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SEDE AMMINISTRATIVA: UNIVERSITÀ DI NAPOLI FEDERICO II
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Preface

The aim of this thesis is the analytical study and the development of a numerical method to

solve the following non-linear, integro-differential boundary value problem on the half line:











ν (y) g (y)−
∫+∞
0 k(x)g(x)dx [D (y) g′(y)]′ = p (y)

g′ (0) = 0, limy→+∞ g(y) = 0
, y ≥ 0. (0.0.1)

This problem is representative of a class of non-standard integral equations where the

derivatives of the unknown function are multiplied by an integral term depending on the

unknown itself. The problems of this class are related to some real phenomena like plasmas

kinetics (see for instance [16]-[18], [27], [41]) and population dynamics (see i. e. [6]).

In particular equation (0.0.1) contains all the peculiarities of a more complicated model of

kinetic equations arising from the study of dust production and dynamics in the vacuum

chamber of the experimental fusion devices [41]. This equation is defined on the half line,

and its non-standard nature makes the analytical and numerical study rather complicated.

As a matter of fact, the knowledge about the existence, uniqueness and other properties of

the solution is missing and the numerical methods are still undeveloped.

Hence, the first part of this thesis concerns with the theoretical analysis of problem (0.0.1),

which provides useful informations about the existence and other qualitative properties of

the solution itself and represents an essential preparation for a numerical resolution of the

problem.
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PREFACE 8

The approach followed in this thesis consists in rewriting problem (0.0.1) in the equivalent

form as follows:










ν (y) g (y, q)− q [D (y) g′(y, q)]′ = p (y)

g′ (0, q) = 0, limy→+∞ g (y, q) = 0
, y ≥ 0, (0.0.2)

F (q) = q −

∫ +∞

0
k(x)g(x, q)dx = 0, (0.0.3)

where, (0.0.2) is a classical Sturm-Liouville boundary value problem depending on a param-

eter q and it coincides with the problem (0.0.1) when q is a zero of the non-linear function

F (q) defined by (0.0.3).

Theoretical results show that for any q > 0 fixed, there exists a unique solution g(y, q) ∈

C4([0,+∞)) of problem (0.0.2), which is positive and bounded together with its derivatives

up to order 4. Furthermore, we have proved other important properties, like the uniform

boundedness of g(y, q) and its derivatives up to order 4, with respect to the parameter q,

and the uniform continuity of g(y, q) with respect to q. In particular this last property

allows us to get the uniform continuity of the function F (q).

In order to prove the existence of a solution of (0.0.1), we show that there exists an interval

[a, b] where the function F (q) has at least a zero q∗, and g(y, q∗), solution of the differential

problem (0.0.2) with q∗ fixed, is a solution of the integro-differential problem (0.0.1).

It remains an open problem the uniqueness of the solution of the integro-differential problem

(0.0.1).

The second part of this thesis concerns with the development of the numerical method to

solve the integro-differential problem (0.0.1) and the study of the convergence of it.

At first, we rewrite problems (0.0.2)-(0.0.3) in a compact interval [0, T ], where the end point

T is sufficiently large. Then, we discretize problem (0.0.2) by a finite difference scheme and

the integral term in (0.0.3) by a truncated composite trapezoidal rule, on a uniform mesh,

{yi}
N
i=0, on [0, T ]. In this way we get the discrete version of (0.0.2)-(0.0.3)

A (q) g (q) = p. (0.0.4)
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Fh(q) = q − h
N
∑

i=0

ωik(yi)gi(q) = 0, (0.0.5)

where h is step size.

Under suitable assumptions the system (0.0.4) has a unique solution g(q), positive and

continuous with respect to q. This last property ensures the continuity of the function Fh(q)

with respect to q. Furthermore we have proved the convergence of Fh to F when h tends

to zero, hence, for h sufficiently small, Fh has at least a zero, q∗h, in the same interval [a, b]

found for function F (q) in continuous case. The corresponding value g(q∗h) = A−1(q∗h)p is

the numerical approximation of the solution of the integro-differential problem (0.0.1).

Starting from the interval [a, b], we develop an iterative process based on bisection method,

which converges to the zero of Fh.

An important part of this research work is devoted to the analysis and proof of the con-

vergence of the numerical method for h → 0 and T → +∞. It is possible by means

of a non-standard technique which involves the virtual computing of a sequence {qr}r∈N ,

obtained applying the same iteration process to the continuous problem (0.0.2)-(0.0.3).

The thesis is divided into 4 chapters.

The aim of Chapter 1 is to furnish the basic concepts used in the remaining part of the

thesis. At first we give some notions about two point boundary value problems for ordinary

differential equations on finite intervals, the theorem of the existence and uniqueness of

the solution and some qualitative properties of the solution itself and its derivatives. All

these results will play an important role in Chapter 2 where we focus on the analysis of

the solution of the integro-differential problem (0.0.1). Finally, we give some results about

finite difference method for boundary value problems for ordinary differential equations.

In Chapter 2 we present a theoretical analysis of the integro-differential problem (0.0.1),

which provides useful informations about the existence of a solution itself and its derivatives

and represents an essential preparation for a numerical approach to the problem. All the

studies reported in this section on the properties of the solution of problem (0.0.1) turn to be

essential for the comprehension of the problem itself as well as for its numerical analysis.
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In Chapter 3 we design and analyze a numerical method to solve the integro-differential

problem (0.0.1). This method consists of two steps: discretization of the differential and

integral terms by using finite differences and a quadrature formula respectively, resolution

of the non-linear system which comes out from this discretization. In order to prove the

convergence of our method, at first, we analyze the convergence properties of the finite

differences method related to the differential problem (0.0.2) with a fixed value of the pa-

rameter q. Then, we describe the algorithm that we implement, and finally we prove the

convergence of our method.

In Chapter 4 some numerical experiments on problems of type (0.0.1) are described. The

tests performed consists of the choice of the best interval [0, T ] on which to apply the nu-

merical method , and to verify the experimental order of convergence when h→ 0.
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1.1 Introduction

The aim of this chapter is to recall some basic notions that we need in the future chapters.

To start we present an overview about two point boundary value problems for ordinary

differential equations on finite intervals, the most important results about the existence and

uniqueness of the solution and some properties of the solution itself and its derivatives (see

i. e. [7]-[11], [14], [15]). All these results will play an important role in Chapter 2 where

we focus on the analysis of the solution of the integro-differential problem (0.0.1). Finally,

we provide some notions about finite difference method for boundary value problems for

ordinary differential equations.

1.2 Two point boundary value problems on compact intervals

A boundary value problem in one dimension is an ordinary differential equation together

with conditions involving values of the solution and/or its derivatives at two or more points.

The number of conditions imposed is equal to the order of the differential equation. Usually,

boundary value problems of any physical relevance have these characteristics: the condi-

tions are imposed at two different points; the solution is of interest only between those two

points. We are concerned with cases where the differential equation is linear and of second

order. In contrast to initial value problems, even the most innocent looking boundary value

problem may have exactly one solution, no solution, or an infinite number of solutions.

In this chapter we consider the following linear second order boundary value problem:











ν (y) g (y)− [D(y)g′(y)]′ = p(y)

g′ (0) = 0, g (T ) = 0
, 0 ≤ y ≤ T. (1.2.1)

Definition 1.1 Boundary value problem (1.2.1) is called regular if both the end points are
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finite, and the function D(y) 6= 0 for all 0 ≤ y ≤ T . If one and/or both end points are

infinite and/or D(y) = 0 for at least one point y ∈ [0, T ], then the problem is said to be

singular.

In this chapter we focus on regular boundary value problems. We report some results about

the existence and uniqueness of the solution g(y) of the problem (1.2.1) together with the

analysis of other useful properties such as the sign of g and the boundedness of g(y), g′(y),

g′′(y). These results will play an important role in next chapter.

1.2.1 Existence and uniqueness of the solution

The existence and uniqueness theory for the boundary value problems is more difficult than

that of initial value problems. In fact, in the case of boundary value problems a slight change

in the boundary conditions can lead to significant changes in the behaviour of the solutions.

For example, the initial value problem:











g′′ + g = 0

g(0) = c1, g′(0) = c2

,

has a unique solution g(y) = c1 cos y + c2 sin y for any set of values c1, c2. However, the

boundary value problem











g′′ + g = 0

g(0) = 0, g(π) = ǫ( 6= 0)
,

has no solution; the problem











g′′ + g = 0

g(0) = 0, g(β) = ǫ
,
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0 < β < π has a unique solution g(y) = ǫ sin y
sinβ , while the problem











g′′ + g = 0

g(0) = 0, g(π) = 0
,

has an infinite number of solutions g(y) = c sin y, where c is an arbitrary constant.

The theory of existence and uniqueness of bounded solutions of linear and non linear bound-

ary value problems over a compact interval is well developed, see i.e. [7]-[11], [14], [15].

Below we briefly report a theorem about the existence and uniqueness of the solution of

problem (1.2.1).

Theorem 1.1 Assume that:

1. D ∈ C1 ([0, T ]), ν, p ∈ C ([0, T ]),

2. D(y) > 0, y ∈ [0, T ],

3. ν(y) > 0, y ∈ [0, T ],

are satisfied. Then the boundary value problem (1.2.1) has a unique solution

g ∈ C2 ([0, T ]).

Proof.

Let us consider the following homogeneous problem:











ν (y) g (y)− [D(y)g′(y)]′ = 0

g′ (0) = 0, g (T ) = 0
, 0 ≤ y ≤ T (1.2.2)
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It is clear that the function

g∗(y) = 0, ∀y ∈ [0, T ],

is a solution of (1.2.2). Under the assumptions made, this problem has only the trivial

solution. Indeed, let g(y) be a non trivial solution of (1.2.2), we have:

ν(y)g(y)−
[

D(y)g′(y)
]′
= 0.

Multiplying by g(y) the last equation and integrating from 0 to T , we get:

0 =

∫ T

0
g(y)

[

ν(y)g(y)−
[

D(y)g′(y)
]′
]

dy = (1.2.3)

=

∫ T

0
ν(y)g2(y)dy −

∫ T

0
g(y)

[

D(y)g′(y)
]′
dy.

Assumption 3., ensures that
∫ T

0
ν(y)g2(y)dy > 0.

Then, integrating by parts the second integral in (1.2.3) we get:

∫ T

0
ν(y)g2(y)dy −

∫ T

0
g(y)

[

D(y)g′(y)
]′
dy >

> −
[

g(y)
[

D(y)g′(y)
]]T

0 +

∫ T

0
g′(y, q)

[

D(y)g′(y, q)
]

dy =

=

∫ T

0

[

D(y)g′2(y)
]

dy ≥ 0

a contradiction for (1.2.3). Hence, g(y) = 0 is the only solution of (1.2.2).

If the problem (1.2.2) has only the trivial solution, then the inhomogeneous problem











[D(y)g′(y)]′ = ν (y) g (y)− p(y)

g′ (0) = 0, g (T ) = 0
, 0 ≤ y ≤ T (1.2.4)

has a unique solution g(y), for all p(y) ∈ C([0, T ]). In fact, consider the following IVPs:











[D(y)g′1(y)]
′ = ν (y) g1 (y)− p(y)

g1 (0) = 0, g′1 (0) = 0
, 0 ≤ y ≤ T (1.2.5)



Preliminary notions 18











[D(y)g′2(y)]
′ = ν (y) g2 (y)

g2 (0) = 1, g′2 (0) = 0
, 0 ≤ y ≤ T (1.2.6)

and let g1(y) and g2(y) be their respective solutions . Let us define a function g(y, s)

depending on a parameter s by:

g(y, s) = g1(y) + sg2(y), y ∈ [0, T ], (1.2.7)

it satisfies both the inhomogeneous differential equation of (1.2.5) and the first boundary

condition of (1.2.4). Therefore, the boundary value problem (1.2.4) has a unique solution

if and only if there exists an only value of the parameter s, such that g(y, s) satisfies the

second boundary condition of (1.2.4):

g(T, s) = g1(T ) + sg2(T ) = 0. (1.2.8)

It happens if and only if g2(T ) 6= 0. Hence

s = −
g1(T )

g2(T )
, (1.2.9)

and the second boundary condition of (1.2.4) can be solved uniquely for s in (1.2.9). Note

that g2(T ) is not equal to zero, otherwise it would be a solution of the homogeneous bound-

ary value problem, but the latter has only the trivial solution, and g2(0) = 1.

Furthermore, by hypothesis 1. it follows that g ∈ C2([0, T ]).

1.3 Some properties of the solution and its derivatives

In this section we report some qualitative properties of the solution of the problem (1.2.1)

as the sign of g and the boundedness of g, g′, g′′; these properties will be crucial in order to

develop a theoretical analysis of the integro-differential problem (0.0.1). We want to specify

that these results are reported in non-linear case by several authors [7]-[11]. We follow this

way to get these properties for linear equations.
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1.3.1 Positivity and boundedness of the solution

We have seen that, under the assumptions 1., 2., 3., the differential boundary value problem

(1.2.1) has a unique solution g(y) ∈ C2([0, T ]). About the sign of g, the following theorem

holds.

Theorem 1.2 In addition to 1.-3., assume

4. p(y) ≥ 0, y ∈ [0, T ],

then ∃ r0 > 0, such that

0 ≤ g(y) ≤ r0, y ∈ [0, T ]. (1.3.10)

Proof.

Hypotheses 1., 3. and 4. allow us to define the following constant:

r0 := max
0≤y≤T

p(y)

ν(y)
. (1.3.11)

By the assumptions made on the functions D(y), p(y), ν(y), the solution g(y) cannot have

a minimum negative at s ∈ (0, T ), since if it did we would have:

D(s)g′′(s) = ν(s)g(s)− p(s) < 0,

because g′(s) = 0, and g(s) < 0, a contradiction.

Suppose g(y) has a negative minimum at y0 = 0, then since g(0) < 0, there exists δ > 0,

such that g(y) < 0 for y ∈ (0, δ). This implies:

[

D(y)g′(y)
]′
= ν(y)g(y)− p(y) < 0
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for y ∈ (0, δ) and

D(y)g′(y) =

∫ y

0

[

D(t)g′(t)
]′
dt =

∫ y

0
[ν(t)g(t)− p(t)] dt < 0.

This is a contradiction because should be g′(y) > 0 for y ∈ (0, η) ⊆ (0, δ).

Moreover, g(T ) = 0 hence

g(y) ≥ 0, 0 ≤ y ≤ T.

By previous assumptions, g(y) cannot have a maximum at x ∈ (0, n) such that g(x) > r0,

since if it did we would have:

D(x)g′′(x) = ν(x)g(x)− p(x) > 0

because g′(x) = 0, and g(x) > r0, a contradiction. Suppose g(0) > r0 is a local positive

maximum then, there exists δ > 0 such that g(y) > r0 for y ∈ (0, δ). This implies

[

D(y)g′(y)
]′
= ν(y)g(y)− p(y) > 0

for y ∈ (0, δ) and

D(y)g′(y) =

∫ y

0

[

D(t)g′(t)
]′
dt =

∫ y

0
[ν(t)g(t)− p(t)] dt > 0.

This is a contradiction because should be g′(y) < 0 for y ∈ (0, η) ⊆ (0, δ). Thus, in

conclusion,

0 ≤ g(y) ≤ r0, 0 ≤ y ≤ T. (1.3.12)

Remark 1.1 The positiveness of the solution g arises from the positiveness of the right hand

side p in (1.2.1). However, if no information on the sign of p is given, we can still say that
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a unique solution g(y) of the problem (1.2.1) exists, and

(1.3.10 ) becomes:

|g(y)| < r0, 0 ≤ y ≤ T. (1.3.13)

1.3.2 A priori bounds for derivatives

In this section we provide a priori bounds for derivatives of the solution of problem (1.2.1).

Also in this case we apply an idea stated in [7]-[11] to the linear case and the following

theorem holds.

Theorem 1.3 Assume that the hypotheses of Theorem 1.2 are satisfied. Then, there exist

r1, r2 > 0 such that:

∣

∣g′(y)
∣

∣ < r1, y ∈ [0, T ], (1.3.14)

∣

∣g′′(y)
∣

∣ < r2, y ∈ [0, T ], (1.3.15)

Proof.

Starting from the equation of (1.2.1) and under the assumptions made we get:

∣

∣g′′(y)
∣

∣ ≤

∣

∣

∣

∣

D′(y)

D(y)

∣

∣

∣

∣

∣

∣g′(y)
∣

∣+

∣

∣

∣

∣

ν(y)

D(y)

∣

∣

∣

∣

|g(y)|+

∣

∣

∣

∣

p(y)

D(y)

∣

∣

∣

∣

(1.3.16)

≤ |D1|
∣

∣g′(y)
∣

∣+

∣

∣

∣

∣

νmax

Dmin

∣

∣

∣

∣

|r0|+

∣

∣

∣

∣

Pmax

Dmin

∣

∣

∣

∣

, 0 ≤ y ≤ T.

Where, as usual, fmax = max0≤y≤T f(y), fmin = min0≤y≤T f(y). Furthermore,

D1 = max
0≤y≤T

∣

∣

∣

∣

D′(y)

D(y)

∣

∣

∣

∣

(1.3.17)
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and r0 is defined in (1.3.11). Thanks to the inequality |x| < x2+1, we deduce the so called

Bernstain growth condition:

∣

∣g′′
∣

∣ ≤ Ag′
2
+B, 0 ≤ y ≤ T, (1.3.18)

where:

A = D1 (1.3.19)

B = D1 +

∣

∣

∣

∣

νmax

Dmin

∣

∣

∣

∣

|r0|+

∣

∣

∣

∣

Pmax

Dmin

∣

∣

∣

∣

. (1.3.20)

In order to obtain (1.3.14) we note that g ∈ C2[0, T ] and since g′(0) = 0, there exists δ > 0

such that g′(y) does not change sign in [0, δ] ⊂ [0, T ]. Assume that g′(y) ≥ 0, y ∈ [0, δ]

then,

g′′(y) ≤ Ag′2(y) +B, y ∈ [0, δ].

Multiplying both sides by 2Ag′(y), gives:

2Ag′(y)g′′(y)

Ag′2(y) +B
≤ 2Ag′(y).

Integrating from 0, to y, with y ∈ [0, δ]:

∫ y

0

2Ag′(t)g′′(t)

Ag′2(t) +B
dt ≤

∫ y

0
2Ag′(t)dt,

log

(

Ag′2(y) +B

B

)

≤ 2Ar0,

∣

∣g′(y)
∣

∣ ≤

[

B

A

(

e2Ar0 − 1
)

]1/2

, y ∈ [0, δ]. (1.3.21)

If g′(y) changes sign on [0, T ], because of continuity of g′(y) we can choose δ such that

g′(δ) = 0 and assume g′(y) ≤ 0, ∀y ∈ [δ, µ] ⊂ [0, T ]. Then, from (1.3.18), we have:

−
(

Ag′2(y) +B
)

≤ g′′(y), y ∈ [δ, µ] (1.3.22)
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and in a easy way we obtain that:

∣

∣g′(y)
∣

∣ ≤

[

B

A

(

e2Ar0 − 1
)

]1/2

, y ∈ [δ, µ]. (1.3.23)

Then, |g′(y)| < r1, y ∈ [0, T ] with,

r1 =

[

B

A

(

e2Ar0 − 1
)

]1/2

. (1.3.24)

Finally, from (1.3.10), (1.3.14), (1.3.16), (1.3.17) and hypotheses 1.-4., we get

∣

∣g′′(y)
∣

∣ ≤ r2, (1.3.25)

with,

r2 := D1r1 + max
0≤y≤T

∣

∣

∣

∣

ν(y)

D(y)

∣

∣

∣

∣

r0 + max
0≤y≤T

∣

∣

∣

∣

P (y)

D(y)

∣

∣

∣

∣

(1.3.26)

Finally, the following proposition is straightforward.

Proposition 1.1 Assume that the hypotheses of the Theorem 1.3 are satisfied. If in addition

we assume that ν, p ∈ C2([0, T ]) and D ∈ C3([0, T ]) then, the solution g(y) of (1.2.1) is

in C4([0, T ]).

1.4 Finite Difference Method

In this section we report some notions about finite difference methods (see for instance [22],

[30]-[33], [37]). Let us consider the boundary value problem (1.2.1) which we write as:

L{g} := −D(y)g′′ − D′(y)g′ + ν(y)g = p(y), y ∈ [0, T ], (1.4.27)
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g′(0) = 0, g(T ) = 0. (1.4.28)

Let us assume that the hypotheses of the Proposition 1.1 are satisfied, in this way the bound-

ary value problem has a unique solution g in C4([0, T ]). Furthermore, we make the follow-

ing assumption

ν(y) ≥ ν∗ > 0, y ∈ [0, T ]. (1.4.29)

In order to solve numerically this problem we define a uniform mesh on [0, T ]:

Πh : 0 = y0 < y1 < y2 < ... < yN−1 < yN = T, (1.4.30)

yi = ih, i = 0, ..., N, h =
T

N
.

Then we replace the derivative terms in (1.4.27) with finite difference approximations. We

choose the centered difference formulas, which means we use the following expressions

g′(yi) =
g(yi+1)− g(yi−1)

2h
−

1

6
h2g(3)(ηi), (1.4.31)

g′′(yi) =
g(yi+1)− 2g(yi) + g(yi−1)

h2
−

1

12
h2g(4)(ηi), (1.4.32)

with ηi, ηi ∈ [yi−1, yi+1]. Let us set

gi ≈ g(yi), i = 0, ..., N − 1, (1.4.33)

and consider the following difference equations:

Lh{gi} := ν(yi)gi −D′(yi)
gi+1 − gi−1

2h
−D(yi)

gi+1 − 2gi + gi−1

h2

= p(yi), i = 0, ..., N − 1. (1.4.34)

The boundary conditions in (1.4.28) are replaced by:

g−1 = g1, gN = 0. (1.4.35)

We note that the first one comes out from the fact that g′(0) = 0. Equations (1.4.34) together

with (1.4.35) lead us to a system of N algebraic equations:
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Ag = p, (1.4.36)

where g = [g0, ..., gN−1]
T ∈ IRN , p = [p(y0), ..., p(yN−1)]

T ∈ IRN and the tridiagonal

matrix A = (ai,j) ∈ IRN×N is the coefficient matrix,

A =



























a0 b0 0 0 · · · 0

c1 a1 b1 0 · · · 0

0
. . .

. . .
. . . · · · 0

0 0 · · · cN−2 aN−2 bN−2

0 0 · · · · · · cN−1 aN−1



























(1.4.37)

with:

a0 := ν(y0) +
2D(y0)

h2
, b0 := −

2

h2
D(y0); (1.4.38)

ci := −

[

D(yi)

h2
−

D′(yi)

2h

]

,

ai := ν(yi) +
2D(yi)

h2
, i = 1, ..., N − 1; (1.4.39)

bi := −

[

D′(yi)

2h
+

D(yi)

h2

]

, i = 1, ..., N − 2. (1.4.40)

To solve the difference problem in (1.4.34)-(1.4.35) we must, in fact, solve the Nth order

linear system (1.4.36).

We assume that the step size h is so small that:

hD1 < 2 (1.4.41)

where we recall that D1 = max0≤y≤T
∣

∣

∣

D′(y)
D(y)

∣

∣

∣. So we deduce that

|a0| > |b0|

|ai| > |bi|+ |ci|, i = 1, ..., N − 2

|aN−1| > |cN−1| (1.4.42)
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Of course, this furnishes a proof of the existence of a unique solution of the difference

equations (1.4.36) provided (1.4.41) is satisfied.

The local truncation errors, τi, are defined by:

Lh{g(yi)} = p(yi) + τi; i = 0, ..., N − 1. (1.4.43)

Since g(y) is a solution of (1.4.27) and we have assumed that g is continuous together that

its derivatives up to order four, using Taylor’s theorem we get

τi = Lh{g(yi)} − L{g(yi)} =

− D(yi)

[

g(yi+1)− 2g(yi) + g(yi−1)

h2
− g′′(yi)

]

− D′(yi)

[

g(yi+1)− g(yi−1)

2h
− g′(yi)

]

=

= −
D(yi)

12
h2
[

g(4)(ηi) + 2
D′(yi)

D(yi)
g(3)(ηi)

]

(1.4.44)

Now we consider the classical theorem about the error estimate.

Theorem 1.4 Assume that 1.-3. hold. If in addition we assume that the stepsize h satisfies

(1.4.41), then

|gi − g(yi)| ≤
h2

12

Dmax

ν∗
[G4 + 2D1G3], (1.4.45)

where Gi = max0≤y≤T |g
(i)(y)|, i = 3, 4.

Proof.

Let us define

ei = gi − g(yi), i = 0, ..., N. (1.4.46)
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Then subtracting (1.4.43) from (1.4.34) we have

aiei = biei−1 + ciei+1 − τi. (1.4.47)

We set: e = max0≤y≤T |ei|, τ = max0≤i≤N |τi| and we have:

|aiei| = [|bi|+ |ci|]e+ τ. (1.4.48)

By (1.4.38)-(1.4.40) and (1.4.41) we get

e ≤
τ

ν∗
(1.4.49)

and by (1.4.44) we get

e ≤
h2

12

Dmax

ν∗
[G4 + 2D1G3] (1.4.50)

From this theorem we can see that the difference solution converges to the exact solution as

h→ 0 and, in fact, the error is at most O(h2).
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The continuous problem
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2.1 Introduction

The aim of this chapter is to introduce a theoretical analysis of the following non-linear

non-standard integro-differential boundary value problem:











ν (y) g (y)−
∫+∞
0 k(x)g(x)dx [D (y) g′(y)]′ = p (y)

g′ (0) = 0, g (+∞) = 0
, y ≥ 0. (2.1.1)

The peculiarity of this equation is that the coefficients of the derivatives of the unknown

function depend on the unknown function itself by means of an integral over the semi-axis.

This feature makes the analytical study of this problem rather complicated . Furthermore,

the knowledge about the solution and its qualitative properties is poor, hence the analytical

study that we present provides useful information about the solution of the problem (2.1.1)

and represents an essential preparation for a numerical approach to the problem that we will

see in the next chapter.

In order to analyze the integro-differential problem (2.1.1), it is useful to consider the clas-

sical Sturm-Liuoville differential problem depending on a parameter q:











ν (y) g (y, q)− q [D (y) g′(y, q)]′ = p (y)

g′ (0, q) = 0, g (+∞, q) = 0
, y ≥ 0, (2.1.2)

and observe that, when

q =

∫ +∞

0
k(x)g(x)dx, (2.1.3)

it coincides with problem (2.1.1). Theoretical results about two point boundary value prob-

lems on infinite intervals for ordinary differential equations are well known in literature.

Several authors (see for instance [12]-[13]), have investigated about the existence of the

solution and some of its qualitative properties as the positiveness and boundedness of the

solution itself and of its derivatives, in non-linear case. We have fitted these results on the

form of the parametric problem (2.1.2) and connected them in order to obtain a complete

theory and prepare the basis for the analysis of the problem (2.1.1).
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In Section 2.2 we examine problem (2.1.2), assume that q > 0 is a fixed parameter and

report results about existence, uniqueness, positiveness, regularity and boundedness of the

solution. All these results will be crucial for the investigations carried out in Section 2.3 on

the complete problem (2.1.1) or the equivalent problem (2.1.2) with (2.1.3), where we will

prove the existence of a non-negative solution g which is uniformly bounded together with

its derivatives. All the studies reported in this chapter about the properties of the solution of

problem (2.1.1) turn to be essential for the comprehension of the problem itself as well as

for its numerical analysis. Finally Section 2.4 contains some conclusions.

2.2 Analysis of the solution of the parametric differential

boundary value problem

Boundary value problems on infinite intervals frequently occur in mathematical modelling

of various applied problems. As examples (see i.e. [13]), in the study of unsteady flow

of a gas through a semi-infinite porous medium, discussion of electrostatic probe measure-

ments in solid-propellant rocket exhausts, analysis of the mass transfer on a rotating disk

in a non-Newtonian fluid, heat transfer in the radial flow between parallel circular disks,

investigation of the temperature distribution in the problem of phase change of solids with

temperature dependent thermal conductivity, as well as numerous problems arising in the

study of draining flows, circular membranes, plasma physics, radially symmetric solutions

of semi-linear elliptic equations, non-linear mechanics, and non-Newtonian fluid flows.
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2.2.1 Existence of global solution

In this section we consider the differential boundary value problem (2.1.2) with q > 0

fixed and, following a standard procedure (see i. e. [12], [13]), report some results on the

existence and the uniqueness of the solution g(y, q) together with the analysis of other useful

properties such as the sign of g(y, q) and the boundedness of g(y, q) and its derivatives.

The proof of the existence of the solution of problem (2.1.2) can be divided into two steps.

At first we consider sufficient conditions on the functions which define the problem that

yield a global solution of the equation in (2.1.2), which is continuous and bounded together

with its derivatives up to order two, on [0,+∞). Arzelà-Ascoli Theorem and the results

presented in the previous chapter about boundary value problems on finite intervals will

play an important role in order to obtain a global solution to (2.1.2). Furthermore, it is

easy to get a global solution to (2.1.2) which also satisfies the boundary condition at zero,

g′(0, q) = 0. Next, to satisfy the boundary condition at infinity is more complicated, in fact,

constant a priori bound alone is not suffice to give the existence of a solution that satisfies the

second boundary condition of (2.1.2). We need further a priori information which implies

that the solution tends to zero at infinity, as we will see in the following section.

From now on we will consider boundary value problems of the kind (2.1.2) with q positive

and fixed and we make the following assumptions on the involved functions:

1. D ∈ C1 ([0,+∞)), ν, p ∈ C ([0,+∞)),

2. 0 < Dinf ≤ D(y) ≤ Dsup, y ≥ 0,

3. 0 < supy≥0

∣

∣

∣

D′(y)
D(y)

∣

∣

∣ < +∞,

4. 0 < νinf ≤ ν(y) ≤ νsup, y ≥ 0,

5. 0 ≤ p(y) ≤ P , y ≥ 0,

6.
∫+∞
0 p(y)dy < +∞

7. limy→+∞ p(y) = 0
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As usual, we denote by BC(r)[0,+∞) the space of functions f(x) with

f (j)(x), j = 0, 1, ..., r, bounded and continuous on [0,+∞) and

‖f‖∞ = supy≥0 |f(y)|.

In order to show the boundedness of g(y, q) and its first and second derivatives, we note that

hypotheses 2.-5. allow us to define the following constants:

A :=

∥

∥

∥

∥

D′

D

∥

∥

∥

∥

∞

, B :=

∥

∥

∥

∥

D′

D

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

ν

qD

∥

∥

∥

∥

∞

∥

∥

∥

∥

p

ν

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

p

qD

∥

∥

∥

∥

∞

, (2.2.4)

and we set

r0 :=

∥

∥

∥

∥

p

ν

∥

∥

∥

∥

∞

, (2.2.5)

r1 :=

[

B

A

(

e2Ar0 − 1
)

]1/2

, (2.2.6)

r2 :=

∥

∥

∥

∥

D′

D

∥

∥

∥

∥

∞

r1 +

∥

∥

∥

∥

ν

qD

∥

∥

∥

∥

∞

r0 +

∥

∥

∥

∥

p

qD

∥

∥

∥

∥

∞

. (2.2.7)

Moreover, in order to make the discussion clear, we report the following classical definitions

about uniform boundedness and equicontinuity of a sequence of

continuous functions, and the Arzelà-Ascoli Theorem .

Definition 2.1 A sequence {fn}n∈N of continuous functions on an interval

I = [a, b] is uniformly bounded if there exists a positive constant M < +∞ such that

∀n ∈ N ,

|fn(x)| < M, x ∈ [a, b].

Definition 2.2 A sequence of functions, {fn}n∈N , is equicontinuous if, for every ǫ > 0,

there exists δǫ > 0, such that |y − s| < δǫ, |fn(y)− fn(s)| < ǫ, ∀n ∈ N − {0}.
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Theorem 2.1 (Arzelà-Ascoli Theorem) Let I be a compact interval. If a sequence of func-

tions {fn}n∈N in C(I) is uniformly bounded and equicontinuous then it has a uniformly

convergent subsequence.

Now, following a classical procedure (see for instance [12], [13]) based on particular ap-

plications of Arzelà-Ascoli Theorem, we report the result on existence of a global solution

g ∈ BC2([0,+∞)) of equation in (2.1.2), satisfying the boundary condition at zero. In

the following theorem we need all the results about the solution of the differential boundary

value problem on finite intervals, reported in Sections 1.2-1.3

Theorem 2.2 Assume 1.-7. are satisfied. Then, for any fixed q > 0, the ordinary differential

equation in (2.1.2) has at least one non negative solution such that

g ∈ BC2 ([0,+∞)) , (2.2.8)

lim
y→0+

g′(y, q) = 0. (2.2.9)

Proof.

Let us consider, for all n ∈ N − {0}, the boundary value problem:











ν (y) gn (y, q)− q [D(y)g′n(y, q)]
′ = p(y)

g′n (0, q) = 0, gn (n, q) = 0
, y ∈ [0, n]. (2.2.10)

Under the assumptions 1.-5., theoretical results described in the previous chapter show that,

for all n ∈ N − {0}, problem (2.2.10) has a unique solution
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gn(y, q) ∈ C2 ([0, n]), positive and such that

0 ≤ gn(y, q) ≤ r0, y ∈ [0, n], (2.2.11)

∣

∣g′n(y, q)
∣

∣ < r1, y ∈ [0, n], (2.2.12)

∣

∣g′′n(y, q)
∣

∣ < r2, y ∈ [0, n], (2.2.13)

where the constants r0, r1 and r2 are defined in (2.2.5)-(2.2.7). Hypotheses 4., 5. and

(2.2.11) enable us to define the following estimate:

∣

∣

∣

[

qD(y)g′n(y)
]′
∣

∣

∣ ≤M0 y ∈ [0, n], ∀n ∈ N − {0} (2.2.14)

with,

M0 = |νsup| |r0|+ |P | . (2.2.15)

Let us consider the equation

q
[

D(y)g′n(y, q)
]′
= ν(y)gn(y, q)− p(y),

an integration from 0 to y ∈ (0, n] yields

g′n(y, q) =
1

qD(y)

∫ y

0
[ν(τ)gn(τ, q)− p(τ)] dτ

and another integration produces

gn(y, q)− gn(0, q) =

∫ y

0

1

qD(t)

∫ t

0
[ν(τ)gn(τ, q)− p(τ)] dτdt.

At the same way, for s ∈ (0, n] we have

gn(s, q)− gn(0, q) =

∫ s

0

1

qD(t)

∫ t

0
[ν(τ)gn(τ, q)− p(τ)] dτdt,

subtracting the two previous relations we get

gn(y, q)− gn(s, q) =

∫ y

s

1

qD(t)

∫ t

0
[ν(τ)gn(τ, q)− p(τ)] dτdt

|gn(y, q)− gn(s, q)| ≤
1

q

∫ y

s

1

D(t)

∫ t

0
|ν(τ)gn(τ, q)− p(τ)| dτdt

≤
M0

q

∫ y

s

1

D(t)

∫ t

0
dτdt =

M0

q

∫ y

s

t

D(t)
dt, (2.2.16)

∀n ∈ N − {0}.
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It is easy to see that

∣

∣g′n(y, q)− g′n(s, q)
∣

∣ ≤ r2

∣

∣

∣

∣

∫ y

s
dt

∣

∣

∣

∣

= r2 |y − s| (2.2.17)

with r2 given in (2.2.7).

Let us define the sequence of functions {zn(y, q)}n∈N in this way

zn(y, q) =











gn(y, q), y ∈ [0, n]

0, y > n
. (2.2.18)

It is clear that zn(y, q) is continuous with respect to y on [0,+∞) and twice continuously

differentiable except possibility at y = n, where there is a jump. By (2.2.11) and (2.2.12) it

comes out that:

0 ≤ zn(y, q) ≤ r0, 0 ≤ y ≤ +∞, n ∈ N − {0} (2.2.19)

∣

∣z′n(y, q)
∣

∣ < r1, 0 ≤ y ≤ +∞, n ∈ N − {0} (2.2.20)

and by (2.2.16) for y, s ∈ [0,∞) we have:

|zn(y, q)− zn(s, q)| ≤
M0

q

∫ s

y

t

D(t)
dt, ∀n ∈ N − {0}.

By assumptions made on D(y), the integral function:M0
q

∫ y
0

t
D(t)dt, is continuous hence,

∀ǫ > 0, ∃δ > 0, such that |y − s| < δ,

|gn(y, q)− gn(s, q)| ≤
M0

q

∫ y

s

t

D(t)
dt < ǫ, ∀n ∈ N − {0}.

so zn(y, q) are equicontinuous with respect to y.

The functions z′n(y, q) with n = 2, 3, ... are equicontinuous with respect to y on [0, 1],

because from (2.2.17)

∣

∣z′n(y, q)− z′n(s, q)
∣

∣ ≤ r1 |y − s| , y, s ∈ [0, 1]. (2.2.21)

By Arzelà-Ascoli Theorem there is a subsequence of index N∗
1 of N −{0, 1} and a contin-

uous function

h1(y, q) on [0, 1]
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such that

z′1n(y, q)→ h1(y, q)

uniformly with respect to y ∈ [0, 1], as n→ +∞ through N∗
1 . We consider the subsequence

of {zn(y, q)} of index N∗
1 ⊂ N − {0, 1}, {z1n(y, q)}1n∈N∗

1
, these functions are uniformly

bounded and equicontinuous with respect to y on [0, 1], hence by Arzelà-Ascoli Theorem

there is a subsequence of index N1 of N∗
1 and a continuous function

k1(y, q) on [0, 1]

such that

zn,1(y, q)→ k1(y, q)

uniformly with respect to y ∈ [0, 1], as n, 1→ +∞ through N1.

We note that the subsequence of
{

z′n,1(y, q)
}

n,1∈N1

is uniformly convergent to the function

h1(y, q), and thanks to the uniform convergence we have:

h1(y, q) =
d

dy
k1(y, q) = k′1(y, q). (2.2.22)

Again we consider the sequence {z′n,2(y, q)} with n, 2 ≥ 3 these functions are equicontin-

uous w.r.t y on [0, 2], and the Arzelà-Ascoli Theorem implies that there is a subsequence of

index N2 of N1 and a continuously differentiable function

k2(y, q) defined on [0, 2],

such that

zn,2(y, q)→ k2(y, q)

z′n,2(y, q)→ k′2(y, q)

both uniformly with respect to y ∈ [0, 2], as n→ +∞ through N2.

Note that

k2(y, q) = k1(y, q), y ∈ [0, 1],
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because N2 ⊂ N1.

In this way we obtain for j = 1, 2, ... a subsequence of index N j ⊂ N − {0} with N j ⊂

N j−1 and a continuously differentiable functions kj on [0, j], such that,

zn,j(y, q)→ kj(y, q)

z′n,j(y, q)→ k′j(y, q)

uniformly with respect to y ∈ [0, j], as n→ +∞ through N j . Also

kj = kj−1 on [0, j − 1].

Define g(y, q) and g′(y, q) as follows: fix y ∈ [0,+∞) and consider j ∈ N − {0} with

y ≤ j, then:

g(y, q) = kj(y, q)

g′(y, q) = k′j(y, q)

g and its first derivative are well defined and g ∈ C[0,+∞) (because of the uniform con-

vergence). Hence, for n ∈ N j and n ≥ j we have:

zn(y, q) = −

∫ j

y

1

qD(t)

∫ t

0
[ν(τ)zn(τ, q)− p(τ)] dτdt+ zn(j, q).

Thanks to the uniform convergence of zn(y, q) to kj(y, q), for n → +∞ through N j we

have:

kj(y, q) = −

∫ j

y

1

qD(t)

∫ t

0
[ν(τ)kj(τ, q)− p(τ)] dτdt+ kj(j, q).

Hence,

g(y, q) = −

∫ j

y

1

qD(t)

∫ t

0
[ν(τ)g(τ, q)− p(τ)] dτdt+ g(j, q).

Then

g′(y, q) =
1

qD(y)

∫ y

0
[ν(τ)g(τ, q)− p(τ)] dτ

is a continuous function with respect to y on [0,+∞).
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Moreover,

lim
y→0+

qD(y)g′(y, q) = lim
y→0+

∫ y

0
[ν(τ)g(τ, q)− p(τ)] dτ = 0,

and thanks to the uniform convergence we have

0 ≤ g(y, q) ≤ r0, 0 ≤ y < +∞ (2.2.23)

∣

∣g′(y, q)
∣

∣ ≤ r1, 0 ≤ y < +∞. (2.2.24)

Furthermore,

[qD(y)g′(y, q)]′ = ν(y)g(y, q)− p(y) (2.2.25)

and assumption 1. implies g ∈ C2[0,+∞) and

∣

∣qD(y)g′(y, q)
∣

∣ < M0y, y > 0

∣

∣

∣

[

qD(y)g′(y, q)
]′
∣

∣

∣ < M0, y > 0

2.2.2 Study of a significative boundary value problem

The previous theorem ensures the existence of solution, g(y, q), of the equation (2.1.2)

satisfying the first boundary condition. In this section we analyze some properties of the

solution of a particular class of boundary value problems for ODE which allows us to show

that limy→0 g(y, q) = 0. By hypotheses 2. and 4. we define the following constant:

m := (qDinfνinf )
1/2, (2.2.26)

and introduce the following differential two point boundary value problem:











[qD(y)ω′(y, q)]′ − m2

qD(y)ω(y, q) = −p (y)

ω′ (0, q) = 0, ω (+∞, q) = 0
, y ≥ 0 (2.2.27)
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where the constant m, defined above, satisfies

∃m > 0, s.t. qD(y)ν(y)g ≥ m2g, y ∈ [0,+∞), g ∈ [0, r0] (2.2.28)

In this section we want to show some of the most important properties of the solution of this

problem. At first it is easy to prove that the function

ω(y, q) =
1

2m
e
−m

q

∫ y

0
ds

D(s)

∫ +∞

0
p(τ)e

−m
q

∫ τ

0
ds

D(s)dτ

+
1

2m
e
−m

q

∫ y

0
ds

D(s)

∫ y

0
p(τ)e

m
q

∫ τ

0
ds

D(s)dτ

+
1

2m
e

m
q

∫ y

0
ds

D(s)

∫ +∞

y
p(τ)e

−m
q

∫ τ

0
ds

D(s)dτ (2.2.29)

satisfies the equation (2.2.27).

Furthermore, ω(y, q) satisfies also the boundary conditions of the (2.2.27).

Proposition 2.1 Assume that hypotheses 1., 2., 4.-7. hold. Then, the function ω(y, q), de-

fined by (2.2.29), satisfies the boundary conditions of the problem (2.2.27).

Proof.

It is easy to prove that ω′(0, q) = 0.

In order to show that limy→+∞ ω(y, q) = 0, we note

limy→+∞ e
−m

q

∫ y

0
ds

D(s) = 0,

limy→+∞ e
−m

q

∫ y

0
ds

D(s)
∫+∞
0 p(τ)e

−m
q

∫ τ

0
ds

D(s)dτ = 0,

by Hopital’s rule :

lim
y→+∞

e
−m

q

∫ y

0
ds

D(s)

∫ y

0
p(τ)e

m
q

∫ τ

0
ds

D(s)dτ = lim
y→+∞

q

m
p(y)D(y) = 0,

by Hopital’s rule :

lim
y→+∞

e
m
q

∫ y

0
ds

D(s)

∫ +∞

y
p(τ)e

−m
q

∫ τ

0
ds

D(s)dτ = lim
y→+∞

q

m
p(y)D(y) = 0.



THE CONTINUOUS PROBLEM 41

Hence limy→+∞ ω(y, q) = 0.

Moreover, hypotheses 2., 5., ensure that ω(y, q) ≥ 0, y ∈ [0,+∞).

Proposition 2.2 Assume that 1., 2., 5. and 6. are satisfied. Then, ω(y, q) and ω′(y, q) are

bounded.

Proof. In order to prove the boundedness of ω(y, q) we note that under the assumptions 2.,

5. and 6. we have:

∣

∣

∣

∣

e
−m

q

∫ y

0
ds

D(s)

∣

∣

∣

∣

≤ 1, y ≥ 0,

∫+∞
0 p(y)dy ≤ Pint,

∫ y
0 e

m
q

∫ τ

0
ds

D(s) p(τ)dτ ≤ e
m
q

∫ y

0
ds

D(s)
∫ y
0 p(y)dy

∫+∞
y e

−m
q

∫ τ

0
ds

D(s) p(τ)dτ ≤ e
−m

q

∫ y

0
ds

D(s)
∫+∞
y p(y)dy

Hence:

|ω(y, q)| ≤
Pint

2m
+

e
−m

q

∫ y

0
ds

D(s) e
m
q

∫ y

0
ds

D(s)

2m

∫ y

0
p(τ)dτ +

+
e

m
q

∫ y

0
ds

D(s) e
−m

q

∫ y

0
ds

D(s)

2m

∫ +∞

y
p(τ)dτ ≤

≤
3Pint

2m
= Ω. (2.2.30)

Finally also ω′(y, q) is bounded:

∃ΩP ∈ R+, s.t. |ω′(y, q)| ≤ ΩP , for y ∈ [0,+∞) and for fixed q. Indeed by the

assumptions 2., 5. and 6. we have:

∣

∣ω′(y, q)
∣

∣ ≤
e
−m

q

∫ y

0
ds

D(s)

2qD(y)

∫ +∞

0
p(t)e

−m
q

∫ t

0
ds

D(s)dt+
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+
e
−m

q

∫ y

0
ds

D(s)

2qD(y)

∫ y

0
p(t)e

m
q

∫ t

0
ds

D(s)dt+

+
e

m
q

∫ y

0
ds

D(s)

2qD(y)

∫ +∞

y
p(t)e

−m
q

∫ t

0
ds

D(s)dt ≤

≤
Pint

2qDinf
+

e
−m

q

∫ y

0
ds

D(s) e
m
q

∫ y

0
ds

D(s)

2qDinf
Pint +

+
e

m
q

∫ y

0
ds

D(s) e
−m

q

∫ y

0
ds

D(s)

2qDinf
Pint =

=
3Pint

2qDinf
= ΩP . (2.2.31)

Finally, we show how to get the solution ω(y, q) of (2.2.27) in easy way as follows.

I STEP

We multiply both sides of the equation (2.2.27) for e
−m

q

∫ y

0
ds

D(s) and integrate from zero to

infinity:

∫ +∞

0
e
−m

q

∫ y

0
ds

D(s)
[

qD(y)ω′(y, q)
]′
dy −

m2

q

∫ +∞

0

ω(y, q)

D(y)
e
−m

q

∫ y

0
ds

D(s)dy =

−

∫ +∞

0
e
−m

q

∫ y

0
ds

D(s)P (y)dy (2.2.32)

Integrating by parts the first term of the first side of the equation we obtain:

∫ +∞

0
e
−m

q

∫ y

0
ds

D(s)
[

qD(y)ω′(y, q)
]′
dy =

[

qD(y)ω′(y, q)e
−m

q

∫ y

0
ds

D(s)

]+∞

0
+

∫ +∞

0
qD(y)ω′(y, q)e

−m
q

∫ y

0
ds

D(s)
m

qD(y)
dy = m

∫ +∞

0
ω′(y, q)e

−m
q

∫ y

0
ds

D(s)dy =

m

[

ω(y, q)e
−m

q

∫ y

0
ds

D(s)

]+∞

0
+m

∫ +∞

0
ω(y, q)e

−m
q

∫ y

0
ds

D(s)
m

qD(y)
dy =

= −mω(0, q) +
m2

q

∫ +∞

0

ω(y, q)

D(y)
e
−m

q

∫ y

0
ds

D(s)dy. (2.2.33)

By replacing the last result in the equation (2.2.32) we have:

− mω(0, q) +
m2

q

∫ +∞

0

ω(y, q)

D(y)
e
−m

q

∫ y

0
ds

D(s)dy −
m2

q

∫ +∞

0

ω(y, q)

D(y)
e
−m

q

∫ y

0
ds

D(s)dy =

−

∫ +∞

0
P (y)e

−m
q

∫ y

0
ds

D(s)dy. (2.2.34)
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Hence,

ω(0, q) =
1

m

∫ +∞

0
P (y)e

−m
q

∫ y

0
ds

D(s)dy. (2.2.35)

II STEP

We multiply both sides of the equation (2.2.27) for e
−m

q

∫ y

0
ds

D(s) and integrate from y to

infinity:

∫ +∞

y
e
−m

q

∫ t

0
ds

D(s)
[

qD(t)ω′(t, q)
]′
dt−

m2

q

∫ +∞

y

ω(t, q)

D(t)
e
−m

q

∫ t

0
ds

D(s)dt =

−

∫ +∞

y
e
−m

q

∫ t

0
ds

D(s)P (t)dt (2.2.36)

Integrating by parts the first term of the first side of the equation we obtain:

∫ +∞

y
e
−m

q

∫ t

0
ds

D(s)
[

qD(t)ω′(t, q)
]′
dt =

=

[

qD(t)ω′(t, q)e
−m

q

∫ t

0
ds

D(s)

]+∞

y
+

+

∫ +∞

y
qD(t)ω′(t, q)e

−m
q

∫ t

0
ds

D(s)
m

qD(t)
dt

= −qD(y)ω′(y, q)e
−m

q

∫ y

0
ds

D(s) +m

∫ +∞

y
ω′(t, q)e

−m
q

∫ t

0
ds

D(s)dt =

− qD(y)e
−m

q

∫ y

0
ds

D(s) +m

[

ω(t, q)e
−m

q

∫ t

0
ds

D(s)

]+∞

y

+
m2

q

∫ +∞

y
e
−m

q

∫ t

0
ds

D(s)
ω(t, q)

D(t)
dt. (2.2.37)

By replacing the last result in the equation (2.2.36) we have:

− qD(y)ω′(y, q)e
−m

q

∫ y

0
ds

D(s) −mω(y, q)e
−m

q

∫ y

0
ds

D(s) +
m2

q

∫ +∞

y
e
−m

q

∫ t

0
ds

D(s)
ω(t, q)

D(t)
dt+

−
m2

q

∫ +∞

y
e
−m

q

∫ t

0
ds

D(s)
ω(t, q)

D(t)
dt = −

∫ +∞

y
P (t)e

−m
q

∫ t

0
ds

D(s)dt

qD(y)ω′(y, q)e
−m

q

∫ y

0
ds

D(s) +mω(y, q)e
−m

q

∫ y

0
ds

D(s) =
∫ +∞

y
P (t)e

−m
q

∫ t

0
ds

D(s)dt

Thus

qD(y)ω′(y, q) = −mω(y, q) + e
m
q

∫ y

0
ds

D(s)

∫ +∞

y
P (t)e

−m
q

∫ t

0
ds

D(s)dt (2.2.38)
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III STEP

We multiply both sides of the equation for e
m
q

∫ y

0
ds

D(s) and integrate from zero to y:

∫ y

0
e

m
q

∫ t

0
ds

D(s)
[

qD(t)ω′(t, q)
]′
dt−

m2

q

∫ y

0

ω(t, q)

D(t)
e

m
q

∫ t

0
ds

D(s)dt =

−

∫ y

0
e

m
q

∫ t

0
ds

D(s)P (t)dt (2.2.39)

Integrating by parts the first term of the first side of the equation we obtain:

∫ y

0
e

m
q

∫ t

0
ds

D(s)
[

qD(t)ω′(t, q)
]′
dt =

=

[

qD(t)ω′(t, q)e
m
q

∫ t

0
ds

D(s)

]y

0
−

∫ y

0
qD(t)ω′(t, q)e

m
q

∫ t

0
ds

D(s)
m

qD(t)
dt =

= qD(y)ω′(y, q)e
m
q

∫ y

0
ds

D(s) −m

∫ y

0
ω′(t, q)e

m
q

∫ t

0
ds

D(s)dt =

qD(y)ω′(y, q)e
m
q

∫ y

0
ds

D(s) −m

[

ω(t, q)e
m
q

∫ t

0
ds

D(s)

]y

0
+m

∫ y

0
ω(t, q)e

m
q

∫ t

0
ds

D(s)
m

qD(t)
dt =

= qD(y)ω′(y, q)e
m
q

∫ y

0
ds

D(s) −mω(y, q)e
m
q

∫ y

0
ds

D(s) +mω(0, q)

+
m2

q

∫ y

0

ω(t, q)

D(t)
e

m
q

∫ t

0
ds

D(s)dt (2.2.40)

By replacing (2.2.35) in the last equation and we have:

qD(y)ω′(y, q)e
m
q

∫ y

0
ds

D(s) −mω(y, q)e
m
q

∫ y

0
ds

D(s) +

+

∫ +∞

0
P (t)e

−m
q

∫ t

0
ds

D(s) +
m2

q

∫ y

0

ω(t, q)

D(t)
e

m
q

∫ t

0
ds

D(s)dt (2.2.41)

By replacing the last result in the equation (2.2.39) we have:

qD(y)ω′(y, q)e
m
q

∫ y

0
ds

D(s) −mω(y, q)e
m
q

∫ y

0
ds

D(s) +
∫ +∞

0
P (t)e

−m
q

∫ t

0
ds

D(s)dt+
m2

q

∫ y

0

ω(t, q)

D(t)
e

m
q

∫ t

0
ds

D(s)dt−
m2

q

∫ y

0

ω(t, q)

D(t)
e

m
q

∫ t

0
ds

D(s)dt =

−

∫ y

0
P (t)e

m
q

∫ t

0
ds

D(s)dt. (2.2.42)

Thus:

qD(y)ω′(y, q) = mω(y, q)− e
−m

q

∫ y

0
ds

D(s)

∫ +∞

0
P (t)e

−m
q

∫ t

0
ds

D(s)dt+

− e
−m

q

∫ y

0
ds

D(s)

∫ y

0
P (t)e

m
q

∫ t

0
ds

D(s) (2.2.43)
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By comparing (2.2.43) with (2.2.38) we have:

− mω(y, q) + e
m
q

∫ y

0
ds

D(s)

∫ +∞

y
P (t)e

−m
q

∫ t

0
ds

D(s)dt =

= mω(y, q)− e
−m

q

∫ y

0
ds

D(s)

∫ +∞

0
P (t)e

−m
q

∫ t

0
ds

D(s)dt− e
−m

q

∫ y

0
ds

D(s)

∫ y

0
P (t)e

m
q

∫ t

0
ds

D(s)

ω(y, q) =
1

2m
e
−m

q

∫ y

0
ds

D(s)

∫ +∞

0
P (t)e

−m
q

∫ t

0
ds

D(s)dt+
1

2m
e
−m

q

∫ y

0
ds

D(s)

∫ y

0
P (t)e

m
q

∫ t

0
ds

D(s)dt

+
1

2m
e

m
q

∫ y

0
ds

D(s)

∫ +∞

y
P (t)e

−m
q

∫ t

0
ds

D(s)dt (2.2.44)

2.2.3 Existence and uniqueness of the solution

In Section 2.2.1 we have seen that under the assumptions 1.-7. there exists a solution,

g(y, q), of the equation (2.1.2) such that g′(0, q) = 0. Now we have to see that

lim
y→+∞

g(y, q) = 0.

In the previous section we have analyzed a particular class of boundary value problems

defined by (2.2.27), with a known solution ω(y, q) given by (2.2.29) and we have seen that

• ω(y, q) ≥ 0, y ∈ [0,+∞),

• there exists Ω > 0 such that ω(y, q) ≤ Ω, y ∈ [0,+∞),

• limy→∞ ω(y, q) = 0.

Our aim is to show that

g(y, q) ≤ ω(y, q), ∀y ≥ 0,

and form this it follows that

lim
y→∞

g(y, q) = 0. (2.2.45)
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Theorem 2.3 Under the assumptions 1.-7. and for any q > 0, the boundary value problem

(2.1.2) has a non negative solution g ∈ C2[0,+∞).

Proof.

From Theorem 2.2 we have that there exists a solution g ∈ C2[0,+∞) of the equation

(2.1.2) such that g′(0, q) = 0 and 0 ≤ g(y, q) ≤ r0, with r0 defined in (2.2.5). In order to

prove (2.2.45) we define r(y, q) = g(y, q) − ω(y, q). At first we show that r(y, q) cannot

have a local positive maximum on [0,+∞). To see this we note that for y > 0

g′′(y, q) = −
D′(y)

D(y)
g′(y, q) +

ν(y)

qD(y)
g(y, q)−

p(y)

qD(y)
,

ω′′(y, q) =
m2

q2D2(y)
ω(y, q)−

D′(y)

D(y)
ω′(y, q)−

p(y)

qD(y)
.

Hence,

r′′(y, q) = g′′(y, q)− ω′′(y, q) =

=
ν(y)

qD(y)
g(y, q)−

D′(y)

D(y)

(

g′(y, q)− ω′(y, q)
)

−
m2

q2D2(y)
ω(y, q) =

= −
D′(y)

D(y)

(

g′(y, q)− ω′(y, q)
)

+
ν(y)

qD(y)
g(y, q)−

m2

q2D2(y)
ω(y, q)

and
[

qD(y)r′(y, q)
]′
= ν(y)g(y, q)−

m2

qD(y)
ω(y, q).

By (2.2.28) we have

ν(y)qD(y)

qD(y)
g(y, q) −

m2

qD(y)
ω(y, q) ≥

m2

qD(y)
g(y, q)−

m2

qD(y)
ω(y, q) =

=
m2

qD(y)
[g(y, q)− ω(y, q)] =

m2

qD(y)
r(y, q). (2.2.46)

Hence,

[

qD(y)r′(y, q)
]′
≥

m2

qD(y)
r(y, q). (2.2.47)
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Suppose r has a local positive maximum at y0 > 0, then r′(y0) = 0 and r′′(y0) ≤ 0. But

we have

qD(y0)r
′′(y0) =

[

qD(y0)r
′(y0, q)

]′
≥

m2

qD(y0)
r(y0, q) > 0,

a contradiction. Suppose r has a local positive maximum at y0 = 0, then since

r(0, q) = g(0, q)− ω(0, q) > 0,

there exists δ > 0 such that

r(y, q) = g(y, q)− ω(y, q) > 0

for y ∈ (0, δ). Hence, (2.2.47) implies [qD(y)r′(y, q)]′ > 0 for y ∈ (0, δ),

qD(y)r′(y, q) =

∫ y

0

[

qD(t)r′(t, q)
]′
dt > 0

a contradiction because should be r′(y, q) < 0 for y ∈ (0, δ). Thus, r(t) cannot have a local

positive maximum [0,+∞). Our aim is to show that

r(y, q) = g(y, q)− ω(y, q) ≤ 0, ∀y ∈ [0,+∞).

If r(y, q) > 0 for y ∈ [0,+∞), then there exists a c1 > 0, with r(c1, q) > 0. Now since

r(y, q) cannot have a local positive maximum on [0,+∞) it follows that for all y2 > y1 ≥

c1, r(y2, q) > r(y1, q), otherwise r(y, q) would have a local positive maximum on [0, y2].

Thus r(y, q) is strictly increasing for y > c1. We note that both g(y, q) and ω(y, q) are

bounded on [0,+∞) and

lim
y→+∞

r(y, q) = lim
y→+∞

(g(y, q)− ω(y, q)) = lim
y→+∞

g(y, q) = k < r0,

with 0 < k ≤ r0. Now there exists c2 ≥ c1 such that g(y, q) ≥ k
2 for y ≥ c2. For y > 0 we

have

[

qD(y)g′(y, q)
]′
= ν(y)g(y, q)− p(y) =

1

qD(y)
qD(y)ν(y)g(y, q)− (y)

≥
m2

qD(y)
g(y, q)− p(y) (2.2.48)
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So for y ≥ c2 (g(y, q) >
k
2 ) we have

[

qD(y)g′(y, q)
]′
≥

1

qD(y)

(

km2

2
− qD(y)P (y)

)

. (2.2.49)

Assumption 7. implies that there is a constant c3 > c2such that

[

qD(y)g′(y, q)
]′
≥

1

qD(y)

km2

2
, y > c3

Two integrations together with the fact that g(y, q) > 0 on [0,+∞) yields

∫ y

c3

[

qD(t)g′(t, q)
]′
dt ≥

km2

2

∫ y

c3

1

qD(t)
dt

qD(y)g′(y, q) ≥ qD(c3)g
′(c3, q) +

km2

2

∫ y

c3

1

qD(t)
dt

g′(y, q) ≥
D(c3)

D(y)
g′(c3, q) +

km2

2q2D(y)

∫ y

c3

1

D(t)
dt (2.2.50)

∫ y

c3
g′(t, q)dt ≥

∫ y

c3

D(c3)

D(t)
g′(c3, q)dt+

∫ y

c3

km2

2q2D(t)

∫ t

c3

1

D(τ)
dτdt

Hence,

g(y, q) ≥ D(c3)g
′(c3, q)

∫ y

c3

dt

D(t)
+

km2

2q2

∫ y

c3

1

D(t)

∫ t

c3

1

D(τ)
dτdt+ g(c3, q)

and this shows that g(y, q) is unbounded on [0,+∞), because,

D(c3)g
′(c3, q)

∫ y

c3

dt

D(t)
+

km2

2q2

∫ y

c3

1

D(t)

∫ t

c3

1

D(τ)
dτdt+ g(c3, q) ≥

≥ C(y − c3) +
km2

4q2D2
sup

(y − c3)
2 (2.2.51)

where :

C =











D(c3)
qDinf

g′(c3, q), if g′(c3, q) < 0

D(c3)
qDsup

g′(c3, q), if g′(c3, q) > 0
(2.2.52)

a contradiction. Thus,

r(y, q) = g(y, q)− ω(y, q) ≤ 0, ∀y ≥ 0
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and

0 ≤ g(y, q) ≤ ω(y, q).

Hence, the thesis

lim
y→+∞

g(y, q) = 0.

Theorem 2.4 Assume that1., 2. and 4. are satisfied. Then, for any q > 0 the problem

(2.1.2) has at most a solution.

Proof

In order to prove the uniqueness of the solution of the differential problem (2.1.2), it is

sufficient to show that the homogeneous problem has only the trivial solution. Let u ∈

C2 ([0,+∞)) satisfy:

ν(y)u(y, q) − q
[

D(y)u′(y, q)
]′
= 0, y ≥ 0 (2.2.53)

u′(0, q) = 0, u(+∞, q) = 0 (2.2.54)

From (2.2.53) we have

∫ +∞

0
u(y, q)

[

ν(y)u(y, q)− q
[

D(y)u′(y, q)
]′
]

dy = 0. (2.2.55)

that is

0 =

∫ +∞

0
ν(y)u2(y, q)dy − q

∫ +∞

0
u(y, q)

[

D(y)u′(y, q)
]′
dy

=

∫ +∞

0
ν(y)u2(y, q)dy −

[

u(y, q)D(y)u′(y, q)
]+∞
0 + q

∫ +∞

0
D(y)u′2(y, q)dy.

=

∫ +∞

0
ν(y)u2(y, q)dy + q

∫ +∞

0
D(y)u′2(y, q)dy,

which implies u(y) = 0, ∀y ≥ 0, because of the positiveness of ν, q and D.
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Remark 2.1 The positiveness of the solution g(y, q) arises from the positiveness of the right

hand side p in (2.1.2). However, if no information on the sign of p is given, we can still say

that a unique solution g(y, q) of the problem (2.1.2) exists, and (2.2.23) becomes

|g(y)| < r0, y ≥ 0. (2.2.56)

A classical result in Calculus states that if a function is lower bounded and decreasing,

then it converges to a limit. However, we cannot conclude whether its derivative will de-

crease or not. If we want to guarantee that g′(y, q)→ 0 as y → +∞ we must impose some

smoothness property on g′(y, q). That is, we must require that g′ is uniformly continuous

with respect to y. We have in this way a well-known form of the Barbalat’s lemma (see e.g.

[28], [29]).

Lemma 2.1 (Barbalat’s lemma) Let f(y) be a differentiable function with a finite limit as

y → +∞. If f ′ is uniformly continuous, then f ′(y)→ 0 as y → +∞.

Corollary 2.1 Assume 1.-7. hold, then lim
y→+∞

g′(y) = 0.

Proof.

From Theorem 2.2 we know that g′′(y, q) is bounded for any fixed value of the parame-

ter q, hence, g′ is uniformly continuous for all y ≥ 0. From here and the Barbalat’s Lemma

we have that limy→+∞ g′(y, q) = 0.

Now we show some other useful properties of the solution of the differential boundary value

problem g(y, q). Let us observe that if g(y, q) is a solution of (2.1.2), it satisfies

g′′(y, q) = −
D′(y)

D(y)
g′(y, q) +

ν(y)

qD(y)
g(y, q)−

p(y)

qD(y)
, y ≥ 0,
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hence, the proof of the following theorem is straightforward.

Theorem 2.5 Let r ∈ N . In addition to 1.-7., assume p, ν ∈ BCr[0,+∞), and D ∈

BCr+1[0,+∞). Then, for any fixed q > 0, the solution of (2.1.2)

g ∈ BCr+2[0,+∞). Moreover, for any q > 0, the derivatives g(j)(y, q), j = 0, ..., r +

2, are uniformly bounded with respect to q ∈ [q,+∞).

All these properties together with the uniform continuity of g(y, q) as function of q, that

we are going to prove in the following section, represent the basic material to deal with the

difficult task of proving the existence of the solution of the integro-problem (2.1.1).

2.3 Existence of the solution of the non-standard

integro-differential boundary value problem

In this section we focus our attention on the integro-differential problem (2.1.1), whose

analysis requires all the results already described for (2.1.2). It is worthwhile to observe that

whereas the results reported in the previous section for problem (2.1.2) with fixed q > 0 are

mainly obtained by elaborations of already existing studies, the investigations we are going

to start in this section represent the real innovative part of our research work.

In Section 2.2.3 it has been shown that, for any q fixed and positive there exists a unique

solution g(y, q) of problem (2.1.2). Thus, the following function:

F (q) := q −

∫ +∞

0
k(x)g(x, q)dx, q > 0, (2.3.57)
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is well defined. Let us assume that the kernel k satisfies:

8. k ∈ C2 ([0,+∞)),

9.
∫+∞
0 k(x)dx < +∞,

10. k(x) ≥ 0, x ∈ [0,+∞).

In order to prove the existence of a solution of (2.1.1), we show that there exists a solution

of the equation F (q) = 0. In details, if F is continuous and there exist two positive values a

and b such that F (a)F (b) < 0 then, for the Intermediate Value Theorem, equation F (q) = 0

has at least one solution q∗ and the corresponding function g(y, q∗) is the solution of the

integro-differential problem (2.1.1).

Theorem 2.6 Assume that hypotheses 1.- 10. hold. Then ∀q > 0, F (q) is uniformly con-

tinuous on [q,+∞).

Proof.

Note that by (2.2.23) and hypotheses 9. and 10., the improper integral
∫+∞
0 k(x)g(x, q)dx

is uniformly convergent with respect to q (see i. e. [26]). Hence, we are allowed to take

the limit under the integral sign. Thus, in order to prove that the function F is uniformly

continuous, we have to prove that g(y, q) is uniformly continuous with respect to q ≥ q and

y ≥ 0, i.e. ∀ǫ > 0, ∃δǫ > 0, such that

|g(y, q1)− g(y, q2)| < ǫ, ∀q1, q2 such that |q1 − q2| < δǫ, ∀y ≥ 0. (2.3.58)

Let q1, q2 ≥ q be arbitrarily fixed, then the functions g(y, q1) and g(y, q2) satisfy respec-

tively :











ν(y)g (y, q1) = q1 [D(y)g′(y, q1)]
′ + p (y)

g′ (0, q1) = 0, g (+∞, q1) = 0
, y ≥ 0, (2.3.59)
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









ν(y)g (y, q2) = q2 [D(y)g′(y, q2)]
′ + p (y)

g′ (0, q2) = 0, g (+∞, q2) = 0
, y ≥ 0. (2.3.60)

Subtracting both hands of (2.3.59) and (2.3.60) we have that

e(y) = g (y, q1)− g (y, q2) , (2.3.61)

is a solution of










ν(y)e(y) = q1 [D(y)e(y)′]′ + (q1 − q2) [D(y)g′(y, q2)]
′

e′ (0) = 0, e(+∞) = 0
, y ≥ 0. (2.3.62)

Thanks to (2.2.56) the following inequality holds

|e(y)| ≤ |q1 − q2| sup
y≥0

∣

∣

∣[D(y)g′(y, q2)]
′
∣

∣

∣

ν(y)
, (2.3.63)

where by using hypotheses 2. and 4. and Theorem 2.5, it comes out that

sup
y≥0

∣

∣

∣[D(y)g′(y, q2)]
′
∣

∣

∣

ν(y)
≤M0, (2.3.64)

with M0 independent of the parameters q1, q2 ≥ q. Hence, we conclude that ∀ǫ > 0,

∃ δǫ =
ǫ

M0
> 0 such that (2.3.58) holds.

The following theorem plays an important role in order to prove the existence of the solution

of the integro-differential problem (2.1.1).

Theorem 2.7 Let F (q) be the function defined in (2.3.57), assume that hypotheses 1.−10.,

hold and that

ν ∈ C2([0,+∞)), (2.3.65)
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|ν′(y)| < c, ∀y ≥ 0, (2.3.66)

|k′(y)| < k1, ∀y ≥ 0, (2.3.67)

∫ +∞

0

∣

∣

∣

∣

∣

[

(

k(y)

ν(y)

)

′

D(y)

]

′
∣

∣

∣

∣

∣

dy = C1 <∞, (2.3.68)

∫ +∞

0

k(y)

ν(y)
p(y)dy = C2 <∞. (2.3.69)

Then, there exist a, b ∈ (0,+∞) such that F (a)F (b) ≤ 0.

Proof

By (2.1.2) we have

F (q) = q −

∫ +∞

0
k(x)g (x, q) dx

= q

(

1−

∫ +∞

0

k(x)

ν(x)

(

D(x)g′ (x, q)
)′
dx

)

−

∫ +∞

0

k(x)

ν(x)
p(x)dx.

Integrating twice by parts by (2.3.65)-(2.3.67) and Corollary 2.1 we get

∫ +∞

0

k(x)

ν(x)
(D(x)g′ (x, q))

′

dx =

[

k

ν

]

′

(0)g(0)D(0) +

∫ +∞

0

[

(

k(x)

ν(x)

)

′

D(x)

]

′

g (x, q) dx.

Thus,

F (q) ≤ q [1 + r0(C0 + C1)]− C2, (2.3.70)

where r0, C1 and C2 are defined respectively (2.2.5), (2.3.68) and (2.3.69), and C0 =
∣

∣

∣

∣

[

k
ν

]′

(0)

∣

∣

∣

∣

D(0). By (2.3.70), F (q) ≤ 0 for any q ≤ a with

a :=
C2

1 + r0(C0 + C1)
. (2.3.71)
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Finally observe that, from (2.2.23) and 10., we have:

F (q) = q −

∫ +∞

0
k(x)g (x, q) dx ≥ q − r0

∫ +∞

0
k(x)dx,

which gives F (q) ≥ 0 for any q ≥ b with

b := r0

∫ +∞

0
k(x)dx. (2.3.72)

From Theorem 2.7 there exist a, b > 0 such that F (a)F (b) ≤ 0 and from Theorem 2.6, F

is uniformly continuous in [a, b]. Hence, by using the Intermediate Value Theorem, we get

our main result

Theorem 2.8 Under the hypotheses of Theorem 2.7 there exists at least one solution g of

the integro-differential problem (2.1.1), such that:

a ≤

∫ +∞

0
k(x)g(x)dx ≤ b, (2.3.73)

where a and b are defined in (2.3.71) and (2.3.72).

2.4 Conclusions

Observe that this theorem gives the existence but does not assure the uniqueness of the

solution of (2.1.1), which remains an open problem. Moreover, since a solution of (2.1.1) is

a solution of (2.1.2), it satisfies all the properties reported in Section 2. In particular, under
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the hypotheses of Theorem 2.7 and from (2.2.5)-(2.2.7), we define:

r1a :=







[

1 +

(∥

∥

∥

∥

ν

aD

∥

∥

∥

∥

∞

r0 +

∥

∥

∥

∥

p

aD

∥

∥

∥

∥

∞

)∥

∥

∥

∥

D′

D

∥

∥

∥

∥

−1

∞

]



e
2

∥

∥

∥

D′

D

∥

∥

∥

∞

r0
− 1











1/2

(2.4.74)

r2a :=

∥

∥

∥

∥

D′

D

∥

∥

∥

∥

∞

r1a +

∥

∥

∥

∥

ν

aD

∥

∥

∥

∥

∞

r0 +

∥

∥

∥

∥

p

aD

∥

∥

∥

∥

∞

(2.4.75)

thus we have for y ≥ 0

0 ≤ g(y) ≤ r0 (2.4.76)

∣

∣g′(y)
∣

∣ ≤ r1a (2.4.77)

∣

∣g′′(y)
∣

∣ ≤ r2a. (2.4.78)
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3.1 Introduction

In this chapter we introduce a numerical method to solve the following nonlinear integro-

differential boundary value problem











ν (y) g (y)−
∫+∞
0 k(x)g(x)dx [D (y) g′(y)]′ = p (y)

g′ (0) = 0, g (+∞) = 0
, y ≥ 0, (3.1.1)

whose theoretical analysis we developed in the previous chapter. This equation is defined

on the half line, what is more, the coefficients of the first and the second derivatives of

the unknown function g depend on the unknown function g itself by means of an integral

over the semi-axis. These peculiarities make the numerical treatment rather complicated.

In the previous chapter and in [34] we discussed the analytical study of equation (3.1.1)

and proved the existence of the solution and other additional properties which are useful

in the current investigation. In this chapter we focus on the numerical method to solve

problem (3.1.1). In section 3.2 we describe our numerical approach which consists in two

steps: discretization of the derivative and integral terms by using finite differences and a

quadrature formula respectively, solution of the non linear system which comes out from

this discretization. Section 3.3 is devoted to the study of the convergence of the overall

method. Finally, Section 3.4 contains some conclusions.
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3.2 Continuous problem and Discrete problem

In the previous chapter, in order to prove the existence of the solution of the integro-

differential problem (3.1.1), we rewrote it in the following way:











ν (y) g (y, q)− q [D (y) g′(y, q)]′ = p (y)

g′ (0, q) = 0, g (+∞, q) = 0
, y ≥ 0, (3.2.2)

F (q) = q −

∫ +∞

0
k(x)g(x, q)dx = 0, (3.2.3)

where g(x, q) inside the sign of the integral, under suitable assumptions (see Theorem 2.3

and Theorem 2.4), is the unique solution of problem (3.2.2) for any q > 0 fixed. We re-

call that the parametric differential problem (3.2.2) coincides with the integro-differential

problem (3.1.1) when q is a zero of the non-linear function defined by (3.2.3). Hence, prob-

lem (3.2.2) and the non-linear equation (3.2.3) are the equivalent version of the integro-

differential problem (3.1.1), for this reason we refer to them by the name continuous prob-

lem.

In order to make clear the discussion we report, in a more compact form, the hypotheses

that ensure the existence of a solution of problem (3.1.1)

h1) D ∈ C1 ([0,+∞)), ν, k ∈ C2 ([0,+∞)), p ∈ C ([0,+∞)),

h2) 0 < Dinf ≤ D(y) ≤ Dsup, |D′(y)| ≤ D1 y ≥ 0,

h3) 0 < νinf ≤ ν(y) ≤ νsup, |ν(i)(y)| ≤ νi, i = 1, 2, y ≥ 0,

h4) 0 ≤ p(y) ≤ P , y ≥ 0,

h5) limy→+∞ p(y) = 0,

h6)
∫+∞
0 p(y)dy < +∞,

h7) k(y) ≥ 0, y ≥ 0,
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h8)
∫+∞
0 |k(i)(x)|dx < +∞, i = 0, 1, 2.

Moreover, when h2) holds we set

D = sup
y≥0

∣

∣

∣

∣

D′(y)

D(y)

∣

∣

∣

∣

< +∞. (3.2.4)

In the previous chapter we proved that under the assumptions h1)-h8), ∀q > 0, the function

F (q) = q −

∫ +∞

0
k(x)g(x, q)dx, (3.2.5)

is uniformly continuous on [q,+∞) (see Theorem 2.6). Furthermore, there exist a, b ∈

(0,+∞) such that F (a)F (b) ≤ 0, where:

a :=

∫+∞
0

k(y)p(y)
ν(y) dy

1 +
∥

∥

∥

p(y)
ν(y)

∥

∥

∥

∞

(∣

∣

∣

∣

[

k
ν

]′

(0)

∣

∣

∣

∣

D(0) +
∫+∞
0

∣

∣

∣

∣

[

(

k(y)
ν(y)

)′

D(y)

]′∣
∣

∣

∣

dy

) , (3.2.6)

b :=

∥

∥

∥

∥

p(y)

ν(y)

∥

∥

∥

∥

∞

∫ +∞

0
k(y)dy, (3.2.7)

as proved in Theorem 2.7.

Finally, let us denote by BCr[0,+∞) the space of functions f(x) with f (j)(x), j =

0, 1, ..., r, bounded and continuous on [0,+∞), we report the following result which will

play a very important role in this chapter.

Theorem 3.1 In addition to h1)- h8), assume p ∈ BC2[0,+∞), and D ∈ BC3[0,+∞).

Then, the solutions g(y) of (3.1.1) and g(y, q) of (3.2.2), for any fixed q > 0, are in

BC4[0,+∞). Moreover the derivatives g(j)(y, q), j = 0, ..., 4, are uniformly bounded

with respect to q ∈ [a, b].

The theoretical analysis developed in the previous chapter leads us in a natural way to the

construction of the numerical method that we are going to introduce.
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In order to solve numerically the integro-differential problem (3.1.1) we break off the in-

finite interval into a finite one [0, T ], with the end point T sufficiently large and consider

problem (3.2.2) on [0, T ]. Let us define a uniform mesh on [0, T ]:

Πh : 0 = y0 < y1 < y2 < ... < yN−1 < yN = T, (3.2.8)

yi = ih, i = 0, ..., N, h =
T

N
,

and for all fixed q > 0, we solve problem (3.2.2) by applying the classical finite difference

scheme that we described in Chapter 1. Let us set

gi = gi(q) ≈ g(yi, q), i = 0, ..., N − 1, (3.2.9)

and approximate g′(yi, q) and g′′(yi, q), for all i = 0, ..., N − 1, with the centred finite

differences. In this way we obtain the following difference equations:

Lhgi = ν(yi)gi − qD′(yi)
gi+1 − gi−1

2h
− qD(yi)

gi+1 − 2gi + gi−1

h2

= p(yi), (3.2.10)

i = 0, ..., N − 1.The boundary conditions in (3.1.1) are replaced by:

g−1 = g1, gN = 0. (3.2.11)

While the second equation in (3.2.11) is obvious, the first one comes out from the fact that

g′(0) = 0. Equations (3.2.10) together with (3.2.11) give rise to a system of N algebraic

equations:

A (q) g (q) = p, (3.2.12)

where g(q) = [g0(q), ..., gN−1(q)]
T ∈ IRN , p = [p(y0), ..., p(yN−1)]

T ∈ IRN and the
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tridiagonal matrix A(q) = (ai,j(q)) ∈ IRN×N is the coefficient matrix,

A(q) =



























a0 b0 0 0 · · · 0

c1 a1 b1 0 · · · 0

0
. . .

. . .
. . . · · · 0

0 0 · · · cN−2 aN−2 bN−2

0 0 · · · · · · cN−1 aN−1



























(3.2.13)

with:

a0 := ν(y0) +
2qD(y0)

h2
, b0 := −

2q

h2
D(y0) (3.2.14)

ai := ν(yi) +
2qD(yi)

h2
,

ci := q

[

D′(yi)

2h
−

D(yi)

h2

]

, i = 1, ..., N − 1, (3.2.15)

bi := −q

[

D′(yi)

2h
+

D(yi)

h2

]

, i = 1, ..., N − 2. (3.2.16)

Since the value of q that we are looking for is a zero of the non-linear function F (q) given

in (3.2.5), we discretize F (q) as

Fh(q) = q − h
N
∑

i=0

ωik(yi)gi(q), (3.2.17)

where we have approximated the integral in (3.2.5) by a truncated composite trapezoidal

rule (ω0 =
1
2 , ωi = 1, i = 1, ..., N ) and gi(q), defined in (3.2.9), comes from the solution of

the algebraic system (3.2.12) for a fixed value of q. In this way we have the discrete version

of F (q). The algebraic system (3.2.12) and the non-linear equation

Fh(q) = 0 (3.2.18)

represent the discrete version of the continuos problem (3.2.2)-(3.2.3), for this reason we

name them discrete problem. In conclusion (3.2.12), (3.2.18) is the discrete problem that

we are going to solve.
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3.2.1 Discrete problem with q fixed

In this section we analyze the properties of the discrete problem (3.2.12), (3.2.18) with fixed

q ∈ [a, b], where a and b are defined in (3.2.6)-(3.2.7).

For convenience, we briefly collect the following classical definitions (see for instance [38],

[39]).

Definition 3.1 A matrix A ∈ IRn×n is called positive (A ≥ 0), when aij ≥ 0 for all its

elements, and A is strictly positive (A > 0), when aij > 0 for all its elements.

Definition 3.2 A matrix A ∈ IRn×n is inverse positive or strictly inverse positive if A−1

exists and A−1 ≥ 0 or A−1 > 0.

Let us denote by Fn the set of n × n real matrices whose off diagonal entries are non-

positive.

Definition 3.3 A non-singular matrix A ∈ Fn is an M-matrix if and only if A−1 is non-

negative.

Property 3.1 A matrix A ∈ IRn×n that is strictly diagonally dominant by rows and whose

entries satisfy the relations ai,j ≤ 0 for i 6= j and aii > 0, is an M-matrix.

As we have seen, ∀q > 0, by applying an appropriate finite difference scheme to the dif-

ferential boundary value problem (3.2.2), we obtain the algebraic system (3.2.12) whose
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solution g(q) is the approximation to the solution of the differential problem (3.2.2) on the

grid points. Furthermore, from (3.2.14)-(3.2.16) it is clear that A(q) is continuous w.r.t. q.

In the following proposition we report a result well known in literature (see e.g. [21], [22]),

which gives us others important informations about this matrix.

Proposition 3.1 Assume that h1)-h3) hold. If in addition we assume that:

h9) hD < 2,

where D is given by (3.2.4), then for all q > 0 and fixed, we have:

aj > 0, j = 0, ..., N − 1, bi < 0, ci+1 < 0, i = 0, ..., N − 2.

Furthermore, A(q) is strictly diagonally dominant.

From the previous proposition we get that A(q) is an M-matrix, hence its inverse, A−1(q),

exists and it has positive entries. By this property we get the following result.

Proposition 3.2 Assume that h1)-h4) and h9) hold. Then, for all q > 0 and fixed we have

that the system (3.2.12) has a unique solution, g(q), which is non-negative.

Moreover, following the proof in [21, pp. 427-430] it comes out that, under the hypotheses

of Theorem 3.1, we have the error estimate:

e(q, h) = max
0≤i≤N

|g(yi, q)− gi(q)| ≤
q

12
h2

Dsup

νinf
(r4(q) + 2Dr3(q))

+ q
Dsup

νinf

(

1

h2
+

D

2h

)

g(yN , q), (3.2.19)
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where

ri(q) = sup
y≥0

|g(i)(y, q)|, i = 3, 4

and D is given in (3.2.4). Furthermore, since as we have already mentioned, A(q) is con-

tinuous with respect to q, from (3.2.14)-(3.2.16) we get the following result.

Proposition 3.3 Under the assumptions of Proposition 3.1, we have that g(q) is continuous

with respect to q.

Hence, the following proposition is straightforward.

Proposition 3.4 Assume the hypotheses h1)-h3) and h9) hold. Then the function Fh(q)

defined in (3.2.17) is continuous with respect to q.

Let us assume T sufficiently large such that

|g(y, q)| < Ch4, (3.2.20)

for any y ≥ T . This is a reasonable request since, from the formulation of the problem

(3.1.1) itself, g vanishes at infinity. Then,

e(q, h) ≤ e(q)h2 (3.2.21)

with

e(q) =
q

12

Dsup

νinf
(r4(q) + 2Dr3(q)) + q

Dsup

νinf
C

(

1 +
D

2
h

)

. (3.2.22)

This error estimate is very important, because it ensures that, for any q > 0 fixed, the

difference solution {gi(q)}
N
i=0 converges to the exact solution g(y, q) as h → 0, and, in

fact, the error is at most O(h2).
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Now we focus on function F and its discrete version Fh and, in order to show the conver-

gence of Fh to F , it is convenient to report the following theorem (see [5]).

Theorem 3.2 Let a and k be fixed and let f(x) ∈ C2k+1[a, b] for all b ≥ a. Suppose,

further, that
∫∞

a f(x)dx exists, that

M =

∫ ∞

a
|f (2k+1)(x)|dx <∞, (3.2.23)

and that

f ′(a) = f ′′′(a) = ... = f (2k−1)(a) = 0,

f ′(∞) = f ′′′(∞) = ... = f (2k−1)(∞) = 0. (3.2.24)

Then, for fixed h > 0,

∣

∣

∣

∣

∫ ∞

a
f(x)dx− h

[

1

2
f(a) + f(a+ h) + f(a+ 2h) + ...

]∣

∣

∣

∣

≤

≤
h2k+1Mξ(2k + 1)

22kπ2k+1
. (3.2.25)

Here ξ(k) =
∑∞

j=1 j
−k is the Riemann zeta function.

This theorem tells us that if the integrand and all of its odd-order derivatives up to order

2k − 1 vanish at both ends of an infinite interval, then, as h → 0, the trapezoidal rule will
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converge to the proper answer with the rapidity of h2k+1. If all odd-order derivatives vanish,

then the rapidity exceeds h2k+1 for all k.

The following theorem shows the convergence of Fh to F , for any q > 0 fixed.

Theorem 3.3 Assume the hypotheses of Theorem 3.1 are satisfied and

h10) k ∈ C3([0,+∞)) such that
∫+∞
0 |k(3)(x)|dx < +∞,

h11) k′(0) = 0,

h12) T is large enough to have |g(y, q)| < Ch4, for all y ≥ T

then:

|Fh(q)− F (q)| ≤ Q(q)h2, (3.2.26)

where

Q(q) = C1e(q) +
M(q)ξ(3)

4π3
h+ C2h

2, (3.2.27)

with M(q) =
∫+∞
0

∣

∣

∣[k(x)g(x, q)](3)
∣

∣

∣ dx, ξ(3) =
∑+∞

j=1 3
−j is the Riemann zeta function,

e(q) is defined in (3.2.22), C1,C2 > 0 and Fh and F are defined in (3.2.17) and (3.2.5).
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Proof.

Let us consider

F (q) = q −

∫ +∞

0
k(x)g(x, q)dx (3.2.28)

Fh(q) = q − h
N
∑

i=0

ωik(yi)gi(q), (3.2.29)

by Theorem 3.2 and the error estimate (3.2.21), recalling the hypotheses on k, we get:

|Fh(q)− F (q)| =

∣

∣

∣

∣

∣

∫ +∞

0
k(x)g(x, q)dx− h

N
∑

i=0

ωik(yi)gi(q)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫ +∞

0
k(x)g(x, q)dx− h

+∞
∑

i=0

ωik(yi)g(yi, q)

∣

∣

∣

∣

∣

+

+h
N
∑

i=0

ωik(yi) |g(yi, q)− gi(q)|+ h
+∞
∑

i=N+1

ωik(yi) |g(yi, q)| ≤

M(q)ξ(3)

4π3
h3 +

(

e(q)h2 + Ch4
)

(

h
+∞
∑

i=0

ωik(yi)

)

≤

h2
(

M(q)ξ(3)h

4π3
+ C1e(q) + C1Ch2

)

, (3.2.30)

where we used h12) and h
∑+∞

i=0 ωik(yi) ≤ C1 < +∞ by virtue of Theorem 3.2 and the

hypotheses on k.

In the previous section we have seen that ∃ a, b > 0 such that F (a)F (b) ≤ 0, in the discrete

case it is easy to prove an analogous result.

Corollary 3.1 Under the assumptions of Theorem 3.3 and for h sufficiently small we have:

Fh(a)Fh(b) ≤ 0, (3.2.31)

where a and b are defined in (3.2.6)-(3.2.7).
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Furthermore it comes out that

Theorem 3.4 Under the assumptions of the Theorem 3.3 and for q ∈ [a, b] we have:

|Fh(q)− F (q)| ≤ Qh2, ∀q ∈ [a, b], (3.2.32)

with Q constant w.r.t. q.

Proof. For q ∈ [a, b], in view of Theorem 3.1, we observe that e(q) and M(q), appearing

in (3.2.27), can be bounded by a constant which is independent of q.

Using the same arguments and the bound in (3.2.21) we can prove that ∀q ∈ [a, b] also

e(q, h) is uniformly bounded with respect to q, so there exists a constant C such that

e(q, h) ≤ Ch2, q ∈ [a, b]. (3.2.33)

This result will play a crucial role in next section, since we consider q not fixed.

3.3 The convergence of the overall method

As we have seen, corollary 3.1 and the continuity of Fh(q) defined in (3.2.17) ensure that

for h sufficiently small there exists a zero of Fh(q), q
∗
h in the interval [a, b]. Hence, it is

possible to apply bisection method searching for this zero. Starting from a and b defined in

(3.2.6)-(3.2.7) we get a sequence of values

{qrh}r∈N ⊂ (a, b)

which converges to q∗h. The corresponding value

g(q∗h) = A−1(q∗h)p
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is the numerical approximation of the solution of the integro-differential problem (3.1.1).

The numerical method (3.2.12), (3.2.18) is based on the following iteration process:

q0h = a+b
2 , r = 0

repeat

compute gr+1 from A(qrh)g
r+1 = p

compute Fh(q
r
h) = qrh − h

∑N
i=0 ωik(yi)g

r+1
i

if Fh(a)Fh(q
r
h) < 0

b = qrh

else

a = qrh

endif

qr+1
h = a+b

2

r = r + 1

until convergence

(3.3.34)

In order to prove the convergence of the method (3.2.12), (3.2.18), we consider an iteration

process equivalent to algorithm (3.3.34) but applied to the continuous problem (3.2.2) and

F (q) = 0. In fact, we do not perform this iterative process and therefore we name it ghost.

Consider, then, the ghost sequence

{qr}r∈N ⊂ (a, b)

obtained starting from the values a and b defined in (3.2.6)-(3.2.7), such that

qr → q∗,

as r → +∞, where q∗ is a zero of F (q). The solution g(y, q∗) virtually obtained solving

(3.2.2) with q = q∗ is of course a solution of (3.1.1). In this section we want to show the

convergence of gn(q
∗
h) to g(yn, q

∗) when h→ 0.

In order to prove the convergence of the method we need the following results.
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Theorem 3.5 Under the assumptions of Theorem 3.4 we have:

lim
h→0

qrh = qr, for any fixed r = 1, 2, ... (3.3.35)

Proof.

Thanks to Theorem 3.4 and Corollary 3.1, for h sufficiently small, say h = h1, and T

sufficiently large, we have that

sign(Fh(a)) = sign(F (a))

and

sign(Fh(b)) = sign(F (b)),

for all h < h1, in this way

q1 =
a+ b

2
= q1h.

Hence, for r = 1, the statement is true. Then, for any fixed r, there exists h = min{h1, ..., hr},

such that ∀h < h,

sign(Fh(q
j)) = sign(F (qj)),

j = 1, ..., r, therefore,

qr+1 = qr+1
h .

Theorem 3.6 Let q∗h and q∗ be respectively the limits of the sequences {qrh}r∈N and {qr}r∈N .

Then,

lim
h→0

|q∗h − q∗| = 0. (3.3.36)
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Proof.

• From the convergence of the ghost iteration process

∀ǫ > 0, ∃r1 > 0 : ∀r ≥ r1 |q
r − q∗| <

ǫ

3

• from the convergence of the bisection method,

∀ǫ > 0, ∃r0 > 0 : ∀r ≥ r0 |q
r
h − q∗h| <

ǫ

3
, (3.3.37)

where r0 does not depend on h,

• from Theorem 3.5, for r2 = max{r0, r1}

∀ǫ > 0, ∃h0 : ∀h < h0
∣

∣qr2h − qr2
∣

∣ <
ǫ

3
. (3.3.38)

Since

|q∗h − q∗| ≤
∣

∣q∗h − qr2h
∣

∣+
∣

∣qr2h − qr2
∣

∣+ |qr2 − q∗| ,

then,

∀ǫ > 0, ∃h0 : ∀h < h0, |q
∗
h − q∗| ≤ ǫ

Now we are ready to prove the main result of our research work that is the convergence of

method (3.2.12), (3.2.18).

Theorem 3.7 Consider method (3.2.12), (3.2.18). Under the assumptions of Theorem 3.4

we have that there exists a constant C > 0 independent of q such that for all sufficiently

small h

max
0≤n≤N

|g(yn, q
∗)− gn(q

∗
h)| ≤ Ch2 +Φ(h), (3.3.39)
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where limh→0Φ(h) = 0, with yn ∈ [0, Nh] and Nh→ +∞

Proof. For the global error we have:

max
0≤n≤N

|g(yn, q
∗)− gn(q

∗
h)| ≤

max
0≤n≤N

|g(yn, q
∗
h)− gn(q

∗
h)|+ max

0≤n≤N
|g(yn, q

∗)− g(yn, q
∗
h)| ≤

Ch2 + max
0≤n≤N

|g(yn, q
∗)− g(yn, q

∗
h)| . (3.3.40)

where Ch2 comes from (3.2.33) and it is independent of q. The convergence of the overall

method is proved since g is a continuous function of q, thanks to the previous theorem.
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3.4 Conclusions

We have proposed a numerical method for the solution of the non-standard non-linear

integro-differential boundary value problem (3.1.1), which is based on a finite difference

scheme of order 2 and bisection method. We have proved the convergence of the overall

method and the term Ch2 in (3.3.39) allows us to hope in an order 2 of convergence. How-

ever, the presence of Φ(h) = max0≤n≤N |g(yn, q
∗)− g(yn, q

∗
h)| in the bound of the global

error prevents us to predict the theoretical order of convergence of the method. Neverthe-

less, the order 2 will be confirmed in the numerical experiments.





Chapter 4

Numerical Experiments

77
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4.1 Numerical Experiments

The aim of this chapter is to present a collection of some of the most significative numerical

experiments we have performed.

In the previous chapter and in [35] we showed that in order to solve numerically the integro-

differential problem (3.1.1), we break off the infinite interval into a finite one [0, T ] with T

sufficiently large. Hence, one of the aims of these tests is a check on the choice of T such

that (3.2.20) occurs. Our second aim is to verify the convergence when h → 0. For this

reason we report the classical definitions of the number of the correct digits (cd) (see for

instance [36])

cdh = −log10err, (4.1.1)

with,

err =
‖g − g(q∗h)‖∞

‖g‖∞
(4.1.2)

where, for i = 0, ..., N , gi = g(yi) are the components of the solution of problem (3.1.1)

on the grid points and g(q∗h) is the numerical approximation of the solution of the integro-

differential problem (3.1.1) on the grid points, obtained applying the numerical method

(3.2.12), (3.2.18), whose algorithm is described in (3.3.34). Moreover, we report the defini-

tion of the experimental order of convergence

Ord =
cdh/2 − cdh

log102
. (4.1.3)

Experiment 1. We consider the integro-differential problem











103(y+1)
y+2 g (y)−

∫+∞
0 e−x

2
g(x)dx [(1 + e−y)g′(y)]

′
= p (y)

g′ (0) = 0, limy→+∞ g(y) = 0
, y ≥ 0, (4.1.4)

where the known term p(y) is chosen such that g(y) = e−y
2
. Furthermore, the involved

functions satisfy the hypotheses of the Theorem 3.7, which ensures the convergence of our

method and the interval [a, b] is obtained using (3.2.6), (3.2.7).
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T 2 4 6 15 25

cd 1.7370 6.9484 10.6582 10.6582 10.6582

Table 4.1: cd values for increasing T in problem (4.1.4)

Test 1. In Table 4.1 we report the number of cd, computed with h = 1.0e−04, for increasing

values of the truncation abscissa T . It is clear that T = 6 can be chosen as the end point

with respect to this fixed value of h, because increasing T does not improve the accuracy

of the solution. The fact that such a small value of T is large enough to solve problem

(4.1.4) sufficient with accuracy can be explained by observing that the solution g has an

exponential decay. We note that this value of T satisfies (3.2.20) with h = 1.0e− 04.

Test 2. The aim of this test is to show the experimental order of convergence of the method.

The result of the implementation is reported in the following table, where h is the step size

used. Table 4.2 shows the cd values for different values of h and T = 6 fixed, for problem

(4.1.4). In this case we observe the convergence of our method with experimental order 2.
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h cd Ord

0.1 4.63 -

0.05 5.24 2.03

0.0250 5.85 2.01

0.0125 6.45 2.00

0.00625 7.05 2.00

0.003125 7.66 2.00

0.0015625 8.26 2.00

0.00078125 8.86 2.00

0.000390625 9.46 2.00

0.0001953125 10.06 2.00

Table 4.2: cd values for problem (4.1.4), when T = 6 and h varies
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Experiment 2. We next consider the integro-differential problem











(25 + e−y) g (y)−
∫+∞
0

(

x
1+x4

)2
g(x)dx [(1 + e−y)g′(y)]

′
= p (y)

g′ (0) = 0, limy→+∞ g(y) = 0
, y ≥ 0,(4.1.5)

the known term p(y) is chosen in order to get g(y) = 10
(1+y2)2

. Moreover, the func-

tions which define the problem satisfy the hypotheses which ensure the convergence of

our method and the interval [a, b] is obtained using (3.2.6), (3.2.7).

Test 1. In the following table we report the number of cd, computed with h = 1.0e−03, for

increasing values of the truncation abscissa T . This table shows that the value of T large

T 10 30 50 70 90

cd 4.0275 5.9093 6.7961 6.83311 6.83311

Table 4.3: cd values for increasing T in problem (4.1.5)

enough is T = 70, because increasing T does not improve the accuracy of the solution.

Test 2. This test is devoted to show the experimental order of convergence of our method.

For this test we consider T = 1100 so that (3.2.20) is satisfied with respect to h = 1.0e−03.

We recall that h is the step size used.
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h cd Ord

0.1 2.82 -

0.05 3.43 2.02

0.0250 4.03 2.01

0.0125 4.63 2.00

0.00625 5.24 2.00

0.003125 5.84 2.00

0.0015625 6.44 2.00

0.00078125 7.04 2.00

0.000390625 7.64 2.00

0.0001953125 8.25 2.00

Table 4.4: cd values for problem (4.1.5), when T = 1100 and h varies
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This table shows that our method converges with experimental order 2.

Experiment 3. In this experiment we consider the following problem











y+1
y+2g (y)−

∫+∞
0 e−x

2
g(x)dx [(1 + e−y)g′(y)]

′
= e−y

2

g′ (0) = 0, limy→+∞ g(y) = 0
, y ≥ 0, (4.1.6)

where the involved functions are chosen in order to satisfy the hypotheses of the conver-

gence theorem. The interval [a, b] is obtained using (3.2.6), (3.2.7). The solution g is

unknown, for this reason we are not able to compute the cd values and then we report the

values of errqh = |q∗h − q∗h
2

|, for h = 1.0e− 04.

T 1.5 3 5 8 15

errqh 1.1465 e-04 8.4023 e-06 1.0604 e-07 1.1559 e-08 1.1486 e-08

Table 4.5: errqh values for increasing T in problem (4.1.6)

This table shows that the best value of T , with respect to h = 1.0e− 04 is T = 8.

In Figure 4.1 the numerical solution of problem (4.1.6) is plotted. From this plot we want

to confirm some of the qualitative properties that we have theoretically proved such as the

boundedness and the non-negativeness of g.
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Figure 4.1: plot of the numerical solution of problem (4.1.6) with T = 8 and h = 1.0e− 04

Finally we recall that each bisection iterate involves an evaluation of the function Fh, which

requires the solution of the algebraic system (3.2.12), whose dimension depends on N , the

number of the grid points, and an application of the truncated trapezoidal rule. Hence, in

the last experiment we compare the performance of our method, in terms of number of

evaluations of function Fh, with respect to other iterative procedures, like Newton, Picard,

Chord and Secant.

Experiment 4. This experiment is designed to compare the efficiency of our method, based

on bisection iteration, with respect to other iterative procedures. We refer to problem (4.1.4)

and the aim of this test is to show how many evaluations of function Fh, fe, are required in

order to get cd = 5.

Methods Bisection Chord Secant Picard Newton

fe 42 7 8 7 6

Table 4.6: Comparison with other iterative process to get cd = 5 for problem (4.1.4)
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The method based on Newton iterations performs cd = 5 with less evaluations of function

Fh hence it could appear more efficient. However we observe that each Newton iterate

requires the computation of the first derivative of the function Fh, which is, in general, very

expensive from a computational point of view.

4.2 Conclusions

In this thesis we develop a depth theoretical analysis about a particular class of the non-

linear intego-differential boundary value problems on the half-line. Then we design and

analyze a numerical method to solve these problems. We prove the convergence of our

method and the experimental order of convergence seems to be 2.

We are still working to define a check on the choice of the end point T such that (3.2.20) is

satisfied. This criterion is based on the construction of a function which is an upper bound

of the solution g of the integro-differential problem (3.1.1). The study of this problem will

be subject of future investigations.

About the efficiency it is important to underline that each bisection iterate requires the

solution of the algebraic system (3.2.12), whose dimension depends on N , the number

of the grid points. For this reason we have also performed experiments with other iterative

procedures, like Secant, Chord, Picard and Newton iteration which, as expected, are more

efficient from a computational point of view. On the other hand, we are still investigating

on the theoretical convergence of these methods. As a matter of fact, it is known that the

convergence of Newton and Picard iterations is not uniform and therefore the r0 in (3.3.37)

depends on h. In conclusion two open problems remain to be addressed: the order of the

convergence of method (3.2.12), (3.2.18) and the study of convergence of methods based

on different iterative processes.
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