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PREFACE  
 

The chemotherapy, a branch of pharmacology that develops drugs for therapeutic 

purposes can be divided into antiviral and antitumor chemotherapy. In both case the 

primary requirement for a chemotherapeutic agent must be the selectivity for the 

diseased cells in order to preserving healthy ones, so preventing the occurrence of 

possible side effects.  

Inspired by postulate of Paul Ehrlich, the pioneer of selective chemotherapy, which 

is based on the creation of a ‘magic bullets’ to be used in the fight against human 

diseases, scientists have pointed a lot of attention on the development of powerful 

molecular therapeutics. In particular, in the antitumor chemotherapy field, current 

efforts are devoted to the construction of new and efficient targeted-drug delivery 

systems which allow a controlled drug release once reached cancerous tissue. This 

approach has been realized thanks to the use of controlled release carriers which include 

liposomes, monoclonal antibody, drug loaded biodegradable microspheres and drug 

polymer conjugates.  

On the other side, the antiviral chemotherapy has take advantage of the advent of 

gene silencing strategies based on the development of synthetic MOs that promise to 

achieve the specificity and efficacy that Ehrlich thought. This strategies for regulating 

the expression of a gene results completely selective, and of universal applicability, 

compared to traditional therapies. Strong motivations for this research have been the 

promising results obtained with antisense, antigene, aptamer, and, in more recent times, 

RNAi and miRNA strategies. 

 

http://en.wikipedia.org/wiki/Cancer�
http://en.wikipedia.org/wiki/Liposomes�
http://en.wikipedia.org/wiki/Microspheres�
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1.1 INTRODUCTION 

With the exception of coronary and heart diseases, cancer remains the major cause of 

death in the Western world. Despite the significant progress in the development of 

cancer detection, prevention, surgery, and therapy, there is still no efficient cure for 

patients with malignant diseases. The greater part of clinically approved anticancer 

drugs are characterized by a narrow therapeutic window that results mainly from a high 

systemic toxicity of the drugs in combination with an evident lack of tumor selectivity 

causing undesirable severe side effects, such as hair loss and damage to the liver, 

kidney, and bone marrow.  

One strategy aimed at providing substantial increases in the clinical efficacy of 

such drugs, is the development of relatively non-toxic prodrug forms of these cytotoxins 

that can be selectively activated in tumor tissue. The term prodrug was first introduced 

in 1958 by Adrien Albert1 to describe compounds that undergo biotransformation prior 

to eliciting their pharmacological effects. In accordance with this definition, prodrugs 

are derivatives of drugs that are metabolized or activated after administration in the 

body to release or generate the pharmacologically active species; if possible at the site 

of action. They could be designed to overcome pharmaceutical, pharmacokinetic, or 

pharmacodynamic barriers such as insufficient chemical stability, poor solubility, 

unacceptable taste or odor, irritation or pain, insufficient oral absorption, inadequate 

blood-brain barrier permeability, marked presystemic metabolism, and toxicity.2 

Inadequate aqueous solubility is an important factor limiting parenteral, 

percutaneous, and oral bioavailability of common drugs. In such cases, a prodrug 

strategy may bring great pharmaceutical and pharmacokinetic benefit. Charged 

promoieties (esters: phosphates, hemisuccinates, aminoacyl conjugates, dimethylamino 

acetates) and neutral promoieties (poly(ethylene glycol)s, PEG) can be used. Some 

examples of this prodrugs are reported in Figure 1 such as Fosphenytoin,3 a hydrophilic 

phosphate prodrug of the anticonvulsant phenytoin which is rapidly hydrolyzed by 

phosphatases. Another example is Parecoxib Sodium, a water soluble and injectable 

prodrug of Valdecoxib that is a selective inhibitor COX-2 (enzyme responsible for 

inflammation or pain). It can be used when patients are unable to take oral drug. 
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Figure 1. Examples of prodrug designed to improve aqueous solubility. 

 

A classic and clinically successful example of such a prodrug is N4-pentyloxycarbonyl-

5′-deoxy-5-fluorocytidine (Figure 2), more commonly known as Capecitabine or 

Xeloda, a cytotoxic agent orally administered and preferentially activated in tumor cells. 

This carbamate of fluoropyrimidine was synthesized4 in the 1990s as an oral 

formulation designed to circumvent the unacceptable toxicity of 5’-deoxy-5-

fluorouridine. The main limitation of the latter derives from its gastrointestinal toxicity, 

attributed to liberation of 5-fluoruracil in the small intestine under the action of 

thymidine phosphorylase, a tumor-associated angiogenesis factor. Capecitabine was 

thus designed to be not metabolized by thymidine phosphorylase; indeed, after oral 

administration, it crosses the gastrointestinal barrier intact and is rapidly and almost 

completely absorbed. It is subsequently converted into 5-fluoruracile in a three-step 

process involving several enzymes (Figure 2). In theory, this prodrug of 5-fluoruracil 

should have two main advantages, which may translate into an improved therapeutic 

index. First, it should increase the concentration of the active principle at the tumor site, 

and so, should have greater activity; second, it should decrease the concentration of 

drug in healthy tissues with a consequent reduction in systemic toxicity. 
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Figure 2. Structure of a Capecitabine prodrug converted by three enzymes to 5-

fluorouracil. 

 

Another well-know example of an enzyme-activated prodrug is L-Dopa. This agent is a 

precursor of the dopamine neurotransmitter and so has been the mainstay of Parkinson’s 

disease therapy since its discovery in the early 1960s. It has the usefulness to cross the 

protective blood-brain barriers (BBB) by amino acid transporters, whereas dopamine 

itself cannot. After brain entry, L-Dopa is decarboxylated by aromatic L-amino acid 

decarboxylase to dopamine (Figure 3), which can act locally, being no longer a 

substrate for neutral amino acid transporter.5

NH2

OH
HO

OH
HO

NH2

L-Dopa

Dopamine

decarboxylation

O

OH

  

 
Figure 3. L-Dopa: example of prodrug targeting the brain. 
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1.1.1 CARRIER-LINKED PRODRUG STRATEGIES 

One approach that has now been validated by clinical success aimed at improving 

selectivity of anticancer agents is currently being pursued:6 it is mostly based on the 

subtle biochemical differences discriminating healthy from malignant cells. This 

approach involved the conjugation of the drug to tumor-specific ligands, and was called 

“magic bullet” by pioneer of chemotherapy Paul Ehrlich on 1900.

1.1.1.1 PASSIVE TARGETING 

7 

Carrier-linked prodrug strategy is based on passive or active targeting. Differences 

in the biochemical and physiological characteristics of healthy and malignant tissue are 

responsible for the passive tumor accumulation of macromolecules. Active targeting 

relies on the interaction of the carrier-linked prodrug with a tumor-associated cell 

surface marker such as a receptor or antigen. 

 

 

Passive targeting exploits anomalies of malignant tissue at vasculolymphatic level that 

result from the tumor’s phathophysiology. Indeed, it’s know that at a size of 2–3 mm, 

tumor cell clusters induce angiogenesis to satisfy their increasing demands for nutrition 

and oxygen. During this process newly formed blood vessels often greatly differ from 

those of normal tissue. Neovasculature generated by the tumor is characterized by an 

irregular shape and dilated, leaky or defective vessels. The endothelial cells are poorly 

aligned or disorganized with large fenestrations. Other differences affect the 

perivascular cells, the basement membrane, and the smooth-muscle layer which are 

frequently absent or abnormal. These anatomical features make the vasculature of tumor 

tissue permeable to macromolecules or even larger nanometer-scale particles, whereas 

in the blood vessels of healthy tissue only small molecules can pass the endothelial 

barrier. Furthermore, whereas smaller molecules were shown to be rapidly cleared from 

the tumor interstitium, large molecules are retained, thus showing high intratumor 

concentrations even after 100h post-application. This enhanced retention of 

macromolecules in tumor tissue is primarily caused by a lack of lymphatic drainage due 

to an impaired or absent lymphatic system. Hence, it is the combination of both 
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enhanced permeability and retention (EPR)6 that is responsible for the accumulation of 

macromolecules in solid tumors, as illustrated in Figure 5. 

 
Figure 5. Representation of the anatomical and physiological characteristics of normal 

and tumor tissue and EPR effect.i 

 

Thus, an accumulation of drugs in tumor tissue is simply achieved by employing large 

molecules (synthetic or biopolymers) or nanoparticles (liposomes, nanospheres) 8

1.1.1.2 ACTIVE TARGETING 

 as 

inert carriers that do not necessarily interact with tumor cells but strongly influence the 

drug’s biodistribution. 

Appropriate carrier molecule has to fulfill following requirements: it should be 

sufficiently water soluble, nontoxic, nonimmunogenic and should ideally be 

biodegradable and have low polydispersity.  

 

 

Active targeting is based on differences in cell surface antigen or receptor expression 

between normal and cancer tissue. The aim of active targeting is to develop drug 

conjugates with tumor-specific ligands that interact specifically with their cellular 

target. Among such approaches, so called “guided molecular missiles” or “molecular 

Trojan horses” have been widely and successfully reported over the last years.9,10

                                                 
iFigure adapted from “Prodrug Strategies in Anticancer Chemotherapy”, ChemMedChem 2008, 3, 20–53. 

 A 
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typical structure of a tumor-targeting drug-delivery system is characterized by four 

modules as shown in Figure 6:11  

 a ligand capable of detecting cancer cells  

 a linker that functions as a spacer and helps to improve the pharmacokinetics 

and pharmacodynamics of antitumor agent resulting  

 a cleavable bond, located between the spacer and the drug that would allow the 

release of the latter 

 

linker

ligand

cleavable
bond

antitumor
agent

unit 1
unit 2

unit 3 unit 4

an antitumor agent. 

 
Figura 6. Typical structure of antitumor carrier-linked prodrug. 

 

 

UNIT 1: LIGAND 

A rapidly growing tumor requires various nutrients and vitamins. Thus, tumor cells 

overexpress many tumor-specific receptors, which can be used as targets to deliver 

cytotoxic agents into tumors. 

Ligands that have been exploited for this approach to tumor targeting include 

monoclonal antibodies and low molecular weight receptor-binding molecules such as 

peptide hormones, receptor antagonists and agonists, oligosaccharides, oligopeptides, 

and vitamins. (vitamin B12,12 biotin13 and riboflavin14). Moreover, it has long been 

recognized that folate receptors (FRs) are excellent biomarkers to this end.15

FOLIC ACID 

  

 

 

Folic acid is an important member of water-soluble B-group vitamins functioning as co-

factors in one-carbon transfer reactions including de novo biosynthesis of nucleotides 

and plays a key role in metabolic processes involved in DNA and RNA synthesis, 
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epigenetic processes, cellular proliferation and survival. The human membrane FR has 

three main isoforms, namely FR-α, FR-β and FR-γ. This receptors belong to a special 

class of glycopolypeptides of apparent Mr in the range of 38-45 kDa and are attached to 

the plasma membrane by a GPI anchor. FRs are expressed in a limited number of 

normal tissues but are overexpressed in a large number of epithelial malignancies. 

Since folic acid enters cells by receptor-mediated endocytosis (Figure 7), a striking 

consequence is that those FRs expressed by cancer cells can be exploited to selectively 

convey specific anticancer drugs. 

 
Figure 7. FR-mediated endocytosis of a folic acid drug conjugate. 

 

Tumor-targeting folic acid conjugates, covalently linked via folate’s γ-carboxyl moiety, 

maintain a high affinity for the FRs,16 and the mechanism of cellular uptake of folic acid 

conjugates by FRs is as effective as that displayed by folic acid in its free form.17 

Despite their molecular complexity, folic acid conjugates can still enter cells by FR-

mediated endocytosis18 and move through many organelles supplying transported 

materials to cell cytoplasm. The drug is then released in the endosomes/lysosomes 

mainly by enzymatic cleavage or owing to the acidic environment occurring in 

lysosomes. The uptake process can be reiterated because of the recycling of the 

unligated FR back to the cell surface, allowing continuous supplies of folate-linked 
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drugs into the cell19 (Figure 7). Folate as a targeting ligand offers many potential 

advantages over macromolecules such as monoclonal antibodies; these include:  

 small size (M 441.4) of the targeting ligand, which often leads to favorable 

pharmacokinetic properties of the folate conjugates and reduced probability of 

immunogenicity thus allowing for repeated administration;  

 convenient availability and low cost;  

 relatively simple and defined conjugation chemistry;  

 high binding affinity for the FRs (KD ~ 0.1-1.0 nmol/L) even after conjugation 

to its therapeutic/diagnostic cargo;  

 the receptor/ligand complex can be induced to internalize via endocytosis, which 

may facilitate the cytosolic delivery of therapeutic agents;  

 high frequency of overexpression among human tumors thus a wide range of 

tumor targets. 
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Figure 8. Examples of drug folate-conjugates. 

 

The conjugation of folic acid with various anticancer agents, such as taxol20, platinum 

compounds21 or fluorouracil,22 has been the subject of recent researches; some examples 
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were reported in Figure 8. Preliminary experimental studies in animal models 

confirmed the regression of tumor23

UNIT 2: LINKER 

. 

 

 

Direct conjugation of the drug to folic acid has been observed to affect the affinity of 

resultant derivative. Experimental data reported in the literature24 have shown that for 

folate conjugates, the linker (unit 2), which allows to anchor the drug to the ligand, 

plays an important role. For this purpose the use of polymeric linker is often frequent in 

this type of prodrugs. However, it is unknown the requested length of the linker able to 

determine an effective recognition of these molecular systems by receptor. The choice 

of macromolecular systems working as spacer units is also dictated by the fact that these 

compounds are not efficiently eliminated by the kidneys, thus showing a better retention 

of prolonged half-life in plasma. Although the permeability of a molecule depends on 

several factors as size, shape, charge and deformability of the molecule,24 a general rule 

that can be applied to most of the macromolecular carrier, provides that: neutral or 

negatively charged molecules with weight greater than 40 kDa are able to avoid renal 

clearance.25 Oligomeric or polymeric spacers with these prerequisites are already widely 

used in prodrug formation, mainly as carriers. Table 1 shows an overview of various 

synthetic polymers used for this purpose. Usually, an ideal carrier must meet following 

requirements: 

 to be non-toxic or immunogenic, 

 to posses good biodegradability and low polydispersity, 

 to be sufficiently soluble to be administered. 

 

Polyether and peptide spacers meet these requirements and indeed are frequently used 

as a polymeric carriers.26  
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Name Structure 
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Table 1. Some synthetic polymers 

UNIT 3: CLEAVABLE

used in prodrug strategies. 

 

 

Following endocytosis of the drug in the 

 BOND 

cell membrane the next phase involves the 

release of the drug in its active form, due to some intracellular event so that it can 

effectively explicit its antitumor activity. The release is usually performed by inserting a 

cleavable bond between the drug and the carrier. The concept of “programming” 

molecular separation to occur between the ligand and the ‘‘drug’’ is not new. In fact, 

this process occurs naturally with many bacterial, plant and fungal protein toxins that 

bind to receptors on target cells through specialized domains. For many toxins (ricin, 

diphtheria toxin) this bond consists of a disulfide one. Linkers containing disulfide 

bonds are common in carrier-linked prodrug systems due to their stability in blood 

circulation; moreover they are efficiently cleaved by glutathione-S-transferase enzyme, 

particularly overexpressed in tumor cells allowing the release of the active therapeutic 

agent.27 As an example, an efficacious tumor-targeting drug conjugate is reported in 

Scheme 1, which exhibited extremely promising results in human cancer xenografts in 

SCID mice. The glutathione-triggered cascade drug release takes place to generate the 

free anticancer agent, taxol via thiolactone formation and ester bond cleavage. 



Introduction                                                                                                        Chapter 1 

14 
 

 
Scheme 1. Release of drug by glutathione. 

 

However, cellular environment of tumors offers a wide choice of intervention as it is 

characterized by a lot of specific enzymes and intense lysosomal activity. To this regard 

it was found a more high content of specific lysosomal glycosidases such as β-

galactosidase, β-glucuronidase and β-N-acetilglucosamminidasi, specific esterase, 

reductase inhibitors and protease inhibitors, than in healthy cells.28

UNIT 4: ANTICANCER AGENTS  

  

 

 

The available anticancer drugs have distinct mechanisms of action which can 

differentiate in their effects on

FDA-APPROVED ANTICANCER DRUGS 

 different normal and cancer cells types. There are about 

50 drugs approved by the Food and Drug Administration; some examples are following 

reported.  

 

 

Methotrexate29 is used as maintenance therapy for childhood acute lymphoblastic 

leukemia, where it can be given intrathecally for central nervous system prophylaxis. It 

is also useful in choriocarcinoma, non-Hodgkin’s lymphoma, and a number of solid 

tumors. Methotrexate competitively inhibits dihydrofolate reductase which is 

responsible for the conversion of folic acid to tetrahydrofolic acid. At two stages in the 

biosynthesis of purines and at one stage in the synthesis of pyrimidines, one-carbon 

http://en.wikipedia.org/wiki/Dihydrofolate_reductase�
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transfer reactions occur which require specific coenzymes synthesized in the cell from 

tetrahydrofolic acid. Methotrexate acts specifically during DNA and RNA synthesis, 

and thus it is cytotoxic during the S-phase of the cell cycle. Logically, it therefore has a 

greater toxic effect on rapidly dividing cells (such as malignant and myeloid cells, and 

gastrointestinal and oral mucosa), which replicate their DNA more frequently, and thus 

inhibits the growth and proliferation of these noncancerous cells.  

N

N N
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O COOH

COOHNH2

H2N

Methotrexate  

Gemcitabine30

O

FOH

F

HO N

N

NH2
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Gemcitabine

 (Gemzar) is a pyrimidine nucleoside analogue. In comprehensive 

preclinical and clinical studies, it has shown activity against a wide spectrum of human 

solid tumors including non small cell lung, pancreatic, colon, breast, bladder, ovarian, 

head and neck, cervical and hepatocellular tumours. It exerts its antiproliferative activity 

via multiple mechanisms of action. Gemcitabine is phosphorylated intracellularly by 

deoxycytidine kinase and subsequently by nucleotide kinases to its active metabolites, 

diphosphate and triphosphate gemcitabine. The triphosphate is then incorporated into 

DNA, blocking DNA synthesis and inducing apoptosis. 

 

Paclitaxel31 (Taxol) is a highly complex tetracyclic diterpene found in the needles and 

bark of Taxus brevifolia, the Pacific yew tree. The cytotoxic nature of extracts of Taxus 

brevifolia was first demonstrated in 1964 through a screening program coordinated by 

the National Cancer Istitute; pure paclitaxel was isolated in 1966 and its structure 

published in 1971. Together with docetaxel, it forms the drug category of the taxanes.  

Taxol is now used to treat patients with lung, ovarian, breast cancer, head and neck 

cancer, advanced forms of Kaposi's sarcoma and for the prevention of restenosis. 

http://en.wikipedia.org/wiki/Cell_cycle�
http://en.wikipedia.org/wiki/Malignant�
http://en.wikipedia.org/wiki/Myeloid�
http://en.wikipedia.org/wiki/Docetaxel�
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http://en.wikipedia.org/wiki/Ovarian_cancer�
http://en.wikipedia.org/wiki/Breast_cancer�
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Paclitaxel is a mitotic inhibitor, it 
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Paclitaxel

stabilizes microtubules and as a result, interferes with 

the normal breakdown of microtubules during cell division.  

 

Doxorubicin32 (Adriamycin) is a type of anthracycline antibiotic, made from the 

bacterium Streptomyces. Adriamycin can be used to treat early-stage or node-positive 

breast cancer, HER2-positive breast cancer, and metastatic disease. It is sometimes 

combined with cytoxan and 5-fluorouracil to make a cocktail of breast-cancer fighting 

chemotherapy drugs. 
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Chloroambucil32

HOOC

N

Cl

Cl

Chloroambucil

 (Leukeran) is a bifunctional alkylating chemotherapeutic agent of the 

mustards type, clinically used for the treatment of chronic lymphatic leukemia, 

lymphomas, and advanced ovarian and breast carcinomas. Like all alkylating agents, 

CLB toxicity stands on its oxidative stress-inducing properties that are exerted equally 

toward healthy and cancer tissues.  
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1.2 RESULTS AND DISCUSSION 

On the basis of the results discussed in the previous section, this work is focused on the 

synthesis of carrier-linked prodrug systems to use in anticancer therapeutic strategies 

involving the active transport of drug (Figure 1). The tumor-specific ligand is the folic 

acid, the linker consists of a polyether or polyamide system and the anticancer agent, 

Chlorambucil, chosen from those of more modern application, is anchored to the spacer 

by cleavable bond that can release the drug by action of specific 
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Figure 1. Carrier linked prodrug system. 

 

As already mentioned, folic acid has proven to be one of the most promising ligand 

because its receptors are overexpressed on the surface of a large number of tumor cells, 

including cancer breast, lung, liver, ovaries, brain and myelogenous cells.1,2,3 Objective 

of a part of my PhD thesis was the synthesis and biological evalutation of novel folate-

conjugates 1-2 (Figure 2) trough straightforward and versatile synthetic routes. 
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It must be noted that the choice of an aminoether linker (conjugate 1) offers a twofold 

advantage: a) it is biocompatible and hydrophilic as the most commonly employed 

polymeric linkers NH2PEG (NH2PEG2000, NH2PEG1000, etc.) and b) it’s cheaper 

than other NH2PEG linkers.4 On the other hand, the wear of a β-amino acid-based 

linker (conjugate 2) is due of their structural characteristics. Indeed, they should ensure 

a good solubility and stability of our molecular systems in biological medium. It is 

known that β-amino acids systems are highly innovative alternative to the systems 

studied so far. They appear to be promising constituents of potential therapeutic agents, 

because they are appreciably more stable than their α-analogues to proteolytic 

degradation in vivo.5,6 The majority of β-peptides reported in literature is not toxic,7 thus 

they seem to be a good compromise between solubility, biocompatibility and localized 

release of the drug through a prolonged systemic circulation, so they can to be 

interesting candidates as carriers for such strategies.  

In particular we used the 4,7,10-trioxa-1 ,13-tridecandiamine and a linker 

consisting of two β-amino acid units separated by a ethylenediamine moiety. These 

linkers present amine functions at both ends so that they can bind, on the one hand folic 

acid via an amide bond and the other hand a cleavable unit or the drug.  
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Figure 3. Polyether and polyamide linker. 

 

The preparation of conjugates 1 and 2 was carried out by synthetic methodology that 

consists of following key steps

1.2.1 SYNTHESIS OF CLB-DELIVERY SYSTEM 1 

: 1) preparation of the linkers; 2) linkers conjugation with 

folic acid through an amide bond formation; 3) removal of protective groups; 4) 

coupling reaction with the anticancer agent. 

 

 

The synthetic strategy of conjugate 1 involved the use of 4,7,10-trioxa-1,13-

tridecandiamine (3), commercially available at low cost, and consists of a few stages. 

The first synthetic step (Scheme 1) provided N-Boc-monoprotection of amine 3 by 

reaction with Boc2O in MeOH under refluxing conditions to obtain carbamate 4 with 

86% yield. 

At this point, we are interested to prepare 7 by a coupling reaction of resulting 

carbamate 4 with folic acid (5). It was attempted usual synthetic routes (DCC/HOBT, 

DCC/NHS), but unfortunately we didn’t obtained the expected product. Instead, amide 

7 was successfully obtained by means of the activated folate anhydride 6, in turn 

prepared in situ by treatment of 5 with dicyclohexylcarbodiimide (DCC) in 

DMF/pyridine (5:1) for 30 min in an ultrasonic bath. When it was observed formation 

of intermediate 6 thanks to presence of white crystals of DCU in the reaction vessel, 

amine 4 (1 eq) was added, smoothly leading to amide 7. The concentrate DMF solution 

containing the reaction product was dropwise added to a cold mixture of acetone and 

diethyl ether (30:70 v/v ratio), from which the desired 7 was isolated by precipitation 

(85% yield).  
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Scheme 1. Synthesis of folic derivate 8. 

 

In such conditions the γ-conjugate is the only product formed, because γ-position 

carboxyl function of folate is more reactive than the α-one (Figure 4), indeed, as 

reported in the literature,8 common amidation reactions were carried out preferably in 

this position, so no protections were necessary. The exclusive formation of γ-carboxyl-

linked compound was confirmed by 1
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Figure 4. Folic acid. 
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Finally, amide 8 was quantitatively obtained via N-Boc group removal, by treatment of 

conjugate 7 with TFA in CH2Cl2 (Scheme 1). At this point, with the product 7 in hand, 

our interest was focused on preparation of desired conjugate 1 by reaction with 

PyBOP/DIPEA and CLB (9) in DMSO. The crude product, purificated by precipitation, 

gave a brownish yellow compound with 75% yield.  

 
Scheme 2. Coupling reaction to obtain final compound 1. 

 

It’s noteworthy that the same coupling reaction in common condition using DCC was 

found to be not convenient, due to difficulty to remove the resulting DCU from reaction 

mixture.  

 

 

1.2.2 SYNTHESIS OF CLB-DELIVERY SYSTEM 2 

To synthesize conjugate 2 in which a linker consisting of two β-alanina units bridged by 

ethylenediamine spacer is included, we planned to start from folic acid and a linker as 

14 using the same methodology as for 1. Linker 14 was prepared in a single step using 

N-Boc-β-Alanine (2 eq) and free ethylendiamine. Amide bond formation was carried 

out activating carboxyl acid function of N-Boc-β-alanine (11) by treatment with PPh3/I2 

complex and imidazole (Scheme 3). The use of this reagent, as widely reported in the 

literature9 leads to formation of acyl iodide, like intermediate, which in the presence of 

ethylenediamine gave compound 13. Subsequent deprotection of amino functions under 

usual conditions (TFA/CH2Cl2) afford diamine 14 in quantitative yield. (Scheme 3). 
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Scheme 3. Synthesis of pseudo-β-dipeptide 14. 

 

Unfortunately, 14
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 coupled with folic acid did not lead to the desidered conjugate but to 

a bis-folate derivate unsuitable for our purposes. An alternative approch was next 

attempted using a monoprotected linker. Both attempts to obtain 15 from 14 (by 

selective protection) or from 13 (by selective deprotection) failed due to the almost 

exclusive formation respectively of bis-protected (13) or free diamine 14. 

 
Scheme 4. Synthetic efforts to obtain linker 15. 

 

To overcome these problems, we planned to prepare an orthogonally protected diamine 

linker starting from N-Boc-β-Ala (11) and N-Fmoc-β-Ala (17). The Fmoc group is 
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stable under acidic conditions and may be selectively removed in basic conditions, the 

Boc-protecting group is acid-labile but stable under basic conditions.10 

Amidation reaction of 11 with ethylenediamine (12) (Scheme 5) was carried out 

under the same conditions as described for 13 (carboxyl acid activation with 

PPh3/I2/ImH), in this case, using a large excess of amine (ratio 1:15), the compound 16 

was obtained in high yields 
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(75%). 

The latter was then used in the coupling reaction with N-Fmoc-β-alanine (17) 

prepared trough a well note procedure; the reaction was quantitative and provided 

orthogonally protected 18 (Scheme 5). Finally the selective removal of Fmoc group 

under common reaction conditions (5% piperidine / DMF) gave desired linker 15. 

 
Scheme 5. Synthesis of pseudo-β-dipeptide 15 by Boc/Fmoc strategy. 

 

Monoprocted linker 15 allowed, the preparation of folate 19, via coupling reaction with 

folic acid (Scheme 6), in presence of DCC, Py in DMSO. Conjugate 19 was obtained 

with 82% of yield. N-Boc group removal with TFA at 0 °C gave then amine 20 that was 

finally coupled with CLB (9) using PyBOP/DIPEA in anhydrous DMSO, to allowed 

conjugate 2 as a brownish purple solid (79% yield). 
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Scheme 6. Synthesis of conjugate 2. 

 

 

1.2.3 BIOLOGICAL ASSAYS 

Following the biological assays performed on these molecular systems are reported, 

these assays were realized in collaboration with Prof. Giuseppe Palumbo research group 

(Dip. di Biologia e Patologia Cellullare e Molecolare "L. Califano). 

Cytotoxicity studies with CLB. CLB is an alkylating agent that has been mainly 

used in the treatment of chronic lymphocytic leukemia (CLL).11 It has been 

demonstrated that CLB may induce different effects in in vitro systems, spanning from 

growth arrest to cell death.12 In light of these observations, our initial experiments were 

aimed at establishing the effective CLB concentrations against the specific cell lines 

used in this work. To this purpose, we incubated undifferentiated U937 and TK6 cells 

for 48 and 72 h with CLB at concentrations ranging from 0 to 60 µM. As shown in 

Figure 4, metabolic activity of both cell lines was inhibited as drug concentrations and 

incubation times were increased. In all cases, however, changes in cell metabolic 

activity were less pronounced at CLB concentrations in the order of 30 µM. 
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Figure 4. Metabolic activity of FR--U937 (left) and FR+-TK6 cells (right) treated with 

increasing doses of CLB at different incubation times. 

 

Cytotoxicity studies with CLB conjugates 1 and 2. A first comparison between the 

efficacy of CLB and our FA-conjugates was obtained by observing the 

presence/absence of statistically significant changes in metabolic activities of 

undifferentiated U937 and TK6 cells incubated for 24, 48 and 72 h with media 

containing 30 µM of CLB (to which both cell lines should presumably respond in a 

similar manner) or 30 µM FA-conjugates 1 and 2 (to which receptor positive cells 

should preferentially respond). 

 
Figure 5. Effects of FA-CLB conjugates 1 and 2 on metabolic activity (XTT assay) of  

FR--U937 (upper panel), FR+-TPA-activated U937 (middle panel) and FR+-TK6 cells 
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(lower panel). Significant differences (p<0.0001, three asterisks) are referred to 

controls. 

 

As shown in Figure 4 (upper panel), the metabolic activity of undifferentiated U937 

cells treated with FA-CLB conjugates did not differ appreciably from the control except 

for long incubation time (72 h). Conversely, we observe that the metabolic activity of 

TK6 cells, incubated in 30 µM FA- conjugates 1 or 2, decreased from nearly 50% to 

about 70% (as compared to controls) as the incubation time was increased from 48 to 72 

h, respectively (Figure 5, lower panel). 

We hypothesized that a different expression level of FRs may account for such a 

divergent behavior. Indeed, it has been demonstrated that while FR expression is 

restricted to only a few cell types,13 Branda et al. reported14 that this expression level in 

TK6 human lymphoblast cells is very high. At variance, while Antony has reported15 

that such receptors are essentially absent in undifferentiated U937 cells, nevertheless 

remarkably elevated levels have been demonstrated in macrophagic TPA-activated 

U937 cells.16 This presence in macrophages has been largely exploited for drug 

targeting.17 In line with these remarks, to finally proof that our folate conjugates 1 and 2 

exerted antitumor activity by FR recognition and endocytosis, we differentiated the 

U937 FR- into FR+
 activated macrophages. This was achieved by incubating the U937 

with 20 nM of TPA (as outlined in the experimental section). The U937 cells, which 

normally grow in suspension, when differentiate into macrophages become adherent to 

each other and to the surface of the culture vessel and cease to proliferate. We found 

that the metabolic activity of TPA-activated U937 incubated with 1 and 2 (30 µM) 

differed significantly from that of undifferentiated U937 cells. As shown in Figure 4 

(middle panel), cell viability of activated cells decreased significantly and progressively 

from 48 and 72 h. We also observed that differences in therapeutic efficacy of FA-

derivatives in responsive cells were scarcely perceptible and, in any case, were similar 

to that of CLB at the longest incubation time (Figure 6). 

Interesting enough, the addition of FA-conjugates to responsive cells (104) 

pretreated for 1 h with 50 fold excess (1.5 mM) free FA, prevented appreciable changes 

in metabolic activities even after 72 h of incubation (Figure 6). At variance, the same 

pre-treatment resulted wholly ineffective when cells were exposed to 30µM CLB.  
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Figure 6. TK6 and TPA-differentiated U937 cells were pretreated with 1.5 mM free FA 

for 1 h and incubated with FA-conjugates 1 and 2. The XTT assay was performed after 

72 h of incubation. 

 

Stability of FA-CLB conjugates 1 and 2 (shelf life and stability in human serum). 

The shelf life (at 4 °C) of 1 and 2 in human serum was established in vitro in U937 and 

TK6 cell lines. Activity of our FA-CLB conjugates did not change over a 5 weeks 

storage period (data not shown). Similarly, when conjugates 1 and 2 were incubated in 

fresh human serum, their activity was preserved with negligible activity loss as 

determined by XTT assay.  

 
Figure 7. Stability studies of FA-CLB conjugates 1 and 2 pre-incubated for 12 h in 

fresh human serum. Details in the Methods section. 

 

As shown in Figure 7, change in cell viability of both cell lines was similar to that 

observed by treating cells with equimolar concentrations (30 µM) of FA-CLB 

conjugates 1 and 2 or CLB free form. The abatement of metabolic activity of TK6 cells 
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resulted similar to that observed in the absence of pre-incubation of the compounds with 

human serum. The U937 cells retain their unresponsiveness to both conjugates. 

 

Molecular studies. Although it is generally acknowledged that the bifunctional 

alkylating agent chlorambucil (CLB) is not cell cycle specific, it has been demonstrated 

that it may induce G2/M arrest and apoptosis in several human cell lines. Clarification 

of the molecular mechanisms of cell cycle arrest and cell death induced by different 

DNA-damaging chemicals, including chlorambucil, has considerable implications for 

molecule-targeted cancer therapy. For this reason, it was of interest to investigate at 

cellular and molecular level how FA-CLB conjugates 1 and 2 exert their effects in 

undifferentiated U937 (FR-), TPA-U937 activated (FR+), and TK6 (FR+) cells in 

comparison to their parent molecule CLB. To this purpose, we studied the cell cycle 

distribution and apoptosis upon sublethal treatments. To this aim we analyzed the 

cytofluorimetric profiles and analyzed the protein expression patterns of cells incubated 

for 48 h with 30 µM CLB in its free form or in conjugated forms 1 and 2. In agreement 

with general literature data, we confirmed in both FR+ cell lines two major aspects: first, 

CLB promotes visible cell accumulation in G2 phase and, as also suggested by the 

presence of a consistent sub-G1 phase, this drug induces apoptosis (Figure 8). The 

increase of the sub-G1 phase appears to be also associated to an appreciable up-

regulation of the proapoptotic BAX and Clusterin (Figure 8). This protein has been at 

the core of a long-lasting debate, as conflicting data demonstrated both pro- and 

antiapoptotic effects. However, the controversy on Clusterin function in tumors has 

been clarified in that it has been demonstrated that two different mRNA transcripts 

(generated by alternative splicing) can be found in cells, one secretory and the other one 

coding for the a nuclear form. The activation of the latter form has proapoptotic aptitude 

and a regulative (negative) function in cell cycle progression.i

                                                 
i However, the controversy on Clusterin function in tumors has been clarified in that it has been 
demonstrated that two different mRNA transcripts (generated by alternative splicing) can be found in 
cells, one secretory and the other one coding for the a nuclear form. The activation of the latter form has 
proapoptotic aptitude and a regulative (negative) function in cell cycle progression. See ref. 18. 

,18 
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Figure 8. Cell cycle profiles for FR--U937 (panel a), differentiated FR+-U937 (panel b) 

and FR+-TK6 cells (panel c) in response to treatments (48 h) with CLB-conjugates 1, 2 

and free CLB (30 µM). 

 

As the FR- cells (undifferentiated U937) are concerned, we found that treatment with 

FA-CLB conjugates did not roughly change the cell cycle profile and, at variance with 

the effect of pure CLB, it did not determine amassing of cells in the sub-G1 fraction. 

The lack of apoptosis in cells incubated for 48 h with both conjugates was also inferred 

by Western blot experiments, showing no changes in the expression levels of Bax and 

Clusterin (Figure 9, left panel, lanes 2 and 3). 
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Figure 9. Protein expression in FR--U937, TPA-differentiated FR+-U937 and FR+-TK6 

cells in response to treatments (48 h) with CLB-conjugates 1, 2 and free CLB (30 µM). 

 

On the contrary, once incubated with FA-CLB conjugates (30 µM), the cell cycle 

profile of TK6 and TPA-differentiated U937 cells, both expressing FRs, showed a 

modest accumulation in G2 phase while visibly activating apoptosis (Figure 8, panel b 

and c). The sub-G1 fractions in fact amounted to ≤ 20 in TK6 cells and up to ≥ 25% of 

the total in TPA-treated U937 cells. The differentiation to macrophages that occurs in 

TPA-treated U937 cells induced synchronization in G0/G1 phase and in the meanwhile 

proliferation was switched off. This cytofluorimetric scenario was mirrored by Western 

blot experiments. Apoptosis was declared by the augmented levels of BAX and of the 

propapoptotic form of Clusterin (Figure 9, middle and right panels, lanes 2 and 3) in 

both cell lines and, as the TK6 cells are concerned, of p53 (Figure 9, right panel, lanes 

2 and 3). Notably, once incubated with 30 µM free CLB, TK6 cells were characterized 

by a time-dependent increase in the expression level of p53. This observation agrees 

with literature data that point to an ongoing up-regulation of p53 protein expression to 

explain the onset of lymphocytic cell resistance to CLB.19 
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1.3 CONCLUSION 

Cellular uptake of vitamin folic acid occurs via folate-receptor mediated endocytosis. 

Many types of cancer cells express high levels of folate receptors as they need 

continuous supply of this vitamin for their proliferation. With an objective to use folic 

acid as a ‘Trojan Horse’ to transport anticancer drugs into cancer cells, we prepared two 

tumor-targeted drug delivery systems 1 and 2, which bear a FA unit as the tumor 

recognition moiety and the CLB as the cytotoxic agent, the two bioactive units having 

been jointed by aminoether (4,7,10-trioxadecane-1,13-diamine) and pseudo-β-dipeptide 

(β-Ala-ED-β-Ala) linkers. Preparation of the two molecular systems has been devised 

by a straightforward and efficient route (34-54% o.y.). When evaluated using both FR- 

(undifferentiated U937) and FR+ (TK6 and TPA-differentiated U937) leukemic cells, 

both conjugates exhibited activity only against FR+

 

 cells (particularly TK6), exerting 

antitumor effects which are comparable to that displayed by CLB in its free form. Our 

in vitro results, then, show that the FA-derivatives specifically bind folate-receptor-

positive cells, that this binding is significantly higher than in folate-receptor negative 

cells, and that the interaction is inhibited by free FA. 
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1.4 EXPERIMENTAL SECTION 

CHEMISTRY 

All moisture-sensitive reactions were performed under nitrogen atmosphere using oven-

dried glassware. Solvents were dried over standard drying agents and freshly distilled 

prior to use. Triethylamine (TEA) and N,N-diisopropylethylamine (DIPEA) were 

redistilled from NaOH. N,N’-Dicyclohexylcarbodiimide (DCC) and folic acid (FA) 

were purchased from Sigma-Aldrich Inc. Chlorambucil (CLB), dimethyl sulfoxide 

(DMSO, anhydrous) and pyridine (Py, anhydrous) were used as purchased (Fluka 

Chemical Co.) without further purification. Reactions were monitored by TLC 

(precoated silica gel plate F254, Merck). Column chromatography: Merck Kieselgel 60 

(70–230 mesh); flash chromatography: Merck Kieselgel 60 (230–400 mesh). 

Combustion analyses were performed by using CHNS analyzer. 1H and 13

SYNTHETIC PROCEDURES AND CHARACTERIZATION DATA FOR 

INTERMEDIATES AND CONJUGATES 

C NMR 

spectra were recorded with the following instruments: Varian Gemini (200 MHz), 

Varian Gemini (300 MHz), Bruker DRX (400 MHz) and Varian Inova (500 MHz) 

spectrometers. MALDI spectra were recorded on a Voyager DE-PRO MALDI-TOF 

mass spectrometer. 

 

O
O

OH2N
H
N O

O
4  

Compound 4. A stirring solution of 4,7,10-trioxa-1,13-tridecanediamine (3, 2.0 g, 9.1 

mmol) in anhydrous CH3OH (152 mL) was treated with Boc2O (2.0 g, 9.1 mmol) and 

TEA (2.9 mL, 21 mmol). The reaction mixture was left at reflux for 16 h. The solvent 

was removed under reduced pressure and the resulting yellow oil was purified by silica 

gel chromatography (CHCl3/CH3OH/NH4OH = 89:10:1) to give the pure 4 (2.5 g, 86% 

yield). Oily; 1H NMR (300 MHz, CD3OD) δ: 1.44 (s, 9H), 1,73-1,78 (m, 2H), 1.90-1.96 

(m, 2H), 2.03 (bs, 2H), 2.90 (t, 2H, J = 6.7 Hz), 3.12 (t, 2H, J = 6.0 Hz), 3.52 (t, 2H, J = 

6.0 Hz), 3.56-3.68 (m, 10H), 5.1 (bs, 1H). 13C NMR (100 MHz, CDCl3) ppm: 28.2, 
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29.3, 32.7, 38.3, 39.3, 69.2, 69.8, 69.9, 70.2, 70.3 78.2, 156.2. MALDI-TOF MS: m/z 

320.23 (calcd); 321.20 [M+H]+ (found). Anal. calcd for C15H32N2O5

COOH

N
H

O

N
H

N
O

HN

H2N N N

H
N

O

O
O

O

BocHN
7

: C, 56.23; H, 

10.07; N, 8.74. Found: C, 56.40; H, 10.03; N, 8.71. 

 
Compound 7. To a stirring solution of folic acid (5, 0.25 g, 0.56 mmol) in an anhydrous 

DMF:Py (5:1, 24 mL) solution, DCC (0.70 g, 3.4 mmol) was added in one portion. The 

reaction mixture was kept in an ultrasound bath in the dark for 30 min. Then the 

resulting suspension was quickly filtered over a sintered funnel and the precipitate 

washed with the minimum amount of anhydrous DMF:Py solution. The N-Boc-4,7,10-

trioxa-1,13-tridecanediamine (4) (0.18 g, 0.6 mmol) was then added to the filtrate. The 

resulting reaction was further stirred in the dark for 16 h. Afterwards, the mixture was 

poured dropwise into a stirred solution of cold diethylether/acetone (70:30): a yellow 

precipitate was formed and collected on a sintered glass funnel. After washing several 

times with acetone and ether, the material was dried to give 7 as a yellow powder (0.35 

g, 85% yield) which was used in the next step without further purification. Mp 206-210 

°C; 1H NMR (200 MHz, DMSO-d6) δ: 1.34 (s, 9H), 1.49-1.65 (m, 4H), 1.80-2.05 (m, 

2H), 2.12-2.34 (m, 2H), 2.86 (dd, 2H, J = 6.5, 12.4 Hz), 3.05 (bt, 2H, J = 6.1 Hz), 3.25-

3.40 (m, 4H), 3.41-3.50 (m, 8H), 4.20-4.38 (m, 1H), 4.46 (bd, 2H, J = 5.4 Hz), 6.61 (bd, 

2H, J = 7.6 Hz), 6.75-6.98 (m, 3H), 7.63 (bd, 2H, J = 7.6 Hz), 7.76-7.86 (m, 1H), 7.90 

(bd, 1H, J = 8.4 Hz), 8.62 (bs, 1H), 11.4 (s, 1H). 13C NMR (100 MHz, DMSO-d6): ppm 

29.4, 30.0, 30.4, 31.2, 36.6, 37.9, 46.7, 52.9, 68.8, 70.4, 70.5, 78.1, 111.1, 122.2, 128.7, 

129.7, 149.3, 151.5, 154.5, 156.3, 156.7, 161.7, 166.9, 172.4, 174.6, 174.9. MALDI-

TOF MS: m/z 743.36 (calcd); 766.20 [M+Na]+, 782.20 [M+K]+ (found). Anal. calcd for 

C34H49N9O10: C, 54.90; H, 6.64; N, 16.95. Found: C, 55.05; H, 6.61; N, 16.89. 
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Compound 8. TFA (1.7 mL) was added to 7 (250 mg, 0.33 mmol) at 0 °C and under 

magnetic stirring. The resulting mixture was stirred at room temperature for 2 h, then 

TFA was evaporated under high vacuum and the resulting residue was dissolved in a 

small amount of anhydrous DMF. Pyridine was added dropwise until complete 

formation of a yellow precipitate, which was collected by filtration, washed with Et2O 

and dried under vacuum to yield amine 8 (0.421 g, 99% yield). Yellow powder, M.p. 

203-207 °C; 1H NMR(500 MHz, CD3OD) δ: 1.44-1.62 (m, 2H), 1.70-1.80 (m, 2H), 

1.82-2.00 (m, 2H), 2.05-2.17 (m, 2H), 2.84 (bt, 2H, J = 7.4 Hz), 2.98-3.07 (m, 2H), 

3.18-3.38 (m, 2H), 3.40-3.57 (m, 10H), 4.20-4.37 (m, 1H), 4.46 (d, 2H, J = 5.8 Hz), 

6.63 (d, 2H, J = 7.4 Hz), 6.80-6.98 (m, 3H), 7.65 (bd, 2H, J = 7.4 Hz), 7.85 (bd, 1H, J = 

8.0 Hz), 8.65 (s, 1H), 11.38 (bs, 1H). 13C NMR (100 MHz, DMSO-d6): ppm 27.2, 29.3, 

30.6, 35.6, 36.9, 46.2, 53.8, 67.4, 68.0, 69.5, 69.6, 69.7, 111.2, 121.4, 128.3, 129.4, 

148.3, 151.0, 153.3, 158.5, 160.8, 166.5, 172.1, 174.4. MALDI-TOF MS: m/z 643.31 

(calcd); 666.40 [M+Na]+, 682.34 [M+K]+ (found). Anal. calcd for C29H41N9O8

N

NN

N
HO

NH2

HN

O

N
H

COOH

O

H
N O

O
O NH

O N

Cl

Cl

1

: C, 

54.11; H, 6.42; N, 19.58. Found: C, 54.30; H, 6.39; N, 19.51. 

 
Compound 1. To a stirring solution of CLB (9) (0.46 g, 1.5 mmol) in anhydrous 

DMSO (5.0 mL), DIPEA (0.26 mL, 1.5 mmol), 8 (0.32 g, 0.5 mmol) and PyBOP (0.78 

g, 1.5 mmol) were sequentially added. The resulting mixture was stirred for 16 h at 

room temperature. Then the mixture was poured dropwise into a stirred solution of cold 

diethyl ether/acetone (70:30): a yellow precipitate was formed and collected on a 

sintered glass funnel. After washing several times with acetone, ether and finally 

chloroform, the material was dried to give 1 as a brownish yellow solid (0.38 g, 75% 
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yield). 1H NMR (500 MHz, DMSO-d6) δ: 1.48-1.63 (m, 4H), 1.63-1.78 (m, 2H), 1.79-

1.98 (m, 2H), 2.05 (appt, 2H, J = 7.3 Hz), 2.30 (t, 2H, J = 6.7 Hz), 2.36-2.45 (m, 2H), 

2.99-3.09 (m, 2H), 3.15-3.50 (m, 14H), 3.78 (bs, 4H), 4.21-4.35 (m, 1H), 4.46 (bs, 2H), 

6.63 (m, 4H), 6.93 (m, 1H), 6.98 (d, 2H, J = 7.0 Hz), 7.65 (d, 2H, J = 8.0 Hz), 7.76-7.87 

(m, 2H), 7.93 (bd, 1H, J = 6.6 Hz), 8.02-8.23 (m, 1H), 8.63 (s, 1H), 11.43 (bs, 1H). 13C 

NMR (100 MHz, DMSO-d6): ppm 27.0, 29.4, 30.6, 32.0, 33.8, 34.8, 35.6, 35.9, 40.4, 

45.8, 52.2, 53.6, 58.5, 67.3, 68.0, 69.5, 69.7, 111.1, 111.9, 121.4, 127.9, 128.9, 129.5, 

138.4, 144.4, 148.4, 150.7, 153.4, 155.1, 159.0, 160.9, 166.3, 171.8, 173.8, 174.0. 

MALDI-TOF MS: m/z 928.38 (calcd); 951.03 [M+Na]+, 967.04 [M+K]+ (found). Anal. 

calcd for C43H58Cl2N10O9

N
H

OH

O

O

O

11

: C, 55.54; H, 6.29; Cl, 7.63; N, 15.06. Found: C, 55.75; H, 

6.25; Cl, 7.57; N, 14.98. 

 
Compound 11. To a stirring solution of β-alanina (2.5 g, 28 mmol) in H2O (55 mL) 

was added KOH (3.2 g, 57 mmol) in one portion and Boc2O (2.0 g, 9.1 mmol) 

dissolved in CH3CN (10 mL) at 0 °C. After 24 h at room temperature to the mixture of 

reaction HCl (1M) was added until to obtained a pH ~ 4 and then the reaction was 

extracted with EtOAc2. The organic layer was washed with H2O until neutrality and 

dried over Na2SO4. The solvent was removed under reduced pressure to give the pure 

product 11 (5.0 g, 95% yield): p.f. 76-77 °C; 1H NMR (200 MHz, CDCl3) δ: 1.43 (s, 

9H), 2.50 (bt, 2H, J = 5.4), 3.32 (bd, 2H, J = 6.0, J = 11.8), 5.18 (bs, 1H), 10.95 (bs, 

1H). 13C NMR (50 MHz, CDCl3) ppm: 28.0, 34.1, 35.6 (CH2NH), 84.8, 155.8, 175.9. 

ESI-MS: m/z 189.10 (calcd); 190.1 [M+H]+ (found). Anal. calcd for C8H15NO4

N
H

N
H

O
H
N

O

H
NO

O
O

O

13

: C, 

50.91; H, 7.96; N, 7.37. Found: C, 50.78; H, 7.99; N, 7.40. 

 
Compound 13. To magnetically stirred solution of I2 (503 mg, 1.98 mmol) in dry 

CH2Cl2 (15 mL), under nitrose atmosphere at room temperature a solution of 

triphenylphosphine dissolved in the same solvent (15 mL) was added dropwise (520 

mg, 1.98 mmol). After 15 min, imidazole (273 mg, 4.0 mmol) was added and after a 
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few min N-protected β-amino acid 11 (300 mg, 1.6 mmol) in CH2Cl2 (5 mL) was added 

to the mixture of reaction. The reaction was kept at room temperature until starting 

material was consumed to form acyl iodide (TLC: CHCl3:CH3OH = 8/2). After 3 h, 

ethylenediamine (0.053 mL, 0.8 mmol) was added in one portion; the resulting mixture 

was left at room temperature until TLC analysis indicates complete formation of 

compound 13 (TLC: CHCl3:CH3OH = 8/2). The solution was diluted with CH2Cl2 (20 

mL), washed with a solution of sodium thiosulfate 5 N and neutralized with brine. The 

organic phase reunited and dried over dry Na2SO4 was evaporated under reduced 

pressure to give the pure 13 (450 mg, 75% yield): pf. 182.8-184.4 °C, 1H NMR (200 

MHz, CD3OD) δ: 1.43 (s, 18H), 2.34 (t, 4H, J = 6.7), 3.22-3.38 (m, 8H), 5.22 (bs, 2H, 

NHuret), 6.63 (bs, 2H).13C NMR (50 MHz, CD3OD) ppm: 25.0, 33.8, 34.3, 36.3, 76.3, 

152.8, 172.9. ESI-MS: m/z 402.25 (calcd); 403.01 [M+H]+ (found). Anal. calcd for 

C18H34N4O6

NH2N
H

O
H
N

O

H2N

14

: C, 53.71; H, 8.51; N, 13.92. Found: C, 53.90; H, 8.47; N, 13.87. 

 
Compound 14. To a magnetically stirred solution of dry CH2Cl2 (3 mL) and TFA (1.5 

mL) at room temperature compound 15 (500 mg, 1.2 mmol) was added. After 1 h 

starting material was completely consumed (TLC, CHCl3/CH3OH=8:2) and the solvent 

was evaporated under vacuum to give the pure compound 14 (230 mg, 95% yield):p.f. 

182.8-184.4 °C, 1H NMR (200 MHz, CD3OD) δ: 2.63 (t, 4H, J=6.5,), 3.21 (t, 4H, J = 

6.5), 3.31 (s, 4H). 13C NMR (50 MHz, CD3OD) ppm: 29.2, 33.4, 36.2, 168.9. Anal. 

calcd for C8H18N4O2

N
H

N
H

O

O

O
NH2

16

: C, 47.51; H, 8.97; N, 27.70;. Found: C, 47.68; H, 8.93; N, 27.61. 

 
Compound 16. To a solution of I2 (990 mg, 3.9 mmol) in dry CH2Cl2 (10 mL), under 

dry nitrogen atmosphere at room temperature, triphenylphosphine (1.1 g, 3.9 mmol) was 

added dropwise in the same solvent (10 mL). After 15 min imidazole (708 mg, 10.4 

mmol) was added in one portion. Then, compound 11 (500 mg, 2.6 mmol), in CH2Cl2 

(5 mL) was added to the mixute. The reaction was kept at room temperature for 3 h 

(TLC monitoring: CHCl3:CH3OH = 8/2) until all the starting amino acid was 

completely consumed in favor of acyl iodine. After 3 h, ethylenediamine (2.6 mL, 39 
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mmol) was added in one portion; the resulting mixture of reaction was kept at room 

temperature. When acyl iodine was consumed (TLC: CHCl3:CH3OH = 8/2) the solution 

was diluted with CH2Cl2 (20 mL), washed with a solution of sodium thiosulfate 5 N and 

brine. The organic layer was extracted with a mixture of CHCl3/MeOH (95/5, 3 x 75 

mL) and dried (Na2SO4) and evaporated under vacuum to give the pure 16 (450 mg, 

75% yield): 1H NMR (200 MHz CD3OD) δ: 1.38 (s, 9H), 1.62 (bs, 2H), 2.32 (t, 2H, J = 

6.0), 2.76 (t, 2H, J = 6.0), 3.15-3.42(m, 4H), 5.52 (bs, 1H), 6.78 (bs, 1H). 13C NMR (50 

MHz, CH3OD) ppm: 28.2, 36.2, 41.2, 41.9, 79.2, 156.2, 171.9. ESI-MS: m/z: 231.16 

(calcd); 232.37 [M+H]+ (found). Anal. calcd for C10H21N3O3

N
H

OH

O

O

O

17

: C, 51.93; H, 9.15; N, 

18.17. Found: C, 51.72; H, 9.19; N, 18.25. 

 

Compound 17. To a stirring solution of β-alanina (2.5 g, 13.3 mmol) in H2O (8 mL), at 

0 °C, a 10 mL of a mixture of sodium carbonate (9%) was added slowly and then Fmoc-

O-Su (2.69 g, 7.9 mmol) dissolved in DMF (25 mL) was added in one portion. After 30 

min the reaction was diluited with H2O (400 mL) and extracted with EtOAc (100 mL). 

The aqueous phase was acidified (pH ~ 2) with a cold solution of HCl 1M and extraxted 

several times with EtOAc. The organic phase reunited was washed with brine, dried on 

dry Na2SO4 and evaporated under vaccum to obtain the pure 17 (3 g, 9.7 mmol, 73% 

yield): 1H NMR (200 MHz, CD3OD) δ: 2.62 (bt, 2H, J = 5.7), 3.18-3.40 (m, 2H), 4.22 

(t, 1H, J = 6.4), 4.42 (d, 2H, J = 6.6), 5.32 (bt, 1H, J = 5.6), 7.20-7.46 (m, 4H), 7.58 (d, 

2H, J = 7.3), 7.76 (d, 2H, J=7.1), 9.54 (bs, 1H). 13C NMR (50 MHz) ppm: 34.2, 36.4, 

47.2, 66.8, 120.0, 125.0 127.1, 127.7, 141.3, 143.8, 156.4, 176.7. Anal. calcd for 

C18H17NO4

N
H

N
H

O

O

O
H
N

O

H
NO

O

18

: C, 69.44; H, 5.50; N, 4.50. Found: C, 69.57; H,5.48; N, 4.48. 

 

Compound 18. To a solution of PPh3/I2/Him complex in dry CH2Cl2 anidro (30 mL), 

prepared with the same procedure used to prepare 13, Fmoc-β-Ala 17 (150 mg, 0.65 
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mmol, 1 eq) was added at room temperature and under nitrogen atmosphere. When it 

was observed the formation of acyl iodide (TLC: CH2Cl2/MeOH = 8:2), to mixture of 

reaction the compound 13 (450 mg, 1.94 mmol) in CH2Cl2 anidro (5 mL), was added in 

one portion. After 24 h, the mixture was treated with a solution of sodium thiosulfate 

5N (25 mL) e brine (25 mL) and extracted with CHCl3:CH3OH = 95/5. The organic 

phases were reunited, dried over Na2SO4 and evaporated under reduced pressure. The 

crude product (350 mg) was purified by crystallization (EtOAc) to give the pure 18 as 

white crystals (230 mg, resa 88%): 1H NMR (200 MHz, DMSO-d6) δ: 1.38 (s, 9H), 

2.11-2.29 (m, 4H), 2.99-3.26 (m, 8H), 4.14-4.32 (m, 5H.), 6.75 (bt, 2H, J = 5.5), 7.22-

7.42 (m, 4H), 7.67 (d, 2H, J = 7.1), 7.87 (d, 2H, J = 6.8). 13C NMR (50 MHz, DMSO-

d6) ppm: 28.2, 35.8, 36.7, 38.6, 39.5, 40.2, 40.7, 77.6, 40.7, 109.7, 120.0, 121.4, 127.2, 

128.9, 137.4, 139.4, 155.4, 157.2, 170.5, 171.5. ESI-MS: m/z 524.26 (calcd); 525.44 

[M+H]+ (found). Anal. calcd for C28H36N4O6

NH2N
H

OH
N

O

H
NO

O
15

: C, 64.10; H, 6.92; N, 10.68. Found: C, 

64.25; H, 6.89; N, 10.64. 

 
Compound 15. To a magnetically stirred solution of Py in DMF (5%) product 12 (230 

mg, 0.44 mmol) was added at room temperature. After 2h starting material was 

consumed (TLC: CHCl3:CH3OH = 7/3) and the solvent was evaporated under vacuum. 

Purification of the crude product by crystallization (Et2O/AcOEt) gave the pure 15 as 

white crystals (126 mg, yield 95%): 1H NMR (200 MHz, CH3OD) δ: 1.40 ( s, 9H), 

2.10-2.30 (m, 6H), 2.32-2.47 (m, 2H), 3.20-3.45 (m, 6H), 4.30-4.60 (m, 1H), 5.45 ( bs, 

1H), 6.78 (bs, 1H). 13C NMR (50 MHz, CH3OD) ppm: 28.3, 34.0, 34.2, 36.4, 39.8, 

41.1, 41.7, 79.0, 156.0, 171.8. ESI-MS: m/z 302.20 (calcd); 303.19 [M+H]+ (found). 

Anal. calcd for C13H26N4O4

COOH

N
H

O

N
H

N
O

HN

H2N N N

H
N

O

H
N

NH

BocHN

O
O

19

: C, 51.64; H, 8.67; N, 18.53. Found: C, 51.82; H, 8.63; N, 

18.47. 
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Compound 19. Conjugate 15 was obtained (82% yield) under the same conditions 

reported for the synthesis of compound 7 from folic acid and amine 15.1 Yellow solid, 

M.p. 207-209 °C; 1H NMR (200 MHz, DMSO-d6) δ: 1.38 (s, 9H), 1.82-2.01 (m, 2H), 

2.08-2.32 (m, 6H), 2.98-3.18 (m, 4H), 3.21-3.42 (m, 4H), 4.22-4.38 (m, 1H), 4.52 (bs, 

2H), 6.62 (d, 2H, J = 7.5 Hz), 6.68-6.78 (m, 1H), 6.82-7.05 (m, 3H), 7.65 (d, 2H, J = 7.5 

Hz), 7.81 (bs, 2H), 7.91-8.02 (m, 1H), 8.69 (s, 1H), 11.42 (bs, 1H). 13C NMR (100 

MHz, DMSO-d6): ppm 28.3, 30.7, 31.8, 35.4, 36.0, 36.6, 39.0, 39.1, 46.0, 51.8, 77.6, 

111.2, 121.4, 128.0, 129.0, 148.5, 148.7, 150.8, 153.7, 155.5, 156.6, 160.9, 166.4, 

170.5, 171.7, 173.8, 174.1. MALDI-TOF MS: m/z 725.32 (calcd); 748.66 [M+Na]+, 

764.68 [M+K]+ (found). Anal. calcd for C32H43N11O9

COOH

N
H

O

N
H

N
O

HN

H2N N N

H
N

O

H
N

NH

H2N

O
O

20

: C, 52.96; H, 5.97; N, 21.23. 

Found: C, 52.84; H, 5.96; N, 21.31. 

 
Compound 20. Folate conjugate 20 was obtained (82%) under the same conditions 

reported for the preparation of compound 8. Yellow solid, M.p. 204-207 °C; 1H NMR 

(500 MHz) (DMSO-d6) δ: 1.79-2.15 (m, 2H), 2.18-2.30 (m, 6H), 2.99-3.32 (m, 8H), 

4.38 (bs, 1H), 4.50 (bd, 2H, J = 5.0 Hz), 4.52 (bs, 2H), 6.58 (d, 2H, J = 7.3 Hz), 6.78-

7.02 (m, 4H), 7.62 (d, 2H, J = 7.3 Hz), 7.78-7.98 (m, 1H), 8.02-8.08 (m, 1H), 8.65 (s, 

1H), 11.40 (bs, 1H). 13C NMR (100 MHz, DMSO-d6): ppm 31.6, 32.1, 36.0, 36.8, 37.0, 

38.8, 39.1, 46.5, 52.4, 111.7, 121.4, 128.0, 129.6, 148.2, 148.4, 151.8, 156.0, 157.5, 

161.6, 167.1, 171.0, 172.6, 173.6, 174.0. MALDI-TOF MS: m/z 625.45 (calcd); 648.49 

[M+Na]+, 664.45 [M+K]+ (found). Anal. calcd for C27H35N11O7

N

NN

N
HO

NH2

HN

O

N
H

COOH

O

H
N

H
N

N
HO

O

NH

O N

Cl

Cl

2

: C, 51.83; H, 5.64; N, 

24.63. Found: C, 51.96; H, 5.62; N, 24.57. 
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Compound 2. Folate-CLB conjugate 2 was obtained (79% yield) under the same 

conditions reported for the synthesis of compound 1. Brownish purple solid, M.p. 220 

°C (dec.); 1H NMR (400 MHz) (DMSO-d6) δ: 1.65-1.69 (m, 2H), 1.79-1.98 (m, 2H), 

2.03 (appt, 2H, J = 7.2 Hz), 2.14-2.26 (m, 5H), 2.30 (t, 1H, J = 6.4 Hz), 2.32-2.42 (m, 

2H), 2.97-3.18 (m, 4H), 3.19-3.37 (m, 4H), 3.60 (t, 2H, J = 6.3), 3.67 (s, 2H,), 4.23-4.38 

(m, 1H), 4.48 (bd, 2H, J = 5.9 Hz), 6.57-6.69 (m, 4H), 6.78-7.02 (m, 4H), 7.58-7.62 (d, 

2H, J = 7.3), 7.82-7.94 (m, 2H), 7.98 (t, 1H, J = 7.6), 8.10 (d, 1H, J = 7.8), 8.60 (bs, 

1H), 11.41 (bs, 1H). 13C NMR (100 MHz, DMSO-d6): ppm 26.4, 30.9, 31.8, 33.5, 35.2, 

35.6, 35.7, 39.0, 39.1, 40.1, 46.2, 52.6, 53.8, 111.5, 112.2, 121.7, 128.3, 129.4, 129.6, 

148.9, 149.0, 151.0, 153.8, 154.1, 156.9, 161.1, 166.7, 169.9, 170.8, 172.0, 174.2. 

MALDI-TOF MS: m/z 910.34 (calcd); 933.11 [M+Na]+, 949.13 [M+K]+ (found). Anal. 

calcd for C41H52Cl2N12O8

BIOLOGY 

: C, 54.01; H, 5.75; Cl, 7.78; N, 18.43. Found: C, 54.19; H, 

5.73; Cl, 7.75; N, 18.35. 

 

Cell lines. The p53-null U937 human leukemic monocyte lymphoma and the p53-

positive isogenic human lymphoblast TK6 cell lines were obtained from American Type 

Culture Collection (Rockville, MD). Both cells were grown in Dulbecco's Modified 

Eagle Medium, 2 mM L-glutamine, 100 µg/mL streptomycin, 100 units/mL penicillin, 

and 10% Foetal Calf Serum (FCS). All media and cell culture reagents were purchased 

from Life Technologies (San Giuliano Milanese, Italy).  

Cell differentiation. Differentiation of the promyelocytic cell line U937 cells into 

macrophages was achieved according to Sordet et al.2

Stock solutions of the same concentration (75 mM) of folate-trioxa-CLB and folate-

(βAla-ED-βAla)-CLB stock solutions (both) were also obtained by dissolving the 

 by treating the cells with 20 nM 

12-O-tetradecanoylphorbol-13-acetate (TPA) for 24 h. At the end of this time the 

differentiation process was considered complete as indicated by the massive attachment 

of cells to the plate. TPA was obtained by Sigma Aldrich. A 100 µM stock solution was 

prepared in 100% DMSO. 

CLB and CLB-folate conjugates stock solutions. CLB was dissolved in 100% 

DMSO to obtain a concentrated (75 mM) stock solution. Before measurements, 

appropriate aliquots of this solution were diluted to the desired concentration. 

http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Cell-Culture/Mammalian-Cell-Culture/Classical_Media/dmem.html�
http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Cell-Culture/Mammalian-Cell-Culture/Classical_Media/dmem.html�
http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Cell-Culture/Mammalian-Cell-Culture/Classical_Media/dmem.html�
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powders in 100% DMSO under continuous stirring at room temperature overnight in the 

dark. These concentrated solutions were stored at 4 °C wrapped in aluminium foil. 

Before use, appropriate amounts of each stock solution were diluted to the desired 

concentration. 

Cell viability. Cell viability was assayed by using the Cell Proliferation Kit II 

(XTT, Roche, Milan Italy). The assay is based on the cleavage of the yellow tetrazolium 

salt XTT to form an orange formazan dye by metabolic active cells.3 Therefore, this 

conversion only occurs in viable cells. 

Normally 1x104

Flow cytometry. The undifferentiated or TPA-activated U937 cells and TK6 cells 

were incubated individually for 48 h with CLB or with its folate conjugated forms (30 

µM). After incubation, cells were washed twice with 1 mL phosphate saline buffer pH 

 cells/well were seeded into 96-well plates and incubated for 24, 48 

and 72 h with CLB, folate-trioxa-CLB or folate-(βAla-ED-βAla)-CLB at established 

concentrations and then analyzed in triplicate. 

Stability of CLB-folate conjugates in DMSO solutions. To assess the time-

stability of CLB-folate derivatives stock solutions we evaluated their biological effects 

on cell viability immediately after their preparation or after several weeks of storage. 

The changes in cytotoxic activity on U937 and TK6 cells of freshly-prepared or long 

stored (5 weeks) stock solutions (both 75 mM) were evaluated by comparing the 

residual viability of these cells (XTT assay) following 48 h treatment with scalar doses 

(normally 0-50 µM) of each compound. As concentrated solutions are normally more 

stable than the diluted ones, the check of stability and full retention of cytotoxic activity 

was also performed starting from stock solutions 100 times more diluted (i.e. 0.75 mM 

in 33% DMSO). Even in this case, the assays were performed immediately after their 

preparation or after several weeks of storage at 4 °C (5 weeks).  

Stability of CLB-folate conjugates in human serum. To test the stability of CLB-

folate-conjugates in human serum, we have diluted appropriate amounts of stock 

solutions of folate-trioxa-CLB or folate-(βAla-ED-βAla)-CLB in human serum so that 

the final concentrations of the drugs were in both cases 0.5 mmol/L. These CLB-

containing solutions, used as drug sources, were then incubated at 37 °C for 12 h and 

finally used to treat undifferentiated U937 and TK6 cells. The analysis of cell viability 

by XTT assay was performed 48 h later. In these experiments, CLB in free (control) or 

conjugated forms was 30 µM. 
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7.4 (PBS), and re-suspended and fixed in 70% ethanol. Before analysis, fixed cells were 

washed, centrifuged, and re-suspended in 1 mL PBS containing 1µg RNase and 100 µg 

propidium iodide.4 Samples were stored in the dark for 20 min at room temperature 

before final readings. The cellular orange fluorescence of propidium iodide was 

detected in a linear scale using a CyAn ADP Flow Cytometer (DAKOCytomation, Ely, 

UK) and analyzed by using ModFit/LT Software (Verity Software, Topsham, ME). 

About 30,000 events (i.e., fluorescence readings, corresponding to not less than 20,000 

cells) were recorded for each sample. 

Electrophoresis and Western blot analysis. Total cellular protein extracts were 

obtained by lysing cells in 50 mM Tris (pH 7.5), 100 mM NaCl, 1% NP40, 0.1% Triton 

X 100, 2 mM EDTA, 10 µg/mL aprotinin, and 100 µg/mL phenylmethylsulfonyl 

fluoride. Protein concentration was routinely measured with the Bio-Rad protein assay.5 

Polyacrylamide gels (10 or 15%) were prepared essentially as described by Laemmli.6 

Molecular weight standards were from New England Biolabs (Beverly, MA, USA). 

Proteins separated on the polyacrylamide gels were blotted onto nitrocellulose filters 

(Hybond-C pure, Amersham Italia, Milan, Italy). Filters were washed and stained with 

specific primary antibodies and then with secondary antisera conjugated with 

horseradish peroxidase (Bio-Rad; diluted 1:2,000). Filters were developed using an 

electro-chemiluminescent Western blotting detection reagent (Amersham Italia, Milan, 

Italy); profiles were acquired and grossly quantified by scanning with a Discover 

Pharmacia scanner equipped with a Sun Spark Classic Workstation. The anti-p53 

(DO1), anti-BAX (P-19) and anti-Clusterin (N-18) were from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA). Anti-tubulin (MCA77G) was from Serotec 

(Kidlington, UK). 

Statistical analysis. All data are expressed as mean ± SD. Significance was 

assessed by the Student's t test for unpaired data for comparisons between two means. 

Statistical significance was defined as *, p<0.01; **, p< 0.001; ***, p<0.0001. 
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2.1 INTRODUCTION 

As reported in Chapter 1 traditional cancer therapies such as surgical treatment, 

radiation therapy and chemotherapy lack selectivity in removing or destroying diseased 

tissue and sparing normal healthy cells. These conventional treatments result in serious 

side effects caused by the loss of normal cell functions as a result of having relatively 

indiscriminate cytotoxic properties. Thus it is necessary the development of new 

therapeutic approach that display more accurate and effective discrimination of normal 

and diseased tissue. Currently, one of the most widely used cancer therapies is 

photodynamic therapy (PDT). The PDT is a minimally invasive therapeutic modality 

used in the cure of various cancerous and pre-malignant diseases1

2.1.1 HISTORY OF PHOTODYNAMIC THERAPY  

 because it involves 

the systemic administration of a non-toxic photosensitizing drug (PS), which 

preferentially accumulates in host and tumor cells and then gets activated by the 

exposure of light in presence of oxygen to generate very reactive cytotoxic species. 

Furthermore, PDT is a cold photochemical process, which can be applied before, or 

after chemotherapy, ionizing radiation or surgery, without compromising these 

treatments or being compromised itself. Unlike other modalities like radiotherapy and 

surgery it can be applied repeatedly many times at the same site without risking the 

integrity of surrounding tissues. Response rates and its durability are better than other 

traditional therapeutic tools and it has better functional outcome. The possibility of 

interstitial light delivery where light is fed directly into solid tumors allows PDT to be 

used for large tumors and in treating residual microscopic disease left behind by other 

treatment modalities like surgery. Hence in many ways this treatment modality is 

superior to thermal laser techniques, chemotherapy and surgery.  

 

 

Utility of light in the medical field as a therapeutic tool traces its origin back to several 

thousand years. For example it’s know that ancient Egyptian, Indian and Chinese 

civilization used light to treat various diseases such as psoriasis, rickets, vitiligo and 

skin cancer.2 Indeed in one of India’s sacred books Atharva-veda (1400 BC) the use of 

seeds of the plant Psoralea corylifolia for the treatment of vitiligo is described. 
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Psoralens are photoactive components of these seeds, just as in the extracts of the plant 

Ammi majus, which grows on the banks of the Nile, and was used by Egyptians to treat 

vitiligo.3  

In the 18th and 19th centuries sunlight was used for treating various disease like 

tuberculosis or rheumatism paralysis. In 1903 a Danish scientist named N. Finsen was 

awarded a Nobel Prize for his work in phototherapy,4 he used the red light treatment for 

small pox5 and also ultraviolet light to treat tuberculosis.  

In those years Hermann von Tappeiner, director of the Institute of Pharmacology at 

the University of Munich, coined the term ‘photodynamic reaction’. According to the 

observations of Oscar Raab, his doctoral student, the reaction was characterized as an 

oxygen-dependent tissue reaction following photosensitization and irradiation with 

light.6 Oscar Raab could show in his experiments that in the presence of daylight the 

organic photosensitizer Acridine orange was cytotoxic for paramecia.6b

O

Br

-O

Br

O
BrBr

Na+

COO-
Na+

N

In 1898, O. Raab showed the cytotoxic effects
of the combination of acridine and light
on infusoria (Paramecium caudatum)

Acridine Eosin

Eosin is a fluorescent red
dye resulting from the action
of bromine on fluorescein

 The assays 

displayed that its toxicity was not only dependent on the concentration of the dye but 

also on the intensity of illumination. Furthermore in collaboration with the 

dermatologist Jesionek, von Tappeiner successfully treated patients suffering from 

lupus vulgaris, stage II syphilis and superficial skin cancer with topical Eosin red 

solution (1–5%) (Figure 1). 

 
Figure 1: Acridine and Eosin: promoters of phodynamic reactions. 

 

In 1913, F. Meyer-Betz investigated the porphyrins, class of compounds most often 

used today for their application in photodynamic therapy. He studied the accumulation 

of hematoporphyrin (HP) and its derivatives in rat tumors and PDT effects following 

systemic administration.7 The fluorescence from these compounds was further studied 

for diagnostic and tumor margin delineation between 1940 and 1950 by F.H.J. Figge 

and colleagues.8 Modern photodynamic therapy was initiated by R.L. Lipson and E.J. 

Blades. They established that an impurity in HP was the tumor-localizing agent, and not 

the parent compound. This led to the synthesis of hematoporphyrin derivative (HPD), a 
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mixture of porphyrins produced by the acid treatment of HP.9 The exact chemical 

composition and structure of this mixture remains unclear, although there is general 

consensus that the active portions consist of porphyrin oligomers with ether and ester 

linkages along with monomeric porphyrins. HPD was further developed for laboratory 

and clinical investigations through the efforts of T. J. Dougherty and colleagues in 

1970s and 1980s.10 

Tumors in virtually every anatomic site have been treated with PDT, and most are 

responsive to this therapy to some extent. Although, to date, several thousand patients 

have been treated with PDT for a variety of neoplasms, randomized clinical trials of this 

mode of cancer treatement were initiated only in 1987, using a purified form of HPD, 

called porfirmer sodium (Photofrin®)11

N

NH N
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CH3

CH3H3C

H3C

H3C OH

CH3

OH

HOOC COOH

N

NH N

HN

CH3

CH3H3C

H3C

-OOC COO-
Na+ Na+

O

O
n
n=1-9

Hematoporphyrin Photofrin

 (Figure 2). Currently, PDT with Photofrin® is 

approved in 10 countries.  

 
Figure 2: First generation photosensitizers. 

 

The understanding of the biology of PDT has advanced, and efficient, convenient, and 

inexpensive systems of light delivery are now available. Moreover, encouraging results 

from randomized phase III trials are becoming published, and improved 

photosensitizing drugs are under development. Besides, porfirmer sodium (Photofrin®), 

temoporfin (meso-tetra (hydroxyphenyl) porphyrin (m -THPP) (Foscan®) has now been 

approved for systemic administration, and aminolevulinic acid and ethyl 

aminolevulinate have been approved for topical use. 
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Figure 3. Historical development of photodynamic therapy. 

 

 

2.1.2 MECHANISM OF PHOTODYNAMIC THERAPY  

The photochemical and photophysical principles of PDT have been schematically 

represented in a modified Jablonski diagram (Figure 4).12 PDT is the result of 

combination of three non-toxic elements namely light, oxygen and photosensitizer. A 

photosensitizer is administered, usually intravenously; after a period of time the 

sensitizer accumulates in tumor tissue. It remain inactive until exposed to light. Visible 

light, most relevant to PDT, covers the limited range of 400–700 nm. Sensitizer 

molecule exposed to light, gets excited from its singlet state S0 to short-lived (~10–6 
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seconds) electronically excited singlet state S1, which can undergo radiative 

(fluorescence 2) and nonradiative (internal conversion 3) decay to come back to the 

ground state (S0). A good photosensitizer will at this stage undergo a spin forbidden 

inter system crossing (ISC 4) which requires a spin inversion, converting the 

photosensitizer to a triplet state T1 (10-2 seconds) with high efficiency. Triplet state 

relaxes back to ground state via spin forbidden radiative pathway (phosphorescence 5) 

which imposes relatively long life time for triplet state or by internal conversion, 

radiationless transitions during collisions with other molecules. In oxygenated 

environments chromophores can undergo Type II photochemical process 6 which 

involves an energy transfer between excited triplet state of photosensitizer and stable 

triplet oxygen 3O2 producing short lived and highly reactive excited singlet oxygen 1O2. 

Singlet oxygen is actually a highly polarized zwitterion and is considered to be a 

proficient cytotoxic agent. Type I process involves electron or hydrogen transfer 

process where the triplet state of photosensitzer interacts with biological substrates 

resulting in the formation of radicals and radical ions which on interaction with 

molecular oxygen gives rise to cytotoxic species like superoxide ion (O2
-) 7.13 It is 

generally thought that Type II mechanism predominates during PDT but it was found 

that Type I mechanism plays an important role at low oxygen concentrations and in 

more polar environments.13 The short lifetime of singlet oxygen (100-250 ns) limits the 

range of propagation to approximately 45 nm in cellular medium and hence cannot 

diffuse more than a single cell length (diameter of human cell ranges from 10-100 

mm).13,14 Hence, the primary generation of 1O2 warrants for the subcellular structures 

that can be accessed and destroyed. The photosensitizer is usually administered using an 

aqueous buffer solution or liposomes, the activating light is often generated by simple 

and economical lasers, which produce a coherent monochromatic light. Localization 

and biodistribution of photosensitizer in tissue and tumors depend on various factors 

such as hydrophobicity, pH, lymphatic drainage and lipoprotein binding. Other possible 

mechanisms which contributes to the tumor localization include aggregation, molecular 

charge and membrane potential of tumor cells. Many subcellular targets can be attacked 

during PDT, including mitochondria, lysosomes, plasma membrane and nuclei and it is 

the exact target, which decides whether cell death occurs by necrosis or apoptosis.15  
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Figure 4. Jablonski energy level diagram for photodynamic therapy. 

 

Thus in treating cancer with PDT (Figure 5), first step is the drug administration, 

followed by a period of incubation depending on the nature of photosensitizer used and 

is extremely necessary for the normal cells to get rid of the drug and the tumor cells to 

accumulate it. Third step is the illumination using laser which bring about the 

therapeutic effect. Finally, the exact method of PDT induced cell death relies primarily 

on the nature of the photosensitizer used and on the condition being treated and the light 

dose used.  

Figure 5. Schematic representation for PDT.i

                                                 
i Figure adapted from “Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and 
Optimization”, Chem Rev. 2010, 110, 2795–2838. 
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2.1.3 PHOTOSENSITIZERS 

Among the several photosensitizers available, very few have been selected for clinical 

trials owing to many important factors. They include selectivity in terms of target cells 

against healthy cells, suitable extinction coefficients and accumulation rates in target 

tissues, stable composition and a chemical nature that may facilitate the entrance in the 

cell avoiding precipitation in aqueous environments.16 The recent introduction of 

nanocarriers has partially modified this view, in that the properties of the PS may be not 

so important and that specificity toward target tissues may be improved using specific 

drug delivery strategies.19

2.1.3.1 FIRST AND SECOND GENERATION PHOTOSENSITIZERS 

 Photosensitizers are generally classified as porphyrins or non-

porphyrins. Porphyrin-derived PS, in turn are classified as first, second or third 

generation PS. 

 

 

First-generation PS are hematoporphyrin, its derivative HpD, and the purified, 

commercially available and yet largely employed Photofrin. This molecule originally 

approved for use in humans in 1993 in Canada, is now the PS most commonly used for 

the treatment of advanced stage lung, oesophageal, gastric and cervical cancer.17 Beside 

the absence of intrinsic toxicity, other advantages offered by Photofrin include the 

possibility of using small drug doses, the good clearance from normal tissue and 

possibility of repeated administrations without serious consequences, but prolonged 

photosensitivity, for the neoplastic patient.18 

Second generation PS include benzoporphyrin derivative, chlorins, phthalocyanines 

and texaphrins, as well as, naturally occurring compounds, such as hypericin, and 

substances that promote the production of the endogenous protoporphyrin IX (PpIX) as 

5-aminolevulinic acid (5-ALA) and some ester derivatives.19 5-Aminolevulinic acid is a 

stable molecule20

An extremely potent second generation PS approved in Europe for the palliative 

treatment of neck and head cancers is Foscan. This compound, which has been shown to 

have a short plasma half-life in humans, is an hydrophobic molecule, is strongly 

 that behaves as a prodrug, since it is metabolically converted to the 

photo-sensitizable protoporphyrin IX.  
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photoactivable (652 nm) with very high singlet oxygen yield while appearing to 

preferentially accumulate in tumor cells.21 In addition, beside a direct damage to tumor 

cells, the curative effect of this drug is also attributed to its pharmacokinetic behavior 

that causes intense and sustained vascular damage.22 Another PS that deserves particular 

mention is Talaporfin sodium (TS) a second-generation PS with a core chlorin structure 

containing a highly aromatic system. Its high water solubility and shorter half-life make 

it an attractive drug.23 In preclinical experiments, activation of Talaporfin sodium with 

laser light (664 nm) generated singlet oxygen in a drug dose-dependent fashion. The 

depth of treatment is dependent on the ability of light to penetrate the target tissue with 

enough photons to activate the drug. Singlet oxygen causes significant alteration of 

macromolecules via oxidation of biological substrates such as DNA, membrane lipids, 

cholesterol and solvated molecules.24 Preclinical studies have demonstrated that TS 

activation induces also systemic, tumor-specific immuno-modulation mediated by 

CD8+ T cells which involves up-regulation of both cytolytic and memory cells25 and 

microvessels closure that may help in overcoming tumor resistance.26

5-AMINOLEVULINIC ACID  

  

 

 

A new approach to PDT based on the use of endogenous photosensitizer protoporphyrin 

IX (Scheme 1), precursor in the biosynthesis of heme, was introduced in 1990. It made 

use of the above mentioned 5-aminolevulinic acid (Figure 6), which represent the first 

intermediate for the biosynthesis of heme.  

COO-

O
+H3N

 
Figure 6. 5-Aminolevulinic acid. 

 

 

HEME BIOSYNTHESIS  

It’s important to note that almost all cells in the body have a requirement for heme, 

because it forms the reactive centre of a number of enzymes and proteins. These cells 
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must preserve a capacity for heme biosynthesis that occurs by the porphyrin 

biosynthetic pathway shown in Scheme 1. The synthesis of ALA is the first and rate-

limiting step in the biosynthesis of heme. ALA is normally synthesized in mitochondria 

in the condensation reaction between glycine and succinyl-CoA27 (Scheme 1), in 

presence of ALA synthase (ALAS) and pyridoxal-5-phosphate (PLP) as cofactor.28 

ALA so synthesized achieves cytosol, where it undergoes a condensation reaction with 

aminolevulinate dehydratase (ALAD), a zinc-dependent enzyme, and leads to the 

formation of porphobilinogen (PBG). The next step in heme biosynthesis involves 

combining four molecules of PBG to form an unstable tetrapyrolle 

(hydroxymethylbilane HMB), catalyzed by porphobilinogen deaminase (PBDG), which 

is covalently linked a cofactor, dipyrromethane, that consist of two PBG molecules. 

Four additional molecules of PBG attach to dipyrromethane leading to the formation of 

hexapyrolle. Afterwards, in the hydrolytic reaction, cleavage of the distal tetrapyrolle 

occurs, resulting in the release of HMB.29 Uroporphyrinogen III synthase (URO3S) 

close HMB macrocycle leading to conversion of tetrapyrolle to uroporphyrinogen III.
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Scheme 1. Most important steps in the heme biosynthesis. 

 

Uroporphyrinogen decarboxylase (UROD) catalyzes decarboxylation of all four acetate 

side chains of uroporphyrinogen III to methyl groups.31 Coproporphyrinogen III so 
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formed, is transported into the membrane of mitochondria probably by peripheral-type 

benzodiazepine receptors (PBR).32 Coproporphyrinogen oxidase (CPO) then catalyzes 

the conversion of coporoporphyrinogen III to protoporporphyrinogen IX with the 

release of H2O2 and CO2, the reaction provides vinyl groups by oxidative 

decarboxylation of propionate groups.33 The next intermediate in heme biosynthesis, 

protoporphyrin IX (PpIX), is synthesized in the mitochondria and requires FAD-

containing protoporphyrinogen oxidase (PPO),34 that catalyzes the conversion of 

protoporphyrinogen IX to PpIX in the six-electron oxidation. Ferrochelatase (FECH), 

another rate-limiting enzyme, is responsible for insertion of Fe2+ into PpIX. The 

reaction occurs on the internal surface of the mitochondrial membrane.35

The use of 5-ALA in PDT take the advantage of the fact that these compound is a small, 

in contrast to porphyrins, soluble molecule able to penetrate the abnormal stratum 

corneum overlying skin tumors. For this reasons, it can be applied topically unlike other 

photosensitizers. Moreover, in contrast to most tetrapyrrole photosensitizers, ALA-PpIX 

localizes in cells during the biosynthesis, rather than in the tumor vasculature. ALA and 

ALA-PpIX are rapidly cleared from the system, which results in an acceptably short 

period compared to HpD and Photofrin® of cutaneous photosensitivity or skin 

phototoxicity. This is viewed as an advantage over some of the other photosensitizers 

 This stage 

leads to the formation of the final product so completing the heme biosynthetic 

pathway. 

At present, knowledge about the mechanisms involved in ALA-based PDT is 

limited, particularly it is not clear the reason for preferential ALA uptake and 

conversion by tumors and dysplastic tissue. Various theories have been put forward to 

account for this selectivity, one of these suggested that tumors contain lower levels of 

ferrochelatase than the surrounding normal tissue, resulting in less efficient conversion 

of PpIX into heme within tumor cells and hence the build-up of PpIX. Moreover it is 

well established that tumors have a lower pH than normal cells and this may result in 

more PpIX retention in the tumor cells due to the various protonated species which may 

be formed from PpIX.  

 

 

ADVANTAGES AND DISADVANTAGES OF 5-ALA  
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where light protection may be required for several weeks. This allows multiple 

treatment regims and thereby increases the efficacy of PpIX. Furthermore ALA can be 

easily synthesized unlike other porphyrin based photosensitizers, and the technique 

ALA-PDT is noninvasive, can be used to treat multiple lesions by short treatment 

sessions, produces excellent cosmetic results by not causing damage to surrounding 

tissue, has no side effects beyond slight pain during irradiation, and is well accepted by 

patients.36  

On the contrary a significant shortcoming of ALA is its limited ability to cross 

certain biological barriers, such as cellular membranes due to its low lipid solubility.37 

PpIX is active at 630 nm, which should give adequate depth penetration; when topically 

administered, ALA does not penetrate thoroughly; it has limited input. The drawback 

associated with PDT is that, when ALA was administered systemically, patients have 

reported mild nausea.38 Though multiple treatment regimens are possible, the efficacy 

of PpIX generation is decreased in the subsequent regimen if taken within 24 hours.39 

ALA is stable at acidic pH. In aqueous solutions buffered to a physiological pH, ALA 

dimerises to give pyrazine derivatives while at higher pH pseudo-porphobilinogen may 

be formed40

COO-

O
+H3N

NH

N
H

HOOC

COOH

O

O
Lactam Pyrazine

COOH

HOOC

NH2

Pseudo
porphoobilinogen

 and conversion to ester derivatives appears to worsen these problems. 

Esters are known to increase the potential for formation of lactam type derivatives 

(Scheme 2). 

 
Scheme 2: ALA degradation products. 

 

 

5-ALA DERIVATIVES: ESTERS  

In order to overcome the shortcomings of ALA and improve its bioavailability, ALA 

can be derivatized. ALA has two principal functional groups, a carboxylic acid and an 
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amino moiety which are both easily accessible for derivatization. The simplest way to 

alter the lipophilicity of ALA is via esterification of carboxylic function. The use of 

ALA derivatives as good candidates for the treatment of skin cancer has been 

extensively reviewed.41  

Amongst ALA-derivatives that may have improved pharmacological properties 

compared with ALA, ALA esters were widely studied. They are more 

hydrophobic/lipophilic than ALA, and it was believed that they might be taken up into 

cells by different mechanisms, which might improve the efficiency of the therapy. The 

rationale was, that once inside cells ALA esters may be hydrolysed to ALA, which 

could then enter the heme biosynthetic pathway. Esters with various chain lengths42,43 

(Table 1) have indeed proved to be effective in both phototherapy and photodetection.44 

However, the mechanisms involved in the production of PpIX from ALA esters may not 

be as simple as first thought. Certainly the uptake is different from that of ALA itself.45 

Increased cellular uptake of lipophilic ALA esters resulting in enhanced PpIX 

concentrations has been demonstrated in a number of in vitro and in vivo systems.46 

Though these esters are incorporated into the cells at higher rate than ALA, studies 

conducted show that they also efflux at an increased rate mediated by passive 

diffusion.

O
H
N O

R2
O

R1

47 

Table1. ALA derivatives. 

 
ALA-derivatives R R1 2 

ALA-methyl (Metvixia® -H ) -CH

ALA-ethyl 
3 

-H -C2H

ALA-propyl 
5 

-H -C3H

ALA-butyl 
7 

-H -C4H

ALA-pentyl 
9 

-H -C5H

ALA-hexyl (Hexvix
11 

® -H ) -C6H

ALA-octyl 
13 

-H -C8H

R-S-ALA-2-

(hydroxymethyl) tetra-

hydrofuranyl 

17 

-H 
O  
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R-S-ALA-2-

(hydroxymethyl) tetra-

hydropyranyl 

-H 
O  

ALA-benzyl (Benzvix® -H ) 

 
N-acetyl-ALA CH3 -H CO 

N-acetyl-ALA-ethyl CH3 -CCO 2H

N-acetyl-ALA-butyl 
5 

CH3 -CCO 4H

N-butanoyl-ALA 
9 

CH3(CH2)2 -H CO- 

N-pentyl-ALA CH3(CH2)3 -H CO- 

N-hexanoyl-ALA CH3(CH2)4 -H CO- 

N-heptanoyl-ALA CH3(CH2)5 -H CO- 

 

The most widely used ALA ester for in vitro work is ALA-hexyl ester.48 Under the 

commercial name of Hexvix, it has been successfully used in the detection of bladder 

cancer and has already been approved in most countries of the European Union and 

European Economic Area countries. In addition, the new European guidelines 

recommended recently the use of blue light cystoscopy and Hexvix, for the diagnosis of 

bladder cancer.49 On the other hand, it was shown that ALA methyl ester (Me-ALA) is 

very useful in the treatment of highly keratinised human lesions such as solar keratoses, 

reaching a higher ratio of porphyrins against normal skin after topical application.50 A 

highly selective and homogeneous distribution of Me-ALA-induced porphyrin 

fluorescence was seen in human malignant lesions such as thick basal cell carcinomas.51

2.1.3.2 THIRD GENERATION PHOTOSENSITIZERS 

 

Me-ALA, under the commercial name of Metvix is an approved drug for most of the 

European countries, USA, New Zealand, Australia and Brazil for certain non melanoma 

skin cancers such as superficial and nodular basal cell carcinomas, and actinic 

keratoses. Instead Benzvix is undergoing clinical trials for gastrointestinal cancers. 

 

 

Most therapeutic drugs distribute through the whole body, which results in general 

toxicity and poor acceptance of the treatments by patients. The targeted delivery of 
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chemotherapeutics to defined cancer cells is one of the main challenges and a very 

active field of research in the development of treatment strategies to minimize side-

effects of drugs. Disease-associated cells express molecules, including proteases, 

receptors, or adhesion molecules, that are different or differently expressed than their 

normal counterparts. Therefore one goal in the field of targeted therapies is to develop 

chemically derivatized drugs or drug vectors able to target defined cells through specific 

recognition mechanisms.52 This approach should also be able to overcome biological 

barriers.  

Four different strategies of improving selectivity (targeting) in PDT have been 

practiced so far.53 First strategy for selective photosensitizer (PS) delivery utilizes 

targeting moieties, such as monoclonal antibodies (MAbs),54 directed against antigens 

or ligands that are specifically overexpressed on cancer cells.  

A second strategy which is commonly used, to improve the delivery of PS to target 

tissue involves their encapsulation in colloidal carriers, such as liposomes, oil-

dispersions, polymeric particles, and polymers to facilitate drug delivery.55  

Thirdy strategy to selectively enhance PS levels in a disease site is to facilitate PS 

uptake more in the target tissue than the surrounding normal areas, through, for example 

several modification of PS taking advantage of certain properties of these cells, which 

either distinguish them from other cell or tissue types, or differentiate, malignant from 

normal cells. An note approach, is based on the altered sugar metabolism of cancer 

cells.56 Rapidly growing tumors are able to maintain high glucose catabolic rate by 

upregulation of the enzyme hexokinase. This enzyme phosphorylates glucose to 

glucose-6-phosphate, which is then retained in the cell. Photosensitizers have been also 

functionalized with a large quantity of different sugars. Saccharides-porphyrin or –

chlorin conjugates are probably the most active field of research in the targeting of 

photosensitizers.57 The efficiency of the saccharide composition has been evaluated 

using xylosyl, arabinosyl, glucosyl, galactosyl or 2-aminoglucosamide groups.38 When 

linked to a photosensitizer, uptake and accumulation in the endoplasmic reticulum and 

photoxicity were increased in cancer cells. The length of the oligosaccharide is also an 

important factor for the membrane penetration.

Fourthy strategy is to conjugate photosensitizer (PS) with specific receptors which 

are over expressed in cancer cells. This helps in receptor mediated endocytosis. One 

ligand suited for this purpose is folic acid thanks to the features reported in the Chapter 

58 
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1. For example tetraphenylporphyrin (TPP) has been conjugated to folic acid (Scheme 

3) to target tumor cells overexpressing its receptors.59 Cellular uptake and 

photodynamic activity of the conjugate on human nasopharyngeal cell line were greatly 

increased compared to free TPP and competitive assays using free folic acid 

demonstrated folate-receptor dependent uptake of the conjugate.  

 
Scheme 3: Tetraphenylporphyrin (TPP) has been conjugated to folic acid. 

 

On the contrary of this conjugated with tetraphenylporphyrin, on the basis of what just 

described, our attention has been concerned in the synthesis of folate-conjugated 

(reported in the next section) with 5-ALA and its methyl ester derivative precursors of 

porphyrin. 
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2.2 RESULTS AND DISCUSSION 

On the basis of the considerations given in the introduction and the promising results 

obtained for folate-conjugates described in the Chapter 1, the present work is focalized 

on development of new folate-based drug delivery systems for the selective transport of 

photosensitizers (FA-PS) in tumor cells.  

These systems (as described in Chapter 1) consist of 4 modules: folic acid, a linker, 

a cleavable bond and a photosensitizer as 5-ALA and its methyl ester derivative (Figure 

1). Beside the linkers already used for molecular systems previously cartooned, in this 

work we considered a third β-peptide-based linker prepared by solid phase synthesis in 

collaboration with Dr Giovanni Roviello (CNR of Napoli). The synthesis of this new 

compound are reported below.  
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Figure 1. Carrier linked prodrug system for photodynamic therapy. 
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2.2.1 SYNTHESIS OF FA-5-ALA CONJUGATES 1 AND 2. 

The synthesis of conjugates 1 and 2 (Figure 2) was carried out through an easy 

procedure starting from folate derivatives 4 and 5 prepared as previously described in 

Chapter 1, and 5-ALA suitably protected by reaction with Boc2O and NaOH in a 
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Figure 2. Folate conjugate 1-2 

 

The omologation reaction between N-Boc-5ALA 3 and the compounds 4 and 5 was 

carried out by testing different reaction conditions including the in situ activation of the 

carboxyl function of 3 using reagents such as DCC or PyBOP. In all cases, the results 

were not satisfactory, indeed the conjugation products was formed only in low yield 

(Scheme 1).  
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Scheme 1. Synthesis of folic acid-conjugates 6 and 7. 

 

With the aim to get the 5-ALA conjugates 6 and 7 with a better chemical yield, N-Boc-

5-ALA was first converted in corresponding succinimidyl ester 8 by reaction of 3 with 

NHS, DCC and TEA in dichloromethane (71% yield, Scheme 2). It’s interesting to note 

that in presence of a slight excess of NHS (1.2 eq) and extended reaction times (3h), the 

desired product N-Boc-5-ALA-OSu (8) was transformed quantitatively in the lactone 

compound (9). 
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Scheme 2. Formation of N-Boc-5-ALA-OSu. 
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In Scheme 3 the hypothesized mechanism for the formation of this product is shown: 

the N-hydroxysuccinimide, present in the reaction mixture, lead nucleophilic attack on 

ketone function at C-4 position. The generated anion can provide an intramolecular 

lactonization, entropically favored, leading to the formation of γ-lactone 9 and N-

hydroxysuccinimide that 

O

O

O
BocHN

N

O

O

O-

N OO
O

O

-O
BocHN

N

O

O

OSu

O-

N OO +
OSuO

O
BocHN

12

345

8

9
Byproduct

can afford even to the complete conversion of 8.  

 
Scheme 3. Hypothesized mechanism for formation of byproduct 9. 

 

Finally, the 5-ALA so activated was used in the coupling reaction with derivatives 4 and 

5 in presence of DCC and Py in DMSO (Scheme 4). In this case, the reaction provided 

the desired FA-5ALA conjugates in quantitative yield.  
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Scheme 4. Synthesis of folate-5ALA 1-2. 

 

Finally treatment of compound 6 and 7 with TFA in THF gave FA-PS 1 and 2 with high 

yield (98%).  

 

 

2.2.2 SYNTHESIS OF CONJUGATE 3 

Folate conjugate 3 contain a pentapeptide linker, consting of β-Alanine (four units) and 

aspartic acid (one unit) linked 5-ALA methyl ester as photosensitizer agent (Figure 3). 

The preparation of FA-PS conjugated was accomplished by solid-phase synthesis and 

involved the main following synthetic steps:  

 preparation of the linker  

 subsequent conjugation of the latter with folic acid  

 detachment from resin and coupling with the photosensitizer.  
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Figure 3. Folate-conjugate 3. 

 

The peptide sequence has been synthesized starting from C-terminal carboxyl group of 

aspartic acid in α-position which was used for anchoring to the solid phase, then the 

amino group was coupled to the group of the first β-alanine unit. β-Carboxyl group of 

aspartic acid was protected as t-butyl ester, an acid-labile group, stable in alkaline 

conditions. Fmoc group was used to protect the β-alanine amino function. Protected 

aspartic acid 10, commercially available at low cost, has been linked to Rink Amide-

MBHA resin (Figure 4) after removal of N-Fmoc protection, as reported in the 

literature.
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Figure 4. Rink Amide-MBHA resin. 

 

Subsequently a Fmoc β-alanine unit was added by a coupling reaction in presence of 

PyBop and DIPEA in NMP. Iterating this technique three more units of β-alanine were 

then added to afford the product 11 in quantitative yield (Scheme 5). Reaction 

monitoring was possible thanks to the presence of β-alanine Fmoc protecting group. 
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Scheme 5. Solid-phase synthesis of polyamide linker 11. 

 

Linker 11 anchored to the resin, was then coupled with FA unit under the same reaction 

conditions allowing to prepare the compound 3. The product 12 so obtained was 

detached from resin by acid hydrolysis (TFA/H2O/TIS) to provide the folate conjugate 

13 with 97% yield (Scheme 6). 
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Scheme 6. Synthesis of folate conjugate 3. 

 

The last step of this synthesis consisted in the conjugation of folate-derivative 13 to 5-

ALA methyl ester 14. This reaction was carried out by treatment with PyBop and 

DIPEA in

 

 DMSO to give the desired compound 3 with 98% yield (Scheme 6).  

                                                 
1 Boussard, C.; Doyle, V. E.; Mahmood, N.; Klimkait, T.; Pritchard, M.; Gilbert, I. H. 

Eur. J. Med. Chem. 2002, 37, 883-890. 
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2.3 CONCLUSION 

Photodynamic therapy is a minimally invasive treatment for the cure of malignant 

diseases. As clearing of the photosensitizer is often a limiting factor in PDT, the study 

of 5-aminolevulinic acid and its derivatives, has been receiving increasing attention. In 

an attempt to improve cell selectivity of ALA and its derivatives, in this work we 

realized an easy methodology to synthesize new folate-based carrier linked prodrugs (1-

3) that will be subjected, in the laboratory of Prof. Giuseppe Palumbo (Department of 

Biology, Cellular and Molecular Pathology “L. Califano” University of Napoli Federico 

II), to experiments of fluorescence spectroscopy on different cell lines in order to obtain 

useful information on the biocompatibility and on cellular internalization of our 

molecular systems. In addition, further studies will be conducted to demonstrate the 

actual release of 5-ALA and of 5-ALA methyl ester in the tumor site, verifying the 

possible application of the derivatives in photodynamic therapy. 
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2.4 EXPERIMENTAL SECTION  

All moisture-sensitive reactions were performed under a nitrogen atmosphere using 

ovendried glassware. Solvents were dried over standard drying agents and freshly 

distilled prior to use. Reactions were monitored by TLC (precoated silica gel plate 

F254, Merck). Column chromatography: Merck Kieselgel 60 (70-230 mesh); flash 

chromatography: Merck Kieselgel 60 (230-400 mesh). 1H and 13C NMR spectra were 

recorded on NMR spectrometers operating on Varian VXR (200 MHz), Bruker DRX 

(400 MHz) or Varian Inova Marker (500 MHz), using CDCl3

2.4.1 SOLUTION-PHASE SYNTHESIS 

 solutions unless otherwise 

specified. In all cases, tetramethylsilane (TMS) was used as internal standard for 

calibrating chemical shifts (δ). Coupling constant values (J) were reported in Hz. 

Combustion analyses were performed by using CHNS analyzer. 

OH

O

O
BocHN

3

 
Compound 3. To a stirring solution of 5-aminolevulinic acid (200 mg, 1.53 mmol) in 

H2O (2.4 mL), at 0 °C, a solution of NaOH (0.1 N) was added dropwise until pH 8-10. 

After a few minute Boc2O (6.2 g, 8.07 mmol) in 1,4-diossano (2.4 mL) was added. The 

mixture was stirred at room temperature for 24h, and then was acidified with a solution 

of HCl 1M until pH ~ 4. The solution was extracted with EtOAc and washed with H2O. 

The organic phase was dried on Na2SO4 and the solvent evaporated under reduced 

pressure, to offer the pure 9 (278 mg, 80% yield) without further purification: 1H NMR 

(500 MHz, CDCl3) δ: 1.43 (s, 9H, C(CH3)3), 2.71 (bs, 4H, H-2, H-3), 4.11 (bs, 2H, H-

5).13C NMR (50 MHz, CDCl3) ppm: 27.4, 28.7, 34.0, 50.1, 79.9, 84.8, 155.6, 176.9, 

204.0. Anal. calcd for C10H17NO5: C, 51.94; H, 7.41; N, 6.06. Found: C, 51.78; H, 

7.44; N, 6.08. 
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Compound 8. At a stirring solution of 3 (200 mg, 0.87 mmol) and TEA (0.18 mL, 1.3 

mmol) in dry CH2Cl2 (7.7 mL) at room temperature, NHS (200 mg, 1.74 mmol) and 

DCC (359 mg, 1.74 mmol) was added. After 16 h a white precipitate was formed due to 

the formation of dicyclohexylurea. After filtration the solvent was evaporated under 

reduced pressure and the crude residue purified by precipitation with cold Et2O to 

provide the pure 8 (203 mg, 71% yield): 1H NMR (400 MHz CDCl3) δ: 1.44 (s, 9H, 

C(CH3)3), 1.90-1.96 (m, 4H, CH2 OSu), 2.84 (t, 2H, J = 6.4 Hz, H-2), 2.97 (t, 2H, J = 

6.4, H-3), 4.02 (bd, 2H, J = 4.4 Hz, H-5). 13C NMR (50 MHz): ppm 24.8, 25.5, 28.2, 

33.8, 49.1, 80.2, 157.1, 168.1, 169.1, 203.0. Anal. calcd for C14H20N2O7

O O
SuO

BocHN

s

9

: C, 51.22; H, 

6.14; N, 8.53. Found: C, 51.38; H, 6.12; N, 8.50. 

 
Compound 9. The lactone 9 was prepared under the same conditions for preparation of 

8, but for prolonged reaction time (3h) with 97% yield. 1H NMR (400 MHz, CDCl3) δ: 

1.44 (s, 9H, C(CH3)3), 2.42-2.52 (m, 2H, H-2), 2.51-2.62 (m, 1H, H-3), 2.72-2.84 (m, 

4H, CH2OSu), 2.93-3.05 (m, 1H, H-3) 3.22 (dd, 1H, J = 4.4, J=15.6, H-5), 3.80 (dd, 

1H, J = 9.3, J = 15.6, H-5), 5.78 (bd, 1H, J = 5.3, NH). 13C NMR (100 MHz): ppm 25.3, 

27.1, 28.2, 29.2, 43.1, 79.9, 113.1, 156.0, 172.0, 174.3. Anal. calcd for C10H16NO4
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56.06; H, 7.53; N, 6.54. Found: C, 56.21; H, 7.50; N, 6.52. 

 
Compound 6. To stirred solution of derivate 4 (19 mg, 0.023 mmol) in DMSO (1.2 

mL) Boc-5-ALA-OSu (15mg, 0.046 mmol) and DIPEA (4 µl, 0.023 mmol) was added. 

After 16h at room temperature, cold Et2O (4 mL) was added dropwise to the mixture, 

after a few minutes acetone (2 mL) was added until the desired product was precipitated 
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as yellow crystals, which were recovered and dried under vacuum (98% yield): pf. 210-

214°C, 1H NMR (200 MHz, DMSO-d6) δ: 1.36 (s, 9 H, C(CH3)3), 1.51-1.72 (m, 4H, H-

3II, H-10II), 1.80-2.10 (m, 2H, H-β), 2.15-2.40 (m, 6H, H-13II, H-14II, H-γ), 3.00-3.20 

(m, 4H, H-2II, H-11II), 3.25-3.40 (m, 4H, H-4II, H-9II), 3.41-3.52 (m, 8H, H-5II, H-6II, H-

7II, H-8II), 3.70-3.80 (m, 2H, H-15II), 4.20-4.42 (m, 1H, H-α), 4.45 (bd, 2H, J = 5.4, H-

9), 6.63 (d, 2H, J = 7.6, H-2I, H-5I), 6.75-7.00 (m, 2H, H-3, H-10), 7.63 (d, 2H, J = 7.6, 

H-3I, H-6I), 7.72-7.84 (m, 2H, H-1II, H-2II), 7.90-8.00 (m, 1H, J = 8.4, H-16II), 8.02-

8.10 (m, 1H, NHGlu), 8.30 (s, 2H, NH2) 8.62 (s, 1H, H-7), 11.4 (s, 1H, COOH). 

MALDI-TOF MS: m/z 856.41 (calcd); 880.22 [M+Na]+, 896.20 [M+K]+ (found). 

Anal. calcd for C39H56N10O12
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: C, 54.66; H, 6.59; N, 16.35. Found: C, 54.52; 6.61; N, 

16.40. 

 
Compound 1. Compound 1 was prepared starting 6 with the same procedure reported 

in Chapter 1 for compound 8 (97% yield). 1H NMR (200 MHz, DMSO-d6) δ: 1.80-2.00 

(m, 2H, H-β), 2.18-2.38 (m, 10H, H-3II, H-6II, H-9II, H-12II, H-γ), 2.44 (dd, 1H, J = 7.7, 

J = 16.2, H-14II), 2.69 (dd, 1H, J = 6.1, J = 16.2, H14II), 3.15-3.32 (m, 8H, H-2II, H-5II, 

H-8II,H-11II), 4.24-4.38 (m, 1H, H-α), 4.45-4.58 (m, 2H, H-13II, H-9), 6.64 (d, 2H, J = 

8.7, H-3I, H-5I), 7.08 (bs, 1H, H-10), 7.25 (bs, 1H, H-3), 7.63 (d, 2H, H-2I, H-6I), 7.80-

7.95 (m, 6H, H-1II, H-4II, H-7II, H-11II, NH2C=O), 8.12 (d, 1H, NHGlu), 8.12 (d, 1H, J = 

8.2, NHGlu) 8.73 (s, 1H, H-7), 11.98-12.30 (m, 2H, 2xCOOH).  

MALDI-TOF MS: m/z 756.36 (Calcd); 757.19 [M+H]+, 780.21 [M+Na]+, 796.23 

[M+K]+ (Found). Anal. calcd for C34H48N10O10: C, 53.96; H, 6.39; N, 18.51. Found: C, 

54.12; H, 6.37; N, 18.45 
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Compound 7. Under the same conditions used for compound 6, the compound 7 was 

obtained with 98% yield. 1H NMR (200 MHz, DMSO-d6) δ: 1.36 (s, 9H, CH3t-Bu), 1.82-

2.08 (m, 2H, H-β), 2.12-2.32 (m, 10H, H-3II, H-8II, H-γ, H-11II, H-12II), 2.98-3.18 (m, 

4H, H-2II, H-9II), 3.21-3.42 (m, 4H, H-5II, H-6II), 3.75(bd, 2H, J= 5.4, H-13II), 4.31 (bs, 

1H, H-α), 4.52 (bd, 2H, J= 5.9, H-9), 6.62 (d, 2H, J = 7.5, H-3I, H-5I), 6.88-6.96 (m, 

3H, H-4II, H-7II, H-10), 7.65 (d, 2H, J = 7.5, H-2I, H-6I), 7.81 (bs, 2H, H-1II, H-10II), 

7.95 (m, 2H, NHGlu, H-14II), 8.12 (m, 1H, H-3), 8.69 (s, 1H, H-7), 11.42 (bs,1H, 

COOH). 

MALDI-TOF MS: m/z 737.37 (calcd); 760.31 [M+Na]+, 776.29 [M+K]+ (found). 

Anal. calcd for C33H43N11O9
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: C, 52.98; H, 6.01; N, 20.04; O, 20.98. Found: C, 52.79; 

6.03; N, 20.10. 

 
Compound 2. Under the same conditions used for compound 1, the compound 2 was 

obtained from 7 with 98% yield. 
1H NMR (200 MHz, DMSO-d6) δ: 1.82-2.08 (m, 2H, H-β), 2.12-2.32 (m, 10H, H-3II, 

H-8II, H-γ, H-11II, H-12II), 2.98-3.18 (m, 4H, H-2II, H-9II), 3.21-3.42 (m, 4H, H-5II, H-

6II), 3.75(bd, 2H, J= 5.4, H-13II), 4.31 (bs, 1H, H-α), 4.52 (bd, 2H, J= 5.9, H-9), 6.62 (d, 

2H, J = 7.5, H-3I, H-5I), 6.88-6.96 (m, 3H, H-4II, H-7II, H-10), 7.65 (d, 2H, J = 7.5, H-

2I, H-6I), 7.81 (bs, 2H, H-1II, H-10II), 7.95 (m, 3H, NHGlu, H-14II), 8.12 (m, 1H, H-3), 

8.69 (s, 1H, H-7), 11.42 (bs,1H, COOH). Anal. calcd for C32H42N12O9: C, 52.03; H, 

5.73; N, 22.75. Found: C, 52.18; H, 5.71; N, 22.68. 
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2.4.2 SOLID-PHASE SYNTHESIS 

The synthesis of the pentapeptide 11 and the subsequent coupling reaction with folic 

acid were carried out in a reactor equipped with a plastic filter, PTFE (Teflon), a 

stopcock and a cap. The resin (MBHA-Rink Amide) was deprotected from Fmoc group 

by treatment with piperidine (30%) in DMF for 30 min. The efficiency of coupling of 

monomers was monitored by UV Fmoc test (absorbance of the Fmoc group: 7800 = 

ε301), so as to estimate the yield of incorporation of each residue. During the solid-

phase synthesis, the capping of unreacted amino acid is achieved with Ac2O 

(20%)/DIPEA (5%) in DMF, while the efficiency of coupling was monitored by 

measuring the absorbance of the released Fmoc group (7800 = ε301

N
H

O

O-tBu

OHN
O

N
H

O

N
H

O

N
H

O

H2N

11

 ). 

 
Compound 11. To the resin (0.5 mmol, 300 mg), previously deprotected by Fmoc 

group and washed with NMP, an acid solution of aspartic acid 10 (1 mL of a 0.5 M in 

NMP solution, 2.69 mmol, 358 mg) PyBOP (1 mL of a 0.5 M solution in NMP, 0.85 

mmol) and DIPEA (295 μL, 1.69 mmol) were added in to the reactor. After 20 min the 

mixture was removed from resin that was washed with NMP. To ensure peptide 

homogeneity the capping of unreacted amino acid was achieved using Ac2O 

(20%)/DIPEA (5%) in NMP for 15 min. Deprotection of Fmoc group was achieved 

with pyperidine (30%) in DMF (15 min). After that, a mixture of Fmoc-β-alanine (1 mL 

of a 0.5 M solution in NMP, 0.88 mmol) and PyBOP (1 mL of 0.5 M solution in NMP, 

0.85 mmol) and DIPEA (295 μL, 1.69 mmol) were added into the reactor. Iterating this 

technique, three more units of β-alanine were then added to give the compound 11 in 

quantitative yield (calculated by UV detector). 
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Compound 12. To the linker 11, anchored to the resin, folic acid (1 mL of a 0.5 M 

solution in DMSO, 0.91 mmol, 400 mg), PyBOP (1 mL of a 0.5 M solution in DMSO, 

0.90 mmol) and DIPEA (158 μL, 0.91 mmol) were added. After 16h the product 12 was 

detached from the resin with a solution of TFA/TIS/H2O (95%:2.5%:2.5%) (1.5 mL) 

for 2h. TFA was removed under nitrogen atmosphere. The pure 12 (0.88 mmol, 741 mg, 

97% yield) was obtained by precipitation with cold Et2O, centrifugation and subsequent 

lyophilization. 1H NMR (300 MHz DMSO-d6) δ: 1.82-2.00 (m, 2H, H-β), 2.18-2.25 (m, 

10H, H-3II, H-6II, H-9II, H-12II H-γ), 2.39 (dd, 1H, H-14II); 2.67 (dd, 1H, H-14II); 3.18-

3.25 (m, 8H, H-2II, H-5II, H-8II, H-11II), 4.30 (bs, 1H, H-α); 4.58 (bs, 2H, H-9), 6.62 (d, 

2H, H-3I, H-5I), 7.15-7.22 (m, 3H, H-4II, H-7II, H-10), 7.65 (d, 2H, H-2I, H-6I), 7.00-

7.22 (m, 2H, H-1II, H-3), 8.10 (m, 1H, NHGlu), 8.65 (m, 1H, H-7). 

ESI-MS: m/z 839.33 (calcd); 841.03 [M+H]+, 864.34 [M+Na]+, 881.91 [M+K]+ 

(found). Anal. calcd for C35H45N13O12
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: C, 50.06; H, 5.40; N, 21.68. Found: C, 50.22; 

H, 5.38; N, 21.59. 

 

Compound 3. The compound 3 was obtained with 96% yield under the same conditions 

used for compound 1 described in Chapter 1, starting from 14. 1H NMR (500 MHz 

DMSO-d6) δ: 1.82-2.00 (m, 2H, H-β), 2.18-2.25 (m, 10H, H-3II, H-6II, H-9II, H-12II H-

γ), 2.39 (dd, 1H, H-14II); 2.67 (dd, 1H, H-14II); 2.76-2.79 (bt, 1H, H-19II), 3.12, (m, 1H, 

H-18II), 3.18-3.25 (m, 8H, H-2II, H-5II, H-8II, H-11II), 3.56-3.58 (m, 3H, OCH3) 4.30 

(bs, 1H, H-α); 4.58 (bs, 2H, H-9), 6.62 (d, 2H, H-3I, H-5I), 7.15-7.22 (m, 3H, H-4II, H-

7II, H-10), 7.65 (d, 2H, H-2I, H-6I), 7.00-7.22 (m, 2H, H-1II, H-3), 8.10 (m, 1H, NHGlu), 
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8.46 (s, 1H, H-16II), 8.65 (m, 1H, H-7). Anal. calcd for C41H54N14O14: C, 50.93; H, 

5.63; N, 20.28; O, 23.16. Found: C, 50.75; H, 5.64; N, 20.36. 
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3.1 INTRODUCTION 

Acquired immunodeficiency syndrome (AIDS) is a disease of the human immune 

system caused by the human immunodeficiency virus (HIV).1

HIV-1 and HIV-2 are RNA viruses belonging to the retroviruses family

 The disease interferes 

with the immune system making AIDS infected individuals much more likely to get 

infections, including opportunistic infections and tumors that do not affect people with 

working immune systems. 
2 and so 

they are duplicated in a host cell by reverse transcriptase enzyme to produce DNA from 

its RNA genome.3

1. HIV binds to a CD4 receptor and then fuses with the host cell; 

 The human immunodeficiency virus has a spherical shape with a 

diameter of about 100 nm and is composed by a capsid (glycoproteins membrane) on 

which gp41 trans-membrane protein, and gp120 surface glycoproteins are present. 

Within the membrane there is an nucleocapsid (protein envelope) which encloses the 

genetic material (two copies of single strand RNA) and enzymes necessary for virus 

replication: protease, integrase, reverse transcriptase and ribonuclease.  

As shown in Figure 1, the life cycle of HIV consists of following steps: 

2. after fusion, the virus releases its genetic material into the host cell (uncoating); 

3. the reverse transcriptase enzyme converts the single-stranded viral RNA to 

double-stranded viral DNA;  

4. the newly formed viral DNA is transported in the cellular nucleus and integrates 

into the host DNA by integrase enzyme (integration); 

5. new viral RNA and viral proteins are formed (transcription and trasduction

6. new viral RNA and proteins move to cell surface to form a new mature HIV.

); 
4 

http://en.wikipedia.org/wiki/Reverse_transcriptase�
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Figure 1. HIV life cycle. 

 

 

3.1.1 ANTI-HIV CHEMOTHERAPY  

The gained knowledge about HIV replication cycle has led to the development of 

several classes of chemotherapeutic agents5 like, for example, nucleoside and nucleotide 

reverse transcriptase inhibitors (NRTIs, NtRTIs), non-nucleosides reverse transcriptase 

inhibitors (NNRTIs), co-receptor inhibitors (CRIs), fusion inhibitors (FIs), integrase 

inhibitors (INIs), protease inhibitors (PIs).6 In particular, nucleosides reverse 

transcriptase inhibitors (NRTIs) received over the years the greater attention. The 

reverse transcriptase is an asymmetric heterodimer consisting of two subunits of 66 kDa 

(p66) molecular mass  and 51 kDa (p51), with identical residues in their first 428 amino 

acid positions. The p66 subunit is 560 residues in lenght, with its DNA polymerase and 

RNase H domains in the amino and carboxylterminal portions, respectively. Based on 

an examination of crystal forms of HIV-1 RT, the anthropomorphic shape of a hand has 

been used to describe the polymerase domain, with subdomains made up of the fingers, 
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palm, thumb, and connection to the RNase H domain. The p51 subunit comprises the 

same subdomains, but lacks the RNase H portion. The fingers, thumb, palm, and 

connection of the two subunits can be approximately superpositioned, pairwise, 

between p66 and p51. However, the tertiary packing of the subdomains within the 

subunits differs: p66 is described as an open hand, with a large cleft for binding double-

stranded nucleic acids between the thumb and fingers subdomains, while p51 is 

considerably more compact, with no nucleic acid binding cleft. 

 

 

3.1.1.1 NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS 

NRTIs, analogues of natural nucleosides, explicate their pharmacological action after 

phosphorylation steps7 by host cell kinases and phosphotransferases to form 

deoxynucleoside triphosphate8,9 analogues capable of viral inhibition.10 In particular, 

they act on the process of virus replication by blocking the transcription of viral RNA 

into DNA, as once incorporated, the lack of OH prevents the formation of the bond 

3',5'-phosphodiester bond with the next nucleotide in crescent DNA chain, thus 

blocking its growth. 

 
Figure 2. Chain termination mechanism. 
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Currently, there are eight NRTIs approved for HIV treatment by Food and Drug 

Administration (Figure 3).5 As cartooned in Figure 3 this drugs have as common 

feature the lack of 3’-OH group, even if they present different structures. Indeed, in the 

case of nucleosides ddI and ddC the OH-group is substituted by on H-atom, in the case 

of AZT, instead there is a 3’-azido function. In Abacavir drug the saccharide unit is 

replaced by a carbocyclic ring with a double bond, while 3TC and FTC present a sulfur 

atom in C3’. It’s also important to note a particular saccharide portion modification of 

drugs 3TC, FTC, and TFV. Indeed regarding 3TC and FTC, in addition to the 

oxathiolane ring, they have the unnatural L-enantiomeric ribose form. Note that L-

nucleoside analogues are often privileged anti-HIV agents because their activity is often 

associated to minor toxicity.11 TFV, instead, is the only nucleotide analogue among 

approved NRTIs that has an acyclic linker attached to a modified phosphate. 

Furthermore, some of currently approved NRTIs present a modified nucleobase such as 

FTC that contains a fluorine at C5 position of cytosine and ABC has a modified 

diaminopurine ring.12
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Figure 3. NRTIs currently used in HIV-1 and HIV-2 treatment. 

 

 

3.1.1.2 ANTIVIRAL AND ANTITUMOR NUCLEOSIDES 

The structural requirements of antiviral and antitumor nucleosides to be recognized by 

cellular/viral enzymes rely on three key elements:  
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a) the hydroxymethyl group, necessary for nucleoside phosphorylation,  

b) the heterocyclic base moiety, involved in the main recognition processes through 

specific hydrogen bonds, and  

c) the sugar moiety, which can be considered as a spacer to connect the 

hydroxymethyl group and the nucleobase in the correct orientation. 

 

A wide number of structural modifications at the carbohydrate moiety have been 

devised, with the aim to replace the furanose ring with units resembling the 

conformational features of natural nucleosides. Particularly, replacement of the sugar 

skeleton with acyclic moieties, n-membered rings (with n=3,4,5,6,7), equipped in some 

cases with exo- or endocyclic double bonds, has been reported. Such systems quite 

often contain carbon, one or more heteroatoms in place of/or along with endocyclic 

oxygen, resulting in major functional changes in the nucleoside subunits. Such a wide 

structural diversity in nucleoside architectures has led, over the years, to the 

development and approval of several molecules on the antiviral market in both racemic 

or enantiomerically pure form.

3.1.2 HIV DRUG RESISTANCE  

  
 

 

In the last years, combination chemotherapy or highly active antiretroviral therapy 

(HAART) (Figure 3) using two or more NRTIs has improved the life quality of HIV-

infected patients. Unfortunately the application of these compounds is clinically limited 

due to their cytotoxicity through inhibition of the host DNA polymerases and the rapid 

development of drug-resistant HIV variants. Two basic types of NRTI-resistance 

mechanisms known for HIV-1 reverse trascripatase are: NRTI exclusion and NRTI 

excision. 

NRTI exclusion. This resistance mechanism involves enhanced discrimination when 

triphosphate form of a NRTI is incorporated. The M184V/I mutations are a clear 

example of the exclusion mechanism because it selectively reduce the incorporation of 

3TC and FTC by steric hindrance.13 Also the mutations L74V (ddI resistance),14 K65R 

(TFV and ddI resistance)15 and several variants that involved Q151M (resistance to 

most NRTIs)16 cause resistance by the exclusion mechanism.  
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NRTI excision. The excision mechanism involves the selective removal of the 

NRTI from the end of the viral DNA after its incorporation by RT. For example the 

combinations of mutations M41L, D67N, K70R, L210W, T215F/Y, K219E/Q17

3.1.2.1 4’-SUBSTITUTED NUCLEOSIDE ANALOGUES 

 adduce 

high levels of resistance to AZT and to much lower levels of resistance to some other 

NRTIs.  

Therefore, the development of new compounds with reduced cytotoxicity and that 

are active against drug resistant HIV-1 variants and that prevent or delay the emergence 

of resistant HIV-1 variants is urgently needed.  

 

 

Among new classes of nucleoside analogues endowed of the above mentioned features 

4’substituted nucleosides are currently under investigation. Some candidates for 

chemoterapeutic treatment of drug-resistant HIV strains and selected results of their 

antiviral assays are reported below.18 

The first discovered 4’-substituted deoxynucleoside provided with potent anti-HIV 

activity is 4’-azido-thymidine.19 This compound showed better antiviral potency than 

AZT, but also higher cytotoxicity. Among a wide range of subsequently synthesized 4’-

substituted NRTIs,20 2’-deoxy-4’-C-ethynyl-2-fluoroadenosine (EFdA) (Figure 4) 

stands out as one of the most potent NRTIs.21

The 4’-substituted nucleosides (4′-SdNs) in Figure 4 are characterized by presence 

of 3′-OH which makes them acceptable by RT, therefore, they are incorporated into the 

proviral DNA chains. As reported in literature,

 It is up to 100-fold more potent than AZT, 

reaching even better in vitro activity than some HIV protease inhibitors. 

22 the 4′-substituents cause severe steric 

hindrance16,23 to the neighbouring cis 3′-OH group due to restricted rotation around the 

C3′-C4′ single bond. For this reasons 3′-OH results less reactive and it was expected 

that enzymatic chain elongation of DNA proceed slowly. Consequently, 4′ -substituted 

nucleosides could be considered kinetic chain terminators24 for proviral DNA 

biosynthesis. Furthermore 4′ -SdNs would be more stable than 2′ -deoxynucleosides and 

2′,3′-dideoxynucleosides against catabolism because of the steric repulsion between 3′ -

OH and 4′ -substituents changes the conformation of their furanose ring, preferably to 
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C3′-endo conformation; this results in 4′ -SdNs being less susceptible to enzymatic 

degradation.

N

N N

N

NH2

O
OH

9H-Purin-6-amine, 9-[(4xi)-3-deoxy-
4-C-methyl−β-L-glycero-pentof uranosyl]-

HIV-1 straincell type
>5.1R) CEM-SS

O

OH

OH N

NH

O

O

HO

1-(2-Deoxy-4-methoxy-α-
L-threo-pentofuranosyl)thymine

HIV-1 strain cell type
LAV A3.01 > 200 uM

O

OH

N

NH

O

O

HIV-1 strain cell type
A301 (alex) 12.5LAV

HO

HO

Syntex

4'-Hydroxymethylthymidine

LAI MT-4 7

HIV-1 strain cell type EC50 (µM)
A3.01 15.5LAV

2'-deoxy-4'-methoxyadenosine

N

NN

N

NH2

O

OH

HO

O
O

N

NH

O

O

HIV-1 strain cell type
A301 (alex) >200LAV

O

O

Syntex

2'-deoxy-5',4'-(isopropylidenedioxymethyl)
lyxof uranosidethymidine

O
N

NH

O

O

HIV-1 strain cell type
A3.01 8.5LAV

HO

Syntex

4'-methoxythymidine

LAI MT-4 8.49

OH

O

HIV-1 strain cell type
MT-4 >4.7

4'-α-2-(hydroxyethyl)thymidine

O
N

NH

O

OHO

OH

HO

IIIB
LAI MT-4 7

HIV-1 strain cell type
A3.01 0.1LAV

2'-deoxy-4'-methoxyguanosina

NH

N

N

O

NH2N
O

OH

HO

O

none

OH

OH

Syntex

EC50 (µM) EC50 (µM) EC50 (µM)

EC50 (µM) EC50 (µM) EC50 (µM) EC50 (µM)

Syntex

25 

 

N

NN

N

NH2

O
HO

HIV-1 strain cell type
IIIB MT-4 2.6

2'-Deoxy-4'-methyladenosine

LAI MT-4 2.6

O

OH

N

NH

O

O

HIV-1 strain cell type
A301 (alex) >200LAV

O

O

Syntex

5'-4'-(isopropylidenedeoxymethyl)-
3'-deoxythymidine

O

OH

HO N

NH

O

O

Syntex

HIV-1 strain cell type
A301 (alex) 3.5

MT-4 7.2

β-4'-methylthymidine

LAV
IIIB

O

N

N
H

O
O

HIV-1 strain cell type
A301 (alex) >200LAV

HO Syntex

α-4'methylthymidine

O
N

N

OHO

HIV-1 strain cell type
MT-4 0.0086IIIB

NH2

1-(2-deoxy-4-a-ethyll-
β-D-ribof uranosyl)cytosine

HIV-1 strain cell type
MT-4 16.1

4'-α-ethylthymidine

O
N

NH

O

OHO

IIIB

HIV-1 straincell type

5-Pyrimidinecarboxamide,
1-(2-deoxy-4-C-methylpentofuranosyl)-
1,2,3,4-tetrahydro-2,4-dioxo
-N -[(phenylmethoxy)carbonyl]-

>596RF CEM-SS

O
N

NH

O

O

OH

N
H

O

OO

HO

HIV-1 strain cell type

1-(2-deoxy-4-α-methyl-
β-D-ribofuranosyl)cytosine

O
N

N

OHO

IIB MT-4 0.062
LAI MT-4 0.015

NH2

OH

OH

OHOH

Taiho
Pharmaceutical

Taiho
Pharmaceutical

EC50 (µM)

EC50 (µM)

EC50 (µM) EC50 (µM) EC50 (µM)

EC50 (µM) EC50 (µM)EC50 (µM)

 
Figure 4. Anti-HIV-1 Activity of Nucleoside Analogues: 4’-Substituted-D- and L-

nucleosides. 
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Figure 4. Anti-HIV-1 Activity of Nucleoside Analogues: 4’-Substituted-D- and L-

nucleosides (continued). 

 

Among the 4’-substituted nucleosides under investigation at present, an important class 

of this biologically active compounds are nucleosides possessing an unsaturated26 or 

saturated sugar moiety.  

The novel derivatives of d4T, like 2’,3’-didehydro-3’deoxy-4’-ethynylthymidine 

(4’-Ed4T) represent an interesting example (Figure 5).27 Compared with its parental 

compound d4T, 4’-Ed4T is fivefold more potent against HIV-1 replication. It also 

showed much less cytotoxicity than d4T in cell culture studies because triphosphate 4’-

Ed4T had no or only a weak inhibitory effect on major host DNA polymerases. 

Moreover, 4’-Ed4T was found to be active against many drug-resistant HIV-1 strains. 

Drug susceptibility studies showed that HIV-1 strains with the M184V single mutation 

and the P119S/T165A/M184V triple mutations in RT conferred three- to fivefold and 

130-fold resistance to 4’-Ed4T, respectively.28  
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Figure 5. Anti-HIV-1 activity of nucleoside analogues: 2’,3’-dideoxy-2’3’-dideydro-4’-

substituted-D and L-nucleosides, 2’,3’- dideydro-4’-substituted-D and L-nucleosides 

 

Great attention in this field also received the exploration of new 4’-substituted 

nucleosides containing a sulfur atom sugar ring yielded potent inhibitors of HIV with 

EC50 values ranging from 0.37 to 100 µM (Figure 6). In this series, 4’-azido- and 4’-

cyanothionucleosides were approximately 10-fold more potent than the 4’-ethynyl-

containing compounds. Unlike most of the other 4’-substituted NRTIs, the 

thiothymidine series appeared to maintain potent activity against viruses with the 

M184V mutation.29  
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Figure 6. Anti-HIV-1 activity of nucleoside analogues: 2’,3’-dideoxy-2’3’-dideydro-4’-

substituted-D and L-nucleosides 

 

With the aim to prepare new compound able to overcome drug resistance, in the next 

section, it will described novel synthetic strategy to design more specific and selective 

antiviral agents. In particular, our attention was focused on the synthesis of sulfur-

containing six-membered nucleosides30 with structural similarity with natural 

nucleosides and 4’-substituted nucleosides to be tested as antiviral agents for treatment 

of HIV-infected individues. 
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3.2. RESULTS AND DISCUSSION 

On the basis of considerations and data reported in the previous section, this work 

concerns the synthesis of novel nucleoside analogues endowed with potential antiviral 

property. In particular a novel class of nucleosides in which the sugar moiety that 

usually acts as a spacer between the two other unit (CH2OH group and heterocyclic 

base) hase been replaced by a dithinyl one. Moreover a new methodology for the 

synthesis of 4’substituted nucleosides has been realized. Both synthetic approach made 

use of the same starting material 

S
S

HO

S

S

HO
Base

Base

S
S

HO

O
HO Base

CH3O

1) coupling reaction
2) domino reaction
3) desolforation and

nucleobase insertion

1) sulfoxidation reaction
2) Pummerer-type

glycosidation

5,6-dihydro-1,4-dithiin compound depicted in the 

square of Figure 1. 

 
Figure 1. 1,4-Dithiinyl and 4’-Substituted Nucleosides. 

 

 

3.2.1 SYNTHESIS OF 2,3-DIHYDRO-1,4-DITHIINYL NUCLEOSIDES 

In this context, our interest in sulfur-containing nucleosides1 and six-membered 

nucleoside analogues2 took us to open up a synthetic study on the preparation of 

heterocyclic nucleosides 1 and 2, in which the sugar moiety is substituted by a 5,6-

dihydro-1,4-dithiin ring (Figure 2). Such a system has long been at the centre of our 

investigations regarding the development of novel de novo synthetic methodologies for 

the preparation of natural and unnatural compounds by three-carbon homologation of 

various electrophiles.3 Differently from its common employ as elongating system,31,4 

herein we report the use of dithiinyl moiety as sugar scaffold in place of the furan ring 

of natural nucleosides to produce novel analogues endowed with potential antiviral 

activity. 



Results and Discussion                                                                                        Chapter 3 

99 
 

S S

HO

S

S

HO

21

N
N

NH2

O

N
N

NH2

O

 
Figure 2. Dithiin nucleoside analogues 1 and 2. 

 

In spite of the unusual shape of the dithiine skeleton, we evaluated its capacity to work 

as a good spacer to place the nucleobase and the hydroxymethyl group in the 

appropriate orientation and distance for recognition by viral/cellular enzymes. With this 

aim, some preliminary Hyperchem calculationsi were carried out, overlapping the 

structures of nucleosides 1 and 2 with those of natural nucleosides, as well as of other 

potent antiviral agents. The 1,4-dithiinyl system demonstrated to possess fairly good 

structural features, showing the best superimposition of both the hydroxymethyl group 

and the nucleobase when cytosine analogue (S)-2 was overlapped with the potent 

antiretroviral agent Lamivudine (3TC, 3) frozen in its bioactive N conformation5

(S)-2 Lamivudine
[anti-HIV and

anti-HBV]

3

N
O

OH

S

N

NH2

O

S
S OH

N

N

NH2

O

 

(Figure 3). 

 
Figure 3. Superimposed structures of analogue (S)-2 and Lamivudine (3). 

 

Such studies prompted us to evaluate the biological properties of such nucleoside and to 

develop an expeditious procedure for its preparation as well as that of its regioisomer 1 

(Figure 3). Moreover, given the relaxed enantioselectivity displayed by of some key 

enzymes involved in the activation of deoxycytidine analogues,6 

                                                 
i The models were generated by energy minimization with the Amber force field of the structures using 
the HYPERCHEM 8.0 software package (Hypercube Inc.) 

 a comparable activity 

of both enantiomers should be expected. In this communication, the synthesis of target 
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compounds 1 and 2 as R/S mixture has been performed, as the antiviral evaluation of the 

racemic nucleosides would give results regarding both enantiomers in one procedure.  

Synthesis of dithiinyl nucleosides 1 and 2 was envisioned to be carried out through 

a Pummerer-type glycosylation reaction on sulfoxides 8 and 9, in turn obtained from 

our bis-thioenol ether 5 (Scheme 1). As already documented,31

S

S

RO

5 R = H
6 R = Ac
7 R = PMB

S

S

RO

O

S
S

RO

ORef. 31H3C
OCH3

O

984
O

Ac2O/Py
98%
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CH2Cl2, 0 °C

PMBCl, NaH,
0 °C to rt

96%

f r om 5, 6 and 7
see Table 1

a) R = H, b) R = Ac, c) R = PMB

1

2
3

4

60-78%

 preparation of the 5,6-

dihydro-1,4-dithiin ring was easily carried out in four steps from methyl pyruvate 4 

(Scheme 1).  

 
Scheme 1. Synthesis of sulfoxides 8-9. 

 

The synthesis began with the protection of free alchol 5 (Ac2O, pyridine) and 

subsequent thioether oxidation of the acetate 6 with m-CPBA in CH2Cl2

Sulfoxidation reaction was also attempted using dithiin 5 and its derivative 7 in 

presence of various oxidizing agents.

 to give a 55:45 

mixture of two regioisomers 8b and 9b in 78% yield. 

ii,7 As shown in Table 1, use of m-CPBA gave 

similar results on all substrates, affording the two regioisomeric sulfoxides 8a and 9a in 

approximatively 1:1 mixture (R=H) with a slight prevalence for 8 over 9 when R=Ac or 

PMB. The preference for the oxidation at S-4 of the dithiine ring was observed in most 

cases; only the use of a bulkier oxidizing agent, such as pyridinium dichromate (PDC), 

in the oxidation of dithiin 7, led to a greater excess of regioisomer 8c (entry 2). Even the 

use of Kagan-Modena sulfoxidation conditions8 (L-DET or D-DET/tBuOOH/Ti(O-iPr)4

 

) 

did not affect the reaction outcome (entries 4 and 5). Sulfoxidation reaction seemed to 

be essentially driven by steric hindrance reasons at allylic position, even though an 

additional electronic contribute was found. 

 

                                                 
ii All substrates did not exibit any reactivity when in situ generated TFDO [methyl 
(trifluoromethyl)dioxirane] was used. 
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Table 1. Sulfoxidation of dithiins 5-7. 

Entry Conditions 8/9 ratio (% yield) a 

R = H R = Ac R = PMB 

1 m-CPBA (1.0 equiv), -20°C 50:50 (60) 55:45 (78) 60:40 (74) 

2 PDC (1.0 equiv), -20°C ND 65:35 (82) b 85:15 (84) 

3 PDC (1.0 equiv), rt ND 65:35 (80) b --c 

4 

(41) 

L-DET/tBuOOH/Ti(O-iPr)4 50:50 (87) ,  

(2:1.2:1.0 equiv), -20 °C 

60:40 (90) 65:35 (85) 

5 D-DET/tBuOOH/Ti(O-iPr)4 50:50 (89) ,  

(2:1.2:1.0 equiv), -20 °C 

57:43 (91) 68:32 (86) 

a CH2Cl2 used as solvent in all reactions. 
b ND: not determined (concurrent oxidation of primary hydroxyl group occurred). 
c

S
S

O
10

m-CPBA
CH2Cl2, 0 °C

S
S

11
O OCH3OCH3

O
86%

 Further S-4 oxidation led to formation of a sulfone as the only product of the reaction. 

 

It is worthy to note that a full electronic contribution has been observed when the 

sulfoxidation reaction was performed on methyl ester derivative 10, in which the 

electron withdrawing group at C-2 position made S-4 atom a weak nucleophile (Scheme 

2).  

 
Scheme 2. Synthesis of sulfoxide 11. 

 

However 10 could not be used for providing nucleoside 2, owing to fair instability of 

sulfoxide 11 to subsequent reaction conditions. 

Indeed, energy calculation (B3LYP/6-31G*)iii

                                                 
iii Theoretical calculations were performed by SPARTAN '08 Quantum Mechanics Program. 

 performed on 6 and 7 provided 

consistent explanation for the greater oxidability of S-4 compared to S-1. For both 6 and 

7, the HOMO molecular orbital is more localized on S-4 rather than on S-1, and 

coefficient value difference is grater in 7 (Table 2). 
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Table 2. Homo coefficients in 6 and 7 

Atom dithiin 6 dithiin 7 

S-1 0.36824 0.28018 

S-4 0.44799 0.40612 

 

As sulfoxides 8 and 9 were obtained, preparation of target nucleoside analogues was 

carried out by a Pummerer-type glycosidation reaction.9 First attempts carried out on 

sulfoxide 8c, under the same conditions previously reported29 with N4-acetylcytosine, 

TMSOTf and TEA in CH2Cl2

S
S

PMBO 8c

TMSOTf, TEA,
N4-AcCy

S
S

12O

O

S
S

HO

O

S
S

HO

OTMS
H

S
S

HO H

S
S

O
HH+

CH2Cl2,
0 °C to rt

, led as the only product of the reaction to the unexpected 

α,β-unsaturated aldehyde 12. This is probably the result of an intramolecular oxido-

reduction process and, as depicted in Scheme 3, it can be conjectured to occur after 

PMB protecting group removal, sulfoxide trimethylsilylation, thionum ion formation by 

TEA-mediated elimination, and concurred oxidation of free hydroxyl group, to give 

aldehyde 12. 

 
Scheme 3. α,β-unsaturated aldehyde 12 formation. 

 

On the other hand, as depicted in Scheme 4, under the same conditions the use of the 

more stable acetylated sulfoxide 8b allowed to obtain the desired dihydrodithiin 

nucleoside derivative 13 as a racemic mixture and in good yield (78%). Similarly to 

what observed in Scheme 3, the reaction proceeds through thionum ion intermediate 

mediated by TMSOTf and TEA and subsequent attack of silylated nucleobase on 
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thionum ion. Replacement of CH2Cl2 with CH3

8b S
S

13MeONa
MeOH
98% 1

N

N O

NHAc

AcO

78%

TMSOTf,
TEA,

CH2Cl2,
0 °C to rt

S
S

AcO

N

N OTMS

NAc
TMS

TMSO

CN led to the final product with 

approximately the same yield, but prolonged reaction times were required. 

 
Scheme 4. Dihydrodithiinyl nucleoside 1 via Pummerer-type glycosidation of 8b. 

 

Deprotection under common Zemplèn conditions (MeONa/MeOH) afforded the final 

target compound 1 in 98% yield. Analogously the same reactions, carried out starting 

from sulfoxide 9b, led to desired nucleoside analogue 2 in 71% o.y. (Scheme 5). 

9b
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CH2Cl2, 0 °C
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Scheme 5. Dihydrodithiinyl nucleoside 2 via Pummerer-type glycosidation of 9b. 
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3.2.1.1 CONCLUSION 

In this context a straightforward procedure for the preparation of dithiinyl nucleoside 1 

and 2 has been accomplished in four steps by our readily available heterocyclic system 

5. Regioselectivity of sulfoxidation reaction of bis-thioenolethers 6-7 was rationalized 

on the basis of both steric and electronic effects. Nucleobase insertion was carried out 

by direct addition of N4-acetylcytosine to sulfoxide 8b-9b via Pummerer-type 

glycosidation reaction. Evaluation of racemic 1 and 2 as potential antiviral agents is 

currently in progress. In case, further development of asymmetric Pummerer 

rearrangements19 and/or enantiomeric resolution of our mixtures by chiral HPLC will be 

considered to provide enantiopure (S)- and (R)-1, as well as their regioisomers (S)- and 

(R)-2. 
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3.2.1.2 EXPERIMENTAL SECTION 

All moisture-sensitive reactions were performed under a nitrogen atmosphere using 

ovendried glassware. Solvents were dried over standard drying agents and freshly 

distilled prior to use. Reactions were monitored by TLC (precoated silica gel plate 

F254, Merck). Column chromatography: Merck Kieselgel 60 (70-230 mesh); flash 

chromatography: Merck Kieselgel 60 (230-400 mesh). 1H and 13C NMR spectra were 

recorded on NMR spectrometers operating on Varian VXR (200 MHz), Bruker DRX 

(400 MHz) or Varian Inova Marker (500 MHz), using CDCl3

S
S

AcO 6

 solutions unless otherwise 

specified. In all cases, tetramethylsilane (TMS) was used as internal standard for 

calibrating chemical shifts (δ). Coupling constant values (J) were reported in Hz. 

Combustion analyses were performed by using CHNS analyzer. 

 
Compound 6. To a stirring solution of alcohol 5 (0.71 g, 4.8 mmol) in dry pyridine, 

acetic anidride was added at room temperature. After 3h TLC (hexane/EtOAc = 8/2) 

analysis showed the complete formation of final compound. The solvent was evaporated 

under reduced pressure and the crude residue purified by chromatography on silica gel 

(hexane/EtOAc = 9/1) to give the pure 6 (0.834 g, 98% yield). Oily; 1H NMR (400 

MHz): ppm 2 (s, 3H, CH3) δ 3.08-3.20 (m, 4H, CH2S), 4.49 (s, 2H, CH2O), 6.22 (s, 1H, 

CH=). 13C NMR (200 MHz): ppm 20.63, 25.91, 26.42, 68.09, 115.89, 122.41, 170.31. 

Anal. calcd for C7H10O2S2

S
S

AcO

O S
S

AcO

O

98

: C, 44.18; H, 5.30; S, 33.70. Found: C, 44.34; H, 5.28; S, 

33.61. 

 

Compound 8 and 9. To a stirred solution of compound 6 (0,8 g, 4,2 mmol) in dry 

CH2Cl2 (18 mL), at 0 °C, m-chloroperoxybenzoic acid (0.361 g, 2.1 mmol) was added 

in one portion. After 3h the mixture was neutralized with aq NaHCO3, and then 

extracted with CH2Cl2. Organic phase was dried on Na2SO4 and the solvent evaporated 
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under vacuum. The crude residue obtained purified by chromatography on silica gel 

(EtOAc/CH3OH) gave the pure compounds 8 and 9 (in 6/4 ratio, 98%). 

Data for compound 8. Oily; 1H NMR (300 MHz, CDCl3): ppm 2.00 (s, 3H, CH3) 

2.60 (ddd, 1H, CHS), 2.91-3.02 (d, 1H, CHS), 3.31-3.42 (d, 1H, CHS), δ 3.43-3.62 (t, 

1H, CHS), 4.70 (s, 2H, CH2O), 6.80 (s, 1H, CH=). 13C NMR (50 MHz, CDCl3): ppm 

16.20, 20.62, 42.49, 65.64, 118.28, 143.39, 170.42. Anal. calcd for C7H10O3S2: C, 

40.76; H, 4.89; O, 23.27; S, 31.09. Found: C, 40.92; H, 4.87; S, 31.00. 

Data for compound 9. Oily; 1H NMR (300 MHz, CDCl3): ppm 2.00 (s, 3H, CH3) 2.52-

2.68 (t, 1H, CHS), 2.75-2.90 (d, 1H, CHS), 3.31-3.50 (m, 2H, CHS), 4.80 (s, 2H, 

CH2O), 7.00 (s, 1H, CH=). 13C NMR (50 MHz, CDCl3): ppm 13.71, 20.73, 42.65, 

65.39, 128.87, 133.50, 170.44. Anal. calcd for C7H10O3S2

S
S

N

N

O

NHAc

AcO 13

: C, 40.76; H, 4.89; O, 23.27; 

S, 31.09. Found: C, 40.90; H, 4.91; S, 30.99. 

 

Compound 13. To a suspension of N4-acetylcytosine (0.30 g, 2.0 mmol) in CH2Cl2 (10 

mL) TEA (0.8 mL, 6.1 mmol) and TMSOTf (1.1 mL, 6.1 mmol) were added at 0 °C and 

under N2 atmosphere. The mixture was left at room temperature for 30 min, after this 

time the mixture was cooled at 0 °C and a solution of sulfoxide 8b (0.28 g, 1.36 mmol) 

was added dropwise. The reaction was warmed at room temperature for 2h, then 

saturated aq NaHCO3 was added until neutrality. The mixture was extracted with 

EtOAc and washed with water; the organic layers were dried (Na2SO4) and evaporated 

under reduced pressure to give a crude product whose chromatography afforded the 

pure 11 (78% yield). 1H NMR (500 MHz, CDCl3): δ 2.11 (s, 3H, OCOCH3), 2.24 (s, 

3H, NHCOCH3), 3.26 (dd, J = 2.3, 14.6 Hz, 1H, CHaS), 3.40 (dd, J = 4.4, 14.6 Hz, 1H, 

CHbS), 4.61 (d, J = 12.7 Hz, 1H, CHaO), 4.65 (d, J = 12.7 Hz, 1H, CHbO), 6.40 (dd, J 

= 2.3, 4.4 Hz, 1H, CHS), 6.47 (s, 1H, HC=), 7.44 (d, J = 7.3 Hz, 1H, H-5), 7.84 (d, J = 

7.3 Hz, 1H, H-6), 8.42 (s, 1H, NH). 13C NMR (50 MHz, CDCl3): ppm 20.7 (CH3CO), 

24.9, 30.6, 53.0, 67.4, 96.2, 114.1, 124.3, 147.4, 155.1, 162.5, 170.5. Anal. calcd for 
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C13H15N3O4S2

S
S

AcO

N

N OAcHN

14

: C 45.73, H 4.43, N 12.31, S 18.78. Found: C 45.65, H 4.44, N 12.26, S 

18.84. 

 
Compound 14. Under the same conditions, starting from 9b compound 14 was 

obtained (75% yield). 1H NMR (400 MHz, CDCl3): δ 2.13 (s, 3H, OCOCH3), 2.25 (s, 

3H, NHCOCH3), 3.26 (dd, 1H, J = 2.0, 13.9 Hz, 1H, CHaS), 3.35 (dd, 1H, J = 4.6, 13.9 

Hz, 1H, CHbS), 4.70 (d, J = 12.7 Hz, 1H, CHaO), 4.73 (d, J = 12.7 Hz, 1H, CHaO), 

6.45 (s, 1H, HC=), 6.48 (dd, J = 2.0, 4.6 Hz, 1H, CHS), 7.47 (d, J = 7.5 Hz, 1H, H-5), 

7.80 (d, J = 7.5 Hz, 1H, H-6), 8.35 (s, 1H, NH). 13CNMR (50 MHz, CDCl3): ppm 20.8, 

24.9, 28.8, 53.8, 67.2, 96.4, 116.0, 123.1 (C=CH2), 147.2 (C-6), 154.8, 162.7, 170.6. 

Anal. calcd for C13H15N3O4S2

S
S

N

N

O

NH2

HO 1

: C 45.73, H 4.43, N 12.31, S 18.78. Found: C 45.80, H 

4.44, N 12.28, S 18.70.  

 
Compound 1. To a stirring solution of compound 13 (0.100 g, 0.4 mmol) in 10 mL of 

CH3OH, CH3ONa (21.6 mg, 0.4 mmol) was added. After 2 h at mixture of reaction 

AcOH dropwise was added  until neutral. The solvent was evaporated under reduced 

pressure to give a crude residue that purified by chromatography on silica gel 

(CHCl3/MeOH = 9:1) provided the pure 1 (98% yield). 1H NMR (200 MHz, CD3OD): 

δ 3.18-3.25 (m, 2H, CH2S), 4.12 (dd, J = 0.9, 13.0 Hz, 1H, CHaOH), 4.21 (dd, J = 0.9, 

13.1 Hz, 1H, CHbOH), 5.87 (d, J = 7.6 Hz, 1H, H-6), 6.34 (dd, J = 2.8, 3.8 Hz, 1H, 

CHS), 6.39 (d, J = 0.9 Hz, 1H, HC=), 7.66 (d, J = 7.6 Hz, 1H, H-5). 13CNMR (50 MHz, 

CD3OD): ppm 30.6, 55.2, 67.2, 95.5, 113.1, 130.6, 145.2, 157.8, 167.8. Anal. calcd for 

C9H11N3O2S2: C 42.01, H 4.31, N 16.33, S 24.92. Found: C 41.94, H 4.30, N 16.28, S 

25.00. 
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S
S

HO

N

N OH2N

2
 

Compound 2. Under the same conditions, starting from 14 compound 2 was obtained 

(97% yield). 1H NMR (200 MHz, CD3OD): δ 3.15-3.34 (m, 2H, CH2S), 4.05 (d, J = 

13.1 Hz, 1H, CHaOH), .4.07 (d, J = 13.1 Hz, 1H, CHbOH), 5.84 (d, J = 7.6 Hz, 1H, H-

6), 6.25 (dd, J = 2.5, 4.8 Hz, 1H, CHS), 6.46 (d, J = 0.9 Hz, 1H, HC=), 7.63 (d, J = 7.6 

Hz, 1H, H-5). 13CNMR (75 MHz, CD3OD): ppm 31.8, 54.0, 67.2, 95.3, 112.0, 130.5, 

145.4, 157.6, 167.4. Anal. calcd for C9H11N3O2S2: C 42.01, H 4.31, N 16.33, S 24.92. 

Found: C 41.90, H 4.32, N 16.37, S 24.99. 
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3.2.2 SYNTHESIS OF 2’,3’-DIDEHYDRO-2’,3’-DIDEOXY-4’-

METHOXY NUCLEOSIDES 

Current status of organic synthesis is hampered by time-consuming, costly protecting 

group-based strategies and lengthy purification procedures after each synthetic step. To 

circumvent these inconveniences, the potential of multistep protocols including domino1 

or cascade2 reactions has been exploited for the efficient and elegant construction of 

complex molecules from simple precursors in a single process. In this context, our 

ongoing efforts working toward the de novo synthesis of novel molecular systems with 

pharmacological potential took us to explore the versatile reactivity profile of our 1,2-

bis thioenol ether synthon 1 in combination with 2,3-dichloro-5,6-dicyanobenzoquinone 

(DDQ) (Scheme 1). 

 
Scheme 1. De novo synthetic strategy to bicyclic furans 5. 

 

Whereas heterocyclic system 1 brought on C3-homologation of various electrophiles3 2, 

in many cases in stereoselective fashion,3,4 use of the resulting homologation products 3 

with DDQ laid the ground for new efficient domino reactions for further elaboration of 

the carbon skeletons. As proof-of-concept of this methodology, we successfully 

developed an expeditious procedure for the synthesis of the whole series of rare L-

hexoses4,5 as well as other structurally related compounds.6 In all cases, rapid assembly 

of pyranosyl scaffolds 4 was found a consequence of the combined electron-transfer, 
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oxidative and acidic properties of DDQ, which enabled sequentially PMB group 

deprotection of allyl ethers 3, oxidation of the resulting primary alcohols and formyl 

groups activation, finally leading to six-membered cyclization by a suitably unprotected 

hydroxyl function (Scheme 1). 

Along this line, synthetic access to dihydrofurans 5 has been herein explored 

(Scheme 1), mainly in view of their potential application in the synthesis of bioactive D- 

and L-(didehydro)furanosyl nucleosides.7 The synthesis starts from coupling reaction of 

thioenol ether 1 with synthetically available methyl glycolate 6, previously protected 

with a TBDPS-group. Under known conditions reported for comparable electrophile23 

unfortunately we didn’t obtained the expected product with highly yields (scheme 2). 

Scheme 2. Synthesis of coupling compound 7 using several conditions. 

 

Particularly, treatment of heterocyclic homologating agent 1 with n-butyl lithium in 

anydrous THF at -78 °C, followed by addition at the same temperature of electrophile 6, 

provided, along with small amounts of ketone 7 (10%), almost exclusive formation of 

tertiary alcohol 9 (80%) resulting from the further nucleophilic addition by the n-butyl 

lithium on C-4 position. The aldehyde 8 was also isolated as another byproduct of the 

reaction (10%), which seem to be formed by consumption of the coupling product 7. 

This byproduct was already obtained in our laboratories, as previously reported, under 

same reaction conditions, during the synthesis of L-hexoses5, however the mechanism of 

such reaction in the current synthesis is still under investigation. On the basis of these 

findings, we decided to prove different basis, poor nucleophiles, like potassium 

hexamethyldisilazide (KHMDS) and lithium diisopropylamide (LDA). While the use of 

KHMDS was unsuccessful, LDA, led to more satisfactory results. This reagent was 

prepared in situ from a solution of diisopropylammine (DIPA) and n-BuLi, in dry THF, 
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at -78 °C. The subsequent addition of 1 and then 6 at the same temperature, finally 

provided the ketone 7 as main product (80%), instead aldehyde 8, under these 

conditions, was isolated only in small amounts (6%) (Scheme 2). With the product 7 in 

hand, our interest was focused on the achievement of key intermediate 13 by carbon 

skeleton cyclization via domino reaction (Scheme 3). After reductioni of 7 to the 

corresponding sec-alcohol 10 (BH3
.THF, 86%), direct conversion of the latter into 

methyl glycosides 11 was achieved treating 10 with DDQ (1.2 equiv) in a 95/5 

CH2Cl2/MeOH solution to afford, already after only 30', a mixture of isomers α-11 and 

β-11 in moderate selectivity (α:β = 1:3.3) and fairly good overall yield (83%). 

 
Scheme 3. Domino approach to (dihydro)furans 11-13. 

 

Surprisingly, minimal changes of reaction conditions provided a number of other 

synthetically relevant in situ transformations (Schemes 3 and 4). Under optimized 

conditions, treatment of 10 with DDQ (1.85 eq) in a 3/1 C6H6

                                                 
i As we were first interested to explore reactivity profile of our compounds, rather than their preparation 
as pure enantiomers, starting alcohol 10 was achieved in racemic form. Study of the reaction conditions 
enabling synthesis of 10 in both enantiomeric forms is currently ongoing. 

/MeOH mixture directly 

led, overall after 3h at rt, to the formation of bis-acetals 13 (α:β = 1:4) in an excellent 

90% o.y. (Scheme 3). This process was amenable to be considered a domino reaction, 

as it proceeded across the following six sequential transformations, carried out in a 

single step: a) PMB group removal, b) oxidation of the resulting primary alcohol, c) 
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aldehyde acetalation, d) ring closure, e) MeOH elimination, and f) double acetalation 

(Scheme 3). It’s worth noting that, although furan 12 acted as simple intermediate under 

these conditions, it could be also smoothly isolated as the main product (75% yield) by 

further appropriate tuning of the amount of DDQ and MeOH [DDQ (1.2 eq), 

C6H6/MeOH 3/1, rt, 3h]. 

 
Scheme 4. Domino conversion of ketone 7 into α/β-13. 

 

Not fully unexpected, bis-acetals 13 could be obtained in a single process, albeit by a 

different sequence of synthetic transformations, even starting directly from ketone 7 

(Scheme 4). As a matter of fact, after addition of DDQ (1.2 eq) to a CH2Cl2/MeOH 

solution of 7, acetals 13 (α:β = 1:4) were produced after 3h in a very good 87% yield. 

Although none of the synthetic intermediates could be isolated, we reasonably assumed 

that 13 was the result of five sequential transformations, including oxidative 

deprotection of 7 leading to aldehyde 14, its double acetalation and concurrent 

cyclization (Scheme 4). 

It’s worth mentioning that replacement of MeOH with H2O under the above 

conditions provided even more unexpected reactivity, as it led to furfural derivative 18 

(83%). Analogously to Scheme 4, reaction was supposed to proceed through formation 

of bis-hemiacetal 16, then undergoing H3O+-mediated double elimination affording 18 

even after seven synthetic steps. However, 18 was not enough stable for further 

synthetic manipulations. 
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Scheme 5. Synthesis of furfural derivatives 18. 

 

Excellent synthetic potential of the above processes rely on a combination of versatility 

of DDQ and intriguing chemical properties of the 1,4-dithiinyl scaffold. Given the 

apparent synthetic applications of the domino products, their formation and especially 

that of bis-acetals 13 was investigated in greater detail. We started observing that last 

step of the domino process depicted in Scheme 3 closely resembles the well known 

Clauson-Kaas reaction,8

R = Piv
Pt Ni
MeOH, 91%
[ref. 10]O

RO
O

RO

MeO
OMe

R = TBDPS
DDQ (1.8 eq)
CH2Cl2/MeOH 3/1
reflux, 24h, 50%

(R = Piv) 19
(R = TBDPS) 20

21 (R = Piv)
α:β = 0.7:1
22 (R = TBDPS)
α:β = 1:1

 providing substituted 2,5-dialkoxy-2,5-dihydrofurans 21 from 

corresponding furans 19 under electrochemical conditions (Scheme 5).  

 
Scheme 6. (Modified) Clauson-Kaas approach to acetals 21-22. 

 

Herein, we established that the same transformation could be analogously carried out by 

DDQ (Scheme 5). However, compared to the above domino process, reaction of 

Scheme 6 was less efficient (50%), requiring harder conditions (24h at reflux) and even 

resulting in a worst stereoselectivity (α:β = 1:1). Therefore, a crucial influence of the 

dithiodimethylene bridge on reaction rate and stereoselectivity became apparent.  
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OTBDPS

MeO
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3. e- abstraction

O
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H
δ+

δ+
H+

δ+

δ+

O

S S

OTBDPS
δ+

δ+

O

S S

OTBDPS

H

δ+

δ+

OMe
MeOH

23-24 25-26

29-30 27-28

22

+

α:β= 1:1

cis:trans
1:4

 
Scheme 7. Conversion of furans 12 and 19 into bis-acetals 13 and 22: hypothesized 

reaction mechanism. 

 

We hypothesized that reaction mechanism underlying conversion of both furans 12 and 

19 into corresponding bis-acetals 13 and 22 follow a common path (Scheme 7). 

However, in case of furan 12, we reasoned that unusual stability of oxocarbenium ions 

28 and 30, owing to deep delocalization of the positive charge by sulfur atoms at both 

C2 and C3-positions, significantly contributed to speed reaction up. In addition, since 

identical mechanistic paths involving furans 12 and 19 must be postulated, we assumed 

that, in case of 12, stabilization of oxocarbenium ions 28 and 30 also influenced the 

stereochemical outcome of the reaction, due to a concurrent thermodynamic equilibrium 

between α:β-13 and 28 and 30, not occurring with acetals α:β-22 (Scheme 7). To proof 

the above assumptions, domino reaction converting alcohol 10 into acetal 13 was 

carried out using C6D6/CD3OD as solvent mixture (Scheme 8). As primarily expected, 

reaction monitoring via 1H NMR enabled us to reasonably exclude any mechanistic path 

other than that described in Scheme 2, by recognizing disappearance of distinctive 1H 

NMR signals belonging to 10 (5.14 ppm, Scheme 8a) with those of furan 12 and 

especially the deuterated forms of acetals 11 and 13 (i.e. compounds α:β-31, 5.73 and 

5.96 ppm, and α:β-32, 5.68 and 5.75 ppm; Scheme 8b-c). Most importantly, occurrence 

of an equilibrium between α and β isomers of 13 was proved by changes in α:β ratio of 

acetals 32 (Scheme 8b-c).  
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C6D6/CD3OD
rt, 5h

O

S S

OCD3

OTBDPS

α:β-31

8

O

S S

OCD3

TBDPSO

D3CO

α:β-32

H HHDDQ

 

 
Scheme 8. 1H NMR monitoring of domino reaction. 

 

A practical experimental evidence was also produced by simply treating pure β-13 with 

DDQ in a 3/1 CDCl3/CD3OD solution: complete conversion (>99% by 1H NMR) after 

16h at rt of the latter into corresponding bis-trideuteromethoxy acetal 32 as a α:β = 1:4 

mixture of isomers further confirmed, on one hand, existence of a thermodynamic 

equilibrium between the two isomers. On the other hand, it demonstrated that  

bis-thioenol ether moiety enabled effective activation of neighboring acetal functions, 

even under extremely mild acidic conditions. As expected, the same reaction did not 

proceed using acetal 22.  

Finally, the double bond of 13α was easily unmasked by dithioethylene bridge 

removal treating the most abundant α-anomer, preaviusly separated from β-anomer by 

cristallization from methanol, with raney-Ni in acetone at 0 °C affording the saturated 

furanosides 31 in good yield (82%) (Scheme 9). 
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Scheme 9. N-glycosidation reaction: Vorbrüggen one-pot protocol. 

 

Then, the key intermediate 33 was coupled with the heterocyclic bases 34 , using the 

well-known Vorbrüggen one-pot protocol, in which the glycosidic bond was achieved 

by Lewis acid-catalyzed N-glycosidation reaction of 33 with in situ silylated bases by 

BSA. In fact, treatment of compound 33 with cytosine 34, trimethylsilyl 

trifluoromethanesulfonate (TfOMTS) and N,O-bis[trimethylsilyl]acetamide (BSA) in 

acetonitrile, at room temperature for 48h, allowed to obtain a mixture of α- and β- 

nucleoside derivatives 35α/β (1/2) which were easily separated by silica gel column 

chromatography (65% yield) (Scheme 9). 

At last simple removal O-silyl and N-acetyl-protected groups, respectively with 

TBAF in THF and 6M NH3/CH3OH at room temperature, offered the final target 

compounds 36α and 36β, with high overall yields (98% and 92% respectively). 

Evaluation of racemic 36α and 36β as potential antiviral agents is currently in progress. 

In case, further development of asymmetric reaction will be considered to provide 

enantiopure nuclosides. 
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3.2.2.1 CONCLUSION 

A DDQ-mediated domino reaction, enabling synthesis of a number of substituted furans 

and 2,3-dihydrofurans from a common acyclic starting material containing the 5,6-

dihydro-1,4-dithiin moiety, has been developed. Analysis of reaction mechanism 

highlighted a crucial role of the heterocyclic unit in influencing rate and 

stereoselectivity of the process. This domino approach represents the key step of the 

straightforward synthesis of novel D- and L-4’-substituted nucleosides. 
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3.2.2.2 EXPERIMENTAL SECTION 

All moisture-sensitive reactions were performed under a nitrogen atmosphere using 

ovendried glassware. Solvents were dried over standard drying agents and freshly 

distilled prior to use. Reactions were monitored by TLC (precoated silica gel plate 

F254, Merck). Column chromatography: Merck Kieselgel 60 (70-230 mesh); flash 

chromatography: Merck Kieselgel 60 (230-400 mesh). 1H and 13C NMR spectra were 

recorded on NMR spectrometers operating on Varian VXR (200 MHz), Bruker DRX 

(400 MHz) or Varian Inova Marker (500 MHz), using CDCl3

H3CO
OTBDPS

O

6

 solutions unless otherwise 

specified. In all cases, tetramethylsilane (TMS) was used as internal standard for 

calibrating chemical shifts (δ). Coupling constant values (J) were reported in Hz. 

Combustion analyses were performed by using CHNS analyzer. 

 
Compound 6. To a stirred solution of methyl glycolate (0.500 g, 5.5 mmol) in dry DMF 

(8 mL), imidazole (0.453 g, 6.66 mmol) and TBDPSCl (1.7 mL, 6.6 mmol) was added 

at room temperature. After 3h (TLC: Hexane/EtOAc 9:1) the solvent was evaporated 

under reduced pressure at room temperature; the residue was transferred in a separatory 

flask with CHCl3 and washed with ice-cold water. The organic layer was dried on 

Na2SO4 and the solvent was evaporated under vacuum. The crude residue was purified 

by silica gel column chromatography to give the pure 6 (1,76 g, yield 98%): oily. 1H 

NMR (200 MHz, CDCl3): δ 1.09 (s, 9H, C(CH3)3 ), 3.68 (s, 3H, OCH3), 4.25 (s, 2H, 

CH2), 7.38-7.42 (m, 6H, Arom-H), 7.66-7.71 (m, 4H, Arom-H). 13C NMR (50 MHz, 

CDCl3): ppm 19.5, 26.9, 51.8, 62.4, 128.0, 130.2, 133.01, 135.8, 171.9. Anal. calcd for 

C19H24O3

S
S

PMBO
O

OTBDPS

7

Si: C 69.47, H 7.36, Si 8.55. Found: C 69.67, H 7.33. 

 
Compound 7. To a stirring solution of DIPA (0.32 mL, 2.23 mmol) in dry THF (4 mL), 

at -78 °C under nitrogen atmosphere, n-BuLi (1.6 M, 0.21 mL, 2.23 mmol) was added 

to generate lithium diisopropylamide in situ. After 10 min, to the mixture a solution of 1 
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(0.50 g, 1.86 mmol) in dry THF (2 mL). The solution was stirred for 30 min at -78 °C, 

then a solution of electrophile 6 (0.612 g, 1.86 mmol) in THF (2 mL) was added. After 

20 min TLC (hexane/EtOAc 9:1) showed the complete formation of final product and 

the reaction mixture was carefully quenched with 10% aq NH4Cl. The mixture was 

extracted with EtOAc, and the combined organic phases were washed with brine, dried 

(Na2SO4) and evaporated under reduced pressure to give a crude residue from which 

chromatography over silica gel column (hexane/AcOEt=8:2) gave the pure 7 (0.840 g, 

yield 80%): oily. 1H NMR (200 MHz, CDCl3): δ 1.09 (s, 9H, C(CH3)3), 2.99-3.05 (m, 

2H, CH2S), 3.19-3.22 (m, 2H, CH2S), 3.79 (s, 3H, OCH3), 4.34 (s, 2H, PhCH2O ), 4.38 

(s, 2H, CH2OSi), 4.57 (s, 2H, OCH2C=), 6.85 (d, 2H , PMB-Horto), 7.25 (d, 2H, PMB-

Hmeta), 7.34-7.43 (m, 6H, Arom-H), 7.65-7.71 (m, 4H, Arom-H). 13C NMR (50 MHz, 

CDCl3): ppm 19.2, 26.4, 28.2, 29.6, 55.1, 68.6, 71.1, 72.2, 113.6, 122.6, 127.6, 129.5, 

129.7, 132.9, 135.5, 140.5, 159.2, 195.4. Anal. calcd for C31H36O4S2

S
S

PMBO

O

8

Si: C 65.92, H 

6.42, S 11.35, Si 4.97. Found: C 66.11, H 6.40, S 11.30. 

S
S

PMBO

OTBDPS
HO CH2(CH2)3CH3

9
 

Compound 8 and 9. BuLi (1.6 M in hexane, 0.35 mL) was added dropwise to a stirred 

solution of 1 (0.1 g, 0.37 mmol) in anhydrous THF (0.5 mL) at -78° C and under 

nitrogen atmosphere. After 10 min a solution of electrophile 6 (0.122 g, 0.37 mmol) in 

the same solvent (0.5 mL) was added. The reaction mixture was stirred for 2h at -78 °C, 

then carefully quenched with 10% aq NH4Cl. The mixture was extracted with EtOAc, 

the combined organic phases washed with brine, dried (Na2SO4) and evaporated under 

reduced pressure. Chromatography of the crude residue over silica gel (hexane/EtOAc = 

9:1) gave the two separated product 8 (10% yield) and 9 (80% yield).  

Data for compound 8. Oily; 1H NMR (500 MHz, CDCl3): δ 3.10-3.18 (m, 2H, 

CH2S), 3.28-3.32 (m, 2H, CH2S), 3.81 (s, 3H, OCH3), 4.41 (s, 2H, PhCH2O), 4.52 (s, 

2H, OCH2=), 6.89 (d, J = 8.3 Hz, 2H, PMB-Horto), 7.26 (d, J = 8.3 Hz, 2H, PMB-

Hmeta), 9.82 (s, 1H, CH=O). 13C NMR (125 MHz, CDCl3): δ 25.5, 30.2, 55.3, 68.9, 

72.2, 114.0, 129.0, 129.6, 148.8, 159.6, 183.5. Anal.calcd for C14H16O3S2: C, 56.73; H, 

5.44. Found: C, 56.90; H, 5.42. 
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Data for compound 9. Oily; 1H NMR (200 MHz, CDCl3): δ 1.07 (s, 9H, C(CH3)3), 

1.24-1.55 (m, 5H, CH2CH3), 1.61-1.82 (m, 2H, CH2), 2.95-3.05 (m, 2H, CH2S), 3.18-

3.24 (m, 2H, CH2S) 3.56 (d, Ja-b= 10, 1H, CHHaOSi), 3.78 (s, 3H, OCH3), 4.05 (d, Jb-

a= 10, 1H, CHHbOSi) 4.23 (d, Ja-b= 11.2, 1H, CHHaCOH) 4.50 (s, 2H, CH2Ph), 4.62 

(d, Ja-b= 11.2, 1H, CHHaCOH), 6.84 (d, J = 8.6, 2H, PMB-Horto), 7.25 (d, J = 8.6, 2H, 

PMB-Hmeta), 7.36-7.52 (m, 6H, Arom-H), 7.63-7.81 (m, 4H, Arom-H). 13C NMR (50 

MHz, CDCl3): ppm 14.3, 19.25, 19.64, 23.28, 25.7, 26.8, 27.1, 29.6, 32.5, 36.8, 55.5, 

71.1, 72.1, 72.4, 77.5, 82.8, 116.9, 124.3, 127.6, 128.8, 129.5, 129.6, 132.8, 135.3, 

159.0. Anal. calcd for C36H48O4S2

S
S

PMBO
OH

OTBDPS

10

Si: C 67.88, H 7.60, S 10.07, Si 4.41. Found: C 

67.90, H 7.58, S 10.05. 

 
Compound 10. To a stirring solution of ketone 7 (0.50 g, 0.89 mmol) in dry THF (15.5 

mL) at room temperature, under nitrogen atmosphere, a 1M solution of BH3-THF (2.2 

mL, 2.2 mmol) was added dropwise. After 5h to the mixture of reaction CH3OH (5 mL) 

was slowly added, then the solvent was evaporated under reduced pressure. Column 

chromatography of crude residue over silica gel (hexane/EtOAc 9/1) gave the pure 10 

(0.43 g 86% yield): oily. 1H NMR (400 MHz, CDCl3): δ 1.11 (s, 9H, C(CH3)3), 2.94-

3.29 (m, 4H, CH2S), 3.70-3.89 (m, 5H, CH2OSi, OCH3), 3.92 (d, Ja-b = 12.2, 1H, 

CHHaO), 3.96 (d, Jb-a = 12.2, 1H, CHHbO), 4.31 (d, Ja-b = 11.6, 1H, CHHaPh), 4.36 (d, 

Jb-a = 11.6, 1H, CHHbPh), 4.86 (dd, J = 5.0, J = 7.8, 1H, CH), 6.87 (d, J = 8.6, 2H, 

PMB-Horto), 7.25 (d, J = 8.6, 2H, , PMB-Hmeta), 7.36-7.52 (m, 6H, Arom-H), 7.63-7.81 

(m, 4H, Arom-H). 13C NMR (50 MHz, CDCl3): ppm 19.0, 26.6, 27.0, 29.1, 54.9, 64.6, 

66.4, 69.4, 71.4, 113.5, 124.3, 127.6, 128.8, 129.5, 129.6, 132.8, 135.3, 159.0. Anal. 

calcd for C31H38O4S2Si: C 65.68, H 6.76, S 11.31, Si 4.41. Found: C 65.72, H 6.80, S 

11.25. 
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O

S S

OMe

11α/β

TBDPSO

 
Compound 11α e 11β. To a stirred CH2Cl2/CH3OH (95/5) solution (8.75 mL) 

containing the alcohol 10 (0.50 g, 0.88 mmol) DDQ (0.28 g, 1.06 mmol) was added in 

one portion at room temperature. After 30 min the reaction was stopped, H2O was 

added, and the mixture extracted with CH2Cl2. The organic layer was dried (Na2SO4), 

and the solvent evaporated under reduced pressure. Chromatography of the crude 

residue over silica gel (hexane/EtOAc:95/5) gave a mixture of anomers α/β:3.3/1 (0.335 

g, 83% yield). Data for major isomer 11α: 1H NMR (200 MHz, CDCl3): δ 1.04 (s, 9H, 

C(CH3)3), 3.17-3.26 (m, 4H), 3.27 (s, 3H), 3.55 (s, 3H), 3.70 (d, J= 10.5, 1H), 3.80 (d, J 

= 10.25, 1H) 5.46 (s, 1H), 7.34-7.42 (m, 5H), 7.66-7.72 (m, 5H). 13C NMR (100 MHz, 

CDCl3): ppm 19.2, 25.9, 26.0, 26.5, 49.7, 55.7, 65.6, 99.4, 107.4, 113.9, 127.4, 129.4, 

135.4, 135.5. Anal. calcd for C24H30O3S2

O

S S

TBDPSO

12

Si: C 62.84, H 6.59, S 13.98, Si 6.12. Found: 

C 62.68, H 6.56, S 14.03. 

 
Compound 12. To a stirred C6H6/CH3OH (95/5) solution (8.75 mL) containing the 

alcohol 10 (0.50 g, 0.88 mmol) DDQ (0.28 g, 1.06 mmol) was added in one portion at 

room temperature. After 3h the reaction was stopped, H2O was added, and the mixture 

extracted with EtOAc. The organic layer was dried (Na2SO4), and the solvent 

evaporated under reduced pressure. Chromatography of the crude residue over silica gel 

(hexane/EtOAc:98/2) gave the pure compound 12 (0.285 g, 75% yield). 1H NMR (200 

MHz, C6D6): δ 1.12 (s, 9H, C(CH3)3), 2.34 (s, 4H, CH2S), 4.56 (s, 2H, CH2OSi), 6.77 

(s, 1H, H-4), 7.17-7.21 (m, 5H, Arom-H), 7.74-7.80 (m, 5H, Arom-H). 13C NMR (100 

MHz, C6D6): ppm 19.2, 25.8, 26.1, 26.3, 26.6, 29.7, 57.0, 128.1, 129.4, 129.6, 133.2, 

134.9, 135.7, 136.3. Anal. calcd for C23H26O2S2Si: C 64.75, H 6.14, S 15.03, Si 6.58. 

Found: C 65.00, H 6.12, S 15.08. 
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O

S S
OCH3

H3CO

13α

TBDPSO

 
Compound 13α. To a stirred C6H6/CH3OH (3/1) solution (8.75 mL) containing the 

alcohol 10 (0.50 g, 0.89 mmol) DDQ (0.37 g, 1.65 mmol) was added in one portion at 

room temperature. After 3h the reaction was complete, H2O was added, and the mixture 

was extracted with CH2Cl2. The organic layer was dried (Na2SO4), and the solvent was 

evaporated under reduced pressure. Chromatography of the crude residue over silica gel 

(hexane/EtOAc:95/5) gave a mixture of anomers α/β=4/1 (0.39 g, 90% yield). The α-

anomer was separated from β-anomer by crystallization from CH3OH. Data for major 

anomer 13α 1H NMR (200 MHz, C6D6): δ 1.16 (s, 9H, C(CH3)3), 2.31-2.54 (m, 4H, 

CH2S), 3.24 (s, 3H, OCH3), 3.37 (s, 3H, OCH3), 4.04 (d, Ja,b = 9.7, 1H, 5-Ha), 4.15 (d, 

Jb,a = 9.7, 1H, 5-Hb) 5.61 (s, 1H, 1-H), 7.01-7.27 (m, 6H, Arom-H), 7.74-7.87 (m, 4H, 

Arom-H). 13C NMR (100 MHz, CDCl3): ppm 19.2, 25.9, 26.0, 26.5, 49.7, 55.7, 65.6, 

99.4, 107.4, 114.0, 127.4, 129.4, 133.5, 135.4, 135.5. Anal. calcd for C25H32O4S2

O
TBDPSO

CH3O
33

OCH3

Si: C 

61.44, H 6.60, S 13.12, Si 5.75. Found: C 61.20, H 6.63, S 13.16. 

 
Compound 33. A solution of 13α (0.30 g, 0.61 mmol) in acetone (7 mL) was added in 

one portion to a stirred suspension of Raney-Ni (W2) (2.25 g, wet) in the same solvent 

(7 mL) at 0 °C. The suspension was stirred for 5h, then the solid was filtered off and 

washed with EtOAc. The filtrate was evaporated under reduced pressure to afford a 

crude residue which chromatography over silica gel (hexane/EtOAc = 98/2) gave the 

pure 33 (0.20 g, 82% yield) white crystals (from CH3OH). 1H NMR (400 MHz, C6D6): 

δ 1.25 (s, 9H C(CH3)3), 3.35 (s, 3H, OCH3), 3.38 (s, 3H, OCH3), 4.09 (d, Ja-b = 10.3, 

1H, 5-Ha), 4.13 (d, Jb-a = 10.3, 1H, 5-Hb) 5.52 (dd, J1,2=J1,3 = 0.8, 1H, 1-H), 5.77 (dd, 

J2,1 1.0, J2,3 5.8, 1H, 2-H), 5.88 (dd, J3,1 = 0.8, J3,2 = 5.8, 1H, 3-H), 7.21-7.30 (m, 5H, 

Arom-H) 7.78-7.88 (m, 5H, Arom-H). 13C NMR (50 MHz, C6H6): ppm 19.3, 26.8, 

50.3, 56.2, 67.0, 107.5, 113.7, 127.6, 129.6, 132.0, 133.4, 134.8, 135.6, 135.7, 135.8. 

Anal. calcd for C22H30O4Si: C 69.31, H 7.59, Si 7.05. Found: C 69.52, H 7.56. 
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Compound 35α e 35β. Cytosine (0.22 g, 1.4 mmol) and glycosyl donor 33 (0.5 g, 1.3 

mmol) was dried by coevaporation with anhydrous toluene, and resuspended in 

anhydrous CH3CN (5 mL). To this N,O-bis(trimethylsilyl)acetamide (BSA, 1.25 mL, 

5.0 mmol) was added and the reaction mixture was kept at room temperature for 20 min 

under nitrogen atmosphere. When a homogenous solution was observed TMSOTf (0.05 

mL, 0.13 mmol) was added. After 24h at room temperature, to reaction mixture 

NaHCO3 aq was added. After 10 min the solution was extracted with EtOAc and 

washed with brine. Organic phase was dried (Na2SO4) and evaporated under reduced 

pressure; chromatography (hexane/EtOAC : 1/1) of the crude residue over silica gel 

afforded protected nucleosides 34α e 34β (0.439 g, 65%) as a 1:2 anomeric mixture. 

Anal. calcd for C25H33N3O5Si: C 64.71, H 6.40, N 8.09, Si 5.40. Found: C 64.99, H 

6.38, N 8.06. 

Data for 35α: white crystals; 1H NMR (400 MHz, CDCl3): δ 1.06 (s, 9H, 

C(CH3)3), 2.27 (s, 3H, COOCH3 ), 3.28 (s, 3H, OCH3), 3.76 (d, Ja-b = 10.9, 1H, 5’-Ha), 

3.93 (d, Jb-a = 10.9, 1H, 5’-Hb), 6.22 (dd, J2’,1’ = 1.2, J2’,3’ = 5.9, 1H, 2’-H), 6.26 (d, 

J3’,2’ = 5.9, 1H, 3’-H), 6.89 (s, 1H, 1’-H), 7.37-7.46 (m, 7H, 5-H, Arom-H), 7.64-7.66 

(m, 4H, Arom-H), 7.86 (d, J = 7.5, 1H, 6-H ), 9.76 (bs, 1H, NH) . 13C NMR (125 MHz, 

CDCl3): ppm 19.2, 24.9, 26.8, 51.0, 64.8, 89.9, 97.1, 114.7, 127.8, 129.8, 129.9, 130.3, 

132.9, 133.9, 135.5, 135.6, 144.6, 155.3, 162.9, 171.0.  

Data for 35β: white crystals; 1H NMR (200 MHz, CDCl3): δ 1.09 (s, 9H, 

C(CH3)3), 2,23 (s, 3H, COOCH3), 3.18 (s, 3H, OCH3), 3.92 (d, Ja-b = 11.2, 1H, 5’-Ha), 

4.05 (d, Jb-a = 11.2, 1H, 5’-Hb), 5.92 (dd, J2,1 = 1.8, J2’,3’ = 5.8, 1H, 2’-H), 6.37 (dd, 

J1’,2’ = 0.7, J2’,3’ = 5.8, 1H, 3’-H), 7.15 (s, 1H, 1’-H), 7.37-7.48 (m, 7H, 5-H, Arom-H), 

7.55-7.64 (m, 4H, Arom-H), 8.23 (d, J = 7.5, 1H, 6-H), 9.0 (bs, 1H, NH). 13C NMR 

(125 MHz, CDCl3): ppm 19.3, 25.0, 26.9, 27.0, 29.7, 49.7, 66.7, 90.7, 116.2, 127.8, 

127.9, 130.0, 130.1, 132.0, 132.3, 135.4, 135.6, 145.2, 156.2, 162.6, 170.6.  
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Compound 36β. To a stirred solution of 35β (0.05 g, 0.10 mmol) in THF (670 µL) 

TBAF (11 µL, 1 M solution in THF, 0.11 mmol) was added at room temperature. The 

reaction was stirred for 18h, then the solvent was evaporated under vacuum. The crude 

residue was treated with 1 mL of NH3/CH3OH 6M at room temperature. After 2h the 

solvent was evaporated and the crude residue purified by chromatography on silica gel 

(CHCl3/CH3OH 8/2) affording the unprotected nucleoside 36β as white crystals (0.023 

g, 97 % o.y.). 1H NMR (400 MHz, CD3OD): 3.26 (s, 3H, OCH3), 3.58 (d, Ja-b = 11.8, 

1H, 5-Ha), 3.74 (d, Jb-a = 11.8, 1H, 5-Hb), 5.90 (d, J = 7.5, 1H, 5-H), 6.26 (dd, J2’,1’ = 

1.3, J2’,3’= 5.9, 1H, 2’-H), 6.32 (d, J3’,2’= 5.9, 1H, 3’-H), 6.83 (bs, 1H, 1’-H), 7.59 (d, J 

= 7.5, 1H, 6-H). 13C NMR (100 MHz, CD3OD): ppm 55.0, 65.2, 90.1, 96.6, 115.5, 

131.8, 135.3, 142.8, 158.6, 167.9. Anal. calcd for C10H13N3O4

O
HO

CH3O N

N

O

NH2
36α

: C 50.39, H 5.46, N 

17.50. Found: C 50.39, H 5.46, N 17.50. 

 
Compound 36α. The nucleoside 36α was obtained (92% o.y.) under the same 

conditions reported for the synthesis of compound 36β.White crystals; 1H NMR (400 

MHz, CD3OD): 3.21 (s, 3H, OCH3), 3.59 (d, Ja-b = 11.9, 1H, 5-Ha), 3.74 (d, Jb-a = 11.9, 

1H, 5-Hb), 5.84 (d, J = 7.5, 1H, 5-H), 6.12 (dd, J2’-1’  = 1.7, J2’-3’ = 5.8, 1H, 2’-H), 6.30 

(d J3’-2’ = 5.8, 1H, 3’-H), 7.13 (s, 1H, 1’-H), 7.88 (d, J = 7.5, 1H, 6-H). 13C NMR (100 

MHz, CD3OD): ppm 50.0, 65.7, 91.7, 96.3, 117.0, 133.3, 135.3, 143.1, 158.7, 167.8. 

Anal. calcd for C10H13N3O4: C 50.39, H 5.46, N 17.50. Found: C 50.39, H 5.46, N 

17.50. 
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4.1 INTRODUCTION 

Modified oligonucleotides MOs, are synthetic compounds devised to have a structural 

resemblance with their corresponding natural counterparts, and occupy a privileged 

position in antiviral and anti-tumor drug design. Compared to nucleoside analogues 

(NAs), which are well established lead compounds for the treatment of a large number 

of human diseases, on the other hand, given their more relatively recent birthdate, only a 

few MOs are currently undergoing advanced clinical trials as drug candidates; however, 

they have potentially much wider and safer therapeutic applications. 

By virtue of their obvious biochemical link, NAs and MOs share a common overall 

pharmacological effect, as they are both able to inhibit viral/cellular replication by 

selectively blocking the information flow enclosed in the viral/human genome. 

However, they use different action mechanisms. On one side, NAs are enzymatically 

converted into their triphosphate forms (NA-TPs), acting as building blocks for nucleic 

acid biosynthesis and usually preventing further viral nucleic acid chain elongation by 

means of various mechanisms as reported in the chapter 3. On the other side, MOs 

interact with nucleic acid complements, with a subsequent involvement of enzymatic 

machineries, which provide the eventual pharmacological effect. The discovery by 

Zamecnik and Stephenson1 (1978) that gene expression can be modified by exogenous 

nucleic acids, sets the basis for so called “gene silencing strategies” in human therapy, 

stimulating the development of technologies that use modified nucleic acids to 

manipulate gene expression.  

Some of the most common approaches for gene silencing2 are briefly discussed 

below (Figure 1). 

Antisense strategy. Short MOs are designed to bind to specific sequences of a 

specific mRNA strand via Watson–Crick duplex formation, the resulting complex being 

recognized by hydrolytic enzymes, such as the RNase H, which cleaves the RNA strand 

releasing the MOs.3 

Antigene strategy. MOs bind sequence selectively to genomic, double stranded 

DNA and interfere with transcription and the DNA processing machinery via triple 

helix formation.4  
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RNA interference. This approach is based on the use of a double helix of a short stretch 

of synthetic RNA (known as siRNA, small interfering RNA). siRNA is introduced into 

the cell and then incorporated into the RNA-induced silencing complex (RISC), 

resulting in the cleavage of the sense strand of RNA by argonaute 2 (AGO2). The 

activated RISC–siRNA complex seeks out, binds to and degrades complementary 

mRNA, which leads to the silencing of the target gene. The activated RISC–siRNA 

complex can then be recycled for the destruction of identical mRNA targets.5  

Figure 1. Action mechanism of MOs as therapeutic agents. 

 

 

4.1.1 FEATURES OF SYNTHETIC OLIGONUCLEOTIDES. 

With the aim of ensuring active therapeutic efficacy in vivo, the MOs must have 

appropriate structural features. 

High affinity and specificity of an oligonucleotide to its mRNA target. MOs 

consisting of 13 nucleotides have the minimum sequence of bases to form hybrids 

(double, triple helices, or more complex structures) with specific complementary strand 

mRNA/DNA, because statistically there are not two strand of this length with the same 
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sequence of bases. In contrast, oligomers of shorter length can theoretically form double 

helices with more of a complementary sequence and so they are less selective.  

Stability of the hybrid. Synthetics MOs are designed to form stable hybrids with 

complementary DNA/mRNA. The stability of a hybrid, whether formed by natural and 

synthetic sequences, can be observed by melting temperature Tm, i.e. the temperature at 

which half of the DNA strands are in the double-helical state and half are in the random 

coil states. Obviously, the oligomer with a better specificity for the complementary 

treatment target is characterized by a higher Tm. It’s also clear that the latter must be 

higher than body temperature, in order to allow his obligation to perform its therapeutic 

activity in vivo. 

Bioavailability. Although an oligonucleotide strand too "short" could lead to a weak 

selectivity for the MO target, the choice to synthesize an oligomer consisting of many 

nucleotide units could make the molecule highly polar (due to the large number of 

phosphate groups), preventing an efficient across cell membranes and nuclear. The best 

choice for determining the length of an ON adapter must therefore represent a 

compromise between specific factors and bioavailability. 

Biostability. MO units consisting of (deoxy)ribonucleotide chemically identical to 

natual (i.e. those studied in vitro by Zamenick and Stephenson) have limited 

applicability in vivo due to rapid degradation by cellular nucleases.1

4.1.2 STABILITY IN VIVO OF 

 In the modern 

development of strategies for gene silencing plays, therefore, a very important role in 

the design of analogues of natural nucleic acids, provided with appropriate changes in 

the chemical structure of the nucleotide base unit in order to improve the stability of the 

biological medium. 

 

 

SYNTHETIC OLIGONUCLEOTIDES: 

SUGAR-MODIFIED NUCLEIC ACIDS 

Three main types of chemical modifications are under investigation in oligonucleotide 

antisense, antigene or RNAi experiments: a) modified nucleobase,6 b) modified sugar,7 

c) modified phosphate group.3,8  

http://en.wikipedia.org/wiki/Nucleic_acid_double_helix�
http://en.wikipedia.org/wiki/Random_coil�
http://en.wikipedia.org/wiki/Random_coil�
http://en.wikipedia.org/wiki/Random_coil�
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Figure 2. Chemically-modified nucleic acids. 

 

In particular, the study of oligonucleotide sequences containing chemical modified 

sugar units is a line of research of great interest. Over the last few years an huge number 

of variations of the native furanoside skeleton has been achieved, like simple 

functionalization of the hydroxyl group on C2' of ribonucleotide ring3b or complete 

replacement of the latter with at six-membered rings,7c bi/tricyclic4,7a or acyclic7b 

structures (Figure 2). In many cases, the resulting nucleic acids have shown excellent 

potential as therapeutic agents.

Resistance to nucleases. The replacement of furanoside ring of natural nucleic acids 

with other saccharide units (or their analogues) makes the resulting MOs typically more 

stable to nucleases because the substrate is not recognized as a natural.

3 

The replacement of the (deoxy) ribofuranoside unit of DNA and RNA with 

variously modified monosaccharides is generally devised relying on three important 

factors for the stability and efficacy of the resulting MO analogues: a) resistance to 

nucleases, b) mimicking of natural nucleic acids, c) structural preorganization of the 

nucleotide strand. 

7c In some cases, 



Introduction                                                                                                         Chapter 4 

132 
 

the ability of MOs to limit the degradative action of cellular nucleases was also obtained 

by replacing the more labile functional groups of natural nucleic acids with chemically 

more stable groups one.

Mimicking natural nucleic acids. The complete definition of the conformation of a 

nucleoside usually involves the determination of three groups of structural parameters: 

a) the orientation about the glycosyl bond as syn or anti, which is more accurately 

defined by the value of the angle χ, b) the orientation of the hydroxymethyl group, 

determined by the value of the angle γ, and c) the deviation from planarity of the sugar 

ring, measured by the angle of pseudorotation P.

9 

10 Particularly, the pseudorotation angle 

has been introduced to describe the continuous interconversions among a (virtually) 

infinite number of puckered forms related to the furanose ring of natural 

(deoxy)ribonucleotides. Thus, furanose ring conformations (mainly envelope and 

twisted) can be conveniently described by the value of phase angle P in the 

pseudorotational cycle (Figure 3). 

 
Figure 3. Structural parameters defining the conformation of a (deoxy)ribonucleoside. 
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By convention, P = 0° corresponds to a C-3'-endo puckering, while P = 180° 

corresponds to the C-2'-endo antipode; they are also generically described, respectively, 

as N (North) and S (South) conformations. In ribose and deoxyribose nucleosides, sugar  

moieties fluctuate between these two extremes, because the crossing energy barrier 

between N and S forms is relatively small (ΔG ~ 20 kJ mol-1). Crystallographic data of 

individual nucleosides revealed that the puckering modes of the furanose ring cluster 

near one of these two antipodal regions:11 N domain between 342° and 18°  

(2E → 3T2→ 3E) and antipodean S area between 162° and 198° (2E → 2T3→ 3E)  

(Figure 3). 

When the sugar rings of natural D-(deoxy)ribonucleotides occupy N and S domains 

in polymeric structures (e.g. RNA and DNA) they lead, respectively, to two common 

right-handed helices, known as A- and B-type forms.12 These two different puckering 

modes are favored because they best alleviate the steric clashes of sugar substituents. 

However, the preference for one conformation or for another one seems to derive from 

the nature of the C-2' group. In the presence of a withdrawing (e.g. OH) group, the C-3'-

endo (N) pucker is the only conformation observed (such as in dsRNA, A-type helix); if 

it is absent, the C-2'-endo (S) pucker is preferred (such as in dsDNA, B-type helix)[1]
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(Figure 4). 

 
Figure 4. A- and B-type duplex conformations reported, respectively, for dsRNA and 

dsDNA. 
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The structural preorganization of the nucleotide strand. It is now well established that 

biological events relying on host-guest recognition processes require appropriate 

structural features of both components.13 The formation of these kind of complexes is 

thermodynamically unlikely for two main reasons. First of all, three degrees of 

translational and rotational entropy are lost while forming a complex from two separate 

molecules. Moreover, if each molecule has free internal bond rotations to be locked for 

the complex, several degrees of freedom for each bond will be lost. Even though the 

first effect is mostly an unavoidable feature of molecular recognition, guest-molecular 

design can overcome the last one.14

4.1.3 THE CRITICAL ROLE OF SUGAR CONFORMATION IN THE 

THERAPEUTIC POTENTIAL OF OLIGONUCLEOTIDE ANALOGUES 

 Particularly, if a guest molecule is designed to be 

“frozen” in the binding conformation before the recognition process, then any entropy 

cost, due to fixing bond rotations, will not be necessary in binding. This assumption 

introduces the concept of “preorganization”, coined by Donald Cram to explain host-

guest interactions in supramolecular chemistry. In few words, reduction of all possible 

conformational states of a guest molecule to those fitting with the geometric and 

stereochemical requirements of a host molecule may lead to an entropic benefit of 

complex formation, and thus to enhanced complex stability. As reported below, the 

concept of molecular preorganization (particularly, that of sugar preorganization within 

nucleoside or oligonucleotide structures) has been profitably exploited to gain insight 

into the structural details underlying both enzyme-NAs recognition events and the 

hybridization properties of MOs to be efficiently annealed with natural complementary 

strands. 

 

 

To be successful, most MOs must rely on efficient hybridization with natural RNA and 

DNA complements. This goal is usually attained by designing structurally-preorganized 

MOs, able to keep the potential for communication (via WC or any other alternative 

base-pairing system) resembling the natural A-type or B-type duplexes without entropy 

penalty involved in the binding process.15 In particular, MOs having sugar units 

restricted into the N conformation, thus forming A-type duplexes, resulted into the 

highest duplex stabilities.16 On the other hand, examples of MOs with mononucleotide 
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units resembling the S sugar pucker, thus leading to B-type duplexes, are much more 

sporadic. An accurate structural similarity with natural nucleic acids is of key relevance 

in some strategies, such as in the antisense approach. Thus, a convincing way to 

improve the binding proprieties of a MO toward the desired duplex conformation has 

been to apply conformational restrictions of the furanose ring of nucleotide units toward 

one of the two C3'-endo and C2'-endo sugar conformations. Hereafter, the potential of 

the most relevant sugar modified MOs will be briefly discussed. 

 

 

4.1.4 SIX-MEMBERED NUCLEIC ACIDS 

1',5'-D-Anhydrohexitol Nucleic Acids (HNA). As above discussed, replacement of a 

furanose ring with a pyranose one involves differences in flexibility, causing 

conformational preorganization of the corresponding oligonucleotide system.17 This was 

the rationale behind the design of a great amount of (pento and hexo)-pyranosyl 

oligonucleotides, which have been investigated over the years to consider their potential 

in therapy,18 diagnostics,19 synthetic biology20 and etiology-oriented research.21 In this 

context, it was thought that nucleobase positioning at the axial or equatorial C2' site of 

an hexopyranosyl unit could bring the extra methylene group of the six-membered ring 

in the minor groove site, where it should not influence the conformational freedom of 

nucleobases in the neighboring residues. This assumption led to the design of 

conformationally restricted pyranose ONs such as 1',5'-anhydro-D-ribo/arabino-hexitol 

nucleic acids (respectively α- and β-HNA).22 Particularly, the β-isomer (corresponding 

to the axial orientation of the nucleobase) demonstrated most accurate mimicking of 

natural nucleic acids. Indeed, as already mentioned for the anhydrohexitol nucleosides, 

the nucleotide unit of β-HNA (hereafter HNA) closely resemble that found in natural 

nucleic acids inducing A-type duplexes, such as RNA.39 
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Figure 5. 1',5'-D-Anhydrohexitol Nucleic Acids (HNA). 

 

Because of these features, the HNA system represented one of the most prominent 

examples of hexopyranose nucleic acids with capability for cross-communication with 

natural complements (DNA: ∆Tm/mod up to +1.3 °C; RNA: ∆Tm/mod up to +3 °C).24 

CD analysis demonstrated that HNA strands of both HNA:RNA and HNA:DNA 

hybrids adopted a winding very close to the A-type helix (Figure 5). However, this 

could also be the reason why HNA:RNA duplexes were resistant to RNase H 

activation.[39] Nonetheless, HNA could be used to control gene expression, as 

demonstrated by the inhibition of P-glycoprotein expression in a cell system.23 

The intriguing properties of HNA stimulated the development of further analogues 

(Figure 6) based on modifications in both structure and configuration of the sugar 

ring.44 For example, the hydroxylated versions of HNA, namely ANA (Altritol Nucleic 

Acids) and MNA (Mannitol Nucleic Acids) were prepared and evaluated (Figure 6). 

The complexes between ANA and RNA or DNA were reported to be even more stable 

than those between HNA and natural complements (e.g., RNA: ∆Tm/mod up to +7 

°C).24 This was evidently due to the introduction of the axially-oriented hydroxyl group, 

with more accurate RNA mimicking. Hybridization ability of ANA enabled to consider 

it as an efficient tool in gene expression inhibition25 and in nucleic acid-based 

diagnostics and nanotechnology.26 Conversely, the diastereoisomeric MNA displayed 

considerably minor affinity to RNA, compared to ANA or HNA.27 Molecular modelling 

studies identified the reason for such reduced affinity in the intrastrand inter-residue H-

bond formation between the equatorial C3'-positioned OH group and the O6' of the 

phosphodiester group of the following nucleotide unit, tying the MNA single strand into 

a non-pairing conformation.28 
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Figure 6. HNA derivatives. 

 

CNA (Cyclohexanyl Nucleic Acids). An interesting example of saturated six-

membered nucleic acids derived from HNA, is Cyclohexanyl Nucleic Acids (CNA).29 

The rigidity of the chair conformation of cyclohexane of CNA gives a high structural 

preorganization to corresponding oligonucleotide strands.  

However, the CNA drew attention because they represent a  first example of 

oligonucleotides existing in two extreme forms. In fact solution phase analysis reveals 

that this nucleosides adopt a) an A-type helix (corresponding to a 4C1 conformation of 

pseudosaccharide portion) superimposable to HNA structure and b) a quasi-linear 

structure (corresponding to a 1C4 conformation of pseudosaccharide portion).7c In 

particular, the single-strand of CNA is present in a non-helical conformation as the 

cyclohexane ring adopts a 1C4 conformation due to unfavorable 1,3-diaxial interactions 

between the nucleobase and the atoms of hydrogen on C1' and C3' in the 4C1 

conformation (Figure 7). The presence of a complementary strand (DNA or RNA) can, 

however, involve a significant thermodynamic advantage by promoting the inversion of 

the chair (1C4 → 4C1) in the adequate conformation for base pairing.12 

 
Figure 7. Conformation of CNA systems. 
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The formation of one of the two conformational states may depend on the type of 

sequence complementary. In fact, it was found that the CNA is able to hybridize with 

orthogonal complementary sequences (D-and L-oligonucleotides) using the two different 

conformations of the nucleotide monomer unit.30 The ability of hybridization of CNA 

with orthogonal complement represents a rare case of modified oligonucleotide systems 

studied until now.7c If pairing with natural DNA and RNA showed the possible use of 

CNA in therapeutic systems,27 its ability to hybridize with orthogonal nucleic acids to 

natural ones has applications in diagnostic field,7c and even in prebiotic chemical 

experiments.28 

On the basis of the above and the study of oligonucleotide systems with limited 

conformational freedom, (in particular of the CNA system), the conformation of the 

saccharide unit of a nucleotide is very important in the development of efficient and 

versatile applicability oligonucleotide drugs. However, it still remains to clarify the 

precise reasons why structural conformational changes, such as modified saccaride unit 

of the CNA, may determine the pairing of a nucleotide respect to two orthogonal 

complements. This justifies the conformational studies currently under way in this field, 

in particular the studies based on nucleic acids having six-membered (pseudo-) 

saccharide units, carried out in order to make new oligonucleotide systems with 

remarkable therapeutic potential. 

Cyclohexenyl Nucleic Acids (CeNA). One of the most effective six-membered 

MOs is indeed represented by cyclohexenyl nucleic acids (CeNA), a DNA mimic 

having the deoxyribose replaced by a cyclohexenyl moiety31 (Figure 8). Although this 

system holds minor flexibility than that of a natural nucleotide (constraints are 

introduced by the rigid double bond within the six-membered ring), conformational 

equilibria and thermodynamic parameters of a cyclohexenyl nucleoside [∆E between 
3H2 (N-type) and 2H3 (S-type) is 1.8 kJ/mol with a barrier of 10.9 kJ/mol] were very 

similar compared to a natural ribonucleoside (∆E between N-type and S-type 

conformers is 2 kJ/mol with a barrier of 4-20 kJ/mol).32 The flexibility of the 

cyclohexenyl nucleotide was further demonstrated by the fast equilibrium between two 

conformational states adopted when the NA was incorporated in ds-DNA sequences.33 
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Figure 8. Cyclohexenyl Nucleic Acids (CeNA). 

 

CeNA were capable of forming hybrids with natural complements (average ∆Tm/mod 

+1.2 °C), CeNA/RNA duplexes being more stable than the corresponding DNA/RNA 

hybrids.34 In view of the selective interaction with RNA complements and the 

preservation of RNaseH recognition of a CeNA:RNA hybrid, CeNA currently 

represents one of the most promising antisense candidates. Moreover, it has recently 

been demonstrated that CeNA could be incorporated in siRNA duplexes, with retention 

of potent biological activity.35 

The above results highlighted how, among the most relevant examples of 

conformationally restricted NAs, those bearing a six-membered moiety drew most 

attention, as they demonstrated to enable precise positioning of functional groups (in 

ways otherwise thermodynamically disfavored) in recognition events dealing with the 

development of both efficient NAs and MOs. This justifies the longstanding efforts in 

the field, as well as the still ongoing studies aimed to explore other six-membered NAs 

endowed with broad therapeutic activity. 
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4.2 RESULTS AND DISCUSSION 

Considering the results discussed in the previous section, during my PhD, an efficient 

synthetic routes to prepare a new class of carbocyclic nucleic acid, identifiable with 

acronym “ribo-CNA” (ribo-configured D-Cyclohexanyl Nucleic Acids) has been 

developed. They were been designed on the basis of structural analogy with CNA and 

ANA modified oligonucleotides (Figure 1a-b). As in the case of ANA (Figure 1a), the 

sugar unit of ribo-CNA should be able to mimic the RNA structure locked in its 

bioactive conformation (C3'-endo or 3E), in order to make MOs able to form stable 

double and triple helices. As in the case of CNA (Figure 1b), it will be evaluated the 

capacity of ribo-CNA to adopt different conformations of saccharidic unit to study the 

geometric relationships that exist between this latter and the ability of hybridization of 

corresponding nucleic acid sequences compared to their complementary sequences. 

 
Figure 1. ribo-CNA, a new class of carbocyclic nucleic acids. 

 

This work concerned the preparation of the nucleosides 1 and 2 (B = T, ABz), through a 

versatile procedure applicable also for the preparation of the remaining nucleosides 3-4 

(B = GiBu, CBz, Scheme 1). Compounds 1-4 constitute the building blocks for the 

subsequent oligonucleotide synthesis of ribo-CNA, whose ability to form stable 

double/triple helices with complementary sequences of natural mRNA and dsDNA will 

be evaluate. 
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Scheme 1. Nucleoside monomers 1-4: retrosynthetic path. 

 

 

4.2.1 SYNTHESIS OF NUCLEOSIDE UNITS. 

The structure of nucleosides 1-4 consists of a six-membred carbocyclic skeleton whose 

configuration of stereogenic centers mimics the D-altrosie. As indicated by 

retrosynthetic analysis (Scheme 1), the preparation of this compounds can be achieved 

through an enantioselective synthetic procedure using an economical starting material 

cyclohexanone (7), via the intermediates 5 and 6. The synthesis of the nucleosides 1-2 is 

described below. 

 

SYNTHESIS OF (2R)-2-(HYDROXYMETHYL) CYCLOHEXAN-1-ONE (17) 

The first step of the syntesis is represented by the enantioselective reaction of α-

hydroxymethylation of cyclohexanone (7), resulting in the formation of a new chiral 

center that will determine the steric series (D- or L-) of nucleoside unit target. In 

particular α-hydroxymethylation of 7 was conducted through an organocatalytic 

reaction. It’s know that organocatalysis1 is a branch of asymmetric catalysis in which 

the catalytic activity, often associated with a high stereoselectivity, uses available 

commercially organic molecules (such as natural amino acids)2 or easily synthesized 

molecules (modified pyrrolidines chiral or monosaccharides derivatives)3,4 without the 

use of transition metals. For this reason, organocatalysis associates a significant eco-

compatibility and low toxicity of the reagents with a high efficiency and versatility. 

From a synthetic point of view, organocatalysts commonly act on carbonyl compounds 

(mainly aldehydes and ketones), leading to generally products of α-functionalization5 

via aldolic condensation reactions6 or Mannich reactions.7 
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The organocatalytic procedure8 used to allow the insertion of hydroxymethyl group on 

the cyclohexanone (7) (Scheme 2) involved the use of D-proline, enantiomer of natural 

L-proline. i,9 A product with the (R)configuration  required by the target nucleoside was 

obtained. Specifically, treatment of a solution of 7 in dimethyl sulfoxide (DMSO), with 

an aqueous solution of formaldehyde (15) and a catalytic amount (10%) of D-proline 

(13) took to the formation, after 16h at room temperature, of alcohol 17, obtained with 

complete enantioselectivity (ee = 99%), albeit with a modest yield (28%). The 

mechanism of this reaction involves the initial formation of the enamine intermediate 

14, by reaction of the carbonyl group of 7 with proline 13, with leakage of a water 

molecule. The reaction of 14 with the electrophile 15 led to imino intermediate 16. 

Finally, the attack of H2O estabilished again the carbonyl function, giving the α-

hydroxymethyl cyclohexanone (17) (Scheme 2). 

 
Scheme 2. α-Hydroxymethylation of cyclohexanone (7). 

 

The complete stereoselectivity of this reaction is due to formation of intramolecular 

hydrogen interaction in enamine intermediate 14, (Scheme 2), the Re face of 14 

presents more steric hindrance that obstructs a possible nucleophilic attack. The high 

enantiomeric excess of reaction makes this method particularly useful for our synthetic 

                                                 
i Amino acids, especially proline, have taken a leading role because they have been among the best 
catalysts in this reactions, presenting in the same molecule, the amino group and the carboxyl function; 
see ref. 1. 
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purposes, although this reaction is characterized by a low chemical yield (this problem 

is not important in virtue of the large commercial availability of starting materials). 

 

SYNTHESIS OF (2R)-2-(BENZYLOXYMETHYL) CYCLOHEXAN-1-ONE (6) 

The primary alcohol 17 was then protected; over a wide range of protecting groups (t-

butyldiphenylsilyl- TBDPS; monomethoxy trityl- MMT; p-methoxybenzyl- PMB) 

tested only benzyl group proved to be sufficiently stable in subsequent synthetic 

transformations and it was hence selected for the protection of primary alcoholic 

function of 17. Common conditions of benzylation (NaH/BnBr) did not afford the 

desired protected compound (Scheme 3). On the other hand the use of benzyl-2,2,2-

trichloroacetimidate 18 (easily prepared from benzyl alcohol (BnOH), 1,8-diazabicyclo 

[5,4,0] undecane-7-ene (DBU) and trichloroacetonitrile)10 and triflic acid

O

OH

BnOH

DBU, CCl3CN
CH2Cl2

NH

CCl3BnO
O

OBn

TfOH, THF
17 6

18

52%

NaH/BnBrno
reactivity

 (TfOH) gave 

the desired product 6 with a satisfactory yield (52%; Scheme 3). 

 
Scheme 3. Synthesis of (2R)-2-(benzyloxymethyl) cyclohexan-1-one (6). 

 

SYNTHESIS OF (6R)-6-(BENZYLOXYMETHYL)-2-CYCLOHEXEN-1-ONE (20) 

Benzyl ether 6 was further functionalized with introduction of a double bond in not 

chiral α-position, in view of installation of the remaining chiral centers of target 

nucleoside unit. The preparation of 20 proceeded through the formation of trimethysilyl 

enol ether 19, obtained by treatment of ketone 6 with lithium diisopropylamide (LDA) 

and trimethylsilyl chloride (TMSCl) in tetrahydrofuran at -78 °C (Scheme 4). The 

reaction was carried out using LDA generated in situ by treatment of diisopropylamine 

(DIPA) with n-butyllithium (Buli). The silyl enol ether 19 is not sufficiently stable to be 

stored, anyway it could be isolated for its 1H NMR characterization, so it was used 

directly in subsequent reaction. In particular, treatment of 19 with palladium acetate in 



Results and Discussion                                                                                        Chapter 4 

147 
 

anhydrous acetonitrile led, after 2 h at room temperature,  with complete conversion to 

20 (96% overall yield starting from 

O

OBn

BuLi, THF
- 78°C

OTMS

OBn

TMSCl
THF, -78 °C6 19

LDA

96% (f rom 6)

N
H

DIPA

N
O

OBn

20
Pd(OAc)2
CH3CN
2h, r.t.

6). 

 
Scheme 4. Synthesis of (6R)-6-(benzyloxymethyl)-2-cyclohexen-1-one (20). 

 

SYNTHESIS OF (1AS, 2R, 3R, 5AS)-2-HYDROXY-3-(BENZYLOXYMETHYL) 

PERHYDRO-1-BENZOXIRENE [SYN-(ANTI-5)] 

With the compound 20 in hand, the possibility to insert nucleobase exploiting the 

presence of an electrophilic center on the carbocyclic skeleton was then examined. As 

reported on similar substrates,11 the electrophilic center is commonly achieved through 

the installation of an epoxy function (as in 21) able to undergo nucleophilic attack by 

nucleobase, to obtain the desired nucleoside 22 in the right configuration (Scheme 5). 

However, a stereoselective epoxidation reaction is necessary; indeed only the epoxide 

with appropriate stereochemistry (anti to hydroxymethyl group) allow the addition of 

nucleobase in the desired position and with appropriate axial orientation. 

Preliminary tests of epoxidation of 20 were carried out using a wide range of 

reagents (H2O2/NaOH, UHP/NaOH, Triton B/H2O2). However, in all conditions used 

no satisfactory results were dotained (Scheme 5) probably due to the presence of 

carbonyl group near the chiral center. In fact, under common basic conditions, required 

for the epoxidation of a α,β-unsaturated ketone, the carbonyl function may be subject to 

enolization by proton removal on chiral carbon leading to racemization of the substrate 

and loss of stereoselectivity. 
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Scheme 5. Epoxidation for nucleobase insertion. 

 

On the basis of these considerations, an alternative strategy was chosen. Firstly 

reduction of the carbonyl group was carried out, and then stereoselective epoxidation of 

the corresponding allyl alcohol was attempted (Scheme 6). The reduction of the 

carbonyl group of 20 was realized using a wide range of reducing agents (NaBH4, 

LiAlH4, Na(AcO)3BH, LiBH4, DIBAL-H, Red-Al, Li(MeO)3AlH), to study the most 

favorable conditions for the stereoselective formation of the required anti-product. As 

recently reported in the literature on similar substrates,12 best conditions were found by 

the use of lithium aluminum hydride (LiAlH4) in anhydrous THF (Scheme 6); indeed 

after 3.5h at -100 °C, a mixture of anti-23 and syn-23 diastereomers was isolated (84% 

overall yield), with a satisfactory preference for the anti-product (dranti /syn = 75:25). 

 
Scheme 6. Reduction and epoxidation reactions. 

 

Unfortunately, reduction products (anti-23 and syn-23) were not separable by 

chromatograpy: therefore the mixture of diastereoisomers was directly used in the next 

epoxidation step. 

It’s known that epoxidation reactions on chiral allylic alcohols with peroxy acids 

are typically associated to high stereoselectivity of the oxidation process, 13 thanks to the 
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a hydrogen bond established between the allylic hydroxyl group and peracid, which 

guides the formation of a single stereoisomer predominantly. Hence, the epoxidation 

reaction was carried out starting from the mixture of alcohols knowing that four 

possible diastereoisomeric oxiranes could be obtained. In fact, treatment of alcohols 

anti/syn-23 with a slight excess of m-chloroperoxybenzoic acid (m-CPBA) in anhydrous 

CH2Cl2

SYNTHESIS OF CARBOCYCLIC NUCLEOSIDE ANALOGUES 1 AND 2.  

 gave, after 3 h at -20 °C, only three epoxides, the syn-(anti-5) being the most 

abundant (70% yield; easily purified by flash chromatography). On the other side, it is 

reasonable to hypothesize that treatment of syn-23 with m-CPBA has not led to any 

stereoselectivity, leading to the formation of a 1/1 mixture of syn-(syn-5) and anti-(syn-

5) epoxides (20% yield), due to the steric hindrance of the benzyl ether group on Re 

face which is typically involved in the formation of the epoxy function. (Scheme 6). 

 

At this point our attention was focalized on synthesis of the nucleosides 25a and 25b 

from the most abundant oxirane syn-(anti-5) through the steps shown in Scheme 7. The 

alcohol syn-(anti-5) was further protected with a benzyl group: in this case the most 

common benzylation conditions (NaH/BnBr) were suitable to achieve the desired 

benzyl ether 24 (98%). 

The regioselective14 ring opening of the epoxide 24 with nucleobases was achieved 

in reasonable yields in the presence of DBU,ii affording the desired carbocyclic 

nucleosides.15 Indeed, trans-diaxial ring opening

                                                 
ii DBU was preferred to other commonly used bases, such as NaH or LiH, because not strictly anhydrous 
conditions were required. 

 of 24 with thymine (T) and DBU in 

dry DMF at 120 °C for 7 h afforded protected nucleoside 25a, in 80% yield, with “D-

altro” configuration to the newly formed stereogenic centers (Scheme 7). Analogously, 

the reaction of 24 with adenine (A), under the same conditions, gave nucleoside 25b 

with more satisfactory 90% yield.  
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BnO

O

OBn

24

DMF
120°C, 7hBnO

OH

BnO

25a B = T
25b B = A

B

HO

O

OBn

5

NaH, BnBr
DMF, 0 °C

98%

B

 
Scheme 7. Synthesis of  nucleosides 25a-b: trans-diaxial ring opening of epoxide 24. 

 

Finally, protection of hydroxyl function of 25a using a catalytic amount of 4-

dimethylamino pyridine (DMAP) and benzoyl chloride in pyridine for 4h, led to the 

desired nucleoside 1 with 98% yield. Under the same conditions and through the 

subsequent in situ mono-N6-debenzoylation (by treatment of reaction mixture with 

concentrated ammonia) nucleoside 2 was obtained with a satisfactory 95% yield 

(Scheme 8). 

It’s noteworthy to note that nucleoside 1 and 2 adopt a 1C4-like conformation due to 

the steric hindrance of 3’-OBz group and the nucleobase in axial position (Scheme 8).iii 

Inversion of conformation was verified by coupling costants analysis of 1H NMR for 

compounds 1 and 2 which showed a J3’,4’ (J = 3.05 Hz), J3’,2’ (J = 11.2 Hz) for 1, and  

J3’,4’ (J = 2.8 Hz), J3’,2’

BnO

OH

OBn

25a B = T
25b B = A

B
BzCl/Py BnO

OBz

OBn

1 B = T
2 B = ABz

B

OBn

BnO

BzO
B

H

H

H

1C4
4C1

rt1'2'3'

4'
5'

6'
7'

1 J3' ,2' = 11.2 Hz
2 J3' ,2' = 10.6 Hz

1 J3',4' = 3.05 Hz
2 J3',4' = 2.8 Hz

 (J = 10.6 Hz) for 2. 

 
Scheme 8. Synthesis of nucleosides 1-2. 

 

Even though they adopt the 1C4 in the form of nucleosides, it’s reasonable to 

hypothesize that the corresponding nucleotides will adopt the 4C1

                                                 
iii Starting from compounds 25a-b, numbering was attributed on the base of analogy with natural 
nucleosides. 

 one, because 

otherwise they should resemble the “forbidden” C2’-endo super puckering of RNA. 
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4.2.2 OLIGONUCLEOTIDE SYNTHESIS 

Nucleosides 1 and 2 represent the building blocks for the next oligonucleotide synthesis 

(Scheme 10), which will be assembled into oligomers of different sequences, each 

consisting of 13 nucleotide units, containing the ribo-CNA-T, and ribo-CNA-A 

monomers. 

 
Scheme 10. Oligonucleotide synthesis by phosphoramidite method. 

 

The stage of nucleoside incorporation into oligomeric sequences,16 after deprotection of 

hydroxyl groups in C-4’ and C-6’ position, will be accomplished by using the common 

phosphoramidite method17 on a solid support in laboratories of Professors Piet 

Herdewijn and Arthur van Aerschot of the Rega Institute for Medical Research, 

Katholieke Universiteit Leuven (Belgium). 
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4.3 CONCLUSION 

At the beginning of last century, the Nobel prize Paul Ehrlich, medical microbiologist, 

immunologist and pioneer of chemotherapy, theorized the existence of magic bullets 

capable of locked the action of toxic substances in infected organisms, reducing 

dramatically the occurrence of side effects. The advent of gene silencing strategies 

based on the development of synthetic MOs promises to achieve the specificity and 

efficacy that Ehrlich thought. This strategies for regulating the expression of a gene 

results completely selective, and of universal applicability, compared to traditional 

therapies. 

For more than two decades, chemists have explored the chemical space in search 

for analogs of natural nucleic acids (NAs) endowed with certain desirable properties, 

such as increased stability against nucleolytic degradation and improved binding 

affinity toward natural complements. Strong motivations for this research have been the 

therapeutic promises of antisense, antigene, aptamer, and, in more recent times, RNAi 

and miRNA strategies. In addition, chemically modified NAs, and particularly those 

equipped with a sugar moiety in the backbone deviating from the natural D-

(deoxy)ribose, have been considered for a plethora of other potential in vitro and in vivo 

applications: they have been used, inter alia, as chemical probes in NA diagnostics or in 

the analysis of protein-NA interactions; as (potential) unnatural carriers of genetic 

information; as building blocks for the assembly of higher-order nanostructures; as 

synthetic models of alternative basepairing systems, aimed at potentially yielding 

insights into the origin and uniqueness of DNA and RNA. Over the years, slight 

modifications of the original furanose moiety  or replacement of the five-membered ring 

with six-membered, bicyclic, tricyclic, or even acyclic structures have been conceived, 

resulting, in many cases, in excellent candidates for cross-pairing with natural 

complements.  

In this work an enantioselective procedure for the synthesis of ribo-configured 

cyclohexanyl nucleic acids starting from economical cyclohexanone 7, has been 

conveniently reported. Further experiments aimed to incorporate nucleosides 1 and 2 in 

oligonucleotide strands, will determine their hybridization aptitude with natural mRNA 

and dsDNA sequences. 
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4.4 EXPERIMENTAL SECTION 

All moisture-sensitive reactions were performed under a nitrogen atmosphere using 

ovendried glassware. Solvents were dried over standard drying agents and freshly 

distilled prior to use. Reactions were monitored by TLC (precoated silica gel plate 

F254, Merck). Column chromatography: Merck Kieselgel 60 (70-230 mesh); flash 

chromatography: Merck Kieselgel 60 (230-400 mesh). 1H and 13C NMR spectra were 

recorded on NMR spectrometers operating on Varian VXR (200 MHz), Bruker DRX 

(400 MHz) or Varian Inova Marker (500 MHz), using CDCl3

O OH

17

 solutions unless otherwise 

specified. In all cases, tetramethylsilane (TMS) was used as internal standard for 

calibrating chemical shifts (δ). Coupling constant values (J) were reported in Hz. 

Combustion analyses were performed by using CHNS analyzer. 

 
(2R)-2-(hydroxymethyl) cyclohexan-1-one (17). To a solution of cyclohexanone 7 

(10.0 g, 0.10 mmol) and (D)-proline 13 (1.2 g 0.01 mmol) in DMSO (120 mL), 

formaldehyde 15 (4 mL, 0.05 mmol, 37% in H2O) was added at room temperature. 

After 16 h, the reaction mixture was quenched by the addition of brine and extracted 

with EtOAc. The combined organic extracts were concentrated and the crude product 

purified by silica gel column chromatography (hexane/ EtOAc 6:4) affording the pure 

17 in 28% yield with >99% ee; [α]D
25 -11.9 (c 0.41, CHCl3). 1H NMR (200 MHz, 

CDCl3): δ 1.39–1.50 (m, 2H, H-4); 1.56–1.73 (m, 2H, H-5); 1.86–1.92 (m, 1H, OH); 

1.97–2.12 (m, 2H, H-3); 2.25-2.41 (m, 2H, H-6); 2.42–2.53 (m, 1H, H-2); 3.57 (dd, Ja,b 

= 11.5, Ja,2 = 3.8, 1H, CHHaOH); 3.72 (dd, Jb,a = 11.5, Jb,2 = 7.5, 1H, CHHbOH). 13C 

NMR (50 MHz, CDCl3) δ: 24.9, 27.7, 30.2; 42.4; 52.5, 63.0; 215.0. Anal. calcd for 

C7H12O2: C, 65.60; H, 9.44. Found: C, 65.38; H, 9.47. 
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O OBn

6  
(2R)-2-(benzyloxymethyl) cyclohexan-1-one (6). To a solution of 17 (0.5 g, 3.9 mmol) 

in dry CH2Cl2 (16 mL) BnOC(NH)CCl3 18 (1.97 g, 7.8 mmol) in dry THF (3.25 mL) 

and triflic acid (40 µl, 0.39 mmol) was added at -10 °C. After 2 h to the mixture of 

reaction NaOHaq (3%) was added. The mixture was washed three times with H2O 

extracted with CH2Cl2 and the organic phase dried on dry Na2SO4. The solvent was 

evaporated under vacuum, crude product obtained was purified by chromatography on 

silica gel (1:30, hexane/Et2O, 8:2) to give the pure 6 (0.4 g, 52% yield). Oily; 1H NMR 

(300 MHz, CDCl3): δ 1.48-1.52 (m, 2H, H-4), 1.66-1.71 (m, 2H, H-5), 2.07–2.08 (m, 

2H, H-3), 2.32–2.38 (m, 2H, H-6), 2.65–2.70 (m, 1H, H-2), 3.46 (dd, JHa,Hb = 9.50, 

JHa,H-2 = 7.40, 1H, CHaHOBn), 3.86 (dd, Ja,b = 9.50, Jb,2 = 5.10, 1H, CHHbOBn), 4.52 

(d, Ja,b = 11.9, CHHaPh,1H), 4.57 (d, Jb,a = 11.9, CHHbPh,1H), 7.35 (m, 5H, Arom- 

H). 13C NMR (75 MHz, CDCl3): ppm 24.7, 27.6, 31.4, 42.0, 50.8, 69.3, 73.2, 69.3, 

127.4, 127.5, 128.22, 138.3, 211.5. Anal. calcd for C14H18O2

O OBn

20

: C, 77.03; H, 8.31. Found: 

C, 76.92; H, 8.35. 

 
(6R)-6-(benzyloxymethyl)-2-cyclohexen-1-one (20). To a stirred solution of DIPA 

(312 µl, 2.2 mmol) in dry THF (4 mL), at -78 °C, n-BuLi (1.6 M in hexane, 1.81 mL, 

1.94 mmol) was added to prepare LDA in situ. After 10 min, to the mixture ketone 6 

(0.4 g, 1.84 mmol) in dry THF (4 mL) was added. The mixture was stirred for further 30 

min at this temperature, and then TMSCl (400µl, 3.13 mmol) was added. After 3 h the 

solvent was evaporated under reduced pressure and the crude residue was filtered on 

celite and washed with pentane. To a solution of Silyl enol ether 19 so obtained was in 

CH3CN (20 mL) Pd(OAc)2 (408 mg, 1.84 mmol) was added. After 2 h the mixture was 

filtered on celite and eluted with CH2Cl2, the eluate was washed with brine. The crude 

residue purified by chromatography on silica gel gave the pure compound 20 (381 mg, 

96% o.y.). Oily; 1H NMR (200 MHz, CDCl3): δ 1.80-2.06 (m, 2H, H-5), 2.22-2.47, (m, 

2H, H-4), 2. 56–2.70 (m, 1H, H-6), 3.62 (dd, Ja,b = 9.52, Ja,2 = 7.57, 1H, CHaHOBn), 

3.87 (dd, Ja,b = 9.53, Jb,2 = 4.15, 1H, CHHbOBn), 4.53 (s, 2H, CH2Ph), 6.52 (dt, J = 
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1.96, J = 2.15, 1H, H-3), 6.92-7.01(m, 1H, H-2), 7.28-7.34 (m, 5H, Aromat-H). 13C 

NMR (50 MHz, CDCl3): ppm 23.0, 25.5, 25.9, 26.3, 38.05, 47.4, 61.1, 69.4, 73.5, 

127.8, 127.9, 128.6, 130.0, 138.6, 146.7, 150.5, 200.8. Anal. calcd for C14H16O2

OH OBn

5

O

: C, 

77.75; H, 7.46. Found: C, 77.65; H, 7.49. 

 
(1aS, 2R, 3R, 5aS)-2-hydroxy-3-(benzyloxymethyl) perhydro 1-benzoxirene (5). To 

a stirring solution of 20 (0.02 mg, 0.92 mmol) in dry THF (4.5 mL), at -100 °C under 

nitrogen atmosphere LiAlH4 (9.0 mg, 0.23 mmol) was added. After 3.5h, the mixture 

was cooled at 0 °C, diluted with EtOAc and NaHCO3 aq (7.5 mL). After 15’, the 

solution was extracted with EtOAc. The organic phase was dried on Na2SO4 and 

evaporated under vacuum. The crude residue, purified by chromatography on silica gel 

(hexane/EtOAc = 8:2), gave a mixture of alcohols syn-23 e anti-23 (164 mg, 84% yield, 

anti/syn:75/25). To a stirred solution of olefins syn-23 e anti-23 (0.10 g, 0.46 mmol) e 

NaHCO3 (40 mg, 0.46 mmol) in dry CH2Cl2 (3 mL), at -20 °C, under nitrogen 

atmosphere, m-CPBA (0.97 g, 0.46 mmol) was added in one portion. After 3h, the 

mixture was extracted with CH2Cl2 and washed with brine. The organic phase was 

dried on Na2SO4 and evaporated under vacuum to give a crude residue which was 

purified by flash chromatography (hexane/ EtOAc = 8:2), affording the pure syn-(anti-

5) (82 mg, 70% yield). Oily; 1H NMR (300 MHz, CDCl3): δ 1.02–1.19 (m, 2H, H-4), 

1.35–1.49 (m, 2H, H-5), 1.89-1.90 (m, 2H, H-3, OH), 3.33 (bs, 2H, CH2OBn), 3.51 (m, 

2H, H-1a, H-5a), 3.95 (d, 1H, H-2), 4.55 (bs, 2H, CH2Ph), 7.35 (m, 5H, Arom-H). 13C 

NMR (75 MHz, CDCl3) δ: 22.2, 23.1, 37.4, 54.7, 56.0, 72.1, 73.1, 73.5, 127.5, 127.6, 

128.3, 137.7. Anal. calcd for C14H16O2

OBn OBn

24

O

: C, 77.75; H, 7.46. Found: C, 77.65; H, 7.49. 

 
(1aS,2R,3R,5aS)-2-benzyloxy-3-(benzyloxymethyl) perhydro-1-benzoxirene (24). 

To a stirred solution of alcohol 5 (0.82 g, 0.35 mmol) in dry DMF (3 mL) at 0 °C, under 

nitrogen atmosphere, BnBr (0.72 g, 0.46 mmol) and NaH (8.4 mg, 0.35 mmol) were 

added. After 1.5h, the mixture was extracted with AcOEt and washed with brine. The 
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organic phase was dried on Na2SO4 evaporated under reduced pressure. 

Chromatography of crude residue over silica gel (hexane/EtOAc = 9:1) gave the pure 24 

(0.11 g, 98% yield). Oily; 1H NMR (300 MHz, CDCl3): δ 1.28-1.35 (m, 2H, H-4), 1.58-

1.69 (m, 2H, H-5), 1.85-195 (m, 1H, H-3), 3.33 (m, 2H, H-1a, H-5a), 3.54 (m, 2H, 

CH2OBn), 3.80 (d, J2,1a= 9.5 Hz,1H, H-2), 4.46 (d, Ja,b= 11.9 Hz, 1H, CHaHPh’), 4.49 

(d, Jb,a = 11.9 Hz, 1H, CHbHPh’), 4.63 (d, Ja,b = 11.7 Hz, 1H, CHHaPh), 4.75 (d, Jb,a = 

11.7 Hz, 1H, CHHbPh), 7.34 (m, 10H, Arom-H). 13C NMR (75 MHz, CDCl3): δ 22.3, 

24.2, 35.9, 53.4, 54.3, 70.5, 70.6, 72.7, 127.2, 127.6, 128.0, 128.1, 138.2, 138.3. Anal. 

calcd for C21H24O3

OBn OBn

25a

HO

T
1'

2 '

3' 4' 5' 6'

7 '

: C, 77.75; H, 7.46. Found: C, 77.64; H, 7.49. 

 
Compound 25a. To a solution of epoxyde 24 (0.10 g, 0.31 mmol) in dry DMF (3 mL), 

under nitrogen atmosphere, thymine (0.89 g, 0.71 mmol) was added at room 

temperature. After 15 min, to the resulting mixture DBU (0.11 g, 0.71 mmol) was 

added. The solution was stirred at 120 °C for 7h; after that the solution was cooled at 

room temperature, extracted with CH2Cl2 and washed with NH4Cl. The organic phase 

dried on Na2SO4 was evaporated under vacuum to give a crude residue that purified on 

silica gel (EtOAc/hexane = 1:1) provided the pure 25 (0.12 g, 80% yield). White 

crystals (from EtOAc); 1H NMR (300 MHz, CDCl3): δ 1.45-1.99 (m, 7H, CH3, H-1’, 

H-7’), 2.51 (m, 1H, H-5’), 3.57-3.62 (m, 3H, H-4’,CH2OBn), 3.85-3.95 (m, 1H, H-2’), 

3.99 (bs, 1H, H-3’), 4.49-4.73 (m, 4H, 2xCH2Ph), 6.77 (s, 1H, H-6), 7.36 (m, 10H, 

Arom-H), 8.54 (s, 1H, NH). 3C NMR (75 MHz, CDCl3): δ 12.3, 22.2, 25.9, 29.6, 36.4, 

69.3, 71.0, 71.7, 73.5, 79.8, 110.5, 127.7, 127.9, 128.4, 128.5, 137.2, 137.7, 137.8, 

151.4, 163.2. Anal. calcd for C26H30N2O5

OBn OBn

25b

HO

A
1'

2 '

3' 4' 5' 6'

7'

: C, 69.31; H, 6.71; N, 6.22. Found: C, 69.18; 

H, 6.74; N, 6.25. 

 
Compound 25b. Under the same conditions used to prepare nucleosides 25a, 

compound 25b was obtained in 90% yield. White crystals (from EtOAc); 1H NMR (300 

MHz, CD3OD): δ 1.66-1.70 (m, 2H, H-7’), 1.83-2.11 (m, 4H, CH3, H-1’), 2.52 (m, 1H, 
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H-5’), 3.65-3.78 (m, 2H, CH2OBn), 4.00 (bs, 1H, H-4’), 4.47 (dd, J3’-4’ = 3.1, J3’-2’ = 

10.6, 1H, H-3’), 4.56 (s, 2H, CH2Ph’), 4.58-4.78 (m, 3H, H-2’,CH2Ph’), 7.28-7.45 (m, 

10H, Arom-H), 8.05 (s, 1H, H-8), 8.14 (s, 1H, H-2). 13C NMR (75 MHz, CD3OD): δ 

12.1, 20.9, 22.0, 26.3, 28.7, 29.0, 31.3, 36.9, 56.9, 68.6, 69.4, 71.6, 72.4, 78.8, 118.7, 

126.9, 127.0, 127.2, 127.4, 127.6, 127.7, 138.1, 138.4, 140.5, 149.3, 151.5, 155.4. Anal. 

calcd for C26H29N5O3

OBn OBn

1

BzO

T

: C, 67.95; H, 6.36; N, 15.24. Found: C, 67.82; H, 6.39; N, 15.30. 

 
Compound 1. To a stirring solution of 25a (0.10 g, 0.23 mmol) in dry pyridine (1 mL), 

benzoyl chloride (276 µL) and a catalytic amount of DMAP (10%) were added at room 

temperature. After 4 h the TLC showed the complete formation of final product. The 

solvent was evaporated under vacuum and the crude residue was extracted with EtOAc 

and washed with brine. Purification by chromatography over silica gel (EtOAc/hexane 

= 1:1) gave the pure 1 (98% yield). White crystals (from EtOAc); 1H NMR (300 MHz, 

CDCl3): δ 1.72 (s, 4H, CH3), 1.77-1.80 (m, 1H, H-7’), 1.86-1.90 (m, 2H, H-1’), 2.37 

(bs, 1H, H-5’), 3.66-3.68 (m, 2H, CH2OBn), 4.15 (bs, 1H, H-4’), 4.55-5.58 (m, 4H, 

CH2Ph’), 5.16 (s, 1H, H-2’), 5.62 (dd, J3’-4’ = 3.05, J3’-2’ = 11.2, 1H, H-3’), 6.87 (d, 1H, 

J6-5= 1.15, H-6), 7.28-7.56 (m, 11H, Arom-H), 7.66 (d, J = 8.25, 2H, Arom-H) 7.98 (d, 

J = 8.25, 2H, Arom-H). 13C NMR (75 MHz, CDCl3): δ 11.95, 21.9, 26.4, 38.2, 71.1, 

72.1, 72.3, 73.5, 110.4, 127.2, 127.6, 127.9, 128.1, 128.2, 128.3, 129.1, 129.4, 129.8, 

133.0, 133.1, 137.7, 137.9, 150.8, 163.3, 165.4. Anal. calcd for C33H34N2O6

OBn OBn

2

BzO

ABz

: C, 71.46; 

H, 6.18; N, 5.04. Found: C, 71.58; H, 6.16; N, 5.03. 

 
Compound 2. To a stirring solution of 25b (0.1 g, 0.21 mmol) in dry pyridine (1 mL), 

benzoyl chloride (274 µL) and a catalytic amount of DMAP (10%) was added at room 

temperature. After 3h concentrated ammonia (0.1 mL), was added to afford selective 

N6-monodebenzoylation. After stirring for 1 h at 0 °C the solvent was removed under 

reduced pressure and residue coevaporated three times with toluene. Chromatography of 

crude residue over silica gel (EtOAc) gave the pure nucleoside 2 (95% yield). White 
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crystals (from EtOAc); 1H NMR (300 MHz, CDCl3): δ 1.12-1.43 (m, 2H), 1.44-1.85 

(m, xH) 2.07-2.22 (m, xH), 2.58 (m, 1H, H-5’), 3.64-3.81 (m, xH, H-6’), 4.25 (bs, 1H, 

H-4’), 4.59-4.69 (m, 2H, CH2Ph), 5.24 (dt, J = 4.2, J = 11.6, 1H, H-2’), 5.91 (dd, J3’-4’= 

2.8, J3’2’= 10.6, 1H, H-3’), 7.16-7.25 (m, xH, Arom-H), 7.30-7.57 (m, xH, Arom-H), 

7.79 (d, J = 8.2, 2H, Arom-H), 7.92 (s, 1H, H-8), 8.00 (d, J = 8.2, 2H, Arom-H), 8.78 (s, 

1H, H-2), 9.05 (s, 1H, NH). 13C NMR (75 MHz, CDCl3): δ 12.3, 22.2, 25.9, 29.6, 36.4, 

69.3, 71.0, 71.7, 73.5, 79.8, 110.5, 127.7, 127.9, 128.4, 128.5, 137.2, 137.7, 137.8, 

151.4, 163.2 . Anal. calcd for C40H37N5O5: C, 71.95; H, 5.58; N, 10.49. Found: C, 

71.85; H, 5.60; N, 10.53. 
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