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ABSTRACT

This  dissertation  aims  to  understand  the  role  of  CCDC6,  a  gene 

frequently rearranged with  RET in  papillary thyroid  carcinoma, in  the 

signal  transduction  pathway  activated  by  DNA  damage.  The 

maintenance  of  genomic  stability  is  beneficial  for  the  survival  of  an 

individual  cell  and  crucial  for  cancer  avoidance.  Cells  invest  huge 

resources to maintain genomic stability,  and cancer cells undergo an 

array  of  genetic  changes  to  escape  these  barriers.  The  initiation  of 

carcinogenesis represents a mutational event, which in most instances 

occurs despite functional DNA damage response (DDR) mechanisms. 

The  experiments  proposed  in  this  dissertation  are  aimed  to  further 

investigate  the  mechanisms  of  chromosomal  instability  in  tumor 

development.  In  particular,  we  will  investigate  the  consequences  of 

CCDC6 gene product loss or inactivation in the carcinogenetic process. 

CCDC6 gene product is a ubiquitously expressed 65KDa nuclear and 

cytosolic  protein,  recognised  as  a  pro-apoptotic  phosphoprotein  that 

negatively regulates CREB1-dependent transcription. CCDC6 has been 

ascribed  to  the  bona  fide  ATM  substrates  in  response  to  genotoxic 

stress. Proteomic screening predicted the interaction between CCDC6 

gene product and PP4c, the catalytic subunit of Protein Phosphatase 4, 

identified as the γH2AX phosphatase required for recovery from the DNA 

damage checkpoint. We reported that, following low doses of genotoxic 

stress, the loss or inactivation of CCDC6, as occurs in several human 

cancers  carrying  the  CCDC6  fusion  proteins,  increases  the  PP4c 

dependent  dephosphorylation  of  γH2AX,  resulting  in  a  deficient  DNA 

damage  checkpoint  recovery  and  premature  release  from  G2/M 

checkpoint arrest. Moreover, we found that the loss of CCDC6 function 
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affects  DSBs  repair.  Our  results  indicate  that  CCDC6  is  a  stress 

response protein that sustains DNA damage checkpoint and contributes 

to  genome  stability  maintenance  in  response  to  DNA  damage  by 

modulating PP4c activity. Overall we believe that in primary tumours the 

loss of CCDC6 function might contribute to the carcinogenetic process.

5



1. BACKGROUND

1.1 Thyroid cancer
Thyroid  cancer  is  the  most  common   malignancy  of  the  endocrine 

organs, with an incidence of about 9-100.000 cases/year; moreover, the 

incidence increases with age, reaching a plateau at 50 years.

Thyroid cancer can derive from both the follicular and the parafollicular 

cells. More than 95% of thyroid carcinomas are derived from follicular 

epithelial  cells,  while  a  minority  of  tumours  (3%),  referred  to  as 

medullary thyroid carcinoma, are of C-cell origin (Figure 1).

Thyroid cancer affects women more often than men and usually occurs 

in people between the ages of 25 and 65 years. The incidence of this 

malignancy has been increasing over the last decade. Patients with a 

history of  radiation  administered in  infancy and  childhood  for  benign 

conditions of the head and neck, such as enlarged thymus, acne, or 

tonsillar or adenoidal enlargement, have an increased risk of cancer as 

well as other abnormalities of the thyroid gland. In this group of patients, 

malignancies of the thyroid gland first appear beginning as early as 5 

years following radiation and may appear 20 or more years later. Other 

risk factors for the development of thyroid cancer include a history of 

goiter, family history of thyroid disease, female gender, and Asian race.

1.1.1 Classification and etiopathogenesis of thyroid carcinoma
Thyroid carcinomas are broadly divided into well-differentiated, poorly 

differentiated and undifferentiated types on the basis of histological and 

clinical  parameters  (Figure  1).  Differentiated  tumors  (papillary  or 

follicular) are highly treatable and usually curable. Poorly differentiated 

tumors  (medullary  and  anaplastic)  are  much  less  common,  are 

aggressive, metastasize early, and have a much poorer prognosis. The 

10-year overall  relative survival rates for patients in the United States 
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are  93%  for  papillary  cancer,  85%  for  follicular  cancer,  75%  for 

medullary cancer, and 14% for undifferentiated/anaplastic cancer.

Papillary thyroid carcinomas (PTCs) account for around 60 to 80% of all 

thyroid cancers and are closely linked to ionizing irradiation (Ron et al. 

1995). Young children are particularly susceptible since thyroid growth 

occurs  primarily  in  childhood.  A striking  increase  in  PTC  has  been 

reported in Belarus, Ukraine and Western regions of Russia, following 

the Chernobyl  disaster of  1986. With also a dramatic increase in the 

frequency  of  PTC  in  the  children  exposed  to  massive  release  of 

radionuclides (Williams 2002). PTC shows typically multicentricity and a 

tendency to spread into lymphatic vessels; regional node metastases at 

presentation are found in a significant proportion of cases. There are 

several PTC variants including solid-follicular, follicular, tall-cell, hurthle 

cell variants (Ostrowski et al. 1996). FTC is less frequent than PTC and 

represents about 10-30% of thyroid cancers; FTC is linked to dietary 

iodine deficiency (Williams et al. 1977) and shows variable morphology 

ranging  from  well-formed  colloid-containing  follicles,  to  solid  or 

trabecular growth pattern.

Therapy  for  both  PTC  and  FTC  consists  in  surgery  followed  by 

metabolic treatment with 131I. Prognosis is very good with a survival rate 

at 10 years ranging from 90 to 98%. Anaplastic thyroid carcinoma (ATC) 

is the most aggressive type of thyroid cancer. ATC cells are extremely 

abnormal and spread rapidly to other parts of the body. ATC make up 

only about 1% of all thyroid cancers. Metastases to regional nodes are 

also common but their  presence is often masked by the presence of 

extensive soft tissue invasion.
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Figure  1.  Classification  of  thyroid  carcinomas.  For  clinical  management  of  the 

patient,  thyroid  cancer  is  generally  divided  into  2  categories:  well  differentiated  or 

poorly differentiated.

Distant metastases may be present in any site. No effective therapy is 

available  for  ATC and prognosis  is  extremely negative,  with  a  mean 

survival of six months after diagnosis (Giuffrida et al. 2000). Finally, the 

medullary  thyroid  carcinoma  (MTC)  derives  from  the  calcitonin-

secerning parafollicular C cells. About 5 to 7% of all thyroid cancers are 

MTC; of the four types of thyroid cancers, only MTC has a clear genetic 

predisposition that can be passed on in families; in fact, together with 

pheochromocytoma, parathyroid adenoma and other tumor types, MTC 
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can be inherited in the context of autosomal dominant MEN 2 (multiple 

endocrine  neoplasia  type  2)  syndromes  (Cote  et  al.  2003).  MEN2 

syndromes  are  inherited  cancer  disorders  divided  in  three  types: 

MEN2A,  characterized  by  MTC,  pheochromocytoma  and  parathyroid 

adenoma;  MEN2B  characterized  by  MTC,  pheochromocytoma  and 

additional tumors such as neuromas and ganglioneuromas of the gut; 

Familial Medullary Thyroid Carcinoma or FMTC whose only feature is 

MTC. MEN2 is inherited as a highly penetrant mendelian tract and this 

genetic  transmission  is  due to  gain-of-function  mutations of  the  RET 

gene. MTC tends to metastasize to lymph-nodes and distant organs, the 

treatment consists in surgical removal of the lesion. Thus, MTC are fairly 

resistant to most chemotherapeutic agents.

 1.2 Molecular Basis of Well-Differentiated Thyroid Carcinoma
Similar to other cancer types, thyroid cancer initiation and progression 

occurs through gradual accumulation of various genetic and epigenetic 

alterations,  including  activating  and  inactivating  somatic  mutations, 

alteration in gene expression patterns, microRNA (miRNA) dysregulation 

and  aberrant  gene  methylation.  Thyroid  cancer  represents  a  type  of 

neoplasia in which critical genes are frequently mutated via two distinct 

molecular mechanisms: point mutation or chromosomal rearrangement. 

In  well-differentiated  thyroid  carcinoma  non-overlapping,  activating 

events that involve the genes RET, NTRK1 (neurotrophic tyrosine kinase

receptor 1), BRAF or Ras are detectable in nearly 70% of all cases.

Papillary Thyroid carcinoma
Several  studies  on  thyroid  tumors  have  allowed  the  identification  of 

many  genetic  alterations.  In  particular,  four  genetic  lesions,  at  the 

somatic  level,  are  associated  with  PTC.  They  include  chromosomal 

aberrations targeting the RET or TRKA tyrosine kinase receptors and 
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point mutations in RAS or BRAF genes. 

The rearranged during tansfection (RET) proto-oncogene was isolated 

in  1985  and  was  the  first  activated  receptor-tyrosine  kinase  to  be 

identified in thyroid cancer (Takahashi et al 1988). The proto-oncogene, 

located on chromosome 10q11.2, encodes a transmembrane receptor-

tyrosine  kinase  with  four  cadherin-related  motifs  in  the  extracellular 

domain. The  exposure  to  ionizing  radiation  causes  the  tendency to 

chromosomal breaks and rearrangements with activation of oncogenes 

or loss-of-function suppressor genes. A frequent molecular alteration of 

papillary  thyroid  tumour  is  characterized  by the  fusion  of  the  kinase 

domain of the tyrosine kinase receptor RET with the N-terminal region of 

constitutively  expressed,  heterologous  genes,  such  as  CCDC6 

(RET/PTC1) or NCOA4 (RET/PTC3)(Fig. 2). 

Figure 2. Chromosome 10q inversion in papillary thyroid carcinoma.
Schematic  view  of  the  paracentric  inversion  of  chromosome  10q  generating  the  

transforming sequence RET/PTC. There are at least 10 different types of RET/PTC, all  

resulting from the fusion of  the tyrosine kinase domain of  RET to the 5'  portion of  

different genes. RET/PTC1 and RET/PTC3 are the most common types, accounting  

for >90% of all rearrangements. The arrows indicate the breackpoints.
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The fusion protein RET/PTC displays a constitutive activation of RET 

kinase function, that becomes ligand indipendent (Santoro et al. 1996), 

which leads to chronic stimulation of MAPK signaling and tumorigenesis 

in thyroid cells (Jhiang et al.,2000; Powell et al., 1998).  

More  than  10  RET/PTC  rearrangements  have  been  described  in 

sporadic and radiation-associated papillary carcinoma.

Among them the most common forms are CCDC6–RET (also known as 

RET/PTC1) and ELE1–RET (also known as RET/PTC3). The RET/PTC1 

type of rearrangement is an inversion of chromosome 10 that mediate 

an illegitimate recombination between the RET and the CCDC6 genes, 

which are 30 megabases apart. Spatial contiguity of RET and CCDC6 

within interphase nuclei may provide a structural basis for generation of 

RET/PTC1  rearrangement  by  allowing  a  single  radiation  track  to 

produce a double-strand break in each gene at the same site in the 

nucleus (Nikiforova et al., 2000).

In  RET/PTC1  rearrangement,  the  unscheduled  expression  of  RET 

tyrosine  kinase  with  its  overespression,  the  deletion  of  negative 

regulatory domains of the receptor and constitutive oligomerization of 

PTC1  proteins  are  responsible  for  PTC1-transforming  activity  in  the 

thyroid.  The  amino  terminal  region  of  CCDC6  (paragraph  1.3)  is 

responsible for the dimerization of the PTC1 oncoprotein in vivo. This 

region,  containing a putative leucine zipper,  mediate  the dimerization 

and is essential for tyrosine hyperphosphorylation and the transforming 

activity of PTC1 (Tong et al., 1997).

Other  molecular  alterations  are  reported  in  papillary  thyroid  cancer 

(PTC). Point mutations in BRAF are the most common genetic lesions 

found, accounting for more than 45% cases of PTC (Kimura et al., 2003; 

Xu et al. 2003; Soares et al. 2003; Fukushima et al. 2003; Cohen et al. 

2003;  Nikiforov  and  Nikiforova  2011).  BRAF,  situated  on  7q24,  is  a 

member  of  the  RAF  family  of  serine/threonine  kinases  and  is  a 
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component  of  the RAF-MEK-ERK signaling module.  Activation  of  the 

RAF proteins  is  mediated  through  binding  of  RAS in  its  GTP-bound 

state. Once activated, RAF kinases phosphorylate MEK which in turn 

phosphorylates and activates ERK (Malumbres et al. 2003). A Glutamine 

for Valine substitution at residue 600 (V600E) in the activation segment 

accounts for more than 90% mutations of BRAF in PTC (Kimura et al.  

2003; Cohen et al. 2003; Soares et al. 2003; Salvatore G. 2006). This 

mutation enhances BRAF activity through disruption of the autoinhibited 

state  of  the  kinase.  BRAF  mutations  in  papillary  thyroid  carcinoma 

correlate with distant metastasis and more advanced clinical stage, and 

occur at a significantly higher frequency in older patients.

The neurotrophic receptor-tyrosine kinase NTRK1 (also known as TRK 

and  TRKA)  was  the  second  identified  subject  of  chromosomal 

rearrangement  in  thyroid  tumorigenesis.  The  NTRK1  proto-oncogene 

(which is located on chromosome 1q22) encodes the transmembrane 

tyrosine-kinase receptor for nerve growth factor. The activated receptor 

initiates several signal-transduction cascades, including ERK, PI3K and 

the  phospholipase-Cgamma  (PLCgamma)  pathways.  NTRK1 

rearrangements,  known as TRK rearrangements,  which  show ectopic 

expression and constitutive activation of the tyrosine kinase  analogous 

to RET rearrangements, have been noted in 5–13% of sporadic tumors 

but only in 3% of post-Chernobyl childhood papillary thyroid carcinomas.

Unlike other solid neoplasms, Ras is the least prominent participant in 

thyroid  carcinogenesis.  Three Ras proto-oncogenes are implicated in 

human tumorigenesis: HRAS (which is located on chromosome 11p11), 

KRAS (which is located on chromosome 12p12), and NRAS (which is 

located on chromosome 1p13). Mutations involving codon 61 of HRAS 

and  NRAS  have  been  reported  with  variable  frequency  in  thyroid 

neoplasms (Rivera et al.,  2010). Ras mutations are more common in 

iodine-deficient than iodine-sufficient areas and mostly found in lesions 
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with  follicular  architecture (including  follicular  carcinoma and follicular 

variant papillary thyroid carcinoma) rather than in typical papillary thyroid 

carcinoma. Interestingly, activating Ras mutations are rare in radiation-

induced  thyroid  cancers  of  Chernobyl.  Notably  in  human  papillary 

thyroid cancer, the genetic alterations of RET/PTC, RAS and BRAF are 

mutually  exclusive,  suggesting  the  existence  of  a  common  signaling 

cascade;  moreover,  mutations  at  more  than  one  of  these  sites  are 

unlikely  to  provide  an  additional  biological  advantage  (Kimura  et  al. 

2003, Cohen et al. 2003, Soares et al. 2003, Nikiforov and Nikiforova 

2011).

1.3 CCDC6
The CCDC6 gene (Coiled Coil Containig 6) has been identified 

upon  its  frequent  rearrangement  with  the  RET  proto-oncogene  in 

papillary  thyroid  carcinomas.  The  CCDC6  gene, also  called 

H4(D10S170),  maps  on  the  long  arm  of  chromosome  10  at  10q21 

(Grieco et al. 1990), and contains 9 exons that encode for a transcript of 

3 Kb and shows an open reading frame (ORF) of 585 aa. The CCDC6 

gene promoter, localized within 259 bp upstream of the ATG site, drives 

the  gene  expression  ubiquitously  in  various  human tissues  including 

thyroid  (Tong  et  al.  1995).  Since  the  CCDC6  gene  is  ubiquitously 

expressed, the specificity of the PTC-1 activation is due to the specificity 

for  thyroid  tissue  of  the  somatic  rearrangement  of  the  ret  proto-

oncogene. In thyroid tumours harbouring the RET/PTC1 rearrangement, 

activation of RET involves chromosomal inversion of the long arm of 

chromosome 10 that juxtaposes the tyrosine kinase-encoding domain of 

RET mapped at 10q11.2 to the promoter and the first exon of a new 

gene,  CCDC6 gene,  mapped at  10q21 (Pierotti  et  al.,  1992)  (Fig.3). 

Cloning and sequencing of CCDC6 cDNA did not show any significant 

homology  to  known  genes.  Its  predicted  amino-acid  (aa)  sequence 
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contains  a  long  coiled-coil  region  and  a  putative  binding  domain  for 

SH3-proteins,  suggesting  its  possible  involvement  in  protein–protein 

interactions  (Grieco  et  al.,  1994).  SH3-binding  domains  play  an 

important  role  in  protein-protein  interactions  in  numerous  cellular 

processes. The presence of a putative SH3-binding domain in CCDC6 

gene product  suggests  that  this  protein  might  be a cytoskeletal  one. 

Sequence analysis of CCDC6 gene product shows extensive regions of 

alpha  helices  which  have  a  high  potential  to  adopt  a  coiled-coil  

conformation. Coiled-coils are formed by two or three alpha-helices that 

are strongly amphipathic and supercoil around each other, crossing at 

an angle of ca 20° (Lupas et al  1991).  It  has been shown that such 

regions can be involved in protein dimerization or oligomerization.  The 

60 amino acid fragment of the CCDC6 coiled-coil domain included in the 

RET/PTC1  product,  has  been  shown  to  be  necessary  for  homo-

dimerization,  constitutive  activation  and  transforming  ability  of  the 

oncoprotein (Tong et al., 1997; Jhiang, 2000). 

Figure 3. Schematic view of the paracentric inversion of chromosome 10q generating 

the transforming sequence RET/PTC1.
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It is not clear why RET/PTC1 has been found activated only in thyroid 

papillary  carcinomas,  since  in  vitro  irradiation  is  able  to  induce  its 

activation also in fibroblasts (Ito et al. 1993).

Nikiforova et al. (2000) suggested that the spatial contiguity of RET and 

CCDC6 chromosomal loci might be responsible for the high frequency of 

RET/PTC1 radiation induced rearrangements in thyroid human cells.

The  CCDC6/RET  rearrangement  is  not  the  only  one  involving  the 

CCDC6 gene, although it is the more frequent.

A new  chromosomal  rearrangement  involving  the  CCDC6  gene  has 

been recently described (Fig.4), suggesting that CCDC6 gene has high 

susceptibility  for  recombination.  In  two  cases  of  atypical  chronic 

myelogeneous leukaemia (CML), the first 368 aa of CCDC6 fuse to the 

PDGFβR tyrosine kinase domain.The chromosomal event is a t(5;10) 

translocation. In the two cases of atypical CML in which the CCDC6-

PDGFβR transcript has been identified, the fusion gene codes for a 948 

aa  protein  with  most  of  the  coiled-coil  of  CCDC6  and  the 

transmembrane and the tyrosine kinase domains of the PDGFbR. The 

fusion protein oligomerization and constitutive activity is dependent on 

the coiled-coil domain of the CCDC6 gene. The reciprocal product of the 

translocation has not been found (Kulkarni et al., 2000; Schwaller et al., 

2001).  Moreover,  more  recently,  it  has  been  reported  the 

characterization  of  a  new chromosome  10  rearrangement  involving 

CCDC6  and  PTEN  genes.  The  CCDC6/PTEN  rearrangement  was 

discovered  in  irradiated  thyroid  cell  lines.  Sequencing  revealed  a 

transcript consisting of exon 1 and 2 of CCDC6 fused with exons 3-6 of 

PTEN.
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Figure 4 CCDC6 rearrangements. The red arrow shows the RET/PTC1 and the black 

one shows the CCDC6/PDGFbetaR and CCDC6/PTEN breakpoints.

The disruption of the normal regulation of the RET kinase is critical to 

the transforming properties, less is known about whether disruption of 

the normal function of the 5' partner gene might also have an important 

role. To address this point, the identification of the normal physiological 

function of the heterologous RET fusion partners is required. During the 

last years it has been characterized the product of the first and most 

frequently observed RET-fused gene, CCDC6.

CCDC6 gene product has been described as a ubiquitously expressed 

65KDa nuclear  and cytosolic  protein  with  no  significant  homology to 

known genes. In the last few years, several large-scale phosphorylation 

site-mapping  studies  recognized  CCDC6  as  a  phosphoprotein 

(Beausoleil  et  al.,  2004;  Brill  et  al.,  2004).  Nevertheless,  previous 

investigations  reported  that  CCDC6 is  phosphorylated  by  ERK1/2  at 

serine  244  upon  serum induction  (Grieco  et  al.,  1994;  Celetti  et  al., 

2004). CCDC6 wild type induces the apoptosis and its truncated mutant 

1-101, that correspond to the portion of CCDC6 included in RET/PTC1, 

acts as dominant negative on nuclear localization and on the wild-type 
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protein-induced apoptosis  (Celetti  et  al.,  2004).  Furthermore,  CCDC6 

protein is involved in ATM-mediated cellular response to DNA damage. 

The kinase ataxia telangectasia mutated (ATM) phosphorylates a limited 

number of downstream protein targets in response to DNA damage. The 

potential role of CCDC6 in DNA damage signaling pathways has been 

investigated and it has been reported that in cells treated with etoposide 

or  ionizing  radiation  (IR),  CCDC6  underwent  ATM-mediated 

phosphorylation at Thr 434, stabilizing nuclear CCDC6. The expression 

of  CCDC6  with  threonine  434  mutated  in  Alanine,  CCDC6T434A, 

protected  the  cells  from  genotoxic  stress-induced  apoptosis.  Most 

importantly, after exposure to IR silencing of CCDC6 in mammalian cells 

increased cell  survival,  allows for DNA synthesis and permits cells to 

progress into mitosis (Merolla et al., 2007). 

These  data  suggest that  impairment  of  CCDC6 gene  function  might 

have a role in thyroid carcinogenesis.  Further supporting a role in the 

control of proliferation, it has been recently demonstrated that CCDC6 

interacts  and  inhibits  CREB1-dependent  transcription  (Leone  et  al., 

2010). Thus, it is possible to postulate that the transforming potential of 

RET/PTC1 is not confined to the RET tyrosine kinase activation, but it 

may also involve the disruption of the CCDC6 gene product. In this way 

CCDC6 has been proposed as  a  new tumor  suppressor.  Finally,  we 

reported  the  identification  and  characterization  of  three  sites  of 

sumoylation  in  CCDC6,  (K74,  K266  and  K424),  highly  conserved  in 

vertebrates. We demonstrated that CCDC6 is sumoylated on these sites 

mainly  by  SUMO2.  The  post-translational  modifications  by  SUMO 

constrain  most  of  the  CCDC6  protein  in  the  cytosol  and  affect  its 

functional  interaction  with  CREB1.  Sumo  modifications,  loosing  the 

CCDC6-CREB1 interaction, lead to a decrease of CCDC6 repressive 

function on CREB1 transcriptional activity. Interestingly, in thyroid cells 

the  SUMO2-mediated  CCDC6  post-translational  modifications  are 
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amplified  by  forskolin,  a  cAMP  analog. Thus,  CCDC6  could  be  an 

important  player  in  the  dynamics  of  cAMP signaling,  fine  regulating 

CREB1 transcriptional activity in normal and transformed thyroid cells 

(Luise C. et al., submitted).

1.4 DNA damage response and cancer
Maintenance  of  genomic  integrity  is  an  essential  part  of  cellular 

physiology. Genotoxic insults that induce DNA breaks must be repaired 

in  order  to  prevent  the  mutations  that  can  contribute  to  malignant 

transformation. The processes by which cells repair damage to DNA and 

coordinate repair with cell cycle progression are collectively known as 

the DNA damage response (DDR).

In cases in which the damage cannot be repaired, prolonged cell cycle 

arrest  can  lead  to  senescence  or  the  induction  of  apoptotic  signals 

(Zhou BB et al., 2000; Norbury CJ, Zhivotovsky B., 2004). During cancer 

progression  the  ATM,  ATR,  DNA-PK  Ser/Thr  Kinases  mediate  DNA 

damage-induced signal transduction and are often mutated (Motoyama 

and Naka, 2004).  DNA damage is recognized by sensor proteins that 

initiate  the activation of the DDR on chromatin. These sensors include 

the  Mre11-Rad50-Nbs1  (MRN)  and  the  Rad9-Rad1-Hus1  (9-1-1) 

complexes that localize to double stranded breaks (DSBs) or regions of 

replication stress and single stranded breaks, respectively (Lee JH et 

al., 2007) (Fig.5). Mre11 binds to Nbs1, DNA, and Rad50 and possesses 

DNA  exonuclease,  endonuclease,  and  unwinding  activities.  While 

Rad50 may function to keep the broken ends of the DNA together, Nbs1 

functions  to  recruit  signal  transducing  kinases  to  the  break  site  and 

mediates  the  DDR  signal  (Alyson  K  Freeman,  Alvaro  NA Monteiro 

2010).
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Fig 5:  A simplified view of the cellular response to DNA damage. Single and double 

stranded DNA breaks signal through the sensors  (MRN and 9-1-1) shown in purple, 

mediators (H2AX, BRCA1, MDC1, 53BP1) shown in blue, signal transducing kinases 

(ATM,  ATR)  shown  in  yellow,  effector  kinases  (CHK2,  CHK1)  shown  in  pink,  and 

effector proteins (E2F1, p53, Cdc25) shown in green, leading to gene transcription, 

apoptosis, and cell cycle arrest. Proteins that are phosphorylated by ATM, ATR, and/or 

DNA-PK  are  marked  by  a  yellow  phosphate  group  and  proteins  that  are 

phosphorylated by CHK2 and/or CHK1 are marked by a pink phosphate group.

The localization of the MRN and 9-1-1 complexes to the  sites of DNA 

damage in chromatin signals to activate the signal transducing kinases 

Ataxia-telangiectasia mutated (ATM), the ATM and Rad3-related (ATR) 

kinase,  and  the  DNA-dependent  protein  kinase  (DNAPK),  which  are 

members of  the phosphoinositide 3-kinase related kinase family.  The 

first event in response to DSB is a ATM autophosphorylation at S1981, 
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that  caused  dissociation  from  inactive  dimers  into  active  monomers 

(Bakkenist CJ, Kastan MB, 2003). The secon event: ATM phosphorylate 

Nbs1 on S343 and at the same time, Nbs1 and the MRN complex are 

required for full activation of ATM. The localization of ATR to the break 

site  and  its  subsequent  activation  is  dependent  upon  then  9-1-1 

complex,  binding  between  ATR and  ATR-interacting  protein  (ATRIP), 

and replication protein A (RPA). The signal transducing kinases ATM and 

ATR signal through the effector kinases CHK1 and CHK2 (checkpoint 

kinase  1  and  checkpoint  kinase  2).  CHK2  is  activated  primarily  in 

response  to  DSB  through  the  phosphorylation  of  T68  by  ATM  and 

subsequent oligomerization and autophosphorylation at T383 and T387. 

CHK1 is active even in unperturbed cells, but is further activated through 

the phosphorylation of S317 and S345 by ATR, primarily in response to 

single stranded breaks and replication stress (Bartek J, Lukas J, 2003). 

Several mediator proteins such as BRCA1, MDC1, Claspin, 53BP1 and 

H2AX, work to coordinate the localization of various factors in the DDR, 

promote  their  activation,  and  regulate  substrate  accessibility.  BRCA1 

S1387 and S1423 are  targets  of  phosphorylation  by ATM and these 

phosphorylations  are  required  for  the  intra-S  and  G2/M checkpoints, 

respectively. MDC1 functions as a molecular scaffold to mediate parts of 

the  DDR  downstream  of  foci  formation  (Mohammad  DH,  Yaffe  MB, 

2009). Claspin is a major regulator of the activity of CHK1 and binds 

DNA with high affinity (Kumagai A, Dunphy WG 2000; Chini CC, Chen J 

2006).  H2AX is  phosphorylated  by ATM, ATR and DNA-PK on S139 

upon DNA damage and this phosphorylated form is also known as  γ-

H2AX.

1.5 Role of H2AX in genomic stability
Genomic  instability  is  generally  used  to  describe  a  genetic 

predisposition for an increase in chromosomal pathology secondary to 
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inaccurate repair or deficiency in cell  cycle checkpoints. Typically, the 

instability can be visualized as chromosomal breaks, translocations, or 

aneuploidy.

DNA damage  occurs  following  a  variety  of  stimuli  including  ionizing 

radiation  (IR),  ultraviolet  radiation  (UV),  replication  stress,  chemicals 

from the environment, and reactive oxygen species that are produced as 

a  byproduct  of  cellular  metabolism  (Alyson  K  Freeman,  Alvaro  NA 

Monteiro 2010).

Among all  types  of  DNA damage,  double  strand  breaks  (DSBs)  are 

believed to be the most dangerous. DSBs occur naturally during V(D)J 

recombination  and meiosis,  and can be induced by oxidative  stress, 

radiation  or  genotoxic  chemicals.  DSBs  present  a  major  threat  to 

genomic  integrity  by  promoting  chromosomal  instability,  ultimately 

leading  to  cancer.  The  cellular  genomic  integrity  is  monitored  by 

processes  that  detect  and  repair  DSBs and  that  also  halt  cell  cycle 

progression until  repair  is  complete.  Human diseases with  defects in 

these processes often exhibit a predisposition towards cancer.

A key component in the maintenance of genomic stability is the protein 

H2AX, which is a member of the histone H2A family,  one of the five 

families  of  histones  that  package  and  organize  eukaryotic  DNA into 

chromatin.  The  phosphorylation  of  H2AX  is  among  the  earliest 

responses to DNA damage, and controls the widespread accumulation 

of checkpoint response proteins to large chromatin regions surrounding 

the  break  sites  (Rogakou  et  al.,  1998).  Within  minutes  following 

exposure to ionizing radiation (IR), activated ATM phosphorylates H2AX 

in the C-terminal tail at Ser139 over a region of megabases surrounding 

a DSB (Burma et al. 2001). In a parallel manner, ATR  phosphorylates 

H2AX  after  replicational  stress  (Ward  and  Chen  2001).  The 

phosphorylation of  H2AX is  induced in  response to  DSBs originating 

from diverse origins including external damage, replication fork collision, 
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apoptosis, and dysfunctional telomeres.

The recruitment of DNA damage signaling and repair proteins to sites of 

genomic damage constitutes a primary event triggered by DNA damage. 

Many  components  of  the  DNA  damage  response,  including  ATM, 

BRCA1, 53BP1, MDC1, RAD51, and the MRE11/RAD50/NBS1 (MRN) 

complex form ionizing radiation induced foci (IRIF) that co-localize with 

γ-H2AX foci.

To cope with genotoxic damage, cells activate powerful DNA damage-

induced  cell  cycle  checkpoints  that  coordinate  cell  cycle  arrest  with 

recruitment  and  activation  of  the  DNA repair  machinery  (Bartek  and 

Lukas,  2007;  Harper  and  Elledge,  2007;  Kastan  and  Bartek,  2004; 

Shiloh, 2003; Zhou and Elledge, 2000). The overall importance of these 

cell cycle checkpoints in maintaining genomic integrity is highlighted by 

the  observation  that  the  loss,  mutation,  or  epigenetic  silencing  of 

checkpoint genes is frequently observed in cancer (Hoeijmakers, 2001). 

Dephosphorylation of γH2AX (the phosphorylated form of H2AX on Ser 

139) and its exclusion from chromatin regions distal to the break sites 

are crucial to resume the cell cycle (Fernandez-Capetillo et al., 2004). In 

this way,  the phosphorylation status of  H2AX constitutes a molecular 

switch that helps to maintain genomic integrity.

1.6 Role of Serine/threonine phosphatases in the DDR
The  fine-tuning  of  response  to  damage  depends  on  the  activity  of 

phosphatases in order to prevent illegitimate activation of the DDR in the 

absence of damage and to allow rapid cessation of the signal once DNA 

is repaired. Ser/Thr phosphatases are known regulators of a variety of  

cellular  processes:  gene transcription,  RNA splicing,  DNA replication; 

moreover phosphatases may also be involved in cancer progression. 

(Moorhead et al., 2007; Virshup and Shenolikar, 2009; Peng A &Maller 

JL,  2010).   Ser/Thr  protein  phosphatases  (PP)  have  been  classified 
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biochemically  into  type  1  (PP1)  and  type  2  (PP2).  In  humans,  PP1 

contains three isoforms (α,  β and  γ),  each encoded by a distinct, but 

related, gene. PP2 is divided into three groups on the basis of metal-

dependence:  metal-independent  PP2A,  PP4,  PP5  and  PP6;  Ca++-

dependent PP2B and PP7; and Mg+ +/Mn+ +-dependent PP2C. PP2C 

is highly conserved and encoded by seven genes in  Saccharomyces 

cerevisiae and  16  genes  in  humans.  Family  members  of  PP2C are 

essential  regulators  of  various  cellular  processes,  including  stress 

signaling,  cell  differentiation,  growth,  apoptosis  and  others  (Lu  and 

Wang,  2008).  Several  groups  of  Ser/Thr  phosphatases,  particularly 

PP2Cd/Wip1,  PP2A and  PP1,  have  been  linked  to  DDR  regulation 

(Heideker et al., 2007).

PP2A removes γ-H2AX foci formed in mammalian cells, in response to 

DNA damage  by  the  topoisomerase  I  inhibitor  camptothecin  (CPT) 

(Chowdhury et al., 2005). PP2AC colocalizes at γ-H2AX foci, suggesting 

that PP2A dephosphorylates γ-H2AX near a DSB.

PP6, another  PP2A-like phosphatase,  has also been implicated in  γ-

H2AX  dephosphorylation  mediated  by  regulatory  subunits  PP6R1, 

PP6R2 or PP6R3 (Douglas et al., 2010).

Recently, it has been suggested that Wip1 also participates in  γ-H2AX 

dephosphorylation after DNA damage (Cha et al., 2010; Macurek et al.,  

2010; Moon et al., 2010).

Indeed γH2AX is regulated by multiple phosphatase (Fig.6).

Previously,  a  study  in  yeast  identified  Pph3,  the  orthologue  of 

mammalian  PP4,  as  a  key  element  of  checkpoint  recovery  that 

dephosphorylates  γ-H2AX (Keogh  et  al.,  2006),  in  response  to  DNA 

damage by irradiation or chemical mutagens. Keogh et al. found that a 

complex (HTP-C) containing the Pph3 phosphatase enzyme specifically 

regulated the dephosphorylation of  γH2AX, an event that is crucial for 

release from the damage checkpoint. 

23



Mammalian  Ppp4c  was  predicted  from different  cDNAs and  its  65% 

amino acid identity to PP2Acα and PP2Acβ isoforms and extremely high 

conservation to  D. melanogaster (94% amino acid identity) suggested 

that it was likely to have distinct cellular roles from PP2A (Helps et al.,  

1998; Brewis, N.D. and Cohen, P.T.W., 1993; da Cruz e Silva, 1988).

Protein  phosphatase  4  (Ppp4/PP4/PPX)  is  a  ubiquitous  protein 

phosphatase  that  removes  phosphates  from serine  and  threonine  in 

proteins and regulates many cellular functions independently of  other 

related protein phosphatases in the PPP family (Cohen, P.T.W., 2004).

PP4c has been implicated in TNFα signaling (Mihindukulasuriya et al., 

2004; Zhou et al., 2002) and NF-κB regulation (Hu et al., 1998; Yeh et 

al.,  2004).  Recently,  histone  deacetylase  3  (HDAC3)  and  a  mitotic 

regulatory protein NDEL1 were shown to be regulated by a specific PP4 

complex (Chowdhury et al., 2008). Protein Phosphatase 4 is structurally 

and functionally related to PP2A and follows the same general rules for 

assembly and regulation. PP4, like PP2A, forms obligate heterodimers 

and heterotrimers (Chen et al., 2008). At least six regulatory subunits of 

PP4 have been identified.  Both  PP2A and PP4 dephosphorylate  the 

phosphorylated histone 2A variant,  γ-H2AX, a marker for DNA damage 

and  cell-cycle  arrest.  However,  each  phosphatase  plays  a  different 

physiological role, with PP2A functioning after DNA damage and PP4 at 

site of chromatin breakage (Chowdhury et al., 2005). Mammalian PP4 is 

the  functionally  important  γ-H2AX  phosphatase  during  S  phase.  A 

specific  PP4  heterotrimeric  complex  containing  the  catalytic  subunit 

(PP4C),  the  scaffolding  subunit  PP4R2,  and  the  targeting  subunit, 

PP4R3β, returns H2AX to its fully dephosphorylated state during DNA 

replication and in response to genotoxic stress (Chowdhury et al., 2008; 

Nakada  et  al.,  2008).  Moreover,  a  PP4  phosphatase  complex 

dephosphrylates  RPA2  to  facilitate  DNA  repair  via  homologous 

recombination in response to DSBs (Lee D-H, 2010).
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Fig.6  Phosphorylation of key DDR factors is specifically controlled by Ser/Thr 
phosphatases.

 (a)  γ-H2AX has  been reported  to  be dephosphorylated  at  Ser  139 under  various 

conditions by PP1, PP2A, PP4, PP6 and Wip1. (b) ATM is dephosphorylated at Ser 

1981 by PP1,  PP2A and  Wip1.  It  is  unclear  whether  Ser  367  and  1893 are  also 

targeted by these phosphatases or how PP5 promotes ATM activation (as denoted by 

question marks). (c) Wip1 dephosphorylates Chk1 at Ser 345, PP2A dephosphorylates 

Chk1 at both Ser 345 and 317 and the PP1 homolog in yeast dephosphorylates Chk1 

at Ser 345. (d) PP2A/B0a  and Wip1 dephosphorylate Chk2 at  Ser 19 and Ser 68, 

respectively.  PP2A/B0g  dephosphorylates  and  deactivates  Chk2,  as  judged  by  its 

eletrophoretic mobility and kinase activity. Yeast homologs of PP4 and PP1 regulate 

yeast  Chk2  at  undefined  sites  (as  denoted  by  question  marks).  (e)Wip1 

dephosphorylates p53 at Ser 15, a phosphorylation site that recruits PP2A/B56g to p53 

to  dephosphorylate  Thr  55.  PP1/PNUTS dephosphorylates  p53  at  Ser  15  and  37. 

PP2A does not regulate p53 phosphorylation at Ser 15, but can dephosphorylate p53 

at Ser 37 and 46.
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2. AIM OF THE STUDY

The  experiments  proposed  in  this  dissertation  are  aimed  to  further 

investigate  the  mechanisms  of  chromosomal  instability  in  tumor 

development.  In  particular,  we  will  investigate  the  consequences  of 

CCDC6  gene  product  loss  or  inactivation  as  we  hypothesize  that 

CCDC6  loss  in  tumours  might  elicit  the  carcinogenetic  process 

contributing  to  genomic  instability.  Recent  high-troughput  proteomic 

screening predicted the interaction between CCDC6 gene product and 

the catalytic  subunit  of  PP4 (PP4c),  recently identified as the  γH2AX 

phosphatase required for recovery from DNA damage checkpoint.

The purpose of the present investigation is then to verify:

1. if  CCDC6  interacts  with  the  catalytic  subunit  of  Protein 

Phosphatase 4;

2. the minimal region of interaction between CCDC6 and PP4c; 

3. The relationship between CCDC6 and the regulatory subunits of 

PP4c, and in particular whether:

- CCDC6 is necessary for the assembly of the oloenzyme PP4

- the interaction between CCDC6 and PP4c is direct or mediated by 

other regulatory subunits;

4. the enzimatic activity of PP4c upon DNA damage in CCDC6 null 

cells;

5. the phosphorylation status of H2AX upon DSBs in CCDC6 null 

cells;

6. the DNA damage induced G2 arrest and checkpoint recovery in 

CCDC6 null cells;

7. the DNA repair upon DSBs in CCDC6 null cells.
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3. RESULTS

3.1 CCDC6 interacts with the catalytic subunit of PP4
The  interaction  of  protein  phosphatase  PP4c  and  CCDC6 has  been 

reported,  but  the  significance  of  this  interaction  has  not  been 

investigated yet (Chen  et al.,  2008; Ewing  et al.,  2007). The catalytic 

subunit of PP4 (PP4c), a member of PPP serin-threonin-phosphatase 

family, has been implicated in microtubule organization at centrosome, 

in DNA-damage response and recently in dephosphorylation of γH2AX, 

a  key DNA-repair  protein  (Cohen  et  al.,  2005;  Nakada  et  al.,  2008; 

Chowdhury et al., 2008).

To aid in the characterization of the reported interaction, we transfected 

293T cells with a myc-tagged CCDC6 wt and two truncated mutants of 

223  and  101  aa  length  (CCDC6  1-223;  and  CCDC6  1-101).  Co-

precipitation of PP4c was detected only with the myc-CCDC6 wt protein, 

and not with the truncated mutants, by immunoblotting with specific anti-

myc antibodies (Figure 9), indicating that the interaction occurs at the 

carboxy-terminus of CCDC6 gene product.

Fig.9 CCDC6 interacts with PP4c
293T cells were transfected with CCDC6 or the CCDC6 (1-223) and (1.–101) deleted 

mutant  constructs.  Whole cell  lysates (WCL) were prepared and equal amounts of 
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proteins were immunoprecipitated with anti Myc.  Then, the immunocomplexes were 

analyzed by western blotting using the indicated antibodies.  Mock indicates negative 

control of immunoprecipitation using an unrelated antibody

 Indeed, RET/PTC1 oncoprotein, including the first 101 aa of CCDC6 fused to RET 

tyrosine kinase, was unable to interact with PP4c (Figure 10).

Fig.10
293T cells were transfected with CCDC6wt or the PTC1 constructs. Whole cell lysates 

(WCL) were prepared and equal amounts of proteins were immunoprecipitated with 

anti-myc. Then, the immunocomplexes were analyzed by western blotting using anti-

PP4C and anti-myc antibodies. Mock indicates negative control of immunoprecipitation 

using an unrelated antibody.

We assessed whether  endogenous PP4c could  co-immunoprecipitate 

CCDC6 at endogenous level. Immunoblotting for CCDC6 revealed the 

co-precipitation of a doublet at the expected size in HeLa cells (Figure 

11). Importantly, endogenous CCDC6 immunoprecipitated endogenous 

PP4c and we found that this interaction is specific as CCDC6 does not 

co-immunoprecipitate with the endogenous protein phosphatase PP2A, 

PP6 and Wip1 as phosphatases reported to be involved in regulation of 

γH2AX in context of DNA damage and checkpoint recovery (Figure 12).
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Fig.11  The co-immunoprecipitation was performed on the endogenous CCDC6 and 

PP4c  proteins  obtained  from  parental  293T  cells.  The  immunocomplexes  were 

analyzed by western blotting using the indicated antibodies.

 Fig.12 The co-immunoprecipitation was performed on the endogenous CCDC6 and 

the immunocomplexes were analyzed by western blotting using PP4c, PP2A, PP6c 

and Wip1 antibodies.

To  further  understand  the  PP4c-CCDC6 interaction,  we  mapped  the 

region within CCDC6 that is required for this interaction. We tested two 

truncated forms of CCDC6 at the C-terminal domain, the CCDC6 (aa. 

139-474) and the CCDC6 (aa. 410- 474) both including the proline-rich 
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region. As shown by the GST-pull down experiments, we found that in 

CCDC6 the minimal region of interaction with PP4c is confined to the 

Proline-Rich stretch (aa 410-474),  as predicted and also reported for 

other  PP4c  interacting  proteins,  such  as  Hpk1  (Zhou  et  al.,  2004) 

(Figure 13). 

Fig.13 GST pull-down assays were performed on WCL from 293T cells and the GST 

(mock)  or  GST-CCDC6  fusion  proteins.  The  bound  complexes  and  WCL  were 

separated  on  SDS.–PAGE  and  analyzed  by  western  blotting  with  the  indicated 

antibodies. Coomassie staining is shown as loading control.

PP4 is  a  protein  complex conserved from yeast  to  human cells  and 

contains in addition to PP4c, the PP4R2 and PP4R3 regulatory subunits 

(Chowdhury et al., 2008; Nakada et al., 2008).

In  order  to  understand  if  the  PP4  regulatory  subunits  mediate  the 

interaction  between PP4c and CCDC6 we silenced the  subunits  R2, 

R3α and  R3β and  we  found  that  their  depletion  did  not  affect  the 

interaction between CCDC6 and PP4c (Figure 14, 15). The silencing of 

PP4R1 and PP4R4 did not affect their interaction, too (Figure 16, 17). 

Notably, CCDC6 was able to co-immunoprecipitate with R2, R3α and 

R3β,  but not with R1 and R4, at least in our experimental conditions 

(Figure 14, 15, 16 and 17).
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Fig.14-15-16-17 In  293T  cells,  siRNAs  targeting  specific  PP4  regolatory  subunits 

reduced their  expression as shown; coimmunoprecipitations were performed on the 

endogenous CCDC6 and the immunocomplexes were analysed by western Blot using 

several  antibodies,  as  indicated.  Mock  indicates  negative  control  of 

immunoprecipitation using an unrelated antibody. Tubulin show the loading control.
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3.2 In CCDC6 null cells the PP4c phosphatase activity is 
increased
We previously reported that  CCDC6 is involved in the ATM-mediated 

cellular  response to  DNA Damage (Merolla  et  al.,  2007).  In  order  to 

evaluate the functional outcome of the interaction between CCDC6 and 

PP4c, we investigated if CCDC6 could modulate the enzymatic activity 

of the phosphatase on one of its known substrate, the phospho-Histone 

H2AX.  As a  source of  phosphatase,  we  immunopurified  endogenous 

PP4c to retain as much as possible of the subunits composition of PP4 

holoenzyme  complexes  (Tung  et  al.,  1985;  Nakada  et  al.,  2008; 

Macurek et al, 2010).

In CCDC6-depleted HeLa cells (shCCDC6), compared to control cells 

(shCTRL),  the  endogenous  immunopurified  PP4  complex  showed 

increased activity on phospho-H2AX-enriched chromatin, obtained, from 

cells  exposed  to  DNA damage,  by  cells-fractionation  and  tested  for 

γH2AX expression (Figure 18a).

Fig.18a-b Chromatin fractions were purified by HeLa cells after 10 Gy IR exposure, as 

reported in Supplementary experimental procedures. Enriched phosphorylated H2AX 

is shown in the chromatin fraction. The anti CCDC6 hybridization shows that a quote of 

CCDC6 is also localized on chromatin

The  phosphatase  reactions  were  followed  by  immunoblotting  and 

probed  with  the  specific  antibodies  as  shown  in  Figure  19. 

Immunopurified PP4R2, R3α and R3β were also revealed at IB, in PP4c 
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immunoprecipitates, inferring that the protein complex might be active.

Fig.19 CCDC6 inhibits the phosphatase activity of PP4c.
PP4  complex  immunopurified  from  HeLa  cells  transfected  with  CCDC6-specific 

shRNAs  (shCCDC6) or with non-targeting control shRNAs (shCTRL), was incubated 

for 30 minutes at 30°C with  gH2AX-enriched chromatin purified from irradiated cells. 

The  phosphatase  reactions  were  followed  by  western  blot  and  probed  with  the 

indicated antibodies.

γH2AX intensity, from three independent experiments, was normalized 

against  the intensity of  non-phosphorylated H2AX, and against  PP4c 

levels detected by immunoblot (Figure 20).
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Fig.20 Histograms show the densitometric analysis of  γH2AX intensity, resolved on 

SDS-PAGE following phosphatase reactions, normalized against the intensity of non-

phosphorylated  histone  H2AX,  and  against  the  PP4c  levels  on  immunoblots.  The 

histograms  are  representative  of  three  independent  experiments  and  error  bars 

indicate the standard error mean.

In  the  next  experiment,  in  order  to  perform  a  more  accurate 

measurement of the phosphatase activity, we tested the activity of PP4 

phosphatase  on  acid-extracted  histones  that  we  obtained  from  Hela 

cells irradiated with a dose of 10 Gy to get quantified histone purification 

enriched in γH2AX (Figure 21a and 21b).

Fig.21a Irradiated HeLa cells (10Gy) were lysed, and histones were acid-extracted. 

Samples obtained from histone extraction (Acid extraction) and whole cell lysates were 

separated by SDS-PAGE and stained with Coomassie blue.
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Fig.21b Mock (-) or irradiated HeLa cells (+, 10 Gy) were acid-extracted to purify total 

histones  as  in  a).  Various  amount  of  proteins  were  separated  by  SDS-PAGE and 

transferred  to  nitrocellulose  mambranes  that  were  hybridized  with  gH2AX specific 

antibody.

In CCDC6-depleted HeLa cells (shCCDC6), proportional amount of the 

endogenous immunopurified PP4 complex showed increased activity on 

3  μg  of  acid-extracted  histones  compared  to  the  activity  that  we 

observed in CCDC6-proficient HeLa cells (shCTRL), as revealed by the 

free  phosphate  detection  with  Malachite  Green  Phosphatase  Assay 

(Figure 22).
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Fig.22 
PP4c phosphatase was immunoprecipitated from shCCDC6 or shCTRL. 1, 0,7,  0,3 

volumes of total PP4c immunoprecipitated from 3 mg of total cell extract were mixed 

with histones purified from cells exposed to 10 Gy IR and incubated in phosphatase 

buffer at 30°C for 30 minutes. Phosphatase reaction was terminated by the addition of 

100μl of Malachite Green solution and absorbance was measured at 630 nm. After the 

phosphatase  assay,  the  actual  amount  of  PP4c  in  each  immunoprecipitate  was 

determined  by  Western  Blotting  with  the  indicated  antibody.  PP4c  activity  is 

represented  in  arbitrary  units  (a.u.)  calculated  as  the  ratio  between  released  free 

phosphate (absorbance at  630 nm) and PP4c densitometric  signal  at  western blot.

Lastly, we challenged proportional amount of immunoprecipitated PP4c 

with a synthetic phospho-peptide substrate (f.c. 175  μM) and we were 

able to determine a linear range of PP4c activity,  by using the same 

assay (Figure 23).

To further understand the role of CCDC6 in PP4c activity modulation we 

utilized a human CCDC6- null cell line, the thyroid papillary carcinoma 

TPC-1  cells,  that  carry  the  RET/PTC1  oncogene  and  have  lost  by 

deletion the normal unrearranged CCDC6 allele (Jossart et al., 1996).
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Fig.23
Enzimatic activity of PP4c immunopurified from HeLa cells transfected with CCDC6-

specific  shRNA (shCCDC6)  or  with  non-targeting  control  sh-RNAs  (shCTRL)  was 

assessed by Malachite Green phosphatase assay.  1,  0,7 and 0,3  volumes of  total  

PP4c immunoprecipitated from 3 mg of total cell extract were incubated with 175 μM of 

RKpTIRR  synthetic  peptide  for  30  minutes  at  30°C.  Phosphatase  reaction  was 

terminated by the addition of 100μl of Malachite Green solution and absorbance was 

measured at 630 nm. After the phosphatase assay, the actual amount of PP4c in each 

immunoprecipitate was determined by Western Blotting with the indicated antibody. 

PP4c activity is represented in arbitrary units (a.u.) calculated as the ratio between 

released free phosphate (absorbance at 630 nm) and PP4c densitometric signal at 

western blot.

Then, in TPC-1 cells, in which we transiently re-expressed the CCDC6 

wild  type,  the  phosphatase  complex  had  poor  activity  on  γH2AX 

obtained by cells-fractionation (Figure 18), compared to the activity that 

immunopurified  PP4c  showed  in  TPC-1  cells  overexpressing  the 

CCDC6-truncated mutants (1-223; 1-101), both unable to interact with 

PP4c, as revealed by immunoblot (Figure 24).

The  phosphatase  reactions  were  followed  by  immunoblotting  and 

probed with specific antibodies as indicated in figure 24. Immunopurified 

endogenous PP4R2, R3α and R3β were revealed at IB in TPC1 cells, 
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too.

γH2AX intensity, from three independent experiments, was normalized 

against  the intensity of  non-phosphorylated H2AX, and against  PP4c 

levels detected by immunoblot (Figure 25).

Fig.24  PP4 complex immunopurified from TPC-1 cells  transfected with  CCDC6 wt, 

CCDC6 (1-223) and (1-101) truncated mutants, was incubated for 30 minutes at 30°C 

with  γH2AX-enriched  chromatin,  purified  from  irradiated  cells.  The  phosphatase 

reactions were followed by immunoblotting and probed with the indicated antibodies.

Fig.25  Histograms show the densitometric analysis of  γH2AX intensity, resolved on 

SDS-PAGE following phosphatase reactions, normalized against the intensity of non-

38



phosphorylated  histone  H2AX,  and  against  the  PP4c  levels  on  immunoblots.  The 

histograms  are  representative  of  three  independent  experiments  and  error  bars 

indicate the standard error mean.

For an accurate measurement, in TPC-1 cells over-expressing CCDC6 

wild type, proportional amount of the endogenous immunopurified PP4 

phosphatase  complex  had  poor  activity  on  3  μg  of  acid-extracted 

histones compared to the activity that immunopurified PP4c showed in 

TPC-1 cells overexpressing the empty vector (Figure 26), as detected 

by Malachite Green Phosphatase assay.

Fig.26 Enzimatic activity of PP4c immunopurified from TPC-1 cells transfected with 

epitope-tagged CCDC6 wt or empty vector, was determined as described in fig.22 and 

fig.23.

Finally,  by  using  the  same  assay,  we  were  able  to  determine, 

challenging  proportional  amount  of  immunoprecipitated  PP4c  with  a 

synthetic  phospho-peptide  substrate  (f.c.  175  µM),  a  linear  range  of 

PP4c  activity  (Figure  27).  Finally  In  figure  28  we  show  that  by 

immunoprecipitation of PP4R2, as a means of immunopurifying PP4c in 

complex  with  regulatory  subunits,  we  were  able  to  modulate  the 

phosphatase activity on 3 μg of acid-extracted histones in Hela-CCDC6-

depleted cells compared to Hela control cells.
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Fig.27 Enzimatic activity of PP4c immunopurified from TPC-1 cells transfected with 

epitope-tagged CCDC6 wt or empty vector, was determined as described in fig. 21-22.

Fig.28 Phosphatase assay has been performed by immunopurifying PP4R2 as means 

of immunopurifying PP4c in complex with the regulatory subunits. The phosphatase 

complex  by  immunoprecipitating  proportional  amount  of  PP4R2,  was 

immunoprecipitated  from  CCDC6  depleted  and  CCDC6  proficient  HeLa  cells  and 

mixed  with  3  µg of  acid  extracted  histones  at  30°C for  30  minutes.  Phosphatase 

reactions were terminated by the addiction of 100 mL of Malachite Green solution and 

absorbance was measured at 630nm.
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3.3 Loss of  CCDC6 affects H2AX phosphorylation after 
DSBs
We aimed to investigate the phosphorylation status on S139 of H2AX 

after  genotoxic  stress treatments  in  CCDC6-silenced clones,  that  we 

generated (Fig.29).

Fig.29 HeLa CCDC6 depleted clones obtained after transfection of a plasmid pool of 

mission ShRNA (pLKo.1 puro ShCCDC6 NM_005436, Sigma-Aldrich) after two weeks 

puromycin selection.

Thirty minutes after exposure to different doses of IR (1 and 5 Gy) we 

observed a barely detectable signal of γH2AX in CCDC6-depleted HeLa 

clone#1, compared to clone#2, and to control HeLa cells (Figure 30). 

Thus, at the same dose of IR, the phosphorylation of H2AX appeared to 

correlate to the amount of CCDC6 (anti-CCDC6 blot at bottom of figure 

30).
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Fig.30 Loss of CCDC6 affects H2AX phosphorylation after genotoxic stress
In the WCL of two representative CCDC6-depleted HeLa clones (shCCDC6 #1 and #2) 

and  control  HeLa  cells  (shCTRL),  thirty  minutes  after  1-5  Gy  IR  exposure,  the 

phosphorylation of H2AX was detected with the mouse anti-γH2AX by western blot. 

Anti-total H2AX was used as a loading control. The immunoblots with anti-CCDC6 and 

anti-tubulin antibodies were shown in the bottom.

By immunofluorescence, CCDC6-depleted HeLa clone#1 cells showed 

few γH2AX positive foci after thirthy minutes exposure to different doses 

of IR (1 and 5 Gy), compared to control HeLa cells (Figure 31).

The quantization of  γH2AX positive foci is shown in the histograms of 

Figure 32.
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Fig.31 Immunofluorescence  analysis  of  γH2AX  foci  in  CCDC6-depleted  clone  #1 

(shCCDC6) and control HeLa cells (shCTRL), thirty minutes after 0.5, 1, and 5 Gy IR 

exposure. Nuclei were counterstained with DAPI. Magnification was at 63x.

Fig.32 Quantification of γH2AX foci number.

At least 300 cells were analysed per experiment. Error bars indicate the standard 

mean error.

Interestingly,  at  single  time  point,  in  CCDC6-depleted  cells,  the  re-

expression of CCDC6wt, but not of CCDC6T434A, mutated in the ATM 

phosphorylation site, restored γ-H2AX levels at WB after treatment with 

1 μM and 2,5 μM of Etoposide (Figure 33) in a dose dependent manner. 
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The saturation of γH2AX levels at 5 μM suggests that CCDC6 is able to 

modulate γH2AX levels in presence of low DNA damage.

Fig.33 CCDC6-depleted  clone  #1  (shCCDC6)  and  control  HeLa  cells  (shCTRL) 

transfected with expression vectors encoding CCDC6wt, CCDC6T434A or the empty 

vector were treated with etoposide at 1, 2,5 and 5 μM for 8 h and western blot analysis 

of γH2AX and myc-tagged proteins were performed.

At  several  time point  over  time after  exposure to  a fixed dose of  IR 

(1Gy), we observed that CCDC6 knock-down in HeLa cells affected the 

H2AX phosphorylation compared to HeLa control cells, in presence of 

phosphorylated  ATM  at  p-Ser-1981  that  correlate  with  normal  ATM 

activation (Lee&Paull, 2005; Daniel, 2007; Reinhardt and Yaffe, 2009) 

(Figure 34).
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Fig.34 PP4c depletion rescues γH2AX levels in CCDC6 silenced cells

H2AX phosphorylation detection with mouse anti-γH2AX by WCL analysis of CCDC6-

depleted Hela clone #1 (shCCDC6) and control cells (shCTRL) at several time point as 

indicated after exposure to 1Gy of IR. Anti total H2AX is shown as loading control. The 

anti-pSer1981-ATM and the ATM hybridization are shown at bottom of the figure.

Next, we examined the impact of PP4c on the levels of γH2AX that we 

observed in shCCDC6, compared to control cells, upon IR exposure. By 

using  sh-RNA-mediated  depletion  of  PP4c  in  CCDC6-proficient  or 

CCDC6-depleted Hela cells we checked the levels of  γH2AX after 1Gy 

IR exposure.  As shown in  figure 35 depletion of  PP4c rescued total 

levels of γH2AX in CCDC6-depleted cells, upon IR.
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Fig.35 shCCDC6 and shCTRL HeLa cells were depleted of PP4c by shRNA (48 hours) 

and were exposed to 1 Gy of IR, as indicated (-/+). Phosphorylation of H2AX, PP4c,  

CCDC6, total H2AX and tubulin amount were revealed at IB of WCL.

Moreover,  in order to show that CCDC6 impacts PP4c activity in the 

context  of  the  DDR,  we  investigated  the  phosphorylation  status  of 

another  PP4c  substrate,  the  DNA repair  protein  RPA2:  in  CCDC6-

depleted HeLa cells after treatment with 1  μM of Etoposide at several 

time point following double thymidine block, the pRPA2 protein levels 

were not affected by CCDC6 depletion, whereas the levels of  γH2AX 

were barely detectable in shCCDC6 cells, compared to controls (Figure 

36),  suggesting a functional  activity upon CCDC6 – PP4c interaction 

towards one particular substrate the histone γ-H2AX.

Fig.36 In the cell extract of CCDC6-depleted clone #1 (shCCDC6) and control HeLa 

cells (shCTRL), after double thymidine block (TT block) and release in presence of 1 

μM Etoposide at several time point, as indicated, phosphorylation levels of H2AX and 

of RPA2 were revealed with anti-γH2AX and with anti-p-RPA2 by western blot. Anti-

total H2AX and anti-total RPA were shown as loading control.

It  has been reported that  RPA2 interacts with PP4c exclusively upon 

Camptothecin  (CPT)  treatment.  In  order  to  evaluate  if  the  loss  of 

CCDC6 could impact the level of pRPA2 upon replicative stress, in CPT-

treated CCDC6 depleted cells, we evaluated the levels of pRPA2 that 
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were  high  and  have  comparable  levels  with  the  control  cells; 

interestingly,  upon  CPT  treatments  the  γH2AX  levels  were  rather 

undetectable in CCDC6-deficient cells, compared to CCDC6 proficient 

cells,  suggesting that CCDC6 is able to negative modulate the PP4c 

activity upon replicative stress, too (Figure 37).

Fig.37 In the cell extract of CCDC6-depleted clone #1 (shCCDC6) and control HeLa 

cells (shCTRL), in presence of 1 of Camptothecin (CPT) phosphorylation of H2AX and 

of RPA2 were revealed with the mouse anti-γH2AX and with anti-p-RPA2 by western 

blot. Anti-total H2AX and anti-total RPA were shown as loading control.

3.4 Loss of CCDC6 affects the DNA damage induced G2-
arrest
In  order  to  investigate  if  the  CCDC6 loss  could  affect  the  cell  cycle 

progression in presence of DNA damage, HeLa CCDC6-depleted cells 

(shCCDC6)  were  synchronised  by  double  thymidine  block  and  then 

released  in  1  μM  etoposide.  In  these  cells,  compared  to  controls 

(shCTRL) we observed failure to arrest in G2 and ability to progress into 

cell cycle, as measured by FACS analysis at different time point (Figure 

38).
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Fig.38 Loss of CCDC6 affects the DNA damage induced G2 arrest.
Cell cycle distribution of the stable HeLa CCDC6 silenced clone #1 (shCCDC6) and 

control HeLa cells (shCTRL) after release from double thymidine block (TT-block) in 

the presence of 1μM Etoposide.

Moreover,  in  order  to  investigate  if  CCDC6 could  be involved in  the 

recovery  from the  DNA damage  induced  G2-checkpoint,  control  and 

CCDC6-depleted HeLa cells were synchronised with double thymidine 

block, treated for 1 hour with 1 μM etoposide and released in 50 ng/ml of 

Nocodazole. Sampling of cells taken at several time showed that control 

cells entered mitosis at 6-8 hours from release, whereas after etoposide 

treatment  the  mitotic  entrance  resulted  strongly  delayed.  CCDC6-

depleted etoposide-treated cells started to  enter mitosis  at  4-6 hours 

after the initial arrest, earlier than control cells, as revealed by WB levels 

utilizing  the  anti-phospho-S/T-MPM2  antibody,  able  to  recognize 

specifically the mitotic phosphosubstrates (Figure 39) (Tsai et al, 2005).
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Fig.39 Mitotic entry after TT-block and release in 1μM Etoposide for one hour where 

indicated, in presence of 50 ng/ml Nocodazole was monitored by western blot using 

the anti-p-S/TMPM2 antibody. Sketch of the cells treatment is shown in the bottom 

panel.

Percent of mitotic cells was also evaluated by FACS analysis of the anti-

pSer10-  histone  H3  antibody  positive  staining  (Figure  40),  and  by 

scoring for mitotic features (Figure 41).

These  results  suggest  that  the  depletion  of  CCDC6 by  shRNA may 

induce DNA-damage tolerance and a deficient DNA damage checkpoint. 

To exclude an off-target effect,  we repeated these experiments using 
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either additional  shCCDC6 clones (Figure 29)  or previously validated 

siRNA (Merolla  et al., 2007) and we obtained similar results (data not 

shown).

Fig.40 Percentage of mitotic cells was monitored, by FACS analysis, with anti-p-Ser10-

histone H3 staining, in stable CCDC6 silenced and control HeLa cells treated as in (37) 

at 8 hours, as indicated.

Fig.41 in  HeLa  CCDC6  silenced  clone  #1  (shCCDC6)  and  control  HeLa  cells 

(shCTRL) growth on coverslips and collected at  several  time points following G1/S 

syncronization by double thymidine block (TTblock) in the presence of 1μM Etoposide, 

as  indicated,  mitotic  figures  were  counted  after  nuclear  counterstaining  with  Dapi. 

Magnification  was  at  40x.  The  histograms are  representative  of  three  independent 

experiments and error bars indicate the standard error mean.
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3.5 CCDC6 loss affects DNA repair
A cross  talk  between  checkpoints  and  DNA repair  mechanisms  has 

been reported (Lazzaro et al., 2009). In order to understand if the DSBs 

induced from exogenous sources, such as IR or chemical agents, could 

be unrepaired or misrepaired in absence of CCDC6 we applied pulsed-

field gel electrophoresis (PFGE) that allows separation of greater DNA 

sizes excised from genomic DNA by DSBs, and then represent a good 

system for studying DNA repair, by observing the reduction in migrating 

DNA when cells are allowed a period of repair following genotoxic insult 

(Speit and Hartmann, 1995; DiBiase et al., 1999). Therefore, we wanted 

to check the recovery time of DSBs in CCDC6-knock down HeLa cells, 

compared  to  controls,  upon  exposure  to  10  Gy IR  and  collection  at 

various time point for embedding in low melting agarose plugs. DSBs 

from damaged cells, together with un-damaged DNA, is shown and we 

can appreciate that CCDC6 depleted cells get the ability to repair the 

damaged DNA in a shorter time compared to control (Figure 42).

Fig.42 Loss of CCDC6 affects DSBs repair.
Detection of DSBs by PFGE. After 10 Gy IR exposure CCDC6-depleted (shCCDC6) 

and  CCDC6-proficient  (shCTRL)  HeLa  cells  have  been  collected  at  different  time 
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points  (1,  2,  4,  24  hours).  Densitometric  analysis  of  DSBs bands were  plotted  as 

percentage of total DNA.

Finally,  in  order  to  evaluate  the  impact  of  CCDC6  on  the  radiation 

response  we  performed  clonogenic  survival  assay  on  the  CCDC6-

depleted cells and control cells after exposure to a range doses of IR (0, 

2,  4,  6,  8 Gy)  and we observed that the silenced clones were more 

resistant to the genotoxic stress than the control cells at 14 days (Figure 

43).

Fig.43 Clonogenic  assays  of  stable  CCDC6 silenced  and  control  HeLa cells  were 

assayed  by  crystal  violet  staining,  after  14  days  following  exposure  to  IR  at  the 

indicated  range  doses  (0,  2,  4,  6,  8  Gy).  The  curves  show the  survival  fractions 

normalized against non-irradiated cells.
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4. DISCUSSION  
In  the  present  study  we  have  investigated  the  physiological  role  of 

CCDC6 in DNA-damage response and repair through its interaction with 

PP4c.

We  confirmed  the  predicted  interaction  between  CCDC6  and  the 

catalytic subunit of Protein Phosphatase 4 (Ewing et al., 2007; Chen et 

al.,  2008)  and  we  observed  that  CCDC6  negatively  modulates  the 

phosphatase activity of PP4c on γH2AX, one of the earliest markers of 

DNA doublestrand breaks.

We found that CCDC6 interacted with PP4c but not with PP2A, as also 

reported (Glatter et al., 2009). Both PP2A and PP4 belong to the PP2A-

like phosphatase family and are reported to  dephosphorylate γH2AX. 

However,  it  is  believed  that  each  phosphatase  plays  a  different 

physiological  role,  with  PP2A functioning  mainly  after  DNA damage, 

(Chowdhury  et al.,  2005;  Paull  2006; Keogh  et  al.,  2006),  and PP4c 

mostly involved in replication induced DNA damage and in DNA damage 

checkpoint  recovery  (Chowdhury  et  al.,  2008;  Nakada  et  al.,  2008). 

Recently, PP6c and Wip1 have also been found to exert an important 

role  in  the  removal  of  γH2AX from chromatin,  (Douglas  et  a.l,  2010; 

Macurek et al., 2010) whereas PP1c has been reported to be not able to 

affect  γH2AX levels (Nakada et al., 2008). Thus, several phosphatases 

(PP2a,  PP4c,  PP6c,  Wip1)  partecipate  directly  or  indirectly  in  the 

dephosphorylation  of γH2AX.  It  is  still  not  clear  what  the  exact 

contribution  of  each  phosphatase  is,  but  the  emerging  data  suggest 

some level of redundancy as well  some context-dependent specificity 

(Freeman & Monteiro, 2010).

The removal of γH2AX from sites of DNA damage is tightly regulated; it 

closely  correlates  with  DNA  repair  and  most  likely  relies  on 

phosphatases activity. Indeed, PP4c functions in the termination of the 
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DNA damage checkpoint signalling (Nakada et al., 2008).

In this study we observed that, upon exposure to genotoxic stress, the 

CCDC6  loss  or  inactivation,  as  reported  in  some  human  cancer, 

increases dephosphorylation of  γH2AX in a PP4c-dependent  manner, 

resulting  in  a  deficient  DNA-damage  checkpoint  recovery  and  a 

premature release from G2 arrest imposed by DNA damage. These data 

correlate with results recently reported about overexpression of Wip1, a 

direct phosphatase of  γH2AX,  that leading to low levels of  γH2AX in 

response to DNA damage prevents checkpoint activation and leads to 

checkpoint  override.  Indeed,  cells  expressing  Wip1 and showing  low 

levels of  γH2AX fail to activate the checkpoint and progress to mitosis 

(Makurek et al,  2010).  Interestingly,  the depletion of PP4c in CCDC6 

silenced cells rescued the levels of γH2AX, suggesting a functional link 

between CCDC6-PP4c and γH2AX on sensing the DNA damage.

Moreover, we found that in presence of DNA-damage loss of CCDC6, 

keeping low levels of γH2AX affects the repair of DSBs, as revealed by 

PFGE experiments. We hypothesize that in cells with low CCDC6 as the 

DNA-damage checkpoint  weakens,  a  faster  and less  accurate  repair 

pathway, such as NHEJ, might operate in these conditions, potentially 

explaining  the  different  recovering  time,  observed  with  the  PFGE 

between CCDC6 proficient and CCDC6 depleted cells. This observation 

need further investigations.

Our  data  indicate  that  in  cells  where  CCDC6 is  loss,  the  increased 

activity of PP4c, as we detected by phosphatases assays, results in low 

levels of γH2AX , but it could be also possible that these effects might be 

dependent  from  inactivation  of  kinases  responsible  for  γH2AX 

phosphorylation. To address this point we checked the pSer-1981 ATM 

which resulted active upon IR exposure in CCDC6 depleted and CCDC6 

proficient HeLa cells.

PP4 is an obligate heterodimer and heterotrimer (Chen et al. 2008) with 

54



at  least  six  regulatory subunits  that  are  believed  to  confer  substrate 

specificity (Chowdhury et al. 2008, Nakada et al. 2008). We found that 

CCDC6 is important for the activity of the PP4-R2-R3 complex on the 

dephosphorylation of H2AX, but it was not affecting the phosphorylation 

status of the DNA repair protein RPA2, another PP4c substrate, upon 

genotoxic or replicative stress. These experiments suggested that the 

functional activity upon CCDC6-PP4c interaction is directed towards one 

particular substrate, the histone γH2AX, not only after genotoxic stress 

exposure,  but  also  upon  replicative  stress.  Nevertheless,  it  will  be 

interesting to  investigate if  CCDC6 could influence the activity of  the 

specific  PP4  complex  on  other  known  phospho-substrates,  such  as 

HDAC3, or JNK, under different stress conditions (Zhang  et al., 2005; 

Zhou G et al., 2002 ).

In the present study we hypothesize that CCDC6 is able to modulate 

PP4c at the sites of DNA damage, as the CCDC6 chromatin binding 

increased after  genotoxic  stress exposure (Figure 18b) and, also the 

CCDC6 colocalization with an established marker of DNA damage, such 

as MDC1, was seen in some foci (data not shown). As CCDC6 primary 

structure lacks a canonical DNA-binding motif these observations might 

uncover  an unexpected function  of  the protein  at  chromatin  level.  In 

addition, as CCDC6 binds several interactors through a large coiled-coil 

domain, several post-translational modified residues and a proline-rich 

region, we can configure it as a scaffold protein.

On the basis of the data we collected in this study we may also envisage 

a  mechanism  that  could  explain  the  apoptotic  phenotype  that  we 

previously  reported  in  CCDC6  overexpressing  cells:  CCDC6  by 

negatively  regulating  the  PP4c  phosphatase  activity  maintains  high 

levels of γH2AX, with hyperactivation of the G2/M checkpoint and an 

increase in the apoptotic rate (Celetti et al. 2004, Fernandez-Capetillo et 

al. 2004). Moreover, in TPC-1 cells that carry the RET/PTC1 oncogene 
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and  have  lost  the  CCDC6  unrearranged  allele,  we  observed  a 

decreased PP4c phosphatase activity upon re-expression of wild-type 

CCDC6.

The  overexpression  of  protein  phosphatase  PP4  has  already  been 

reported in some primary tumours (Wang  et al. 2008) and it would be 

interesting to investigate the correlation between the loss or inactivation 

of CCDC6, as reported in some tumors by the Cancer Genome Atlas 

(http://tcga.cancer.gov) and the increase of PP4c phosphatase activity 

with the alteration of the G2 checkpoint maintenance and recovery in 

human cancer.

CCDC6 gene is often found rearranged to RET and to genes other that 

RET in thyroid and nonthyroid human neoplastic diseases (Kulkarni  et 

al. 2000, Schwaller  et al. 2001, Puxeddu  et al. 2005, Drechsler  et al. 

2007). Since in all these tumours the fusion results in the loss of function 

of one allele, and in some cases also of the normal unrearranged allele, 

it is reasonable to hypothesize that this loss might disrupt the growth 

balance contributing to neoplastic transformation.
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5. CONCLUSIONS
In conclusion the data we obtained about CCDC6 as stress response 

protein that preserve genome stability upon interaction with PP4c, make 

CCDC6  an  attractive  candidate  to  help  premature  tumour  cells 

overcome  a  DDR-dependent  barrier  against  tumor  progression 

(Halozonetis, 2008).

The  loss  of  checkpoint  function  and  of  repair  accuracy,  which  we 

observed in absence of CCDC6, might favour genome instability and 

might  represent  an  early  independent  event  of  a  multistep 

carcinogenetic process in primary tumours.
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6. MATERIALS AND METHODS

6.1 Materials, antibodies
Etoposide [4′-Demethylepipodophyllotoxin  9-(4,6-O-ethylidene-β-

Dglucopyranoside),  VP-16-213]  is  an antitumor agent  that  complexes 

with topoisomerase II  and DNA to enhance double-strand and single-

strand cleavage of DNA and reversibly inhibit religation. 

Camptothecin (CPT) is a cytotoxic quinoline alkaloid which  inhibits the 

DNA enzyme topoisomerase I (topo I). CPT binds to the topo I and DNA 

complex  (the  covalent  complex)  resulting  in  a  ternary  complex,  and 

thereby stabilizing it. This prevents DNA re-ligation and therefore causes 

DNA damage which results in apoptosis.

Hydroxyurea is  an  antineoplastic  drug.  Inactivates  ribonucleoside 

reductase by forming a free radical nitroxide that binds a tyrosyl  free 

radical  in the active site of  the enzyme. This blocks the synthesis of 

deoxynucleotides,  which  inhibits  DNA  synthesis  and  induces 

synchronization or cell death in S-phase.

Crystal  violet also  known  as  Methyl  Violet  10B,  hexamethyl  

pararosaniline chloride,  or  pyoctanin(e)) is a triarylmethane dye. as a 

means of avoiding UV-induced DNA destruction when performing DNA 

cloning in vitro.

Etoposide,  camptothecin,  hydroxyurea,  crystal  violet,  thymidine  and 

puromycin  were  obtained  from  Sigma  Chemical  Co.  (St  Louis,  MO, 

USA); Blasticidin  was  from  Invitrogen  (Carlsbad,  CA,  USA), 

Deoxycytidine hydrochloride from Fluka. Okadaic acid was from Biomol 

International (Farmingdale, New York).

We  employed  the  following  antibodies:  mouse  anti-γH2AX  (Upstate, 

clone  JBW301),  rabbit  anti-H2AX  (Cell  Signaling),  rabbit  anti-PP4C 
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(Bethyl, A300-835A), rabbit anti-PP4R2 (Bethyl, A300-838A), rabbit anti-

PP4R1 (Bethyl,  A300-836A), rabbit  anti-PP4R3a (Bethyl,  A300-840A), 

rabbit  anti-PP4R3b  (Bethyl,  A300-842A),  rabbit  anti-PP4R4  (abcam, 

ab111419), rabbit anti-PPM1D (Bethyl, A300-664A), rabbit anti Phospho 

RPA32  (S33)  (Bethyl,  A300-264A),  rabbit  anti  RPA32  (Bethyl,  A300-

244A),  rabbit  anti-PPP6C  (Bethyl,  A300-844A),  mouse  anti-CCDC6 

(abcam ab56353),  mouse  anti-phospho-Ser/Thr-Pro,  MPM2 (Upstate, 

05-368), mouse anti-phosphohistone H3 (Ser 10, Cell Signaling, clone 

6G3), rabbit anti-MDC1, (abcam, ab 11171), mouse anti-phospho-ATM 

(Ser1981) (Cell Signaling, #4526) antibodies.

6.2 Cell culture, plasmids and transfection
TPC-1 and 293T cells were maintained in Dulbecco.’s modified Eagle.’s 

medium supplemented with  10% fetal bovine serum; HeLa cells were 

maintained in RPMI (Gibco, Paisley, UK), supplemented with 10% fetal 

bovine serum.

GST-CCDC6 fusion  proteins  production,  small  inhibitor  duplex  RNAs 

targeting  human CCDC6,  pCDNA4ToA-CCDC6wt,  1-223,  1-101 have 

been described elsewhere (Merolla et al., 2007).

The Fugene reagent (Roche) was used to transfect cells accordingly to 

the manufacturer’s instructions.

6.3 RNA interference and short hairpin mission
Mission shRNA (pLKO.1 puro) were from Sigma-Aldrich, Inc. In order to 

obtain  CCDC6  stably  depleted  Hela  cells  were  transfected  with  the 

plasmid pool (shCCDC6, NM_005436) or a pool of non-targeting vectors 

(sh control) by the Nucleofector transfection system. For PP4c, PP4R2 

transient silencing the plasmid pool of PP4c mission shRNA bacterial 

glycerol  stock  (NM_002720)  and  the  sh  PP4R2  (NM_174907)  were 

transfected.  Silencing  of  PP4R2  and  PP4C  were  purchased  from 
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MISSION  shRNA  Plasmid  DNA  from  Sigma-Aldrich  and  were 

transfected  using  Fugene-HD  (Roche).  All  siRNAs employed  in  this 

study were purchased from Sigma Aldrich. All RNAi transfections were 

performed using Oligofectamine Reagent (invitrogen). 

Individual  siRNA  are  PPAR1:  5’-GGAGCUCAUUGAACGAUUUUU-3’ 

and 5’-AAAAAUCGUUCAAUGAGCUCC-3’.

PP4R4: #N1  5’-  GAACAAGUGUGAUUGCAAAUU-3’  and  5’- 

AAUUUGCAAUCACACUUGUUC-3’; 

#N2  5’-  UGAAAGGGCUGUUUAUCUGUU-3’  and  5’- 

AACAGAUAAACAGCCCUUUCA-3’;

#N3  5’-  GAUUGACAGUCGAUGAAGAAUCG-3’  and  5’- 

AAUCUUCAUCGACUGUCAAUCCG-3’;

#N4  5’-  GCGAUGGAUUUCAGUCAGAUU-3’  and  5’- 

AAUCUGACUGAAAUCCAUCGC-3’.

PP4R3α: 5’-  UGAAUUAAGUCGCCUUGAAUU-3’  and  5’- 

UUCAAGGCGACUUAAUUCAUU-3’.

PP4R3β: 5’-CCAUCUAUAUUGCGUAGUAUU-3’  and  5’- 

UACUACGCAAUAUAGAUGGUU-3’.

PP4R2#N1 

CCGGGCCCTGTAAGTAGTAGTTCTTCTCGAGAAGAACTACTACTTAC

AGGGCTTTTT

PP4R2 #N2

CCGGCGTGAAACAGAAGAATTAGTACTCGAGTACTAATTCTTCTGTT

TCAGGTTTTT.

All experiments were performed from 48 to 72 h post transfection.

6.4 Western Blotting
Western Blotting  and immunoprecipitates was performed as described 

(Laemli,  UK, 1970;  Towbin H,  Staehelin,  and Gordon J,  1979).  Blots 

were hybridized with antibodies to the indicated proteins and then with 
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their corresponding species-specific horseradish peroxidase-conjugated 

secondary  IgG  and  visualised  using  the  ECL  chemi-luminescence 

system (Amersham/Pharmacia)

6.5 Flow cytometry
Cells  at  70% confluence were  harvested,  fixed in  ethanol  for  1  h at 

-20°C, rehydrated in PBS for 1 h at 4°C, and then treated with RNase A 

(100 U/ml) for 30 min. Propidium iodide (25 mg/ml) was added to the 

cells for 30 min in the dark at room temperature. The percentage of the 

M-phase  cells  was  determined  by  staining  with  PI  and  antibody  to 

phospho-histone H3 (P-H3) (Cell Signaling, Beverly, MA, USA), followed 

by  FITC-conjugated  secondary  antibody  (Jackson  Immunoresearch 

Laboratories, West Grove,  PA, USA). Samples were analysed with  a 

FACScan flow cytometer (Becton Dickinson, San Jose, CA, USA) using 

an argon-ion laser tuned to 488nm measuring forward and orthogonal 

light scatter, and red fluorescence measuring area and either peak of 

the fluorescent signal. Data were analysed with Modfits software.

6.6 Indirect Immunofluorescence
The  indirect  immunofluorescence  was  performed  as  follow.  For 

immunofluorescence staining the CCDC6 gene product  was detected 

with rabbit polyclonal antibody anti-CCDC6 at 1:50 dilution applied 1h at 

37 °C in a humidified chamber and a fluorescein isothiocyanate (FITC)-

conjugated donkey anti-rabbit secondary IgG antibody at 1:50 dilution 

(Jackson ImmunoResearch Laboratories Inc., West Grove, OK, USA).

For  immunofluorescence  staining,  exogenous  myc-H4wt  and  myc-

H4T434A were  detected  with  mouse  monoclonal  antibody  anti-myc 

(Santa  Cruz)  at  1:50  dilution  applied  1h  at  37  °C  in  a  humidified 

chamber  and  a  fluorescein  isothiocyanate  (FITC)-conjugated  donkey 

anti-mouse  secondary  IgG  antibody  at  1:50  dilution  (Jackson 

61



ImmunoResearch  Laboratories  Inc.,  West  Grove,  OK,  USA).  After 

washing three times with PBS, the slides were washed with Hoechst 

33258 (final concentration, 1  μg/mL; Sigma-Aldrich) to stain nuclei and 

then mounted in aqueous medium (Sigma, Milan, Italy).

6.7 Chromatin extraction
2 x 106 cells were lysed in 100 μl of CSK buffer (10 mM Pipes-KOH pH 

6.8, 100mM NaCl,  300mM Sucrose, 1.5 mM MgCl2) containing 0.5% 

TritonX100, supplemented with Proteinase and Phosphatase inhibitors. 

Lysates were incubated on ice for 10 minutes and then centrifuged at 

1500 x g for 5 minutes at 4°C. Supernatant was removed, pellets were 

washed with  1 ml  of  lysis  buffer  and centrifuged again.  Pellets  were 

incubated  in  100  μl  of  CSK  buffer  containing  1U/μl  of  Benzonase 

(Novagen) for 1h at room temperature.  After centrifugation supernatant 

was collected, boiled in 1X Laemli loading dye.

6.8 Phosphatase Assays
Chromatin fractions were purified by HeLa cells after 10 Gy IR exposure 

as indicated above. Crude histones were isolated by acidic extraction 

from cells  exposed  to  IR  (10Gy,  1h)  using  a  Histone  purification  kit 

(Active  Motif,  Carlsbad,  CA,  USA).  293T  cells  were  lysed  in  buffer 

containing 60 mM Tris-HCl (pH 8.0), 1% Nonidet P-40, 120 mM NaCl, 

1mM  EDTA,  6  mM  EGTA,  1  mM  dithiothreitol,  50  µΜ p-

amidinophenylmethanesulfonyl-Fluoride  and  2  µg/ml  aprotinin. 

Endogenous PP4 was immunoprecipitated with an anti-PP4C antibody. 

The  immunoprecipitates  were  washed  three  times  in  washing  buffer. 

Phosphatase  assays  were  performed  incubating  the  PP4C 

immunoprecipitated  with  purified  chromatin  fraction  or  mixed  with  3 

micrograms of acid-extracted histones in 40 µl of assay buffer (50 mM 

Tris pH 7.0,  0.1 mM CaCl2,  and 1 mM MnCl2)  at  30 °C for  30 min 

62



(unless otherwise indicated). Buffer plus chromatin fraction was used as 

a  negative  control,  boiled  in  a  SDS-PAGE loading  buffer  for  5  min, 

resolved by 15% SDS-PAGE, transferred to nitrocellulose membranes, 

and then subjected to Western blotting with the indicated antibodies.

Enzimatic  activity of  PP4c on acid-extracted histones or on synthetic 

RKpTIRR  phosphorylated  substrate  was  detected  by  the  Malachite 

Green  phosphatase  assay,  according  to  Manufacturer’s  protocol 

(Upstate Biotechnology Inc, Lake Placid, NY).

6.9 G2/M checkpoint recovery assay.
The cells were synchronized in G1/S phase by double thymidine-block. 

Nocodazole was used at 50 ng/ml for16 hours, before cells releasing. 

For FACS analysis of phospho-S/T-MPM2 staining, cells were fixed with 

3% paraformaldehyde at various time points, permeabilized with 70% 

methanol and blocked with FACS incubation buffer (0.5% BSA in PBS) 

for 10 min.

6.10 DSBs detection by PFGE
Standard conditions for the DSBs compaction in one band have been 

adapted to the CHEF DRIII apparatus (BIORAD) from Hanada  et al., 

2007.

6.11 Clonogenic assays
Cell lines exposed to a range of doses of ionizing irradiation (0–8 Gy) 

were  plated  in  triplicate  at  limiting  dilutions  into  six-  well  plates, 

incubated for 24 h, and then followed by incubation for 2 weeks. Before 

counting colonies, cells were fixed in 95% methanol and stained with 

crystal violet.

A population of more than 50 cells was counted as one survived colony. 

The mean colony counts standard errors are reported.
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