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CHAPTER I 
 



 

 

INFLAMMATION  
 
Inflammation is a defense reaction to an injury of different type 

(bacterial, physical, chemical etc.), whose ultimate purpose is the 

elimination of injurious cause and the restoration of tissue integrity. 

Signs and symptoms of inflammation depend upon the interaction among 

different cells and mediators into the damaged tissue.  

Cells involved are either leukocytes recruited from circulation and those 

resident into the tissue, such as mast cells, macrophages, but also stromal 

cells, such as endothelial cells, fibroblasts, smooth muscle. Inflammatory 

mediators are produced by all cells involved, stromal and recruited.  

Depending on their biochemical properties, inflammatory mediators may 

be classified into seven groups: vasoactive amines, vasoactive peptides, 

complement components, lipid mediators, cytokines, chemokines and 

proteolytic enzymes (Medzhitov et al., 2008). 

Biogenic amines are preformed mediators, stored into mast cell and 

platelet granules released following activation. Their main effect is on 

vasculature, where they cause increased vascular permeability and 

vasodilatation. Vasoactive peptides can be stored in secretory granules, 

such as substance P, or generated by proteolysis, such as bradykinin; 

these peptides also affect vasculature and have pro-algesic effect. 

Complement fragments, such as C3a, C4a and C5a promote cell 
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recruitment into the damaged tissue. Lipid mediators, eicosanoids and 

platelet activating factors (PAF), derive from arachidonic acid as 

products of cyclooxygenases (prostaglandins and thromboxane) or as 

products of lipooxygenase (leukotrienes and lipoxins), or from 

lysophosphatidic acid (PAF). Prostaglandins, leukotrienes and PAF all 

participate to cause signs of inflammations, vasodilatation or smooth 

muscle contractions, cell recruitment, pain, fever; on the other hand, 

lipoxins are involved in resolution of inflammation and tissue repairing 

processes. Proinflammatory cytokines (IL-1, IL-6, TNFα and many 

others) have several roles in inflammatory response, they activate cells 

and induce acute phase response; antinflammatory cytokines, such as IL-

10, can inhibit the production of inflammatory cytokines and down-

regulates previously activated cells. Chemokines are responsible of cell 

recruitment into the damaged tissue. Proteolytic enzymes, 

metalloproteinases, cathepsins, elastin, have a role in degrading 

extracellular matrix, in tissue remodeling and leukocyte migration (Pober 

and Sessa, 2007; Barton et al., 2008). 

In other words, all cells, either recruited or stromal participate actively to 

the inflammatory process through the production of soluble mediators 

responsible, in turn, for other cell recruitment. In this way the 

inflammatory process, with its actors, cells and mediators, possess a 

great“self-amplifying” ability (Figure 1).  
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Over the years the list of soluble mediators involved in the inflammatory 

response has been growing until nowadays when it’s known that close to 

the early recognized inflammatory mediators, first biogenic amines and 

then prostaglandins, cytokines, chemokines, growth factors all 

participates in a coordinated network to orchestrate the inflammatory 

response. However, the ultimate purpose of inflammation is the 

restoration of tissue integrity (Medzhitov et al., 2008).  
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Figure 1. Cellular components of inflammation. 
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It is known that the natural outcome of the acute inflammatory program 

is the resolution and repair of tissue damage; failure of this program 

leads to chronic inflammation and loss of organ function. Thus together 

with pro-inflammatory mediators there are as many anti-inflammatory 

whose role is to dampen out inflammation.  

Resolution of inflammation may be considered an integral component of 

the program of acute inflammation. It is an active process regulated by 

natural immunosuppressive mechanisms, representing a “metabolic 

switch” to preserve host defense and tissue integrity. During the early 

stage of an inflammatory response a large number of leukocytes are 

recruited from circulation; at the end of the inflammatory process, these 

effectors cells will be cleared due to the loss of survival signals derived 

from the interactions with stromal cells, leading to apoptosis and 

subsequent phagocytosis of dead cells by monocytes – derived 

macrophages. Once phagocytosis is complete, macrophages exit the 

inflamed site by lymphatic drainage (Serhan and Seville, 2005; Serhan, 

2007). Another important aspect of resolution is that stromal cells that 

hosted the inflammatory event revert back to a no-inflammatory 

phenotype (Filer et al., 2006). In chronic inflammation, the resolution 

phase is prolonged and disordered, leading to the persistence of cell 

infiltrate that become rich in monocytes and T lymphocytes rather than 

neutrophils.  
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Thus, inflammation is also a “self-limiting” process; its turning into a 

chronic process can be understood as being the result of either the 

persistence of a stimulus, or of a deregulation of the endogenous anti-

inflammatory mechanisms that normally regulate its resolution (Serhan 

and Saville, 2005; Lawrence and Gilroy, 2007) (Figure 2). A novel anti-

inflammatory therapeutic approach would be to potentiate those 

mechanisms involved in the resolution phase. 

 



 

Figure 2.Illustration of the cellular kinetics and sequential release of mediators during the 
evolution of the inflammatory response from onset to resolution. (A) Inflammation causes the 
immediate and sequential release of signalling factors to neutralize the injurious agent. (B) 
Failure of acute inflammation to resolve adequately could result in chronic inflammation (C) 
Thus, for the effective resolution of acute inflammation we need to curtail further influx of 
inflammatory leucocytes signal monocytes/macrophages to phagocytose and clear all these cells 
from the site of injury once the inflammatory stimulus posses no further threat. (Lawrence and 
Gilroy, 2007). 
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Linking inflammation and haemostasis 

 
Inflammation and haemostasis cannot be considered as two separate 

processes, since there are several connecting points making them part of 

unique, defensive host response. There is much evidence that 

inflammation triggers haemostatic imbalance. Experimental and clinical 

data demonstrate that inflammation is associated to an increased risk of 

cardiovascular events (Cicala and Cirino, 1998; Jurado and Ribero, 

1999; Cicala et al., 2007).  

During an inflammatory state, several cytokines by acting on the 

expression and synthesis of several proteins involved in coagulation and 

fibrinolysis are responsible for impairing the balance between pro- and 

anti- coagulant factors toward a pro-thrombotic state (Cicala and Cirino, 

1998). Indeed, proinflammatory cytokines (IL-1 and TNFα) increase 

tissue factor (TF) expression. TF is a 44000 molecular weight 

membrane-bound glycoprotein binding factor VIIa (Marmur et al., 

1996). The TF-VIIa complex activates factor X and factor IX, thereby 

initiating proteolytic cascades that result in thrombin formation and 

blood clotting (Fay et al., 2010). At the same time, cytokines, and in 

particular TNFα,  are mainly responsible for the downregulation of 

thrombomodulin (TM).  

TM is a high affinity receptor protein for thrombin and it is expressed on 

the endothelial surface. The thrombin-TM complex activates Protein C, 
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stimulating the fibrinolytic pathway. In the case of inflamed tissue, 

thrombin is not able to bind TM and therefore the fibrinolytic pathway is 

not activated. This phenomenon is due to the TM down-regulation 

caused by cytokine release into the inflamed site. In this way, it is clear 

that there is an alteration of the coagulative cascade that may lead to 

critical thrombus formation (Esmon, 2003) (Figure 3).  

Endothelium might be considered a surface interfacing inflammation and 

haemostasis. In particular, when the endothelium is under physiological 

conditions, the balance between its pro-and anti-thrombotic features is 

preserved; on the contrary, when the endothelium is damaged, it looses 

these properties and becomes an idoneous surface in which the first 

contact between inflammation and haemostasis takes place (Cicala and 

Cirino, 1998; Goran et al., 2006; Esmon et al., 2011).  
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Figure 3. The impact of coagulation on inflammation and the impact of 
inflammation on coagulation. Coagulation triggers platelet activation and 
leads to P selectin and CD40 ligand expression platelet surface. Inflammation 
in turn leads to tissue factor induction, leukocyte adhesion, thrombomodulin 
down regulation, and complement activation. Thus coagulation increases 
inflammation that in turn increases coagulation (Esmon et al., 2011). 
 

Another important aspect to be considered when the link between 

haemostasis and inflammation is examined is the contribution of 

platelets to both processes (Lindemann et al., 2001; Ruggeri, 2006). 

Platelets are considered like effective elements of the inflammatory 

system. Under physiological conditions, platelets circulate freely in the 

blood. On the contrary, when endothelium is damaged, platelets adhere 

to collagen fibres of the subendothelium, thereby becoming activated. 

Activated platelets express on their surface molecules driving platelet-

endothelium adhesion and platelet-leukocytes interaction (Figure 4).  
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Figure 4. Representation of thrombus development: A) vasoconstriction; B) 
primary hemostasis; C) secondary haemostasis; D) thrombus and anti-
thrombotic events. 
 

For example, P-selectin, translocated on platelet surface following 

activation, engages its receptor P-selectin glycoprotein -1 (PSGL-1) on 

polymorphonuclear (PMN) and monocytes; the interaction of platelets 

with leukocytes may result in local fibrin deposition through an 

increased TF expression in these cells (Palabrica et al., 1992; Celi et al., 

1994; Maugeri et al., 2006). 

The platelet receptor GPIbα, engaged on platelet surface following 

activation, binds to P-selectin and von Willebrand factor (vWF) 

externalized by endothelial cell granules following vascular damage 

(Nurden, 2011).  

Other adhesive proteins that have been described on platelets, important  

for cell-cell interaction, are CD40 and CD40L. On activated platelet 

A B 

C D 



 

 16 

surface, CD40L by binding CD-40 (its counter-receptor on endothelial 

cells and monocyte/macrophages), promotes platelets-monocytes and 

platelets-endothelial cells interactions (Zarbock et al., 2007). The 

interaction between CD40L-CD40 promotes cell-cell adhesion but also 

up-regulates several functions in monocytes, such as chemokine and 

cytokine secretion, expression of tissue factor, upregulation of adhesive 

receptors and differentiation of monocytes into macrophages (Henn et 

al., 1998; Li et al., 2008; Cerletti et al., 2011). 

Another important molecule promoting platelet adhesion to endothelium 

and monocytes is C reactive protein (CRP). C reactive protein is an acute 

phase protein whose synthesis in the liver is under the control of 

cytokines. CRP has also been found in the walls of damaged vessels and 

into atherosclerotic plaques (Hirschfield and Pepys, 2003). 

CRP consists of five identical subunits of 206 aminoacids each; 

pentameric CRP can be dissociated in monomers either in vitro or in 

vivo. Pentameric and monomeric forms of CRP have been shown to 

possess different biological activity. Platelets express CRP receptors 

FcγRIII (CD16) and FcγRIIa (CD32) (Filep, 2009). It has been shown 

that pentameric CRP by binding to FcγRIIa on platelets inhibits 

platelets-neutrophils interactions (Khreiss et al., 2004). On the contrary, 

monomeric CRP, by binding to FcγRIII on platelets promotes platelet-

neutrophils interaction (Filep, 2009). Furthermore, activated platelets 
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convert pentameric CRP to monomeric. Thus, it is worth noting that 

CRP regulates platelet activation and, in turn, platelet activation 

regulates the conformational status and biological function of CRP. 

Thus, monomeric CRP, through platelet activation may lead to monocyte 

activation, thus representing an important mechanism linking 

platelet/monocyte activation and invasion of the vascular wall (Yaron et 

al., 2006; Danenberg et al., 2007; Fay, 2010).  

Furthermore, CRP inhibits also fibrinolytic pathway by inhibiting the 

release of tissue plasminogen activator (t-PA) and stimulating the release 

of plasminogen activator inhibitor-1 (PAI-1) from endothelial cells 

(Devaraj et al., 2003; Singh et al., 2005). In summary, CRP, that since 

long time has been considered a marker of cardiovascular risk during 

inflammation, is now known to play an active role in linking 

inflammation and thrombosis by affecting the function of blood platelets, 

coagulation cascade and the fibrinolytic pathway.  

Adenine nucleotides (ATP and ADP) are platelet activators; conversely, 

adenosine, the final product of the nucleotide hydrolysis, is a vasodilator 

and inhibitor of platelet aggregation (Burnstock, 1990). In an 

inflammatory environment, ADP released from activated platelets 

contributes to stimulate other platelets. CD39 is an ecto-nucleoside 

triphosphate diphosphoydrolase (E-NTPDase), ubiquitously expressed 

on cell surface, metabolizing ATP to ADP and to AMP, thus reducing 
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ADP concentration at the site of injury. Hence, CD39 has been 

considered a key modulator of thrombus formation. In an inflammatory 

environment the loss of CD39 activity from activated endothelium 

sustains platelet aggregation and thrombogenesis (Atkinson et al., 2006). 

On the other hand, within a damaged tissue  the increased expression of 

CD39 on inflammatory cells, working in tandem with CD73 (catalyzing 

the conversion of AMP to adenosine) might cause inhibition of  platelet 

activation by increasing extracellular adenosine levels (Johnston-Cox et 

al., 2010).  
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ADENOSINE  

 
Prolonged and inappropriate inflammation due to the persistence of 

cytotoxic proinflammatory molecules may cause destruction of normal 

bystander cells. Thus, prolonged and inappropriate inflammation must be 

regulated by natural immunosuppressive mechanisms, representing a 

“metabolic switch” to preserve host defense and tissue integrity. 

Adenosine and its receptors are possible candidates involved in the 

natural down-regulation of inflammation (Linden, 2006; Fredholm, 

2007) 

Adenosine is a nucleoside always present both within and outside cells in 

nanomolar concentration (10 – 100 nM) under physiological conditions, 

deriving by the breakdown of intra – or –extra cellular adenine 

nucleotides. Physiologically, adenosine concentration is constant and 

finely regulated by an equilibrium between the extracellular release and 

the cellular re –uptake and its conversion to inosine. Two enzymes 

regulate this equilibrium: adenosine deaminase (ADA) and adenosine 

kinase. ADA is mainly a cytosolic enzyme but can also appears on the 

cell surface of several immune and non immune cells (ectoADA); ADA 

catalyzes the deamination of adenosine to inosine. Adenosine kinase is 

an intracellular enzyme catalyzing the adenosine phosphorylation to 

AMP (Bours et al., 2006).  
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Following trauma or cellular stress, such as during hypoxia, ischemia or 

inflammation, extracellular adenosine levels increase rapidly following 

ATP degradation (Fredholm, 2007).  

Two ecto – enzymes working in concert, the nucleoside triphosphate 

diphosphohydrolases, ecto-apyrase (CD39), and an ecto- 5’- nucleotidase 

(CD73), are involved in the adenine nucleotides (ATP and AMP 

respectively) breakdown in adenosine; they are located on cell surface 

but may be found as soluble forms in the interstitial medium and in body 

fluids (Schetinger et al., 2007) (Figure 5).  

 

 

Figure 5. Metabolism of adenosine 

 

Extracellular adenosine accumulation represents an early endogenous 

signal controlling inflammation and immune responses. Adenosine 

protective effects fall in four main mechanisms: it is protective against 

ischemic damage by cell conditioning; it increases the ratio of oxygen 
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supply to demand; it promotes angiogenesis and it has antinflammatory 

effects. (Lankford et al., 2006; Fredholm, 2007) (Figure 6). 

 

Figure 6.The inflammatory response to infection or tissue damage depends on 
the coordination of adenine nucleotide metabolism and signaling among many 
cell types via purinergic receptors that recognize ATP, ADP, or adenosine. A 
neutrophil migrating toward a chemotactic stimulus (fMLP) releases ATP 
from its leading edge. ATP is dephosphorylated by ectoenzymes (CD39 and 
CD73) to ADP and adenosine. Gradients of ATP and adenosine initiate and 
accelerate directional chemotaxis via P2Y2 and A3 adenosine receptors, 
respectively, on neutrophils. Other adenosine receptors (A2A and A2B) inhibit 
neutrophil chemotaxis and adhesion to endothelial cells, as well as platelet 
aggregation. 
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Adenosine Receptors 

 
Adenosine effects are mediated through the interaction with four G-

protein coupled receptors, indicated as A1, A2A, A2B, A3, (Figure 7), 

belonging to the family of purinergic P1 receptors. They are widely 

expressed on a variety of immune and non immune cells (Table I). 

Although they bind the same agonist, they differ in several aspects, 

including their affinity binding for the agonist; their expression profile in 

different cell types; the identity of the G – proteins to which they are 

coupled and their sensitivity to receptor phosphorylation. All these 

factors combined determine the extent, the duration and the outcome of 

cellular exposure to adenosine and, in the end, dictate the nature of the 

response to adenosine tissue accumulation (Polosa 2002; Hasko and 

Cronstein, 2004).  

 
 
Table I: Pharmacological classification and anatomical distribution of adenosine-
receptor subtypes. 
 

 

 

 

 

 
 

Receptor 
subtype 

Agonist Antagonists Distribution 

A1 CHA>NECA>CGS21680 DPCPX>XAC>CGS15943
>SPT 

Heart, adipocytes, respiratory smooth 
muscle, neutrophils, kidney, hippocampus 
cortex 

A2A CGS21680~NECA>>CHA ZM241385~SCH58261~C
GS15943>XAC>DPCPX 

Platelets, neutrophils, vasculature, 
pancreas, mast cells, striatum 

A2B NECA>CHA>>CGS21680 XAC>CGS15943>DPCPX Vascular, intestinal and respiratory 
smooth muscle, chromaffin tissue, mast 
cells, brain 

A3 2-CI-IB-
MECA>APNEA>NECA~ 

CGS21680 

MRS1220~IABOPX>L268
605>>XAC>DPCX 

Testis, kidney, lung, must cells, 
eosinophils, neutrophils, heart, cortex, 
striatum 
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A1 adenosine receptor (A1R), a high affinity receptor, is coupled to a Gi and Go 

proteins, its activation results in adenylyl cyclase activity inhibition and 

increased activity of phospholipase C (PLC) through Gβγ subunits. Into the 

cardiac muscle, A1R can activate a potassium channel, leading to an increased 

K+ efflux from the cell. This adenosine receptor subtype is found in adipose 

tissue, heart muscle, central nervous system, airways and inflammatory cells 

such as neutrophils. 

A2Aadenosine receptor (A2AR), a high affinity receptor, is coupled to a Gs 

protein, its activation results in the increase of adenylyl cyclase activity. 

A2A receptors are expressed in the central nervous system, vascular 

smooth muscle, endothelium and on neutrophils, platelets, mast cells and 

T cells. 

A2B adenosine receptor (A2BR), a low affinity receptor, is coupled to both 

Gs and Gq, its activation may lead to increased adenylyl cyclase activity 

(Gs) or to phospholipase C (PLC) activation (Gq) resulting in calcium 

mobilization. It has been identified widely including in the brain, human 

bronchial epithelium, endothelial cells, muscle cells, neurons, glial cells, 

fibroblasts and mast cells.  

A3 adenosine receptor (A3R), a low affinity receptor, is coupled to a Gi 

and its activation results in adenylyl cyclase activity inhibition but it can 

also stimulate PLC, leading to increased calcium concentration. The A3 
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receptor is widely distributed, being found in the kidney, testis, lung, 

mast cells, eosinophils, neutrophils, the heart and brain cortex.  

Adenosine receptors are expressed on all cell types involved in 

orchestrating an inflammatory/immune response, including 

monocytes/macrophages, dendritic cells, mast cells, neutrophils, 

eosinophils, platelets, fibroblasts, epithelial cells, endothelial cells. 

Through the interactions with its receptors adenosine may be beneficial 

or detrimental to tissues (Polosa, 2002; Linden, 2001; Burnstock, 2006). 

 

Figure 7. Adenosine receptors 
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Adenosine and inflammation  

 
As described above, inflammatory tissue injury is accompanied by 

increased levels of extracellular adenosine; the most important factor 

causing adenosine accumulation is hypoxia in inflamed tissue.   

Recently, considerable evidence has been accumulated on adenosine 

involvement in inflammation through activation of its receptors. The 

interest on the role of adenosine in inflammation has been growing also 

following the finding that some antinflammatory drugs, nimesulide, 

salycilates, and methotrexate exert their effects through adenosine 

signaling (Capecchi et al., 1993; Cronstein,et al., 1993; 1999; Cronstein, 

1994; Amann and Peskar, 2002; Bernardi et al., 2007).  

On inflammatory cells, adenosine may have opposite effect, being 

protective or harmful, depending on receptor subtype activation. This 

discrepancy between pro - and anti- inflammatory adenosine effects 

might also been attributed to the different receptor distribution in 

different tissue and/or to an alteration of tissue receptor expression under 

pathological conditions (Zimmermann, 2000; Bours et al., 2006).   
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Adenosine A2A receptor and inflammation  

 
There is in vitro and in vivo evidence that adenosine signalling through 

A2A receptor plays the major role in controlling inflammation and 

immune response.  

In vitro studies have demonstrated that A2A activation on neutrophils 

inhibits oxidative burst and chemokine production in response to several 

stimuli (Cronstein et al., 1986; 1988; Barnes et al., 1995; McColl et al., 

2006) and on human monocytes the release of proinflammatory 

cytokines. Trough A2A receptor on lymphocytes, adenosine inhibits 

activation and expansion. The majority of A2A receptor inhibitory effects 

on immune and inflammatory processes have been propose to occur via 

cAMP/PKA activation. (Huang et al., 1997; Haskò and Cronstein, 2004; 

Haskò et al., 2007). 

Studies performed in vivo have demonstrated that administration of 

selective A2A agonists inhibits inflammation in models of ischemia 

reperfusion injury of various organs; A2A inhibits also lung inflammation 

caused by pro- inflammatory stimuli (Palmer and Trevethick, 2008).  

Furthermore, in vivo studies have demonstrated that administration of the 

A2A agonist, CGS21680 to ovalbumin (OVA) sensitized mice reduces 

cell influx to the airways (Bonneau et al., 2006). The protective effect of 

A2A receptor has also been demonstrated in a murine model of LPS-

induced acute respiratory distress syndrome (Thiel et al., 2005). 
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Furthermore, it has been demonstrated that A2A activation also protects 

from stress – induced gastric lesion in the rat that are dependent upon 

neutrophil infiltration (Odashima et al., 2005). It has been shown that 

A2A receptor activation on neutrophils increases COX2 expression and 

the following production of PGE2, a prostanoid with antinflammatory 

properties (Cadiaux et al., 2005). More recently it has been demonstrated 

a beneficial role for A2A agonist, CGS21689, also in a model of chronic 

inflammation, as collagen induced arthritis in mice (Mazzon et al., 

2011). 

A2A adenosine receptor has also been shown to play a role in matrix 

deposition and wound healing in a damaged tissue, contributing to either 

fibrotic disorders and repairing processes (Montesinos et al., 1997; Chan 

et al., 2006A; Cronstein, 2006) (Figure 8) 

 

 



 

 28 

 

 
 
Figure 8. During inflammation, the formation of a blood clot re-establishes 
hemostasis and provides a provisional matrix for cell migration. Cytokines 
play an important role in the evolution of granulation tissue through 
recruitment of inflammatory leukocytes and stimulation of fibroblasts and 
epithelial cells 
 

 

By performing experiments in A2A deficient mice it has been 

demonstrated that A2A receptor signaling represent an endogenous 

antinflammatory mechanism; indeed, mice deficient in A2A receptor 

display an exaggerated inflammatory response in models of hepatitis and 

sepsis  (Ohta et al., 2001; Chan et al., 2006 B). Furthermore, mice 

lacking A2A receptor have shown exaggerated lung inflammation and cell 

infiltration following sensitization (Nadeem et al., 2007).  
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A2A receptor expression on immune and endothelial cells is up-regulated 

by inflammatory cytokines (IL-1β, TNFα) (Khoa et al., 2004; Nguyen et 

al., 2003). All these data support the hypothesis that in an inflammatory 

environment signaling through A2A receptor functions to switch off the 

inflammatory process. 

 

Ectonucleotidases 

 
Ectonucleotidases are enzymes that hydrolyze extracellular nucleotides 

to their respective nucleosides. There are four major families of 

ectonucleotidases, namely E-NTPDases (ATP to ADP and ADP to 

AMP), alkaline phosphatases (ATP to ADP to AMP to Adenosine), E-

NPPtype pyrophosphatase/phosphodiesterase (ATP to AMP) and Ecto-

5’-nucleotidase (AMP to adenosine). The distribution of 

ectonucleotidases is as ubiquitous as that of nucleotide receptors 

(Schetinger et al, 2007). 

Although there is much work confirming adenosine protective role in 

inflammation, it is not yet clear the mechanism at the basis of adenosine 

antinflammatory effect neither how steps involved in extracellular 

adenosine accumulation are regulated during inflammation. 

Two ectonucleotidases (CD39 and CD73) play a key role in extracellular 

adenosine accumulation. NTPDase 1 (CD 39), ecto-apyrase, degrades 

equally well ATP and ADP. Ecto 5’- nucleotidase (CD73) degrades 
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AMP in adenosine. The central function of these enzymes is to increase 

extracellular production of adenosine.  

To date, it is has been shown that stimuli causing adenosine 

accumulation cause also an increased expression of these enzymes on 

cells (Robson et al., 2006; Schetinger et al., 2007).  

There is evidence that inflammatory stimuli increase CD39 and CD73 

expression and/or activity on cells involved in the inflammatory/immune 

responses, such as neutrophils, monocytes, lymphocytes. It has been 

demonstrated that following hypoxia activated neutrophils release ATP; 

at the same time hypoxia induces an increased expression of CD39 and 

CD73 on vascular endothelium causing a rapid formation of adenosine 

deriving from ATP breakdown. Adenosine, in turn, via A2A activation 

inhibits neutrophil function; indeed, knock out mice for these enzymes 

show increased neutrophil accumulation following hypoxia (Eltzschig et 

al., 2004). Thus, the increased adenosine levels provide a negative 

feedback signal that counteract neutrophil activation; high levels of 

extracellular adenosine, following tissue damage, are conserved by the 

increased CD39 and CD73 expression (Eltzschig et al., 2004; Bours et 

al., 2006). In vivo, by performing experiments in CD39 null mice it has 

been shown that CD39 is required for optimal stimulation of hapten 

reactive T-cell (Mizumoto et al., 2002).  
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Both CD39, ecto– apyrase, and Cd73 on endothelial cells play a 

protective role against vascular injury. In a model of hypoxia in vivo, in 

knock out mice for CD73 it has been shown that this enzyme through the 

generation of extracellular adenosine plays a crucial role for vascular 

leakage (Thompson et al., 2004). 

In mice airways, CD39 and CD73 have shown to be an innate protective 

pathway from damage caused by mechanical ventilation (Eckle; 2007). 

Both enzyme are also over expressed in airways of mice following LPS-

induced lung injury and play a role in attenuating polymorphonuclear 

trafficking (Reutershan et al., 2009).  

As described above, CD39 plays a critical role in the control of vascular 

thrombosis; it has been shown that following endothelial cell activation 

the ATPDase is lost and this might contribute to vascular damage 

(Atkinson et al., 2006). Nonetheless, transgenic mice overexpressing 

CD39 are protected from myocardial ischemia injury (Cai et al., 2011; 

Deaglio et al., 2011).  

Thus, these enzymes might represent a key step of a natural metabolic 

switch whose final product is represented by adenosine. A better 

knowledge on the role of these enzymes in inflammation would help to 

clarify the physiopathology of inflammation and to identify therapeutic 

target that activate endogenous protective mechanisms.  
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INTERLEUKIN 17 
 

Interleukin-17: family overview 

 
IL-17A, a 153 amino acid polypeptide, is the oldest described member of 

IL-17 family. It represents the prototypic member of a family of 

cytokines that also includes IL-17B, IL-17C, IL-17D and IL-17F (Table 

II and Figure 9). IL-17E was independently identified; now it has been 

renamed IL-25 and it is no longer considered as a member of IL-17 

family, it has been shown to have anti-inflammatory properties by 

inducing Th2 responses (Kolls and Linden, 2004). IL-17 (synonymous of 

IL-17A) is a homodymeric glycoprotein of 155 aminoacids and a 

molecular weight (MW) of 35 kDa.  

All members of this cytokine family, except IL-17B, exert their 

biological effects as dimers, by binding to IL-17 receptors that are 

ubiquitously expressed.  

IL-17A and IL-17F are the best characterized members of this cytokine 

family. Both are homodimers, but recent findings show that mouse and 

human CD4+ cells can produce heterodimer forms of IL-17A-IL17F 

(Chang et al., 2007).  

IL-17 is mainly produced by a subset of T helper cells (CD4+ cells) 

termed Th17, phenotypically and functionally distinct from Th1, Th2 

and T regulatory cells (T reg).  
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In mice, the presence of two cytokines, transforming growth factor β 

(TGFβ) and IL-6, is responsible for naïve Th cells polarization towards a 

Th-17 subtype; both cytokines cause upregulation of  IL-23 receptor 

expression on T cells and, in turn, IL-23, together with IL-12, stimulates 

IL-17 production in Th17 cells. Humans Th17 display similarities and 

differences in their differentiation, with mouse Th-17 cells: IL-1β, IL-23 

and IL-6 seems to drive differentiation of naïve Th cells towards Th-17, 

however is still unclear the role of TGFβ. It is worth noting that besides 

Th-17, other cell types can produce IL-17 such as natural killer T cells 

and neutrophils (Aggarwal et al., 2002).   

 

Table II : The human IL-17 cytokine family. 
 
 
 
 
 
 
 
 
 
 
 
 
 

IL-17 family 
member 

Molecular 
weight (kDa) 

Receptor Source Proposed pathogenic role 

IL-17 35 IL-17RA+C TH-17 cells, CD8cells, T 
cells, iNKT cells, 
granulocytes(?), 
macrophages (?) 

Induction of neutrophil-mobilizing 
mediators, induction of 
antimicrobial cytokines, 
accumulation of neutrophils, 
stimulation of osteoclastogenesis 

IL-17B 41 IL-17 RB Not determined Not determined 
IL-17C 40 ? Not determined Not determined 
IL-17D 52 ? Not determined Not determined 
IL-17F 44 ? Th-17 cells Induction of neutrophil-mobilizing 

mediators, accumulation of 
neutrophils 
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Figure 9. Interleukin-17 family 

 

Interleukin-17: receptor family 

 
The IL-17R family consists of  five receptor subunits, from IL-17RA to 

IL-17RE (Aggarwal, et al., 2002). IL-17RA is a type I transmembrane 

protein consisting of  an extracellular domain (293 AA), a 

transmembrane domain (21 AA) and a cytoplasmic domain (21AA). IL-

17 RA is expressed in a variety of cells in humans and mice, such as 

epithelial cells, fibroblasts, B and T lymphocytes, neutrophils, bone 

marrow cells (Linden et al., 2005; Dragon et al., 2008). IL-17A 

stimulates a receptor complex formed of IL-17RA and IL-17RC; the 

latter shows similarities to IL-17RA while the functional characteristics 

of the other receptors  are still unclear (Ivanov and Lindén, 2008).  

Following activation of the IL-17R complex, IL-17A signalling involves 

at least two downstream pathways; the first involves the adaptor protein 
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nuclear factor-kB activator (Act-1) that forms a complex with the SEFIR 

domain (a cytoplasmic protein segment present in all members of IL-

17R family); subsequently, intracellular signalling molecules, such as 

tumour necrosis factor- receptor associated factor (TRAF 6 and TRAF3) 

and transforming growth factor activated kinase 1 (TAK1) are activated 

and, in turn, mediate the activation of transcription factors. The second 

pathway described is Act-1-independent and involves activation of Janus 

kinase-1(JAK1) and phosphatidylinositol 3-kinase (PI3K), followed by 

subsequent inactivation of glycogen synthase kinase (GSK)-3β and gene 

activation (Ivanov and Linden 2008) (Figure 10).  
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Figure 10. Intracellular IL-17 signaling. (a) Act-1 dependent: after ligand 
activation of the Il-17 receptor R complex (i.e. IL-17 RA and IL-17 RC), the 
adaptor protein nuclear factor κB activator 1 (Act-1) forms a complex with the 
similar expression to fibroblast grow factor (FGF) genes and IL-17 receptor 
(SEFIR)domain of IL-17 R complex. Subsequently, intracellular signal 
molecules (e.g. TRAF3, TRAF6, and TAK1) are activated loading to the 
involvement of transcription factors such as NF-κB. As consequence secretion 
of neutrophil-mobilizing is induced. b) Act-1 independent: it involves Janus 
kinase (JAK)1 and phosphatidylinositol3-kinase (Pl3K) followed by 
subsequent inactivation of glycogen synthase kinase (GSK)-3β, gene 
activation and cytokine secretion.Interleukin-17A and inflammation. 
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Interleukin 17 and inflammation 

IL-17A has an unique role in the context of inflammatory response 

(Kolls and Linden, 2004). This cytokine is produced mainly by T cells 

rather than by macrophages or other cells of the innate immune system 

and thus it is believed to play important role in the inflammatory events 

triggered by the adaptive or memory immune system (Dong,  2008). On 

the basis of these hypothesis, in vitro and in vivo studies have shown that 

IL-17A cooperates either additively or sinergically with various 

cytokines or mediators inducing inflammation (Katz et al., 2001). 

Indeed, recently, by using a murine model of inflammation, it has been 

shown that IL-17A is not a classical proinflammatory cytokine and it is 

no able to initiate per se an inflammatory reaction. On the contrary, this 

cytokine is able to further amplify biochemical and cellular events 

characteristic of the early stages of the inflammatory reaction, when it  is 

injected in pre-inflamed tissue (Maione et al., 2009).  

Another important aspect of Th-17 cells is their capacity to produce not 

only IL-17 but also other cytokines, such as IL-2 and IL-22, IL-26, 

CCL20. Th17 derived cytokines induce the production of IL-6, TNFα, 

CXCL1, CXCL2, CXCL8, CCL2 and metalloproteinases, MMP-3, 

MMP-6 and MMP-13, from various tissues and cell types (Strezpa et al., 

2011).  
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Important differences, as well as many similarities, emerge when the 

biology of Th17 cells in the mouse is compared with corresponding 

phenomena in humans (Aggarwal et al., 2002). However, in this context, 

it is very important to underline that  IL -17A has in vivo as well as in 

vitro inflammatory properties. One of the main cellular target of this 

molecule are the neutrophil-cells, in fact it is known that IL-17A 

stimulates the production of chemokines, such as IL-8 (CXCL8) and 

granulocyte-chemotactic protein - 2 (GCP-2), growth factors, such as 

CSF and GM-CSF, the neutrophils activating cytokine, IL-6,  from 

epithelial cells, smooth muscle cells and fibroblasts. Furthermore, IL-

17A increases local sign of neutrophil activation, such as the activity of 

myeloperoxidase (MPO), elastase and matrix metalloproteinase (MMP-

9) (Fossiez et al., 1996; Hoshino et al., 2000; Jones et al., 2002).  

As reported by Fouser and co-workers, IL-17A sustains, induces and 

amplifies the inflammatory  response on a pre-existing tissue injury 

(Fouser et al., 2008).  

On the basis of the considerations reported here, it is clear that Th-17 

cells, through IL-17, drive the inflammatory cascade by stimulating cells 

to release a large number of  inflammatory mediators and growth factors 

that have important effects on neuroendocrine and metabolic functions 

and on the maintenance of tissue homeostasis in general.  
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Interleukin-17 and  autoimmune diseases 

Growing evidence, gathered over the last few years, indicate that IL-17A 

might play a key role in the development of autoimmune diseases. IL-17 

is an important factor directing disease progression in multiple sclerosis 

(MS). Multiple sclerosis is a central nervous system (CNS) disease 

associated with destruction of myelin sheets, leading to impaired nerve 

signal transduction. Similar to other proinflammatory cytokines, the 

concentration of IL-17A is increased in CNS lesions of MS patients and 

correlates with neutrophil infiltration of the CNS (Lock et al., 2002).  

The role of IL-17A in the rheumatoid arthritis (RA) is more complex. 

The  pathological role of IL-17A in arthritic joints involves the 

stimulation of MMP, vascular endothelial growth factor (VEGF) and 

proiflammatory cytokine production and increased recruitment of T 

lymphocytes and innate immune cells (Kotake et al., 1999). However, 

these processes are not attenuated when arthritis is induced in IL-17 -/- 

mice; this evidence suggests that other factors involved have a 

substitutive role and demonstrates that the role of IL-17 is still unclear 

(Doodes et al., 2008). Nonetheless, in experiments performed by using a 

murine model of collagen-induced arthritis it has been demonstrated a 

beneficial effect of the animal treatment with  an anti IL-17 antibody 

(Nakae et al., 2003).  
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In patients affected by psoriasis and chronic skin disease, high levels of 

IL-17 have been found in skin lesions. Particularly, these types of 

diseases are characterized by a hyperproliferation of keratinocytes and 

production of proinflammatory molecules increasing angiogenesis and T 

cell infiltration. In these cases, it has been shown a possible synergism 

between IL-17 and other Th17 associated inflammatory cytokines (IL-23 

and IL-22) with IFN-gamma in promoting characteristic pathologic 

changes (Teunissen et al., 1998; Zheng et al., 2007).  

Furthermore, IL-17 and IL-23 have also been associated to Crohn’s 

disease and colitis ulcerosa; however, the role of  IL-17 in intestinal 

inflammation is still controversial, indeed this cytokine has been shown 

to be either protective or proinflammatory  in two different models of 

murine colitis (Zhang et al., 2006; O’Connor et al., 2009). 

Allergic asthma represents another disease in which IL-17 plays a crucial 

role. Allergic asthma is characterized by elevated IgE serum levels, 

chronic airway inflammation with intense cell accumulation, mucus 

hyperproduction and airway hyperresponsiveness to a large variety of 

stimuli (Souwer et al., 2010. Asthma induces many irreversible changes 

in airway tissues. Accumulating evidence indicates that in 

bronchoalveolar lavage (BAL) fluid of patients with severe asthma there 

are elevated levels of IL-17, in comparison to moderate asthmatic 

patients and to control subjects; a role for IL-17 in inducing  neutrophil 
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accumulation into asthmatic airways have been suggested. (Molet et al., 

2001).  

In addition to neutrophil recruitment, IL-17 may also stimulate 

neutrophil activity since it stimulates the release of neutrophil-activating 

cytokines, IL-6 and IL-8, from bronchial epithelial cells and fibroblasts; 

furthermore, it may also play a role in causing structural changes in the 

airways, since causes the production of profibrotic cytokines, IL-6 and 

IL-11, from fibroblasts (Fossiez  et al., 1996; Molet et al., 2001). 

Recently, by performing experiment on an in vivo model of murine 

asthma, it has been shown that the increased expression of heparin-

binding epidermal growth factor (HB-EGF), induced by IL-17, might be 

responsible of mucus overproduction and airway smooth muscle cell 

proliferation in chronic asthma (Wang et al., 2010). Targeting IL-17 may 

be useful for the treatment of asthma. It has been shown that 

neutralization of IL-17 with monoclonal antibodies reduces neutrophil 

accumulation in BALF (Helling et al., 2003). 

Il-17 plays also a role in chronic obstructive pulmonary disease (COPD) 

(Figure 11); indeed by releasing chemokines (CXCL1, CXCL6 and 

CXCL8) and granulocyte survival factors (GM-CSF and G-CSF) from 

airway epithelial cells it would increase neutrophil chemotaxis and 

prevent apoptosis (Jones et al., 2002; Vanaudenaerde et al., 2003; 

Rahman et al., 2005; Traves and Donnelly, 2008).  
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Figure 11. Interleukin-17 and chronic obstructive pulmonary disease (COPD). 
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IL-17 and cardiovascular risk 

As described above, there is much evidence, either experimental or 

clinical, that thrombosis and atherosclerosis might be closely associated 

to an inflammatory reaction, (Jurado and Ribeiro; 1999, Esmon; 2003, 

Strukova; 2006). It is known that inflammation initiates clotting, 

decreases the activity of natural anticoagulant mechanisms and impairs 

the fibrinolytic system. Nonetheless, proteases involved in coagulation 

system contribute to inflammation not only by promoting fibrin 

formation at site of injury, but also by stimulating several cell functions 

(Cicala and Cirino,1998; Esmon, 2008). On the other hand, pro-

inflammatory molecules are actively involved in the activation and 

migration of  leukocytes to sites of vascular injury and inflammation, 

and may contribute to the release by activated cells of prothrombotic 

factors, which in turn may activate platelets and other cell types (Ruggeri 

et al.; 2007, Lambert et al.; 2007). 

In agreement with this, there is much evidence that patients suffering 

from autoimmune diseases have an elevated risk of thrombosis (Gisondi 

et Girolomoni, 2009; Mameli et al., 2009). As described above, multiple 

factors may be implicated; it is known that circulating cytokines and 

recruited inflammatory cells cause endothelial dysfunction and 

haemostatic disorders leading toward a prothrombotic state (Cicala and 

Cirino, 1997; Nurden, 2011). Furthermore, it has also been hypothesized 
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that in rheumatic diseases atherosclerotic lesions might be more prone to 

the rupture leading to acute cardiovascular events (Frostegard et al., 

2011).  

Evidence that increased IL-17 levels are associated with coronary artery 

disease (Eid et al., 2009; Wang et al., 2011) and atherosclerosis (Cheng 

et al., 2008) has suggested that this cytokine may play a role at the 

interface between inflammatory immune disorders and cardiovascular 

risk. In vitro experimental data show that IL-17 stimulates C-reactive 

protein expression in human hepatocyte and coronary artery smooth 

muscle cells (Patel et al., 2007). It is known that CRP is not only a 

marker of cardiovascular risk but, as described above, directly participate 

to endothelial dysfunction and may stimulate platelet aggregation and  

platelet/leukocytes interaction (Fay, 2010; Hirschfield and Pepys, 2003).  

Recently, by performing experiments in vitro,  it has been shown that IL-

17A favours the aggregation of murine and human platelets in response 

to ADP. The effect of IL-17A on platelets, in vitro, is paralleled by an 

increased expression of P-selectin on platelet surface (Maione et al., 

2011). It is well-established that platelet adhesion is mediated via 

glycoprotein GPIb receptors through interaction with the von Willebrand 

factor and that further physiologic activation of platelets via intracellular 

signalling pathways leads not only to an increased expression of the 

GPIIb/IIIa receptor complex, but also to a conformational change and 
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exposure of the fibrinogen binding site. Subsequent fibrinogen bridging 

allows firm attachment of adjacent platelets (Clemetson et al., 1995). 

This process is a prerequisite for platelet aggregation and thrombus 

formation. Similarly, the increased platelet expression of CD62P is 

predictive for an elevated risk of circulating platelet-leukocyte 

aggregates that are typically considered predictive of thrombus 

formation (Wohner et al., 2008) and observed in patients with acute 

myocardial infarction (Furman et al., 2001) as well as in patients 

suffering of autoimmune diseases (Joseph et al., 2001; Hu et al.,2004; 

Irving et al., 2004). 
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ADENOSINE AND INFLAMMATION  
 

MATERIALS AND METHODS 

Animals 

All experiments were performed on male Wistar rats (Charles River; 

120-150g). Rats were slightly anaesthetized with enflurane. 100 µl of 

carrageenan (1 % w/v in saline) were injected in the rat hind paw to 

obtain an oedema. Then, oedema was measured by the means 

hydroplethismometer at time zero and each hour for the following 6 

hours.  

Drug treatments 

To investigate on the role of adenosine A2A receptor activation on 

carrageenan oedema development, animals were divided in 5 groups and 

treated, just before oedema induction,   with the intraperitoneal  injection 

of: A2A agonist,  CGS 21680 (0.02, 0.2 and 2 mg / kg); A2A antagonist,  

ZM 241385 (3 mg/kg ); CGS 21680 (2 mg/kg) plus ZM 241385 (3 mg 

/kg ) and the respective vehicles. At different times following oedema 

induction, the paws were excised, cut, frozen in liquid nitrogen or fixed 

in buffered formalin 10 % (v/v) and stored.  
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Myeloperoxidase (MPO) assay  

Myeloperoxidase activity was measured from animals treated with the 

selective adenosine A2A receptor agonist, CGS 21680 (0.02, 0.2 and 2 

mg/kg ip.) or with the vehicle (DMSO; 0.5 ml/kg ip.), inflamed paws 

were excised after 3 hours from oedema induction and the soft tissue was 

removed, frozen in liquid nitrogen and stored. Tissue samples were then 

defrosted, weighed and homogenized in a solution containing 0.5 % 

(w/v) hexadecyltrimethylammonium bromide dissolved in 10 mM 

potassium phosphate buffer (pH 7) and centrifuged at 12000 rpm for 30 

minutes at 4°C; an aliquot of the supernatant was then allowed to react 

with 0.167 mg/ml o-dianisidine dihydrocloride and 0.001 % H2O2. The 

rate of change in absorbance was measured spectrophotometrically at 

650 nm; MPO activity was defined as the quantity of enzyme degrading 

1 µmol/min of peroxide at 37°C and was expressed in milliunits per g of 

wet tissue (mU/g tissue). 

Western blot analysis  

Tissue samples were defrosted, weighed and homogenized with a 

Polytron. In order to extrapolate proteins, 1 ml of  buffer (β-

glycerophosphate 50 mM; sodium ortovanadate 100µM; MgCl2 2mM; 

EGTA 1mM; DTT 1 mM; PMSF 1mM; Aprotinin 10µg/ml; leupeptin 

10µg/ml) was added to 100 mg of tissue samples. The homogenates were 

centrifuged at 2500 rpm for 10 minutes at 4°C. The pellets were then 
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centrifuged  at 12000 rpm. for 30 minutes at 4°C in order to measure the 

protein content via Bradford assay. Proteins were separated by Sodium 

Dodecyl Sulphate - PolyAcrylamide Gel Electrophoresis (SDS-PAGE) 

(12 %); 40 µg of protein were applied on the gel and electrophorezed at 

90 mV. for 1.5 hours. The protein samples were then electro-blotted at 

250 mA for 1.30 h using nitrocellulose membrane. Afterwards, 

nitrocellulose membrane was blocked using a blocking solution 

containing 5% (w/v) non-fat dry milk, 0.1% (w/v) Bovine Serum 

Albumin (BSA) and 0.1% (v/v) Tween 20 in phosphate buffer solution 

(PBS), for 2h at room temperature. Then, it was incubated overnight  at 

4° C on a shaker with anti A2A(R-18, Santa Cruz)  goat antibody 

(dilution 1:500). The nitrocellulose membrane was washed five times for 

25 minutes and then incubated with the secondary antibody anti-goat 

IgG (dilution 1: 5000) conjugated with horseradish peroxidase for 2h at 

room temperature. After five washes, the proteins bands were detected 

using the enhanced chemiluminescence (ECL) method and analyze with 

Image Quant 400 GE Healthcare software (GE Healtchcare, Italy) as 

described by the manufacturer.  

Immunohistochemical localization of A2A  

Tissue samples removed, as described above, were prepared from 

paraffin embedded tissues. After deparaffinization and rehydration of 

tissue section (thickness 7 µm), antigen retrieval was performed for  30 
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minutes at 100°C with 0.01 M citrate buffer (pH 6.0). To block no-

specific binding, slides were incubated for 10 min at room temperature 

with the protein block serum free solution (Dako). Endogenous biotin or 

avidin binding sites were blocked by sequential incubation for 15 min 

with avidin and biotin. Then the sections were incubated overnight with 

primary goat anti-A2A antibody (Santa Cruz) (dilution 1:250) in PBS and 

BSA 1%, overnight at 4 °C,  or with control solutions including buffer 

alone or no-specific purified rabbit IgG.  

After washing, endogenous peroxidase was quenched with 0.3 % (v/v) 

H2O2 in 60 % (v/v) methanol for 10 min. Specific labeling was detected 

with a biotin-conjugated universal secondary antibody (Universal 

DakoCytomation LSAB  Kit) for 30 min at room temperature followed 

by incubation with streptavidin-HRP. After washing, slides were 

incubated with Diaminobenzidine (DAB). The counterstaining was 

performed with hematoxylin. Negative staining control experiments 

were performed according to the protocol described above, with 

omission of the primary antibody.  

 

Picro Sirius red staining for collagen detection 

Picro Sirius stain was applied to visualize collagen content. Briefly, the 

paraffin sections were de-waxed and rehydrate. The sections were 

stained with Mayer’s haematoxylin to visualize the nuclei and than 
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incubated in the Pico Sirius red solution for one hour. The sections were 

washed with acidified water, dehydrated and cleared in xylene before 

mounted in a resinous medium. 

Statistical analysis 

All results were expressed as mean ± error standard and analyzed by one 

way ANOVA followed by Bonferroni’s test for multiple comparisons or 

Dunnett’s test. A value of P < 0.05 was taken as statically significant. 

 



 

RESULTS 

Effect of  CGS 21680 treatment on carrageenan – induced oedema 

Injection of carrageenan in the rat hind paw caused an oedema peaking 

between 3 and 4 hours. Treatment with CGS 21680 inhibited oedema 

development in a dose – related manner, and this effect was reverted by 

co-administration with the A2A antagonist, ZM 241385. On the contrary, 

ZM 241385 alone did not modify oedema (Figure 12-13) 

 

 
Figure 12.  Effect of the selective adenosine A2A receptor agonist CGS 21680 
(0.02, 0.2 and 2 mg/Kg ip) on carrageenan oedema; *P<0.05, **P<0.01 vs 
vehicle . Dunnett’s test (n = 10). 
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Figure 13. Effects of CGS 21680 (2 mg/kg ip), a selective A2A receptor 
agonist, ZM 241385 (3 mg/kg ip), a selective A2A receptor antagonist, and 
CGS 21680 plus ZM 241385 on carrageenan oedema; *P<0.05, **P<0.01 vs 
vehicle, #P<0.05, ##P<0.01 vs  CGS 21680 plus ZM 241385. Dunnett’s test (n 
= 10).  

 

MPO assay 

MPO activity measured in inflamed paws excised 3 hours after 

carrageenan injection was reduced after treatment with CGS 21680 at 2 

mg/kg ip, compared with control values (Figure14). 
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Figure 14: Effect of CGS 21680 (0.02, 0.2 and 2 mg/kg ip.) on 
myeloperoxidase (MPO) activity of inflamed paws (3 hours after carrageenan 
injection); **P<0.01 vs. vehicle. Dunnett’s test (n = 3). 

 

Western blot 

Western blot analysis performed on paw excised at different time 

following oedema induction, showed an increased A2A protein 

expression starting 1 hour following oedema induction, and peaking 

between 3 and 4 hours.(Figure 15). The increased A2A protein expression 

observed at 3 hours after oedema induction was significantly reduced 

(like control values) following rat treatment with CGS 21680 (2 mg/Kg 

ip.) (Figure 16). 
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Figure 15. Detection of adenosine A2A receptor and optical density analysis in 
inflamed paws;  *P<0.05, **P<0.01 vs vehicle . Dunnett’s test (n = 3).  
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Figure 16. Effect of CGS 21680 (2 mg/kg ip) on the proteic expression of the 
adenosine A2A  in inflamed paws (3 hours after carrageenan injection); 
*P<0.05, **P<0.01 vs vehicle. Dunnett’s test (n = 3).  
 

 Immunohistochemical localization of A2A  

Immunohistochemical analysis showed A2A receptor overall staining on 

vascular endothelium and on dermal fibroblast provided from 

carrageenan-injected paws, compared to no-injected paws. This staining 

was greatly reduced in the case of  paws obtained from CGS 21680-

trated rats (Figure 17). 
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Figure 17: Immunohystochemical localization of A2A receptor paw tissue 
(7µm). The figure represent paw tissue from: A) sham animals; B) vehicle 
treated animals; C) CGS 21680 treated animals. Original magnification is 
10X. 

 

Picro Sirius staining 

Picro Sirius red staining for collagen detection showed that in tissue 

section from inflamed animals, dermal collagen result to be loose 

compared to control paws (not inflamed) and CGS 21680 treated animals 

where dermal elastic fibers appear to be well organized. Moreover, the 

treatment with CGS 21680 enhanced fibroblast infiltration and collagen 

production (Figure 18). 

 

  
 
 

 
 

Figure 18. Sections of paw tissue  stained for picro sirius red for the detection 
of collagen. (A) Paw tissue for sham animals, (B) paw tissue from vehicle 
treated animals, (C) paw tissue from CGS 21680 treated animals. Original 
magnification is 10X.  
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INTERLEUKIN 17A AND THROMBOSIS 

MATERIALS AND METHODS 

Materials  

Recombinant mouse IL-17A was purchased from R&D System 

(Abingdon, UK), reconstituted in 4 mM HCl solution and diluted in 

phosphate saline buffer (PBS) as reported on the certificate of analysis. 

Unless otherwise specified, all the other reagents were from Sigma-

Aldrich Co. (MI, Italy).  

Thrombosis model  

Male Wistar rats (300–350 g; Harlan Nossan, Correzzana, MI, Italy) 

were used for all experiments. Animals were kept under standard 

conditions, with food ad libitum and maintained in a 12 h/12 h light/dark 

cycle at 22 ± 1°C. All the in vivo procedures were in accordance with the 

Italian legislative decree (D.L.) no. 116 of January 27, 1992 and 

associates guidelines in the  European Communities Council Directive of 

November 24, 1986 (8676097ECC).  

Rats were anaesthetized with urethane (10 % w/v; 10 ml/kg ip.) and 

placed on a surgical  table; an arterial thrombus was induced by FeCl3 

application onto the surface of the right carotid artery, as described by 

Kurz et al.. (1990). In brief, following surgery  a piece of filter paper 

(Whatman n°1, 3 x 5 mm) soaked in FeCl3 (from 5 to 35%), or in IL-17A 
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(100 µg/ml), was applied onto the external surface of the right carotid 

artery, for 30 minutes, afterward the paper was removed and the vessel 

left in situ for 60 minutes, to enable thrombus formation. In another set 

of experiments, an IL-17A (100 µg/ml),  or vehicle (saline), soaked 

paper  was applied on the vessel for 30 minutes before applying FeCl3. 

On the basis of preliminary experiments we have chosen a percentage of 

FeCl3 (5%) that induced a partial carotid occlusion. At the end of 60 

minute period, a piece of 2 cm in length of the right carotid artery, and of 

its controlateral (where only vehicles were applied), was removed and 

weighed. Thrombus size was evaluated by the difference in weight 

between  the treated vessel and its controlateral.  In another group of 

animals, the experiment was performed as described above and, vessels 

were removed, rinsed in saline to remove the blood excess, then fixed 

with formalin (4 % v/v) for 24 hours and successively used for 

histological analysis, or removed tissues were immediately frozen in 

liquid nitrogen and successively used for Western blot analysis.   

Western blot analysis 

Tissue samples were defrosted, weighed and homogenized in liquid 

nitrogen. In order to extrapolate proteins, 1 ml of  buffer (β-

glycerophosphate 50 mM; sodium ortovanadate 100µM; MgCl2 2mM; 

EGTA 1mM; DTT 1 mM; PMSF 1mM; Aprotinin 10µg/ml; leupeptin 

10µg/ml) was added to 100 mg of tissue samples. The homogenates were 
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centrifuged at 2500 rpm for 10 minutes at 4°C. The pellets were then 

centrifuged  at 12000 rpm. for 30 minutes at 4°C in order to measure the 

protein content via Bradford assay.  

Proteins were separated by (SDS-PAGE) (8 %); 35 µg of protein were 

applied on the gel and electrophoresed at 90 mV. for 1.30 hour. The 

protein samples were then electroblotted at 250 mA for 1.30 hour onto a 

nitrocellulose membrane. Afterwards, nitrocellulose membrane was 

blocked using a blocking solution containing 5% (w/v) non-fat dry milk, 

0.1% (w/v) BSA and 0.1% (v/v) Tween 20 in PBS, for 2h at room 

temperature. It was then incubated overnight  at 4° C on a shaker with 

anti CD39 (A-16, Santa Cruz)  goat antibody (dilution 1:200). The 

nitrocellulose membrane was washed five times for 25 minutes and then 

incubated with the secondary antibody anti-goat IgG (dilution 1: 2000) 

conjugated with horseradish peroxidase for 2h at room temperature. 

After five washes, the proteins bands were detected using the ECL 

method and analyze with Image Quant 400 GE Healthcare software (GE 

Healtchcare, Italy) as described by the manufacturer.  

 

Morphological analysis 

Samples were processed and embedded in paraffin. Sections (thickness 

5 µm) were then stained for haematoxylin and eosin (H&E) to be 

morphologically analyzed. In all cases, a minimum ≥ 5 sections per 
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animal were analyzed by using a standard light microscope (x 5 and x 10 

objective). In each section the thrombus formation was evaluated by 

calculating the percentage of thrombotic area compared with the total 

area, by using a computerized program (Leica, MI, Italy). Images were 

taken by a Leica DFC320 video-camera (Leica, Milan, Italy) connected 

to a Leica DM RB microscope using the Leica Application Suite 

software V2.4.0. 

 

ELISA and Proteome Profiler Antibody Arrays 

In subsets of experiments, cytokines and chemokines expression from 

whole IL-17-or vehicle-treated carotids was determined. For this purpose 

the carotids were excised, the remaining blood was removed  by washing 

with PBS and immediately frozen in liquid nitrogen before being stored 

at -80°C.  Tissues were placed in a mortar, finely chopped and 

homogenized using liquid nitrogen. The homogenized powder was 

reconstituted with 300 µl of ice-cold lysis buffer (Aprotinin 3.07 µM, 

EDTA 100 mM,  Leupeptin 2.2 µM, Na-deoxycholate 10%, NaCl 150 

mM, NaF 5 mM, NP-40 10%, Ortovanadato 50 µM, PMSF 100 µM, 

Tris-HCl 65 mM) and collected in 1.5 ml eppendorf tubes. Samples were 

frozen and thawed three times in liquid nitrogen and then placed under 

rotation for 30 minutes at 4°C in order to optimize the process of 

homogenization. After spinning at 10.000 rpm to remove cell debris, the 
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supernatants were collected and the total protein concentrations were 

determined by using a Bovine Serum Albumin (BSA) protein assay 

(Biorad, Italy) following the manufacturer’s directions. In order to 

analyze the expression of a wide range of cytokines and chemokines 

after the IL-17 or vehicle application  a proteome profiler antibody array 

(R&D System; Abingdon, UK) was used, according to the 

manufacturer’s instructions. For this purpose 1 ml of homogenized tissue 

from three different rats, treated under the same experimental conditions, 

was used to incubate each membrane on a rocking platform overnight. 

Positive dots were then detected by enhanced chemiluminescence (ECL) 

using Image Quant 400 GE Healthcare software (GE Healtchcare, Italy). 

Aliquots of 50 µl were diluted (1:1) with assay diluents and analyzed for 

the levels of MCP-1 by ELISA according to the manufacturer’s 

instructions (eBioscience, UK). 

 



 

RESULTS 

Effect of IL-17A on carotid thrombus model 

A dose responsive curve for FeCl3 was performed to establish the 

percentage of  FeCl3 that we could use for our in vivo model. As showed 

in figure 19, there was a correlation between the effect  of FeCl3 and the 

concentration used. In fact, when 5 % and 15 % of FeCl3 was used a 

partial occlusion of the carotid artery was observed. On the other hand, 

an high concentration of FeCl3 (35%) induced an occlusive thrombus. 

On the light of these preliminary results, we have chosen FeCl3 

concentration of 5% to perform all the subsequent experiments.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19. Thrombus weight (mg) after the application of three different 
concentration of FeCl3 : 5, 15 and 35 % (w/v) respectively. 
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Results obtained (Figure 20) show that the application of IL-17A on rat 

carotid artery determined a small intravascular thrombus with a mass of 

0.35 ± 0.15 mg (one sample t-test, P<0.05) although not significantly 

different compared to the thrombus obtained following the application of 

vehicle. The application of FeCl3 (5 %) caused an intravascular thrombus 

of  0.99 ± 0.2 mg (n=9); however, thrombus mass increased significantly 

when the carotid was pre-treated with IL-17A (100 µg/mL) 30 minutes 

before FeCl3 application (1.94 ± 0.2 mg; n=9. P<0.01). 

 

 
  
 
 
 
 
 
 
 
 
 
 

 
Figure 20. Thrombus weight after different treatments: vehicle, IL-17, FeCl3, 

and IL-17 plus FeCl3. ** P<0.01 and *** P<0.001 vs vehicle; °° P<0.01 vs 
FeCl3. 
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Western blot analysis 

The western blot analysis  performed on the carotid treated with vehicle 

and IL-17A showed a reduced expression of CD39 protein in IL-17A 

treated animals compare to the vehicle (Figure 21).  

 
Figure 21. Detection of CD39 receptor and optical density analysis in rats 
treated with vehicle and IL-17A respectively.  
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Histological analysis 

Morphological analysis of the vessel section occluded, evidenced that 

the luminal surface of  carotid sections from vehicle group was covered 

by a continuous endothelium. Sections from IL-17A plus FeCl3 treated 

carotids showed an occluding thrombus; furthermore, the endothelium 

appeared damaged and vessel wall thickness extremely reduced (Figure 

22). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22. Histological analysis of haematoxylin and eosin (H&E)-stained 
carotid sections, from : A) vehicle; B) IL-17 alone; C) FeCl3 alone; D) IL-17+ 
FeCl3. Original magnification 5X. 
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Percentage of carotid area of occlusion  

The increased mass of thrombus in the co-administration of FeCl3 and  

IL-17A was confirmed by the measurement in terms of percentage of the 

lumen-vessel occlusion from a computer-assisted planimetry. The 

percentage of occlusive thrombi resulted not significant in IL-17 sections 

compare to vehicle, whereas FeCl3 alone induced an occlusion of 29.9% 

± 5.0 that resulted ∼ 2 fold- increased in IL-17 plus FeCl3- treated 

animals (54.5 % ± 7.0).  



 

 68 

ELISA and Proteome Profiler Antibody Arrays 

The Figure 23 reported the analysis of the inflammatory proteins in the 

supernatant of vehicle and IL-17A treated carotids. It is possible to 

observe that the interleukin induced the selective production of a specific 

set of chemokines such as CCL2 (MCP-1) compared with vehicle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23. Elisa Spot obtained from the application of IL-17 (A) and vehicle 
(B) in trombosis model. (PC: positive control; CCL2: MCP-1; IL-17A). 
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CONCLUSION  
Adenosine and inflammation 

Carrageenan – induced rat paw oedema is a classical model of acute 

inflammation, widely used to  identify new therapeutic targets and to test 

the anti-inflammatory potential of new molecules. Aim of the present 

study was to investigate on the role of  A2A adenosine receptor in acute 

inflammation, in vivo.  

The main finding of our research is that following carragenan edema 

induction in rats there is a time dependent increase in A2A receptor 

expression.  

Pharmacological stimulation of A2A receptor, by using the selective A2A 

agonist, CGS21680, prevented edema development in a dose-dependent 

manner. Furthermore, CGS21680 inhibitory effect was prevented by co-

administration with ZM241385.  

Conversely, systemic administration of ZM241385 did not have any 

effect on edema development. These findings confirm that the effect of 

CGS21680 was specific, through A2A receptor stimulation, nonetheless 

A2A activation by endogenous adenosine seems not to offer protection 

against an acute inflammation, since A2A antagonism did not exacerbate 

oedema. This latter finding is in agreement with previous work showing 

that systemic administration of ALT-146e, a selective A2A agonist, 

reduced skin ulceration induced by recurrent ischemia reperfusion in 
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rats, the effect was reverted by the antagonism ZM241385; however, the 

antagonist alone did not exacerbate skin ulceration (Peirce et al., 2001). 

It is known that, among inflammatory cells, neutrophils express A2A 

receptor on their membrane surface; many of antinflammatory effect of 

A2A agonists have been shown to be related to the inhibition of 

neutrophil sequestration (Linden, 2006).  

Moreover, it has been demonstrated that A2A agonist protect from aspirin 

induced gastric lesions by inhibiting neutrophil sequestration into the 

gastric mucosal tissue (Odashima et al., 2006). However, the mechanism 

at the  basis of the antinflammatory effect of adenosine through A2A 

activation has not yet been clarified. Cadiaux and coworkers (2005) have 

shown that following A2A receptor activation on neutrophils there is an 

increased COX2 expression paralleled by increased production of PGE2, 

a prostanoid with antinflammatory properties. Thus, the increased PGE2 

production might be the mechanism by which endogenous adenosine, 

through A2A receptor activation, limits an inflammatory reaction.  

Neutrophis play a pivoltal role in the development of an acute 

inflammation, such as carrageenin edema.  In the present study, as 

marker of neutrophil accumulation, we measured MPO activity in the 

inflamed paw. We found that treatment with CGS21680 significantly 

inhibited the increase in MPO activity into the inflamed tissue 
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confirming that the antinflammatory effect of CGS21680 was associated 

to a reduced neutrophils infiltration.  

Following treatment with CGS21680, edema inhibition was paralleled by 

downregulation of A2A receptor expression on tissues excised. 

Immunohystochemical analysis also showed a reduced immunopositivity 

for A2A receptor on paws obtained from CGS21680 treated rats.  

This finding suggests that in an inflammatory environment there is an 

upregulation of A2A receptor expression,  whose function it to keep down 

inflammation. Further studies are required to better investigate on the 

mechanism underlying the antinflammatory effect mediated by A2A 

activation.  

 



 

Interleukin 17A and thrombosis 

To investigate on the role of IL-17A on thrombus formation we used the 

model described by Kurz (Kurz et al., 1990) in which thrombosis is 

induced in rats by topical application of FeCl3 on the exteriorized carotid 

artery.  

We found that topical pre-application of IL-17A on rat carotid artery had 

a synergistic  effect with FeCl3 (5 %); while IL-17A alone caused only a 

small intravascular thrombus. Morphological analysis of the vessel 

section occluded evidenced that the luminal surface of  carotid sections 

from vehicle group was covered by a continuous endothelium; into the 

vascular lumen some aggregates of red blood cells were observed but 

without any fibrin mesh. Sections from IL-17A plus FeCl3 treated 

carotids showed an occluding thrombus; furthermore, the endothelium 

appeared damaged and vessel wall thickness extremely reduced.  

These results suggest that IL-17A has the ability to facilitate thrombus 

formation induced by a minimal stimulus, as FeCl3 at 5 %. There is 

evidence that IL-17A plays a role in vascular inflammation and 

atherothrombosis (von Vietinghoff and Ley, 2010). In vitro, it has been 

shown that IL-17A stimulates C reactive protein expression in human 

coronary artery smooth muscle cells (Patel et al., 2007). As described 

above, C-reactive protein is an important marker of vascular diseases 

playing an active role in atherosclerosis by stimulating chemokine 
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expression, platelet adhesion at the site of vascular damage, 

platelet/leukocyte interaction and also inhibit  the fibrynolitic pathway 

(Danenberg et al., 2007). Thus, clinical evidence showing a correlation 

between IL-17A serum levels and acute coronary syndrome (Cheng et 

al., 2008; Liang et al., 2009), together with experimental data showing 

that IL-17A modifies cellular expression of molecules involved in 

thrombosis (Patel et al., 2007) and also increases ADP-induced platelet 

aggregation  (Maione et al., 2011) has driven the attention of investigator 

to consider this cytokine has possible link between haemostatic disorders 

associate to inflammation.  

Our data show that IL-17A applied alone on carotid causes only a small 

not occlusive thrombus, however, the main effect we observed was that 

IL-17A strongly increased the thrombus induced by a minimal FeCl3 

concentration. The model of FeCl3–induced thrombosis has been shown 

to involve platelets and several component of haemostasis (Broersma et 

al., 1991); thus the effect of IL-17A is consistent with its ability to prime 

platelets for the effect of ADP (Maione et al., 2011). Our preliminary 

results aimed to better investigate on the molecules triggering the pro-

thrombotic effect of IL-17A observed show a possible involvement of 

monocyte chemoattractant  protein (MCP-1). This is a chemokine that is 

expressed by several cells, among which are endothelial cells, smooth 

muscle cells, fibroblasts, monocyte/macrophages. In an inflammatory 
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environment, activated platelets may induce MCP-1 from endothelial 

cells, leading to  monocyte/macrophages chemotaxis and the consequent 

interaction among cells (Charo and Taubman, 2004) included 

platelet/monocyte interactions (Gleissner et al., 2008). We found that 

following exposure to IL-17A there was an increased carotid expression 

of MCP-1.  

We don’t know if MCP-1 is induced by a direct effect IL-17A on 

endothelial cells, or indirectly, from platelets activated by IL-17A. Since 

platelet-induced MCP-1 from endothelial cells is secondary to the 

interaction between CD40L (on activated platelets) and CD40 (on 

endothelium) (Gleissner et al., 2008), it would be interesting to 

investigate whether IL-17A causes externalization of CD40L on platelet 

surface. 

We also observed a reduced expression of CD39 on carotid artery 

following treatment with IL-17A. As described above, CD39 by 

hydrolyzing ATP and ADP to AMP represents a key modulator of 

thrombus formation. It has been shown that the loss of CD39 from 

activated endothelial cells causes platelet sequestration and TF 

upregulation, key events for thrombogenesis (Atkinson et al., 2006). 

Platelets from mice lacking CD39 show an increased response to ADP 

(Enjyoji et al., 1999).  Thus, it could be hypothisized that the first event 

for the prothrombotic effect IL-17A would be a down-regulation of 
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CD39 on endothelial cells and the following  platelet activation; this, in 

turn, would cause increased MCP-1 expression from endothelial cells.  

The mechanicistic bases of pro-thrombotic effect of IL-17A needs 

further investigation; however our findings represent first in vivo 

evidence for a prothrombotic effect of IL-17A and suggest that this 

cytokine might be an important molecule at the interface between 

haemostasis and inflammation. 
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PROTECTIVE EFFECT OF DIMETHYLSULFOXIDE ON ACUTE 
MYOCARDIAL INFARCTION IN RATS 

 
Dimethylsulfoxide (DMSO) is an organic compound that has been shown to 

possess several biological effects, including antioxidant, anti-inflammatory, 

antinociceptive. Chemically, DMSO is an amphipathic molecule widely used as 

solvent in biological studies and as vehicle for drug administration (Santos, et 

al.. 2003; Colucci, et al,. 2008). Since its anti-inflammatory, antinociceptive and 

antioxidant effect, DMSO has been proposed to be therapeutic in several 

disorders, such as gastrointestinal diseases, rheumatologic diseases and for the 

treatment of several manifestations of amyloidosis (Scherbel, et al., 1965; 

Rosestein  et al.,1999; Swanson et al.,1985; Hsieh et al.,1987) Nowadays, its 

therapeutic use has been approved for the treatment of interstitial cystitis, by 

intravescical instillation ( Sant, et al., 1987; Parkin, et al., 1997) and in 

veterinary as analgesic and anti-inflammatory drug (Smith et al., 1998). 

Nonetheless, DMSO is present in topical dermatological preparations for human 

use as active vehicle facilitating drug penetration (Turgwell, et al., 2004). 

The mechanism at the basis of the therapeutic effects of DMSO has not 

yet been elucidated; however, among its several biological activities, 

DMSO has been show to have antioxidant effects (Santos, et al., 2003; 

Colucci, et al., 2008). In addition, experimental studies have shown that 

DMSO reduces intracellular calcium accumulation in different biological 

systems (Zhang, et al., 2004; Choi, et al., 1999; Michel, et al,. 1998; 
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Santos, et al., 2002). However, DMSO - induced relaxation on guinea 

pig and rabbit papillary muscles has been shown to be dependent upon a 

reduced sensitivity to calcium of contractile proteins without affecting 

intracellular calcium concentration (Ogura et al., 1996). Similarly, on 

rabbit detrusor muscle DMSO causes relaxation by decreasing calcium 

sensitivity of the contractile apparatus, an effect that has been shown 

mainly due to the inhibition of  myosin light chain phosphorylation 

(Shiga et al.,2007); this mechanism might be at the basis of its 

therapeutic activity in interstitial cystitis. There is much evidence that 

following ischemia reactive oxygen species produced by an abnormal 

cell metabolism impair myocardial function. Indeed, ischemia is 

followed by calcium overload and prolonged contractile abnormalities. 

Both free radical scavengers and calcium channel blocking agents 

protect myocardial function from ischemic damage (Bolli et al.,1999). 

Cardiac pharmacology of DMSO has also been investigated in several in 

vitro studies demonstrating a protective effect on ischemic damage 

(Shalfer et al., 1983).  

In the attempt to investigate on the effect of adenosine A2A receptor 

agonist, CGS21680, in a model of acute myocardial infarction in rats, we 

came across to an unexpected effect of the vehicle, DMSO, used to 

administered CGS21680 to rats. 
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Thus, on the basis of the literature reported above, showing that DMSO 

has several biological effects, we have sought to investigate the effect of 

DMSO pre-treatment in a model of rat acute myocardial infarction.  
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METHODS 

Experimental procedure 

All experiments were performed on male Wistar rats (250 – 280 g; 

Harlan Nossan, Italy). Animals were anaesthetized with an 

intraperitoneal injection of a solution of ketamine (100 mg/kg) and 

xylazine (10 mg/kg), placed on a surgical table and artificially ventilated 

through a tracheal cannula connected to a ventilation pump for small 

animals (Ugo Basile, Italy).  

Myocardial infarction was produced by ligation of left anterior 

descending coronary artery (LAD), according to a method previously 

described in Wistar rats ( Guerra, et al., 2006). Briefly, the left side of 

the thorax was opened between the fourth and fifth intercostal space. The 

heart was gently exteriorized and the pericardium dissected out. The left 

anterior descending coronary artery was occluded near its anatomical 

origin by a 5-0 silk suture (Ethicon, Johnson-Johnson) for 90 minutes. 

At the end of the ischemia period, a blood sample was withdrawn from 

abdominal aorta, and the serum was obtained 24 h thereafter following 

centrifugation at 3000 rpm for 15 minutes and then kept at -80 °C until 

the measurement day. Harvested heart following 90 minutes ischemia 

was placed into a Petri dish containing potassium chloride and cut into 5-

6 thick transverse slices from the apex to the basis. Slices were incubated  
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for 30 minutes at 37 °C in a 1 % solution of  2,3,5-triphenyltetraziolium 

chloride (TTC) in 1% phosphate buffered solution (PBS) then washed 

with PBS and stored for three weeks in PBS with 0.01 % sodium azide 

(PBS-A) at 4 °C , as described by Pitts (Pitts et al., 2007). To 

differentiate necrotic (pale) from non necrotic (red) area, each section 

was analyzed by using a computerized image analysis system and  

infarct size was calculated by calculating the percent (%) of necrotic area 

compared to the total area, by using a computerized program (Leica, 

Milan, Italy). 

All animal experiments complied with the Italian D.L. no. 116 of 27 

January 1992 and associates guidelines in the European Communities 

Council Directive of 24 November 1986 (86/609/ECC).  

Treatment with DMSO 

Ischemic animals were divided in three groups: 1) animals that did not 

receive any treatment before ligation; 2) animals treated with DMSO 500 

µl/kg ip., 15’ minutes before the ligation; 3) animals treated with DMSO 

500 µl/kg ip. for three consecutive days, the last injection was given 15 

minutes before the ligation.  Sham animals underwent to the surgical 

intervention without the LAD ligation. 
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Determination of biochemical parameters 

Quantitative determinations of serum cardiac troponin I (cTpI) and  

myoglobin (MYO) were performed by immune enzymatic assays, 

(AxSYM System; Abbott).  

 

Statistical analysis 

All data were expressed as mean ± SEM, of n = 6 – 8, and analyzed with 

the non parametric Kruskal-Wallis test followed by Dunn’s post test by 

using a statistical computer package, GraphPad Prism, v.4.01; a value of 

P<0.05 was considered statistically significant. 

 



 

 

RESULTS 

Cardiac damage 

Rat treatment with DMSO 500 µg/kg ip. for three consecutive days 

significantly reduced cardiac damage induced by 90 minutes ischemia. 

DMSO given acutely, 15 minutes before LAD ligation, also caused a 

reduction of the damage, but the effect was not statistically significant 

(Table I and Figure 1).  

Biochemical parameters 

Serum levels of cTpI and MYO from ischemic rats were significantly 

reduced by rat treatment with DMSO for three consecutive days. In 

contrast, DMSO given only fifteen minutes before ligation did not have 

any effect on biochemical parameters (Table I).  
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Table I: Effect of rat treatment with two different regimen dosing of DMSO on 
cardiac damage, serum myoglobin (MYO) and serum cardiac troponin (cTPI). 
 

 

 

 

 

Data are the mean ± SEM, * P<0.05 vs. ischemic and †† P< 0.01 vs. sham, Kruskal-
Wallis test followed by Dunn’s post test 
 

 

 

Treatment  Damage % MYO ng/ml cTPI ng/ml 
 

Sham 
 

_  32.25 ± 11.02  
(n = 4) 

  1.25 ± 0.18  
(n=4) 

Ischemic 
 

18.75 ± 4.88 
(n=12) 

46.86 ± 10.35  
(n=7) 

29.35 ± 12.32 
†† 
(n=8)  

Ischemic /DMSO 15 min  8.016 ± 3.23 
(n=10) 

30.44 ± 4.46 
(n=9) 

15.70 ± 4.65 
(n=9) 

Ischemic /DMSO 3 days 
 

 4.46 ± 2.01 * 
(n=8) 

13.75 ± 0.85 * 
(n=4) 

  2.95 ± 1.32 * 
(n=4) 
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Figure 1: Cross section of the 2,3,5-triphenyltetrazolium chloride stained heart 
slices. The pale area, indicated by arrows, represents infarction area of the anterior 
wall of the left ventricle; (A) sham, (B) ischemic, (C) ischemic plus DMSO 500 
µl/Kg 15 minutes before, and (D) ischemic plus DMSO 500 µl/Kg for 3 days (x10 
photo ocular; x 6.4, magnification charger). 
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CONCLUSION 

Here, we investigated on the effect of DMSO in a model of rat acute 

myocardial infarction. Our main result is that DMSO reduced 

myocardial damage following LAD ligation, accordingly to previous 

results on its protective effect on cerebral ischemia (Shimizu et al.,1997), 

on hepatic ischemia reperfusion injury (Sahin, et al., 2004) and on in 

vitro cardiac ischemia (Shalfer, et al., 1983). The mechanism at the basis 

of this protective effect is not known; it is known that DMSO readily 

penetrates cell membranes; inside the cells its effect on ischemic damage 

might be attributed to an antioxidant effect given its properties as free 

radical scavenger but also to an effect of ion exchange through cell 

membranes and thus on cell excitation (Santos et al., 2003; Colucci, et 

al,. 2008). An early study performed on perfused rat hearts demonstrates 

that DMSO protects from oxygen induced cell damage following 

reperfusion and also reduces contractile force of heart caused by hypoxic 

contracture (Ganote, et al., 1982), suggesting that this effect could be 

dependent upon an action of DMSO directly on contractile proteins or, 

indirectly, on calcium metabolism. However, other works demonstrate 

that DMSO does not alter ion exchange through cell membranes but has 

negative inotropic effect probably due to an inhibition of myofilament to 

calcium responsiveness (Ogura et al., 1996). In our study, the beneficial 

effect on cardiac function is confirmed by  the reduction of serum levels 
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of myoglobin and cTPI whose increasing levels following ischemia 

represent contractile protein damage.  

In conclusion, here we show for the first time a protective effect for DMSO on 

an in vivo model of rat acute myocardial ischemia, although further studies are 

required to define the mechanism at the basis of this effect, we think that our 

work contributes to delineate the pharmacological profile of this neglected 

compound.  
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