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Introduction. 
Structural Health Monitoring (SHM) has become, in recent years, one of the most 
important area of investigation, not only in the Aeronautical and Aerospace environments, 
but in a wide area of engineering fields, such as the Civil one [5] [27]. 
Quality, Reliability and Safety are the main features that every artifact or service shall 
carry not only because of the norms by the Aviation Authority, but also for making it the 
most attractive as possible for the buyers. SHM is the answer to the new globalized market 
that asks, more than any other thing: “Optimization”! 
Optimization does not only mean maximizing the performances of a manufact with the 
lowest price as possible at the time of purchase, but also taking into account the whole 
operational life. The maintenance of a modern civilian aircraft absorbs about 20-25% of its 
entire operational cost, thus playing a definitely crucial part. SHM aims to improve 
dramatically the parameters of Quality, Reliability and Safety, thus also reducing the 
maintenance costs. This can be achieved through a different design process that reduces 
the required number of scheduled both light and heavy maintenances. Flight schedules 
basically depend on the efficiency of maintenance since the productivity of an aircraft 
depends on the time of employment. From this arises the need of reducing maintenance 
times as much as possible, of course without compromising or rather increasing safety, 
since aviation has always aimed in achieving high standards of safety, far beyond those of 
other types of transport. 
The major causes of aircraft accidents are due to: 
1. Human error 
2. Adverse weather conditions 
3. Acts of terrorism 
4. Structural failure / inadequate maintenance 
 
Accidents due to structural failure or inadequacy of the maintenance are relatively low 
compared to other causes, nevertheless the task of the aviation industry is to focus on the 
elements of danger and try to minimize them all. In the case of aircraft accidents, the 
manufacturing industries are the parts that are most affected by economic impact because, 
in addition to any compensation, suffer a boycott by the airline companies. 
Regarding the operational life, an aircraft structure is typically subject to the action of 
time-varying loads. These, in the case of defects or damage in materials, can induce an 
intensification of stresses within the structure, thus producing cracks (barely visible 
damage) due to fatigue. In turn, cracks, propagating over time, weaken the structure and 
could even lead to rupture. During the history of aviation, various design criteria have been 
developed to ensure the resistance of the structure when it is subject to multiple load 
cycles, that we can refer, essentially, to two philosophies: 

- Safe Life; 
- Damage Tolerance 

 
The first one is designed to ensure, for a given design life, the resistance to workloads 
without the generation of fatigue cracks, whereas the second, contemplating the eventual 
presence of damage in some points of the structure, continuously  monitors and checks the 
propagation path of the cracks. The Damage Tolerance design philosophy allows us to 
subdivide the structures in: 
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- ‘Fail-Safe’ Structures (made up with redundant elements, the rupture of one of 
them has no catastrophic effect since the load is distributed on the intact ones); 
- ‘Slow Crack Growth’ Structures (made up with elements that present a long 
period for crack propagation). 

 
Regarding the typologies of damage, the structure of an aircraft is subject to the following 
main sources: 

1. Environmental deterioration 
2. Accidental damage 
3. Fatigue damage 

 
Environmental deterioration (typically corrosion) of a mechanical component refers to the 
structural deterioration caused by the chemical interaction with the weathering and in 
general with the surrounding environment. In the field of aircraft constructions, for reasons 
of weight, the structures must have high efficiency, thus the presence of corrosion is a 
problem of considerable importance. 
An accidental damage is the physical damage of a mechanical component caused by 
contact, by impact with an object or even by a human error attributable to manufacturer, to 
flight operations or to a wrong way of proceeding during maintenance. Inspection intervals 
within which an accidental damage can be detected are related to the type of damage and 
likely to the consequences caused by it. Therefore, we cannot establish thresholds as 
damage occurs randomly, and in some cases they are found during a routine inspection. 
Fatigue damage refer to the physical deterioration of the material due to fatigue stresses 
caused by repeated or even randomly varying in time loads; the stresses induced in the 
aircraft’s structure during flight, takeoff and landing operations are all critical load 
conditions. A fatigue damage typically begins with a small fracture, initially very difficult 
to detect with common methods: liquid penetrant inspection, X-rays, etc.; as the crack 
increases in dimensions because of load cycles, the effects of stress concentration becomes 
higher, and the speed of propagation of the crack also becomes even greater. Through this 
mechanism the cross section area of the structure decreases and the stresses increase until 
they reach the collapse level. For several reasons composites are some of the most critical 
type of materials with respect to fatigue. 
In recent years composite materials have been increasingly introduced in both the 
Aeronautical and Aerospace environments thus becoming the most important materials to 
be adapted for aviation since the use of aluminum in the 1920s. They are materials that are 
combinations of two or more organic or inorganic components: one material serves as a 
"matrix", which is the material that holds everything together, while the other material 
serves as a reinforcement, in the form of fibers embedded in the matrix. The most common 
matrix materials are "thermosetting" materials such as epoxy, bismaleimide, or polyimide; 
whereas the reinforcing materials can be glass fiber, boron fiber, carbon fiber, or other 
more exotic mixtures. Unfortunately composites, for reasons inherent in their internal 
structure, suffer much more than any other conventional metallic material of problems 
related to damage. Typical damage for composites are matrix cracking, delaminations, 
fiber fractures, interfacial debondings, etc., and all these kind of damage, especially the 
ones involving fatigue problems, are very critical. The most problematic aspect of damage 
in composites is that they can be produced by events involving very small values of 
energies; as an example delaminations might occur, at interfaces between different 
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oriented adjacent plies, as a result of impacts with external objects involving energies of 
the order of some Joules. Typically these low velocity impacts produce so small damage 
within the material that they can’t be detected through a simple visual inspection. New 
methods of investigation have been thus developed, in the last decades, especially for 
composites, such as Structural Health Monitoring techniques involving Lamb waves [5] 
[7] [16].  
Lamb waves are elastic guided waves that travel in thin-wall structures along directions 
parallel to plate’s middle plane, at frequencies of the order of kHz, or even MHz. A feature 
that makes Lamb waves so interesting and advantageous for damage detection is that they 
present wavelengths of the order of centimeters or even millimeters (depending on 
frequency) which makes them able to interact with obstacles, e.g. through thickness 
damage in plates, of the same order of magnitude; low energy impacts on composites 
might induce damage of such dimensions, so hardly identified with other techniques. 
Moreover Lamb waves can be both excited and sensed through the use of small, 
lightweight and inexpensive transducers such as Piezoelectric Wafer Active Sensors 
(PWAS). PWAS transducers can be produced in different geometries and dimensions so 
that they can be adapted for the various cases, furthermore they can be directly bonded 
onto the structure under inspection thus becoming one piece with it. 
A tool capable to detect small damage inside structures from their very early stage of 
development, hence when damage dimensions are of the order of millimeters, could 
eventually lead to a different design philosophy in which the Safety Factors could be 
significantly lowered. 
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1. LAMB WAVES 

1.1 Theory elements. 

Lamb waves are elastic waves, propagating in solid plates, whose particle motion lies in 

the plane that contains the direction of wave propagation and the direction perpendicular to 

the plate. In 1917 the English mathematician Sir. Horace Lamb published his classic 

analysis and description of acoustic waves of this type [1], thus these waves are called 

Lamb waves. An infinite medium supports just two wave modes traveling at unique 

velocities, namely pressure and shear waves, whereas plates support two infinite sets of 

Lamb waves modes whose properties depend on various parameters such as plate’s elastic 

properties and thickness, frequency, etc., so their properties turn out to be quite complex. A 

comprehensive mathematical description of the problem of Lamb waves propagation in 

solids can be found in various publications by Viktorov [2] (1967), Achenbach [3] (1973), 

Rose [4] (1999), Giurgiutiu [5] (2008). We are not going here to present the whole 

mathematical formulation of the problem of Lamb waves propagation in plates, but only 

the logical path that brings to the relations between frequency and velocity of propagation 

for the various modes.  

Lamb waves can exist in two basic types: symmetric and antisymmetric (Fig. 1.1), and, for 

each of these types, various modes appear as solutions of the Rayleigh-Lamb equations 

<1.8>. 

 

 
 

Fig. 1.1 – Zero order symmetric and antisymmetric Lamb waves modes. 

 

In general, elastic waves in solid materials are guided by the boundaries of the media in 

which they propagate. An approach to guided wave propagation, widely used in physical 

acoustics, is to seek sinusoidal solutions to the wave equation for linear elastic waves 

subject to boundary conditions representing the structural geometry: this is a classic 

eigenvalue problem. 
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Let’s consider the three dimensional wave equation describing the propagation of elastic 

waves in an isotropic solid media without external forces: 

 

( ) ( ) 21.1    u u uλ µ µ ρ+ ∇ ∇ ⋅ + ∇ = ɺɺ
 

 

with u displacements vector, λ and � Lamé constants, and ρ density of the isotropic 

material. Through the Helmoltz theorem the vector u can be decomposed using two 

potentials, one scalar φ and one vectorial ψ: 

 

1.2    u ϕ ψ= ∇ + ∇×
 

 

By combining <1.1> and <1.2> we obtain the two equations: 

 
2 2
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with cP and cS respectively pressure and shear waves speeds. 

For harmonic-wave propagation in the x1 direction, ei(ξx1-ωt), the equations <1.3> become: 
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with ω circular frequency and ξ wave number, having general solution: 

( ) ( )

( ) ( )
1 3 2 3

1 3 2 3

sin cos
1.5    

sin cos
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B qx B qx
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ψ
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From <1.4> and <1.5>, by assuming zero displacement in the x2 direction (u2 = 0),  the 

general form of components of the displacement vector can be derived, grouped into 

symmetric and antisymmetric components: 

 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 2 3 1 3 1 3 2 3

3 2 3 1 3 1 3 2 3

cos cos cos cos
1.6    

cos cos cos cos

u A i px B q qx A i px B q qx

u A p px B i qx A p px B i qx

ξ ξ

ξ ξ

 = + + −


= − + + −

 

 

We then can write the stresses in terms of both the scalar and vectorial potentials, and, by 

applying the conditions of free surfaces on the plate’s top and bottom, we obtain the 

system of equations: 
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= =
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= =
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 = =



= =


= =

 = =
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By requiring the system <1.7> to have non-trivial solutions (determinant equal to zero), we 

obtain two transcendental implicit equations, one for symmetric modes and one for 

antisymmetric ones, called Rayleigh-Lamb equations (d is the plate half-thickness, cph is 

the wave speed, ξ = ω/cph is the wave number): 

 

( )
( )

( )

( )
( ) ( )

22 2

2

2

22 2

tanh
   symmetric modes (S)

tanh 4
1.8    

tanh 4
   antisymmetric modes (A)

tanh
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qd pq

pd pq

qd q

ξ

ξ

ξ

ξ

 −
 = −
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
 = −

−

 

 

The solutions of the two equations <1.8> represent the phase velocities cph of the various 

Lamb waves modes: these curves do not exist in a closed form, so numerical algorithms 

are needed in this case. Each one of the two Rayleigh-Lamb equations presents a number 

of solution curves defining more than one relation between wave number and frequency, or 

even wave velocity and frequency: several orders are present for both symmetric and 

antisymmetric modes. 
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By considering the velocity of Lamb waves packets traveling in the plate, we introduce the 

group velocity cg which is linked to phase velocity through the relation: 

 

1.9       or even   

1

ph

g g
phph

ph

c
c c

cc

c

ω

ω

ω

∂
= =
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−

∂

 

 

In Fig 1.2 the frequency-velocity dispersion curves (from  <1.8> and <1.9>) are presented. 

 

 
 

 

Fig. 1.2 - Dispersion curves for an aluminum plate, lowest order solutions. Normalizing velocity: 

shear velocity cS; normalizing frequency: ξS·d, with ξS = ω/cS. 
 

In Fig. 1.2 we can see the strong dependence of the wave speeds with frequency, showing 

the typical dispersive behavior. The zero order modes are present at all frequencies, while 

the higher orders appear at certain cut-off frequencies. Since, by definition, Lamb waves 

have no particle motion in the x2 direction, the displacement vector u lies inside the plane 

defined by axes x1 and x3. Motion in the x2 direction is found, for plates, in the so-called 

SH or shear-horizontal wave modes. For these kind of waves particles have no motion in 

the x1 or x3 directions, and they are thus complementary to the Lamb waves modes. 

Dispersion curves, the graphs that show relationships between wave velocity (or wave 

number) and frequency in dispersive systems, can be presented in various forms. The form 

that gives the greatest insight into the underlying physics has ω (angular frequency) on the 

y-axis and ξ (wave number) on the x-axis. The form used by Viktorov, that brought Lamb 

waves into practical use, has wave velocity on the y-axis and d/λ, the thickness/wavelength 

ratio, on the x-axis. The most practical form of all has wave velocity on the y-axis and f·d, 

the frequency-thickness product, on the x-axis. 

For values of frequency that tends to zero the problem can be simplified and there are 

formulas for the velocities: 

For the S0 mode: ( )
( )20

1.10    lim    ;   
1

ph g ph

E
c c c

ω ρ ν→
= =

−
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For the A0 mode: ( )
( )

4 20
1.11    lim    ;   2

3 1
ph g ph

E
c c c

ω ρ ν→
= =

−
 

 

with E and ν Young modulus and Poisson’s ratio of the material; ρ is the density. 

The phenomenon of velocity dispersion leads to a rich variety of experimentally 

observable waveforms when acoustic waves propagate in plates. The zero order symmetric 

(S0) and antisymmetric (A0) modes are relatively easy, in thin plates, to generate and 

recognize so they are the most involved in nondestructive testing. 

 

1.2 Lamb waves tuning. 

In recent years an increasing number of investigators use, in their Structural Health 

Monitoring (SHM) analysis with Lamb waves, Piezoelectric Wafer Active Sensors 

(PWAS) for ultrasonic waves generation and sensing [6] [5] [7] [20]. The successful 

experiments performed in nondestructive tests, combined with their minimal invasiveness 

and inexpensiveness have positioned PWAS as an enabling technology for the 

development and implementation of active SHM systems. PWAS transducers (Fig. 1.3a) 

can be surface mounted or inserted inside layered materials such as composites, thus 

becoming one piece with the structure where they are bonded on. On the contrary 

conventional ultrasonic transducers are expensive and present more difficulties of using 

(Fig. 1.3b). 

 

 

 

 
Fig. 1.3a - PWAS disk transducer. Fig 1.3b - Conventional ultrasonic transducers 

 

Although the considerable advantages in using PWAS, there are some difficulties to be 

faced with. Their characteristic behavior is strongly non linear and involve coupling of 

electrical and mechanical variables; plus PWAS transducers form a unique body with the 

structure they are bonded on, thus greatly complicating the study. The interaction between 
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piezoelectric transducers and structures is crucial and a number of studies have been 

conducted [9], [10]. 

The constitutive equations of a piezoelectric material are in the form: 

 

1.12    

E

ij ijkl kl kij k

T

j jkl kl jk k

S s T d E

D d T Eε

 = +


= +
 

 

with Sij mechanical strain, Tkl mechanical stress, Ek electrical field, Dj electrical 

displacement, sE
ijkl mechanical compliance of the material measured at zero electric field 

(E = 0), εT
jk dielectric permittivity measured at zero mechanical stress (T = 0), djkl 

piezoelectric coupling effect parameter. These equations show that a voltage applied to two 

points of a piezoelectric material, which produces an electric field, induces a strain in the 

material, i.e. a contraction or an expansion. Thus an oscillatory voltage produces and 

oscillatory mechanical behavior. Vice versa an oscillatory expansion and contraction 

produces an oscillatory electric field, and so an alternating voltage at PWAS terminals. The 

solution of the dynamic response of a PWAS transducer is greatly complicated by the 

boundary conditions, since when it is bonded onto a structure it becomes one piece with it: 

a coupling is present. 

Some of the most important results on tuned Lamb waves excitation and detection with 

PWAS have been achieved by Giurgiutiu (University of South Carolina, Columbia SC, 

USA) and presented in various publications [8] [5]. The central concept of these studies is 

the characterization of the stresses, especially shear, induced by PWAS transducers inside 

the plate during their operating modes. By combining the solutions of Lamb waves 

governing equations for displacements <1.6> and the boundary conditions, i.e. the stresses 

induced by a PWAS on the surface where it is bonded on, both the plate displacements and 

strains can be derived as functions of various parameters including frequency. Basically 

there is a strong dependence of Lamb waves amplitudes with frequency (for both 

symmetric and antisymmetric modes), thus making frequency the most important factor for 

Lamb waves tuning with PWAS. We can so excite the various Lamb waves modes, i.e. S0 

and A0, simply by tuning the frequency, very easy parameter to control. 

The function linking waves amplitude with frequency presents some maxima and minima 

respectively corresponding to the two conditions: 

 

( )

( )

(2 1)    maximum amplitude
21.13       

2            minumum amplitude
2

a

a

f
l n

f
l n

λ

λ


= −


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la is the PWAS dimension, λ is the wavelength function of frequency, n is a natural 

number including zero. Since different Lamb wave modes propagate with different speeds, 

the various conditions of maxima and minima happen at different frequencies for the 

different modes. A typical analytical graph linking amplitudes of S0 and A0 modes with 

frequency is shown in Fig. 1.4. 

 

 
Fig 1.4 - Lamb waves response for an aluminum plate of thickness 

1mm, using a PWAS disk of diameter 10mm; the amplitudes are 

normalized. 

 

As we can see in Fig. 1.4, Lamb waves tuning can be achieved by controlling frequency. In 

detail, from theory, for an aluminum plate of thickness 1mm using PWAS disks of 

diameter 10mm, by exciting frequencies around 30 kHz only A0 mode will be present since 

it presents the maximum amplitude (‘sweet spot’), whereas S0 presents a minimum. On the 

contrary by exciting frequencies around 290 kHz almost only S0 mode will be present. 

The analytical solution of the Lamb waves amplitudes, in Fig. 1.4, has been confirmed by 

experimental acquisitions performed on an aluminum plate of 1mm thickness, using two 

10mm diameter PWAS disks (PI Ceramic, PIC-255): #1 used as actuator and #4, at a 

distance of 20cm, as sensor (Fig 1.5b); the signals to PWAS were generated through a 

signal generator HP/Agilent 33120A, while the acquisitions were performed by using an 

oscilloscope Agilent InfiniiVision DSO7104A (Fig. 1.5a). 
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Fig. 1.5a - Aluminum plate 6061-T3, 800x700x1 mm3 Fig. 1.5b - PWAS disks, PI-Ceramic PIC-255, 

10mmx0.2mm 

As excitation a 4.5 sine cycles curve with a Hanning window was used, in order to obtain a 

narrow-band bell curve in the frequency domain (Fig. 1.6). Narrow-band excitations are 

needed in order to limit the problem of dispersiveness of Lamb waves, strongly dependent 

on frequency. 
 

  
Fig 1.6a – Excitation curve, 4.5 sine cycles with Hanning window Fig. 1.6b – Curve in frequency domain 
 

The test involved frequencies from 10 to 110 kHz, step 10 kHz, for A0 mode, while from 

10 to 500 kHz, step 10 kHz, for S0. Amplitudes of both A0 and S0 were evaluated from 

output signals registered through PWAS #4, positioned at 20mm from source (#1). The 

reason we did not analyze A0 mode beyond 110 kHz was due to the presence of S0 

reflections from plate edges, overlapping the first incoming A0 waves packet at sensor’s 

location. In Fig. 1.7 some experimental acquisitions, for various frequencies, and relative 

tuning curves are presented. 
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Fig 1.7 – Lamb waves responses at a distance of 20cm from actuator, for various frequencies. 

 

Lamb waves modes can be easily recognized from speeds of propagation, and hence from 

the arrival times. For an aluminum plate, of thickness 1mm, the group velocity of S0 

substantially remains constant for a range of frequencies between zero and 500 kHz and is 

about 5300m/s. A0 are more dispersive in the low frequency range and, for frequencies of 

30, 70 and 120 kHz the group velocities are, respectively, 1040, 1500 and 1900 m/s. Hence 

S0, in Fig. 1.7, are represented by the first wave packet arriving at the PWAS location; after 

S0, A0 are present and then reflections from edges. 

The comparison between the experiment and theory is presented in Fig. 1.8: a general good 

agreement can be seen. There is only a little frequency shift on maximum amplitudes both 

for A0 and S0, probably due to the bonding layer between PWAS and aluminum panel, not 

considered in the analytical solution involving ideal bonding. 
 

  
Fig. 1.8 – Comparison between experiments and theory for Lamb waves amplitudes 
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1.3 Lamb waves in experiments and in FEM. 

1.3.1 Introduction 

The solution for the problem of Lamb waves propagation in thin structures is, in recent 

years, available and various numerical codes have been written. Professors Ajit Mal 

(University of California, Los Angeles, USA) and Sauvik Banerjee (Indian Institute of 

Technology Bombay, India) developed various codes, using various plate theories, that 

give the displacements or stress/strains at various locations on both isotropic and 

composite plates, for a given excitation force curve [11] [12] [13] [14]. Generally these 

codes assume that the plate is infinite and that there are no obstacles on the propagation 

path of the guided waves. Unfortunately for complicated geometries that involve 

interaction of Lamb waves with holes, cracks, rivets, or even other structural elements 

bonded on the plate, the problem is hardly modeled using a numerical code that involves 

only equations: a FEM code is needed in this case. 

FEM codes are able to solve the equations of structural dynamics in both frequency and 

time domain for a given geometry, as complex as it is. The real structure is modeled as a 

set of geometrical elements that can have various shapes (1D, 2D or 3D elements), and the 

solution function is approximated as a combination of a limited number of so called “shape 

functions”. Definitely the differential equations system is substituted with an ordinary 

differential equations system or with an algebraic equations system. 

Lamb waves propagation is an unsteady problem that can be directly simulated in time 

domain, using FEM, through the use of a direct transient analysis. Since Lamb waves 

speeds are typically of the order of thousands of meters per second, and the structures 

dimensions are of the order of meters, the time of propagation is typically of the order of 

milliseconds: very fast dynamics! This allows us to use explicit FEM codes that give very 

accurate solutions for short time dynamics, with relatively small solution times (order of 

hours). 

The very challenging problem, dealing with FEM codes, is the modeling of Lamb waves 

actuators and sensors, that typically are piezoelectric transducers. The interaction of these 

devices with the structure is a non linear problem that involves electromechanical coupling 

effects. FEM codes that are able to simulate the physics of piezoelectric materials are 

unfortunately implicit and this means that the time for calculation of the dynamic response 

strongly increases, achieving the order of days or even weeks. 

A greatly advantageous different approach, presented in this work, is the substitution of the 

piezoelectric devices, in the FEM model, with the dynamic action they typically exert on 

the structure when operating as actuators. Regarding sensor operating mode they have been 

modeled by taking into account only geometrical variables in FEM, substantially 

neglecting the coupling of their electrical properties with the mechanical ones. Of course 

this induced an error on the solution but, as it will be clear from comparisons with 

experimental acquisitions, this error affected the solution in a minor way. 
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1.3.2 Test on an aluminum plate (experiment). 

In our first analyses of Lamb waves modeling we considered a 6061-T6 aluminum plate 

having dimensions 800x700x1 mm3, and piezoelectric disks (PWAS) of diameter 10mm 

and thickness 0.2mm from PI Ceramic (PIC-255). Four PWAS transducers were bonded 

on the plate for experimental acquisitions (Fig. 1.9): the actuator (#1) was positioned close 

to plate center, while other three PWAS, operating as sensors, were placed on the 

horizontal axis of the aluminum plate, at distances from actuator 5cm (#2), 10cm (#3) and 

20cm (#4). As exciting signal we considered a 4.5 sine cycles curve with Hanning window, 

and a number of experimental acquisitions were performed for frequencies from 10 to 500 

kHz, step 10 kHz: both A0 and S0 modes were excited. 

 

 

 

 

Fig. 1.9a - Aluminum plate 6061-T3, 800x700x1 mm3 
Fig. 1.9b - PWAS disks, PI-Ceramic PIC-255 

 

In Fig. 1.10 and 1.11 experimental acquisitions for frequencies 70 and 200 kHz are shown. 
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Fig. 1.10 – Experimental acquisitions of Lamb waves for frequency 70kHz 

 

  

  
Fig. 1.11 – Experimental acquisitions of Lamb waves for frequency 200kHz 

 

As shown in Fig. 1.10 and 1.11, for both frequencies of 70 and 200 kHz, A0 and S0 modes 

overlap on PWAS #2. At frequency 70kHz, S0 velocities were found to be, from theory 
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(solutions of <1.8> and <1.9>), cg
S

0 = cph
S

0 = 5350 m/s, while for A0: cg
A

0 = 1539 m/s and 

cph
S

0 = 808 m/s; for frequency 200 kHz, S0 present cg
S

0 = 5342 m/s and cph
S

0 = 5348 m/s, 

while A0: cg
A

0 = 2285 m/s and cph
A

0 = 1295 m/s (Vallen Dispersion - Vallen Systeme 

GmbH, Germany). 

An important property of Lamb waves, linked also to their dispersiveness, is that: if, in the 

range of frequency content of the exciting signal, phase and group velocities are very 

close, cph ≈ cg, with group velocity almost constant, then the shape of the Lamb waves 

packet, for a single mode, remains substantially the same during propagation. This is the 

case of S0 mode, visible in both Fig. 1.10 and 1.11: S0 signals received at the various 

sensors locations are very similar to the exciting signal. On the contrary A0 mode presents 

different phase and group velocities and, for frequencies up to 2 MHz, it is highly 

dispersive (Fig. 1.2). This induces a variation of the waveform as far as the wave packet 

travels through the plate (i.e. in the space domain) as indicated in Fig. 1.10 and 1.11. 

 

1.3.3 Test on an aluminum plate (numerical simulations). 

After performing experimental acquisitions we considered both the ‘exact’ analytical (Mal 

and Lih code [13]) and FEM solutions of the same experiment. 

In a first step a point load was used as excitation, lying on the top surface of the plate and 

acting along the horizontal X-axis. This was a preliminary analysis that did not take into 

account the actual PWAS behavior, acting as a radial excitation, as it will be showed later 

on. As excitation we used the same curve as in Lamb waves tuning experiments: a 4.5 sine 

cycles curve with Hanning window (Fig. 1.6), with maximum amplitude 1 Newton and 

frequency 200 kHz, thus generating both A0 and S0 waves. Then we considered, as output 

from both ‘exact’ and FEM codes, the in-plane X component of displacement, evaluated at 

sensor’s location: PWAS #3 at 100mm distance from source (#1). 

The aluminum plate, dimensions 800x700x1 mm3, was modeled, in FEM, with 3D bricks 

having dimensions 0.5x0.5x0.5 mm3, thus obtaining, for the entire model, 1600x1400x2 

elements for a total of 4.48 million elements. Element dimension was derived from 

wavelength, by modeling at least ten elements per wavelength. Since both S0 and A0 waves 

were present, two wavelengths were considered, λA
0 and λS

0: 

λ
A

0 = cph
A

0 / f = (1295m/s) / (200kHz) = 6.48mm 

λ
S

0 = cph
S

0 / f = (5348m/s) / (200kHz) = 26.74mm 

thus obtaining, by using a 0.5mm mesh dimension along X and Y axes, 13 elements for the 

A0 wavelength and 53 for the S0 one. 

Regarding number of elements along the thickness, FEM analyses were performed, for 

comparing the results, using 5, 4, 3, 2 and 1 elements: minor differences in the solutions 

were found from 5 to 2 elements, therefore 2 elements through the thickness were used. 

The time for calculating the ‘exact’ solution was about 1 day with a 4 cores 2.4GHz 

computer, whereas the time for solution using FEM was about 1 hour and 20 minutes with 

a 8 cores 2GHz computer. 
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In Fig. 1.12 the comparison of the three curves, relative to an experimental acquisition, 

‘exact’ solution and FEM solution, at PWAS #3 location, are shown (normalized curves). 

 

 
Fig. 1.12 – Comparison between the experiment, the ‘exact’ solution and the FEM solutions, for Lamb waves 

propagation in an aluminum plate 
 

As we can see from Fig. 1.12, both ‘exact’ and FEM solutions showed the same trend, 

although these curves did not overlap the experimental acquisition. This was to be 

expected because of the too simple modeling of excitation load on the plate. Nevertheless 

we can notice that S0 wave is quite well modeled, whereas A0 presents different amplitudes 

and a little shift between the numerical solutions and the experimental acquisition. 

Therefore in the second step we considered a different, more structured, load 

configuration: a circular set of 8 in-plane loads located in correspondence of PWAS 

actuator’s ideal ends (Fig. 1.13a).  

                                                          

  

 
 
 

 

Fig. 1.13a – modeling of PWAS 

actuators 

Fig. 1.13b – modeling of PWAS 

sensors 

Fig. 1.13c – deformation modes of a 

PWAS disk 

 

Regarding the output, in FEM, we modeled the PWAS sensor disks using a zero-order 

technique: the PWAS outputs (Volts) were obtained by considering the time variation of 
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the area of octagons, approximating PWAS disks, with vertices coincident with mesh 

nodes (Fig. 1.13b). Actually we linked the time history of this variation to the output 

voltage of PWAS through the electro-mechanical parameters provided by the PWAS 

manufacturer. For better understanding the way we modeled PWAS disks let’s consider 

their working principle during the passive operating mode (sensors). A piezoelectric 

material is a material whose main feature is the generation of an electric field when a 

stress/strain field is present: also the opposite occurs. This means that when a piezoelectric 

material is deformed we can measure a potential difference (Volts) between two electrodes 

soldered onto two of its faces. By considering a piezoelectric disk we can figure out two 

modes of deformation: an in-plane mode and an out-of-plane mode (Fig 1.13c). The in-

plane deformation can be defined through the variation of the diameter (dPWAS) of the disk, 

while the out-of-plane deformation through the variation of its thickness (th). If we 

consider the potential difference measured between the upper and lower surfaces of the 

piezoelectric disk, we have that this voltage is directly linked to the geometrical 

deformations of the disk through the relation: 

 

31 33

1.14
d d

PWAS
U L in plane out of plane

PWAS

d th th
V V V

d
− − − −

   ∆ ⋅ ∆
   ∆ = ∆ + ∆ = +       ⋅   

 

 

with d31 and d33 piezoelectric constants defining the ratio between deformation and 

tension. Since the in-plane deformation of a PWAS is mostly elliptical rather than circular 

we can define the surface variation instead of the diameter variation, for then linking this 

variable to voltage (the diameter variation PWASd∆  is averaged along two perpendicular 

axes): 

 
2 2

2

4
1.15 2

2 4 2 2

PWAS PWAS PWASPWAS PWAS PWAS PWAS

PWAS PWAS

d d d d d dA A d
A A

A d A d

π π π
π

π

⋅∆ ⋅∆∆ ∆ ∆ 
= = ⇒ ∆ ⇒ ⋅ ⇒ 

 
≃ ≃ ≃

 

If we assume that only the in-plane deformation is present we obtain: 

 

31 31 31 31

2 1.16
d 2 d 2 d 2 d

PWAS PWAS

PWAS PWAS

d th d th A th th A
V V

d d A A

 ∆ ⋅ ∆ ∆ ∆
∆ = ⋅ ⇒ ∆ ⋅ 

⋅ ⋅ ⋅ ⋅ 
≃ ≃ ≃

 
 

This last relation <1.16> allows us to estimate, with a very good quality, the output voltage 

from PWAS using the time histories of the node displacements at the sensors locations: 
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The great advantage of this solution is that we can link the outputs from the piezoelectric 

sensors, in the FEM code, to the time histories of only geometrical variables, without the 

need to use coupled electro-mechanical elements: the output voltage from a PWAS is 

simply the result of a post-processing phase of the FEM solution. This is of great 

advantage since the direct transient analysis, for fast dynamics, can be solved through the 

use of explicit FEM codes: explicit FEM codes are much faster than implicit ones when 

there is the need of having small time-steps in the solution. This was our case since we had 

the need to have solutions for problems presenting time durations of the order of few 

milliseconds, with time-steps for solution of the order of microseconds, or even less. 

Electro-mechanical coupling is a non-linear problem and unfortunately only implicit codes 

are available for this cases. The disadvantage of using an implicit code for Lamb waves 

simulations, involving coupled electro-mechanical elements, is that the time for solution, 

even using a very fast computer, easily achieves the order of weeks! Moreover the problem 

in this case can’t be easily solved through the use of parallel processing. On the contrary 

explicit algorithms are easily suitable for massive parallel processing. 

The result of this new modeling, for PWAS #3, is shown in Fig 1.14. 

 

 
Fig. 1.14 – Comparison between experiment and FEM solution, for Lamb waves propagation  in an aluminum 

plate 
 

As shown in Fig. 1.14, both A0 and S0 waves were well modeled both in amplitude and 

shape, though a little shift still remained for A0 waves. From Fig. 1.15 to 1.17 the contour 

plots of the stresses are shown, and from Fig. 1.18 to 1.20 the  comparisons for frequencies 

70, 200 and 320 kHz, for all PWAS sensors, are presented. 
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Fig. 1.15 – Contour plot of Von Mises stresses, for the aluminum plate, at 70kHz 

 

 
Fig. 1.16 – Contour plot of X stresses, for the aluminum plate, at 200kHz 
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Fig. 1.17 – Contour plot of Von Mises stresses, for the aluminum plate, at 320kHz 

 

  

  
Fig 1.18 – Comparison Exp-FEM of Lamb waves propagation for frequency 70kHz. 
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Fig 1.19 – Comparison Exp-FEM of Lamb waves propagation for frequency 200kHz. 

 

  

  
Fig 1.20 – Comparison Exp-FEM of Lamb waves propagation for frequency 320kHz. 
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there was a little difference, at 320kHz, between the FEM and the experimental 

waveforms, probably because the mesh size, for A0, was not appropriate for that case: 

λ
A0

320kHz = 4.94 mm: the model had less than 10 elements per wavelength. Nevertheless 

we can conclude that the physics of Lamb waves propagation and interaction with PWAS 

devices was correctly modeled [27]. A note on absolute amplitudes of signals: we 

presented all normalized curves since, in this analysis, we focused on correct modeling of 

the general physics of the problem. A quantitative analysis can be carried out by 

correlating the applied voltage with the real forces transferred to structure by PWAS 

actuators. A similar but not identical analysis has been performed during FEM modeling of 

low velocity impact events involving PWAS sensors (Chapter 2). 

The crucial advantage of this FEM modeling technique is that we simulated Lamb waves 

propagation involving PWAS devices with very simple models and very low 

computational costs for solution: for the presented aluminum plate, at the various involved 

frequencies, solution times varied from 2 hours (320kHz solution) to  5 hours (70kHz) with 

a 8 cores (AMD Opteron 2GHz) computer. Solution time in explicit FEM codes is 

approximately a linear function with the termination time of the analysis and with the 

number of elements of the model, whereas for implicit schemes it increases dramatically 

with termination time and size of the finite element model. 

 

1.3.4 Test on a composite plate (experiment). 

After obtaining a good modeling of Lamb waves propagation for an isotropic material, we 

considered, in our analyses, a fiberglass/epoxy composite plate. The case of orthotropic or 

transversely isotropic, or even anisotropic materials in general [Appendix], with respect to 

FEM modeling, did not introduce any additional complication since it was sufficient, 

during the pre-processing phase, to use the specific material model instead of the isotropic 

one. The only problem, always to be faced when dealing with composites, was the 

difficulty to have correct values of the material elastic properties. In the case of an 

orthotropic material it is characterized by nine elastic material constants: three Young 

modules (E1, E2, E3), three shear modules (G12, G13, G23), three Poisson’s ratios (ν12, ν13, 

ν23). Typically the two in-plane Young modules are easier to measure through a simple 

tensile test, while the other ones are more difficult to estimate. Anyway we found, facing 

this problem, that Lamb waves propagation also suggests a method for estimating some. 

The structure under investigation was a Norplex-Micarta ‘NP130’ fiberglass plate, 

provided by Prof. Victor Giurgiutiu, Director of Laboratory for Active Materials and Smart 

Structures (LAMSS, Department of Mechanical Engineering, University of South 

Carolina, Columbia SC, USA). The NP130 (NEMA FR-4) consists of a woven glass fabric 

substrate combined with a halogenated epoxy resin system. All the plies are oriented in the 

same direction, so the resulting laminate is symmetric and presents two main directions 

with very similar elastic properties: at 0° (LW - Lengthwise direction) and 90° (CW - 

Crosswise direction). 
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In order to model correctly the material, all the elastic constants needed to be determined; 

for this reason a tensile test was preliminarily performed for estimating the two in-plane 

Young modules. A number of rectangular specimens, both at 0° and 90°, were cut from a 

big NP130 plate by using a water-jet cutting machine (Department of Civil Engineering, 

USC), according to ASTM D-3039 (Standard Test Method for Tensile Properties of 

Polymer Matrix Composite Materials) (Fig. 1.21 and 1.22). 

  
Fig. 1.21 – Water-jet cutting machine present at Department of Civil Engineering, University of South 

Carolina, Columbia SC, USA. 

 
Fig. 1.22 – Specimens from NP130 

according with Standard Tensile Test 

Method ASTM D-3039 
 

The tensile test was performed at Mechanical and Aerospace Engineering Department, 

University of California, Los Angeles, USA (UCLA) by courtesy of Prof. Ajit Mal, 

Director of UCLA Nondestructive Evaluation Research Group. 

The results of the tensile test are shown in Fig. 1.23. 
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Fig. 1.23 – Results of tensile test for NP130 material 
 

The average of the two tests, both for LW and CW directions, gave the values for Young 

modules: 

E0° = E1 = (E1
@1

 + E1
@2) / 2 = (21.4 + 20.7) /2 = 21.05 GPa 

E90° = E2 = (E2
@3

 + E2
@4) / 2 = (22.2 + 23.0) /2 = 22.6 GPa 

In a first step we used, for the other elastic constants, the values available from other tests: 

E3 = 4.32 GPa (manufacturer) 

G12 = 5.6GPa (test for shear modulus performed at USC by Patrick Pollock and Siming Guo, for a different thickness NP130 plate) 

G13 = 5.9 GPa (typical value for fabric fiberglass/epoxy) 

G23 = 6 GPa (typical value for fabric fiberglass/epoxy) 

ν12 = 0.15 (test for Poisson’s ratio by Pollock and Guo, USC) 

ν13 = 0.38 (typical value for fiberglass/epoxy) 

ν23 = 0.4 (typical value for fiberglass/epoxy)  

 

The plate dimensions were 925x925x3.2 mm3, and a large number of PWAS disks 

(Steminc SM412, 7mm diameter disks) were used for Lamb waves propagation analysis, 

involving various angular directions. The PWAS actuator (#0) was placed at 300mm 

distance from two of the plate edges (Fig 1.24). For 0° direction three sensors were placed 

at distances from PWAS #0: 150mm (#1), 225mm (#2), 300mm (#3); for 45° direction 

four sensors were placed at distances from source: 150mm (#4), 225mm (#5), 300mm (#6), 
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450mm (#6+); other 19 PWAS sensors were bonded at the various angular directions, from 

0° to 90° step 5°, all at a distances of 300mm from PWAS actuator (Fig. 1.24).  

 

  
Fig. 1.24 – NP130 plate used for Lamb waves propagation tests 
 

We performed the experimental acquisitions, from 1 to 500 kHz step 1 kHz, using PWAS 

#0 as actuator, and the other PWAS disks as sensors. As exciting signal we used 3 sine 

cycles with Hanning window, having maximum amplitude 10 Volts (Fig. 1.25). In Fig 1.26 

some Lamb waves acquisitions are presented for both 0° and 45°. 

 
Fig. 1.25 – 3 sine cycles curve with Hanning window 
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Fig. 1.26 – Experimental results of Lamb waves propagation for NP130 plate 

From acquisitions presented in Fig. 1.26 we can clearly notice the tuning effect of PWAS 

since, from 25 to 200 kHz, S0 mode continuously increase in amplitude, whereas A0 mode 

increases from 25 to 50 kHz for then decreasing from 50 to 200 kHz. Group velocities 

were measured from experimental curves through the aid of the ‘AGU-Vallen Wavelet’ 

software (Vallen Systeme GmbH, Germany) (Tab 1.1 and Fig. 1.27). 
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Tab 1.1 
(0°, 45°) [m/s] 25 kHz 50 kHz 100 kHz 200 kHz 
S0 (3492, 3308) (3458, 3135) (3376, 3070) (3058, 2768) 
A0 (1076, 1048) (1232, 1227) (1274, 1301) (n.p., n.p.) 
 

 
Fig. 1.27 – Results of the Wavelet analysis for a signal at 100kHz 
 

 
 

Fig. 1.28 – Results of the Wavelet analysis for a signal at 200kHz 

It can be clearly noticed, from Fig. 1.27, that, for frequency 100kHz and 0° direction, we 

are on an ascending part of the S0 tuning curve: this because the signal registered at PWAS 

#2 (0°, 225mm) presents, for the S0 wave packet, a frequency content centered around 

110kHz, and thus higher than the exciting signal (100kHz). On the contrary (Fig. 1.28), for 
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200kHz and 45°, we are on a descending part of the S0 tuning curve: the wave packet at 

PWAS #4 (45°, 0.255mm) presents a downward shift of about 10kHz. 

 

1.3.5 Test on a composite plate (FEM). 

After performing Lamb waves experimental analyses for the NP130 plate we considered 

the FEM modeling of the same fiberglass/epoxy plate: a direct transient analysis was 

carried out through the use of the explicit FEM code LS-Dyna. For modeling the plate we 

used 3D brick elements with dimensions 1x1x1.07 mm3; non-reflecting conditions were 

also used at the boundaries in order to model just a more limited region of the entire plate, 

instead of the entire one. Therefore the real plate had dimensions 925x920x3.2 mm3 while 

the FEM model had dimensions 600x600x3.2 mm3, thus obtaining 600x600x3 = 1080000 

total number of elements (Fig. 1.29). 

 

 
Fig. 1.29 – FEM model of the NP130 plate for Lamb waves propagation 

 

For modeling PWAS transducers in FEM we used the same technique presented in Par. 

1.3.3, for the aluminum plate. As exciting curve we used the same as the experimental 

acquisitions on NP130 (3 sine cycles with Hanning, Fig. 1.25), involving two frequencies: 

65kHz and 165kHz. From theory (LAMSS ‘Guided waves’ code for composites) the 

smallest phase velocity between S0 and A0, at 65kHz, was found cph
A0 = 830m/s, so 

obtaining λA0
65kHz = 12.77mm. For frequency 165kHz only S0 mode was present in the 

experimental acquisitions, having a higher value for the wavelength: λS0
165kHz > 12.77mm. 

For these reasons we concluded that the smallest number of elements per wavelength, 

nevertheless considered enough, was relative to A0 modeling at 65kHz: 13 elements. 

In a first step of FEM modeling we considered the material elastic properties presented in 

Tab. 1.2 (some of that were estimated by us while some others were provided by 

manufacturer). 
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Tab 1.2 

E1 = 21.05 GPa E2 =  22.6 GPa E3 = 4.32 GPa 
G12 = 5.6GPa G13 = 5.9 GPa G23 = 6 GPa 
ν12 = 0.15 ν13 = 0.38 ν23 = 0.4 
 

The FEM solution time on a 8 cores computer (AMD Opteron 2GHz) was about 45 

minutes, and the comparison between the experimental acquisition and the numerical 

solution, for PWAS #2 (0°, 225mm), is shown in Fig. 1.30. 

 

 
Fig. 1.30 – Comparison between the experimental acquisition and FEM solution for NP130, at a distance of 

225mm and frequency 65kHz. 
 

From the numerical-experimental comparison, reported in Fig. 1.30, it turned out that the 

S0 wave was correctly modeled, whereas the experimental A0 wave was found to be slower 

than the numerical one. Furthermore we found, during the simulations, that at 0° the S0 

wave mainly depends on the Young modulus in that direction E1, while the A0 wave on 

both E1 and the out-of-plane shear modulus in that direction G13. Since E1 was determined 

experimentally (tensile test), we tried with various values of G13, trying to correctly model 

the A0 at 0°. We performed the simulations with various values of the shear modulus (Fig. 

1.31): G13 [GPa] = {5.9; 4.9; 3.9; 2.9; 2.8; 2.7; 2.5;2.3}. 
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Three steps for obtaining G13: 
 
(a) G13 [GPa] ={5.9; 4.9; 3.9; 2.9; 2.5} 
 
(b) G13 [GPa] ={2.9; 2.7; 2.5; 2.3} 
 
(c) G13 [GPa] = {2.9; 2.8; 2.7; 2.3} 

Fig. 1.31 – Test for estimation of elastic constant G13 for NP130 
 

As clear from Fig. 1.31, S0 waves at 0° were almost not affected by G13, whose correct 

value was found to be G13 = 2.8 GPa: using this value in the FEM model, we obtained a 

good agreement between the numerical and experimental A0 waves. We performed the 

same analysis for the direction 2 (PWAS #7) and we found G23 = 2.95GPa. 

Through the simulations we also found that propagation of both the A0 and S0 modes, for 

0° and 90°, were not significantly affected by in-plane shear modulus G12, as clear from 

Fig 1.32.  
 

 
Fig. 1.32 – Results of Lamb waves propagation for NP130 plate at 0°, for various values of G12 
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On the contrary we found that propagation at 45°, of both A0 and S0, was strongly affected 

by G12, hence we tried to estimate the in-plane shear modulus G12 from Lamb waves 

propagation at 45°: we tried to model correctly S0 wave packet at 45° (PWAS #5) in shape 

and position by varying G12 [GPa] = {6.1; 5.6; 5.1; 4.6; 3.1} (Fig. 1.33). 

 

 
Fig. 1.33 – Results of Lamb waves propagation for NP130 plate at 45°, for various values of G12 

 

The correct value was found to be G12 = 5.1GPa; in Fig. 1.33 is clear the dependence of 

both the S0 and A0 waves by the value of G12. 

So, with Lamb waves propagation, we correctly estimated the material elastic constants: 

G12, G13, G23. Regarding E1 and E2, before evaluating the correct shear modules, we 

performed a number tests at both 0° and 90° for correctly modeling S0 waves; from these 

tests we obtained values for the in-plane Young modules with an error of about 1GPa with 

respect to the ones from the tensile tests. The other material constants unfortunately (or 

fortunately) do not affect significantly Lamb waves propagation, as clear from Fig. 1.34; 

by changing all the three Poisson’s ratios we found the same results as for E3: no changes 

in Lamb Waves both at 0° and 45°. 

 

  
Fig. 1.34 – Results of Lamb waves propagation for NP130 plate at 0° and 45°, for various values of E3 
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Finally we present the results for Lamb waves modeling in composites, shown in Fig 1.35, 

using the material properties in Tab 1.3 (values with † were obtained through our tests): 

 

Tab 1.3 

E1
†= 21.05 GPa E2

† =  22.6 GPa E3 = 4.32 GPa 
G12

† = 5.1GPa G13
† = 2.8 GPa G23

† = 2.95 GPa 
ν12 = 0.15 ν13 = 0.38 ν23 = 0.4 
 

  

  
Fig. 1.35 – Results of Lamb waves propagation for NP130 plate, for frequencies 65kHz and 165kHz 

 

In Fig 1.35 we can see that both the S0 and A0 modes were well modeled in shape and 

position for both 0° and 90°; for 45°, the S0 was correctly captured while the A0 presented 

correct shape with a very little shift. Also the result for a different frequency (165kHz) is 

shown, where, in the experimental acquisitions, the sole S0 wave was present. 

At the end of our analysis we can conclude that we were able to model correctly the 

propagation of Lamb Waves in composites using FEM, with a very low computational 

cost: order of hours; moreover this analysis gave us a tool for estimating the most 

important elastic material properties of a woven fabric composite. 
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2. IMPACTS 

2.1 Introduction 

Laminated composite materials are used extensively in aerospace and other applications. 

With their high specific modulus, high specific strength, and the capability of being 

tailored for a specific application, these materials offer definite advantages compared to 

more traditional materials. However, their behavior under impact is a concern, since 

impacts do occur during manufacture, normal operations, or maintenance. The situation is 

critical for impacts which induce significant internal damage, undetectable by visual 

inspection, that cause large drops in the strength and stability of the structure. Impact 

dynamics, including the motion of both the impactor and the target and the force 

developed at the interface, can be predicted accurately using a number of models. The 

state of stress in the vicinity of the impact is very complex and requires detailed analyses. 

Accurate criteria for predicting initial failure are generally not available, and analyses 

after initial failure are questionable. For these reasons, it can be said that a general 

method for estimating the type and size of impact damage is not available at this time. 

However, a large amount of experimental data has been published, and several important 

features of impact damage have been identified. In particular, interply delaminations are 

known to occur at the interface between plies with different fiber orientation. Their shape 

is generally elongated in the direction of the fibers in the lower ply at that interface. The 

delaminated area is known to increase linearly with the kinetic energy of the impactor 

after a certain threshold value has been reached. The effect of impact damage on the 

properties of the laminate has obvious implications for design and inspection of actual 

structures. Experimental results concerning the residual strength of impact damaged 

specimens subjected to tension, compression, shear, bending, and both static and fatigue 

loading are available. Analyses concentrate primarily on predicting residual tensile and 

compressive strength. In order to fully understand the effect of foreign object impact 

damage, one should understand impact dynamics and be able to predict the location, type, 

and size of the damage induced and the residual properties of the laminate. [Serge Abrate, 

“Impact on Composite Structures”, Cambridge University Press, 1998]. 

 

From a certain point of view the most critical type of impacts for composites are low 

velocity impacts [22] [25]. These impacts, even if do not induce immediately significant 

damage, they can produce internal and not visible small damage. These damage, typically 

matrix cracking and delaminations between plies, might reduce the stiffness and strength 

below the sizing limit loads (especially in compression) and propagate dramatically during 

normal operations of structures threatening the integrity of the whole structure. A low 

velocity impact is an impact whose energy does not allow to generate penetration, and 

typically the speeds involved are of the order of tens of meters per second, and the energies 

of the order of tens of Joules. Moreover, during a low velocity impact event the strain rates 
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can be neglected, and quasi-static failure criteria can be adopted to estimate the extension 

of damage [25]. To understand what happens to the structure after an impact let’s consider 

the Fig 2.1. 

 

 
 

Fig. 2.1 – Impacts on composite structures 

 

On the x-axis we can see the energy involved in the impact, while on the y-axis the 

residual stress/strain of the thin-walled structure subject to the impact. There is an elastic 

range, from zero to the “First damage” point, where the response of the structure is elastic 

thus without any permanent damage. Above the “First damage” energy value a damage 

occur and, within the range of “Inner visibility”, the damage can’t be noticed through an 

external visual inspection: no external permanent indentation is present. For increasing 

values of energy a permanent indentation appears on the top surface at the impact location, 

and for high values of impact energy even perforation can occur. 

For low velocity impacts we are generally in the range of energies between Inner and 

External visibility: delaminations occur. A delamination, induced by an impact or even by 

something else, generally is not very dangerous at the precise moment when it’s produced. 

Structures are designed using Safety Factors that allow them to carry loads beyond the 

expected or actual ones, so a delamination, if it’s not very large, does not bring the residual 

stress below the Ultimate Design Stress (Fig 2.1). The very challenging problem of 

delaminations is that they usually propagate when the structure is subject to load cycles, so 

their dimensions increase during time. After an impact, even if the damage dimension is 

not alarming, a deep inspection must be performed since small and even negligible 
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damage, with high probability, will grow during lifetime of the structure bringing the 

Residual Stress under the minimum required. 

Maintenance and inspection in the aerospace environment are very costly and, for civil 

aircrafts, absorb about 20-25% of the entire operational costs. If we also consider that a 

small delamination is a barely visible damage, hence very difficult to identify with a 

simple visual inspection, we conclude that an impact and delamination detecting tool is 

strongly required: a tool that is able to detect an impact event in time, to localize it in 

space, to estimate its energy, and finally to give precise information on the consequences 

in terms of type and extension of damage, induced at the impact point. Such a damage 

detecting tool would reduce the risk of unexpected failures and the cost of scheduled but 

unneeded maintenance. 

By considering an aircraft (Fig 2.2), there are some specific areas interested in low velocity 

impacts. While the aircraft’s cockpit, wing leading edges and tail are interested much more 

in impacts involving high speeds and energies, eventually with penetration (bird impact), 

the upper and lower shells of both the fuselage and wings are subject to debris impacts, 

during the takeoff and landing maneuvers, and to tool drop impacts during maintenance, 

hence mostly by events that involve small energies and speeds. 

 

 
 

Fig. 2.2 – Aircraft subject to impacts 

 

Regarding impacts detection in time, localization in space and estimation in terms of 

energy, this is generally achieved by using an array of sensors anchored on the structure 

that constantly “sense” and, in case of impact, record the signals of the elastic waves 

generated by the event. In figure 2.3 we can see an example of a grid of sensors. From the 
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knowledge of the speed of the elastic wave generated by impact and traveling in the plate, 

from theory and/or experiments, and by considering the precise instants when each sensor 

acquires the signal, through a triangulation technique, we can locate in time and in space 

the impact. Regarding the energy involved in the impact it can be directly linked to the 

amplitude of the elastic wave acquired by sensors. 

 

  
 

Fig. 2.3 – Grid of sensors for impact point identification 

 

One of the most advantageous technique for impact sensing involve piezoelectric 

transducers directly bonded onto the structure [20] [23], for their capability to be used also 

for damage detection, after impacts, using Lamb waves. 

 

2.2 Generalities on impacts. 

Regarding the mechanism of damage induced by impacts on composites, we shall 

distinguish between low and high velocities. For high velocities damage is originated from 

high contact stresses on the top of the impacted surface (Fig 2.4a): this induces a conical 

damage just below impact point; let’s notice that this behavior is also typical for thick 

plates subject to impacts [21]. On the contrary, for low velocity impacts, the bending of the 

structure causes high values of stresses at the bottom part of the impacted surface: this 

induces matrix cracking which are deflected at the lowest interface to form a delamination,  

then this mechanism is also transferred in the layers above [24] (Fig 2.4b). 

 

  
Fig 2.4 – Damage development in (a) rigid and (b) flexible targets 

 

Regarding the severity of the damage that an impact can induce into a structure, it is 

function of the impactor properties such as mass, speed, geometry, angle of impact, etc., 



39 

 

and of the properties of the impacted structure such as material, geometry, boundary 

conditions, etc. [21]. The problem is very complex and involves the analysis of the induced 

stresses inside the material nearby the impact position; simple formulas taking into account 

all the parameters involved in phenomenon are not easily available. In this case a direct 

transient FEM analysis is required for the application of failure criteria that usually involve 

both laminar and interlaminar stresses. Choi and Chang presented a quasi-static 

delamination criterion for estimating the damage caused by a low velocity impact event on 

a layered composite made up of differently oriented unidirectional laminas [25]. The 

criterion assumes that a delamination can occur only after a matrix-cracking event: if the 

matrix cracking propagates along the thickness and meets layers with different fiber 

orientations, the delamination occurs. The criterion is formalized by the conditions: 
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The criterion presents Da as an experimental parameter, while n
Y and n

S are the in situ 

transverse strength (traction or compression) and the interlaminar shear strength of the n-th 

lamina, respectively; the stresses are calculated as averages within the lamina. 

Although it is not easy to estimate with simple formulas the stresses inside the material, a 

simple relation between the contact force and the geometrical and structural properties of 

both the impactor and the structure was proposed by Hertz [26]: 
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with α indentation depth during impact, r radius of the impactor, Es and νs material 

properties of the impactor, Eyy transverse modulus normal to the fiber direction in the 

uppermost composite layer. Anyhow through a FEM simulation the contact force can be 

obtained for each time step. 

 

2.3 Numerical analysis of damage due to low velocity impacts. 

In order to evaluate a numerical tool that is able to predict the damage size produced by a 

low velocity impact on a composite plate, we now present the numerical simulations, 

performed using the explicit FEM code LS-Dyna, compared with the experimental results 
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of the test case considered in the paper by Choi and Chang [25]. For predicting matrix 

cracking and delaminations after impact we used the Choi-Chang criterion <2.1>. 

The test case consisted in a carbon/epoxy T300/976 composite plate subject to low velocity 

impact whose geometry and material specifications are presented in Tab. 2.1. 

 

Tab. 2.1 

Ply orientation Thickness [mm] Span length [mm] Width [mm] 
[03/903/03/903/03] 2.16 100 76 
 

Elastic properties of T300/976 used in calculations 

In-plane longitudinal modulus Exx [GPa] 156 
In-plane transverse modulus Eyy [GPa] 9.09 
In-plane shear modulus Gxy [GPa] 6.96 
Out-of-plane shear modulus Gyz [GPa] 3.24 
In-plane Poisson’s ratio νxy 0.228 
Out-of-plane Poisson’s ratio νyz 0.4 
Density ρ [kg/m3] 1540 

Strength properties of T300/976 used in calculations 

Longitudinal tension XT [MPa] 1520 
Longitudinal compression XC [MPa] 1590 
Transverse tension 0

YT [MPa] 45 
Transverse compression YC [MPa] 252 
Ply longitudinal shear 0

S [MPa] 105 

Impactor properties (steel) 

Elastic modulus E [GPa] 207 
Poisson’s ratio ν 0.3 
Total mass m [kg] 0.16 
Nose radius r [mm] 6.35 

Parameters 

Strength parameter A 1.3 
Strength parameter B 0.7 
Strength parameter C 2.0 
Strength parameter D 1.0 
Delamination growth parameter Da 1.8 
Adjacent plies with same orientation M 3 
Angle between differently oriented plies �θ 90° 
 

The strength parameters A, B, C, D and Da are empirical and are used, for evaluating the 

in situ strengths, in the formulas: 
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The FEM model of the experiment consisted in a plate made up of 3D brick elements, with 

impactor modeled as a rigid sphere made up of shell elements. Since delamination, 

according to the damage criterion <2.1>, does not occur between adjacent plies having 

same orientation, each group of plies with the same orientation (03 and 903) was modeled 

with a single brick element: the resultant plate had five elements along the thickness. (Fig 

2.5) 

 

 

 

Fig 2.5a – FEM model of impact Fig 2.5b – Experimental impact test 

 

The various parameters of the FEM model are presented in Tab 2.2. Let’s notice that we 

used a finer mesh dimension with respect to the numerical study presented in the Choi-

Chang paper. 

 

Tab 2.2 
Plate elements size (bricks) [mm3] Number of elements of the plate Sphere elements size (shell) [mm3] 
1.45 x 1.33 x 0.432 74 x 57 x 5 1.2 x 1.2 x 0.5 

 

The plate was clamped on two opposite edges (as showed in the above Fig. 2.5b) and the 

impacts were performed at the velocities of: 2.9 m/s, 3.22 m/s, 4.00 m/s, 6.70 m/s. 

In Fig. 2.6 we can see, for each value of the impactor speed, the extension of the matrix 

cracking and subsequent delaminations in the plate (the layers are considered to be five 

since we modeled every 3 adjacent plies with the same orientation as a single layer). 
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Fig 2.6a – Speed of impactor: 2.90 m/s 

 

   

   

   
Fig 2.6b – Speed of impactor: 3.22 m/s 
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Fig 2.6c – Speed of impactor: 4.00 m/s 
 

   

   

   
Fig 2.6d – Speed of impactor: 6.70 m/s 
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The resultant forces at the interface are presented in Fig. 2.7. 
 

  

  

  
Fig 2.7 – Contact forces during the impact events 
 

As we can see in Fig. 2.6, from 2.90 to 6.70 m/s both matrix cracking and delaminations 

occurred at layer 5 and interply 4/5, with an extension that increased with the impactor 

speed. For a speed of 6.70 m/s small matrix cracking were also present in layers 1 and 4 

and this induced a small delamination at interply 3/4, but no delamination appeared at 

interply 1/2. In Fig 2.8 we can see the trend of the damage dimensions with impactor 

speed. 
 

  
Fig 2.8 – Delaminations subsequent to impacts 
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We then compared our numerical results with both numerical and experimental results 

obtained by Choi and Chang and presented in their paper (Fig. 2.9). 

 

 
 

 
Fig 2.9 – Comparison between FEM results and experimental data 

 

As we can see from the numerical and experimental comparisons in Fig 2.9, our analyses 

gave general better results than the cited authors for lower values of the velocity of the 

impactor. In detail we estimated correctly the delamination length for speed values up to 4 

m/s, while, for higher values of speed, we underestimated it. Regarding delamination 

width, we obtained a general better estimation. This was probably due to the use, in our 

analysis, of a more refined mesh with respect to the one used by Chang and Choi. 

 

2.4 Impacts: experimental and numerical tests. 

2.4.1 Test on a carbon/epoxy composite plate. 

In this experimental test we considered a woven fabric carbon/epoxy composite plate 

subject to an impact. We were interested in both the damage evolution and the analysis of 

the signals gathered by the PWAS sensors bonded on the plate. The signals were produced 

by the strain waves generated during the impact and propagating from the impact point. 

For this purpose, a number of piezoelectric disk sensors (PWAS disks of 10mm diameter, 

PIC-255) were bonded on the upper surface of the plate. 

The plate material was RC200T-3k carbon in epoxy matrix, and its dimensions were: 440 x 

440 x 3.2 mm; the layup was a symmetric [0/90]s. In Fig. 2.10a we can see an image of the 

plate instrumented with PWAS. 
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Fig 2.10a – Carbon/epoxy plate used for the impact test Fig 2.10b – Impact machine CEAST 

Fractovis 

 

The impact tests were carried out at the Department of Materials Engineering (DIMP) of 

the University of Naples “Federico II” using the impact machine CEAST Fractovis (Fig. 

2.10b), capable to perform impacts involving speeds, in its basic setup, up to 4.6 m/s and 

involving impact masses up to 70 kg for maximum energies of the order of 700 J.  

The plate was impacted at its center and signals were acquired from four PWAS bonded 

along the negative part of the Y-axis (PWAS #1 and #2) and along the -45° direction with 

respect to the X-axis (#3 and #4). A number of other PWAS were bonded on the plate for 

Lamb waves propagation purposes both in the pre and post impact conditions. 

In this first test an impact involving penetration was planned for strength characterization 

since, from the analysis of the behavior of the plate during an impact with penetration, 

some important features can be extracted: in detail from the time histories of both the 

contact force and the indentation at the impact location, both recorded during the impact 

event. The mass involved in the impact test was 8.64 kg and the speed 4.43 m/s, with a 

resulting kinetic energy, in the first contact instant, of 84.78 J. 

Unfortunately the impact caused breakage of the plate due to bending (Fig 2.4b), and not 

due to local stresses induced only by impact in its location (Fig 2.4a): this caused the 

failure of the test for material characterization (Fig 2.11). Anyhow the test resulted good 

for collecting the signals from PWAS during the impact event. 
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Fig 2.11 – Damage caused by impact of 84.78 J at plate center 

 

The contact force during impact is presented in Fig 2.12. 

 

 
Fig 2.12 – Time history of the contact force during impact 

 

A problem with trigger was found by observing the contact force time history: 

unfortunately we missed the first part of the curve in the elastic range. 

In Fig 2.13 we can see the signals acquired from PWAS during impact, and in Tab 2.3 we 

can see their coordinates with respect to a reference system having origin at the center of 

the plate (Fig. 2.10a): the PWAS had distances from the plate center 100mm (#1 and #3) 

and 150mm (#2 and #4). 

 
Tab 2.3 
PWAS #1 [mm] PWAS #2 [mm] PWAS #3 [mm] PWAS #4 [mm] 
{0 , -100} {0 , -150} {(√2/2)·100 , -(√2/2)·100)} {(√2/2)·150 , -(√2/2)·150)} 
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Fig 2.13 – PWAS outputs during impact on carbon/epoxy plate
 

Since the test for plate’s impact strength properties did not give the expected 

we concentrated our attention on the PWAS response, by modeling the same impact

experiment with the explicit FEM code LS-

by using an orthotropic elastic material model (without failure) for modeling composite 

(Fig. 2.14). 
 

 
Fig 2.14a – FEM model of the impact event 
 

We modeled the plate with 3D brick elements using a non uniform mesh, with smaller 

elements size at the impact location, and bigger elements size in the regions far away from 

the plate center (Fig 2.14b); a transition mesh between regions of different refinement 

levels was designed. 

As output from PWAS sensors we considered, in FEM, the same “Numerical Voltage” 

used for Lamb waves modeling and presented in Par 1.3.3 (Fig. 2.15).
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during impact on carbon/epoxy plate 

Since the test for plate’s impact strength properties did not give the expected information, 

we concentrated our attention on the PWAS response, by modeling the same impact 

-Dyna. We only considered the elastic response 

by using an orthotropic elastic material model (without failure) for modeling composite 

  
Fig 2.14b – Detail of the impact point 

with 3D brick elements using a non uniform mesh, with smaller 

elements size at the impact location, and bigger elements size in the regions far away from 

; a transition mesh between regions of different refinement 

As output from PWAS sensors we considered, in FEM, the same “Numerical Voltage” 

used for Lamb waves modeling and presented in Par 1.3.3 (Fig. 2.15). 
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Fig 2.15 – FEM model of PWAS sensor 
 

The results of the FEM analysis, showing the
 

Fig 2.16 – Output of PWAS sensors, from FEM, during impact
 

The output voltages from FEM were significantly higher than the experimental ones

then normalized the results, presented in Fig. 
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the PWAS outputs are presented in Fig. 2.16. 

  

  
Output of PWAS sensors, from FEM, during impact 

he output voltages from FEM were significantly higher than the experimental ones: we 

then normalized the results, presented in Fig. 2.17. 

  

  
Comparison between experimental acquisitions and FEM from PWAS sensors 
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From graphs in Fig. 2.17 we can see that the physics of the problem was correctly captured 

since the output from PWAS in the experiment and from FEM showed the same trend 

(overlapping curves). The difference in amplitude can be probably attributed to two 

reasons: firstly the non linearity of the real problem, linearized in our modeling; secondly 

the PWAS through thickness mode neglected in this first analysis. The reason why we 

obtained good results using a FEM model that did not include damage could be connected 

to the time duration of the damage evolution in the experiment, probably higher than the 

considered time window of 2ms. In our following experiments for PWAS modeling we 

considered only elastic ranges in the plate dynamics (impacts without failures), plus also 

taking into account the out-of-plane piezoelectric mode, with significantly better results. 

 

2.4.2 Test on an aluminum plate. 

We now present an impact test performed at the ‘Laboratory for Advanced Materials and 

Smart Structures’ (LAMSS, University of South Carolina, Columbia SC, USA) led by 

Prof. Victor Giurgiutiu, known for his advanced studies on piezoelectric materials and 

Lamb waves propagation [5]. 

The test involved a 2024-T3 aluminum plate having dimensions: 311 x 610 x 0.82 mm, 

instrumented with four PWAS sensors (APC-850 disks, diameter 7mm) bonded on the 

panel. The plate was suspended with elastic copper wires for simulating free boundary 

conditions (Fig. 2.18). 

 

  

  
Fig 2.18 – Aluminum plate used for impact test 
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A number of elastic impacts were performed using a PCB Electronics impact hammer, 

model 086C03 (Fig. 2.19), involving various values of energy, and thus of impact forces. 

The hammer gave us, as output, the time history of the contact force during impacts, thus 

allowing us to link the output from PWAS sensors to the applied force. Seven impact tests 

were performed and the experimental results are presented in Fig. 2.20. 
 

 

As we can see from Fig. 2.20 the contact force ranged from 0.5 to 3 Newtons, so very low 

energies were involved. The nose of the hammer was made up of soft vinyl (Fig. 2.19), so 

the stresses induced at the impact location were supposed to be very small with respect to 

aluminum strength properties: elastic impacts were performed. 

 
Fig 2.19 – Impact hammer used for the 

test: PCB Electronics mod. 086C03 

 

 

 

 

  
Fig. 2.20 – Experimental results for the impact tests performed on the aluminum plate 
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Regarding PWAS output, the maximum recorded absolute value was approximately 7 

Volts. In Fig. 2.21 we can see the trend of the sensors output with contact force: it was 

found to be linear with a good approximation.  
 

  

  
Fig. 2.21 – Maximum values of the signals recorded from PWAS sensors during tests 

 

After performing the experiments, we modeled the aluminum plate with FEM (Fig. 2.22); 

we used 3D brick elements having dimensions 1x1x0.41 mm3, thus meshing the plate with 

311x610x2 = 379420 brick elements; an isotropic elastic material model was used. The 

force was applied as a single node vertical load using the curve obtained by the impact 

hammer during the test number @7 (red curve in Fig. 2.20). The output from sensors was 

evaluated using the same technique presented in Par. 1.3.3, i.e. modeling a real PWAS 

with a 2D octagonal surface defined by 8 nodes on the plate, approximating the circular 

shape of the bonding layer between the plate and the PWAS (Fig. 2.15). 

 The formula for voltage calculation from FEM is shown here for convenience: 
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In Fig. 2.22b two concentric octagons were defined; it was found they to have, for each 

time step, substantially the same value of the ratio 0∆A A . 
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Fig 2.22a – FEM model of the impacted aluminum 

plate 
Fig 2.22b – FEM model of PWAS sensors 

 

The time for solution was 2 hours and 20 minutes with a 4-CPU computer (Quad-core 

AMD Opteron 2GHz, total 32 cores) with 64 Gbytes of RAM; the results for PWAS #1, #2 

and #3, after post-processing, are presented in Fig. 2.23. 
 

  

  
Fig 2.23 – Comparison between experimental acquisitions and FEM solution for the impact on aluminum plate 
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correctly captured by the FEM solution, though amplitudes did not match. Let’s notice that 
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equal to 2 between the experimental acquisitions and the FEM solutions: the FEM solution 

overestimates the experimental acquisitions by a factor two. 

We tried this time to better understand why this happened by considering, in addition to 
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disks), the bending deformation, the through thickness deformation. In order to get this 

information from FEM we considered a 3D modeling of the actual PWAS disks as we can 

see in Fig. 2.24. 
 

 
Fig 2.24 – 3D FEM model of a PWAS sensor 
 

All the PWAS elastic material properties were provided by the manufacturer (APC) and 

we modeled the disks using an orthotropic material model. 

Regarding the ‘frustum of a cone-like’ deformation we considered, in the post-processing 

phase of the FEM solution, for each time step, the difference between the upper and lower 

surface area of the modeled PWAS: no considerable difference was measured, so we 

concluded that the in-plane strains were substantially the same on the lower and upper 

surfaces. 

Regarding bending deformation we evaluated the curvatures of the mid-plane of the disks 

and they were found to be negligible too. In Fig. 2.25 we can see the trend of curvature 

radii along X and Y axes for PWAS #1; we can notice that the minimum radius is about 28 

meters: very large with respect to the diameter of PWAS disk of 7mm. 
 

 
Fig 2.25 – Curvature of the PWAS #1 during impact 
 

On the contrary, regarding through thickness deformation, we found it to be high enough 

to give an output voltage of the order of Volts! In fact in Fig. 2.26 we can see the time 

history of the thickness variation (order of nanometers), for PWAS #1, and the 

corresponding output voltage given by the formula <2.5>: 
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Fig 2.26 – Though thickness-displacement and relative induced voltage for PWAS #1 

 

So the two terms of the total output voltage from sensors, i.e. in-plane and out-of-plane 

<1.16> and <2.5>, were found to be of the same order of magnitude. We then considered 

them both as output from FEM and the results are presented in Fig. 2.27. 
 

  

  
Fig 2.27 – Comparison between the experimental acquisition and the FEM solution for the impact event 
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with a very good agreement. We then concluded that, for low energy elastic impacts, this 

zero-order piezoelectric sensors modeling worked fine. We were able to obtain this results 

with very small computational costs: of the order of some hours. Performing the same 

analysis involving coupled electromechanical elements, and thus using implicit FEM 

codes, would have taken probably some weeks. 
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2.4.3 Test on a fiberglass plate. 

The third presented impact test was also performed at LAMSS, USC. The test involved a 

Norplex-Micarta ‘NP130’ epoxy/fiberglass plate having dimensions 925x925x3.2 mm3; 

some of the material elastic properties (Tab 2.4) were directly evaluated through both 

tensile tests and ultrasonic waves propagation tests. Note: the value of G12 presents a little 

difference from Par. 1.3.5. 

 

Tab 2.4 

E1 = 21.05 GPa E2 =  22.6 GPa E3 = 4.32 GPa 
G12 = 5.6GPa G13 = 2.8 GPa G23 = 2.95 GPa 
ν12 = 0.15 ν13 = 0.38 ν23 = 0.4 
 

The impact tests were performed, as for the aluminum panel in Par 2.4.2, involving the 

impact hammer (PCB Electronics, model 086C03) and relatively low values of energy, in 

order to excite only elastic responses of the plate. A large number of PWAS sensors 

(Steminc SM412, 7mm diameter disks) were bonded onto the structure for Lamb waves 

propagation purpose but, in this test, only seven of them were used: #1 to #7 (Fig. 2.28). 

 

 

 

 
Fig 2.28 – NP130 fiberglass plate used for the impact test 

 

A system of Cartesian axes was defined on the plate: the origin of the X-Y axes was 

chosen to be coincident with the position of PWAS #0 which is bonded, with respect to the 

lower-left corner of the plate, at a distance of 300 mm from both the two edges (Fig. 2.28). 

The impact point was chosen very close to PWAS #0: on +45° direction at 20mm. The 

PWAS sensors #1, #2 and #3 were bonded on the positive X axis at 150mm, 225mm and 

300mm, respectively; PWAS #4, #5 and #6 were bonded on the +45° direction at distances 

from origin 150mm, 225mm and 300mm; PWAS #7 was bonded on positive Y axis at 

distance 300mm. 
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A total of 21 impact tests (from @0 to @20) were performed involving various values of 

energy; in Fig. 2.29 both the contact forces and the outputs from three sensors are 

presented, for ten of the impact tests; the corresponding curves ‘Force-Max Voltage’ in 

Fig. 2.30 were obtained by considering the first 5 ms of the time histories. 

 

 

  

  
Fig 2.29 – Experimental results for impact on NP130 

 

 
Fig 2.30 – Max output from PWAS sensors versus 

contact force  
 

After performing the experiments we modeled with FEM the same impact event using the 

same technique as for the aluminum plate (Par. 2.4.2), i.e. by exciting the plate with the 

contact force curve from test @11 (red curve in Fig. 2.29). The plate was modeled using 

3D brick elements having dimensions 2x2x1.6 mm3, the PWAS were modeled with a non 

uniform mesh (Fig. 2.31). 
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Fig 2.31 – FEM model of the NP130 plate used for the impact tests 
 

By post-processing the FEM results we obtained the PWAS output voltage, presented in 

Fig. 2.32. 
 

  

  

  

  
Fig 2.32 – Comparison between experimental data and FEM solution for the impact test on the NP130 plate 
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As we can see in the graphs in Fig. 2.32 all the general trends of the experimental curves 

were captured by the FEM, showing a good approximation also for the amplitudes: the 

numerical solution only seems to slightly underestimate the real output voltage. We can 

then conclude that we have an excellent technique for simulating output from PWAS disk 

sensors, during impacts, with a very small computational cost. 
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3. STRUCTURAL HEALTH MONITORING WITH 

LAMB WAVES. 
 

3.1 Introduction. 

In plate like structures almost all kind of damage such as cracks, holes, material losses and, 
specifically for composites, delaminations, fiber fractures and breakages, matrix cracking 
and interfacial debondings are identifiable by Structural Health Monitoring (SHM) 
strategies involving the Lamb waves [5] [7] [15]. The general concept is that an ultrasonic 
wave, traveling in thin walled structures, propagates undisturbed as long as no obstacles 
are present on its path, whereas, if any of the above-mentioned damage appears, it is 
typically reflected, diffracted, and also mode conversions might occur. The obstacle or 
discontinuity can also be represented by a structural component that is part of the structure, 
such as a rivet hole, a stiffener or a change in thickness. By the theoretical point of view, 
any kind of damage can be detected by the ultrasonic technique involving Lamb waves, 
through the choice of the correct frequency for the specific case. Typically the size of a 
damage correctly localized through Lamb waves is comparable with the wavelength which 
is, for frequencies in the hundreds of kHz, of the order of centimeters using S0 (zero order 
symmetric Lamb waves) and of the order of millimeters using A0 (zero order 
antisymmetric). Indeed the wavelength of an S0 wave propagating in an aluminum plate of 
1mm thickness, at a frequency of 125kHz, is about 4cm, while for an A0 wave, at the same 
frequency, is about 9mm. Various studies on the appropriate excitation frequency can be 
found in literature [8] [5]. 
Since Lamb wave based SHM was introduced, several approaches have been developed in 
this area. A first classification can be carried out by considering the methodology for Lamb 
wave exciting and sensing. In the area of contact tomography, which involves the use of 
standard ceramic piezoelectric transducers for both exciting and receiving guided waves, a 
further division can be made by considering the methods of diagnosis for damage 
identification, each of them exploiting different aspects of the interaction between Lamb 
waves and the damage itself. All these methodologies can be grouped in three main 
categories: ‘Time of Flight’ techniques [17], ‘Propagation Paths’ techniques [7] [18] and 
‘Echo’ techniques [19]. Of course the distinction is not clear and there may be hybrid 
approaches. 
 

3.2 Damage localization techniques. 

3.2.1 Time of Flight technique. 

For the Time of Flight (T-o-F) technique a non linear system of equations, one for each 
sensor, is considered involving: the sensor positions, the speeds of waves, and time 
intervals derived from the analysis of the acquired signals. Substantially, for each sensor, a 
time interval is defined as the difference between the arrival time of the Lamb wave 
directly traveling from the actuator to the sensor, and the eventual arrival time of the wave 
reflected from the damage (Fig. 3.1). 
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Fig 3.1 – Time of Flight damage localization method 

 
The system of equations, geometrically represented by the curves in Fig. 3.1, is given by: 
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Since the system <3.1> is not linear and moreover overdetermined, the solution is not 
unique: a region of high probability of presence of damage is derived (Fig. 3.1). 
The main advantage of this technique is that we can localize with high precision, of course 
depending on the number of sensors, the damage and eventually its extension. Conversely 
the limits of such a technique are essentially two. The first problem concerns the eventual 
presence, in the time series, of reflections due to factors different from damages, i.e. edges 
and/or other structural components anchored onto the structure. Another problem is due to 
multimodal behavior of the Lamb waves: for values of frequency-thickness from 0.01 to 
0.5 MHz*mm the symmetric and antisymmetric Lamb wave modes coexist, plus 
presenting different propagation speeds. Because of this it is difficult to understand if the 
waves arriving at a sensor location include reflections, or if they are expression of the 
multimodal nature of Lamb waves. To overcome this problem a number of studies have 
been carried out on frequency tuning: i.e. using the “sweet spot” frequency [8]. 
 
3.2.2 Propagation Paths technique. 

A second class of methods considers the perturbation that a damage, eventually present 
along the propagation paths of the Lamb waves, induces on the signals registered at 
sensors locations. Two sets of acquisitions are involved in the analysis: one performed in 
the pre-damage condition, and the other one in the post-damage condition; from the 
comparison between these two sets of signals, areas with high probability of presence of 
damage are eventually identified [7]. In detail a Damage Index (DI) is defined involving 
the two sets of signals, Ypre

k and Ypost
k, acquired, for every actuator-sensor path, in pre and 

post damage conditions. The DI can be defined both in time or frequency domains, and a 
typical form is represented by Eq. <3.2>: 
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3.2 1 , 1.. ;   number of actuator-sensor paths
k

postk

k

pre

Y
DI k N N

Y
= − =  

 
The intersection of paths presenting highest values of DI identifies the damage position 
(Fig. 3.2). 
 

 
Fig 3.2 – Propagation paths damage localization method 

 
A significant advantage of this technique regards its insensitivity to the conditions on the 
edges, and to components anchored on the surface of the panel. Conversely a delicate point 
of such a technique is related to the ability to purify as much as possible the signals from 
background noise, which, for reasons inherent in the methodology, is a strong source of 
disturbance. 
 
3.2.3 Echo technique. 

The last class of techniques uses every single transducer both as actuator and sensor at the 
same time. From the time required by the ultrasonic wave to return to the starting point, 
after being reflected by the damage, a circumference is defined for each sensor. From 
intersection of these circumferences, one for each transducer, the damage is localized. 
 

 
Fig 3.3 – Echo technique for damage localization 

 
A summary of the presented techniques is shown in Tab. 3.1. 
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Tab. 3.1 Advantages Disadvantages 

Time of 
Flight 

Accurate localization of damage Problems with edges and other structural 
components anchored on the plate; 
problems due to multimodality of Lamb 
waves 

Propagation 
Paths 

Insensitivity to boundary conditions Background noise strongly penalizing for 
accuracy of damage localization 

Echo Simple data elaboration Problems with edges 

 
 

3.3 Test on an aluminum panel. 

3.3.1 Phased array technique. 

We now present a numerical-experimental test for damage localization on an aluminum 
plate. The experiment was first modeled using FEM, for then performing experimental 
acquisitions and post-processing of the data for identifying a damage present on the plate 
[28]. For damage localization we used a technique involving two sets of Lamb waves 
acquisitions: the first set of acquisitions were performed in the safe condition (without 
damage), while the second set in the damaged condition. The processing of data consisted 
in the introduction of a Damage Index (DI) for comparing the two plate conditions: pre- 
and post-. The introduced DI, <3.3>, highlights the difference between two signals in the 
frequency domain, and it has a null value if the two signals are identical; on the contrary 
the higher is the difference of the two signals, the higher is the value of DI: 
 

( )

( )
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f
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As experimental setup we considered a 6061-T6 aluminum plate, having dimensions 
1000x1000x1 mm3, instrumented with a number of PWAS transducers for Lamb waves 
generation and acquisition; a hole with edge cracks was drilled to simulate a damage. 
For damage localization with Lamb waves we used the phased-array technique, i.e. 
through the generation of a beam of waves that allowed us to scan the plate as a radar. The 
operating principle of phased array is based on constructive-destructive interference 
between the ultrasonic waves generated by different actuators that enables to generate and 
direct the beam. This is achieved through an appropriate time-shifting of the exciting 
signals sent to the various PWAS actuators. The time-shift of the exciting signal sent to the 
m-th PWAS disk actuator, for a 1D-linear phased array, is directly linked to the angle of 
the beam through the relation <3.4> [5]: 
 

( ) ( )03.4 cos  ; 1.. 1m

d
m m M

c
φ∆ = = −
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with M total number of PWAS actuators, d center-to-center distance between PWAS, c 

wave speed, and 0φφφφ  steering angle of the beam (Fig. 3.4). 

 
 

 
  

 
Fig 3.4 – Phased array for Lamb waves beam forming 

 
Let’s notice that, using a 1D-linear PWAS phased array (Fig. 3.4), two wave lobes are 

present: at ± 0φφφφ . 

 
3.3.2 FEM modeling. 

Before performing the test on the real 6061-T6 aluminum plate, we previously modeled a 
similar experiment with FEM. A 1D-linear array of 9 PWAS disks of diameter 10mm (PI 
Ceramic, PIC-255), located at plate’s center, was modeled using FEM, for beamforming of 
Lamb waves; other 9 PWAS sensors were modeled close to boundaries. The distance 
between two PWAS of the array was d = 12mm (Fig. 3.4), the distance of the PWAS 
sensors from edges was dedges = 80mm, while the distance between them was dsensors = 
105mm (Fig. 3.5); 4.5 sine cycles curve with Hanning window (Fig. 1.6) at frequency 
225kHz was chosen as exciting signal, thus obtaining a phase velocity of the generated S0 
wave packet: cph = 5347m/s ≈ cg = 5340m/s. The FEM modeling of the plate involved 3D 
elements (bricks) and the analysis was performed using the explicit code LS-Dyna. The 
plate was modeled using 2000x2000x4 = 16 millions of elements, since the bricks 
dimensions were: 0.5x0.5x0.25 mm3; the simulations were carried out involving various 
steering angles of the beam: 30°, 45°, 60°, 75° and 90°. 
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Fig 3.5a – Sketch of the aluminum plate Fig 3.5b – FEM modeling of the PWAS phased array 
 
The plate was firstly modeled in its intact condition, and Lamb waves propagation 
simulations were performed at the various steering angles by time-shifting the loads at 
actuators locations (Fig 3.5b); the signals from the PWAS sensors were then post-
processed. After this a new FEM analysis was performed in the damaged condition by 
modeling a crack on the plate: it consisted in a 5mm hole with two notches of 7mm on two 
sides (Fig. 3.6.b) located, with respect to phased array, at an angle of 60° and distance 
scrack = 250 mm (Fig. 3.6.a); the crack was oriented perpendicularly to the line connecting 
it and the phased array center. The geometry of the damage considered simulates a rivet 
hole from which two side cracks are developed. 
 

 

 
 
 

 

Fig 3.6a – Position of the crack on the aluminum 

plate 
Fig 3.6b – FEM modeling of the crack 

 
In Fig. 3.7 we can see a contour plot of the Von-Mises stresses (FEM solution), for the 
damaged plate, with beam’s steering angle of 60°: the Lamb waves beam encounters the 
crack. 
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Time = 7.5 s Time = 22.5 s 

  
Time = 37.5 s Time = 52.5 s 

  
Time = 60 s Time = 67.5 s 

  
Time = 82.5 s Time = 90 s 
Fig 3.7 – Contour plots of Von Mises stresses from the FEM solution 
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As we can see both in Fig. 3.7 and 3.8a, part of the beam is reflected back and propagates 
toward the PWAS array; reflections are also visible at plate’s edges (Fig. 3.8b). 
 

  
Fig 3.8a – Stresses distribution around the crack Fig 3.8b – Reflections at edges of the plate 
 
From the arrival time of the reflected beam, sensed by the PWAS array (transducers used 
as sensors in this case), we can measure the distance of the crack as the propagating speed 
is known, whereas from the signals acquired by sensors close to the edges we can calculate 
its angular position. The distance of the crack from the center of the array can be calculated 
through the relation: 
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where 
t-ο-f
mt∆  is the time-of-flight of the beam, measured by the m-th PWAS disk. Time-

of-flight was calculated through a wavelet analysis of the signals: dcrack-FEM was found to 
be 251 mm, so very close to the exact value scrack = 250mm. Regarding the angular 
position of the crack we introduced the signal energy definition, or “Intensity” (I), of the 
PWAS signals from the FEM, for the sensors nearby the edges: 
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with 
k

iA∆  variation of the area of the k-th ‘sensor-octagon’ (Par 1.3.3), for i-th time-step. 

Let’s consider that the introduced parameter Ik defined by <3.6>, through <1.16>, can be 
linked to voltage simply by multiplying it by a constant involving geometry and 
electromechanical properties of the PWAS disks. 
In Fig. 3.9 we can see the values of the Intensity I at all sensors positions, for the various 
steering angles, for both cracked and un-cracked plate. 
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Steering angle: 30° Steering angle: 45° 

  
 

Steering angle: 60° Steering angle: 75° 

  
Steering angle: 90° Panel’s sketch. 

Fig 3.9 – Intensity evaluation at sensors positions, for the various steering angles 

 
By considering the Damage Index (DI) defined by the relation: 
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I
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we obtained the results presented in Fig. 3.10. 
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Steering angle: 30° Steering angle: 45° 
 

 

 

 
 

Steering angle: 60° Steering angle: 75° 

  
 

Steering angle: 90° DI mean value at the various steering angles. 
Fig 3.10 – Damage Index evaluation at the various steering angles 

 
From graphs in Fig. 3.10 we can see that highest values of DI, registered at sensors 
locations, corresponded to the steering angle of 60°, which is the angle of the line 
connecting the PWAS array and the damage: this is clear in the last graph of Fig. 3.10 
where main values of DI at the various angles are shown. 
 
3.3.3 Experimental setup. 

After setting up the technique for crack localization using FEM, we passed to experiment 
involving the real aluminum plate (Fig. 3.11), for validating the obtained results. 
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Fig 3.11 – Aluminum plate used for the damage localization test 

 
We considered a 6061-T6 aluminum plate, 1000x1000x1 mm3, and we bonded, at its 
center, a 1D-linear PWAS array with the same properties as in FEM model: 9 disks of 
diameter 10mm (PI Ceramic, PIC-255) with 12mm the center to center distance between 
them (Fig. 3.11). Nine sensors, as in FEM, were also placed nearby edges, precisely at 
distance 105mm between them and 80mm from plate’s borders (Fig 3.12). As exciting 
signal we considered the 4.5 sine cycles curve with Hanning window at 225kHz. 
 

 
Fig. 3.12 – Sketch of the aluminum plate 

 
For simulating the time-shifts of the signals sent to the various PWAS actuators, in order to 
simulate the Lamb waves beam forming, we used a Round Robin technique [5], 
substantially using a superposition principle: 

1) we excited one by one the PWAS of the array and collected all the signals at 
sensors positions; 

2) we then combined the collected signals, for each one of the sensors, by adding the 
appropriate time-shift in the sum process; 

 
After registering all the Lamb waves signals in the pre-damage condition of the plate, we 
drilled a hole at a distance of 250mm from PWAS array, and angle 60°: the hole was 
10mm long and 3mm wide (Fig. 3.13). 
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Fig 3.13 – Aluminum plate in the damaged condition: a hole was drilled 

 
After performing a new acquisition in the damaged condition we carried out the same 
analysis as in the FEM simulation, i.e. by introducing the intensity Ik of signals: 
 

( )
2( )3.8 V k

k i i

i

I V t = ⋅∆
  ∑    

 
As Damage Index DI we used the same as in FEM modeling: 
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In Fig. 3.14 and 3.15 the results of the analysis of the experimental data are shown. 
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Steering angle: 30° Steering angle: 45° 

  
 

Steering angle: 60° Steering angle: 75° 
 

 

 

 
Steering angle: 90° Panel’s sketch 

Fig 3.14 - Intensity evaluation at sensors positions, for the various steering angles (note: there is a typo on Y axes: V2*s) 
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Steering angle 30° Steering angle 45° 

  
Steering angle 60° Steering angle 75° 

  
Steering angle 90° Mean values of DI for the various steering angles 
Fig 3.14 - Damage Index evaluation at the various steering angles 

 
We can clearly see, from Fig. 3.14, that we obtained the highest values of DI for the 
steering angle 60°, angular position of the crack. We then also measured the distance of the 
hole using the relation <3.6> and we found a distance of dhole = 248mm, so very close to 
the correct value shole = 250mm: 
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Conclusions 
Our analyses demonstrated that a good modeling of both Lamb waves propagation and low 

velocity impacts events, involving PWAS transducers, can be obtained, through the use of 

an explicit FEM code (direct analysis in time domain), with a low order technique. Same 

good results were obtained both on aluminum and composite plates and all the numerical 

results were validated with experimental data. The damage detection test in an aluminum 

plate, through the use of the phased array technique, also demonstrated the capability of 

the employed technique to be used for Structural Health Monitoring testing involving 

Lamb waves. The great advantage of such a technique is related to the possibility of 

carrying out accurate studies on the dynamics of the interaction of Lamb waves with the 

various kinds of damage, such as holes, cracks, delaminations, etc., through the use of a 

simple, computationally low cost tool. 
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Appendix: 3-D Costitutive Equations 
 
(a) General Anistropic Material with no plane of material symmetry 

According to the generalized Hook’s law it is possible to express the 3D constituve 
equation in the form stress-strain or strain-stress. 
The stress-strain equation is given by: 

iσ =
ijC ⋅

jε  
 
with i, j=1,2,3,4,5,6 or in matrix for as: 
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With 6x6=36 unknowns. The inverse strain-stress relation is: 

σε jiji S ⋅=
 

 
with i, j=1,2,3,4,5,6 or in matrix form as: 
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The matrices C and S are called Stiffness and Compliance matrix, respectively. This is 
sometime confusing as, despite their initials, the Compliance matrix is S and the Stiffness 
matrix is C. It is possible to demonstrate using energetic arguments (i.e. the definition of 
the strain energy) that both the constitutive matrices C and S are symmetric, i.e. Cij=Cji 
and similarly Sij=Sji. 
Because of the symmetry of the Cij matrix, for a generic anisotropic material the number of 
unknowns in the constitutive equations is 21 (= 6x7/2). 
 
(b) Specially Orthotropic Materials with 3 mutually perpendicular planes of material 

symmetry 

 
For this class of materials the constitutive equation can be written as: 
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and the number of unknowns is reduced to 9. There 
characterizing this type of materials: 

1. there is no interaction between normal stresses (
γ6). Normal stresses acting along principal material directions produce only normal 
strains; 

2. there is no interaction between shear stresses (
ε6). Shear stresses acting on principal material planes produce only shear 

3. there is no interaction between shear stresses and shear strain
Shear stresses acting on a principal plane produces only a shear strain on that 
plane; 

 
(c) Transversely Isotropic Material 
 
An orthotropic material is called transversely isotropic when one of its principal plane is a 
plane of isotropy. At every point on this plane, the mechanical properties are the same in 
all the directions: 
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For a transversely isotropic material the number of unknowns in the constitutive equation 
is 5. 
It is worth to note that a unidirectional ply is transvers
usually denoted as x1, is the axis parallel to the direction of the fibers, as in the above 
figure.  
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and the number of unknowns is reduced to 9. There are some special features 

there is no interaction between normal stresses (σ1, σ2, σ3) and shear strains (γ4, γ5, 
). Normal stresses acting along principal material directions produce only normal 

o interaction between shear stresses (τ1, τ2, τ3) and normal strains (ε4, ε5, 
). Shear stresses acting on principal material planes produce only shear strains; 

here is no interaction between shear stresses and shear strains on different planes. 
stresses acting on a principal plane produces only a shear strain on that 

material is called transversely isotropic when one of its principal plane is a 
lane, the mechanical properties are the same in 

 

 

For a transversely isotropic material the number of unknowns in the constitutive equation 

It is worth to note that a unidirectional ply is transversely isotropic. The axis of symmetry, 
, is the axis parallel to the direction of the fibers, as in the above 



 

Although each lamina is anisotropic, usually orthotropic, some laminates may have 
isotropic in plane properties and are referenced as transversely isotropic in that plane. Let 
(n≥3) be the number of plies in the laminate
ππππ/n the laminate is transversely isotropic in the laminate plane. Ex
isotropic are ππππ/3 and ππππ/4 laminate with a lay
 
 ππππ/3 laminate    →   [0°/60°/-60°]                            
 
or for symmetric cases 
 
ππππ/3 laminate    →   [0°/60°/-60°]s                            
 
The main difference between symmetric and non symmetric laminates is that for the 
symmetric case the entire laminate behaves with similar features of the case (b), i.e. there 
is no interaction between in-plane forces and 
 

 
 
Transversely isotropic materials find several applica
When defining the coordinate system, the x
x3 is the plane of isotropy), as in the above
coefficient Cij of the stiffness matrix in terms of the elastic modules. For a transversely 
isotropic material we have: 
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Moreover, for a transversely isotropic material we have
 

EE 32
=  
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Although each lamina is anisotropic, usually orthotropic, some laminates may have 
e referenced as transversely isotropic in that plane. Let n 

3) be the number of plies in the laminate; if the angle between any two adjacent plies is 
the laminate is transversely isotropic in the laminate plane. Example of transversely 

with a lay-up: 

                            ππππ/4 laminate    →   [0°/+45°/-45°/90°]   

                            ππππ/4 laminate    →   [0°/+45°/-45°/90°]s   

The main difference between symmetric and non symmetric laminates is that for the 
symmetric case the entire laminate behaves with similar features of the case (b), i.e. there 

plane forces and out-of-plane curvature. 

find several applications in many engineered structures. 
x1 axis is generally the axis of symmetry (i.e. x2- 

is the plane of isotropy), as in the above figure. Moreover, is it useful to express the 
of the stiffness matrix in terms of the elastic modules. For a transversely 
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ersely isotropic material we have (x2- x3 plane of isotropy): 
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(d) Isotropic Material 
 
When a material has infinite number of planes of material symmetry through any point, it 
is referred as isotropic. For this class of materials the constitutive equation can be written 
as: 
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and the number of unknowns is reduced to 2. 


