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Abstract

This thesis focuses on the problem of efficiently allocating resources for enhancing

the performance of an autonomous robotic agent. Such an agent is expected to

operate in complex dynamic environments by continuously monitoring its internal

states and the external events.

These requirements give raise to countless problems that have populated re-

search in the autonomous robotics community in the last two decades. Among

these issues, one of the most relevant is to coordinate different low and high-level

behaviors, giving them, from time to time, different priority values both for re-

source allocation and for action selection processes. The main problem in achieving

this requirement is that the number and complexity of the stimuli received by each

behavior may be quite high and also the effects on the emerging activity may be

very hard to foresee.

It is clear that it is not possible for the robotic control system to process all

the incoming information, especially for real-time applications. Thus, it becomes

necessary to build mechanisms able to guide this sensory input selection process

and to choose the best action to perform, assuring an efficient use of the robot

limited sensorial and cognitive resources.

For this purpose, attentional mechanisms, balancing sensors elaboration and

actions execution, can be very useful since they play two main roles: they focus

the attention on salient regions of the space and they distribute resources and

activities in time.

As a result of the application of these mechanisms within the robotic con-

trol system for sensory-motor coordination, the robot behavior is improved: the

robot becomes able to react faster to task-related or safety-critical stimuli and to

opportunely split resources among concurrent behaviors.



ii Contents

Attentional mechanisms applied to autonomous robotic systems have already

been proposed, but mainly for vision-based robotics; conversely, the contribution

introduced by the present thesis is the use of an artificial attentional mechanism

suitable both for optimizing the use of resources and for execution monitoring and

control.



Part I

Prologue





Chapter 1

Introduction

1.1 Motivations

During the last years we have witnessed the construction of about one million

of functional robots in the world, the most coming from the industrial robotics

[1]. Although the introduction of mobile robots in everyday life is one of the

most discussed topic nowadays, are still a few the mobile platforms developed

and actually in use, above all when compared to the number of robotic arms

successfully used in the manufacturing industry already since long time. Hence,

despite exceptions such as the automatic cleaning machines operating in the Paris

metro [2] or the famous iRobot robots for home cleaning [3], in comparison to the

evident success of robots in industrial scenarios, mobile robots still have a marginal

relevance in our society. This is probably due to the fact that extending the usage

of robots to homes, offices, hospitals and public places, in general, represents an

extremely challenging step that state-of-the-art research has not fully solved yet.

In order to achieve such a level of integration of these mobile robots in our society,

a certain number of issues must be addressed; among all, the most relevant seems

to be “how to make a robot fully autonomous”.

The abilities which make a robot autonomous are many and varied. These de-

pend not only on the physical characteristics of the robot (memory limits, number

and type of available sensors, sensor accuracy, computing power, etc..), but also

on the domain and purpose of the robot. In general, however, we can say that
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one of the main requirements imposed by the design of this kind of autonomous

systems is the capability of operating in real time in a complex dynamic envi-

ronment. An autonomous agent achieve this goal by continuously monitoring the

internal processes and the external environment and by coordinating different low-

level activities (such as obstacles avoidance [4], walls follow, gates crossing, etc.)

with high-level strategies (such as recognizing people [5], planning complex tasks

[6], etc.), giving them different priority values, depending on the possibility that a

collision will occur, or that some parameter is minimized, and so on. The low-level

activities are closely related to vehicle control and safety. They can be realized by

applying the principles of a purely reactive architecture [7]. The high-level tasks

are, however, generally produced by more complex processes (such as route plan-

ning or the calculation of the next movement according to an optimal trajectory

[8], [9]), which often involve the need of some internal representation model of

the surrounding environment [10]. These types of activities have, therefore, high

computational costs both for the elaboration of data coming from sensors and for

the acquisition of knowledge about the environment and the consequent updating

of the world representation model.

These considerations lead to the conclusion that dealing with the real world

using physical devices cannot be accomplished without explicitly considering the

need to find a mechanism to minimize the computational costs arising from all these

activities in order to improve the performance of the robotic system. This also

because our future perspective is to create systems that will be able to interact with

humans in their domestic environment. These systems can hence be characterized

by low computational capacity with respect for example to industrial systems, but

they should be embedded on a mobile device of limited size, so that any efforts

will then be produced forward that direction.

The starting point of this thesis is that, if we want to consider the construction

of autonomous agents working in these highly complex environments, both the

most efficient use of limited sensorial and cognitive resources, and a mechanism

for coordinating the concurrent behaviors, involved in achieving a global emergent

goal, must be assured.

In psychology and neuroscience, similar capabilities, mediated by frontal areas

of the brain [11], are called executive functions [12]. Executive functions allow
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orchestrating cognitive and automatic processes providing coherent, flexible and

adaptive behaviors. In this coordination process, also called cognitive control, at-

tentional mechanisms have a central importance [13]. Beyond their role in orienting

perception by focusing on relevant stimuli, attentional mechanisms are considered

as key mechanisms in action control, and in particular, for tasks involving plan-

ning and decision making, managing dangerous or new situations, and habitual

responses to inhibit [14].

Indeed, attentional mechanisms play a crucial role in cognitive control [13] and

sensory-motor coordination, since they are able to manage sensor elaboration, by

consequently affecting the action execution. Let us consider that in our daily life

we always have to perform actions consistent with our goals and to do so we must

choose, among the available information, those profits, by separating them from

the others. We use our attentional mechanism for this purpose. Therefore the

choice of the relevant information is affected by the action goal [15]. Hence, due to

the variety and complexity of real environments, also an autonomous robot needs

an attentional system or an executive control able to ensure an efficient use of its

limited resources and to balance sensor elaboration and action execution.

Inspired by human attention mechanisms, the key idea has been to provide a

robotic system with an attentive executive controller [16] in order to regulate the

sensory-motor coordination. We implemented the attentional mechanisms in both

the direction of “selective” and “divided attention” with the aim to achieve two

main goals. On the one hand, by means of the selective attention mechanism,

the agent can direct sensors towards salient sources of information filtering the

available sensory data, and manage sensors processing in an efficient way (since

focusing on relevant information prevents unnecessary information processing, and

consequently it reduces the computational load due to non-salient sensory data

elaboration). On the other hand, the mechanism of divided attention can be

used to split resources among different concurrent tasks, by giving them different

priority levels, coordinating in this way multi-task activities. The system is based

on the concept that attentional mechanism lies perception and action.

We proposed simple mechanisms for scheduling the attention based on an adap-

tive modulation of sensor sampling and action activation. In particular, we in-

troduced a behavior-based architecture where each behavior is endowed with an
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internal adaptive clock, that can speed up or slow down the sensor reading frequen-

cies according to both the robot-environment interactions (bottom-up influences)

and the internal processes (top-down influences). The process of changing the fre-

quency of sensory readings is interpreted as an increase or decrease of attention

towards relevant behaviors and particular aspects of the external environment in a

way that the higher the frequency, the higher the resolution at which a process is

monitored and controlled. We provided a kind of supervisory attentional system

(Norman and Shallice like [14]) based on the selective attention mechanism able

to filtering the available data, regulating sensing rate and consequently the result-

ing action activations. Then we extended this architecture by introducing some

particular coordinating mechanism based on mutual influence rules implementing

the divided attention capability with the aim to monitor and regulate multiple

concurrent behaviors. The greatest challenge in constructing this type of attentive

systems is to balance the benefits arising from the use of this attentional mecha-

nisms (such as the efficient use of resources) and the risk of inaccurate information

from the environment (losing the accuracy of the system). In fact, by adopting

large latencies for sensor sampling, we certainly have an improvement in perfor-

mance, but choosing much too large latencies, we could make the robot unsafe

since the environment might change too much in between two consecutive read-

ings. For this purpose we introduced suitable monitoring strategies, and as natural

extension of the system, we adopted some learning techniques, based on an evolu-

tionary approach, in order to learn the key parameters regulating these strategies,

improving in this way the robot skills in dealing with such an unpredictable and

dynamic environment.

Finally, in order to build embedded systems, we then implemented this same at-

tentional control system through the formalism of neural networks, whose transfer

on FPGA devices seems to be more immediate.

1.2 State of the Art

In this section we will provide a brief survey on the attentional systems topic.

We will outline the most relevant works since regarding attentional systems in

living beings we can find a very extensive literature. One of the reference books
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on the subject is [17] which describes the psychology of attention and gives some

details on many psychological attention models, such as the visual search models

accurately treated by [18], [19]. A survey on computational attention systems

that aims at bridging the gap between the research on human and computational

visual attention can be found in [20]. There are also some recent contributions

[21], [22], from which it appears that the attentional systems are broadly divided

into two strategies based on the sensorial data flow: the bottom-up and top-down

attentional strategies [23]. The bottom-up strategy takes into account the salient

physical stimuli and sometimes is reported as a “pre-attentional stage”, because

in living beings it modulates the activity of certain pre-specified and task-specific

detectors. The bottom-up strategy is well described in [24], where the authors

present a bio-inspired model for determining interesting positions on the visual

field based on some particular color, its brightness and on edge orientation maps.

Strategies based on top-down information streams are presented in [25], in which

they are related to high level task information that guides the search process to

regions in which the goal objects are more likely to be found. The determination of

the top-down-cues comes from higher brain areas like knowledge, motivations and

emotions. One of the first computational models of visual attention was introduced

by Koch and Ullman in 1985 with a detailed description of the winner-take-all

approach [26]. Recently, several research groups have used information-theoretic

approaches to determine visual saliency [27]. The latter also tackles the aspect

of top-down saliency for object recognition by determining salient features that

best distinguish a visual class from other classes [28]. Top-down information in

the form of knowledge about the scene and its visual layout was used by Torralba

et al. to guide visual attention to relevant parts of an image [29]. Then, it has

been shown that the interaction of bottom-up sensory information and top-down

attentional influences creates an integrated saliency map, that is, a topographic

representation of relative stimulus strength and behavioral relevance across visual

space. Many researchers have worked on this topic proposing simple frameworks

to think about how salience may be computed in biological brains [30],[26],[24],

[31].

In conclusion, attention-based control is an emerging issue, in particular for

vision-guided mobile robots. Several approaches in literature address the problem
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of feature extraction to support task execution [32], localization, mapping, and

navigation [33, 20, 34]. For instance, in [32] an attentional behavior is learned

by pairing actions and image features. There is also some bio-inspired work [35],

where the authors implemented an integrated neural architecture, modeled on

human executive attention, which was used to control both reactive and willed

action selection. But their approach has been tested only in simulated robotic

agents and it focused on an attention-based learning mechanism, extending the

Norman and Shallice model. Then some authors applied some implementation of

the visual SLAM based on attentional landmarks for robotic applications [36] or

a bio-inspired robotic system for localization [37]. Both used salient objects in

the environment as navigation landmarks, thus used the attentional mechanisms

inspiration just for improving the robot visual capabilities.

Mechanisms for executive and divided attention in robot execution monitoring

are less explored. In [38], the authors investigated executive attention in mobile

robotics tasks proposing the deployment of a supervisory attentional system in-

spired by [14]. Concurrent tasks interacting with the attentional processes have

been considered in [39] where we find a robot architecture integrating active vi-

sion and tasks execution. However, here divided attention is not considered while

attentional and goal-directed behaviors are integrated and coordinated using a

perceptual memory.

1.3 Contributions of this Thesis

The contribution of this thesis is that, differently from other approaches presented

above, we are interested in artificial attentional processes suitable not only for di-

recting attention towards salient source of information, but also for the executive

control. In addition, we want to apply our architecture to real devices dealing with

problems of limited resources. We know that the robotic platforms have limited

computational power similarly to the physical constraints of humans: at one point

in time, they can only go toward a particular location, choose one interesting ob-

ject, interact with an operator and grasp one or a few objects. Thus, a mechanism

that selects the relevant parts of the sensory input and decides what to do next

is essential. And since a real robot has to operate in the same environments as
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humans, it is reasonable to imitate the human attention system to fulfill these

tasks [20] as it is reasonable to assume that attentional mechanisms have evolved

to fulfill certain other functions like Selection-for-action [40].

We start from the consideration that behavioral studies on normal and brain-

damaged individuals provide convincing evidence that attentional mechanisms link

perception and action [41]. Indeed the perception of objects results in the gener-

ation of both visual and motor signals in the brain, irrespective of whether there

is an intention to act upon the object. Many authors demonstrate that shifts

of attention to the location of visual objects automatically generate some motor

response codes ([42], [43], [44], [45]). Hence, the perceived objects automatically

generate motor codes based on the actions most highly associated with them ([46],

[47]). Coordinating movements basing on the salient input signals is advantageous

in terms of both execution time and efficiency. For example it permits regulating

the gait while in motion to avoid an obstacle.

In this direction, we propose simple mechanisms for scheduling the attention

based on an adaptive modulation of sensors sampling and action activations.

Our main source of inspiration comes from the supervisory attentional system

proposed by Norman and Shallice [14]. This system is able to suitably combine

deliberative and reactive activities, and to monitor and regulate multi-behavior

robotic system as in Khaneman [48]. More precisely, the Norman and Shallices

model [14], [50], consists in two processes operating in the selection and control

of action: (1) a contention scheduling, dealing with well-learned sequences of be-

haviors and (2) a supervisory attentional system (SAS), allowing for conscious

control of behavior. This model of action control is supposed to be intimately

associated with the goal pursuit [51]. The authors assume that well-learned action

sequences are represented in schemas, and that these schemas may be activated by

appropriate cues (either internal or external). When only one schema is activated,

this schema controls behavior. When multiple schemas are activated, a selection

process selects the one with the highest level of activation (the activation level of

a schema is determined by the cues and context, as well as by processes of lateral

activation and inhibition). Then in cases where conflicting schemas, or in novel

tasks, the SAS comes into play. The SAS provides attentional, conscious control

over behavior by changing the activation levels of different schemas, thus creating
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novel and adaptive sequences of behaviors.

Starting from this model we designed a robotic control system based on the

attentional mechanisms, able to activate the suitable behavior with respect to the

environmental circumstances and to the robot internal motivations. In particular,

the choice of the behavior to be activated depends on its activation frequency.

This frequency value represents in some way the amount of attention focused on

that particular behavior and it depends, as well as in the Shallice’s model, on

both internal and externals cues or motivations. In order to manage potentially

conflicting behaviors, we adopted some mutual influence rules able to regulate

dependencies among concurrent and conflicting behaviors. Finally, we added to

this schema a supervisory attentional control able to adaptively re-schedule and

re-planning activities, in case of new or unexpected events.

We started from the problem concerning the efficient allocation of resources

in order to enhance the performance of an autonomous robotic agent, and we

addressed this problem by means of the adoption of the system realized, since it

permits:

• efficiently spending resources to monitor the surrounding environment and

the internal processes — restricting these processes to a limited subset of

sensory data enables efficient processing;

• adapting to environmental changes by reacting faster to task-related or safety-

critical stimuli;

• coordinating active sensing and control strategies;

• harmonizing multiple behaviors while maintaining the features of adaptabil-

ity and reactivity.

Closely related to our system, in [52] Stoytchev and Arkin proposed a hybrid

architecture combining deliberative planning, reactive control, and motivational

drives. In this context, the internal state was represented by motivational vari-

ables affecting action and perception. Analogously to our framework, periodic

activations of behaviors as circadian rhythms and time-dependent motivational

processes were deployed; however, here internal clocks were not directly used for

attention selection and behavior modulation.
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Other authors dealt with flexible/adaptive behavior realized through timed

activations. For example, [53] presented a parallel architecture focused on the

concept of activity level of each schema which determines the priority of its thread

of execution. A more active perceptual schema can process the visual input more

quickly and a more active motor schema can send more commands to the motor

controller. However, while in our approach such effects are obtained through pe-

riodic activation of behaviors, in [53] the variables are elaborated through a fuzzy

based command fusion mechanism.

Our attentional sampling can be also related to flexible scheduling for periodic

tasks in real-time systems [54, 55]. Here, as in our system, a periodic modulation

is exploited to degrade computation and keep balanced the system load. For

example in [54], the authors propose an elastic model to decide how to change the

sampling period associated with a task. The model works for increasing the period

of different jobs any time there is a significant variation in one job. Moreover,

whenever a periodic task terminates or decreases its rate, all the tasks that have

been previously modified can increase their utilization or return to their nominal

periods, depending on the amount of released bandwidth. Similar techniques can

be incorporated in our framework; however, in our case sampling rate depends

not only on the computational load, but also on the salience due to environmental

changes, motivations, and goals.

1.4 Thesis Outline

This thesis is organized in six parts. Each part is divided in chapters, in which

We try to address some issues that often arise in the previous ones. Each chapter

is meant to be self-explanatory, thus providing an introduction to the problem,

related works, system development and conclusions.

This first part provides motivations, background information and a literature

review of the study relative to the employment of attentional systems in robotics.

In this section I also try to underly the contributions of this thesis with respect to

the systems present in literature.

In the second part, I show the designed attentional system for a robotic agent

capable of adapting its emergent behavior to the surrounding environment and to
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its internal state, by optimizing resource utilization. In this framework, the agent is

endowed with simple selective attentional mechanisms regulating the percentage of

attention towards internal or external stimuli. The realized system is also endowed

with some kind of divided attention mechanism able to opportunely split resources

among concurrent behavior. The framework is presented by discussing several case

studies, considering incrementally complex behaviors and tasks, in which I try to

emphasize the benefits introduced by this kind of technics with respect to behavior-

based standard control systems.

The third part concerns with the adoption of some evolutionary approach, used

to suitably tune the key parameters regulating the attentional system. In this part

I also present the framework, implementing it by means of a neural network, on

which I apply the same learning technique.

Part four deals with the design of a hybrid architecture in which attentional

mechanisms are deployed at different levels of the architecture. Here I want to

show how the adaptability introduced by the attentional system allow to deal with

dynamic environment, characterized by unpredictable events.

In part five I show an application presented in order to investigate the use of our

approach, and verify its utility in experiments involving human-robot interaction

tasks.

Finally, the last part contains concluding remarks and proposals for further

investigations. Here it is stated that the executive control system is effectively

enhanced through the use of a supervisory attentional system, able to suitably

combine deliberative and reactive activities, monitoring and regulating multiple

concurrent behaviors.



Part II

Reactive Attentional System





Chapter 2

Selective Attention Mechanism

2.1 Introduction to Selective Attention

The Selective Attention represents the process by which organisms select a subset

of available information upon which to focus. This ability to select a small fraction

of the incoming sensory information enhances performance [56], permitting to

reduce the computational load in analyzing environmental scenes and in planning

responses coherently with behavioral goals. Inspired by the attentional abilities of

human beings, we seek to benefit from the use of these mechanisms for improving a

robotic control system. We apply such type of mechanism within a robotic control

system in order to obtain the advantages of both filtering the available information

and improving performance.

2.2 Motivations

An intelligent connection between perception and action needs mechanisms for

controlling action execution, in respect of the constraints imposed by the mechan-

ical system and the environment and for providing some feedback process, which

regulates the internal states of the system arising from the interaction with the

environment. Such a type of connection system has to combine different low-level

strategies with high-level activities, giving them, from time to time, different pri-

ority values both for resource allocation and for action selection processes. The
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low-level activities are closely related to the safety of the system, and may be

achieved by applying principles of reactive control. However, high-level activities

generally are achieved by processing more complex tasks, and, thus then require

high computational costs for both the inputs processing and the acquisition of data

from the environment. Also with hybrid systems, in which perceptual information

can modify the planning of actions, sensor readings and planning activities must

occur with a frequency that does not excessively slow down the Robotic System

(RS), since increasing the number of readings increases the number of accesses

to the deliberative system. At the same time, however, we must keep in mind

that the RS takes risks if one allows sensor readings with long time intervals. In

fact, during the planning activity, in between two consecutive sensors readings,

the environment may be changed and, therefore, the RS may no longer behaves

properly. In this sense, any effort to build a cognitive architecture for dealing with

dynamical and flexible emergent behaviors has to deal with an efficient processing

capability of sensor elaboration. The robotic community started to pay attention

not only to the robot-environment interaction, but also to the interaction that

may arise within the robots itself [57] and how these latter (for example its emo-

tional state) may have some influence on its emergent behavior. The attention for

such internal mechanisms, within the robotic community, takes inspiration from

ethological, biological and neuroscience studies.

In our opinion the internal mechanisms which have to be involved in modeling

different and new architectures for controlling the robot behavior, and try to solve

some of the problems inherent with the management of computational resources are

the attention mechanisms. In particular, the bottom-up attentional processes could

be used to manage the interaction occurring between the robot and the surrounding

environment, while the top-down ones could be usefully adopted to manage the

interaction arising from its internal states. We also think that these processes

have to be linked since, for example, the simple perception-action response to an

external stimulus may produce different patterns of actions as a consequence to

a different internal state of the robot. This internal state may change according

to the robot emotional state or following its past perception and it will tune and

adapt both the behaviors execution and the sensory processing frequency.

We will introduce our approach to model adaptive control systems [58], [59],
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based on the concept of rhythmic activations of behaviors, with the aim to experi-

ment how it is possible to develop adaptive strategies that involve the presence of

attentional internal mechanisms.

The idea to use rhythmic activation in order to coordinate sensory-motor ac-

tivities comes from studies on our nervous system, whose main function is the

coordination or integration of the activities of the various parts of the body [60].

Concerning this topic, there are some suggestions regarding the neural integra-

tion, which is supposed to have a central role in the origin of respiratory rhythm

in fish [61]. In 1935 Weiss proposed that the central nervous system produces

rhythmic motor commands, with no need of sensory feedback; the main evidence

came from larvae of amphibians [62]. Then, in 1939, the German physiologist von

Holst discovered the existence of endogenous neural oscillators that coordinate the

rhythmic activities of organic systems and the two principles governing this coordi-

nation: (1) the absolute coordination, i.e. the tendency of an oscillator to maintain

a steady pace leading to fully synchronized movements (“absolute coordination”

states); and (2) the “relative coordination”, i.e. the effect an oscillator exerts on

the frequency of another oscillator in a way that it seems it magnetically attracts

and “relates” the other to its frequency [63]. We will use both these concepts

to create our control system made by independent self-regulating behaviors and

some mutual-influence rules to synchronize behavior rhythms in case of concur-

rent tasks. In addition, we bind the concept of synchronization to the concept of

attention. In fact, synchronization of neural firing may also be the basis of the

process of attention. While it is attentional, the brain selects certain stimuli or

events that provide attention to be preferred. Research suggests that this selection

synchronization can occur through strengthening the neural firing in some groups

of neurons, while it decreases in others [64], [65]. Hence we adopt the concept of

attention for regulating sensory-motor coordination, implementing it by starting

from biological evidences, such as rhythmic activation observed in neurological

studies on human beings.

Our approach, resulting from the need of an Internal Robotics [57], should

allow mediating between the ideas of the Situated Cognition [66] and the need

of using simple representation constructs, in order to link adaptive behavior with

high level cognition processes.
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2.3 Model of Selective Attention

Our working hypothesis, supported by neurological and behavioral studies, is that

attentional behaviors are affected by internal self-regulating mechanisms and ex-

ternal sources of salience, and the attentional global behavior emerges from the

interrelation of the attentional mechanisms associated with each single behavior.

More precisely, we think that attentional behaviors can be simulated in the

control activity of a robot starting from self-regulating mechanisms. This goal

can be achieved by introducing internal rhythmic clocks in robotic architecture.

Such clocks are meant to regulate the frequency of the readings in a way that the

process of regulating the frequency of sensory readings can be interpreted as an

increase or decrease of attention towards salient sources of information depending

on the behavior.

Also neurological studies show that the simplest selection process is a rate-

based mechanism, in which the responses of neurons in early processing stages that

convey information to be selected are made more prominent by raising their firing

rates, whereas the responses of neurons that convey information to be ignored are

made less prominent by suppressing or decreasing their firing rates [64]. Hence,

what we want to show is that the selection of sensory information obtained by

modifying behaviors’ activation rates is a powerful way of affecting the relative

importance of different sources of information [67].

We introduce a control system for the perception inputs that achieves a rhyth-

mic and flexible activity and thus it dynamically adapts its period to external and

internal requirements. In particular, we connected a periodic control system to the

activation of each single behavior [68]. Our aim is to investigate how the introduc-

tion of such an implementation of an attentional mechanism into the controlling

system of each single behavior will affect the elaboration of perceptual data. In

particular, the question we have to answer is twofold. First, is the robot we are

building safe? This means that the robot is able to react, in useful time, to the

external stimuli in order to survive also when we break the stimuli response loop

and modify the frequency of access to the sensor inputs. Second, will the intro-

duction of attentional filters within the behavior control system provide better

performance, in terms of a reduction of computational load?
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We make the assumption of a cognitive architecture with a perceptual system

and with some releasing mechanism of activation of behaviors.

2.3.1 Adaptive Innate Releasing Mechanism: AIRM

Our architecture combines innate releasing or inhibiting mechanisms and simulated

biological clocks in order to produce attentional mechanisms.

Innate releasing or inhibiting mechanisms: Lorentz [69] and Tinbergen [70]

identified in many animals an innate releasing mechanism (called IRM) able to

control and coordinate behaviors. An IRM is based on a specific stimulus that

releases a pattern of actions. For example, an animal may have a pray as an

IRM, i.e. the stimulus coming from the view of the predator which activates the

escape behavior. IRMs were included in the representation schema of behaviors

in the form of releasers, controlling when behaviors must be activated or deacti-

vated. A releaser is an activation mechanism that depends on exogenous factors

(e.g. presence of a predator) and/or endogenous factors (e.g. hunger).

Simulated biological clocks: The releasers function, somehow, recalls the notion

of “internal clock”, already introduced in some approaches [53], [52], [71] in order

to activate motivational states for a robot (for example, hunger or sleep). In fact,

an internal clock, similarly to a releaser, represents an internal mechanism which

regulates behaviors activations [72] depending on endogenous and/or exogenous

factors.

For these similarities we called these simulated biological clock: Adaptive In-

nate Releasing Mechanisms (AIRMs). However, there are substantial differences

between IRMs and AIRMs; one over all is that while a releaser is an instantaneous

activation mechanism, the internal clock is periodical and adaptive.

Indeed, an internal clock may imply a regular and periodical activations of the

associated behavior. Such activations may be predicted in time, while the activity

of a releaser depends only on contingent factors. In this way no computational

resources are spent to elaborate unneeded stimuli, because the corresponding con-

trol systems are kept inactive until a new periodical activation takes place. At the

same time we are able to control the amount of resources spent in the elaboration

of the sensor inputs.
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Moreover, the introduction of internal clocks within a robotic architecture has

also the effect of controlling behaviors that may require a fixed pattern of activation

in time (like sleeping or feeding). This activation of behavior may be interpreted

both as large time scale activities, such as the activations of macro-behaviors like

feeding or sleeping, and as short time scale activities, in the sense of central-pattern

generators in controlling rhythmic movements.

2.3.2 Formalization of the AIRM model

Figure 2.1: Behavior endowed with Adaptive Innate Releasing Mechanism.

In Figure 2.1 the AIRM is represented through a Schema Theory representation

[73]. Each behavior is characterized by a schema composed of a Perceptual Schema

(PS), which elaborates sensor data, a Motor Schema (MS), producing the pattern

of motor actions, and a control mechanism, based on a combination of a clock and

a releaser.

In particular, the releaser enables/disables the activation of the MS, according

to the sensor data σ(t). For example, the presence of a predator releases the motor

schema of an escape behavior. In this way the MS is activated only in the presence

of the stimulus, while sensing data are always (i.e. at each machine cycle) processed

from PS.

In contrast the AIRM directly enables/disables data flow σr(t) from sensors

to PS and thus, when the activation is disabled, sensing data are not processed
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(yielding to sensory readings reduction). Furthermore, the internal clock regulates

the frequency of the activations, hence the frequency of data processing (behavior

adaptation),using a feedback mechanism on the processed sensing data σ(t).

We assume a discrete time model — with the machine cycle as the time unit —

where each behavior is endowed with a clock regulating its own activations. This

regulation mechanism, that we call monitoring strategy, is characterized by:

• A period pb, where b is the behavior identifier (e.g. its name), that is initially

set equal to a given starting period pib called base period, ranging in an

interval [pbmin, pbmax],

• An updating function fa,d(σ(t), p
t−1
b ) : Rn → R that adjusts the current

clock period ptb, according to the internal state of the behavior and to the

environmental changes. In particular we distinguish the case of an increasing

(fa(σ(t), p
t−1
b )) and reducing (fd(σ(t), p

t−1
b )) updating function, where σ(t) is

the incoming signal from sensor and pt−1
b is the value of the period computed

at the previous sampling time.

• A trigger function ρ(t, ptb), which enables/disables the data flow σr(t) from

sensors to PS at each pt time unit. More formally:

ρ(t, pt) =

{
1, if t mod pt = 0

0, otherwise
(2.1)

• Finally, a support function ϕ(fa,d(σ(t), p
t−1
b )) : R → N that maps the values

generated by the updating function fa,d(x) in a range of allowed values for

the period [pbmin, pbmax]. More precisely:

ϕ(x) =


pmax, if x ≥ pmax

⌊x⌋, if pmin < x < pmax

pmin, if x ≤ pmin

(2.2)

Now, starting from the clock period at time 0, p0b = pib (with t = 0 and pib ∈
[pbmin, pbmax]), the clock period at time t is regulated as follows:
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ptb = ρ(t, pt−1
b ) ∗ ϕ(fa,d(σ(t), pt−1

b ) + (1− ρ(t, pt−1
b )) ∗ pt−1

b (2.3)

That is, if the behavior is disabled, the value of the period calculated at time

t remains unchanged at the last computed value pt−1
b . Instead, when the value of

the trigger function is equal to 1, the behavior is activated and, subsequently, its

activation period changes according to the ϕ(x) function.

More precisely, each time the behavior is activated and hence has enabled the data

flow, the sensory information is passed through a feedback mechanism to the in-

ternal clock control system, which updates the clock period depending on internal

and environmental conditions. The mechanism for period/rate regulation is called

the monitoring strategy and will be detailed in the following section. The monitor-

ing strategy, i.e. the process of changing the clock sampling rate, can be associated

with the increase or decrease of attention towards a particular behavior. Namely,

the more salient the behavior, the higher the clock frequency and the resolution at

which a behavior is monitored and regulated. Intuitively, the mechanism to focus

the attention towards a particular stimulus (i.e. reduction of the period) can be

different from the mechanism of distraction (i.e. increment of the period). This is

why we choose to distinguish the two cases through different updating functions, at

which we will refer respectively as focusing fa(x) and distraction updating function

fd(x).

2.3.3 Attentive Monitoring Strategy

From the above description it follows that an attentive behavior will result from

the combination of:

• the initial period pi;

• the range of allowed values for the period [pbmin, pbmax];

• the updating policies respectively for attentional fa(σ(t), p
t−1
b ) and distrac-

tion fd(σ(t), p
t−1
b ) phases.

The combination of these parameters defines what we call monitoring strategy and

thus the policy for scheduling sensing activities. In order to obtain a good mon-
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itoring strategy, it is necessary to balance the cost of monitoring and the risk of

inaccurate and partial information about the environment, by choosing the appro-

priate updating function. For example, the two main updating functions we use for

the attentive phase take respectively into account the speed with which environ-

mental changes occur fa1(σ(t), p
t−1
b ) w ∆σ(t)

pt−1
b

, and how much the sensorial stimulus

is changed with respect to the previous quantity perceived fa2(σ(t), p
t−1) w ∆σ(t)

σt
,

where ∆σ(t) = σ(t)− σ(t− pt−1
b ), σ(t) is the signal perceived at the current time

and σ(t− pt−1
b ) is the sensor signal received at the previous sampling instant. Yet,

we can choose many different function for the update. Following this approach, we

can obtain different attentional mechanisms associated with each behavior, once

we define the associated monitoring strategy.

Just to give an idea of the general functionality of this mechanism, we compare

our monitoring strategy (adaptive and periodical) with respect to other relevant

monitoring strategies proposed in the literature. In particular, we consider four

different cases: a) the robot is not equipped with any internal clock; b) the robot is

equipped with internal clocks and has a priori knowledge about the task to achieve

(for example about the distance to cover); c) the robot is equipped with clocks,

but does not have any a priori knowledge about the environment; d) the robot is

equipped with internal clocks but not adaptive.

To illustrate these cases we introduce the following example. Let us consider a

robotic system whose purpose is to cover a certain distance (goTo behavior).

Without an internal clock (a), goTo will be activated at each control cycle. If

the covered distance is constant at each control cycle, we have that the number

of activations n of goTo is proportional to the distance dist to be covered (see

Fig. 2.2). In case (d), if the value of the clock period is pb, we have the relation:

n ∝ dist
pb

. Cases (b) and (c) fall in the category of those strategies called “Interval

Reduction” [74], which are characterized by a variable period for the monitoring

strategy. For cases (b) and (c), it has been demonstrated that these strategies,

asymptotically, are more effective than those characterized by a constant periodic

monitoring [74, 75] in a wide class of problems. Moreover, in this setting, an

interval reduction strategy has to increase the behavior activation frequency while

approaching the goal. If the robot is equipped with adaptive clocks and knows a

priori the distance to cover, we might set the initial period pb = pib proportional
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Figure 2.2: Monitoring strategies for goTo behavior. Number of activations in the
case of: (a) continuous monitoring; (b) periodic and adaptive monitoring without
a priori knowledge; (c) periodic and adaptive monitoring with a priori knowledge;
(d) periodic monitoring.

to half of the distance to cover and then halve the period of the clock after each

activation of the behavior following the interval reduction strategy. In this way,

the number of activations would be: n ∝ log2(dist). We assume that this strategy

is the “optimum”, where for optimum we mean a strategy that allows achieving the

goal through the minimum number of activations, without the risk of jeopardizing

the correct and efficient functioning of the robotic system and its safeguard. Let us

now describe how the robot behaves in case (c), namely, when it is characterized

by adaptive rhythms, but without a priori knowledge. In this case, the rhythm

must change gradually in accordance with a law that does not diverge too far

from the optimum case. In fact, the robot, even if not provided with a priori

knowledge, can obtain information from the surrounding environment, thanks to

the use of its sensors and, through these values, it may determine the choice of the

rhythm. For example the number of activation in this case may be approximated

as: n ∝ log2(dist) + (distcov)/pb, where distcov is the distance already covered by

the robot. We can see that the number of activations in case (b) will have as an
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upper bound case (a), and as a lower bound case (c).

Overall, the benefits brought by adaptive and periodical monitoring strategies

are mainly two:

• periodical mechanisms of activation can reduce the number of activations of

the behavior (with respect to the standard case (a) in which the activations

are performed at every machine cycle), causing a relative decrease in the

computational burden, and improving performance of the entire system;

• the use of adaptive mechanisms allows us to obtain a behavior that adapts

itself to the specific environmental conditions (e.g. the robot reads sensors

more often if there is a dangerous situation or it needs more precise infor-

mation and less often in case of a safe operational situation or distraction).

Afterwards, we will show that, by calibrating appropriately the basic rhythms

and using the appropriate policies to update them, we can obtain a significant

improvement in performance compared to an architecture without rhythms.

2.3.4 Design principles overview

In summary, the attentional control system we consider in this work combines the

following design principles:

1. Behavior-based control system. The attentional control is obtained from the

interaction of a set of multiple parallel attentional behaviors working at dif-

ferent levels of abstraction.

2. Attentional monitoring. Attentional mechanisms are able to focus monitor-

ing and control activities on relevant internal behaviors and external stimuli.

3. Internal and external sources of salience. The sources of salience are gen-

erally behavior- and task-dependent; these can depend on either internal

states (top-down data stream) e.g. hunger, fear, reaching a goal position,

etc. or external stimuli ( bottom-up data stream ) e.g. obstacles, unexpected

variations of the environment, attractiveness of a particular object, etc..
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4. Selective Attention: adaptive sensory readings. For each behavior, the pro-

cess of changing the rate of sensory readings is interpreted as an increase or

decrease of selective attention towards a particular aspect of the environment

the robotic system is interacting with: the higher the frequency, the higher

the resolution at which an activity is monitored and regulated.

5. Divided Attention: mutual influence rules. The adaptive frequency of the

sensory sampling rates provides, by means of specific mutual influence rules,

a kind of divided attention: the activation of a behavior can lead directly

to an increase or decrease in the rate of activation of behaviors related to

it, producing an homeostatic effect, according to which shared resources are

appropriately distributed among conflicting behaviors.

6. Emergent attentional behavior. The overall attentional behavior should emerge

from the interrelation of the attentional mechanisms associated with the dif-

ferent primitive behaviors.

Figure 2.3: AIRM Architecture Overview.
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2.4 Test-bed Case Study 1

Based on the model introduced in the previous section, we designed a behavior-

based robotic system which use different attentional monitoring strategies in order

to adaptively regulate the attention towards the different behaviors.

We used a PIONEER 3DX, an indoor research platform commercialized by

MobileRobots [76]. It is an electric-drive robotic system with multiple on-board

sensor systems: laser, pan-tilt camera, ultrasound sensors,etc. In our experiment

we use a set of sensors composed of: a blob camera, an odometer and 16 sonar

sensors.

Figure 2.4: Pioneer3DX.

The base Pioneer 3DX platform arrives fully assembled with motors with 500-

tick encoders, 19cm wheels, tough aluminum body, 8 forward-facing ultrasonic

(sonar) sensors, 8 optional real-facing sonar, 1, 2 or 3 hot-swappable batteries,

and our complete software development kit. Add an optional internal computer or

your own laptop and the robot is ready to go. The base Pioneer 3DX platform can

reach speeds of 1.6 meters per second and carry a payload of up to 23 kg. Pioneer

is fully programmable. In particular we control it by means of the Player/Stage

robotic tool [77].
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2.4.1 Cataglyphis Ant Domain

We evaluated our approach using a mobile robot that simulates the navigation

behavior of a Cataglyphis ant enhanced with simple visual capabilities. The robot

has the task of searching food in its environment without any a priori knowledge

and then return to its nest following a straight path, without taking into account

the trajectory followed during the searching of food. The Cataglyphis domain is a

good test-bed for our purposes since the domain is interesting from a behavioral

point of view and well analyzed in several ethological field trials [78]; furthermore

the ant is provided with internal mechanisms such as guidance and dead-reckoning.

So, we can associate with this test-bed all the monitoring strategies previously

presented (constant, with a priori knowledge, without a priori knowledge). At this

level the domain chosen, is not important since it is just an example of multi-

behavior system in which we can associate different monitoring strategies to each

behavior. The behavior-based architecture realized is shown in Fig. 2.5. It is

characterized by three meta-behaviors which described the main phases of the

task. Each behavior is of the type described before. That is, it receives data from

some of the sensors and generates the consequent action, only when the releaser and

simultaneously the clock decide the behavior may be activated. Hence, besides the

implementation of the perceptual and motor schema functions, we have to define

the monitoring strategy of each behavior.

2.4.2 Attentive Architecture Overview

The robot behavior is obtained as the combination of the following primitive

behaviors AVOID, WANDER, PATH INTEGRATION, MOVE TO FOOD, MOVE TO NEST and

FIND LANDMARKS, organized in three meta-behaviors (Fig. 2.5). More precisely,

the behaviors are combined through the classic mechanisms of the subsumption

architectures Brooks-like [7], but here the emergent behavior is also affected by

the rhythms of the behaviors activation.

Behaviors settings and Attentive Updating policies. For each behavior,

we have to define the attentional monitoring strategy composed of: 1) an updating

policy and the 2) a base period, that is empirically defined after a phase of testing.



2.4 Test-bed Case Study 1 29

Figure 2.5: Control architecture for the mobile robot in the Cataglyphis domain.
Each behavior receives data from sensors and generates the actions that can be
combined (circled +) or subsumed (circled s).

In the third part of this thesis we will see how it is possible to learn both these

parameters and the updating policies by means of some specific learning algorithm.

Let us start describing each behavior and the associated updating policy. The

WANDER behavior provides a random search in the environment. Since its activa-

tion is periodic, but not adaptive, this can be associated with a constant clock.
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Furthermore, this behavior is not critical and always in background, therefore we

can slow down the clock frequency minimizing the behavior activations

ptw = const

The output of this behavior is a random pattern of orientations for the motor

action.

In contrast, the AVOID behavior, responsible for obstacle avoidance, is safety

critical and needs an adaptive clock and an associated updating policy to timely

react to dangerous situations.

We can imagine that the attention towards the obstacles starts when the agent

detects a particular obstacle and continuous to increase proportionally to the prox-

imity of the interested object until the obstacle is not avoided. While the distrac-

tion starts when the agent has not to pay attention since there are not other

obstacle in front. In this case, while the clock period increment can occur in a

linear fashion, the decrease must be proportional to the seriousness of the situa-

tion of danger. So we update the AVOID period according to the first derivative

of the sensory input (representing the distance from the nearest object, evaluated

by the sonar sensors), with respect to the time occurred between two consecutive

sampling readings. Intuitively, the clock frequency is adaptive with respect to the

speed at which the environmental changes occurs in a way that the higher the

change, the smaller the sensor sampling rate. This is useful since in a dynamic en-

vironment the robot might suddenly find itself in front of an unexpected obstacle,

and in this case it would be more appropriate to change the rhythm of reading in

proportion not only to the change, but also in proportion to the speed at which

this happened. Of course this is a possibility, but we can choose for each behavior

the more appropriate strategy (linear, logarithmical, exponential and so on).

More formally, the policy is to change the AVOID clock period according to the

first derivative of the sensory input σ(t), that represents the distance from the

nearest object, evaluated by the sonar sensors. The period pta is updated with the

following focusing function:

fa(σ(t), p
t−1
a ) =

σ(t)− σ(t− pt−1
a )

pt−1
a
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and according to (2.3):

pta = ρ(t, pt−1
a ) ∗ ϕ(fa(σ(t), pt−1

a ) + (1− ρ(t, pt−1
a )) ∗ pt−1

a

where pt−1
a is the period at the previous behavior activation, ρ(t, pt−1

a ) is the re-

leasing function that enables the sensory sampling, φ is a normalizing function

mapping the derivative into a set of permitted values, and σ(t− pt−1
a ) is the value

of sensor at the previous behavior activation. Intuitively, the clock frequency is

adaptive with respect to the environmental changes: the higher the change, the

smaller the sensory sampling. In this way, the activation frequency adapts it-

self not only to the environmental changes, but also to the speed at which these

changes take place.

The distraction function can be expressed through a linear function

fd(p
t−1
a ) = pt−1

a + consta

The AVOID behavior is responsible not only for the robot orientation, but also

for its speed variations. In particular, speed is related to the period according to

the relation

speed =
max speed× pta

pamax
,

where speed is the current speed, max speed is the maximum value allowed for

the robot speed. The range of values for the speed is [0, 0.3] m/s. In this way, if

the period is relaxed, the robot moves at a maximum speed, otherwise slows in

proportion to the decrease of the period. This allows the agent to avoid obstacles

in a smooth way (see the next sections for details).

In Fig. 2.6, we can see how the avoidance period changes over time, based on

the variation in sensors readings. The red line represents the sonar value, the blue

line the change in velocity, and the green bars represent the activations of the

avoid behavior. The blank space between two consecutive green bars is the actual

period of the internal clock of the avoidance behavior. What we see is that to

a substantial change in sonar readings corresponds a proportionally reduction in

the period value. And what we want to show is how, appropriately setting the

basic periods and using the appropriate policies to update them, we can coordinate
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Figure 2.6: Changes of the avoidance period with respect to the variation in sensors
reading.

sensor and action and we can obtain adaptive attentional behavior, by achieving

also a significant improvement in performance.

MOVE TO FOOD detects the food and guides the robotic system towards it, setting

its direction. If the releaser is on and the agent sees the food, then the output

will be a movement towards the food, otherwise the agent will produce a random

movement aimed at finding food. In order to obtain reliable information from the

camera, this behavior involves the robot to slow down its velocity. Thus, when

it is activated, it reduces speed system. Choosing an adaptive clock period for

this behavior, i.e. reducing the number of behavior activations, we allow the robot

to reach the food as soon as possible, but we have to set the base period and

the updating policy taking into account that we want to achieve the goal with the

minimum docking error. Thus we ought to balance effectiveness and precision. The

idea is to keep the base period pim constantly equal to its allowed maximum value

pmmax until the robot reaches a fixed distance threshold, so that the activations are

minimized until the robot does not achieve that threshold, and then decrease the
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period linearly with the food distance according to the following focusing function:

fa(σ(t), p
t−1
m ) = σ(t)− σ(t− pt−1

m )

where σ(t) − σ(t − pt−1
m ) represents the distance at time t. Here, the behavior

performance will depend on the optimal balance between the clock frequency and

distance.

PATH INTEGRATION manages the direction and the distance to return to nest.

This behavior uses odometric sensor information to calculate the robot shift with

respect to the previous position. Analogously to WANDER, the behavior remains

always active with a constant clock period, until it reaches food. In the return

phase, the behavior is activated only after an abrupt change of course, e.g. due to

the presence of obstacles, which diverts the trajectory of the robot that has to be

recalculated. Therefore, we can state that its focusing function is generally equal

to

fa(σ(t), p
t−1
p ) = pt−1

p

RETURN TO NEST sets the direction of the robot toward the nest. It requires,

as the MOVE TO FOOD behavior, reliable information from the camera. It slows

down the robot velocity while its perceptive system is active. This behavior

exploits a priori knowledge (i.e. the distance to the nest) that allows us to set

the base period value proportional to half the distance from the nest, pir =

distanceToNest(t0/(2k)) and then reduces accordingly.

It has been shown that, asymptotically, this strategy is very efficient [74], [75]

(see section 2.3.3).

Wherever they are not specified, the distraction updating functions decrease

the period linearly with time.

Setting the base period. In this first implementation of the architecture we

defined the attentive parameters experimentally. Below we show an example of

how you can experimentally select the appropriate value of the base period, for ex-

ample for the MOVE TO FOOD behavior. In part 3 of this thesis, we will show suitable

learning mechanism to automatically set the attentive parameters regulating the
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monitoring strategy adaptively with respect to the environmental dynamics. To set

the maximum value pmmax for the base period pim associated with MOVE TO FOOD,

we tested the behavior performance under different salient conditions; the behav-

ior performance depends on the optimal balance between the clock frequency and

threshold distance from food, selected in order to start reducing the period. As

mentioned previously, the updating policy is to keep constant the clock period until

a certain distance threshold, then linearly reduce it. The parameters we have to

establish a priori are the maximum base period and the distance threshold. These

are chosen on the basis of both the environmental and robot features, trying to op-

timize the performance and simultaneously taking care of the security constraints.

Once we have selected these two parameters, we test the MOVE TO FOOD behavior

performance under different salient conditions, with the aim of establishing what is

the suitable base period pim in each situation; the behavior performance depends

on the optimal balance between the clock frequency and threshold distance from

the food, selected in order to start reducing the period. We assume robot and

food far from obstacles. We test the behavior with three different initial values of

the distance from food, and compare the result obtained with all possible allowed

value for the base period [1,maximum base period]. In Fig. 2.7, we show the values

for the docking error and the total amount of time for the behavior activations,

obtained with some possible combinations of pmmax and threshold distances (as-

suming robot and food far from obstacles). We report the average and variance of

the values gathered in 10 runs for each case. For each configuration, the initial dis-

tance from the food is equal to the threshold distance. In addition a horizontal line

separates safe/unsafe settings: below the line there are settings where the robot

can stop beyond a safety distance from the target, hence incurring in dangerous

situation.

Looking at the results, we notice for example that, if the initial distance from

food is equal to 120 cm the base period which yields the best performance is

pb = 8, because it allows minimizing the time of behavior activation with a very

small docking error, which is not excessive from being in dangerous situations

(horizontal line separates safe/unsafe settings: below the line there are settings

where the robot can stop beyond a safety distance from the target, hence incurring

in dangerous situation). Similar performance is obtained also for the combination
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distance = 200 cm

activation docking
pmmax time (s) error (cm)

1 20.274∓ 0.630 0.178∓ 0.018
2 7.638∓ 0.480 0.28∓ 2.37e−004

4 5.116∓ 0.884 0.28∓ 1.17e−004

8 2.991∓ 0.311 0.28∓ 2.17e−004

16 1.213∓ 0.452 0.250∓ 0.004
32 1.292∓ 0.363 0.085∓ 0.0019

distance = 120 cm

activation docking
pmmax time (s) error (cm)

1 7.759∓ 1.320 0.289∓ 9, 25e−01

2 3.667∓ 0.274 0.287∓ 3, 11e001

4 3.046∓ 0.145 0.292∓ 3, 25e−01

8 1.392∓ 0.335 0.231∓ 4, 25e−01

16 0.649∓ 0.059 0.195∓ 0.002
32 40.45∓ 0.053 0.123∓ 5, 7e+001

distance = 60 cm

activation docking
pmmax time (s) error (cm)

1 0.149∓ 0.006 0.215∓ 1.125e−004

2 0.194∓ 0.003 0.206∓ 6.75e−005

4 0.167∓ 0.004 0.173∓ 1.57e−004

8 0.237∓ 0.004 0.116∓ 6.30e−004

16 0.167∓ 0.004 0.020∓ 2.83e−004

32 0.199∓ 0.003 0.012∓ 2.70e−006

Figure 2.7: An evaluation of the MOVE TO FOOD behavior, in terms of activation time
and docking error, varying the distance and the max value for the base period pim.

distance = 200 cm and pb = 16. Looking at the docking error and the total

amount of time for the behavior activations obtained in each test, we can choose

the optimum base period by balancing the tradeoff between safety and efficiency.

We will extend the architecture in order to automatically learn these values.

System assessment. To assess the system performance, we compared the adap-

tive control system with respect to a non-adaptive one (i.e. with sensor readings

fixed at every machine cycle). Our aim is to show that a significant improvement

in performance can be obtained by appropriately tuning the basic periods of clocks
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and the attentional policies to update them. Therefore, for each specific behav-

ior we will evaluate the updating policies, by seeking, on one hand, to optimize

performance (i.e. less sensor readings) and, on the other hand, to enhance robot

safety and the correctness of the overall system behavior.

2.4.3 Experimental Results

In order to assess the system performance, we compared the system behavior

when endowed with adaptive clocks with respect to a not adaptive periodic ver-

sion (e.g. activations at the machine clock). In particular, for each behavior, we

considered the number of activations and the total amount of time spent in be-

havior execution.
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Figure 2.8: Number of behaviors activations with or without adaptive clocks.

We observed a considerable advantage in performance in the case of adaptive

clocks. This is illustrated in Fig. 2.8 where we compare the performance in terms

of activations for different behaviors (i.e. with different adaptation strategies) con-

sidering the overall system. We notice that the adaptive monitoring strategy of

RETURN TO NEST (i.e. with a priori knowledge) produces better results in terms of

number of activations.
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Figure 2.9: A comparison between the execution of the RETURN TO NEST behavior
with or without the adaptive clock changing the base period pb.

Then in Fig. 2.9, some results from the analysis of the RETURN TO NEST behavior

are shown, where for each case we plotted the results of one trial. We noted that

the number activations of this behavior, with an adaptive clock, was proportional

to log2(dist) whereas, in the case of non adaptive clocks, these increased linearly

with time. Furthermore, we noted a significant reduction of the execution time of

the behavior endowed with the adaptive clock.
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2.5 Test-bed Case Study 2

In this second case study, we present and discuss our framework deployed in differ-

ent scenarios and settings, both in simulation and in the real world, from simple

scenarios to more complex settings. Our aim is to discuss our approach considering

its effectiveness efficiency, adaptability, and scalability (considering increasingly

complex behaviors and tasks).

For the simulated experiments we used the Stage tool of the Player project [77],

while for the real one we used he PIONEER 3DX robotic platform Active Media

Robotics, endowed with a blob-finder camera, an odometer and 16 sonar sensors.

All the behaviors of the robot are implemented in a cycle using a single thread of

execution.

2.5.1 Exploration and prey-predator domain

We evaluated our approach by using a mobile robot that simulates the exploration

behavior of a robot endowed with simple visual capabilities. The robot has the task

of searching food in its environment while escaping from predators. The robot has

to coordinate these activities, by splitting resources among the behavior, taking

into account not only the endogenous conditions, but also its internal states. This

allows us to associate with this domain different attentional strategies and test

them in different levels of complexity.

2.5.2 Attentive Architecture Overview

The robot behavior is obtained as the combination of the following primitive be-

haviors (see Fig. 2.10): AVOID, WANDER, MOVE TO FOOD, and ESCAPE.

Behaviors settings and Attentive Updating policies. Below we introduce

only the monitoring strategy for the ESCAPE behavior, while for the others we refer

to the monitoring strategies previously presented. The ESCAPE behavior has an

internal clock whose frequency depends on the view of a predator. Initially, the

base period is set in order to attentively monitor the environment checking for the

presence of a predator. The period of this clock depends on the changing of the
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Figure 2.10: Control architecture for the Prey-Predator Domain.

value of the percept itself according to the Weber law:

fa(σ(t), p
t−1
e ) =

σ(t)− σ(t− pt−1
e )

σ(t)

This means that the period will decrease if the predator is moving toward the

prey or if the robot is moving toward the predator. So the period will be updated

following the (2.3):

pte = ρ(t, pt−1
e ) ∗ ϕ(fa(σ(t), pt−1

e ) + (1− ρ(t, pt−1
e )) ∗ pt−1

e

The output of this behavior results in a speed deceleration which reflects the state

of fear of the robot at the sight of the predator.
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System assessment. In these experiments, we evaluated the performance of the

AIRM system with respect to the performance of other behavior-based systems

without attentional and adaptive mechanisms. In particular, to better assess the

gain due to the attentional mechanisms, we compared the system with respect to

two different versions of the control system. That is, given the behavior-based

architecture depicted in Fig. 2.10, for the comparisons we considered:

(a) a version with without clocks (STD) where each behavior can always be

activated at each machine cycle, depending on the releasing function (as in

a standard IRM-like architecture);

(b) a version periodic clocks where each behavior is associated with a clock char-

acterized by periodic, but non-adaptive activations. In this case, we have

different clocks without attentional adaptivity.

These two settings allows us to compare the performance of the system with

respect to: (a) a cautious version of the system, which can monitor and activate

each behavior at each control cycle; (b) a brave version of the system with the

monitoring resolution fixed a-priori (depending on the relevance and criticality of

the behavior).

We considered our system working in the prey-predator domain illustrated in

the previous section. In this context, we considered different settings and operative

scenarios obtained for the combination of the following features: sparsity/density

of obstacles (simple/complex), presence/absence of hunger, predator (static/dy-

namic). Our aim is to assess the system performance by considering: (1) adap-

tivity in different scenarios; (2) scalability with different behaviors and tasks; (3)

effectiveness in terms of tasks accomplishment; (4) efficiency of behavior activa-

tions; (5) tradeoff between risk (failures) and opportunity (task accomplishment).

To better illustrate the system behavior, we incrementally tested it by evaluating,

first, the system performance in relevant subtasks (first scenario) and, then, the

emergent behavior of the overall system (second scenario). These experiments are

used to evaluate how the emergent behavior scales and changes in different environ-

mental conditions (obstacle configuration), in the presence/absence of conflicting

stimuli (predator and food) and internal sources of salience (hunger).
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2.5.3 Experimental Results

First Scenario: Incremental test. In the first scenario, the environment is

characterized by an area of 20 m x 20 m (400 m2).

(a) Sparse scenario (b) Dense scenario

Figure 2.11: Map of the environment in two scenarios. Food and predator are,
respectively, the red and the blue points. The robot is the blue rounded square.

There are two scenario configurations: with few obstacles (see Fig. 2.11-(a))

or full of obstacles (see Fig. 2.11-(b)). The size of the robot with respect to the

environment is 0.2 m ×0.1 m (0.2 m2). Obstacles are represented by green squares

(0.7 m ×0.7 m), while the food by red square in size 0.3 m ×0.3 m.

In this context, we considered the system performance by incrementally adding

behaviors and tasks. Initially, we considered a minimal set of behaviors: (Avoiding

Obstacles) AVOID and WANDER. As a second scenario, we considered: (Avoiding

Obstacles and Finding Food) AVOID, WANDER, and MOVE TO FOOD. For each setting,

we collected the data of 10 runs showing the average and standard deviation of

the results.

Avoiding Obstacles. In the first set of tests, we consider a robot equipped with the

AVOID and WANDER behaviors, whose task is to safety navigate into the environment

with obstacles, for a fixed interval of time (i.e. 5 minutes). This test has been

performed in both the sparse and dense scenarios.

In Tab. 2.1, the results of the AIRM system are compared with respect to
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AVOID no. of danger speed (m/s)
S: Sparse / D: Dense average st.dev average st.dev average st.dev
S adaptive clock 403 18 6.8 6.7 0.2874 0.0045
S periodic clock 621 14 24.3 27.4 0.2886 0.0053
S without clock 1203 4 0 0 0.2078 0.0312
D adaptive clock 476 30 3.6 5.5 0.2696 0.0075
D periodic clock 625 3 45.3 49.8 0.2748 0.0136
D without clock 1279 25 0 0 0.1704 0.0118

Table 2.1: AIRM, Periodic and STD architectures endowed with two behaviors
and compared in the sparsity and density scenarios.

the caution version (case (a)), without clocks, and brave version (case (b)), with

periodical clocks. The collected parameters are the number of activations of the

avoid behavior, the number of possible dangerous situations — minimum distance

from the obstacle detected by minimum sonar (less then 0.3 m) — and the average

speed of each run.

In Tab. 2.1, we see that both in the case of sparse and that of dense obstacles

environment, the number of the different behavior activations is radically reduced

in the case of the AIRM architecture. Fewer behavior activations determine a

reduction in the computational time spent for sensory data acquisition and pro-

cessing. This improves the overall system performance in terms of efficient use

of resources, since the sensory data are read and processed only when necessary,

with a frequency that depends on the environmental circumstances and the inter-

nal state of the robot. The average values of all the parameters in the cases of a

sparse and a dense scenario for the AIRM case are comparable. These results show

that by scaling up the complexity of the environment, we do not lose the benefits

of a reduction in the number of behaviors activations and of a high average speed.

The results obtained with periodic clocks represent a medium case. Indeed, the

periodic setting reduces the behavior activations collected with the setting with-

out clocks; however, without adaptability, we can not ensure robot safety (note

the increment of possible dangerous situations in the case of periodic clocks).

Avoiding Obstacles and Finding Food. In the second set of tests, we enhanced

the functionality of the system by adding the MOVE TO FOOD behavior. Here, the

task of the robot is to safety navigate into the environment, trying to reach as



2.5 Test-bed Case Study 2 43

much food as possible in a fixed amount of time. The amount of time chosen

for the experiments is 3 minutes. As before, we tested the three architectures:

with adaptive clock (periodic and adaptive); with periodic clocks (periodic but

not adaptive); without clocks (sensory reading at each machine cycle). We tested

them both in the sparse and dense environments.

AVOID FOOD WANDER
S: Sparse / D: Dense average st.dev average st.dev average st.dev
S adaptive clock 310.7 10.4 132.6 67.0 45.2 5.1
S periodic clock 560.2 62.4 17.5 37.0 113.6 22.8
S without clock 968.8 69.8 417.8 197.0 302 101.7
D adaptive clock 330.3 6.8 250.5 114.4 32.6 7.0
D periodic clock 605.2 175.1 28.7 59.4 93.9 29.1
D without clock 1054 43.9 106.5 50.5 408.2 124.9

Table 2.2: Comparing the number of behaviors activations between AIRM, Peri-
odic and Standard architectures in the sparse and dense scenarios.

no. of danger speed (m/s) no. of food
S: Sparse / D: Dense average st.dev average st.dev average st.dev
S adaptive clock 39.4 25.8 0.282 0.003 1.1 0.6
S periodic clock 136.9 77.1 0.167 0.003 0.2 0.4
S without clock 87.7 40.9 0.175 0.012 1.9 0.7
D adaptive clock 15.2 9.9 0.238 0.018 0.8 0.4
D periodic clock 72 111.4 0.162 0.007 0.4 0.8
D without clock 49.5 15.2 0.169 0.021 1.1 0.6

Table 2.3: Evaluating dangerous situations, medium speed and number of goal
reached in comparing AIRM, Periodic and Standard architectures in the sparse
and dense scenarios.

In Tab. 2.3, in addition to the parameters presented in the previous tests, we

show also the average number of blocks of food found. Contrary to what has pre-

viously been observed, the number of MOVE TO FOOD activations is minimal in the

case of a periodic architecture. This fact might suggest to prefer this architecture

to AIRM. However, looking at Tab. 2.2, we can see that in the case of a peri-

odic architecture, besides having a decrease in the number of activations, we also

have a decrease in the average number of food reached on Tab. 2.3. This happens
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because the MOVE TO FOOD behavior is responsible of directing the robot toward

the food, hence the smaller the number of the activations, the lower the chance

of finding food and the precision with which the robot performs the maneuvers

during the approach. Moreover, in the periodic architecture, the number of pos-

sible dangers grow dramatically, with respect to the AIRM one, where not only

the average number of food reached is bigger, but also the conditions of danger

decrease. Finally, note that in the periodic case the standard deviation is bigger

than the average value itself (for example number of crash and activation of food).

This is because the results of the tests present many cases with a zero value and

some with a positive number. Now, if we compare the adaptive architecture with

the one without clocks, we see not only that the number of activations of behavior

is reduced (see Tab. 2.2), but also that, even if in the standard case the average of

food found is greater, in the adaptive case the number of possible crashes decreases

despite the average speed of the robot remains high (see Tab. 2.3). This means

that with the AIRM architecture the robot can reach its goals earlier.

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

m

 

 
sonar

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

m
/s

 

 
velocity

0 20 40 60 80 100 120 140 160 180 200
machine clock

 

 
avoid rhythm

Figure 2.12: AIRM avoidance.
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Figure 2.13: Non-adaptive avoidance.

Finally, let us note that the AIRM architecture seems to be still scalable with

respect to the changing of the environment (sparse/dense). Moreover, the addition

of behaviors makes the AIRM architecture able to select the proper focus of at-

tention on relevant behaviors at each instant of time. This will cause an inversion

of trend in the number of possible dangerous situations between the AIRM case

and the case without clocks. This happens also because, as we said in the pre-

vious section, the AVOID behavior is responsible for the speed variations. Indeed

it changes the robot speed proportionally to the relevance of the situation. This

allows the robot to avoid obstacles in a smooth way (see Fig. 2.12). Indeed, in the

non-adaptive case, the speed is very high if there is no danger, very low otherwise;

this produces drastic speed variations (see Fig. 2.13).

Second scenario: Testing the system. In a second scenario, the agent is

equipped also with an additional behavior: ESCAPE, which is responsible for a

possible deceleration of speed of the robot according to the presence of one or
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more predators. The environment used for this test is free from obstacles. In

particular we considered two different settings of the environment for the overall

control system test:

• Fixed Multi Predators (static);

• Single Sentinel Moving Predator (dynamic).

(a) Still predators scenarios (b) Single moving predator

Figure 2.14: Map of the environment in two scenarios. Food and predators are,
respectively, the red and the green objects.

In both the scenarios the robot has, within a limited amount of time, to reach

the food, identified in the scene by a red cylinder, taking into account the presence

of the predators. These two experiments have been performed in a real environ-

ment. Also for these tests we made 10 runs for each setting.

Fixed Multi Predators. The first setting (static) deals with an environment

characterized by the presence of three still predators positioned around the food

(see Fig. 2.14-(a)) and we evaluated the emergent behavior of the agent endowed

with the AIRM architecture compared with the non-adaptive ones (without clocks),
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varying the predators distance from the food. In particular the value of the distance

vary between a minimum value of 1 meter to a maximum value of 5 meters. In

this scenario, the predators are represented by green box of 0.25 m ×0.25 m ×0.35

m, 0.02 m3, and the food by a red cylinder (0.05 m radius and 0.25 height, 0.002

m3). We did not evaluate the performance of the periodic architecture because

the setting of a proper configuration of fixed periods depends on the initial config-

uration of predators. Changing such configuration would require also a change in

such parameters and the performance will be not be comparable with the others.

speed AIRM speed STD no. of food
Dist. average st.dev average st.dev AIRM STD
1 m 0.2478 0.0931 0.0114 0.0866 1 0
2 m 0.2679 0.0758 0.0303 0.0494 1 0
3 m 0.2809 0.0601 0.0052 0.0945 1 0
4 m 0.2898 0.0458 0.0071 0.0921 1 0
5 m 0.2934 0.0357 0.0385 0.0106 1 1

Table 2.4: Still predators at different distances.

In Tab. 2.4, we can see the results obtained in comparing the AIRM architecture

with the standard one. In the absence of obstacles and being the predators fixed,

as expected, the number of possible crashes equals to zero in both cases and were

not reported. Since in the standard case the negative contribution to the speed

given by the ESCAPE behavior weighs on the global motion at each machine cycle,

the average speed of the robots is always extremely low. This implies that in most

of cases the robot fails to reach food within the target time.

However, in the case of the adaptive speeds, not only the contribution of the

ESCAPE is subtracted from the overall speed only when the behavior is active, but

being the period, and therefore the amount of decrease, proportional to the rate of

changes in the environment (in this case the movements of the robot itself towards

a predator), the frequency of the behavior activation will tend first to increase and

then to relax until it disappears when the robot is close to the food and sees no

predators in its visual frame. Indeed, the period depends on the salience of change.

As we can see in Fig. 2.15, the first time the robot sees predators, the function

of fear (∆σ
σ
) has a very large peak, leading to a drastic reduction of the period



48 2 Selective Attention Mechanism

0 100 200 300 400 500 600 700 800
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

 

 

0 100 200 300 400 500 600 700 800
machine clock

 

 

Fear

escape rhythm

∆σ

σ

Figure 2.15: ESCAPE frequency with respect to fear.

and thus a relative increase of the frequency of the escape activations. Then

fear tends to blur since, being the predators fixed, subsequent readings do not

suggest significant changes in scene (i.e. the area of green pixels, which identifies

the presence of a predator does not change significantly). For this reason, we see

in the plot (see Fig. 2.15) that the frequency tends to relax and then to make

some other peak. When the period relaxes too much, but the robot still sense the

presence of predators, we must still keep the robot in a state of alert— or attention

— until the predators go out from the visual frame of the robot and so the function

that identifies the fear becomes negative (dangerous situation avoided) and then

stabilizes at zero, by relaxing the frequency of activation of the ESCAPE behavior

until the achievement of the task. This process allows the robot to maintain an

high average speed so that, independently of the proximity of predators, it is always

able to reach the food within the fixed time.

Moreover, also in this case the adaptive periodicity allows reducing the number

of behavior activations, improving the performance of the system with respect to
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the standard case, while the adaptability allows exhibiting a flexible and secure

behavior, ensuring the robot to safely reach its goal.

Single Sentinel Moving Predator. In the second environmental setting (dy-

namic), there is only one moving predator (another Pioneer3-dx device covered

with a green cardboard), whose task is to move back and forth along a straight

direction in order to control the food as a sentinel and to prevent the robot reach

the food (see Fig. 2.14-(b)). Here, we evaluate the performance while varying the

speed of the sentinel. In particular the sentinel speed vary from a minimum value

of 0.15 m/s to a maximum value of 1 m/s, while the robot speed, modulated by

the robot behaviors, cannot exceed the maximum value of 0, 3 m/s.

AIRM STD
sentinel crashes speed (m/s) food crashes speed(m/s) food
speed avg avg st.dev avg avg avg st.dev avg
1 m/s 0 0.2871 0.0531 1 0 -0.0078 0.1083 0
0,7 m/s 0 0.2751 0.0801 1 0 -0.0103 0.1106 0
0,5 m/s 13 0.2733 0.0870 1 0 -0.0055 0.1060 0
0,3 m/s 0 0.2978 0.0211 1 0 -0.0077 0.1082 0
0,15 m/s 0 0.2976 0.0220 1 0 -0.0040 0.1045 0

Table 2.5: Mobile sentinel mobile with different speeds.

This last set of experiments also highlights how the adaptive architecture has

the capability to well distribute priorities among the different behaviors, allowing

the robot to reach its goal with a high average speed (see Tab. 2.5) as in the

static case. Obviously, the adaptability makes the robot less cautious, leading to

the risk of being in possible crash situations. This is not the case of a standard

architecture, where the average speed reaches negative values, since the sentinel

robot is always in the visual frame of the robot and the ESCAPE has the complete

priority on the other behaviors for the entire duration of the application.
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2.6 Discussion

In this part of the thesis, we investigated the feasibility of the use of adaptive

internal clocks to implement an attentional mechanisms of monitoring. We showed

the so composed mechanism is able to filter the sensory information and split them

among different concurrent/cooperative behaviors, adapting to the surrounding

environment changes and to the internal needs of the robot.

While attention-based robot control has been already considered in literature,

mainly for vision-based robots, mechanisms for selective attention in robot execu-

tion monitoring are less explored. Starting from a behavior-based executive system

[79], we introduced simple attentional mechanisms by associating each behavior

with an adaptive internal clock that regulates the frequencies of sensor readings

and action activations. Here, the process of changing the frequency of sensory

readings is interpreted as an increase or decrease of attention towards relevant

behaviors and particular aspects of the external environment. In the framework of

the schema theory [73], these mechanisms are obtained as a natural extension of

IRMs [69]. In this setting, the overall attentional control is an emergent behavior

obtained by the interaction of the monitoring strategies.

In particular, such mechanisms can speed up or slow down the period of be-

havior activation and thereby the reading frequencies of the sensors according to

both the robot-environment interaction and the interaction that may arise within

the robots itself (its internal states). We not only use a bottom-up selective at-

tention approach to adapt the robot behavior with respect to external events, but

we also use the top-down selective attention as a preparatory mechanism. The

pre-motor theory of the attention [80] suggests, in fact, that the focus of attention

is the consequence also of the act of planning a motor action (e.g. ocular move-

ments). Before that the information to elaborate comes, the attention “prepares”

the robot, activating the behavior that will be involved in the elaboration. Hence

we use these attentional mechanism in a way that the stimuli in the “attended”

position or for the “attended” behavior are recognized quickly and with greater

accuracy (because the frequency of reading for that sensor and for that behavior

is already high), while the stimuli in the unexpected position are elaborated more

slowly (and with little accuracy).
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Other authors dealt with flexible/adaptive behavior realized through timed

activations. For example, in [53], a parallel architecture focused on the concept

of activity level of each schema is presented, which determines the priority of its

thread of execution. A more active perceptual schema can process the visual input

more quickly and a more active motor schema can send more commands to the

motor controller. However, while in our approach such effects are obtained through

periodic activation of behaviors, in [53] the variables are elaborated through a fuzzy

based command fusion mechanism.

To test the model we implemented a behavior-based control system endowed

with these mechanisms and evaluated different monitoring strategies. In particular,

we first developed an application which simulates the behavior of the Cataglyphis

ant. Furthermore, in order to validate our approach, we also tested the realized

control architecture in a prey-predator domain test-bed. We presented a systematic

analysis of the attentional system both in a simulated environment and in the real

world. In particular, we tested the scalability and the adaptivity of the approach

with respect to different and heterogeneous environments and tasks. We evaluated

the performance of the attentional system with respect to the performance of other

behavior-based systems not provided with attentional and adaptive mechanisms

(see Tabs. 2.1, 2.2, 2.3).

The two main advantages introduced by this model of periodic and adaptive

innate releasing mechanism (AIRM) observed in all the experiments are as follows:

• Being a mechanism for periodic activation, it enables reducing the number of

behavior activations (as opposed to cases where the standard activations are

performed every machine cycle), causing a relative decrease of computational

load and thus improving the performance of the system;

• The adaptive mechanisms allow the robot to move safe, changing its reaction

coherently to the specific environmental conditions. They permit the robot

to read sensors more often if there is a dangerous situation and less often in

cases of a safe operational situation, showing an “intelligent” behavior.

In our experiments, we observed (see Tabs. 2.1, 2.2, 2.3) that the number of ac-

tivations of each behavior decreases strongly, i.e. the computational overload is
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lowered. Indeed the results obtained by comparing the number of behavior acti-

vations in the adaptive architecture with respect to the standard case, show how

the adoption of such an architecture actually produces significant improvements

of the computation time for sensor processing. It was noted, in fact, not only that

the number of activations of the behavior decreases substantially when compared

to standards cases where behaviors are continuously activated, but the emergent

behavior of the robot remains efficient since its activation is not only periodic,

but adaptive with respect to the degree and speed of changes of the surrounding

environment. It is to say that (Fig. 2.9) the attentional version of the system

reduces the time to achieve the goal (effectiveness) while reducing the activations

of each behavior (efficiency). Moreover as you can see in Fig. 2.8 the number of

activations is minimum if the period is adaptive and uses an a priori knowledge,

is medium if the period is adaptive without a priori knowledge, while the worst

among the three, but still better than the case without clock, is the periodic but

not adaptive period.

The collected results show also that attentional mechanisms permit a smooth

and natural emergent behavior in all the considered scenarios trading off between

adaptivity and performance. In fact, if we look at the robot from a behavioral

point of view, we observe that in the case of attentional avoid, we have that the

robot avoids the obstacle in a smooth way by gradually changing its approaching

speed with respect to the proximity of the obstacle (Fig. 2.12), while in the case of

a standard application, it reacts faster but less gradually with respect to changes

(Fig. 2.13).

Furthermore, the experiments have also shown interesting findings, regarding

the timing and scheduling of the behaviors. We know that the monitoring activity

is distributed over the concurrent behaviors depending on the frequencies of their

associated clocks. In our system, in fact, each behavior is endowed with its own

clock, whose period changing is based on external and internal conditions; thus,

in a certain instant of the application, each behavior will be characterized by a

particular activation period. Therefore it will be activated with higher or lower

frequency relating to the value assumed in that moment from this period. Since

all the behaviors are combined, intuitively, the behavior with greater frequency

will have a greater influence respect to the others in determining the emergent
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behavior of the robot. This result can be somehow interpreted as a sort of priority

mechanism. This shows a very interesting decentralized synchronization system,

that collocates this type of architecture in half the way between a purely reac-

tive and a deliberative system. In fact the clock mechanism, on one hand, allows

an immediate response to an external stimulus, as well as in purely reactive ar-

chitectures; on the other hand, it does so by taking into account the degree of

change in the environment and its internal state, thus using the information that

contains somehow the “story” of what happened previously, producing, unlike the

reactive systems, a non-deterministic response to external stimuli, but a response

depending on the particular circumstances and on a previous state. Summarizing,

the AIRM architecture permits a smooth and natural emergent behavior that is

also more effective (reducing the time to achieve the goal) and efficient (reducing

the behavioral activations) with respect to an analogous system without adaptive

clocks and it produces a sort of priority scheduling able to organize multi-behavior

activities.

In future sections, we will investigate some learning mechanism to select the

proper rhythms for each behavior. Moreover, one of the problems of more complex

architectures comes from the possibility of arising interferences between different

processes. In fact, in our approach, each behavior modulates its own rhythm of

activation. Since behaviors may not be independent processes, in the next part we

will also move forward in the direction of studying how these adaptive periodical

activations of behaviors may influence and constrain one each other.
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Chapter 3

Divided Attention Mechanism

3.1 Introduction to Divided Attention

While spatial separation of simultaneous sources of information has been shown

to be very effective, little is known about how spatial separation influences per-

formance in tasks in which the subject must pay attention to the content of more

than one simultaneous source. In order to achieve this kind of tasks a subject must

coordinate his/her activities with the surrounding world, by providing an efficient

processing of the large number of stimuli that he receives. These capabilities to

process stimuli in parallel and integrate them in a unitary behavior are known in

neuroscience as divided attentional mechanism. The divided attention represents

a state in which the focus of attention is spread across more than one object or

event. We used it in order to make the robot able to integrate in parallel multiple

stimuli.

3.2 Motivations

The architecture presented in the previous chapter has provided good results show-

ing, however, that it does not solve the problem of conflicting tasks. Let us know

that is possible to have two types of conflicts: a structural conflict or a conflict in

resource sharing. In particular, a structural conflict occurs when two tasks use the

same channel and they can not be executed at the same time. Else, an interfer-
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ence in resources happens when two tasks use the same channel and they can be

executed at the same time.

Behavior-based robotics usually resolved conflicts by deploying a subsumption

architecture or by implementing some control mechanisms in order to switch be-

tween tasks and selecting the action [7], [81] to perform. For example, in [82] the

authors presented a schema theoretic model for a praying mantis, whose behaviors

are driven by motivational variables such as fear, hunger and sex-drive. In this

approach, the action selection module selected only the motivational variable with

the highest value. In our approach, the modulation of behavior was not controlled

by an on/off switch for changing the task. Indeed, the global behavior emerged

from each single behavior through a rhythmic controller modulated by a moni-

toring strategy. The problem arose when we have to manage concurrent tasks,

conflicting in resources sharing. Hence, while we could solve the structural con-

flict by means of the classical subsumption mechanism, we could not do the same

for conflict in resources, since we knew the resources were limited. In this case

we needed a mechanism able to opportunely allocate the limited resources in a

timely manner between two or more competing tasks. We focused on the divided

attentional mechanism. The solution envisaged relied on the usage of the divided

attentional mechanisms in order to deal with these conflicting situations. In par-

ticular, inspired by study on cognitive distraction, we addressed the problem by

introducing mutual influence rules between potentially conflicting behaviors. The

human behavior provides several examples of tasks that, while apparently con-

flicting, are simultaneously carried out. For example, some research analyzed the

human behavior while driving and achieving a parallel task [83, 84] (Fig. 3.1). In

these experiments the subjects were able to complete tasks in parallel, but the

resources allocated to each task must dynamically adapt themselves to environ-

mental conditions and to cognitive and physical capabilities of the subject.

In this section, we will show a divided attentional mechanisms suitable for

sensory-motor coordination in the presence of mutually dependent behaviors. We

will present our architecture along with a case study where a real robotic system

is to manage and harmonize conflicting tasks.

As we mentioned earlier, many of the jobs available in the literature concerning

the use of attentional mechanisms, showed how these mechanisms may improve
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Figure 3.1: Cognitive Load: Driving and Mobile Phones (Harbluk e Ian Noy, 2002
[84]

the robotic vision capabilities. However, attentional mechanisms are necessary not

only to focus the attention on salient regions of the space, but also to distribute

resources and activities in time [85, 86]. Also in neuroscience, researchers started to

investigate the temporal domain of neural activity (for example neural synchrony

[64]), and relate such activity to different cognitive processes such as binding,

sensory motor-coordination or attentional selection.

With regard to the processes of coordination between competing tasks, von

Holst [63] identified the “relative coordination” between endogenous oscillators,

which allows an oscillator to influence the frequency of another oscillator. These

coordination activities were regarded as “nervous competing activities that do

not work either completely independently or through a fixed relationship to one

another” (sliding coordinations with phases that deviate or drift away slowly).

Along this direction, we proposed simple mechanisms for distributing the at-

tention on multiple behaviors based on sensory sampling modulation affected by
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mutual influence rules, able to regulate dependencies among concurrent conflicting

behaviors.

In the AIRMs, each behavior was endowed with an independent regulation

mechanism directly depending on internal and external stimuli, and up to date

the mutual influence among the parallel behaviors was left as a consequence of

the overall self-regulating emergent behavior. However, the notion of divided at-

tention [17] suggests that a limited amount of attention is allocated to tasks,

when resources are shared in multi-task behavior, and attention can be available

in graded quantity for each task. Indeed, the activation of some behaviors may

directly require the activation or the inhibition of other behaviors: two behav-

iors may not be able to activate themselves as frequently as they need without a

degrade of performance (e.g. cognitive load and interference [84]); otherwise, the

activation of one behavior may directly induce the activation or synchronization

of other behaviors (e.g. synchrony in attentional selection [64]).

Our divided attention general framework was obtained as an extension of the

AIRM architecture [87, 68] that integrated mechanisms for mutual influence among

attentional behaviors. For this purpose, we introduced simple constraints among

the behaviors sampling rates. This mutual influence can work both as an inhibitory

or synergic process.

To assess our framework, inspired by the studies on cognitive distraction dur-

ing driving activities [83, 84], we defined a case study where a real robot is to

achieve two conflicting goals. In this context, we compared the performance of

this architecture with respect to non-attentional versions of the same system. The

empirical evaluation showed that the proposed framework is capable of harmoniz-

ing conflicting goals and distracting activities while maintaining an adaptive and

reactive behavior.

3.3 Divided Attention Model: Mutual Influence

Rules

In the previous sections, we introduced the AIRM (Adaptive Innate Releasing

Mechanisms) architecture. In summary, in the AIRM framework, the robotic
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system is controlled by a behavior-based executive, where each behavior can be

described by a schema theory model [73]. Each behavior is characterized by a

Perceptual Schema (PS), which elaborates sensory data, a Motor Schema (MS),

producing the pattern of motor actions, and a control mechanism based on a com-

bination of a clock and a releaser. The releaser enables/disables the activation of

the MS, according to the sensory data. Instead, the adaptive clock is periodically

activated and enables/disables data flow from sensors to PS. When the activation

is disabled, sensory data are not processed (yielding to a sensory reading reduc-

tion). Furthermore, the clock regulates its reading period pb (ranging the values

in the interval [pbmin, pbmax]), hence the frequency of data processing, using a

feedback mechanism. Our goal is to develop attentional mechanisms providing a

kind of divided attention [17] which focuses sensory resources and modulates task

activations by taking into account mutual influences and constraints among the

behaviors.

Mutual Influence Rules. In our attentional framework, the attention modula-

tion strategies should be suitably regulated not only with respect to the internal or

external saliency, but also with respect to attentional disposition of other behav-

iors. To account for the problem of mutual influence among attentional behaviors,

we propose an extension of the AIRM architecture endowed with explicit con-

straints among the internal clocks and suitable regulation mechanisms to respect

these constraints. The aim is to capture mutual dependencies in terms of interrela-

tions among the clocks’ sampling rates and then to regulate the clocks’ frequencies

according to the presence of conflicting or synergetic behaviors. For example, given

two mutually exclusive processes, since these are to be interleaved, the associated

clock periods should be opportunely changed to allow their alternated execution;

on the other hand, for two concurrent behaviors, the associated clocks are to be

aligned: when the frequency of one clock increases/decreases the other clock should

be accelerated/decelerated and vice versa. However, we want to add this simple

mechanism while maintaining the main features of the AIRM model: the periodic

activation of behaviors should provide both a relative decrease in the computa-

tional burden and the ability to monitor the internal/external environment.

In this new setting, for each set of clocks p1, ..., pn, we can introduce a re-
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lationship R(p1, ..., pn) that specifies the mutual influence. We mainly focus on

the relationships between behaviors. In particular, we consider binary constraints

R(pA, pB) like mutual or synchronized constraints. In this case, the frequencies

of the clocks pA and pB, associated with the two behaviors, depend not only on

the salience of the tasks, but also on the joint frequencies. Examples of these

constraints will be provided in the case study presented in the following section.

Related Work. The problem of mutual influence among behaviors were tackled

in different approaches. For example, in [88] the author presents a homeostatic

system where pairs of behaviors are connected through “successor” or “conflicter

links” to inhibit or activate each other. These links play a role which is analogous

to that of our mutual constraints; however, our regulation mechanisms are dif-

ferent because they are based on attentional modulation of clocks sampling rates.

Moreover, our focus is not on the constraint per se, but on the effects of constraints

on our architecture.

Concurrent tasks interacting with the attentional processes are considered in

[39] where a robot architecture integrates active vision and task execution. How-

ever, mutual influence is not considered while attentional and goal-directed behav-

iors are integrated and coordinated using a perceptual memory.

Our attentional sampling can be also related to flexible scheduling for periodic

tasks in real-time systems. In [55], period modulation is exploited only to keep

the system load balanced. Similar techniques can be incorporated in our frame-

work; however, in our case, sampling rate and interaction among behaviors depend

not only on the computational load, but also on saliencies due to environmental

changes, internal states, and goals.

3.4 Test-bed Case Study

The human behavior provides several examples of tasks that, while apparently

conflicting, are simultaneously carried out. In many cases, we have not only per-

ceptual or action selection issues, but also cognitive interferences. For example,

some research analyzed the human behavior while driving and achieving a parallel

task, such as talking over a mobile phone [83, 84]. Driving a car is a complex
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behavior that requires the extraction and integration of information from multiple

sources. Most of the information relevant for driving are taken by the view, so

every change in the visual exploration behavior can be significant for a safe driv-

ing. For example, in [84] the authors tried to experimentally assess the effects of

cognitive load caused by a secondary task, simultaneously executed. Their results

have shown that drivers, under a high cognitive load, execute less saccadic move-

ments consistently with an increase of fixation time and a smaller exploration of

the visual field. These experiments show that subjects are able to complete tasks

in parallel, but the resources allocated to each task must dynamically adapt them-

selves to environmental conditions and to cognitive and physical capabilities of the

subject.

3.4.1 Conflicting Behaviors Domain

Inspired by these studies [83, 84], we designed a case study with two conflicting

goals. In a hallway there are some clusters of green blobs distributed on the left

and on the right wall. The robot has the task of running across the hallway in

the shortest time possible, while counting all the green blobs (see Fig. 3.3-(a) and

3.3-(b)). The two tasks conflict on the speed of the robot. In fact, the first task

would require a high speed, while the second, in order to effectively count all the

blobs, would require a slow one.

Environment. The hallway is straight, without obstacles, 14 m long and has

a width of 1.60 m (see Fig. 3.2). All along the walls there are 27 green blobs

arranged in 3 clusters of 9 blobs each, symmetrically disposed as a 3× 3 grid (see

Fig. 3.3-(b)). Spots in each grid have a predefined position, with an horizontal

distance between spots of 40cm and a vertical distance of 12 cm, while the three

grids are randomly distributed along the walls.

3.4.2 Attentive Architecture with mutual influence rules

In order to accomplish the two tasks we implemented three behaviors: RUN, SEARCH

and SCAN (see Fig. 3.5).
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Figure 3.2: A schema of the robot environment.

(a) (b)

Figure 3.3: (a) A snapshot of the robot in the environment. (b) A snapshot of the
robot field of view with a superimposed grid to identify different areas.

The purpose of the SEARCH behavior is to search green spots on the left and

right wall. In order to accomplish this task, when the behavior is activated, it

causes a random movement of the pan-tilt camera. This behavior is activated

every machine cycle until is not detected at least one green blob. That is if no

green blob has taken over, the clock period of the SEARCH behavior is equal to

1 otherwise the period is increased proportionally to the amount of green color

detected in the wall (see Fig. 3.4) until a maximum value of 9 machine cycles

(i.e. the minimum time to allow to the SCAN behavior to identify the 9 blobs

composing the set).
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Figure 3.4: Updating of the Search Behavior Clock period.

ρSr =


ρSr/nblob, if 1 ≤ nblob ≤ 9

1, if nblob ≤ 0

9, if nblob > 9

The SCAN behavior, once that a salient area is identified, has the purpose to

count such spots. According to active vision [89], in order to count an object on the

wall, the camera has to center the object in its field of view, simulating a saccadic

movement. In order to simulate such movements we subdivided the field of view of

the camera in nine areas (see Fig. 3.3-(b)). Human way of counting object depends

on personal attitudes and may vary among individuals. In our implementation, we

realized an algorithms based on the concept of “shortest path”. The robot will start

to count (and so to center) the top left (or right, according to its direction) spot.

After that, the robot will try to center the nearest spot it detects in the peripheral

area of view. Let us notice that, in this way, the robot will count first the spots

on the same column and then moves to a different row. The clock period of this

behavior is modified proportionally to the SEARCH behavior activation frequency

(see 3.4.2).
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In particular the period changes according to the following relation:

ρSc = α− ρSr

where

α = min(ρScmin + ρSrmax, ρScmax + ρSrmin)

and [ρScmin, ρScmax] and [ρSrmin, ρSrmax] are respectively the range of allowed values

for the SCAN and SEARCH clock period.

The RUN behavior, instead, sets the speed of the robot. Differently from the

previous behaviors, the effect of the activation of such behavior continues even if

the behavior is off. In fact, after the behavior sent a command to the robot engine,

the controller of the robotic system will keep such speed until a new command will

arrive. The value of the speed is in inverse proportion with respect to the value

of its period. The range of allowed speed is from 0.01 m/s to 0.24 m/s. The

clock period of the RUN is directly proportional to that of the SEARCH behavior (see

Section 3.4.2), according to the relation:

ρR = ρSr − β

where

β = ρSrmax − ρRmax

The system starts with a medium speed, looking for green objects on the walls

of the corridor. Its behavior will change according to the visual percept. When

the system detects a green object, the SCAN behavior period decreases, allowing

the robot to slow down its speed and to count the objects it detects. Similarly, if

no green objects are detected, SEARCH and RUN periods become smaller, allowing a

more accurate exploration (moving the camera several times right and left, looking

for objects), and increasing the system speed in order to reach the end of the

corridor as fast as possible.

Mutual Influence Rules. The regulation of mutual influence of two clocks,

with periods pA and pB, depends on the statical and the dynamical priorities

between behaviors, and the relationship R(pA, pB).
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Relationship If two behaviors A and B, respectively with pA and pB periods

and with ranges [pAmin, pAmax] and [pBmin, pBmax], share the same resources

and are potentially in conflict, we have to define a relationship between these

two values. To better understand, we consider what happens in the frequency

domain in which a low-pass filter prevents the passage of frequencies below a

particular cutoff frequency. If K is this cutoff frequency (i.e. in some way the

maximum bandwidth available) representing in our case the maximum rate of

behavior activation, and fA = 1
pA

and fB = 1
pB

respectively represent the activation

frequencies of two conflicting behaviors, with the relation: fA + fB ≤ K, we

indicate that each frequency will benefit from the breadth bandwidth not used by

the other and vice versa. Likewise, if the activation period pA assumes a particular

value within its allowed range [pAmin, pAmax], the period pB can only assume a

value within [pBmin, pBmax], limited to the remaining bandwidth. However, if two

behaviors need to be executed simultaneously in order to realize a macro behavior,

or if their outputs may be summed and are not in conflict, we may assume the

following synchrony relationship: |pA − pB| = 0. In our architecture we have that

the SCAN behavior (with period pSc) and the SEARCH behavior (with period pSr)

cooperate on the achievement of one of the tasks, but conflicts on the use of the

pan/tilt camera. On the contrary, RUN (with period pR) conflicts with SCAN on

tasks. Indeed, the first has the goal to reach the end of the corridor as soon as

possible, while the second needs to slow down as much as possible the speed of

robot in order to optimize the counting phase. Finally, the RUN behavior and the

SEARCH behavior can cooperate in the achievement of their own task. In fact, both

require a high speed. Let α, β, and γ be constants equal to α = pScmax+pSrmin,

β = 0 and γ = pScmax+ pRmin; in this test the relationships among the periods

of these behaviors can be formalized as α ≥ pSc + pSr (or α = pSc + pSr if we want

a strong dependence), β = |pSr − pR| and γ ≥ pSc + pR (or α = pSc + pSr if we

want a strong dependence).

Priorities Priorities in changing periods depend on the importance of the be-

havior in accomplishing the task and in ensuring safety of the robot. Behaviors

that are safety critical have the maximal priority, hence the other behaviors will be

activated consequently. In the case of behaviors with the same priority, the policy

for updating the value of the period is “the first takes all”, i.e., at each machine
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Figure 3.5: Control architecture for the mobile robot.

cycle, the first behavior that changes its period has to notify such variation to

other behaviors. The other behaviors have to modulate their periods accordingly.

This means that, if a behavior needs a more frequent activation, reacting to what is

happening in the environment, a greater set of resources, both computational that

sensorial, will be allocated to such behavior. Consequently, others behavior, which

in any case keep a periodic activation, will have a smaller number of resources.

The period updating policy has to control both the changing in the environment

as well as the values of the period of other clocks.

3.4.3 Experimental Results

In order to evaluate the performance of our system, we compared three different

architectures, each with different behaviors settings, implemented on a Pioneer

3DX, equipped with a pan/tilt camera and range sonar sensors (see Fig. 3.3-(a)),
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and defined as follows:

• AIRM: all behaviors are equipped with adaptive clocks;

• AIRM v max: adaptive clocks only in SCAN and SEARCH; the speed of RUN

is kept constant at the highest value (0.24 m/s);

• AIRM v med: adaptive clocks only in SCAN and SEARCH; the speed of RUN

is set to a medium value (0.11 m/s);

• SC2SR8 v med: the behavior activation is periodic (for SCAN pSc = 2, for

SEARCH pSR
= 8 and for RUN pR = 1), while the speed of the system is kept

constant to a medium value (0.11 m/s);

• SC5SR5 v med: the same as the previous case with different periods (for

SCAN pSc = 5, for SEARCH pSR
= 5 and for RUN pR = 1);

• Sub v max: the behaviors are active at every machine cycle and they are

coordinated by a subsumption architecture (i.e., SCAN subsumes SEARCH).

The speed is equal to 0.24 m/s;

• Sub v med: the behaviors are active at every machine cycle as in Sub v

max, but the speed is equal to 0.11 m/s.

In Fig. 3.6-(a), we summarize the results collected during the tests, considering

the number of counted blobs and the time spent to complete the task. For each

setting, we performed 10 tests. The AIRM architecture performed well in terms

of number of blobs counted. In fact, the AIRM implementation counts an average

of 17.8 blobs. In the case of the AIRM architecture with adaptive clocks only for

SCAN and SEARCH, the speed of the RUN behavior is kept constant during the tests.

In these two cases, the number of blobs counted is smaller than the case of AIRM.

However, for the AIRM vmax, the time performance is better, while in the case of

medium speed the average time (127.7 s) is comparable with the AIRM case (123

s). Another important thing to highlight is that, while the average speeds in the

medium case and in the AIRM vmed case are comparable, the number of blobs

counted is better in the AIRM case. This is because the system will adapt itself
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(a)

no. of blobs time (s)
AIRM 17.8± 3.22 123± 11.25
AIRM sp. med 7.6± 2.76 127.7± 1.64
AIRM sp. max 5.9± 1.45 60.4± 1.84
SC5SR5 sp. med 4.6± 1.07 127.5± 1.96
SC2SR8 sp. med 9.9± 2.08 128.7± 3.37
Sub sp. med 13.8± 2.49 127.4± 2.01
Sub sp. max 7.4± 1.17 61.7± 2.83

(b)

error
AIRM 0.07
AIRM sp. med 0.15
AIRM sp. max 0.35
SC5SR5 sp. med 0.18
SC2SR8 sp. med 0.13
Sub sp. med 0.10
Sub sp. max 0.32

(c)

AIRM sub v max sub v med AIRM v max Sc2Sr8 v med AIRM v med Sc5Sr5 v med
0

5

10

15

20

25

30

c\b
variance n.blob
variance time

Figure 3.6: (a) Performance and standard deviations in term of number of counted
blobs and time spent to accomplish the task. (b) Error on the number of counted
blobs for units of time. (c) Plot of costs/benefits of the tests. C/b is evaluated as
time/counted blobs.

to the surrounding environment speeding up or slowing down, taking advantages

of empty areas to accelerate, while decelerating when it perceives blobs to count.

In the cases of periodic (not adaptive) activation of behaviors (SC5SR5 and

SC2SR8), the performance with respect to the number of counted blobs is worst

than in the AIRM case. The case SC5SR5 presents the worst results in terms of

counted blobs. We experienced a little improvement in the case of more frequent

activation of SCAN (SC2SR8). However, we have to highlight that the periodic
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activation of behaviors in the case of SC2SR8 determines a higher number of ac-

tivation of perceptual schemas (i.e. wasting more resources) with respect to the

AIRM case, elaborating camera data even during the exploration of empty areas.

In the last set of tests, we evaluated the performance of a subsumption archi-

tecture (Sub). In this implementation SCAN subsumes SEARCH. The speed of RUN is

kept constant at 0.24 m/s and 0.11 m/s. The performance in Sub v med is better

than the other cases except for the AIRM that performs the best. Indeed, the

subsumption architecture resolves potential conflicts on resources (i.e. the pan/tilt

of the camera) while, without an arbitrator module, such conflicts may degrade

the performance. However, in this case, analogously to the periodic activation of

behaviors, we have a higher number of activations of the SCAN perceptual schema

that elaborates camera data at each machine cycle. These results make us fore-

see that, in the case of a higher elaboration load, an adaptive architecture may

significantly improve the performance.

In Fig. 3.6-(c), we plotted the cost/benefit (time/counted blobs) evaluation.

Also, from this point of view, the AIRM implementation performs better than the

others. However, this plot shows that the AIRM case presents a greater standard

deviation in the time performance. A high standard deviation implies a high

variability of the test results. This variability is caused by the adaptability of the

system with respect to the environment and, consequently, to the changes of the

system speed.

Finally, in Fig. 3.6-(b) we evaluated the error on the number of counted blobs

for units of time. This error is evaluated as (nB − nCB)/t, where nCB is the

number of counted blobs, nB is the total number of blobs in the environment and

t is the time spent to accomplish the task.

3.5 Conclusions

We investigated simple attentional mechanisms for coordinating competitive and

cooperative behaviors in a behavior-based robotic system. We showed the so com-

posed mechanism is able to opportunely split resources among different concurren-

t/cooperative behaviors. The results show that the AIRMmechanisms are effective

in adapting the frequency of behavior activations according to the particular cir-
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cumstances, incrementing or decreasing the attention towards salient aspects of

the robot environment or the internal state and incrementing or decrementing the

related behaviors by means of suitable mutual influence rules. We compared our

architecture with different architectures not endowed with attentional mechanisms.

In summary, we observe that the proposed architecture performs better than the

others in terms of: number of detected blobs (effectiveness); tradeoff between time

and counted blobs (cost/benefit); error of detection (precision); fewer activations

of the perceptual schema (efficiency). Basically, the system can modulate the acti-

vation frequencies on the basis of the available resources and external conditions.

Indeed, by using the adaptive clocks, the number of behaviors activations sub-

stantially decreases compared to the case where the control system enables the

robot behaviors at each machine cycle, and this results in a substantial gain in

performance.

Concurrent tasks interacting with the attentional processes are considered in

[39] where we find a robot architecture integrating active vision and tasks execu-

tion. However, here mutual influence is not considered, while the attentional and

goal-directed behaviors are integrated and coordinated using a perceptual mem-

ory. Our attentional sampling can also be related to flexible scheduling for periodic

tasks in real-time systems [54, 55]. Here, analogously to our system, period modu-

lation is exploited to degrade computation and keep balanced the system load. For

example, in [54] the authors propose an elastic model to decide how to change the

sampling period associated with a task. Similar techniques can be incorporated

in our framework; however, in our case the sampling rate depends not only on

the computational load, but also on the saliency due to environmental changes,

motivations, and goals.
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Chapter 4

Learning the Attentive Strategies

4.1 Introduction

In this section, an evolutionary process to regulate the attentional executive con-

trol of the AIRM architecture is presented. In particular, we deployed a Differ-

ential Evolutionary algorithm [90] to tune a set of parameters encoding the agent

attentional strategies. We evaluated the approach in an adaptation and survival

scenario. In this context, we observed that the evolutionary process provides inter-

esting solutions after few iterations. To validate our approach, we experimented the

generated control system in different environments. The collected results showed

that the generated settings are more effective than the hand-tuned ones. Further-

more, we observed that the generated control systems remain effective when the

environmental conditions are changed.

4.2 Motivations

Similarly to the concept of adaptability, the understanding of the learning processes

is important for cognitive robotics because these processes underly the develop-

ment of cognitive ability. Hence one natural extension of the system has been the

introduction of a learning mechanism able to select the appropriate monitoring

strategy for each behavior, starting from some specific parameters. Indeed, de-

spite the results obtained by different implementations of the AIRM architecture
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were very good when compared to the standard case (the one that is continuously

monitoring the environment), if we radically changed the environment, the system

did not show the desired behavior. So we have thought to modify the updating

functions of the rhythms by adding some “attenuation parameters” that can ad-

just the trend of functions on the basis of the particular experimental conditions

(type of environment, physical limitations of robot, considerations about the task

to be pursued, etc.) and using a learning algorithm in order to determine such

context-dependent parameters with the aim to make the system general-purpose.

4.3 Learning with a modified Differential Evolu-

tionary Algorithm

In order to set the attentional parameters for the updating functions, we intro-

duced an evolutionary method. More specifically, we deployed the Differential

Evolution (DE) Algorithm to choose, in the space of possible solutions, the con-

tinuous parameters that best regulate the clock sampling rates of the behaviors.

Among different evolutionary algorithms, such as Genetic Algorithms or Particle

swarm optimization, we considered DE, since it is one of the best algorithms in the

literature that allows exploring a range of continuous values that is not restricted

(see [90]).

DE works as a genetic algorithm that gradually build the robot control system

by optimizing the problem of maintaining a population of candidate solutions and

developing a new candidate solution, by combining the existing ones, according

to the classic crossover and mutation operators, i.e. maintaining the most suitable

solution for the optimization problem.

The approach is to generate an initial population of NP individuals xk
i =

(xk
i,1, . . . , x

k
i,D), randomly different from each other, where D is the number of the

parameters to be learned, k = 0, . . . , GEN is the generation and i = 0, . . . , NP is

the member of the population. Since the D attenuation parameters to be learned

are responsible for changing the attentive monitoring strategies, they affect the

global control system of each member. So the performance of each member depends

on the combination of these parameters which are evaluated by using the variations
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present within a population of solutions during the process of interaction between

the agent and its environment. The general formulation of the problem is to

consider an objective or fitness function, that evaluates the performance of the

system depending on the choice of the attenuation parameters used for regulating

the attentive monitoring strategies, and to solve the minimization problem by

finding the parameters combination (or gene combination) that produce the best

(or minimum) value for the fitness.

DE works generating a new individual from each existing individual i using

one fixed (usually the best) and two random individuals. In particular, in each

generation the best existing individual xk
b in the population is determined. For

each individual xk
i in population, the difference between the best individual and

the selected individual is computed. Then two random individuals xk
r1

and xk
r2

(different from best and i-th individuals) are selected and the difference between

them is also computed. A portion of these two differences is added to the i-th

individual and form the new individual xk+1
i . Therefore the new individual is

calculated as:

xk+1
i = xk

i + F ∗ (xk
b − xk

i ) + F ∗ (xk
r1
− xk

r2
) (4.1)

where F ∈ [0, 2] is called the differential weight or also mutation factor and rep-

resents a constant coefficient controlling the amplification of the two differences.

In order to impose more diversity to the new generation, a crossover operator

CR is introduced. For each gene xk+1
i,j of new individual xk+1

i , a random value

randi,j ∈ [0, 1] is chosen and compared with the probability of crossover CR. If

randi,j is less than the crossover probability, the newly generated gene is retained;

otherwise the new gene is copied from the predetermined old individual

xk+1
i,j =

{
xk+1
i,j , if randi,j ≥ CR

xk
i,j, otherwise

(4.2)

The last step in DE algorithm is the comparison of the newly generated indi-

vidual xk+1
i with the old individual xk

i .

xk+1
i =

{
xk+1
i , if fitn(xk+1

i ) ≤ fitn(xk
i )

xk
i , otherwise

(4.3)
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Once that its fitness value is calculated, if the resulting individual yields a better

fitness value than the predetermined individual, the newly generated individual

replaces the old individual; otherwise, the old individual is preserved.

Figure 4.1: Differential Evolution Schema.

In Fig. 4.1 a schema representing how the DE algorithm works is shown. Sum-

marizing, the algorithm starts initializing the starting D parameters with those

of the manual tuning. At each generation it generates a new population of Np

individuals from the existing ones using the crossover and mutation factors and

tests the behavior of each member of the new population by launching a run of

the application in the considered case study domain. Then, once evaluated the

fitness function corresponding to each individual, the algorithm seeks for the best

individual in order to create the new generation. The process is repeated for G

generation or until an suitable fitness value is reached. The only difference of our

implementation of the DE algorithm with respect to the existing one is that since

the specified environment is not deterministic, the same parameter combination

can result in different fitness values. Hence, for each individual, we calculate the

average of the fitness values evaluated on m = 10 runs.
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4.4 Test-bed Case Study

Based on the model introduced in the previous sections, we designed a behavior-

based robotic system which use different attentional monitoring strategies to regu-

late the partition of resources distributed among the different behaviors, by endow-

ing the updating function with attenuation parameters able to adjust the function

trend.

Figure 4.2: Adaptation and Survival Domain.

Platform. As well as in other experiments we used a simulation of a PIONEER

3DX provided with a blob camera, an odometer sensor, and 16 sonar sensors. The

robot is controlled by a Player/Stage client [77].

4.4.1 Adaptation and Survival Domain

The robot (see Fig. 4.2) is to explore a dynamic and unknown environment, avoid-

ing obstacles and seeking a source of energy to recharge its batteries when neces-

sary. The proximity of other robots may cause a defensive attitude of our robot.

Indeed, in this case, it will tend to back off to avoid possible collisions. This

domain is extremely complex since it is tied by the combination of different strate-

gies: low level activities such as avoidance, high level tasks such as searching and

reaching of some target, and some other possible conflicting task such as escape

from a danger. Our system has to control and coordinate these activities, splitting
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resources among behaviors, directing the attention of the robot towards salient

perceptual stimuli.

Behavior-based control. The robot behavior is obtained as the combination of

the following primitive behaviors: AVOID, SEARCH BATTERY, MOVE TO BATTERY, and

HESITATE (see Fig. 4.3).

Figure 4.3: Control architecture.

4.4.2 Attentive Architecture Overview

The AVOID behavior is responsible for obstacle avoidance. This behavior is safety

critical and needs an updating policy for its adaptive clock which is able to timely

react to dangerous situations. In this case, the focus of attention for the AVOID

clock period can be inversely associated to the input percept rate of variation. More
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formally, the period ptb is updated through the following updating focus function:

fa(σ(t), p
t−1
a ) = αavoid ∗

( 1

RATE + kavoid

)
where, the RATE parameter identifies the first derivative of sensors signal with

respect to time:

RATE =
∆σ(t)

∆(t)

In particular ∆(t) is equal to pt−1
a , that is the period at the previous clock cycle,

∆σ(t) is equal to σ(t)− σ(t− pt−1
a ) that is the difference between the actual data

perceived by the sonar sensor σ(t) and the data received at the previous sampling

step σ(t−pt−1
a ). In this way, the AVOID activations frequency adapts itself not only

to the environmental changes, but also to the speed at which these changes take

place. Also, αavoid and kavoid are two attenuation parameters, useful to smooth

the evolution of the function which defines the period. These two parameters are

context dependent and will be tuned by the DE algorithm.

The distraction mechanism can be implemented with a linear function, depend-

ing from a βavoid attenuation parameter:

fd(p
t−1
a ) = pt−1

a + βavoid

The SEARCH BATTERY behavior provides a random search of source of energy in

the environment. The frequency of this behavior activation is related to the charge

level of the robot battery, that is a linear time-dependent function that represents

the agent need of energy. This means that at the beginning, when the value of the

need of energy is low, the SEARCH BATTERY behavior is released with a predefined

period that depends on the life cycle of the agent. Then, the lower the battery, the

greater the need for the robot to turn around in order to look for it. The energy

need is represented by a parameter EN that increases linearly with time, and the

update function of the period will be expressed as follows:

fa(σ(t), p
t−1
s ) =

ksearch
EN

+ hsearch
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where

ksearch =
(MAX search period− 1) ∗MIN EN ∗MAX EN)

(MAX EN −MIN EN)

and

hsearch =
(MAX EN −MAX search period ∗MIN EN)

(MAX EN −MIN EN)

are attenuation parameters, depending on the MAX search period = psmax,

that will be set by the DE algorithm; MIN EN and MAX EN are constants

depending on the life cycle of the robot. The output of this behavior is a random

pattern of orientations for the motor action.

The MOVE TO BATTERY behavior guides the agent towards the battery once it

has been identified. So the releaser is activated by battery detection using the

blob camera. The period of this behavior activation also depends on the same

parameters regulating the SEARCH BATTERY behavior. In particular, if the clock

is on and the agent sees the battery, the output will be a movement towards it,

otherwise the agent will rely on the SEARCH BATTERY behavior.

The HESITATE behavior has an internal clock whose frequency depends on the

view of a possible danger (an unknown moving object or an object of a particular

color, different from the battery, etc.). Initially, the base period is set to safely

monitor the environment checking for the presence of some danger. If the robot

senses an unknown object of blue color (for example another robot), and the

behavior is enabled, the robot turns in the opposite direction of the danger. This

means that the period will decrease if the robot is moving towards the danger:

fa(σ(t), p
t−1
h ) = αhesitate ∗

( 1

FEAR + khesitate

)
where, the FEAR parameter identifies the degree of fear of the robot, calculated

with respect to the proximity of a dangerous object according to the Weber law of

perception:

FEAR =
∆σ(t)

σ(t)

whit σ(t) referring to the camera percept; also ∆σ(t) is always equal to σ(t) −
σ(t− pt−1

h ), αhesitate and khesitate will be set by the DE algorithm.
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When the robot does not perceive the blue object, its clock period is relaxed

according to the following linear function:

fd(p
t−1
h ) = pt−1

h + βhesitate

4.4.3 Experimental Results

In the case study, we aim at deploying a Differential Evolution (DE) [90] algo-

rithm in order to learn the parameters associated with the attentional strategies.

In our case each member of a generation is characterized by the combination

of the following parameters: αavoid, kavoid, βavoid, αhesitate, khesitate, βhesitate and

MAX search period.
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Figure 4.4: Fitness Evolution.

In order to evaluate the performance of each individual, we introduce the fol-

lowing fitness function:

fitn = M1 ∗ (1− e f) +M2 ∗ num d
m c

+M3 ∗ ttot
tmax

+

M4 ∗ ca+cs+cm+ch
m c∗num b

+M5 ∗ coll+
M6 ∗ smax−savg

smax
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where we evaluate, respectively, whether the energy source has been reached (e f),

the degree of reliability in terms of the percentage of dangerous situation (num d)

per machine cycle (m c), the time spent to accomplish the task (ttot) respect to

the max allowed time (tmax) for each run, the percentage of behaviors activations

(ca, cs, cm, ch) per machine cycle and with respect to the total number of behaviors

(num b), the number of collisions with a moving object (coll) and the average speed

(savg) with respect to the maximal (smax). Fitness values are in the range [0, 1],

where 1 is the worst result and 0 is the optimum, and M1, . . . ,M6 are constant

weights. Hence, the fitness is a value that we want to minimize by opportunely

tuning the attenuation parameters in order to balance the tradeoff among these

performance measures. Following the DE algorithm described before, we start

producing an initial generation G0, of NP = 20 individuals, by randomly choosing

real values in an unbounded space for the considered parameters. For each indi-

vidual we launched a m = 10 times simulated experiments, collecting the average

fitness values. At the end of the NP ∗m simulations the algorithm selects the best

fitness value for the global experimentation and a local best fitness value for the

current generation. This process is repeated for GEN = 30 generation.

Figure 4.4 shows the evolution of the global best fitness (solid line) and the

local best fitness (dashed line) obtained at each generation. Notice that the best

fitness starts decreasing after few generations.
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Figure 4.5: Evolution of the attentional AVOID parameters.
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In Fig. 4.5, 4.6 and 4.7 we show the evolution of the attentional parameters

values respectively for AVOID, the HESITATE and the SEARCH BATTERY behaviors.

Let us notice that, following the DE algorithm, the parameters explore a wide

range of values.
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Figure 4.6: Evolution of the attentional HESITATE parameters.

The evolutive algorithm highlighted an interesting discrepancy between the

updating strategy for HESITATE and AVOID with respect to the β parameters (dot-

ted lines). For both these behaviors, the distraction function is a linear function

that differs only on the β parameter. In the AVOID case the DE best value is

βavoid = 0.96, while for the HESITATE we have that βhesitate = 0.04, that is a much

slower decrease of the period. These results may be motivated by the fact that,

while AVOID has to deal with static objects (i.e. once that an obstacle is avoided

the robot can freely relax its period), HESITATE has to manage the interaction

with a moving object (i.e. the avoiding process depends on the movements of both

the robot and the object). This sort of cautiousness also depends on the fact that

in the test environment the probability to meet again the moving robots is high.

Moreover, the magnitude of the values of α (dotted lines) and k (solid lines) pa-

rameters in both HESITATE (αhesitate = 81, khesitate = 88) and AVOID (αavoid = 0.27

and kavoid = 0.02) is directly related to the magnitude of their percepts, namely

the speed and the blob area.
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Figure 4.7: Evolution of the attentional SEARCH BATTERY parameters.

Finally, let us notice that the value of MAX search period, after trying bigger

values in order to minimize the number of activations of the SEARCH BATTERY

behavior, converges to a smaller value (MAX search period=16). This fact may

be motivated by the fixed amount of time for each simulation and by the fact that

the sources of energy are few with respect to the simulated environment, and not

directly accessible.

4.4.4 Validation Tests and Conclusion

In Tab. 4.1 and 4.2 we show the results obtained in a set of validation tests. First

of all, we compare the results of the global performance (calculated in terms of

fitness value, number of dangerous situation and number of behavior activations)

of the system endowed with the best DE parameters (first row) with respect to

those manually tuned at a first implementation of the AIRM architecture (second

row). We note that the performance drastically improves from the manual case to

the learned one (see the fitness value in the first column, while comparing the first

and second rows in Tab. 4.1).

Indeed, the value of the manual case fitness (0.147) is a magnitude order larger

than that of the test case (0.025). The values of parameters obtained by the DE
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Fitness Dangers

Environments average devstd average devstd

Env Test 0.025 0.007 4.8 11.2
Env Test Manual 0.147 0.150 34.6 23

Env Similar 0.027 0.017 4.6 14.5
Env Complex 0.051 0.029 20.8 40.7

Table 4.1: Experimental results.

Avoid Call Hesitate Call Search Call

Environments average devstd average devstd average devstd

Env Test 14.6 3.9 18.8 9.5 17.8 12.1
Env Test Manual 51.1 21.4 18.7 3.8 16.1 9.8

Env Similar 11.8 2.8 14.5 2.1 6 1.5
Env Complex 35.1 32.4 136 134.6 37.6 32.1

Table 4.2: Behavior activations.

algorithms for the AVOID and HESITATE behaviors are completely different from

the manual setting (kavoid = 1, αavoid = 0.8, βavoid = 2, khesitate = 1, αhesitate =

1, βhesitate = 2). The only value equal for both the manual and the DE is the

MAX search period.

Moreover, in order to validate the learned parameters and test the adaptability of

the associated system, we assessed the performance in two new environments: (i)

similar to the training one in the number of obstacles and energies (see Fig. 4.4.4-

(a)); (ii) more cluttered then the training environment (more obstacles and traps)

(see Fig. 4.4.4-(b)).

The collected results are depicted in Tab. 4.1 and 4.2 in the second and third

columns. We notice that, in the case of a similar environment, the global per-

formance does not differ very much from the test environment both in terms of

fitness values (Tab. 4.1), behavior activations and number of dangerous situations

(Tab. 4.2). This is to say that the attentional system, endowed with parameters

learned by DE technique, is robust, since it seems to remains stable in similar

environment. By making the environment more complex, we note, as expected,

a little degrade in performance (see for example the fitness value = 0.051, or the
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(a) (b)

Figure 4.8: Validation Environments

possible dangerous situations = 20.8). On the other hand, we observe that such

deterioration is still negligible with respect to the manual tuning case (see fitness

= 0.147 and dangerous situations = 34.6).



Chapter 5

Attentive Neural Network for

Real-time Applications

5.1 Introduction

In this chapter we present an implementation of the AIRM mechanisms made by

using the neural network paradigm and we show the results obtained by adopting

an evolutionary approach to tune some critical neuron thresholds of this AIRM-net,

that regulates the overall emergent behavior of a behavior-based robotic system.

5.2 Motivations

Starting from the ARIM mechanism (Fig. 5.1-(a)) introduced in [91] we imple-

mented the internal clock mechanism by means of a Neuro-Symbolic net (AIRM-

net) [92] with the aim to face real time applications. We planned to use neural net-

works since they are ideally suited to the development of learning processes. These

represent a powerful data modeling tool, able to capture and represent complex

input/output relationships. Indeed the motivation for the development of neural

network technology stemmed from the desire to develop an artificial system that

could perform “intelligent” tasks similar to those performed by the human brain,

where the knowledge is acquired through learning directly from the data being

modeled. Hence, we apply the Differential Evolution [90] technique also in this
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case with the aim to find, in the space of possible solutions, the best setting of

some critical parameters of the net (thresholds), regulating the overall emergent

behavior. We show how this kind of algorithm is able to find the threshold values

producing the best fitness and maintaining the implicit constraints introduced by

the AIRM-net.

5.3 AIRM-net activity

The AIRM-net can be automatically designed by the Neuro-Symbolic Behavior

Modeling Language (NSBL) [93], [94], that allows expressing propositional logical

inference and translating them into the logically equivalent neural network. It is

characterized by a time interval, named clock period (pβ), used to space out two

successive sensors readings; pβ is generated by the ZEIT module (Fig. 5.1-(b)) and

it is initially set to a maximum value (pbmax).

Figure 5.1: (a) Behavior schema; (b) AIRM-net controller schema.

The ZEIT module interacts with the INCR and DECR modules in order to

change the clock period according to the increasing or decreasing input varia-

tions coming from INET module. Furthermore, by means of a releasing function

(InItorInIσ), the ZEIT module communicates when the behavior has to process

sensory inputs. The AIRM-net modules are sketched in Fig. 5.2. INCR and DECR

modules are controlled by INET and DELTA modules. INET conveys the input

signal σ, read by the sensor at time t and t− pβ, to the DELTA and DECR mod-

ules. The DELTA module is activated when the sensor signal increases between

two successive readings. The rate variation can be evaluated with respect to the
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salience ∆σt/σt (where ∆σt = σt − σt−pβ) or to the temporal incremental ratio

∆σt/pβ.

Figure 5.2: The AIRM-net.

The INET module activates the DECR module if the input signal decreases.

The interaction between DECR and INCR modules and then with the ZEIT mod-

ule provides respectively an increasing or decreasing of the clock period. So the

INCR module (see Fig. 5.2) provides a sort of focus of attention mechanism by

reducing the period pβ. This module is formed by two layers of typeN neurons

(iCL and ini,j) characterized by the following transfer function:

typeNi(t) = 1[

ki∑
j=1

ai,j ∗ j(t− 1)− thi]. (5.1)

where neuron j is either a typeN neuron or a type∆ neuron. A type∆ neuron, such

as InIx neurons, evaluates the rate variation (InIσ = ∆σt/σtorInIt = ∆σt/pβ)
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and fires on the iCL neurons of the INCR module. Without loss of generality,

we chose an updating policy for the clock that decreases its period according to

the powers of two. Hence, we need n = log2(pbmax) iCL neurons. If iCL neuron

fires, the new period will be equal to pbmax/2 ∗ i. In a first implementation of the

net we experimentally determined the values for the iCL thresholds, depending on

several factors such as sensor precision, the special features of the environment and

the behavior goal. The only constraint was that the iCL thresholds had to be in

ascendant order in a way that the decreasing process be gradual and proportional

to the variation of the input signal.

5.4 Thresholds tuning

In order to get a good performance for our robot and to extend and generalize

the AIRM-net, the iCL neuron thresholds, regulating the period adaptation pro-

cess, are tuned through an evolutionary approach; in particular, we deploy the

DE algorithm. This algorithm gradually achieves the robot control system as an

optimization problem. At each generation it produces a new population of can-

didate solutions combining the existing ones according to a mutation operator F

(i.e. maintaining the most suitable solution for the optimization problem). Then,

in order to increase the diversity of the perturbed parameter vectors (individuals

of the new population), a crossover factor CR is introduced [90]. As we explained

in previous chapter, the general formulation of the problem is to consider a fitness

function that evaluates the system performance depending on the choice of the

critical values of the iCL thresholds, controlling the AIRM-net, and to solve the

minimization problem by finding the iCL thresholds combination that produces

the best (minimum) value for the fitness. The fitness function evaluates the robot

global behavior by considering some application-dependent performance measures

(i.e. time to accomplish the goals, number of dangerous situations, etc.) during

the interaction between the robot and the environment.



5.5 Test-bed Case Study 91

5.5 Test-bed Case Study

We tested our approach using a simulated Pioneer-3DX mobile robot, endowed

with a blob camera and sonar sensors, and controlled by the Player/Stage tool

[77].

5.5.1 Foraging Domain

The robot, without any a priori knowledge, has the task of finding food (gray circle

in Fig. 5.3-(a)) in the environment, avoiding obstacles (black squares) and coming

back to its nest, i.e. its starting point (striped rectangle).

This domain is a good test-bed since it combines both attractive and repulsive

behaviors.

5.5.2 Attentive AIRM-Net Overview and DE approach

The behaviors are represented by suitable AIRM-net provided respectively by InIσ

or InIt neuron. The architecture (Fig. 5.3-(b)) is characterized by three behaviors

endowed by an AIRM, whose outputs are combined through the classic subsump-

tion mechanism [7]. The DE algorithm is implemented considering as individual of

a population a single robot whose AVOID AIRM-net is characterized by a particu-

lar combination of the iCL threshold values. The DE evaluates the performance of

such a robot, while changing the iCL thresholds, by means of the following fitness

function:

fitn(x) =M1 ∗
avoid count

cc
+M2 ∗

num crash

cc
+M3 ∗

time

task time
+

+M4 ∗ (1− food count) +M5 ∗ (1− nest reached).
(5.2)

where x is an individual of the population, ccis the number of executed computa-

tional cycles, avoid count represents the number of calls to the AVOID behavior,

task timeis the maximum time allowed to accomplish the task, time is the effective

time spent to accomplish the goal, num crash counts how many times the robot lies

beyond a prefixed distance from an obstacle, food found and nest reached assume
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Figure 5.3: (a) Simulated environments; (b) BBR architecture.

the integer values 0 or 1 and indicate whether the robot has reached respectively

the food or the nest. Also, M1 = 0.3, M2 = 0.3, M3 = 0.2, M4 = 0.1 and M5 = 0.1

are constant weights and their sum must be equal to 1. These weights are chosen

according to the relevance we want to assign to the parameters considered by the

fitness function. Hence, fitness values will be in the range [0, 1], where 1 is the
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worst result and 0 is the optimum. Our goal is to tune the iCL thresholds in order

to balance the tradeoff among these performance measures.

The DE algorithm works as already explained in Chapter 4, by initializing the

starting parameters with a plausible setting. Then, it creates an initial generation

G0, of NP individuals. Each individual of the population is evaluated by means of

the fitness function presented and the best element is chosen to produce the next

generation. This process continues until a good fitness value is reached.

5.5.3 Experimental Results

In this section we report the results obtained by an experiment with NP = 30

individuals, GEN = 37 generations, m = 10 repetitions, F = 0.85 and CF = 0.9.

In Fig. 5.4-(a) the evolution of the global best fitness (solid line) and of the local

best fitness (dashed line) obtained at each generation is displayed. Notice that,

the best fitness starts decreasing after few generations. In Fig. 5.4-(b) we also

show the evolution of the AVOID AIRM-net iCL threshold values in the case of

pbmax = 8.

Let us highlight that, following the DE algorithm, the parameters assume values

in a wide range. In the description of the AIRM-net we claimed that the thresholds

of neurons iCL must be in ascending order. While, at the beginning, the DE

algorithm randomly selects the thresholds values, at last, we find that the best

fitness value is generated by iCL threshold values, which are again in an ascending

order, coherently with the logic implied in our net. In the AVOID AIRM-net

the role played by the iCL thresholds is to appropriately filter the ∆σt/pβ values

provided by InIt in order to opportunely modify the clock period. Very small

values of the iCL thresholds imply that for small variations of ∆σt/pβ all the

iCL neurons fire and then the period pβ immediately turns to 1 (similarly to the

classical architectures). Very high threshold values imply less sensitivity to minor

changes (more similar to an architecture with fixed periodic activations). A high

fitness value is observed in both cases: in the first case because of the increase

of the avoid count value (see Fig. 5.4-(b) GEN=27), and in the second case due

to an increase of the num crash value (the sensors are checked only from time to

time). In order to reduce both these performance measures, thus minimizing the
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(a)

(b)

Figure 5.4: (a) Global/local best fitness; (b) iCL thresholds of the Avoid-net.

fitness value, we have to balance the trade off between sensitivity and periodicity by

choosing uniformly distributed thresholds. In our experiment we effectively observe

that a best fitness is obtained when the iCL threshold values are distributed in

the range of values assumed by ∆σt/pβ, once the environment has been fixed.

5.5.4 Conclusions

In this section, we proposed a neural net implementing a mechanism of periodical

and adaptive activation of a robot perceptual schema, able to deal with real time

applications. Moreover, in order to make this net general purpose, we employ an

evolutionary approach called Differential Evolution (DE). Among different evolu-
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tionary algorithms, such as Genetic Algorithms or Particle Swarm Optimization,

we considered DE, since it allows, as we have noticed in the results, exploring a

range of values that is not initially restricted. The results obtained by the au-

tomatic tuning of the neuron thresholds related to the AVOID behavior are very

promising. Starting from these results we intend to test our model by extending

the tuning also to the thresholds regulating all the behaviors of the architecture.

5.6 Conclusions

The experiments shown in this part of the thesis have been conducted for two

main different purposes: (1) looking at the performance advantages obtained by

using an evolutionary approach to learn adaptability; (2) understanding the role

of the interaction between attentional adaptive strategies and learning made by

evolutive technics. We stated that our adaptive attentional strategies in dynamic

environments gain a significant advantage by the use of learning technics. We

are now investigating the possibility to use both the evolutionary and standard

learning techniques to improve the performance of the system. Thanks to the

evolution, in fact, the robot can capture slow environmental changes, while with

the standard learning technics the robot is able to detect modifications occurring

during its own lifetime. The learning process might, in fact, affect the evolutionary

course in an effective way since it can help and guide evolution, by adapting to

changes in the environment that are too fast for the evolution to be tracked [95].

To this purpose we are currently testing the robotic architecture performance by

adopting an on-line learning based on the reinforcement concept [96], [97], but the

results have not yet been published.
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Deliberative Attentional System





Chapter 6

Deliberative Attentive System

6.1 AIRM for Dynamic Planning Systems

In this part we show the realization of a hybrid control architecture where the

attentional mechanisms are deployed at different levels of abstraction to regulate

behavioral executions, execution monitoring, and dynamic planning.

The issue of attentional processes suitable for robotic executive control has been

only partially explored in the literature [98, 99]. Our aim is to provide a hybrid

control architecture which integrates an attentional system [14, 100] capable of

monitoring and regulating multiple concurrent behaviors at different architecture

levels.

The model of attention for action proposed by Norman and Shallice assumes

that a supervisory attentional system is required when a response is complex.

According to this model, willed and automatic actions are controlled at different

levels depending on the degree of task difficulty and complexity. For example the

control operates at a lower level when the action involves an automatic response (in

this case there is an increase in the activities of the cortical areas mediating selected

schema); while an additional system is required when the action complexity grows.

Starting from the framework presented in the previous section [68, 101], we extend

this approach trying to reproduce the Shallice’s supervisory attentional system

in order to regulate a variety of functions, including (1) directing attention to

a relevant stimulus and inhibition of irrelevant stimuli, (2) switching attention
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between different parallel tasks, and (3) checking the contents of memory storage.

Within our hybrid control architecture, attentional mechanisms are used to

coordinate and regulate execution monitoring and dynamic planning. We describe

our system in a mobile robot case study. This domain is used as a benchmark

to test the flexibility and adaptability of our system. In this context, we study

the control system performance in keeping a coherent and finalized behavior while

compensating failures and unexpected events.

6.2 Motivations

If we want to solve more complex problems, the introduction of a planning process,

that through a reasoning system may define a long-term strategy, becomes neces-

sary. In fact, deliberative systems, as opposed to purely reactive, behave as if they

were capable of thinking, generating sequences of actions made by the combination

of many elementary behaviors and especially trying to predict the effects of their

actions, before executing them [102]. A deliberative module requires a strong level

of abstraction, by which to provide the system with all necessary tools to operate

a process of reasoning.

In fact, a government system of a deliberative robot requires, modeling almost

any relevant entities within the environment; on one hand, this means translating

the real world in an accurate and appropriate description, and on the other hand,

determining how to symbolically represent the information on processes existing

between complex real entities, in order to make the robot capable of reasoning

starting from this information.

In this sense, it becomes necessary resorting to a model of the world explicitly

represented in which decisions, for example, on what actions to perform, are taken

through a kind of symbolic reasoning. This abstraction process requires strong

assumptions on the model of the world. First, the knowledge on which to infer

must be consistent and always available, and secondly it is expected that the world

model used before the planning phase is still valid after its termination.

When this second hypothesis fails, indeed, there is no guarantee of achieving

the desired goals, and thus a new operation planning must be performed based on

the updated model of the world [103].
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From a functional point of view the planner is central in constructing a delib-

erative robot, and can be described as a system that receives as input from the

perceptual system a description of the current state and that, based on a state it

wants to achieve (goal) and a set of basic knowledge, generates a plan (i.e. a se-

quence of actions) to execute in order to reach the desired purposes [104]. Typically

a plan is constructed by analyzing the whole set of possible actions available and

by choosing the best, that is the one allowing the predefined goals to be achieved

as quickly and safely as possible through a specific process of reasoning. Each of

these actions is represented using symbolic descriptions, and is characterized by a

set of preconditions that must be met to make the plan executable, and a set of

post-conditions that must be valid at its termination. The sequence of actions that

constitute the plan can be obtained by searching within a data structure, usually

a tree or a graph, or built from a set of rules more or less broad and from basic

knowledge.

Yet, as it has been previously stated, a robotic system must be able to respond

in a timely and appropriate manner to events coming from highly dynamic and

unpredictable environments.

Therefore, it could be useful to constantly reschedule and update the plan to

be run. This capability is called dynamic planning. In this way planning and

execution overlap is allowed, realizing the continuous planning [105], so that the

planner is able to formulate new goals in real time, without the performance being

affected. The main issues to be addressed in this respect are the following:

• Obtain a symbolic representation of the world starting from perception, and

then from the output coming from the sensors.

• Consider that the world can change after a plan has been elaborated.

• Develop plans, and possibly rework them, quickly.

We carry out this dynamic planning by adopting attentional capability to adapt

the planning horizon based on the environmental circumstances and on unpre-

dictable events.
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6.3 Three-layer Architecture Endowed with AIRM

Our goal is to develop a hybrid deliberative/reactive control system endowed with

attentional mechanisms which focus on sensory acquisition/processing and regulate

behavior activations. The aim is to provide the executive system with a kind of

supervisory attentional system [14] to suitably manage novel and stereotypical

situations by combining deliberative and reactive behaviors while monitoring and

regulating multiple concurrent activities [48]. More specifically, the attentional

control system we propose in this thesis combines the following features:

• Hybrid Control System. We assume a hybrid control architecture integrat-

ing a behavior-based reactive system, an executive control system, and a

deliberative system.

• Supervisory Attentional System. The executive control should combine reac-

tive and goal-oriented behaviors using attentional mechanisms to orchestrate

automatic reactions and activities which are scheduled on the basis of struc-

tured tasks.

• Behavior-based Attentional System. The overall attentional behavior should

emerge from the interaction of multiple parallel attentional behaviors work-

ing at different levels of abstraction.

• Frequency-based Attentional Monitoring. Attentional mechanisms focus mon-

itoring and control processes on relevant activities and external stimuli.

Our attentional control system is structured in three layers (Fig. 6.1):

• a deliberative layer that provides planning capabilities;

• an executive layer which integrates planning, execution, and plan monitoring;

• a behavior-based attentional layer that provides reactive control.

The system is designed then in a hierarchical structure divided into levels of

competence, in which each layer interacts with the adjacent levels, collaborating

with them and possibly exchanging data. As can be seen, it is a sort of closed
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Figure 6.1: Hybrid Control Architecture.

architecture, where there is not a direct communication between the reactive layer

and the planner. The architecture presented is inspired not only by the three-layer

architecture [106] often proposed in the literature for the construction of hybrid sys-

tems of government, but also from the model-based configuration manager treated

in [107], which defines an effective mechanism for monitoring implementation and

dispatching of the instructions drawn up by the deliberative system. It has also

been defined to facilitate the construction of the modules, which compone it, in a

way that the system is easily extensible, but at the same time it has a sufficient

set of constraints to outline the structure overall system. This modularity permits

integrating highly heterogeneous components in a smooth and efficient way, also

allowing changes or adds modules to the system, greatly reducing the influence

of these last modules on other modules. Heterogeneous and asynchronous control

structures have been used, which means that slow and fast computations can be
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done in parallel, ensuring the system reacts quickly to unforeseen events. The

behavior-based attentional system is of the type described before. It is composed

of a set of concurrent behaviors, each endowed with an adaptive clock and an up-

dating function. The behavior-based system produces an emergent behavior which

is sufficient to control the overall robotic system when the executive/deliberative

layer remains inactive. This layer provides the instinctive, automatic control along

with basic motivational drives influenced by internal and external processes. The

executive/deliberative system supervises the behavior executions and integrates

top-down control through planning, plan monitoring, plan execution, and replan-

ning. The executive control cycle is based on a continuous sense-plan-act control

loop. For each cycle the executive system consists of: (sense) receives the current

state of the system and checks for integrity constraints violations, malfunctioning,

and unexpected events; (plan) calls the planner to generate or extend the agenda

of future actions; (act) decides which actions are to be executed in the current

execution cycle. The planning system is called at each sense-plan-act cycle with

a suitable planning horizon (zero horizon for no planning). It receives the cur-

rent executive and planning state and produces a plan of actions up to the end

of its planning horizon. This plan (stored in the plan DB) is to be executed and

monitored by the executive system.

Our architecture is thus able to integrate reactive planning, which determines

the next action to take on the basis of sensory input and current state, and a

long range planning term dedicated to solving complex problems (which requires

consequently a higher latency time).

The attentional mechanisms are here deployed at the executive and deliberative

layer in order to define adaptive monitoring and planning.

Adaptive Execution Monitoring A key role in this architecture is played by

the monitor. In fact, the coexistence of traditional behavior-based architecture

with a deliberative reasoning process requires a series of measures aimed at ensur-

ing the proper conduct of their activities and proper cooperation between them

(see Fig. 6.2). For this purpose an executive monitor is used to direct and coor-

dinate the activities of the various modules involved in the execution. This entity

has then the task of synchronizing the activities of coordination, to avoid conflicts
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in the use of resources, enforce operational constraints and ensure safety in the

presence of failures [106].

Figure 6.2: Role of the Monitor in a Control Architecture.

The task of the monitor is therefore to ensure that the system is context sensi-

tive, by processing data of the robot and the environment in real time, monitoring

the main parameters of performance and recognizing potentially dangerous situa-

tions for the robot integrity. In general, the monitoring phase can operate at low

level, by obtaining information from perceptors and effectors, or at a higher level,

with the task to supervise the overall robot behavior.

Analogously to the reactive layer behaviors, the execution monitor is endowed

with an adaptive clock regulating the duration of the sense-plan-act cycle. The

frequency of this clock depends on the attentional state of the reactive layer: the

higher the frequencies of the behavioral adaptive clocks, the smaller the latency

of the executive system monitoring cycle. Indeed, if the reactive processes are

accelerated, the executive system should monitor and react faster reducing the

duration of the sense-plan-act cycle. In our system, the approach is to regulate

the executive adaptive clock period ptm according to the updating function:

fa(σ(t), p
t−1
m ) = λ(t, pt−1

m , ptb1 , . . . , p
t
bn), (6.1)

that is, as a function of the previous period pt−1
m together with the periods of the

clocks associated with the reactive attentional behaviors.

Adaptive Planning Horizon Since the executive cycle is flexible, the planning

phase should be flexible too. Therefore, the planning system is also endowed with
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a flexible planning horizon: a short horizon corresponds to a fast planning activity

suitable for high monitoring frequencies; instead, a long planning horizon can be

deployed when the system is more relaxed. Also in this case, we introduce a

function that modulates the horizon length H t at time t that depends on the

previous horizon length and the attentional state of the reactive layer:

Ht = Π(t,Ht−1, ptm, ptb1 , . . . , p
t
bn). (6.2)

For example, a simple configuration is to directly set the planning horizon H t

proportional to the latency ptm of the executive cycle. In this way, when the system

works with no urgency (e.g. robot far from obstacles or dangerous locations) the

executive system works at a low frequency that allows a more intense planning ac-

tivity (e.g. plan for the next task) within a longer sense-plan-act cycle; conversely,

when monitoring is intense (e.g. unexpected events or failures) only short-term

planning is allowed (e.g. find quick and simple recoveries).

6.4 A Robotic Test-bed

To assess the feasibility and the effectiveness of the approach we considered a mo-

bile robotics domain where both reactive and deliberative capabilities are needed.

In our scenario, a mobile robot searches for one object requested by a human

operator exploring an unknown and dynamic environment avoiding obstacles and

dangerous situations while seeking sources of energy to recharge its batteries in a

fixed amount of time.

The testing environment is depicted in Fig. 6.3. The robotic task can be

structured into the following subtasks: search for the operator (to receive an object

request); search for the requested object; go back to the operator. Each of these

subtasks should be further decomposed into primitive activations or inhibitions

affecting the behaviors of the reactive layer. The complete task decomposition

is provided on-line by a dynamic planning system and should be continuously

adapted to the executive and environmental context.

Attentional Behavior-based Layer The behavior-based attentional system is

composed of the six behaviors described below (see Fig. 6.4).



6.4 A Robotic Test-bed 107

Figure 6.3: Testing Environment: the requested object is the red spot, dangerous
locations are blue spots, source of energy are green spots.

WANDER: regulates the default random movements of the robot in the environ-

ment; we consider this as a low-level automatic behavior regulated by a constant

clock period ptw and updating function: fa(void) = constw.

AVOID: provides the obstacle avoidance ability. In this case, the updating policy

should allow fast reaction to dangerous potential collisions. In our setting, the

AVOID clock period pta is inversely proportional to the variation rate of the input

signal (minimal distance detected by sonar sensors):

fa(σ(t), p
t−1
a ) =

consta0
RATE

,

where, the RATE parameter is for the first derivative of sensors signal with respect

to time: RATE = (σ(t)− σ(t− pt−1
a ))/pt−1

a and σ(t) refers to the sonar distance.

Instead, when the robot is free from obstacles, it can relax by linearly increasing

the period: fa(σ(t), p
t−1
a ) = pt−1

a + consta1

FIND OBJECT: provides a random search for an object in the environment (map-

ping/localization are not available). The frequency of this behavior increases with

the time spent in the search. We introduce an updating function:

fa(σ(t), p
t−1
f ) =

pfmax

DESIRE
,

where DESIRE = constf × t + constf0 represents the desire of the object which

grows linearly with time according to two positive constants: as time goes by, the
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Figure 6.4: Reactive layer: behaviors and subsumption structure.

urgency of finding the target increases.

ESCAPE: determines reactive escape from dangerous situations. Its internal

clock frequency depends on a possible danger in sight. Here, dangers are associated

with blue blobs: if a blue blob is detected and the escape is enabled, the robot

turns in the opposite direction to source of danger. We introduce the following

updating function:

fa(σ(t), p
t−1
e ) =

conste0
FEAR

,

where the FEAR measures the degree of fear according to the Weber law of

perception: FEAR = (σ(t) − σ(t − pt−1
e ))/σ(t). Here, σ(t) is the area of the

perceived blue blob. This behavior is reactive and no memory is assumed. When

the blue object is not perceived, the clock period is relaxed according to the linear



6.4 A Robotic Test-bed 109

updating function fd(p
t−1
e ) = pt−1

e + conste1 .

RECHARGE: it allows the robot to recharge. This schema provides a random

search for a source of energy in the environment. The activation frequency is here

related to the charge level of the robot’s battery which is modelled as a linear

time-dependent updating function:

fa(σ(t), p
t−1
r ) =

prmax

EN
,

where the energy need is represented by a parameter EN = constr × t + constr0

increasing linearly with time. Below a suitable activation threshold, the lower the

battery level, the greater the attention for an energy source.

SEARCH OPERATOR: it looks for the face of an operator (face detection). The

clock period ptso is regulated with an updating function similar to the one for

Find Object:

fa(σ(t), p
t−1
so ) =

psomax

DESIRE
,

with an appropriate parameter setting.

Executive/Deliberative System The executive system monitors and regu-

lates the reactive activities through continuous sense-plan-act cycles. The latency

of this monitoring cycle is defined by an adaptive clock which is analogous to the

one introduced for the reactive behaviors described above.

Adaptive Execution Monitoring Clock. In the case study, the following updating

function implements (6.1):

fa(t) = min(ptw, p
t
a, p

t
f , p

t
e, p

t
r, p

t
so)× constm. (6.3)

Thus, the execution monitor attentional state (i.e. sense-plan-act cycle dura-

tion) depends on the most excited reactive behavior.

Executive Model. At the executive layer, each reactive behavior is explicitly

represented by a finite state automaton while the allowed concurrent state transi-

tions are limited by sets of constraints.

In Fig. 6.4 we show six automata used to represent the executive state of the re-

active behaviors. From the monitor point of view, each behavior can be in an active

state, when activated by the releaser or by the executive, otherwise, it can be idle,

i.e. waiting for activation, or inhibited by a reactive subsumption mechanisms
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Figure 6.5: Executive Models: each behavior is associated with an automaton

or by the executive itself. For the goal-oriented behaviors like Find Operator,

Find Object, and Recharge, we also introduced a goal-state (e.g Operator Found

for Search Operator). Given these six automata, the overall executive state sm

is described by the tuple (s1, s2, . . . , s6) collecting the current executive state for

each behavior. Furthermore, the automata transitions δ(si, a, sj) (from state si to

sj with a either a control action or an external event) are synchronized and limited

by a collection of constraints γ. We represented γ as a tuple (S+, S−, R, T ) where

S+ and S− are, respectively, set of states enabling and disabling the transition

δ(si, a, sj), analogously R and T are sets of resource and time constraints. In par-

ticular, we introduced the following constraints. Escape, Wander, and Recharge

are mutually exclusive (i.e. cannot be active at the same time), the same holds

for Find Object and Find Operator, which are also incompatible with Escape

and Recharge. As for resource constraints, we consider two battery consumption

constraints: lowBattery enables the activation of Recharge; outofBattery im-

poses the transition to inhibited for each behavior; while not outofBattery is the

precondition for any activation transition. As for time constraints, we considered

only two time out constraints imposing a maximal duration (1/4 of the mission

time) for FaceDetection and FindObject.

Execution Monitoring and Planning During the sense phase, the executive

system estimates the current executive state (s1, s2, . . . , s6) and checks for con-
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straint violations and plan consistency (if a plan is available). If the current state

is safe and the executed transitions are coherent with respect to the dispatched

ones, then the execution monitor calls the planner to extend the current sequence

of planned actions; otherwise, all the future activities are to be replanned from the

current state. Once the plan is ready, the dispatcher selects a set of commands to

be executed in the execution cycle.

Hierarchical Task. Our planning system searches the plan within the hierar-

chical (and incomplete) task network that partially specifies the robot activities.

In our case study, the main robotic task is defined as follows:

(1) main(loop(find op ; find obj ; bring op)),

(2) find op(search(wander) ; search(op found)),

(3) find obj(search(obj found)),

(4) bring op(search(op found)).

Here, search(x) stands for: search any executable sequence of transitions yield-

ing to the state x. Therefore, (2) is for any sequence which permits the activation

of wander and ends with the operator found; (3) stands for any sequence of com-

mands ending in object found; (4) is for any sequence ending with the operator

found. (1) describes the main control loop: find an operator; find the object; go

back to the operator.

Planning Task. Given the current initial state (s1, . . . , s6), an incomplete plan

planI and a planning horizon H, our planner searches from (s1, . . . , s6) an exe-

cutable sequence of transitions (i.e. enabled by the constraints) in the automata

A1, . . . , A6, of maximal length H, which completes planI .

Planning Algorithm. Given a cost function c(s, a, s′) associated with the au-

tomata transitions, we deploy an A∗ algorithm where the heuristic function he

exploits the hierarchical task structure. Namely, given the executed transitions

α = a1; . . . ; an, the current state σ = (s1, . . . , s6) and the remaining plan planr,

the total estimated cost is given by c(α) + he(σ, planr), where c(α) is the total

cost of the executed actions and he(σ, planr) estimates the cost of executing planr

from σ. In our case, he(σ, planr) is an ad-hoc function that underestimates the

plan execution cost. Roughly, given the minimal action path min(planr, σ) that

executes planr from σ neglecting constraints, we state he = min(planr, σ).
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Adaptive Horizon. The adaptive horizon (6.2) is implemented as follows:

Ht =
maxHorizon× ptm

pmmax
, (6.4)

that is, the current horizon lengthH t is a fraction of themaxHorizon proportional

to the fraction of ptm, length of the execution cycle, with respect to the maximal

cycle length pmmax.

Plan Execution. The generated plan is stored in the plan-DB structure which

is the agenda of the future commands (events) to be executed (observed) by (from)

the reactive system (Fig. 6.4).

Figure 6.6: Generated plan and executed activities in the plan-DB.

Given the current state, the dispatcher selects a set of commands scheduled in

the plan-DB to be executed in the next step. The executive system can either force

the activation/inhibition of the behaviors or just wait for their spontaneous evo-

lution. From the reactive system perspective, the executive commands are seen as

additional (top-down) releasing/inhibition mechanisms. Once a set of commands

are sent to the executive system, the latter waits for the action executions till the

end of the execution cycle latency ptm, then the executive cycle can restart from

the sense phase.

6.5 Empirical Results

To assess the effectiveness of attentional monitoring and planning, we measured

the system performance in the presence of external events disturbing the execu-

tion. More specifically, we forced randomized activations of escape at different
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frequencies (25, 15, or 5 seconds). For each test, the configuration is the one in

Fig. 6.3. The obtained results are compared with respect to the ones gathered with

fixed regulations for the monitoring clock and the planning horizon. In this sce-

nario, we tested: (a) at the reactive level, the efficiency of the attentional reactive

system in terms of number of activations needed to achieve the task; (b) at the

executive level, the executive system effectiveness in keeping a coherent executive

behavior despite the disturbances; (c) at the deliberative level, the performance

of the adaptive planner in keeping a finalized behavior despite the environmental

disturbances. For each test case, we collected average and standard deviation of

15 runs, with 300 seconds as maximum duration of each run.

Platform. As a robotic platform we used a Pioneer 3DX endowed with a blob-

camera. The control system runs on an Acer 9504WSMi, Intel Pentium M 760 2.0

Ghz, 1 Gb RAM DDR2, S.O. Ubuntu 9.11.

Attentional Behavior-based System. In the first place, the attentional system

should reduce the overall sensory readings and behaviors’ activations needed to

achieve the task. This effect is evident in Tab. 6.1 where we show the performance

(mean and variance of sensory readings per minutes) of our system (Adaptive Clock

column) compared with respect to the one of the same system endowed with a clock

period fixed at 100 ms (Fixed Clock column). These results are collected assuming

disturbing events generated at about 15 seconds and the planning activity disabled

(planning horizon reduced to zero). In all the test cases, the agent could accomplish

the task within the allowed time.

Table 6.1: Sensory Readings (readings/min)

Behavior Adaptive Clock Fixed Clock

Avoid 228± 51 492± 104
Find-Object 73± 25 219± 69

Escape 113± 29 292± 94
Recharge 92± 28 225± 64

Search-Operator 54± 17 198± 39

Attentional Execution Monitoring. To test the adaptive monitoring, we mea-

sured the detected failures with respect to the execution monitoring latency. In
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particular, the executive system incurs in two kinds of failures: (1) constraints vio-

lations, i.e. the reactive system violates some γ constraints defined in the executive

model, and (2) execution failures, i.e. the executed actions/events differ from the

expected ones. Note that these failures are physiological in our system. Indeed,

the reactive system has its internal drives and can easily become misaligned with

respect to the executive expected state; however, a good regulation of the moni-

toring period should reduce this effect. Also in this case, we assumed noisy events

generated at about 15 seconds. The planning horizon is here short and fixed (we

considered a horizon of 2 steps ahead) to assess the adaptive executive without

the adaptive planning effect, while reactive clocks are adaptive. The results are

reported in Tab. 6.2. Here, for higher monitoring frequencies we obtain more fail-

ures. This is due to the combined effect of misalignments (expected transitions

not executed within a cycle) and false positive constraint violations. Instead, the

adaptive regulation seems the best setting.

Table 6.2: Constraints violations and execution failures
Clock (ms) Const. Violations (%) Exec. Failures (%)

100 2.7± 2.3 4.0± 2.3
200 2.4± 1.6 4.0± 2.0
400 1.5± 1.3 2.2± 1.7
800 1.1± 0.9 1.9± 1.3
1200 1.0± 0.9 2.3± 1.7

Adaptive 1.0± 0.9 1.7± 1.1

Attentional Planning/replanning. To test the adaptive planning effectiveness,

we compared the robot performance with fixed and adaptive horizons (with reac-

tive and executive clocks adaptive in both cases). The performance is measured as

the average time to accomplish the mission. We first considered the fixed horizon

case in two settings with noisy events generated at 25 and 5 seconds respectively

(see Fig. 6.7). Interestingly, while in the first environment, as expected, the longer

the horizon the better the performance, in the second one we register an anomaly:

after a certain length, long horizons start to become counter productive. This

negative effect is due to disturbances and continuous replanning that degrades the

task-based control coherence.
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Figure 6.7: Fixed Horizon.

Figure 6.8: Adaptive Horizon.

In Fig. 6.8, we consider a mixed scenario with disturbing events (randomly

generated from 5 to 25 s with mean in 15 s.) comparing the performance of fixed

and adaptive horizon regulations. Here, the adaptive horizon seems to perform

better than any fixed regulation.
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6.6 Conclusions

We have presented an attentional hybrid control architecture where simple at-

tentional mechanisms are used at different level of abstraction. We exploited a

frequency-based model of executive attention to regulate and coordinate reactive

behaviors, execution monitoring, and dynamic planning. The executive system

supervises the behavior executions and integrates top-down control adapting its

sense-plan-act latency to the behavioral activation/excitation level. Moreover, the

sense-plan-act cycle duration regulates the length of the planning horizon. This

allows us to adapt deliberation and reactivity to the attentional state of the sys-

tem through the execution. We implemented the proposed architecture in a robotic

case study testing its performance under different conditions. The collected results

illustrate the advantages of the adaptive regulation with respect to other settings

with fixed horizons and monitoring latencies. In general the proposed architec-

ture allows combining the advantages of both the purely reactive and deliberative

systems. The robot exhibits a behavior characterized by a sufficient degree of com-

plexity while retaining the ability to extricate themselves successfully in situations

that require on one hand a response in real time, on the other hand the ability to

deal with unforeseeable events.



Part V

Application of the AIRM to HRI

Tasks





Chapter 7

Human-Robot Interaction guided

by Attention

7.1 Introduction

In this section we apply our attentional mechanism to a human-robot interaction

task with the aim of balancing the trade off between safe human-robot interaction

and effective task execution. These mechanisms allow the robot to increase or de-

crease the degree of attention toward relevant activities modulating the frequency

of the monitoring rate and the speed associated to the robot movements. In this

framework, we consider pick-and-place and give-and-receive attentional behaviors.

To assess the system performance, we introduce suitable evaluation criteria taking

into account safety, reliability, efficiency, and effectiveness.

7.2 Motivations

A robotic system designed to physically interact with humans should adapt its

behavior to the human actions and the environmental changes in order to provide

a safe, natural, and effective cooperation. The human motions and the external

environment should be continuously monitored by the robotic system searching

for interaction opportunities while avoiding dangerous and unsafe situations. In

this context, we propose to use our attentional system for balancing the trade off
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between safe human-robot interaction and effective task execution.

Human aware manipulation [108, 109] and human-robot cooperation in manip-

ulation tasks [110, 111] are very relevant topics in HRI literature, however cognitive

control and attentional mechanisms suitable for safe and effective interactive ma-

nipulation are less explored. A number of recent contributions about close HRI are

based on motivational and cognitive models [112]. However, attentional mecha-

nisms in HRI have been mainly investigated focusing on visual and joint attention

[113, 112] for social interaction. In contrast, our main concern is on (supervi-

sory) executive attention for orchestrating the human-robot interaction activities

monitoring their safety and effectiveness [14, 100].

We assume the presented frequency-based model of the executive attention

[58, 87] where each behavior is endowed with an adaptive internal clock that reg-

ulates the sensing rate and action activations. In our human-robot interaction

domain, the attentional mechanisms regulate two conflicting requirements: (1)

safe interaction with the humans; (2) effective cooperation in interactive tasks.

Depending on the disposition and the attitude of a person in the environment,

the sensing rates and behaviors activation frequencies are increased and decreased

changing the overall attentional state of the system. For example, a person ap-

proaching the robot workspace or an abrupt movement of his/her hands affects

the attentional process of the robot that determines a more frequent elaboration

of this perceptual input (human movements), with respect to other inputs or the

execution of other tasks, and a slower movement of the robotic manipulator.

In particular, as a case study we consider simple robot manipulation tasks

providing the attentional monitoring strategies for behaviors like pick and place,

give and receive, search and track (humans and salient objects). To assess the

attentional system performance, we introduce suitable evaluation criteria (safety,

reliability, efficiency, and effectiveness). The empirical evaluation shows the ad-

vantages of attentional system with respect to non-attentional versions of the same

framework (non-adaptive clocks).
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7.3 Attentional HRI Model

Our aim is to develop an autonomous robotic system suitable for human-robot

interaction in cooperative manipulation tasks. Achieving autonomy and safety in

such a environment requires adaptation. For this purpose, we propose to deploy

our AIRM attentional system to modulate the robotic arm motion and percep-

tion in order to achieve an effective coordination and interaction with the human

movements in the operative space. Here the attentional mechanisms regulate the

executive system trading of two conflicting requirements:

• (i) safe interaction with the humans;

• (ii) effective cooperation in interactive tasks.

Each requirement is associated with a motivational drive that affects the atten-

tional and executive state of the robotic behavior. The first one corresponds to the

fear of hurting people, and thus it determines caution, slow movements and inten-

sive monitoring (in case of danger it blocks the robot motion); instead, the second

one is associated with a desire to interact with people and manipulate objects,

and thus this attitude provides an attraction towards moving and close persons or

objects.

Depending on the disposition, movements, and the attitude of a person in the

workspace, each behavior changes its activation frequency, affecting the overall

attentional state of the system. In this way, a person walking across the interaction

area or a fast movement of a human head (or hand) can modify the attentional

state of the same behaviors causing an accelerated elaboration of the associated

perceptual input (human movements) and a more frequent behavior activation.

7.4 Test-bed Case study

7.4.1 Manipulation domain

We considered a robotic manipulator (see Fig. 7.1) that is to cooperate with a hu-

man operator in pick-and-place and give-and-receive (hand-over) tasks. Depending

on the context, the robotic system should: look for an operator to interact with;
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give or receive an object to/from the operator; pick or place an object from/into a

location. Each of these tasks is to be monitored in order to avoid dangerous/unsafe

situations.

In this context, the attentional mechanisms allow us to combine the robot at-

traction towards the operator and the robot repulsion from unexpected events and

abrupt environmental changes. For each behavior, the simple perception-action

response to an external stimulus may produce different patterns of interactions

depending on different internal states of the robot given by the combination of the

fear of hurting the user and the desire of helping him/her.

Platform. We used a PIONEER 3DX endowed a 7DOF robotic arm (Cyton Arm

by Energid: payload 300 g, hight 60 cm, reach 48 cm, joint speed 60 rpm), a

gripper (size 3.25 cm) as end-effector, and a stereo-camera (Videre Design LLC,

baseline 9 cm, 640x480, 64 disparity, 30 Hz) for visual servoing (see Fig. 7.1). The

robot is controlled by a Player/Stage client [77]. All the robot behaviors are im-

plemented in a cycle using a single thread of execution.

Environment. In our setting, the robot base is kept fixed (the mobile base is not

exploited) and close to a small table where the robot can pick and place objects.

Depending on the proximity, we defined three areas in the workspace: a proximity

area (10 cm from the robot body, too close for safe HRI); an interaction area (10–

50 cm, where physical human-robot interaction is possible. Here we refer to both

visual and physical interaction in the robotic arm workspace); a far workspace area

(from 50 cm to 6 m, humans and object in the robot field of view, but too far for

objects hand-over).

7.4.2 Control Architecture Overview

We designed a control architecture suitable for the primitive interactive manipula-

tion tasks introduced above. The control system integrates modules for direct, in-

verse kinematics, and visual servoing along with modules for face recognition, hand

detection/tracking, object recognition/tracking. In particular, inverse kinematics

and visual servoing are based on a CCD (Cyclic Coordinate Descent) algorithm

[114] suitable for fast and continuous adaptation of the robot arm motion with
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Figure 7.1: Robotic platform (left), workspace (right).

respect to the environmental changes. Face detection is based on Viola and Jones

algorithm [115], while hand and object detection/tracking are based on simple skin

and blob detection algorithms. Given these functionalities, the attentional state

of the robot is affected by the following sources of saliency: face, hands, objects

detection, proximity.

Attentional Behaviors The behavior-based architecture is depicted in Fig. 7.2.

This model integrates attentional behaviors for pick and place, give and receive,

but also behaviors for search and track (humans and objects) as well as behaviors

regulating the avoid attitude of the robotic system.

The robot attentional behavior is obtained as the combination of the following

primitive behaviors (see Fig. 7.2): AVOID, PICK and PLACE, GIVE and RECEIVE,

SEARCH and TRACK. For each behavior, we have to define the activation function

and the updating policy that represents the attentional model associated with.

SEARCH controls the pan-tilt (PTU) providing an attentional scan of the envi-

ronment looking for humans and objects. It is active whenever the robotic system
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Figure 7.2: Behavior-based architecture for HRI.

is idle and no interesting things (objects or humans) are in the robot field of view.

Its activation is periodic, but not adaptive, hence it is associated with a constant

clock:

ptsr = constsr.

Once a human is detected in the robot workspace (through face detection

and/or hand detection), the TRACK behavior is enabled. This behavior allows the

robot to monitor humans motions before they enter in the interaction space. TRACK
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focuses the system attention on the operator movements, hence the adaptive clock

should be regulated in accordance with the human motion and position. Here, the

input signal σhm(t) represents the human distance from the robot camera; in our

test-bed, it is the minimal distance of human faces and hands. The TRACK clock

period changes according to σhm(t) and the increment of σhm(t), that is, the period

ptr is updated as follows:

pttr = Θtr(σhm(t),
σhm(t)− σhm(t− pt−1

tr )

pt−1
tr

),

where pt−1
tr is the period at the previous clock cycle, Θtr(x, y) is a function Θtr(x, y) =

ϕtr(αx+ (1− α)1/y+ β), where α and β are behavior specific parameters used to

weigh the importance of position and velocity in the attentional model, while ϕtr(z)

is the scaling function that introduces suitable thresholds to keep the clock period

within the allowed interval [ptrmin, ptrmax]. Intuitively, a human that moves fast

and close needs to be carefully monitored (high frequency, foreground), while a

human that moves far and slow can be monitored in a more relaxed manner (low

frequency, background).

The AVOID behavior checks for safety in human-robot interaction, it controls

the arm motion speed and can stop the motion whenever a situation is assessed

as dangerous. AVOID is enabled when a human is detected in the robot interaction

area. It is endowed with an internal clock whose frequency depends on the operator

proximity and motion. The associated clock frequency changes proportionally

to the situation saliency. That is, if the operator is close and/or its position

σop (i.e. minimal distance of face and hands) becomes closer between successive

readings of sensory data, then the clock is accelerated, while it is decelerated if the

operator moves away from the robot. The period of this clock changes as follows:

ptav = Θav(σop,
σop(t)− σop(t− pt−1

av )

pt−1
av

),

where Θav is defined as for TRACK. The output of this behavior results in a speed
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deceleration associated with high frequencies:

speed =

{
max speed×ptav

pavmax
if prox.sp. < σop ≤ int.sp.

0 σop ≤ prox.sp.

where speed is the current speed, max speed is the maximum allowed value for the

arm speed. Moreover, the arm will stop if the operator is inside the robot space

(proximity space).

The PICK behavior is activated when the robot is not holding and object, but

there exists a reachable object in the robot interactive space. PICK moves the

robot end-effector towards the object, activates a grasping procedure and, once

the robot holds the object, moves this in a predefined safe position close to the

robot body. For PICK, the input signal σobj(t) represents the distance of the object

from the robot end-effector which can be detected by the stereo-camera. In this

case the clock period is associated with the distance of the object. That is, the

period ptpk is updated as follows:

ptpk = ϕpk(ασobj(t)), (7.1)

where ϕpk(x) is the scaling function used to scale and map σobj(t) in the allowed

range of periods [ppkmin, ppkmax]. Furthermore, the clock frequency determines

also speed variations. In particular, the speed is related to the period according

to the following relation:

speed =
max speed× ptpk

ppkmax
. (7.2)

In this way, the arm moves with max speed at the beginning, when there is free

space for movements (and a low monitoring frequency), and smoothly reduced its

speed to a minimum value in order to execute a precision grip with more frequent

camera information (higher monitoring frequency).

As for PLACE, it is activated when the robot is holding an object in the absence

of interacting humans in the interactive space. It moves the robot end effector

towards a target position, it places the object and moves the robot arm back

to a predefined position close to the robot body. The clock period is regulated
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Figure 7.3: Human-robot interaction schemas.

by a function analogous to the (7.1) with the distance to the target σtr as the

input signal. Also in this case, the speed is decelerated at high clock frequencies

according to (7.2).

The GIVE and RECEIVE behaviors are activated by object and gesture detection.

These behaviors are responsible for monitoring and regulating the activities of

giving and receiving objects taking into account both the humans proximity and

their movements. In this case, the clock period is associated with the distance

of both the objects and the speed of the operator hand. In particular, GIVE is

activated when the robot holds an object and perceives a reachable human hand

in its operative space. When activated, this behavior moves the end-effector in
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the direction of the operator hand with a trajectory and velocity which depends

on the human proximity and operator hand movements. The GIVE sampling rate

is regulated by the following function:

ptgv = Θgv

(
γobj(∥σobj(t)− eepos(t)∥),
γop(

σop(t)−σop(t−pt−1
gv )

pt−1
gv

)

)
, (7.3)

where σobj(t) and eepos(t) are the positions of the object and the end-effector at

time t, σop(t) is the hand operator position, θgv, γobj, γop are suitable functions

defined as follows. The function γobj sets the period proportional to the object

position, i.e., the closer the object, the higher the sampling frequency:

γobj = (pgvmax− pgvmin)
d

maxd

+ pgvmin,

where d, maxd are, respectively, the distance (σobj(t)− eepos(t)) and the maximal

distance between the end-effector and the object. Instead, γop depends on the

hand speed v (in terms of the incremental ration of the hand position towards the

value of the period), i.e., the higher the speed, the higher the sampling frequency.

The following function is used to set and normalize the values within the allowed

interval:

γop =

{
(pgvmax− pgvmin)(1− v) + pgvmin if v ≤ 1

pgvmin otherwise

Finally, Θgv(x) combines the two functions γ with a weighted sum regulated by

an α parameter

Θgv(x) = ϕgv(αγobj + (1− α)γop)),

also in this case the resulting period is limited within the allowed interval [pgvmin, pgvmax]

by the scaling function ϕgv.

The clock frequency regulates not only the sampling rate, but also the velocity

of the arm movements. More specifically, the execution speed is related to the

period according to an inversely proportional relation according to (7.2). This

implies that the higher the sampling rate, hence the attention, the slower the

hand movement. Intuitively, here we assume that when attention is needed the
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movement should be more carefully monitored, and thus slowed.

As for the RECEIVE behavior, it is activated when the robot perceives a human

in the operative space holding a reachable a object in his/her hand. The behavior

sampling rate is regulated by a function analogous to (7.3) (set with different

parameters) with an adaptive velocity inversely proportional to the current period,

as in (7.2).

7.4.3 Execution Example

We now illustrate how the system works in typical interactive situations. In Fig. 7.4

we plotted part of the execution of the RECEIVE behavior. In particular, Fig. 7.4-(a)

(a)

(b)

(c)

Figure 7.4: (a) End effector-hand distance; (b) Hand speed as evaluated by the
Receive Behavior; (c) Activations of the Receive behavior.

represents the variation of the distance between the end effector of the robotic arm

and the operator hand. In the execution Cycle 80, the robot has almost reached

the human hand, however the operator moves his/her arm away. The execution of

the behavior ends at the execution Cycle 162 when the robot delivers the object

to the operator. Figure 7.4-(b) represents the hand speed variation of the same

execution, as evaluated by the RECEIVE behavior. The hand is almost stationary
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between Cycle 30 and Cycle 70, then it starts moving with different speeds until it

stands still at Cycle 162 and receives the object. Finally, Figure 7.4-(c) represents

the activations of the behavior at each cycle. Whenever there is a bar in the plot,

this means that the behavior perceptual schema is active. Let us note that both

the distance and the hand speed are sampled and evaluated only when the behavior

perceptual schema is active. The frequency of activation will increase when the

distance is small (for example between Cycles 40 and 80) or when the hand speed

is high (for example between Cycles 105 and 125) following the updating function

of the behavior.

Figure 7.5: This figure shows the activation of all the attentional behaviors: re-
ceive, pick, give and place. Each vertical line corresponds to an activation of the
corresponding behavior.

In Fig. 7.5, we show a complete run of the system and how the different atten-

tional behaviors are activated during human-robot interaction schemas. Initially,

the user is holding an object; this fact leads the behavior Receive to rise up its
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activation frequency until the arm successfully grabs the object at the execution

Cycles 11. Then, the robot waits keeping both Place and Give behavior active

until the operator shows his/her hand in the robot arm workspace. In this case

in the third row of Fig. 7.5 we can see that the behavior Give is activated more

frequently than the Place behavior, until Cycle 16 in which the object is released.

Now the user has again the object in his hand, therefore the Receive behavior is

activated more frequently until the Cycle 21 in which the robot tries to grasp the

object, but without success (red x on the graph). The robot can execute another

attempt and reaches the object at the Cycle 24. The operator is now not inter-

ested in receiving the object and his hand is out from the robotic arm workspace,

so the Place behavior is activated more frequently until, at Cycle 28, he/she put

again his/her hand inside the workspace. From that cycle we note that Give acti-

vations are increased until the task is completed (Cycle=31). Then, the operator

delivers again the object to the robot (Cycle=38), the robot returns the object

to the operator (Cycle=43) and the operator passes again the object to the robot

(Cycle=49). Finally, the operator is no more interested in the object, so the Place

behavior starts to increase its frequency of activation and the robot consequently

releases the object on the table at Cycle 54.

7.5 Experimental Results or Evaluation Criteria

Evaluation Criteria To evaluate the performance of the attentional system

and of the HRI system, we introduce some evaluation criteria considering safety,

reliability, effectiveness, efficiency.

• Safety is measured in counting dangerous human-robot interaction events

(i.e. a safe robot should avoid collisions between human and a moving robot

and it should minimize interactions where the two are too close).

• Reliability is evaluated considering unrecoverable world/robot states encoun-

tered during the tests (the robot is stuck, the object falls down, the object

is not reached or located by the robot).

• Effectiveness is assessed considering the time needed to achieve the task (the
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system should minimize the time to achieve the task).

• Efficiency is associated with the number of behavior activations needed to

achieve the task (for us, an attentional system is efficient, when it can dis-

tribute computational resources among different processes, focusing only on

relevant activities).

Parameters Setting Given the attentional model introduced in the previous

section, the overall attentional behavior is obtained once we tune the parameters

associated with the behavior monitoring strategies.

To assess the system performance with respect to the previous set of criteria

we introduced a suitable optimization function:

f = M1×NSafe +M2×NRel +M3× TEffe+

M4×NEffi.

Here, M1 > · · · > M4 specify the priorities in terms of weights; NRel represents

the number of unrecovered situations with respect to the number of accomplished

activities (pick, place, etc.); Nsafe gives the HRI unsafe situations with respect

to the executed activities; TEffe is for the time spent to achieve the tasks with

respect to the overall mission time; NEffi is the number of behavior activations

with respect to the maximal possible activations.

This function can be exploited, during the setting phase, to learn the system

parameters and, during the testing phase, to validate the overall system behavior.

Different learning algorithms can be deployed for parameter learning (e.g. genetic

algorithms, particle swarm optimization, simulated annealing etc.). Currently,

we are investigating the Differential Evolution (DE) algorithm [90], [91] which

is particularly suitable for both unbounded and granular problems; indeed DE

manages unrestricted and unbounded range of values.

Experimental Setup In order to evaluate the performance of the AIRM archi-

tecture, we compared it with a classical non-rhythmic architecture (P1Vmed) in

which the behaviors perceptual schema are always active. P1Vmed is the baseline

used to emphasize the advantage of our attentional mechanisms. The P1Vmed
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regulation was deliberately simple: always active with a constant speed regulation

which trades-off safety and efficiency. For the adaptive version (AIRM) we consid-

ered adaptive concurrent clocks with pmin = 1, pmax = 10 and speed = max−speed×p
pmax

for all the behaviors. For the (P1Vmed), we assumed that the behavior perceptual

schema are always active (i.e., pmin and pmax are both equal to 1) and the arm

speed is set to a constant value (speed = max−speed
2

). Moreover, in the case of the

AIRM architecture, the updating policies of the behaviors are those specified in

the previous section. The range of values for the speed is [0, 0.3] m/s.

Empirical Results During the empirical evaluation, we tested each behavior

20 times with five different operators unaware of the robot behavior. Operators

were required to simply observe the robot and move around in the case of Pick

and Place behaviors, and interact, without any specific requirement, for the Give

and Receive behaviors. In these final cases all the hand movements, made by the

operators, were spontaneous. For each test we evaluated the parameters defined

above: effectiveness, efficiency, reliability and safety.

Reliability Safety

AIRM P1VMED AIRM P1VMED

Receive 1 1 1 1
Give 0.83 0.8 0.9 0.84
Pick 0.77 0.54 1 1
Place 1 1 1 1

Table 7.1: Evaluation of the Safety and Reliability criteria.

Effectiveness Efficiency

AIRM P1Vmed AIRM P1Vmed

Receive 7.66s± 0.54s 9.69s± 0.31s 14.5± 1.57 41.7± 1.42
Give 4.87s± 1.4s 7.27s± 2.9s 6.05± 2.65 14.65± 5.59
Pick 9.14s± 2.07s 10.48s± 0.67s 16.2± 6.58 32.65± 5.99
Place 6.03s± 1.05s 8.96s± 0.6s 12.95± 5.03 58.65± 10.17

Table 7.2: Evaluation of the Effectiveness and Efficiency criteria.

More precisely, for the effectiveness we computed mean and standard deviation
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of the time required to carry out the correspondent behavior; for the efficiency,

for each behavior, we evaluated the mean and standard deviation of the number

of behavior perceptual schema activations that are necessary to accomplish the

task; for the reliability, we evaluated the percentage of trials in which the robot

successfully completed the task towards the total number of tests carried out.

Finally, for the safety evaluation we considered the number of times the robot

collided with the operator and the number of times the robot did not stop its

motion while the operator was within the robot proximity space with respect to

the total number of tests in percentage.

Figure 7.6: Effectiveness and Efficiency evaluation criteria.

Notice that, the attentional mechanisms are not only associated with better

performance in terms of effectiveness and efficiency (Fig. 7.6 and Tab. 7.2), but

we also observe better results regarding reliability and safety (Tab. 7.1), compared
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with the non-adaptive architecture in which the behavior perceptual schemas are

always active (P1Vmed).

In particular, notice that the adaptive modulation of the robotic arm speed

allows us to accomplish the task faster than keeping the speed to a constant value,

furthermore, the adaptive trajectory is safer and more comfortable from the oper-

ator point of view.

As we expected, a small number of activations has a big impact in the efficiency

for the adaptive system.

Finally, the critical operations for the Safety and Reliability are the Give and

Pick operations. As for safeness, the Give interaction is more critical (where the

robot has to pass an object to the operator) than the Receive one (where the

robot has to receive an object from the operator) causing more frequent collisions.

The same happens for reliability, indeed, passing an object to a human is more

difficult than receiving an object (note that our robotic arm has no force control

on the end effector and its only relies on vision). Although in these cases the

success rate is not equal to 100% (as in the cases of Receive and Place behaviors),

the architecture endowed with AIRMs allows, due to its ability of adaptation, a

number of successes larger than the P1Vmed standard architecture. For example,

in the picking behavior the slower speed of the adaptive architectures permits a

more accurate grip of the object.

7.6 Conclusions

The aim of this application was the specification of the attentional models em-

ployed in human-robot interaction. In particular we proposed a human-robot

interactive system endowed with attention mechanisms used to coordinate simple

manipulation tasks.

In the proposed attentional model, each behavior is equipped with an adaptive

clock and an updating policy that changes the frequency of sensory readings (fo-

cusing the attention towards relevant movements of the operator the robotic arm

interacts with) and modulates the emergent behavior in terms of variations of the

robot arm speed.

We defined a simple control architecture for HRI considering pick-and-place
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and give-and-receive attentional behaviors and to assess the system performance

we introduced suitable evaluation criteria taking into account safety, reliability,

efficiency, and effectiveness. Putting aside the efficiency parameter, that is a pe-

culiar characteristic of an attentional executive systems, in our opinion the role of

the attentional system is to trade off among safety, effectiveness and reliability in

human-robot interaction and cooperation. A safe and reliable human-robot inter-

action means not only to stop the arm movements in dangerous situations, but

also to modulate the arm speed during the interaction balancing faster movements

(more productive and effective) in free space and slower ones during human-robot

interaction. During the interaction, the robot has to balance when to follow the

human hand to achieve collaboration (the desire to interact with people and ma-

nipulate objects, thus an attraction of moving forwards and close persons and

objects) and when to stop, move away from the human or simply slow down its

execution speed in order to not to hurt (the fear of hurting people, thus cautions,

slow movements, intensive monitoring and a repulsion towards close persons). Such

orchestration of attitudes emerges from the interaction of different behaviors (for

example Give and Avoid) that works at different rates depending on the surround-

ing environment and the priorities of tasks.



Part VI

Epilogue





Chapter 8

Conclusions and Future Work

8.1 Conclusions

One of the main issues that is currently matter of research in the community

studying cognitive and bio-inspired robotics is to make robots able to deal with

highly dynamic environments in autonomous way. Namely, a robotic system should

be able to continuously monitoring the surrounding environment, trying to achieve

its goal and, in the meantime, it should be also able to cope with unexpected

situations. In order to guarantee both these issues, the robotic control system

needs to efficiently spending its limited sensorial and cognitive resources.

In this thesis we addressed the above problems by proposing an attentional

monitoring system, capable to opportunely manage limited resources of a robotic

system in monitoring unpredictable and dynamic environments. Attentional mech-

anisms applied to autonomous robotic systems have been proposed elsewhere, but

mainly for vision-based robotics. In all these systems the mechanism of selective

attention is used to support visual abilities to focusing attention only on salient

stimuli in the external environment and discarding the information not relevant for

robot current purposes. Conversely, we are also interested in artificial attentional

mechanisms suitable for execution monitoring. Indeed, inspired by ethological and

biological studies, attesting the role of attention in the control of action, we want

to endow our robotic control system with an attentional mechanism capable not

only to focus on salient stimuli, as it has been already proposed in other works, but
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also on action execution control. Hence our aim is to implement both the selective

and divided attention mechanisms to achieve the dual goal respectively to focus

on relevant stimuli and to opportunely split shared resources among concurrent

behaviors, producing the suitable actions.

Starting from a behavior-based executive system, we introduced simple atten-

tional mechanisms by endowing each behavior with an adaptive internal clock that

regulates the frequencies of sensor readings and action activations. We named this

mechanism AIRM (Adaptive Innate Releasing Mechanism). Here, the process of

changing the frequency of sensory readings is interpreted as an increase or decrease

of attention towards particular behaviors and aspects of the external environment.

Moreover, we introduced some mutual influence rules to ensure that the rhythm

of competitive behaviors activations directly influences the rhythm of the asso-

ciated behaviors. This influence can lead to synergistic or inhibitory activation

mechanisms. In this setting, the overall attentional control is an emergent be-

havior obtained by the interaction of the monitoring strategies associated to each

primitive behavior.

We investigated the feasibility of the use of adaptive internal clocks to imple-

ment these monitoring attentional mechanisms and, in order to validate our ap-

proach, we experimented the developed attentional control architecture in many

different scenarios.

The results show that the realized attentive mechanisms are effective in adapt-

ing the frequency of behaviors activations according to the particular circum-

stances, incrementing or decreasing the attention towards salient aspects of the

robot environment or the internal state and incrementing or decrementing the re-

lated behaviors activations. We showed that the so composed mechanism is able

to filter the sensory information and split resources among different concurrent/-

cooperative behaviors, adapting to the surrounding environment changes and to

the internal needs of the robot.

The two main advantages introduced are that:

• being the activation mechanism periodic, it permits to reduce the number of

behavior activations (as opposed to cases where the standard activations are

performed every machine cycle), causing a relative decrease of computational

load and thus improving the system performance;
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• moreover, the adaptability allows the robot to move in safety, changing its

reaction coherently to the specific environmental conditions. In particular it

lets the robot able to read sensors more often if a dangerous situation occurs

and less often in cases of a safe operational circumstance, showing in this

way an intelligent behavior.

Basically, the system can modulate the activation frequencies on the basis of

the available resources and external conditions. Indeed, by using the adaptive

clocks, the number of behaviors activations substantially decreases compared to

the case where the control system enables the robot behaviors at each machine

cycle, and this results in a substantial gain in performances.

The results collected in all the test-beds also show that attentional mechanisms

reduce the time to achieve the goal (effectiveness) and the activations of each

behavior (efficiency), permitting a smooth and natural emergent behavior in all

the considered scenarios, trading off between adaptivity and performances.

Furthermore, the experiments have also shown interesting results about the

synchronization and the scheduling of the behaviors. In fact, since each behavior

is endowed with its own clock, whose period can change over time basing on

external and internal conditions, we have that, in some circumstances, a behavior

is activated more frequently than other behaviors with the consequence that its

influence on the emergent behavior is stronger than the others. This produces a

kind of priority scheduling of the behaviors, that is completely decentralized and

managed by each individual behavior, which adjusts and adapts its frequency, and

consequently its priority value, increasing its weight in determining the output

action.

We also observed that our first implementation of the AIRM architecture con-

veys the advantages of both the purely reactive and the deliberative architectures.

Indeed it produces a quick reaction to the perceived stimuli as well as in the reac-

tive architectures, but while in pure reactive system the stimulus response patterns

are stereotypical, deterministic, and strictly dependent on the current state, in our

frequency-based model this pattern is more complex: it is modulated by the be-

haviors’ sampling and activation rates which are history-dependent.

We implemented the AIRM mechanisms by means of a particular neural net-

work in order to face real time applications. We planned to use neural networks
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also because they are ideally suited to the development of learning processes, since

these represent a powerful data modeling tool, able to capture and represent com-

plex input/output relationships. Indeed the motivation for the development of

neural network technology stemmed from the desire to develop an artificial system

that could perform “intelligent” tasks similar to those performed by the human

brain, where the knowledge is acquired through learning directly from the data

being modeled.

Then in order to deal with more complex tasks we introduced a hybrid archi-

tecture, in which the attentional mechanisms are deployed in different layers of the

structure. In this three-layer architecture the clock mechanism is indeed applied

to the reactive layer, as well as in the preliminary implementation of the architec-

ture, and to a planner with a variable planning horizon, in a way that the length

of the planning horizon can be modified according to the particular environment

conditions. This adaptability permits the control system to keep a coherent and

finalized behavior while compensating failures and unexpected events.

In the design of all the different implementations of the attentive control sys-

tems we must, however, take into account both the external factors related to

the environment in which the robots is situated and the internal composition of

the system. Thus the choice of the maximum period of behavior activation, or

the chosen monitoring strategy or the size of the planning horizon must therefore

represent a fair compromise between the ability to reduce the number of acti-

vations, and thus reduce processing times unnecessary data, and the risk of not

being able to quickly react to occurring environment changes. We demonstrated

how evolutionary strategies can be used in a very fruitful way in order to learn

the updating policies of the behaviors rhythms and make the system adaptable to

different environments while improving its performance. We validate the efficiency

of the system so learned proving its adaptability at different level of environmental

complexity.

In the last part of this thesis we also show how our attentional architecture

can be used in a wide range of applications, from the mobile robotics to human-

robot interaction tasks, in order to ensure an effective improvement of the system

performance and assure the execution of tasks in safety and reliability.

In this work, we have shown that it is possible to build control systems for
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mobile robots performing better than the classic behavior-based architectures in

terms of best use of resources, behaviors scheduling, and, in general, of effectiveness

(reducing the time to achieve the goal) and efficiency (reducing the behaviors

activations). In all the application contexts, in which these mechanism have been

tested, we have shown that these attentional mechanisms can be used to ensure a

real improvement in performance and in tasks execution in safety and reliability.

8.2 Further research topics

There are several development lines of the system realized. First of all, we aim

to investigate the possibility to use both the evolutionary and online learning

technics to improve the performance of the system. Indeed, in order to really

make the robot able to adapt to very drastic environment changes, we think that

the adoption of on-line learning could be very useful since it should make the robot

able to detect modifications occurring during its own lifetime. In this regard, we are

currently testing the use of an on-line learning algorithm, reinforcement-learning

like, to compensate the evolutionary algorithm to the adaptation with respect to

environment changes that are too fast for evolution to be tracked.

Another development line might also address the issue of porting of the at-

tentional neural network on FPGAs (Field Programmable Gate Array) devices,

which, given their advantages such as the reconfigurable logic, are currently the

standard for the development of complex electronic boards. In this context, the

NSL language (Neuro-Symbolic Language for Neuro-Symbolic Processors (NSP))

[93] through which describes the network and compilers that translate these state-

ments in VHDL (VHSIC hardware description language - Very Hight Speed Inte-

grated Circuits), makes the porting of the neuro-symbolic neural network on the

FPGA devices almost immediately.

As a future work, we also plan to create an automatic and decentralized mon-

itoring system for sensors networks management, in which the attentional moni-

toring system is directly applied to individual sensors or nodes. The purpose is to

investigate whether even in this case, the rhythmic attentional systems can reduce

the computational complexity, optimizing system resources and solving manage-

ment problems of the computational load distribution on the sensors network,
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without the aid of a centralized control, but relying only on the presence of smart

sensors endowed with independent self-regulating mechanisms.
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