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RIASSUNTO 

 

Lo strato acellulare che ricopre le parti aeree delle piante vascolari superiori è chiamato 

cuticola. Quest’ultima funge da barriera protettiva ed è un efficace rilevatore 

d’inquinamento ambientale. Lo studio delle cuticole vegetali e in particolare degli apparati 

stomatici delle conifere, è estesamente utilizzato quale strumento di analisi ai fini della 

comprensione delle caratteristiche ecologiche e paleoecologiche. E’ interessante notare 

che, sebbene siano numerosi gli studi inerenti le cuticole delle piante, poco o niente è stato 

fatto relativamente agli effetti prodotti sulle cuticole delle piante da parte dei gas vulcanici. 

La Campania, con la presenza di numerose località caratterizzate da emissioni di gas di 

origine vulcanica (Pisciarelli, Solfatara, complesso del Somma-Vesuvio, ecc.), consente di 

effettuare studi di questo tipo. 

L’obiettivo di questa ricerca è quello di contribuire a individuare le potenzialità delle 

conifere e delle angiosperme (attuali e fossili) quali indicatori ecologici utili per la 

comprensione delle variazioni dei parametri ambientali. A tale scopo sono state compiute 

osservazioni macroscopiche e microscopiche di piante vascolari in relazione all’influenza 

di fattori ambientali quali: aerosol vulcanici, intensità luminosa, disponibilità di acqua e 

salinità. Nel corso della ricerca sono state campionate numerose aree e sono state utilizzate 

apparecchiature quali: microscopio ottico, SEM, TEM e EDS. La statistica è stata utilizzata 

per l’analisi delle caratteristiche micromorfologiche. 

Le osservazioni condotte su piante attuali hanno consentito di studiare, per la prima volta, 

gli effetti dei gas vulcanici sull’ultrastruttura delle cuticole della conifera Pinus halepensis 

[pino d’Aleppo; siti di raccolta: Pisciarelli (presenza di gas vulcanici) e Cigliano (assenza 

gas vulcanici)] e dell’angiosperma Erica arborea [siti di raccolta: Solfatara di Pozzuoli e 

Pisciarelli (presenza di gas vulcanici per entrambi) e Cigliano (assenza gas vulcanici)]. 

Le osservazioni al TEM effettuate su cuticole di P. halepensis, influenzate e non da gas 

vulcanici, hanno evidenziato che lo spessore totale di CM (cuticola) + CW (parete 

primaria) non subisce sostanziali variazioni di spessore. In particolare, la cuticola degli 

aghi influenzati da gas vulcanici mostra (a forti ingrandimenti: TEM) un aumento dei 

depositi di ossalato di calcio e un riarrangiamento delle fibrille che si dispongono 

parallelamente alla superficie. Le osservazioni condotte al SEM e al TEM su aghi di P. 

halepensis attuali hanno permesso altresì di realizzare una chiave dicotomica che consente 

di identificare possibili alterazioni (dovute alla presenza di gas potenzialmente tossici 

come quelli vulcanici) anche in cuticole di pino sub-fossili o fossili. 
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Le osservazioni condotte su E. arborea, hanno permesso di costatare che gli spessori totali 

delle cuticole, “fumigated and not fumigated”, sono diversi. Comunque, in presenza di gas 

vulcanici lo strato esterno A2 subisce un sensibile incremento di spessore. Quest’ultimo 

aumenta quando la concentrazione di CO2 in atmosfera è elevata, mentre non subisce 

sostanziali variazioni quando la quantità di CO2 al suolo varia drasticamente. Ciò conferma 

che la cuticola è il mediatore principale negli scambi gassosi tra ambiente interno ed 

esterno. 

Per entrambe le specie attuali studiate non è stata riscontrata presenza di zolfo nella 

cuticola, nella parete cellulare o nel citoplasma. Ciò conferma l’ipotesi che gli scambi 

gassosi avvengono essenzialmente attraverso gli apparati stomatici e che lo zolfo in 

eccesso è metabolizzato nelle foglie. 

Relativamente ai macroresti vegetali fossili, sono state studiate le cuticole rinvenute nei 

Fossil-Lagertätten cretacici di Cusano Mutri (Aptiano superiore) e Pietraroja (Albiano 

inferiore). Il primo sito fossilifero ha consentito di: 1) identificare svariati taxa 

riconducibili alle conifere; 2) descrivere una nuova specie di conifera caratterizzata dalla 

presenza di caratteri xeromorfici: Frenelopsis cusanensis Bartiromo et al.; 3) rinvenire, per 

la prima volta al di fuori dei confini spagnoli, un’angiosperma ancestrale: Montsechia 

vidalii. Lo studio tassonomico condotto sulle cuticole cretaciche di Cusano Mutri e 

Pietraroja ha permesso di descrivere entità tipiche della Provincia Euro-Siniana. Lo studio 

sedimentologico e sistematico denota un clima tropicale-subtropicale piuttosto arido. E’ 

interessante notare come per il sito di Cusano Mutri, il rinvenimento di abbondanti 

“fusain” sulle superfici di strato sia la prova che incendi naturali, frequentemente innescati 

da fulmini, interessavano le terre emerse.  

Questo studio (almeno per quanto riguarda le piante attuali) può essere considerato 

pionieristico proprio perché per la prima volta sono state studiate le variazioni 

dell’ultrastruttura della cuticola in presenza di gas vulcanici. 
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RÉSUMÉ 

 

La couche qui recouvre les parties aériennes des plantes vasculaires supérieures est appelée 

cuticule. Cette dernière agit comme une barrière protectrice et est un détecteur efficace de 

la pollution de l'environnement. L’étude de la cuticule des plantes, en particulier des 

appareils stomatiques des conifères, est largement utilisée comme un outil d’analyse pour 

comprendre les caractéristiques écologiques et paléoécologiques. Il est intéressant de noter 

que, bien que les études sur la cuticule des plantes soient nombreuses, peu ou rien n’a été 

réalisé sur les effets sur la cuticule des plantes par les gaz volcaniques. La Campanie, avec 

ses nombreux endroits caractérisés par des émissions de gaz d'origine volcanique 

(Pisciarelli, Solfatara, complexe du Somma-Vésuve), permet d’effectuer ce type d’études.  

L’objectif de cette recherche est donc de contribuer à individualiser les potentialités des 

conifères et angiospermes (actuelles et fossiles) comme indicateurs écologiques dans la 

reconnaissance des variations de paramètres environnementaux. Pour cela, des 

observations macroscopiques et microscopiques de plantes vasculaires ont été effectuées 

par rapport à l'influence des facteurs environnementaux tels les aérosols volcaniques, 

l'intensité de la lumière, disponibilité d’eau et la salinité. Au cours de la recherche un 

certain nombre de localités ont été échantillonnées et on a utilisé des équipements comme 

le microscope optique, le MEB, le MET et l’EDS. La statistique a été largement mise à 

contribution, avec l’intervalle de confiance portant sur 30 mesures. 

Les observations effectuées sur les plantes actuelles ont permis d’étudier, pour la première 

fois, les effets des gaz volcaniques sur l’ultrastructure des cuticules du conifère Pinus 

halepensis [le pin d’Alep, sites de récolte: Pisciarelli (fumigé) et Cigliano (non fumigé)] et 

de l’angiosperme Erica arborea [la bruyère arborescente, sites de récolte: Solfatara et 

Pisciarelli (fumigé) et Cigliano (non fumigé)]. 

Les observations conduites au TEM sur les cuticules de P. halepensis, influencé et non 

influencé par les gaz volcaniques, ont montré que l'épaisseur totale de la CM (cuticule) + 

CW (paroi pectocellulosique) ne subit pas de variations significatives d'épaisseur. En 

particulier, la cuticule des aiguilles influencée par les gaz volcaniques montre (à fort 

grossissement TEM) une accumulation d’oxalate de calcium ainsi qu’un réarrangement des 

fibrilles disposées parallèlement à la surface. Les observations SEM et TEM sur des 

aiguilles de P. halepensis actuelles ont permis également de réaliser une clé dichotomique 

permettant d’identifier les altérations possibles (dues à la présence de gaz potentiellement 

toxiques comme les gaz volcaniques) des cuticules de pins sub-fossiles ou fossiles. 
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Les observations conduites sur E. arborea ont permis de constater que les épaisseurs 

totales des cuticules, influencées ou non par les gaz, sont significativement différentes. En 

présence de gaz volcaniques la couche externe A2 subit un sensible accroissement 

d’épaisseur. Cette dernière augmente quand la concentration en CO2 en atmosphère est 

élevée, alors qu’elle ne subit pas de variations substantielles quand la quantité de CO2 au 

sol varie de manière drastique. Ceci démontre que la cuticule est le médiateur principal 

dans les échanges entre l’environnement interne et externe. 

Grâce à des analyses EDS, pour les deux espèces actuelles étudiés il n’a pas été trouvé de 

présence de soufre dans la cuticule, dans la paroi cellulaire ou dans le cytoplasme. Ceci 

confirme que la cuticule est le principale médiateur des échanges gazeux entre 

l’environnement interne et externe. 

Par rapport aux macro-restes végétaux fossiles, les cuticules du Fossil-Lagertätten du 

Crétacé de Cusano Mutri (Aptien sup.) et de Pietraroja (Albien inf.) ont été étudiées. Le 

première site fossilifère a permis 1) d’identifier plusieurs taxa appartenant aux conifères; 2) 

de décrire une nouvelle espèce de conifère caractérisée par la présence de caractères 

xéromorphiques: Frenelopsis cusanensis Bartiromo et al.; 3) de trouver, pour la première 

fois à l’extérieur de l’Espagne, une angiosperme ancestrale: Montsechia vidalii. L’étude 

taxonomique conduite sur des cuticules du Crétacé de Cusano Mutri et Pietraroja a permis 

de décrire entités typiques de la Province Euro-Sinienne. L’étude sédimentologique et 

systématique montre une climat tropical-subtropical plutôt sec. Il est intéressant de noter, 

comme pour le site de Cusano Mutri, la présence des abondants fusains sur les surfaces des 

couches rocheuses, montrant les incendies naturels fréquemment amorcés par des éclairs 

intéressant les terres émergées. 

Cette étude (au moins en ce qui concerne les plantes actuelles) peut être considérée comme 

pionnière car, pour la première fois, a été étudié les variations de l'ultrastructure de la 

cuticule en présence de gaz volcaniques. 
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ABSTRACT 

 

The leaves of many tracheophytes are covered with a cuticle, an extracellular membrane 

covering aerial organs of plants. The gas exchanges between the plant and the surrounding 

atmosphere are mediated by the cuticle; its acts as the main barrier to air pollutants. The 

study of the plant cuticle, in particular the stomatal apparatuses of conifer, is largely used 

as a tool analysis revealing ecological and paleoecological features. It is worth noting that 

little is known about the long-term response of micromorphology of natural vegetation to 

volcanic toxic gases. Fortunately, Campania Region with its numerous volcanic localities 

(Pisciarelli, Solfatara, complexe du Somma-Vésuve) represents a natural laboratory 

allowing experiments involving plant-volcano interactions. 

The object of this research is to study the conifer and angiosperms potentialities (extant 

and fossil) as ecological indicators useful in the identification of the environmental 

parameters variations. That is why, macroscopical and microscopical observations in 

vascular plants in relation to various environmental factors (volcanic gases, light intensity, 

water availability and salinity), have been analysed. A number of localities have been 

sampled and SEM, TEM and EDS equipments have been used together with statistic. 

Observations made on extant plants allowed for the first time, the study of the effects of 

volcanic gases on the cuticle ultrastructure of Pinus halepensis [Aleppo pine; Pisciarelli 

(fumigated) and Cigliano (not fumigated) localities] and Erica arborea [tree heather; 

Solfatara, Pisciarelli (fumigated) and Cigliano (not fumigated) localities]. 

TEM observations on P. halepensis cuticles fumigated or not by volcanic gases revealed 

insignificant thickness variations of the cell wall plus cuticle among current- and first-year-

old needles of both fumigated and not fumigated trees. In particular, the needle cuticles 

experiencing chronic fumigation display (TEM) a calcium oxalate accumulation. 

Moreover, in respect to the cell surface, fibrils are parallel disposed. SEM and TEM 

observations allowed an identification key enabling distinction between not fumigated and 

fumigated material with 9 characters, providing a good tool detecting the influence of 

volcanism for extant and fossil plants. 

In specimens of E. arborea fumigated or not by volcanic gases, the total thickness of 

cuticles varies significantly. In plant experiencing chronic fumigation the A2 layer records 

an increase of its thickness. Within three localities, a good correlation between the 

atmospheric CO2 concentration and the thickness variation of A2 layer has been found. 
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This fact confirms that the cuticle is the main mediator between the plant and the 

atmosphere. 

As for fossil plants, the cuticles of Cretaceous Fossil-Lagertätten of Cusano Mutri (Late 

Aptian) and Pietraroja (Lower Albian) have been studied. In the former: 1) numerous taxa 

belonging to conifers have been identified; 2) the new species Frenelopsis cusanensis 

Bartiromo et al. bearing xeromorphic features has been described; 3) the occurrence of 

Montsechia vidalii is recorded for the first time outside of Spain. Taxonomical studies 

carried out on Cretaceous cuticles from Cusano Mutri and Pietraroja allowed the 

description of typical Euro-Sinian fossil plants. Sedimentological and taxonomical studies 

suggest semi-arid or arid conditions in a subtropical or tropical climate. It is worth noting 

as for Cusano Mutri locality, evidence of wildfire (fusain) suggests a periodic combination 

of arid periods, high temperatures and lightning strikes. 

This study (at least for extant plants) can be considered pioneering, because, for the first 

time, the relationships between cuticle ultrastructure variations and volcanic gases have 

been studied. 
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Fig. 1. Scheme showing the location of cuticle (= cuticular 

membrane in red) within the epidermis and in a stomatal 

apparatus context. 

GENERAL INTRODUCTION 

 

The leaves, fruits, and primary stems of higher plants are covered by a cuticular membrane 

(CM), or cuticle, that occupies approximately the outer 0.1-10 μm of the aerial plant 

surface (Stark and Tian, 2006). On leaves the cuticle is present in both adaxial and abaxial 

surfaces. The CM occupies the outer surfaces of epidermal cell walls and is impregnated 

with an extracellular matrix (Domínguez et al., 2011). The cuticle has often been called the 

“skin” of the primary parts of higher plants and has a very long history on the 

palaeobiological timescale (Riederer, 2006). With exception of fossil pollen and spores, 

cuticles represent the most widespread unaltered fossil plant remains and are known from 

the Devonian to the recent (Taylor et al., 1989). For this reason paleobotanists always 

played an important role in the study of plant cuticles (Kerp, 1990). The earliest references 

to fossil cuticles are by Göppert (1841–1846), while Brongniart (1834) gave the name 

“cuticula” to a superficial membrane isolated from the cabbage leaf epidermis by retting in 

water. Later, Norris and Bukovac (1968) defined the limits of the cuticle as “all of the 

layers that can be separated from the underlying cellulose cell wall”. 

Cuticular membrane is a translucent film of polymeric lipids and soluble waxes (Jeffree, 

2006). The cuticle is usually 

thicker  above the anticlinal 

epidermal cell walls (CW), 

often forming pegs or span-

drels by penetrating deeply 

between the anticlinal walls of 

adjacent epidermal cells (Jef-

free, 2006). The CM bears an 

imprint (a “ghost”) of the epi-

dermal cell pattern of the plant organs on which it was formed (Fig. 1), which may survive 

as the only remaining fossil evidence of multicellular structure of the earliest land plants 

(Edwards et al., 1996). 

In most plants the CM is not structurally or chemically homogeneous but composed of a 

number of layers, each of which is defined by its position and chemical constitution 

(Holloway, 1982). As Taylor et al. (1989) claimed, the cuticle consists of various layers 

which can be delimited based on the substances (e.g. waxes) embedded within the 

polymeric matrix and various structural features (e.g. lamellae and fibrillae). Generally 
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speaking, TEM revealed that the cuticle of the cells of the upper epidermis is made of an 

outer stratum named cuticle proper (CP) and an inner one called cuticular layer (CL). 

According to the international terminology, the former (CP) can be constituted by an A1 

(lamellate) or/and an A2 (uniformly electron dense with areas of lacunae) layers; the latter 

(CL) is constituted by a reticulate (B = B1) layer (see: Holloway, 1982; Archangelsky, 

1991; Jeffree, 2006), in some rare cases an innermost B2 granular layer is present. 

The outer surface of cuticle can be coated with epicuticular waxes which confer water 

repellency (Adam, 1963). Cuticular wax plays pivotal physiological and ecological roles in 

the interactions between plants and their abiotic and biotic environments, respectively 

(Jetter et al., 2006). 

The cuticle performs numerous functions such as: transpiration control; control of loss and 

uptake of polar solutes; control of the exchange of gases and vapours; interface for biotic 

interactions and so on. However, the primary function of the cuticle is a permeability 

barrier against water vapour loss from tissues (Schreiber et al., 1996). For these and other 

reasons (see: Huttunen, 1984; Jeffree, 1986; Archangelsky et al., 1995; Garrec, 1996) the 

cuticle can be considered as an “external skeleton” as it represents the interface between 

the plant and the atmosphere (McElwain and Chaloner, 1996). As cuticle forms the 

interface between plants and atmospheric environment, it is the first point of contact 

between plants and air pollutants and it presents an effective barrier to pollutant entry. 

During recent years considerable progress has been made for investigating this more 

external part of plants and its relations with external environment (Holloway, 1982; Hill 

and Dilcher, 1990; McElwain and Chaloner, 1996; Newrath, 2006; Jeffree, 2006; Shepherd 

and Griffiths, 2006). However, few studies have been carried out in the study of plant-

volcanic gases interaction. 

This doctoral thesis represents a contribution to the study of extant and fossil plant cuticles 

by means of optical and electronic (SEM and TEM) microscopy as well as EDS analyses. 

In particular, this research is pioneer in the study of ultrasctructure of plant cuticle 

submitted to the influence of volcanic gases representing the first part of this thesis. 

Similar researches are highly advisable in the Campania Region (Ischia island, Phlegrean 

Fields, Roccamonfina and Somma–Vesuvio complex) where volcanic and not volcanic gas 

emissions, give great opportunities in the analysis of plant–volcano interaction. However, 

Campania Region represents also a “virgin reservoir” for the study of Cretaceous plants 

that exactly make the object of the second part of this thesis (Fig. 2). 
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Fig. 2. Showing the location of the studied sites in Campania 

Region (the red asterisks). The dotted circle indicates the 

area occupied by the volcanic area of Phlegrean Fields. 

Organisms of the past, in the same ways as those of the present, became adapted to their 

environments. The distributions of plant and animal species, as well as community 

characteristics, are strongly in-

fluenced by climate (Wing and 

Greenwood, 1993). As a matter of 

fact, thick cuticles and sunken sto-

mata of fossil leaves also suggest 

lack of available water (Stewart 

and Rothwell, 1999). 

Therefore, the “ability” of cuticle 

to register the environmental con-

ditions is herein used as “trait 

d’union” between the first (extant 

plants) and second (fossil plants) part of this research as detector of environmental 

conditions. 

For extant plants, a representative of conifers (Pinus halepensis Mill.) and angiosperms 

(Erica arborea L.) long-term fumigated by toxic volcanic gases have been studied. In 

Pisciarelli area P. halepensis is the only conifer growing near the vent. In Pisciarelli and 

Solfatara localities, E. arborea represents the only xeromorphic species capable to grow in 

the volcanic plume. 

The present study, carried out over three years, rises from the collaboration between the 

Université Claude Bernard Lyon–1 and the Università degli Studi di Napoli Federico II 

and has as main goals the following: 

1) analyze microscopical (essentially) and macroscopically features of the extant 

species Pinus halepensis Mill. and Erica arborea L. submitted to the influence of volcanic 

gases; 

2) use experiences and observations make in the first part of the project to carried out 

in–depth studies of Cretaceous plants from Campania Region as to improve the knowledge 

of these “virgin” fossil site. 

For every chapter a dedicated introduction and a “material and methods” section are 

proposed, because different techniques have been used for extant and fossil plant cuticles 

analyzed and for every site studied. 
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CHAPTER I 

 

Influence of volcanic gases on the epidermis of Pinus halepensis Mill. in 

Campi Flegrei, Southern Italy: A possible tool detecting volcanism in 

present and past floras 

 

1.1. Introduction 

 

Over the geological history of the planet, among chronic environmental stress factors 

advocated as killing agents (Visscher et al., 2004), changes in atmospheric chemistry had 

world-wide dramatic effects on plant life in land (e.g. Visscher et al., 1996; Meyer and 

Kump, 2008). For instance, among chemical contaminants that could have disrupted end-

Permian biota, volcanogenic SO2 (Visscher et al., 2004) and biological H2S (euxinia 

mechanism: Kump et al., 2005; Berner and Ward, 2006) gases are favoured to explain 

extinction. In particular, volcanism subsequently played a role in both maintaining and 

perturbing the atmosphere chemistry and physics, with important implications in terms of 

the evolution of life (Mather, 2008). The development of large igneous province (LIP) and 

continental flood basalt province (CFBP) (Courtillot and Renne, 2003; Jerram et al., 2005; 

Keller, 2008; Bryan et al., 2010) commonly coincides with mass extinction events 

(Wignall, 2001, 2005; Rampino, 2010; Whiteside et al., 2010) and results in the release of 

significant volumes of gases, such as CO2, H2S and SO2 into the atmosphere (Beerling and 

Berner, 2002; Berner and Beerling, 2007; Hori et al., 2007). It is widely recognized that 

volcanic sulfur dioxide (SO2) and hydrogen sulfide (H2S) emissions are significant sources 

of sulfur release to the atmosphere (Bates et al., 1992; Berner and Berner, 1996). 

Gases emitted by volcanoes represent both a factor inhibiting vegetation development 

(Whittaker et al., 1989) and could have been responsible of the decline of vegetation 

during periods of global-scale volcanism (Bond et al., 2010; Visscher et al., 2004; 

Whiteside et al., 2010; McElwain and Punyasena, 2007). In particular, H2S is often thought 

to be a phytotoxin, being harmful to the growth and development of plants (Lisjak et al., 

2010) especially when the quantities are higher than plant necessity (Thompson and Kats, 

1978; Lorenzini and Nali, 2005). Moreover, atmospheric pollutants produced by volcanic 

activity and OAEs, such as SO2 and H2S, are said to be absorbed via the cuticle as well as 

the stomata (Haworth and McElwain, 2008). 
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Plants exposed to poisonous volcanic gases may show signs of diseases to total 

defoliation and death (e.g. Dickson, 1965; Clarkson and Clarkson, 1994; Delmelle et al., 

2002). However, plant damages are related to both gas concentration (Delmelle, 2003) and 

its persistence (Grattan et al., 1998) in the atmosphere. Under severe pollution conditions, 

the direct phytotoxic effects of gaseous pollutants as well as long-term effects of acid 

washout (Grattan and Pyatt, 1994) can even be considered as potential environmental 

mutagens disturbing plant growth and community structure (Visscher et al., 1996). As a 

matter of fact, as Visscher et al. (2004) pointed out, variation in structure and composition 

of leaf cuticles is a potential source of botanical evidence on mutational effects of 

environmental stress factors. 

Therefore, leaves in natural environments are subjected to a range of physical processes 

which may damage their surfaces, leading to alterations in the structure and integrity of the 

cuticle, and consequently changes in the physical properties of the leaf surfaces (van 

Gardingen et al., 1991). 

To this end, numerous articles have been published in relation to the effects and 

interactions of the volcanic activity products (e.g. tephra or ash fall) on both fossil (e.g. 

Kovar-Eder et al., 2001; García Massini and Jacobs, 2011) and extant plants (Winner and 

Mooney, 1980b; Cook et al., 1981; Seymour et al., 1983; Dale et al., 2005). Moreover, in 

extant plants the concentration of chemical elements in the leaves (Notcutt and Davies, 

1989; Martin et al., 2009a and b) and the analysis of the log (Baillie and Munro, 1988; 

Battipaglia et al., 2007) together with field studies led to significant advances in 

understanding the composition and dispersion of volcanic emissions at source (e.g. 

Kempter et al., 1996; Delmelle et al., 2002), including major “gas species” (Costa et al., 

2005; Chiodini, 2008; Chiodini et al., 2010a). 

Leaves of plants act as passive and active collectors for natural (e.g. Martin et al., 

2009a) and anthropogenic (e.g. Bačić et al., 1999) airborne pollutants (e.g. gas, aerosols 

and dusts) and are more sensitive to air quality than other plant organs (e.g. roots) (Landolt 

et al., 1989; Casseles, 1998; Kabata-Pendias, 2001); the gas exchanges between the plant 

and the surrounding atmosphere are mediated by the cuticle; this non-living (Riederer, 

2006) thin (<0.1-10μm thick in extant plants) and heterogeneous membrane (van 

Gardingen et al., 1991) covers the epidermis of the aerial part of many tracheophytes 

(Guignard et al., 2004) and consists of a polymer matrix (cutin), polysaccharides and 

associated solvent-soluble lipids which are synthesised by the epidermal cells and 

deposited on their outer wall (Kirkwood, 1999; Riederer and Schreiber, 2001). The outer 
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surface of the cuticle is coated with epicuticular waxes, a general term (Jeffree, 2006) 

designating very long chain hydrocarbons found embedded within the cuticle and also in 

the crystalline epicuticular wax layer (Bird and Gray, 2003). The main function ascribed to 

waxes is to limit the diffusional flow of water and solutes across the cuticle (Heredia and 

Dominguez, 2009), providing protection for the leaf cells (Turunen and Huttunen, 1990) 

and acting as the main barrier to air pollutants (e.g. Jeffree, 1986). The composition and 

amount of waxes in the cuticle have been shown to vary depending to environmental 

conditions of the plant (Baker, 1982; Bird and Gray, 2003) and according to many authors 

air pollution seems to increase the rate of wax tubules degradation (e.g. Huttunen and 

Laine, 1983; Riding and Percy, 1985; Berg, 1987; Turunen and Huttunen, 1990, 1991, 

Huttunen, 1994). In particular, wax load and structure can be used as an indicator of 

pollution level (Hansell and Oppenheimer, 2006; Holroyd et al., 2002). The epicuticular 

wax of pine needles undergoes an ageing procedure during the needle lifetime (Turunen 

and Huttunen, 1996; Bačić et al., 1999) and is disturbed by polluted air (Huttunen, 1994). 

The literature is replete with references to structural changes in epicuticular waxes 

following exposure to air pollutants (see Turunen and Huttunen, 1990), and as a matter of 

fact, the erosion of epicuticular waxes is a relevant factor of the multiple forest decline 

syndrome (Turunen and Huttunen, 1990). 

Few paleobotanical works have been achieved on cuticular characters related to 

volcanic stress. Archangelsky et al. (1995) and Villar de Seoane (2001) studied Early 

Cretaceous plants from Patagonia (recovered in Baqueró and Springhill Formations, 

respectively) demonstrating that the volcanic ash fall played an important role in the 

formation of xeromorphic structures. As Haworth and McElwain (2008) claimed, the effect 

of toxic atmospheric gases and volcanic dust would explain xeromorphic features of 

Pseudofrenelopsis parceramosa (Fontaine) Watson from the Early Cretaceous of England. 

Moreover, the relationship between ultrastructural characteristics of cuticle and the 

environment is still poorly understood for extinct as well as extant plants (Guignard et al., 

2001) and cuticular ultrastructure data are not numerous for fossil conifers (e.g. Guignard 

et al., 1998; Villar de Seoane, 1998; Yang et al., 2009) and seem to be still lacking for 

some species belonging to the genus Pinus (Jeffree, 2006). 

However, to date, no studies have been carried out relatively to the response of the 

ultrastructural features of plant cuticle exposed to the persistent volcanic gases. Conifers 

are well suited for studies of pollutant levels because they are evergreen and often have 

long-lived foliage. Usually the needles have a life cycle of several years (Hellström, 2003). 
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Therefore, the protective role of the epicuticular waxes is particularly important for 

conifers that have to ensure their investment in leaf tissue for several years (Chabot and 

Chabot, 1977). In the volcanic area of Pisciarelli (Campi Flegrei, Southern Italy) the 

gymnosperm Pinus halepensis Mill. (Aleppo pine) is the only conifer growing adjacent to 

the fumaroles, and much of the surrounding vegetation (under study) displays indications 

of damage caused by toxic gases. P. halepensis is the most abundant pine species in the 

western Mediterranean Basin, where it occupies 2.5 million ha (Quézel, 2000) and it is 

considered as an opportunistic species (Nathan and Ne’eman, 2000) which is able to 

regenerate either in the absence or as a result of fire. In addition, P. halepensis has an 

elevated resistance to drought (Boddi et al., 2002), so much so that Emberger (1930) 

identifies it as being semiarid, and Oppenheimer (1968) considers it as the most arid-

tolerant of all the Pinus species. As a matter of fact, the present study aims to assess the 

cuticular response of this conifer at a prolonged exposition to the volcanic gases using both 

SEM and TEM approaches. Moreover, to our knowledge, this is the first study that tests 

the cuticle ultrastructure behaviour during two subsequent years (current- and first-year-old 

needles) in response to the fumigation of volcanic gases containing H2S. 

In particular, this research aimed to investigate: 1) response of plants to volcanic gases 

through different aspects: epicuticular and epistomatal waxes and ultrastructural features of 

the cuticle; 2) potential implications of the conifer cuticle response across environmental 

stress periods during the geological past; 3) a new method detecting the influence of 

volcanism for extant and fossil plants. 

 

1.2. Material and methods 

 

The material was collected from two localities in the Phlegrean Fields (Campi Flegrei, 

Campania Region), an active caldera which spans the last 50000 years (Scandone et al., 

2010), characterized by significant recent ground deformation (Morhange et al., 2006) and 

considered as one of the most dangerous volcanic areas in the world (Chiodini et al., 

2010a). In particular, pine needles were recovered from the famous fumaroles field in 

Pisciarelli locality (40°49’48.88’’N, 14°08’46.95’’E) about 1 km SE of the Solfatara 

volcano, both characterised by volcanic gas emissions (Fig. 1A,B). Control sample of 

needles were collected from a volcanic quiescent area (Cigliano: 40°50’46.46’’N, 

14°07’36.31’’E) about 2.5 km from Pisciarelli and characterised by the absence of volcanic 

gas emissions and the presence of clean air. Both localities are characterised by the same 
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Fig. 1. (A) Location of the Pisciarelli area in the Campania Region. (B) Sketch map showing the location 

of Solfatara crater and Pisciarelli localities. (C) Close up view of Pisciarelli area with the main fumarole. 

Dotted line indicates the area of diffuse degassing. 

soil features (Di Gennaro and Terribile, 1999; Di Gennaro, 2002) and sun exposition and 

are far away from traffic and industries. 

The temperature reaches about 97°C at the Pisciarelli fumaroles (Chiodini et al., 2010a) 

and the analysis of gaseous compositions (Caliro et al., 2007) revealed that the main 

component of the fumaroles is H2O followed by CO2, H2S, N2, H2, CH4, He, Ar, and CO. 

The absence of acidic gases (SO2, HCl, and HF) can be also noted (Chiodini et al., 2010a). 

Natural high atmospheric concentration of sulphur gas may occur locally in areas with 

volcanic and geothermic activity (De Kok et al., 2007). As a matter of fact, at Pisciarelli 

volcanic vent, the high H2S air concentration (equal to ca 600 μm/mol) at source (Chiodini 

et al., 2010a) is also testified by both typical smell (the odour threshold is >0.02 μm l
-1

: De 

Kok et al., 2007) of rotten eggs in the surrounding air and by indirect corrosive action of 

this gas -well visible on the iron objects- which caused people to abandon some buildings 

in the area (Fig. 1C). Nevertheless, this extreme environment is inhabited by very few 
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angiosperm species providing xeromorphic features (e.g. Erica arborea) and the boiling 

water of fumaroles retains the cyanidialean alga Galdieria phlegrea (Pinto et al., 2007). 

Distal volcanic impacts have shown that plants are generally less sensitive to eruptions 

outside the growing season (Zobel and Antos, 1997; Hotes et al., 2004) and, as Payne and 

Blackford (2008) pointed out, in winter, plants are senescent and higher rainfall may serve 

to remove rapidly volcanic pollutants. In case of Pinus halepensis, an evergreen plant 

permanently fumigated by volcanic gases, retaining leaves for over a year, these “ground 

noises” do not exist. 

The trees present diffuse damages along the North sides of the crown, while needles 

show symptoms consisting in leaf-tip non-specific discoloration which gradually 

increasing shootward (terminology from Baskin et al., 2010). Current- and first-year-old 

needles were collected from branches at heights over 1.5 m from three trees (15-20 years 

old) at each site (Pisciarelli and Cigliano). Needles were carefully handled to avoid 

damaging the epicuticular waxes. Following Reed’s remarks (1982) and also Crang and 

Klomparens’ ones (1988) about possible changes in epicuticular wax structures occurring 

during sample preparation, in order to limit any chemical or physical damages, especially 

for preserving and dehydrating samples for wax morphology studies (e.g. Turunen and 

Huttunen, 1991; Tuomisto and Neuvonen, 1993), needles were air-dried for 1-week at mild 

room temperatures. Among several hundreds of pine needles collected at each site 

(fumigated and not fumigated), 60 were selected for scanning electron microscope (SEM), 

then 16 were carefully selected for transmission electron microscope (TEM). Stomata were 

observed on 15 current- and first-year-old needles for each site. Analysis was performed 

within two weeks from sampling. Taxonomical identification of García Álvarez et al. 

(2009) approach has been used. Light microscope observations were made using a Leitz 

microscope. 

In order to quantify the quality of epicuticular and epistomatal waxes, SEM 

observations were carried out. Untreated needle sections of approximately 5 mm in length -

obtained from the middle of each needle- were mounted on stubs using double-sided 

adhesive tape; both abaxial and adaxial surfaces have been studied. Part of specimens were 

sputter-coated with gold using an AGAR Auto Sputter Coater, while the specimens for 

energy diffractive x-ray (EDX) analyses were coated with carbon in a Emitech K450, 

observed and photographed with JEOL JSM-5310 SEM adapted with an Energy 

Diffractive X-ray Oxford Inca X-act at the CISAG (Centro Interdipartimentale di servizi 

per analisi Geomineralogiche) in the Dipartimento di Scienze della Terra, Università degli 
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Studi di Napoli “Federico II”. The operative conditions were as follows: 25-30 KV 

accelerating voltage, 100 μA emission current, 15 μm spot size, 20 mm microscope work 

distance and 1 min spectra collection time. To quantify the wax change in stomatal 

chamber, the Nicolotti et al. (2005) needle damage classes have been used as a criterion for 

the level of crystalline wax degradation. 

Samples for TEM were dropped in paraformaldehyde solution mixed in a phosphate-

sodium buffer for 3 weeks using Lugardon's technique (1971), washed and postfixed in a 

1% osmium tetroxide solution mixed in a phosphate–sodium buffer for 24 hours. 

Dehydrated in graded ethanol series during 48 h, the samples were dropped in propylene 

oxide with an increasing percentage of Epon resin for 24 h. Transferred into pure Epon 

resin during 24 hours, they were embedded in fresh Epon resin using flat moulds. The 

preparations were subsequently treated for polymerization at 56 °C for 3 days. Ultrathin 

(60-70 nm) sections were sectioned with a diamond knife, using a Reichert Ultracut 

microtome. Ultrathin sections were placed on uncoated 300 Mesh copper grids and stained 

manually both with a methanol solution of 7% uranyl acetate for 15 min and an aqueous 

lead-citrate solution for 20 min, then observed and photographed with a Philips CM 120 

TEM at 80 kV, in the Centre de technologie des microstructures (CTμ) of Lyon-1 

University, Villeurbanne, France. Totally 16 pieces of material were embedded in Epon 

resin blocks. 90 uncoated mesh copper grids were prepared (80 as transversal sections, i.e. 

perpendicular to the leaf length; 10 as longitudinal sections, i.e. parallel to the leaf length). 

In order to detect the presence of sulphur in the cuticle, 40 measurements (i.e. 10 measures 

for each current- and first-year-old needles, fumigated and not fumigated by volcanic 

gases) with EDS microanalysis were carried out on different parts of the cuticle and also 

on the cytoplasm remnants of the epidermal cells. The sulphur analysis was performed on 

25 coated 300 Mesh grids with transmission electron microscope JEOL 1200EX coupled to 

a microanalysis system EDS Si(Li) 30mm² NORAN VOYAGER III with an acceleration 

voltage = 80 kV and a spectres acquisition time = 60 s. 

All the quantitative TEM measurements were made with tools in the ImageJ program 

(Abramoff et al. 2004). The terminology of Holloway (1982) and Archangelsky (1991) 

was used for the ultrastructural analysis. All specimens and SEM stubs are housed in the 

Dipartimento di Scienze della Terra, Largo San Marcellino, 10, Napoli, Italy. The resin 

blocks and TEM negatives are stored in the Lyon-1 University, Villeurbanne, France. 
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Fig. 2. Two different qualitative SEM 

X-ray diffractograms. A) Example of 

volcanic dust spectrum. B) Example of 

CaSO4 crystals spectrum. Current-year-

old needle. Abaxial side. Pisciarelli. 

1.3. Results 

 

1.3.1. Sulphur measures 

 

Energy diffractive X-ray analysis with the SEM, 

carried out on needles undergone chronic 

fumigation, showed two different graphics 

displaying typical volcanic products coming from 

Pisciarelli area (Valentino and Stanzione, 2004): 

the leaves were covered with thin volcanic dust 

coming from the main fumarole of Pisciarelli (Fig. 

2A); they also displayed numerous CaSO4 crystals 

(Fig. 2B). 

EDS microanalyses, within fumigated and not 

fumigated needles, concerned 4 sets of 10 

measurements on outer, middle and inner part of 

cuticle + cytoplasm remnants of the epidermal 

cells. The elements are largely homogeneous (Fig. 

3A-D) and the absence of sulphur is clear in all 

analysed parts. Extraneous elements detected by 

means of TEM X-ray analyses are Cu, Os and Cl 

derived from: the TEM-grids, chemical treatments 

and polyvinyl formal (FORMVAR, the most 

widely film for TEM grids) respectively. However, 

TEM electron energy-loss spectroscopy has proved 

that the cation calcium can be found in cuticle and 

cytoplasm of epidermal cells, especially in 

correspondence of low electron-density areas 

related to calcium-oxalate (CaC2O4) deposit. 

 

1.3.2. Scanning electron microscopy observations 

 

Stomatal apparatuses together with epicuticular and epistomatal waxes of fumigated and 

not fumigated needles have been observed (Plate I). 
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Fig. 3. Cuticle qualitative TEM X-ray diffractograms made on 70 nanometers sections, in three parts of 

the cuticle (outer, middle and inner parts) plus cell cytoplasm remnants, showing four examples among 

the elements content of: not fumigated, current- (A) and first-year-old (B) needles; fumigated, current (C) 

and first-year-old (D) needles. 

 

Current- and first-year-old needles which did not experience chronic fumigation, retain 

quite well-preserved wax tubes in both abaxial and adaxial needle sides (Plate 1, Figs. 3,4). 

The abaxial side of not fumigated current- and first-year-old needles displays the borders 

of the epidermal cells making folds between them (Plate I, Fig. 1). 

The abaxial sides, and to a lesser degree the adaxial ones, of current- and first-year-old 

needles experiencing chronic fumigation, have tubular wax crystals which are converted 

into scale-like crystalloid formations on epicuticular surface (Plate I, Fig. 2) owing to the 

wide wax fusion phenomena. Rare crystalloid structures have been preserved underneath 

the epicuticular crusts (Plate I, Fig. 7, arrows). Epistomatal chambers show eroded and 

fused crystalloids wax, clearly visible in transverse sections (Plate I, Figs. 7,8) as a top 

sheet distinct to waxes embedded in the cuticle. Crusts were not usually seen in samples 

from Cigliano (not fumigated), where, apart from some scattered particles and granules the 

surface was quite smooth, even relatively clean (Plate I, Fig. 1). Crusts appear on most of 

the samples from Pisciarelli and are clearly visible in the area which surrounds stomatal 

apparatuses. 

The abaxial side of the needles fumigated by volcanic gases presents the most part of 

stomatal apparatuses affected by crystalloids wax erosion and fusion phenomena in both 

epistomatal chamber and cuticle surface (Plate I, Figs. 5,7,8). On the other hand, the 

adaxial surface is less damaged and crystal tubules, even if eroded, can be seen (Plate I, 

Fig. 9). For not fumigated needles epicuticular waxes are more or less well-preserved in 

both epistomatal chamber and cuticle surface (Plate I, Figs. 1,3,4,6). 

The majority of the stomatal apparatuses in abaxial side of current- and first-year-old 

needles from Pisciarelli (= fumigated) have fused tubules inside the epistomatal chambers  
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Plate I. Pinus halepensis, SEM of abaxial and adaxial cuticles, for to both trees experiencing and not 

chronic fumigation by volcanic gases. Stomatal class refers to Nicolotti et al. (2005) classification in 

which: class 0 = stomatal structure displaying no sign of alteration, class 1 = for slight sign of alteration, 

class 2 = for moderate sign of alteration, class 3 = for severe alterations. 

1. Abaxial side of not fumigated current-year-old needle showing crystalline wax structure around 

epistomatal rim and along the contact zones of epidermal cells. Photo MC3lon1. 2. Abaxial side of 

fumigated current-year-old needle showing heavily melted epicuticular waxes partially occluding 

epistomatal chambers. Numerous volcanic dust particles obstruct stomatal apparatuses. Photo 

PP1.2long4. 3. Transversal section of not fumigated abaxial side of current-year-old needle showing a 

stomatal apparatus with well-preserved crystalline wax in epistomatal chamber (Class 0). Photo 

MC3s.t.1.1. 4. Detail of Fig. 3, showing completely uninfluenced wax crystal in stomatal antechamber 

(Class 0). Photo MC3s.t.1.2. 5. Transversal section of fumigated abaxial side of current-year-old needle 

showing a stomatal apparatus displaying severe alterations with the formation of wax granules and a 

volcanic dust particle that totally obstruct the epistomatal chamber; the network of microtubules is 

almost all melted (Class 3). Photo PP1.2s.t.3. 6. Abaxial side of not fumigated first-year-old needle 

showing slightly influenced wax crystals in epistomatal chamber (Class 1). Photo MC2.3long4. 7. 

Transversal section of adaxial side of fumigated current-year-old needle showing a stomatal apparatus 

with its epistomatal chamber almost filled with a wax clump, except a small area in the right part in 

which the wax tubes are visible (Class 2). The arrows show crystalloids structures underneath the 

epicuticular crusts. Photo PP.2.1s.t.2. 8. Transversal section of fumigated first-year-old adaxial side of 

needle showing a rather flattened and deformed stomatal apparatus lacking in wax tubes in the 

epistomatal chamber, except for the base (arrow) in which the wax is heavily fused (Class 2-3). Photo 

PP2.2s.t.2. 9. Outer view of fumigated adaxial side of current-year-old needle showing stomatal aperture 

with more or less dense tuft of tubular wax structures in the upper part of epistomatal chamber. Mycelia 

fungi are also visible (arrow) (Class 1). Photo PP1.1long5. 
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forming a flat and solid wax plug or amorphous crusts above the pore which was 

completely or partially occluding the stomata in most cases (Plate I, Fig. 7). Instead, 

current- and first-year-old needles that do not experience chronic fumigation, regardless of 

the age of the needles sampled, present most of their stomatal apertures not occluded, 

thereby remaining almost completely open, apart from some minor fusing tubules (Plate I, 

Fig. 3). On the abaxial side of current- and first-year-old needles experiencing chronic 

fumigation, crystalloid wax tubules rarely persisted and they occupy limited portion only 

in epistomatal chambers (Plate I, Fig. 7 top right). It was noticed that in current-year-old 

needles from Pisciarelli the wax degradation was beginning very early and it increases. 

Frequently, in abaxial side of some Pisciarelli stomatal apparatuses, amorphous wax 

and/or particles of other material -30-40 μm width- filled the stomatal aperture, therefore 

blocking the direct view into the chamber (Plate I, Figs. 5,7). 

In abaxial side of not fumigated needles, the rim of stomatal apparatuses retains 

crystalloid wax, whereas in fumigated needles the wax tubes are absent (Plate I, Figs. 1,2). 

Frequently, the abaxial side of needles experiencing chronic fumigation presents 

deformed stomatal apparatuses so losing the typical funnel-like cavity (Plate 1, Fig. 8). 

Stomatal damages are common and may include collapses (Plate I, Fig. 8), depression, 

degradation of guard cells (Plate 1, Fig. 2), and occlusion with wax clumps (Plate I, Figs. 

2,7). Decay of the epistomatal chambers and empty cavities in stomatal chambers can also 

be noted (Plate I, Figs. 5,8). 

On both abaxial and adaxial surfaces of fumigated needles, a great amount of dust 

occurred (Plate I, Figs. 2,9), while on the needles not fumigated by volcanic gases non-

reactive dusts only mechanically disturb the wax structures (Plate I, Fig. 1). Moreover, 

most of Pisciarelli needles are affected by fungal infection (Plate I, Fig. 9). 

 

1.3.3. Transmission electron microscopy observations 

 

The ultrastructure (cuticle and cell wall) of abaxial epidermal cells from fully grown 

needles (current- and first-year-old needles) of both localities have been studied in details. 

Cuticular membranes (CM) of all ordinary epidermal cell are composed of a fibrillar layer 

B (CL) in which an outer, middle and inner zones can be distinguished (Plate II). The 

cuticle proper (CP = A) is absent. Differences between the cuticular structures are given 

below. All the data given below are the means based on 30 measurements, the percentages 

of each component of the cuticle and of cell wall are also given (Table1). 
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In the current-year-old not fumigated needles (Plate II, Figs. 1-5) the total thickness of 

B1 + cell wall (CW) is 3.80 μm (Plate II, Figs. 1,2). 58.7% is composed of the cuticular 

membrane, which may be further divided into three fibrillous zones: B1 outer (14.6%; 0.56 

μm), B1 middle (19%; 0.72 μm) and B1 inner (25.1%; 0.95 μm). In the first-year-old 

needles (Plate II, Figs. 6-11) the total thickness of CM + CW is 4.09 μm (Plate II, Figs. 6-

7). 46.9% is composed of the cuticular membrane, which may be further divided into an 

outer fibrillous zone B1 (13.4%; 0.55 μm), and middle zone (33.5%; 1.37 μm). The B1 

inner zone is lacking in this case. 

In the current-year-old fumigated needles (Plate II, Figs. 12-16) the total thickness of 

CM + CW is 4.14 μm (Plate II, Figs. 12,13). 74.4% of the CM + CW is composed of the 

cuticular membrane, which may be further divided into three fibrillate zones: B1 outer 

(17.1%; 0.71 μm), B1 middle (33.4%; 1.38 μm) and B1 inner (23.9%; 0.99 μm).  

Table 1. Statistical values, made with 30 measurements for cuticular membrane (CM) and cell wall (CW) of 

the epidermal cells. Note: the cuticular membrane CM is made up with cuticular layer CL (= B1 outer, 

middle and inner layers). All the measurements are in μm. min-max = minimum and maximum values 

observed; % = percentage of each detailed part of the cuticle and cell wall; st-d = standard deviation; var = 

variance. 
not fumigated (current year) not fumigated (first year) 

 mean min-max % st-d var mean min-max % st-d var 

Total CM + CW 3.80 3.03-5.01 100 0.53 0.28 4.09 2.64-7.58 100 1.47 2.17 

CM = B1 2.23 1.48-2.79 58.7 0.35 0.12 1.92 1.17-2.88 46.9 0.49 0.24 

B1 outer 0.56 0.29-0.69 14.6 0.09 0.01 0.55 0.34-1.14 13.4 0.21 0.04 

B1 middle 0.72 0.39-1.15 19.0 0.18 0.03 1.37 0.52-2.17 33.5 0.46 0.21 

B1 inner 0.95 0.39-1.60 25.1 0.34 0.12   0   

CW 1.57 0.87-2.32 41.3 0.37 0.14 2.17 0.84-5.02 53.1 1.12 1.26 

fumigated (current year) fumigated (first year) 

Total CM + CW 4.14 3.40-5.86 100 0.70 0.49 3.92 3.25-5.52 100 0.50 0.25 

CM = B1 3.08 2.27-4.29 74.4 0.56 0.31 2.30 1.93-3.46 58.7 0.48 0.23 

B1 outer 0.71 0.37-1.27 17.1 0.28 0.08 0.38 0.22-0.80 9.7 0.16 0.03 

B1 middle 1.38 0.94-1.94 33.4 0.24 0.06 0.86 0.44-1.60 21.9 0.29 0.08 

B1 inner 0.99 0.36-1.53 23.9 0.28 0.08 1.06 0.40-1.61 27.1 0.27 0.07 

CW 1.06 0.66-2.40 25.6 0.37 0.14 1.62 0.22-2.15 41.3 0.52 0.27 

 

In the first-year-old needles (Plate II, Figs. 17-21) the total thickness of CM + CW is 

3.92 μm thick (Plate II, Figs. 17,18). 58.7% of the CM + CW is composed of the cuticular 

membrane, which may be further divided into the fibrillous zones: B1 outer (9.7%; 0.38 

μm), B1 middle (21.9%; 0.86 μm) and B1 inner (27.1%; 1.06 μm). 
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Plate II. Pinus halepensis, TEM of fumigated and not fumigated needles. All photographs were taken 

from ordinary epidermal cells in transversal sections, except a longitudinal section of photograph 11. The 

cuticle is made up with B1 fibrillous layer (= CL, cuticular layer) divided in three zones: o = outer zone, 

m = middle zone and i = inner zone. 

1-5. Not fumigated current-year-old cuticle. 1. General view of cuticle and cell wall. Photo GGAB0018. 

2. Magnification of cuticle and cell wall showing also the three B1 zones. Photo GGAB0007. 3. Detail of 

B1 outer zone showing slightly dense fibrils more or less random orientated. The upper part of middle 

zone just appears in the bottom of the photo, more densely stained. Photo GGAB0013. 4. Detail of B1 

middle zone of cuticle showing more dense and crowded fibrils randomly orientated and in variable 

densities. Photo GGAB0012. 5. Detail of B1 inner zone showing less dense and the random disposition of 

fibrils. Note the lower part of middle zone just at the top right of the photo. Photo GGAB0011. 
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6-11. Not fumigated first-year-old cuticle. 6. General view of cuticle and cell wall. Photo GGAB0012. 7. 

Magnification of cuticle and cell wall: the lack of B1 inner zone can be noted. Photo GGAB0006. 8. B1 outer 

less dense zone showing a prevalent random orientation of fibrils. Photo GGAB0008. 9. B1 middle zone 

more dense in parallel fibrils (especially visible downwards) and randomly orientated (upwards). Photo 

GGAB0008. 10. B1 base part of middle zone showing fibrils oblique or parallel to the cell wall. Photo 

GGAB0006. 11. B1 other middle zone of cuticle showing fibrils perpendicularly orientated, the upper part of 

cell wall being at the bottom of the photo. Photo GGAB0009. 12-16. Fumigated current-year-old cuticle. 12. 

General view of cuticle and cell wall with numerous calcium oxalate crystal deposits between middle and 

inner zones of the cuticle. Photo GGAB0017. 13. Magnification of cuticle and cell wall showing the three B1 

zones and a big amount of calcium oxalate crystals deposit between the B1 middle and B1 inner zones. Photo 

GGAB0028. 14. B1 outer zone of cuticle showing a prevalent parallel orientation of fibrils and quite 

numerous granules more or less aligned tending to simulate the A1 polylamellate layer of the cuticle proper 

A. Photo GGAB0042. 15. B1 middle zone more dense in fibrils showing fibrils orientated parallel. Photo 

GGAB0019. 16. B1 inner zone of cuticle less dense showing a parallel disposition of fibrils, above the upper 

part of cell wall at the bottom of the photo. Photo GGAB0020. 17-21. Fumigated first-year-old cuticle. 17. 

General view of cuticle and cell wall with numerous and extensive calcium oxalate crystal deposits, 

especially at the anticlinal wall location between the two cells. Photo GGAB0040. 18. Magnification of 

cuticle and cell wall showing the three B1 zones and calcium oxalate crystal deposits. Photo GGAB0016. 19. 

B1 outer zone of cuticle showing the parallel orientation of fibrils tending to form dense clusters (arrow) and 

quite numerous granules at the top part tending to simulate a cuticle proper “A”. Photo GGAB0027. 20. B1 

middle zone with more dens and thicker fibrils showing fibrils more or less parallel orientated tending to 

form clusters. Photo GGAB0010. 21. B1 inner zone showing the parallel disposition of fibrils, above the 

upper part of cell wall at the bottom of the photo. Photo GGAB0044. CW = cell wall, o = outer, m = middle, 

i = inner. All the microphotographs are presented with the same orientation, the top of each print 

corresponding to the upper side of the cuticle, the bottom corresponding to the lower side of the cuticle.  

 

For both fumigated and not fumigated needles a decrease of CM thickness between 

current- and first-year-old needles, has been observed. 

A tendency to a reduction in the fibrillar structure followed by an increase of the 

granular component has been noted between not fumigated and fumigated needles. This 

feature is visible for all B1 zones but especially for B1 middle zone (Plate II, Figs. 

4,9,15,20). Moreover, it is worth noting the disposition of fibrils: they are more or less 

chaotic in the three B1 zones of not fumigated needles, while they are much more parallel 

to the cell surface in the B1 outer (Plate II, Figs. 14,19) and inner (Plate II, Figs. 16,21) 

zones of influenced material. The cuticle of current- and first-year-old symptomatic 

needles, in respect to control needles, exhibits a much higher number of more or less 

rounded shaped areas of low electron-density; these areas represent calcium oxalate 

deposits, usually located between the middle and inner B1 zones (Plate II, Figs. 

12,13,17,18). 

 

1.4. Discussion 

 

The present study based on 30 measurements is the most precise statistic analysis so far 

done for extant plant cuticles. Similar statistic analyses were provided for fossil plants as 

Pachypteris gradinarui from the Early Jurassic of Romania (Guignard et al., 2004) and the  
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cheirolepidiacean Pseudofrenelopsis dalatziensis from the Cretaceous of China (Yang et 

al., 2009). The relation among the different zones [cuticular membrane (CM) (B1 outer, 

middle and inner) + cell wall (CW)] can be traced based on the confidence interval value 

(CI = x ±
n

var  x 1.96. giving 95% α risk) among 6 characters (Fig. 4). It allows to estimate 

the significance of the differences between the four types of studied material. The results 

may be also summarised in the schemes representing different layers of the epidermal cells 

cuticle among the four types of studied material (Fig. 5). 

Moreover, this multidisciplinary approach also allows to evaluate different changes, in 

relation to the degree of epicuticular and epistomatal waxes degradation, between CM and 

CW experiencing different environmental conditions and in the quantification of Ca-

oxalate crystals deposits and stomatal damage (Table 2). It is possible to trace these 

changes not only between the two types of environment (not fumigated and fumigated) but 

also during one year of needle growth. Exposition to volcanic environment characterized 

by gas emissions, causes an acceleration in needles ageing, and through the analysis of the 

degree of needles damage, one can clearly distinguish between fumigated and not 

fumigated needles (Table 3). Comparing not fumigated to fumigated needles of the same 

age, in the latter symptoms amplify (Table 2): an increase in epicuticular waxes fusion, a 

degradation in epistomatal waxes and an increase in Ca-oxalate deposits can be observed. 

All these syntheses allow to discuss several diverse environmental and fossil aspects. 

 

1.4.1. Environmental response of Pinus halepensis to volcanism 

 

1.4.1.1. Epicuticular and epistomatal wax 

 

Stomatal aperture 

In conifers growing wild, like Pinus, the thin, fibrillar and netted epicuticular and 

epistomatal waxes are well-developed especially in (with dense tufts of tubular wax 

structures) and around stomatal entrance (Hanover and Reicosky, 1971; Yoshie and Sakai, 

1985; Huttunen, 1994). The stomatal wax tubes forms in young leaves above the guard 

cells, filling the stomatal pits and making appear stomata as white disks under a 

microscope (Jeffree et al., 1971; Feild et al., 1998). In conifers, the genus Pinus is 

characterized by a type D Florin ring (Yoshie and Sakai, 1985) and, in particular, 

according to the distributional pattern of epicuticular wax, P. halepensis can be ascribed to 
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Fig. 4. Mean and confidence interval CI (= x ±
n

var  x 1.96. giving 95% α risk) for each component of 

the cuticle and of cell wall (CW). Note: the values represent the mean ± CI. The cuticular membrane 

(CM) is made up of cuticular layer CL (= B = B1 divided in outer, middle and inner zones). The B1 inner 

zone is lacking in not fumigated first-year-old needles. All the measurements are in μm. 

 
 

the “Type I” of the Yoshie and Sakai (1985) classification in which the wax crystals are 

deposited in the epistomatal chambers and in the stomatal bands. 

Usually the leaves from Pisciarelli display an overall wax degradation both on 

epicuticular surface and in the epistomatal chamber (Plate I, Figs. 2,5). Permanent 

emissions of volcanic toxic gases affect needles already during the initial growing season. 

Wax tubes may start fusing early with a faster rate than in clean areas, and as Turunen and 

Huttunen (1990) claimed in their overview of many conifers, it usually starts during the 

second year of needles growth. Probably, the waxes erosion is indirectly due to the H2S 

[that can originate H2SO4 (Delmelle, 2003)] but, as Turunen and Huttunen (1990) point 

out, the specificity of the symptoms in the wax structures to different air pollutants is 

limited. In the present case of Aleppo pine the crystalloid waxes not only of first-year-old 

but also of current-year-old needles of not fumigated stomatal antechambers show some 

typical signs of ageing erosion (e.g. Turunen and Huttunen, 1996). However, comparing 

the two sets of data (fumigated and not fumigated trees) it is obvious that the degree of 
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occlusion of suprastomatal chambers (with wax crusts) increased in trees growing in the 

polluted site in respect to the control site used in this study (Table 2). In normal conditions, 

large amounts of wax occlude the epistomatal chambers and the Florin rings are 

characterised by large opening size. Instead, in the needles under the influence of volcanic 

gases of Pisciarelli, the reduction of wax tubes in epistomatal chambers is associated to a 

reduction of the stomatal aperture. Numerous stomatal apparatuses even display collapse 

and decay of the epistomatal chambers (Plate 1, Fig. 8). On the abaxial side of Pisciarelli 

needles, amorphous wax filling epistomatal chambers, as well as the rims, could probably 

disturb normal gas exchange and, as Holroyd et al. (2002) claimed in their study on 

Arabidopsis mutant plants, alterations in wax composition could also affect stomatal 

development. 

 

Volcanic toxic compounds and wax alterations 

After water and carbon, sulphur is the major constituent of the fumes emitted by 

volcanoes (Le Guern et al., 1988) and as a matter of fact, among Pisciarelli fumarolic 

effluents a relatively high quantity of hydrogen sulphide (H2S) is released (Chiodini et al., 

2010a). Brown (1982), Lorenzini and Nali (2005) and also Haworth et al. (2010) claimed 

that the H2S oxidizes rapidly in the atmosphere to form SO2; this last rapidly converts into 

H2SO4 (Visscher et al., 2004) considered as an oxidation product of SO2 or H2S (Mather et 

al., 2003). In extant plants SO2 concentrations between 0.1 and 1.0 ppm can cause rapid 

changes in stomatal conductance for a wide range of plant species. Changes in stomatal 

conductance during period of SO2 exposure are apparently associated with regulating the 

extent to which foliar injury develops (Winner and Mooney, 1980b). Winner and Mooney 

(1980a), studying the fumigation with SO2 of two Californian shrub chaparral species 

(Diplacus aurantiacus and Heteromeles arbutifolia, angiosperms), observed a decline in 

both photosynthesis and transpiration during the fumigation periods and a tendency to 

close during fumigation for guard cells. They also state that the response of guard cells 

during periods of SO2 exposure may be one of the factors contributing to variations in SO2 

resistance between plants. According to the same authors, owing to the effects on plant 

community structure and plant metabolism, the SO2 may be considered as a chronic 

environmental stress for vegetation. Actually, the impact of these sulphurous gases on 

plants is much more complex, since they may act as toxin or plant nutrient upon foliar 

deposition (De Kok et al., 2007). SO2 and H2S affect leaves causing also dwarfism 

phenomena (Wood and Boorman, 1977). More precisely for conifers, in their study on 
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Picea abies (Norway spruce) needles with a treatment simulated acid deposition, Raddi et 

al. (1994) showed that H2SO4 altered significantly both the epicuticular wax and fibrillar 

wax structure in the epistomatal chamber. Rinallo et al. (1986) observed that aqueous 

sulphuric acid of pH 3.5 had greater effects on epistomatal waxes of silver fir (Abies alba 

Mill.) and Norway spruce needles than aqueous nitric acid of the same concentration. 

The present study of Pinus halepensis also contributes to the analysis of sulphur 

influence since, on control needles (Cigliano locality) no CaSO4 crystals were found on 

needle surfaces. Conversely, in fumigated needles from Pisciarelli, the H2SO4 action is 

testified by the occurrence of CaSO4 crystals on needle surface, the result of a reaction 

between the calcium leached out of the needles as observed by Turunen et al. (1994) on 

Pinus sylvestris and Picea abies needles, subjected to acid rain treatment, and the sulphur 

deriving from both H2SO4 and/or from tephra (Smith et al., 1983) deposited on needle 

surfaces. 

As it was already shown that removal of waxes from cuticles results in an increase of 

gas and water permeabilities of up to three orders of magnitude (Lendzian and Kerstiens, 

1991), the formation of wax crusts on needles epidermis of the present Aleppo pine could 

act as a protecting (closing) device against further H2S, SO2 and H2SO4 attacks increasing 

the boundary layer resistance. This was already noticed by Kayode and Otoide (2007) in 

matured leaves of an angiosperm Newbouldia laevis. As Haworth and McElwain (2008) 

claim, in extant plants resistance to fumigation with toxic gases is often associated with an 

increase in the boundary layer resistance. The angiosperm Metrosideros polymorpha 

growing in the Kilauea crater region (Island of Hawaii) is resistant to persistent fumigation 

with toxic volcanic gases (SO2, H2S, HCl, HF) while other species (e.g. Dodonaea 

eriocarpa, an angiosperm) growing in the same region displays a noticeable damage 

(Winner and Mooney, 1980b). M. polymorpha from the Kilauea crater region displays 

heavily trichomous abaxial surfaces, while those in neighbouring regions, not experiencing 

chronic fumigation, possess non-trichomous cuticles (Haworth, 2006). This pattern 

suggests (Haworth, 2006) that the development of trichomes in the Kilauea Crater region is 

an adaptation to increase boundary layer resistance, and consequently reduces entry of 

toxic gases into the leaf. With present observations and measurements for Pinus halepensis 

a sulphur reaction seems to exist too. 

The almost total fusion of wax crystals in needles from Pisciarelli volcanic area is not 

comparable to the mechanical injury under windy condition where leaves scrape against 

each other. In her SEM study on Acer pseudoplatanus leaves under the effect of wind, 
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Wilson (1984) showed different microscopic damages like dark and light brown lesions, 

holes and deformations of the leaf. The wax degradation in specimens from Pisciarelli 

presents different features in respect to the impact of wind blown particles. van Gardingen 

et al. (1991) studied Picea sitchensis and Pinus sylvestris in a wind tunnel showing 

different diseases in respect to the present wax degradation in P. halepensis. In particular, 

in P. sylvestris the authors noticed that the most damage was on the cells surrounding the 

stomatal antechamber or on needle ridges. Moreover, needles damage cannot be related to 

the ozone exposition because the gaseous nature of these molecules should have affected 

the overall needles. The structural injuries observed in the stomatal apparatuses are not 

correlated to the surfactant action. Usually this kind of damages are observed in plants 

growing 100 m far from the sea (because Pisciarelli is located far from sea), near the 

mouth of a river or stream, near the outlet of sewage canals and in any other coastal areas 

where the surface currents carry a surfactant load (Busotti et al., 1995; Nicolotti et al., 

2005). Moreover, spraying with NaCl solutions can be excluded since it does not induce 

the occlusion of stomatal openings (Krause, 1982). 

 

Other sulphur considerations 

Although it is not directly the aim of this study, some EDS measurements allow to 

discuss about sulphur input. Cuticle and stomata are commonly involved in sulphur and 

other molecules absorption (Haworth and McElwain 2008; Haworth et al., 2010; 

Kivimäenpää et al., 2010). In their article about various ecological and cuticular 

micromorphology aspects, Haworth and McElwain (2008) summarised data of various 

authors on different taxa, sulphur (combined with oxygen or hydrogen) is said to be 

“absorbed via the cuticle as well as the stomata”. In the present study of Pinus halepensis, 

40 analyses of ultrathin sections (70 nm) of both fumigated and not fumigated needles 

(Fig. 3A-D) have demonstrated the absence of sulphur within the overall cuticle thickness 

of epidermal cells and cytoplasm. Wide epicuticular and epistomatal wax fusion 

phenomena can be also observed. The lacking of sulphur in the structure of the cuticle 

suggests that the uptake of volcanic toxic gases takes place via stomatal apparatuses. As Le 

Guern et al. (1988) point out, the sulphur is metabolized because it is an essential element 

for plants, and it participates in physiological reactions and is eliminated accordingly. 

Haworth and McElwain (2008) point out that cuticles of evergreens tend to have lower 

permeability than those of deciduous species, possibly reflecting adaptation of species with 

long-lived foliage to conserve water during periods of reduced water availability (Kirsch et 
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al., 1997; Gratani and Bombelli, 2000). With the present study we may think that 

epicuticular and epistomatal wax degradation in P. halepensis needles experiencing 

chronic fumigation with volcanic gases from Pisciarelli could be related to the H2S and/or 

H2SO4 action and inputs. 

 

Wettability of leaf surface 

Wettability of plant surfaces is related to the composition, structure and cristallinity of 

epicuticular waxes (Heredia and Dominguez, 2009). Airborne pollutants accelerate erosion 

of cuticular waxes of conifers (Huttunen, 1994; Riederer, 2006; Shepherd and Griffiths, 

2006) and thus may be responsible for forest decline in Europe and elsewhere (Riederer, 

2006). Erosion of the waxes can change needle wettability (Cape, 1983) and rain retention 

(Turunen and Huttunen, 1990). 

As seen above, needles from Pisciarelli experiencing chronic fumigation, is lacking of 

well-preserved epicuticular wax crystalloids, therefore, the Lotus-effect (an anti-adhesive 

property against particulate contamination; see Barthlott and Neinhuis, 1997; Neinhuis and 

Barthlott, 1997) compromises the removal of contaminant particles. 

An added point concerns dust particles. As Ots et al. (2010) claimed, tree leaves, such 

as conifer needles, can efficiently accumulate dusts, which are an important stress factor. 

Moreover, Cape et al. (1989) found that leaf wettability of the conifers Picea abies and 

Pinus sylvestris rose with increasing amount of dust on leaf surfaces. As a matter of fact, in 

the present study, although it is not directly the aim of this study, the great amount of dust 

covering needle surfaces (Plate I, Figs. 2,5,9) emitted by principal fumarole of Pisciarelli 

and derived from volcanic airborne (Delmelle, 2003) together with degradation of wax 

could determine an increase of wettability. As it is certainly affecting plant biology it could 

be one of the multiple reasons of the rarity of plant taxa in this extreme environment. 

Additional observation is that a heavy fungal infection affects almost all Pisciarelli 

needles (Plate 1, Fig. 9). This is probably related to several factors, making unfavourable 

abiotic conditions in these trees, and becoming then more susceptible to pathogens as 

noticed by Sieber (2007) for conifers. For instance, the particular topographic leaf surface 

of P. halepensis together with the presence of hydrophobic epicuticular waxes -that are 

frequently crystals-, may have considerable influence on all fungal spore adhesion and 

retention (see Carver and Gurr, 2006). Moreover, the acidified aqueous environment on 

needle surface (H2SO4) could favour fungus proliferation as it was shown in Phyllosticta 

ampelicida pycnidiospores which adhere firmly to hydrophobic artificial substrata in an 
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acidified aqueous environment (Kuo and Hoch, 1996). Another factor is that water 

collecting on needle surfaces is essential for all fungal infections (Huttunen, 1984) and thus 

related to wettablility. In their study of Picea pungens needles, Patrie and Berg (1994) 

noticed that the epicuticular wax progressively deteriorated as fungus proliferated, so for 

the present Pinus halepensis the degradation of epicuticular waxes and the consequent 

increase in wettability could be also responsible of fungus proliferation. 

 

Microenvironment 

According to Nicolotti et al. (2005) stomatal damage classes, the abaxial side of the 

current- and first-year-old fumigated needles can be placed in the Classes 2 and 3, namely 

a “stomatal structure displaying moderate sign of alteration” and “severe alteration”, 

respectively (Plate 1 and Table 2). On the other hand, the adaxial side of needles can be 

ascribed to the Classes 0 and 1, namely a “stomatal structure displaying no sign of 

alteration” and “slight sign of alteration”, respectively (Table 2). So, for one single needle, 

the difference in adaxial and abaxial stomatal Class attribution seems to be related to their 

disposition on the two sides of needles. As a matter of fact, P. halepensis retains leaves 

spreading by fascicular sheath which are coupled in pairs, therefore the adaxial side of a 

needle is more protected than the abaxial one, demonstrating a very differentiated 

microenvironmental influence of the epidermis of the leaves. 

Another point is that the needles of P. halepensis experiencing chronic fumigation 

(Pisciarelli) show another kind of sensibility to environment, as the degree of epicuticular 

wax tubule fusion decreases on the adaxial side (more protected) of needles, but increases 

towards the needle-tip (less protected). This fact leans towards a H2SO4 action, probably 

also in combination with H2S or SO2 gases that would act less on the adaxial side of 

needles. The present study adds another very sensible microenvironmental example to 

those in plants; in conifers it seems to be a general case as Thompson and Kats (1978) 

treated a number of plants (five angiosperms and two conifers) with continuous fumigation 

of H2S founding that Douglas fir (with free-leaves) was much more sensitive than 

Ponderosa pine (which has leaves in bundle of threes, occasionally in two’s) to foliar 

injury. 
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1.4.1.2. Cuticular membrane (CM) + cell wall (CW) 

 

Pinus halepensis cuticle type 

The effect of volcanic gases on the epidermis in conifers has not been previously 

studied by TEM, and no detailed ultrastructural studies have been made so far on the 

cuticle of Pinus halepensis. As Guignard et al. (2001) point out, according to the 

Achangelsky et al. (1986) terminology used commonly for both fossil and extant plants, 

within cuticle thickness it is possible to distinguish a cuticle proper (termed A, often 

lamellate in its outermost part and granulous below) and cuticular layer (termed B, mostly 

fibrillous). The cuticle proper is absent in the studied species. Since the cuticular material 

of fumigated and not fumigated plants by volcanic gases is predominantly made up of 

fibrils, P. halepensis cuticle can be attributed to cuticular layer B and divided into three 

zones, respectively named in the present study B1 outer, middle and inner. Although 

unfortunately to our knowledge previous statistical detailed studies of the cuticle do not 

exist, it has to be noticed a certain homogeneity in the cuticle structure among species of 

the genus Pinus, as the studied P. halepensis cuticle belongs to the type 4 (“All regions 

reticulate”) of Holloway’s (1982) classification in which he included other species of 

Pinus (P. sylvestris and P. nigra), as well as other conifers (Picea sitchensis and Abies 

balsamea). Besides of the identification to one of Holloway’s general types, the present 

material seems to be a good example to conduct further statistical ultrastructural studies of 

the cuticle among Pinus species in order to verify the Holloway’s (1982) remark: “Because 

the CM (= cuticular membrane) of plants is so heterogeneous in structure it is dangerous 

to oversimplify and generalize about its morphology and construction - there is no typical 

plant cuticular membrane. Consequently, each species must be considered individually and 

it should not be assumed that any structural features which may be observed are of 

universal occurrence.”. However, taking into account a TEM photo of Picea sitchensis 

type 4 cuticle (Holloway, 1982, fig. 16), it seems that there exist clear differences with 

Pinus halepensis, although in this latter genus the cuticle proper A is lacking, but only B1 

layer is present. 

 

CM + CW thickness 

Plants of the same species experiencing different environments have a response at 

histological level. In the studied material, the total thickness of CM + CW is roughly 

constant with an average thickness of 3.99 μm (3.80-4.14 μm, see Table 1) among the four 
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Fig. 5. Three-dimensional reconstruction of both cuticle and cell wall (CW) for needles experiencing- 

or- not chronic fumigation. Note: the cuticular membrane CM is made up with cuticular layer CL (= B 

= B1 divided in outer, middle and inner layers). 

types of studied cuticles. However, susceptible variations in the proportion of different 

zones between needles experiencing- or- not chronic fumigation can be noted (Table 1). It 

is worth noting that in both fumigated and not fumigated needles the cell wall thickness 

increases with needles ageing. In Pisciarelli area, P. halepensis needles respond to volcanic 

gases by producing a thicker cuticle membrane (CM = B1) than those that are not 

fumigated. However, the cuticular membrane (CM) is always greater than cell wall (CW) 

except for first-year-old needles from Cigliano, not fumigated (see Table 1). This would 

suggest that higher energy compounds are allocated to protection mechanisms in the 
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cuticular membrane, demonstrating once again that cuticle protects basic leaf functions. In 

detail, the lacking of B1 inner zone in not fumigated first-year-old needles (Table 1; Plate  

II, Fig. 7; Figs. 4,5) can be explained by an increase in fibril amount in the inner zone 

(usually characterized by a low density of fibrils), thus making this layer indistinguishable 

from the middle zone (usually with a high density of fibrils). 

 

CM + CW development 

This multidisciplinary study clearly shows the sensitivity of P. halepensis to an extreme 

environment, during needle ontogeny and therefore the CM and CW formation (Plate II). 

For both fumigated and not fumigated current-year-old needles, the total thickness of 

cuticle (CM) + cell wall (CW) is statistically comparable (Table 1, Fig. 4), but the 

percentage of each layer is different according to the age and exposition to gases (Fig. 5), 

thus showing a diverse equilibrium among zones of the same needle as response to growth 

and environmental factors. The needles seem to react early in ontogeny to volcanic 

environment because the thickness of B1 or CW already differs statistically between not 

fumigated and fumigated current-year-old needles (15.7%). After one year of growth, these 

differences are still maintained, although they slightly decreased (11.8% of reduction). To 

sum up, the variations of the three zones of the cuticle between fumigated and not 

fumigated needles are statistically significant (Fig. 5) and this fact mainly concerns B1 

outer and middle zones, while B1 inner zone does not change considerably. 

 

CM and CW ageing 

If the response of the plant starts early in the growth of cuticle membrane (CM) + cell 

wall (CW), after one year Pinus halepensis responds more actively to volcanic 

environment than to no-volcanic one (Table 1). Although the CM + CW thickness in 

current- and first-year-old needles does not record significant variations statistically, an 

equilibrium between CM and CW (i.e. a decrease of CM and an increase of CW) exists. 

The rate of reduction is more pronounced for fumigated needles (15.7%) than for those that 

are not fumigated (11.8%) inferring that the volcanic inputs have more important effects on 

the outermost part of the cuticle. Comparing current- and first-year-old needles, it was 

observed that the B1 outer and middle zones of the cuticle decrease (17.1% versus 9.7% 

with a difference of 7.4% and a reduction of 57%; 33.4% versus 21.9% with a difference 

of 11.5% and a reduction of 66% respectively, see Fig. 5), while the thickness of B1 inner 

zone does not vary significantly. 
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In current- and first-year-old needles experiencing chronic fumigation, the parallel 

orientation of fibrils in respect to the cuticle surface in B1 outer and inner zones could be 

interpreted as a further protection device which adds to wax fusion discussed above. The 

amount of parallel fibrils of Pinus halepensis from Pisciarelli is mainly located in B1 outer 

and inner zones. The sum of the two latter zones (41% in current-year-old needles versus 

36.8% in those of first-year) is higher than B1 middle zone that mainly contains random 

arranged fibrils (33.4% in current-year-old needles versus 21.9% in those of first-year). 

The parallel arrangement of fibrils could assume a role –analogous- like the outermost 

polylamellae (layer A1) which are interpreted as the main barrier to the diffusion in 

Hedera helix L. (Viougeas et al., 1995), and the main cuticular permeability barrier in 

Agave americana (Jeffree, 2006). 

 

Calcium-oxalate deposits 

In fumigated and not fumigated needles areas of very low electron-density which occur 

between B1 middle and inner zones of the cuticle, represent calcium oxalate (CaC2O4) 

crystals deposits. Additionally to morphological observations, Ca is clearly chemically 

identified with TEM X-ray analyses (Fig. 3A-D) in these areas. This is already known in 

living conifers which precipitate calcium in the apoplast as oxalate (Fink, 1991b). This 

latter author observed, in Picea abies needles, tiny Ca oxalate crystals in between 

epidermal cell wall and proper cuticle as well as numerous small crystals within epidermal 

cells walls, especially in the cuticular layer. Boddi et al. (2002, Fig. 10), thanks to TEM 

observations, reported calcium oxalate-like crystals in the cuticle of Pinus halepensis. 

Kivimäenpää et al. (2010, Fig. 5), by TEM analysis, claim that calcium oxalate crystals are 

typical of P. halepensis needle epidermis. Soda et al. (2000, Fig. 6C,D), studying impacts 

of urban levels of ozone on P. halepensis foliage with TEM, remarked symptomatic 

needles exhibit a great accumulation of calcium oxalate-like crystals in epidermal tissue. 

Although the distribution of calcium oxalate in needles is not completely understood (Fink, 

1991a and b), abnormal distribution pattern could be possibly associated with pollution 

effects such as acid precipitation (pH 2-5) and ozone fumigations (Fink, 1991a). Our 

research demonstrates an increasing number of calcium oxalate deposits occurring in 

current- and first-year-old needles recovered from volcanic area of Pisciarelli, (table 2, 

Plate 2 and Fig. 5). 
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Table 2. Differences between needles experiencing- or- not volcanic fumigation. Characters - = no 

changes, + = small changes, ++ = medium changes, +++ = great changes; CM = cuticular membrane, CW 

= cell wall; o = outer zone, m = middle zone, i = inner zone of B1 layer. 

 

1.4.2. Potential application for extant and fossil material 

 

Environmental responses of fossil and extant plants, based on ultrastructural cuticle 

studies, are deduced till now from three gymnosperms (latu sensu): Komlopteris 

nordenskioeldii (Nathorst) Barbacka, a Jurassic pteridosperm, was used by Guignard et al. 

(2001) to obtain numerical data by means of 10 measurements. In Ginkgo yimaensis Zhou 

and Zhang (the oldest Ginkgo in China), a Jurassic ginkgoalean species, and in the extant 

Ginkgo biloba L., statistics were made on 20 measurements (Guignard and Zhou, 2005). 

Finally in the present study statistics are based on 30 measurements for extant Pinus 

halepensis Mill. (Aleppo pine, extant Pinaceae). Although data are not yet enough to have 

a general view of the cuticle ultrastructure of gymnosperms, five main comments can be 

done. 

 

 

Firstly, two of those four taxa show a real sensibility to environmental conditions with 

an ultrastructural cuticle response. Solar radiation (sunny vs. shade leaves), wind and 

rainfall (i.e. low or high exposure), are invoked as factors influencing cuticle ultrastructure 

of K. nordenskioeldii leaves (Guignard et al., 2001). P. halepensis needles from Cigliano 

are influenced by “standard” degree of solar radiation, wind and rainfall; those of 

Pisciarelli are set under the volcanism effect. 
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Table 3. Key obtained by means of both SEM and TEM observations enabling the identification of each 

of four types of cuticles observed in Pinus halepensis needles experiencing- or- not volcanic gas 

fumigation. Cuticular membrane (CM = B1) and cell wall (CW) values are given as mean values 

(measurements) and percentage of total thickness. Stomatal class refers to Nicolotti et al. (2005) 

classification in which: class 0 = stomatal structure displaying no sign of alteration, class 1 = for slight 

sign of alteration, class 2 = for moderate sign of alteration, class 3 = for severe alterations. B1 oz = B1 

outer zone, B1 md = B1 middle zone. 

 

Secondly, cuticular responses seem to affect in a greater degree “simple” cuticles than 

“complex” ones: in P. halepensis and K. nordenskioeldii the cuticles are made of one layer, 

B1 and A2 respectively. In both species A1 polylamellate layer is lacking, this fact 

reinforces the hypothesis that A1 layer acts as a barrier (Viougeas et al., 1995; Jeffree, 

2006), although without the A1 barrier the cuticle seems to be more sensible and variable. 

On the other hand, only slight differences were found among the cuticles of two Ginkgo 

species (G. biloba and G. yimaensis) as well as a poor cuticular environmental response 

(Jurassic G. yimaensis is supposed to have lived in a high CO2 “greenhouse” climate while 

extant male and female G. biloba trees were planted in different environments in Nanjing, 

China). The cuticle complexity of these two Ginkgo species (occurrence of A1, A2 and B1) 

could explain their resistance. 

Thirdly, the cuticle analysis can become a taxonomical tool of a certain weight. It is a 

fact that the layers retain their sequence and basic structure, but their relative thickness and 

minor structural elements (fibrils and granules) may vary under changes of the 

environmental conditions. Actually the A2 granular layer made with four types of material 

(four types of cuticle: sun upper, sun lower, shade upper and shade lower) of K. 

nordenskioeldii and B1 fibrillous layer divided in 2-3 zones variable in thickness of P. 

halepensis can be influenced by the environment. Conversely, A1 layer consisting of A1 

upper and A1 lower zones, A2 layer, and B1 layer, typically present in G. biloba and G. 
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yimaensis, can be considered useful for taxa identification because they do not change 

under different environmental conditions. 

The fourth remark concerns further ultrastructural details, i.e. the progressive reduction 

in the fibrillar structure and the corresponding increase in granular component from 

current- to first-year-old needles of Pinus halepensis (Plate II, 14-16, 19-21) that can be 

interpreted as a response to enhanced environmental stresses. On this regard Villar de 

Seoane (2001) illustrates the alteration of the epidermal wall ultrastructure of Otozamites 

patagonicus from the Early Cretaceous Springhill Formation of Patagonia, where 

multilamellate and reticulate-alveolate layers are transformed to amorphous layers (Villar 

de Seoane, 2001 sense) and interpreted as the result of high temperature owing to 

persistent volcanic ash fall. Del Fuejo and Archangelsky (2002) point out that amorphous 

areas in Araucaria grandifolia Feruglio from the Lower Cretaceous of Patagonia 

(Argentina) may be the result of poor preservation of the cuticular membrane. 

Moreover deposits of calcium oxalate crystals in P. halepensis could be equivalent 

structures to the electron lucent amorphous material of K. nordenskioeldii (Guignard et al., 

2001, Plate II, Fig. 4), although the role of this material is unclear (Guignard et al., 2001). 

Similar electron lucent areas are visible in the cuticle of two fossil species (Pseudoctenis 

ornata and Restrepophyllum chiguoides) from the Early Cretaceous of Patagonia (Passalia 

et al., 2010). It is noteworthy that this vegetation grew under environmental stressful 

conditions for persistent volcanic activity (Archangelsky et al., 1995; Archangelsky, 2001; 

Del Fuejo and Archangelsky, 2002). The epidermal cells of P. ornata show the sublayer 

A2 with irregular isodiametric areas containing material of less electron density 

(Archangelsky et al., 1995, Pl. V, Fig. 31). Cuticle degradation is recorded in R. chiguoides 

(Passalia et al., 2010, Pl. IV, Fig. 5). To sum up, the increase of Ca-oxalate crystals could 

be a key character to identify environmental stress in fossil and extant plants. 

The last remark reveals a possible tool to identify current- versus first-year-old Pinus 

needles in extant and fossil contexts and make inferences on gas fumigation disease (van 

de Schootbrugge et al., 2009 suppose SO2 as a probable cause of plant stress during 

periods of global-scale volcanism). According to the present study one can distinguish not 

fumigated from fumigated needles (Table 3) by means of eight characters (epicuticular and 

epistomatal wax, Ca-oxalate, total B1, CW, B1 inner, outer and middle). Therefore the 

degree of wax crystals degradation in stomatal antechamber and epidermal surface, 

together with the amount of calcium-oxalate deposits in the cuticle, allow a first distinction 

between needles experiencing- or- not volcanic gas fumigation (Table 3). Furthermore 
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three characters (i.e. thickness of CW, B1 and B1 middle zone) allow to make a distinction 

between current- and first-year-old not fumigated cuticle needles; while four characters 

(i.e. thickness of CW, total B1, B1 outer and middle zones) enable to detect fumigated 

needles. In particular the presence or absence of B1 inner zone (see Figs. 4,5) can be used 

to distinguish not fumigated current- from first-year-old needles. For the thickness of 

cuticular membrane (CM) + cell wall (CW) keeps constant in P. halepensis needles 

regardless the age and environmental conditions, this character could be considered as a 

taxonomical one at species level. 
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CHAPTER II 

 

The cuticle micromorphology of in situ Erica arborea L. exposed to long-

term volcanic gases in Phlegrean Fields, Campania, Italy 

 

2.1. Introduction 

 

Within plant organs, the leaf has been the target of many studies (see Beck, 2010) and is 

the most sensitive organ to pollution (Sant’Anna-Santos et al., 2006). The leaves of many 

tracheophytes (Guignard et al., 2004) are covered by the cuticle, an extracellular 

membrane (Graham, 1993) covering aerial organs of plants (Riederer, 2006). The bulk of 

the cuticle in modern plants is composed of a solvent-insoluble matrix makes up the 

framework of the cuticle (Tegelaar et al., 1991). This composite matrix provides several 

functions at the interface level that enable plants to thrive in different habitats and 

withstand adverse environmental conditions (Domínguez et al., 2011). The cuticle could be 

considered an “external skeleton” as it represents the interface between the plant and the 

atmosphere (McElwain and Chaloner, 1996). For these reasons, in the last three decades 

numerous studies have been carried out on fossil and extant plant cuticles in order to 

attempt paleoenvironmental reconstructions and evaluate the gaseous atmospheric 

composition. This latter composition varied consistently during geological time (Berner, 

1999) and major volcanism -e.g. Large Igneous Provinces formation (Courtillot and Renne, 

2003)- is frequently invoked as a possible cause of mass extinctions (Rhode and Muller, 

2005) by means of massive degassing (Scaillet, 2008; Sobolev et al., 2011; Wignall, 2011) 

of CO2, H2S and SO2 into the atmosphere (Beerling and Berner, 2002; Berner and 

Beerling, 2007; Hori et al., 2007). The volumes of SO2 outgassed during large basaltic 

eruptions are comparable in magnitude to those of CO2 (Thoardarson et al., 1996). For this 

reason, volcanism played an important role in past plant communities composition 

(Falcon-Lang and Cantrill, 2002) insomuch as, climatic fluctuations and proximal volcanic 

eruptions probably contributed to the formation of disturbed habitats favourable for early 

angiosperms (Herman, 2002). 

Numerous researches spent their efforts onto the study of cuticle topography (number of 

stomata per unit area = stomatal density; number of stomata relative to the number of 

epidermal cells = stomatal index), at mesoscopic scale (see Collinson 1999), and its 

relationships with atmospheric CO2 concentration ([CO2]) in the geological past 
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(Woodward, 1987; Beerling et al., 1998; Royer, 2001). It has been assumed that plants’ 

stomatal density adjust in response to changing atmospheric pCO2 (Woodward, 1987). 

However, little is known (Winner and Mooney, 1980) about the long-term response of 

micromorphology of natural vegetation to volcanic toxic gases. Moreover, it is unclear if 

small community experiments are capable of both reconstruct and predict gas atmospheric 

composition because these experiments often lack the necessary range of natural 

disturbances that occur in the long term (Woodward, 1992). 

Because of the difficulties to simulate complex environmental conditions within plant-

volcano interactions, we studied the in situ angiosperm Erica arborea L. submitted to 

volcanic gases in two solfataras (sulphur-emitting vents): Solfatara di Pozzuoli and 

Pisciarelli. Solfataras are exciting habitats for studying wildlife adaptations to a very 

peculiar but extreme environment (see Paoletti et al., 2005). The populations of E. arborea 

growing around the vents have a multiple-generation and a life-time exposure to volcanic 

gases, resulting in long-term adaptations of plants to these naturally environments. The 

occurrence of vents emitting volcanic gases provides a rare opportunity to study long-term 

response and microevolutionary adaptation (Bettarini et al., 1995) of natural vegetation to 

volcanic gases. 

Numerous studies have been carried out on in situ plants exposed to geogenic gases 

(Bettarini et al., 1995; Bettarini et al., 1998; Tognetti et al., 2000; Paoletti et al., 2005; 

Pfanz et al., 2007; Haworth et al., 2010) but as far as we know, there are no studies 

relatively to the response of the ultrastructural features of angiosperms plant cuticle 

exposed to the persistent volcanic gases. 

Therefore, this study aims to try understand: 1) how plants respond to realistic extremes 

outdoor conditions; 2) what is the response of the cuticle micromorphology long-term 

exposed to volcanic gases, 3) in particular, whether exposure and/or resistance with 

volcanic gases is associated with a change in ultrastructure of cuticle; 4) potential 

implications of the angiosperm cuticle response across environmental stress periods during 

the geological past. 

Investigations on volcanic toxic gases-emitting vents offer opportunity to study plant 

physiological response to these extreme environments. The volcanic areas in Campania 

Region (Roccamonfina, Phlegrean Fields and the complex of Somma-Vesuvio) are suitable 

for studies of this type because they are historically monitored and easily accessible 

representing natural laboratories allowing experiments to realistic extremes outdoor 
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Fig. 1. (A) Location of the Phlegrean Fields and others gas-emitting volcanic areas (dotted circles) in 

Campania Region. (B) Sketch map showing the location of Solfatara crater and Pisciarelli locality. (C,D) 

Close up views of Pisciarelli and Solfatara localities with the main fumaroles. Square brackets indicate 

sampling areas and white circlets show the location of CO2 measurements. 

conditions. In the present study, E. arborea was chosen and X-ray analyses and SEM and 

TEM observations were performed focusing on leaf cuticle micromorphology. 

 

2.2. Material and methods 

 

2.2.1. Plant material and sites description 

 

Leaf samples were obtained from Erica arborea L., one of the common and widespread 

Mediterranean macchia shrub species belonging to the family Ericaceae including species 

that are efficient colonizers (Luteyn, 2002). E. arborea is characterized by hypostomatic 

leaves with revolute margins protected by trichomes (Gratani and Varone, 2004). Samples 

were collected from three localities in the Phlegrean Fields, an active caldera which spans 

the last 50000 years (Scandone et al., 2010), characterized by vertical ground movements 

locally called “Bradyseim” (Del Gaudio et al., 2010). This is a very dangerous volcanic 

area because it includes part of the city of Napoli, the town of Pozzuoli, and numerous 

densely inhabited villages (Chiodini et al., 2011). 

Samples long-term fumigated by volcanic gases were recovered from Solfatara crater, 

ca. 30 m NNW from the Bocca Grande vent (40°49’38.91’’N, 14°08’32.98’’E), and ca. 10 

m NE from the main fumarole in Pisciarelli locality (40°49’48.88’’N, 14°08’46.95’’E) 

about 750 m SE of the Solfatara volcano (Fig. 1A,B). These two volcanic areas, active for 

centuries, are historically monitored (Gunther, 1897) and make the object of numerous 

studies. 
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Control sample of leaves were also collected in a volcanic quiescent area (Cigliano: 

40°50’46.46’’N, 14°07’36.31’’E) located about 2.5 km NNW from Pisciarelli, but 

characterized by the absence of volcanic gas emissions. The three localities share the same 

soil features (Di Gennaro and Terribile, 1999; Di Gennaro, 2002) and sun exposition and 

they are also far away from traffic and industries. The climate is typically Mediterranean, 

with cool, wet winters and hot, dry summers. 

The samples collected around the vents have a multiple-generation resulting in long-

term adaptations of plants to volcanic gases. The outskirt of these extreme environments 

(Pisciarelli and Solfatara) is inhabited by a Mediterranean vegetation providing 

xeromorphic features. Erica arborea (and some grasses) is the unique typical 

Mediterranean angiosperm shrub growing near the vents. Moreover, the boiling water of 

Pisciarelli and Solfatara fumaroles retains the cyanidialean algaes Galdieria phlegrea 

(Pinto et al., 2007) and Cyanidium caldarium (De Luca et al., 1979) respectively. 

Distal volcanic impacts revealed that plants are generally less sensitive to eruptions 

outside the growing season (Zobel and Antos, 1997; Hotes et al., 2004) and, as Payne and 

Blackford (2008) pointed out, in winter, as plants are senescent, higher rainfall may serve 

to remove rapidly volcanic pollutants. For evergreen E. arborea, permanently fumigated 

by volcanic gases retaining leaves for over a year, these “ground noises” do not exist. The 

plants do not present significant damages along the crown, but some leaves show 

symptoms consisting in leaf-tip non-specific discoloration. 

 

2.2.2. Gas vent 

 

At Pisciarelli, the fumarolic discharge temperature from 1999 to 2005 has fluctuated 

around 95 °C, reaching 108 °C in October 2010, with the CO2 flux from this pool 

estimated at 15 ton/d to 20 ton/d (Chiodini et al., 2011). Measurements of diffuse soil CO2 

fluxes in the Solfatara area (1.4 km
2
) were carried out from 1998 to 2000 and gave a daily 

amount of deeply derived CO2 discharged at Solfatara of about 1500 tons (Caliro et al., 

2007). The analysis of gaseous compositions (Caliro et al., 2007) revealed that the main 

component of the fumaroles is H2O followed by CO2, H2S, N2, H2, CH4, He, Ar, and CO. 

The absence of acidic gases (SO2, HCl, and HF) can be also noted (Chiodini et al., 2010a). 

Natural high atmospheric concentration of sulphur gas may occur locally in areas with 

volcanic and geothermic activity (De Kok et al., 2007). As a matter of fact, at Pisciarelli 

and Solfatara, the high H2S air concentration is equal to ca 600 μm/mol (at source; 
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Chiodini et al., 2010a) and 3.20 ppm (Carapezza et al., 1984) respectively. The great H2S 

air concentration is also testified by both typical smell (the odour threshold is >0.02 μm l
-1

: 

De Kok et al., 2007) of rotten eggs in the surrounding air and by indirect corrosive action 

of this gas that led to the destruction, around the vents and in few minutes, of any 

electronic device and to a relatively long-term corrosion of metalwork. 

 

2.2.3. SEM, TEM and EDS preparations 

 

Fumigated and not fumigated specimens were collected from branches at heights over 

75 cm from the ground at each site (Pisciarelli, Solfatara and Cigliano). Leaves were 

carefully handled to avoid damaging the epicuticular waxes. Following Reed’s (1982) and 

Crang and Klomparens’ (1988) remarks about possible changes in epicuticular wax 

structures occurring during sample preparation, in order to limit any chemical or physical 

damages, especially for preserving and dehydrating samples for wax morphology studies, 

leaves were air-dried for 1-week at mild room temperature. Among several hundreds of 

leaves collected at each site (fumigated and not fumigated), 100 were selected for scanning 

electron microscope (SEM), then 60 were carefully selected for transmission electron 

microscope (TEM). Light microscope observations were made using a Leitz microscope. 

Both untreated and frozen leaves (in liquid nitrogen at -210 °C) were cut transversally 

and longitudinally. Subsequently they were mounted onto the stubs using double-sided 

adhesive tape then coated with gold using an AGAR Auto Sputter Coater and transferred to 

the SEM for mesoscopic (Collinson, 1999) observations. Entire leaves were directly 

mounted to observe abaxial and adaxial surfaces. The Barthlott et al. (1998) classification 

has been used to typify epicuticular wax. 

SEM observations were done in two universities: 1) with a JEOL JSM-5310 SEM 

adapted with an Energy Diffractive X-ray Oxford Inca X-act at the CISAG (Centro 

Interdipartimentale di servizi per analisi Geomineralogiche; Dipartimento di Scienze della 

Terra, Università degli Studi di Napoli “Federico II”). The operative conditions were as 

follows: 25-30 KV accelerating voltage, 100 μA emission current, 15 μm spot size, 20 mm 

microscope work distance and 60 s spectra collection time; 2) with a Hitachi S800 coupled 

to a microanalysis system EDS SiLi Samix (acceleration voltage = 15 kV and a spectres 

acquisition time = 60 s; in the Centre de technologie des microstructures (CTμ) of Lyon-1 

University, Villeurbanne, France). The specimens for energy diffractive x-ray (EDX) 

analyses were then coated with carbon in an Emitech K450 at CISAG. A total of 100 EDS 
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analyses were carried out on both leaf sections (cuticle and cell wall with JEOL SEM) and 

surfaces (crystals, hairs and epidermis with SEM Hitachi) experiencing or not chronic 

fumigation. It is worth noting that data generated by the X-ray microanalyzer are not as 

accurate as other quantitative analyses, therefore they can be considered at best as semi-

quantitative (Van Steveninck and Van Steveninck, 1991). 

Samples for TEM were dropped in paraformaldehyde solution mixed in a phosphate-

sodium buffer for 3 weeks using Lugardon's technique (1971), washed and postfixed in a 

1% osmium tetroxide solution mixed in a phosphate–sodium buffer for 24 hours. 

Dehydrated in graded ethanol series during 48 h, the samples were dropped in propylene 

oxide with an increasing percentage of Epon resin for 24 h. Transferred into pure Epon 

resin during 24 hours, they were embedded in fresh Epon resin using flat moulds. The 

preparations were subsequently treated for polymerization at 56 °C for 3 days. Ultrathin 

(60-70 nm) sections were sectioned with a diamond knife, using a Reichert Ultracut 

microtome. Ultrathin sections were placed on uncoated 300 Mesh copper grids and stained 

manually both with a methanol solution of 7% uranyl acetate for 15 min and an aqueous 

lead-citrate solution for 20 min, then observed and photographed with a Philips CM 120 

TEM at 80 kV, in the Centre de technologie des microstructures (CTμ) of Lyon-1 

University, Villeurbanne, France. Totally 60 pieces of material were embedded in Epon 

resin blocks. 210 uncoated mesh copper grids were prepared (180 as transversal sections, 

i.e. perpendicular to the leaf length; 30 as longitudinal sections, i.e. parallel to the leaf 

length). 

All TEM measurements were performed with tools in the ImageJ program (Abramoff et 

al. 2004). The terminology of Holloway (1982) and Archangelsky (1991) was used for the 

ultrastructural analysis. Ultrastructural measures have been taken in the middle of 

epidermal cells. No measures have been carried out in overlying cuticle between two 

adjacent epidermal cells where the cuticle is generally thicker. All specimens and SEM 

stubs are housed in the Dipartimento di Scienze della Terra, Largo San Marcellino, 10, 

Napoli, Italy. The resin blocks and TEM negatives are stored in the Lyon-1 University, 

Villeurbanne, France. 

 

2.2.4. Gas concentration measurements in air and soil 

 

CO2 measurements in the soil and in the air surrounding the vegetation were performed 

with a portable gas analyser (LICOR 800). Holes were drilled into the soil until roots of 
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Table 1. Soil and atmospheric (atm.) CO2 concentrations within both 

the rooting and crown zones of Erica arborea at fumaroles of 

Solfatara and Pisciarelli in Phlegrean Fields. 

 

sampled E. arborea shrubs; 

gas-probe was then inserted 

and values recorded. In the 

studied areas the vents 

position has not changed for 

long time and gases fluxes 

(in the soil) are rather 

constant (Table 1). The site 

topography and constant 

winds disperse these 

emissions in plumes 

strongly directed to the 

SSW (Pisciarelli) and W 

(Solfatara), id est. just on 

sampled areas (see Fig. 1C,D). For this reason, gas measurements can be done at all times. 

 

2.2.5. Statistical analysis 

 

The present study is based on 30 measurements. Similar statistic analyses were provided 

for fossil plants (Guignard et al., 2004; Yang et al., 2009). The relation among the different 

layers {cuticular membrane (CM) = [(cuticle proper = CP =A2 + cuticle layer = CL = B1)] 

+ cell wall (CW)} can be traced based on the confidence interval value (CI = x ±
n

var  x 

1.96. giving 95% α risk) among 5 characters (Fig. 5). The CI value allows to estimate the 

significance of the differences between three types of studied material. 

 

2.3. Results 

 

2.3.1. Energy diffractive X-ray analysis with SEM 

 

The cuticle surfaces of E. arborea leaves experiencing chronic fumigation are typically 

covered by dust of volcanic origin. X-ray analyses have revealed that dust is composed 

mainly of: crystals belonging to the Alunite Group (Fig. 2A), typical aggregates of both 

minerals and glasses of solfataras (Fig. 2B) and CaSO4 crystals (Fig. 2C).  
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Fig. 2. Qualitative X-ray diffractograms of particles commonly recovering on fumigated leaves from 

Solfatara and Pisciarelli. (A) Example of crystal belonging to Alunite Group. (B) A typical aggregate of 

both minerals and volcanic glasses of solfataras. (C) Example of CaSO4 spectrum. (D) Diffractogram 

showing silicon traces in cluster of rodlets wax from Pisciarelli. 

 

 

The EDS microanalysis of cluster of rodlets wax from Pisciarelli (Fig. 3D) has revealed 

siliceous traces (Fig. 2D). Within fumigated and not fumigated needles, concerning 3 sets 

of 10 measurements on cuticle and cell wall, the elements content is largely homogeneous 

and the absence of sulphur can be noted. Extraneous elements [e.g. Au and Pd (see Fig. 

2A, D)] derive from metallization process. 

 

2.3.2. Scanning electron microscopy observations 

 

The leaves of E. arborea experiencing chronic fumigation (Pisciarelli and Solfatara 

areas) have a more serrate revolute margin (Fig. 3A and B) and are covered by abundant 

volcanic dust (especially in the adaxial side) (Fig. 3C, D, I, K, and L). In not fumigated 

leaves, the adaxial side becomes the site of dust accumulation.  

In outer view, both adaxial and abaxial sides of leaves epidermis experiencing chronic 

fumigation (especially in Pisciarelli locality) bear numerous clusters of rodlets wax 10-20 

μm in length by ca. 1 μm in width (Fig. 3D).  

In the the abaxial side of leaves experiencing chronic fumigation in which the margin is 

less revolute (Fig. 3E), a number of hairs and a high production can be noted (Fig. 3F). The 

typically wax rodlets are circular in section and are longitudinally aggregated (Fig. 3G).  

In outer view, the abaxial side of control leaves appear intact with well-defined shape of 

epidermal cells and glabrous surface (Fig. 3H). Conversely, fumigated leaves show less 

defined pattern of epidermal cells having both wax overproduction and degradation 

forming crusts (Fig. 3I) especially in the adaxial side.  
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Fig. 3. Erica arborea, SEM abaxial and adaxial cuticles, for both shrubs experiencing or not chronic 

fumigation by volcanic gases. 

A) Abaxial side of not fumigated (Cigliano) cryo-sectioned leaf showing not more serrate revolute 

margins. The palisade layer (p), the spongy mesophyll (m) and the trichome crypt (c) can be seen. Photo 

GGAB038. B) Abaxial side of fumigated (Pisciarelli) cryo-sectioned leaf showing a serrate revolute 

margin. The palisade layer (p), the spongy mesophyll (m) and the great trichome crypt (c) can be seen. 

Photo GGAB043. 
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C) Adaxial side of fumigated (Pisciarelli) leaf tip showing abundant volcanic dust and crystals (arrow) 

covering epidermis. Photo GGAB039. D) Adaxial side of fumigated (Pisciarelli) leaf showing clusters of 

rodlets wax. Photo GGAB009. E) Adaxial side of fumigated (Pisciarelli) leaf having not more serrate 

revolute margins showing a wax and trichomes overproduction. Photo GGAB002. F) Detail of E showing 

projections-bear trichomes and adhering wax. Photo GGAB014. G) Abaxial side (detail) of fumigated leaf 

(Pisciarelli) showing wax rodlets circular in section being longitudinally aggregated. Photo GGAB012. H) 

Abaxial side of not fumigated leaf (Cigliano) showing well-defined epidermal cells. Photo AB9. I) Abaxial 

side of fumigated (Pisciarelli) leaf replete of volcanic dust and crusts (arrow) originated from epicuticular 

wax fusion. Photo GGAB031. J) Adaxial side of fumigated leaf (Solfatara) showing trichomes with a marked 

ornamentation. In the middle of image a hollow hair is visible. Photo GGAB007. K) Adaxial side of 

fumigated (Pisciarelli) leaf tip showing trichomes with typical ruptures. Photo GGAB034. L) Adaxial side of 

fumigated (Pisciarelli) leaf showing hairs with prolonged and tough inflated bases. Photo GGAB005. M) 

Adaxial side of not fumigated (Cigliano) leaf showing thinner trichomes with not inflated bases. Photo 

GGAB026. N) Abaxial side of not fumigated (Cigliano) leaf showing three stomatal apparati. Photo 

GGAB006. O) Abaxial side of fumigated (Pisciarelli) leaf showing three sunken stomatal apparatuses with 

respect to the median level of epidermis. Photo GGAB006. 
 

Both fumigated and not fumigated leaves have hairs distributed on the edge of adaxial 

side. The edge of abaxial side is devoid of hairs. In fumigated leaves the hairs display a 

marked ornamentation (Fig. 3J). Fumigated leaves show their apex crowded by hairs 

presenting typically ruptures (Fig. 3K). In fumigated leaves, along the adaxial side of 

petiole, most of the hairs have prolonged and tough inflated bases (Fig. 3L) compare with 

not fumigated one (Fig. 3M).  

Leaves not experiencing chronic fumigation bear stomata less protected (Fig. 3N). 

Leaves from volcanic sites display more sunken stomatal apparati (Fig. 3O) in respect to 

the epidermal surface.  

 

2.3.3. Trasmission electron microscope observations 

 

The ultrastructure (cuticle and cell wall) of abaxial epidermal cells from fully grown 

leaves of three localities have been studied in details. Cuticular membrane (CM) of all 

ordinary epidermal cells is composed of cuticle proper (CP = A) represented by the 

outermost granular A2 layer and innermost cuticular layer (CL = B) represented by the 

fibrillar layer B1. Differences between the cuticular structures within three localities are 

given below. All the data given below are the means based on 30 measurements, the 

percentages of each component of the cuticle and of cell wall are also given (Table 2). 

In not fumigated leaves (Fig. 4A-E) the total thickness of CM (= CP + CL) + cell wall 

(CW) is 8.75 μm (Fig. 4A). 72.3% (4.9% of A2 and 67.4% of B1) is composed of the CM. 

In the fumigated leaves from Solfatara (Fig. 4F-J) the total thickness of CM + CW is 10.58 

μm (Fig. 4F). 78.4% (12% of A2 and 66.4% of B1) of the CM + CW is composed of the 

CM. In leaves from Pisciarelli also experiencing chronic fumigation the total thickness of  
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Fig. 4. Erica arborea, TEM of fumigated and not fumigated leaves. All photographs were taken from 

ordinary epidermal cells in transversal sections, except a longitudinal section of photograph N. The 

cuticle (CM = Cuticular membrane) is made up with A2 amorphous layer (= CP, cuticular proper) and 

B1 fibrillous layer (= CL, cuticular layer). 

A-E. Not fumigated leaves from Cigliano. 

A) General view of cuticle and cell wall. A transition zone (arrow) probably deriving by a mixture of 

cuticle and cell wall material can be seen. Photo GGAB0004. B) Detail of A2 outer layer clearly 

showing the transition zone between A2 granular and B1 fibrillate layers. Photo GGAB0021. 
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C) Detail of B1 layer of cuticle showing more dense and crowded fibrils (lower part) decreasing in 

abundance toward the A2 granular region in which electron lucent areas can be seen. Photo GGAB0005. D) 

Detail of cell wall showing four different stained zones as follows: a less evident densely stained zone below 

the cell wall; a more electron lucent zone; a dense fibrillate zone and a densely stained fibrillate zone in 

contact with B1 layer. Photo GGAB0009. E) Trichomes projections made of folded A2 layer entrapping 

small portions of fibrillar B1 layer. Photo GGAB0040. F-J. Fumigated leaves from Solfatara. F) General 

view of cuticle and cell wall showing a less marked transition zone (arrow). Photo GGAB0036. G) Detail of 

A2 outer layer clearly showing the transition zone between B1 fibrillate and A2 granular layer. The B1 layer 

shows some mottling caused by dark staining of certain areas. Photo GGAB0007. H) Detail of B1 layer of 

cuticle showing less dense fibrils, a conspicuous granular component and numerous small dark stained areas 

causing mottling. Photo GGAB0016. I) Detailed view of B1 layer of cuticle and cell wall showing small B1 

fibrillate areas entrapped in cell wall network. Photo GGAB0015. J) Trichome showing numerous 

projections made of A2 layer. Photo GGAB0027. K-O. Fumigated leaves from Pisciarelli. K) General view 

of cuticle and cell wall. The transition zone, less marked, approach two electron lucent areas (arrows) 

delimited by a thin darkly stained layer. Photo GGAB0007. L) Detail of A2 outer layer and part of B1 

fibrillate layer. In the thickness of A2 granular layer small dark regions can be seen. Photo GGAB005. M) B1 

layer showing more or less parallel fibrillae and densely stained mottled areas decreasing in abundance 

toward the A2 granular outer region. Photo GGAB005. N) Detailed view of cell wall fibrillae in connection 

(arrow) with fibrillate network of cuticular layer. Photo GGAB002. O) Detail of trichome showing dome-

shaped structures made of A2 layer only. Photo GGAB0022. 
 

CM + CW is 6.40 μm (Fig. 4K-O). 88.9% (29.4% of A2 and 59.5% of B1) of the CM + 

CW is composed of the CM. 

The outermost A2 layer, or cuticle proper (CP), is composed of granular material. In 

fumigated leaves the A2 layer is thicker (1.27 μm for Solfatara specimens and 1.88 μm for 

Pisciarelli one) in respect to not fumigate one (0.43 μm) (Fig. 4B, G and L). In particular, 

the specimens from Pisciarelli have the highest value with 29.4% of the CM + CW 

composed of A2 layer. In leaves experiencing or not chronic fumigation, the B1 fibrillate 

layer is thicker than A2 and CW layers. From not fumigated to fumigated leaves a decrease 

of CW thickness has been observed (Cigliano: 2.42 μm; Solfatara: 2.28; Pisciarelli: 0.71 

μm). However, a tendency to a reduction in the fibrillar structure followed by an increase 

of the granular component has been noted between not fumigated and fumigated leaves. 

The cuticular layer (CL = B1) of fumigated leaves retain numerous electron lucent areas, 

the greatest of which are delimited by a thin darkly stained layer (Fig. 4K). 

The B1 layer toward the outer surface (i.e. A2) is quite homogeneous with more or less 

parallel fibrillae (Fig. 4C, H and M). However, cuticles display some mottling caused by 

dark staining of certain areas (Fig. 4G and M). These dark regions decrease in abundance 

near the outer cuticle surface, but sometimes in A2 granular layer can be seen (Fig. 4B and 

L). In fumigated leaves the cell wall network shows less stained areas probably composed 

of the same material of fibrillate B1 layer (Fig. 4I). Below the CW, a densely stained zone, 

ca. 100-300 nm thick, can be seen especially in leaves experiencing chronic fumigation 

(Fig. 4D, I and N). In the abaxial side of leaves, trichomes projections (Fig. 3J), more 

elongated in not fumigated leaves (Fig. 4E), are made of folded A2 layer sometimes 
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Table 2. Statistical values, made with 30 measurements for 

cuticular membrane (CM) and cell wall (CW) of the epidermal cells 

of three sites. Note: the cuticular membrane CM is made up with 

cuticular proper CP (= A2) and cuticular layer CL (= B1). All 

measurements are in μm. min-max = minimum and maximum 

values observed; % = percentage of each detailed part of the cuticle 

and cell wall; st-d = standard deviation; var = variance. 

 

entrapping small portions of fibrillar B1 layer (Fig. 3E). In fumigated leaves, hairs bear 

dome-shape structures made of A2 layer only (Fig. 3O). Some plate-like morphology of 

the epicuticular wax may be present as a darkly staining residue outside of the A2 granular 

layer (Fig. 4A, F and K). 

 

2.4. Discussion 

 

The present study based on 

30 measurements (TEM) is 

the most precise statistic 

analysis so far done for extant 

angiosperm cuticles. All these 

observations allow to discuss 

several diverse environmental 

aspects. 

 

2.4.1. Chemical and SEM 

considerations 

 

Chemical considerations - Large part of dust covering leaves experiencing chronic 

fumigation originates from solidification of chemical compounds of which the plume is 

loaded. Volcanic glasses, carried by wind, derive from neighbouring soil. EDS 

microanalysis have revealed the absence of sulphur within the overall cuticle thickness of 

epidermal cells and cytoplasm. The lacking of sulphur in the structure of the cuticle 

suggests that the uptake of volcanic toxic gases takes place via stomatal apparatuses. The 

presence of silicon in the cluster of rodlets from Pisciarelli (Fig. 2D) is not surprising as 

the environment in which a plants grows can affect epicuticular wax composition (see 

Baker, 1982). 

Wax overproduction and degradation - On leaves epidermis experiencing chronic 

fumigation (especially in Pisciarelli locality) the presence of siliceous in clusters of rodlets 

(see Figs. 2D and 3D) could be the result of a “control device” avoiding the uptake of Si 

deriving from solidification of volcanic compounds by the plume. In fumigated plants the 

wax overproduction (Fig. 3E-G) could be the effect of elevate CO2 concentration. 

Vanhatolo et al. (2001) found that elevated CO2 alone and in combination with O3 
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increased wax coverage on the abaxial leaf of an inland clone of pubescent birch Betula 

pubescens, but not in that of coastal clone. Among Solfatara and Pisciarelli fumarolic 

effluents a relatively high quantity of hydrogen sulphide (H2S) is released (Chiodini et al., 

2010; Caparezza et al., 1984). Brown (1982), Lorenzini and Nali (2005) and Haworth et al. 

(2010) claimed that the H2S oxidizes rapidly in the atmosphere to form SO2; this last 

rapidly converts into H2SO4 (Visscher et al., 2004) considered as an oxidation product of 

SO2 or H2S (Mather et al., 2003). Therefore, the wax degradation noticed in adaxial side of 

leaves experiencing volcanic gases fumigation (Fig. 3I) could be due to one of the previous 

listed chemical compounds. 

Trichomes alteration - In fumigated leaves, the high density of trichomes in the abaxial 

side (Fig. 3B) together with hairs having prolonged and tough inflated bases in the adaxial 

side of petiole (Fig. 3L) represent a barrier against toxic volcanic gases diffusion 

increasing boundary layer resistance (see Haworth and McElwain, 2008). A similar 

example can be done with the angiosperm Metrosideros polymorpha growing in the 

Kilauea crater region (Island of Hawaii) which is resistant to persistent fumigation with 

toxic volcanic gases (SO2, H2S, HCl, HF) (Winner and Mooney, 1980b). M. polymorpha 

from the Kilauea crater region displays heavily trichomous abaxial surfaces, while those in 

neighbouring regions, not experiencing chronic fumigation, possess non-trichomous 

cuticles (Haworth, 2006). This pattern suggests (Haworth, 2006) that the development of 

trichomes in M. polymorpha from Kilauea Crater region is an adaptation to increase 

boundary layer resistance, and consequently reduces entry of toxic gases into the leaf. 

Stomatal apparati - In fumigated leaves, the stomata are located beneath the medium 

level of epidermis (Fig. 3O). As stomata are the site of entrance of ca. 90% of atmospheric 

pollutants into the plant (Black and Unsworth, 1979), it may be also hypothesized that this 

feature could be a further protection device against the uptake of volcanic toxic gases. 

These features stress more xeromorphic features already existing in this species. As E. 

arborea is the unique typical Mediterranean angiosperm shrub able of growth close to the 

vents it could be attributable to a more effective stomatal control than other species with 

less effective stomatal control (see Haworth et al. 2011). 
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Table 2. Statistical values, made with 30 measurements for cuticular membrane (CM) and cell wall (CW) 

of the epidermal cells of three sites. Note: the cuticular membrane CM is made up with cuticular proper 

CP (= A2) and cuticular layer CL (= B1). All measurements are in μm. min-max = minimum and 

maximum values observed; % = percentage of each detailed part of the cuticle and cell wall; st-d = 

standard deviation; var = variance. 

 

2.4.2. TEM considerations 

 

The effect of volcanic gases on the epidermis in angiosperms has not been previously 

studied by TEM, and no detailed ultrastructural studies have been made so far on the 

cuticle of E. arborea. According to Archangelsky et al. (1986), within cuticle thickness it  

 

is possible to distinguish a cuticle proper (termed A, often lamellate in its outermost part 

and granulous below) and a cuticular layer (termed B, mostly fibrillous). The cuticle of E. 

arborea appears to correspond best with Holloway’s type three structure. This category 

(Holloway, 1982) includes cuticles with “outer region amorphous, inner region mainly 

reticulate”. 

The cuticle of E. arborea shows a significant response to volcanic fumigation. It reacts 

differently, increasing (Solfatara) or decreasing (Pisiciarelli) its thickness. The CI reveals 

(Fig. 5) that CM + CW, CM, B1 and A2 show significant variations. Conversely, the cell 

wall thickness of Cigliano and Solfatara does not records significant variations. 

CM and CW considerations - In fumigated leaves two types of CM + CW thickness 

responses to volcanic gases can be noted. In the specimens from Solfatara, as expected, 
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Fig. 6. Three-dimensional reconstruction of both cuticle and cell wall (CW) for leaves experiencing- or- 

not chronic fumigation. Note: the cuticular membrane CM is made up with cuticular proper (= A2) and 

cuticular layer CL (= B1). 

high CM (= B1 + A2) + CW (10.58 μm) and CM (8.30 μm) thickness values can be 

observed. Instead, the specimens from Pisciarelli both show lower CM + CW (6.40 μm) 

and CM (5.69 μm) values. Passing from specimens experiencing or not chronic fumigation, 

the CW thickness reduces of 3.4 times in Pisciarelli specimens. As Retallack (2002) 

claimed, vascular plants respond to high CO2 concentration by increasing the thickness of 

their cuticles. However, even if the increase of cuticle thickness could be the response to 

high concentration of CO2, as Paoletti et al. (2005) claim, other gases virtually 

undetectable could have biological effects.  

 

CM (B1 + A2) considerations - Within cuticle thickness of fumigated leaves, for both 

statistical values (Table 2) and percentages (Fig. 6) the B1 and A2 thickness layers vary 

significantly. In cuticles from Solfatara, the B1 layer is 1.8 and 1.2 times greater than in 

Pisciarelli and Cigliano specimens respectively. Very interesting is the “behaviour” of A2 

layer as in Pisciarelli specimens it is 4.4 and 1.5 times thicker in respect to Cigliano (not 

fumigated) and Solfatara cuticles respectively. In particular, within the cuticular 
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membrane, the A2 layer responds more marked in respect to B1 ones. As showed from 

data (Table 1 and 2; Figs. 5 and 6), a close relation between atmospheric CO2 

concentration and the A2 layer thickness seems to exist. It is worth noting that, in Solfatara 

and Pisciarelli localities, cuticles respond to atmospheric CO2 concentration and not to the 

CO2 soil concentration (Tables 1, 2 and Fig. 6). In specimens from Pisciarelli, the 

statistical reduction of the B1 layer thickness and the corresponding increasing of A2 layer 

thickness in respect to those of Solfatara and Cigliano (Table 1) could be the result of a 

carbon allocation from the inner layers to the outermost A2 layer. Therefore, the 

differences in layers thickness could be due to a different allocation of carbon-based 

secondary or structural compounds (CBSSC). According to growth-differentiation balance 

hypothesis (Hermes and Mattson, 1992), any environmental condition that affects 

photosynthesis (carbon source) and growth (carbon sink) with different intensity will affect 

the relative carbon pool available for allocation to carbon based compounds (Peñuelas and 

Estiarte, 1998). The carbon allocation could represent a further cost for plants experiencing 

chronic fumigation. In fumigated leaves the thickest A2 layer could be the response to 

toxic volcanic gases or/and to an increase of CO2 concentration (Table 1). However, in the 

specimens from Solfatara and Pisciarelli, the increase in A2 layer thickness is consistent 

with Taylor et al. (1989) statement according to whom, amorphous remains within cuticle 

envelope are likely to represent the most resistant component of leaf. 
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CHAPTER III 

 

An Early Cretaceous flora from Cusano Mutri, Benevento, southern Italy 

 

3.1. Introduction 

 

The distribution of fossil plants is one of the most reliable tools for a better 

understanding of terrestrial climatic conditions through geologic time (Francis and Frakes, 

1993), and the addition of sedimentological context to species lists greatly refines such 

studies (DiMichele and Gastaldo, 2008). 

This research represents a continuation of palaeobotanical studies carried out on 

Cretaceous plant-bearing localities in the southern Apennines (Bartiromo et al., 2006, 

2008, 2009). The aim of this research is to provide supplementary data to investigations of 

subaerial Early Cretaceous Tethyan environments. A palaeontological survey on South 

Apennine Mesozoic sediments of carbonate platform facies (Campania Region) revealed in 

2005 a new Early Cretaceous (Late Aptian) fossil locality near the village of Cusano Mutri 

(Benevento Province) (Fig. 1A). This new outcrop rivals in extent, abundance and 

preservation of the fossil material only the historical site of Pietraroja (early Albian) (Fig. 

1A), the fossil flora of which has already been subjected to a preliminary study (Bartiromo 

et al., 2006, 2008). Several excavations were carried out at the site during the years 

2005e2008, which provided hundreds of macro-remains among animal and plants 

(Bartiromo et al., 2008). This locality (Fig. 1B) displays a more complete fossil record than 

is usually found in the sedimentary successions of the Apenninic Carbonate Platform. The 

richness, taxonomic diversity and type of preservation make this outcrop worthy of 

consideration as a Fossil-Lagerstätte (Seilacher, 1970; Seilacher et al., 1985). Following a 

brief account of the invertebrate and vertebrate faunal assemblage we focus on the fossil 

flora to understand better the palaeoenvironment in which these plants grew. In addition, 

epidermal features were studied and interpreted palaeoecologically. 

 

3.2. Geological setting 

 

The outcrop (Fig. 1B) is located at “Peschera” (IGM Map at scale 1:25000 173 IV NO - 

Cerreto Sannita, long.14° 32’ 08.15’’, lat. 41° 17’ 42. 89’’), about 5 kmsouth of the village 

of Cusano Mutri (Campania Region, Benevento Province: Fig. 1A), on the eastern slope of 
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Fig. 1. A, the location of the village of Cusano Mutri in the Campania 

Region. B, sketch map showing the location of the fossil site. The area 

occupied by the fossil-bearing strata is approximately marked by the 

dotted line. 

 

the mountain Monaco di 

Gioia, which is part of the 

southernmost border of the 

Matese Massif. From a 

structural point of view the 

southern Apennine Arc (sen-

su Parotto and Praturlon, 

2004), stretching from the 

Central Apennines to Sicily, 

is a fold-and-thrust belt struc-

ture that originated during the 

late Tertiary deformation of 

the continental margin of the 

Adria Plate (Carannante et 

al., 2006). The Campania-Lu-

cania Apennine is a segment 

of a chain of high complexity, 

the most puzzling and tectonically complicated area of the whole Apennine-Maghrebian 

mountain range (Parotto and Praturlon, 2004). In particular, the Campanian Apennines are 

dominated by Mesozoic Carbonate Platform deposits and associated facies (Ciarapica and 

Passeri, 1998). During the Early Cretaceous the Cusano Mutri area was part of a large, 

shallow-water carbonate domain known as the Apenninic Platform, which developed in 

tropical-subtropical climatic conditions (D’Argenio, 1976; Mostardini and Merlini, 1986). 

The Matese Massif represents part of the platform. It comprises Upper Triassic-Cretaceous 

shelf limestones. Transgressive Lower Miocene limestones (Cusano Formation; Selli, 

1957) overlie the Mesozoic sequence. In this area three Aptian-Albian, “Plattenkalk” 

intercalations bearing fossil fish and plant remains have been found (Monte Cigno, Civita 

di Pietraroja and the present one: Bravi, 1996; Bravi and Garassino, 1998; Bartiromo et al., 

2008). 

The mountain of Monaco di Gioia is a carbonate monocline intercepted by E-W 

trending faults and NW-SE border faults. The Cusano Mutri fossiliferous level, although of 

wide extent, is tectonically disturbed and poorly exposed, because it is mostly covered by 

vegetation and soil. Locally, very thinly stratified small outcrops are present. 
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Fig. 2. Sedimentological log of the outcrop; see text for 

descriptions of the horizons. 

3.2.1. Stratigraphy 

 

The Cusano Mutri Plattenkalk 

contains scarce index microfossils, 

but samples collected just above and 

below it have revealed assemblages 

of chronostratigraphic value. A 50-

m-thick stratigraphic succession has 

been sampled, including the thin-

stratified Plattenkalk (Fig. 2). The 

succession can be subdivided in 

three intervals as follows: 

A, Basal interval: 5 m of slightly 

dolomitized packstones and grain-

stones with Coptocampylodon fontis 

Patrulius, abundant Salpingoporella 

dinarica Radoičić, Thaumatoporella 

sp., Aeolisaccus sp., Bacinella 

irregularis Radoičić, miliolids, 

textularids, valvulinids, Valvulineria 

sp., Spiroloculina spp. among which 

is S. cf. cretacea Reuss, Cuneolina 

spp., Sabaudia minuta (Hofker), 

Debarina hahounerensis Fourcade, 

Raoult and Vila, Praechrysalidina 

infracretacea Luperto-Sinni, Volo-

shinoides murgensis Luperto-Sinni 

and Masse, Pseudolituonella conica 

Luperto-Sinni and Masse, Nezzaza-

tinella sp., Bolivinopsis sp., Pseudo-

nummoloculina sp., Glomospira sp., 

ostracods, requienid fragments, 

micritized gastropods and solitary 

corals (Fig. 3G, H, K). The rich and well differentiated microfauna and the 
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Fig. 3. Cusano Mutri, locality “La Peschera”, Late Aptian. A, typical thinly laminated strata of the 

“Plattenkalk facies”. B, thin section SC3: mm-thick dolo-micritic undisturbed laminae in the “Plattenkalk 

facies”. C, thin section 11: thinly laminated wackestone/packstones rich in ostracod tests in the 

“Plattenkalk facies”. D, thin section FS8: slight cross lamination (upward in the photo) and fining-upward 

lamination (lower part of the photo) in the “Plattenkalk facies”. E, thin section C2: marly limestones 

(packstones) full of charophyte gyrogonites and frustules; ganoid fish scales (Lepidotes sp.) are also 

visible. The level is located in the middle part of the plattenkalk. F, thin section C2: marly limestone rich 

in charophyte gyrogonites and fish scales. It is worth noting the different orientation of the geopetal 

infilling of some gyrogonites, indicating a mass remobilization of the material from the primary 

depositional site. G, thin section C1c: Coptocampylodon fontis Patrulius into wackestones intraclasts 

contained in dolomitized packstones strata. H, thin section C1d: dolomitized grainstone/packstones with 

Salpingoporella dinarica Radoičić and miliolids. I, thin section SC2: Triploporella marsicana Praturlon 

into packstones with micritized intraclasts. J, thin section SC1c: Sabaudia minuta (Hofker). K, thin 

section C1b: Debarina hahounerensis Fourcade, Raoult & Vila. Scale bars represent 2 mm in B-E; 1 mm 

in F-I; 100 μm in J; 200 μm in K. 

sedimentological features (prevailing packstones and grainstones) may be interpreted as 

indicating to a moderately restricted lagoonal environment. 

 

 

B, Plattenkalk interval: 35 m of limestones, calcareous dolomites and marly-limestone 

beds varying in thickness from cm to dm, intercalated with sets ofmm-thick, easily 
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exfoliated laminae (Fig. 3A). Some plattenkalk strata contain charophyte gyrogonites and 

frustules together with Lepidotes fish scales (Fig. 3E and F), the richest of these occurring 

in the middle of this plattenkalk interval, which consists of a 50-cm-thick marly stratum 

(Fig. 2). Other beds and laminae sets bear fish, crustacean and plant remains. Land, 

freshwater, brackish and marine fossil remains mixed together may be explained by 

sediment remobilization from surrounding inner landward areas in a channel context. The 

random orientation of the geopetal filling within the gyrogonites may support this 

interpretation (Fig. 3F). The typical Plattenkalk facies consists of strata and laminae of 

dolomicrite (Fig. 3B). Sometimes, in thin section cm-long fractures can be observed, 

seemingly owing to local differential compaction. At a later stage, the sediment probably 

underwent zone-mixing diagenesis, so that differential dolomitization developed along the 

fractures. Close to the fractures, dolomitization appears sometimes more marked than in 

the rest of the rock, and at times less marked. Finingupward structures (Fig. 3D), indicating 

decantation of muddy sediments brought in by tides during the normal, calm, 

environmental conditions, are also observed. The coarser sediment at the base of laminae 

often consists of ostracods (Fig. 3C) and estherid valves; the top is capped by a thin 

brownish layer, probably indicating the last phase of decantation of suspended organic 

matter. Irregular undulating laminae are also commonly observed. Some of these show 

cracks and strain structures, probable desiccation voids and root moulds which at present 

cannot be safely determined as subaerial exposure (Fig. 3D). 

From an environmental point of view, the plattenkalk facies, which formed in a 

sheltered area of the carbonate platform, more or less close to land, strongly influenced the 

sedimentation and palaeontological content. Sediments deposited landward in fresh to 

brackish ponds were sometimes removed and washed seaward.  

C, Upper interval: 10mof grainstones, packstones and packstone wackstones. The 

microflora is composed of Thaumathoporella sp., dasycladalean algae (such as 

Triploporella marsicana Praturlon and S. dinarica Radoičić) and Cretacicladus minervini 

Luperto-Sinni. Foraminifers are represented by milioliids, textulariids, valvulinids and 

Ataxophragmidae. Most significant taxa are S. minuta (Hofker), D. hahounerensis 

Fourcade, Raoult and Vila, P. infracretacea Luperto-Sinni, Spiroloculina cf. cretacea 

Reuss, and Cuneolina spp. Ostreids, requienid fragments, small micritized and bioeroded 

gastropods, and thin, smooth valves of ostracods are also present (Fig. 3I and J). This last 

interval is broadly characterized by an increase in biodiversity, which may testify the 

return to marine conditions. 
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The stratigraphical study has also revealed the presence of numerous animal remains 

throughout the plattenkalk sequence. Within the invertebrates: (1) small turritellate 

gastropod shells (ca. 15 mm long, 5 mm wide) randomly sparse on bed surfaces (Bravi and 

Bartiromo, 2005); (2) small (ca. 2 mm long, 1.5 mm wide) connected valves of bivalves 

with concave surfaces facing upward; (3) complete and fragmented decapod crustaceans, 

and (4) disarticulated valves of spinicaudatan (conchostracan) branchiopods (estherids) are 

noted. With regards to fish: (5) disarticulated scales and complete specimens belonging to 

the genus Lepidotes; (6) some Clupeiformes (Clupavus?) not exceeding 2.6 cm in length; 

(7) a fragmented Pycnodontiform and (8) a 4-cm-long specimen of Notagogus were also 

found. Indeterminable worm traces are also common on the bedding-plane surfaces.  

The upper Aptian (upper part of the “S. dinarica biozone”; De Castro, 1991) microfossil 

assemblage occurring throughout the whole succession allows us to ascribe the plattenkalk 

interval to this age. The Cusano Mutri plattenkalk can be considered coeval with that of 

Monte Cigno (Bravi and Mega, 1999), cropping out on the opposite side of the Titerno 

River valley (Fig. 1B). Also, the “plattenkalk 1” from the “Civita di Pietraroja” (Fig. 1A) 

(Bravi and Garassino, 1998) is possibly the same age as the two found previously, although 

further stratigraphic study is needed to confirm this. 

 

3.3. Material and methods 

 

The material was collected during excavations carried out by one of the authors (AB) 

during the period 2005-2008. The specimens are labelled with the letters CM (Cusano 

Mutri) followed by the identification number. Following Schopf’s (1975) classification, the 

fossil plants described in this paper are impressions, poorly preserved cuticles and 

carbonaceous compressions. Well preserved cuticle fragments belong to the extinct family 

Cheirolepidiaceae (e.g. Frenelopsis), but exquisite plant impressions showing the 

epidermal structures are characteristic of the whole of the studied flora.  

Low viscosity collodion was used to prepare casts showing fine epidermal characters. 

The collodion method is very useful (Walton, 1923), although Kouwenberg et al. (2007) do 

not recommend it because it is extremely flammable and readily forms an explosive 

mixture with air at relatively low temperatures. A tough film of collodion is formed from 

the evaporation of the solvent; this can be stripped off and examined under transmitted 

light or a Scanning Electron Microscope (SEM). Watson (1983) described the species 

Frenelopsis silfloana by means of casts made with low viscosity silicone rubber. 
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Microscopical details of some cuticles were difficult to observe after chemical treatment. 

For this reason, some cuticle fragments were mounted directly onto the stubs for the SEM 

observation. Cuticle fragments were separated from the surface of the bed by means of 

tweezers. They were cleaned in 37% hydrochloric acid (HCl) for 2 h. Adhering siliceous 

debris on the cuticle surfaces was removed by immersion in 40% hydrofluoric acid (HF) 

for 1 h. Finally, they were macerated in Schulze’s reagent (HNO3 and KClO3) for 2 h; the 

duration of the latter depending on the degree of carbonization and preservation (Kerp, 

1990). Parts of cuticle were directly mounted on glass slides for light microscope 

examination. Other cuticle fragments were directly mounted onto the stubs for observation 

under the SEM. Light microscope (LM) and Stereo-microscope (SM) observations were 

made using Leitz microscopes. Specimens examined under an optical microscope were 

photographed with a Nikon Coolpix 990 camera. The cuticles were examined using a 

JEOL JSM-5310 SEM at the CISAG (Centro Interdipartimentale di servizi per analisi 

Geomineralogiche) and a FEI-QUANTAS 200 ESEM (Figs. 6G and 7G) at the CISME 

(Centro Interdipartimentale di servizi di Microscopia Elettronica).  

The material is housed in the Museo di Paleontologia, “Centro Museale, Centro Musei 

delle Scienze Naturali”, Università degli Studi di Napoli Federico II (Italy).  

 

3.4. Systematic palaeontology  

 

Order Coniferales 

Family incertae sedis 

Genus Cupressinocladus Seward, 1919 

Cupressinocladus sp. 

Figs. 4A, 5A 

 

Material examined. CM 21, 68 

Description. Twig impressions, branched (CM 21: Figs. 4A and 5A) and unbranched. 

The leaves are decussately arranged. They are heavily adpressed to the axes and have a 

rounded apex. The free part of the leaves arises from whole basal cushion. A poor 

impression of a stomatal apparatus 80 μm in diameter has been obtained by means of a 

peel.  

Discussion. The morphology of the shoots together with the arrangement of the leaves 

lead us to ascribe the specimens to the genus Cupressinocladus Seward, 1919. However, 
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Fig. 4. Late Aptian fossil plants from Cusano Mutri: drawings of 

selected specimens. A, Cupressinocladus sp., CM 21: detail 

showing the leaves basal cushions. B, Araucarites sp., CM 53: 

stomatal apparatus with four subsidiary cells presenting an 

annular thickening on the periclinal walls. Scale bars represent 4 

mm in A; 50 μm in B. 

the poor preservation of the 

specimens and the lack of 

cuticle do not allow deter-

mination of the specimens at 

species level. 

 

Genus Pagiophyllum Heer, 

1881 emend. Harris, 1979 

Pagiophyllum sp. 1 

Fig. 5B 

 

Material examined. CM 104 

Description. Carbonaceous 

compression of fragmented 

and unbranched vegetative shoot, 14.5 mm in length with an almost constant width of ca. 

3.3 mm (Fig. 5B). The leaves are helically arranged and measure ca. 2mmin length by 

1.5mm in width. They are closely adpressed to the axes forming with it an angle of ca. 20° 

(26° at the base and 15° in the distal part). The free part of the leaves is longer than their 

width. The upper surface of the leaves is difficult to elucidate. The lower surface is fairly 

convex with the basal part rounded; the leaf apex is rounded. 

Discussion. The dimensions (leaf length is greater than its width) and disposition of the 

leaves lead us to ascribe the specimen to the genus Pagiophyllum. The specimen differs 

enormously from Pagiophyllum sp. 2 in shape and size, but the poor preservation does not 

allow us to determine it to species level. 

 

Pagiophyllum sp. 2 

Fig. 5C, D 

 

Material examined. CM 19, 30 

Description. Distal parts of vegetative shoots (Fig. 5C), unbranched, 18 mm in length 

by 5 mm in width (CM 19). The leaves are spirally arranged and falcate; the longest 

measures 2.9 mm in length by 1.9 mm in width (CM 19). The free part of the leaves is 

almost triangular in section. The upper surface of the leaves is almost flattened. The lower 

surface is fairly concave, keel shaped. The leaf apex curves upward and is pointed. Small 
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Fig. 5. Late Aptian fossil plants from Cusano Mutri. A, Cupressinocladus sp., CM 21: branched shoot 

with leaf cushions preserved in the apical part. B, Pagiophyllum sp. 1, CM 104: carbonaceous shoot 

compression with leaves spirally arranged and heavily adpressed to the axis. CeD, Pagiophyllum sp. 2., 

CM 19. C, branch fragment with large leaves in spiral arrangement. D, stomatal apparatuses disposed in 

rows with ostioles (arrows) showing a probable preferential orientation (collodion peel). E-F, Araucarites 

sp., CM 53. E, carbonaceous compression of a triangular woody scale. F, polygonal epidermal cells 

(detail of E; collodion peel). A-C, E: SM observations; D, F: LM observations. Scale bar represents 5 mm 

in A; 2 mm in B; 3 mm in C, E; 50 μm in D; 100 μm F. 

areas show epidermal cells that are polygonal in shape disposed in longitudinal rows. The 

anticlinal walls of the epidermal cells are frequently curved but sometimes they are 

straight. Periclinal walls display fine granulosity. The peel technique allowed us to observe 

stomatal apparatuses 50 μm in diameter, probably disposed in rows with ostioles showing a 

rather good preferential orientation (Fig. 5D). 

Discussion. The size and disposition of the leaves leads us to ascribe the specimens to 

the genus Pagiophyllum. The specimens resemble P. araucarinum Pomel (Saporta) but 

differ by having smaller leaves. Unfortunately, the poor preservation of the specimens and 

the lack of the cuticle leave the specimens unassigned at species level. 

 

Genus Araucarites Presl (in Sternberg, 1838) 

Araucarites aff. pedreranus 

Figs. 4B, 5E, F 

 

Material examined. CM 53, 135 
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Description. Woody scales (CM 53 probably a lower surface) 10.5 mm long by 10.1 

mm wide, triangular in shape with entire margin. The base of the scales is 5 mm in width. 

The apex is rounded (Fig. 5E). The epidermal features are visible on the distal surface of 

the scale (CM 53) and have been obtained by means of collodion peels. The epidermal 

cells are polygonal and sometimes pentagonal and or hexagonal in shape (Figs. 4B and 

5F). The haplocheilic, monocyclic and incompletely amphycyclic stomatal appara-tuses 

have a diameter of ca. 47 μm. They are composed of four subsidiary cells, the largest of 

which is 28 μm long and 12 μm wide. The periclinal surface of subsidiary cells seems to 

present a coronal thickening around the stomatal rim 4 μm thick (Fig. 4B). 

Discussion. The size and shape of the scales together with the epidermal features 

indicate an affinity with Araucarites pedreranus described by Barale (1989) for the Early 

Cretaceous lithographic limestones of Montsech (Spain, Pedrera and Cabrua quarries). 

However, the scale apex is triangular in A. pedreranus but rounded in the specimens from 

Cusano Mutri. Although fragmentary, the Cusano Mutri scales share with the Spanish 

material the same epidermal features. Unfortunately, the poor state in the preservation of 

the specimens and the incompleteness of the epidermal features prevent a specific 

assignment. 

 

Family Cheirolepidiaceae Takhtajan, 1963 

Genus Frenelopsis (Schenk, 1869) emend. Watson, 1977 

Type species. Frenelopsis hoheneggeri (Ettingshausen, 1852) Schenk, 

1869 

Frenelopsis cusanensis sp. nov. 

Figs. 6A-J, 7A-I 

Holotype. CM 100, slide number 100v1, 100v2; stub number 100s1, 100s2. Figs. 6BeH, J, 

7A-I. 

Paratypes. CM 3, 8, 22, 66; stub number 3s, 8s, 22s, 66s. 

Type locality. Cusano Mutri village, Benevento Province, southern Italy. 

Derivation of name. Refers to the village of Cusano Mutri where the species was found. 

Repository. Museo di Paleontologia, “Centro Museale, Centro Musei delle Scienze 

Naturali”, Università degli Studi di Napoli Federico II (Italy). 

Stratigraphic range. Late Aptian 
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Diagnosis. Articulated shoots attaining at least two orders of branching in one plane. 

Branches arising at an angle of ca. 11° with internodes 4-10 mm long and 1.3-2.4 mm 

wide. Shoots bear whorls of three scale-like leaves 0.5-0.9 mm in length bordered by 

unicellular hairs up to 60 μm in length. Internode cuticle is ca. 7 μm thick. The stomatal 

apparatuses have an average diameter of 40 μm and are arranged in well-defined rows (7-

10 per linear mm). Average stomatal density is 70-80 per mm
2
. The stomatal apparatuses, 

randomly orientated, bear four subsidiary cells (rarely five), separated into lateral and polar 

cells, each bearing one outer and one inner papilla. Papillae quadrangular, small, 

sometimes elongated, arise from epidermal cells. 

 

Description. The material consists of impressions and compressions of branched (CM 

22, 66), articulated cuticular segments (CM 8, 66, 100) and internode fragments (CM 65) 

1.2 up to 11.1 cm long (Fig. 6A and B). The best preserved shoot (CM 100) as well as the 

holotype, measures 77 mm in length by 2.4 mm in width and is composed of part and 

counterpart (Fig. 6B: part). The branches are produced alternately, in one plane, and the 

specimens have one main axis. Branches arise at an angle of ca.11°. The internode length 

varies between 4 and 10 mm; the segment width is 1.3-2.4 mm, 1.8 mm on average. At the 

level of every node a whorl of three squamiform leaves, laterally fused, form a leaf sheath 

developed along the internode length (Fig. 6C and D). At the extremity of the leaf sheath, 

three small teeth (Fig. 6F), related to the free leaf extremity are present. There are no 

suture lines along the leaf sheath. The free parts of the leaves are identical at each node: 

they are triangular in shape and measure 0.9-0.5 mm in length with an average of 0.7 mm. 

The leaves are bordered by marginal unicellular hairs up to 60 μm in length (Fig. 6D). The 

cuticle of the internode is 7 μm thick (Fig. 7B). In outer view, the epidermal cells bear one 

papilla each; close to the stomatal apparatuses the papillae measure ca. 11 μm in length and 

10 μm in width extending in the direction of the stomatal apparatuses itself (Figs. 6I and 

7D). Elongated epidermal papillae transversally disposed can be frequently observed (Fig. 

7D). Usually, the width of the papillae is greater than their length and they are located 

above the average surface of the epidermis; the papillae density is 70-80 per mm
2 

(CM 

100). There are no hairs on the epidermal surface (Fig. 6I). Several epidermal cells are 

polygonal in shape, but frequently rectangular cells ca. 31 μm long by 15 μm wide can be 

observed. The epidermal cells are arranged in more or less well-defined rows running 

parallel to the long axis of the internode (Fig. 7C). The anticlinal walls of the epidermal 

cells are ca. 8 μm thick. The stomatal apparatuses are arranged in well-defined longitudinal  
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Fig. 6. Late Aptian fossil plants from Cusano Mutri: Frenelopsis cusanensis sp. nov. A, CM 3: 

impression of branched shoots. B-H, J, CM 100 (holotype): part and counterpart. B, shoot composed of 

eight internodes (part). C, impression of a distal part of an internode showing a whorl of three scale-like 

leaves. The upper part of the leaves is devoid of stomatal apparatuses (counterpart). D, impression of a 

distal part of an internode showing the marginal hairs (counterpart). E, typically exquisite impression of 

an internode area (part) with stomatal rows and two stomatal apparatuses directly connected without  
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interposed epidermal cells (arrow). F, fragment of internode cuticle (part) removed to demonstrate abaxial 

and adaxial surfaces. The arrow indicates the position of detail in G. G, inner side of abaxial surface with two 

stomatal rows (detail of F). The arrow indicates position of the detail in H. H, inner view of a dicyclic 

stomatal apparatus composed by four subsidiary cells (detail of G). I, CM 3: external view of the abaxial 

surface showing epidermal papillae and stomatal apparatuses arranged in rows (inverted image: negative). J, 

internode cuticle showing two stomatal apparatuses. The upper one focused on external papillae while the 

lower one shows the four subsidiary cells distinct in polar and lateral ones. C-E: SM observations; F-I: SEM 

observations; J: LM observation. Scale bar represents 10 mm in A, B; 500 μm in C, D, F; 100 μm in E, G, I; 

10 μm in H; 50 μm in J. 

 

rows (7-10 per mm) (Figs. 6I and 7C, E, I). The stomatal rows are separated by 1-2 (at 

times 3) epidermal cells. On the same stomatal row 1e2 (at times 3) epidermal cells occur 

between two stomatal apparatuses (Figs. 6G and 7C, I). Sometimes, the subsidiary cells of 

two adjacent stomatal apparatuses on the same row can be in contact without intervening 

epidermal cells (Figs. 6E and 7I). The stomatal density is 70-80 per mm
2
. Stomatal 

apparatuses are 40 mm in diameter on average (max. 62 μm in CM66, min. 30 μm in CM 

22; 38 μm in CM 100). The stomatal apparatuses are haplocheilic and normally 

monocyclic (Fig. 6J); rarely, dicyclic stomatal apparatuses have been observed (Fig. 6H). 

The stomatal apparatuses are composed of four (Figs. 6I, J, 7A, C-E, H, I), sometimes five 

(Fig. 7G) subsidiary cells, more or less regularly disposed around the stomatal pit. The 

stomatal apparatuses are randomly orientated. From a morphological point of view, it is 

possible to distinguish two lateral and two polar subsidiary cells, usually with polar cells 

greater than laterals ones (Figs. 6J and 7E). Each subsidiary cell bears (1) one outer papilla 

protruding on the stomatal rim, partially covering the stomatal pit, and (2) one inner papilla 

which conceals the stomatal pit (Fig. 7A, E and F). The fusion of outer papillae results in a 

stomatal pit with a stellate outline and an aperture of ca. 14 μm in length and 6 μm in width 

(Fig. 7A). Normally, the median level of epidermis is prominent with respect to the 

stomatal apparatuses (Figs. 6I and 7A, D). The subsidiary cells are more or less rectangular 

in shape, being ca. 18 apparatuses (Figs. 6I and 7A, D). The subsidiary cells are more or 

less rectangular in shape, being ca. 18 apparatuses (Figs. 6I and 7A, D). The subsidiary 

cells are more or less rectangular in shape, being ca. 18 μm long and 12 μm wide. The 

guard cells are sometimes preserved with well-cutinized dorsal plates underneath the 

stomatal pits (Fig. 7H). Occasionally, the inner cuticle surface is granulose (Fig. 7E and F). 

Discussion. The studied specimens are typical Frenelopsis shoots on the basis of macro-

morphological features such as the cyclic, decussate, leaf-whorl arrangement, and the 

absence of longitudinal sutures at the internodes. These characteristics exclude the 

attribution of the specimens to the genus Pseudofrenelopsis Nathorst, 1893 emend. 

Srinivasan, 1995. As Kunzmann et al. (2006) claimed, Frenelopsis consists of several 
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Fig. 7. Late Aptian fossil plants from Cusano Mutri. A-I, Frenelopsis cusanensis sp. nov., CM 100 

(holotype). A, external view of the abaxial surface showing epidermal papillae and two stomatal 

apparatuses each composed of four subsidiary cells, each of these bearing one inner and one outer 

papilla. B, section of the cuticle internode through epidermal cells showing the thickness. C, internal 

view of the cuticle showing randomly orientated stomatal apparatuses in well-defined rows. D, external 

view of abaxial cuticle surface showing elongated papillae and four stomatal apparatuses. 
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E, internal view of the cuticle showing some stomatal apparatuses presenting fine granulosity (on the right). 

The arrow indicates position of the detail figured in F. F, internal surface of a stomatal apparatus bearing four 

inner papillae that are very closely linked (detail of E). G, internal view of a rare stomatal apparatus 

composed of five subsidiary cells. H, internal view of stomatal apparatus composed of four subsidiary cells 

showing the dorsal plates of the guard cells. I, internal view of cuticle showing three stomatal apparatuses 

(each composed of four subsidiary cells) of a stomatal row with no epidermal cells on the left and one on the 

right, between adjacent stomatal apparatuses. All figures: SEM observations. Scale bar represents 25 μm in 

A; 50 μm in D, E; 10 μm in B, F; 100 μm in C; 20 μm in G, I; 10 μm in H. 

 

morphospecies typically bearing three leaves per whorl (Watson, 1988; Kvaček, 2000).  

Among the species attributed to Frenelopsis (Bartiromo et al., 2009), the cuticles from 

Cusano Mutri are closest to Frenelopsis ugnaensis Gomez et al., 2002 from the upper 

Barremian of Spain and Frenelopsis harrisii Doludenko and Reymanówna, 1978 from the 

Cenomanian of Tadjikistan (Table 1). However, F. ugnaensis is different from the Cusano 

Mutri material in having longer (up to 3 mm) and wider (up to 2 mm) internodes. At a 

microscopic level, F. ugnaensis displays: (1) longer hairs in the upper margin of the leaf 

(up to 100 vs. up to 60 μm); (2) a greater thickness of the cuticle (15-20 vs. 7 μm); (3) ill-

defined stomatal rows; (4) a lower stomatal density per mm
2
 (40-55 vs. 70-80); and (5) 

greater size of stomatal apparatuses (55-60 vs. 40 μm). Moreover, F. ugnaensis has perfect 

conical hairs (up to 100 μm long) on the outer cuticular surface, whereas the Cusano Mutri 

specimens possess hemispherical papillae on the outer surface of each epidermal cell 

without hairs. F. harrisii is different from the Cusano Mutri material in having: (1) greater 

internodes measuring 8-12 mm in length (vs. 4-10 mm) and 1-4mmin width (vs. 1.3-2.4 

mm); (2) a longer free part of the leaves (1.5 vs. 0.5-0.9 mm); (3) a greater thickness of 

internode cuticle (up to 100 vs. 7 μm); (4) stomatal apparatuses elliptical in shape; and (5) 

a smooth cuticle surface. Moreover, it is interesting to note that the specimens from 

Cusano Mutri display the smallest stomatal apparatuses of the genus Frenelopsis, with an 

average diameter of 40 μm as opposed to 107 μm for Frenelopsis profetiensis Bartiromo et 

al., 2009 from the lower-middle Aptian locality of Profeti, which is the Frenelopsis with 

the largest stomatal apparatuses (see Table 1). It is for these reasons that the new species, 

Frenelopsis cusanensis, is proposed for the material from Cusano Mutri. 

 

Cheirolepidiaceae sp. 1 

Fig. 8A-G 

 

Material examined. CM 1 

Description. Compression of branched stem 14 mm in length by 2mm in width made by 

nodes and internodes. The internode length is ca. 2.2 mm. The specimen (Fig. 8A) bears, 
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Fig. 8. Late Aptian fossil plants from Cusano Mutri. A-G, Cheirolepidiaceae 1, CM 1. A, portion of shoot 

consisting of a succession of internodes, bearing three lateral branches in the axils of their subtending 

leaves. B, C, buds possibly of lateral extensions shoot with Brachyphyllum-like leaves (details of A), 

respectively focused in the central and right part (B) and in the central and left part (C). D, in respect to 

the dashed line, impression (on the left) and compression (on the right) of a leaf showing stomatal 

apparatuses arranged in rows. E, internal view of cuticle surface showing a fine striation of periclinal 

walls of the epidermal cells. F, internal view of cuticle showing a stomatal apparatus formed by five 

subsidiary cells, each one bearing one papilla (collodion peel). G, two stomatal apparatuses composed of 

four and six (above) subsidiary cells (with subsidiary cells in contact) without interposed epidermal cells 

(detail of D). H-J, Cheirolepidiaceae 2, CM 91. H, poorly preserved cuticle fragment showing stomatal 

apparatuses and epidermal cells arranged in well-defined rows. I, poorly preserved stomatal apparatuses 

arranged in rows (collodion peel observed with the SEM). J, two stomatal apparatuses composed of six 

subsidiary cells with at least one interposed epidermal cell. A-C, H: SM observations; D, E, G, I, J: SEM 

observations; F: LM observation. Scale bar represents 3 mm in A; 0.5 mm in B, C, L; 25 μm in E; 50 μm 

in G, J; 30 μm in F; 300 μm in H; 100 μm in I. 

 

alternate and in one plane, three apparent buds probably representing lateral extension 
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shoots (two on the left and one on the right). Each bud bears a number (perhaps at least 

seven) of more or less Brachyphyllum-like leaves (sensu Alvin, 1983), which do not form a 

complete sheath around the axis (Fig. 8B and C). Each node bears one subtending leaf of 

“close type” (seeWatson,1977) at the axil of the node (Fig. 8A and D). There are no suture 

lines along the sheathing leaves. It was impossible to measure the cuticle thickness. The 

few stomatal apparatuses observed seem to be haplocheilic, monocyclic and made by four 

(Fig. 8D) or frequently five (Fig. 8F) or six (Fig. 8G) subsidiary cells. They have an ovoid 

to a rounded shape and measure on average 85 μm along the major axis and 56 μm along 

the minor one. The subsidiary cells measure on average 25 μm in length and 35 μm in 

width. Inner papillae are present (Fig. 8F). In external view no stomatal apparatuses have 

been observed. The few preserved cuticle fragments show epidermal cells of varying size 

having a polygonal (often isodiametric) morphology and disposition in more or less well-

defined rows (Fig. 8D). The anticlinal walls of the epidermal cells are ca. 10 μm thick, 

sometimes exceeding 15 μm. The periclinal walls of the epidermal cells display a fine 

parallel striation (Fig. 8E). By means of collodion casts the hypodermis can be seen.  

Discussion. The specimen presents a macroscopical architecture and micro-

morphological characters that allow it to be placed within the family Cheirolepidiaceae 

Takhtajan, 1963. The macroscopical and especially the microscopical features differ from 

both F. cusanensis sp. nov. and Cheirolepidiaceae sp. 2. The gross morphology is 

comparable with Pseudofrenelopsis parceramosa (Fontaine) Watson, 1977 from the 

Wealden beds of the Isle of Wight (England), figured by Alvin and Hluštík (1979, fig.15) 

and suggested again by Alvin (1983, Fig. 7H). The few observed stomatal apparatuses are 

probably related to the adaxial surface of the cuticle, in agreement with Watson (1977, p. 

720): “Adaxial cuticle showing cells of variable shape and arrangement, often strongly 

papillate; few, scattered stomata, often abortive”. The micro- and macroscopic features 

together with the Brachyphyllum-type foliage are reminiscent of juvenile forms of P. 

parceramosa (Alvin, 1977, 1983; Watson, 1977). However, extensive morphological 

variation has been historically documented within and between assemblages of P. 

parceramosa (Axsmith, 2006). Unfortunately, the lack of well-defined microscopical 

features makes it difficult to identify it to genus level within the family Cheirolepidiaceae 

which, as Taylor et al. (2009) and others have claimed, certainly represents several 

different types of plants based on habit and ecology. 
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Table 1. Comparisons of the species described to date belonging to the genus Frenelopsis (updated and modified from Bartiromo et al. (2009)). 

Characters/Taxa 
F. alata (Feistmantel) 

Knobloch 
F choshiensis 
Kimura et al. 

F. elegans 
Chow & Tsao 

F. harrisii 
Doludenko & 
Reymanówna 

F. hohenneggeri 
(Ettingshausen) Schenk 

emend. 
Reymanówna & Watson 

(type species) 

F. kaneviensis Barale & 
Doludenko 

Branching moderate moderate rare moderate moderate profuse 
Internode length (mm) up to 15 4-4.5 up to 23 8-12 8 8-10 

Internode width (mm) up to 5 1.5-2 2-3 1-4 3 1.7-3.5 

Leaf number per node alternating whorls of 3 2 opposite and decussate alternating whorls of 3 alternating whorls of 3 alternating whorls of 3 alternating whorls of 3 

Outer surface ridge number 
per leaf 

12-13  ? absent 15 absent 

Maximum length of free leaf 
(mm) 

~ 1 0.5 ~ 1 up to 1.5 1.5 1-0.7 

Depth of sheathing base 
(mm) 

up to 1  ? ? 1 up to 1 

Leaf upper margin fringe of hairs hairs up to 4 μm ? ? scarious 
short hairs up to 20 μm 

long 

Internode and abaxial leaf 
cuticles thickness (µm) 

30-40 20 ? up to 100μm 40 15-20 

Stomatal arrangement Ill-defined rows ill-defined rows well-defined rows well-defined rows well-defined rows ill-defined rows 
Density of stomatal rows 

per mm 
10-12  8-10 9-10 10-12 12-16 

Density of stomata per mm
2 

90-100 200   90-100  

Diameter of stomatal 
apparatus (µm) 

52-77 45-75 100 45×20 (elliptical) 60-70 35-50 

Number of subsidiary cells 4-5, occasionally 6 4-6, usually 4 4-6 4-5 4-6, usually 4 4-6, usually 4 

Orientation of stomatal 
aperture 

? random horizontal transverse or oblique ? transverse ? 

Surface around pit  grooved   thickened ring  

Papillae in throat of 
stomatal pit 

present present present present present present 

Cuticle surface Irregularly ribbed smooth smooth smooth smooth smooth 

Rim of stomatal pit stellate with lobed rim  elliptical 
stellate, large pouch-like 

papillae 
stellate, large pouch-like 

papillae 
circular 

Distribution 
Czech Republic; France, 

Portugal, USA 
Japan East China Tajikistan Poland, Czech Republic Ukraine 

Stratigraphic range Aptian, Senonian Barremian Aptian Cenomanian Hauterivian Albian 

Selected references 

Feistmantel (1881); 
Knobloch (1971); Hluštík 
(1972, 1974, 1978, 1979); 
Hluštík & Konzalová 
(1976a,b); Alvin (1977); 
Watson(1977); Alvin & 
Hluštík (1979); Pons 
(1979); Kvaček (2000). 

Kimura et al. (1985). Chow &Tsao (1977). 
Doludenko (1978); 
Doludenko & 
Reymanówna (1978). 

Ettingshausen (1852); 
Schenk (1869); 
Reymanówna (1965); 
Reymanówna & Watson 
(1976); Hluštík (1979); 
Purkynová (1983). 

Barale & Doludenko 
(1985); Doludenko & Pons 
(1986). 
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Characters/Taxa 
F. occidentalis 

 Heer emend. Alvin 
F. oligostomata  

Romariz emend. Alvin 
F. pombetsuensis  

Saiki 

F. ramosissima 
Fontaine emend. 

Watson 

F. rubiesensis Barale 
emend. Gomez et al. 

F. sifloana Watson 

Branching sparse moderate ? profuse profuse ? 

Internode length (mm) up to16 9 at least 10 up to 20 6-13 up to 10 

Internode width (mm) up to 4 3-4.7 1.4 up to 20 3-5 1-3 

Leaf number per node alternating whorls of 3 alternating whorls of 3 2 alternating whorls of 3 alternating whorls of 3 3 (sometimes probably 2) 
Outer surface ridge number 

per leaf 
? 5-9  ? 4-5 ? 

Maximum length of free leaf 
(mm) 

? up to 0.9 1.5 2 0.9 1 

Depth of sheathing base 
(mm) 

? ?  0.5 ? ? 

Leaf upper margin ? small unicellular hairs  hairs up to 100 μm ⅔ upper part scarious entire 

Internode and abaxial leaf 
cuticles thickness (µm) 

up to 60 30 10 ~ 30 30 ? 

Stomatal arrangement well-defined rows ill-defined rows ill-defined rows ill-defined rows well-defined rows ill-defined rows 

Density of stomatal rows 
per mm 

10-12 10-13 7-9 10-12 (sometimes less) 10-11 12-14 

Density of stomata per mm
2 

  30-40  70-100  

Diameter of stomatal 
apparatus (µm) 

75 75 65-80 50-75 70-75 80 

Number of subsidiary cells 5-6 4-6, usually 5 4-5 4-6, usually 5 4-6, usually 4 4-5 
Orientation of stomatal 
aperture 

? transverse transverse transverse ? ? 

Surface around pit   thickened ring    

Papillae in throat of 
stomatal pit 

massive papillae short wide papillae short wide papillae no present large rounded 

Cuticle surface smooth smooth smooth hairs up to 120 μm smooth papillae up to 10μm 

Rim of stomatal pit 
polygonal, bone or star-

shaped 
lobed rectangular or polygonal round: lobed or papillate lobed circular 

Distribution Portugal, Germany Portugal, Spain Japan 
Maryland and Virginia 

(USA) 
Spain Sudan 

Stratigraphic range 
Berrasian – Aptian - 

Albian 
Senonian Albian Barremian–Lower Albian 

Upper Berrasian-
Barremian 

Lower Cretaceous 

Selected references 
Heer (1881); Alvin (1977); 
Watson & Alvin (1999). 

Romariz (1946); Broutin & 
Pons (1976); Alvin (1977); 
Lauverjat & Pons (1978); 
Pons & Broutin (1978); 
Alvarez-Ramis (1981); 
Alvarez-Ramis et al. 
(1987). 

Saiki (1997). 

Berry (1910, 1911); 

Thompson (1912); 
Watson (1977); Upchurch 
& Doyle (1981). 

Barale (1973); Gomez et 
al. (2002a) 

Edwards (1926); Watson & 
Alvin (1976); Watson 
(1983) 
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Characters/Taxa 
F. teixeirae Alvin & Pais 

emend. Mendes et al.  
F. turolensis Gomez et 

al. 
F. ugnaensis Gomez et 

al. 
F. veneta Gomez et al.  

F. profetiensis 
Bartiromo et al. 

F. cusanensis  
Bartiromo et al. sp. nov. 

Branching moderate moderate rare moderate ? moderate 

Internode length (mm) 2.5-6 up to 42 up to 13 ?  4-10  

Internode width (mm) 1.5-2 up to 3.6 up to 2 up to 4 2-5 1.3-2.4 

Leaf number per node 
2 opposite decussate 

leaves 
alternating whorls of 3 alternating whorls of 3 alternating whorls of 3 alternating whorls of 3 alternating whorls of 3 

Outer surface ridge number 
per leaf 

absent ? ?  ? ? 

Maximum length of free leaf 
(mm) 

~ 0,7 up to 1.8 ~ 1 ? 1 0.9-0.5 

Depth of sheathing base 
(mm) 

?   ? ? ? 

Leaf upper margin scarious strip of hairs (20-40 μm) hairs up to 100 μm ? hairs up to 100 μm hairs up to 60 μm 

Internode and abaxial leaf 
cuticles thickness (µm) 

50 20-30 15-20 20-30 10-20 ~7  

Stomatal arrangement ill-defined rows ill-defined rows ill-defined rows ill-defined rows well-defined rows well-defined rows 

Density of stomatal rows 
per mm 

10 11-13 7-9 8-11 6-7, at times 8 7-10 

Density of stomata per mm
2
  140-200 40-55 70-90 60 70-80 

Diameter of stomatal 
apparatus (µm) 

75 55-75 50-60 60-90 ~ 107 40 

Number of subsidiary cells 5-6 usually 4 usually 4 4-5, usually 4 4, rarely 5 4, rarely 5 

Orientation of stomatal 
aperture 

? ? ? variable transverse random 

Surface around pit slightly raised slightly raised slightly raised papillate papillate papillate 
Papillae in throat of 

stomatal pit 
large massive present present no present 

Cuticle surface smooth smooth hairs up to 100 μm  
narrow grooves with 

papillae 
papillae 

Rim of stomatal pit stellate or polygonal stellate stellate stellate stellate stellate 

Distribution Portugal Spain Spain Italy Italy Italy 

Stratigraphic range Hautervian or Barremian Lower-Middle Albian Upper Barremian Cenomanian-Turonian Middle Aptian Late Aptian 

Selected references 
Alvin & Pais (1978); 

Mendes et al. (2010). 
Gomez et al. (2002a). Gomez et al. (2002a). Gomez et al. (2002b). Bartiromo et al. (2009). herein 
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Cheirolepidiaceae sp. 2 

Fig. 8H-J 

 

Material examined. CM 91 

Description. Fragmented specimen composed of one segment 9 mm long by 3.7 mm 

wide (Fig. 8H). Leaves not preserved. The haplocheilic stomatal apparatuses, apparently 

monocyclic, have a diameter of ca. 94 μm and are more or less round in shape; a few are 

elliptical with the main axis running parallel to the stomatal rows (Fig. 8J). The stomatal 

apparatuses are disposed in well-defined, longitudinal rows (Fig. 8H and I) and they are 

separated by 5-6 well-defined rows of epidermal cells and rectangular in shape (Fig. 8H). 

No stomatal apparatuses in between consecutive stomatal rows have been observed. It is 

difficult to quantify the number of the epidermal cells between adjacent stomatal 

apparatuses within the same stomatal row. The specimen displays a stomatal density of 35 

per mm
2
. There are always more than six subsidiary cells, which are more or less well 

disposed around the stomatal pit. 

Discussion. Cuticular features allow us to include the specimen in the family 

Cheirolepidiaceae. The specimen differs from those found in the Cusano Mutri succession 

and assigned to the genus Frenelopsis in the following characters: larger stomatal 

apparatuses, a higher number of rows of epidermal cells in between two stomatal rows, and 

a greater number of subsidiary cells. However, its fragmentary nature and the lack of 

clearly visible macroscopical characters (e.g. leaves and sutures) make it difficult to 

identify the specimen to genus level. 

 

Parallel veined leaves 

 

In the plant-bearing strata of Cusano Mutri, several parallel veined leaves have been 

found. Four representatives with different morphologies (CM 27, 76, 82, 85) are discussed 

briefly below: their macroscopical and microscopical features are summarised in Table 2. 

Specimens CM 76 (Fig. 9A) and CM 85 (Fig. 9E) are especially worth mentioning. 

The former displays some poorly preserved epidermal features (Fig. 9B). The stomatal 

apparatuses show elongate stomatal pits. Subsidiary cells (number not clear) (Fig. 9C) have 

polar appendages extending outside the external rim. The anticlinal walls of the guard cells 

present wide cutinization. Papillae protruding from the subsidiary cells partially obstruct 

the stomatal pit (Fig. 9D). In the latter (CM 85), two small, damaged zones symmetrically 



An Early Cretaceous flora from Cusano Mutri, Benevento, southern Italy 

84 

 

Fig. 9. Late Aptian fossil plants from Cusano Mutri. A-D, CM 76. A, lanceolate leaf which demonstrates 

10 veins. B, CM 76s: detail of leaf impression showing stomatal apparatuses (arrows). C, impressions of 

stomatal apparatuses (arrows) (inverted image: negative). D, CM 76v: stomatal apparatus showing dorsal 

(Dc) and ventral (Vc) cutinization of guard cells, papillae (Pp) and polar appendages of the guard cells 

(Pa) (collodion peel). E-G, CM 85: part and counterpart. E, leaf with 15 veins and rounded apex. The 

arrow indicates the position of the detail figured in F and G (part). F, leaf base showing two bits of insect 

damage (counterpart). G, one of two bits of insect damage in the basal part of the leaf (detail of F). H, 

CM 82: entire petiolate leaf with five veins and rounded apex. I, CM 27: impression of lanceolate leaf 

showing ten veins, rounded apex and veins converging to the apex; the petiole is lacking. The arrow 

indicates a cluster of Lepidotes fish scales. A, E, H, I: SM observations; B, C: SEM observations; D: LM 

observations. Scale bar represents 5 mm in A, E; 50 μm in B; 100 μm in C; 10 μm in D; 1 mm in F; 250 

μm in G; 2 mm in H; 1 cm in I. 

disposed on the left and right sides of the lamina (Fig. 9F) can be noted. Their size and 

morphology are in agreement with the damage caused by insects (Fig. 9G) and can be 

attributed to the Superfamily Coccoidea (C. C. Labandeira, pers. comm. to AB). Specimen 

CM 76 presents macroscopical (see Florin, 1936; Lundblad, 1957; Bose and Manum, 

1990) and microscopical (see Florin, 1936; Watson and Harrison, 1998; Kiritchkova and 

Nosova, 2009) features reminiscent of the genus Pseudotorellia Florin, 1936 emend. Bose 

and Manum, 1990. 

The overall shape of specimens CM 82 (Fig. 9E) and CM 85 (Fig. 9H) together with their 

morphology and venation are comparable to those of the genus Nageiopsis Fontaine, 1889. 

Nageiopsis differs from Podozamites and Lindleycladus in having less convergent veins in 

the apical region of the lamina (Seward, 1919). By contrast, specimen CM 27 has veins 

that converge to the apex (Fig. 9I), which is reminiscent of Podozamites and 

Lindleycladus. The major difference (Knobloch and Kvaček, 1997) between these two 

genera is in the orientation of their stomata (Harris, 1979). Lindleycladus has stomata that 

are orientated longitudinal to the leaf margin, whereas in Podozamites they are transversely 

orientated (cf. Harris, 1935). 
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Table 2. Summary of macro- and micro-morphological features of parallel veined leale from Cusano 

Mutri. 

 
 

Ultimately, the poor state of preservation prevents precise assignment of the specimens; 

however, the publication of these leaves is noteworthy because it demonstrates the 

variability of gymnospermous remains at Cusano Mutri. 

Reproductive structures and conifer woods 

 

The flora includes other coniferous remains such as cones and pieces of wood. 

Associated with Frenelopsis shoots, poorly preserved microsporangiate cones (CM 28, 67, 

80) have been found. These are ovoid in shape, 4.5-5.4 mm in length and 3-5 mm in width. 

They bear helically arranged sporophylls (0.8-1.3 mm long by 1-1.5 mm wide), which are 

deltoid in shape and have a rounded apex (Fig. 10A). In the basal part of specimen CM 67 

the sporophylls probably continue into the sterile part of the shoot with leaves, possibly 

helically disposed. The single stomatal apparatus observed has a diameter of ca. 100 μm 

and is composed of six subsidiary cells. The epidermal cells are clearly visible: they are 

rectangular in shape and elongated with an average dimension (length vs. width) of 25-69 

μm by 11.8-23.6 μm, with anticlinal walls 2.6-5.8 μm thick (Fig. 10B). The sporophylls 

differ from those found at the Profeti fossil site (see Bartiromo et al., 2009), which were 

assigned to the species F. profetiensis Bartiromo et al. The lack of both pollen-sacs and 

Classopollis pollen (see Alvin et al., 1978 diagnosis) does not allow us to assign them to 

the genus Classostrobus.  

Numerous bedding surfaces are replete with dispersed fusainised tracheids most closely 

related to Araucarioxylon. They can be observed along a radial plane to have circular 

areolate pits (12-14 μm in diameter) on the tangential surfaces, disposed in vertical series 

(uniseriate pits) and more or less regularly spaced (Fig. 10C). According to views in a 

transverse plane, no tracheids have been observed. Araucarian-like conifer wood was a 

dominant, cosmopolitan element (Philippe et al., 2004) and in Europe it has sometimes 

been found to be associated with Cheirolepidiaceae. The material from Cusano Mutri 

resembles Araucarioxylon from the AptianeAlbian “Fucoid Marls” of the Umbro-

Marchigiano Apennine (Biondi, 1976).  
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Angiospermae 

Family incertae sedis 

Genus Montsechia Teixeira, 1954 

Montsechia vidalii (Zeiller) Teixeira, 1954 

Fig. 10D-H 

 

Material examined. CM 9, 98, 106, 107, 145 

Description. The material consists of fragmented compressions and small impressions 

of vegetative apparatuses. Hitherto only five specimens have been found at Cusano Mutri. 

The best preserved specimen (CM 145) is composed of part and counterpart measuring 21 

mm in length (measured along the main axis) by 11.6 mm in width (Fig. 10D). The main 

axis is 0.7 mm thick at the base. This gradually narrows towards the distal part where it is 

0.3 mm wide. The specimens consist of a succession of sub-opposite tufts referred to as 

“bouquets” by Blanc-Louvel and Barale (1983) (Fig. 10E). The branches of the last order 

depart from the area of bouquet-leaves (Fig. 10D and F). The leaves have an entire margin 

and a rounded apex; their length does not exceed 1.5 mm. The leaves curve upward and are 

a little narrower at the base. Owing to the poor preservation and brittleness of the cuticle, 

some pieces were directly mounted onto the stubs without chemical treatment for SEM 

observation, and peels were also taken to determine thoroughly the epidermal features. 

Two morphological types of epidermal cells in the leaves can be distinguished: (1) more or 

less isodiametric polygonal cells of no particular orientation (Fig. 10H); and (2) elongate 

cells disposed in longitudinal rows (Fig. 10G). The former have an average diameter of 15 

μm, while the latter are on average 34 μm long and 15 μm wide. The anticlinal walls of the 

elongate epidermal cells are ca. 1.2 μm (max. 1.8 μm) thick. The rectangular cells are 

located in the central part of the leaves; the polygonal ones are situated in the apex. No 

veins or stomatal apparatuses were observed. 

Discussion. The macro- and micro-morphology together with the size allow us to 

attribute the specimens from Cusano Mutri to M. vidalii (Zeiller) Teixeira, 1954. M. vidalii 

is an intriguing plant macrofossil from Barremian lithographic limestones in the Pyrenean 

Basin (“El Montsec de Rubiès”) and the Eastern Iberian Basin (“Las Hoyas”) (Daviero-

Gomez et al., 2006) where it occurs abundantly (Diéguez et al., 2010). Crane and 

Upchurch (1987) and Crane (1988) suggested that its morphology bears some resemblance 

to Drewria potomacensis from the Early Cretaceous (cf. Aptian) Potomac Group of  
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Fig. 10. Late Aptian fossil plants from Cusano Mutri. A, B, reproductive remains of conifers. A, CM 67: 

complete microsporangiate cone with sporophylls probably continuing into the sterile part of the shoot. B, 

CM 28: probably abaxial surface of a sporophyll showing the disposition of the epidermal cells. C, CM 

108: fusainised tracheid showing circular areolate pits along a radial plane (collodion peel). D-H, 

Montsechia vidalii. DeF, CM 145. D, compression of vegetative apparatus. The arrow indicates the 

position of detail in E. E, “bouquet” (tuft) of leaves (detail of D). F, branches merging from the bouquet-

area (detail of D). G, CM 107:elongate epidermal cells in the central part of a leaf. H, CM 106: polygonal 

epidermal cells without a particular orientation located in the apex of a leaf (collodion peel of an undulate 

surface). A, D-F: SM observations; B, G: SEM observations; C, H: LM observations. Scale bar represents 

2 mm in A, D, F; 30 μm in C; 1 mm in E; 100 μm in H. 

 
 

Virginia (Crane and Upchurch, 1987) and Eoantha zherikhnii described by Krassilov 

(1986) from Barremian-Aptian sediments in Mongolia and thus may also have gnetalean 

affinities (Osborn et al., 1993). 

Although the specimens from Cusano Mutri display epidermal characters, the absence 

of stomatal apparatuses is worth noting. According to Daviero-Gomez et al. (2006), the 

slender axes, thin cuticles, and scarce stomata suggest that M. vidalii was linked to an 

aquatic habitat. The occurrence of Montsechia at Cusano Mutri is of great interest because 

(1) freshwater angiosperms are among the first angiosperms reported from the fossil record 
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(Martín-Closas, 2003) and (2) angiosperm-like fossils become fewer and harder to find 

below the Albian and seem to disappear below the Barremian or upper Hauterivian (Cornet 

and Habib, 1992). The oldest aquatic angiosperm assemblage is known from the Spanish 

Barremian with the species Ranunculus ferreri, M. vidalii and a few specimens related to 

the genus Proteaphyllum (Martín-Closas, 2003). This is the first Italian record of M. vidalii 

so far and the second oldest angiosperm found in Italy after those from the early-middle 

Aptian locality of Profeti (Bartiromo et al., 2009). Moreover, an SEM image of epidermal 

cells belonging to M. vidalii is published herein for the first time. 

 

3.5. Taphonomic and palaeoecological remarks 

 

Late Aptian Cusano Mutri plant remains occur in marly and calcareous strata. The marls 

contain impressions almost exclusively. The calcareous beds frequently reveal cuticle 

fragments, but these are poorly preserved. 

 

3.5.1. Taphonomy 

 

Plant macro-remains are usually of cm size. The absence of bioturbations allows us to 

suppose that the fragmentation is probably related to a highly dynamic syn-depositional 

environment and not to post-depositional reworking events. Throughout the stratigraphic 

column all macro-remains are set parallel to the bedding plane. In addition in marl deposits 

they are mainly isooriented, while they are sparse and randomly disposed in those of 

limestones. During episodes of freshwater influx (marl levels) the kinetic energy would 

have been raised, thus transporting and fragmenting the material prior to deposition. On the 

other hand, evidence of low energy phases is testified by the occurrence of random 

arrangement, sometimes associated with abundant small bivalves that are still articulated 

and mainly preserved as internal moulds with the concave surfaces facing upward (Fig. 3B 

and C). 

Frenelopsis specimens are the best preserved plant remains. Branched specimens 

together with articulated and disarticulated internodes still bear cuticles. The other taxa are 

represented by isolated or fragmented leaves with poorly preserved remains of cuticle. The 

poor preservation of the cuticles could be explained by (1) prolonged flotation of plant 

remains before their final burial or (2) the slow sediment accumulation rate accompanied 

by bacterial and saprophagous degradation prior to burial. Differences in cuticle 
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preservation may also be explained as an intrinsic response to their different systematic 

affinity (see Mösle et al., 1998). It is not clear if shoot detachment in Frenelopsis is the 

result of a biotic (e.g. physiological) process or abiotic (e.g. storm damage) origin, or is 

owing to a combination of the two as suggested by Martín-Closas and Gomez (2004). 

However, Martin (1999) pointed out that in temperate climates conifers tend to shed more 

foliage in the autumn. The type and the state of preservation of the Cusano Mutri plants 

(see above) allow us to infer the distance between the sedimentary basin and the source 

area. Since only Frenelopsis is preserved as branched specimens and has the best preserved 

cuticle, it is considered to have suffered a minimum amount of transport (see Gomez et al., 

2001, 2002a) and, therefore, possibly lived close to the sedimentary basin.  

The surfaces of the marly strata frequently display many charred coniferous wood 

fragments (fusain) that vary from randomly arranged to orientated tracheid elements (Fig. 

8C). The more or less constant lengths of the fusain fragments (on average 15 mm) 

seemingly are the result of sorting by wind (at least initially in subaerial environment) and 

water (e.g. marine currents) or both. The fusain probably derived from a neighbouring 

forest that was subjected to wildfires. The occurrence of fusain and fossil charcoal is 

accepted as a reliable indicator of the occurrence of wildfire (Watson and Alvin, 1996; Van 

Konijnenburg-Van Cittert, 2002), in most cases triggered by lightening (Sellwood and 

Price, 1993). The Wealden Cretaceous climate was characterized by frequent rainstorms 

leading to flash floods and lightning-generated wildfires (Haywood et al., 2004). During 

Jurassic and Cretaceous periods wildfires were increasingly important (Scott, 2000; Pausas 

and Keeley, 2009) to the extent that many taphofloras are explained by the occurrence of 

frequent wildfires (Martín-Closas and Gomez, 2004). The large amount of fusain 

throughout the whole Cusano Mutri succession, especially in marls, indicates that wildfires 

were rather frequent events. 

 

3.5.2. Palaeoecology of the Cusano Mutri sedimentary basin 

 

Freshwater influence on the Cusano Mutri Basin is testified by several lines of 

evidence. (1) The aquatic angiosperm M. vidalii is recorded in lithographic limestones 

deposited in freshwater lakes (Coiffard et al., 2007) and is considered to be a hydrophyte 

angiosperm (Teixeira, 1954; Martín-Closas, 2003). (2) Charophytes (Fig. 3E and F) are 

essentially freshwater algae (e.g. Martín-Closas, 2003). (3) The ostracod fauna is 

composed of strongly oligotypic to nearly monospecific associations, which is consistent 
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with a freshwater to brackish palaeoenvironment by comparison with extant assemblages 

(Giuseppe Aiello and Diana Barra, pers. comm. to AB: taxonomic study in process). The 

highest numbers occur in light-grey and red-brown marlstones, whereas they are generally 

scarce in grey and reddish limestones. (4) Several surfaces are densely crowded with 

disarticulated valves of estherids (conchostracans/ spinicaudatans). Today these usually 

inhabit ephemeral freshwater ponds, but they may also occur in brackish waters of coastal 

lagoons and tidally-influenced zones (Cunha Lana and de Souza Carvalho, 2002). The fact 

that extant spinacaudatans can withstand brackish water and many assemblages have been 

found associated with salt-water faunas led Webb (1979) to assume that some fossil 

counterparts inhabited at least brackish and possibly marine environments. Tasch (1961) 

attributed the association of spinicaudatan with marine fauna to the existence of temporary 

pools or lagoons affected by episodic seawater influx producing faunal mixing. (5) 

Lepidotes is the most abundant fish in Cusano Mutri; it is represented by whole and 

uncrushed skeletons suggesting parautochthonous conditions of deposition. Most species 

of this genus are supposed to have lived in freshwater, and, in Europe, the genus occurs in 

alluvial and lacustrine deposits (Buscalioni et al., 2008).  

These sedimentological and taphonomic considerations lead us to the conclusion that 

the whole plattenkalk sequence is not the result of a “snapshot” of a mass mortality 

phenomenon (sensu Martin, 1999), but a continuous, long-lasting sedimentary decantation 

affected by tidal influx. The succession may correspond, therefore, to a tidal channel that 

was periodically influenced by freshwater with the constant supply of terrigenous material. 

 

3.5.3. Xeromorphic adaptations of the plants 

 

Most of the examined plants display, at both macroscopical and microscopical levels, 

xeromorphic adaptations, i.e. any plant structural feature reducing transpiration (Hill, 

1998). Haworth and McElwain (2008, 2009) note that the presence of “xeromorphic” 

features in fossil plants is often used to infer aridity, although in extant plants these 

characters are not specifically restricted to plants growing in arid environments. They 

commonly occur also in environments with high precipitation as well as in those with high 

water availability. Retallack (2009) stated that xeromorphism is an adaptation related to 

dry climate and implies that in the past scleromorphic features (e.g. thick cuticle) were 

induced by dry climate. However, scleromorphy is also a result of other environmental 

hardships, such as nutrient shortage (e.g. soil poor in phosphorous; see Hill, 1998) and high 



An Early Cretaceous flora from Cusano Mutri, Benevento, southern Italy 

91 

salinity. Therefore, there is no general consensus on the environmental meaning of the high 

frequency of “xeromorphic features” and, as Watson and Alvin (1996) suggested, the 

unavailability of water is probably related to soil loaded with salt as well as to an arid or 

semi-arid climate.  

F. cusanensis nov. sp. displays a set of characters that are “classically” considered 

xeromorphic (sensu Watson and Alvin, 1996) such as (1) small leaves, (2) stems likely to 

be photosynthetic, (3) thick cuticle, (4) sunken stomata, and (5) papillate subsidiary cells. 

In addition this species shows marginal hairs and papillate epidermal cells. The marginal 

hairs present in Frenelopsis alata Knoblock (Feistmantell) have been compared (Pons, 

1979; see also Watson and Alvin, 1996) with the extant North African conifer Tetraclinis 

articulata (Vahl) Masters where, in a semi-arid climate, the reduced leaves show similar 

marginal hairs that are used to capture condensing atmospheric moisture during the night. 

Moreover, the papillate epidermal cells serve to block sunlight and reduce the transpiration 

(Watson and Alvin, 1996). The massive presence of epidermal papillae on the external 

surface of F. cusanensis would have the effect of reducing the average leaf temperature 

and hence decreasing the rate of metabolic reactions associated with various harmful gases 

in and around leaves (Sharma, 1977). Jordan et al. (2005) claimed that trichomes or 

papillae create a glaucous surface to reduce the light reaching the mesophyll. Finally, the 

thick cuticle with the sunken guard cells may have provided sufficient protection under 

xeric conditions (Van der Ham et al., 2003).  

Aside from stratigraphic and physiognomic indicators (Greb et al., 2006), isotopic 

studies on Cretaceous European fossil plant assemblages using 12C/13C analysis indicate 

that Frenelopsis in marginal marine facies had elevated 13C relative to other genera in 

more distal facies. This would suggest stress and possible saline influence in salt-water 

marshes (Nguyen Tu et al., 2002) or lagoons (Nguyen Tu et al., 1999). 

 

3.5.4. Palaeoclimate and floral comparison 

 

The specimens assigned to Cupressinocladus have diamond shaped, scale-like leaves 

partially covering one another. The leaves are small, inserted at an acute angle and 

adpressed against the axis. These features offer less surface exposure to solar radiation 

(Thévenard et al., 2005). The leaves spread wide apart, displayed by the specimens 

assigned to the genus Pagiophyllum, are similar to the relatively large, flattened, spreading 

leaves of Brachyphyllum patens from the Maastrichtian of Belgium (Van der Ham et al., 
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2003), which might indicate a humid habitat. This would tie in with the presence of 

hydrophylous M. vidalii in the Cusano Mutri assemblage. On the other hand, the Profeti 

flora (Bartiromo et al., 2009) is characterised by (1) a lower variability of gymnosperm 

remains, (2) the absence of hydrophilous plants and (3) a significant lack of anatomical 

features that reflect moist conditions. These differences could be related to the progressive 

cooling trend that had been initiated during the Aptian (Srinivasan, 1994). According to 

Coiffard et al. (2007), the drought phases ended at about the middle Aptian, after which a 

wetter, cooler (by 5 °C) climate is evident from the occurrence of detrital quartz deposits in 

the Vocontian Trough (Wortmann et al., 2004).  

Sedimentological and palaeoecological evidence (e.g. the frequent freshwater influence) 

together with the characters of the Cusano Mutri flora, would indicate, that growth of the 

vegetation in the region was influenced by a semi-arid climate, seasonally punctuated by 

wet phases on a regional to local scale. The wildfires suggested by abundant fusain in the 

Cusano Mutri plattenkalk succession could have been engendered by periods of aridity 

combined with high temperatures and lightning without accompanying rain (e.g. Watson 

and Alvin, 1996).  

The Cusano Mutri and Profeti floras have in common the genera Araucarites and 

Frenelopsis. Although strictly not coeval, the resemblance between the Cusano Mutri flora 

and that of the Montsech (Spain) lithographic limestones (Barale et al.,1984; Lacasa and 

Martinez, 1986; Selden, 1989, 1990; Barale, 1991) is remarkable in that Pagiophyllum, 

Araucarites, Frenelopsis and Montsechia occur in both. Such an assemblage is typical of 

Euro-Sinian Province (Vakhrameev, 1991) and no Gondwanian representatives are 

recorded. It is suggested, therefore, that the Cusano Mutri and Profeti successions reflect 

relatively long, spatially limited exposed episodes of the Apenninic Carbonate Platform 

during the Aptian, providing further evidence that the Cretaceous climate was less stable 

than it was previously thought (Francis and Frakes, 1993). 
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CHAPTER IV 

 

Plant remains from the Early Cretaceous Fossil-Lagerstätte of 

Pietraroja, Southern Italy, Benevento 

 

4.4.1. Introduction 

 

In Italy Cretaceous beds bearing plant macroremains have been known since the 19th 

Century. However, with the exception of some recent contributes in which the epidermal 

features have been treated (Gomez et al., 2002a; Bartiromo et al., 2008a, 2008b, 2009 and 

other works in progress), few palaeobotanical studies have been carried out and these have 

been scattered over a wide area. A summary of previous paleobotanical studies of the 

Italian Cretaceous has been made by Gomez et al. (2002a, tab. 1, p. 674). Although in the 

Campania Region Mesozoic rocks are exposed quite extensively, they only rarely host 

well-preserved compression floras (e.g. Bartiromo et al., 2009). Therefore, the purpose of 

this work is to contribute to the knowledge of the fossil plants and possibly to infer some 

palaeoecological considerations of the famous (Capasso, 2007) Early Cretaceous (Early 

Albian) locality of Pietraroja (Fig. 1(1)). This fossil site can be considered a “classic 

Konzentrat und Konservat” Fossil-Lagerstätte (Seilacher, 1970; Seilacher et al., 1985) for 

its numerous and exceptionally well-preserved animal (see below) and plant (Bartiromo et 

al., 2006a and b; Bartiromo et al., 2008a and 2008b) remains yielded. This “taphonomic 

window” (sensu Briggs, 2003) yields an extremely rich assemblage of invertebrate fauna 

(Costa, 1853-1864; D’Argenio, 1963; Bravi, 1996; Bravi and Garassino, 1998). 

Dasycladalean algae are also present (Bravi and Garassino, 1988; Carannante et al., 2006). 

Moreover, this fossil site is extraordinary for its findings of several well-preserved fossil 

vertebrates such as fish (Costa 1853-1864; Bassani, 1882, 1885; D’Erasmo, 1914-1915), 

amphibians (McGowan, 2002; McGowan and Evans, 1995) and reptiles (Costa, 1864; 

Estes, 1983; Evans, 2002; Evans et al., 2004; Barbera and Macuglia, 1988; Evans et al., 

2004, 2006), with at least two specimens that can be ascribed to Mesosuchidae. It is worth 

mentioning the finding of a theropod dinosaur (Leonardi and Teruzzi, 1993), Scipionyx 

samniticus Dal Sasso and Signore, remarkable for its exceptionally well preserved internal 

organs (Dal Sasso and Signore, 1998; Dal Sasso and Maganuco, 2011). 

As for Pietraroja fossil plants Costa (1865) mentioned “Quattro specie innominate” 

(Four nameless species). Some fossil plants collected from this site were assigned to the 
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Fig. 1. 1. Map showing the location of the Pietraroja village in the Campania Region. 2. Sketch map 

showing the location of the exposure studied (***). 

genera Zamites and Brachyphyllum (Bravi and Garassino, 1998). Bartiromo et al. (2006a) 

pointed out to the presence of the genus Frenelopsis and later, Bartiromo et al. (2006b) 

discovered an impression of a matoniaceous fern assigned to the genus Phlebopteris. 

The identification of fossil plants in the Pietraroja locality is an interesting result, as it: 

1) represents the first most complete study of vegetal remains by means of epidermal 

features so far; 2) enriches the comphrension of palaeoecology of this fossil site and 3) 

enlarges the phytotaxonomic knowledge of the Appenninic Carbonate Platform during the 

Early Cretaceous. 

 

4.2. Geological setting 

 

Mesozoic carbonates are widely represented in the Campania-Lucania Apennines 

(Bosellini, 2004), the most shortened segment of the Southern Apennine Arc (Parotto and 

Praturlon, 2004). Peculiar terrains of this segment are the pelagic successions of the 

Lagonegro-Molise Basin, originally interposed between two carbonate 

platform/slope/basin systems. One corresponds to the future Apulian foreland and the 

other, more internal, corresponds to the Apennine Carbonate Platform unit, Late Triassic-

Tertiary in age (Parotto and Praturlon, 2004). The latter includes the Matese Mountains in 

which the Pietraroja Fossil-Lagerstätte is located at its eastern edge. The Matese 

Mountains are part of the central southern Apennines, a thrust and fold belt originated 

during the Late Tertiary Period from the deformation of the continental margin of the 

Adria Plate (Carannante et al., 2006). This latter is interpreted as either an independent 

Cretaceous unit or as a part of the African Plate (Channel et al., 1979). During the Early 

Cretaceous the Matese Mountains was the site of shallow-water carbonate sedimentation 
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Fig. 2. Sedimentological stratigraphic section of 

the outcrop (modified from Bravi (1996)). The 

arrow indicates the levels studied. 

(Bosellini, 2004) characterized by an erosive mid Cretaceous gap, marked by bauxites 

cropping out in the north-western area of the southern Apennine (D’Argenio et al., 1987). 

The plant-ichtyolithic, organic-rich beds of Pietraroja formed during OAE 1 (sensu 

Arthur and Schlanger, 1979) probably along 

the NE margin of the Apenninic Carbonate 

Platform (Ciarapica and Passeri, 2008) in a 

high energy marginal environments (sensu 

Ciarapica and Passeri, 2008). The Pietraroja 

locality (Fig. 1(2)) crops out at the top of a 

faulted monocline named “Civita di 

Pietraroja”, at “Le Cavere” quarry [I.G.M. 

(Italian Military Geographic Institute) map 

162 III SW – Cusano Mutri sheet] and 

includes two plattenkalk levels (Catenacci 

and Manfredini, 1963; Bravi and Garassino, 

1998; Carannante et al., 2006). Freels (1975) 

reported three Plattenkalk intervals.  

The famous Lower (basal) Albian 

“Ichthyolitic level of Pietraroja”, yielding 

plant remains (Plattenkalk 2, sensu Bravi e 

Garassino, 1998) is about 8 m thick and its 

age assignement is controlled by 

foraminiferal data (Bravi and Garassino, 

1998; Carannante et al., 2006) below and 

above the plant-bearing sequence (Fig. 2). 

The two Plattenkalks are overcome in 

paraconformity by trasgressive Miocene 

belonging to the Cusano Formation (Selli, 

1957) with ostreids, bryozoans and 

lithothamnes (Bravi and Garassino, 1998). In 

the “Le Cavere” quarry, the rocks are well 

stratified, occurring in flat and even layers 

with an average thickness ranging between 2 

and 10 cm. They mainly consist of more or 
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less markedly micritic, avana to hazel or grey-coloured limestones (wackstones, mudstones 

and packstones). These are intercalated by frequent lenses, nodules and beds of grey or 

blackish cherts and marly-calcareous and sometimes clay and thin laminated horizons 

(Bravi and Garassino, 1998). Strata bearing plant remains are situated in the basal part of 

the “Le Cavere” quarry and they generally consist of packstones gradually turning into 

wackstones and mudstones. 

 

4.3. Material and methods 

 

The studied plant remains come from “Le Cavere”, a protected locality included in the 

“Geopaleontological Park” of Pietraroja, considered the depocentre area (Freels, 1975) of 

the outcrop. The core-material of this study is represented by specimens labelled with “M”, 

the result of an excavation effected in 1982 by the Museo Civico delle Scienze Naturali of 

Turin and the former Istituto di Paleontologia (actually incorporated in the “Dipartimento 

di Scienze della Terra”) of the “Federico II” University in Naples. 

The marl and bituminous strata containing fossil plants led to the recovery of hundreds 

of specimens in a short time. The fossil plants are mostly impressions and most specimens 

are carbonaceous compressions without epidermal features. Even after the preliminary 

chemical treatments, observation of microscopical details was still difficult on most 

specimens. Not all of the adhering carbonaceous material was removed, because long 

processing times destroyed the cuticle. That is why some cuticle fragments have been 

mounted directly on the stubs for SEM (scanning electron microscope) observations. 

Cuticle fragments available were separated from the sediment surface with a pair of 

tweezers. They were cleaned in 37% hydrochloric acid (HCl), subsequently immersed in 

40% hydrofluoric acid (HF) to remove adhering siliceous debris, and finally macerated in 

Schulze’s reagent (HNO3+KClO3): the duration of the latter process depended on the 

degree of carbonization and preservation (Kerp, 1990). Some cuticle fragments have been 

immersed in ammonia for one hour. Subsequently, part of them was mounted in glycerine 

jelly on glass slides for light microscope (LM) examination. Some fragments were 

coloured with safranine before mounting. Treated and untreated cuticle samples were 

mounted on the stubs for SEM observations. Light microscope and stereo microscope 

(SM) observations were made by using Leitz microscopes. Photomicrographs with light 

microscope were taken with a Nikon Coolpix 990 camera. The cuticles were examined 

using a JEOL JSM-5310 SEM at the CISAG (Centro Interdipartimentale di servizi per 
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Analisi Geomineralogiche). All the quantitative measurements were made with tools in the 

ImageJ program (Abramoff et al., 2004). The leaf physiognomy of an angiosperm leaf was 

described using the terminology of the Leaf Architecture Working Group (Ash et al., 

1999). Studied fossil plants come from: 1) a collection named “Fossili del giacimento di 

Pietraroja”, catalogued as “vegetali indeterminati” (unclassified vegetables) and stored in 

the Museo di Paleontologia of the Università degli Studi di Napoli “Federico II” (M and 

MPUN series); 2) those gathered by the author outside the protected area of the “Le 

Cavere” allowing the recovery of two specimens (PI 1-PI 2) actually housed in the 

“Dipartimento di Scienze della Terra, Università degli Studi di Napoli “Federico II”; 3) a 

private collection (PV 1); 4) a collection stored in the Museo Civico of Montefalcone in 

Valfortore (MF). 

 

4.4. Systematic Palaeontology 

 

Order CAYTONIALES 

Genus Sagenopteris Presl in Sternberg, 1838 

Sagenopteris? sp. 

Figs. 3(1), 4(1-3) 

 

Material examined – M 20802. 

Description – Part and counterpart of a complete, rounded, petiolated and detached 

leaflet, with constricted base and entire margin. The specimen measures 13 mm in length 

and 11 mm in width. The lamina is symmetrical. The petiole is 0.8 mm wide. The leaflet 

shows a more or less distinct midrib -~ 0.2 mm in width at the base- departing from the 

petiole and disappearing shortly in the middle part. Secondary veins are hardly visible and 

arise from the rachis with an angle of ~ 30° (Figs. 3(1), 4(1)). Along the leaf margin and on 

the petiole area, poorly preserved epidermal features are visible. The cuticle is ~ 0.6 μm 

thick (Fig. 4(2)). The epidermal cells are more or less rounded. Numerous circular or ovate 

structures of ~ 50 μm in diameter of unknown function can be observed (Fig. 4(3)). No 

stomatal apparatuses have been found. 

Discussion – Morphology and venation of the specimen resemble Sagenopteris Presl, 

1838. In particular, the morphology and the length-width ratio (1.1) are comparable to S. 

williamsii described by Berry (1956, Pl. XXXIV, Fig. 1) from the Lower Cretaceous of 

Canada. At the microscopical level, observed circular-ovate structures are similar to those  
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reported by Barbacka et al. (2006) for the Hettangian S. pualensis and interpreted by the 

authors as possibly glands or hair bases. However, the poor state of preservation of the 

specimen together with the unclear venation pattern, do not allow to assign the specimen 

with confidence to the genus Sagenopteris. In addition, the taxonomy of the genus 

Sagenopteris is still confused (Zaton et al., 2006) and a specific determination is 

 
 
Fig. 3. Early Albian fossil plants from Pietraroja. Line drawings of selected specimens. 1. Sagenopteris? 

sp.. Showing primary and secondary veins (M 20802). 2. Brachyphyllum sp. 1. Showing branched 

specimen and poorly preserved leaf-scars in its basal part (M 20908). 3. Brachyphyllum sp. 2. Showing 

two-order branches and leaves tightly adpressed to the axis (M 20765). 4. Brachyphyllum sp. 2. Showing 

three-order branches (M 20909). 5. Frenelopsis sp.. Large branched specimen showing two-order 

branches and the central vascular bundle (M 20569). 6. Angiospermae 1. Showing the well-visible 

primary and secondary -in the basal part- veins (MF 1265). 7. Incertae sedis. Leaf showing three lobes 

and a distinct petiole (M 20796). 
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impossible judging from the macromorphology alone and needs to be supported by a 

cuticular study (Harris, 1964). 

 

Class CONIFEROPSIDA (Endlicher, 1847) 

Family incertae sedis 

Genus Brachyphyllum Lindley and Hutton ex Brongniart, 1828 emend. Harris, 1979 

Brachyphyllum sp. 1 

Figs. 3(2), 4(4) 

 

Material examined – M 20908. 

Description – Part and counterpart of a branched shoot, 47 mm long and 3 mm wide at 

the base, gradually narrowing to the apex where it reaches 1.8 mm in width. The specimen 

is preserved as impression and presents fragments of organic matter. It is a shoot with 

opposite branches disposed to one plane and having a fixed distance of 3.5 mm (Fig. 3(2)). 

Branchlets are well visible in the distal and proximal parts of the specimen, while in the 

middle part, only their proximal parts are present. The inclination of the secondary 

branches in respect to the main shoot varies between 60 and 70°. The branchlets have a 

more or less constant width -~ 1 mm- along the whole length. In the basal part of the main 

shoot leaves are helically arranged and the leaf-base cushions are visible (Fig. 4(4)). The 

leaves are more or less rhomboidal in shape, but the bad preservation of the specimen does 

not allow to establish their phyllotaxis. No epidermal details have been preserved. 

Discussion – Large leaf-base cushions helically disposed on the shoot and small free 

parts of the leaves allow to assign the specimen to the genus Brachyphyllum Lindley and 

Hutton ex Brongniart, 1828 emend. Harris, 1979. The studied specimen resembles 

Brachyphyllum obesum Heer, 1881 described from the Lower Cretaceous, Kitadani 

Formation, Tetori Group, Japan (Yabe and Kubota, 2004) and B. obesum described by 

Teixeira (1948) in his study concerning the Portuguese Mesozoic flora. The specimen 

coming from Pietraroja shares with B. obesum general morphology, dimension and 

branching modality. However, owing to the incomplete macroscopically diagnostic 

features and to the lack of the microscopical ones, it is impossible to assign the specimen 

specifically. 
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Brachyphyllum sp. 2 

Fig. 3(3, 4), 4(5) 

 

Material examined – M 20765, M 20909, M 20924, M 20925. 

Description – Impressions of single (M 20924, M 20925: both part and counterpart) and 

branched (M 20765, M 20909) shoots (Figs. 3(3, 4)). The biggest specimen (M 20909; Fig. 

3(4)) is 34 mm long and 2.3 mm wide. The smallest specimen (M 20925) is 11.9 mm long 

and 1.9 mm wide. The specimens bear leaf-base cushions and small leaves being 1 mm 

long and 1 mm wide. The leaves have rounded apex and are tightly adpressed to the axes 

(Fig. 4(5)). No epidermal features have been preserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion – The specimens are typical Brachyphyllum shoots with large leaf-base 

cushions and a small free part of the leaf. This morphogenus refers to the Mesozoic conifer 

foliage with short and helically arranged leaves (e.g. Harris, 1979). The best preserved 

leaves can be observed in the apical part of the shoot (M 20765). Within the genus 

 
Fig. 4. Early Albian fossil plants from Pietraroja. 1–3. Sagenopteris? sp.. (M 20802). 1. Single leaflet. 2 

Detail of transversal view of cuticle showing its thickness. 3 Detail of inner? view of cuticle showing 

circular-ovate structures of unknown function. 4. Brachyphyllum sp. 1. Carbonaceous compression of a 

branched stem: its basal part retains badly preserved leaf-scars and leaves (M 20908). 5. Brachyphyllum 

sp. 2. Branched shoot showing leaves helically arranged and tightly adpressed to the stems (M 20765). 

Figs. 1, 4, 5: SM observations. Figs. 2, 3: SEM observations. 
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Brachyphyllum, they are the smallest leaves observed from the Early Cretaceous plant 

localities of the Campania Region (Bartiromo et al., 2008b, 2009). The lack of cuticular 

details makes it impossible to determine the specimens at the species level. 

 

Family CHEIROLEPIDIACEAE Takhtajan, 1963 

Genus Frenelopsis (Schenk, 1869) emend. Watson, 1977 

Frenelopsis sp. 

Figs. 3(5), 5(1-7), 6(1-13) 

 

Material examined – M 20563, M 20564, M 20566, M 20568, M 20569, M 20599, M 

20762, M 20793, M 20798, M 20913, PI 1, PV 1, MF 1342. 

Description – The material consists of impressions and compressions of articulated and 

disarticulated shoots. Large [from 220 mm (PV 1) to 550 mm (MF 1342)] profusely-

branched shoots present a remarkable curvature (Figs. 3(5), 5(1, 2)). The branchlets, 

alternate and aligned, are disposed in one plane and are branched distichously. The angle 

between the branchlets and the main axes varies between ~ 23° on one side and ~ 8° on the 

other ones. The specimens show two orders of branching. The distance of the branchlets 

between two branching points is of 25-30 mm (Figs. 3(5), 5(2)). The shoots are segmented 

and the internodes measure on average 16 mm in length and 4 mm in width (Fig. 5(3)). 

There are no suture lines along the leaf sheath. The shoots show a central vascular bundle 

(Fig. 5(2)). The internodes bear whorls of two (opposite and decussate; see Fig. 5(1, 4)) or 

three (Fig. 5(3)) triangular free tips. The free part of the leaves is triangular in shape and 

measure ~ 1 mm in length. They have an acute apex and are adpressed to the axes (Fig. 

5(1, 3)). The cuticle of the internode measures 11.5-19.8 μm in thickness, on average 15.7 

μm (Fig. 6(1)). In outer view, the abaxial side of the internodes is densely covered by 

relatively long hairs (about 51-88 μm in length and 25-35 μm in width at the base) that 

tend to mask stomatal apparatuses. They depart from the epidermal cells and have an 

obtuse apex (Fig. 6(2, 3). Sometimes, epidermal papillae can be observed (Fig. 6(3), 

arrow). In the middle part of the internodes hairs have not a preferential orientation (Fig. 

6(2)), while tend to be oriented towards the distal part, especially in the leaf area (Fig. 

6(4)). Sometimes, some less dense hairs areas within stomatal rows allow to observe hairs 

extending in the direction of the stomatal apparatus itself (Fig. 6(5)). Along the internode, 

epidermal cells of the sheathing leaves are hardly visible by means of LM and SEM due to 

the constant occurrence of hypodermis in the studied specimen (Figs. 5(6), 6(9, 13)). They 



Plant remains from the Early Cretaceous Fossil-Lagerstätte of Pietraroja, Southern Italy, Benevento 

102 

 

Fig. 5. Early Albian fossil plants from Pietraroja. 1-7. Frenelopsis sp. 1. Compression of the specimen 

showing two-order branches and leaves (arrows) in opposite, decussate pairs (M 20913). 2. Three-

dimensional preservation (impression) of a large branched shoot showing two-order branches and a 

central vascular bundle (M 20569). 3. Compression of a branched specimen (detail) showing an 

internode (square bracket) with a whorl of three leaves, two leaves are visible (PI 1). 4. Detail of the 

upper part of an isolated internode with a whorl of two opposite leaves (M 20762). 5. Detail of internode 

cuticle showing stomatal apparatuses disposed in well-defined rows separated by two rows of epidermal 

cells (M 20913 4). 6. Detail of internode cuticle showing two stomatal apparatuses composed of four 

subsidiary cells bearing hypodermis. The dorsal plates of the guard cells are visible in the middle of 

stomatal apparatuses. 978 (M 20913 2). 7. Detail of internode cuticle showing stomatal apparatuses 

composed of four inner papillae (M 20913 2). Figs. 1-4: SM observations. Figs. 5-7: LM observations. 

are arranged in more or less well-defined rows running parallel to the long axis of the 

internode. They are rectangular and sometimes polygonal in shape measuring on average ~ 

55 μm in length by 29 μm in width. The anticlinal walls of the epidermal cells are on 

average 8-17 μm thick, usually more than 10 μm and sometimes attain 25 μm. The 

anticlinal walls, parallel to the long axes of the specimen, are thinner than the 

perpendicular ones (Fig. 6(6)). When the hairs are degraded, ordinary cells with thickly 

cutinized anticlinal walls form a ribbed irregular surface of the cuticle (Fig. 6(7)). Stomatal 

apparatuses are arranged in well-defined longitudinal rows (11-12 per 1 mm linear) (Figs. 

5(5), 6(8, 9, 13)) and are transversally oriented to the main axes of the segments (Fig. 
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6(9)). On the same stomatal row, one to two epidermal cells occur between two stomatal 

apparatuses. It is not unusual to find two stomatal apparatuses on the same row in contact 

without interposed epidermal cells (Fig. 5(5)). Rarely, some stomatal apparatuses occupy 

an intermediate position within stomatal rows, thereby disturbing the linearity of adjacent 

rows (Fig. 6(9)). Stomatal rows are separated by 1 (sometimes 2) epidermal cell (Fig. 5(5, 

7)); sometimes stomatal rows are tightly in contact between them in order to mask the 

interposed epidermal cells. The mean stomatal density is ~ 130/mm
2
. The haplocheilic 

stomatal apparatuses are slightly elliptical in shape (probably owing to the diagenesis) 

measuring on average 80 by 69 μm. Measured from external view, stomatal apparatuses 

have a stomatal aperture of 196 μm
2
 on average. The stomatal apparatuses are monocyclic 

and composed of four (Fig. 6(11)) and five (Fig. 6(10)) subsidiary cells, each of which 

bears one outer papilla on the rim of the stomatal pit, and one inner papilla in the throat of 

the stomatal pit. Stomatal apparatuses composed of four (equidimensionally) subsidiary 

cells (on average 46 μm long and 24 μm wide) are prevalent. Papillae give to the rim of the 

stomatal pit a stellate (Fig. 6(11)) or a polygonal (Fig. 6(8)) appearance. Surface around 

stomatal pit is slightly raised (Fig. 6(12)) and stomatal apparatuses are flanked by massive 

papillae protruding by encircling epidermal cells (Fig. 6(11)). On the inner surface of 

cuticle, well cutinized dorsal plates (31 (26-37) μm long and 15 (11-25) μm wide) of the 

guard cells which frequently mask inner papillae can be observed (Fig. 6(13)). The 

hypodermis is cutinized, the cells being polygonal or rectangular in shape, between 37-67 

μm long and 14-25 μm wide (Fig. 6(9, 13)). 

Discussion – The presence of a whorl of two or three leaves and the absence of 

longitudinal sutures along the internodes allow to ascribe the specimens to the genus 

Frenelopsis Schenk, 1869 emend. Watson, 1977. These characteristics exclude the 

attribution of the specimens to the genus Pseudofrenelopsis Nathorst, 1893 emend. 

Srinivasan, 1995. 

The studied specimens do not well clarify the branching pattern, as a matter of fact it is 

difficult to understand if the branching points depart from the nodal or internodal region. 

Moreover, in the specimens from Pietraroja the number of leaf per node is unclear. To this 

end, an inconsistency in the leaf number per node was described by Watson and Alvin 

(1999), Alvin and Hluštik (1979) and Mendes et al. (2010) for Frenelopsis occidentalis 

Heer emend. Alvin, F. alata (K. Feistmantel) Knobloch (Daviero et al., 2001) and F. 

teixeirae Alvin and Pais emend. Mendes et al. 2010 respectively. As Watson and Alvin 

(1999) claimed, it is quite conceivable that at least some Frenelopsis species will 
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eventually prove to have had varied morphology and leaf number in different parts of the 

plant. As for the microscopical features, the specimens from Pietraroja resemble F. 

teixeirae in: 1) the presence of hairs on the margin of the leaves; 2) the abaxial internode 

cuticle thickness; 3) the diameter of the stomatal apparatuses; 4) the presence of hairs and 

papillae on the outer cuticle surface; 5) the morphology of the rim of stomatal pit. 

Moreover, the Italian material resembles F. silfloana Watson in: 1) the density of stomatal 

rows; 2) the diameter of stomatal apparatuses; 3) the number of subsidiary cells; 4) the 

presence of papillae in the throat of stomatal pit. However, at present, the unclear 

phyllotaxy at the nodes and the few and more or less poorly preserved cuticle fragments do 

not allow to understand well the epidermal architecture, and prevent the assignment of the 

specimens in a given species already described or their attribution to a new taxon and the 

analysis of further specimens is needed. 

 

Cheirolepidiacean 1 

Fig. 7(1-5) 

 

Material examined – M 20914. 

Description – Fragmented shoot of 20 mm long and 6 mm wide. It has short leaves of 

open-type arranged in a simple spiral that do not completely encircle the stem (Fig. 7(1)). 

A small cuticular fragment in inner view (Fig. 7(2)) allowed to observe few monocyclic 

stomatal apparatuses and partially to elucidate the thickness of poorly preserved cuticle: ~ 

25 μm (Fig. 7(3)). The stomatal apparatuses are more or less rounded; they are 66 μm (61-

71 μm) in diameter and are arranged in well-defined rows (Fig. 7(2)). Stomatal apparatuses 

are composed of six subsidiary cells (Fig. 7(4)). Some of them -especially those visible in 

the right part of the fragment shown in Fig. 7(2)- have preserved the guard cells. The 

subsidiary cells have anticlinal walls ~ 3 μm thick. The anticlinal walls of ordinary 

epidermal cells are ~ 6 μm thick. From the inner view, outer papillae are visible (Fig. 7(5)). 

The epidermal cells are difficult to observe but form one or two longitudinal rows in 

between the stomatal rows. 

Discussion – The features listed above are comparable to some members of the family 

Cheirolepidiaceae, in particular to the genus Pseudofrenelopsis Nathorst, 1893 emend. 

Srinivasan, 1995. The two genera Pseudofrenelopsis Nathorst (1893) and Frenelopsis 

Schenk (1869) which have similar segmented shoots, differ mainly in the leaf number and 

phyllotaxis (Srinivasan, 1995). In Pseudofrenelopsis there are one (Watson, 1977) and two  



Plant remains from the Early Cretaceous Fossil-Lagerstätte of Pietraroja, Southern Italy, Benevento 

105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Early Albian fossil plants from Pietraroja. 1-13. Frenelopsis sp. 1. Section of internode cuticle (M 

20913). 2. Detail of outer view of internode cuticle showing crowded hairs without a preferential 

orientation (M 20913). 3. Detail of 2 showing hairs and epidermal papillae (M 20913). 4. Detail of outer 

view of leaf apex showing hairs oriented towards its distal part. The arrow indicates a stomatal apparatus 

composed of four subsidiary cells (M 20913). 5. Detail of outer view of internode cuticle showing hairs 

extending in the direction of the stomatal apparatuses composed of four (the right one) and five (the first 

two on the left side) subsidiary cells (M 20913). 6. Detail of inner view of abaxial? side of internode 

cuticle showing epidermal cells with thick anticlinal walls (M 20793). 7. Cuticle in outer view showing 

anticlinal walls forming a ribbed irregular surface of the cuticle (M 20793). 8. Cuticle in external view 

showing stomatal apparatuses which are disposed in well-defined rows and with polygonal pits (M 

20793). 9. Inner view of cuticle showing transversally disposed stomatal apparatuses arranged in well-

defined longitudinal rows (M 20913). 10. Outer view of cuticle showing two stomatal apparatuses made 

of five subsidiary cells showing stellate stomatal apertures (M 20793). 11. Detail of outer view of cuticle 

showing a stomatal apparatus with papillae borning from the neighbouring subsidiary cells and extending 

in direction of the stomatal apparatus itself (M 20793). 12. Outer view of cuticle showing the surface 



Plant remains from the Early Cretaceous Fossil-Lagerstätte of Pietraroja, Southern Italy, Benevento 

106 

around stomatal pit which is slightly raised (M 20793). 13. Inner view of cuticle showing two rows of 

stomatal apparatuses, the hypodermal cells undercovering ordinary epidermal cells and dorsal plates of guard 

cells (M 20913). All figures are made by means of SEM. 

 

(Srinivasan (1995), for the species Pseudofrenelopsis nathorstiana Srinivasan, 1995) 

leaves per node spirally arranged and occasionally showing cyclic arrangement 

(Srinivasan, 1995). In Frenelopsis, the internodes have two or three leaves per node in an 

opposite decussate/cyclic arrangement and the internodes are only of the closed type 

(Srinivasan, 1995). However, the specimen from Pietraroja shows similarity to 

Pseudofrenelopsis varians (Fontaine) Watson, 1977 at both macroscopically (e.g. the shoot 

morphology) and microscopically (e.g. stomatal apparatuses) levels. As a matter of fact, 

the material from Pietraroja is comparable to the specimens figured by Watson (1977, Pl. 

88, figs. 2, 4; the fig. 2 of the Pl. 2 is also suggested again in Watson 1988, fig. 9.19D). 

The specimen from Pietraroja differs from the species P. intermedia (Chow and Tsao) in 

having the thinnest cuticle and from the species P. nathorstiana Srinivasan, 1995 in having 

the greatest internode width. Moreover, the specimen is different from M 20752 by having 

1) spirally arranged leaves and 2) greater stomatal apparatuses. Unfortunately, the lack of 

well-defined macro- and micro-features does not allow an identification at the genus level. 

However, the co-occurrence of Frenelopsis and Pseudofrenelopsis is not surprising 

because they are sometimes mixed in the same bed (Watson, 1977, 1983; Srinivasan, 1992; 

Yang et al., 2009). 

 

Long parallel veined leaves 

 

Material examined – M 20761, PI 2. 

The plant-bearing strata of Pietraroja are full of leaves showing parallel venation which 

are difficult to determine. Herein, two representatives are presented. The specimen M 

20761 is a compression of an isolated and petiolate leaf 18 mm long and 5 mm wide (Fig. 

7(6)). The apex is rounded and the petiole measures 2 mm in length reaching the maximum 

width (2 mm) at the base. The veins converge to the apex (Fig. 7(7)). Structures resembling 

stomatal apparatuses (Fig. 7(8)) and transversally? oriented in respect to the long axes of 

the leaf can be seen. The general morphology, dimension and venation pattern are 

comparable to the genera Lindleycladus and Podozamites. Harris (1979) claims that 

Lindleycladus is distinguished from Podozamites for its longitudinally rather than 

transversally orientated stomata, which are placed in longitudinal rows. Unfortunately,  
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Fig. 7. Early Albian fossil plants from Pietraroja. 1-5. Cheirolepidiacean 1 (M 20914). 1. Fragmented 

shoot showing leaves in an open-type arrangement. 2. Cuticular fragment in inner view showing rows of 

stomatal apparatuses. 3. The section of cuticle internode showing its thickness. 4. Detail of inner view of 

cuticle showing a stomatal apparatus composed of six subsidiary cells. 5. Detail of inner view of cuticle 

showing a stomatal apparatus composed of six subsidiary cells each bearing one outer papilla. Guard cells 

have not been preserved. 6-8. Long parallel veined leaf (M 20761). 6. Complete leaf showing a well-

developed petiole. 7. Detail of 6 showing the veins converging to the apex. 8. Possible stomatal apparatus 

(impression), transversally orientated, with encircling epidermal cells? (arrows). 9-11. Long parallel 

veined leaf (PI 2). 9. Fragmented leaf with parallel veins. 10. Counterpart: magnification of the short 

stalk. 11. Inner view of the cuticle showing epidermal cells disposed in rows with their anticlinal walls of 

a sinusoidal outline. Arrow indicates a structure resembling to a stomatal apparatus. 12-17. Sterile axes of 

conifer. 12-13. Conifer shoot (M 20752). 12. Stem showing a longitudinal suture. 13. Detail of outer 
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view of cuticle showing two stomatal apparatuses differently preserved with their interposed epidermal cells 

(square bracket). The stomatal apparatus on the right bears papillae overhanging the stomatal pit. 14-17. 

Conifer shoot (M 20906). 14. Branched shoot. The arrow indicates the small branch. 15. Leaf-scares spirally 

arranged. 16. Detail of inner view of cuticle showing epidermal cells occurring in pairs (arrow). 17. Detail of 

inner view of cuticle showing a possible stomatal apparatus. 18-20. Remains of conifer reproductive organs. 

18-19. Cone (M 20754). 19. Detail of 18 (upper part) showing amber remains. 20. Carbonaceous 

compression of a cone (MPUN). 21. Obovate leaf with midvein departing from the petiole and reaching the 

leaf apex. Secondary veins are also visible. (see also Fig. 3(6)) for the relative drawing. 22. Incertae sedis. 

Narrowly wedge-shaped petiolated leaf showing three lobes (M 20796). Figs. 1, 6-10, 12, 14-15, 18-22: SM 

observations. Figs. 2-5, 11, 13, 16-17: SEM observations. 

 

poorly preserved epidermal features are scanty to place the specimen with confidence in 

either of two previously mentioned genera. 

The specimen PI 2 (Fig. 7(9-11)) is made by part and counterpart of an isolated leaf, 20 

mm long by 5 mm wide with a more or less deltoidal shape and an entire margin (Fig. 

7(9)). In the proximal part of the leaf a short stalk is present (Fig. 7(10)). The leaf lamina is 

symmetric in relation to an ideal line joining the basal part to the apex. The leaf increases 

in width progressively from the stalk, reaching the maximum in the middle portion and 

then narrowing again towards the apex. There are 8? veins, unbranched, arising from the 

base and parallel to the whole lamina length. The veins are less convergent toward the 

apex. There are no visible dichotomies. The epidermal cells occur in rows and present 

anticlinal walls straight or slightly undulating, as a possible effect of diagenesis (Fig. 

7(11)). The epidermal cells are 35 (20-49) μm long and 27 (18-37) μm wide. The average 

thickness of the anticlinal walls of epidermal cells is more or less regular (~ 2 μm) from 

both longitudinally and latitudinally walls. A structure of ~ 50 μm long and 30 μm wide 

resembling a stomatal apparatus has been observed (Fig. 7(11) arrow). The overall shape 

of the specimen, its morphology and venation, are comparable to the form-genus 

Nageiopsis Fontaine, 1889. This genus was established for vegetative shoots abundantly 

represented in the Potomac flora (Seward, 1919). Nageiopsis differs from Podozamites by 

having less convergent veins in the apical region of the lamina (Seward, 1919). The 

venation pattern and their number together with the length-width ratio (3.77) allow a 

comparison with some Profeti specimens (Bartiromo et al., 2009). Unfortunately, the 

poorly preserved epidermal features do not allow a precise attribution to the genus level. 

 

Sterile axes of Conifers 

 

Material examined – M 20752, M 20906. 

In marl strata, vegetal debris is rich in sterile axes of conifer. Some of them present 

features comparable to the family Cheirolepidiaceae. The specimen M 20752 is such an 
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example. It is represented by an unbranched and fragmented shoot, 13.8 mm long by 2 mm 

wide with a longitudinal suture (Fig. 7(12)). SEM observations of a single, small and 

poorly preserved cuticle fragment, 2 mm long per 1.1 mm wide, allow to observe two 

stomatal apparatuses in outer view. They are ~ 50 μm in diameter; the right one in Fig. 

7(13) presents only two papillae preserved. These are 7 μm long, each one steming from 

one subsidiary cell (Fig. 7(13). The epidermal cells are squared off or rectangular in shape 

and are disposed in ill-defined rows. They are on average ~ 30 μm long and 27 μm wide. 

The anticlinal walls are 2.4 μm thick. The presence of a longitudinal suture along the shoot 

together with the papillate stomatal apparatuses are comparable to the genera 

Cupressinocladus Seward, 1919 and Watsoniocladus Srinivasan, 1995. However, the poor 

state of preservation does not allow to place the specimen systematically. Moreover, the 

absence of the Classopollis pollen makes it difficult to place the specimen in the family 

Cheirolepidiaceae. 

The specimen M 20906 is a branched shoot measuring 59 mm in length and 1.9 mm in 

width at the base. It gradually narrows towards the central part where it reaches a minimum 

width of 1.3 mm (Fig. 7(14)). In the distal part it reaches the maximum width of 2.7 mm. 

The specimen retains few small fragments of poorly preserved cuticle. Fragments of 

organic matter are also present. In the basal part of the shoot, a branch that at its base 

measures 3.4 mm in length and 1.5 mm in width, departs from the main axes at an angle of 

~ 60°. In the proximal and central parts of the shoot, spirally arranged and more or less 

rounded leaf scares have been preserved. They are ~ 0.4 mm in diameter (Fig. 7(15)). 

Because of the bad preservation of the specimen it is difficult to establish the phyllotaxis. 

The epidermal cells are disposed in longitudinal rows. They are rectangular and measure 

on average 22 μm in length by 18 μm in width. The ordinary epidermal cells sometimes 

occur in pairs usually longitudinally (Fig. 7(16)). The anticlinal walls of the epidermal 

cells are on average 2 μm thick. A structure resembling a stomatal apparatus (58 μm long 

and 39 μm wide) has been preserved (Fig. 7(17)). The small dimension of the shoot could 

be related to the juvenile nature of the plant. Epidermal cells grouped in pairs are similar to 

the so-called "packets of cells" described and figured by Watson (1969, pl. 6, fig. 6) in 

English specimens of Pseudotorellia leaves and recognised in several other species 

(Watson and Harrison, 1998); each pair would represent a cell which underwent later 

division. However, bad preservation of the specimen does not allow to place it in a specific 

taxon. 
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Remains of conifers reproductive organs 

 

Material examined – M 20754, MPUN. 

Two small, isolated and egg-shaped poorly preserved cones. They measure (length per 

width) 10 by 9.4 mm (M 20754) (Fig. 7(18, 19) and 16.2 by 15.2 mm (MPUN) (Fig. 

7(20)). Their small sizes suggest their microsporangiate nature. The cones bear an 

uncertain number of spirally-arranged sporophylls. The cones are positioned on a short (1.3 

mm in M 20754) and relative long (9.1 mm in MPUN) leafy axis. Small fragments of 

amber remains have been found (Fig. 7(19); no pollen grains were found. Poor 

preservation of the cones does not allow to define in detail their morphology. Thereby it is 

not possible to place them in any specific taxon. 

 

Angiospermae 1 

Fig. 3(6), 7(21) 

 

Material examined – MF 1265. 

Description – Impression of a leaf (nanophyll) or leaflet, thick, obovate, and marginally 

petiolate. The size (length per width) is 14 per 4.7 mm. The lamina is symmetrical with an 

entire margin and an acute apex (Figs. 3(6), 7(21)). The base is decurrent and slightly 

asymmetrical, the basal angle is acute. The midvein departs from the base of the 

fragmented petiole and reaches the leaf apex. The primary vein is pinnate and runs more or 

less straight along the lamina length. There are three secondary veins visible in the basal 

part of the lamina. The angle of divergence is more or less acute (ca. 22°). The epidermal 

features are not preserved. Some additional specimens coming from the Albian locality of 

Pietraroja have a poorly preserved primary vein and are characterised by similar shape and 

dimension. 

Discussion – The Pietraroja specimen resembles those belonging to the genus 

Sagenopteris. However, this latter is characterized in having lanceolate leaflets with a main 

vein somewhat distal to the mid-line (Harris, 1969). In the material from Pietraroja, the 

lamina is obovate and the primary vein reaches the leaf apex. The specimen presents strong 

resemblance to the leaves named Angiosperm 1 found in the early-middle Aptian locality 

of Profeti (Bartiromo et al., 2009: Plate V, Figs. 3, 6) and with Dicothylophyllum pusillum 

described for the Barremian-Aptian? of Northwestern Transbaikalia (Vakhrameev and 

Kotova, 1977). Unfortunately, the poor state of preservation of the material and the 
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absence of epidermal features does not allow an assignment of the material to any known 

species. 

 

Incertae sedis 

Figs. 3(7), 7(22) 

 

Material examined – M 20796. 

Description – Carbonaceous compression of a petiolated leaf that enlarges abruptly at 

its top to form lamina. The leaf measures 21 mm in length and 12 mm in width. The lamina 

is divided into 3 lobes (Figs. 3(7), 7(22)). The width of the lobes measured at the midshaft 

varies from 1.9 to 2.5 mm. The petiole is 8.8 mm long and 2 mm wide in its median 

portion; it narrows towards the base where it reaches 1.1 mm in width. The lobes form a 

basal acute angle that varies from 37.5° (between the first two lobes on the left) to 19.8° 

(between the central and the right lobe), with an average inclination of 28.6°. The lobes 

measure (length per width in mm) 12 x 1.7 (lobe on the left), 10.8 x 2.6 (central lobe), 10.8 

x 2.3 (lobe on the right). The lobe apices are rounded. A single venation is visible in the 

central lobe, while two? venations are visible in left ones. 

Discussion – The description made above is reminiscent of some Ginkgoales. 

Twentysix genera have been erected for Mesozoic and Cenozoic ginkgoalean leaves and 

shoots worldwide (Zhou, 2009), but the four most widely used, and in some ways well-

defined, leaf-genera are Ginkgo L., Ginkgoites Seward, Baiera F. Braun and Sphenobaiera 

Florin (Watson et al., 1999). The specimen from Pietraroja resembles to the genera Ginkgo 

or Baiera (see Harris et al., 1974) but bad preservation of the material and the lacking of 

cuticular features do not allow to assign the specimen with confidence. In addition the 

attribution is difficult since, how Harris et al. (1974) claimed, leaves of Ginkgoalean 

species vary in form. 

 

4.5. Taphonomic and palaeoecological implications 

 

4.5.1. Taphonomy 

 

The Early Cretaceous (Early Albian) plant remains of Pietraroja occur predominantly in 

the marly-calcareous strata of the “interval D” (sensu Bravi and Garassino, 1998). 

Bituminous mudstones strata bear plant remains randomly orientated, while in the clay-
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marly interlayers evidence of isorientation have been noted. The density of plant-fossils on 

marl strata surfaces and especially in the bituminous layers is very high. Plant remains 

consist of either large specimens or isolated fragments, sometimes occurring as 

compressions, more commonly as impressions, but often as carbonaceous compressions. In 

calcareous beds plant remains are generally preserved as impressions in which, sometimes, 

epidermal features can be seen. In marl beds impressions to compressions of plants can be 

found, but cuticles are poorly preserved. Bituminous beds are full of carbonaceous 

compressions. The best preserved cuticles belong to Frenelopsis. Few isolated conifer 

reproductive organs are also found. Large Frenelopsis branches are preserved commonly 

as impressions both in the calcareous and marl strata, and branches in the form of 

compression are common in marly layers. These conditions of preservation could be due to 

a long-lasting flotation before burial, to a subaerial exposure in the leaf litter (Gomez et al., 

2002b) or, in general, may be evidence of prolonged exposure to oxic environment before 

deposition in an anoxic environment. The different degree of preservation and a number of 

articles (e.g. Frenelopsis) of studied fossil plants would seemingly suggest a relative wide 

source area. Organic debris was supplied to the sedimentary basin either from the 

surrounding emerged lands or possibly from floating vegetation mats. 

Most of specimens, especially Frenelopsis ones, have their original volume preserved, 

with segments of the thick and fleshy cylindrical leafy part attaining 9 mm in diameter. 

Probably, this feature is very close to the life value and could be due to their fast burial 

from the enclosing sediments after their detachment (e.g. Fig. 5(2)). Taphonomic evidence 

from Frenelopsis of the Early Cretaceous of Spain (Gomez et al., 2001, 2002b) and Late 

Cretaceous of Italy (Gomez et al., 2002a), suggests that large branches could not have 

endured long time under high energy transport without the shoots being fragmented. This 

species might have grown near the place of deposition and thus its habitat was probably 

under a brackish influence of a hypothesized lagoon (D’Argenio, 1963; Bravi and 

Garassino, 1998). In the Pietraroja Fossil-Lagerstätte, the large detached branches (Figs. 

4(5), 5(1, 2)) are likely the result of mechanical (e.g. storms) or physiological processes. 

Actually, Gomez et al. (2002a) argue that shoots of the extant conifer Cryptomeria 

japonica (L.f.) D. Don are naturally shed during periods of drought. Alvin (1983) 

reconstructed one of the dominant conifers of the Wealden, Pseudofrenelopsis 

parceramosa, as a medium to large-sized tree with whorled branching and xeromorphic 

shoots that might have been shed during times of water stress. 
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Limestone and marly-limestone strata-surfaces of Plattenkalk 2 (sensu Bravi and 

Garassino, 1988) are full of connected small valves of bivalves, whose concavity is set 

upward, co-occurring with plant remains, especially large branches of Frenelopsis. Bravi 

and Garassino (1988) and Carannante et al. (2006) relate this mass mortality phenomenon 

to an overheating of a very thin water layer, or to water anoxia owing to the preservation of 

ligaments, respectively. As hypothesized for the plant fragments found in the Crato 

Formation (Martill et al., 2007), storm events could have detached the Frenelopsis 

branches found at Pietraroja. Moreover, storm events would have mixed anoxic or toxic 

bottom water with the surface as proposed for the Early Cretaceous Romualdo Member 

(Martill et al., 2008, Santana Fm., Brazil). These events could have caused the bivalve 

mass-mortality registered in the sedimentary basin. Actually, jumbled plant remains 

suggest deposition under stormy conditions (Watson and Alvin, 1996). It is worth noting 

that Baush and Bravi (1999) reconstructing Pietraroja palaeoenvironment revealed the 

sedimentary evidence of occasional storms. At “Le Cavere” no evaporite and no halite 

pseudomorph have been found, so it seems unlikely that hypersalinity was a factor of 

bivalve mass mortality. On the other hand, hyposalinity could be a possible candidate in 

case of oversupply of fresh-water to the sedimentary basin owing to the storms. However, 

mass mortality could be the result of multiple factors. 

The exceptional degree of preservation of Pietraroja fossils (especially as to vertebrates) 

could be due to their fast burial, with high sedimentation rate especially for the plant-

bearing strata, as is testified by preservation in volume of several plant remains (e.g. Fig. 

5(2)). This could explain the paucity of the benthic invertebrates registered in the fossil site 

of Pietraroja. 

In the Early Cretaceous of Pietraroja, Frenelopsis is the dominant, best preserved and 

well articulated plant. Sparse disarticulated internodes (Fig. 4(4)) without a preferential 

orientation are also present, but it is impossible to use them as paleocurrent indicators (e.g. 

Riera et al., 2010). The occurrence of large branches of this genus together with the well 

preserved terrestrial fauna allow to hypothesize a parautochthonous condition for plant and 

terrestrial animal remains so that a sedimentary basin was very close to the source area. 

Frenelopsis were probably not transported for a long distance for they lived seemingly in 

the surrounding land areas close to the sedimentary basin. 

In contrast with what previously thought (Bravi and Garassino, 1998), during the 

Jurassic and Cretaceous the Apenninic Carbonate Platform was separated from continental 

areas (Ciarapica and Passeri, 2008). In particular, during the Albian an extensive regressive 
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event involved the Apennine Carbonate Platform (Carannante et al., 2009), therefore, the 

source areas of the plant debris were probably exposed portions of the Apennine Carbonate 

Platform with the formation of small and relatively ephemeral emerged lands surrounding 

the Pietraroja sedimentary basin. 

 

4.5.2. Palaeoecology of the sedimentary basin 

 

The paleoenvironmental interpretation of the Pietraroja plattenkalk has led to 

controversy hypotheses. The lagoonal (D’Argenio, 1963; Bravi and Garassino, 1998; 

Bausch and Bravi, 1999) versus slope/shallow basin paleoenvironmental (Catenacci and 

Manfredini, 1963; Freels, 1975) models have long been debated (Carannante et al., 2006). 

According to Carannante et al. (2006), both models are inadequate as they fail to take into 

account all sedimentological features of the Pietraroja Plattenkalk. Consequently they 

interpret it as abandon deposits of a submarine channel of a not specified water depth. 

Moreover, according to Carannante et al. (2006, p. 573), “…the faunal assemblage of 

Pietraroja represents a mixture of organisms from different types of environments - but 

certainly not from a lagoonal environment at all.”. Actually palaeobotanical and 

palaeozoological data contradict thereof. The most representative fish genera recorded at 

Le Cavere have been interpreted characteristic of reef to lagoon (Coelodus and 

Palaeobalistum: Kriwet and Schmitz, 2005; Nursall, 1996), non-marine habitat (Lepidotes 

and Clupavus: Martill et al., 2007; Gallo, 2005; Buscalioni et al., 2008; Maisey, 2000) and 

of back-reef lagoon and non-marine environments (Belonostomus: Maisey, 2000; Estes and 

Berberian, 1970). Moreover, a stratified water column could explain the reduced and the 

restricted benthos and the general lack of bioturbation advocated by Carannante et al. 

(2006). To sum up, the considerations made above, do not exclude a shallow-water 

hypothesis, e.g. a lagoon (see also 5.1, Taphonomy). 

 

4.5.3. Palaeoclimate and comparison with other Albian florae 

 

In the Albian of Pietraroja majority of plant remains are relatively fragmentary and it is 

difficult to identify them at the species level. However, it is worth noting that numerous 

plants display xeromorphic adaptations (see Thevenard et al., 2005; Watson and Alvin, 

1996). The specimens assigned to the Family Cheirolepidiaceae (Frenelopsis and 

Cheirolepidiacean 1) show: 1) a probably photosynthetic stem, 2) small leaves and 3) 
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epidermal papillae that are indicative of true xerophytism (Mauseth, 1988) together with 4) 

a thick cuticle, 5) papillae protecting stomatal apparatuses and 6) sunken stomata 

indicating water stress (Wolfe and Upchurch, 1987) or being considered as extreme 

xeromorphic characters (e.g. Spicer et al., 1993). Xeromorphy can indicate either dry 

conditions or physiological difficulties to uptake or transport water internally (Watson and 

Alvin, 1996). Haworth and McElwain (2008) claim that xeromorphic features occur in 

plants growing both in arid and high water availability environments, suggesting that their 

ecological function may not be purely anti-transpirant. Retallack (2009) points out that 

xeromorphism is an adaptation attributed to dry climate and it implies that scleromorphic 

features (e.g. thick cuticle) were induced by dry climate. However, the environmental 

significance of a high frequency of xeromorphic features in vegetation is far from being 

clarified (Watson and Alvin, 1996). As Wing and Sues (1992) point out, the strongly 

xeromorphic attributes of many cheirolepidiaceous conifers and their world-wide 

abundance at low paleolatitude sites (<40 degree) with sedimentary indicators of aridity 

suggest they were dominant in dry-climate vegetation (Vakhrameev, 1970; Upchurch and 

Doyle, 1981; Alvin et al., 1978; Francis, 1983). According to Barale (1990) in the 

Coniferales two types of series can be distinguished: a wet series, Podozamites-

Elatocladus; and a hot and dry series Pagiophyllum-Brachyphyllum-Cyparissidium and 

Cupressinocladus-Pseudofrenelopsis-Frenelopsis. The genus Frenelopsis with its small 

leaves is suspected to hold a photosynthetic stem (Watson, 1988; Alvin, 1982). The genera 

Frenelopsis and Pseudofrenelopsis exhibit extreme xeromorphism (Spicer et al., 1993) and 

morphological and anatomical features of Frenelopsis and Tomaxiella biforme from the 

Crato Formation are considered to be an adaptation to a warm and seasonally dry climate 

(Kunzmann et al., 2006). The apparent succulence, resembles that of some modern stem-

succulent xeromorphic angiosperms (Watson, 1988). In large branches of Frenelopsis from 

Pietraroja, wide zones of parenchymatous tissue between the wood and the epidermis can 

be noted (Fig. 5(2)) and possibly indicates succulence (e.g. Axsmith and Jacobs, 2005; 

Kunzmann et al., 2006). As claimed by numerous authors (Watson, 1977, 1988; Alvin, 

1982; Gomez et al., 2001, 2002b), frenelopsids were probably adapted to aridity. The 

middle Aptian flora of Profeti, with the species F. profetiensis, probably grew under a 

tropical-subtropical, somewhat arid climate (Bartiromo et al., 2009). However, Kunzmann 

et al. (2006) maintain that a high percentage and a large morphological variety of pollen 

within pollen spectra (Spicer et al., 1994) indicate that frenelopsids occupied a variety of 

ecological niches as also affirmed by Watson (1988) and Axsmith and Jacobs (2005). 
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Some Frenelopsis species favour costal habitats (Doludenko and Reymanówna, 1978; 

Pons and Broutin, 1978; Pons, 1979). 

Therefore, it is possible that Frenelopsis grew in an arid or semi-arid climate. Locally, 

the deposition of the fossiliferous Upper Plattenkalk deposits (the Plattenkalk 2 sensu 

Bravi and Garassino, 1988) preceded the Albian regressive event associated with the 

formation of bauxites in the adjacent areas (e.g. Regia Piana, located only 2 km West of 

Pietraroja area) (Carannante et al., 2006). The broad climatic requirements for 

bauxitization are in general satisfied by consistently warm temperatures and high amounts 

of precipitation (Price et al., 1997). According to the palaeogeographic map (Dercourt et 

al., 1993; Schettino e Turco, 2011), between the Lower Aptian and the Late Cenomanian, 

the Apennine Carbonate Platform was located at 20-23° of latitude in the tropical belt to 

the north of equator. 

According to Coiffard et al. (2007), the Lower Albian of Europe was a drier and semi-

aride climate with a marked seasonality. As claimed by Vakhrameev (1991), during the 

Early Cretaceous extensive aride zones prevailed in both the Northern and Southern 

Hemispheres. 

The flora of Pietraroja shows some similarities to that from the Escucha Formation, 

Spain (Gomez et al., 1999; Sender et al., 2005, 2008) and with the late Albian flora of the 

Ukraine (Doludenko and Teslenko, 1987) by sharing the genera Brachyphyllum and 

Frenelopsis. 

Moreover, except for the genus Brachyphyllum (that occupies an ill-defined systematic 

position with some species included within the family Araucariaceae and others within the 

Cheirolepidiaceae: Gomez et al., 2002c) reported from the Tataouine Region in the south 

of Tunisie (Barale and Ouaja, 2002), it is worth noting that the Pietraroja flora does not 

present similarities with the Early Cretaceous Gondwanian floras (e.g. Barale and Ouaja, 

2001). The Euro-Sinian character (Vakrameev, 1991) of the Pietraroja flora excludes a 

proximity with Gondwanan continent as was previously thought (e.g. Evans et al., 2004). 



The cuticle micromorphology of extant and fossil plants as indicator of environmental conditions.  
A pioneer study on the influence of volcanic gases on the cuticle structure in extant plants 

117 

GENERAL CONCLUSIONS 

 

The first part of this research represents a contribution to the knowledge of biotic effect of 

volcanism on plant cuticular features permanently fumigated by toxic volcanic gases in a hostile 

environment. 

The exposure of Aleppo pine to volcanic gases (Cap. I) induces an acceleration of needles ageing 

and produces changes in both epicuticular and epistomatal waxes. The change in tubular wax 

structure probably affects wettability favouring the ageing process by pollution. The injuries 

observed on the abaxial side of needle in cuticular surface and epistomatal chamber represent the 

effects of volcanic toxic compounds, directly (H2S) or indirectly (SO2 or/and H2SO4 formation) 

affecting P. halepensis. This would explain the deflection of vegetation succession in Pisciarelli 

area, where close to the main fumarole only Erica arborea grows in. The research shows that under 

the influence of volcanic gases: 1) the epicuticular and epistomatal waxes undergo degradation as 

fusion; 2) the thickness of cuticle membrane of P. halepensis increases; 3) the number of oxalate 

crystals deposits increases; 4) a different growth and equilibrium among the zones of the cuticle 

occur and 5) the fibrils of both B1 inner and B1 outer zones become more parallel to cell surface. 

All these features are interpreted as protection devices against volcanic gases and/or acids action. 

Moreover, fungal hyphae infection and reduction of fibrillar component -as well as the granular 

ones- have been noted in needles experiencing chronic fumigation. 

The micro- and ultrastructural responses of P. halepensis to H2S fumigation provide important 

insights into plant adaptation. However, further works are needed to confirm our results since this 

procedure (leaf cuticular ultrastructure using TEM) on fossil and extant plants should be extended 

to a higher number of taxa as it is still only insufficiently developed (Archangelsky and Taylor, 

1986; Jeffree, 2006). 

The main interest of this research sets in 1) a reliable comparison between not fumigated and 

fumigated needles in an extreme environment and 2) evidence that variations in cuticle 

ultrastructure in the extant conifer Pinus halepensis are environment-dependant and represent a 

sketch of how some fossil plants probably responded to global environmental change during LIP, 

CFBP and euxinic interval or however during changes in atmospheric chemistry. 

The results could be applied: 1) to use extant and fossil plants as bioindicators through an 

intraspecific comparison of ultrastructural features of plant cuticles during periods of normal vs. 

volcanic activity; 2) to discriminate those situations of palaeoenvironmental misinterpretation in 

which the effects of volcanism mimic those of aridity (Harris and Van Couvering, 2005). 

The exposure of E. arborea to volcanic fumigation (Cap. II) revealed alterations detectable with 

SEM and TEM approach. In outer view, on both adaxial and abaxial sides of leaves epidermis both 

wax degradation and overproduction have been found respectively together with numerous clusters 
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of rodlets. Wax overproduction could be linked to the high air and soil CO2 concentration, while 

wax degradation could be the direct (H2S) or indirect (SO2 or/and H2SO4 formation) effect of 

volcanic toxic compounds. At ultrastructural level, the cuticle showed an outer A2 granular layer 

and a beneath B1 reticulate layer. The prevalence of the granular -amorphous- component in 

respect to the fibrillar ones can be noted. Under the effect of persistent fumigation the A2 layer 

undergoes a remarkable increase of thickening. Perhaps, in presence of volcanic toxic gases, the 

cuticle undergoes a carbon-based compound allocation within the cuticle thickness. 

This study shows that the cuticle responds to adverse environmental conditions varying both in 

total thickness and in A2 and B1 layers. In particular, a good correlation between atmospheric CO2 

concentration and the variation in A2 thickness has been found. 

However, the alterations noticed in Pisciarelli and Solfatara samples could be the result of different 

volcanic chemical compounds action (e.g. CO2 or/and volcanic sulphurous compounds) also 

because as Paoletti et al. (2005) claimed, other gases virtually undetectable could have biological 

effects. For this reason it is herein better to speak of “volcanic gases action”, avoiding to attribute 

meso- and ultrastructural variations to a specific volcanic chemical compound, and further 

experiments with different plants will be necessary to discover the exact effect of rising [CO2] on 

leaf surface structures (Paoletti et al., 1998).  

Therefore, these observations could be useful to understand the behaviour and the adaptability of 

plants in ancient ecosystems characterized by volcanic gas emissions. The micromorphological 

variations noticed in E. arborea could be an example of what plants experience during long term 

volcanic degassing. However, the volcanic degassing vent-derived Pisciarelli and Solfatara 

populations of E. arborea shows adaptive resistance to toxic volcanic gases. The present study on 

the cuticle ultrastructure of E. arborea finds application in the determination of changes in 

atmospheric chemistry in present and past floras since, as Taylor et al. (1989) claimed, diagenetic 

factor do not disrupt the structural identity of fossil cuticles. 

However, it is important that future assessments of E. arborea responses to volcanic gases consider 

better the physiological factors involved. 

Fortunately, further similar researches are highly advisable in Campania Region because, with its 

numerous volcanic (e.g. Frondini et al., 2004; Chiodini et al., 2010a) and not volcanic (e.g. 

Chiodini et al., 2010b) localities emitting gases, represents a natural laboratory allowing 

experiments involving plant-volcano interactions. 

The second part of this research represents a contribution to the knowledge of Cretaceous fossil 

plants found in the Fossil-Lagerstätten of Cusano Mutri and Pietraroja. 

The late Aptian flora of Cusano Mutri (Cap. III) is dominated by conifers, with a rare angiosperm, 

Montsechia vidalii, in association. The lack of pteridophytes is noteworthy. The conifer shoots 

recovered belong to the genera Cupressinocladus, Pagiophyllum, Araucarites, and Frenelopsis. 

Coniferous cones are occasionally encountered. Most of the cuticle remains belong to a new 
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cheirolepidiacean species, F. cusanensis sp. nov., which has been erected on the basis of both 

macroscopic (e.g. the internode dimension) and epidermal (e.g. disposition, morphology and 

dimension of stomatal apparatuses) features. Its very small stomatal apparatuses have not been 

recorded previously in Frenelopsis. The occurrence of this new species in addition to F. 

profetiensis in the early-middle Aptian flora of Profeti testify to the importance of the family 

Cheirolepidiaceae in this part of the Tethys region during the late Early Cretaceous. Most of the 

conifer taxa are poorly preserved. F. cusanensis is the only well-preserved species. The occurrence 

of M. vidalii in the southern Apennines extends its geographical distribution beyond the Iberian 

peninsula. Palaeobotanical and sedimentological observations of the plant bearing strata indicate 

that the sediments were probably deposited under a tropical to subtropical climate in arid to semi-

arid conditions, possibly with wet phases on a regional to local scale. Evidence of wildfire (fusain) 

suggests a periodic combination of arid periods, high temperatures and lightning strikes. 

Early Cretaceous (Early Albian) plants from Pietraroja (Cap. IV) are known for a long time, but 

never studied systematically. The assemblage revealed a dominance of conifers, in particular the 

Cheirolepidiaceae, and the occurrence of rare angiosperms. The following floristic entities were 

documented: Sagenopteris? sp., Brachyphyllum sp. 1, Brachyphyllum sp. 2, Frenelopsis sp., 

Cheirolepidiacean 1, and Angiospermae 1. A specimen belonging to the genus Phlebopteris was 

previously found (Bartiromo et al., 2006b). However, the finding of numerous specimens 

belonging to the genus Frenelopsis is noteworthy because it demonstrates the importance of the 

Cheirolepidiaceae remains in this sector of the Tethys Ocean. Frenelopsis might have grown near 

Pietraroja lagoon under brackish influence. The hypothesis of small and transient emerged lands 

herein proposed for the Appenninic Carbonate Platform would be confirmed by the terrestrial fauna 

composed by animals of small size. 

Previous sedimentological, palaeontological and palaeogeographical data provided from Pietraroja 

Fossil-Lagerstätte together with the palaeobotanical observations presented in this paper are 

reminiscent of a tropical-subtropical climate, probably exposed to relative long periods of aridity. 

Pietraroja taxa are typical of the Euro-Sinian Province (Vakhrameev, 1991) and no affinity with 

Gondwanan floras has been noted. After more than two hundred years (Breislak, 1798) of 

researches we are far from a common consensus on the palaeoecological setting for the Pietraroja 

Fossil-Lagerstätte which needs a more integrated approach. 
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