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Summary 

 

Proteins, such as the members of the globin superfamily, are sensitive to 

temperature and their properties are the result of a long process of adaptation to the 

conditions encountered during the species evolution. The globin superfamily comprises 

globular proteins that reversibly bind gaseous ligands such as O2, CO and NO to a haem 

prosthetic group, Fe-protoporphyrin IX. The globins of this family are the components of 

classical haemoglobin (Hb) and myoglobin (Mb), but also of neuroglobin, cytoglobin 

(Cygb), globin X, globin Y and eye-globin.  

In this study, particular attention has been given to biochemical and physico-

chemical characterisation of two proteins. On one hand, the O2 transport systems from two 

Arctic fish species (Lycodes reticulatus and the cod Gadus morhua) have been 

investigated. On the other, Cygb has been studied from two Antarctic fish species, one 

belonging to the family Channichthyidae (icefish) lacking Hb and Mb (Chaenocephalus 

aceratus) and one red-blooded species belonging to the family Nototheniidae (Dissosticus 

mawsoni). 

The Arctic and Antarctic regions have the low temperature in common but differ in 

geographic position and history. The Antarctic is a continent isolated by the Polar Front, a 

circular oceanic system, and the temperatures are constantly close to -1.87°C. In contrast, 

the Arctic is essentially an ocean that lies between North America, Greenland, Europe and 

Asia. There are strong currents with high temperature variations. The Arctic and Antarctic 

icthyofaunas are very different. In the Antarctic, a single group of teleost fishes is 

dominant, the suborder Notothenioidei, that includes eight families. The modern family 

Channichtyidae is particularly interesting because its species have coulorless blood, 

lacking Hb and in some cases Mb. In contrast, in the Arctic there are six marin groups, 

nobody being dominant. Given a shorter evolutionary time at polar temperatures, than the 

Antarctic ichthyofauna, Arctic fish may provide valuable information on the effects of 

environmental temperature on specific physiological and biochemical traits. It is note that 

fish Hbs offer the possibility to investigate functional differentiation and molecular 

adaptations in species living in a large variety of environmental conditions.  

In this study, the structural and functional characterisation of the hemolysate of L. 

reticulatus (family Zoarcidae), living on the sea floor near the coasts of northern Europe 

and North America is reported. The hemolysate shows only a single α chain, whereas 
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polymorphism of two β chains, which differ by only four residues corresponding to two 

Hbs. For such a high identity, complete purification of the two Hbs was not achieved and 

the functional studies were carried out on the hemolysate. The latter showed a low Bohr 

effect and no Root effect. The Hbs tend to form high-molecular mass polymers at 

physiological pH and low temperature (4°C), as shown by gel-filtration chromatography 

and dynamic light scattering. The elucidation of the primary structure has allowed to 

establish correlation between functional behaviour (no Root effect) and structural 

properties (polymerisation). In fact, it was demonstrated that Cys residues are present in 

high number and tend to form intermolecular disulphide bridges as shown by mass 

spectrometry.  

Recently, an unusual process of Hb polymerisation (sickling), which occurs in vivo 

in red blood cells of several Arctic species of the family Gadidae, was discovered and 

reported in the literature. The G. morhua Hb polymerisation showed pH- and 

concentration-dependence in the deoxygenate state in vitro,  suggesting that polymerisation 

may be an adaptive response to extreme and stressful environmental conditions. Therefore, 

Arctic fish Hbs appear to be very useful models for studying sickling disorders and Hb-

polymerisation processes. 

The second topic of the thesis were two Cygbs from Antarctic fish. Cygb is a 

cytoplasmatic protein found in almost all tissues and characterized by endogenous 

hexacoordination of the haem. The function is not clear. Involvement in protection from 

oxidative stress, in NO metabolism, in collagen synthesis and in defence mechanisms of 

cancer cells was hypothesised. Cygb was found in both: in red-blood D. mawsoni and in 

the icefish C. aceratus. 

The Cygbs were cloned, expressed and purified and a preliminary characterisation 

was carried out. It was demonstrated that they are hexacoordinated independently of pH- 

and temperature, similar to human Cygb. Understanding the role of the Cygb genes in 

species lacking Hb and Mb is a very important task necessary to elucidate of the function 

of this protein.  
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CHAPTER 1 

 

Introduction 

 

 

1.1 Polar regions 

 

The polar oceans are often considered extreme environments because temperatures 

are close to the freezing point and the life is possible only for few selected species. 

Temperature and its fluctuations affect other physico-chemical parameters, such as pH, 

salinity, gas solubility, pressure, viscosity and redox potential, that entail extreme 

environmental conditions in the polar regions and constitute an important driving force for 

the species survival.  

The Arctic and Antarctic regions are more dissimilar than similar. They have in 

common the cold temperature but differ for geographic and historical characteristics.  

In late Paleozoic, about 250 million years ago (mya), land masses were assembled 

within a single large continent called Pangea that split, about 200 mya, into Laurasia in the 

northern hemisphere and Gondwana in the southern one. Fragmentation of Gondwana into 

the modern southern continents initiated 135 mya, and the Antarctic continent reached its 

current geographic location approximately 65 mya. The Drake Passage completed the 

isolation (Kennett, 1977) and produced the Antarctic Circumpolar Current (ACC) and the 

Polar Front, a circular oceanic system that produce permanent turbulence (Fig. 1.1a). Just 

north of the Front, the water temperature has an abrupt rise of about 3°C, a critical factor 

for ecosystem isolation and adaptation. The Antarctic water has tested slow temperature 

transition from 15°C, in the early Tertiary, to -1.87°C, today (Eastman, 1993, 2005). 

The Arctic is most covered by the sea and lies between North America, Greenland, 

Europe and Asia. The Arctic Ocean is almost completely surrounded by land and contains 

two basins (Fig 1.1b).  
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Fig. 1.1: a) Antarctic region; b) Arctic region 

 

The Europe separated from Greenland in the late Cretaceous but the exchange of 

water between the Arctic and the Atlantic Ocean was not possible until 27 mya. The 

history of the Arctic Ocean during the Cenozoic (0-65 mya) is unknown and researchers 

have long debated the timing, extent and nature of the onset of Northern Hemisphere 

Glaciation. Recent evidence, based on a Cenozoic palaeo-oceanographic record, revises the 

timing of the earliest Arctic cooling events, strongly supporting a “bipolar symmetry” in 

climate cooling (Moran et al., 2006). According to this revision, the earliest Arctic cooling 

events are dated approximately 45 mya. During the Miocene, about 10-15 mya, Arctic land 

masses reached their present positions and it is commonly accepted that, only at this time, 

temperatures dropped below freezing as suggested by the unipolar ice-sheet model 

(Perlmutter and Plotnick, 2003). However, there are conflicting views about when cooling 
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led to the formation of Arctic sea-ice. Ice cores from both Antarctica and Greenland show 

that during the past 400,000 years interglacial temperatures were between 2-5ºC higher and 

sea levels 4-6 m higher than they are today (Severinghaus et al., 1998; Rohling et al., 

2008).  

Repeated glaciation of the whole Arctic until about 11,000 years ago, when the last 

ice age ended, enforced repeated exchange of the Arctic fauna with temperate species.  

This is in contrast to what happened in the Southern Ocean, where most of the species 

were effectively isolated after the establishment of the ACC. Therefore, the Antarctic and 

Arctic fish faunas are very different and allow examination of convergent evolutionary 

trends to similar environmental conditions at levels of biological organisation. The modern 

ichthyofaunas differ in age, endemism, taxonomy, biodiversity and range of physiological 

tolerance to environmental parameters (Eastman, 1997) 

In Antarctic are present five groups account for about 74% of the Antarctic fauna 

(notothenioids, mycthophids, liparids, zoarcids and gadiforms) with an unique dominant 

group of teleost fishes, the notothenioids (Eastman, 1997). During the cooling of the 

Southern Ocean, this suborder experienced extensive radiation about 24 mya (Near, 2004) 

and exploited the diverse frozen habitats. Probably, the Antarctic has the oldest and most 

isolated marine species in the world (Dayton, 1994). In ten million years the Antarctic 

notothenioids have lost the ability to cope with higher temperatures and now they live at 

temperatures between 2°C and -1.8°C. The suborder Notothenioidei reflects the 

evolutionary adaptive changes in the molecular and cellular machinery, e.g. an efficient 

microtubule assembly (Detrich, 1989, 2000) and loss of heat-shock response (Hofmann, 

2000). The suborder Notothenioidei includes eight families: Bovichtidae, Pseudaphritidae, 

Eleginopidae, Nototheniidae, Harpagiferidae, Artedidraconidae, Bathydraconidae and 

Channichthyidae (Balushkin, 1992; Pisano, 1998; Lecointre, 2004). Bovichtidae (except 

one species), Pseudaphritidae, Eleginopidae and some species of Nototheniidae inhabit 

north of the Antarctic Polar Front and probably, this divergence took place relatively 

recently between 10-15 mya and 2.5 mya, when a portion of notothenioid stock became 

isolated in the Southern Ocean south of the Antarctic Polar Front (Bargelloni, 1994; 

Ritchie, 1997). Moreover, every family has red-blooded species with the exception of the 

family Channichthyidae with all 16 species without Hb (Ruud, 1954) and 6 species also 

without Mb (Grove, 2004). This family, for the loss of Hb and the characteristic colourless 

blood, is called “icefish” (Ruud, 1954). Several modifications of the cardiovascular system 
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of icefish compensate for the lack of Hb in the blood. In fact, loss of Hb and Mb, 

associated with NO-oxygenase activity and subsequent 

elevation of NO levels, may explain the unique cardiovascular and physiological traits of 

icefish (Sidell and O‟Brien, 2006). 

In Arctic, there is not a predominant group like the Antarctic notothenioids, but 

coexist six different groups that are equally dominant and comprise 58% of the Arctic 

fauna (zoarcoids, gadiforms, cottids, salmonids, pleuronectiforms and chondrichthyans). 

The Arctic fauna includes 416 species in 96 families, about 52% larger than Antarctic 

fauna. Despite the different histories and age of the polar ecosystems, gadiforms and 

zoarcids are the only groups that are present in both poles with 27 families, 35 genera and 

10 species common for both (Eastman, 1997). The Arctic fish fauna consists of 

eurythermal (they can resist wider temperature variations) and euryhaline (they can tolerate 

salinity variations) boreal marine and freshwater fish. 

 

 

1.2 Globin superfamily 

 

Proteins, such as the members of the globin superfamily, are sensitive to 

temperature and their properties are the result of a long adaptation to the conditions 

encountered during the species evolution.  

The globin superfamily comprises globular proteins that reversibly bind gaseous 

ligands like O2, CO and NO with a haem prosthetic group, the Fe-protoporphyrin IX. 

Globins are present in all kingdoms: archea, bacteria, fungi, plants, protists and animals 

(Hardison 1996; 1998). 

Until a few years ago only two globins were known to be present in vertebrates: 

haemoglobin (Hb) and myoglobin (Mb). Recently, other globins were discovered in 

vertebrates: neuroglobin (Ngb) and cytoglobin (Cygb), that are widespread between all 

vertebrates (Burmester et al., 2004), globin X, only in fish and amphibians (Fuchs et al., 

2006; Roesner et al., 2005), globin Y, in Xenopus tissues, (Fuchs et al., 2006) and eye-

globin, in chicken (Kugelstadt et al., 2004; Blank et al., 2011). 

Hb is a hetero-tetrameric protein composed by two α and two β chains. This protein 

is present in erythrocytes and transports O2 and other gaseous ligands in the circulatory 

system (Perutz 1990; Brunori 1999; Imai 1999; McMahon et al., 2002).  
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Mb is a monomeric protein that is present in cardiac and striated muscle. It acts as 

an O2 buffer, facilitates O2 diffusion and is involved in the removal of NO (Wittenberg and 

Wittenberg, 1989, 2003; Brunori, 2001; Flögel et al., 2001).  

In 2000 Ngb was localised in neuronal tissues from mouse and human brain 

(Burmester et al., 2000). It is a monomeric protein of about 16 kDa with high affinity for 

O2 (Fago et al., 2004), widely express in the brain (Mammen et al., 2002; Reuss et al., 

2002; Geuens et al., 2003; Hundahl et al., 2005, 2008a) and retina (Schmidt et al., 2003; 

Hundahl et al., 2005, 2008b).  

More recently, Cygb was found in almost all kind of tissues (Burmester et al., 

2002). Cygb has a monomeric unit of about 21 kDa and, similarly to Ngb, has a high 

affinity for O2. It is a cytoplasmatic protein, however it has also been found in the nuclei of 

neurons (Schmidt et al., 2003). 

Particular attention was addressed to Hbs and Cygbs.   

 

 

1.2.1 Haemoglobin 

 

Hb is a tetrameric protein composed by two α and two β subunits. It is the main O2 

carrier in the vertebrates and each subunit binds only one of this ligand. Each subunit has 

similar three-dimensional structure. α and β subunits of adult human Hb (HbA) have 141 

and 146 amino-acid residues, respectively (Fig. 1.2). In the β subunits there are eight α-

helices called with the letters from A to H, while in the α subunits the D α-helix misses. 

Each subunit binds an O2 molecule by a prosthetic group, the haem, responsible for 

the red colour of blood. The haem is a complex Fe-protoporphyrin IX, which consists of a 

tetrapyrrole ring bound to four methyl groups, two vinyl groups and two propionate side 

chains. Haem is harboured within the globin fold, organised into a two layer structure, 

called “three-over-three” α-helical sandwich. The haem is surrounded by E, F, G and H 

helices. In deoxygenated Hb the Fe
2+

 is pentacoordinated and is bound to four N-atoms of 

the pyrrole ring and to proximal His in F8 position (HisF8). Fe
2+

 lies approximately 0.4 Å 

outside the porphyrin plane because Fe
2+

 is slightly too large to fit into the well-defined 

hole within the porphyrin ring. 
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Fig. 1.2: Quaternary structure of HbA (IBP code 2HHB; Fermi et al., 1984) 

 

When O2 binds the Fe
2+

 in sixth coordination position there is an electronic 

rearrangement, so that the Fe
2+

 become smaller and can enter into the porphyrin plane. The 

binding of O2 is stabilised by a hydrogen bond by distal His in position E7 (HisE7). The 

haem environment is shown in Fig. 1.3  

 

 

Fig. 1.3: Haem environment (Taken after Pesce et al., 2002) 

 

The three-dimensional structure of Hb can be seen like two identical αβ dimers 

(α1β1 and α2β2) that associate to form the tetramer (Perutz, 1965). Because of the binding 

between a ligand and the haem, the protein is subjected to allosteric conformational 

transition (Monod, 1965; Perutz, 1987). The two-state allosteric model of Monod, Wyman 



14 
 

and Changeux (MWC) assumes that the Hb is only in two states, corresponding to a low-

affinity structure named T (tense) and a high-affinity structure named R (relax) (Monod, 

1965). With the TR transition, the two dimers rotate about 15 degree with respect to one 

another but their structure is relatively unchanged. The only conformational shifts are 

localised into the interface between the α1β1 and α2β2 dimers. The rearrangement of the 

dimer interface provides a pathway for communication between subunits, enabling the 

cooperative binding of O2. 

The O2 affinity of Hbs is lowered by protons, chloride, carbon dioxide, and organic 

phosphate, i.e 2,3–biphosphoglycerate (BPG) in mammals and adenosine triphosphate 

(ATP) or guanosine triphosphate (GTP) in teleost fish, all of which are present in the red 

cell. They are known collectively as allosteric effectors. (Perutz, 1998). 

In vertebrates, O2 affinity of Hbs is strongly pH dependent and this phenomenon is 

called alkaline Bohr effect (Riggs, 1988). During the cell metabolism, CO2 and lactic acid 

are released thus lowering the tissue pH. As the proton concentration increases, more O2 

will be provided to ensure adequate O2 supply. It is possible to understand the 

physiological relevance of this effect when one considers that the tissues highly active 

produce acidic substances which enhance O2 unloaded from Hb. During the oxygenation, 

the T state is converted to R and the cooperativity, expressed by the Hill coefficient n 

(nHill), is used as a measure of this conversion. In many teleost fishes Hbs, displaying the 

Root effect, at low pH the nHill changes from 3 (at alkaline pH) to 1. In this case, the O2 

affinity decreases to such an extent that the Hbs cannot be fully saturated at very high O2 

pressure and the cooperativity is completely lost, so the O2 capacity of blood reduces by 

almost 50% compared to an alkaline pH. For this reason the Root effect can be considered 

an exaggerated Bohr effect (Brittain, 2005). Probably, the Root effect in fishes is 

connected with the presence of at least one of two anatomical structures with high O2 

pressure: the rete mirabile and the choroid rete. The first structure supplies the gland that 

inflates the swimbladder with O2, while the second is a vascular structure which supplies 

O2 to the retina (Wittenberg and Wittemberg, 1974). 

During the Root effect the low-affinity T state is stabilised by high proton 

concentration (Perutz, 1987) and the transition TR is inhibited causing a drastic 

reduction in the nHill. Large conformational changes occur at the dimer α1β2 and α2β1 

interfaces. Some polar residues seem to be involved in Root effect, because of formation of 

salt bridges. In particular, the residues are: Lys β(EF6), Ser β(F9), Glu β(FG1), Arg β(H21) 

and His β(HC3) (Perutz and Brunori, 1982). Different theories about the residues involved 
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in Root effect are supposed. On one hand, it is hypothesised that the pH-dependent RT 

transition is due to placed positive-charge clusters at the allosteric β1/β2 interface 

(Mylvaganam, 1996), on the other hand, another possible theory is the overstabilisation of 

the T state by inter-Asp hydrogen bond at the α1/β2 interface (Mazzarella, 2006a) and 

modulated by salt bridges between histidyl residues (Mazzarella, 2006b). The aspartyl triad 

(Asp95α, Asp101β and Asp99β) is present in the primary structure of all fish Hbs, but not 

in mammalian Hbs, where Asp95α is replaced by Glu. The Asp-Asp interaction has been 

found in the deoxygenated structure of Antarctic Trematomus bernacchii and tuna Root–

effect Hb, but not in the deoxygenated form of the non-Root-effect HbI from trout, where 

the interaction between the two aspartyl residues is mediated by a water molecule 

(Yokoyama et al., 2004). 

Currently, despite more than three decades of studies, it is yet virtually impossible 

to ascribe the real explanation of the Root effect to substitutions of a few amino-acid 

residues. Indeed, the situation is highly complex, and is probably linked to the combination 

and interplay of a number of factors in the architecture of the globin tetramer. 

 

 

1.2.1.1 Sickle Cell Hb 

 

A single point mutation in HbA can be the cause of particular disease due to changes in 

interactions between molecule and substrate or in interaction with the environment. An 

example is the Sickle Cell Anemia (SCA) in the man that is associated with the expression 

of the abnormal mutant sickle cell Hb (HbS). HbS was one of the first human disease 

proteins extensively studied. The genetic basis of SCA is the substitution of a single DNA 

nucleotide in the sixth codon (GAG→GTG) (Nagel and Steinberg, 2001). The single point 

mutation in the β chain, where polar Glu in position 6 is replaced by non-polar Val 

(Ingram, 1957), induces the formation of a twisted 14-member polymer fiber that reduces 

the solubility of the protein in the deoxygenated state causing cell sickling. The formation 

of these fibers requires protein concentration greater than 170 mg/ml, thus fiber formation 

occurs at physiological conditions (Ferrone et al., 2004).  

Structural analysis of HbS fibers by single crystal X-ray diffraction, fiber X-ray 

diffraction and electron microscopy provide important information concerning the basic 

fiber architecture (Eaton and Hofrichter, 1990). Electron microscopy has revealed that the 
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HbS fiber is composed of 14 filament-strands that associate as half-staggered pairs (Dykes 

et al., 1979). Molecules within each strand align one another via axial contacts, and the two 

strands are stabilised by lateral contacts involving β Val6 (Wishner et al., 1976). The 

lateral contacts involve the mutant Val in the A helix and β Phe85 and β Leu88 in the EF 

corner region in two different HbS molecules (Harrington et al., 1997) (Fig. 1.4). 

 

 

Fig. 1.4: Double strand of HbS molecules with haem group in red and Val residues in blue 

(Taken after Harrington et al., 1997) 

 

HbS polymerisation has been found to occur by a two-pathway mechanism, divided 

into two steps: homogeneous and heterogeneous nucleation. The homogeneous pathway 

requires formation of an unstable aggregate, called homogeneous nucleus, which rate-

limits the reaction. Once a polymer has been nucleated, a second pathway becomes 

available and new nuclei may also form on the surface of a polymer (Fig. 1.5), which they 

do more easily than in solution (Samuel et al., 1990). 
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Fig. 1.5: Double nucleation mechanism for HbS polymer formation (Taken after Ferrone et 

al. 2004) 

 

HbS polymers form an extremely viscous gel, responsible for the peculiar 

deformation of the red blood cells (RBCs) (Galkin, 2004). In fact, the increased stiffness of 

HbS fibers is the reason for the wide variety of shapes that deoxygenated RBCs acquire 

(Christoph et al., 2005; Ferrone, 2004; Statius van Eps, 1999). Moreover, because of 

increased stiffness, the circulation of sickle cells through the body‟s narrow blood vessels 

is often obstructed resulting in infarctions and organ damage (Aprelev et al., 2005; 

Embury, 2004; Hoffbrand et al., 2006). Moreover, over stroke due to occlusion of large 

cerebral arteries is one of the main complications of sickle-cell disease (Hillery and 

Panepinto, 2004; Routhieaux et al., 2005; Zennadi et al., 2008; Zermann et al., 1997). 

 

 

1.2.2 Cytoglobin 

 

Cygb shares 30% amino acid sequence identity with Mb, suggesting a common 

evolutionary ancestry (Burmester et al., 2002). Human Cygb is a globin of 190 amino acids 

with the classical vertebrate folding “three-over-three” α-helical sandwich and the 

antiparallel sets of helices A/E/F and B/G/H/ that are involved in this particular 

arrangement (Fig.1.6).  
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Fig. 1.6: Monomeric unit of Cygb (Sugimoto et al., 2004) 

 

The N- and C-terminal regions of about 20 residues each one have an high conformational 

flexibility (de Sanctis et al., 2004). Conflicting results were published on human Cygb 

structure. Crystal structures show an asymmetric unit including two Cygb described as 

dimer (de Sanctis et al., 2004; Sugimoto et al., 2004). In contrast, in a recent study by mass 

spectrometry and size exclusion chromatography with multi-angle laser light scattering, the 

Cygb was found as a monomer with an intramolecular disulfide bridge between two Cys 

residues (CysB2 and CysE9) (Lechauve et al., 2010).  

Cygb, similar to other hemoproteins, binds O2 and other ligands with different 

affinity dependent on the redox-states (Burmester et al., 2002; Fago et al., 2004). In fact, 

the measured P50 value is about 1 torr at pH 7.0 and 20°C with a disulfide bridge between 

two Cys residues (Fago et al., 2004) and decreases by a factor of about 2 when the Cys 

residues are reduced (Hamdane et al., 2003). In other words, the oxidation of thiol groups 

increases ligand affinity.  

Another important characteristic of the Cygb is the hexacoordination of the haem 

that binds the distal His at 6-coordination position, similarly to the Ngb (Fig.1.7).  
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Fig. 1.7: Hexacoordination of the haem with reversible binding of the distal His 

 

In this case, the distal His is capable of reversible dissociation to allow the stable binding 

of exogenous ligands like O2 and CO. The hexacoordinate haemoglobins (hxHbs) are in 

plants, animals and cyanobacteria (Duff et al., 1997; Burmester et al., 2000; Scott and 

Lecomte, 2000) but our knowledge on their functional role is based mainly on in vitro 

reactions with recombinant proteins. However, there is growing evidence linking hxHbs 

with NO scavenging and a protective role during hypoxia (Sun et al., 2001; Hargrove, 

2000). Moreover, the hexacoordination entails an enhanced thermal stability with a melting 

temperature (Tm) of 95°C for the ferric form, about 15°C more than Mb. 

Cygb is a cytoplasmic hemoprotein in almost all cell types and it is present in the 

nuclei of neurons (Schmidt et al., 2003). Currently, the functions are not very clear. The 

high affinity of Cygb for O2 and the low concentration in vivo (µM) suggest a function 

restrict to O2-requiring cellular reactions unrelated to mitochondrial respiration (Fago et 

al., 2004). Moreover, Cygb was shown to be overexpressed in oxidative stress and hypoxic 

conditions in vitro and in vivo (Fordel et al., 2004 and 2006; Burmester et al., 2004; Guo et 

al., 2007; Li et al 2007) that proposes an involvement in protection from oxidative stress 

(Fordel et al., 2006). Other plausible functions are the involvement in the NO metabolism, 

like NO dioxygenase when coupled to suitable electron donors (Gardner et al., 2010), in 

the collagen synthesis in fibroblasts and related cells (Schmidt et al., 2003) and in the 

defence mechanisms that allow cancer cells to survive in hypoxic microenvironments 

(Emara et al., 2010). 
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1.3 Hbs and Cygbs in fish 

 

 

1.3.1 Hb in fish 

 

The comparison of the biochemical and physiological adaptations of cold-adapted 

Antarctic and Arctic fishes with sub-Antarctic and temperate fishes has been a powerful 

tool to understand whether an extreme environment has required specific adaptations 

(Verde et al., 2006; di Prisco et al., 2007). Moreover, fishes of the two polar regions have 

undergone different regional histories driving the physiological diversities. 

Because of cold temperature, the O2 solubility in the Antarctic water is higher than 

in temperate seas, therefore its uptake and transport are not limiting steps for Antarctic 

fish. Notothenioids developed an important hematological difference from temperate and 

tropical species, in having fewer erythrocytes, reduced Hb concentration and multiplicity 

and quite low O2 affinity of Hbs. 

The Hb content of erythrocytes is variable and in some species seems positively 

correlated with life style (Eastman, 1993). In general, the vast majority of notothenioids 

species have a single Hb with minor Hbs that are vestigial remnants (about 5% of the 

total). In comparison with temperate species, Antarctic notothenioids have lost globin 

diversity because of thermostable environment, where the need for more Hbs may be 

reduced (Verde et al., 2006). An extreme example of adaptation is the Channichthyidae 

family which has species with blood without Hb (Eastman, 1993). The loss of Mb and Hb 

in icefish becomes explicable by the exploitation of high O2 solubility and low metabolic 

rates in the cold, where an enhanced fraction of O2 supply occurs through diffusive O2 

flux. Icefish developed compensatory adaptations that reduce tissue O2 demand and 

enhance O2 transport. O2 delivery to tissues occurs by transport of the gas physically 

dissolved in the plasma. 

Unlike Antarctica, Arctic fishes, being exposed to seasonal temperature variations, 

exhibit higher physiological plasticity, high biodiversity and many species display Hb 

multiplicity. An example is the blood of the spotted wolfish (Anarhichas minor) of the 

family Anarhichadidae (suborder Zoarcoidei) which contains three major Hbs (Hb1, Hb2 

and Hb3). The three Hbs display differences in pH and organophosphate regulation and O2 

binding dependent on temperature (Verde et al., 2002). Similar situation is present in the 
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gadids Gadus morhua (Atlantic cod), Arctogadus glacialis (Arctic cod) and Boreogadus 

saida (polar cod) (Verde et al., 2006). Nine globin genes were discovered in G. morhua 

and expressed simultaneously in adult fish. This finding suggests that the G. morhua, 

similarly to temperate species, could respond to environmental challenges, by altering the 

level of expression of the genes (Borza et al., 2009; Wetten et al., 2010).  

Another important study conducted on the Atlantic cod Hbs showed their ability to 

polymerise in particular stress conditions. Recently, Koldkjær and Berenbrink (2007) have 

demonstrated extensive in vivo sickling of RBCs of whiting Merlangius merlangus after 

capture stress without any apparent hemolysis and showed its subsequent recovery by high 

cooperative proton binding in vitro and reduction of extracellular pH in vivo. The Hb 

polymerisation causes the sickling process similarly to sickle cell disease in human (Hárosi 

et al., 1998). 

 

 

1.3.2 Cygb in fish 

 

Fish and mammals Cygbs differ for number, length and sequence. Unlike mammals 

that have only one Cygb, in different teleost fishes (Danio rerio, Oryzias latipes, 

Tetraodon nigroviridis and Takifugu rubripes), two distinct paralogous Cygb genes (Cygb-

1 and Cygb-2) have been found (Fuchs et al., 2005). The two Cygb genes diverged in 

teleost evolution, suggesting a large-scale duplication event. Cygb-1 has from 174 to 179 

amino acids, while Cygb-2 has from 179 to 196 residues. The sequence identity among 

Cygbs-2 and mammalian Cygbs shows that Cygb-2 is more closely related to mammalian 

Cygb than fish Cygb-1 (Fuchs et al., 2005).  

Interestingly, the position of Cys is not conserved in teleosts and, for this reason, it 

is possible that the O2 affinity does not display dependence on the redox state as in 

mammalian Cygbs. 

qRT-PCR analyses in Danio rerio have shown that both Cygb mRNAs have a 

broad expression profile in many tissues and Cygb genes exposed to mild or severe 

hypoxia have little change in their expression (Fuchs et al., 2005; Roesner et al., 2006). 

Cygb-2 detected at highest levels in neural tissues like brain and eye and was stronger 

expressed in almost all tissues (Fuchs et al., 2005). Currently, a biochemical 
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characterisation of these proteins is not reported in literature and is as well as their possible 

structures and functions.  

 

 

1.4 Objectives and research strategy 

 

This thesis addressed two major topics: the mechanism of Hb aggregation in Arctic 

fishes and the functional role of Cygb in red-blood Antarctic fishes and icefishes. 

Particularly, the main objectives of my PhD thesis were: 

 

 The description of the O2 system transport of Lycodes reticulatus, family 

Zoarcidae, and characterisation of its Hb polymerisation. The polymerisation was 

studied by biochemical techniques, Dynamic Light Scattering (DLS) and mass 

spectrometry. The aggregation was compared to that of the cod G. morhua, family 

Gadidae.  

 

 The cloning, expression, purification and preliminary characterisation of one of 

two different Cygbs of Chaenocephalus. aceratus (family Channichthyidae) and 

Dissosticus mawsoni (family Nototheniidae). Understanding the role of the Cygb 

genes in species without Hb and Mb is very important and useful to the 

comprehension of the function of this protein, not yet clear. 

 

In order, to accomplish the research activity, according to the above reported 

strategy, collaboration with several Institutions has been activated:  

 Mass spectrometry experiments in collaboration with Prof. P. Pucci, University of 

Naples “Federico II”, Italy. 

 DLS experiments in collaboration with Prof. L. Paduano, University of Naples 

“Federico II”, Italy. 

 Cygb genes cloning in collaboration with Prof. C. Cheng, University of Illinois at 

Urbana-Champaign, USA. 

 Cygbs expression and purification in collaboration with Prof. Sylvia Dewilde, 

University of Antwerp, Belgium. 
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CHAPTER 2 

 

Materials and methods 

 

 

2.1 Materials 

 

CO was purchased from SON, Società Ossigeno Napoli spa; sodium dithionite, 

dithiothreitol (DTT), 4-vinylpyridine and Tris-hydroxymethyl-methylamine (Tris) were 

from Sigma Aldrich (Steinheim, Germany). Trypsin (EC 3.4.21.4) treated with L-1-

tosylamide-2-phenylethylchloromethylketone from Cooper Biomedical; acetonitrile from 

Delchimica; oligonucleotides from  the other chemicals were from Merck AG (Darmstadt, 

Germany), were analytical or reagent grade and without further purification. 

 

 

2.2 Methods 

 

 

2.2.1 Arctic fish Hbs 

 

Specimens, hemolysates: Adult G. morhua and L. reticulatus were collected by 

bottom and midwater trawling from the R/V Jan Mayen (L. reticulatus: Greenland, 

72°00‟N, 21°01‟W; G. morhua: Svalbard, 78°13‟N). Blood was taken by heparinised 

syringes from the caudal vein. Saline-washed RBCs were kept frozen at -80°C until use. 

Hemolysates were prepared from the erythrocytes, separated from the blood plasma 

by centrifugation (1067xg, 5 minutes) and washed twice with cold isotonic solution (10 

mM TRIS-HCl pH 7.6, 1.7% NaCl). Lysis of erythrocytes was carried out by incubation in 

ipotonic solution (10 mM TRIS-HCl pH 7.6), followed by centrifugation for 20 minutes at 

17065xg to discard membranes, cellular components and nucleic acids from the 
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supernatant and stripped of organophosphates with a Sephadex-G25 column (GE-

Healthcare Bio-Sciences). All steps were carried out at 0−4°C (Tamburrini et al., 1994). 

 

Globin separation: Separation of L. reticulatus globins was carried out by reverse-

phase high-performance liquid chromatography (RP-HPLC) of stripped hemolysate on 

micro-Bondapak-C18 (0.39 cm×30 cm; Waters) columns, equilibrated with 45% 

acetonitrile, 0.3% Trifluoracetic acid (TFA) (Solvent A) and 90% acetonitrile, 0,1% TFA 

(Solvent B); absorbance at 546 nm and 280 nm was monitored (Verde et al., 2006). 

Addition of 100 mM DTT avoided polymerisation.  

 

Amino-acid sequencing of α globin: Alkylation of sulfhydryl groups with 4-

vinylpyridine, deacetylation of the α-chain N terminus and tryptic digestion were carried 

out as described (D‟Avino and di Prisco, 1989; Tamburrini et al., 1996).  Sulfydryl groups 

were treated with phenyl-isothiocyanate (PITC), Edman‟s reagent. Globins were 

solubilised in 500 mM TRIS-HCl pH 7.8, 2 mM EDTA, 6 M guanidine-HCl; cystine 

disulfide bridges were split by DTT in stoichiometric excess (10:1). After 1-hour 

incubation at 37°C, 4-vinylpyridine was added in stoichiometric excess (30:1) over DTT 

and the sample was incubated at room temperature for 45 minutes. The reaction was 

stopped by adding DTT in stoichiometric excess (2.5:1) over 4-vinylpyridine. Alkylated 

globins were purified by reverse-phase HPLC, on micro-Bondapak-C18 column 

equilibrated with 45% acetonitrile, 0.3% TFA (Solvent A) and 90% acetonitrile, 0,1% TFA 

(Solvent B). Tryptic digestion was carried out at 37°C, in 50 mM TRIS-HCl pH 8.0 and 

adding the trypsin (1 mg/ml in 1 mM HCl) three times every two hours, starting with a 

ratio 1:100 (enzyme:substrate) and reaching 1:33. The reaction was stopped by heating the 

solution at 100°C for a few minutes. Tryptic peptides were purified by RP-HPLC with a 

μBondapak C18 column (0.39 × 30 cm; Waters Associates), equilibrated with 0.1% TFA in 

water (Solvent A) and 0.08% TFA in 99.92% acetonitrile (Solvent B). Sequencing was 

performed with an Applied Biosystems Procise 492 automatic sequencer, equipped with 

on-line detection of phenylthiohydantoin amino acids. 

 

Cloning and sequence analysis of β
2
 globin cDNA. Total RNA was isolated from 

the spleen of L. reticulatus using TRI Reagent (Sigma) (Chomczynski et al., 1987). The 

cDNA of the β
2
 globin was amplified by reverse transcriptase- polymerase chain reaction 

(RT-PCR) using oligonucleotides designed on the N-terminal regions as direct primers and 
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at the adaptor primer as the reverse primer (primer forward, AARTGGACNGAYAAAGA, 

and primer reverse pk72, CGGAGATCTCCAATGTGATGGGAAATTC). Amplifications 

of cDNA were performed with 2.5 units Taq DNA polymerase, 5 pmol each of the primers 

and 0.2 mM dNTPs buffered with 160 mM ammonium sulfate, 670 mM Tris–HCl pH 8.8, 

0.1% Tween-20, 1.5 mM MgCl2. The PCR program consisted of 30 cycles of 1 min at 94 

°C, 1 min at temperature between 42 and 54 °C and 1 min at 72 °C, and ending with a 

single cycle of 10 min at 72 °C. Standard molecular biology techniques (Sambrook et al., 

1989) were used in the isolation, restriction, and sequence analysis of plasmid DNA. 

 

Purification of L. reticulatus Hb: Different purification attempts were tried to obtain 

the Hbs purified to homogeneity. 

 

a. The hemolysate was loaded on MONO Q column using  

1. (A) 10 mM Tris-HCl pH 7.6 (B) 10 mM Tris-HCl pH 7.6 and 1 M NaCl 

2. (A) 10 mM Tris-HCl pH 7.6 (B) 10 mM Tris-HCl pH 7.6 and 400 mM NaCl 

3. (A) 10 mM Tris-HCl pH 7.6 and 1 mM DTT (B) 10 mM Tris-HCl pH 7.6, 1 

mM DTT and 1 M NaCl 

4. (A) 10 mM Tris-HCl pH 7.6 and 1 mM DTT (B) 10 mM Tris-HCl pH 7.6, 1 

mM DTT and 400 mM NaCl 

5. (A) 10 mM Tris-HCl pH 7.6 and 1 mM DTT (B) 10 mM Tris-HCl pH 7.6, 1 

mM DTT and 250 mM NaCl 

b. The same hemolysate was loaded on DEAE 52 fast flow column with 

1. (A) 10 mM Tris-HCl pH 7.6 (B) 10 mM Tris-HCl pH 7.6 and 300 mM NaCl 

 

Mass spectrometry . Mass mapping of the α and β
1
 chains of L. reticulatus was 

carried out by overnight trypsin digestion of the native protein in 50 mM ammonium 

bicarbonate buffer pH 8.0 at 37°C.  

For disulfide bridges assignments, Hb aggregates purified by gel filtration were 

concentrated and digested overnight with trypsin in the same buffer used for 

chromatography (10 mM ammonium acetate pH 7.3) at 37°C. 

In both cases, the peptide mixtures were directly analysed by matrix-assisted laser 

desorption ionization-time of flight (MALDI-TOF) and TOF-TOF mass spectrometry 

(MS) on an AB Sciex 4800 MALDI TOF-TOF mass spectrometer. Tandem MS analyses 

(MS/MS) were carried out on selected signals to confirm amino-acid sequences. 
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Gel filtration. DTT was added to CO-hemolysates of L. reticulatus and G. morhua 

in 10 mM Tris-HCl pH 7.6, at final concentration of 100 mM. The Hb concentration in the 

hemolysate was 0.06 mM on a haem basis. Gel filtration was carried out by Fast Protein 

Liquid Chromatography (AKTA-FPLC) with a Superose 6 column (GE-Healthcare). 

Elution was performed at 4°C, in 10 mM Tris-HCl pH 7.6, 200 mM NaCl. 

 

UV-Visible spectroscopy. To evaluate the oxidation state of Hbs and calculate their 

concentration, UV-Visible electronic absorption spectra were acquired from 700 to 250 nm 

in a Cary 300 UV-Visible spectrophotometer (Varian). A typical absorption spectrum of 

HbA is characterised by strong maximum at 415-419 nm (Soret) and two maxima at 540 (ε 

= 13.4) and 569 nm (ε = 13.4) for HbCO, 541 (ε = 13.5) and 576 nm (ε = 14.6) for HbO2. 

 

Dynamic Light Scattering. Dynamic light scattering (DLS) experiments were 

performed with 0.06 mM (on a haem basis) L. reticulatus and G. morhua hemolysates, 

filtered through 0.22-μm Millipore filters, in 100 mM Tris-HCl/MES in the pH range 6.6 - 

9.0 at 4°C. CO-hemolysates (800 μL) were flushed with CO and sodium dithionite was 

added at a final concentration of 1 mM. Deoxy hemolysates were prepared by photolysis of 

the CO-hemolysates. Samples were then placed in a dry box filled with nitrogen following 

addition of few crystals of sodium dithionite. The cuvettes were sealed with rubber caps. 

DLS was performed with a setup of a Photocor compact goniometer, a SMD 6000 

Laser Quantum 50 mW light source operating at 5325 Å, and a PMT and correlator from 

Correlator.com. All measurements were performed at 4.00±0.2°C in a thermostatted bath. 

In DLS, the intensity autocorrelation function g
(2) 

(t) is measured and related to the electric 

field autocorrelation g
(1)

 (t) by the Siegert relation (Berne and Pecora, 2000): 

 

       
2

2 1
1g t g t       (Eq. 1) 

 

where β ( ≤1 ) is the coherence factor, which accounts for the deviation from ideal 

correlation and depends on the experimental geometry. The parameter g
(1)

(t) can be written 

as the Laplace transform of the distribution of the relaxation rate Γ used to calculate the 

translational diffusion coefficient D 
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      (Eq. 2) 

 

where 1   . Laplace transforms were performed using a variation of CONTIN algorithm 

incorporated in Precision Deconvolve software. From the relaxation rates, the z-average of 

the diffusion coefficient D may be obtained as (Berne and Pecora, 2000) 

 

2
D

q


        (Eq. 3) 

 

where  04 sin 2q n   is the modulus of the scattering vector, 0n  is the refractive index of 

the solution, λ is the incident wavelength and θ represents the scattering angle. Provided 

that the solutions are quite dilute, the Stokes–Einstein equation, which rigorously holds at 

infinite dilution for spherical species diffusing in a continuum medium, may be used to 

evaluate the hydrodynamic radius HR  of the aggregates. 

 

6
H

kT
R

D
       (Eq. 4) 

 

where k is the Boltzmann constant, T is the absolute temperature and η is the medium 

viscosity. We note that HR  in Eq. 4 for not spherical particles represents the radius of 

equivalent spherical aggregates with the same diffusion coefficient (Tyrrell and Harris, 

1984). The number of tetramers in each aggregate was obtained by dividing the volume of 

aggregates by the tetramer volume. 

 

O2 binding. Hemolysate stripping was carried out by passage through a column of 

Sephadex G-25 (PD-10 Amersham), equilibrated with 10 mM HEPES pH 7.6. After this 

procedure, salts and organic phosphates have been removed. O2 equilibria were measured 

in 100 mM MES/HEPES in the pH range 6.3–8.7, at 5 and 10°C (keeping the pH variation 

as a function of temperature in due account) at a final Hb concentration of 0.5–1.0 mM on 

a haem basis. An average standard deviation of ± 3% for values of O2 affinity was 

calculated; experiments were performed in duplicate. To obtain stepwise O2 saturation, a 

modified gas-diffusion chamber was used, coupled to cascaded Wösthoff pumps for 

mixing pure nitrogen with air (Weber et al., 1987). The pumps are connected to a 
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spectrophotometer Eppendorf, 1101 M model. Values of pH were measured with a 

radiometer BMS Mk2 thermostatted electrode. Sensitivity to chloride was assessed by 

adding NaCl to a final concentration of 100 mM. The effect of ATP was measured at a 

final ligand concentration of 3 mM, in excess with respect to tetrameric Hb. O2 affinity 

(measured as p50) and cooperativity (nHill) were calculated by linear fitting of the Hill plot. 

For each experiment, one aliquot of CO-hemolysate was thawed, converted to the 

oxy form by exposure to light and O2, and immediately used; For this purpose, the CO-

hemolysate solution was placed in an ice bath and the gas phase was 100% O2. Under 

gentle stirring, hemolysate was exposed to a light source (Sylvania Model SG-50 with a 

DWY lamp). No oxidation was detectable spectrophotometrically, indicating that final 

Met-Hb formation was negligible (<2%). 

 

 

2.2.2 Antarctic fish Cygb 

 

Cloning and sequencing of Cygb cDNA: Total RNA was isolated from C. aceratus 

brain and D. mawsoni retina and the Cygb cDNA was cloned in SmaI site of pBSII KS (-). 

The subcloning of Cygb cDNAs was tested in two different expression vectors: pET3a and 

pBAD. A PCR was performed on the plasmids using the 5‟ primer 

(GGGAATTCCATATGGAGAGGATGCAGGGAGAGG for pET3a and 

CCGCTCGAGATGGAGAGGATGCAGGGAGAGG for pBAD), with a NdeI and XhoI 

restriction sites for pET3a and pBAD respectively, and the 3‟ primer 

(CGCGGATCCTCACCCACTTGAGCTTGAG for pET3a and 

CCGGAATTCTCACCCACTTGAGCTTGAG for pBAD) containing a BamHI and EcoRI 

restriction sites for pET3a and pBAD, respectively. The PCR products were cleaned and 

cut with the restriction enzymes, then ligated into the expression vectors. The sequences 

were checked and the constructs were verified in correct position. 

 

Expression of Cygb: Recombinant expression plasmids were transformed in the 

Escherichia coli BL21(DE3)pLysS (Invitrogen). The cells were grown overnight at 37°C 

in 6 ml L-broth (10 g/L tryptone, 5 g/L yest extract and 0.5 g/L NaCl) with 200 mg/L 

ampicillin and 30 mg/L chloramphenicol. The grown cultures were poured into a flask 

containing 250 ml terrific broth (TB) medium (1.2% bactotryptone, 2.4% yeast extract, 
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0.4% glycerol, 17 mM KH2PO4 and 72 mM K2HPO4 3H2O), 200 mg/L ampicillin and 30 

mg/L chloramphenicol. The cultures were shaken at 160 rpm at 25°C. The induction was at 

A600 > 1.0 O.D by the addition of isopropyl-1-thio-D-galactopyranoside to a final 

concentration of 0.4 mM. The expressions were continued overnight. The grown cells were 

harvested (20 min at 3220 x g) and resuspended in 12 ml lysis buffer (50 mM Tris-HCl pH 

8.0, 1 mM ethylenediaminetetracetic acid (EDTA), 0.5 mM DTT).  

 

Purification of Cygb: The resuspended cells were exposed to three freeze-thaw 

steps and sonicated (1 min at 60 Hz and 3 sec pulses) in ice until completely lysed. The 

extracts were clarified by low and high speed centrifugation. Different purification 

attempts were tried before to find the best conditions.  

 

1. The samples were purified before by 60% ammonium sulfate precipitaton. The 

pellets were dissolved in 5 mM Tris-HCl pH 7.5 and dialysed overnight against the 

same buffer. 

2. The dialysed material was mixed in bulk with an excess diethylaminoethyl (DEAE) 

Sepharose matrix in a funnel. The unbound material was eluted with 5 mM Tris-

HCl pH 7.6 and then the Cgbs were eluted with 300 mM NaCl and 5 mM Tris-HCl 

pH 7.5. Afterwards, the Cygbs were concentrated. 

3. The concentrated material was loaded on a Sephacryl S-200 high resolution 

column. The column was equilibrated at 4°C in 50 mM Tris-HCl pH 7.6, 150 mM 

NaCl and 5 mM EDTA. The fractions with Cygb were joined and concentrated. 

4. The material was loaded on HiTrap DEAE FF column, trying two different buffers: 

(A) 20 mM Tris HCl pH 7.6 (B) 20 mM TrisHCl pH 7.6 and 300 mM NaCl  

(A) 20 mM Sodium Phosphate pH 6.8 (B) 20 mM Sodium Phosphate pH 6.8 and 

300 mM NaCl  

5. The same material was loaded on Superdex TM-75 column. The buffer was the 

same used for the Sephacryl S-200 high resolution column 

6. The same sample was loaded on Q Sepharose FF and Mono Q columns, using two 

different types of buffer: 

(A) 20 mM Tris HCl pH 7.6 (B) 20 mM Tris HCl pH 7.6 and 1.0 M NaCl  

(A) 20 mM Tris HCl pH 7.0 (B) 20 mM Tris HCl pH 7.0 and 1.0 M NaCl 

7. The sample was collected, joined and concentrated, after loaded on Mono S column 

using: 
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(A) 50 mM Sodium Phosphate pH 6.8 (B) 50 mM Sodium Phosphate pH 6.8 and 

1.0 M NaCl  

8. All sample was loaded on Superdex TM-200 column with 50 mM Tris-HCl pH 7.6, 

150 mM NaCl and 5 mM EDTA 

 

UV-Visible spectroscopy: To experience the coordination state of Cygb and check the 

possible pH- and temperature- dependence, UV-Visible electronic absorption spectra were 

acquired from 700 to 350 nm in a Cary 300 UV-Visible spectrophotometer (Varian). The 

pH range tested was 6.0 – 9.0 and the temperature range was 4°C – 80°C. The buffers used 

were 20 mM Tris-HCl/MES. The spectra were acquired in the absence and presence of 

exogenous ligands such as CO. Samples were about 5 M on a heme basis in 100 mM 

buffer at different pH. The ferric form was slowly reduced by ten-fold excess sodium 

dithionite after bubbling nitrogen for 15 min in 1-cm optical-pathway cuvettes. The CO 

form was achieved by equilibration of reduced samples under 1 atm of CO for 15 min. 
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CHAPTER 3 

 

Results and discussion 

 

 

3.1 Arctic fish Hbs 

 

 

3.1.1 Globins and primary structure  

 

Only a single Hb was detected in the fresh hemolysate of L. reticulatus by cellulose 

acetate electrophoresis, although the Blue Native PAGE of frozen and thawed CO-

hemolysate revealed multiple bands (Fig. 3.1), suggesting the formation of polymers 

during freezing.  

 

 

Fig. 3.1: Blue Native PAGE of L. reticulatus (HbLr, on the left) with HbA (in the middle) 

and Mb (on the right) as markers. 

 

The RP-HPLC profile of the CO-hemolysate in the polymerised form (Fig. 3.2a) 

showed the presence of the α chain and of an unresolved peak corresponding to the β 

chains, as established by MS and N-terminal amino-acid sequencing. In the presence of 
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100 mM DTT, RP-HPLC (Fig 3.2b) displayed three different globins, namely the α chain 

and two different β chains (β
1
 and β

2
), exhibiting slight heterogeneity.  

 

 

 

Fig. 3.2: The RP-HPLC profiles of a) the CO-hemolysate in the polymerized form b) the 

CO-hemolysate in presence of DTT 
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The amino-acid sequences of the α and β chains of L. reticulatus, in comparison 

with other sequences, are reported in Fig. 3.3a and 3.3b. The primary structure of the α 

chain was established by alignment of tryptic peptides, homology with fish globins and 

confirmed by their mass mapping. DNA sequencing, obtained from RNA isolated from L. 

reticulatus spleen, was utilized only for the β
2
 chain. The β

1
 chain was digested with 

trypsin and its peptide mixture was directly analyzed by MALDI-TOF and TOF-TOF MS, 

to obtain whole amino-acid sequencing. The accurate mass values of the tryptic peptides 

were mapped onto the anticipated amino-acid sequence of the β
2
 chain used as template. 

MS/MS analyses were carried out on the selected signals displaying mass differences from 

the β
2
 peptides, leading to the definition of their sequences. The molecular masses were 

15,663.3 ± 0.3 Da for the α and 16,121.5 ± 0.3 and 16,067.4 ± 0.6 Da for the β
1
 and β

2
 

chains, respectively, in perfect agreement with the theoretical values calculated as the basis 

of the primary structures. The N terminus of the α chain was not available to Edman 

degradation because of the presence of a blocking acetyl group. The two β chains differ in 

only four positions, that are Ala44 → Thr, Ser50 → Thr, Ala51 → Pro and Leu58 → Pro. 

For the sake of simplicity, I refer to only one Hb, and not to two Hbs, because I assume 

that this heterogeneity defines a genetic variant and not a functionally distinct Hb. In fact, 

because of a few mutations all attempts to purify non-polymerized Hb to homogeneity 

were unsuccessful. The globins have several substitutions, important for Bohr and Root 

effects, with respect to other from vertebrate. Among the functionally important residues 

suggested to be involved in the molecular mechanism of the Bohr and Root effects in fish 

Hbs (Camardella et al., 1992), Ser β93 F9, Glu β94 FG1, and Gln β144 HC1 are conserved 

in the β chains, whereas His β146 HC3 is replaced by Cys. Of the Asp α48 CD6/His α55 

E3 and His β69 E13/Asp β72 E16 pairs, supposed to contribute to the Root effect in fish 

Hbs (Mazzarella et al., 2006a; Yokoyama et al., 2004), only the latter is conserved. In the 

α1β2 „„dovetailed‟‟ switch region formed in HbA by Pro α44 CD2, Thr α38 C3, Thr α41 

C6, and His β97 FG4, Pro α44 CD2 is replaced by Ser and Thr α38 C3 by Gln. Val β60 

E4, considered to be invariant in vertebrates, including most teleosts, is replaced by Ile. 

Val β67 E11, usually present at the distal side of the haem, is replaced by Ile. This 

substitution may produce functional subunit heterogeneity, as reported in Hb of temperate 

Chelidonichthys kumu (Fago et al., 1993) and in cathodic Hb of Antarctic Trematomus 

newnesi (Mazzarella et al., 2006b). In HbA mutants, the bulky side chain of Ile β67 E11 

blocks the access of O2 to the β chain, significantly lowering the association (and 

equilibrium) constant in both the T (Nagai et al., 1987) and R states (Mathews et al., 1989). 
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In deoxy HbA, Val β67 E11 overlaps the ligand binding site and is considered to play a 

key role in controlling the O2 affinity. The α and β chains of L. reticulatus contain several 

Cys residues often absent in other teleosts, in positions α105 G11, α131 H13, β31 B13, 

β109 G11, β121 GH4, and β146 CH3. The previously published (Verde et al., 2006) 

amino-acid sequences of the two α and the two β chains constituting the three Hbs of G. 

morhua are also reported in Fig. 3.3a and 3.3b. Similar to L. reticulatus, they are unusually 

rich in Cys. Despite the general trend toward reduction in His content in teleost Hbs 

(Berenbrink et al., 2005), the β
2
 chain of G. morhua contains two extra His residues, His 

β10 A7 and His β77 EF1 (Verde et al., 2006). These residues are absent in most fish Hbs 

with the exception of L. reticulatus β globins, which have His β77 EF1. Recently, high 

number of globin genes (four α and five β) has been found in G. morhua species, 

suggesting a response to environmental challenges and altering their level expression 

(Borza et al., 2009). Moreover, Andersen showed that the G. morhua β
1
 globin 

polymorphism (Met55Val and Lys62Ala) leads two distinct behaviors: a) to low O2 

affinity at high temperatures for those fish populations that inhabit the cold Arctic waters 

(with Val55-Ala62) and b) to no temperature-dependence for the non-Arctic populations 

(Met55-Lys62) (Andersen et al., 2009). At high temperatures, in Arctic fish as G. morhua 

the biosynthesis of the Val55-Ala62 globin is increased by a molecular compensatory 

mechanism to maintain the total O2-carryng capacity (Gamperl et al., 2009). This is an 

example of co-evolution of structural and regulatory adaptation with a relationship 

between temperature and functional molecular variation (Star et al., 2011). 
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Fig. 3.3a: Amino-acid sequence of the α chain of L. reticulatus and G. morhua (Verde et 

al. 2006), Antarctic T. bernacchii (Camardella et al., 1992) and temperate C. kumu (Fago et 

al., 1993). Cys residues are in light grey boxes. 
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Fig. 3.3b: Amino-acid sequence of the β chains of L. reticulatus and G. morhua (Verde et 

al. 2006), Antarctic T. bernacchii (Camardella et al., 1992) and temperate C. kumu (Fago et 

al., 1993). Cys residues are in light grey boxes. The differences between the two β chains 

of L. reticulatus are in white, in dark grey boxes. 
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3.1.2 Purification attempts 

 

The manipulation of the L. reticulatus hemolysate was tough. The primary structure 

analysis revealed a polymorphism that made the purification not feasible, despite the 

numerous attempts. Thus, the hemolysate was used to characterise the aggregation 

behaviour. 

During the first year several purification attempts were extensively conducted, trying 

several strategies by different chromatography columns and conditions. 

The results of the purification procedures were unsuccessful. In fact, HPLC 

chromatography of different fractions collected during the purification attempts showed the 

coexistence of all the globins. Therefore, the primary strategy to analyse the isolated 

component Hbs was replaced by an alternative strategy, in which the hemolysate was 

considered. Despite this strategy does not factorize the contribution of each component to 

the overall functional behavior, it provides anyway a picture of the physiologically relevant 

properties (related to the coexistence of all the components in the blood).  

The difficulty in purifying the L. reticulatus hemolysate also in presence of DTT 

indicates that the unsuccessful purification can be due to the high sequence identity of the 

two β chains (different for only 4 residues) and not in the formation of aggregates. 

 

 

3.1.3 The polymerisation process 

 

Gel filtration of the CO-hemolysate of L. reticulatus, in 10 mM Tris-HCl pH 7.6, 

revealed multiple large peaks, suggesting formation of polymers (Fig 3.4a). The first three 

fractions contained higher-molecular-mass components, whose spectral features excluded 

re-oxidation of the iron. The last small fraction contained non- polymerised Hb that had 

identical elution volume to that of HbA. The chromatogram suggested formation of 

polymers of different molecular size. Polymerisation essentially appeared to depend upon 

formation of inter-molecular disulfide bonds because the first three fractions disappeared 

upon addition of DTT (Fig. 3.4b) and were replaced by the tetramer. The RP-HPLC of the 

tetramer obtained from gel filtration showed three well separated peaks, an α chain and the 

two β chains in equal amounts, similarly to the globin pattern of the hemolysate in the 

presence of DTT. An important note is that special attention was paid when DTT was 



38 
 

added to L. reticulatus Hb solutions, because of Hb degradation (greenish colour) followed 

by precipitation after some hours later the addition.  

In contrast, gel filtration of the CO-hemolysate of G. morhua at pH 7.6 in the 

absence of DTT revealed a much lower amount of polymers (Fig. 3.5a) and the high-

molecular-mass components did not decrease upon addition of 120 mM DTT (Fig. 3.5b). 

Presumably, the absence of DTT effect is not due to involvement of the Cys residues, 

despite their high number in both chains, but to different type of interactions, not really 

clear at the moment. In the first extensive study of the O2-transport system of three Arctic 

species of the family Gadidae, namely the Arctic cod Arctogadus glacialis, the polar cod 

Boreogadus saida, and the Atlantic cod G. morhua (Verde et al., 2006), these fish have 

identical multiplicity of Hbs. The ion-exchange chromatography of the three hemolysates 

yielded similar elution patterns, showing one broad band, indicative of unresolved Hbs. 

Many procedures were attempted to purify the different components to homogeneity, but 

they were unsuccessful, with the exception of the third component. Hence, concentration-

dependent equilibria between dimers or pH-dependent aggregation between tetramers were 

hypothesised (Verde et al., 2006). 
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Fig. 3.4: Gel filtration of the CO-hemolysate of L. reticulatus a) without DTT and b) upon 

addition of DTT 
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Fig 3.5: Gel filtration of the CO-hemolysate of G. morhua a) without DTT and b) upon 

addition of DTT 
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3.1.4 Mass spectrometry of L. reticulatus globins 

 

MS experiments were conducted in collaboration with the Prof. P. Pucci of the 

University of Naples, “Federico II”. The chemical nature of the oligomers of L. reticulatus 

Hb was investigated by mass mapping of their tryptic peptides. The high-molecular-mass, 

DTT-reduced aggregates were isolated by gel filtration and directly digested with trypsin. 

The peptide mixture was analysed by MALDI-TOF MS (Fig. 3.6), revealing the 

occurrence of peptides belonging to both α and β globin chains. A number of mass signals 

in the spectra could not be associated to any linear peptide within the amino-acid sequence 

of the globins and were tentatively interpreted as disulfide-containing fragments. On the 

basis of their unique mass values, these signals were identified as S-S bridged peptides and 

their assignments are listed in Table 1, together with the Cys pairs involved in the cross-

links. Selected signals were submitted to MS/MS analyses in order to confirm the 

assignments.  

Mass spectral analyses confirmed the hypothesis that the Hb oligomeric species of 

L. reticulatus were essentially formed by intermolecular S-S bridges. Further support to 

this hypothesis is also provided by homology modelling, indicating that the distances 

between pairs of Cys residues are incompatible to form intramolecular S-S bridges (L. 

Boechi, personal communication). As expected, the vast majority of the Cys residues 

involved in disulfide-bridge formation belong to the β globins, suggesting higher reactivity 

of these residues than those of the α chain, a well known behaviour similar to human 

globins. A single Cys of the α chain, Cys α105 G11 was indeed found involved in an S-S 

bridge with Cys β146 CH3. The almost identical sequences of the two β chains impaired to 

ascertain which chain was involved in each bridge, with the exception of the peptide pair 

associated with the mass value at m/z 4490.2 (see Table 1). This signal corresponds to the 

β
2
 peptide 31-59 joined to the β

1
 (or β

2
) fragment 105-117, as the two β globins showed 

different sequences in the 44-58 region. Many S-S bridges were formed by C-terminal Cys 

β146 CH3 of the β chain. This behaviour is similar to that found in the human variant Hb 

Rainier, where βC-terminal Tyr is substituted by Cys, leading to an intramolecular 

disulfide with Cys β93 F9 (Carbone et al., 1999). 
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Fig. 3.6: Peptide mixture of oligomers of L. reticulatus Hb analysed by MALDI-TOF MS 

 

600 1400 2200 3000 3800 4600

M ass (m/z )

1 .1E+4

0

10

20

30

40

50

60

70

80

90

100

%
 I

n
te

n
s

it
y

4700 Reflector  S pec #1[BP  = 1162.5, 10910]

1
1

6
2

.5
5

0
5

1
2

9
0

.6
6

6
0

6
1

6
.1

6
5

3

1
0

6
2

.5
7

2
9

2
1

3
7

.0
7

8
1

7
7

1
.4

2
1

6

1
9

0
7

.0
0

5
2

1
2

7
8

.6
6

7
6

1
1

7
5

.6
5

5
2

6
3

4
.3

5
6

8

1
0

7
5

.5
1

9
9

1
4

5
3

.6
5

0
0

1
9

5
1

.9
5

5
2

1
6

3
4

.8
7

6
5

2
2

3
1

.0
2

5
4

1
8

3
5

.9
3

4
7

8
0

4
.2

1
5

8

1
3

3
4

.6
5

2
1

2
4

1
5

.1
8

6
0

1
5

2
4

.7
3

6
1

8
8

9
.4

5
6

4

1
7

2
4

.8
8

7
3

2
0

3
6

.0
3

6
5

1
0

0
4

.4
8

6
1

2
5

4
4

.2
2

6
6

2
1

5
9

.0
6

8
6

1
3

8
9

.7
3

2
1

9
4

9
.4

9
3

0

6
9

5
.4

0
3

6

3
1

4
8

.4
6

6
1

2
9

4
9

.5
7

8
6

1
5

7
7

.8
1

2
5

4
3

6
4

.0
6

9
3

2
3

1
4

.1
3

9
2

2
8

0
7

.3
2

4
7

3
6

3
6

.9
5

2
6

2
6

6
2

.3
9

0
4

2
7

2
2

.4
1

0
6

1
7

7
8

.8
4

7
9

2
0

9
3

.0
6

9
3

3
2

8
8

.7
3

5
1

2
4

7
9

.2
9

6
9



43 
 

Table 1 
Mass signals of S-S bridged peptides and Cys residues involved in tryptic hydrolysis of 

high-molecular-weight aggregates of L. reticulatus Hb 

MH
+ Peptide pair Cys residues involved 

4490.2 
2
 (31-59) +  (105-117) 

2
 Cys 31- Cys109 

2621.4  (31-40) +  (105-117)  Cys31- Cys109 

1688.8  (31-40) +  (144-146)  Cys31- Cys146 

1755.9  (105-117) +  (144-146)  Cys109- Cys146 

3075.5  (105-117) +  (118-132)  Cys109- Cys121 

3598.7  (101-128) +  (144-146)  Cys105- Cys146 

3462.5  (118-132) +  (118-132)  Cys121- Cys121 
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3.1.5 Dynamic Light Scattering 

 

The DLS experiments were carried out in collaboration with the Prof. L. Paduano of 

the University of Naples “Federico II”. Globin association in the hemolysates of L. reticulatus 

and G. morhua as a function of coordination state (CO and deoxy), pH (6.6-9.0) and addition 

of 120.0 mM DTT (final concentration) at 4°C, was also investigated by DLS. The 

hemolysates showed multimodal distributions of three-four aggregates, named I, II, III and 

IV according to increasing size. HbA was used as control of non-aggregating globin, with a 

hydrodynamic radius ( HR ) 3.5 ± 0.2 nm.  

At pH 7.6 and in the absence of DTT, the L. reticulatus CO-hemolysate showed three 

aggregates of different size (II at 8.5 ± 0.8, III at 34 ± 5, and IV at 85 ± 12 nm) (Fig. 3.7A). 

Addition of DTT (Fig. 3.7B) fastly led to formation of an additional species (I) and a 

significant variation of the aggregation size (I at 3.3 ± 0.5, II at 14 ± 1, III at 33 ± 5, and IV 

174 ± 90 nm). Upon DTT removal, almost instantaneous disappearance of I and slow return 

to the initial aggregation distribution occurred. The additional diffusing particle I, as a 

consequence of DTT-induced reduction of disulfide bridges, can be associated to the single 

Hb tetramer of L. reticulatus (3.3 nm) (Pan et al., 2007). Due to technical limitations (at 

higher concentrations multiple scattering occurs making analysis of the results unreliable) it 

was not possible to investigate the effect of concentration on aggregation. 

Indeed, DLS experiments confirmed the significant role of intermolecular disulfide 

bridges in the aggregation behaviour of the hemolysate of L. reticulatus and defined the 

multimodal aggregate distribution (Table 2), showing the ability to produce polymers of the 

large number of Cys residues in the  and β chains of the L. reticulatus hemolysate. HR  in 

both deoxy and CO hemolysates were quite invariant upon pH variation (from 6.6 to 9.0), 

suggesting no crucial involvement of protonable groups in the aggregation mechanism.  

In the absence of DTT, the CO-hemolysate of G. morhua (Fig. 3.7C) showed three 

aggregates (I at 3.4 ± 0.3, II 88.0 ± 5.0, III 421 ± 12 nm). The number of aggregates and their 

HR  were insensitive to DTT (Table 2), suggesting that involvement of Cys in the aggregation 

mechanism is not crucial, despite their high content, which is comparable in number (but not 

in position) to that of the L. reticulatus sequence. Moreover, the dependence on the 

concentration was demonstrated. In fact, as expected, at higher Hb concentration, the relative 

population II/I and III/I increased.  
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Fig. 3.7: DLS characterisation of the hemolysates of L. reticulatus (A, B) and G. morhua (C, 

D). (A) CO and (B) deoxy state of L. reticulatus Hb with the distribution of aggregates as a 

function of hydrodynamic radius, HR , (in black), and examples of the correlation function, 

g
(2)

(t), as a function of time for both states (in gray). (C) CO and (D) deoxy state of G. 

morhua Hb with HR
 
as a function of pH for each multimodal distribution of aggregates (I, II 

and III). 

 

 

In contrast to L. reticulatus, the hemolysate of G. morhua exhibited modulation of the 

aggregation behaviour. In fact, the G. morhua hemolysate showed dependence of aggregation 

behaviour on pH, particularly in the deoxy state (Fig. 3.7D). As pH decreased, the G. morhua 

population I distribution decreased in favour of the larger aggregates II and III, whose HR  

increased (Table 2). The dependence on pH suggests a significant role of protonable groups 

on the surface of the Hb in the deoxy state in the aggregation mechanism. Indeed, despite the 

general trend of reduction in His content in teleost Hbs, suggested to be an important step in 

the evolution of the O2-transport system (Berenbrink et al., 2005; Pan et al., 2007), the 

analysis of the amino-acid sequences of G. morhua globins (Verde et al., 2006) indicates that 

one of the two β globins contains two extra His residues (His β7 A7 and His β77 EF1) located 

on the surface of the protein (Koldkjaer and Berenbrink, 2007; Berenbrink, 2006).  
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 Table 2 

HR of each L. reticulatus and G. morhua aggregate in CO and deoxy state at different pH. In bold, HR  after DTT addition. In brackets, 

number of Hb tetramer in the aggregate. 
 L. reticulatus G. morhua 

 CO state Deoxy state CO state Deoxy state 

pH RH (nm) 

I 

RH (nm) 

II 

RH(nm) 

III 

RH (nm) 

IV 

RH (nm) 

I 

RH (nm) 

II 

RH (nm) 

III 

RH (nm) 

IV 

RH (nm) 

I 

RH (nm) 

II 

RH (nm) 

III 

RH (nm) 

I 

RH (nm) 

II 

RH (nm) 

III 

6.6  7.8 ± 0.5 

(11) 

32 ± 5 

(7.6E2) 

93 ± 3 

(1.8E4) 

4.5 ± 0.4 

(2) 

17 ± 3 

(1.1E2) 

78 ± 7 

(1.1E4) 

385 ± 93 

(1.3E6) 

3.9 ± 0.4 

(1) 

116 ± 26 

(3.6E4) 

501 ± 51 

(2.9E6) 

4.3 ± 0.6 

(1) 

166 ± 18 

(1.1E5) 

752 ± 27 

(9.9E6) 

7.0            3.5 ± 0.1 

3.5 ± 0.6 

(1) 

118 ± 22 

121 ± 60 

(3.8E4) 

548 ± 12 

507 ± 150 

(3.8E6) 

7.3            3.9 ± 0.3 

(1) 

102 ± 4 

(2.5E4) 

449 ± 53 

(2.1E6) 

7.6  
3.3 ± 0.1 

8.5 ± 0.8 

14 ± 1 

(14) 

34 ± 5 

33 ± 5 

(9.2E2) 

85 ± 12 

174 ± 90 

(1.4E4) 

4.9 ± 0.6 

3.3 ± 0.6 

(3) 

20 ± 3 

13 ± 4 

(1.8E2) 

71 ± 7 

49 ± 4 

(8.3E3) 

354 ± 66 

139 ± 4 

(1E6) 

3.4 ± 0.3 

3.5 ± 0.1 

(1) 

88 ± 5 

89 ± 6 

(1.6E4) 

421 ± 12 

453 ± 29 

(1.7E7) 

3.8 ± 0.3 

3.4 ± 0.6 

(1) 

77 ± 13 

86 ± 9 

(1.1E4) 

382 ± 47 

400 ± 20 

(1.3E6) 

8.0         3.5 ± 0.3 

(1) 

84 ± 12 

(1.3E4) 

447 ± 70 

(2E7) 

3.4 ± 0.3 

3.5 ± 0.3 

(1) 

85 ± 10 

72 ± 4 

(1.4E4) 

397 ± 40 

360 ± 6 

(1.4E6) 

8.6  
3.6 ± 0.9 

6.9 ± 0.3 

19 ± 5 

(8) 

23 ± 2 

102 ± 

10 

(2.8E2) 

103 ± 12 

269 ± 68 

(2.5E4) 

4.9 ± 0.3 

3.3 ± 0.2 

(3) 

20 ± 3 

12.7 ± 2 

(1.8E2) 

80 ± 11 

60 ± 10 

(1.2E4) 

289 ± 78 

240 ± 90 

(5.6E5) 

3.6 ± 0.4 

3.2 ± 0.3 

(1) 

81 ± 4 

86 ± 6 

(1.2E4) 

429 ± 30 

424 ± 50 

(1.7E7) 

4.2 ± 0.6 

(1) 

71 ± 5 

(8.3E3) 

375 ± 28 

(1.2E6) 

9.0         3.6 ± 0.3 

(1) 

95 ± 7 

(2E4) 

482 ± 50 

(2.6E6) 

4.0 ± 0.2 

(1) 

77 ± 5 

(1.0E4) 

384 ±30 

(1.3E6) 
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3.1.6 O2 binding 

 

The single non-polymerised Hb without DTT is impossible to obtain because of the 

high reactivity of Cys residues and the difficulty in blocking them. Moreover, the DTT is 

oxidised by air and interferes with the O2 binding measurements, for this reason the functional 

studies were only performed on the polymerised form of L. reticulatus Hb. The O2 binding 

experiments were performed at 5°C and 10°C, in the absence and presence of allosteric 

physiological effectors, chloride and organophosphates (ATP) (Fig. 3.8 and 3.9). The Bohr 

effect was low, and the effectors did not significantly enhance it. In the presence and in 

absence of the effectors for every investigated pH, the nHill was close to 1.5, reflecting low 

levels or lack of subunit cooperativity. Therefore, the key role of polymerisation in the lack of 

Bohr effect in L. reticulatus Hb cannot be uniquivocally deduced, because Cys in place of His 

at the C terminus of this Hb may also substantially decrease such effect. In fact, in human 

HbA, the main Bohr groups are N-terminal Val α1 NA1 and C-terminal His β146 HC3, which 

account for about 30% and 50–65% of Bohr effect, respectively (Perutz and Brunori, 1982), 

but fish Hbs have acetyl-Ser in position α NA1, therefore, the decreased Bohr effect observed 

in L. reticulatus with respect to other fish Hbs may be due to the His → Cys β146 HC3 

substitution; however, the role of His β146 HC3 residue in eliciting the Root effect is 

controversial (Fago et al., 1993). 

The previously published data on G. morhua were integrated by additional functional 

studies on the hemolysate (Fig. 3.10), which contains partially polymerised Hb forms (Verde 

et al., 2006). Experiments were performed at 5°C and 10°C, in the absence and presence of 

allosteric effectors. A strong Bohr effect was observed, and enhancement by 

organophosphates was high. In the whole pH range, the nHill was close to one, reflecting very 

low levels, or apparent lack of subunit cooperativity.  
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Fig 3.8: a) O2 equilibrium isotherms (Bohr effect) and b) subunit cooperativity at atmospheric 

pressure as a function of pH of L. reticulatus hemolysate. 100 mM HEPES at 5°C, in the 

absence of effectors is shown by the open circles, in the presence of 100 mM NaCl by the 

filled circles, 100mM NaCl, 3mM ATP by the filled triangles.  
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Fig 3.9: a) O2 equilibrium isotherms (Bohr effect) and b) subunit cooperativity at atmospheric 

pressure as a function of pH of L. reticulatus hemolysate. 100 mM HEPES at 10°C, in the 

absence of effectors is shown by the open circles, in the presence of 100 mM NaCl by the 

filled circles, 100mM NaCl, 3mM ATP by the filled triangles. 
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Fig 3.10: a) O2 equilibrium isotherms (Bohr effect) and b) subunit cooperativity at 

atmospheric pressure as a function of pH of G. morhua hemolysate. 100 mM HEPES at 5°C, 

in the absence of effectors is shown by the open circles, in the presence of 100 mM NaCl by 

the filled circles, 100mM NaCl, 3mM ATP by the filled triangles. 
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3.2 Antarctic fish Cygb 
 

 

3.2.1 The primary structure 

 

The species D. mawsoni and C. aceratus have two genes encoding fish Cygbs. Only 

one Cygb gene from the retina and one from brain of D mawsoni and C. aceratus, 

respectively were identified. The amino acid sequences of C. aceratus and D. mawsoni Cygb 

were derived from the cDNA sequences obtained by RT-PCR amplification of total RNA 

using appropriate primers. In silico translation of the cDNA sequences provided the Cygb 

protein sequences. Antarctic fish Cygb sequences together to those of mammalian and other 

fish species reported in literature were aligned by the CLUSTAL W (1.83) program 

(Thompson et al., 1994) following standard parameters. 

 

Antarctic fish Cygbs: The two Antarctic fish Cygbs have 179 amino acid residues and 

differ in only four positions: Arg24 A4 → Lys, Asn52 B15 → Lys, Ile158 H14 → Met, 

Val165 H21 → Ile. The theoretical molecular weights are 20137.0 Da and 20118.8 Da for C. 

aceratus and D. mawsoni Cygbs, respectively. Their sequence identity is 98% (Fig. 3.11). 

 

 

 

Fig. 3.11: Amino-acid sequences of D. mawsoni and C. aceratus Cygb. In yellow are 

indicated the differences. 
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Human Cygb – Antarctic fish Cygbs: When compared to mammalian counterparts in a 

multiple sequence alignment (Fig 3.12), Antarctic fish Cygbs display some striking 

peculiarities. Apart from these differences, conservation is high in the rest of the Cygb 

sequences between mammals and fish, with Antarctic fish Cygbs about 55% identical to 

human.  

The residues suggested to be essential for the function, Leu46 B10, Phe60 CD1, His81 

E7, Arg84 E10, Val85 E11 and His113 F8, considered equally important in binding the 

exogenous ligand (de Sanctis et al., 2004; Smagghe et al., 2006; Sugimoto et al., 2004; 

Roesner et al., 2005; Doorslaer et al., 2004; Fago et al., 2004) are conserved and present in 

both Antarctic fish Cygbs.  

In human Cygb, Cys38 B2 and Cys83 E9 residues (Lechauve et al., 2010) are known 

to form a disulfide bridge. In Antarctic fish Cygbs, these cysteine residues occupy different 

position in the primary structure and they are far to form a disulfide bridge (F. J. Luque, 

personal communication).  

Another difference is the length of the C-terminal sequences (CH region). In the 

Antarctic fish Cygbs this region is shorter. 

 

 

Fig 3.12: Amino-acid sequences of the Antarctic fish and human (de Sanctis et al., 2004) 

Cygb. The different residues are in yellow. 

 

 

Temperate fish Cygbs - Antarctic fish Cygbs: The comparison between the temperate 

fish and the Antarctic fish Cygbs is important to understand possible differences due to cold 
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adaptation. Some temperate fish Cygb-1 and Cygb-2 sequences are reported in literature and 

their sequence identity with those of Antarctic fish Cygbs are in table 3. 

 

Table 3 

Sequence identity between Antarctic fish Cygbs and temperate fish Cygbs (T. nigroviridis 

Cygb-1 and -2; O. latipes Cygb-1 and -2; D. rerio Cygb-1 and -2) 

 C. aceratus Cygb-1 D. mawsoni Cygb-1 

T. nigroviridis Cygb-1 72% 72% 

T. nigroviridis Cygb-2 56% 58% 

O. latipes Cygb-1 75% 77% 

O. latipes Cygb-2 55% 56% 

D. rerio Cygb-1 48% 49% 

D. rerio Cygb-2 60% 61% 

 

C. aceratus and D. mawsoni Cygbs can be considered Cygb-1, because they are more closely 

related to the Cygbs-1 from temperate fish, except to D. rerio Cygbs. The sequence alignment 

is shown in Fig. 3.13. 

 

 

 

Fig 3.13: Amino-acid sequences of Antarctic fish, T. nigroviridis (Fuchs et al., 2005), O. 

latipes (Fuchs et al., 2005), D. rerio (Fuchs et al., 2005) Cygbs. The Cys residues are in 

yellow.  

M E RMQ G E A E G D H L E R P S P L T D K E R VM I Q D S WA K V Y E N C D D T G V A I L V R L F V N F

M E RMQ G E A E ­ G D H L E R P S P L T D K E K VM I Q D S WA K V Y E N C D D T G V A I L V R L F V K F

M E RMQ R D G E ­ V D H V E Q P G P L T E K E K VM I Q D S WA K V F Q S C D D A G V A I L V R F F V N F

M S H R E P P P P ­ ­ ­ ­ ­ ­ Q L A V Q R R D V D G Q D G P E R A E P L S D T E R E M I R D AWG H V Y K N C E D V G V S I L I R F F V N F

M E R K Q ­ ­ G E ­ V D H L E R S R P L T D K E R VM I Q D S WA K V Y Q N C D D A G V A I L V R L F V N F

M S C R E S P P P P S P P P QM L G V Q R G E C E ­ ­ D R P E R A E P L S D A E M E I I Q H TWG H V Y K N C E D V G V S V L I R F F V N F

­ ­ ­ M E G D G G ­ V Q L T Q S P D S L T E E D V C V I Q D TWK P V Y A E R D N A G V A V L V R F F T N F

M E K E R E D E E ­ T E G R E R P E P L T D V E R G I I K D TWA R V Y A S C E D V G V T I L I R F F V N F
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P S A K Q Y F E H F R E L Q D P A E MQ Q N A Q L K K H G Q R V L N A L N T L V E N L R D A D K L N T I F N QMG K S H A L
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3.2.2 Cloning, expression and purification 

 

Subcloning, expression and purification was carried out in collaboration with the Prof. 

Sylvia Dewilde during a training time of three months in her laboratories, at the University of 

Antwerp, Belgium.  

C. aceratus and D. mawsoni Cygbs were subcloned in pET3a expression vector and 

over-expressed in E. coli, then purified by ion-exchange and gel-filtration chromatographies 

(data not shown).  

The over-expression showed important difference with the human Cygb. The two 

Antarctic fish Cygbs were over-expressed without haem precursor, δ-Aminolevulinic acid. 

Moreover, whereas generally the human Cygb is expressed in inclusion bodies end refolded in 

presence of hemin, the two fish Cygbs are unexpectedly soluble and bind the haem group. 

The spectra of the lysate showed a high concentration of hexacoordinated ferric-form Cygbs 

in agreement with the expected result and SDS-PAGE indicating a high amount of protein 

with the expected weight (about 20 kDa).  

 

Different steps of purification were tried. The more efficient procedure was the 

following:  

 

 Ammonium sulfate precipitation 

 DEAE bulk 

 Gel Filtration Chromatography: Sephacryl S-200 column 

 Ionic Chromatography: HiTrap DEAE FF column 

 Ionic Chromatography: Q Sepharose column 

 Ionic Chromatography: Mono Q column (pH 7.6) 

The final result was a high amount of protein, as shown in fig. 3.14.  
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Fig. 3.14: SDS-PAGE of D. mawsoni (on left) and C. aceratus (on the right) Cygb. 

 

 

 

3.2.3 Spectroscopic characterisation of the Fe-coordination 

 

A fast way to observe if the protein is in a penta or hexacoordinated state is an 

inspection of the electronic absorbance spectra for both haem oxidation states. The 

pentacoordinate states have the visible-region absorption bands with weak peaks near 500 and 

635 nm and a single asymmetric absorbance band near 555 nm when the protein is in the 

ferrous form. These bands indicate that the haem iron is in the high-spin electronic 

configuration in both oxidation states (Antonini and Brunori, 1971). On the contrary, His 

coordination to the sixth axial position converts the haem iron to the low spin electronic 

configuration in both oxidation states giving rise to stronger visible absorbance in the ferric 

state, and splitting of the ferrous visible absorbance band into two peaks near 560 and 530 nm 

(Kakar et al., 2010). 

The Antarctic fish Cygbs were in hexacoordinated form in both haem oxidation states. 

The hexacoordination was observed in different conditions, displaying no dependence on pH 

and temperature, like the human Cygb. The spectra are shown in Fig. 3.15 for the ferric and 

ferrous form and in table 4 are indicated the characteristic wavelengths for each spectrum. 
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Fig. 3.15: UV-visible absorption spectra of ferric (blue), CO- (red) and deoxy-Cygb (green). 

 

 

Table 4 
Maximum wavelength for hexacoordinated Cygb, for each spectrum. 

 λ1 (nm) λ2 (nm) λ3 (nm) 

Ferric form 560 529 414 

Deoxy-form 560 530 426 

CO-form 568 540 421 

 

  



57 
 

CHAPTER 4 

 

Conclusions 

 

In the biosphere, organisms have succeeded in adapting to a variety of environmental 

conditions. Extreme marine environments usually combine a range of physical gradients (e.g. 

in pressure, temperature, pH, salinity) with toxic and/or essential chemicals (O2, H2S, CH4, 

metals such as Fe, Cu, Mo, Zn, Cd, Pb, etc.) that by far exceed typical oceanic ranges. The 

cellular macromolecules, proteins and nucleic acids, are very sensitive to environment 

perturbations; therefore, the study of globins belonging to different species that live in cold 

but different habitats can be very useful to understand the molecular adaptation to particular 

environmental and stressful conditions. In fact, despite L. reticulatus and G. morhua live in 

the same Arctic region, they showed a different Hb polymerisation behaviour, in response to 

their different life style.  

L. reticulatus was found close to the coasts of Canada (Leim et al., 1966), Greenland 

(Muus et al., 1990), Iceland, Norway and USA (Robins and Ray 1986) and occurs in soft 

bottoms at depths between 100-930 m and at 1-4°C. G. morhua, an important species for 

commercial fisheries and aquaculture (cod), lives the regions from Northwest to Northeast 

Atlantic, coasts of Greenland; around Iceland; coasts of Europe from the Bay of Biscay to the 

Barents Sea, including the region around Bear Island (Cohen et al., 1990). It is an 

oceanodromous fish that swims between 0-600 m at temperature not higher than 15°C (Cohen 

et al., 1990). The different life style of the two species can affect the Hb behaviour, and may 

explain the different polymerisation mechanisms.  

In this study, in vitro Hb polymerisation was demonstrated in L. reticulatus 

hemolysate. The high propensity to aggregation and high β sequence identity of these Hbs has 

been the cause of unsuccessful purification of Hb components from L. reticulatus, despite the 

effort profuse in this direction. A relevant structural property of this Hb is the formation of 

polymers through disulfide bonds between 5 different Cys residues (Cys α105, Cys β31, Cys 

β109 and Cys β146). Particularly, several S-S bridges were formed by C-terminal Cys β146, 

indicating higher reactivity, and/or high flexibility of the domain where this residue is located. 

This behaviour is similar to that of the human variant Hb Rainier (Carbone et al., 1999), and 

of C. kumu Hb (Fago et al., 1993), where Cys β49 replaces His, commonly found in other fish 
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Hbs. In vitro Hb polymerisation was also demonstrated in G. morhua. The aggregates grew 

only in deoxygenated state at low pH, similarly to that showed previously in vivo and shown 

in the literature (Hárosi et al., 1998). Koldkjær and Berenbrink (2007) showed, in other 

species of the family Gadidae, reduction of extracellular pH as the primary cause for in vivo 

sickling with a modulation by O2 pressure. Sickle-cell formation (Koldkjær and Berenbrink, 

2007) suggests that this process may be a unique example of Hb plasticity. The relative 

importance in fish physiology is yet unknown; whether this process occurs in vivo is rather 

difficult to ascertain. Nevertheless, this event deserves further investigation, because of the 

possible links with SCA. However, the discovery of this unusual process suggests that 

polymerisation may be a response to stressful environmental conditions, which a migratory 

species like G. morhua may easily experience.  

Another important response to stressful environmental conditions of G. morhua is the 

high number of globin genes (four α and five β) that suggests a response to challenges in 

temperature or to chronic hypoxia by altering their level expression (Borza et al., 2009). This 

polymorphism was recently related to a different temperature effect of O2 affinity in Arctic 

and non-Arctic fish Hbs. Example of co-evolution of structural and regulatory adaptation with 

a relationship between temperature and functional molecular variation (Star et al., 2011).  

In the process of cold adaptation, the evolutionary trend of Antarctic fish has led to 

unique specialisations, including modification of haematological characteristics, e.g. 

decreased amounts and multiplicity of Hbs. As the extreme of this trend, an important 

example of such peculiarity is the colourless blood of the icefish modern notothenioid family 

Channichthyidae (Ruud, 1954; di Prisco et al., 2002). During this thesis a cytoglobin (Cugb) 

from an icefish (C. aceratus) and a red-blooded fish (D. mawsoni) has been cloned, expressed 

and purified. Since Hb and Mb are key proteins in NO homeostasis (Barouch et al., 2002), the 

icefish, as natural knockout for Hb/Mb, represents a unique example to investigate whether 

these disadaptive losses may have evolved cardiac modifications (Hendgen-Cotta et al., 

2008). When Mb acts as a nitrite reductase, deoxygenated Mb generates NO from circulating 

nitrite in cardiac muscle cells under hypoxic stress, where it suppresses the production of 

radical oxygen species (ROS) in mitochondria, protecting the muscle cells from damage. 

Excess NO is reconverted to nitrate by oxy Mb acting as a dioxygenase (Hendgen-Cotta et al., 

2008). The hearts of Mb-knockout mice do not recover from experimentally imposed 

ischemia; these mice show no evidence of nitrite-induced reduction in the damage to heart 

tissue caused by blood-vessel blockage (Cossins and Berenbrink, 2008).  
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These observations and this study on Antarctic Cygbs may help to better understand 

icefish physiology and the compensatory adaptations evolved in the cardiovascular system of 

these natural knockouts. A possible function of Cygb studied is its involvement in NO 

metabolism, acting as NO dioxygenase, therefore, the recent discovery of Cygb in red-

blooded D. mawsoni and in the icefish C. aceratus suggested a crucial biological function and 

potentially important implications in the physiology and pathology of their tissues. Moreover, 

the comparison started in this thesis between two species with different adaptation will be 

crucial to understand the historical origin of Cygbs. 
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Summary

In vitro, and possibly in vivo, hemoglobin polymerization and
red blood cell sickling appear to be widespread in codfish. In
this article, we show that the hemoglobins of the two Arctic fish
Lycodes reticulatus and Gadus morhua also have the tendency to
polymerize, as monitored by dynamic light scattering experi-
ments. The elucidation of the primary structure of the single
hemoglobin of the zoarcid L. reticulatus shows the presence of a
large number of cysteyl residues in a and b chains. Their role
in eliciting the ability to produce polymers was also addressed
by MALDI-TOF and TOF-TOF mass spectrometry. The
G. morhua globins are also rich in Cys, but unlike in L. reticula-
tus, polymerization does not seem to be disulfide driven. The
widespread occurrence of the polymerization phenomenon dis-
played by hemoglobins of Arctic fish supports the hypothesis
that this feature may be a response to stressful environmental
conditions. � 2011 IUBMB

IUBMB Life, 63(5): 346–354, 2011

Keywords Arctic; fish; hemoglobin; polymerization.

INTRODUCTION

Fish hemoglobins (Hbs) have been extensively studied not

only for their structural and functional properties but also

because they offer the possibility to investigate functional dif-

ferentiation and molecular adaptation in organisms living in a

large variety of environmental conditions. Fish Hbs, functioning

at the interface between the organism and the environment, are

especially interesting because gills are in contact with a medium

endowed with higher oxygen and lower carbon-dioxide tensions

compared to the alveoli of mammalian lungs, where the carbon-

dioxide tension is higher and the oxygen tension lower than in

the atmosphere. Moreover, in the liquid medium, fishes experi-

ence temporal and spatial variations in oxygen availability,

salinity, ionic composition, pH, and temperature; hence their

molecular processes rely on rapid responses to external stimuli.

The basic molecular events associated with these processes

involve protein-structural modifications (1). Many of the func-

tional differences observed in fish Hbs may be interpreted in

terms of substitutions of amino-acid residues, although others

are due to changes in the composition and redox properties of

the medium in which a given protein works. Changes in con-

centration of Hb within the red blood cell (RBC) provide

another strategy for environment adaptation (2).

In vitro, and possibly in vivo, Hb polymerization and RBC

sickling appear to be widespread in codfish (3–5). In a recent

study in vivo, Koldkjaer and Berenbrink (5), using light and

transmission electron microscopy, have demonstrated extensive

in vivo sickling of RBCs of Merlangius merlangus (a gadiform

related to the Atlantic cod Gadus morhua) after capture stress,

without any apparent hemolysis. The authors identify the reduc-

tion of extracellular pH below resting values as the primary

cause for in vivo sickling. The discovery of this unusual process

suggests that polymerization may be a response to stressful

environmental conditions. However, the molecular mechanisms

of Hb polymerization and sickling in cods are yet unknown.
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In man, sickle cell anemia (SCA) is associated with the

expression of the abnormal mutant sickle cell Hb (HbS), arising

from a single-point mutation in the b chain, where polar Glu in

position 6 is replaced by non-polar Val (6). This substitution

induces polymerization that greatly reduces the solubility of the

protein in the deoxy state and causes cell sickling. HbS poly-

mers form an extremely viscous gel, responsible for the peculiar

deformation of the RBCs (7). Polymerization and gel formation

are considered the primary pathogenic events of SCA. HbS is

also less stable than HbA when oxygenated; it auto-oxidizes at

a faster rate and yields high concentrations of reactive oxygen

species (ROS).

The primary structure of the single Hb of Lycodes reticulatus

Hb (family Zoarcidae), living on the sea floor near the coasts of

Northern Europe and North America, is herein described. This

Hb was found to polymerize and form high-molecular-mass

polymers at physiological pH and low temperature. The poly-

merization process was investigated by dynamic light scattering

(DLS), in comparison with that of Hbs of the Atlantic cod

G. morhua (family Gadidae) (8). G. morhua is widely distrib-

uted not only along the shelf areas of the Arctic basin but also

at lower latitudes (9).

Unlike in G. morhua, polymerization of L. reticulatus Hb

does not seem to be pH dependent. Hence, the role of the large

number of cysteyl residues in a and b chains in eliciting the

ability to produce polymers was addressed. It was demonstrated

by MALDI-TOF and TOF-TOF mass spectrometry (MS) that

the cysteyl residues of this Hb induce polymerization by inter-

chain disulfide bonds, which may function as antioxidants pro-

viding protection against ROS, often produced during aerobic

metabolism in environments characterized by fluctuating oxygen

and pH values (10).

Similar to the single Hb of L. reticulatus, the G. morhua Hbs

are also rich in Cys; however, their polymerization does not seem

to be disulfide driven. The potential role of His in driving the pH-

dependent polymerization observed in G. morhua is discussed.

We suggest that the unusual Hb polymerization in these two

Arctic fish is an example of the Hb phenotypic plasticity,

required in species experiencing variable environments.

EXPERIMENTAL PROCEDURES

Materials

CO was purchased from SON, Società Ossigeno Napoli spa.

Sodium dithionite, dithiothreitol (DTT) and Tris-hydroxymethyl-

methylamine (Tris) were from Sigma-Aldrich (Steinheim,

Germany). The other chemicals were from Merck AG

(Darmstadt, Germany), were analytical or reagent grade and

were used without further purification.

Specimens, Hemolysates, Amino-Acid Sequencing

Adult G. morhua and L. reticulatus were collected by bottom

and midwater trawling from the R/V Jan Mayen (L. reticulatus:

Greenland, 728000N, 218010W; G. morhua: Svalbard, 788130N).
Blood was taken by heparinized syringes from the caudal vein.

Saline-washed RBCs were kept frozen at 280 8C until use.

Hemolysates were prepared by addition of approximately

five volumes of 10 mM Tris-HCl pH 7.6 and stripped of

organophosphates with a Sephadex-G25 column (GE-Healthcare

Bio-Sciences). All steps were carried out at 024 8C (11).

Separation of L. reticulatus globins was carried out by reverse-

phase high-performance liquid chromatography (RP-HPLC) of

stripped hemolysate as described (8). Addition of 100 mM DTT

avoided polymerization. Alkylation of sulfhydryl groups with

4-vinylpyridine, deacetylation of the a-chain N terminus and tryp-

tic digestion were carried out as described (12–14). Tryptic pep-

tides were purified by RP-HPLC with a lBondapak C18 column

(0.39 3 30 cm; Waters Associates) as described (15). Sequencing

was performed with an Applied Biosystems Procise 492 automatic

sequencer, equipped with on-line detection of phenylthiohydantoin

amino acids.

Cloning and Sequence Analysis of Globin cDNA

Total RNA was isolated from the spleen of L. reticulatus

using TRI Reagent (Sigma) (16). The cDNA of the b2 globin

was amplified by PCR using oligonucleotides designed on the

N-terminal regions as direct primers and at the adaptor primer

as the reverse primer. Primer sequences are available from the

authors upon request. Amplifications of cDNA were performed

with 2.5 units Taq DNA polymerase, 5 pmol each of the pri-

mers and 0.2 mM dNTPs buffered with 160 mM ammonium

sulfate, 670 mM Tris–HCl pH 8.8, 0.1% Tween-20, 1.5 mM

MgCl2. The PCR program consisted of 30 cycles of 1 min at

94 8C, 1 min at temperature between 42 and 54 8C and 1 min

at 72 8C, and ending with a single cycle of 10 min at 72 8C.
Standard molecular biology techniques (17) were used in the

isolation, restriction, and sequence analysis of plasmid DNA.

Mass Spectrometry

Mass mapping of the a and b1 chains of L. reticulatus was

carried out by overnight trypsin digestion of the native protein

in 50 mM ammonium bicarbonate buffer pH 8.0 at 37 8C.
For disulfide bridges assignments, Hb aggregates purified by gel

filtration were concentrated and digested overnight with

trypsin in the same buffer used for chromatography (10 mM

ammonium acetate pH 7.3) at 37 8C.
In both cases, the peptide mixtures were directly analyzed by

MALDI-TOF and TOF-TOF MS on an AB Sciex 4800 MALDI

TOF-TOF mass spectrometer. Tandem MS analyses (MS/MS)

were carried out on selected signals to confirm amino-acid

sequences.

UV–Visible Spectroscopy

UV–visible electronic absorption spectra were acquired from

700 to 250 nm in a Cary 300 UV–visible spectrophotometer

(Varian).
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Gel Filtration

DTT was added to CO-hemolysates of L. reticulatus and

G. morhua (see below) in 10 mM Tris-HCl pH 7.6, at final con-

centration of 100 mM. The Hb concentration in the hemolysate

was 0.06 mM on a heme basis. Gel filtration was carried out

by fast protein liquid chromatography (AKTA-FPLC) with a

Superose 6 column (GE-Healthcare). Elution was performed at

4 8C, in 10 mM Tris-HCl pH 7.6, 200 mM NaCl.

Oxygen Binding

Hemolysate stripping was carried out as described (15).

Oxygen equilibria were measured in 100 mM MES/HEPES in

the pH range 6.3–8.7, at 5 and 10 8C (keeping the pH variation

as a function of temperature in due account) at a final Hb con-

centration of 0.5–1.0 mM on a heme basis. An average standard

deviation of 63% for values of p50 was calculated; experiments

were performed in duplicate. To obtain stepwise oxygen satura-

tion, a modified gas-diffusion chamber was used, coupled to

cascaded Wösthoff pumps for mixing pure nitrogen with air

(18). Values of pH were measured with a radiometer BMS Mk2

thermostated electrode. Sensitivity to chloride was assessed by

adding NaCl to a final concentration of 100 mM. The effect of

ATP was measured at a final ligand concentration of 3 mM,

in excess with respect to tetrameric Hb. Oxygen affinity (meas-

ured as p50) and cooperativity (nHill) were calculated by linear

fitting of the Hill plot. For each experiment, one aliquot of

CO-hemolysate was thawed, converted to the oxy form by

exposure to light and oxygen, and immediately used; no

oxidation to MetHb was spectrophotometrically detectable.

Dynamic Light Scattering

DLS experiments were performed with 0.06 mM (on a heme

basis) L. reticulatus and G. morhua hemolysates filtered through

0.22-lm Millipore filters, in 100 mM Tris-HCl/MES in the pH

range 6.6–9.0 at 4 8C. CO-hemolysates (800 lL) were flushed

with CO and sodium dithionite was added at a final concentra-

tion of 1 mM. Deoxy hemolysates were prepared by photolysis

of the CO-hemolysates. Samples were then placed in a dry box

filled with nitrogen following addition of few crystals of sodium

dithionite. The cuvettes were sealed with rubber caps. DLS was

performed with a setup of a Photocor compact goniometer,

a SMD 6000 Laser Quantum 50 mW light source operating

at 5,325 Å, and a PMT and correlator from Correlator.com.

All measurements were performed at 4.00 6 0.2 8C in a

thermostated bath.

In DLS, the intensity autocorrelation function g(2)(t) is

measured and related to the electric-field autocorrelation g(1)(t)

by the Siegert relation (19):

g 2ð Þ tð Þ ¼ 1þ b g 1ð Þ tð Þ�� ��2 (1)

where b(�1) is the coherence factor, which accounts for the

deviation from ideal correlation and depends on the experi-

mental geometry. The parameter g(1)(t) can be written as the

Laplace transform of the distribution of the relaxation rate G
used to calculate the translational diffusion coefficient D

gð1ÞðtÞ ¼
Zþ1

�1
sAðsÞ exp � t

s

8: 9; d ln s (2)

where s 5 1/G. Laplace transforms were performed using a

variation of CONTIN algorithm incorporated in Precision

Deconvolve software. From the relaxation rates, the z-average

of the diffusion coefficient D may be obtained as (19)

D ¼ C
q2

(3)

where q 5 4pn0/ksin (y/2) is the modulus of the scattering vec-

tor, n0 is the refractive index of the solution, k is the incident

wavelength, and y represents the scattering angle. If the solu-

tions are quite dilute, the Stokes–Einstein equation, which

rigorously holds at infinite dilution for spherical species diffus-

ing in a continuum medium, may be used to evaluate the

hydrodynamic radius RH of the aggregates.

RH ¼ kT

6pgD
(4)

where k is the Boltzmann constant, T is the absolute tempera-

ture, and h is the medium viscosity. We note that RH in Eq. (4)

for not spherical particles represents the radius of equivalent

spherical aggregates with the same diffusion coefficient (20).

The number of tetramers in each aggregate was obtained by

dividing the volume of aggregates (calculated by the formula

V 5 (4/3)p R3
H) by the tetramer volume.

RESULTS AND DISCUSSION

The primary structure of Hb of L. reticulatus. Cellulose ace-

tate electrophoresis of the fresh hemolysate of L. reticulatus

revealed a single Hb. However, the frozen CO-hemolysate,

once thawed, showed multiple bands in Blue Native PAGE

(data not shown), suggesting formation of polymers during

freezing. All attempts to purify non-polymerized Hb to homo-

geneity were unsuccessful. The RP-HPLC profile of the

CO-hemolysate in the polymerized form, in the absence of

DTT, indicated the presence of the a chain and of a broad

unresolved peak corresponding to the b chains, as established

by MS and partial amino-acid sequencing. In the presence of

100 mM DTT, RP-HPLC showed three well-separated globins,

namely the a chain and two different b chains in equal

amounts exhibiting slight microheterogeneity (as established by

amino-acid sequencing and MS, see below). The amino-acid

sequences of the a and b chains, in comparison with other

sequences, are reported in Fig. 1. The primary structure of the

a chain was established by alignment of tryptic peptides and
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Figure 1. Amino-acid sequence of the (A) a and (B) b chains of L. reticulatus (this work) and Arctic G. morhua (8), Antarctic

T. bernacchii (21) and temperate C. kumu (23). Cys residues are in light grey boxes. HisA7 and HisEF1 in the b2 chain of

G. morhua are underlined. The differences between the two b chains of L. reticulatus are indicated with white letters in dark-grey

boxes. The helical (A–H) and non-helical (NA, A, CD, EF, FG, GH, and HC) regions, as established for mammalian Hb, are indi-

cated; in a chains, helix D is lacking.
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homology with fish globins and confirmed by mass mapping of

its tryptic peptides (see below). DNA sequencing was utilized

for the b2 chain and MS for the amino-acid sequencing of the

b1 chain. The latter was digested with trypsin and the peptide

mixture directly analyzed by MALDI-TOF and TOF-TOF MS.

The accurate mass values of the tryptic peptides were mapped

onto the anticipated amino-acid sequence of the b2 chain used

as template. MS/MS analyses were carried out on the selected

signals displaying mass differences from the b2 peptides, lead-

ing to the definition of their sequences. The N terminus of the

a chain was not available to Edman degradation because of

the presence of a blocking acetyl group. The molecular masses

were 15,663.3 6 0.3 Da for the a and 16,121.5 6 0.3 and

16,067.4 6 0.6 Da for the b1 and b2 chains, respectively, in

perfect agreement with the theoretical values calculated based

on the primary structures. The two b chains differ in only four

positions in a restricted region of the sequence. For the sake

of simplicity, we choose to refer to a ‘‘single’’ Hb, and not to

two Hbs, in the assumption that this ‘‘microheterogeneity’’

defines a genetic variant and not a functionally distinct Hb.

The globins revealed several non-conservative substitutions

with respect to other vertebrate globins. Among the function-

ally important residues suggested to be involved in the molecu-

lar mechanism of the Bohr and Root effects in fish Hbs (21),

Ser b93 F9, Glu b94 FG1, and Gln b144 HC1 are conserved

in the b chains, whereas His b146 HC3 is replaced by Cys. In

human HbA, the main Bohr groups are N-terminal Val a1
NA1 and C-terminal His b146 HC3, which account for about

30% and 50–65% of Bohr effect, respectively (22). In position

a NA1, fish Hbs have acetyl-Ser, therefore, the decreased Bohr

effect observed in L. reticulatus with respect to other fish Hbs

(see below) may be due to the His ? Cys b146 HC3 substitu-

tion; however, the role of His b146 HC3 residue in eliciting

the Root effect is controversial (23). Of the Asp a48 CD6/His

a55 E3 and His b69 E13/Asp b72 E16 pairs, supposed to con-

tribute to the Root effect in fish Hbs (24, 25), only the latter

is conserved. In the a1b2 ‘‘dovetailed’’ switch region in HbA,

formed by Pro a44 CD2, Thr a38 C3, Thr a41 C6, and His

b97 FG4, Pro a44 CD2 is replaced by Ser and Thr a38 C3 by

Gln. Val b60 E4, considered to be invariant in vertebrates,

including most teleosts, is replaced by Ile. Val b67 E11, usu-

ally present at the distal side of the heme, is replaced by Ile.

This substitution may produce functional subunit heterogeneity,

as reported in Hb of temperate Chelidonichthys kumu (23) and

in cathodic Hb of Antarctic T. newnesi (26). In HbA mutants,

the bulky side chain of Ile b67 E11 blocks the access of oxy-

gen to the b chain, significantly lowering the association (and

equilibrium) constant in both the T (27) and R states (28). In

deoxy HbA, Val b67 E11 overlaps the ligand binding site and

is considered to play a key role in controlling the oxygen

affinity. The a and b chains of L. reticulatus contain several

Cys residues often absent in other teleosts, in positions a105
G11, a131 H13, b31 B13, b109 G11, b121 GH4, and

b146 CH3.

The previously published (8) amino-acid sequences of the

two a and the two b chains constituting the three Hbs of

G. morhua are also reported in Fig. 1. Similar to L. reticulatus,

they are unusually rich in Cys. Despite the general trend toward

reduction in His content in teleost Hbs (29), the b2 chain of

G. morhua contains two extra His residues, His b10 A7 and His

b77 EF1 (8). These residues are absent in most fish Hbs

with the exception of L. reticulatus b globins, which have

His b77 EF1.

Oxygen Binding

Functional studies were only performed on the polymerized

form of L. reticulatus Hb, because it was impossible to obtain

non-polymerized Hb unless DTT (which interferes with the

measurements) was present. The oxygen-binding experiments

were performed at 5 and 10 8C (data not shown), in the absence

and presence of allosteric physiological effectors, e.g., chloride

and organophosphates (ATP). The Bohr effect was low, and it

was not significantly enhanced by the effectors. In the whole

pH range and in the presence of the effectors, the Hill coeffi-

cient (nHill) was close to 1.5, reflecting low levels or apparent

lack of subunit cooperativity. Therefore, a leading role of poly-

merization in the lack of Bohr effect in L. reticulatus Hb cannot

be uniquivocally deduced, because Cys in place of His at the C

terminus of this Hb may also substantially decrease such effect.

The previously published data on G. morhua were integrated

by additional functional studies on the hemolysate, which con-

tains partially polymerized Hb forms (8). Experiments were per-

formed at 5 and 10 8C, in the absence and presence of allosteric

effectors. A strong Bohr effect was observed, and enhancement

by organophosphates was high. In the whole pH range, the Hill

coefficient (nHill) was close to one, reflecting very low levels, or

apparent lack of subunit cooperativity.

The Polymerization Process

Gel filtration of the CO-hemolysate of L. reticulatus in 10

mM Tris-HCl pH 7.6 in the absence of DTT revealed multiple

large peaks, again suggesting formation of polymers (data not

shown). The first three fractions contained higher-molecular-

mass components, whose spectral features excluded reoxidation

of the iron. The last small fraction, having identical elution vol-

ume to that of HbA, contained non-polymerized Hb. The results

suggest formation of polymers of different molecular size. Poly-

merization essentially appeared to depend upon formation of

intermolecular disulfide bonds, because the first three fractions

disappeared on addition of DTT and were replaced by the

tetramer. The RP-HPLC of the tetramer obtained from gel filtra-

tion resembled the globin pattern of the hemolysate in the pres-

ence of DTT, with three well-separated peaks of a chain and

the two b chains in equal amounts.

In contrast, gel filtration of the CO-hemolysate of G. morhua

at pH 7.6 in the absence of DTT revealed a much lower amount

of polymers (data not shown). The high-molecular-mass compo-
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nents did not decrease upon addition of 120 mM DTT. In the

first extensive study of the oxygen-transport system of three

Arctic species of the family Gadidae, namely the Arctic cod

Arctogadus glacialis, the polar cod Boreogadus saida, and the

Atlantic cod G. morhua (8), these fish have identical multiplic-

ity of Hbs. The ion-xchange chromatography of the three hemo-

lysates yielded similar elution patterns, showing one broad

band, indicative of unresolved Hbs. Many procedures were

attempted to purify the different components to homogeneity,

but they were unsuccessful, with the exception of the third

component. Hence, concentration-dependent equilibria between

dimers or pH-dependent aggregation between tetramers were

hypothesized (8).

Mass Spectrometry of L. reticulatus Globins

The chemical nature of the oligomers of L. reticulatus Hb

was investigated by mass mapping of their tryptic peptides. The

high-molecular mass, DTT-reduced aggregates were isolated by

gel filtration and directly digested with trypsin. The peptide

mixture was analyzed by MALDI-TOF MS, revealing the

occurrence of peptides belonging to both a and b globin chains.

A number of mass signals in the spectra could not be associated

to any linear peptide within the amino-acid sequence of the glo-

bins and were tentatively interpreted as disulfide-containing

fragments. Based on their unique mass values, these signals

were identified as S-S bridged peptides and their assignments

are listed in Table 1, together with the Cys pairs involved

in the crosslinks. Selected signals were submitted to MS/MS

analyses to confirm the assignments. Mass-spectral analyses

confirmed the hypothesis that the Hb oligomeric species of

L. reticulatus were essentially formed by intermolecular S-S

bridges. Further support to this hypothesis is also provided by

homology modeling, indicating that the distances between pairs

of Cys residues are incompatible to form intramolecular S-S

bridges (L. Boechi, personal communication). As expected, the

vast majority of the Cys residues involved in disulfide-bridge

formation belong to the b globins, suggesting higher reactivity

of these residues than those of the a chain, a well-known beha-

vior similar to human globins. A single Cys of the a chain, Cys

a105 G11 was indeed found involved in an S-S bridge with Cys

b146 CH3. The almost identical sequences of the two b chains

impaired to ascertain which chain was involved in each bridge,

with the exception of the peptide pair associated with the mass

value at m/z 4,490.2 (Table 1). This signal corresponds to the

b2 peptide 31-59 joined to the b1 (or b2) fragment 105-117, as

the two b globins showed different sequences in the 44–58

region. Many S-S bridges were formed by C-terminal Cys b146
CH3 of the b chain. This behavior is similar to that found in

the human variant Hb Rainier, where b C-terminal Tyr is sub-

stituted by Cys, leading to an intramolecular disulfide with Cys

b93 F9 (30).

Dynamic Light Scattering

Globin association in the hemolysates of L. reticulatus and

G. morhua as a function of coordination state (CO and deoxy),

pH (6.6–9.0) and addition of 120 mM DTT (final concentration)

and at 4 8C, was also investigated by DLS. HbA was used as

control of non-aggregating globin, with a hydrodynamic radius

RH 5 3.5 6 0.2 nm. The hemolysates showed multimodal dis-

tributions of three–four aggregates, named I, II, III, and IV

according to increasing size.

At pH 7.6, the L. reticulatus CO-hemolysate in the absence

of DTT (Fig. 2A) showed three aggregates of increasing size

(II at 8.5 6 0.8, III at 34 6 5, and IV at 85 6 12 nm).

Addition of DTT (Fig. 2B) led, within 15 min, to formation

of an additional species (I) and a significant variation of the

aggregation size (I at 3.3 6 0.5, II at 14 6 1, III at 33 6 5,

and IV 174 6 90 nm). Upon DTT removal, almost instantane-

ous disappearance of aggregate I and the slow return to the

initial aggregation distribution occurred. The additional

diffusing particle I can be confidently associated to the single

Hb tetramer of L. reticulatus (3.3 nm) (31), produced by

DTT-induced reduction of disulfide bridges. Because of techni-

cal limitations (at higher concentrations multiple scattering

occurs making analysis of the results unreliable), it was

not possible to investigate the effect of concentration on

aggregation.

Indeed, the large number of Cys residues in a and b chains

of the L. reticulatus hemolysate elicits the ability to produce

polymers. DLS experiments not only confirmed the significant

role of intermolecular disulfide bridges in the aggregation

behavior of the hemolysate of L. reticulatus but also defined the

multimodal aggregate distribution (Table 2). RH in both deoxy

and CO-hemolysates were quite invariant on pH variation (from

6.6 to 9.0), suggesting no crucial involvement of protonable

groups in the aggregation mechanism hemolysate.

The hemolysate of G. morhua exhibited modulation of the

aggregation behavior, unlike that of L. reticulatus. At pH 7.6, in

the absence of DTT, the CO-hemolysate of G. morhua (Fig.

2C) showed three aggregates (I at 3.4 6 0.3, II 88.0 6 5.0, III

421 6 12 nm). As expected, at higher Hb concentration, the rel-

ative population II/I and III/I increased. The number of aggre-

gates and their RH were insensitive to DTT (Table 2), suggest-

Table 1

Mass signals of S-S bridged peptides and Cys residues

involved in tryptic hydrolysis of high-molecular-weight

aggregates of L. reticulatus Hb

MH1 Peptide pair Cys residues involved

4490.2 b2 (31–59) 1 b (105–117) b2 Cys 31-b Cys109

2621.4 b (31–40) 1 b (105–117) b Cys31-b Cys109

1688.8 b (31–40) 1 b (144–146) b Cys31-b Cys146

1755.9 b (105–117) 1 b (144–146) b Cys109-b Cys146

3075.5 b (105–117) 1 b (118–132) b Cys109-b Cys121

3598.7 a (101–128) 1 b (144–146) a Cys105-b Cys146

3462.5 b (118–132) 1 b (118–132) b Cys121-b Cys121
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ing that involvement of Cys in the aggregation mechanism is

not crucial, despite their high content, which is comparable in

number (but not in position) to that of the L. reticulatus

sequence.

In contrast to L. reticulatus, the G. morhua hemolysate

showed dependence of aggregation behavior to pH, particularly

in the deoxy state (Fig. 2D). As pH decreased, the G. morhua

population I distribution decreased in favor of the larger aggre-

gates II and III, whose RH increased (Table 2). This evidence

suggests a significant role of protonable groups in the aggrega-

tion mechanism. Indeed, despite the general trend of reduction

in His content in teleost Hbs, suggested to be an important step

in the evolution of the oxygen-transport system (29, 31), the

analysis of the amino-acid sequences of G. morhua globins (8)

indicates that one of the two b globins contains two extra His

residues (His b7 A7 and His b77 EF1) located on the surface

of the protein (5, 32).

CONCLUDING REMARKS

Pathological aggregation of proteins is generating increasing

interest, and many studies are aimed at the molecular mecha-

nisms underlying the role of point mutations in the primary

structure in driving aggregation. Fish appear to be useful mod-

els for studying polymerization-related phenomena in RBCs and

provide advantages for links with the physiology and biochem-

istry of human sickling disease. By studying the structure and

function of polymerizing fish Hbs, we can better understand this

important group of vertebrates, and we can learn more about

the lethal pathology of human RBC sickling.

In this study, in vitro Hb polymerization was demonstrated

in L. reticulatus. The structural properties of this Hb include

formation of polymers through disulfide bonds. Several S-S

bridges were formed by C-terminal Cys b146 CH3, indicating

higher reactivity, and/or high flexibility of the domain where

this residue is located. This behavior is similar to that of the

human variant Hb Rainier (30), and of C. kumu Hb (23), where

Cys b49 CD8 replaces His, commonly found in other fish Hbs.

Hb polymerization has also been recorded in other teleosts (33).

Previous studies (4, 5) of Hb polymerization that occurs in

RBCs of several fish, sometimes leading to sickle-cell formation

(5), suggest that this process may be a unique example of Hb

plasticity. The relative importance in fish physiology is yet

unknown; whether this process occurs in vivo is rather difficult

to ascertain, but deserves further investigation, because of the

possible links with SCA.

Figure 2. DLS characterization of the hemolysates of L. reticulatus (A, B) and G. morhua (C, D). (A) CO and (B) deoxy state of

L. reticulatus Hb with the distribution of aggregates as a function of hydrodynamic radius, RH, (in black), and examples of the cor-

relation function, g(2)(t), as a function of time for both states (in gray). (C) CO and (D) deoxy state of G. morhua Hb with RH as a

function of pH for each multimodal distribution of aggregates (I, II, and III).

352 RICCIO ET AL.



T
a
b
le

2

R
H
o
f
ea
ch

L
.
re
ti
cu
la
tu
s
an
d
G
.
m
or
hu
a
ag
g
re
g
at
e
in

C
O

an
d
d
eo
x
y
st
at
e
at

d
if
fe
re
n
t
p
H
.
In

b
o
ld
,
R
H
af
te
r
D
T
T
ad
d
it
io
n

p
H

L
.
re
ti
cu
la
tu
s

G
.
m
or
hu
a

C
O

st
at
e

D
eo
x
y
st
at
e

C
O

st
at
e

D
eo
x
y
st
at
e

R
H
(n
m
)
R
H
(n
m
)

R
H
(n
m
)

R
H
(n
m
)

R
H
(n
m
)

R
H
(n
m
)

R
H
(n
m
)

R
H
(n
m
)

R
H
(n
m
)

R
H
(n
m
)

R
H
(n
m
)

R
H
(n
m
)

R
H
(n
m
)

R
H
(n
m
)

I
II

II
I

IV
I

II
II
I

IV
I

II
II
I

I
II

II
I

6
.6

–
7
.8

6
0
.5

(1
1
)

3
2
6

5

(7
.6

3
1
0
2
)

9
3
6

3

(1
.8

3
1
0
4
)

4
.5

6
0
.4

(2
)

1
7
6

3

(1
.1

3
1
0
2
)

7
8
6

7

(1
.1

3
1
0
4
)

3
8
5
6

9
3

(1
.3

3
1
0
6
)

3
.9

6
0
.4

(1
)

1
1
6
6

2
6

(3
.6

3
1
0
4
)

5
0
1
6

5
1

(2
.9

3
1
0
6
)

4
.3

6
0
.6

(1
)

1
6
6
6

1
8

(1
.1

3
1
0
5
)

7
5
2
6

2
7

(9
.9

3
1
0
6
)

7
.0

–
–

–
–

–
–

–
–

–
–

–
3
.5

6
0
.1

1
1
8
6

2
2

5
4
8
6

1
2

3
.5

6
0
.6

(1
)

1
2
1
6

6
0

(3
.8

3
1
0
4
)

5
0
7
6

1
5
0

(3
.8

3
1
0
6
)

7
.3

–
–

–
–

–
–

–
–

–
–

–
3
.9

6
0
.3

(1
)

1
0
2
6

4

(2
.5

3
1
0
4
)

4
4
9
6

5
3

(2
.1

3
1
0
6
)

7
.6

–
8
.5

6
0
.8

3
4
6

5
8
5
6

1
2

4
.9

6
0
.6

2
0
6

3
7
1
6

7
3
5
4
6

6
6

3
.4

6
0
.3

8
8
6

5
4
2
1
6

1
2

3
.8

6
0
.3

7
7
6

1
3

3
8
2
6

4
7

3
.3

6
0
.1

1
4
6

1

(1
4
)

3
3
6

5

(9
.2

3
1
0
2
)

1
7
4
6

9
0

(1
.4

3
1
0
4
)

3
.3

6
0
.6

(3
)

1
3
6

4

(1
.8

3
1
0
2
)

4
9
6

4

(8
.3

3
1
0
3
)

1
3
9
6

4

(1
.0

3
1
0
6
)

3
.5

6
0
.1

(1
)

8
9
6

6

(1
.6

3
1
0
4
)

4
5
3
6

2
9

(1
.7

3
1
0
7
)

3
.4

6
0
.6

(1
)

8
6
6

9

(1
.1

3
1
0
4
)

4
0
0
6

2
0

(1
.3

3
1
0
6
)

8
.0

–
–

–
–

–
–

–
–

3
.5

6
0
.3

(1
)

8
4
6

1
2

(1
.3

3
1
0
4
)

4
4
7
6

7
0

(2
.0

3
1
0
7
)

3
.4

6
0
.3

8
5
6

1
0

3
9
7
6

4
0

3
.5

6
0
.3

(1
)

7
2
6

4

(1
.4

3
1
0
4
)

3
6
0
6

6

(1
.4

3
1
0
6
)

8
.6

–
6
.9

6
0
.3

2
3
6

2
1
0
3
6

1
2

4
.9

6
0
.3

2
0
6

3
8
0
6

1
1

2
8
9
6

7
8

3
.6

6
0
.4

8
1
6

4
4
2
9
6

3
0

4
.2

6
0
.6

(1
)

7
1
6

5

(8
.3

3
1
0
3
)

3
7
5
6

2
8

(1
.2

3
1
0
6
)

3
.6

6
0
.9

1
9
6

5

(8
)

1
0
2
6

1
0

(2
.8

3
1
0
2
)

2
6
9
6

6
8

(2
.5

3
1
0
4
)

3
.3

6
0
.2

(3
)

1
2
.7

6
2

(1
.8

3
1
0
2
)

6
0
6

1
0

(1
.2

3
1
0
4
)

2
4
0
6

9
0

(5
.6

3
1
0
5
)

3
.2

6
0
.3

(1
)

8
6
6

6

(1
.2

3
1
0
4
)

4
2
4
6

5
0

(1
.7

3
1
0
7
)

9
.0

–
–

–
–

–
–

–
–

3
.6

6
0
.3

(1
)

9
5
6

7

2
(2
.0

3
1
0
4
)

4
8
2
6

5
0

(2
.6

3
1
0
6
)

4
.0

6
0
.2

(1
)

7
7
6

5

(1
.0

3
1
0
4
)

3
8
4
6

3
0

(1
.3

3
1
0
6
)

In
b
ra
ck
et
s,
n
u
m
b
er

o
f
te
tr
am

er
in

th
e
ag
g
re
g
at
e
(s
ee

E
x
p
er
im

en
ta
l
p
ro
ce
d
u
re
s
fo
r
d
et
ai
ls
).

353HEMOGLOBIN POLYMERIZATION



ACKNOWLEDGEMENTS

This study is financially supported by the Italian National

Programme for Antarctic Research (PNRA). It is in the frame-

work of the SCAR programme Evolution and Biodiversity in

the Antarctic (EBA), the project CAREX (Coordination Action

for Research Activities on Life in Extreme Environments),

European Commission FP7 call ENV.2007.2.2.1.6, and of the

cruises TUNU I-IV (Greenland). The protein sequence data

reported in this article will appear in the UniProt Knowledge-

base under the accession number(s): P86882 (L. reticulatus a
chain); P86879 and P86887 (L. reticulatus b1 and b2 chain,

respectively).

REFERENCES
1. Perutz, M. F. (1983) Species adaptation in a protein molecule. Mol.

Biol. Evol. 1, 1–28.
2. Weber, R. E. and Jensen, F. B. (1988) Functional adaptations in

hemoglobins from ectothermic vertebrates. Annu. Rev. Physiol. 50,

161–179.

3. Yoffey, J. M. (1929) A contribution to the study of the comparative his-

tology and physiology of the spleen, with reference chiefly to its cellu-

lar constituents. I. In Fishes. J. Anat. 63, 314–344.
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1. The extreme marine environments

It is currently recognised that, by virtue of their extension, extreme
environments are the most important part of the Earth's biosphere.
Their study is still limited, but more and more extreme environments
are now becoming accessible thanks to the broadening of technolog-
ical progress and research on extreme adaptations.

The marine environments are generally of various nature and
consequently include a wide variety of microorganism communities
able to adapt even under the most stressing conditions and to grow at
remarkably high rates; microorganisms are a potential treasure of
gene resources (Bowler et al., 2009) and possess a great potential for
producing new and different bioactive metabolites and enzymes for
bio-prospecting studies.

Extrememarine environments usually combine a range of physical
gradients (e.g. pressure, temperature, pH, salinity) and toxic and/or
essential chemicals (oxygen, H2S, CH4, metals such as Fe, Cu, Mo, Zn,
Cd, Pb, etc.) that by far exceed typical oceanic ranges. Communities
often rely on species-specific interactions to carry out major
ecological functions. Studies of interspecies interactions (e.g. genetic
exchange) and of novel metabolic pathways are cutting-edge issues
that need to be tackled to understand their role in marine
environments.

The Antarctic marine habitats are unique natural laboratories for
fundamental research on the evolutionary processes that shape
biological diversity in extreme environments. The Antarctic biota

http://dx.doi.org/10.1016/j.margen.2010.09.001
mailto:c.verde@ibp.cnr.it
http://dx.doi.org/10.1016/j.margen.2010.09.001
http://www.sciencedirect.com/science/journal/18747787


126 R. Russo et al. / Marine Genomics 3 (2010) 125–131
evolved under the influence of a suite of geological and climatic
factors, including geographic isolation of the landmass and continen-
tal shelves, extreme low temperature and intense seasonality.
Isolation and extreme environmental history have forged a unique
biota, both on land and in the sea. Unlike deep oceans, polar marine
environments are subject to large seasonal variations in sea-ice cover,
greatly affecting the biology of organisms (Moline et al., 2008).

In an extreme environment such as Antarctica, one of the most
important driving forces in the evolutionary adaptations of marine
organisms is the enhanced oxygen solubility in the cold waters of the
Southern Ocean (Chen et al., 2008). These environmental conditions
may cause the production of high levels of ROS, able to oxidise
proteins, DNA and lipids and leading to extensive injury of cellular
components and cell death (Fig. 1, adapted from Zhou et al., 2010).
ROS capable of such damage include, but are not limited to, the
superoxide anion (O2

−), hydrogen peroxide (H2O2), and the hydroxyl
radical (OH∙). Intracellular free radicals, i.e., free, small molecules with
an unpaired electron, are often ROS. ROS are formed and degraded by
all aerobic organisms, either when present in the concentrations
required for normal cell function, or in excessive amounts, leading to
oxidative stress. A balance between oxidant and antioxidant intra-
cellular systems is hence vital for cell function, regulation, and
adaptation to growth conditions. Therefore, cold-adapted organisms
must develop an effective and intricate network of defence mechan-
isms against oxidative stress.
2. The polar bacteria

Temperature-dependent gene expression and in situ comparative
analyses will significantly progress taking advantage from microbial
genomes. Microorganisms have been found in a great variety of icy
environments (where they stay viable for very long times), e.g.
permafrost, polar oceans, snow, sea ice, glacial ice, cryoconite holes.
Examples include ice-covered hypersaline and other lakes (Priscu
et al., 1998) and cryptoendolithic communities colonising the pore
spaces of exposed rocks in the Dry Valleys (de la Torre et al., 2003) and
other Antarctic locations, methanogenic Archaea (Tung et al., 2005)
and ultra-small microorganisms found in the deepest part of a 3053-m
ice core in Greenland (Miteva and Brenchley, 2005).
Fig. 1. Oversimplified scheme of oxidative and antioxidative sy
Thanks to their short generation times and being most bacteria
cultivable, they can beused in several experiments aimed to understand
cold responses, since the responses of multiple generations to selective
forces (e.g. environmental conditions and their changes) can be
followed relatively easily and rapidly in selection experiments.

Currently, the knowledge of polar microorganisms based on
ecological and genomic perspectives is in the early phase of an ex-
ponential growth. The sequences of some bacterial polar microbial
genomes are already in GenBank, accompanied by publications, e.g. the
euryachaeota Methanogenium frigidum and Methanococcoides burtonii
(Saunders et al., 2003) from Lake Ace in the Antarctic region of the
Vestfold Hills, the γ-proteobacterium Colwellia psychrerythraea 34H
(Methé et al., 2005) and Pseudoalteromonas haloplanktis TAC125
(PhTAC125) (Médigue et al., 2005) and the δ-proteobacteria Desulfotalea
psychrophila (Rabus et al., 2004). Studies on many others are in various
stages of completion (Table 1, adapted from Murray and Grzymski,
2007). Recently, the genome of the Exiguobacterium sibiricum strain
isolated from 3-million-year old permafrost was sequenced and
annotated (Rodrigues et al., 2008). Adequate understanding of microbial
diversity and genome-linked capabilities will enable us to assess polar-
ecosystem structure and function, as well as to establish the effects of
climate change.
3. Molecular adaptations in polar microorganisms

Evolution has allowed cold-adapted organisms not simply to
survive, but to grow successfully under the extreme conditions of cold
habitats, through a variety of structural and physiological adjustments
in their genomes. These strategies include synthesis of factors, such as
cold-shock proteins (Cavicchioli et al., 2000), molecular chaperones
(Watanabe and Yoshida, 2004), compatible solutes (Pegg, 2007) and
structural modifications leading to the maintenance of membrane
fluidity (Russell, 1998; Chintalapati et al., 2004). In addition to adap-
tations at the cellular level, a key adaptive strategy is the modification
of enzyme kinetics, allowing maintenance of sufficient reaction rates
at thermal extremes. Enzyme catalysis is based on increased flexibility
in some regions of cold-active-enzyme architecture and high activity
with concomitant increase in thermolability (Georlette et al., 2004).
However, the adaptations to protein architecture essential to cold-
stems in bacterial cells. Adapted from Zhou et al. (2010).
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Table 1
Polar bacterial and archaeal genomes. The status of genome sequencing without accession number is still in progress or available by URL, adapted fromMurray and Grzymski (2007).

Domain Group Species Strain origin Status of genome sequencing/
accession number or URL

Reference

Archaea Euryarchaeota Methanogenium frigidum Ace Lake, Antarctica Draft/http://psychro.bioinformatics.
unsw.edu.au/blast/mf_blast.php

Saunders et al. (2003)

Archaea Euryarchaeota Methanococcoides burtonii DSM6242 Ace Lake, Antarctica Completed/CP000300 Saunders et al. (2003)
Bacteria γ-Proteobacteria Colwellia psychrerythraea 34H Arctic marine sediments Completed/CP000083 Methé et al. (2005)
Bacteria γ-Proteobacteria Shewanella frigidimarina NCMB400 Sea ice, seawater, Antarctica Completed/CP000447
Bacteria γ-Proteobacteria Psychrobacter arcticus 273-4 Siberian permafrost Completed/CP000082
Bacteria γ-Proteobacteria Psychrobacter cryohalolentis K5 Siberian permafrost Completed/CP000323, CP000324
Bacteria γ-Proteobacteria Oleispira antarctica RB-8 Rod Bay, Ross Sea, Antarctica In progress
Bacteria γ-Proteobacteria Pseudoalteromonas haloplanktis TAC125 Coastal Antarctic seawater,

Terre Adélie
Completed/CR954246, CR954247 Médigue et al. (2005)

Bacteria δ-Proteobacteria Desulfotalea psychrophila LSv54 Arctic marine sediments,
Svalbard

Completed/CR522870, CR522871,
CR522872

Rabus et al. (2004)

Bacteria Firmicutes Exiguobacterium sibiricum 255-15 Siberian permafrost Completed/AADW00000000 Rodrigues et al. (2008)
Bacteria Bacteriodetes Psychroflexus torquis ATCC 700755 Sea ice algal assemblage,

Prydz Bay, Antarctica
Draft/AAPR00000000

Bacteria Bacteriodetes Polaribacter filamentous 215 Surface seawater, north of
Deadhorse, Alaska

In progress

Bacteria Bacteriodetes Polaribacter irgensii 23-P Nearshore marine waters off
Antarctic Peninsula.

Draft/AAOG00000000

Bacteria γ-Proteobacteria Psychromonas ingrahamii 37 Sea ice, off Point Barrow in
northern Alaska

Completed/CP000510

Bacteria Actinobacteria Actinobacterium PHSC20C1 (marine) Nearshore marine waters of
Antarctic Peninsula

Draft/AAOB00000000
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active enzymes are yet not well understood. Nevertheless, the
biochemical properties of cold-active enzymes make them attractive
for exploitation in biochemical, bioremediation, and industrial pro-
cesses (Feller and Gerday, 2003).

The comparative analysis of the genome of M. frigidum and M.
burtonii was the first study encompassing psychrophile to hyperther-
mophile lifestyles (Saunders et al., 2003). Preliminary studies on
proteins have revealed the presence in their genome of cold-shock-
domain folds and the typical properties of cold-adapted proteins,
namely an increased number of glutamyl and threonyl residues.

In PhTAC125, a significant bias towards asparagyl residues was
found (Médigue et al., 2005).

E. sibiricum is constitutively adapted to cold with differential gene
expression between 4 °C and 28 °C (Rodrigues et al., 2008).

To preserve their function, proteins must reach a balance of
structural rigidity and flexibility in their environments. Generally,
enzymes isolated from psychrophiles living in perennially cold
habitats are endowed with high catalytic efficiency at low temper-
ature and low stability due to enhanced flexibility (Feller and Gerday,
2003).

Among cold-adapted bacteria, the genus Colwellia, within γ-proteo-
bacteria, provides an unusual case, i.e. all characterised members are
strictly psychrophilic (requiring temperatures of -20 °C to grow on solid
media) and live in stably cold environments, including deep sea and
Arctic and Antarctic sea ice (Deming and Junge, 2005). Many species
produce extracellular polymeric substances relevant to biofilm formation
and cryoprotection (Krembs et al., 2002) and enzymes capable of
degrading high-molecular-mass organic compounds. Cold-adapted
bacteria have developed responses to strong oxidative stress. Indeed
marine organisms have been exposed to permanent excess of oxygen,
due to its high solubility at cold temperatures, leading to oxygen reserves
larger than those available in warmer waters. The apparent benefits of
easier oxygen supply are contrasted by the constraints on kinetic effects
at low temperature, which impair the functional capacities of molecules,
and by increased production of ROS. Therefore, augmented capacities in
antioxidative defence are likely to be important components of
evolutionary adaptations in a cold and oxygen-rich environment. The
genomesequenceofC. psychrerythraea, anobligatelypsychrophilicArctic
bacterium, has provided an important opportunity to better understand
its potential functions in themarine environment and to gain insight into
adaptation (Methé et al., 2005). Environments in which Colwellia have
been found include ice formations currently under study as models of
past ice ages on Earth (Deming, 2002).

C. psychrerythraea (Methé et al., 2005) seems to have faced high
oxygen concentration by developing enhanced antioxidant capacity
owing to the presence of several genes that encode catalases and
superoxide dismutases. In contrast, the genome sequence of
PhTAC125 reveals that the bacterium copes with increased oxygen
solubility by enhancing production of oxygen-scavenging enzymes
and deleting entire metabolic pathways, such as those which generate
ROS as side products. The deletion of the ubiquitous molybdopterin-
dependent metabolism in the PhTAC125 genome (Médigue et al.,
2005) and the number of proteins involved in scavenging chemical
groups (see below) can be seen in this perspective. Oxygen-con-
suming lipid desaturases achieve both protection against oxygen and
synthesis of lipids, making the membrane fluid. These characteristics
make this bacterium not only a model for the study of adaptation to
cold marine conditions but also an attractive tool for biotechnology
production of proteins (Médigue et al., 2005). The cold environment
of PhTAC125 raises the problem of how this microorganism copes
with ROS. High levels of ROS are potentially toxic for the cell, being
involved in a large number of pathological mechanisms (Finkel,
2003). ROS may act as signalling molecules during cell differentiation,
cell-cycle progression and in response to extracellular stimuli (Sauer
et al., 2001). Indeed, low temperatures should favour oxygen solu-
bility and increase the stability of oxygen-derived toxic compounds.
4. The globins of PhTAC125 and their potential role in oxidative
stress

PhTAC125 provides an opportunity for studying molecular
strategies adopted by cold-adapted bacteria to cope with low
temperatures and high oxygen concentration.

The presence of several enzymes involved in scavenging chemical
groups affected by ROS (such as peroxiredoxins and peroxidases) and
one catalase-encoding gene (katB) with a possible homologue
(PSHAa1737) (Médigue et al., 2005) makes PhTAC125 a well-adapted
microorganism against ROS under cold conditions.

http://psychro.bioinformatics.unsw.edu.au/blast/mf_blast.php
http://psychro.bioinformatics.unsw.edu.au/blast/mf_blast.php
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A further sign, which may be related to the peculiar features
of cold habitat, may be the synthesis of bacterial hemoglobins and
flavohemoglobin, surprisingly versatile proteins serving several
biological functions. Interestingly, the C. psychrerythraea genome
does not possess genes encoding 2-on-2 (2/2) hemoglobins, whereas
the E. sibiricum 255-15 (Rodrigues et al., 2008) and Psychromonas
ingrahamii 37 (Riley et al., 2008) genomes contain genes encoding
2/2 hemoglobins. These molecules are bound to fulfil an important
physiological role, including protection of the cell from nitrosative
and oxidative stress.

Multiple genes encoding2/2 hemoglobins (annotated as PSHAa0030,
PSHAa0458, PSHAa2217) and one for flavohemoglobin (PSHAa2880)
have been discovered in the genome of PhTAC125, suggesting that
specific and distinct functions may be associated to these two classes of
proteins (Giordano et al., 2007).

The 2/2 hemoglobins are widely distributed in bacteria, unicellular
eukaryotes and plants. They are small oxygen-binding hemoproteins,
generally shorter than vertebrate hemoglobins (exhibiting the
classical 3/3-fold myoglobin-like) because they lack 20–40 amino-
acid residues (Pesce et al., 2000), (Fig. 2). The globin fold is based on a
2/2 α-helical sandwich (Pesce et al., 2000). The original phylogenetic
analysis of these hemoglobins classifies them into three groups,
denoted I, II, and III (Vuletich and Lecomte, 2006). A number of three-
dimensional structures of proteins belonging to the three groups have
been recently elucidated at atomic resolution by X-ray crystallogra-
phy and NMR (see Nardini et al., 2007, and references therein); 2/2
hemoglobins belonging to the three groups may coexist in some
bacteria, suggesting distinct functions. Such postulated functions,
consistent with observed biophysical properties, include long-term
ligand or substrate storage, NO detoxification, oxygen/NO sensing,
redox reactions, and oxygen delivery under hypoxic conditions
(Wittenberg et al., 2002). The high affinity for oxygen suggests that
2/2 hemoglobins function as oxygen scavengers rather than oxygen
transporters (Ouellet et al., 2003).

Phylogenetic analyses showed that the 2/2 hemoglobins encoded
by the PSHAa0030 and PSHAa2217 genes belong to group II, and that
encoded by PSHAa0458 to group I. The PSHAa0030 gene encoding the
2/2 hemoglobin hereafter called PhHbO, was cloned, and over-
expressed in Escherichia coli. The recombinant protein was purified
to be structurally and functionally investigated (Giordano et al.,
2007). Recombinant PhHbO is a mixture of the ferric and ferrous
forms, also showing predominance of hexacoordination in both forms,
strongly dependent on pH and temperature (Giordano et al., 2007;
Verde et al., 2009; Howes et al., unpublished). In the absence of
exogenous ligands, an internal amino-acid residue is able to
Fig. 2. Comparison between the three-dimensional structure of a 3/3 hemoglobin and a 2/2 h
where the heme group is surrounded by 3 helices on the proximal site (F, G, H) and 3 helices
heme pocket is sandwiched between helices B and E on the distal site and helices G and H
coordinate the heme iron, either in ferrous or ferric form (Fig. 3).
Hexacoordinated hemoglobins are generally observed in bacteria,
unicellular eukaryotes, plants, invertebrates and in some tissues of
higher vertebrates (Vinogradov and Moens, 2008), but only a few
cases have been examined and reported in the literature for bacterial
2/2 hemoglobins, such as the ferrous form of Mycobacterium leprae
2/2 hemoglobin (Visca et al., 2002), the ferric form of 2/2 hemo-
globins from the cyanobacteria Synechococcus sp. PCC 7002 (Scott
et al., 2002) and Synechocystis sp. PCC 6803 (Falzone et al., 2002),
and the ferrous form of 2/2 hemoglobin of Herbaspirillum seropedicae
(Razzera et al., 2008). Their physiological role is not well understood.

Hexacoordination has also been found in the ferric state (β chains)
of several tetrameric hemoglobins (Riccio et al., 2002; Vitagliano et al.,
2004; Vergara et al., 2007, 2008; Vitagliano et al., 2008) and in ferric
and ferrous states of neuroglobins (Pesce et al., 2004) and cytoglobins
(de Sanctis et al., 2004). The occurrence of ferrous (hemochrome) and
ferric (hemichrome) oxidation states in members of the hemoglobin
superfamily is not uniform suggesting that the functional roles of
these oxidation states are multiple, possibly being a tool for
modulating ligand-binding or redox properties. According to the
evidence of higher peroxidase activity in Antarctic fish hemoglobins,
the exchange between hemichrome and pentacoordinated forms may
play a distinctive physiological role in Antarctic teleosts (Vergara et
al., 2008; Vitagliano et al., 2008).

Hexacoordination may suggest a common physiological mecha-
nism for protecting cells against oxidative chemistry in response to
high oxygen concentration. Several roles have been hypothesised for
the hexacoordinated neuroglobin and cytoglobin, e.g. oxygen scaven-
ger under hypoxic conditions (Burmester et al., 2000, 2002), terminal
oxidases (Sowa et al., 1999), oxygen-sensor proteins (Kriegl et al.,
2002), proteins involved in NO metabolism (Smagghe et al., 2008).

A further confirmation of involvement of PhHbO in the protection
against the stress induced by high oxygen concentration comes from
recent results on genomic mutant strain, in which the PhHbO
encoding gene (PSHAa0030) was inactivated by insertional mutagen-
esis (Parrilli et al., 2010). Disk diffusion assays display a hydrogen
peroxidase sensitivity of PhTAC125(-30) mutant in comparison with
the wild-type. The above results suggest that PhHbOmay be endowed
of peroxidase activity.

5. The globins of PhTAC125 and their potential role in nitrosative
stress

The PhTAC125 genome contains genes putatively involved in the
metabolism of NO, namely NO reductase and nitrite reductase, or in
emoglobin. (A) Spermwhale myoglobin (PDB code: 1VXF) is the typical 3/3 hemoglobin
on the distal site (A, B, E). (B) Example of a 2/2 hemoglobin (PDB code: 1UVY) where the
on the proximal site.

image of Fig.�2


Fig. 3. (A) Heme coordination in a pentacoordinated hemoglobin and (B) in a hexacoordinated hemoglobin where the distal histidyl residue acts as the sixth ligand.
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NO scavenging, as mentioned earlier, i.e. encoding flavohemoglobin
and 2/2 hemoglobins.

The physiological role fulfilled by PhHbOwas also investigated by a
genomic approach, taking advantage of the availability of genetic tools
evolved by this Antarctic bacterium (Parrilli et al., 2008), combined
with the possibility to study the purified protein (Giordano et al.,
2007). The mutant strain, in which the PhHbO encoding gene was
inactivated (Parrilli et al., 2010), was grown under controlled
conditions and its growth behaviour was compared to that of wild-
type cells, when oxygen pressure and growth temperature were
changed, observing lower duplication speed and poor bacterial
growth when PhTAC125 was cultivated in microaerobiosis, especially
at higher temperatures (e. g. 15 °C), due to lower oxygen solubility
than at 4 °C. The suggested involvement of PhHbO in cellular
protection against NO-induced stress was confirmed by the higher
sensitivity of the mutant than wild-type cells, to spermidine
NONOate, a NO releaser (Parrilli et al., 2010). Bacterial cells have
developedmechanisms for NO detoxification, against cytotoxic effects
of NO (Poole, 2005). Homeostasis of NO is achieved through balance
between its production and consumption (Fig. 4). At high concentra-
tions, NO is not a messenger: it is toxic. Its ability to react with oxygen
and ROS leads to production of reactive nitrogen species (RNS) (Poole
and Hughes, 2000). In a rich oxygen environment and under cold
stress, NO detoxification may require more than one defence
mechanism. In the PhTAC125 genome, besides the gene encoding
the hexacoordinated PhHbO, there is also a gene encoding a
flavohemoglobin, a protein having the heme-containing oxygen-
binding domain, and a FAD-containing reductase domain. It is widely
Fig. 4. Oversimplified reaction of scavenging of NO by hemoglobin. Hemoglobin in ferrous for
the other ligands to produce ferric hemoglobin and nitrate. Flavohemoglobins display a red
recognised as a NO-detoxifying protein (Poole, 2005). Several
adaptations have been proposed in protection against NO in bacteria
(Nunoshiba et al., 1995), and flavohemoglobin has a role in some of
these (Mowat et al., 2009).

A transcriptional analysis of the PhHbO and flavohemoglobin-
encoding genes was carried out on PhTAC125 wild type and
PhTAC125(-30) mutant grown in all tested conditions. The tran-
scription of the flavohemoglobin encoding genewas observed only in
PhTAC125(-30)mutant when grown at 4 °C in microaerobiosis. Since
the transcription of flavohemoglobin-encoding genes is usually
directly or indirectly induced by NO (Hausladen et al., 1998; Spiro,
2007) the observed flavohemoglobin-gene expression is suggestive
of the occurrence of a NO induced stress related to the PhHbO absence
(Parrilli et al., 2010).

No data are available on the presence of NO in PhTAC125;
however, cellular adaptation aimed at protection against damages
caused by NO and NO-derived species has been demonstrated in the
phylogenetically related γ-proteobacterium Escherichia coli
(Nunoshiba et al., 1995).

6. Concluding remarks

Psychrophilic bacteria have successfully coped with the twomain
physical challenges they had to confront, namely firstly the low
thermal energy, which slows down the metabolic flux, and secondly,
the viscosity of the medium, significantly increased by low
temperatures, strongly contributing to slow down the biochemical
reaction rates.
mmay react with either NO or oxygen. The liganded hemoglobin will react further with
uctase domain to achieve the re-reduction of the heme iron following NO destruction.
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Genome analyses indicate that cold adaptation is the result of
synergistic changes in the overall genome configuration reflected in
the up-regulation and expansion of specific genes rather than the
presence of specific genes responsible for psychrophilic genotype and
lifestyle. Cold-adapted bacteria require preservation of the flexibility,
topology, and interactions of macromolecules such as DNA, RNA and
proteins, which are the main targets of these adaptations as they
regulate the equilibrium between substrates and products, macro-
molecular assemblies and appropriate folding. In cold-adapted
proteins the adaptivemodifications appear to rely on higher flexibility
of key parts of the molecule and/or decreased stability, partially
compensating the effects of low temperature (Marx et al., 2007). In
addition, Antarctic marine bacteria potentially experience the
pressure of oxidative stress and the metabolic costs associated with
antioxidant defences. Therefore, augmented capacities in antioxidant
defence are likely to be important components in evolutionary
adaptations in a cold and oxygen-rich environment. Although the
number of deposited 2/2 hemoglobin sequences has grown very fast
in the last decade, we still possess limited functional information for
these proteins. However, more recent data strongly suggest that these
proteins are able to perform physiological tasks other than the
reversible binding of oxygen typical of the 3/3 hemoglobins. These
additional functions may include oxygen scavenging, NO processing,
protection against oxidative damage and sulfide binding (Nicoletti et
al., 2010).
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1. Introduction

Fewproteins havebeen studied in such awide arrayof organisms as
hemoglobin (Hb), and recent discoveries on its structure–function
relationship keep stimulating interest. Hbs are very ancient proteins;
they probably evolved from enzymes that used to protect the tissues
against toxic oxygen levels. Hbs have been found in bacteria, protists,
fungi, plants and animals; they serve a wide array of physiological
roles, from oxygen transport in vertebrates to catalysis of redox
reactions (Gardner et al., 1998; Minning et al., 1999). These different
functions suggest the acquisition of new roles, by changes not only in
l rights reserved.
the coding regions, but also in the regulatory elements in the pre-
existing structural gene (Hardison, 1998).

Hbs share a common structure comprising 5–8 helices. Thanks to
genome sequencing, the evolutionary tree of globins went back to
1800 million years at the time when the oxygen began to accumulate
in the atmosphere (Wajcman and Kiger, 2002). It is generally accepted
that during the first 2000 million years of existence of the Earth, the
oxygen levels in the atmosphere were very low until the advent of the
“Great Oxidation” (Holland, 2006). The atmospheric oxygen content
reached the present levels about 540 million years ago (mya)
(Holland, 2006). At those times, the Hb-like ancestor was likely to
have adapted to locally scavenge excessive oxygen concentration and/
or, similar to bacterial flavoHbs to be involved in detoxification of
nitrogen monoxide (Poole, 2005). The evolution of simple oxygen-
binding proteins into multi-subunit proteins, in combination with the
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development of the circulatory system, made the transport of oxygen
from the blood to metabolising cells possible on a significant scale
(Wajcman and Kiger, 2002).

Thus, the familiar vertebrate Hb, a tetramer of two identical α and
β globin chains, developed relatively recent adaptation to widely
different environmental conditions (Vinogradov and Moens, 2008).
The amino-acid sequences of the α and β globins are about 50%
identical, suggesting a common ancestor (Hardison, 1998). The
specialised function in higher vertebrates imposes severe structural
constraints on the Hb molecule. Hence, it is not surprising that only a
small fraction of the residues of the polypeptide chains are allowed to
be replaced during evolution. According to the species-adaptation
theory of Perutz (1983), the replacement of few key residues may
produce functional modulation. The first protein crystal structures of
myoglobin (Mb), present in cytoplasm of skeletal and cardiac
myocytes, and Hb provided the basis to understand the relationship
between changes in amino-acid sequence and protein overall
structure (Kendrew et al., 1958; Perutz et al., 1965). During the
following four decades, studies of protein structure and function have
led to a detailed understanding of these hemoproteins.

The quaternary structure, assembling the four globin subunits, also
provided classical source of theories on allosteric conformational
transitions (Monod et al., 1965; Perutz et al., 1987). The main concept
of the two-state allosteric model of Monod, Wyman and Changeux
(MWC) was that the Hb molecule can only exist in two quaternary
states, corresponding to a low-affinity structure T (Tense) and a high-
affinity structure R (Relaxed) (Monod et al., 1965). According to the
MWC model, cooperative oxygen binding arises from a shift in the
population from the T to R structure as binding increases. This model
further postulates that the heterotropic effects, such as the Bohr effect,
are due to shifts of the allosteric equilibrium.

In addition to tetrameric Hbs and monomeric Mbs, four vertebrate
hemoproteins have been recently discovered. These are cytoglobin
(Cygb) which is widely expressed in vertebrate tissues (Trent and
Hargrove, 2002; Burmester et al., 2002), globin E (GbE) (Kugelstadt
et al., 2004) in the chicken eye (absent in mammals), globin X (GbX)
recently found in fish and amphibians (Roesner et al., 2005) and
neuroglobin (Ngb) (Burmester et al., 2000). The latter has received
Fig. 1. A simplified phylogenetic tree of vertebrate globins. A
the most attention for its hypothetical role in protecting neurons from
several injuries (Greenberg et al., 2008).

Phylogenetic analyses of vertebrate globins suggest a common
ancestor, but confirm an ancient evolutionary relationship between
GbXandNgb, suggesting the existence of twodistinct globin types in the
last common ancestor of Protostomia and Deuterostomia (700 mya)
(Roesner et al., 2005) as shown in Fig. 1. In fact, GbX sequences are
distinct from vertebrate Hb, Mb, Ngb, and Cygb, but display the
highest identity scores with Ngb (26% to 35%). For the first time in
vertebrate globins, analysis of the gene structure showed an intron in
helix E of Ngb and GbX, supporting the assignment of Ngb and GbX to
a gene family different from that including Mb, Hb and Cygb. Only
two introns, positioned at B12.2 and G7.0, are present in most
vertebrate genes and are phylogenetically ancient ((Wajcman and
Kiger, 2002; Roesner et al., 2005).

The variety of recently discovered bacterial Hbs has dramatically
changed our view of the globin family. Bacterial Hbs highlight that
oxygen transport in vertebrate Hbs is a relatively recent evolutionary
acquisition and that the early Hb functions have been enzymatic and
oxygen sensing (Vinogradov and Moens, 2008). The bacterial super-
family comprises three families distributed in two structural classes
(Fig. 2). Within each family a given globin may occur in a chimeric or
in a single-domain structure (Vinogradov and Moens, 2008). The first
class, including the two families of flavoHbs and sensor Hbs,
respectively involved in nitrosative stress and in adaptive responses
to fluctuations of gaseous physiological messengers, displays the “3-
on-3” classical Mb-like folding (3/3 Hbs). Historically, the first
members of the two families were found to be chimeric. Single-
domain flavoHbs are present in eukaryotic globins unlike single-
domain sensor globins. The second class includes the third family of
“2-on-2” Hbs (2/2 Hbs), and is widely distributed in bacteria,
microbial eukaryotes and plants. Currently, there are still some
uncertainties about the evolutionary relationship between the three
families. The 2/2 Hbs and the sensor globins seem to have kept their
original enzymatic functions in prokaryotes, plants and some
unicellular eukaryotes. Therefore, the flavoHb family has been the
only one able to adapt to different functionsmore extensively than the
other two families (Vinogradov and Moens, 2008).
fter Brunori and Vallone, 2007; Vinogradov et al., 2005.
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Vinogradov et al. (2005) proposed that all eukaryotic Hbs,
including vertebrateα/β globins, Mb, Ngb, and Cygb and invertebrate,
bacterial and plant Hbs, emerged from a common ancestor (Fig. 1).

Vertebrate and invertebrate organisms thriving in polar habitats
offer opportunities for understanding protein thermal adaptations
and their ability to cope with the cold.

In the process of cold adaptation, the evolutionary trend of
Notothenioidei, the dominant suborder of Antarctic fish, has led to
unique specialisations in many biological features, including hemato-
logical parameters and oxygen transport. Decreased amount and
multiplicity of Hbs are common features in Antarctic fish. In
Channichthyidae, the most phyletically derived notothenioid family,
Hb is absent (Ruud, 1954).

For the sake of elaborating unifying principles in cold adaptation,
studies on other cold-adapted marine organisms, such as psycrophilic
bacteria and invertebrates, ought to be integrated with those on polar
fish.Most bacteria can be cultivated in the laboratory, thus it is possible
to change growth conditions and investigate how the transcriptome
changes in response. Hence, in bacteria it is possible to unravel gene
functions and obtain in vivo information about how microorganisms
adapt to changing environmental conditions.

The recent publication of the genome sequence and annotation of
the psychrophilic Antarcticum bacterium Pseudoalteromonas halo-
planktis TAC125 (Médigue et al., 2005) provides a unique opportunity
to explore on “global” ground the cellular strategies adopted by cold-
adapted bacteria to cope with the cold. The P. haloplanktis TAC125
genome contains multiple genes encoding distinct monomeric Hbs
exhibiting a 2/2 α-helical fold, as well as a flavoHb, all bound to fulfil
roles other than oxygen transport.

The Antarctic waters are oxygen rich due to increased gas solubility
at low temperature; therefore organisms living in such cold environ-
ment must face increased levels of reactive oxygen species (ROS).

Recently, Chen et al. (2008) have reported genome-wide studies of
the transcriptional and genomic changes associated with cold
adaptation in Antarctic notothenioid fish. Their results strongly
suggest that evolution in the cold has produced dramatic genomic
expansions and/or upregulations of specific protein gene families.
Many of their up-regulated genes are involved in the antioxidant
function, suggesting that augmented defenses against oxidative stress
are important forces in driving the evolutionary adaptations in a cold
and oxygen-rich environment.

Cold-adapted bacteria are generally acknowledged to achieve their
physiological and ecological success in cold environments through
structural and functional properties developed in their genomes. The
genome sequence reveals that P. haloplanktis TAC125 copes with
increased oxygen solubility at low temperature by enhancing
production of oxygen-scavenging enzymes and deleting entire meta-
bolic pathways, such as those which generate ROS as side products
(Médigue et al., 2005).

This review highlights some aspects of the biochemistry of cold-
adapted hemoproteins in fish and bacteria, without claiming to be
exhaustive. Heme hexacoordination where the sixth ligand is
provided by an internal amino-acid residue, in hemoproteins will be
discussed.

2. Hemoproteins in cold-adapted organisms

2.1. Hbs in polar fish

Fish Hbs, similar to other vertebrate Hbs, are tetrameric proteins
consisting of two α and two β subunits, each of which contains one
oxygen-binding heme group. These subunits are paired in two dimers,
α1β1 and α2β2.

Within different species, the transport of oxygen can bemodulated
by changes in the Hb structure and allosteric-ligand concentration
(ATP for most teleost fish), and by changes in the expression of
multiple Hbs likely to display different functional features. During
evolution, complex and sophisticated molecular mechanisms, e.g.
modulation by pH, carbon dioxide, organophosphates and tempera-
ture, have been developed to regulate oxygen transport by Hb.

Unlike most mammals, including humans, fish often exhibit Hb
multiplicity, usually interpreted as a sign of phylogenetic diversifica-
tion and molecular adaptation, which results from gene-related
heterogeneity and gene duplication events (Dettaï et al., 2008).
Oxygen-affinity differences in erythrocytes can also be the result of
sequential expression of different Hb chains, variable concentrations
of allosteric effectors, and differential response of Hbs to effectors (di
Prisco et al., 2007; Verde et al., 2006, 2008).

The capacity of fish to colonise a large variety of habitats appears to
have evolved in parallel with suitable modulation of their Hb system
at the molecular/functional level.

Unlike temperate and tropical fish Hbs, Notothenioidei (the
dominant fish group in the Southern Ocean) have evolved reduction
of Hb concentration, as an adaptation to offset the increased blood
viscosity at low temperature, thus reducing the amount of energy
needed for blood circulation. In the seven red-blooded Antarctic
notothenioid families, the erythrocyte number is one order of
magnitude lower than in temperate fish, and is reduced by over
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three orders of magnitude in the 16 “icefish” species of the eighth
family Channichthyidae (Eastman, 1993), in which Hb is absent.

In comparison with temperate species, Antarctic notothenioids
have lost globin multiplicity, leading to the hypothesis that in the
Antarctic thermostable environment the need for multiple Hbs may
be reduced. A single Hb present in lower amounts than in temperate
fish can be regarded as the consequence of a less critical role of the
oxygen carrier in Antarctic notothenioids, possibly in keepingwith the
sluggish mode of life, slower metabolism, as well as with the
peculiarity of the cold environment (high stability and constancy of
physico-chemical conditions, higher oxygen content).

The oxygen affinity of Hbs of many Antarctic species (which
controls oxygen binding at the exchange surface and release to the
tissues) is quite low (di Prisco, 1988), as indicated by the values of p50
(the oxygen partial pressure required to achieve half-saturation). This
feature is probably linked to the high-oxygen concentration in the
Antarctic waters. The evolutionary development of an alternative
physiology based on Hb-free blood may adequately work in the cold
for notothenioids in general. Clearly, the benefits due to this loss
include reduced costs for protein synthesis.

2.2. Neuroglobin: the search of function of a vertebrate Hb

Ngb is a monomeric heme-containing globin displaying the
classical vertebrate folding 3/3 (Burmester et al., 2000; Pesce et al.,
2003; Vallone et al., 2004a). The protein is able to bind oxygen and
other ligands, and is transcriptionally inducedbyhypoxia and ischemia
(Brunori and Vallone, 2007). Ngb is mainly expressed in retinal
neurons and fibroblast-like cells and plays a neuroprotective role
during hypoxic stress (Brunori and Vallone, 2007). Evidence includes
the observations that neuronal hypoxia and cerebral ischemia induce
Ngb expression; knocking down Ngb expression increases hypoxic
neuronal injury in vitro and ischemic cerebral injury in vivo (Greenberg
et al., 2008). However, enhanced expression of Ngbdoes not seem tobe
a universal response to all forms of neuronal injury, because some
insults do not produce such response (Greenberg et al., 2008).

Although many other roles have been suggested, including
scavenging of reactive nitrogen and oxygen species (Brunori et al.,
2005) and signal transduction (Wakasugi et al., 2003), the Ngb
physiological function is still unknown.

Ngb was originally identified in mammalian species, but then it
was also found in fish, e.g. the zebrafish Danio rerio (Awenius et al.,
2001). Mammalian and fish Ngb proteins share about 50% amino-acid
sequence identity. Watanabe and Wakasugi have suggested that
zebrafish Ngb is a cell-membrane penetrating globin (Watanabe and
Wakasugi, 2008).

Recently, the Ngb gene was discovered in red-blooded notothe-
nioid fish species, and in at least 13 of the 16 species of the white-
blooded icefish family Channichthyidae (Cheng et al., 2009). The
deduced amino-acid sequences of Ngb gene cloned from three red-
blooded species (Bovichtus variegatus, Dissostichus mawsoni, and
Gymnodraco acuticeps) and two icefishes (Chionodraco myersi, and
Neopagetopsis ionah) arewell conserved. A nearly full-length α-globin
cDNA was also obtained from brain RNA of D. mawsoni (Cheng et al.,
2009). The finding that icefishes retain the Ngb gene despite having
lost Hb, and Mb in most species, may potentially have important
implications in the physiology and pathology of the brain.

As pointed out by Sidell and O'Brien (2006), being the icefishes
natural knockouts, they offer remarkable advantages to answer some
questions in comparisonwith the experimentally produced knockouts
for Mb expression in mice (Garry et al., 1998; Gödecke et al., 1999).
SinceMb deletion inmice leaves the cardiac function uncompromised,
probably the development of multiple mechanisms compensates for
its lack (Garry et al., 1998; Gödecke et al., 1999). However, the
development of compensatory physiological and circulatory adapta-
tions in icefishes argues that loss of Hb and erythrocytes was probably
maladaptive under conditions of physiological stress (Sidell and
O'Brien, 2006). Whether the Ngb gene is expressed is the next
important question. Also, whether the α-globin mRNA in the brain is
from nervous tissue or from circulating blood needs to be definitely
verified.

2.3. Bacterial 2/2 Hbs

2/2 Hbs are small oxygen-binding hemoproteins, generally shorter
than vertebrate Hbs by 20–40 amino-acid residues (Pesce et al., 2000).
These Hbs show very low amino-acid sequence homology to
vertebrate and non-vertebrate Hbs, with few residues conserved
throughout the structure. The globin fold is based on a 2/2 α-helical
sandwich (Pesce et al., 2000). Modifications of the classical 3/3 fold
occur at helix A (almost entirely deleted in all these Hbs), and in the
CD-D and EF-F regions. The original phylogenetic analysis of these Hbs
classifies them into three groups, denoted I, II, and III (Wittenberg et al.,
2002; Vuletich and Lecomte, 2006). 2/2 Hbs belonging to the different
groups may coexist in some bacteria, suggesting distinct functions.
Such postulated functions, consistent with observed biophysical
properties, include long-term ligand or substrate storage, NO detox-
ification, oxygen/nitrogen monoxide sensing, redox reactions, and
oxygen delivery under hypoxic conditions (Wittenberg et al., 2002;
Vuletich and Lecomte, 2006). A number of three-dimensional
structures of protein belonging to the three groups have been recently
elucidated at atomic resolution byX-ray crystallography and NMR (see
Nardini et al., 2007 and the references within).

P. haloplanktis TAC125 is a psychrophilic Antarctic bacterium. The
P. haloplanktis TAC125 genome contains multiple genes encoding 2/2
Hbs (annotated as PSHAa0030, PSHAa0458, PSHAa2217) and a flavoHb
gene (PSHAa2880), suggesting that specific and distinct functions may
be associated to these two classes of proteins (Giordano et al., 2007).

Phylogenetic analyses showed that two 2/2 globins encoded by the
PSHAa0030 and PSHAa2217 genes belong to group II, and the third one
encoded by PSHAa0458 to group I.

The PSHAa0030 gene encoding a group-II 2/2 Hb was cloned and
over-expressed in Escherichia coli. The native form of the proteinwas a
mixture of the ferric and ferrous forms (Giordano et al., 2007). The
function of the protein is unclear but the very high-oxygen affinity
makes a role in oxygen transport very unlikely (Giordano et al.,
unpublished). However, P. haloplanktis TAC125 is amenable to genetic
approaches, and knockout mutations of the these globins may provide
valuable information about their biological function.

3. Hexacoordination in hemoproteins

The coordination of a protein side chain to the distal position of the
heme iron is expected to influence both the dynamic and structural
features of Hb. It is clear that axial ligand strength is an essential
property of the molecule that must be considered capable to influence
the kinetics of ligand binding, as well as having alternative functional
roles. Crystallographic evidence for endogenous coordination at the
sixth coordination site of the heme iron has been reported in both the
ferrous (hemochrome) and ferric (hemichrome) oxidation state
(Vergara et al., 2008). Usually, the sixth ligand is provided by the
imidazole side chain of a His in E7, normally present in the distal site of
the heme pocket. The occurrence of hemichrome/hemochrome states
in members of the Hb superfamily is not uniform suggesting that the
functional roles of these oxidation states aremultiple, possibly being a
tool for modulating ligand-binding or redox properties.

It is well known that tetrameric Hbs, even under physiological
conditions, frequently undergo spontaneous oxidation producing a
variety of ferric species. The role of these species and their impact in
different biological contexts has been highly debated in the last decades.
Over the years, hemichromes in tetramers have been considered as
precursors of Hb denaturation, since their formation is accelerated by
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denaturing agents (Rifkind et al., 1994). It has been shown that
hemichromes can be obtained under non-denaturing as well as
physiological conditions (Vergara et al., 2008). Recently, it has also
beensuggested that hemichromes canbe involved inHbprotection from
peroxide attack (Fenget al., 2005), given that thehemichrome species of
human α subunits complexed with the α-helix-stabilising protein
(AHSP) do not exhibit peroxidase activity (Feng et al., 2005).

Structural and spectroscopic evidence has shown endogenous
coordination at the sixth coordination site in several tetrameric Hbs
isolated from Antarctic notothenioid fish (Riccio et al., 2002;
Vitagliano et al., 2004; Vergara et al., 2007, 2008; Vitagliano et al.,
2008). Under physiological conditions, the oxidation of Antarctic fish
Hbs leads to the formation of an endogenous bis-histidyl complex (β-
hemichrome) in the ferric state. The bis-His coordination in the
ferrous state has never been observed. Thus, under reduction, the
hemichrome species is reversibly converted to the classical penta-
coordinated deoxy form both in solution (Vitagliano et al., 2004) and
in the crystal state (Merlino et al., 2008).

Another example of bis-His coordination in tetrameric Hbs regards
horse met-Hb. Notably, bis-His formation invariably involves the α
heme in horse Hb (Robinson et al., 2003; Feng et al., 2005).

In comparison with horse Hb, bis-histidyl adducts in Antarctic fish
Hbs exhibit large differences in the quaternary structure rearrange-
ment. Horse Hb develops the bis-His form within the R quaternary
structure, whereas Antarctic fish Hbs in the bis-His form adopt a
quaternary structure that is intermediate between the R and T states
(Vergara et al., 2007, 2008).

According to the evidence of higher peroxidase activity in Antarctic
fish Hbs, the exchange between hemichrome and pentacoordinated
forms may play a distinctive physiological role in Antarctic teleosts
(Vergara et al., unpublished).

Hexacoordinated Hbs are also expressed at low structural com-
plexity and observed in bacteria, unicellular eukaryotes (Wittenberg
et al., 2002), plants (Watts et al., 2001), invertebrates (Dewilde et al.,
2006) and in some tissues of higher vertebrates. In the absence of
exogenous ligands, also Ngb (Pesce et al., 2004) and Cygb (de Sanctis
et al., 2004) display hexacoordination with distal His E7 coordinating
directly with the heme iron, either in ferrous or ferric forms.

The physiological role of these hexacoordinated Hbs is not well
understood. Several roles have been suggested.

Firstly, these proteins may scavenge oxygen under hypoxic
conditions and supply it for aerobic respiration (Burmester et al.,
2000, 2002). Sun et al. (2001, 2003) demonstrated that Ngb is up-
regulated under hypoxic conditions, in vivo and in vitro, and that it
protects neurons against the deleterious effects of the hypoxia and
ischemia. Formation and cleavage of a disulfide bond influences the
functional characteristics of the protein and the formation of the
hexacoordinated form. Under hypoxic conditions, the disulfide bond in
Ngbwill be reduced, with subsequent release of oxygen counteracting
hypoxia. Secondly, theymay function as terminal oxidases by oxidising
NADHunderhypoxic conditions andhence enhanceATPproduction by
glycolysis (Sowa et al., 1999). Thirdly, they might be oxygen-sensor
proteins, activating other proteins with regulatory function (Hargrove
et al., 2000; Kriegl et al., 2002). Fourthly, theymay be involved in nitric
oxide metabolism (Smagghe et al., 2008).

Hexacoordination, found in monomeric and dimeric Hbs, shows
tendency for bis-histidyl hexacoordination and generally exhibit
reversible bis-histidyl coordination of the heme iron while retaining
the ability to bind exogenous ligands (Weiland et al., 2004). It has
been suggested that bis-His adducts can be involved in nitric oxide NO
detoxification by acting as NO scavengers. However, there does not
seem to exist a distinguishing predisposition in NO scavenging for
hexacoordinated Hbs but any Hb may play this role in the presence of
a mechanism for heme iron re-reduction (Smagghe et al., 2008).

Currently, some monomeric and dimeric Hb 3D structures, which
show the bis-histidyl endogenous coordination, have been deposited
in PDB (Mitchell et al., 1995; Hargrove et al., 2000; Hoy et al., 2004;
Pesce et al., 2004; Vallone et al., 2004b; de Sanctis et al., 2004, 2005).
However, in some Hbs with lower structural complexity, Tyr B10 has
been found to act as the sixth ligand at the iron site in the ferrous
(Couture et al., 1999) and ferric states (Das et al., 1999; Milani et al.,
2005).

In general, bacterial 2/2 Hbs do not show tendency for hexacoor-
dination but few cases have been examined and are reported in the
literature.

The ferrous heme iron atom of deoxygenated Mycobacterium
leprae 2/2 Hb appears to be hexacoordinated (Visca et al., 2002).

Ferric 2/2 Hb from the cyanobacterium Synechococcus sp. PCC
7002 (Scott et al., 2002) shares several physical properties with 2/2
Hb from of Synechocystis sp. PCC 6803 (Falzone et al., 2002). Both Hbs
readily form a hexacoordinate, low-spin complex in the absence of
exogenous ligands. Spectral studies support a bis-histidyl ligation to
the heme on the distal side.

The 2/2 Hb of the bacterium Herbaspirillum seropedicae undergoes
transition from an aquomet form in the ferric state, with equilibrium
between high and low spin, to a hexacoordinated low-spin form in the
ferrous state (Razzera et al., 2008).

Spectroscopic studies of P. haloplanktis TAC125 recombinant 2/2
Hb, encoded by the PSHAa0030 gene, show a predominance of a six-
coordinated species in the ferric and ferrous forms. The hexacoordi-
nate form is strongly dependent on pH and temperature; low
temperature favours hexacoordinate low-spin forms (Giordano et al.,
unpublished).

4. Concluding remarks

Hexacoordinated Hbs are endowed with endogenous coordination
of the heme iron. It can be hypothesised that hexacoordinated Hbs are
universally distributed over the living world and thus may have
essential function(s) in cell metabolism.

Hexacoordinated Hbs in general appear to be of more ancient
origin than pentacoordinated Hbs. Familiar erythrocyte Hb and
muscle Mb have probably originated from a hexacoordinated Hb
(Kundu et al., 2003). The question is “what is the function of these
hexacoordinated Hbs?” In all cases, the study of hexacoordinated Hbs
needs to demonstrate that cells and tissues are able to express
significant Hb-reductase activity, necessary to restore the reduced
state requested for oxygen binding (Smagghe et al., 2008).

In higher vertebrates, generally, the endogenous hexacoordinated
complex is associated with impaired functions. However, it now
appears that hemichrome or hemochrome reversible formation is not
exceptional, at least among invertebrate, plant and bacterial globins,
and globins expressed in low amounts in some tissues of higher
vertebrates.

These findings show that the functional role of the hexacoordi-
nated form is not a single one, possibly playing a specific functional
role in regulating the kinetics of small ligand-binding or redox
properties binding (Smagghe et al., 2008).

In Antarctic fish Hbs it is still disputed whether hemichromes have
a biological function or aremerely an evolutionary remnant. Also in all
other organisms their specific role is still not clear.
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