling in oocytes governs the 

quiescence and activation of primordial follicles. Hum. Mol. Genet. 2010; 19: 397–410. 

 

Ahearne M, Liu KK, Yang Y. Dual-Camera Spherical Indentation System for Examining 

the Mechanical Characteristics of Hydrogels. Springer-Verlag; Berlin, Germany: 2009. p. 

2011-2014. 

 

Ahearne M, Yang Y, El Haj AJ, Then KY, Liu KK. Characterizing the viscoelastic 

properties of thin hydrogel-based constructs for tissue engineering applications. J R Soc 

Interface 2005;2:455–463. 

 

Ahearne M, Yang Y, Liu K-K. Mechanical characterisation of hydrogels for tissue 

engineering applications. Topics Tissue Eng 2008;4:1–16. 

 



References 
 

135 
 

Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular biology of the 

cell, 3rd ed. New York: Garland Publishing, Inc.; 1994. 

Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ. Cell-interactive 

alginate hydrogels for bone tissue engineering. J Dent Res 2001;80:2025–9. 

 

Amorim CA, Van Langendonckt A, David A, Dolmans MM, Donnez J: Survival of 

human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and 

in vitro culture in a calcium alginate matrix. Hum Reprod 2009, 24:92-99. 

 

Anderson RA, Themmen APN, Al-Qahtani A, et al. The effects of chemotherapy and 

long-term gonadotrophin suppression on the ovarian reserve in premenopausal women 

with breast cancer. Hum Reprod. 2006;21:2583–2592. 

 

Anseth KS, Bowman CN, Brannon-Peppas L. Mechanical properties of hydrogels and 

their experimental determination. Biomaterials 1996;17:1647–57. 

 

Ataya K, Rao LV, Lawrence E, et al. Leutinizing hormone-releasing hormone agonist 

inhibits cyclophosphamide-induced ovarian follicular depletion on rhesus monkeys. Biol 

Reprod. 1995;52: 365–372. 

 

Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Chondrogenic 

differentiation of adiposederived adult stem cells in agarose, alginate, and gelatin 

scaffolds. Biomaterials 2004;25(16):3211–3222. 

 

Azab AK, Orkin B, Doviner V, et al. Crosslinked chitosan implants as potential 

degradable devices for brachytherapy: in vitro and in vivo analysis. J Control Release 

2006;111:281–289.  

 

Azim AA, Costantini-Ferrando M & Oktay K. Safety of fertility preservation by ovarian 

stimulation with letrozole and gonadotropins in patients with breast cancer: a prospective 

controlled study. J Clin Oncol 2008; 26: 2630–2635. 

 

Baird DT, R Webb, BK Campbell, et al.. Long-term ovarian function in sheep after 

ovariectomy and transplantation of autografts stored at −196◦C. Endocrinology 1999; 

140: 462–471. 



References 
 

136 
 

 

Baker EL, Bonnecaze RT, Zaman MH. Extracellular matrix stiffness and architecture 

govern intracellular rheology in cancer. Biophys J 2009;97(4):1013–1021.  

 

Baker TG: A Quantitative and Cytological Study of Germ Cells in Human Ovaries. Proc 

R Soc Lond B Biol Sci 1963, 158:417-433. 

 

Baroli B. Hydrogels for tissue engineering and delivery of tissue-inducing substances. J 

Pharm Sci 2007;96(9):2197–2223.  

 

Barrett SL, LD Shea et TK Woodruff. Noninvasive index of cryorecovery and growth 

potential for human follicles in vitro. Biol. Reprod. 2010; 82: 1180–1189. 

 

Bath LE, Critchley HOD, Chambers SE, et al. Ovarian and uterine characteristics after 

total body irradiation in childhood and adolescence: response to sex steroid replacement.  

Br J Obstet Gynaecol. 1999; 106:1265–1272. 

 

Baynosa J, Westphal LM, Madrigrano A & Wapnir I. Timing of breast cancer treatments 

with oocyte retrieval and embryo cryopreservation. J Am Coll Surg 2009; 209: 603–607. 

 

Bedaiwy MA, Hussein MR, Biscotti C, et al. Cryopreservation of intact human ovary 

with its vascular pedicle. Hum Reprod. 2006;21:3258–3269. 

 

Bedaiwy MA, Jeremias E, Gurunluoglu R, et al. Restoration of ovarian function after 

autotransplantation of intact frozen-thawed sheep ovaries with microvascular 

anastomosis. Fertil Steril. 2003; 79:594–602. 

 

Beebe D, Wheeler M, Zeringue H, Walters E, Raty S: Microfluidic technology for 

assisted reproduction. Theriogenology 2002, 57:125-135. 

 

Berkholtz CB, Shea LD, Woodruff TK: Extracellular matrix functions in follicle 

maturation. Semin Reprod Med 2006, 24:262-269. 

 



References 
 

137 
 

Berliere M, Dalenc F, Malingret N, Vindevogel A, Piette P, Roche H, et al. Incidence of 

reversible amenorrhea in women with breast cancer undergoing adjuvant anthracycline-

based chemotherapy with or without docetaxel. BMC Cancer 2008;8:56. 

Bettinger CJ, Weinberg EJ, Kulig KM, et al. Three-dimensional microfluidic tissue-

engineering scaffolds using a flexible biodegradable polymer. Adv Mater 

2005;18(2):165–169.  

 

Bines J, Oleske DM, Cobleigh MA. Ovarian function in premenopausal women treated 

with adjuvant chemotherapy for breast cancer. J Clin Oncol 1996;14:1718–29. 

 

Bishonga C, Takahashi Y, Katagiri S, Nagano M, Ishikawa A: In vitro growth of mouse 

ovarian preantral follicles and the capacity of their oocytes to develop to the blastocyst 

stage. J Vet Med Sci 2001, 63:619-624. 

 

Bissell MJ, Rizki A, Mian IS: Tissue architecture: the ultimate regulator of breast 

epithelial function. Curr Opin Cell Biol 2003, 15:753-762. 

 

Black LD, Allen PG, Morris SM, Stone PJ, Suki B. Mechanical and failure properties of 

extracellular matrix sheets as a function of structural protein composition. Biophys J 

2008;94(5):1916–1929. 

 

Bloemers M.C., L. Portelance, C. Legler, et al. Preservation of ovarian function by 

ovarian transposition prior to concurrent chemotherapy and pelvic radiation for cervical 

cancer. A case report and review of the literature. Eur. J. Gynaecol. Oncol. 2010; 31: 

194–197. 

 

Boland NI, Humpherson PG, Leese HJ, Gosden RG: Pattern of lactate production and 

steroidogenesis during growth and maturation of mouse ovarian follicles in vitro. Biol 

Reprod 1993, 48:798-806. 

 

Bolland F, Korossis S, Wilshaw SP, et al. Development and characterization of a full-

thickness acellular porcine bladder matrix for tissue engineering. Biomaterials 

2007;28:1061–1070.  

 



References 
 

138 
 

Bonadonna G, Valagussa P, Moliterni A, Zambetti M, Brambilla C. Adjuvant 

cyclophosphamide, methotrexate, and fluorouracil in nodepositive breast cancer: the 

results of 20 years of follow- up. N Engl J Med 1995;332:901–6. 

Borini A, Bonu MA, Coticchio G, et al. Pregnancies and births after oocyte 

cryopreservation. Fertil Steril. 2004;82:601–605. 

 

Bormann C, Cabrera L, Heo Y, Takayama S, Smith G: Dynamic microfluidic embryo 

culture enhances blastocyst development of murine and bovine embryos. Biol Reprod 

2008, 77:89-90. 

 

Borzacchiello A, Ambrosio L. Network formation of low molecular weight hyaluronic 

acid derivatives. J Biomater Sci: Polym Ed 2001;12:307–16. 

 

Bouhadir KH, Hausman DS, Mooney DJ. Synthesis of crosslinked poly(aldehyde 

guluronate) hydrogels. Polymer 1999;40: 3575–84. 

 

Bouhadir KH, Lee KY, Alsberg E, Damm KL, Anderson KW, Mooney DJ. Degradation 

of partially oxidized alginate and its potential application for tissue engineering. Biotech 

Prog 2001;17:945–50. 

 

Bromer JG, Patrizio P. Preservation and postponement of female fertility. Placenta. 

2008;29(suppl B):200–205. 

 

Brougham MFH, Wallace WHB. Subfertility in children and young people treated for 

solid and haematological malignancies. Br J Haematol. 2005;131:143–155. 

 

Brusamolino E, Lunghi F, Orlandi E, et al. Treatment of early-stage Hodgkin’s disease 

with four cycles of ABVD followed by adjuvant radiotherapy: analysis of efficacy and 

long-term toxicity. Haematologia. 2000;85:1032–1039. 

 

Bryant SJ, Anseth KS. Hydrogel properties influence ECM production by chondrocytes 

photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res 2002;59:63–

72. 

 



References 
 

139 
 

Bryant SJ, Anseth KS. The effects of scaffold thickness on tissue engineered cartilage in 

photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials 2001;22:619–26. 

 

Bryant SJ, Cuy JL, Hauch KD, Ratner BD. Photo-patterning of porous hydrogels for 

tissue engineering. Biomaterials 2007;28(19):2978–2986.  

 

Buccione R, Schroeder AC, Eppig JJ: Interactions between somatic cells and germ cells  

throughout mammalian oogenesis. Biol Reprod 1990, 43:543-547. 

 

Burdick JA, Vunjak-Novakovic G. Engineered microenvironments for controlled stem 

cell differentiation. Tissue Eng Part A 2009;15(2):205–219.  

 

Burdick JA. Cellular control in two clicks. Nature 2009;460:469–470.  

 

Butler DL, Goldstein SA, Guilak F. Functional tissue engineering: the role of 

biomechanics. J Biomech Eng 2000;122:570–5. 

 

Buyuk E: In vitro growth of mouse primary and early preantral follicles in a 3-

dimensional culture system. Fertil Steril 2003, 80:79. 

 

Cahill DJ, Wardle PG, Harlow CR et al. Expected contribution to serum oestradiol from 

individual ovarian follicles in unstimulated cycles. Hum Reprod 2000; 15: 1909–1912. 

 

Carabatsos MJ, Sellitto C, Goodenough DA, Albertini DF: Oocyte-granulosa cell 

heterologous gap junctions are required for the coordination of nuclear and cytoplasmic 

meiotic competence. Dev Biol 2000, 226:167-179. 

 

Cascone MG, Barbani N, Cristallini C, Giusti P, Ciardelli G, Lazzeri L. Bioartificial 

polymeric materials based on polysaccharides. J Biomater Sci: Polym Ed 2001;12:267–

81. 

 

Cascone MG, Laus M, Ricci D, Sbarbati del Guerra R. Evaluation of poly(vinyl alcohol) 

hydrogels as a component of hybrid artificial tissues. J Mater Sci: Mater Med 1995;6: 71–

5. 

 



References 
 

140 
 

Castrillon DH, L Miao, R Kollipara, et al. Suppression of ovarian follicle activation in 

mice by the transcription factor Foxo3a. Science 2003; 301: 215–218. 

Cauich-Rodriguez JV, Deb S, Smith R. Effect of cross-linking agents on the dynamic 

mechanical properties of hydrogel blends of poly(acrylic acid)–poly(vinyl alcohol–vinyl 

acetate). Biomaterials 1996;17:2259–64. 

 

Cauich-Rodriguez JV, Deb S, Smith R. Physiochemical characterization of hydrogels 

based on polyvinyl alcohol–vinyl acetate blends. J Appl Polym Sci 2001;82:3578–90. 

 

Chang H, AL Lau et MM Matzuk. Studying TGF-beta superfamily signaling by 

knockouts and knockins. Mol. Cell. Endocrinol. 2001; 180: 39–46. 

 

Chargari C., P. Castadot, N. Gillion, et al.. [Impact of radiotherapy on fertility in female 

patients]. Bull. Cancer. 2009; 96: 1005–1011. 

 

Chen G, Ushida T, Tateishi T. Development of biodegradable porous scaffolds for tissue 

engineering. Mater Sci Eng C 2001;17:63–9. 

 

Chen GP, Sato T, Ushida T, Ochiai N, Tateishi T. Tissue engineering of cartilage using a 

hybrid scaffold of synthetic polymer and collagen. Tissue Eng 2004;10:323–330.  

 

Chen RN, Ho HO, Tsai YT, Sheu MT. Process development of an acellular dermal matrix 

(ADM) for biomedical applications. Biomaterials 2004;25(13):2679–2686.  

 

Chen X: Isolation of plasma from whole blood using a microfludic chip in a continuous 

cross-flow. Chinese Science Bulletin 2009, 54:324-327. 

 

Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, 

Atkinson BL, Binette F, Selmani A. Novel injectable neutral solutions of chitosan form 

biodegradable gels in situ. Biomaterials 2000;21:2155–61. 

 

Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD. Microfluidic 

scaffolds for tissue engineering. Nat Mater 2007;6(11):908–915.  

 



References 
 

141 
 

Chung Y, Zhu X, Gu W, Smith GD, Takayama S: Microscale integrated sperm sorter. 

Methods Mol Biol 2006, 321:227-244. 

Clark SG, Haubert K, Beebe DJ, Ferguson CE, Wheeler MB: Reduction of polyspermic 

penetration using biomimetic microfluidic technology during in vitro fertilization. Lab 

Chip 2005, 5:1229-1232. 

 

Cold S, During M, Ewertz M et al. Does timing of adjuvant chemotherapy influence the 

prognosis after early breast cancer? Results of the Danish Breast Cancer Cooperative 

Group (DBCG). Br J Cancer 2005; 93: 627–632. 

 

Combelles CM, Fissore RA, Albertini DF, Racowsky C: In vitro maturation of human 

oocytes and cumulus cells using a co-culture three-dimensional collagen gel system. Hum 

Reprod 2005, 20:1349-1358. 

 

Cortvrindt R, Smitz J, Van Steirteghem AC: In-vitro maturation, fertilization and embryo 

development of immature oocytes from early preantral follicles from prepuberal mice in a 

simplified culture system. Hum Reprod 1996, 11:2656-2666. 

 

Costa RB, Kurra G, Greenberg L, Geyer CE. Efficacy and cardiac safety of adjuvant 

trastuzumabbased chemotherapy regimens for HER2-positive early breast cancer. Ann 

Oncol 2010;21:2153–60. 

 

Courbiere B, Caquant L, Mazoyer C, et al. Difficulties improving ovarian functional 

recovery by microvascular transplantation and whole ovary vitrification. Fertil Steril. 

2009;91:2697–2706. 

 

Cowin SC. How is a tissue built? J Biomech Eng 2000;122: 553–69.  

 

Creighton TE. Proteins: structures and molecular properties, 2
nd

 ed. New York: W. H. 

Freeman and Company; 1993. 

 

Critchley HOD, Wallace WHB, Shalet SM, et al. Abdominal irradiation in childhood; the 

potential for pregnancy. Br J Obst Gynec. 1992;99:392–394. 

 



References 
 

142 
 

Critchley HOD, WallaceWHB. Impact of cancer treatment on uterine function. JNat 

Cancer Inst Monographs. 2005;34:64–68. 

Cruise GM, Scharp DS, Hubbell JA. Characterization of permeability and network 

structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. 

Biomaterials 1998;19:1287–94. 

 

Dadsetan M, Hefferan TE, Szatkowski JP, et al. Effect of hydrogel porosity on marrow 

stromal cell phenotypic expression. Biomaterials 2008;29(14):2193–2202. 

 

De Paola N, Davies PF, Pritchard WF Jr, Florez L, Harbeck N, Polacek DC: Spatial and 

temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to 

controlled disturbed flows in vitro. Proc Natl Acad Sci USA 1999, 96:3154-3159. 

 

Diaz FJ, Wigglesworth K, Eppig JJ: Oocytes are required for the preantral granulosa cell 

to cumulus cell transition in mice. Dev Biol 2007, 305:300-311. 

 

Dolmans MM, C Marinescu, P Saussoy, et al. Reimplantation of cryopreserved ovarian 

tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood 2010; 

116: 2908–2914. 

 

Donnez J, Dolmans MM, Demylle D, et al. Livebirth after orthotopic transplantation of 

cryopreserved ovarian tissue. Lancet. 2004;364:1405–1410. 

 

Donnez J, MM Dolmans, D Demylle, et al. Restoration of ovarian function after 

orthotopic (intraovarian and periovarian) transplantation of cryopreserved ovarian tissue 

in a woman treated by bone marrow transplantation for sickle cell anaemia: case report. 

Hum. Reprod. 2006; 21: 183–188. 

 

Donnez, J, MM Dolmans, D Demylle, et al.. Livebirth after orthotopic transplantation of 

cryopreserved ovarian tissue. Lancet 2004; 364: 1405–1410. 

 

Draget KI, Strand B, Hartmann M, Valla S, SmidsrǾd O, Skjak-Brćck G. Ionic and acid 

gel  formation of epimerised alginates: the effect of AlgE4. Int J Biol Macromol 

2000;27:117–22. 

 



References 
 

143 
 

Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and 

applications. Biomaterials 2003;24(24):4337–4351. 

Du Y, Lo E, Ali S, Khademhosseini A. Directed assembly of cell-laden microgels for 

fabrication of 3D tissue constructs. Proc Nat Acad Sci USA 2008;105(28):9522–9527.  

 

Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JT, Grootegoed JA, 

Themmen AP: Control of primordial follicle recruitment by anti-Mullerian hormone in 

the mouse ovary. Endocrinology 1999, 140:5789-5796. 

 

Durlinger ALL, Kramer P, Karels B, et al. Control of primordial follicle recruitment by 

anti-mullerian hormone in the mouse ovary. Endocrinology. 1999; 140:5789–5796. 

 

Dursun P., A. Ayhan, F.B. Yanik & E. Kus¸c¸u.. Ovarian transposition for the 

preservation of ovarian function in young patients with cervical carcinoma. Eur. J. 

Gynaecol. Oncol. 2009; 30: 13–15. 

 

EBCTCG. Effects of chemotherapy and hormonal therapy for early breast cancer on 

recurrence and 15-year survival: an overview of the randomised trials Lancet 

2005;365:1687–717. 

 

Eiselt P, Lee KY, Mooney DJ. Rigidity of two-component hydrogels prepared from 

alginate and poly(ethylene glycol)-diamines. Macromolecules 1999;32:5561–6. 

 

Eiselt P, Yeh J, Latvala RK, Shea LD, Mooney DJ: Porous carriers for biomedical 

applications based on alginate hydrogels. Biomaterials 2000, 21:1921-1927. 

 

Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Langer R. Transdermal 

photopolymerization for minimally invasive implantation. Proc Natl Acad Sci USA 

1999;96: 3104–7. 

 

Elisseeff J, McIntosh W, Fu K, Blunk T, Langer R. Controlled release of IGF-1 and TGF-

b1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Ortho Res 

2001;19:1098–104. 

 



References 
 

144 
 

Elvin JA, C Yan et MM Matzuk. Oocyte-expressed TGF-beta superfamilymembers in 

female fertility. Mol. Cell. Endocrinol. 2000; 159: 1–5. 

Eppig JJ, O’Brien MJ: Development in vitro of mouse oocytes from primordial follicles. 

Biol Reprod 1996, 54:197-207. 

 

Eppig JJ, Pendola FL, Wigglesworth K, Pendola JK: Mouse oocytes regulate metabolic 

cooperativity between granulosa cells and oocytes: amino acid transport. Biol Reprod 

2005, 73:351-357. 

 

Eppig JJ, Schroeder AC: Capacity of mouse oocytes from preantral follicles to undergo 

embryogenesis and development to live young after growth, maturation, and fertilization 

in vitro. Biol Reprod 1989, 41:268-276. 

 

Eppig JJ, Telfer EE: Isolation and culture of oocytes. Methods Enzymol 1993, 225:77-84. 

 

Eppig JJ: Intercommunication between mammalian oocytes and companion somatic cells. 

Bioessays 1991, 13:569-574. 

 

Eyrich D, Brandl F, Appel B, et al. Long-term stable fibrin gels for cartilage engineering. 

Biomaterials 2007;28(1):55–65.  

 

Familiari G, Caggiati A, Nottola SA, et al. Infertility: ultrastructure of human ovarian 

primordial follicles after combination chemotherapy for Hodgkin’s disease. Hum Reprod. 

1993;8:2080–2087. 

 

Federovich NE, Alblas J, Dewijn JR, Hennink WE, Verbout AJ, Dhert WJA. Hydrogels 

as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel 

application in organ printing. Tissue Eng 2007;13:1905–1925.  

 

Figueiredo JR, Hulshof SC, Thiry M, Van den Hurk R, Bevers MM, Nusgens B, Beckers 

JF: Extracellular matrix proteins and basement membrane: their identification in bovine 

ovaries and significance for the attachment of cultured preantral follicles. Theriogenology 

1995, 43:845-858. 

 



References 
 

145 
 

Fisher B, Brown AM, Dimitrov NV, Poisson R, Redmond C, Margolese RG, et al. Two 

months of doxorubicin-cyclophosphamide with and without interval reinduction therapy 

compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in 

positive-node breast cancer patients with tamoxifen-nonresponsive tumors: results from 

the National Surgical Adjuvant Breast and Bowel Project B-15. J Clin Oncol 

1990;8:1483–96. 

 

Ford MC, Bertram JP, Hynes SR, et al. A macroporous hydrogel for the coculture of 

neural progenitor and endothelial cells to form functional vascular networks in vivo. Proc 

Natl Acad Sci USA 2006;103 (8):2512–2517.  

 

Fornier MN, Modi S, Panageas KS, Norton L, Hudis C. Incidence of chemotherapy- 

nduced, long-term amenorrhea in patients with breast carcinoma age 40 years and 

younger after adjuvant anthracycline and taxane. Cancer 2005;104:1575–9. 

 

Fujiwara J, Takahashi M, Hatakeyama T, Hatakeyama H. Gelation of hyaluronic acid 

through annealing. Polym Int 2000;49:1604–8. 

 

Fukuda J, Khademhosseini A, Yeh J, et al. Micropatterned cell co-cultures using layer-

by-layer deposition of extracellular matrix components. Biomaterials 2006;27:1479–

1486.  

 

Gamini A, Paoletti S, Toffanin R, Micali F, Michielin L, Bevilacqua C. Structural 

investigations of cross-linked hyaluronan. Biomaterials 2002;23:1161–7. 

 

Gao D, Xu H, Philbert MA, Kopelman R. Bio-eliminable nano-hydrogels for drug 

delivery. Nano Lett 2008;8:3320–3324.  

 

Gerber B, Dieterich M, Muller H, Reimer T. Controversies in preservation of ovary 

function and fertility in patients with breast cancer. Breast Cancer Res Treat 2008;108:1–

7. 

 

Gillette BM, Jensen JA, Tang B, et al. In situ collagen assembly for integrating 

microfabricated threedimensional cell-seeded matrices. Nat Mater 2008;7(8):636–640.  

 



References 
 

146 
 

Glasgow IK, Zeringue HC, Beebe DJ, Choi SJ, Lyman JT, Chan NG, Wheeler MB: 

Handling individual mammalian embryos using microfluidics. IEEE Trans Biomed Eng 

2001, 48:570-578. 

Goding JR. Ovarian autotransplantation with vascular anastomoses, and its application to 

the study of reproductive physiology in the ewe. J Physiol. 1966;186: 86P–87P. 

 

Goldhirsch A, Gelber RD, Castiglione M. The magnitude of endocrine effects of adjuvant 

chemotherapy for premenopausal breast cancer patients. The International Breast Cancer 

Study Group. Ann Oncol 1990;1:183–8. 

 

Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thurlimann B, Senn HJ. Thresholds for 

therapies: highlights of the St Gallen International Expert Consensus on the primary 

therapy of early breast cancer 2009. Ann Oncol 2009;20:1319–29. 

 

Gomes JE, Correia SC, Gouveia-Oliveira A, Cidadao AJ, Plancha CE: Threedimensional 

environments preserve extracellular matrix compartments of ovarian follicles and 

increase FSH-dependent growth. Mol Reprod Dev 1999, 54:163-172. 

 

Gosden RG, Boland NI, Spears N, Murray AA, Chapman M, Wade JC, Zohdy NI, Brown 

N: The biology and technology of follicular oocyte development in vitro. Reprod Med 

Rev 1993, 2:129-152. 

 

Gosden RG, DT Baird, JC Wade et R Webb. Restoration of fertility to oophorectomized 

sheep by ovarian autografts stored at −196◦C. Hum. Reprod. 9: 597–603. 

 

Gougeon A: Dynamics of follicular growth in the human: a model from preliminary 

results. Hum Reprod 1986, 1:81-87. 

 

Griffin J, Emery BR, Huang I, Peterson CM, Carrell DT: Comparative analysis of follicle 

morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and 

human). J Exp Clin Assist Reprod 2006, 3:2. 

 

Griffith LG, Swartz MA: Capturing complex 3D tissue physiology in vitro. Nat Rev Mol 

Cell Biol 2006, 7:211-224. 

 



References 
 

147 
 

Gupta PB & Kuperwasser C. Contributions of estrogen to ER-negative breast tumor 

growth. J Steroid Biochem Mol Biol. 2006; 102: 71–78. 

 

Hashimoto : Localized immobilization. Sensors and Actuators: B Chemical 2008, 

128:545-551. 

Hasirci V, Kenar H. Novel surface patterning approaches for tissue engineering and their 

effect on cell behavior. Nanomedicine (Lond) 2006;1(1):73–90.  

 

Hay N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell 2005; 8: 179–183. 

 

He S, Yaszemski MJ, Yasko AW, Engel PS, Mikos AG. Injectable biodegradable 

polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene 

glycol)-dimethacrylate. Biomaterials 2000;21:2389–94. 

 

Heise M, Koepsel R, Russell AJ, McGee EA: Calcium alginate microencapsulation of 

ovarian follicles impacts FSH delivery and follicle morphology. Reprod Biol Endocrinol 

2005, 3:47. 

 

Heise MK, Koepsel R, McGee EA, Russell AJ: Dynamic Oxygen Enhances Oocyte 

Maturation in Long-Term Follicle Culture. Tissue Eng Part C Methods 2009. 

 

Heo YS, Cabrera LM, Song JW, Futai N, Tung YC, Smith GD, Takayama S: 

Characterization and resolution of evaporation-mediated osmolality shifts that constrain 

microfluidic cell culture in poly(dimethylsiloxane) devices. Anal Chem 2007, 79:1126-

1134. 

 

Herlands RL, Schultz RM: Regulation of mouse oocyte growth: probable nutritional role 

for intercellular communication between follicle cells and oocytes in oocyte growth. J 

Exp Zool 1984, 229:317-325. 

 

Hern DL, Hubbell JA. Incorporation of adhesion peptides into nonadhesive hydrogels 

useful for tissue resurfacing. J Biomed Mater Res 1998;39:266–76. 

 

Hickey M, Peate M, Saunders CM, Friedlander M. Breast cancer in young women and its 

impact on reproductive function. Hum Reprod Update 2009; 15:323–39. 



References 
 

148 
 

 

Hilders CG, Baranski AG, Peters L, et al. Successful human ovarian autotransplantation 

to the upper arm. Cancer. 2004; 101:2771–2778. 

 

Hiraoka Y, Kimura Y, Ueda H, Tabata Y. Fabrication and biocompatibility of collagen 

sponge reinforced with poly(glycolic acid) fiber. Tissue Eng 2003;9(6):1101–1112.  

 

Hodgson DC, Pintilie M, Gitterman L, et al. Fertility among female Hodgkin lymphoma 

survivors attempting pregnancy following ABVD chemotherapy. Hematological Oncol. 

2007;25:11–15. 

 

Hogan B, Beddington R, Constantini F, Lacey E: Manipulating the Mouse Embryo: A 

Laboratory Manual New York: Cold Spring Harbor Laboratory Press, 2 1994. 

 

Hong H, McCullough CM, Stegemann JP. The role of ERK signaling in protein hydrogel 

remodeling by vascular smooth muscle cells. Biomaterials 2007;28(26):3824–3833.  

 

Hortobagyi GN, Buzdar AU, Marcus CE, Smith TL. Immediate and long-term toxicity of 

adjuvant chemotherapy regimens containing doxorubicin in trials at M.D. Anderson 

Hospital and Tumor Institute. NCI Monogr 1986:105–9. 

 

Hovatta O, Silye R, Abir R, Krausz T, Winston RM: Extracellular matrix improves 

survival of both stored and fresh human primordial and primary ovarian follicles in long-

term culture. Hum Reprod 1997, 12:1032-1036. 

 

Hovatta O, Wright C, Krausz T, Hardy K, Winston RM: Human primordial, primary and 

secondary ovarian follicles in long-term culture: effect of partial isolation. Hum Reprod 

1999, 14:2519-2524. 

 

Huang L, Nagapudi K, Apkarian RP, Chaikof EL. Engineered collagen—PEO nanofibers 

and fabrics. J Biomater Sci: Polym Ed 2001;12:979–93. 

 

Huanmin Z, Yong Z: In vitro development of caprine ovarian preantral follicles. 

Theriogenology 2000, 54:641-650. 

 



References 
 

149 
 

Hubbell JA. Bioactive biomaterials. Curr Opin Biotech 1999;10: 123–9. 

 

Huh KM, Bae YH. Synthesis and characterization of poly(ethylene glycol)/poly(l-lactic 

acid) alternating multiblock copolymers. Polymer 1999;40:6147–55. 

 

Hwa AJ, Fry RC, Sivaraman A, So PT, Samson LD, Stolz DB, Griffith LG: Rat liver 

sinusoidal endothelial cells survive without exogenous VEGF in 3D perfused co-cultures 

with hepatocytes. Faseb J 2007, 21:2564-2579. 

 

ICMART. Presentation of preliminary data for 2004. Hum Reprod 2008. Suppl. 

Imhof M, Bergmeister H, Lipovac M, et al. Orthotopic microvascular re-anastomosis of 

whole cryopreserved ovine ovaries resulting in pregnancy and life birth. Fertil Steril. 

2006;85:1208–1215. 

 

Imthurn B, Cox SL, Jenkin G, et al. Gonadotrophin administration can benefit ovarian 

tissue grafted to the body wall: implications for human ovarian grafting. Mol Cell 

Endocrinol. 2000;163:141–146. 

 

Ismail-Khan R, Bui MM. A review of triple-negative breast cancer. Cancer Control 2010; 

17:173–6. 

 

Israely T, Nevo N, Harmelin A, et al. Reducing ischaemic damage in rodent ovarian 

xenografts transplanted into granulation tissue. Hum Reprod. 2006;21: 1368–1379. 

 

Jabbarzadeh E, Starnes T, Khan YM, et al. Induction of angiogenesis in tissue-engineered 

scaffolds designed for bone repair: a combined gene therapy-cell transplantation 

approach. Proc Natl Acad Sci USA 2008;105(32):11099–11104.  

 

Jadoul P, Donnez J, Dolmans MM, et al. Laparoscopic ovariectomy for whole human 

ovary cryopreservation: technical aspects. Fertil Steril. 2007;87:971–975.  

 

Jara Sanchez C, Ruiz A, Martin M et al. Influence of timing of initiation of adjuvant 

chemotherapy over survival in breast cancer: a negative outcome study by the Spanish 

Breast Cancer Research Group (GEICAM). Breast Cancer Res Treat 2007; 101: 215–223. 

 



References 
 

150 
 

Jay SM, Saltzman WM. Shining light on a new class of hydrogels. Nat Biotechnol 

2009;27(6):543– 544. 

Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-

delivery systems. Nature 1997;388: 860–2.  

 

Jeremias E, Bedaiwy MA, Gurunluoglu R, et al. Heterotopic autotransplantation of the 

ovary with microvascular anastomosis: a novel surgical technique. Fertil Steril. 

2002;77:1278–1282. 

 

Johnson FA, Craig DQM, Mercer AD. Characterization of the block structure and 

molecular weight of sodium alginates. J Pharm Pharmacol 1997;49:639–43. 

 

Jones S, Holmes FA, O’Shaughnessy J, Blum JL, Vukelja SJ, McIntyre KJ, et al. 

Docetaxel with cyclophosphamide is associated with an overall survival benefit compared 

with doxorubicin and cyclophosphamide: 7-year follow-up of US oncology research trial 

9735. J Clin Oncol 2009; 27:1177–83. 

 

Khademhosseini A, Langer R. Microengineered hydrogels for tissue engineering. 

Biomaterials 2007;28(34):5087–5092.  

 

Khademhosseini A, Yeh J, Eng G, Karp J, Kaji H, Borenstein J, Farokhzad OC, Langer 

R: Cell docking inside microwells within reversibly sealed microfluidic channels for 

fabricating multiphenotype cell arrays. Lab Chip 2005, 5:1380-1386. 

 

Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for 

tissue engineering. Trends Biotechnol 1998;16(5):224–230.  

 

Kim B-S, Nikolovski J, Bonadio J, Mooney D. Cyclic mechanical strain regulates the 

development of engineering smooth muscle tissue. Nat Biotech 1999;17:979–83. 

 

Kim HJ, Kim UJ, Kim HS, et al. Bone tissue engineering with premineralized silk 

scaffolds. Bone 2008;42(6):1226–1234.  

 



References 
 

151 
 

Kim SS, Yang HW, Kang HG, et al. Quantitative assessment of ischemic tissue damage 

in ovarian cortical tissue with or without antioxidant (ascorbic acid) treatment. Fertil 

Steril. 2004;82:679–685. 

Kleinman HK, Martin GR: Matrigel: basement membrane matrix with biological activity. 

Semin Cancer Biol 2005, 15:378-386. 

 

Klock G, Pfeffermann A, Ryser C, Gr.ohn P, Kuttler B, Hahn H-J, Zimmermann U. 

Biocompatibility of mannuronic acid-rich alginate. Biomaterials 1997;18:707–13. 

 

Kolibianakis E, Venetis C & Tarlatzis B. Cryopreservation of human embryos by 

vitrification or slow freezing: which one is better? Curr Opin Obstet Gynecol 2009; 21: 

270. 

 

Kong HJ, Kaigler D, Kim K, Mooney DJ: Controlling rigidity and degradation of alginate 

hydrogels via molecular weight distribution. Biomacromolecules 2004, 5:1720-1727. 

 

Kono T, Kwon OY, Nakahara T. Development of vitrified mouse oocytes after in vitro 

fertilization. Cryobiology. 1991;28: 50–54. 

 

Kopecek J. Hydrogel biomaterials: a smart future? Biomaterials 2007;28(34):5185–5192.  

 

Kreeger PK, Deck JW, Woodruff TK, Shea LD: The in vitro regulation of ovarian follicle 

development using alginate-extracellular matrix gels. Biomaterials 2006, 27:714-723. 

 

Kreeger PK, Fernandes NN, Woodruff TK, Shea LD: Regulation of mouse follicle 

development by follicle-stimulating hormone in a three dimensional in vitro culture 

system is dependent on follicle stage and dose. Biol Reprod 2005, 73:942-950. 

 

Kreeger PK, Woodruff TK, Shea LD: Murine granulosa cell morphology and function are 

regulated by a synthetic Arg-Gly-Asp matrix. Mol Cell Endocrinol 2003, 205:1-10. 

 

Kretlow JD, Klouda L, Mikos AG. Injectable matrices and scaffolds for drug delivery in 

tissue engineering. Adv Drug Deliv Rev 2007;59(4–5):263–273. 

 



References 
 

152 
 

Kupiec-Weglinski JW, Busuttil RW. Ischemia and reperfusion injury in liver 

transplantation. Transplant Proc. 2005; 37:1653–1656. 

 

Kuwayama M, Vajta G, Kato O, et al. Highly efficient vitrification method for 

cryopreservation of human oocytes. Reprod Biomed. 2005;11:300–308. 

 

Lamond DR. Ovarian transplants in ovariectomised mice. Aust. J. Exp. Biol.Med. Sci. 

1959;37: 331–340. 

 

Lassalle B, Testart J, Renard JP. Human embryo features that influence the success of 

cryopreservation with the use of 1,2 propanediol. Fertil Steril. 1985;44:645–651. 

 

Le Roux MA, Guilak F, Setton LA. Compressive and shear properties of alginate gel: 

effects of sodium ions and alginate concentration. J Biomed Mater Res 1999;47:46–53. 

 

Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm 2001;221:1–

22. 

 

Lee CR, Grodzinsky AJ, Spector M. The effects of cross-linking of collagen-

glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated 

contraction, proliferation, and biosynthesis. Biomaterials 2001;22:3145–54. 

 

Lee KY, Alsberg E, Mooney DJ. Degradable and injectable poly(aldehyde guluronate) 

hydrogels for bone tissue engineering. J Biomed Mater Res 2001;56:228–33. 

 

Lee KY, Bouhadir KH, Mooney DJ. Degradation behavior of covalently cross-linked 

poly(aldehyde guluronate) hydrogels. Macromolecules 2000;33:97–101. 

 

Lee KY, Ha WS, Park WH. Blood compatibility and biodegradability of partially N-

acylated chitosan derivatives. Biomaterials 1995;16:1211–6. 

 

Lee KY, Rowley JA, Eiselt P, Moy EM, Bouhadir KH, Mooney DJ. Controlling 

mechanical and swelling properties of alginate hydrogels independently by cross-linker 

type and cross-linking density. Macromolecules 2000;33:4291–4. 

 



References 
 

153 
 

Lee PJ, Ghorashian N, Gaige TA, Hung PJ: Microfluidic System for Automated Cell-

based Assays. JALA Charlottesv Va 2007, 12:363-367. 

 

Lee SJ, Schover LR, Partridge AH, et al. American Society of Clinical Oncology 

recommendations on fertility preservation in cancer patients. J Clin Oncol: Official J 

Amer Soc Clin Oncol. 2006;24: 2917–2931. 

 

Lee WH, Shin SJ, Park Y, Lee S-H. Synthesis of cell-laden alginate hollow fibers using 

microfluidic chips and microvascularized tissue-engineering applications. Small 

2009;5(11):1264–1268. 

 

Leporrier M, von Theobald P, Roffe JL, et al. A new technique to protect ovarian 

function before pelvic irradiation. Heterotopic ovarian autotransplantation. Cancer. 

1987;60:2201–2204. 

 

Levine MN, Bramwell VH, Pritchard KI, Norris BD, Shepherd LE, Abu-Zahra H, et al. 

Randomized trial of intensive cyclophosphamide, epirubicin, and fluorouracil 

chemotherapy compared with cyclophosphamide, methotrexate, and fluorouracil in 

premenopausal women with nodepositive breast cancer. National Cancer Institute of 

Canada Clinical Trials Group. J Clin Oncol 1998;16:2651–8. 

 

Li  J, K Kawamura, Y Cheng, et al. Activation of dormant ovarian follicles to generate 

mature eggs. Proc.Natl. Acad. Sci. U.S.A. 2010; 107: 10280–10284. 

 

Li J, Kawamura K, Cheng Y, Liu S, Klein C, Liu S, Duan EK, Hsueh AJ: Activation of 

dormant ovarian follicles to generate mature eggs. Proc Natl Acad Sci USA 2010. 

 

Li Q, Williams CG, Sun DD, Wang J, Leong K, Elisseeff JH. Photocrosslinkable 

polysaccharides based on chondroitin sulfate. J Biomed Mater Res A 2004;68(1):28–33.  

 

Li RH, Altreuter DH, Gentile FT. Transport characterization of hydrogel matricies for 

cell encapsulation. Biotech Bioeng 1996;50:365–73. 

 



References 
 

154 
 

Liebermann J, Nawroth F, Isachenko V, et al. Potential importance of vitrification in 

reproductive medicine biology of reproduction. Biology of Reproduction. 2002;67: 1671–

1680. 

 

Lim F. Microencapsulation of living cells and tissues—theory and practice. In: Lim F, 

editor. Biomedical applications of microencapsulation. Boca Raton, FL: CRC Press; 

1984; 137–54. 

 

Lin P, Chan WC, Badylak SF, Bhatia SN. Assessing porcine liver-derived biomatrix for 

hepatic tissue engineering. Tissue Eng 2004;10(7–8):1046–1053.  

 

Ling Y, Rubin J, Deng Y, et al. A cell-laden microfluidic hydrogel. Lab Chip 

2007;7(6):756–762. 

 

Liu J, Gao D, Li HF, Lin JM. Controlled photopolymerization of hydrogel 

microstructures inside microchannels for bioassays. Lab Chip 2009;9(9):1301–1305.  

 

Liu L, S Rajareddy, P Reddy, et al. Infertility caused by retardation of follicular 

development in micewith oocytespecific expression of Foxo3a. Development 2007; 134: 

199–209. 

 

Liu Tsang V, Chen AA, Cho LM, et al. Fabrication of 3D hepatic tissues by additive 

photopatterning of cellular hydrogels. FASEB J 2007;21(3):790–801.  

 

Lohrisch C, Paltiel C, Gelmon K et al. Impact on survival of time from definitive surgery 

to initiation of adjuvant chemotherapy for early-stage breast cancer. J Clin Oncol 2006; 

24: 4888–4894. 

 

Loret de Mola JR, Barnhart K, Kopf GS, Heyner S, Garside W, Coutifaris CB: 

Comparison of two culture systems for the in-vitro growth and maturation of mouse 

preantral follicles. Clin Exp Obstet Gynecol 2004, 31:15-19. 

 

Lu S, Anseth KS. Release behavior of high molecular weight solutes from poly(ethylene 

glycol)-based degradable networks. Macromolecules 2000;33:2509–15. 

 



References 
 

155 
 

Lutolf MP. Integration column: artificial ECM: expanding the cell biology toolbox in 3D. 

Integr Biol 2009;1:235–241. 

 

Madurantakam PA, Cost CP, Simpson DG, Bowlin GL. Science of nanofibrous scaffold 

fabrication: strategies for next generation tissue-engineering scaffolds. Nanomedicine 

(Lond) 2009;4(2):193–206.  

 

Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL. Smooth muscle growth in 

photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: 

synthetic ECM analogs for tissue engineering. Biomaterials 2001;22: 3045–51. 

 

Mann BK, Schmedlen RH, West JL. Tethered-TGF-b increases extracellular matrix 

production of vascular smooth muscle cells. Biomaterials 2001;22:439–44. 

 

Mano JF, Silva GA, Azevedo HS, et al. Natural origin biodegradable systems in tissue 

engineering and regenerative medicine: present status and some moving trends. J R Soc 

Interface 2007;4:999– 1030. 

 

Marler JJ, Guha A, Rowley J, Koka R, Mooney D, Upton J, Vacanti JP. Soft-tissue 

augmentation with injectable alginate and syngeneic fibroblast s. Plast Reconst Surg 

2000;105:2049–58. 

 

Martin GR, Timpl R: Laminin and other basement membrane components. Annu Rev 

Cell Biol 1987, 3:57-85. 

 

Martinez-Madrid B, Camboni A, Dolmans MM, et al. Apoptosis and ultrastructural 

assessment after cryopreservation of whole human ovaries with their vascular pedicle. 

Fertil Steril. 2007;87: 1153–1165. 

 

Mazur P. Freezing of living cells: mechanisms and implications. Am J Physiol. 

1984;247:125–142. 

 

McGee EA, Hsueh AJ: Initial and cyclic recruitment of ovarian follicles. Endocr Rev 

2000, 21:200-214. 

 



References 
 

156 
 

Mcguigan AP, Bruzewicz DA, Glavan A, Butte M, Whitesides GM. Cell encapsulation in 

sub-mm sized gel modules using replica molding. PLoS ONE 2008;3:e2258.  

 

Meirow D, Dor J, Kaufman B, et al. Cortical fibrosis and blood-vessels damage in human 

ovaries exposed to chemotherapy. Potential mechanisms of ovarian injury. Hum Reprod. 

2007;2:1626–1633. 

 

Meirow D, Dor J. Epidemiology and infertility in cancer patients. In: Togas T, Roger G. 

Preservation of Fertility. London: Taylor and Francis Publishing; 2004:21–38. 

 

Meirow D, Lewis H, Nugent D, et al. Subclinical depletion of primordial follicular 

reserve in mice treated with cyclophosphamide: clinical importance and proposed 

accurate investigative tool. Hum Reprod. 1999;14:1903–1907. 

 

Meirow D. Reproduction post-chemotherapy in young cancer patients. Mol and Cell 

Endocr. 2000;169:123–131. 

 

Mensitieri M, Ambrosio L, Nicolais L, Bellini D, O’Regan M. Viscoelastic properties 

modulation of a novel autocrosslinked hyaluronic acid polymer. J Mater Sci: Mater Med 

1996;7: 695–8. 

 

Metters AT, Anseth KS, Bowman CN. Fundamental studies of a novel, biodegradable 

PEG-b-PLA hydrogel. Polymer 2000;41: 3993–4004. 

 

Mhatre P, Mhatre J, Magotra R. Ovarian transplant: a new frontier. Transplant Proc. 

2005;37:1396–1398.  

 

Mi F-L, Kuan C-Y, Shyu S-S, Lee S-T, Chang S-F. The study of gelation kinetics of 

chain-relaxation properties of glutaraldehyde- cross-linked chitosan gel and their effects 

on microspheres preparation and drug release. Carbohydr Polym 2000;41: 389–96. 

 

Miller KF, Pursel VG: Absorption of compounds in medium by the oil covering 

microdrop cultures. Gamete Res 1987, 17:57-61. 

 



References 
 

157 
 

Min Xu, Susan L. Barrett, Erin West-Farrell, Laxmi A. Kondapalli, Sarah E. Kiesewetter, 

Lonnie D. Shea, and Teresa K. Woodruff. In vitro grown human ovarian follicles from 

cancer patients support oocyte growth. 

 

Miralles G, Baudoin R, Dumas D, Baptiste D, Hubert P, Stoltz JF, Dellacherie E, 

Mainard D, Netter P, Payan E. Sodium alginate sponges with or without sodium 

hyaluronate: in vitro engineering of cartilage. J Biomed Mater Res 2001;57: 268–78. 

 

Moeller HC, Mian MK, Shrivastava S, Chung BG, Khademhosseini A: A microwell array 

system for stem cell culture. Biomaterials 2008, 29:752-763. 

 

Moon S, Hasan SK, Song YS, et al. Layer by layer three-dimensional tissue epitaxy by 

cell-laden hydrogel droplets. Tissue Eng Part C Methods 2010;16(1):157–166.  

 

Motta PM, Nottola SA, Makabe S, Heyn R. Mitochondrial morphology in human fetal 

and adult female germ cells. Hum Reprod. 2000 Jul;15 Suppl 2:129-47. 

 

Mousset-Simeon N, Jouannet P, Le Cointre L, Coussieu C, Poirot C: Comparison of three 

in vitro culture systems for maturation of early preantral mouse ovarian follicles. Zygote 

2005, 13:167-175. 

 

Muller G, Von Theobald P, Levy G, et al. First heterotopic ovarian autotransplantation in 

the female. J Gynecol Obstet Biol Reprod (Paris). 1988;17:97–102. 

 

Murray A, Spears N: Follicular development in vitro. Semin Reprod Med 2000, 18:109-

122. 

 

Nation A, Selwood L: The production of mature oocytes from adult ovaries following 

primary follicle culture in a marsupial. Reproduction 2009, 138:247-255. 

 

Nayudu PL, Osborn SM: Factors influencing the rate of preantral and antral growth of 

mouse ovarian follicles in vitro. J Reprod Fertil 1992, 95:349-362. 

 

Ni Y, Chen R. Extracellular recombinant protein production from Escherichia coli. 

Biotechnol Lett 2009;31(11):1661–1670.  



References 
 

158 
 

 

Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue 

engineering applications. Tissue Eng Part B Rev 2008;14(2):149–165.  

Nicosia S, Matus-Ridley M, Meadows AT. Gonadal effect of cancer therapy in girls. 

Cancer. 1985;55:2364–2372. 

 

Nottola SA, Camboni A, Van Langendonckt A, Demvlle D, Macchiarelli G, Dolmans 

MM, Martinez-Madrid B, Correr S, Donnez J. Cryopreservation and xenotransplantation 

of human ovarian tissue: an ultrastructural study. Fertil. Steril. 2008; 90, 23–32. 

 

Nugent D, Newton H, Gallivan L, et al. Protective effect of vitamin E on ischaemia- 

reperfusion injury in ovarian grafts. J Reprod Fertil. 1998;114:341–346 

 

Nuttelman CR, Mortisen DJ, Henry SM, Anseth KS. Attachment of fibronectin to 

poly(vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and 

migration. J Biomed Mater Res 2001;57:217–23. 

 

Nyboe Andersen A, Goossens V, Bhattacharya S, et al. Assisted reproductive technology 

and intrauterine inseminations in Europe, 2005: results generated from European registers 

by ESHRE: ESHRE. The European IVF Monitoring Programme (EIM), for the European 

Society of Human Reproduction and Embryology (ESHRE). Hum Reprod. 

2009;24:1267–1287. 

 

Oerther S, Le Gall H, Payan E, Lapicque F, Presle N, Hubert P, Dexheimer J, Netter P, 

Lapicque F. Hyaluronate–alginate gel as a novel biomaterial: mechanical properties and 

formation mechanism. Biotech Bioeng 1999;63:206–15. 

 

Oerther S, Maurin A-C, Payan E, Hubert P, Lapicque F, Presle N, Dexheimer J, Netter P, 

Lapicque F. High interaction alginate–hyaluronate associations by hyaluronate 

deacetylation for the preparation of efficient biomaterials. Biopolymer 2000;54:273–81. 

 

Oktem O, Oktay K. A novel ovarian xenografting model to characterize the impact of 

chemotherapy agents on human primordial follicle reserve. Cancer Res. 2007;67:10159–

10162. 

 



References 
 

159 
 

Oktem O, Oktay K: The role of extracellular matrix and activin-A in vitro growth and 

survival of murine preantral follicles. Reprod Sci 2007, 14:358-366. 

 

Onions VJ, Webb R, McNeilly AS, et al. Ovarian endocrine profile and long-term 

vascular patency following heterotopic autotransplantation of cryopreserved whole ovine 

ovaries. Hum Reprod. 2009; 24:2845–2855. 

 

Ono K, Saito Y, Yura H, Ishikawa K, Kurita A, Akaike T, Ishihara M. Photocrosslinkable 

chitosan as a biological adhesive. J Biomed Mater Res 2000;49:289–95. 

 

Orienti I, Trerè R, Zecchi V. Hydrogels formed by cross-linked polyvinylalcohol as 

colon-specific drug delivery systems. Drug Dev Ind Pharm 2001;27:877–84. 

 

Paige KT, Cima LG, Yaremchuk MJ, Vacanti JP, Vacanti CA. Injectable cartilage. Plast 

Reconst Surg 1995;96:1390–8. 

 

Pangas SA, Saudye H, Shea LD, Woodruff TK: Novel approach for the three-dimensional 

culture of granulosa cell-oocyte complexes. Tissue Eng 2003, 9:1013-1021. 

 

Paris MC, Snow M, Cox SL, Shaw JM. Xenotransplantation: a tool for reproductive 

biology and animal conservation? Theriogenology 2004; 61, 277–291. 

 

Paris MCJ, Schlatt S. Ovarian and testicular tissue xenografting: its potential for germline 

preservation of companion animals, non-domestic and endangered species. Reprod. Fertil. 

Dev. 2007; 19, 1–12. 

 

Park S-N, Park J-C, Kim HO, Song MJ, Suh H. Characterization of porous 

collage/hyaluronic acid scaffold modified by 1- ethyl-3-(3-

dimethylaminopropyl)carbodiimide cross-linking. Biomaterials 2002;23:1205–12. 

 

Park Y, Lutolf MP, Hubbell JA, Hunziker EB, Wong M. Bovine primary chondrocyte 

culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based 

hydrogels as a scaffold for cartilage repair. Tissue Eng 2004;10(3–4):515–522.  

 



References 
 

160 
 

Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: 

from molecular principles to bionanotechnology. Adv Mater 2006;18:1345. 

 

Perez-Fidalgo JA, Rosello S, Garcia-Garre E, Jorda E, Martin-Martorell P, Bermejo B, et 

al. Incidence of chemotherapy-induced amenorrhea in hormone-sensitive breast cancer 

patients: the impact of addition of taxanes to anthracycline-based regimens. Breast 

Cancer Res Treat 2010;120: 245–51. 

 

Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al.Molecular 

portraits of human breast tumours. Nature 2000;406:747–52. 

 

Petrek JA, Naughton MJ, Case D, et al. Incidence, time course, and determinants of 

menstrual bleeding after breast cancer treatment: a prospective study. J Clin Oncol. 

2006;24:1045–1051. 

 

Petrek JA, Naughton MJ, Case LD, Paskett ED, Naftalis EZ, Singletary SE, et al. 

Incidence, time course, and determinants of menstrual bleeding after breast cancer 

treatment: a prospective study. J Clin Oncol 2006;24:1045–51. 

 

Philosof-Kalich L, Carmely A, Fishel M, et al. The protective effects of AS101 against 

cyclophosphamide induced ovarian damage in mice. A potentially new approach for 

fertility preservation. Abstracts of the 25th Annual Meeting of ESHRE, Amsterdam, The 

Netherlands, 28 June to 1 July, 2009. 

 

Porro D, Sauer M, Branduardi P, Mattanovich D. Recombinant protein production in 

yeasts. Mol Biotechnol 2005;31(3):245–259.  

 

Prestwich GD, Marecak DM, Marecek JF, Vercruysse KP, Ziebell MR. Controlled 

chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of 

hydrazide derivatives. J Control Release 1998;53:92–103. 

 

Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 

2001;53(3): 321–339.  

 



References 
 

161 
 

Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at –1961C vitrification. 

Nature. 1985;313:573. 

 

Raty S, Walters EM, Davis J, Zeringue H, Beebe DJ, Rodriguez-Zas SL, Wheeler MB: 

Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip 

2004, 4:186-190. 

 

Raymond J. Rodgers, Helen F. Irving-Rodgers and Darryl L. Russell. Extracellular matrix 

of the developing ovarian follicle. Reproduction (2003) 126, 415–424 

 

Reddy P,W Zheng et K Liu. Mechanisms maintaining the dormancy and survival of 

mammalian primordial follicles. Trends Endocrinol. Metab. 2010; 21: 96–103. 

 

Reulen RC, Zeegers MP, Wallace WHB, et al. Pregnancy outcomes among adult 

survivors of childhood cancer in the British Childhood Cancer Survivor Study. Cancer 

Epidemiology, Biomarkers Prevention: Publication American Asso Cancer Res, 

Cosponsored American Soc Preventive Oncol. 2009;18:2239–2247. 

 

Rivest C, Morrison DWG, Ni B, et al. Microscale hydrogels for medicine and biology: 

synthesis, characterisation and applications. J Mechanics Materials Structures 

2007;2:1103–1119. 

 

Rodriguez-Cabello JC, Prieto S, Arias FJ, Reguera J, Ribeiro A. Nanobiotechnological 

approach to engineered biomaterial design: the example of elastin-like polymers. 

Nanomedicine (Lond) 2006;1 (3):267–280.  

 

Rodriguez-Wallberg K.A., K. Oktay.. Fertility preservation in women with breast cancer. 

Clin. Obstet. Gynecol. 2010; 53: 753–762. 

 

Rosenberg R, Levy-Schwartz R. Breast cancer in women younger than 40 years. Int J 

Fertil womens Med 2003;48:200–5. 

 

Rowghani NM, Heise MK, McKeel D, McGee EA, Koepsel RR, Russell AJ: 

Maintenance of morphology and growth of ovarian follicles in suspension culture. Tissue 

Eng 2004, 10:545-552. 



References 
 

162 
 

Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as syntheticextrac ellular 

matrix materials. Biomaterials 1999; 20:45–53. 

 

Roy SK, Greenwald GS: Hormonal requirements for the growth and differentiation of 

hamster preantral follicles in long-term culture. J Reprod Fertil 1989, 87:103-114. 

 

Roy SK, Greenwald GS: Methods of separation and in-vitro culture of preantral follicles 

from mammalian ovaries. Hum Reprod Update 1996, 2:236-245. 

 

Sadani Z, Wacogne B, Pieralli C, Roux C, Gharbi T: Microsystems and microfluidic 

device for single oocyte transportation and trapping: Toward the automation of in vitro 

fertilising. Sensors and Actuators: A Physical 2005, 121:364-372. 

 

Sagsoz N, Kisa U, Apan A. Ischaemia reperfusion injury of rat ovary and the effects of 

vitamin C, mannitol and verapamil. Hum Reprod. 2002;17: 2972–2976. 

 

Sahoo S, Chung C, Khetan S, Burdick JA. Hydrolytically degradable hyaluronic acid 

hydrogels with controlled temporal structures. Biomacromolecules 2008;9(4):1088–1092.  

 

Saito N, Okada T, Horiuchi H, Murakami N, Takahashi J, Nawata M, Ota H, Nozaki K, 

Takaoka K. A biodegradable polymer as a cytokine delivery system for inducing bone 

formation. Nat Biotech 2001;12:332–5. 

 

Sanders JE, Hawley J, Levy W, et al. Pregnancies following high dose cyclophosphamide 

with or without high-dose busulfan or total body irradiation and bone marrow 

transplantation. Blood. 1996;87:3045–3052. 

 

Sapmaz E, Ayar A, Celik H, et al. Effects of melatonin and oxytetracycline in autologous 

intraperitoneal ovary transplantation in rats. Neuro Endocrinol Lett. 2003; 24:350–354. 

 

Saragusty J., A. Arav.. Current progress in oocyte and embryo cryopreservation by slow 

freezing and vitrification. Reproduction 2011;141: 1–19. 

 

Sathananthan AH, Trounson AO. Mitochondrial morphology during preimplantational 

human embryogenesis. Hum Reprod. 2000 Jul;15 Suppl 2:148-59. 



References 
 

163 
 

Saunders BR, Laajam N, Daly E, Teow S, Hu X, Stepto R. Microgels: from responsive 

polymer colloids to biomaterials. Adv Colloid Interface Sci 2009;147–148:251–262. 

 

Savina IN, Dainiak M, Jungvid H, Mikhalovsky SV, Galaev IY. Biomimetic 

macroporous hydrogels: protein ligand distribution and cell response to the ligand 

architecture in the scaffold. J Biomater Sci 2009;20(12):1781–1795. 

 

Sawhney AS, Pathak CP, van Rensburg JJ, Dunn RC, Hubbell JA: Optimization of 

photopolymerized bioerodible hydrogel properties for adhesion prevention. J Biomed 

Mater Res 1994, 28:831-838. 

 

Schenke-Layland K, Vasilevski O, Opitz F, et al. Impact of decellularization of 

xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J  

Struct Biol 2003;143(3):201–208.  

 

Schneider GB, English A, Abraham M, Zaharias R, Stanford C, Keller J. The effect of 

hydrogel charge density on cell attachment. Biomaterials 2004;25(15):3023–3028.  

 

Schnorr J, Oehninger S, Toner J, et al. Functional studies of subcutaneous ovarian 

transplants in non-human primates: steroidogenesis, endometrial development, ovulation, 

menstrual patterns and gamete morphology. Hum Reprod. 2002; 17:612–619. 

 

Schoof H, Apel J, Heschel I, Rau G. Control of pore structure and size in freeze-dried 

collagen sponges. J Biomed Mater Res 2001;58:352–7. 

 

Schuster TG, Cho B, Keller LM, Takayama S, Smith GD: Isolation of motile  

spermatozoa from semen samples using microfluidics. Reprod Biomed Online 2003, 

7:75-81. 

 

Seidlits SK, Lee JY, Schmidt CE. Nanostructured scaffolds for neural applications. 

Nanomedicine (Lond) 2008;3(2):183–199.  

 

Seunarine K, Gadegaard N, Tormen M, Meredith DO, Riehle MO, Wilkinson CD. 3D 

polymer scaffolds for tissue engineering. Nanomedicine (Lond) 2006;1(3):281–296.  



References 
 

164 
 

Sharma GT, Dubey PK, Meur SK: Survival and developmental competence of buffalo 

preantral follicles using three-dimensional collagen gel culture system. Anim Reprod Sci 

2009, 114:115-124. 

 

Shaw  JM, J. Bowles, P. Koopman, et al. Fresh and cryopreserved ovarian tissue samples 

from donors with lymphoma transmit the cancer to graft recipients. Hum. Reprod. 1996; 

11: 1668–1673. 

 

Shaw J. et A. Trounson. Oncological implications in the replacement of ovarian tissue. 

Hum. Reprod. 1997; 12: 403–405. 

 

Shen F, Cui YL, Yang LF, Yao KD, Dong XH, Jia WY, Shi HD. A study on the 

fabrication of porous chitosan/gelatin network scaffolds for tissue engineering. Polym Int 

2000;49: 1596–9. 

 

Sikavitsas VI, Temenoff JS, Mikos AG. Biomaterials and bone mechanotransduction. 

Biomaterials 2001;22:2581–93. 

 

Silber S, N Kagawa, M Kuwayama et R Gosden. Duration of fertility after fresh and 

frozen ovary transplantation. Fertil. Steril. 2010; 94: 2191–2196. 

 

Silber SJ, Grudzinskas G, Gosden RG. Successful pregnancy after microsurgical 

transplantation of an intact ovary.NEngl J Med. 2008;359:2617–2618. 

 

Simmer, H.H. & R.T. Morris.. Robert Tuttle Morris (1857–1945): a pioneer in ovarian 

transplants. Obstet. Gynecol. 1970; 35: 314–328. 

 

Simon AM, Goodenough DA, Li E, Paul DL: Female infertility in mice lacking connexin 

37. Nature 1997, 385:525-529. 

 

Singh M, Berkland C, Detamore MS. Strategies and applications for incorporating 

physical and chemical signal gradients in tissue engineering. Tissue Eng Part B Rev 

2008;14(4):341–366. 

 



References 
 

165 
 

Slamon D, Pegram M. Rationale for trastuzumab (Herceptin) in adjuvant breast cancer 

trials. Semin Oncol 2001;28:13–9. 

 

Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in 

regenerative medicine. Adv Mater 2009;21:3307–3329. 

 

Smidsrod O, Skjak-Braek G. Alginate as immobilization matrix for cells. Trends 

Biotechnol 1990;8:71–78.  

 

Smitz J, R Cortvrindt et AC Van Steirteghem. Normal oxygen atmosphere is essential for 

the solitary long-term culture of early preantral mouse follicles. Mol. Reprod. Dev. 1996; 

45: 466–475. 

 

Snow M, Cox S-L, Jenkin G, Shaw J. Generation of live young from xenografted mouse 

ovaries. Science 2002; 297, 2227. 

 

Society for Assisted Reproductive Technology. Thawed emrbyo transfers. 2007 [cited 

2009 16th November 2009]. 

 

Son WY, Chung JT, Gidoni Y et al. Comparison of survival rate of cleavage stage 

embryos produced from in vitro maturation cycles after slow freezing and after 

vitrification. Fertil Steril 2009; 92: 956–958. 

 

Song J, S Salek-Ardakani, T So et M Croft. The kinases aurora B and mTOR regulate the 

G1-S cell cycle progression of T lymphocytes. Nat. Immunol. 2007; 8: 64–73. 

 

Soppimath KS, Aminabhavi TM, Dave AM, Kumbar SG, Rudzinski WE. Stimulus-

responsive ‘smart’ hydrogels as novel drug delivery systems. Drug Dev Ind Pharm 

2002;28:957–974.  

 

Stammen JA, Williams S, Ku DN, Guldberg RE. Mechanical properties of a novel PVA 

hydrogel in shear and unconfined compression. Biomaterials 2001;22:799–806. 

 

Stewart WW, Swaisgood HE. Characterization of calcium alginate pore diameter by size-

exclusion chromatography using protein standards. Enzyme Microb Tech 1993;15:922–7. 



References 
 

166 
 

Su YQ, Sugiura K, Eppig JJ: Mouse oocyte control of granulosa cell development and 

function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med 2009, 

27:32-42. 

 

Suggs LJ, Mikos AG. Development of poly(propylene fumarateco-ethylene glycol) as an 

injectable carrier for endothelial cells. Cell Trans 1999;8:345–50. 

 

Suggs LJ, Shive MS, Garcia CA, Anderson JM, Mikos AG. In vitro cytotoxicity and in 

vivo biocompatibility of poly(propylene fumarate-co-ethylene glycol) hydrogels. J 

Biomed Mater Res 1999;46:22–32. 

 

Suh J-KF, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in 

cartilage tissue engineering: a review. Biomaterials 2000;21:2589–98. 

 

Suh RS, Phadke N, Ohl DA, Takayama S, Smith GD: Rethinking gamete/embryo 

isolation and culture with microfluidics. Hum Reprod Update 2003, 9:451-461. 

 

Suh RS, Zhu X, Phadke N, Ohl DA, Takayama S, Smith GD: IVF within microfluidic 

channels requires lower total numbers and lower concentrations of sperm. Hum Reprod 

2006, 21:477-483. 

 

Susan L. Barrett and David F. Albertini Allocation of Gamma-Tubulin Between Oocyte 

Cortex and Meiotic Spindle Influences Asymmetric Cytokinesis in the Mouse Oocyte 

BIOLOGY OF REPRODUCTION 76, 949–957 (2007) 

 

Suzuki Y, Tanihara M, Suzuki K, Saitou A, Sufan W, Nishimura Y. Alginate hydrogel 

linked with syntheticoligiopeptide derived from BMP-2 allows ectopic osteoinduction in 

vivo. J Biomed Mater Res 2000;50:405–9. 

 

Swain SM, Land SR, Ritter MW, Costantino JP, Cecchini RS, Mamounas EP, et al. 

Amenorrhea in premenopausal women on the doxorubicin-andcyclophosphamide- 

followed-by-docetaxel arm of NSABP B-30 trial. Breast Cancer Res Treat 2009;113:315–

20. 



References 
 

167 
 

Tae JC, Kim EY, Lee WD, Park SP, Lim JH: Sterile filtered paraffin oil supports in vitro 

developmental competence in bovine embryos comparable to co-culture. J Assist Reprod 

Genet 2006, 23:121-127. 

 

Tan W, Krishnaraj R, Desai TA. Evaluation of nanostructured composite collagen–

chitosan matricies for tissue engineering. Tissue Eng 2001;7:203–10. 

 

Tan W-H, Takeuchi S. Monodisperse alginate hydrogel microbeads for cell 

encapsulation. Adv Mater 2007;19:2696–2701. 

 

Tanaka H, Matsumura M, Veliky IA. Diffusion characteristics of substrates in Ca-

alginate gel beads. Biotech Bioeng 1984;26: 53–8. 

 

Telfer E: The development of methods for isolation and culture of preantral follicles from 

bovine and porcine ovaries. Theriogenology 1996, 45:101-110. 

 

Telfer EE, McLaughlin M, Ding C, Thong KJ: A two-step serum-free culture system 

supports development of human oocytes from primordial follicles in the presence of 

activin. Hum Reprod 2008, 23:1151-1158. 

 

Teo WE, He W, Ramakrishna S. Electrospun scaffold tailored for tissue-specific 

extracellular matrix. Biotechnol J 2006;1(9):918–929.  

 

Tham YL, Sexton K, Weiss H, Elledge R, Friedman LC, Kramer R. The rates of 

chemotherapy-induced amenorrhea in patients treated with adjuvant doxorubicin and 

cyclophosphamide followed by a taxane. Am J Clin Oncol 2007;30:126–32. 

 

Tibbitt MW, Anseth KS: Hydrogels as extracellular matrix mimics for 3D cell culture. 

Biotechnol Bioeng 2009, 103:655-663. 

 

Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its 

deacetylated derivatives. Biomaterials 1997;18:567–75. 

 

Torrance C, Telfer E, Gosden RG: Quantitative study of the development of isolated 

mouse pre-antral follicles in collagen gel culture. J Reprod Fertil 1989, 87:367-374. 



References 
 

168 
 

Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer 

of an eight-cell embryo. 1983. 

 

Tu C, Cal Q, Yang J, et al. The fabrication and characterization of poly(lactic acid) 

scaffolds for tissue engineering by improved solidliquid phase separation. Polym Adv 

Technol 2003;14:565–573. 

 

Uchimura E, Sawa Y, Taketani S, et al. Novel method of preparing acellular 

cardiovascular grafts by decellularization with poly(ethylene glycol). J Biomed Mater Res 

A 2003;67(3):834–837.  

 

Uematsu K, Hattori K, Ishimoto Y, et al. Cartilage regeneration using mesenchymal stem 

cells and a three-dimensional polylacticglycolic acid (PLGA) scaffold. Biomaterials 

2005;26:4273–4279. 

 

Ueno H, Mori T, Fujinaga T. Topical formulations and wound healing applications of 

chitosan. Adv Drug Deliv Rev 2001;52: 105–15. 

 

Utsunomiya T, Tanaka T, Utsunomiya H, et al.Anovel molecular mechanism for 

anticancer drug-induced ovarian failure: irinotecan HCl, an anticancer topoisomerase I 

inhibitor, induces specific FasL expression in granulosa cells of large ovarian follicles to 

enhance follicular apoptosis. Int J Oncol. 2008;32:991–1000. 

 

Vajta G, Nagy ZP. Are programmable freezers still needed in the embryo laboratory? 

Review on vitrification. Reprod Biomed Online. 2006;12:6779–6796. 

 

van Wezel IL, Rodgers RJ: Morphological characterization of bovine primordial follicles 

and their environment in vivo. Biol Reprod 1996, 55:1003-1011. 

 

Vander AJ, Sherman JH, Luciano DS. Human physiology: the mechanism of body 

function, 5th ed. New York: McGraw-Hill Publishing Company; 1990. 

 

VandeVord PJ, Matthew HWT, DeSilva SP, Mayton L, Wu B, Wooley PH. Evaluation of 

the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res 2002;59: 585–

90. 



References 
 

169 
 

Varum KM, Holme HK, Izume M, Stokke BT, SmidsrǾd O. Determination of 

enzymatichydrolysis specificity of partially N-acetylated chitosan. Biochem Biophys 

Acta 1996;29:5–15. 

 

Vercruysse KP, Marecak DM, Marecek JF, Prestwich GD. Synthesis and in vitro 

degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid. 

Bioconjugate Chem 1997;8:686–94. 

 

Wallace WH, Kelsey TW. Human ovarian reserve from conception to menopause. PloS 

ONE. 2010;5:e8772. 

 

Wallace WH, Shalet SM, Crowne EC, et al. Ovarian failure following abdominal 

irradiation in childhood: natural history and prognosis. Clin Oncol (Royal Coll 

Radiologists (Gr Br). 1989;1:75–79. Wallace WHB, Thomson AB, Kelsey TW. The 

radiosensitivity of the human oocyte. Hum Reprod. 2003;18:117–121. 

 

Walshe JM, Denduluri N, Swain SM. Amenorrhea in premenopausal women after 

adjuvant chemotherapy for breast cancer. J Clin Oncol 2006;24: 5769–79. 

 

Walters E: Production of live piglets following in vitro embryo culture in a microfluidic 

environment. Theriogenology 2007, 68:178-189. 

 

Walters EM, Clark SG, Beebe DJ, Wheeler MB: Mammalian embryo culture in a 

microfluidic device. Methods Mol Biol 2004, 254:375-382. 

 

Wang X, Chen H, Yin H, et al. Fertility after intact ovary transplantation. Nature. 

2002;415:385. 

 

Weaver VM, Fischer AH, Peterson OW, Bissell MJ: The importance of the 

microenvironment in breast cancer progression: recapitulation of mammary 

tumorigenesis using a unique human mammary epithelial cell model and a three-

dimensional culture assay. Biochem Cell Biol 1996, 74:833-851. 

 

Wee S, Gombotz WR: Protein release from alginate matrices. Adv Drug Deliv Rev 1998, 

31:267-285. 



References 
 

170 
 

Weijie Xing, Canquan Zhou, Jiang Bian, Markus Montag, Yanwen Xu, Yu bin Li and 

Tao Li. Solid -surface vitrification is an appropriate and convenient method for 

cryopreservation of isolated rat follicles. Reproductive Biology and Endocrinology 2010, 

8:42 

 

Wenger MP, Bozec L, Horton MA, Mesquida P. Mechanical properties of collagen 

fibrils. Biophys J 2007;93(4):1255–1263.  

 

Wennerholm UB, Soderstrom-Anttila V, Bergh C et al. Children born after 

cryopreservation of embryos or oocytes: a systematic review of outcome data. Hum 

Reprod 2009; 24: 2158–2172. 

 

West ER, Shea LD, Woodruff TK: Engineering the follicle microenvironment. Semin 

Reprod Med 2007, 25:287-299. 

 

West ER, Xu M, Woodruff TK, Shea LD: Physical properties of alginate hydrogels and 

their effects on in vitro follicle development. Biomaterials 2007, 28:4439-4448. 

 

West JL, Chowdhury SM, Sawhney AS, Pathak CP, Dunn RC, Hubbell JA. Efficacy of 

adhesion barriers: resorbable hydrogel, oxidized regenerated cellulose and hyaluronic 

acid. J Reprod Med 1996;41:149–54. 

 

West JL, Hubbell JA. Bioactive polymers. In: Atala A, Mooney DJ, editors; Langer R, 

Vacanti JP, associate editors, Synthetic biodegradable polymer scaffolds. Boston: 

Birkh.auser: 1997; 83–95. 

 

West JL, Hubbell JA. Polymericbiomateria ls with degradation sites for proteases 

involved in cell migration. Macromolecules 1999;32:241–4. 

 

World Health Organization Databank WHO Statistical Information System. Geneva:  

World Health Organization; Year. Available at: http://www.who.int/whosis. 2010. Last 

accessed 2/16/2010. 

World Health Organization. The Global Burden of Disease: 2004 Update. Geneva: World 

Health Organization; 2008 

http://www.who.int/whosis.%202010.%20Last%20accessed%202/16/2010
http://www.who.int/whosis.%202010.%20Last%20accessed%202/16/2010


References 
 

171 
 

Wullschleger S, R Loewith et MN Hall. TOR signaling in growth and metabolism. Cell 

2006; 124: 471–484. 

 

Wycherley G, Downey D, Kane MT, Hynes AC: A novel follicle culture system 

markedly increases follicle volume, cell number and oestradiol secretion. Reproduction 

2004, 127:669-677. 

 

Xu M, Banc A, Woodruff TK, Shea LD: Secondary follicle growth and oocyte maturation 

by culture in alginate hydrogel following cryopreservation of the ovary or individual 

follicles. Biotechnol Bioeng 2009, 103:378-38. 

 

Xu M, Barrett SL, West-Farrell E, Kondapalli LA, Kiesewetter SE, Shea LD, Woodruff 

TK: In vitro grown human ovarian follicles from cancer patients support oocyte growth. 

Hum Reprod 2009, 24(10):2531-40. 

 

Xu M, Kreeger PK, Shea LD, Woodruff TK: Tissue-engineered follicles produce live, 

fertile offspring. Tissue Eng 2006, 12:2739-2746. 

 

Xu M, West E, Shea LD, Woodruff TK: Identification of a stage-specific permissive in 

vitro culture environment for follicle growth and oocyte development. Biol Reprod 2006, 

75:916-923. 

 

Xu M, West-Farrell ER, Stouffer RL, Shea LD, Woodruff TK, Zelinski MB: 

Encapsulated three-dimensional culture supports development of nonhuman primate 

secondary follicles. Biol Reprod 2009, 81:587-594. 

 

Yaba A, V Bianchi, A Borini et J Johnson. A putative mitotic checkpoint dependent on 

mTOR function controls cell proliferation and survival in ovarian granulosa cells. 

Reprod. Sci. 2008; 15: 128–138. 

 

Yager JD & Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med 2006; 

354: 270–282. 

 

Yavin S, Arav A. Measurement of essential physical properties of vitrification solutions. 

Theriogenology. 2007;67:81–89. 



References 
 

172 
 

Yin H, Wang X, Kim SS, et al. Transplantation of intact rat gonads using vascular 

anastomosis: effects of cryopreservation, ischaemia and genotype. Hum Reprod 

2003;18:1165–1172. 

 

Zeilmaker GH, Alberda AT, van Gent I et al. Two pregnancies following transfer of 

intact frozen-thawed embryos. Fertil Steril 1984; 42: 293–296. 

 

Zhang WJ, Laue CH, Hyder A, Schrezenmeir J. Purity of alginate affects the viability and 

fibrotic overgrowth of encapsulated porcine islet xenografts. Transplant Proc 2001;33: 

3517–9. 

 

Zhang X, Reagan MR, Kaplan DL. Electrospun silk biomaterial scaffolds for regenerative 

medicine. Adv Drug Deliv Rev 2009;61(12):988–1006.  

 

Zhang Y, Zhang M. Synthesis and characterization of macroporous chitosan/calcium 

phosphate composite scaffolds for tissue engineering. J Biomed Mater Res 2001;55:304–

12. 


