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Introduction 
 

“The Earth is blue. How wonderful. It is amazing.” 
 
This is how Y. A. Gagarin reported to Ground Control during his 
spacewalk around our planet, on April 1961. 
Starting from then, we observe the Earth and we try to understand 
more and more how it is and how it changes. 
To this aim, in the last decades the spatial agencies have planned 
several missions to explore the space and, in particular, to monitor our 
planet. 
Actually, a great amount of data relevant to the Earth surface is 
available today and, of course, much more than the beauty of its colors 
and shapes can be deduced exploiting this information. 
As a matter of fact, remote sensing instruments are the best candidates 
to provide, in a comparatively short time, useful information about 
wide areas of any part in the world. The potentialities implied in these 
data, as usual, lie in the use we make of them; therefore, the 
opportunity to observe a quantity of interest through the remote 
sensing instruments depends on the performances of the technique 
employed for the information mining. 
Nowadays, several private or public institutions, such as the Civil 
Defense, require the knowledge of many ground physical parameters 
i.e., permittivity, ground roughness, soil moisture content, vegetation 
biomass-index, and so on. In particular, the soil moisture content 
represents a key parameter in the hydrological cycle, indeed it 
determines the repartition of the rainfalls into the surface run-off, 
seepage and evapotranspiration. Hence, the knowledge on the space-
temporal behavior of the soil moisture content is a fundamental 
information in several applications as in predicting rivers floods, 
rainfalls and landslides. 
As the deep bond between the soil moisture content and the soil 
permittivity, then it is possible to estimate the former starting from the 
retrieval of the ground dielectric constant. However, this opportunity 
can be exploited on condition that a proper model is used to describe 



 
how the permittivity affects the electromagnetic field scattered from 
the ground and measured by the sensor; moreover, the estimation 
technique should be able to separate the scattering field effects due to 
the permittivity from those owing to the other parameters involved in 
the scattering process. 
Of course, such a model should be as reliable and realistic as possible 
in describing the scattering phenomena, but at the same time not too 
involved, in order to allow the parameters inversion. Unfortunately, 
most of already existing simple methods, like the Small Perturbation 
Method (SPM) or the Physical Optics (PO), do not take into account 
depolarization and cross-polarization effects, so it is necessary to 
attain a new model which provides a good matching with measured 
data, at the same time retaining an acceptable complexity. 
Accordingly, the key goal of this thesis lies in the modeling of the 
electromagnetic scattering from bare soils and its usage to perform the 
ground permittivity, soil moisture content and surface roughness 
retrieval from polarimetric Synthetic Aperture Radar (SAR) data. 
So, in Chapter 1 the operating principles of SAR are presented, in 
order to give an idea of what is the SAR image employed in the 
retrieving procedure and in which way such signal depends on the 
observed scene. By the way, in Chapter 2 the fundamental concepts of 
the polarimetry are outlined, with particular emphasis to the analytical 
tools used to describe the polarimetric scattering and to the classical 
scattering solutions from bare soils. The first innovative contribution 
of this thesis is presented in this section and regards the physical 
meaning of the Kirchhoff solution for the scattering from both 
classical and fractal surfaces. In Chapter 3 some of the principal 
mixing models employed to relate the ground permittivity to the soil 
moisture content are instead shown. 
Chapter 4 is devoted to illustrate the main theoretical contribution 
presented in this thesis, that is the Polarimetric Two-Scale Model 
(PTSM) developed to describe the scattering from a bare soil surface. 
In order to account for de-polarization and cross-polarization 
phenomena observed in real data, a two-scale description of the 
scattering surface is here considered. In particular, the surface is 
assumed to be composed by rough randomly-tilted facets, which give 
rise to a random drift of the local incidence angle and a random 
rotation of the local incidence plane. Unlike other existing approaches, 
the PTSM accounts for both these effects, which come straight from 
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the surface model; moreover, the model allows to express the 
Normalized Radar Cross Sections (NRCS) for the whole surface by 
averaging over the facets slopes the power density relevant to a single 
facet. The prediction on the diffuse field provided by such NRCS 
represents the key concept on which the estimate procedure is 
founded. Accordingly, in Chapter 5 a retrieval algorithm able to return 
retrieval maps from measured co-polar and cross-polar ratio is 
proposed. 
An idea of its performances and the PTSM validation is given by 
applying the retrieval procedure on a wide variety of SAR data 
acquired at different bands and exploiting, when possible, in “situ” 
measurements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 



 
 

Chapter 1 
 

SAR: Operating Principles 
 

 This chapter is intended to recall the basic principles on which a 
Synthetic Aperture Radar (SAR) is founded. 
In particular, here we will focus on the system operating in the 
StripMap mode, for which the observation of the scene is performed 
by not varying the antenna beam direction during the sensor flight. 
The chapter is organized as follows: first section is addressed to 
describe the pulse response of the SAR, while the transfer function of 
the system, useful to perform an efficient simulation and processing of 
SAR raw data, is evaluated in the second section; finally, some 
constraints on system design are discussed in the last section. 
 

1.1 SAR point-spread function 
 

 In order to evaluate the point-spread function, we need a simple 
model to describe how the sensor acquires data as it goes along its 
trajectory of flight. To this aim, let us assume that the sensor moves 
with velocity v and that during its flight it illuminates an area on the 
ground, whose extent depends on the sensor height, as well as on both 
the electrical size and the tilt of the antenna. 
This geometry can be effectively described in a system of cylindrical 
coordinates (see Fig. 1.1), in which the distance r (slant range) 
between the line-of-flight and a scattering point P on the ground, the 
elevation angle  through which the sensor sees the ground-point and 
finally the position x (azimuth) of P along the axis of flight, are 
represented. 
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During the flight, the sensor periodically transmits microwave pulses 
that hit the target and return in the backscattering direction after the 
round-trip time. 
A frequency modulated pulse is usually employed to get a better 
geometric range resolution r, with respect to the one obtained 
considering unmodulated pulses. 
 

Figure 1.1: geometry of SAR acquisition. 
 
Indeed, for unmodulated pulses, it results: 
 

2

c
r    ,                  (1.1) 

 
where c the speed of light,  is the pulse duration and factor 2 
accounts for the round-trip propagation [1]. 
Of course, from (1.1), an improvement in resolution requires a 
reduction of the pulse width  and high peak power for prescribed 
mean power operation. 
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Therefore, in order to overcome this limitation, the pulse transmitted 
by a SAR is usually a chirp, whose complex envelope can be 
expressed as: 
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where tn represents the transmission time and  is the modulation 
factor. 
It can be shown that, after the pulse compression processing, the range 
resolution of a chirp decreases with its duration, as it is equal to 
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with Tchirp and Bchirp representing, respectively, the significant duration 
of the chirp auto-correlation function and the chirp bandwidth [2]. 
The range resolution gain got transmitting a chirp instead of an 
unmodulated pulse is then range=(c)/(). 
 

 
 

Figure 1.2: chirp waveform for = 0.4 s and =103 s-2. 
 
So, assuming that the transmitted pulse is a chirp, the signal 
backscattered by the target and received onboard, after the heterodyne, 
is given by: 
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where x’ is the sensor position,   22' rxxR  , =2f is the 

angular frequency with f the carrier frequency ( is the carrier 
wavelength), W is a function representing the antenna radiation pattern 
and X is the footprint, i.e. the synthetic antenna dimension. 
As we are interested in geometric resolutions, at this stage it is 
convenient to express the received signal in function of space 
coordinates, so, after the substitution crtt n '2 , (1.4) can be 

expressed as: 
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that represents the SAR point-spread function, or pulse response. 
 

1.2 SAR transfer function 
 

 Once the SAR pulse response is known, it is possible to express 
the signal pertinent to an extended scene by superimposing all the 
elementary returns. Accordingly, the SAR raw signal is 
 
       rrxxfrxdxdrrxh Rx ,',',','    ,                (1.6) 

 
where the weighting function (x,r) is the reflectivity pattern, which 
accounts for both the electromagnetic properties and the acquisition 
geometry of each of the scattering points in the sensed scene. In 
particular, (x,r) is related to the Normalized Radar Cross Section [3], 
that will be defined in next chapter. 
 
Of course, the ultimate goal of SAR remote sensing is to get the best 
estimate of the reflectivity function from the raw data (SAR focusing). 
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As shown afterwards, a possible and efficient way to meet this task is 
to process SAR raw data in the frequency domain. 
Starting from (1.5) and (1.6), let’s define       rjrxrx 4exp,,~  , 

r=R-r and 
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whence (1.6) becomes 
 

       rrrxxgrxdxdrrxh ,',',~','    ,              (1.8) 

 
from which it is possible to express the Fourier Transform of the raw 
signal:  
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where G(.) is the space-variant (i.e., range-variant) SAR Transfer 
Function: 
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whose asymptotic evaluation can be computed using the stationary 
phase method, due to the presence of the fast varying phase term [1]. 
Accordingly, by letting b=2/c2, 
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equation (1.9) can be rewritten as follows: 
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The derivatives of phase terms in (1.12) vanishes in correspondence of 
the stationary points uS and wS equal to: 
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which allows to attain in closed form the SAR transfer function as 
follows 
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At this stage, by setting a=(2/(r0, with r0 slant range at the center 
of the footprint, and reasonably assuming that the antenna pattern is 
substantially constant within the footprint (i.e., substantially 
independent on the range coordinate), the transfer function can be 
expressed as: 
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where the only space-variance is due to the following phase term  
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Of course, it is possible to consider the r-invariant transfer function at 
the center of the scene G0()=G(r), through which it is possible 
to express the raw signal in a very effective way: 
 
           rjrxjrxdxdrGH ,,expexp,~,, 0      ,       (1.18) 
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The only space-variant phase term K in (1.18) exhibits a linear 
dependence on the range coordinate and so it can be included in the 
Fourier kernel in (1.18). This leads to the expression on which is 
founded the efficient focusing 
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being   0,,,

~    the Fourier Transform of  ~  computed on 
the grid   0,,,    instead of the grid   , . 
From (1.20) it follows that it is possible to account for the system 
space-variance (and then perform an efficient processing in the 
frequency domain) simply balancing the above mentioned grid 
deformation, i.e. inserting an interpolation-resampling block in the 
focus processor (Figure 1.3). 
Notice that the output of the "interpolation and sampling" block is 
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which can be useful to get an idea of the low-pass-filtering imposed by the 
SAR on the reflectivity. Accordingly, the estimate of the reflectivity function 
is the inverse Fourier Transform of (1.21 ), i.e. the convolution 
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whence it is possible to express the astigmatism degree of the system (i.e., 
the energy amount spread by a point on its neighbors in the recovered 
signal). 
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Figure 1.3: block scheme of the efficient SAR focusing. 
 
A quantitative measure of this spreading can be obtained considering 
   rrxxrx  ','','~   (where  is the Dirac pulse), and so the focused 

signal is: 
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As it appears from (1.23), the only ground scattering-point spreads its 
energy over a wider region in the reconstructed signal, whose width is 
determined by the SAR spatial resolution (i.e., the 3 dB width of the 
sinc function): 
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where L is the antenna dimension in the azimuth direction and is 
related to the footprint by the relation X@r0/L. 
As already mentioned in Paragraph 1, first of (1.24) is the range 
resolution attainable transmitting a chirp waveform instead of an 
unmodulated pulse. 
Concerning the second of (1.24), it is the azimuth resolution for the 
considered SAR system. Its value, if compared to what obtainable 
using a RAR (Real Aperture Radar, i.e., a radar not performing the 
synthetic antenna) yield to an azimuth resolution gain equal to 
azimuth=(4r0)/(L2), which explains the reason to employ SAR 
systems instead of RAR ones. 
 

1.3 Constraints on the system design 
 

 Starting from (1.23), it is possible to compute the spatial 
bandwidths for the considered SAR systems: 
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Of course, the system transmitting rate (i.e., the pulse-repetition 
frequency prf) should be larger than the azimuth temporal bandwidth, 
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that is prf>2|v|/L, and this provides a practical lower-bound on the 
azimuth resolution in order to avoid a huge computational charge [4]. 
Moreover, sensors usually employ a circulator to switch from the 
transmission period to the reception one so, to avoid that received 
pulses reach the platform during the transmission stage, the prf cannot 
be chosen too large. In particular, the time required to receive the 
signal pertinent to the whole scene is Tr@+2Ssin0/c@ Ssin0/c, 
where S is the ground-range coverage (swath), which leads to a further 
constraint on the pulse-repetition frequency prf<1/Tr , that is a lower 
bound on the antenna size in the across-track direction 
D>2(prf/c)r0tan0. 
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Chapter 2 
 

Classical Models for the Polarimetric 
Scattering 
 

 Since the ultimate goal of SAR systems is to get the best estimate 
of the reflectivity function (x,r), then describing how the properties 
of the sensed scene affect the diffuse field is a fundamental step to 
correctly interpret information provided by SAR data. 
By the way, as mentioned in previous chapter, the reflectivity function 
can be linked to the Normalized Radar Cross Section (NRCS); this 
quantity is deducible from the output of a radar system and its 
expression depends on the second order statistics of the backscattered 
field measured by the sensor. Accordingly, this chapter is addressed to 
recall some basilar concepts of polarimetric scattering from natural 
surfaces and it is organized as follows: first paragraph is devoted to 
outline the mathematical representation of the polarimetric scattering, 
quoting the rigorous definition of scattering coefficients and NRCS; in 
second section the principal results provided by classical – analytical – 
models for the scattering evaluation are instead reported, together with 
a new interpretation of the Kirchhoff scattering integral. 
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2.1 Polarimetric concepts for the scattering 
problem 

 

2.1.1 Polarization state of a plane wave 
 The space-time behavior of electromagnetic waves is ruled by the 
Maxwell equations, whose solution, fixed the sources and the 
boundary conditions, allows to completely express the 
electromagnetic field propagating in the considered space. 
In particular, among all the possible solutions of the wave equation, 
the simplest one is relevant to a linear, source-free, homogeneous, 
isotropic and spatially nondispersive medium, referred as plane wave 
solution. 
According to these assumptions, the electric field of a plane wave can 
be represented in the frequency domain as: 
 
   rkjErE  exp0   ,                (2.1) 

 
where E0 is the constant complex amplitude vector, r is the position 
vector and k is the wave vector, that defines the direction of 

propagation and satisfies the relations k.k=2, k·E0=0, with  being 
the angular frequency of the monochromatic wave, and  and  the 
medium electric permittivity and magnetic permeability, respectively.  
Although the plane wave is the simplest solution of the wave equation, 
it permits to introduce the concept of the polarization state of an 
electromagnetic wave, which is intrinsically linked to its vectorial 
nature. Hence, introducing an arbitrary orthogonal coordinate system 
(h,v,k), the field vector can be decomposed in two complex orthogonal 
components 
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0    ,                   (2.2) 

 
leading to the following time representation of the electric field: 
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wherein h and v are, respectively, the phase terms of Eh and Ev. 
Equation (2.3) defines, for any fixed t, the spatial evolution of both the 

components of the electric field along the propagation direction k̂  
whose combination generally results in an helicoidal trajectory (Figs. 
2.1 and 2.2). 
Conversely, for any fixed r, eh and ev represent the parametric 
components of an ellipse lying on the equi-phase plane. This means 
that the tip of the electric field vector moves in time on the equi-phase 
plane along the polarization ellipse, whose shape defines the 
polarization state of the monochromatic wave (Figure 2.3). 
 

 
Figure 2.1: spatial evolution of the wave components at t=t0. 
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Figure 2.2: spatial evolution of a monochromatic plane wave at t=t0. 

 
 

Figure 2.3: polarization ellipse at r=r0. 
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The polarization state is completely described by giving both the 
magnitude and the phase of the two components Eh and Ev or, 
equivalently, by the orientation angle  and the ellipticity angle , 
defined as 
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The orientation angle expresses the inclination of the ellipse with 
respect to the v-axis. The ellipticity angle, instead, describes the shape 
of the ellipse: at =0 the ellipse degenerates to a straight line (linear 
polarization state), while at =/4 the ellipse becomes a circle 
(circular polarization state). The ellipticity angle  also defines the 
sense of rotation of the electric field vector: indeed, if  is negative 
then the rotation is right-handed, while a clockwise rotation is due to a 
positive value of . 
Notice that, even though the polarization state is completely defined 
by the orientation and ellipticity angle, a whole wave description 
needs the knowledge of the ellipse amplitude and the initial absolute 
phase reference, too. In particular, the ellipse amplitude A0 is defined 
as the magnitude of the E vector, i.e. 
 

22

00 vh EEEA    .                  (2.5) 

 
In addition, it is worthwhile highlighting that the polarization state is 
invariant with respect to the coordinate system used to describe it. 
 

2.1.2 Stokes parameters and the Poincaré sphere 
 In the previous section, the representation of the polarization state 
of a plane wave has been presented in function of only two real 
parameters, i.e. the orientation and the ellipticity angles. Even so, the 
actual capability to fix these quantities depends on the knowledge 
about the parameters of the complex electric field vector. 
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Consequently, if the goal of a given system is to measure the 
polarization state of an electromagnetic wave, then this system must 
record both the amplitude and the phase of the wave. 
The availability of coherent systems able to measure the amplitude 
and phase of the incoming waves is relatively recent. In the past, only 
non-coherent systems were available. These systems are only able to 
measure the power of an incoming wave. Consequently, it was 
necessary to characterize the polarization of a wave only by power 
measurements. This characterization is carried out by the so-called 
Stokes vector. 
Accordingly, starting from the electric field vector, it is possible to 
define the Stokes parameters as  
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wherein † denotes the transposed conjugate while * denotes the 
conjugate,  
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is the Pauli matrices basis set and finally 
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represents the definition of the Stokes vector [2]. 
It is evident that only three of the Stokes parameters are independent, 
since they are related by the identity 
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Moreover, from (2.9) it results that g0 is proportional to the total 
density power of the wave, while the other parameters are related to 
the orientation angle and to the ellipticity angle by the following 
relation 
 
   TT Aggg  2sin,2sin2cos,2cos2cos,, 0321     ,      (2.10) 

 
which indicates that g0, g1 and g3 may be regarded as the Cartesian 
coordinates of a point P on a sphere of radius g0. 
 

 
 

Figure 2.4: the Poincaré sphere and the polarization ellipse. 
 
Thus, every possible polarization state of a plane monochromatic 
wave (of a fixed intensity g0) corresponds to a point on this sphere and 
vice versa (see Fig. 2.4). This sphere is usually referred as the 
Poincaré sphere. 
Since  is positive or negative according as the polarization is right-
handed or left-handed, it follows from (2.10) that counterclockwise 
polarization states are represented by points on the Poincaré sphere 
which lie above the equatorial plane (g1, g2 – plane), while clockwise 
polarization states by points which lie below this plane. Further, for 
linear polarization states g3=0, and so these states are represented by 
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points in the equatorial plane. Concerning the circular polarization 
states, they are characterized by g1=g2=0, and so they are represented 
by the north-pole (right-handed) or the south-pole (left-handed). 
 

2.1.3 Partially polarized waves 
 As stated up to here, the tip of the electric field vector of a 
monochromatic wave moves in time periodically along an exact 
trajectory defined by the polarization ellipse, which may, of course, 
reduce in special cases to a circle or straight line. 
Therefore, in this case, the right position of the moving tip can be 
provided if the polarization state is known and so the wave is said 
completely polarized. 
A second important class of waves are the so-called quasi 
monochromatic or partially polarized waves. Such waves can be 
considered as wave packets of multiple frequencies of a bandwidth 
centered at the mean wave frequency. In contrast to fully polarized 
waves, for which both the amplitude and the phase of the electric field 
are independent of time and space, partially polarized waves are 
characterized by temporally and/or spatially varying electric field 
amplitude, phase and polarization. Thus, the electric field vector no 
longer describes a well defined ellipse but one that varies in time. 
In this case, polarization can be defined only in the sense of statistical 
averaging over time. To this aim, it is useful to introduce the concept 
coherence. Loosely speaking, the coherence of the field is its ability to 
maintain stable relationships linking amplitude and polarization with 
other reference fields as time elapses [1]; its quantitative measure can 
be provided by the coherency matrix 
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which is an hermitian positive semi-definite matrix, whose entries are 
proportional to the second order moments of the components of the 
electric field. 
The diagonal elements of the coherency matrix corresponds to the 
intensities of each of them, so that the trace of C  equals the total 
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intensity of the wave. The off-diagonal elements contain the cross-
correlation between the components of the electric field vector and 
express the amount of correlated structure in the field. In absence of 
any correlation between Eh and Ev the matrix becomes diagonal with 
equal diagonal elements. In this case, the wave does not contain any 
polarized structure and is called totally unpolarized. Such a wave has 
only one degree of freedom, namely its amplitude. On the opposite, if 
the determinant of C   is equal to zero, the correlation between Eh and 

Ev is maximum, and the wave is completely polarized with three 
degrees of freedom (as in the case of monochromatic fields). Between 
these two limiting cases there lies the general one of a partially 
polarized wave (with four degrees of freedom), for which there is a 
certain amount of correlation between the h and v components. 
Accordingly, a synthetic measure of this amount is given by  
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which represents the degree of coherence of the wave and ranges from 
0 (totally unpolarized waves) to 1 (completely polarized waves). 
Moreover, let’s consider the identity 
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whence it is possible (being the right-hand side of (2.13) always 
nonnegative) to derive the relationship existing between the Stokes 
parameters in the most general case, i.e.  
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Previous inequality states that the total power of the wave is always 
greater than or equal to the intensity associated to its “polarized 
component” and that a partially polarized wave is represented by a 
point P lying within the Poincaré sphere (by the origin, if the wave is 
totally unpolarized, see Fig. 2.5). 
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Besides, from (2.14) it is straightforward to define the degree of 
polarization of a wave as the ratio: 
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related to the degree of coherence by the following  
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Figure 2.5: representation on the Poincaré sphere at the variance of the 
degree of polarization. 
 

2.1.4 The polarimetric scattering problem 
 In previous sections, the main properties deriving from the 
vectorial nature of the electromagnetic field have been discussed. 
At this stage, let us consider a wave that, during its travel along the 
direction ik̂ , encounters a target and interacts with it (Figure 2.6). 
As a consequence of this interaction, part of the energy carried by the 
incident wave is absorbed by the target itself, whereas the rest is 
reradiated as a new electromagnetic wave towards all directions; let us 
focalize our attention on one scattering direction Sk̂ . Of course, the 
properties of the scattered wave depend on the target and can be 
different from those of the incident one. Then, the question which 
rises at this point is to relate the scattered wave to the target: indeed, 
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once this relationship is supplied, the diffuse field could be employed 
to characterize or identify the target. 
 

 
 

Figure 2.6: interaction between the wave and a target. 
 
The most fundamental form to describe the interaction of an 
electromagnetic wave with a given target is the radar equation. This 
equation establishes the relation between the power which the target 
intercepts from the incident electromagnetic wave Ei and the power 
reradiated by the same target in the form of the scattered wave ES. 
The radar equation allows to express the power detected Pr at the 
receiving system as [1, 3-8] 
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where the first factor represents the amount of the transmitted power 
density impinging on the target (being Pt the transmitted power, Gt the 
transmitting antenna gain and Rt the distance between the transmitter 
and the target), the last factor represents the capability of the receiving 
system to catch power (being Ar the effective area of the receiver and 
Rr the distance between the target and receiver), while  constitutes 
the target descriptor in such a power balance. As  has units of an 
area, it represents the effective area which characterizes the target, 
from which its name, Radar Cross Sections (RCS), follows, 
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An important fact which arises at this point is the way the target 
reradiates the intercepted power in a given direction of the space. 
In order to be independent of this property, the Radar Cross Section 
shall be referenced to and idealized isotropic scatterer. Thus, the RCS 
of an object is the cross section of an equivalent isotropic scatterer that 
generates the same scattered power density as the object in the 
observed direction 
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where S is the complex scattering amplitude of the object. The final 
value of  is a function of a large number of parameters, among which 
the wave frequency, the wave polarization, both the incident and 
scattering directions, the geometry of the target and its dielectric 
properties. 
It is worthwhile underlining that radar equation in (2.17) is valid for 
those cases in which the target of interest is smaller than the radar 
coverage, that is, a point target. For those targets presenting an extent 
larger than the radar coverage, a different model to represent the target 
is needed. Accordingly, in these situations, a target is represented as 
an infinite collection of statistically identical point targets (Fig. 2.7). 
 

 
 

Figure 2.7: interaction between the wave and an extended target. 
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As a consequence, the resulting scattered field is due to the coherent 
summation of the scattered waves from every one of the independent 
targets which model the distributed scatterer. In order to express the 
scattering properties of the extended target independently of its extent, 
we consider every elementary target as being described by a 
differential Radar Cross Section d. Therefore, to separate the effects 
of the target extent, it useful to consider d as the product of the 
averaged RCS per unit area 0 and the differential area ds occupied by 
the target. 
Then, the differential power received by the systems due to an 
elementary scatterer can be written as 
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from which it is possible to obtain the total power received from the 
whole target integrating over the illuminated area A0 
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Due the nature of the problem, (2.20) is to be intended in a statistical 
sense, according to the definition of the Normalized Radar Cross 
Section (NRCS) [1, 3-8]: 
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As mentioned before, NRCS depends, among other things, on the 
polarization of both the incident and diffuse waves. 
In order to express explicitly this dependence NRCS is usually defined 
as 
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being p and q the polarizations of the incident and scattered field, 
respectively, and can each stand for h or v, while Spq is the complex 
polarimetric scattering coefficient of the target. 
These coefficients allow to express the scattering process by relating 
the diffuse field to the incident one in a very simple way. Indeed, by 
considering the polarimetric scattering matrix S , the following 

relation holds 
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from which it is possible to implicitly define the scattering coefficients 
as  
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The diagonals elements of the scattering matrix receive the name of 
co-polar terms, since they relate the same polarization for the incident 
and the scattered fields. Nevertheless, the off-diagonal elements are 
known as cross-polar terms as they relate orthogonal polarization 
states. Finally, the common factor in (2.23) takes into account the 
propagation effects both in amplitude and phase. It must be taken into 
account that the relation expressed by (2.23) is only valid for the far 
field zone, where the planar wave assumption is considered for the 
incident and the scattered fields. 
The polarimetric scattering matrix has, in the most general case and 
ignoring a common phase term, 7 real degrees of freedom, while in 
the backscattering case ( iS kk ˆˆ  ), for reciprocal targets, result Shv=Svh 
and so S  can be parameterized by only 5 real degrees of freedom. 
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Concerning the total scattered power, it is known as SPAN and it is 
defined as 
 

2222
SPAN vvvhhvhh SSSS    ;             (2.25) 

 
unlike the scattering matrix, it can be proved that the SPAN does not 
depend on the basis employed to represent the polarization state of the 
wave. 
 

2.1.5 Polarimetric decompositions 
 The Normalized Radar Cross Sections as well as the scattering 
coefficients, depend on both the geometrical and electrical parameters 
of they observed target. This dependence, for a given target, may 
change in function of the polarimetric channel and so, in principle, it 
is possible to extract some features about the scatterer performing a 
polarimetric analysis [6-8]. 
To this purpose, the polarimetric decomposition techniques can be 
used: they allow reorganizing the information associated to the 
different polarimetric channels in order to have a simpler 
interpretation of the scattering mechanisms. 
The key concept of target decompositions may be summarized by the 
following theorem [9]: 
 
“A general distributed target may be decomposed into the sum of 
three single targets”; 
 
this means that, whatever the considered distributed target is, then it is 
possible to associate to it three simple scattering mechanisms (relevant 
to the three single targets). Accordingly, decomposition techniques 
allow us to extract the basic features of a general distributed target in 
order to facilitate the interpretation of its electromagnetic response. 
There are several techniques to decompose a target [10], in both the 
coherent and incoherent way, depending on wheter they are performed 
on the scattering matrix or on the coherence or covariance scattering 
matrices. 
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The objective of the coherent decompositions is to express the 
measured scattering matrix by the radar as a the combination of the 
scattering responses of simpler objects, that is 
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In (2.26), the symbol iS  stands for the response of every one the 

simpler objects, also known as canonical objects, whereas wi indicates 
the weight of iS  in the combination leading to the measured 

scattering matrix.  
In order to simplify the understanding of (2.26), it is desirable that the 
matrices iS  are independent to avoid that a particular scattering 

behavior to be present in more than one scattering matrix relevant to a 
canonical object. Often the most restrictive property of orthogonality 
is imposed. 
In real situations, the measured scattering matrix by the radar 
corresponds to a distributed target. Only in a few occasions, this 
matrix will correspond to a simpler or canonical object, which a good 
example is, for instance, the trihedral employed to calibrate SAR 
imagery. An example of coherent decomposition can be obtained 
expressing the measured scattering matrix though the Pauli basis set of 
(2.7), i.e. the Pauli decomposition. 
Assuming to be in the backscattering case, the reciprocity applies, and 
so the Pauli basis reduces to the set {0,1,2}. 
Therefore, the measured scattering matrix can be expressed as follows  
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wherein the weights are defined as the components of the Pauli 
scattering vector 
 

   Thvvvhhvvhh

TPPPP SSSSSssss 2,,
2

1
,, 321    .              (2.28) 



 

 

Classical Models for the Polarimetric Scattering                                                       39 

The interpretation of the Pauli decomposition is founded on the 
physical reading associated to each of the matrices 0,1,and 2. 
In particular 0 is representative of a single- or odd-bounce scattering 
mechanism (i.e., flat surfaces and thriedrals), and so 2

1
Ps  is the power 

provided by this mechanism to the overall scattering process; 
similarly, 1 represents a double- or even-bounce scattering 
mechanism (i.e., dihedrals), so that 2

2
Ps  is the power scattered by this 

type of target; finally, 2 corresponds to the scattering of a 45°-
oriented diplane. As it can be observed from the expression of 2, it is 
representative of a target which returns a wave whose polarization is 
orthogonal to that of the incident one (i.e., volume scattering due to 
the forestry canopy), and so 2

3
Ps  is the amount of power due to the 

volume-like component in the considered distributed target. 
Moreover, from (2.28) it is easy to show that the SPAN of the 
measured scattering matrix is 
 

2

3

2

2

2

1SPAN PPP sss    .                (2.29) 

 
An example of the information deducible by means of this analysis is 
shown in Figure 2.8-(c), where the Pauli decomposition is carried out 
on polarimetric SAR data acquired at S-band (f=3.2 GHz) over the 
Pembroke Dock area (UK) by the Astrium airborne demonstrator (see 
Figure 2.8, where both the optical image (a) and the HV channel (b) 
are depicted).  
In particular, the RGB combination of the power pertinent to the three 
fundamental scattering mechanisms, normalized by the SPAN, i.e. 
( BlueSPAN  Green,SPAN  Red,SPAN

2

2

2

1

2

3  PPP sss ), is shown in 

Figure 2.8-(c). 
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                   (a)                                     (b)                                     (c)                   
Figure 2.8: optical view (a), SAR image (HV channel) (b) and RGB-
coded Pauli decomposition (c) for the Pembroke Dock area. 
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Accordingly, the soft classification performed by the Pauli 
decomposition is evident. Indeed, even though a greenish overall 
aspect can be observed, due to the clear prevalence of sea and almost-
flat surfaces in the image, all the built-up areas are correctly 
represented in shades of blue, as the double-bounce is there the 
dominant scattering mechanism (see, for instance, the boats or the 
cylindrical tanks), while a reddish color is associated to the vegetated 
areas (see, for instance, the tree-lined shores at the center of the 
image), where the canopy scattering contribution rules. 
 
Concerning the incoherent decompositions, as mentioned, they are 
performed on matrices containing the second order moments of the 
scattered field, including the coherence matrix or the covariance 
matrix, and hence they are more suitable (with respect to coherent 
ones) to extract information from very chaotic targets [8]. Again, the 
goal of these decompositions is to separate such matrices in order to 
obtain the combination of second order descriptors corresponding to 
simpler targets. 
To give an idea of this kind of polarimetric analysis, here the 
Eigenvectors-Eigenvalues based decomposition [10] is considered. 
To this aim, notice that the coherency matrix for the backscattered 
field can be expressed in terms of the Pauli vector 
 

†PP

S
ssT    ;                 (2.30) 

 
the rank of such a dyadic product is usually raised from 1 to 3 (in the 
most general case) by the average operator, but coherency matrix is 
always hermitian and nonnegative. 
Accordingly, 

S
T  is always diagonalizable, that is  

 
1 UUT

S
  ,                 (2.31) 

 
wherein U  is the unitary matrix containing the orthonormal 

eigenvectors u1, u2, and u3, respectively relevant to the eigenvalues 1, 
2 and 3 (1≥2≥3≥0) belonging to the diagonal matrix  . 



 

42                            Polarimetric concepts for the scattering problem 

As regards the eigenvectors, they have 5 degrees of freedom and so 
they can be expressed as 
 

 Tj
ii

j
ii

j
ii

iii eeeu 321 sinsin,sincos,cos     ;            (2.32) 

 
moreover, due to their orthogonality, the coherency matrix can be 
expressed as 
 


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3

1

3

1

†

i
ii

i
iiiS

TuuT    ,               (2.33) 

 
being 

i
T  the rank 1 coherency matrix describing the scattering from a 

single target. 
An interpretation of the single scattering mechanisms described by 
each of the rank 1 matrices in (2.33), can be carried out comparing the 
general expression of the eigenvectors in (2.32) with the (normalized) 
Pauli scattering vector defined in (2.28). 
Indeed, independently of the phase terms 1,2, and 3, which 
account just for the phase relations between the components of sP, 
every single scattering mechanism can be described at the variance of 
 and [10]. As a matter of fact, the angle  just represents a physical 
rotation of the scatterers around the line of sight (LOS) of the sensor, 
while the angle  represents an internal degree of freedom of the 
target, i.e.  is associated to the type of scattering mechanism. 
Accordingly, assuming =0°, 
- if =0° then ui=(1,0,0) represents the scattering vector of an 

isotropic surface (i.e., HH=VV); 
- if =45° then ui=1/ 2 (1,1,0) and so it corresponds to the 

scattering vector of an horizontally oriented dipole, i.e. volume 
scattering; 

- if =90° then ui=(0,1,0) and so it is the scattering vector 
representative of a dihedral (i.e., HH=-VV). 

Generally, independently of , the range of possible variations in 
scattering mechanism can be illustrated by the variation of  in the 
range (0°, 90°), as depicted in Fig. 2.9. 
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As a consequence, (2.33) represents the incoherent summations of 
three single scattering mechanisms, whose physical reading depends 
on the value of the three scattering angles i. Each of the single 
scattering mechanism is weighted by its eigenvalue i , which 
corresponds to a quote of the total power 
 

321SPAN     .                 (2.34) 

 
Anyway, in order to have a deeper understanding of the overall 
scattering process, secondary parameters can be defined as functions 
of the eigenvectors and the eigenvalues of the coherency matrix. 
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Figure 2.9: schematic representation of -angle interpretation. 

 
Accordingly, by setting  321   iip , the polarimetric entropy 

H is defined as 
 





3

1
3log

i
ii ppH                                (2.35) 

 
and represents the degree of confusion associated to the scattering 
process (the larger is the entropy, the greater is the uncertainty 
associated to the scattering mechanism), while the mean scattering 
angle is defined as 
 


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
3

1i
iiM p   ,                 (2.36) 
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which, in agreement with figure 2.9, is representative of the dominant 
scattering mechanism. 
Therefore, a hard classification can be performed using these 
secondary parameters. In particular, it is possible to identify some 
meaningful regions on the H/ plane, corresponding to as many 
scattering mechanisms [11]. 
Accordingly, depending on both H and  values, the following 9 
regions can be considered (see the bottom of Fig. 2.11-(b)): 
 
 Z9={(H , ) œ[0,0.5)×[0°,42.5°)}-Low Entropy Surface Scattering: 

physical surfaces such as water at L and P-Bands, sea-ice at L-
Band, as well as very smooth land surfaces, all fall into this 
category; 

 Z8={(H , ) œ[0,0.5)×[42.5°,47.5°)}-Low Entropy Dipole 
Scattering: an isolated dipole scatterer would appear here, as would 
scattering from vegetation with strongly correlated orientation of 
anisotropic scattering elements; 

 Z7={(H , ) œ[0,0.5)×[47.5°,90°]}-Low Entropy Multiple 
Scattering: this zone corresponds to low entropy double- or even-
bounce scattering events, such as provided by isolated dielectric 
and metallic dihedral scatterers; 

 Z6={(H , ) œ[0.5,0.9)×[0°,40°)}-Medium Entropy Surface 
Scattering: this zone describes the increase in entropy due to 
changes in surface roughness and due to canopy propagation 
effects; 

 Z5={(H , ) œ[0.5,0.9)×[40°,50°)}-Medium Entropy Canopy 
Scattering: moderate entropy but with a dominant dipole type 
scattering mechanism. The increased entropy is due to a central 
statistical distribution of orientation angle. Such a zone would 
include scattering from vegetated surfaces with anisotropic 
scatterers and moderate correlation of scatterer orientations; 

 Z4={(H , ) œ[0.5,0.9)×[50°,90°]}-Medium Entropy Multiple 
Scattering: this zone accounts for dihedral scattering with moderate 
entropy. This occurs for example in forestry applications, where 
double bounce mechanisms occur at lower bands following 
propagation through a canopy. Canopy tends to increase the 
entropy of the scattering process. A second important process in 
this category is urban areas; 
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 Z3={(H , ) œ[0.9,1]×[0°,40°)}-High Entropy Surface Scattering: 
this class is not part of the feasible region in space i.e., it is not 
possible to distinguish surface scattering with entropy .This is a 
direct consequence of our increasing inability to classify scattering 
types as entropy increases; 

 Z2={(H , ) œ[0.9,1]×[40°,55°)}-High Entropy Vegetation 
Scattering: scattering from forest canopies lies in this region, as 
does the scattering from some types of vegetated surfaces with 
random highly anisotropic scattering elements (no polarization 
dependence is observed in this class); 

 Z1={(H , ) œ[0.9,1]×[55°,90°]}-High Entropy Vegetation 
Scattering: in this region it is still possible to distinguish double-
bounce mechanisms in a high entropy environment. Again such 
mechanisms can be observed in forestry applications or in 
scattering from vegetation which has a well developed branch and 
crown structure. 
 

It is worthwhile highlighting that these regions are not equally 
populated; as a matter of facts, real targets lie within a theoretical 
bound (the continuous line at the top of Fig. 2.11(a)) representing the 
minimum and maximum allowable value of  as a function of the 
entropy. 
As done in the case of the Pauli decomposition, the H/ hard 
classification has been applied on the polarimetric SAR data relevant 
to Pembroke Dock. 
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                                (a)                                                     (b) 
Figure 2.10: mean scattering angle (a) and polarimetric entropy (b) for 
the Pembroke Dock area. 
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                            (a)                                                     (b)                          
Figure 2.11- (a): H/ classification for the Pembroke Dock area; (b): 
image pixels distribution (on top) on Z1-Z9 regions (on bottom). 
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Hence, in Figure 2.10 the mean scattering angle (a) and the 
polarimetric entropy for the considered zone (b) are represented, while 
in Figure 2.11-(a) the H/ hard classification according to the color 
code represented at bottom of Fig. 2.11-(b) is depicted, together with 
the image pixel distribution on the H/ plane (at the top of the Fig. 
2.11-(b)). 
Unlike the soft classification provided by the Pauli decomposition, 
here only one of the nine colors is associated to every pixel, 
depending on the specific region on the H/ in which the pixel lies. 
In this case, the surface scattering mechanism is dominant just in the 
sea region of the image, while most of the vegetated fields belong to 
the medium (Z5) or high entropy canopy (Z2) scattering regions. As 
for the Pauli decomposition, double-bounce is the dominant scattering 
mechanism in the urban areas, so that they are correctly detected as 
points of Z7, Z4 or Z1 regions. 
 

2.2 Classical solutions for the scattering from 
natural surfaces 

 
 This section is intended to recall some well-established solutions 
for the electromagnetic scattering from natural surfaces. 
In particular, here is considered the scattering from natural surfaces 
modeled through fractal processes. 
As a matter of fact, natural surfaces exhibit statistical scale invariance 
properties that are not met by classical surface models. Of course, a 
better surface description can be obtained by using models based on 
fractal concepts [12, 13].Accordingly, a stochastic process z(x,y) 
describes a fBm (fractional Brownian motion) surface if, for every x, 
y, x', y', it satisfies the following relation: 
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being 2222 )()( yyxxyx   , Ht the Hurst coefficient, and s 

the incremental standard deviation, measured in tH1m . 
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It can be demonstrated [12, 13] that a process satisfying (2.37) exists 
with probability 1 if 0< Ht <1, that it is statistically self-affine, and 
that an fBm sample surface has a fractal dimension D=3 Ht. It must 
be noted that the fBm process is defined by means of two fractal 
parameters and is non-stationary [13, 14]; however, according to 
(2.37), its increments over any fixed horizontal distance  are 
stationary isotropic zero mean Gaussian processes, with variance 
equal to tHs 22 . Furthermore, it can be verified by using (2.37) that the 
slope of chords joining points on the surface at fixed distance  is a 
Gaussian random variable with a root mean square (rms) value equal 
to tHs 1 . 
An example of fBm surface is depicted in Figure 2.12. 
 

 
Figure 2.12: fBm surface (Ht=0.9, s=0.7 m0.1). 

 
Direct use of fBm definition makes it possible to obtain closed form 
expressions of the expected scattered power density computed via 
both the Kirchhoff Approach (KA) and the Small Perturbation Method 
(SPM) [14]. Accordingly, main results regarding these two solutions 
for the scattering from fBm surfaces are recalled, together with a new 
interpretation of the Kirchhoff scattering integral. 
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2.2.1 KA solution for the scattered power density 
 Let us consider a source illuminating a rough surface that 
separates air (or vacuum) from a homogeneous medium with complex 
relative permittivity r (see Fig. 2.13). If the source is in far zone with 

respect to the illuminated surface area, then the incident field is a 
locally plane wave and, assuming linear polarization, its electric field 
in a generic point r=(x,y,z(x,y)) of the scattering surface is 
 

  expˆ)( rkjEprE ip
i    ,               (2.38) 

 
wherein the unit vector p̂  describes the polarization of the field: if p̂  
is orthogonal to the plane of incidence we have horizontal polarization 
( ihp ˆˆ  ), whereas the polarization is vertical ( ivp ˆˆ  ) if p̂  lies in the 
plane of incidence and is orthogonal to the incident wave propagation 
vector, ki=k(sini,0,-cosi) where k is the wavenumber. Similar 
definitions apply for the scattered polarization vector q̂  (referred to as 

Sĥ  or 
Sv̂  in the case of horizontal and vertical polarization, 

respectively), where reference is made to the scattering plane. 
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Figure 2.13: scattering rough surface and reference parameters. 
 
By using the Kirchhoff Approach and the small-slope approximation 
the generic component of the scattered field in the Fraunhofer region 
is expressed by [3]: 
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where kS is the propagation vector of the scattered wave and u=ki-kS 
i.e., 
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i the incidence angle, and s, s the scattering angles (see Fig. 2.13), 
A is the surface illuminated area and R0 the distance from its centre to 
the receiver. 
In addition, fpq is a dimensionless function depending on r, incidence 

and scattering angles, and polarization of incident wave (p) and 
receiving antenna (q). 
Therefore, according to the Physical Optics solution (PO), the mean 
square value of the generic component of the scattered field can be 
expressed as 
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where the term I is the (polarization independent) Kirchhoff scattering 
integral 
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depending on the fBm structure function Q(), defined as 
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The evaluation of the Kirchhoff integral of (2.42) leads to represent 
the scattered power density by means of the two following series 
expansions [14-16] 
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(being (·) the Gamma function) which are, to some extent, 
complementary and whose truncation criteria are detailed in [17]. 
Concerning the expression of fpq, in the backscattering case (identified 
by s= and s=i) its expression simplifies to fpq=0 for p≠q, 
and   ippq Rf  cos2  for p=q, with Rp being the surface Fresnel 

reflection coefficient  
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  ,              (2.45) 

 
evaluated at 0  for small incidence angles and/or large roughness 
with respect to the wavelength, and at i   for large incidence 

angles and small roughness with respect to the wavelength [18, 19]. 
 
Application of the above formulation to the problem of scattering 
from natural surfaces is subject to the adequacy of the surface model 
as well as to the validity of the Kirchhoff and small slope 
approximations. 
Since natural surfaces satisfy (2.37) in a wide, but limited, range of 
scale lengths (range of fractalness), then the employed surface model 
applies only on condition that the range of scale lengths involved in 
the scattering phenomenon is included in the surface range of 
fractalness. 
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As a matter of fact, it can be proved that, depending on the scattering 
direction, a value * exists such that scale lengths much smaller or 
much larger than * do not appreciably contribute to the scattering 
process [16]. 
In the backscattering case such a value is equal to 
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and so at microwave frequencies, most natural surfaces can be 
modeled as fractals. Concerning the validity limits, KA holds if the 
surface mean radius of curvature is much greater than the wavelength 
while the small slope approximations can be used if the rms slope is 
much smaller than unity. 
Both of these conditions are satisfied if it results [16]: 
 

  1*10 2  tHks    .                (2.47) 
 

2.2.2 Kirchhoff scattering integral as a symmetric 
alpha-stable distribution 

 This subsection focuses on the scattering integral analytical 
expression and on its physical interpretation. First of all, here it is 
stated that for an fBm surface, the Kirchhoff scattering integral is 
directly proportional to a symmetric alpha-stable (SS) distribution. 
The interpretation of this intriguing result leads to revisit the meaning 
of the Kirchhoff solution and of the Geometrical Optics (GO) even for 
a regular (classical, non fractal) rough surface. 
Accordingly, concerning the rough scattering surface z(x,y), let us first 
assume that it is regular (non-fractal), and it is modeled as a 
statistically isotropic and stationary zero-mean Gaussian stochastic 
process, with variance 2 and normalised autocorrelation function 
C(); in this case, dz/dx and dz/dy are independent zero-mean 
Gaussian random variables with variance equal to  times the 
absolute value of the second derivative of C() evaluated at =0 (in 
particular, for a Gaussian autocorrelation function with correlation 
length L, the slope variance turns out to be equal to 2/L2) [20]. 
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Again, the Kirchhoff approximation can be used if the surface average 
radius of curvature is sufficiently larger than the electromagnetic 
wavelength , i.e., if the surface rms curvature is sufficiently smaller 
than the electromagnetic wavenumber k=2/. For a Gaussian 
autocorrelation, this means that  
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Also in this case, KA leads to the mean square value of the scattered 
field whose expression is given by (2.41), however with the difference 
that the structure function in (2.42) can be now related to the surface 
autocorrelation function as  )(12  )( 2  CQ  . 

Therefore, after the substitution uzx=tx, uzy=ty, in the Kirchhoff 
integral of (2.42), the equation (2.41) can be expressed as 
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and 22
yx ttt  . 

 
It is worth noting that a=ux/uz and b=uy/uz on one hand uniquely 
identify the scattering direction given the incident one, see (2.40); on 
the other hand they are equal to the surface slope values such that the 
local specular direction coincides with the scattering direction [3]. 
This twofold role of a,b is a key point of the following analysis. 
By expanding Q() in Taylor series around = 0 and assuming that 
C() is a regular and even function, it results 
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where C(2n)(0) are the derivatives of order 2n of C() at =0, so that 

)0()2(2 C  is the variance of the derivatives of z(x,y), and the 

exponential at the right hand side of (2.51) is the joint characteristic 
function of dz/dx and dz/dy. For a Gaussian autocorrelation function 
with correlation length L, expression (2.52) takes the following form: 
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The Geometrical Optics (GO) limit is obtained by letting k>>1, so 
that uz>>1 and G(t) can be approximated by 1 in the t interval for 
which the exponential at the right hand side of (2.51) is non-
negligible. Accordingly, by substituting (2.51) with G(t)=1 in (2.50) 
we readily get 
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which is the joint probability density function (pdf) of a=dz/dx and 
b=dz/dy: combining (2.49) and (2.54), allows us showing that the GO 
mean square value of the scattered field is proportional to the surface 
slope pdf evaluated at 

zyzx uuuu  , , that, as already mentioned, are 

the slope values such that the local specular direction coincides with 
the scattering direction (in the backscattering case, 

0,tan  zyizx uuuu  ). 
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This is a well-known result that holds also for non-Gaussian stationary 
surfaces, provided that their derivatives have finite variance [3]. 
 
Let’s move finally to assume that the rough scattering surface z(x,y) is 
modeled by an fBm process. 
Before focusing on the Kirchhoff scattering integral, notice that a 
bivariate centered symmetric (or isotropic) alpha-stable (SS) random 
variable A,B , of characteristic exponent  (≤ 2) and dispersion 
index  , is generally defined only through its characteristic function 
P(tx,ty) [21, 22] 
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Accordingly, the joint pdf is: 
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that usually cannot be computed in a closed form; however, series 
expansions are available [22], that are of the same form of those 
obtained in [15, 16]. 
 
At this stage, under the Kirchhoff approximation, equation (2.49) 
holds also for an fBm surface, provided that 
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Comparison of (2.58) with (2.57) shows that p(a,b) is a SS 
distribution with exponent =2Ht and dispersion index 
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This value of the dispersion  is then proportional to tHs 222  , that is 
the variance of the slope of chords joining surface points at distance 
, and can be interpreted as the variance of the surface slopes 
observed at the scale of the electromagnetic wavelength [14]. It is 
therefore tempting to interpret (2.58) as the fBm counterpart of the 
GO expression (2.57). However, this is not the correct interpretation, 
because no GO limit has been used to obtain (2.58), and because fBm 
surface slopes are not SS random variables, but they are Gaussian. 
The physical interpretation of (2.58) and the meaning of GO limit for 
fBm surfaces are instead founded on the following discussion. 
As known, in computing scattering from rough surfaces, GO can be 
used if the surface, although macroscopically rough, appears smooth 
at the electromagnetic wavelength observation scale, so that ray optics 
can be used, i.e., if the surface can be confused with the local tangent 
plane over an area of linear size of many wavelengths (significantly 
larger than the size necessary to use the tangent plane approximation 
for the computation of surface tangential fields). For a regular 
randomly rough surface, this means k>>1, and can be achieved by 
either decreasing the wavelength (0), or equivalently by increasing 
 while keeping /L constant to fulfill condition (2.48). In this case, 
the overall rough surface can be seen as composed of many smooth 
surface elements large with respect to the wavelength, for which ray 
optics can be used, so that their individual scattering pattern is a Dirac 
delta pulse, i.e., they contribute to the power density scattered along a 
given direction only if they have a slope such that the scattering 
direction coincides with the specular one. 
That is why the GO mean scattered power density is proportional to 
the surface slope pdf evaluated at 

zyzx uuuu  , , as shown by 

equations (2.49) and (2.54). 
As a matter of fact, a similar physical interpretation can be given even 
if k is not large. In fact, by recalling a well-known property of the 
Fourier transform, namely, the convolution theorem, equations (2.50) 
and (2.51) can be written as the following convolution: 
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where pN(a,b) is the Gaussian pdf of surface slopes, and g(a,b) is the 
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(generalized) inverse Fourier transform of G(tx,ty).  
Note that (2.60) can be read as the statistical mean of g(aa’,bb’) 
with respect to the surface slopes a’,b’, and g(aa’,bb’) can be 
considered as the scattering diagram, evaluated at the scattering 
direction defined by a,b, of a surface element whose specular direction 
is defined by (or whose slope is) a',b'. 
Accordingly, in some analogy with the usual two-scale models [4, 5], 
(2.49) and (2.60) can be interpreted as follows: the overall rough 
surface can be seen as composed of many rough surface elements 
large with respect to the wavelength, with random Gaussian slopes, 
and whose scattering pattern is g(aa’,bb’), so that the mean square 
value of the field scattered by the overall surface is obtained by 
averaging g(aa’,bb’) over the surface elements’ slopes, (2.60). By 
increasing k (while keeping /L constant) the surface elements 
become smoother and smoother, g tends to a Dirac delta pulse and 
(2.60) tends to the GO solution (2.58).  
Moreover, notice that, even for knot large, p(a,b) can be considered 
a pdf, because it is non-negative and its integral over the entire a,b 
plane is unitary: hence, it can be interpreted as the pdf of the slopes of 
an equivalent rough surface whose GO scattered power density is 
equal to the scattered power density of the actual rough surface. 
Let us now move to consider scattering from an fBm surface. First of 
all, it is worth to note that in this case GO cannot be achieved by 
decreasing the wavelength (0) because, due to the scale-invariance 
properties of the fBm (i.e., self-affinity), as the observation scale is 
reduced, finer and finer surface details appear, and the surface never 
appears smooth at any observation scale; actually, it can be seen that 
as the observation scale is reduced, the fBm surface appears rougher 
and rougher [14]. The only way to obtain a smooth fBm surface is to 
take D2, i.e., Ht1. Accordingly, it is appropriate to rewrite (2.58) 
by expanding tHt 2  in Taylor series around Ht=1. Series expansion of 

tHt 2  gives 
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By using (2.61) the integral in (2.58) becomes 
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wherein 
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By recalling again the convolution theorem, (2.62) can be rewritten as 
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where g1(a,b) is the (generalized) inverse Fourier transform of G1(tx,ty) 
and 
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is, as dictated by the fBm model, the Gaussian pdf of surface slopes 
observed at the scale of the electromagnetic wavelength. 
Equation (2.64) is the fBm counterpart of (2.60) and can be similarly 
interpreted: the overall rough fBm surface can be seen as composed of 
many rough surface elements large with respect to the wavelength, 
whose slopes have a pdf given by (2.65) and whose scattering pattern 
is g1(aa’,bb’), so that the mean square value of the field scattered 
by the overall surface is obtained by averaging g1(aa’,bb’) over the 
surface elements’ slopes. When Ht tends to 1, the surface elements 
become smoother and smoother, g1 tends to a Dirac delta pulse and 
(2.64) tends to the GO solution. Note that this is just a limit, because 
an fBm process is not defined for Ht=1, but only for 0<Ht<1. When Ht 
is smaller than 1, then p(a,b) is a SS distribution, and it can be 
interpreted as the pdf of the slopes of an equivalent rough surface 
whose GO scattered power density is equal to the scattered power 
density of the actual fBm surface. 
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2.2.3 SPM solution for the scattered power density 
 The evaluation of the scattered field from such a rough (fractal) 
surface can be carried out employing a perturbative approach on 
condition that the surface variations are much smaller than the 
incident wavelength and the slopes of the rough surface are relatively 
small (i.e., the surface is just slightly rough). Making use of the 
Rayleigh hypothesis and of a surface field series expansion [3], the 
Small Perturbation Method allows to express the backscattered power 
density as [16] 
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wherein W(·) is the (polarization independent) power spectral density 
of the fBm process equal to [14] 
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with 22
yx    (being x and y the Fourier mates of x and y), and 

S0 and  the spectral parameters, given by: 
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As regards the coefficient pq, in the backscattering direction its 
expression simplifies to pq=0 for p≠q, while for p=q it results 
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It must be underlined that equation (2.66) holds only within the range 
of fractalness of the surface and only if s/<<1. 
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Chapter 3 
 

Dielectric Mixing Models 
 

 Soil water content and water availability are of great importance 
on land activities, especially those involving agriculture, forestry, 
hydrology and engineering. In particular, knowledge of soil water 
content mv over extensive areas allows us to determine the repartition 
of the rainfalls into the surface run-off, seepage and 
evapotranspiration. Moreover, the information on the space-temporal 
behavior of the soil moisture represents a key factor in predicting 
rivers floods, rainfalls and landslides. 
Of course, “in situ” measurements of this parameter can be considered 
ineffective from different points of view, as they do not allow getting 
information about wide areas or, however, are quite prohibitive if they 
regard unapproachable spots. 
Actually, remote sensing may represent the best candidate to provide 
this information relevant to every corner of the world and in a 
comparatively short time, provided that it is able to relate the 
measured electromagnetic signal to the soil moisture in the observed 
scene.  
As a matter of fact, apart from the wave frequency, the soil dielectric 
constant is affected by several factors, including moisture content, soil 
texture, specific surface area and bulk density. The most important 
influence on the dielectric constant of a soil is certainly its water 
content, indeed an appreciable rise in the ground relative permittivity 
is observed considering wet soils instead of dry ones [1]. 
Accordingly, in this chapter it is reported a short review of some 
dielectric mixing models, useful to express the soil moisture content in 
function of the ground permittivity, and vice versa. 
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3.1 The Wang & Schmugge mixing model 
 
 Wang and Schmugge proposed two simple empirical approaches 
to describe the dependence of the measured soil dielectric constants on 
the moisture content. In the first approach, the resultant dielectric 
constant of a soil-water mixture is expressed in terms of the direct 
mixing of the dielectric constants of the constituents. In the second 
approach, the complex indices of refraction of the constituents are 
mixed to give the resultant refractive index of the soil-water mixture 
[2]; however, only the former is reported here. 
The biphase dielectric property for water in soils is assumed in both 
models, i.e. a transition soil moisture content Wt at which the 
dielectric constant increases steeply with increasing moisture content 
is defined. In particular, Wt represents the value of the moisture 
content below which most of the water molecules are tightly bound to 
the soil particles; as a consequence, it is difficult to polarize these 
water molecules and the bulk of water shows a smaller dielectric 
constant than that for the free water. 
The measured data, displayed in Figures 3.1 (a) and (b) and relevant to 
different soils and measured at both 5 GHz and 1.4 GHz, clearly 
indicate two distinct regions in the variations of the soil dielectric 
constant with mv.  
The first region occurs at mv < Wt, where the real part of the dielectric 
constant , increases slowly with mv. On the contrary, in the second 
region at mv > Wt,  increases steeply with mv.  
The value of such a transition moisture, has been considered strongly 
correlated with the wilting point (WP) of the soils, as it results 
 

0.165WP49.0Wt    ,                  (3.1) 
 
which is itself dependent on the soil texture (see Figure 3.2). 
In particular, the expression for WP in terms of the volumetric water 
content (cm3/cm3) is given by: 
 

CLAY0478.0SAND00064.006774.0WP    ,              (3.2) 
 
where CLAY and SAND are the clay and sand contents in percent of 
dry weight in the analyzed soil. 
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                           (a)                                                      (b)                  
Figure 3.1: dielectric constants versus the water content relevant to 
different soil textures measured at 5 GHz (a) and 1.4 GHz (b). 
 
 

 
 

Figure 3.2: percentage of clay, silt and sand for different types of soil. 
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According to the assumption of such a biphase behaviour, two 
equations are necessary to define the relationship between the 
moisture content the complex permittivity within the moisture content 
range of 0 to 0.5: 
 

    ravvx mm  P1P    ,     for mv≤Wt      (3.3) 

with   
Wt

v
iwix

m
  

 
and 
 

      ravwvx mm  P1PWtWt  ..,.. for mv>Wt      (3.4) 

 
with   iwix   , 

 
wherein P is the porosity of the dry soil, a , w , r and i , in 
sequential order, are the dielectric constants of air, water, rock, and 
ice,x stands for the dielectric constant of the initially absorbed water 
and  is a parameter which can be chosen to best fit (3.3) and (3.4) to 
the experimental data. 
 

3.2 The Hallikainen mixing model 
 
 The empirical mixing model of Hallikainen et al. [3] was 
developed exploiting data relevant to five soils with different textural 
compositions and collected at frequencies equal to 1.4, 4, 6, 8, 10 12, 
14, 16 and 18 GHz. 
Plots similar to those in Figure 3.1 were generated by smoothing 
measurements obtained for each soil and frequency combination. 
At each frequency, all the curves for both the real and imaginary parts 
of the ground permittivity exhibit the same general shape but have 
different curvatures for different soil types. At any given moisture 
content and at all frequencies, the real part of the permittivity was 
found to be roughly proportional to sand content (and inversely 
proportional to clay content); moreover, it was found that this 
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quantity, apart its magnitude, is soil-texture dependent in the same 
fashion at all the employed frequencies. 
Concerning the imaginary part of the dielectric constant, its behavior 
in function of the soil texture is more complicated, however its value 
is always significantly less than its real counterpart, above all at the 
lower frequencies. 
Moreover, for all soils, measurements indicate that the real 
(imaginary) part of the permittivity decreases (increases) with 
increasing frequency from 4 to 18 GHz. 
Starting from the above mentioned plots, empirical polynomial 
expressions were obtained for both the real and imaginary parts of the 
ground dielectric constant as a function of the soil moisture content at 
each frequency and soil type. 
Accordingly, at each frequency, individual polynomial expressions 
were generated by combining the expressions relevant to different 
soils: they express the (complex) dielectric constant as a function of 
the soil moisture content, the sand and clay textural components of a 
soil in percent by weight. 
 

 
                              (a)                                                        (b)                  
Figure 3.3: measured dielectric constants (points) at 4, 10, and 18 GHz 
for two different fields considered in [3] and polynomial regression fits 
(lines). 
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The general form of such polynomial is  
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  ,                (3.5) 

 
wherein coefficients ai, bi and ci depend on the frequency and their 
values are listed in [3]. Examples of fit of these polynomials are 
depicted in Figures 3.3 (a) and (b) together with the relevant measured 
values, for two soil textures and three different frequencies. 
 

3.3 The Miller & Gaskin mixing model 
 
 The above mentioned methods allow us to express the relationship 
between the ground complex dielectric constant and the soil moisture 
content provided that the soil texture is known. Of course, most of 
time this information is not available, if the goal is to obtain the soil 
moisture from the dielectric constant retrieved through remote sensing 
techniques. Unlike previous models, the empirical method recalled in 
this section [4] does not account specifically for the soil properties and 
instrument frequency. As a matter of fact, the Miller & Gaskin mixing 
method was developed exploiting measurements obtained by the 
Theta Probe (TP) and allows us to relate in a very simple manner the 
water content to the apparent dielectric constant app as 
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h

h
m

app

v





  ,                   (3.6) 

 
with h0 and h1 generalized calibration constants, whose values are 
fixed in [4] to {h0, h1}={1.6, 8.4} for mineral soils and to {h0, 
h1}={1.3, 7.7} for organic soils. 
As regards the apparent dielectric constant, it represents the output 
parameter of a Time Domain Reflectometer (TDR) and for low-loss, 
nearly homogeneous media it is approximately equal to the real part of 
the ground dielectric constant [5], that is app @ Re{ }. 
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3.4 Methods performances: a comparison 
 
 According to the results discussed in [1], a comparison of the 
dielectric mixing models is presented in this section. 
In particular, on the grounds of measurements exploited in [1], Tables 
I, II and III contain the volumetric moisture content estimates for the 
sand, loam and clay soils. Dielectric constants for wet and dry soil 
were obtained by the GPR (Ground Penetrating Radar), TDR and TP, 
except in the case of the sand. In despite of its simplicity, as shown in 
Tables I,II and III, the Miller and Gaskin method (with h0 and h1 for 
mineral soil), provided the best estimate most of times, while the 
Hallikainen mixing model nearly always provided worst results. In 
general, all models performed poorly for the loam soil. 
 

 
 

Table I 
MIXING RESULTS FOR A SAND SOIL 

SAND W. & S. Hallikainen M. & G. 
Measured 

mv (%) 
Dry/GPR 7.0 4.6 0.0 7.0 

Wet/GPR 27.2 13.7 16.7 21.0 

Dry/TDR 14.8 5.0 1.9 7.0 

Wet/TDR 31.4 11.3 11.8 21.0 

 
 
 

Table II 
MIXING RESULTS FOR A LOAM SOIL 

LOAM W. & S. Hallikainen M. & G. 
Measured 

mv (%) 
Dry/GPR 11.4 12.0 6.5 2.4 

Wet/GPR 16.8 17.1 11.5 24.6 

Dry/TDR 11.6 12.0 6.5 2.4 

Wet/TDR 19.0 18.6 13.6 24.6 

Dry/TP 14.6 14.8 9.1 2.4 

Wet/TP 24.5 23.8 19.9 24.6 
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Table III 
MIXING RESULTS FOR A CLAY SOIL 

CLAY W. & S. Hallikainen M. & G. 
Measured  

mv (%) 
Dry/GPR 7.0 15.5 1.0 7.0 

Wet/GPR 27.2 26.7 15.3 21.0 

Dry/TDR 14.8 19.2 5.4 7.0 

Wet/TDR 31.4 29.3 19.1 21.0 

Dry/TP 19.6 22.2 9.1 7.0 

Wet/TP 32.8 30.7 21.0 21.0 
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Chapter 4 
 

The Polarimetric Two-Scale Model 
 

 The classical solutions for the electromagnetic scattering pay their 
simplicity at the cost of their reliability in describing actual 
phenomena, and vice versa. In particular, as shown in previous 
chapter, the Small Perturbation Method (SPM) and the Physical 
Optics (PO) fail to describe cross-polarization and de-polarization 
effects usually observed in actual data. Conversely, second-order SPM 
[1] and other more refined methods (e.g., Integral Equation Method, 
IEM [2]) account for cross-polarization, but their formulations are not 
in closed form and are too involved to be usefully employed in surface 
parameter retrieval algorithms. Accordingly, in this chapter a 
Polarimetric Two-Scale Model (PTSM) describing the scattering from 
bare soils and for the surface parameters retrieval from polarimetric 
SAR data is proposed. In order to account for de-polarization and 
cross-polarization phenomena, the scattering surface is here 
considered as composed of rough randomly tilted facets for which, 
depending on roughness values, the SPM or the PO holds. The facet 
random tilt causes a random variation of the local incidence angle, and 
a random rotation of the local incidence plane around the line of sight, 
which in turn causes a random rotation of the facet scattering matrix. 
Unlike other similar already existing approaches, this method 
considers both these effects by relating their analytical formulation to 
the stochastic description of the scattering surface. Approximated 
closed-form solutions of the Normalized Radar Cross Sections for the 
overall scattering surface are attained and compared with real data. 
The chapter is organized as follows: first section is devoted to 
describe the considered surface model, while in the second and third 
sections, NRCS for the single facet and for the whole surface are 
respectively evaluated. Finally, the direct model validation is provided 
in the last section. 
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4.1 Surface model 
 

A bare soil surface is here considered as composed of large-scale 
variations on which a small-scale roughness is superimposed, so that a 
two-scale model of the surface is employed. Concerning the large-
scale roughness, it is locally treated by replacing the surface with a 
rough tilted facet, whose slope is the same of the smoothed surface at 
the center of the pertinent facet, see Figure 4.1. The size of the facets 
is assumed greater than both the electromagnetic wavelength and the 
correlation length of the small-scale roughness, but much smaller than 
both the sensor geometric resolution and the correlation length of the 
large-scale roughness. 
 

 
 

Figure 4.1: from the actual surface (a) to the faceted one (b). 
 
Therefore, using the reference system depicted in Fig. 4.2 (wherein ln̂  

is the local unitary normal vector), the randomly rough and randomly 
tilted facets are defined through the following formula: 
 
          iiii Dyxyxzyyxxyxz  , ,,tantan,    ,       (4.1) 

 
where tan and tan are the local azimuth and range slopes, 
respectively, xi,yi,zi are the coordinates of the i-th facet center, (x,y) 
describes the small-scale roughness, and Di is the i-th facet domain. 
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Figure 4.2: 3D sketch of a generic tilted facet. 
 
Both large- and small-scale roughness are modeled as stochastic 
processes. In particular, the facet slopes along range and azimuth 
directions, assumed as independent 2-variance Gaussian random 
variables, i.e., tan ~ N( , σ2) and tan ~ N( , σ2). 
This assumption only requires that the large-scale roughness is a 
Gaussian statistically isotropic stationary-increment (i.e., locally 
homogeneous) process, so that it is compatible with both classical 
surface models, employing stationary (i.e., homogeneous) processes 
[1, 3, 4], and fractal surface descriptions, employing the stationary-
increment fractional Brownian motion (fBm) processes [5-8]. 
Moreover, since the mean values  and  of the local slopes 
generally have an arbitrary nonzero value, the considered surface’s 
description may implicitly take into account the topographical features 
(if any) of the scene to be modeled [9]. Accordingly, as it will be 
shown in the next chapter, taking into account these mean values in 
the surface model allows us to improve estimation results in hilly or 
mountainous areas, if information provided by Digital Elevation 
Models (DEM) are considered in the retrieval algorithm. 
Concerning the small-scale roughness (x,y), it is modeled as a zero-
mean stochastic process whose height standard deviation s is small 
compared to the electromagnetic wavelength . In the following, we 
assume that (x,y) is a (band-limited) fractional Brownian motion 
(fBm) process because it is well recognized by now that fractal 
models are proper to describe natural surfaces [5-8]. 
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4.2 Single tilted facet return 
 
 Let us assume that the sensor illuminates the scene with a (global) 
incidence angle , see Fig. 4.3, and let us consider the field scattered 
by a single tilted rough facet. Due to the facet tilt, the local incidence 
angle l, see Fig. 4.3, is different from the global one, and is related to 
it and to the facet slopes by [10]: 
 



22 tantan1

sintancos
cos




l   .                 (4.2) 

 
In addition, the facet tilt causes a rotation of the local incidence plane 
around the look direction k̂  by an angle  related to the facet slopes 
and to the global incidence angle by [10]: 
 




sincostan

tan
tan


   .                 (4.3) 

 
 

 
 

Figure 4.3: rotation of the local incidence plane and local incidence 
angle drift due to facet tilt. 
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Therefore, for every tilted facet, the local incidence angle l and the 
rotation angle  of the local incidence plane are random variables, 
whose stochastic description can be related, from (4.2) and (4.3), to 
the surface model. 
Moreover, since the local incidence angle drift around the radar look-
angle is equal to l  then, for small facet’s slopes and from 
(4.2), it results that  sintansincoscos l

, i.e. the standard 

deviation of such angle drift  is approximately ; likewise, as from 
(4.3)  sintantan  , so the standard deviation of  is 

approximately /sin, which is larger than . This is in agreement 
with the intuition that the rotation angle  shows a wider distribution 
than the incidence angle variation  but, of course, this also shows 
that the latter is not negligible with respect to the former. Such 
considerations represent the key concepts for the PTSM formulation 
[11]. Indeed, even though other existing theoretical two-scale methods 
[12-14] account for both de-polarization and cross-polarization, PTSM 
is the only one for which these phenomena rise straight from the 
surface description, considering both the (same order) facet’s tilt 
effects. 
As a matter of fact, in the well-established two-scale model presented 
in [13], there termed as X-Bragg, the rotation angle  is heuristically 
assumed equal to an uniform random variable, while the local 
incidence drift is not accounted for at all. Accordingly, the X-Bragg 
solution represents a particular, simplified case of the Polarimetric 
Two-Scale Model. 
 
According to notations presented in Chapter 2, the backscattered 

(incoherent) field s
pqE  is given by [3]: 

 

 jkrw
r

kE
E llpq

l
i
ps

pq  exp)(),(
cos22





   ,             (4.4) 

 
where i

pE  is the incident field, k=2/ is the wavenumber, r is the 

radar-to-target distance,w(l) is a polarization-independent function 
depending on microscopic roughness, p and q are the polarizations of 
the incident and scattered field, respectively, and can each stand for h 
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(horizontal) or v (vertical) and pq(l,) are the elements of the matrix 
 
        1

22
,  RFR ll   .                 (4.5) 

 
wherein 
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



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

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
cossin

sincos
2R   ,                  (4.6) 

 
is the unitary rotation matrix, accounting for the rotation of the local 
polarization reference system with respect to the global one and it is 
responsible of the cross-polarization effect. This effect is often not 
included in usual two-scale models [1], but it is considered in [13]. On 
the other hand, in [13] l is approximated by  in equations (4.4, 4.5). 
As already underlined, here both the incidence plane rotation and the 
variations of l are considered. 
As regards F , it is the matrix of the Bragg or PO coefficients 

(according to the  solution adopted for the electromagnetic scattering 
within a facet) of a single horizontal (i.e., non-tilted) facet 
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  ,                  (4.7) 

 
whose entries Fh and Fv , have an analytical expression depending on 
which solution is adopted for the electromagnetic scattering within a 
facet. 
Hence, the facet (incoherent) NRCS is defined as 
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where A is the facet’s area and the symbol 


f  stands for “the mean 

of f with respect to the random variable ”. So, using (4.5) in (4.8), it 
results: 
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   ,                 (4.9) 

 
that is, 
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  ,            (4.10) 

 
wherein W is related to the mean of the square-modulus of w and its 
expression again depends on the adopted scattering solution. 
 
As stated, full expression for the NRCS in (4.10) rely on the method 
chosen to solve the scattering problem from the microscopic 
roughness, i.e. on the specific expression assumed by Fh , Fv and W. 
In particular, if the PTSM is used to describe the polarimetric 
scattering at lower bands (L, P bands) and the standard deviation s of 
the microscopic roughness is small with respect to the wavelength , 
then the first-order SPM is suitable to compute the electromagnetic 
scattering from the small-scale surface variations [9, 11, 15, 16] (SPM 
based PTSM). 
It must be noted that in a very narrow cone around l=0 
(corresponding to tan=0,tan=tan) whose angular width is of the 
order of /L (with L the facet linear size), the first-order SPM (and 
then equation 4.10) does not hold and the zero-order (coherent) SPM 
becomes non-negligible. However, for non-near-vertical incidence and 
moderate values of , we can ignore this effect. 
Accordingly, in this case Fh and Fv represent the Bragg coefficients  
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with εr being the soil relative dielectric constant (or relative 
permittivity), while W is the power spectral density of the fBm process 
describing the small-scale roughness, whose expressions is  
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22
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   ,                (4.12) 

 
where 0<Ht<1 is the Hurst coefficient, related to the roughness fractal 
dimension D by the relation D=3Ht and S0 is directly proportional to 
the microscopic roughness variance s2 (see Section 2.2). 
 
As a matter of fact, as the work frequency increases, the wavelength 
of the transmitted pulse cannot be considered larger than the standard 
deviation of the microscopic roughness and so the SPM is no longer 
appropriate to solve the scattering problem within the rough facet. 
Therefore, if the PTSM is used to describe the scattering from bare 
soils at higher bands (S, C and X bands) or in an high (microscopic) 
roughness regime, then the terms Fh , Fv and W occurring in (4.10) can 
be evaluated according to the PO solution (PO based PTSM) [17]. 
Accordingly, in this case, Fh and Fv are proportional to the Fresnel 
reflection coefficients  
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and W is related to the Kirchhoff scattering integral I by 
 

     


 I
k
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   .                (4.14) 

 
As stated in Section 2.2, the Kirchhoff scattering integral is 
proportional to the pdf of an isotropic Symmetric-alpha-Stable 
distribution with characteristic exponent =2Ht and, moreover, it can 
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be represented via two series expansions [7, 8], whose truncation 
criteria are detailed in [18]. 
Concerning the validity limits, the PO method holds if the surface 
mean radius of curvature is much greater than the wavelength while 
the small slope approximations can be used if the rms slope is much 
smaller than unity, i.e. (see Section 2.2) 

  1*10 2  tHks        with      
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cos4
* 
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


 . 

 

4.3 Total scattered power 
 
 If the large-scale roughness height variations are larger than the 
wavelength and the facet size is larger than small-scale roughness 
correlation length, then the returns from different facets are 
uncorrelated, and NRCS a of the whole surface can be obtained by 
averaging those of a single facet over β and l , or, equivalently, over 
tan and tan. 
So, to average over β and l, we should evaluate the joint probability 
density function (pdf) of these two random variables, starting from the 
one of tan and tan. However, although it is possible, invoking the 
fundamental random variable transformation theorem, to analytically 
compute the exact marginal pdf of  , see [19], the joint pdf of β and 
l cannot be analytically evaluated. Therefore, the evaluation of the 
total scattered density power requires to average over tan and tan 
which, first of all, implies to express (4.10) in terms of tan and tan 
by using (4.2) and (4.3). This is quite straightforward, since it is easy 
to express all terms appearing in (4.10) in terms of cosl and tan. 
Accordingly, the expected value of NRCS can be computed as: 
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being p(tan,tan) the slopes joint pdf, i.e.: 
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Notice that integration over tan is restricted to the range 

  tancot  to exclude values of l greater than /2, see (4.2), 
which correspond to shadowed facets (more exactly, these are the 
“self-shadowed” facets, whereas the facets shadowed by other facets 
are totally neglected). 
However, the probability of self-shadowed facets is  
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being Erfc(·) the complementary error function, which is smaller and 
smaller as its argument is greater than zero, thus - assuming  not too 
smaller than zero - for non-near-grazing angles and for moderate 
values of . Accordingly, in this case the integrals over tan and tan 
can both span the entire real axis. Unfortunately, even with the above 
simplification, the integral in (4.15) cannot be computed in closed 
form. 
However, assuming small values for facet slopes, the Taylor 
expansion of 0

pq  around tan=0, tan=0 can be used. 

Accordingly, the Mac Laurin series of   tan,tan0
pq  is 
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wherein pq

knkC ,  are the series expansion coefficients, defined as 
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whose full expression depends on which model has been chosen, 
between SPM and PO, to evaluate the scattering from the microscopic 
roughness. 
Concerning the statistical averages occurring in the right hand side of 
(4.18), since both tan and tan are Gaussian random variables, they 
can be evaluated by using the formula to obtain moments of any order 
for a Gaussian variable Z~ N(,2), that is: 
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where      2/expexp 22 tjtjtZtZ   is the characteristic 

function of Z. 
Hence, considering Taylor expansion terms up to the second order, we 
attain to the following expression for the NRCS pertinent to the whole 
surface 
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which represents the PTSM solution for the NRCS of the whole 
scattering surface. In particular, if coefficients in (4.19) are evaluated 
according to the SPM, then (4.21) represents the SPM based PTSM 
solution; conversely, if the PO is employed to compute the scattering 
from the small-scale roughness, (4.21) is referred as PO based PTSM 
solution. 
Notice that in flat areas, i.e. in areas with no significant topography, 
equation (4.21) reduces to 
 

2
2,0

2
0,20,0

tan
tan

0 



pqpqpq
pq CCC    ,              (4.22) 

 
which represents the only feasible solution also in the case of lack of 
knowledge on the value of the mean slopes (i.e., no DEM is available 
for the considered scene). 
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As mentioned, one of the main goals of the PTSM is to account for 
de-polarization phenomena, even though this information cannot be 
provided from the NRCS. 
Nevertheless, in order to get other information about the scattering 
process, the Polarimetric Two-Scale Model allows to evaluate other 
second order statistics of the diffuse field provided that coefficients in 
(4.19) are appropriately defined [11]. 
Accordingly, to have a quantitative measure of how the large-scale 
roughness affects the polarization degree of the scattered field, the co-
polarized correlation coefficient can be defined as 
 

22

*

vvhh

vvhh

hhvv

SS

SS
   ,                (4.23) 

 
wherein Spq are the entries of the scattering matrix 
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The expression of (4.23) can be computed according to the PTSM 
formulation just considering the 2nd order Taylor expansion for each 
term to be averaged. 
Hence, assuming the behavior of the correlation coefficient 
versus the standard deviation of the macroscopic roughness is 
depicted in Figures 4.4 – 4.9, for different values of the incidence 
angles and permittivity. 
At this stage, it is worth underlining that the average of products 
between entries of the rotated matrix of (4.5) computed via PTSM 
depends on the small-scale roughness parameters s, Ht and S0; 
nevertheless, this dependence tends to cancel out in the ratios of such 
mean values, i.e. the NRCS as well as the correlation coefficient are 
substantially independent on the microscopic roughness [11]. 
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Figure 4.4: SPM based PTSM co-polarized correlation coefficient for 
r=5 (blue line), r=10 (green line) and r=20 (red line), at =30°. 
 

 
Figure 4.5: SPM based PTSM co-polarized correlation coefficient for 
r=5 (blue line), r=10 (green line) and r=20 (red line), at =45°. 
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Figure 4.6: SPM based PTSM co-polarized correlation coefficient for 
r=5 (blue line), r=10 (green line) and r=20 (red line), at =60°. 
 

 
Figure 4.7: PO based PTSM co-polarized correlation coefficient for r=5 
(blue line), r=10 (green line) and r=20 (red line), at =35°. 
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Figure 4.8: PO based PTSM co-polarized correlation coefficient for r=5 
(blue line), r=10 (green line) and r=20 (red line), at =45°. 
 

 
Figure 4.9: PO based PTSM co-polarized correlation coefficient for r=5 
(blue line), r=10 (green line) and r=20 (red line), at =55°. 
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4.4 Direct model validation 
 
 In order to provide a direct validation of the PTSM, a wide variety 
of scattering data at different frequencies, incidence angles, surface 
roughness and soil moisture contents, in conjunction with the 
corresponding ground measurements, should be available over bare or 
little vegetated soils. To this aim, HH, VV, and HV NRCS data at L 
band (1.5 GHz) acquired by the University of Michigan’s LCX 
POLARSCAT [20] has been employed, together with “in situ” 
measurements, for incidence angles varying from 10 to 70 degrees and 
for four bare soil surfaces with different roughness, each observed in 
both dry and wet conditions [11]. Concerning the ground truths, only 
the height standard deviation s over 1m-long profiles and the relative 
dielectric constantref relevant to the top 4 cm soil layer are reported 
in [20], while, unfortunately, large-scale roughness  was not 
measured. Accordingly, employing these “in situ” measurements 
(together with the value of  estimated according to the retrieval 
procedure explained in next chapter), a comparison between the 
behavior of the PTSM solution for the NRCS as a function of the 
incidence angle and the measured backscattering data has been carried 
out. 
In particular, in Figs. 4.10 and 4.11 the comparisons between 
theoretical trends (continuous lines) and measured values (dots, see 
Table I and II) of the NRCS, for the wet surfaces termed in [20] as L1 
and L2 are shown: a very good agreement between PTSM results and 
measured backscattering data for all of the three polarization channels 
can be observed in both cases. 
For a more exhaustive analysis on the direct model validation founded 
on LCX POLARSCAT data, refer to [11]. 
 

Table I 
MEASURED NRCS [dB] FOR THE L1 WET SURFACE 

GROUND TRUTH: ref=15.57 , ks=0.13 ; RETRIEVED LARGE-SCALE ROUGHNESS: =0.15 

   10°   20°   30°   40°   50°   60°   70° 
HH 8 -15 -20 -25 -29 -34 -35 
VV 4 -15 -18 -21 -23 -25 -29 
HV - -38 -39 -40 -43 -44 -48 

 
 



 

 

The Polarimetric Two-Scale Model                                                                           89 

Table II 
MEASURED NRCS [dB] FOR THE L2 WET SURFACE 

GROUND TRUTH: ref=14.43 , ks=0.10 ; RETRIEVED LARGE-SCALE ROUGHNESS: =0.14 

   10°   20°   30°   40°   50°   60°   70° 
HH 6 -11 -20 -26 -30 -32 -38 
VV 4 -10 -18 -20 -23 -25 -28 
HV -24 -36 -40 -41 -42 -43 -47 

 
 

 
 
Figure 4.10: Measured (dots) and PTSM (lines) NRCS at VV (red line), 
HH (blue line) and HV (green line) polarizations for surface L1. 
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Figure 4.11: Measured (dots) and PTSM (lines) NRCS at VV (red line), 
HH (blue line) and HV (green line) polarizations for surface L2. 
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Chapter 5 
 

Retrieval of Surface Parameters via the 
Polarimetric Two-Scale Model Inversion 
 

 The field scattered by a bare soil depends on both surface 
roughness and soil dielectric constant, and, hence, on the terrain water 
content. Accordingly, it is possible, at least in principle, to retrieve 
soil moisture and roughness from appropriate scattering 
measurements. These retrieval approaches require multiple scattering 
measurements, supported by the use of scattering models. As for 
measurements, multi-polarimetric and/or multi-angle Synthetic 
Aperture Radar (SAR) or scatterometer data can be used; regarding 
the models, here the focus is on theoretical ones, as they allow to 
predict the behavior of the scattered field at the variance of the 
parameters to be estimated. Moreover, the employed model should be 
as general and accurate as possible, but not so involved to prevent the 
parameters inversion from the measured data. 
To this aim, in the previous chapter, the Polarimetric Two-Scale 
Model (PTSM) has been presented, in order to account for an accurate 
and comparatively simple description of the polarimetric scattering 
process from bare soils. In this chapter a PTSM-based retrieval 
algorithm is described, using which it is possible to get an 
unsupervised estimation of the (large-scale, see Chapter 4) roughness 
and the soil permittivity (or, equivalently, the soil moisture content) 
from a set of polarimetric SAR or scatterometer data. 
Accordingly, the first section of this chapter is devoted to explain how 
the forecasts on the NRCS provided by the PTSM are exploited to 
develop the estimation procedure. The retrieval algorithm is then 
applied on real data acquired at different bands, to provide maps of 
parameter estimates to and to get an idea of how the frequency affects 
the retrieving (Section 2).  
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Moreover, where possible, the retrieval results are compared with “in 
situ” measurements, in order both to test the performances of the 
retrieval algorithm and to provide the indirect validation of the PTSM 
(Section 2). 
A comparison with other retrieval methods is also provided. 
 

5.1 Retrieval algorithm 
 

This section is addressed to show the fundamental concepts behind 
the proposed retrieval algorithm. 
The procedure is founded on the forecasts on the power density 
scattered from bare soils provided by the Polarimetric Two-Scale 
Model described in the previous chapter. 
Recall that the PTSM solution for the Normalized Radar Cross 
Section (NRCS) of a bare soil is: 
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  ,   p,qœ{h,v}      (5.1) 

 
wherein, according to the notation of the Chapter 4,  and  are the 
mean values of the independent stochastic processes describing, 
respectively, the azimuth and range local slopes,  is the standard 
deviation of the large-scale roughness, while pq

knkC ,  are coefficients 

defined in (4.19), whose expressions depend on the radar look-angle, 
on the polarization, on the soil permittivity and on the solution 
adopted to evaluate the scattering from the microscopic roughness, 
whether it be SPM or PO [1-7]. Actually, the small-scale roughness 
parameters affect the value of each of the NRCS, even though this 
dependence becomes absolutely negligible in their ratio [2]. 
Therefore, the co-polar (CP) and cross-polar (XP) ratio, i.e. the ratio 
of the co-polarized of cross-polarized NRCS, respectively, result to be 
substantially independent on the microscopic roughness. Accordingly, 
assuming that the radar look-angle is known, then in principle it 
possible to get the soil permittivity  and the large-scale roughness  
from a pair of measured co-polar and cross-polar ratio. 
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As a matter of fact, the dependence of these ratio on  and  is too 
involved to allow an analytical inversion, i.e. to express  and in 
function of XP and CP; nevertheless, as CP and XP exhibit monotonic 
trends versus σ and ε, so it is possible to perform an effective 
inversion by building up numerical charts where co-polar, cross-polar 
loci for different values of σ and ε are plotted. 
Notice that, the imaginary part of the permittivity is neglected in the 
retrieval procedure, as it is much smaller than the real part at 
microwave frequencies (see, e.g., [8]); however, a relationship 
between the real and imaginary parts of the dielectric constant at the 
considered frequency is available, [8], so that, if desired, above 
simplifying assumption can be relaxed (see also [2]). 
Examples of such charts are reported in Figure 5.1 and Figure 5.2, 
where, assuming ==0 , co-pol, cross-pol loci parameterized with 
respect to the electric permittivity , ranging from 2 to 22 with a step 
equal to 2, and to the large-scale roughness parameter σ, ranging from 
0 up to 0.4, are shown for the SPM/PTSM and PO/PTSM solutions, 
respectively. By entering these charts with values of co-pol and cross-
pol ratios computed from measured SAR (or, more in general, 
scattering) data, one can directly read the corresponding retrieved 
values of ε and σ. 
Of course, it is possible to get a similar chart parameterized by the soil 
moisture content instead of the permittivity, using for instances the 
mixing model presented in [8-]. 
Notice that in the SPM based PTSM solution the sigma naught for the 
HH channel is always lower than that relevant to the VV channel, 
whereas the opposite happens for PO based PTSM. Therefore, in order 
to deal always with positive values (in dB), the co-polar ratio is 

defined as 00
hhvv   in the SPM/PTSM or, conversely, as 

00
vvhh   in the PO-PTSM; in both cases the cross-polar ratio is 

defined as the ratio between 0
hv  and 0

vv . 

It is worth to note that in the charts of Figs. 5.1 and 5.2 rms slope 
values  as large as 0.4 are considered. This may seem inappropriate, 
if one considers that employed second order NRCS expansions hold 
only for small values of . Actually, it has been numerically verified 
that differences between higher and second order terms of NRCS 
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remain below 10% only up to values of  of about 0.2; however, this 
range of validity extends up to more than 0.4 if we consider co-
polarized ratio, and up to about 0.3 for cross-polarized ratio. This 
means that, fortunately, higher order effects tend to cancel out in the 
ratio, at least in the range of  values from about 0.2 to 0.4. 
From Figures 5.1 and 5.2 it appears that performances of the retrieval 
procedure deteriorate as the permittivity and the roughness increase, 
since higher values of parameters turn out in a reduction of co-pol 
cross-pol loci dynamic ranges and then in a reduced sensitivity on 
roughness and permittivity (or, equivalently, in a greater sensitivity to 
measurement errors). 
Moreover, it should be noted that a decrease in the performances is 
also due to a sensitive reduction of the radar look-angle; indeed, as 
shown in Figure 5.3, where charts ( obtained with ==0, œ{2,20} 
and σ œ{0,0.4} ) for =20°, =40° and =60° are depicted, the 
smaller is the angle the narrower becomes the chart, with a consequent 
decreasing in the reliability of the retrieval result. 
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Figure 5.3: SPM based PTSM co-pol cross-pol charts for =20° (red), 
=40° (blue) and =60° (green). 
 
Of course, this approach can be performed in an unsupervised way, 
simply making use of special purpose look-up software. 
Accordingly, a software has been developed to create soil moisture 
maps, roughness maps and permittivity maps of sensed scenes just 
comparing processed input SAR data with correspondence tables built 
up like above mentioned charts. 
Accordingly, as shown in the flow chart of Figure 5.4, the algorithm 
builds up the co-pol, cross-pol multilooked images from the 
polarimetric SAR data relevant to the observed scene. At the same 
time, once set reasonable ranges of values for the permittivity (or the 
soil moisture content) and the large-scale roughness, these values are 
used to get tables of theoretical co-polar and cross-polar ratio based on 
NRCS of equation (5.1). 
In the most general case, these tables are computed for every pixel, 
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because the radar look-angle can span in a wide angular range within 
the considered image (consider, for instance, airborne SAR images), 
hence affecting the shape of the co-pol cross-pol chart. 
Moreover, if the sensed scene exhibits a significant topography and 
the relevant Digital Elevation Model (DEM) is available, then it is 
possible to get the local azimuth (  ) and range (  ) slopes matrices 
and use these values to evaluate chart according to the pertinent mean 
slope. Anyway, this step (depicted as the gray rectangle in the flow 
chart of Figure 5.4) is subject to the availability of a-priori information 
about the observed area, and so it should not necessarily be carried 
out. Notice that the tables are built-up according to the SPM based 
PTSM solution or to the PO based PTSM solution, depending on the 
sign of every pixel of the co-pol image (in dB). 
Additionally, the value assumed by every pixel of co-pol and cross-
pol images is checked in order to reject values not compatible with the 
theoretical model; then, for every pixel with an allowable value, the 
software looks within the table for the pair of theoretical PTSM-based 
ratio closest to the pair of measured ones. 
Finally, estimation results are obtained just considering the values of  
and  that correspond to such a theoretical pair. 
It is also important to note that this retrieval procedure implicitly 
provides a reduction of the speckle. Indeed, because of the significant 
correlation between the noise realizations which affect different 
polarimetric channels [12], the speckle tends to cancel out in the 
images of the ratios. Nevertheless, a further speckle reduction is 
performed using spatial multilook techniques on each of the NRCS 
images. 
 
As a matter of fact, unlike other estimate procedures (see, for instance 
[13]), the above algorithm is able to create retrieval maps just from the 
magnitude of the different polarimetric channels; this could be a 
fundamental requirement to obtain the parameters estimation even if 
fully (i.e., both the amplitude and the phase) polarimetric 
measurements are not available. Indeed, although fully polarimetric 
SAR sensors are available today (e.g., PALSAR, E-SAR, 
TERRASAR-X), and accurate calibration is today state-of-the-art, 
there are still important SAR systems (e.g., ENVISAT, COSMO-
SkyMed) that only implement selectable dual-pol. 
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5.2 Numerical results 
 
 The algorithm presented in the previous section is here applied to 
a large quantity of SAR data acquired at different bands. 
Accordingly, in the following, retrieval results relevant to various 
areas observed at different work frequencies and with different look-
angles are provided, in order to get an idea of the algorithm 
performances at the variance of the scene’s characteristics and the 
sensor parameters. 
Moreover, estimate results obtained with the PTSM based retrieval 
algorithm are compared with in “situ” measurements, if any, to 
provide an indirect model validation, and with other retrieval methods. 
 

5.2.1 Retrieval results at L band: lack of topography 
Here retrieval results relevant to L band and obtained ignoring the 

effects of the topography (i.e., assuming ==0 ) in the estimate 
procedure are presented. In particular, NRCS acquired by both by the 
University of Michigan’s LCX POLARSCAT and the NASA 
AIRSAR are employed; since ground truths are available in 
correspondence of both of these radar measurements, then an indirect 
model validation can is carried out exploiting these data. 
Concerning the former, HH, VV, and HV NRCS data at L, C, and X 
band acquired by the University of Michigan’s LCX POLARSCAT 
are available, together with “in situ” measurements, for incidence 
angles varying from 10 to 70 degrees and for four bare soil surfaces 
with different roughness, each observed in both dry and wet 
conditions. Such scattering and “in situ” data were reported and used 
for instance in [14]. 
Here L-band (1.5 GHz) POLARSCAT data relevant to the slightly 
rough bare soil surfaces 1 and 2 of [14] are employed. 
Let us first analyze surface 1 in the “wet” and “dry” cases. 
Corresponding “in situ” measured parameters are reported in the first 
row of Tables I and II, where s is the height standard deviation 
measured over 1m-long profiles [14] and ref is the measured relative 
dielectric constant in the top 4 cm soil layer [14]. Unfortunately, 
large-scale roughness was not measured in [14], so that only the  
retrieval can be verified, and no direct validation of the  retrieval is 
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possible. Tables I and II collect the retrieval results obtained via both 
the theoretical method presented in [13], there referred as X-Bragg, 
and the PTSM by considering co-pol and cross-pol ratio at incidence 
angles from 20 to 60 degrees (the smallest and the highest incidence 
angles are discarded because, as explained in the previous chapter, the 
model is not appropriate in correspondence of both small incidence 
angles and grazing angles) [2]. 
In these tables, a dash indicates that the considered co-pol cross-pol 
values do not correspond to any physically acceptable value of , so 
that the inversion algorithm automatically assumes that the model 
does not hold in these cases. 
 
 

Table I 
RETRIEVAL RESULTS FOR SURFACE 1-WET AT L-BAND 

A DASH “-“ IS SHOWN FOR RETRIEVED  VALUES > 20 OR < 2   
surface 1-wet   L-band (1.5 GHz)  ks = 0.13        εref =15.57 


 

cross-pol 
[dB] 

co-pol 
[dB] 


(X-Bragg)


(PTSM) 


(X-Bragg)


(PTSM) 

200 -23 0 _ 14 _ 0.27 

300 -21 2 7.8 16.5 0.19 0.16 

400 -19 4 8.5 16.5 0.18 0.16 

500 -20 6 6.5 9.5 0.15 0.14 

600 -19 9 8.0 12.8 0.15 0.14 

 
 

Table II 
RETRIEVAL RESULTS FOR SURFACE 1-DRY AT L-BAND  

A DASH “-“ IS SHOWN FOR RETRIEVED  VALUES > 20 OR < 2 
surface 1-dry   L-band (1.5 GHz)  ks = 0.13        εref =7.99 


 

cross-pol 
[dB] 

co-pol 
[dB] 


(X-Bragg)


(PTSM) 


(X-Bragg)


(PTSM) 

200 -23 2 _ _ _ _ 

300 -19 1 7.0 10.5 0.31 0.24 

400 -19 3 4.75 7.8 0.22 0.19 

500 -20 4 3.75 4.75 0.20 0.17 

600 -18 6 3.75 5.75 0.21 0.18 
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By comparing the retrieved permittivity values reported in the fourth 
(for X-Bragg) and fifth (for PTSM) columns of Tables I and II with 
the measured values reported in the first row, it is clear that the PTSM 
retrieval results are in better agreement with ground measurements 
than the X-Bragg ones in all of the considered cases, except that at 30 
degrees for the “dry” surface.  
In general, a significant underestimation of  is obtained by the X-
Bragg method, whereas a reasonable or good agreement with 
measured  is obtained by the PTSM. Fluctuations of  estimates are 
probably due to measurement uncertainty (POLARSCAT 
measurement precision is ±0.4 dB [14]).With regard to the  
estimates, by comparing the sixth and seventh columns of Tables I and 
II (however, similar results are obtained also for surface 2) it is clear 
that they are smaller for the PTSM, and this seems more reasonable 
for the considered surface (which is rather smooth according to [14]). 
We note that there is a slight difference between the  values obtained 
for the wet and dry cases, and this indicates that the model is still not 
fully appropriate (in fact, roughness should be the same in both cases). 
However, this difference is smaller for the PTSM than for the X-
Bragg. A completely analogous discussion can be conducted 
regarding the estimation results (shown, among others, in Figures 5.5 
and 5.6 for PTSM and X-Bragg, respectively) relative to the surface 2. 
 
As regards the L-band AIRSAR data (1.5 GHz), the polarimetric set 
acquired in several different days over the Little Washita basin, during 
a measurement campaign, in June 1992 is here considered [15]. 
In particular, for each of the measurement day, the permittivity, soil 
moisture and roughness retrieval maps has been obtained (Figures 
5.9–5.15), exploiting the relevant (only magnitude-) polarimetric sets 
freely available online (see, for instance, the 10/06/92-image pixel 
distribution on the CP/XP dB-plane depicted in Figure 5.7). The 
original images cover an area of about 20km x 20km, and were 
acquired at a radar look-angle ranging from 20° (the bottom of the 
image in Figure 5.8) to 60° (the top of the image in Figure 5.8), with a 
pixel spacing in range and azimuth coordinates of 12m x 12m. The 
bare soil field labeled in [15] as AG002 has been selected (see the 
yellow rectangle in Figure 5.8), for which the volumetric soil moisture 
content was monitored “in situ”, and the average NRCS evaluation for 
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the different polarimetric channels over three 30x30 pixels windows 
within the considered field has been computed. The retrieved values 
of the relative dielectric constant are converted into volumetric 
moisture values mv by using the Hallikainen mixing model of [8], with 
percentages of sand and clay equal to 45.5 and 13.4, respectively [15]. 
The retrieved results for PTSM, and those provided by X-Bragg and 
by the Oh [14] and Shi [16] empirical methods, are reported in Table 
III, together with in situ measured values. 
As shown, the estimates provided by PTSM are always in better 
agreement with measured values than X-Bragg and Shi methods, but 
they are sometimes worse than Oh retrieval results. However, every 
method provides a decreasing behavior of the retrieved soil moisture 
content, according to the rainfall trend registered in the measurement 
days [15]. In order to obtain an overall view of the retrieval methods 
performances, above described results (together with retrieval results 
relevant to surfaces 1 and 2 observed at L band of [14]) are collected 
in Figures 5.5 and 5.6 for PTSM and X-Bragg, respectively. The root 
mean square (rms) value of differences between retrieved and “in situ” 
measured  values is 6.01 for the X-Bragg method and 3.24 for the 
PTSM method. In addition, the correlation coefficient r between 
retrieved and “in situ” measured  values is 0.655 for the X-Bragg 
method and 0.740 for the PTSM method. These quantitative results 
confirm that PTSM estimates are in better agreement with ground 
measurements than its “theoretical counterpart”. 
 
 

Table III 
SOIL MOISTURE RETRIEVAL RESULTS FOR AIRSAR DATA 

Day PTSM X-Bragg Oh Shi In Situ 

10/06/92 0.247±0.091 0.146±0.054 0.301±0.104 0.161±0.048 0.287 

13/06/92 0.217±0.080 0.135±0.070 0.294±0.100 0.131±0.032 0.214 

14/06/92 0.127±0.063 0.076±0.055 0.186±0.083 0.105±0.025 0.181 

16/06/92 0.110±0.079 0.082±0.055 0.153±0.084 0.087±0.012 0.173 
18/06/92 0.107±0.092 0.101±0.068 0.130±0.092 0.078±0.018 0.114 
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Figure 5.5: PTSM L-band retrieval results for surface 1 (diamonds) and 
surface 2 (triangles) of [14], and for the Little Washita Basin (squares) 
[15].The rms error is 3.24 and correlation coefficient r is 0.740. 
 

 
Figure 5.6: X-Bragg L-band retrieval results for surface 1 (diamonds) 
and surface 2 (triangles) of [14], and for the Little Washita Basin 
(squares) [15]. The rms error is 6.01 and correlation coefficient r is 
0.655. 
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Figure 5.7: pixel distribution on the CP/XP dB-plane for the AIRSAR 
dataset acquired on 10/6/92 over the Little Washita basin. 
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Figure 5.8: L band, vv AIRSAR image acquired on 10/6/92 over the 
Little Washita basin. The yellow rectangle indicates the AG002 site. 
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Figure 5.9: permittivity map relevant to the AIRSAR acquisition on 
10/6/92 over Little Washita. Black pixels: parameter non retrieved. 
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Figure 5.10: soil moisture map relevant to the AIRSAR acquisition on 
10/6/92 over Little Washita. Black pixels: parameter non retrieved. 
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Figure 5.11: roughness map relevant to the AIRSAR acquisition on 
10/6/92 over Little Washita. Black pixels: parameter non retrieved. 
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Figure 5.12: soil moisture map relevant to the AIRSAR acquisition on 
13/6/92 over Little Washita. Black pixels: parameter non retrieved. 
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Figure 5.13: roughness map relevant to the AIRSAR acquisition on 
13/6/92 over Little Washita. Black pixels: parameter non retrieved. 
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Figure 5.14: soil moisture map relevant to the AIRSAR acquisition on 
18/6/92 over Little Washita. Black pixels: parameter non retrieved. 
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Figure 5.15: roughness map relevant to the AIRSAR acquisition on 
18/6/92 over Little Washita. Black pixels: parameter non retrieved. 
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5.2.2 Retrieval results at L band: the usage of DEM 
 In this section the retrieval procedure is performed on the very 
challenging case of the polarimetric ALOS/PALSAR dataset relevant 
to the mountainous area in the neighbourhood of Collazzone, in Italy. 
Accordingly, by using ALOS/PALSAR data (work frequency equal to 
1.27 GHz) acquired in March 2009 (see Figure 5.16, in which the VV 
backscattering coefficient is depicted) at a radar look-angle of about 
23° with a pixel spacing in range and azimuth coordinates of 10m x 
3.65m, maps of estimate have been obtained, both considering and 
neglecting the information provided by the SRTM (Shuttle Radar 
Topography Mission) Digital Elevation Model (see Figure 5.17, where 
the image of the range slopes is shown), in order to get the mean value 
of the facet slopes in every pixel.  
In particular, the soil moisture map (obtained from the permittivity 
map, using the Miller & Gaskin mixing model [11]) is shown in 
Figure 5.18, and the difference with the retrieved maps of Figures 
5.10, 5.12 and 5.14 straightaway leaps out: indeed, in this case the 
retrieval algorithm returns allowable values of soil moisture only for a 
small percentage of pixels (the non-black ones). Most likely, this is 
due to the presence of dense vegetation in most part of the scene and 
to the small radar look-angle employed by PALSAR, which turns in a 
thickening of the image pixel distribution on the CP/XP dB-plane (see 
Figure 5.19) and in a consequent reduction of the PTSM sensitivity 
with respect to the dielectric constant (see Figure 5.3). 
Unfortunately, no “in situ” measurements on this site were carried out 
at the same time of PALSAR acquisitions, and so a comparison 
between retrieved values and the ground truth cannot be performed. 
Nevertheless, to get an idea of how the slope-correction improves the 
performances of the retrieval algorithm, it is possible to compare 
retrieval results obtained by using information provided by the DEM 
with those obtained assuming ==0 (i.e., ignoring the DEM) [1]. 
On this purpose, the histograms of retrieved pixels for the two 
considered methods, together with their difference, are depicted in 
Fig. 5.20.: as shown, a larger number of retrieved pixels is obtained 
after the compensation of the mean slopes for values of slopes higher 
than about 0.02 and lower than about 0.3. As expected, in flat areas no 
improvement is obtained from the use of DEM information. 
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Figure 5.16: L band, vv ALOS/PALSA image acquired on 30/3/09 over 
the Collazzone area. 
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Figure 5.17: range slopes image obtained from the DEM of the 
neighbourhood of Collazzone. 
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Figure 5.18: soil moisture map relevant to the ALOS/PALSAR 
acquisition over Collazzone. Black pixels: parameter non retrieved. 
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Figure 5.19: pixel distribution on the CP/XP dB-plane for the PALSAR 
dataset acquired on 31/03/2009 over the Collazzone area. 
 

 
 
Figure 5.20: normalized number of retrieved pixels at the variance of 
the facet slopes obtained with (continuous line) and without (dashed 
line) the slope correction. The dotted line represents the difference 
between the two histograms. 
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5.2.3 Retrieval results at S band 
In this subsection the backscattered coefficients acquired by the 

Astrium Ltd. airborne SAR demonstrator (work frequency equal to 3.2 
GHz) are employed, to test the PTSM based retrieval algorithm on the 
not often inspected S band SAR data [17, 18].  
In particular, the fully polarimetric sets acquired over the 
Marlborough area, in UK,(whose the HV NRCS are depicted in Figure 
5.21-(a)), at a radar look-angle ranging from 10° to 43°, with a pixel 
spacing in range and azimuth coordinates of 0.835m x 0.35m are used 
to perform the estimate. As the area does not exhibit a significant 
topography, no DEM information has been exploited in the retrieving 
procedure. 
It is clear, from Figures 5.22-(a) and (b), that the parameters are 
retrieved in only few fields, but in most of the pixels of the images the 
algorithm didn’t succeed. Probably, this is due again to the presence 
of dense vegetation in most areas of the observed scene. 
Unfortunately, also in this case no “in-situ” measurements were 
carried out at the same time of the SAR acquisitions, and so a 
comparison between retrieved values and the ground truth cannot be 
performed.  
However, since both the amplitude and phase information are 
available, the Pauli decomposition (Section 2.1.5) has been performed 
on these polarimetric sets, in order to represent the dominant 
scattering mechanism for each pixel (see Figure 5.21-(b),wherein the 
volume, surface and double bounce scattering type components are 
coded in red, green and blue, respectively) and to have a qualitative 
measure of the algorithm performances. Accordingly, as expected, in 
Figure 5.21-(b) all the forestry areas are represented in a reddish color 
(as they are representative of the scattering from canopy) and they are 
substantially the areas for which the algorithm does not return an 
allowable retrieval result. 
Conversely, in most of the areas classified in shade of blue or green, 
the algorithm works and, even if a comparison with the ground truth 
cannot be performed, it seems to return reasonable values. 
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                               (a)                                                      (b)                
Figure 5.21: S band, hv Astrium images (a) and the relevant RGB-
coded Pauli decompositions (b) for the Marlborough area. 
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                                (a)                                              (b)                    
Figure 5.22: soil moisture (a) and roughness (b) retrieved map for the 
Marlborough area. Black pixels: parameter non retrieved. 
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5.2.4 Retrieval results at X band 
In this section retrieval results at X band are finally discussed. In 

particular, here are considered COSMO-SkyMed images (work 
frequency equal to 9.6 GHz) acquired on 03/05/2010 (VV and VH 
channels) and 04/05/2010 (VV and HH channels) over the area of 
Collazzone, in Italy, at a look-angle of 40° with a pixel spacing in 
range and azimuth coordinates of 10 m x 10 m, and again the retrieval 
procedure is performed on these data, obtaining the soil moisture and 
roughness map depicted in Figures 5.24 and 5.25. As it might be 
expected, due to the higher frequency, the measured NRCS tend to 
cover a narrow region on the CP/XP the dB-plane (see Figure 5.23) 
and the overall appearance of the retrieval maps in X band turns out to 
be noisier than L and S band ones.Unfortunately, in situ measurements 
in conjunction with COSMO-SkyMed acquisitions are not available 
until now, so a direct method validation at X band cannot be provided. 
However, just to get an idea of the potentialities of the PTSM at X 
band, a simulated COSMO-SkyMed image is here used. In particular, 
COSMO-SkyMed parameters has been exploited to simulate [19] bare 
soil SAR images at the variance of the permittivity and the roughness 
(see Figure 5.27). Accordingly, the X-Bragg, Shi and Oh retrieval 
techniques has been performed on this simulated data set, but in this 
case only the PTSM provides physically meaningful results (see Table 
IV), while other methods provide retrieval results out of the 
reasonable ranges (permittivity values lower than 2 or larger than 40). 

 

 
Figure 5.23: pixel distribution on the CP/XP dB-plane for the COSMO-
SkyMed dataset over Collazzone. 
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Figure 5.24: X band, hh COSMO-SkyMed image acquired on 
04/05/2010 over Collazzone. 
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Figure 5.25: soil moisture map relevant to the COSMO-SkyMed 
acquisition over Collazzone. Black pixels: parameter non retrieved. 
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Figure 5.26: roughness map relevant to the COSMO-SkyMed 
acquisition over Collazzone. Black pixels: parameter non retrieved. 
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Figure 5.27: simulated COSMO-SkyMed image with areas with 
different relative dielectric constants. 
 
 
 

Table IV 
PERMITTIVITY RETRIEVAL RESULTS FOR SIMULATED COSMO-SKYMED DATA 

Simulated  = 0.01 = 0.1 
3 3.31 2.55 
8 8.27 6.64 

15 15.00 12.2 
20 20.00 16.2 
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Summary and conclusions 
 

In this thesis polarimetric two-scale surface scattering model 
(PTSM) has been introduced and employed to retrieve the surface 
parameters of bare soils from polarimetric SAR data. Unlike other 
similar existing approaches, here large-scale-roughness induced 
random variations of both local incidence angle and local incidence 
plane have been considered, and their statistical modeling has not 
been arbitrarily chosen, but it has been derived from a proper 
statistical description of the scattering surface. The model can be 
applied to scenes with a significant topography, as it also provides the 
opportunity to get information from Digital Elevation Models in order 
to account for a non-zero-mean terrain slope within a resolution cell. 
The forecasts on the power density of the diffuse field provided by the 
PTSM represented the core on which the developed estimate 
procedure has been founded. In particular, the proposed retrieval 
algorithm returns the permittivity, soil moisture and (large scale) 
roughness estimate maps from measured co-pol cross-pol ratio. It is 
worth noting that the proposed method only requires the amplitudes of 
the three polarimetric channels, whereas phase information is not 
needed. Accordingly a wide variety of SAR data, acquired at different 
bands has been employed, to provide retrieval results and to test the 
performances of the model. 
In particular, presented results at L band show that the proposed 
technique is very promising, as the retrieved values are in very good 
agreement with the available ground truth. Although for the moment 
“in situ” measurements are only available for flat areas, an indirect 
validation has been presented for a region with a significant 
topography. 
Concerning the performances at S band, the method has been tested on 
a natural area, where it succeeds in most of the bare soil fields 
Although no “in situ measurements” were executed on this site at the 
same time of the sensor acquisitions, retrieval results seems to be 
reasonable and in accordance with the features of the scene. 
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Finally, as regards estimate maps at X band, of course they appear 
more noisy than those obtainable at lower bands, even if a comparison 
with simulated data show good potentialities of the retrieval procedure 
also in the high frequency case. 
Besides, a second original contribution presented in this work regards 
the physical reading of the Kirchhoff Approach (KA) solution for the 
electromagnetic scattering from natural surfaces. Accordingly, first of 
all, it has shown that the Kirchhoff scattering pattern of an fBm 
(fractional Brownian motion) surface is proportional to the probability 
density function (pdf) of a symmetric alpha-stable 2D random 
variable, whose dispersion parameter  is related to the variance of 
fBm surface slopes, as observed at the electromagnetic wavelength 
scale. Such a pdf that can be interpreted as the pdf of the slopes of an 
equivalent rough surface whose GO (Geometrical Optics) scattered 
power density is equal to the scattered power density of the actual 
fBm surface. 
In order to give a physical interpretation to this interesting result, it 
has been stated that the fBm surface Kirchhoff scattering pattern 
expression can be interpreted by considering the overall fBm surface 
as composed of many rough surface elements large with respect to the 
wavelength, so that the mean square value of the overall scattered 
field is obtained by averaging the scattering diagrams of rough surface 
elements over the their slopes, as observed at the wavelength scale. 
This is in some analogy with the usual two-scale or composite surface 
methods, with the important difference is that the surface multi-scale 
behavior is “intrinsically” taken into account by the scattering 
formulation, so that no artificial separation, or cut-off, scale need to be 
defined. 
 


