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Abstract

A fundamental starting point in quantum information theory is the consider-

ation of the von Neumann entropy and its generalization to relative quantum

entropies. A particular feature of quantum relative entropies is their rela-

tion via their Hessian to monotonic Riemannian metrics on the dense set of

invertible mixed quantum states (Lesniewski and Ruskai 1999). These met-

rics are also known as quantum Fisher information metrics and provide a

direct link to quantum estimation theory (Helstrom 1969). Quantum Fisher

information metrics which are extendable to pure states coincide all with the

Fubini Study metric of the projective Hilbert space of complex rays.

This theses outlines possible advantages of an inverse approach to quan-

tum information theory, by starting with the Fubini Study metric rather

then with the von Neumann entropy. This is done in a first step by associ-

ating to the Fubini Study metric a covariant and a contra-variant structure

on the punctured Hilbert space as being available in the geometric formu-

lation of quantum mechanics. While the contra-variant structure leads to

a quantum version of the Cramér-Rao inequality for general 1-dimensional

submanifolds of pure states, the covariant structure provides alternative en-

tanglement monotones by identifying an inner product on the pullback tensor

fields on local unitary group orbits of quantum states. It is shown in the case

of two qubits that these monotones yield a more efficient estimation of en-

tanglement than standard measures from the literature as those associated

with the linearization of the von Neumann entropy.
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Preface

This work focuses on mathematical foundations of quantum information from

a geometric point of view. The main motivation for this project originated

essentially from two recent observations made by Marmo and collaborators

on the Fubini Study metric as used in covariant form in the geometric formu-

lation of quantum mechanics. First, this metric links to alternative quantum

entanglement measures [1–6], and second, it links to the so-called quantum

Fisher information measure [7] as used in quantum estimation problems. The

two concepts of entanglement measures and Fisher information are both well

known as fundamental concepts in quantum information theory. However,

the connection between the two concepts in strict geometrical terms and it’s

resulting implications hasn’t been discussed yet and clearly indicates a lack on

a deeper understanding on some of the most fundamental concepts of quan-

tum information theory. The present work aims to fill this gap by reviewing

the above stated two sets of observations in detail and by discussing what

happens when merging these two together. As a result, a new application on

the quantum experimental bounds of weak entanglement quantification within

the currently emerging research field of entanglement estimation theory [8] is

presented.
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1 Quantum information – Getting started

In this first chapter we will give an introduction to the topic of the underlying

work. For this purpose we will start with a brief overview on the basic

ideas behind the concept of quantum information and its future emerging

technological applications. The engineering problems arising here will then

directly lead to the central motivation and content of this work.

1.1 Quantum information processing

In 1982, Feynman made following observation [9]. A computer simulation of

the time evolution of a given quantum system requires a computational time

exponentially growing with the dimension of the quantum system. Feynman

concluded that, vice versa, given a computer based on the laws of quantum

mechanics, one should in principle solve computational problems (including

the problem of simulating the time evolution of a big quantum system) in a

notable faster time.

The mathematical ingredient being responsible for the speed up may be

seen physically based on the particular way how a quantum system with a

certain number of degrees of freedom is decomposed into its subsystems as

follows. While in the classical case one uses a Cartesian product

R2k × R2k..× R2k = R2kN

to identify a decomposition into subsystems, one has to take into account for

the quantum case a tensor product

Ck ⊗ Ck..⊗ Ck ∼= R(2k)N .

Unitary operations defining a quantum dynamics may therefore act on a

complex Hilbert space of dimension kN .

The smallest quantum information unit is given by a so-called qubit being
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represented by a normalized vector in a 2-level complex Hilbert space isomor-

phic to C2 [10]. An initial state vector representing a circuit with 32 qubits

for instance, allows therefore to consider unitary transformations inducing a

parallel quantum information processing on a complex Hilbert space of more

than four billion (!) dimensions.

Actually, the idea of quantum computation became of general interest a

decade latter after Feynman’s observation due to the work of Shor, propos-

ing a quantum algorithm implying an exponential speed up for factorizing

integers into prime numbers [11, 12].

Of course, solving ‘classical’ problems like prime number factorization on

a quantum computer requires the extraction of classical information (that is

a sequence of classical bits) from the final quantum state vector as output

result of the corresponding quantum algorithm. This extraction is achieved

by a measurement inducing ‘a collapse’ defined by a (non unitary) projection

of the final quantum state vector

|ψfinal〉 = U |ψinitial〉 =
2N∑

j∈{0,1}N
aj |j〉 (1.1)

to a 1-dimensional subspace spanned by an eigenvector

|1011001...〉 := |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉 ⊗ ..

associated to an Hermitian operator on the composite Hilbert space

Hsys
∼= (C2)⊗N

representing the quantum register of N qubits.
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1.2 The role of entanglement

The final quantum state vector in the unitary process (1.1) will be in general

entagled before the measurement occurs. Actually, any unitary quantum

information process like (1.1) may be seen decomposed into a sequence of

elementary unitary transformations provided by logical quantum gates in-

ducing entanglement on each quantum state vector containing the informa-

tion of the intermediate result related to the computational task. This may

be illustrated in the simplest case of a CNOT (or ‘controlled NOT’) gate

represented by a matrix

UCNOT ≡


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (1.2)

acting on a quantum register consisting of two qubits according to

UCNOT |x〉 ⊗ |y〉 = |x〉 ⊗ |x⊕ y〉 (1.3)

with x ⊕ y := x + y mod 2 (see e.g. [10]). Such an operation is non-local

as the second qubit state changes in dependence of the first qubit state.

The resulting state may therefore become entangled if the first qubit is in a

superposition state, say

|x〉 ≡
√
λ |0〉+

√
1− λ |1〉 , λ ∈ [0, 1].

As a matter of fact, for |y〉 ≡ |0〉 one finds

|x〉 ⊗ |x⊕ y〉 =
√
λ |0〉 ⊗ |0⊕ 0〉+

√
1− λ |1〉 ⊗ |0⊕ 1〉

=
√
λ |0〉 ⊗ |0〉+

√
1− λ |1〉 ⊗ |1〉

=
√
λ |00〉+

√
1− λ |11〉 (1.4)
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which recovers a Bell state [13], that is, a maximal entangled state for λ ≡
1/2. Indeed, any quantum algorithm may be seen decomposed into a finite

sequence of universal quantum gates including the CNOT gate (1.3) gener-

ating entangled states as intermediate results in the corresponding quantum

computational steps. Entanglement provides therefore a fundamental physi-

cal resource for realizing quantum computers.

1.3 Quantum error quantification

Unfortunately, there is a serious obstruction on the road to the concrete

technological realizations of such quantum information processing devices.

The main quantum engineering challenge arises here when taking precisely

into account the interaction with the macroscopic environment. The latter

implies in particular for quantum systems the destruction of the entangle-

ment required for an error-free quantum information processing on the mi-

croscopic scale. Actually, this kind of destruction is a direct consequence of

entanglement with the environment on the macroscopic scale (also known as

‘decoherence’). An opposition between quantum information devices with

optimal functionality and decoherence may therefore be captured by the no-

tion of entanglement on different scales according to the following scheme.

Microscopic scale entanglement as resource for quantum error

corrections [14]

vs.

Macroscopic scale entanglement as origin of errors on the microscopic scale.

This scheme makes clear that any serious quantum engineering approach to

the realization and testing of quantum information devices requires a quan-

titative understanding on the relation between error tolerances and entan-

glement. Thus the elementary question which arises is how to quantify, both
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theoretically and experimentally, the error occurring in open quantum sys-

tems.

First of all, when taking into account an interaction with the environ-

ment, the unitary quantum information process becomes crucially modified

to a non-unitary process, mathematically precisely defined by the notion of

a (trace preserving) positive map Φ [15,16]. The latter encodes the unitarily

evolved dynamics U defining an interaction with the macroscopic environ-

ment down to the microscopic scale illustrated by the following diagram

Hsys ⊗Henv
U−−−→ Hsys ⊗Henv

‘partial trace’

y y‘partial trace’

D(Hsys)
Φ−−−→ D(Hsys),

where H(·) denote Hilbert spaces associated with a subsystem (‘sys’ for the

the microscopic system representing for instance a quantum computer regis-

ter, and ‘env’ for the environment) and D(Hsys) denotes the corresponding

partial traced density state description of the microscopic subsystem.

To realize in this setting a quantum computer according to DiVincenzo

[17] it becomes necessary to impose the constraint for any quantum state

vector |ψ〉 ∈ Hsys to differ only by a factor within an interval [0, ε] from a

mixed state ρε ∈ D(Hsys) after an elementary time unit according to

〈ψ| ρ |ψ〉 ≥ 1− ε. (1.5)

That is, a non-unitary process

|ψ〉 〈ψ| 7→ ρε ≡ (1− ε) |ψ〉 〈ψ|+ ε |φ〉 〈φ| (1.6)

would be tolerable for performing quantum information processes with cor-

responding quantum error correction codes [14] if ε is small enough. The

identification of the exact value of ε is therefore considered as one of the
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most crucial questions in the field of quantum computer engineering [17].

At this point we observe the following. Any measure on the space of

quantum states S : D(H) → [0, 1] being monotonic under positive maps

would be able to give a quantification on the error. The dependence of a

given measure S on the error parameter ε may be induced here from the

parametrization of a family of quantum states

Φε(|ψ〉 〈ψ|) ≡ ρε, (1.7)

each related to a fiducial state ρ0 ≡ |ψ〉 〈ψ| by virtue of a positive map Φε as

illustrated in (1.6).

Actually, a complementary task in proving the functionality of quantum

information processing devices could be given by the quantification of entan-

glement. Indeed, the quantification of errors and entanglement may turn out

to appear both captured by one single measure known as the von Neunman

entropy.

1.4 From quantum information to geometric QM

The traditional point of view in quantum information theory considers the

von Neumann entropy

SvN(ρ) := −Tr(ρ log ρ) (1.8)

at the first place. It’s fundamental role may be summarized by two remark-

able facts: The von Neumann entropy provides

• the minimum amount of quantum information units needed for encod-

ing a state ρ (representing a typical sequence of eigenstates related to

letters of an alphabet) without loosing information after decoding [18],

and
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• a unique entanglement measure for pure states, when applied to re-

duced density states [19].

At this point we may observe that the quantum relative entropy

SvN(ρ, σ) ≡ SvN(ρ)− Tr(ρ log σ), (1.9)

has the interpretation of a ‘distance’ between quantum states which contracts

under positive maps [16],

S(Φ(ρ),Φ(σ)) 6 S(ρ, σ). (1.10)

Actually, the quantum relative entropy does not provide a metrical distance

due to its lack of symmetry under permutation

SvN(ρ, σ) 6= SvN(σ, ρ). (1.11)

However, it possible to associate a metrical distance with the Hessian

−∂α∂βSvN(ρ+ αA, ρ+ βB)|α=β=0 := M vN
ρ (A,B) (1.12)

defining a Riemmanian metric on the dense set of invertible mixed quantum

state operators. Actually, there is a family of Riemmanian metrics con-

structed in this way [20], whenever taking into account alternative relative

quantum entropies

Sh(ρ, σ) := Tr(ρ h(4σ,ρ)) (1.13)

each defined in terms of an operator convex function1 h, where 4σ,ρ denotes

an operator being decomposed into a left and right action

4σ,ρ(A) := LσR
−1
ρ (A) = σAρ−1 (1.14)

1We’ll introduce this notion in more detail in section 3.1.1.
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defined by the quantum states σ and ρ respectively.

To any given alternative quantum relative entropy Sh specified by a op-

erator convex function h, one finds a quantum Fisher information metric

−∂α∂βSh(ρ+ αA, ρ+ βB)|α=β=0 := Mh
ρ (A,B)

in accordance to the work of Petz, Gibilisco and al. (see e.g. [21] and refer-

ences therein).

At this point we note the following. All quantum information metrics

with an extension to pure states coincide with the Fubini Study metric when

restricted to pure states. As being defined on the projective space of com-

plex rays, it takes into account a fundamental structure in the geometric

formulation of quantum mechanics [22–45].

1.5 An inverse approach: This thesis

The geometric formulation of quantum mechanics [22–45] has its historical

origin in the pioneering works of Strocchi (1956), Cantoni (1975), Cirelli et

al (1983). This approach is on the opposite to the geometric quantization

program [46] by taking into account dequantization at the first place, as

emphasized and worked out in recent developments by Ashtekar, Schilling,

Brody, Hughston, Marmo et al. (1997-2010).

There are several sound reasons for considering a dequantization program

in the geometric formulation of quantum mechanics. The initial motivation

comes automatically by accepting physical states to be fundamentally real-

ized as elements in the projective space of complex rays rather than in a

ordinary Hilbert space. This space has a fundamental geometric structure

provided by the Fubini-Study metric which decomposes along a realification

into a real Riemannian and an imaginary symplectic structure. Such a geo-

metric setting makes therefore available geometric methods as used in general

relativity and classical mechanics, suggesting a powerful framework for ap-
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proaching both the conceptual and mathematical foundations of quantum

mechanics.

Actually, the specific relation of the Fubiny-Study metric to the quantum

Fisher information, as outlined in the previous section, strongly suggests a

particular impact on the mathematical foundations of quantum information.

Indeed, we may ask more concretely for both conceptual and methodological

implications of an inverse approach to quantum information theory, by set-

ting the Fubiny-Study metric rather the von Neumann entropy at the first

place.

A first step in this direction has been considered recently by a quantum

entanglement characterization in finite level quantum systems [1–3] in terms

of the pullback of the Fubini Study metric on local unitary group orbits of

quantum states. Based on subsequent works [4–6], it is the aim of the present

thesis to establish three further steps implying the following.

1. Information inequalities including the Cramér-Rao inequality from con-

travariant structures associated to the Fubini Study metric.

2. A (re-) construction of quantum entanglement monotones and related

quantum entropies from the pull-back of the Fubini Study metric.

3. An efficient quantum estimation of weakly entangled qubits on the basis

of the Cramér-Rao inequality in point 1 provided by an estimation of

the monotones in point 2.

The last point 3 tackles a current raised problem on the experimental bounds

of entanglement quantification [8, 47] and outlines therefore one of the pos-

sible advantages of an ‘inverse approach’, as proposed here, to quantum in-

formation.

The basic structure of the underlying work is illustrated according to the

following diagram below. We’ll start with the geometric formulation of quan-

tum mechanics in section 2. This section will be focussed on the identification
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of covariant and contravariant structures related to the Fubini Study metric

as seen from the Hilbert space in the subsections 2.1 and 2.2 respectively.

Thereafter, we will consider alternative entanglement monotones arising from

covariant structures in section 4 and quantum information inequalities aris-

ing from contravariant structures in section 3. In the last section 5 we’ll

bring both aspects together by illustrating an application to entanglement

estimation.

Geometric

QM

Chapter 2

Covariant

structures

Chapter 2.1

Contravariant

structures

Chapter 2.2

Information

Inequalities

Chapter 3

Entanglement

Monotones

Chapter 4

Entanglement

Estimation

Chapter 5
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2 Geometric Quantum Mechanics

The standard formulation of quantum mechanics associates to any quantum

system a complex Hilbert space H. However, on the basis of Born’s proba-

bilistic interpretation it becomes appropriated to define the physical states

not with vectors ψ in H but with the equivalence classes

[ψ] = [cψ], c ∈ C0 (2.1)

which are elements of the projective Hilbert space R(H).2 The projective

Hilbert space carries a natural geometric structure given by the Fubini Study

metric measuring the distance between two complex rays. The physically

relevant distance between two quantum states should thus be considered in

terms of the Fubini Study metric rather then in terms of a Hermitian scalar

product. This observation highlights one of the motivations for considering a

geometric formulation of quantum mechanics as suggested in several papers

[22–45]. Here we shall review some of the basic ideas following the specific

argumentaion line close to the reviews done in [2,5] with particular emphasize

on the following notation:

To keep formulas both visible and computable with the familiar Dirac’s

‘ket’-notation it will be convinient to translate the physical relevant geometric

information carried by the Fubini Study metric on R(H) on the level of the

(punctured) Hilbert space H0 ≡ H−{0}. This can be done both in terms of

a covariant and a contravariant tensor field whenever H0 becomes identified

with a differentiable manifold.

2At this point one may remark also alternative interpretations of quantum mechanics
like the one by DeBroglie and Bohm, taking into account the quantum current density
dependent quotient jψ/|ψ|2 at the first place [48, 49]. The latter structure is invariant
under C∗-transformations on ψ ∈ H0 and provides therefore an alternative motivation for
considering R(H) instead of H as the appropriated space of quantum states. Actually,
a way of evading the measurement problem in such a setting may be seen based on the
notion of conditional quantum states parametrized by the particle position configurations
of the measurement device [50]. Such states may be modeled by a finite (macroscopic
high) dimensional submanifold Qapparatus ⊂ R(H).
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One of the most appealing aspects in geometric quantum mechanics will

be the translation of operator C∗-algebras to non-commutative C∗-algebras

of functions. This translation makes use of a contravariant structure being

related to the Fubini Study metric. In contrast, we will consider covariant

structures when performing a pullback to general submanifolds in H. It will

therefore be convenient to distinguish covariant from contavariant structures

by discussing them in separated subsections, as provided here in 2.1 and 2.2

respectively.

In what follows, our statements should be considered to be always math-

ematically well defined whenever the Hilbert space we intend to identify with

a manifold is finite dimensional. Indeed, the basic ideas coming along the

geometric approach in the finite dimensional case are fundamental for ap-

proaching the infinite dimensional case. The additional technicalities which

may be required in the latter case will be discussed here by means of specific

examples rather than by focusing on general claims. Readers interested in

the mathematical foundations of infinite dimensional manifolds are invited

to consult [51–53].

2.1 Covariant structures

Before considering the Fubiny Study metric in covariant form, we shall start

with covariant tensor fields of lowest order.

2.1.1 From Hermitian operators to real-valued functions

Given a Hermitian operator A ∈ u∗(H) defined on a Hilbert space H, we

shall find a real symmetric function

fA(ψ) := 〈ψ |Aψ〉 , ψ ∈ H (2.2)
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on H. These functions decompose into functions

fPj(ψ) = 〈ψ |Pjψ〉 , ψ ∈ H (2.3)

associated with a family of projectors Pj := |ej〉 〈ej| constructed from an

orthonormal basis {|ej〉}j∈I onH. The decomposition of the function induced

by the spectral decomposition of the operator

A =
∑
j

λjPj (2.4)

yields a quadratic function

fA(ψ) =
∑
j

λjfPj(ψ) =
∑
j

λj|zj|2(ψ). (2.5)

with the coordinate functions

〈ej |ψ〉 := zj(ψ) . (2.6)

In this regard we may recover expectation values of an operator A as values

of a function

eA(ψ) :=
fA(ψ)

〈ψ |ψ〉
(2.7)

on the punctured Hilbert space H0 := H− {0}. By virtue of the map3

µ : H0 → u∗(H), |ψ〉 7→ ρψ :=
|ψ〉 〈ψ|
〈ψ |ψ〉

(2.8)

3This map provides an instance of a so called momentum map as being known from
Hamiltonian mechanics [54]. To be specific, for an action of a Lie group G on a symplectic
manifold (M,ω) one defines a momentum map as a map µ from the symplectic manifold
to the dual of the Lie algebra of G, such that all R-valued pairings between µ(v), v ∈ M
and elements a of the Lie algebra generate a 1-form being the contraction of ω with a
vector field associated with a by v 7→ d

dt exp(at)|t=0v. In the geometric formulation of
quantum mechanics we may specialize this situation with M ≡ H0 and G ≡ U(H) [45].
The symplectic structure ω on H0 will be introduced later in section 2.2.
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we note that

eA(ψ) = ρψ(A), ρψ ∈ D1(H) (2.9)

identifies a pull-back function from the set D1(H) of normalized rank-1 pro-

jectors which are in 1-to-1 correspondence with pure physical states in R(H).

Hence, eA is the result of the pull-back of a function form R(H) to H0.

2.1.2 The Fubini-Study metric seen from the Hilbert space

The map µ in (2.8) relates to the commutative diagram

H0
µ−−−→ u∗(H)

π

y ι

x
R(H)

∼=−−−→ D1(H),

providing a fundamental tool for pulling back, in a both computable and –

with the familiar ‘ket’-notation of Dirac – visible way, any covariant structure

defined on D1(H) ∼= R(H) to the ‘initial’ punctured Hilbert space H0.

In the following we will be particularly interested in the pullback of a

covariant structure related to the Fubini Study metric on R(H). For this

purpose, we consider for a given Hermitian operator A, the operator-valued

differential dA in respect to a real parametrization4 of u∗(H), and define the

(0, 2)-tensor field

Tr(dA⊗ dA). (2.10)

The differential calculus on a submanifoldM⊂ u∗(H), may then be inherited

from the ‘ambient space’ u∗(H) together with this covariant structure. In

4Such a parametrization is available, for instance in terms of the Bloch representation
A =

∑
λjσ

j with λj := Tr(Aσj). An explicit computation of the resulting tensor field is
illustrated for H ∼= C2 in the appendix section B.4.
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particular for M∼= D1(H) ∼= R(H) we find5

Tr(dρψ ⊗ dρψ) =
〈dψ ⊗ dψ〉
〈ψ |ψ〉

− 〈ψ |dψ〉
〈ψ |ψ〉

⊗ 〈dψ |ψ〉
〈ψ |ψ〉

:= κH0 , (2.11)

as µ-map (2.8) induced pull-back tensor field on the associated punctured

Hilbert space H0 [1]. We note here that |dψ〉 defines a H-vector-valued 1-

form which provides a ‘classical’ 1-form according to 〈ej |dψ〉 ≡ dzj. In the

latter coordinates one may identify a degenerate covariant tensor field

κH0 =
dz̄j ⊗ dzj∑

j |zj|2
− zjdz̄j ⊗ z̄kdzk

(
∑

j |zj|2)2
(2.12)

on the punctured Hilbert space H0
∼= Cn+1 − {0}. Due to the misleading

convention often appearing in the literature we shall give a warning at this

point: This is not the Fubini Study metric from the associated projective

space CP n. Indeed, the above covariant tensor-field κH0 defines a pull-back of

the Fubini-Study metric tensor field from the space of complexe rays R(H) ∼=
CP n to H0

∼= Cn+1 − {0}.
The degenerate structure κH0 (2.11) decomposes in this regard into a real

symmetric and an imaginary anti-symmetric part

κH0 := ηH0 + iωH0 , (2.13)

relating to a corresponding pullback of a Riemannian and a symplectic struc-

tures from the associated complex projective space to H0 respectively. Of

course, such a decomposition may either be induced by polar coordinates

zj = pjeiW
j

or by cartesian coordinates zj ≡ xj + iyj.

5A detailed derivation of formula (2.11) can be found in the appendix C in (C.8).
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2.1.3 The pullback on general submanifolds

For a given embedding of a general finite dimensional manifold M in H0

ι :M ↪→ H0, λ 7→ ψ(·, λ) (2.14)

we will find an induced pullback of the Fubini-Study metric on M in terms

of the pullback of the degenerate covariant structure given by κH0 in (2.11).

Let us review an explicit derivation of the pullback when the Hilbert space

under consideration is identified with a space of square integrable functions

on some configuration space Rn [7]. As a first step we consider here a polar

coordinate decomposition

ψ(x, λ) ≡ p(x, λ)1/2eiW (x,λ) (2.15)

and define for any given tensor field T (x, λ) of order r (including functions

for order r = 0) the generalized expectation value integral

Ep(T ) :=

∫
Rn
p(x, λ)T (x, λ)dx, (2.16)

which ‘traces out’ the x-dependence of the tensor field T . Hence, for a given

embedding (2.14) we shall find the pull-back structures

ι∗ 〈ψ |ψ〉 = Ep(1) (2.17)

ι∗ 〈ψ |dψ〉 = Ep(d lnψ) (2.18)

ι∗ 〈dψ |ψ〉 = Ep(d lnψ∗) (2.19)

ι∗ 〈dψ ⊗ dψ〉 = Ep(d lnψ∗ ⊗ d lnψ), (2.20)

by using
dψ

ψ
= d lnψ. (2.21)
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The latter splits within the polar-decompostion (2.15) into a sum

d lnψ = d(ln p1/2eiW ) = d(ln p1/2 + ln(eiW )) =
1

2
d ln p+ idW. (2.22)

By taking into account the normalization condition 〈ψ |ψ〉 = 1 one finds

dEp(1) = Ep(dp) = Ep(d ln p) = 0 (2.23)

and 〈dψ |ψ〉 = −〈ψ |dψ〉,

Ep(d lnψ∗) = −Ep(d lnψ). (2.24)

From (2.16)-(2.24) we conclude the identification of a pull-back tensor field

ι∗κH0 ≡ κM = ηM + iωM, (2.25)

on the submanifold M which is decomposed into a symmetric tensor field

ηM := Ep((d ln p)⊗2) + Ep(dW⊗2)− Ep(dW )2 (2.26)

and an antisymmetric tensor field

ωM := Ep(d ln p ∧ dW ). (2.27)

While the latter is related to the geometric phase, we shall take into account

in the symmetric part a further decomposition

ηM ≡ F + Cov(dW ), (2.28)

which identifies the classical Fisher Information metric

F := Ep((d ln p)⊗2) (2.29)
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and a phase-covariance matrix tensor field

Cov(dW ) := Ep(dW⊗2)− Ep(dW )2. (2.30)

For the parts of the pull-back tensor field containing the phase W in dif-

ferential form, we may therefore identify for pure states according to [7] the

non-classical counterpart of the Fisher classical within the quantum informa-

tion metric. As a matter of fact, the quantum information metric collapses

to the classical Fisher information metric for

dW = 0. (2.31)

2.1.4 An example

As a possible application we may show in the following the existence of a

non-trivial Ricci curvature of a submanifold of quantum states. Consider for

this purpose a family of two-modes coherent state vectors

|ψq,p〉 := |q, p〉 ∈ L2(R)⊗ L2(R) ∼= L2(R2) (2.32)

parametrized by four-dimensional phase space vectors

(q, p) := (q1, q2, p1, p2) ∈ T ∗(R× R), (2.33)

which induce a parametrization of position representation wave functions

〈x1, x2 |q, p〉 = ψq,p(x1, x2) :=
1√

2πσ2
e
−(q1+x1)

2−(q2+x2)
2

2σ2 eip1x1+ip1x2 (2.34)

with an overall width σ ∈ R+. At this point we may consider the latter as

an additional variable parameter, and describe a 5-dimensional submanifold
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of quantum state vectors

ψq,p,σ(x1, x2) := ψ(x, λ) ≡ 1√
2πλ2

5

e
−(λ1+x1)

2−(λ2+x2)
2

2λ5 eiλ3x1+iλ4x2 (2.35)

parametrized by

(q1, q2, p1, p2, σ) ≡ (λ1, λ2, λ3, λ4, λ5) ≡ λ ∈ R4 × R+. (2.36)

Using the polar decomposition ψ(x, λ) ≡ p(x, λ)1/2eW (x,λ) as described in

(2.15) we identify the modulo of the wave function

p(x, λ) =
1

2πλ2
5

e
− (x1+λ1)

2+(x2+λ2)
2

λ25 (2.37)

and the phase

W (x, λ) = x1λ3 + x2λ4. (2.38)

Using the formulas (2.26)-(2.30) we find a degenerate symmetric tensor co-

efficient matrix

(Fjk) =

(
Ep
(
∂ ln p

∂λj

∂ ln p

∂λk

))
=



1
λ25

0 0 0 0

0 1
λ25

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 2
λ25


(2.39)
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being related to the classical Fischer information metric on a 3-dimensional

submanifold, and a phase-covariance matrix tensor

Cov

(
∂W

∂λj
,
∂W

∂λk

)
=


0 0 0 0 0

0 0 0 0 0

0 0 1
4

(2λ2
1 + λ2

5)− λ21
4

λ1λ2
4

0

0 0 λ1λ2
4

1
4

(2λ2
2 + λ2

5)− λ22
4

0

0 0 0 0 0

 .

(2.40)

The symmetric part of the pull-back κM of (2.11) implies therefore the sum

of the two tensor fields, which yield the ‘quantum’ Riemannian structure

ηM =



1
λ25

0 0 0 0

0 1
λ25

0 0 0

0 0 1
4

(2λ2
1 + λ2

5)− λ21
4

λ1λ2
4

0

0 0 λ1λ2
4

1
4

(2λ2
2 + λ2

5)− λ22
4

0

0 0 0 0 2
λ25


. (2.41)

Based on this Riemannian metric defined on a 5-dimensional submanifold of

coherent states, we may compute the Ricci scalar curvature

R = (ηjk)
−1Rjk = −5λ4

1 + 5 (2λ2
2 + 3λ2

5)λ2
1 + 5λ4

2 + 12λ4
5 + 15λ2

2λ
2
5

2 (λ2
1 + λ2

2 + λ2
5) 2

(2.42)

from the result of the associated Riemannian curvature tensor Rk
ijl as illus-

trateted on the next page.
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2.1.5 The pull-back on homogenous spaces

Hilbert spaces being relevant in the description of a quantum mechanical

system may be decomposed in terms of irreducible unitary representations

of a Lie Group G. This implies that any covariant structure defined on

a Hilbert space will admit a pull-back to a homogenous space manifold of

quantum states in dependence of the chosen Lie group action. In particular

for the Fubini Study metric related degenerate covariant structure κH0 in

(2.11) one finds the following statement [1, 3, 55].

Theorem 2.1. Let {θj}j∈J be a basis of left-invariant 1-forms on a Lie group

G, and let {Xj}j∈J be a dual basis of left-invariant vector fields, and let

iR be the Lie algebra representation associated to the unitary representation

U : G → U(H), inducing by means of any fiducial state vector |ψ〉 ∈ S(H) a

map

ιG : G → H,

ιG(g) := U(g) |ψ〉 .

Then

ι∗GκH0 = Covρψ((R(Xj)R(Xk))θ
j ⊗ θk := κ

ρψ
G (2.43)

for ρψ := |ψ〉 〈ψ| ∈ D1(H).

In conclusion, the pull-back of κH0 on a Lie group endowed with a unitary

Hilbert space representation gives rise to a covariance tensor field

(ρψ(R(Xj)R(Xk))− ρψ(R(Xj))ρψ(R(Xk))θ
j ⊗ θk. (2.44)

which reduces in particular for 1-dimensional representations to a variance

tensor field

V arρψ(R(X))θ ⊗ θ. (2.45)

We may identify this (degenerate) pull-back tensor field construction with

the pull-back of a non-degenerate pull-back tensor field which lives on a
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homogenous space G/G0. The latter admits a smooth embedding via the

unitary action of the Lie Group as orbit manifold Γ in the Hilbert space and

establishes therefore a pull-back of the Hermitian structure both on the orbit

Γ and the homogenous space G/G0. Hence, the computation of the pull-back

on the orbit, reduces to the the computation of the pull-back on the Lie

group, as indicated here in the commutative diagram below.

G ιG−−−→ H

π

y ι

x
G/G0

∼=−−−→ Γ.

The embedding of the Lie group and its corresponding orbit is related to the

co-adjoint action map on all group elements modulo U(1)-representations

U(h) = eiφ(h)

ι
U(1)
G : G/U(1)→ R(H), g 7→ U(g)ρU(g)†, ρ ∈ R(H). (2.46)

Let us underline again: The structure (2.44) is defined on the Lie group via a

pull-back tensor field from the Hilbert space even though it contains the com-

plete information of the (non-degenerate) tensor field on the corresponding

co-adjoint orbit Γ which is embedded in the projective Hilbert space. The

additional U(1)- degeneracy is here captured in a corresponding enlarged

isotropy group GU(1)
0 according the commutative diagram below.

G ιG−−−→ S(H)

U(1)

y U(1)

y
G/U(1)

ι
U(1)
G−−−→ R(H)

π

y ι

x
G/GU(1)

0

∼=−−−→ Γ

29



This approach provides therefore in an ‘algorithmic’ procedure to find a geo-

metric description of coherent state manifolds, as defined in [56–58]. Indeed,

the associated orbits in our approach turn out to be more general as those

give by coherent states, whenever we allow to take into account also reducible

representations, as it typically occurs in composite Hilbert spaces. We’ll il-

lustrate this later on in section 4.1.

2.1.6 Example: The pullback in a Weyl-system

Let {Xj}j∈J be a basis on V ∼= R2n represented within a Weyl system accord-

ing to the definition in section A.1 by a set of Hermitian operators {R(Xj)}j∈J
on H ∼= L2(U), where U ∼= Rn defines a Lagrangian subspace of V . Given

a pure state ρψ = |ψ〉 〈ψ| associated to a normalized vector ψ ∈ S(H), we

identify

Covρψ((R(Xj)R(Xk))dv
j ⊗ dvk (2.47)

as the pull-back tensor field of the covariant tensor field κH0 as defined in

(2.11) from H0 to V . This pullback is induced by a map

V → H, v 7→ W (v) |ψ〉 (2.48)

specified by the Weyl-system map W : V → U(H) with W (v) = eiR(v) (see

appendix A) and the choice of a fiducial state vector ψ ∈ S(H). This follows

from a generalization of theorem 2.1 to infinite dimensional Hilbert spaces,

once we impose the additional condition that the fiducial vector ψ is smooth

and in the domain of the Hermitian operators R(Xj) [55]. While the anti-
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symmetric coefficients recover the symplectic structure6

ρψ([R(Xj)R(Xk)]) =
i

4a2
ω[jk], (2.49)

due to

[R(v)R(v′)] =
i

2a2
ω(v, v′) and Tr(ρψ) = 1, (2.50)

independently from the state ρψ, its symmetric tensor coefficients are identical

to the coefficients of a symmetric covariance matrix σ in dependence of the

state:

ρψ([R(Xj)R(Xk)]+)− ρψ(R(Xj))ρψ(R(Xk)) := σjk(ρψ). (2.51)

In conclusion, the Weyl-system-induced pull-back of κH0 in (2.11) establishes

by its tensor coefficient matrix a n× n covariance matrix

{Covρψ(R(Xj), R(Xk)}j,k, (2.52)

being decomposed into a quantum state-dependent real symmetric part and

a quantum state-independent imaginary anti-symmetric part

σ(ρψ) +
i

4a2
ω. (2.53)

The anti-symmetric part ω stays invariant by definition under symplectic

transformations. In contrast, we shall encounter in the symmetric part σ(ρψ)

a non-trivial transformation. In particular, by the virtue of Williamson’s the-

orem [60], there exists to any real symmetric matrix σ ∈M2n(R) a symplectic

6We adopt the convention as used in [59] for the commutation relations involving

a :=

{
2−1/2 for canonical position and momentum

1 for optical position and momentum.
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transformation matrix S ∈ Sp(2n,R) such that

SσST =
n⊕
k=1

dk12, dk ∈ spec(iω · σ) (2.54)

where dk denote the symplectic eigenvalues of the matrix product iω · σ.
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2.2 Contravariant structures

So far we considered covariant structures derived as pullback tensor fields

of a degenerate covariant tensor field κH0 . The latter has been related to a

pullback of the Fubini Study metric from the projective Hilbert space to the

punctured Hilbert space.

At this point we note, it is not possible to associate to a degeneratate

covariant structure (κjk) a corresponding contravariant structure (κjk) =

(κjk)
−1. However, it is possible to define contravariant structures on the

Hilbert space which are projectable on the space of complex rays. This is

done in two steps. First by considering a Hermitian structure turning a

Hilbert space to a Hilbert manifold, and second, by extending this Hermi-

tian structure in terms of dilatation and phase generating vector fields to a

projectable tensor field. A benefit of such a procedure is the possiblity to

translate Hilbert space operator products to star products of functions on

unitary orbits of pure quantum states.

2.2.1 From Hilbert spaces to Hilbert manifolds

By introducing an orthonormal basis {|ej〉}j∈J on a given Hilbert space H,

we may define coordinate functions by setting

〈ej |ψ〉 = zj(ψ), (2.55)

which we’ll write in the following simply as zj. Correspondently, for the dual

basis {〈ej|} we find coordinate functions

〈ψ |ej〉 = z̄j(ψ
∗) (2.56)

defined on the dual space H∗. By using the inner product we can identify H
and H∗. This provides two possibilities: The scalar product 〈ψ |ψ〉 gives rise
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to a covariant Hermitian (0, 2)-metric tensor on H

〈dψ |dψ〉 =
∑
j

〈dψ |ej〉 〈ej |dψ〉 = dz̄j ⊗ dzj, (2.57)

where we have used d 〈ej |ψ〉 = 〈ej |dψ〉, i.e., the chosen basis is not ‘varied’,

or to a contra-variant (2,0) tensor〈
∂

∂ψ

∣∣∣∣ ∂∂ψ
〉

=
∂

∂z̄j
⊗ ∂

∂zj
(2.58)

on H∗.

Remark: Specifically, we assume that an orthonormal basis has been se-

lected once and it does not depend on the base point.

By introducing real coordinates, say

zj(ψ) = xj(ψ) + iyj(ψ) (2.59)

one finds

〈dψ |dψ〉 = (dxj ⊗ dxj + dyj ⊗ dyj) + i(dxj ⊗ dyj − dyj ⊗ dxj). (2.60)

Thus the Hermitian tensor decomposes into an Euclidean metric (more gen-

erally a Riemannian tensor) and a symplectic form.

Similarly, on H∗ we may consider〈
∂

∂ψ

∣∣∣∣ ∂∂ψ
〉

=

(
∂

∂xj
⊗ ∂

∂xj
+

∂

∂yj
⊗ ∂

∂yj

)
+ i

(
∂

∂yj
⊗ ∂

∂xj
− ∂

∂xj
⊗ ∂

∂yj

)
.

This tensor field, in contravariant form, may be also considered as a bi-

differential operator, i.e., we may define a binary bilinear product on real
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smooth functions by setting

((f, g)) =

(
∂f

∂xj
+ i

∂f

∂yj

)
·
(
∂g

∂xj
− i ∂g

∂yj

)
(2.61)

which decomposes into a symmetric bracket

(f, g) =
∂f

∂xj

∂g

∂xj
+
∂f

∂yj

∂g

∂yj
(2.62)

and a skew-symmetric bracket

{f, g} =
∂f

∂yj

∂g

∂xj
− ∂f

∂xj

∂g

∂yj
. (2.63)

This last bracket defines a Poisson bracket on smooth functions defined on

H.

Summarizing, we can replace our original Hilbert space with an Hilbert man-

ifold, i.e. an even dimensional real manifold on which we have tensor fields in

covariant form7

ηH = dxj ⊗ dxj + dyj ⊗ dyj (2.64)

ωH = dyj ⊗ dxj − dxj ⊗ dyj, (2.65)

or tensor fields in contravariant form

GH =
∂

∂xj
⊗ ∂

∂xj
+

∂

∂yj
⊗ ∂

∂yj
(2.66)

ΩH =
∂

∂yj
⊗ ∂

∂xj
− ∂

∂xj
⊗ ∂

∂yj
(2.67)

defining covariant and contravariant Riemannian and symplectic structures

respectively. The contravariant tensor fields, considered as bi-differential

7We shall distinguish these tensor from the symmetric and antisymmetric part of the
pullback tensor κH0

, as being related in (2.11) to the Fubini Study metric, by leaving out
the index ‘0’ within the Hilbert space notation.
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operators define a symmetric product and a skew symmetric product on real

smooth functions. The skew-symmetric product actually defines a Poisson

bracket. In particular, for functions

fA(ψ) = 〈ψ |Aψ〉 , ψ ∈ H, (2.68)

associated with Hermitian operators A, we shall end up with the relations

f[A,B]+ ≡ GH(dfA, dfB). (2.69)

f[A,B]− ≡ ΩH(dfA, dfB), (2.70)

which replaces symmetric and anti-symmetric operator products [A,B]± by

symmetric and anti-symmetric tensor fields respectively. Hence, via these

tensor fields we may identify symmetric and Poisson brackets on the set of

quadratic functions according to

f[A,B]+ = (fA, fB), (2.71)

f[A,B]− = {fA, fB}, (2.72)

which synthesize to a non-commutative product

((fA, fB)) = (fA, fB) + i{fA, fB} (2.73)

of quadratic functions. In this way we may encode the original non-commutative

structure on operators in terms of ‘classical’, i.e. Riemannian and symplectic

tensor fields according to

((fA, fB)) = fA·B(ψ) = (GH + iΩH)(dfA(ψ), dfB(ψ)). (2.74)

36



2.2.2 Projectable tensor fields

To take into account the geometry of the set of physical (pure) states, we

need to modify G and Ω by a conformal factor to turn them into projectable

tensor fields on R(H). The projection is generated at the infinitesimal level

by the real and imaginary parts of the action of C0 on H0 given by the

dilation vector field ∆ and the U(1)-phase rotation generating vector field

Γ := J(∆) defined by a contraction with a complex structure (1-1)-tensor

field

JH = dxj ⊗ ∂

∂yj
− dyj ⊗ ∂

∂xj
(2.75)

respectively. In this way we shall identify

G̃(ψ) = 〈ψ |ψ〉G− (∆⊗∆ + Γ⊗ Γ) (2.76)

Ω̃(ψ) = 〈ψ |ψ〉Ω− (∆⊗ Γ− Γ⊗∆), (2.77)

as projectable structures [61]. They establish a Lie-Jordan algebra structure

on the space of real valued functions whose Hamiltonian vector fields are also

Killing vector fields for the projection G̃. In this regard one finds: A function

on R(H) defines a quantum evolution, via the associated Hamiltonian vector

field, if and only if the vector field is a derivation for the Riemann-Jordan

product [39, 62].

2.2.3 Non-commutative C∗-algebras of Kähler functions

For a given (bounded) operator A ∈ B(H) on a Hilbert space we consider

the complex valued function fA : H0 → C on the punctured Hilbert space

defined by

fA(ψ) ≡ 〈ψ|A |ψ〉
〈ψ |ψ〉

(2.78)

with ψ ∈ H0 := H − {0}. By introducing a contravariant tensor field KH0

on H0 being projectable on the space of complex rays R(H) we shall find a
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decomposition of the function fAB on a product of two operators A and B

into

fAB(ψ) = fA · fB|ψ +KH0(dfA, dfB)|ψ. (2.79)

That is, a point-wise product and a contraction of the contra-variant Her-

mitian tensor field KH0 with the differential 1-forms dfA and dfB yielding a

non-commutative star-product of functions

fA · fB|ψ +KH0(dfA, dfB)|ψ := fA ? fB|ψ. (2.80)

This product defines a C∗-algebra for all functions on R(H) provided by

(2.78). These functions turn out to be Kähler function as they generate in

their real and imaginary part Hamiltonian vector fields which are also Killing

vector fields [40]. Note that the corresponding pullback of Kähler functions

on a submanifold Γ ⊂ R(H) yields again a C∗-algebra iff Γ is a unitarily

generated homogenous space [61]. In particular, this includes also R(H) as

an instance of a unitary orbit in the case of finite dimensional Hilbert spaces

via the bijection

R(H)↔ U(N)/U(N − 1)× U(1), N = Dim(H). (2.81)

For all unitary orbits Γ ⊂ R(H) one concludes: The geometric formulation

of quantum mechanics makes available a ‘dequantization’ relation

f : B(H)→ FK(Γ) (2.82)

between a C∗-algebra of operators to C∗-algebras of Kähler functions on the

unitary orbits of pure quantum states.
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3 Information Inequalities

In the following section we will consider two classes of inequalities arising in

a natural way from contravariant structures of the geometric formulation of

quantum mechanics. Essentially, we shall distinguish here between entropy

inequalities in section 3.1 and geometric inequalities in section 3.2. The

latter will fundamentally highlight a link to the quantum Fisher information

in terms of the quantum Cramér-Rao inequality. Both type of inequalities

may therefore be subsumed in this section under what we could call general

information inequalities.

3.1 Quantum Entropy Inequalities

In the last section 2.2.3 of the previous chapter we found a dequantization

relation

f : B(H)→ FK(Γ) (3.1)

between operators and Kähler functions as a fundamental consequence of the

geometric formulation of quantum mechanics. This has been achieved by the

functions defined in (2.78) according to

fA(ψ) ≡ 〈ψ|A |ψ〉
〈ψ |ψ〉

together with the non-commutative star product (2.80)

fA · fB|ψ +KH0(dfA, dfB)|ψ := fA ? fB|ψ

defined by the projectable contravariant tensor field KH0 . At this point we

may consider following problem.

Open Problem 3.1. Given a quantum entropy, or any other quantum (in-
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formation) statistical measure

S : D(H)→ R+ (3.2)

on the convex subset of mixed quantum states D(H) ⊂ B(H), does there

exists a functional

S̃ : FK(Γ)→ R+ (3.3)

on FK(Γ) such that the following Diagram

D(H)
S=S̃◦f |D(H)−−−−−−−→ R+

ι

y xS̃
B(H)

f−−−→ FK(Γ).

(3.4)

commutes?

For a constructive approach to this problem, we’ll need as first step a

short digression on operator convex functions.

3.1.1 Operator convex functions

Operator convex functions (see e.g. [16] and references therein) are instances

of general operator functions associating to any function

h : R→ R, (3.5)

a map, denoted with an abuse of notation with the same letter,

h : u∗(H)→ u∗(H) (3.6)

on Hermitian operators A ∈ u∗(H), such that

h(A) = h(U Diag{λj}U †) = Uh( Diag{h(λj)})U †. (3.7)
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Operator convex functions are then defined with the additional property

h

(∑
j

pjAj

)
≤
∑
j

pjh(Aj), pj ∈ [0, 1],
∑
j

pj = 1, (3.8)

for all Aj ∈ u∗(H). Note that all convex operator functions are also convex

functions. Given the spectral decomposition

A = U
∑
j

λj |ej〉 〈ej|U † (3.9)

associated to the eigenvector basis {|ej〉}j∈J one finds therefore for all |ψ〉 ∈ H

〈ψ|h(A) |ψ〉 = 〈ψ′|
∑

j h(λj) |ej〉 〈ej |ψ′〉 (3.10)

=
∑

j | 〈ψ′ |ej〉 |2h(λj) (3.11)

≥ h(
∑

j | 〈ψ′ |ej〉 |2λj) (3.12)

where we set |ψ′〉 := U |ψ〉. For any given resolution of the identity∑
i

|ψi〉 〈ψi| = IdH, (3.13)

this implies the Peierl’s inequality [16]

Tr(h(A)) ≥
∑
i

h(〈ψi|A |ψi〉). (3.14)

This inequality reduces to an equality if the resolution of the identity is re-

alized by the eigenvector basis {|ej〉}j∈J of A. The Peierl’s inequality (3.14)

may now be used for translating quantum entropy measures into the frame-

work of geometric quantum mechanics as we will see in the next section.
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3.1.2 Entropy in Geometric QM

At this point we may observe that most entropy measures arise as traces

Sh(ρ) := Tr(h(ρ)) (3.15)

on operator convex functions h. By virtue of Peierl’s inequality (3.14) one

finds

Sh(ρ) =

∫
Γ

〈ψg|h(ρ) |ψg〉 dΓ ≥
∫

Γ

h(〈ψg| ρ |ψg〉)dΓ (3.16)

for a resolution of the identity8

∫
Γ

|ψg〉 〈ψg| dΓ = IdH, (3.17)

defined by a manifold Γ ∼= G/G0 of coherent states

|ψg〉 := U(g) |ψ0〉 , U : G → U(H) (3.18)

associated to a unitary representation U(g) ∈ U(H). With this we arrive to

an inequality

Sh(ρ) ≥
∫

Γ

h(fρ(ψg))dΓ (3.19)

linking quantum entropies of the form (3.20) to the geometric formulation of

quantum mechanics. The pull-back of Kähler functions fρ(ψg) on manifolds

of coherent states coincides here with the so-called the Husimi functions

Qρ(α) ≡ fρ(ψg) with α denoting a parametrization of the coherent states

manifold Γ. Actually, Kähler functions are more general then Husimi func-

tions as they may involve Kähler functions fh(ρ)(ψg) associated with convex

operator functions h. With this generalized setting we conclude the following.

8We’ll hide constant factors depending on the irreducible unitary representation in the
measure dΓ. Bloch-coherent states induced by irreducible representations of SU(2), for
instance, would imply an additional factor (2j + 1)/4π [16].
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Proposition 3.2. For all quantum entropy measures

Sh : D(H)→ R+, Sh(ρ) := Tr(h(ρ)) (3.20)

defined by a trace on a convex operator function h : R+ → R+ and for all

manifolds Γ ⊂ R(H) of coherent states |ψg〉 := U(g) |ψ0〉 there exists two

functionals

S̃h(fρ) :=

∫
Γ

h(fρ(ψg))dΓ, (3.21)

S̃(fh(ρ)) :=

∫
Γ

fh(ρ)(ψg)dΓ, (3.22)

on Kähler functions fρ, fh(ρ) ∈ FK(Γ) such that the diagram in (3.4),

D(H)
Sh−−−→ R+

ι

y xS̃≥S̃h
B(H)

f−−−→ FK(Γ).

(3.23)

commutes exactly for (3.22) and approximately for (3.21) according to the

inequality

Sh(ρ) ≥ S̃h(fρ). (3.24)

3.1.3 Wehrl-Inequality

For the operator convex function h(x) ≡ x lnx we may directly apply Propo-

sition 3.2 to the von Neumann entropy

SvN(ρ) := −Sh(ρ) = −Tr(ρ ln ρ), (3.25)

by taking into account a sign reversion. According to Proposition 3.2 we may

identify the von Neumann entropy by the functional

SvN(ρ) = −S̃(fρ ln ρ) = −
∫

Γ

fρ ln ρ(ψg)dΓ (3.26)
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The corresponding approximation functional (3.21) recovers the Wehrl-Entropy

SW (ρ) := −S̃h(fρ) = −
∫

Γ

fρ(ψg) ln fρ(ψg)dΓ (3.27)

implying by virtue of (3.24) the Wehrl-Inequality [63]

SvN(ρ) ≤ SW (fρ) (3.28)

Remark 3.3. According to the Lieb-conjecture one finds the minimum of

the Wehrl-entropy given for pure states ρψ ≡ |ψ〉 〈ψ| iff ψ is a coherent state

vector [64].

Here we propose another inequality being induced by the Hermitian tensor

field KH0 within the definition of the non-commutative product of Kähler

functions in (2.80). For this purpose we consider the replacement of the von

Neumann entropy by the functional −SvN(ρ) = S̃(fρ ln ρ) and find

S̃(fρ ln ρ) =
∫

Γ
fρ ln ρ(ψg)dΓ (3.29)

≥
∫

Γ
fρ ln ρ(ψg)− fρ(ψg)fln ρ(ψg)dΓ (3.30)

=
∫

Γ
K(dfρ(ψg), dfln ρ(ψg))dΓ, (3.31)

where we used (2.79) in the last equality. In conclusion we find

SvN(ρ) ≤ −
∫

Γ

KH0(dfρ(ψg), dfln ρ(ψg))dΓ. (3.32)

This last relation outlines a possible link to the inverse problem of recovering

quantum relative entropies from quantum Fisher information metrics. As

a matter of fact, the latter may be seen related here for pure states to the

contraction with the contravariant structure KH0 .
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3.1.4 Rény-Wehrl-Inequalities

Approximations of different orders to the von Neumann entropy may arise

by a class of quantum entropies known as quantum Rény entropies. They

are defined by

Rq(ρ) :=
1

1− q
ln(Tr(ρq)), q ∈ R+ (3.33)

and have the property

lim
q→1

Rq(ρ) = SvN(ρ). (3.34)

The operator function h(x) = −xq is operator convex for q ∈ [0, 1] [16].

Thus the corresponding translation into functionals on Kähler functions on

a coherent state manifold becomes

Rq(ρ) = 1
1−q ln

(∫
Γ
fρq(ψg)dΓ

)
(3.35)

≤ 1
1−q ln

(∫
Γ
f qρ (ψg)dΓ

)
(3.36)

:= RW
q (fρ) (3.37)

which recovers the Rény-Wehrl entropies and its associated Rény-Wehrl in-

equalities (compare also [16], p. 287). A lower bound family of inequalities

may be induced here by (2.79) where we find for any fixed q and all partitions

q = α + β

Rq(ρ) ≥ 1

1− q
ln

(∫
Γ

KH0(dfρα(ψg), dfρβ(ψg))dΓ

)
. (3.38)
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3.2 Geometric Inequalities

So far we considered inequalities derived from the Peierl’s inequality (3.14)

which reflected a particular property of operator convex functions. This

inequality gave rise to quantum entropy inequalities being very naturally

described in the geometric formulation of quantum mechanics.

In the following section we shall focus on another type of inequality being

itself of geometric nature. The derivation is based on a recent discussion9

made by Facchi, Marmo and Ventriglia [65].

The basic idea takes into account a short digression on some basic inequal-

ities derived from inner products on tensor spaces. After that digression, we

shall focus on inequalities derived from from inner products on tensorial

structures as being particularly available in geometric quantum mechanics.

At that point we shall find as a consequence the Schrödinger-Robertson in-

equality and a quantum version of the Cramér Rao inequality as being cen-

trally used in quantum estimation problems.

3.2.1 Inner products on tensor spaces

Let V be a linear space over the field of real or complex numbers endowed

with an inner product 〈· |·〉, inducing a positive norm

‖v‖2 = 〈v |v〉 > 0 (3.39)

for all v ∈ V . Now, we may consider the tensor product space V ⊗ V which

itself is again a linear space on which the original inner product and the

associated norm may be extended according to

‖v1 ⊗ v2‖2 = 〈v1 ⊗ v2 |v1 ⊗ v2〉 ≡ 〈v1 |v1〉 〈v2 |v2〉 (3.40)

9At this point I would like to gratefully acknowledge once again all participants.
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inducing a corresponding inequality

‖v1 ⊗ v2‖2 = 〈v1 ⊗ v2 |v1 ⊗ v2〉 > 0. (3.41)

Such an inequality turns out to be true for all elements in u ∈ V ⊗ V as

one can check by considering a linear expansion u =
∑

j,k c
jkej ⊗ ek in an

orthonormal tensor product basis10.

In this setting we shall identify the linear subspace V ∧ V of antisymmetric

contravariant 2-tensors and find as an immediate consequence

‖v1 ∧ v2‖2 = 〈v1 ∧ v2 |v1 ∧ v2〉 > 0. (3.42)

This last inequality is equivalent with the Cauchy-Schwarz inequality

‖v1‖2‖v2‖2 − | 〈v1 |v2〉 |2 > 0 (3.43)

as one can easily check when applying the anti-symmetric tensor product

expansion v1 ∧ v2 := 1
2
(v1 ⊗ v2 − v2 ⊗ v1) in (3.42). As an important tool for

dealing with calculations, we shall identify here the determinant of a 2 × 2

matrix

‖v1 ∧ v2‖2 =
1

2
det

(
〈v1 |v1〉 〈v1 |v2〉
〈v2 |v1〉 〈v2 |v2〉

)
> 0 (3.44)

which admits a straight forward generalization to the determinant of a n×n
matrix

‖v1 ∧ v2.. ∧ vn(p)‖2 =
1

n!
det({〈vj |vk〉}j,k∈J) > 0 (3.45)

when applying the inner product on V ⊗n on the linear subspace V ∧n of

contravariant antisymmetric n-tensors.

10Written explicitly, we have

〈u |u〉 =
∑
j,k,i,l

c̄jkcil 〈ej ⊗ ek |ei ⊗ el〉 =
∑
j,k,i,l

c̄jkcilδjkδil =
∑
i,k

|cik|2 > 0.
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Remark 3.4. By starting on the dual vector space V ∗, we shall find the same

inequalities on the corresponding tensor space (V ∗)∧n of covariant antisym-

metric n-tensors.

3.2.2 Tensor field contractions

By promoting tensors to tensor fields, and by promoting Euclidean or Hilbert

spaces to real Riemannian or complex Hilbert manifolds M respectively, we

may recover on each tangent space TpM ∼= V the inequality relations of the

previous section. This can directly be seen as follows. A covariant Rieman-

nian11 tensor field η admits a contraction with a vector field

v : M → TM, p 7→ (p, v(p)) (3.46)

full filling the inequality

‖v(p)‖2 ≡ 〈v(p) |v(p)〉p ≡ ηp(v(p), v(p)) > 0. (3.47)

In the same lines as in the previous section we may identify extended in-

equalities involving higher order tensor fields

v1 ⊗ v2 : p 7→ v1 ⊗ v2(p) ∈ TpM ⊗ TpM (3.48)

yielding

‖v1 ⊗ v2(p)‖2 = 〈v1 ⊗ v2(p) |v1 ⊗ v2(p)〉p

≡ ηp(v1(p), v1(p))ηp(v2(p), v2(p)) > 0. (3.49)

For 1-forms α : M → T ∗M, p 7→ (p, α(p)), we have a corresponding contrac-

tion with a contravariant Riemannian structure

‖α(p)‖2 ≡ Gp(α(p), α(p)) > 0 (3.50)

11The following discussion is also valid for Hermitian tensor fields on complex manifolds.
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which may be generalized to a family of inequalites

‖α1 ∧ α2.. ∧ αn(p)‖2 =
1

n!
det({Gp(αj(p), αk(p))}j,k∈J) > 0 (3.51)

defined by n-forms α1∧α2..∧αn. Hence, to any given family of k differentiable

functions on M there is a non-negative valued quantity defined by

‖df1 ∧ df2.. ∧ dfn(p)‖2 =
1

n!
det({Gp(dfj(p), dfk(p))}j,k∈J) > 0. (3.52)

Now, let us apply this setting within the geometric formulation of quantum

mechanics as follows. Recall in this regard the fundamental relation between

algebraic and geometric structures captured in (2.74) by

fA·B(ψ) = (G+ iΩ)(dfA(ψ), dfB(ψ)), (3.53)

which encodes via the Hermitian structure G + iΩ the non-commutative

product of two Hermitian operators A,B on a Hilbert space H in terms of a

contraction on 1-forms generated by real valued quadratic functions

fA(ψ) ≡ Tr(ρψA) ≡ ρψ(A), ρψ :=
|ψ〉 〈ψ|
〈ψ |ψ〉

, (3.54)

defined on H0. Given a finite set of Hermitian operators {Aj}j∈J on H, we

shall therefore find a direct generalization of (3.52) according to

‖dfA1 ∧ dfA2 .. ∧ dfAn(ψ)‖2 =
1

n!
det({(G+ iΩ)(dfAj(ψ), dfAk(ψ))}j,k∈J) > 0.

(3.55)

At this point we consider (3.53) to conclude

‖dfA1 ∧ dfA2 .. ∧ dfAn‖2 =
1

n!
det({(fAj ·Ak(ψ))}j,k∈J) > 0, (3.56)
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that is
1

n!
det({ρψ(Aj · Ak)}j,k∈J) > 0. (3.57)

This inequality stays valid under the affine transformation map

A 7→ Ã = A− ρψ(A)IdH (3.58)

and becomes rewritten in terms covariances of two operators

ρψ(Ãj · Ãk) = Covρψ(Aj, Ak). (3.59)

The latter relation follows directly from

ρψ(ÃjÃk) = ρψ

(
(Aj − ρψ(Aj)IdH)(Ak − ρψ(Ak)IdH)

)

= ρψ

(
AjAk + ρψ(Aj)ρ(Ak)IdH − ρψ(Aj)Ak − ρψ(Ak)Aj

)
= ρψ(AjAk)− ρψ(Aj)ρψ(Ak), (3.60)

where we used the normalization ρψ(IdH) = 1. This coincides with the

contraction KH0(dfAj , dfAk)|ψ on the contravariant tensor field KH0 defined

in (2.79) as being projectable on the space of complex rays R(H) when

considering 1-forms generated by fAj .

In conclusion, the determinant of a n × n covariance matrix associated

to a pure quantum state ρψ applied on a finite set of Hermitian operators

{Aj}j∈J full fills
1

n!
det({Covρψ(Aj, Ak)}j,k∈J) > 0. (3.61)

This is obviously true for any subset {Aj}j∈J ′ ⊂ {Aj}j∈J . In particular all

principal minors of a n× n covariance matrix are therefore positive, making

available Sylvester’s criterion to conclude

{Covρψ(Aj, Ak)}j,k∈J > 0. (3.62)
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Within the framework of geometric quantum mechanics this is equivalent

with

{KH0(dfAj(ψ), dfAk(ψ))}j,k∈J > 0. (3.63)

As we will show in the next section, this inequality implies the Robertson-

Schrödinger inequality when applied to the pullback tensor induced by a

Weyl systems.

3.2.3 The Robertson-Schrödinger inequality

The Fubini Study metric related pullback structure induced by a Weyl sys-

tems has been identified in section 2.1.6 according to

Covρψ((R(Xj)R(Xk))dv
j ⊗ dvk (3.64)

By the virtue of (3.62) we shall find here the inequality

Covρψ((R(Xj)R(Xk)) ≡ σ(ρψ) +
i

4a2
ω > 0, (3.65)

which is equivalent that all principal minors of the covariance matrix are

positive. A 2n-form

dfR̃(X1) ∧ dfR̃(X2).. ∧ dfR̃(X2n)(ρψ) with fR̃(Xj)
(ρψ) := Tr(ρψR̃(Xj)) (3.66)

implies in particular according to section 3.2.2

‖dfR̃(X1) ∧ dfR̃(X2)..∧ dfR̃(X2n)(ρψ)‖2 =
1

(2n)!
det({ρψ(R̃(Xj)R̃(Xk)}j,k∈J) > 0,

(3.67)

that is
1

(2n)!
det

(
σ(ρψ) +

i

4a2
ω

)
> 0. (3.68)

In the simplest case of one degree of freedom modeled on H ∼= L2(R), the

set of the Weyl-map generating elements are given up to an imaginary unit
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by two Hermitian operators

R(X1) := Q, R(X2) := P (3.69)

related to position and momentum respectively. The Weyl-map induced pull-

back tensor coefficient matrix defines in dependence of the fiducial state

vector ψ ∈ L2(R) the covariance matrix

σ(ρψ) + iΩ =

(
(4ρψQ)2 Covsρψ(Q,P ) + i

4a2

Covsρψ(P,Q)− i
4a2

(4ρψP )2

)
(3.70)

with the variance (4ρψA)2 := Covρψ(A,A) = Varρψ(A) and the symmetrized

covariances Covsρψ(A,B) = Covsρψ(B,A). By taking into account the 2-form

dfQ̃ ∧ dfP̃ (ρψ), we find according to (3.67)

‖dfQ̃ ∧ dfP̃ (ρψ)‖2 =
1

2
det

(
σ(ρψ) +

i

4a2
ω

)
> 0, (3.71)

yielding the Robertson-Schrödinger inequality

(4ρψQ)2(4ρψP )2 >
1

16a4
+ Covsρψ(Q,P )2. (3.72)

Due to Covsρψ(Q,P )2 > 0 it implies the Heisenberg inequality

4ρψQ4ρψ P >
1

4a2
=

1
2

canonical convention

1
4

q-optical convention.
(3.73)

In contrast to the Robertson-Schrödinger inequality, we shall emphasize that

the Heisenberg inequality is not invariant under symplectic transformations

[66]. The invariance of the Robertson-Schrödinger inequality under symplec-

tic transformations follows directly from the invariance of the determinant
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of the general inequality (3.67),

σ(ρψ) +
i

4a2
ω > 0,

under volume preserving transformations including symplectic transforma-

tions as special case.

To make the difference between the Heisenberg inequality and the Robertson-

Schrödingier inequality explicit we compute according to (2.54) the symplec-

tic eigenvalues of

iω · σ = i

(
0 − 1

4a2

1
4a2

0

)
·

(
σ1,1 σ1,2

σ1,2 σ2,2

)
=

(
−σ1,2

4a2
−σ2,2

4a2

σ1,1
4a2

σ1,2
4a2

)
(3.74)

and find

spec(iω · σ) =

±1

4

√
σ2

1,2 − σ1,1σ2,2

a4

 . (3.75)

Hence, the Heisenberg-inequality fails to provide a symplectic invariant due

to the lack of the symmetric covariances σ2
1,2.

3.2.4 Quantum Cramér Rao Inequality

Let M be a subset in a Hilbert space H provided by any smooth curve of

state vectors

[0, 1]⊂R → H, λ 7→ |ψλ〉 . (3.76)

On this subset of Hilbert space vectors

{ψλ}λ∈[0,1] =M⊂ H (3.77)
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we may assume an operator ∂
∂λ

to be well defined. Moreover we may consider

a further operator λ̂ on M, such that

fλ̂(ψλ) =
〈ψλ| λ̂ |ψλ〉
〈ψλ |ψλ〉

≡ λ (3.78)

holds. By applying on this setting the geometric inequalities as derived in

section 3.2.2 according to (3.62) - (3.63) one finds

KH0(df ∂
∂λ
, df ∂

∂λ
)|ψλKH0(dfλ̂, dfλ̂)|ψλ − |KH0(df ∂

∂λ
, dfλ̂)|ψλ|

2 = (3.79)

V arψλ(
∂

∂λ
)V arψλ(λ̂)− |Covψλ(

∂

∂λ
, λ̂)|2 ≥ 0 (3.80)

which turns out to imply a quantum version of the Cramér Rao inequality [67]

V arψλ(λ) ≥
|Covψλ( ∂

∂λ
, λ)|2

V arψλ( ∂
∂λ

)
≥ 1

V arψλ( ∂
∂λ

)
(3.81)

as being used in quantum estimation theory [68] by associating λ̂ to an un-

biased estimator 12 of the curve parameter λ. The implication of the Cramér

Rao inequality in the above quantum version may be subsumed as follows.

No matter which estimator one uses to approach a parameter in a quantum

mechanical experimental setting, the variance of any estimator will always

be bounded by the variance

V arψλ

(
∂

∂λ

)
= KH0(df ∂

∂λ
, df ∂

∂λ
)|ψλ (3.82)

= f ∂
∂λ

∂
∂λ

(ψλ) + f ∂
∂λ
f ∂
∂λ

(ψλ) (3.83)

= 〈∂λψλ |∂λψλ〉 − 〈ψλ |∂λψλ〉2 . (3.84)

Actually, this turns out to be the pullback coefficient of of the Fubini Study

metric related pullback structure κH0 as defined in (2.11). As matter of fact,

12The basic definition is assured here by (3.78). We will focus on this notion once again
more in detail in section 5.
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one finds

κM ≡ 〈∂λψλ |∂λψλ〉 dλ⊗ dλ− 〈ψλ |∂λψλ〉2 dλ⊗ dλ. (3.85)

As being related to the pullback to the Fubini Study metric, it ‘closes a circle’

to the quantum Fisher information as described in section 1.4. Actually, the

quantum Fisher information defined on pure states reduces to the classical

Fisher information for Lagriangian submanifolds as we have seen in seen in

section 2.1.3 (see also [7]). In conclusion, any quantum Cramér Rao inequal-

ity for estimating the ‘position’ on a curve of pure quantum states reduces to

the classical Cramér Rao inequality. Note that the above quantum Cramér

Rao inequality, even though being ‘classical’ may be seen as a generalization

of the Heisenberg inequality as it allows to considers the pullback on both

unitarily and non-unitarily generated curves.
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4 Entanglement Monotones

Symmetries of Hamiltonian dynamical systems are related to constants of

motion by virtue of Noether’s theorem [54]. Constants of motion provide in

turn a method to reduce the numbers of degrees of freedom. For instance,

invariance under the symmetry group of time translations (R,+) implies the

identification of energy as constant of motion, and therefore the identifica-

tion of time independent energy surfaces embedded in a phase space R2n,

via the inverse H−1(E) ⊂ R2n of the underlying Hamiltonian function. A

Hamiltonian system generated by H will thus be constrained for all times on

exactly one of these surfaces in dependence of the initial state v0 ∈ R2n.

In the following section we shall propose a similar approach for the identi-

fication of what one could call entanglement invariants by virtue of functions

being constant on ‘entanglement surfaces’ defining submanifolds of quantum

states with equivalent amount of entanglement. In contrast to the folia-

tion into constant energy surfaces defined via the inverse of a time invariant

Hamilton function however, we shall tackle here an inverse problem:

Given a foliation of a Hilbert space into submanifolds of quantum states

with same entanglement, how do we identify a function varying from leave

to leave but being constant within each leave?

First of all we note that a general quantum evolution13 will not keep the

entanglement in a composite system HA⊗HB unchanged. The invariance of

entanglement is given only for non-interacting closed subsystems indeed.

From a kinematical perspective, this implies the identification of the local

unitary subgroup

SU(HA)× SU(HB) ⊂ SU(HA ⊗HB) (4.1)

as the fundamental symmetry group of entanglement. The identification of

13According to the geometric formulation of quantum mechanics, a unitary quantum
evolution is an integral curve of an Hamiltonian vector field being a Killing vector field.
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‘entanglement surfaces’ is therefore provided by a stratification into orbits

generated by this subgroup [69, 70]. Such a stratification induces within the

geometric formulation of quantum mechanics a pullback of the Fubini Study

metric related structure (2.11) from H := HA ⊗ HB to each single orbit.

In the simplest case of two qubits one may identify here local unitary orbits

Γψλ ⊂ C2⊗C2 in dependence of a 1-parameter family of fiducial state vectors

[0, 1]⊂R → C2 ⊗ C2, λ 7→ |ψλ〉 (4.2)

intersecting each submanifold Γψλ exactly once. The pullback on each single

orbit Γψλ may therefore considered complementary to the pullback on the

curve (4.2) provided by a structure as defined in the previous section in (3.85).

The following subsection 4.1 will give a short review how to identify pullback

structures associated to unitarily generated orbits in dependence of a given

general initial state vector of a composite bipartite Hilbert space in finite

but arbitrary high dimensions as discussed in [1–3]. These structures will

imply of a qualitative characterization of entanglement making available the

identification of separable and ‘maximal entangled’ state vectors in purely

geometrical terms. Thereafter, in the following subsections 4.2 - 4.5, we

shall consider recent research results [4–6] based on the possibility to identify

invariant functions under the local unitary group arising as inner products

on invariant tensor fields. This will lead us to a quantitative characterization

of entanglement in tensorial terms.

4.1 Separability and Lagrangian entanglement

By considering the reducible representation

G ≡ SU(n)× SU(n)→SU(n2)

g ≡ (gA, gB) 7→U(g) ≡ gA ⊗ gB = (gA ⊗ 1HB)(1HA ⊗ gB) (4.3)
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infinitesimal generated by traceless orthonormal Hermitian matrices {σj}j∈J
tensored by the identity 1HA of a subsystem

Lie(G) ≡ su(n)⊕ su(n)→su(n2)

Xj 7→iR(Xj) ≡

iσj ⊗ 1 for 1 ≤ j ≤ n2

1⊗ iσj−n2 for n2 + 1 ≤ j ≤ 2n2,

(4.4)

one finds according to theorem 2.1 a pull-back tensor field on the Lie group

ι∗GκH0 = Covρψ(R(Xj)R(Xk))θ
j ⊗ θk

= (ρψ([R(Xj)R(Xk)]+)− ρψ(R(Xj))ρψ(R(Xk)))θ
j � θk︸ ︷︷ ︸

=ι∗Gη

+i ρψ([R(Xj)R(Xk)]−)θj ∧ θk︸ ︷︷ ︸
=ι∗Gω

which decomposes for all ρψ ∈ D1(Cn ⊗ Cn) into a symmetric and an anti-

symmetric coefficient matrix 14

(κ
ρψ
jk ) =

(
(ηρA(jk)) (C

ρψ
jk )

(C
ρψ
jk ) (ηρB(jk))

)
+ i

(
(ωρA[jk]) 0

0 (ωρB[jk])

)
, (4.8)

ηρA(jk) =
2

n
δjk + ρA(σr)djkr − ρA(σj)ρA(σk) (4.9)

ωρA[jk] =ρA(σr)cjkr (4.10)

C
ρψ
jk =ρψ(σj ⊗ σk)− ρψ(σj)ρψ(σk) (4.11)

14Written explicitly one finds

ηρA(jk) =ρψ([σj , σk]+ ⊗ 1)− ρψ(σj ⊗ 1)ρψ(σk ⊗ 1) (4.5)

=ρA([σj , σk]+)− ρA(σj)ρA(σk) =
2

n
δjk + ρA(σr)djkr − ρA(σj)ρA(σk) (4.6)

ωρA[jk] =ρψ([σj , σk]− ⊗ 1) = ρA([σj , σk]−) = ρA(σr)cjkr (4.7)
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by vitue of the symmetric and anti-symmetric structure constants djkr and

cjkr of the Lie algebra of SU(n).

4.1.1 Segre embeddings seen from the Hilbert space

While the anti-symmetric part ωρψ admits a splitting for all entangled fiducial

state vectors, we will find such a splitting in the symmetric part ηρψ according

to the following necessary and sufficient condition [1, 3].

Theorem 4.1. ρψ ∈ D1(Cn ⊗ Cn) is separable iff

η
ρψ
SU(n)×SU(n) = ηρA⊗ρBSU(n)×SU(n) = ηρASU(n) ⊕ η

ρB
SU(n) (4.12)

Hence, a Segre embedding [42, 43,71]

R(HA)×R(HB) ↪→ R(HA ⊗HB) (4.13)

becomes detectable from the point of view of the Hilbert space iff

C
ρψ
jk = 0. (4.14)

For general state vectors we shall remark the following geometric interpreta-

tion of the symmetric part ηSU(n)×SU(n). It encounters as pullback induced

by the projection

SU(n)× SU(n)→ SU(n)× SU(n)/G0,ψ (4.15)

on the orbits associated with the isotropy group

G0,ψ := {g ∈ SU(n)× SU(n)|U(g)ρψU(g)† = ρψ} (4.16)

the complete information of a family of Riemannian tensor fields on each

given orbit.
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4.1.2 Symplectic orbits seen from the Hilbert space

The anti-symmetric part

ω
ρψ
SU(n)×SU(n) = ρψ([R(Xj), R(Xk)]−)θj ∧ θk (4.17)

splits — as indicated above and in crucial contrast to the symmetric part —

for all entangled state vectors into two families of tensor fields

ω
ρψ
SU(n)×SU(n) = ωρASU(n) ⊕ ω

ρB
SU(n). (4.18)

Each family is defined on a corresponding SU(n)-subgroup of SU(n)×SU(n)

by the reduced density state dependent anti-symmetric structures

ωρASU(n) = ρψ([σj, σk]− ⊗ σ0)θj ∧ θk (4.19)

= ρA([σj, σk]−)θj ∧ θk, (4.20)

and ωρBSU(n) = ρB([σj, σk]−)θj ∧ θk respectively.

Each of the latter anti-symmetric tensor fields may therefore identified

with the quotient space projection-induced pullback of a symplectic structure

ωASU(n)/G0 which lives on a co-adjoint unitary orbit of (reduced) density states

gAρAg
†
A, (4.21)

with gA ∈ SU(n) [72]. Lagrangian orbits generated by the local unitary

group admit therefore a distinguished role, in particular, due to the following

definition and associated implication [3, 4]:

Definition 4.2. ρψ ∈ D1(Cn ⊗ Cn) is called Lagragian entangled if

ω
ρψ
SU(n)×SU(n) = 0.

Theorem 4.3. ρψ ∈ D1(Cn ⊗ Cn) is Lagragian entangled iff the reduced
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density state is maximal mixed.

This theorem links to the standard definition of ‘maximally entangled’

pure states as used in the literature [73]. Actually, the identification of max-

imal entangled states is not a priori obvious before having defined a measure

of entanglement. As a matter of fact, the identification of the von Neumann

entropy (1.8) as unique measure is established after rather then before the

definition of maximal entanglement [19]. Such an approach may appear ar-

tificial from a general point of view indeed. In particular, why should the

existence of an infinite amount of entanglement a priori be excluded? The

notion of Lagrangian entanglement, as proposed here, evades this conceptual

problem by being defined a priori without any quantitative association.

4.2 Inner products on tensor fields and intermediate

entanglement

In the previous subsection we considered a qualitative description of entan-

glement by the identification of submanifolds containing either separable or

Lagrangian entangled quantum state vectors. Actually, most state vectors

in the composite Hilbert space turn out to be in neither of both of these two

submanifolds. This can be illustrated in the simplest case of a two qubit

Hilbert space

H ≡ HA ⊗HB
∼= C2 ⊗ C2 (4.22)

as follows. Any coordinate representation of a state vector in S(H) may be

transformed here by means of a local unitary transformation to a Schmidt

basis decomposition

|ψλ〉 =
√
λ |00〉+

√
1− λ |11〉 , λ ∈ [0, 1]. (4.23)
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In this way one encounters a topological distinction into three type of local

unitary orbits

SU(2)× SU(2)/G0,λ (4.24)

with the isotropy group

G0,λ := {g ∈ SU(2)× SU(2)|U(g)ρψλU(g)† = ρψλ} (4.25)

in dependence of fiducial states ρψλ = |ψλ〉 〈ψλ| being either Lagrangian en-

tangled (λ = 1/2), separable (λ ∈ {0, 1}) or neither Lagrangian nor separable

(λ ∈ (0, 1/2)∪ (1/2, 1)). They yield orbits of dimensions three, four and five

respectively [69, 70]. The ‘dense set’ of state vectors is therefore made of

an foliation into five dimensional orbits of what we could call intermediate

entangled state vectors.

In the following we’ll show how to distinguish the topologically equiva-

lent orbits of intermediate states in geometrical terms by means of the cor-

responding Fubini Study metric related pullback procedure we discussed so

far.

Remark 4.4. In higher dimensional bipartite systems there will be more then

three topological inequivalent type of local unitary orbits [69,70]. Indeed, dif-

ferent topological invariants like the dimension of a manifold will nevertheless

be detected from the metrical pullback structures on the individual orbit. Such

topological invariants may be detected in particular within our approach by the

degeneracy of the pullback on the Lie group of local unitary transformation.

For the purpose to distinguish state vectors living in different but topolog-

ical equivalent orbits we may consider invariant functions under local unitary

transformations provided by a (super) Hermitian inner product

f(ψ) :=
〈
κ
ρψ
SU(n)×SU(n)

∣∣∣κρψSU(n)×SU(n)

〉
(4.26)

on invariant tensor fields on SU(n)×SU(n). Invariant tensor fields on general
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Lie groups may be defined in a constructive way either by invariant operator

valued tensor fields (see section 4.5) or by the pullback of the Fubini Study

metric seen from the Hilbert space as considered so far. The inner product

on the latter class of invariant tensor fields will be defined in general terms

as follows [4].

We define for any given Lie group G associated with a unitary represen-

tation induced pullback structure

κ
ρψ
G = κ

ρψ
jk θ

j ⊗ θk

the inner product

〈
κ
ρψ
G
∣∣κρψG 〉 := κ̄

ρψ
jk κ

ρψ
rl

〈
θj ⊗ θk

∣∣θr ⊗ θl〉 .
To keep the formulas as readable as possible, we shall omit in the following

the dependency on the fiducial state ρψ. With

〈
θj ⊗ θk

∣∣θr ⊗ θl〉 =
〈
θj
∣∣θr〉 〈θk ∣∣θl〉 = δjrδkl (4.27)

one finds then

〈κG |κG〉 = κ̄jkκrlδ
jrδkl = κ̄jkκjk. (4.28)

4.2.1 Inner products on higher order tensor fields

In the following we may consider a class of G-invariant functions arising from

higher order tensor fields

κ⊗nG :=
n⊗
k=1

κG (4.29)

by virtue of their corresponding inner product

〈
κ⊗nG

∣∣κ⊗nG 〉 (4.30)

= 〈κG |κG〉n . (4.31)
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This can be be illustrated in the simplest case of n = 2 as follows. Consider

a general covariant tensor of order four

T :=
∑

j1j2j3j4

Tj1j2j3j4θ
j1 ⊗ θj2 ⊗ θj3 ⊗ θj4 . (4.32)

The inner product 〈T |T 〉 on this tensor reads〈 ∑
j1j2j3j4

Tj1j2j3j4θ
j1 ⊗ θj2 ⊗ θj3 ⊗ θj4

∣∣∣∣∣ ∑
k1k2k3k4

Tk1k2k3k4θ
k1 ⊗ θk2 ⊗ θk3 ⊗ θk4

〉

=
∑

j1j2j3j4

∑
k1k2k3k4

T̄j1j2j3j4Tk1k2k3k4
〈
θj1 ⊗ θj2 ⊗ θj3 ⊗ θj4

∣∣θk1 ⊗ θk2 ⊗ θk3 ⊗ θk4〉
=

∑
j1j2j3j4

∑
k1k2k3k4

T̄j1j2j3j4Tk1k2k3k4δ
j1k1δj2k2δj3k3δj4k4

=
∑

j1j2j3j4

T̄j1j2j3j4Tj1j2j3j4 . (4.33)

A special tensor of order four may arise from the tensor product of two

tensors of order two

T ≡
(∑

j1j2

κj1j2θ
j1 ⊗ θj2

)
⊗
(∑

j3j4

κj3j4θ
k3 ⊗ θj4

)

=
∑
j1j2

∑
j3j4

κj1j2κj3j4θ
j1 ⊗ θj2 ⊗ θj3 ⊗ θj4 . (4.34)

In this case, the tensor coeffiecients in (4.38) factorize into tensor coefficients

of order two according to

Tj1j2j3j4 ≡ κj1j2κj3j4 . (4.35)

Note that this is not true for general tensors of order four.

Thus, by applying the inner product (4.33) on the special case given by
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the tensor in (4.34), we find

〈T |T 〉 =
∑

j1j2j3j4

T̄j1j2j3j4Tj1j2j3j4 =
∑

j1j2j3j4

κ̄j1j2κ̄j3j4κj1j2κj3j4

=
∑

j1j2j3j4

κ̄j1j2κj1j2κ̄j3j4κj3j4 =
∑
j1j2

κ̄j1j2κj1j2
∑
j3j4

κ̄j3j4κj3j4 (4.36)

= 〈κG |κG〉 〈κG |κG〉 = 〈κG |κG〉2 . (4.37)

The generalization is straight forward and goes as follows. The inner

product 〈T |T 〉 on a general covariant tensor15

T := Tj1j2...jmθ
j1 ⊗ θj2 ...⊗ θjm (4.38)

of order m reads

T̄j1..jmTk1..km
〈
θj1 ⊗ ..⊗ θjm

∣∣θk1 ⊗ ..⊗ θkm〉
= T̄j1..jmTk1..kmδj1k1 ...δjmkm = T̄j1..jmTj1..jm . (4.39)

Now, we consider a tensor of even order m = 2n constructed from the n-th

tensor product of order two tensors

T ≡ (Tj1j2θ
j1 ⊗ θj2)⊗n

= Tj1j2Tj3j4 ..Tjm−1jmθ
j1 ⊗ θj2 ⊗ θj3 ⊗ θj4 ...θjm−1 ⊗ θjm

=
n∏
r=1

Tj2r−1j2r

n⊗
r=1

θj2r−1 ⊗ θj2r . (4.40)

The tensor coefficients in (4.38) factorize in this special case (in each term

15If not differently stated, we shall from now on use the Einstein convention by summing
over same indices.
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of the sum over same indices) into tensor coefficients of order two

Tj1j2...jm =
n∏
r=1

Tj2r−1j2r . (4.41)

Hence, with the inner product (4.39) one concludes

〈T |T 〉 = T̄j1..jmTj1..jm =
n∏
r=1

T̄j2r−1j2r

n∏
r=1

Tj2r−1j2r

=
n∏
r=1

T̄j2r−1j2rTj2r−1j2r =
n∏
r=1

〈T |T 〉 = 〈T |T 〉n . (4.42)

This proofs the inner product relation (4.31). As a consequence, we may

apply the inner product on the tensor product of the symmetric part and the

tensor product of the anti-symmetric part separately and find

〈
η⊗nG

∣∣η⊗nG 〉 = 〈ηG |ηG〉n , (4.43)

〈
ω⊗nG

∣∣ω⊗nG 〉 = 〈ωG |ωG〉n . (4.44)

Remark 4.5. Actually, this will be not the case whenever one considers the

inner product on the symmetrization of the tensor products on the symmetric

part, and correspondently, the inner product on the anti-symmetrization of

the tensor products on the anti-symmetric part respectively. Such an approach

may be seen related to the notion of Poincaré invariants which are constructed

from higher order anti-symmetric structures ω∧n := ω ∧ ω... ∧ ω [74].

4.3 Entanglement monotones on two qubits

In the following section we shall apply the inner product on higher order

tensor fields to the case of the local unitary group

G ≡ SU(n)× SU(n) (4.45)
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with particular focus on n ≡ 2. In this case we may map a family of fiducial

states

ρλ = |ψλ〉 〈ψλ| (4.46)

associated to a family of state vectors in a Schmidt basis decomposition

|ψλ〉 =
√
λ |00〉+

√
1− λ |11〉 , λ ∈ [0, 1] (4.47)

to a corresponding family of induced pullback tensor fields

κρλSU(2)×SU(2) = ηρλSU(2)×SU(2) + iωρλSU(2)×SU(2) (4.48)

on the Lie group SU(2) × SU(2). The inner products (4.43) and (4.44)

applied here to the higher order tensor products of the symmetric and the

anti-symmetric part of (4.48) respectively, establish the main result of the

present chapter: We find entanglement monotones for the inner product

on the tensor products of the symmetric part and purity monotones for the

inner product on the tensor products of the anti-symmetric part as illustrated

within an appropriate normalization in figure 1 for the first five tensor power

orders. As normalization we use in this regard the factors

1

(2Dim(SU(2)× SU(2))n
=

1

12n
, (4.49)

for the inner products (4.43) and the factors

1

Dim(S2 × S2)n
=

1

4n
. (4.50)
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Figure 1: A class of entanglement and purity monotones constructed from
SU(2) × SU(2) invariant tensor fields η⊗nSU(2)×SU(2) and ω⊗nSU(2)×SU(2). The
monotones arise here by considering an inner product yielding the invariant
functions (4.51) and (4.52) respectively. The black curve corresponds in each
case to n = 1 and the following colored curves corresponds to higher order
tensor field inner products with n ∈ {2, 3, 4, 5}. The entanglement monotones
admit in contrast to the purity monotones a normalization in dependence of
the tensor order n.
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for the inner products (4.44). The resulting functions are higher order poly-

nomials on the Schmidt coefficient λ

1

12n

〈
ηρλSU(2)×SU(2)

∣∣∣ηρλSU(2)×SU(2)

〉n
=

(
16λ4

3
− 32λ3

3
+ 4λ2 + 4λ

3
+ 1

3

)n
(4.51)

1

4n

〈
ωρλSU(2)×SU(2)

∣∣∣ωρλSU(2)×SU(2)

〉n
= (4λ2 − 4λ+ 1)

n
. (4.52)

establishing a quantitative justification for the identification between maxi-

mal entangled states and Lagrangian entangled states (λ = 1/2) on the value

‘1’ for the entanglement monotones and the value ‘0’ for the purity mono-

tones respectively. The purity monotone is normalized for separable states

(λ ∈ {0, 1}) to ‘1’. In contrast, we find in the entanglement monotone a

normalization

1

12n

〈
ηρλSU(2)×SU(2)

∣∣∣ηρλSU(2)×SU(2)

〉n
|λ∈{0,1} =

1

3n
, (4.53)

being dependent on the tensor field order n. We may therefore recover for

n → ∞ the ‘standard normalization’ for separable states. This indicates

that the inner products on n-order tensor products of the symmetric ten-

sor field provide an approximation to a ‘bona fide’ entanglement measure

with increasing n. This approximation will provide an advantage in contrast

to standard entanglement measures when testing their quantum estimation

efficiency as shown later on in section 5.

4.4 Towards a generalized algorithm

Before we proceed, let us outline a possible bigger picture into which we may

set the considered approach so far by closing a circle to the introduction of

the present chapter 4. For this purpose let us recall the Hamiltonian

H(q, p) =
1

2m
p2 + kq2. (4.54)
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of a classical Harmonic oscillator. Here one finds associated energy ellipses

H−1(E) := ΓE ⊂ R2 (4.55)

in dependence of the mass m and the constant k. If we set m = k = 1 we

may identify the ellipses with circles S2√
E

each with a radius proportional to

the energy H(q, p) = E ∈ R+. The set of energy circles provides a foliation

R2
0
∼=
⋃
E∈R+

ΓE =
⋃
E∈R+

S1√
E

(4.56)

of the phase space into circles with different radius
√
E. The radius may be

related in this regard to a parametrization of the set of orbits given by the

quotient

R2
0/SO(2) ∼= R+ × S1/SO(2) ∼= R+ (4.57)

suggesting following commutative diagram.

R2
0

∼=−−−→
⋃

ΓE

SO(2)

y yH(q,p)=p2+q2

R2
0/SO(2)

∼=−−−→ R+.

This diagram appears very similar to what we found here in the case of the

space of state vectors in a composite Hilbert space

S(H) = S(C2 ⊗ C2) =
⋃
λ

Γλ (4.58)

being stratified into local unitary orbits of entanglement surfaces Γλ. The

corresponding entanglement function relating to each orbit a constant, but

distinguished value has been provided here by an inner product

f(ψλ) :=
〈
T⊗kSU(2)×SU(2)

∣∣∣T⊗knSU(2)×SU(2)

〉
(4.59)
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on higher order tensor products of invariant symmetric and anti-symmetric

pullback tensor fields

TSU(2)×SU(2) :=

ηSU(2)×SU(2)

ωSU(2)×SU(2).
(4.60)

Any entanglement monotone on the set of Schmidt coefficients

ε : 41 → [0, 1]

λ 7→ ε(λ) (4.61)

may therefore be (re-) constructed from such a function if

f

(
Γψλ

)
=! ε(λ), (4.62)

that is, if the following diagram commutes

S(H)
∼=−−−→

⋃
Γλ

SU(2)×2

y yf(ψ)=
〈
T⊗k
SU(2)×SU(2)

∣∣∣T⊗kSU(2)×SU(2)

〉
41

ε−−−→ R+.

In the previous section we have shown that there exits a family of entan-

glement monotones where this diagram commutes. Interestingly, this family

has not been discussed in the literature so far and provides therefore a new

class of entanglement monotones.

At this point we outline possible generalizations to higher dimensions

and mixed states. Indeed, it may become clear that the inner product of any

tensor product on the symmetric part〈
η⊗kSU(n)×SU(n)(ρψ)

∣∣∣η⊗kSU(n)×SU(n)(ρψ)
〉

(4.63)
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should in principle provide an entanglement monotone candidate for all finite

dimensions n ∈ N as being invariant under SU(n)× SU(n). This invariance

will be discussed from a constructive point of view in more detail in the next

section.

A generalization to convex combinations of pure states to the regime of

mixed states finally, may be given by corresponding extensions to convex

combination pure state entanglement monotones (see e.g. [42, 43] and refer-

ences therein)

E(ρ) :=
∑

inf ρ=
∑
pjρj

pjε(ρj) (4.64)

≡!

∑
inf ρ=

∑
pjρj

pj

〈
η⊗kSU(n)×SU(n)(ρj)

∣∣∣η⊗kSU(n)×SU(n)(ρj)
〉
. (4.65)

Actually, it appears not a trivial task to perform the computation here due

to the infimum in the sum at the first glance. However, an exception where

it is known how to compute the generalization from a pure to a mixed state

entanglement measure is given by the concurrence [75, 76]. A digression on

a link to the concurrence measure in geometrical terms will be discussed in

the following section.

4.5 Invariant operator valued tensor fields (IOVTs)

and mixed states entanglement

So far we outlined an entanglement characterization algorithm based on in-

variant tensor fields on the Lie group G = U(n) × U(n), which ‘replaces’

functions

ε : 4n−1 → [0, 1]

λ 7→ ε(λ) (4.66)

on Schmidt-coefficients by functions on pullback tensor-coefficients:
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κ
ρψ
G

ρψ

f(ψ) :=
∑

j1j2
|κρψj1j2|

2
(R(Xj))

Similar to the case of pure states, we shall also identify within the generalized

regime of mixed states entanglement monotone candidates by functions

f : D(HA ⊗HB)→ R+ (4.67)

which are invariant under the local unitary group of transformations U(HA)×
U(HB) [77]. In this necessary strength, we propose in the following entan-

glement monotones candidates by taking into account constant functions on

local unitary orbits of entangled quantum states, arising from invariant oper-

ator valued tensor fields (IOVTs) on U(HA)×U(HB) as considered recently

on general matrix Lie groups G [4]. Let us review the basic construction.

4.5.1 The basic construction

Given a unitary representation

U : G → U(H), (4.68)

we may identify an anti-Hermitian operator-valued left-invariant 1-form

−U(g)−1dU(g) ≡ iR(Xj)θ
j (4.69)

on G, where the operator iR(Xj) is associated with the representation of the

Lie algebra Lie(G). In this way, we may construct higher order invariant

operator valued tensor fields

−U(g)−1dU(g)⊗ U(g)−1dU(g) = R(Xj)R(Xk)θ
j ⊗ θj, (4.70)
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on G by taking into account the representation as being equivalently defined

by means of the representation of the enveloping algebra of the Lie algebra

in the operator algebra A :=End(H). More specific, any element Xj ⊗Xk in

the enveloping algebra becomes associated with a product

R(Xj)R(Xk) ∈ A := End(H), (4.71)

where A, may denote the vector space of a C∗-algebra. At this point, we

may evaluate each one of these products by means of dual elements

ρ ∈ A∗, (4.72)

according to

ρ(R(Xj)R(Xk)) ≡ Tr(ρR(Xj)R(Xk)) ∈ C, (4.73)

yielding a quantum state dependent tensor field

ρ(R(Xj)R(Xk))θ
j ⊗ θk (4.74)

on the group manifold. By taking the k-th product of invariant operator-

valued left-invariant 1-forms

−U(g)−1dU(g)⊗ U(g)−1dU(g)⊗ ...⊗ U(g)−1dU(g), (4.75)

we shall find a representation R-dependent IVOT of order k

θR :=

( k∏
a=1

R(Xia)

) k⊗
a=1

θia (4.76)
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on a Lie group G = U(n)×U(n). After evaluating it with a mixed quantum

state

θR 7→ ρ(θR) := θρR = ρ

( k∏
a=1

R(Xia)

) k⊗
a=1

θia

one may identify G-invariant functions via an inner product on tensor fields

fR(ρ) := 〈θρR |θ
ρ
R〉 (4.77)

as constructed in section 4.2.

4.5.2 Purity, concurrence and covariance measures

In particular, for k = n = 2 [4], we recover in this way the purity and

the concurrence related measures involving a spin-flip transformed state ρ̃

by considering inner product combinations of symmetric and anti-symmetric

tensor fields

ηρR := ρ([R(Xj), R(Xk)]+)θj � θk (4.78)

ωρR := ρ([R(Xj), R(Xk)]−)θj ∧ θk, (4.79)

according to

1

8

(
〈ηρR |η

ρ
R〉+ (−1)s 〈ωρR |ω

ρ
R〉
)
− 1

2
=

Tr(ρ2) for s = 0

Tr(ρρ̃) for s = 1.
(4.80)

In more general terms, one may introduce R-classes of entanglement mono-

tone candidates by taking into account polynomials

fRk (ρ) :=
∑
n

an 〈θρR |θ
ρ
R〉

n , θρR := ρ

( k∏
a=1

R(Xia)

) k⊗
a=1

θia .

The case

R̃(Xj) = R(Xj)− ρ(R(Xj))1, (4.81)
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recovers for IOVTs of order k = 2, a class of separability criteria associated

with covariance matrices (CMs) (Gittsovich et al. 2008) by means of a CM-

tensor field

θρ
R̃

= (ρ(R(Xj)R(Xk))− ρ(R(Xj))ρ(R(Xk))θ
j ⊗ θk. (4.82)

An open problem in the field of CM-ctiteria is provided by the question how

to find an extension to quantitative statements [78]. A possible approach

could be provided here by taking into account a R̃-class of entanglement

monotone-candidates by considering

f R̃2 (ρ) =
∑
n

an

〈
θρ
R̃

∣∣∣θρ
R̃

〉n
.

To give an example, we consider the function

f R̃2 (ρ) ≡
〈
θρ
R̃

∣∣∣θρ
R̃

〉
(4.83)

applied to a family of 2-parameter states on a composite Hilbert space of two

qubits given by

ρx,α0 := x |α0〉 〈α0|+ (1− x)ρ∗, |α0〉 := cos(α0) |11〉+ sin(α0) |00〉 (4.84)

and find a possible approximation to the concurrence measure

max[λ4 − λ3 − λ2 − λ1, 0], λj ∈ Spec(ρρ̃). (4.85)

Both functions are plotted in figure 2.
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Figure 2: The function f R̃2 (ρ) gives rise to a possible approximation (left) to
the concurrence measure (right) applied to a family of 2-parameter states on
a composite Hilbert space of two qubits.

5 Entanglement Estimation

In the previous section we formulated an algorithm for a tensorial charac-

terization of entanglement both from a qualitative and quantitative point of

view. This algorithm had been modeled by a pairing between a quantum

state ρ and a finite set of observables {R(Xj)}j∈J giving rise to a function

on ‘classical’ tensor coefficients

κρG

ρ

f(ρ) :=
∑

j1j2
|κρj1j2|

2
(R(Xj))

on a given Lie group G associated with a unitary representation. Interest-

ingly, the tensor coefficients

κρj1j2 = Covρ(R(Xj1)R(Xj2)) (5.1)
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provide covariances and therefore empirically accessible quantities. With

other words, these type of entanglement monotones, as suggested in particu-

lar by the geometric formulation of quantum mechanics here, may in principle

be reconstructed empirically from an incomplete set of observables, without

the need of a complete tomographic reconstruction of the quantum state.

In contrast, designing experimental settings able to achieve a quantita-

tive description of entanglement is a current challenge, even with the most

modern quantum experimental devices available today [8]. One fundamental

reason may be related to the fact that standard entanglement monotones are

in general non-linear functions on the convex body of quantum states [47,77],

rather than ordinary expectation values of ‘quantum observables’ associated

with Hermitian operators in a Hilbert space. As indicated above, a pos-

sible approach to this problem could be provided, on the one hand, by a

tomographic reconstruction of the quantum state involving a series of mea-

surements associated with a complete set of observables (see, e.g., [79] for a

review on quantum tomography). On the other hand, while a quantum state

is supposed to contain the complete information about a physical system, a

sufficient amount of information about entanglement may be extracted by

means of an incomplete set of observables as in the case of the here consid-

ered pullback tensor coefficients using a reducible Lie algebra representation

associated to SU(n) × SU(n) rather than the irreducible representation of

SU(n2).

Parallel to our approach we shall mention at this point similar remarks

in the literature on standard entanglement measures like on the concurrence

(4.85) [75, 76], which may be experimentally recovered from four — rather

than fifteen — parameters associated with the Bloch representation of a

bipartite qubit density matrix [80]. Moreover, an optimal experimental set-

ting for quantifying pure state entanglement – based on the purity – which

requires the reconstruction of only three parameters associated with local

quantum observables, has been proposed in [81].
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Actually, there exists a general framework on the optimization bounds of

quantum experiments based on quantum state estimation theory [47, 82, 83]

which originated in the seminal work of Helstrom in the 1960s [68]. In con-

trast, the specialization of this general framework to what could be called

quantum entanglement estimation theory is a relatively young field of research

(see [8] and references therein). Recent works have focused on the optimiza-

tion bounds in terms of quantum information measures, like the Kullback

mutual information [84], the fidelity [85] – and finally – the quantum Fisher

information [8].

Crucially, in the simplest non-trivial case of a 1-parameter family of bi-

partite pure qubit states in the Schmidt decomposition, several standard en-

tanglement measure fail to provide an efficient quantum Fisher information

estimations – in particular – for weakly entangled states [8].

In this section, we propose an efficient estimation in the regime of weak

entanglement by taking into account the family of alternative entanglement

monotones as constructed in the previous section 4. This will allow us to

merge the idea of a covariant tensorial characterization of entanglement with

the contravariant tensorial identification of geometric inequalities of section

3 into one unified geometric framework.

This section is organized as follows. In subsection 5.1 we review the basic

idea of quantum state estimation by using the Cramèr-Rao inequality as de-

rived in section 3.2.4. Thereafter, in sections 5.1.1 and 5.1.2, we consider in

particular the Schmidt coefficient estimation and the entanglement estima-

tion of two entangled qubits, as recently discussed in [8]. Next, in subsection

5.1.3, we focus on the corresponding estimation of the purity. In subsection

5.2 we will address the estimation of the entanglement and alternative purity

measures as constructed in the previous section. We give our conclusions

and an outlook in section 5.3.
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5.1 Quantum state estimation

The most elementary quantum estimation problem may be formulated as

follows.

• Given an unknown quantum state vector |ψλ〉 on a curve of state vectors

parametrized by λ ∈ [0, 1]. Can we extract the parameter λ from |ψλ〉
at small measurement cost?

To tackle this question one defines to any finite number of measurements,

let’s say a sample {xj}, an estimator of λ by a map

{xj} 7→ λ̂({xj}) ∈ [0, 1]. (5.2)

The efficiency of the estimator is then given by the mean square error

Eλ((λ̂({xj})− λ)2). (5.3)

The error coincides for unbiased estimators

Eλ(λ̂) = λ (5.4)

with the variance

Var(λ̂) = Eλ(λ̂2)− Eλ(λ̂)2. (5.5)

The efficiency of all unbiased estimators is then bounded by the quantum-

Cramér-Rao inequality

Var(λ̂) ≥ 1

κλ
, (5.6)

where κλ denotes the coefficient of the pullback of the Fubini Study metric

on a given curve of Hilbert space vectors |ψλ〉 as seen from the Hilbert space.

This inequality has been derived in (3.81) according to section 3.2.4 and closes

therefore a circle from the geometric formulation of quantum mechanics to the

concept of quantum Fisher information being identified here with the Fubini
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Study metric related pullback coefficient κλ. The physical interpretation

of (5.6) becomes directly available when taking into account the relative

error [47] depending on

• the number M ∈ N of measurements and

• the signal to noise ratio λ2/Var(λ̂)

The relative error is defined by

δ2 :=
Var(λ̂)

Mλ2
≡ 1

M

Noise

Signal
. (5.7)

The quantum Cramer-Rao inequality (5.6) implies thus a κλ-bounded mini-

mum number of measurements

Mδ ≥
1

λ2δ2

1

κλ
(5.8)

required for achieving an estimation of λ with a given fixed relative error δ2.

5.1.1 Schmidt coefficient estimation

The fundamental example we’ll focus on in the following is the case where λ

coincides with a Schmidt coefficient parametrizaing a curve of entangled two

qubit state vectors

|ψλ〉 =
√
λ |00〉+

√
1− λ |11〉 , λ ∈ [0, 1] (5.9)

in a composite Hilbert space H ∼= C2⊗C2. For this purpose we compute the

pullback of the Fubini-Study metric

〈∂λψλ |∂λψλ〉 dλ⊗ dλ− 〈ψλ |∂λψλ〉2 dλ⊗ dλ ≡ κλdλ⊗ dλ (5.10)
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on {|ψλ〉}λ∈[0,1] as seen from the Hilbert space. The coefficient yields in this

case the quantum Fisher information

κλ =
1

λ− λ2
(5.11)

As one can see, the minimum number of measurements (5.8)

Mδ(λ) =
1

λ2δ2

1

κλ
=
λ− λ2

λ2δ2
∼ 1

λδ2
(5.12)

diverges for λ→ 0. With other words, the estimation becomes inefficient for

all states close to the separable state vector |11〉.

5.1.2 Linear entropy estimation

At this point we may note that any entanglement measure on |ψλ〉 relates to

a measure

ε : [0, 1]→ [0, 1], λ 7→ ε(λ). (5.13)

on the parameter space of Schmidt coefficients. Such a measure induces a

non-linear parameter transformation on the pullback coefficient

κε ≡ κλ(ε)(∂ελ(ε))2 (5.14)

provided by the covariant transformation property of the pullback tensor

κλdλ⊗ dλ = κλ(ε)dλ(ε)⊗ dλ(ε) (5.15)

= κλ(ε)∂ελ(ε)dε⊗ ∂ελ(ε)dε (5.16)

= κλ(ε)(∂ελ(ε))2dε⊗ dε (5.17)

≡ κεdε⊗ dε. (5.18)
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As a consequence, one finds a distinguished minimum number of measure-

ments

Mδ(ε) =
1

ε2δ2

1

κε
(5.19)

required for achieving an estimation of ε(λ) rather then an estimation of

λ. Indeed, similar to the Schmidt coefficient estimation, it implies again a

divergence, in particular for vanishing values of ε

lim
ε→0

Mδ(ε)→∞ (5.20)

whenever one identifies the measure ε with the linear entropy

ε(λ) := 2
(
1− Tr

(
(ρAλ )2

))
= 4λ(1− λ) (5.21)

or the negativity εN(λ) :=
√
ε(λ). In conclusion, the estimation of standard

entanglement measures related to the linear approximation of the von Neu-

mann entropy becomes inefficient in the regime of weak entanglement [8].

5.1.3 Purity estimation

At this point we may ask for the estimation efficiency of the purity

Tr
(
(ρAλ )2

)
(5.22)

defining in contrast to the linear entropy

2
(
1− Tr

(
(ρAλ )2

))
an entanglement anti-monoton admitting non-vanishing values close to one in

the regime of weak entanglement. The purity measure (5.22) for the reduced

density state

ρAλ =

(
λ 0

0 1− λ

)
(5.23)
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associated with the family of entangled state vectors (5.9) reads

ε(λ) := Tr((ρAλ )2) = λ2 + (1− λ)2 = 1− 2λ+ 2λ2. (5.24)

To compute the induced parameter transformation on the quantum Fisher

information (5.14), we need to identify the inverse function solutions of the

purity

λ(ε) :=
1

2

(
1±
√

2ε− 1
)
. (5.25)

Both solutions yield according to (5.14) the parameter-transformed quantum

Fisher information

κε = − 1

4ε2 − 6ε+ 2
. (5.26)

However, this implies a negative number of measurements

Mδ≡1(ε) = −4 +
6

ε
− 2

ε2
(5.27)

within the estimation (5.19), appearing beyond a physical interpretation.

Hence, the purity does not solve the problem of estimating weakly entangled

qubits in an efficient way.
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5.2 Estimation of inner products on tensor fields

A class of entanglement monotones may be constructed in terms of function-

als on the linearization of the von Neumann entropy

SvN(λ) = Tr(ρAλ ln ρAλ ) =
∑

j λj lnλj

↓

SlinearvN (λ) := 1− Tr((ρAλ )2) = 1−
∑

j λ
2
j

↓

f
(
SlinearvN (λ)

)
=


2SlinearvN (λ)√

2SlinearvN (λ)

1− SlinearvN (λ)

(5.28)

providing the linear entropy, the negativity and the purity as (anti-) mono-

tones on Schmidt coefficients respectively. This class of entanglement mono-

tones constructed in this way highlights a clear advantage compared to the

von Neumann entropy as it does not involve the the diagonalization of the

reduced density state (or equivalently, the singular value decomposition into

Schmidt coefficients of the state vector associated to the product Hilbert

space). However, as we have seen in the previous section, such monotones

may not become accessible in experiments as soon we enter into the regime

of weak entanglement.

At this point we observe the following. The linear entropy is directly

related to the pullback coefficient κλ of the Fubini metric by

SlinearvN (λ) =
2

κλ
(5.29)

due to (5.11) in

2(1− Tr((ρAλ )2) = 4λ(1− λ) =(5.11)
4

κλ
. (5.30)
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The quantum Cramér Rao inequality (5.6) may thus be rewritten for a family

of two entangled qubits as entropy inequality

V ar(λ) ≥ 1

2
SlinearvN (λ) (5.31)

and may therefore be linked to the class of quantum entropy inequalities as

considered in section 3.1. Actually, the relation (5.29) between linear entropy

and the pullback coefficient of the Fubini Study metric highlights a link to the

beginning of section 1.4 considering any quantum Fisher information metric

as the Hessian of some quantum relative entropy.

Our ‘inverse trip’ from geometric quantum mechanics to quantum infor-

mation may therefore come to an end at this point. Actually, one of the most

important implications of geometric quantum mechanics for quantum infor-

mation theory has still to be discussed. Indeed, κλ is the pullback coefficient

of the Fubini Study metric on a particular chosen 1-dimensional entangled

state submanifold. In the following we ask: What happens if we estimate

the entanglement monotones provided by the inner products

εn := 1
12n

〈
η⊗nSU(2)×SU(2)

∣∣∣η⊗nSU(2)×SU(2)

〉
(5.32)

µn := (−1)n

4n

〈
ω⊗nSU(2)×SU(2)

∣∣∣ω⊗nSU(2)×SU(2)

〉
(5.33)

on the tensor products of the symmetric and anti-symmetric part of the

pullback tensor fields

κSU(2)×SU(2) = ηSU(2)×SU(2) + iωSU(2)×SU(2) (5.34)

related to the orbits of the symmetry group of entanglement SU(2)×SU(2)

constructed in section 4.2?

For this purpose we apply the procedure of section 5.1.2 by first iden-

tifying the inverse functions λ(εn) and λ(µn) of the monotones (4.51) and
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(4.52),
1

12n
Tr(η2)n =

(
16λ4

3
− 32λ3

3
+ 4λ2 +

4λ

3
+

1

3

)n
(5.35)

(−1)n

4n
Tr(ω2)n =

(
4λ2 − 4λ+ 1

)n
(5.36)

as solutions of the equations(
16λ4

3
− 32λ3

3
+ 4λ2 +

4λ

3
+

1

3

)n
− εn(λ) = 0 (5.37)

(
4λ2 − 4λ+ 1

)n − µn(λ) = 0 (5.38)

associated with the inner products of the tensor products of the symmetric

tensor fields and the tensor product of the antisymmetric tensor fields re-

spectively. As a result we find both real and imaginary valued solutions. To

provide a physical interpretation we consider the real-valued solutions and

define the parameter transformation (5.14)

κεn := κλ(εn)(∂εnλ(εn))2 (5.39)

of the quantum Fisher information on the 1-parameter family of Schmidt

coefficient decomposed quantum states according to formula (5.14). In this

way we find the minumum number Mδ(εn) of measurements

Mδ(εn) =
1

ε2nδ
2

1

κεn
(5.40)

as defined in (5.19) for achieving an estimation with fixed relative error δ.

The result is illustrated with δ ≡ 1 for the first five powers in figure 3.

5.2.1 Discussion for monotones from the symmetric part

Let us begin to analyze the estimation of the entanglement monotones associ-

ated with the inner products on the tensor products of the symmetric tensor
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Figure 3: estimation of entanglement monotones εn and purity monotones µn
for the first five orders (each order corresponds to the same color as used in
the plot in figure 1). It shows the number Mδ of measurements in dependence
of the value εn (and µn respectively) of the monotones required for achieving
an estimation in a 99, 9% confidence interval with fixed relative error δ ≡ 1.
The dashed curves in the first plot correspond to the estimation of the linear
entropy, and in the second plot to the negative-valued estimation of the purity
as done in (5.27) when ‘reflected’ on the µ-axis.
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field in the first plot of figure 3. While the estimation of the linear entropy

(dashed curve) diverges for weakly entangled states in the limit εn → 0 (see

section 5.1.2 and [8]), we find for the tensorial monotones an approximative

improvement with a finite number of measurements towards the regime of

weak entanglement in dependence of the tensor field order n. The inflection

point into negative values indicates the boundary of the regime where the

approximation looses its validity. The validity of the approximation into the

regime of weekly entanglement may become enlarged by considering inner

products on tensor fields of higher order. The green curve in the first plot of

figure 3 corresponds to the highest order example n = 5 and clearly illustrates

this enlargement when compared to the lower tensor field orders.

5.2.2 Discussion for monotones from the anti-symmetric part

The estimation of the purity monotones associated with inner products on

the tensor products of the anti-symmetric tensor fields is illustrated in the

second plot of figure 3. All curves clearly show here an efficient estimation for

weakly entangled states, i.e. for all states close to µn = 1. The dashed curve

corresponds here to the estimation of the standard purity (section 5.1.3)

when reflected on the µ-axis into positive values. Indeed, only the curves

associated with the inner products on the tensor fields may admit a physical

interpretation.
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5.3 Conclusions and outlook

In the geometric formulation of quantum mechanics one considers the Fubini-

Study metric at the first place. Any action of the symmetry group of en-

tanglement on a family of entangled quantum state vectors induces a family

of degenerate pull back tensor fields each defined as pull back of the Fubini-

Study metric from the Hilbert space to the Lie group SU(2)×SU(2). Along

the decomposition of the Fubini-Study metric into a Riemannian and a sym-

plectic tensor field one finds a decomposition

κSU(2)×SU(2) = ηSU(2)×SU(2) + iωSU(2)×SU(2)

into degenerate symmetric and anti-symmetric pullback structures. Via an

inner product on higher order tensor fields it is possible to identify two

classes of monotonic functions characterizing the entanglement and purity

of a bipartite quantum system. These geometrically constructed classes of

entanglement and purity monotones provide advantages in the estimation

of entangled qubits when compared to standard entanglement and purity

monotones. The basic picture emerging here may be subsumed as follows.

While the inner product〈
η⊗nSU(2)×SU(2)

∣∣∣η⊗nSU(2)×SU(2)

〉
yields an approximative efficient entanglement estimation for all state vec-

tors, one finds for the inner product〈
ω⊗nSU(2)×SU(2)

∣∣∣ω⊗nSU(2)×SU(2)

〉
an exact efficient purity estimation for weakly entangled state vectors.

It would be interesting to investigate whether this approach admits also

advantages in the entanglement estimation of more general composite quan-

tum systems involving multi-partite systems, mixed quantum states and in-
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finite dimensional Hilbert spaces. As a matter of fact, such a generalization

becomes directly testable by the tensor field-valued pairing

{ρ~λ}~λ∈M × {U−1(g)dU(g)⊗k}g∈G (5.41)

↓ (5.42)

ρ~λ

(
U−1(g)dU(g)⊗k

)
≡ κG(~λ) (5.43)

as described here in section 4.5 between general manifolds {ρ~λ}~λ∈M of quan-

tum states and invariant operator valued tensor fields U−1(g)dU(g)⊗k on gen-

eral Lie groups G associated with a unitary representation U : G → U(H).

A generalization in several directions could therefore be tackled by focusing

on the corresponding inner products on tensor fields〈
κ⊗nG (~λ)

∣∣∣κ⊗nG (~λ)
〉
.

A deeper understanding on the relation with the quantum Fisher informa-

tion and all its possible generalized variants (see [21] and references therein)

finally, may come along here in terms of a geometrization of the C∗-algebraic

approach of quantum mechanics [41,61] (see appendix B) including star prod-

ucts of quantum tomograms [79] which may close a circle to the empirical

bounds on precision of quantum measurements in terms of generalized un-

certainty relations [86].

Indeed, some fundamental aspects in this direction have been found in

section 3 by providing a general framework for the translation of any given

quantum statistical measure

S : D(H)→ R+, (5.44)

including the von Neumann entropy, in terms of a functional

S̃ : FK(Γ)→ R+ (5.45)
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on the C∗-algebra of Kähler functions

fA(g) :=
〈g|A |g〉
〈g |g〉

=
〈ψ0|U(g)†AU(g) |ψ0〉

〈ψ0 |ψ0〉
(5.46)

on a unitary orbit Γ ⊂ H0. These Kähler functions are deeply connected to

Husimi functions

fρ(g) =
〈g| ρ |g〉
〈g |g〉

=
〈ψ0|U(g)†ρU(g) |ψ0〉

〈ψ0 |ψ0〉

= Tr

(
ρU(g)

|ψ0〉 〈ψ0|
〈ψ0 |ψ0〉

U(g)†
)
≡ Tr(ρU(g)E0U(g)†) (5.47)

– and therefore to a special subclass of quantum tomograms [79] – and

Wehrl type entropy inequalities as shown in section 3.1. A possible foun-

dation for generalized uncertainty relations finally, may become available in

terms of geometric inequalities as worked out in section 3.2 for the Robertson

Schrödinger inequality and for a version of a quantum Cramér Rao inequality.

Actually, the latter has been sufficient for taking into account some of the

current developments of quantum estimation theory – in particular – when

applied to the empirical bounds of entanglement quantification as considered

here in this last section of the underlying work.

At this point we shall remark: The challenge on an efficient empirical

quantification of quantum entanglement can be seen ‘embedded’ according to

Pawel Horodecki into a more general set of questions of quantum information

theory [80]. Horodecki indicated this class of questions in 2002 as follows:

“What kind of information can be extracted from an unknown quantum

state at small measurement cost?”

At least from the physicist point of view, this is perhaps one of the most

elementary question to begin with, when dealing with the notion of quantum

information. What we know from basic quantum mechanics is that we can
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extract Born type probability measures

Tr(ρEx) = p(x) (5.48)

or more general, quantum tomograms (compare also formula (5.47))

Tr(ρUsExU
†
s ) ≡ P(xs) (5.49)

at ‘low cost’ as they require only one POVM {Ex}x∈Q related correspon-

dently to only one single observable. This is in contrast to general quantum

statistical measures like the purity

Tr(ρρ) (5.50)

or the von Neumann entropy

Tr(ρ ln ρ) (5.51)

requiring a tomographic reconstruction of the state ρ involving a possibly

continuos set of POVMs related to a complete set of observables.

The content of this work has been focused on a third class of measures be-

ing extractable from quantum states in terms of what we could call geometric

measures

Tr(dρ⊗ dρ) (5.52)

Tr(ρU †dU⊗k) (5.53)

provided by the geometric formulation of quantum mechanics.

In fact, the geometric formulation of quantum mechanics provides perhaps

one of the most appropriated frameworks to tackle Horodecki’s question as

stated above. To be specific, the Fubini Study metric provides a conceptual

unification of the following both concepts, that is

• information of a quantum state, and
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• measurement costs

on the one hand by quantifying entanglement – as an extractable information

from a quantum state – in terms of

• the pullback on the symmetry group of entanglement,

and on the other hand, by quantifying the minimum of measurement costs

with

• the pullback on a 1-parameter family of quantum state vectors.

Of course it may remain an open problem to identify all properties of

a general quantum state (and therefore the ‘complete’ information from an

unknown quantum state) at small measurement cost. Geometry indeed, will

always provide the most fundamental mathematical language for describing

the state attributes of our world – no matter if classical or quantum.
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A Weyl Systems

Consider a symplectic vector space (V, ω) with an Abelian non-compact Lie

group of translations V ∼= R2n endowed with a symplectic structure ω. Any

generating vector field of translations in the associated Lie algebra may there-

fore be identified with an element v ∈ V according to the isomorphism

TvV ∼= V .

We consider an irreducible unitary (projective) representation of V on a

Hilbert space H defined by a Weyl-system, that is, a map W : V → U(H),

satisfying the following conditions [66]:

1. W is strongly continuous as a function on V ;

2. W (v + v′) = e−
i
2
ω(v,v′)W (v)W (v′).

According to the Stone-von Neumann theorem it is possible to write

W (v) = eiR(v), (A.1)

in terms of a self-adjoint realization R(v) of a generating vector field of

translations v. It implies

[R(v), R(v′)] = −iω(v, v′). (A.2)

Hence, all self-adjoint operators R(v) amounted with elements of a La-

grangian subspace of V commute.

In this regard we recall some basic notions of symplectic geometry (see

e.g. [87] p. 403) as follows. To any subspace

U ⊂ V, (A.3)

there is a ω-orthogonal complement

U⊥ := {v ∈ V |ω(v, u) = 0, u ∈ U}. (A.4)
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The subspace U may define either a isotropic or a coisotropic subspace if

U ⊂ U⊥ or U⊥ ⊂ U respectively. An isotropic subspace U which induces

together with another isotropic subspace U ′ a splitting

V = U ⊕ U ′, (A.5)

is called Lagrangian subspace. In turns out that U is Lagrangian iff U is

isotropic and has Dim(U) = 1
2
Dim(V ), which is equivalent with U = U⊥.

A given Lagrangian subspace U and its associated splitting into Lagrangian

subspaces

v := (u, f) ∈ U ⊕ U ′ (A.6)

induces a decomposition on the Weyl system into

W (v) = W (u, f) = e−
i
2
ω((u,0),(0,f)U(u)V (f) (A.7)

with

U ≡ W |U : U → U(H) = U(L2(U)) (A.8)

and

V ≡ W |U ′ : U ′ → U(H) = U(L2(U)). (A.9)

For ψ ∈ L2(U) the Weyl system action reads [66]

U(U ′)ψ(u) = ψ(u+ U ′) (A.10)

V (f)ψ(u) = e−iω((u,0),(0,f)ψ(u). (A.11)

A.1 Introducing canonical coordinates

A.1.1 Real coordinates

We have seen that given a symplectic structure ω on V , we may consider a

splitting into Lagrangian subspaces. In this way we may introduce canonical
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coordinates

v = (q, p) ∈ Rn ⊕ (Rn)∗ (A.12)

according to the splitting associated to the symplectic structure

ω = δjkdp
j ∧ dqk. (A.13)

Actually, a vector space of translations V may admit different symplectic

structures and associated splittings into Lagrangian subspaces in dependence

of the physical and experimental setting. For instance, we may deal either

with a composite phase space of n particles in one dimension or with one

particle in n dimensions:

V ∼= R2n ∼=

(T ∗R)n

T ∗Rn
(A.14)

Correspondently, these cases may endowed with distinguished symplectic

structures

ω :=



⊕n
j=1 ωj with ωj =

 0 1

−1 0

 . 0 1n

−1n 0

 .

(A.15)

Let {Xj}j∈J be a basis on V ∼= R2n (or a basis of generating vector fields in

the Lie algebra of V respectively). Such a basis becomes therefore represented

within a Weyl system by a set of Hermitian operators {R(Xj)}j∈J on H with

different position and momentum operator realizations

{R(X1), R(X2), ..., R(Xn+1), R(Xn+2), .., R(X2n)} :=

{Q1, P1, ..., Qn, Pn}

{Q1, Q2, ..., Pn−1, Pn}
(A.16)

in dependence of the symplectic structure.
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Remark A.1. Both settings may be related in terms of a permutation matrix

[59].

In any of the above two splittings in real canonical coordinates, we find

a Weyl system

W (q, p) = ei(q
jPj−pjQj) (A.17)

A.1.2 Complex coordinates

The latter expression becomes identified with the displacement operator when

rewritten in complex coordinates

W (z) ≡ ez
ja†j−z̄

jaj , (A.18)

as being used in quantum optics for n bosons in one dimension (see e.g. [59]).

The relation to real coordinates is given by taking into the decomposition

zj =
1√
2

(qj + ipj) (A.19)

in real and imaginary coordinates. Indeed, by setting κ1 = 1√
2
, both descrip-

tions become equivalent, i.e.

W (z) = W (q, p). (A.20)

The Weyl system generators iR(Xj) are related to the basis

{Zj}j∈J := {Xj + iXn+j}j∈J (A.21)

on V ∼= Cn ∼= R2n yielding the mode operators

R(Zj) = κ1(Qj + iPj) := aj, R(Z̄j) = κ1(Qj − iPj) := a†j, (A.22)

with κ1 ∈ R.
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A.2 Symplectic transformation

Let us focus on those transformations which leave the underlying symplectic

structure of a given Weyl-system invariant. These transformation define the

Lie group Sp(2n,R) of symplectic transformation

S : V → V, ω(Sv, Sv′) = ω(v, v′). (A.23)

On the level of the Weyl-system we find, that the following diagram

(V, ω)
W−−−→ U(H)

Sp(2n,R)3S
y yΦUS∈Aut(U(H))

(V, ω)
WS−−−→ U(H),

(A.24)

commutes, if we identify ΦUS with an automorphism

ΦUS(W (v)) = U−1
S W (v)US = W (Sv) := WS(v) (A.25)

with US ∈ U(H). This induces a transformation on the infinitesimal level of

the Hermitian operator representation given by

RS(v) ≡ R(Sv) = U−1
S R(v)US. (A.26)

The application of a symplectic transformation on a translation is taken into

account in the affine symplectic group

ISp(2n,R) := Sp(2n,R)~×R2n. (A.27)

Many quantum dynamical systems, as those being considered in quantum

optics and condensate matter, are based on unitary representations of the

latter group, defining in this way the so-called metaplectic representations
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[59]. Such representations may be generated by Hamiltonians

H =
n∑
k

g
(1)
k a†k︸ ︷︷ ︸

translations

+
n∑

k,l=1

g
(3)
kl a

†
ka
†
l︸ ︷︷ ︸

squeezing

+
n∑

k>l=1

g
(2)
kl a

†
kal︸ ︷︷ ︸

mixing

(A.28)

that are linear and bilinear in n field modes. They induce translations,

squeezing and mixing operations associated to unitary representations of non-

compact and compact subgroups of ISp(2n,R). In the case n = 2, for

instance, we encounter unitary representations of the subgroups

R4, SU(1, 1) and SU(2) (A.29)

respectively.

A.3 The Wigner-Weyl correspondence

Given a Weyl system W : V → U(H) we may define the so-called character-

istic function of a generic operator A on H by

χ[A](v) := Tr(AW (v)). (A.30)

Vice versa, to a function in L1(R2n, dnαdnx) one may associate an Hilbert-

Schmidt operator on L2(Rn, dnx) as follows [79]: Consider the Fourier trans-

form f̃ within the inverse Fourier transform formula

f(q, p) =

∫
dnαdnxf̃(α, x)ei(αq−xp) (A.31)

and replace the 1-dimensional irreducible unitary representation

ei(αq−xp) (A.32)
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of V ∼= R2n with the projective irreducible unitary representation of V , de-

fined by the corresponding Weyl-system

W (x, α) := ei(αQ−xP ), (A.33)

yielding the operator

W (f) :=

∫
dnα dnx f̃(α, x)W (x, α). (A.34)

This formula may now be compared with the reconstruction formula [59]

A =

∫
V

d2nv

πn
χ[A](v)W †(v) (A.35)

of a generic operator A from its characteristic function. At this point we

may introduce the so-called Wigner function of an operator A as the Fourier

transform of the characteristic function according to

W [A](q, p) :=

∫
dnα dnxχ[A](α, x)ei(αq−xp). (A.36)

In conclusion, the Weyl system framework provides a fundamental mathe-

matic tool to relate operators to functions and vice versa. In particular, this

allows to consider a Quantization-Dequantization algorithm scheme involving

both Weyl systems W and Wigner functions W according to the following

table:

Quantization Dequantization

‘Input’ f A

‘Output’ W (f) W [A]

The outlined dequantization correspondence should be taken with great care

to avoid physical misinterpretations. In particular, the Wigner function of

quantum state may also take negative values providing thus not a probability

but a quasi-probability distribution on the symplectic space V . Probability
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distributions may be defined on a Lagrangian subspace in terms of quantum

tomograms in terms of a inverse Radon transform of the Wigner function [79].

Vice versa, the Wigner function of a quantum state may be reconstructed

from a given a family of quantum tomograms in terms of a Radon transform.

Quantum tomograms are therefore of fundamental importance in quantum

estimation theory [83].
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B Tensor fields from geometrized C∗-algebras

By evaluating a quantum state on invariant operator valued tensor field on

a Lie group G as done in section 4.5, we may identify the resulting covariant

classical tensor field as a pull-back induced by the projection of the Lie group

G on a homogenous space G/G0 generated by the associated action of G in the

vector space A of a C∗-algebra. This suggests consider a more general class

of tensor fields on G by taking into account tensor fields from geometrized

C∗-algebras and their pull-back to the group.

Let us restart for this purpose by considering the definition of a finite

dimensional C∗-algebra at the first place:

Definition B.1 (Finite dimensional C∗ algebra). A Banach space A which

is endowed with an associative product

A×A →A (B.1)

(A,B) 7→A ·K B, (B.2)

and an involution operation

A → A (B.3)

A 7→ A∗, (B.4)

which is compatible with the Banach norm according to

||AA∗|| = ||A||2, (B.5)

is called a finite dimensional C∗-algebra.

Any finite dimensional C∗-algebra is isomorphic to an algebra Mn(C) of

complex n× n-matrices. Here we note that the usual row-by-column matrix

product

(A,B) 7→ AB (B.6)
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is a special example of an associative product. In general we may deal in

this regard also with alternative products not necessarily coinciding with the

usual matrix product. For instance we may use

A ·K B ≡ AKB (B.7)

with a fixed matrix K ∈Mn(C), which satisfies

(A ·K B) ·K C = A ·K (B ·K C), (B.8)

for all A,B,C ∈ A.

By considering a realification of the the C∗-algebra Mn(C) from A ∼= Rn2 ⊕
iRn2

to

AR ∼= R2n2

, (B.9)

we may deal with the question whether the later stands in an analogy with a

’classical phase space’ manifold, admitting classical tensors in a similar way it

has been constructed on the realification of a Hilbert space in [1]. In contrast

to a Hilbert space, we have to take new structures into account which come

along the definition of a C∗-algebra. They essentially consist of

• an associative bi-linear product, which is non-commutative and

• a Banach Norm, compatible with the product.

As we will see in the following, both points provide implications for the

construction of tensor fields, in particular defined in contra-variant form on

the dual vector space A∗, resp. in covariant form on the vector space of the

C∗-algebra A. Let us start with the construction of contra-variant tensors

by following the argumentation line as proposed in [61].
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B.1 Contra-variant tensors on the dual vector space

A∗

Consider the dual space

A∗ := Lin(A) (B.10)

of complex valued linear functionals

α : A → C (B.11)

on A. Note that the duality isomorphism is considered here in the category

of (finite dimensional) vector spaces and not in the category of abstract C∗-

algebras. Here we observe that for all elements A ∈ A there exits an element

Â in the bi-dual (A∗)∗ := Lin(A∗), i.e. the space of linear functionals

Â : A∗ → C (B.12)

on the dual space A∗, provided by

Â(α) := α(A) (B.13)

for all α ∈ A∗. The relation (B.13) defines an embedding

A ↪→Lin(A∗) ⊂ F(A∗) (B.14)

A 7→Â, (B.15)

of A into to the bi-dual (A∗)∗ and will be of fundamental importance for

the following discussion. In particular, within the bi-dual space of linear

functionals on A∗ we are allowed to identify a commutative product among

linear ’functions’ which provides a quadratic function

(Â · B̂)(α) := Â(α) · B̂(α), (B.16)
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and therefore caries the usual differential calculus. In particular we will have

an exterior derivative on elements of Lin(A∗) where the usual Leibniz-rule is

available according to

d(Â · B̂) = dÂ · B̂ + Â · dB̂. (B.17)

In this way we may identify dÂ as a 1-form on A∗, resp. as a section in the

global trivialized co-tangent bundle over the dual space according to

dÂ : A∗ → T ∗A∗ = A∗ × (A∗)∗ ≡ A∗ ×A. (B.18)

α 7→ (α, Â) ≡ (α,A), (B.19)

i.e. a section in a vector bundle A∗ ×A.

On the other hand we may translate the non-commutative product

A ·K B (B.20)

on A into a corresponding non-commutative product on Lin(A∗), whenever

we consider the embedding (B.13), as a way to translate the product between

operators to a product between functions according to

α(A ·K B) =(B.13) Â ·K B(α) := Â(α) ?K B̂(α). (B.21)

Such a product appears in the literature of non-commutative geometry and

provides an instance of a so called star-product (see e.g. [88]). It is non-

local product since it is associated with row-by-column product which is the

analog of the convolution product16. The non-commutative structure of A∗

is now completely encoded in the product ?K between these functions in the

bi-dual space Lin(A∗) ⊂ F(A∗).
16For instance the usual Moyal product is the convolution product on the Heisenberg-

Weyl group.
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This essentially allows us now to identify a contra-variant rank-2 tensor field

on A∗ according to the construction

τK(dÂ, dB̂)(α) := α(A ·K B) = Â(α) ?K B̂(α). (B.22)

Hence, we arrived to a fundamental relation which provides us a geometriza-

tion of the dual space of any given finite dimensional C∗-algebra [61]. More-

over, we may consider the decomposition of the associative product on the

C∗-algebra according to

A ·K B =
1

2
(A ·K B +B ·K A) +

1

2
(A ·K B −B ·K A) (B.23)

and identify a corresponding induced decomposition of the tensor field by

τK(dÂ, dB̂)(α) = α(A ◦K B) + iα([A,B]K), (B.24)

which geometrizes the symmetric and the anti-symmetric products

A ◦K B :=
1

2
(A ·K B +B ·K A) (B.25)

[A,B]K :=
1

2i
(A ·K B −B ·K A) (B.26)

by means of a real symmetric

RK(dÂ, dB̂)(α) := α(A ◦K B), (B.27)

and an imaginary anti-symmetric

ΛK(dÂ, dB̂)(α) := α([A,B]K), (B.28)

(2,0)-tensor field on A∗. Both structures are equivalently defined via sym-

metrized and anti-symmetrized star-products on the bi-dual of linear func-
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tionals on A∗ according to

RK(dÂ, dB̂)(α) =
1

2
(Â ?K B̂ + B̂ ?K Â)|α := (Â, B̂)k|α (B.29)

ΛK(dÂ, dB̂)(α) =
1

2i
(Â ?K B̂ − B̂ ?K Â)|α := {Â, B̂}k|α. (B.30)

It is clear that distinguished bi-linear products A ◦K B and [A,B]K and

associated contra-variant tensors may be realized in this regard in dependence

of the choice of the real matrix K ∈Mn(C) coming along the product

A ·K B ≡ AKB (B.31)

of the C∗-algebra. In particular, if we choose the identity

K ≡ 1 ∈Mn(C) (B.32)

we recover the standard non-commutative associative matrix product, which

allows to identify

R1(dÂ, dB̂)(α) := α([A,B]+) = (Â, B̂)|α, (B.33)

Λ1(dÂ, dB̂)(α) := α([A,B]−) = {Â, B̂}|α, (B.34)

a Riemanian and a Poisson tensor field, which are induced by a Jordan and a

Lie product respectively. Correspondently, theses products provide a Jordan

and a Poisson bracket on the bi-dual Lin(A∗) ⊂ F(A∗) of linear functionals

on A∗. Moreover, by restricting to the real elements of a complex matrix

algebra endowed with the standard matrix product corresponding to K = 1,

we may find that both products, the symmetric Jordan product and and Lie

product are closed in respect to a Lie-Jordan algebra [41]. Hence, we may

also directly start on the subspace of real elements provided by the Hermitian

matrices and find an equivalent geometrization on the space of observables
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in terms of a Riemanian and a Poisson structure

R1(dÂ, dB̂)(ξ) := ξ([A,B]+) = (Â, B̂)|ξ, (B.35)

Λ1(dÂ, dB̂)(ξ) := ξ([A,B]−) = {Â, B̂}|ξ, (B.36)

for all

ξ ∈ u∗(n) := Lin(u(n)) (B.37)

and

A,B ∈ u(n), Â, B̂ ∈ Lin(u∗(n)) (B.38)

on the space u∗(n) of real valued linear functionals defined on u(n).

Remark B.2. The geometric structures in (B.35),(B.36) can be recovered

by a momentum-map push-forward of a contravariant Hermitian tensor field

from a Hilbert space H ∼= Cn to the corresponding space of observables u∗(n)

[43]. In particular, one encounters in this way a Hermitian realization, which

provides a generalization of symplectic realizations from symplectic to Poisson

manifolds [61].

We may now ‘close a circle’, namely by defining a covariant defined tensor

field on the vector space of a C∗-algebra A. For a general state ω ∈ A∗ this

covariant tensor field will be a degenerate pull-back tensor field from a GNS-

constructed Hilbert spaceHω := A/Jω. The identification of such a covariant

tensor field can be made explicit as follows.

B.2 Covariant tensors on the vector space A

As we remarked at the beginning, a C∗-algebra may admit a Banach Norm,

which is not necessarily induced by an (Hermitian) inner product. However,

from physical point of view, we are interested in the Hilbert spaces identified

via the Gelfand-Naimark-Segal-construction (GNS). In this regard we shall
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restrict our attention to inner products defined by

〈A |A〉ω := ω(A†A) (B.39)

on A, with

ω ∈ A∗, (B.40)

a fixed linear functional on A. The latter is identified with a state, whenever

we associate to it the two additional properties

Positivity :⇔ ω(A†A) > 0 (B.41)

Normalization :⇔ ω(1) = Tr(ρω) = 1. (B.42)

We will denote the space of states associated to a given C∗-algebra by D(A).

At this point we may consider a covariant tensor field on A

τω(XA, XB)(a) := ω(XA(a) ·XB(a)), (B.43)

defined by a contraction with vector fields

XC : A → TA = A×A (B.44)

a 7→ (a, C). (B.45)

Hence, we arrive to an invariant (0, 2)-tensor field

τω(XA, XB)(a) = ω(A†B). (B.46)

A coordinate description is provided as follows. To a given element A ∈ A =

Mn(C), we may either find a coordinate matrix description

A =
∑
j,k

Ajk |j〉 〈k| . (B.47)
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or, by considering a basis {|ej〉}j∈J on the vector space A, we may expand

any given element A ∈ A as a vector

A ≡ |A〉 =
n∑
j=1

〈ej |A〉 |ej〉 =
n∑
j=1

αj |ej〉 , (B.48)

where we identified coordinate functions

〈ej |A〉 := αj(A), αj ∈ A∗. (B.49)

with linear functionals on A. The identification

A ≡ |A〉 (B.50)

between (matrix) column-row objects A and (vector) column objects |A〉 can

be made clear due to the 1-to-1 corespondence between the linear functionals

and matrix coefficients Ajk

{αl}l∈I ↔ {Ajk}j,k∈J , (B.51)

resp. basis vectors

{|el〉}l∈I ↔ {|j〉 〈k|}j,k∈J , (B.52)

Here we may introduce the notation

d |A〉 ≡ |dA〉 = dA, (B.53)

defined by the exterior derivative on the coordinate functions according to

|dA〉 :=
n∑
j=1

dαj |ej〉 (B.54)

and find
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Proposition B.3.

τω ≡ 〈dA ⊗ dA〉ω := ω(dA† ⊗ dA). (B.55)

Proof. One has to show that

ω(dA† ⊗ dA)(XB, XC)(a) = ω(B†C). (B.56)

By writing the left hand side in coordinates we find

ω(dA† ⊗ dA)(XB, XC)(a) =
n∑

j,k=1

ω(|ej〉 〈ek|)dαj ⊗ dαk(XB, XC)(a) (B.57)

with XB : a 7→ (a,B) and XC : a 7→ (a, C), and their expansion

XB =
∑
j=1

〈ej |B〉
∂

∂αj
=
∑
j=1

αj(B)
∂

∂αj
(B.58)

XC =
∑
j=1

〈ej |c〉
∂

∂αj
=
∑
j=1

αj(C)
∂

∂αj
(B.59)

in a holonomic basis of A.

To this point, we may focus on some direct implications of the geometriza-

tion

(A, 〈A |A〉ω)→ (A, 〈dA ⊗ dA〉ω) (B.60)

of (degenerate) inner products on a given C∗-algebra. As indicated before,

such a construction stands in a neat relation to the geometrization

(Hω, 〈ψ |ψ〉)→ (Hω, 〈dψ ⊗ dψ〉) (B.61)

of the Hermitian inner product 〈ψ |ψ〉 on a Hilbert space by means of a

Hermitian tensor field 〈dψ ⊗ dψ〉, which we has been considered in the ge-
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ometric formulation of quantum mechanics as presented here in this work

in section 2. In fact, the later Hermitian tensor field may now be recovered

from the GNS-construction associated to the above considered geometrized

C∗-algebra and goes along the following lines.

Remark B.4. In general, the inner product of a vector space V admits a

geometrization by means of a covariant tensor field, while the dual V ∗ takes

into account a contra-variant tensor field. The case where V coincides with

a Hilbert manifold is described in section 2.2.

B.3 Kählerian manifolds from states

We may now consider real coordinate description of the pair (A, 〈dA ⊗ dA〉ω).

For this purpose we find on each element A ∈ A the decomposition into

A =
∑
j,k

Ajk(A) |j〉 〈k| ≡
∑
j,k

(Qjk(A) + iPjk(A)) |j〉 〈k| (B.62)

where Qjk, Pjk ∈ A∗ denote real scalar valued coordinate functions

Qjk(A) =
1

2
Tr(Â(α)+(Â(α))†) |j〉 〈k|) =

1

2
Tr(α(A)+(α(A))† |j〉 〈k|) (B.63)

Pjk(A) =
1

2i
Tr(Â(α)− (Â(α))†) |j〉 〈k|) =

1

2i
Tr(α(A)− (α(A))† |j〉 〈k|)

(B.64)

on A. In this coordinates one finds the 1-forms dQjk, dPjk ∈ T 0
1 (A) and an

operator valued tensor

dA† ⊗ dA = (dQkj − idPkj) |j〉 〈k| ⊗ (dQls + idPls) |l〉 〈s|

= |j〉 〈k |l〉 〈s| (dQkj − idPkj)⊗ (dQls + idPls)

= |j〉 〈s| (dQkj − idPkj)⊗ (dQks + idPks)

= |j〉 〈s| (dQkj ⊗ dQks + dPkj ⊗ dPks + idQkj ⊗ dPks− idPkj ⊗ dQks) (B.65)
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with the tensor product ⊗ defined on T 0
1 (A). Hence, the tensor field (B.55),

〈dA ⊗ dA〉ω on A will read in these coordinates as

Tr(ω |j〉 〈s|)(dQkj⊗dQks+dPkj⊗dPks+idQkj⊗dPks−idPkj⊗dQks). (B.66)

B.3.1 Pure states

In this setting we identify a GNS-construction map

πω : A → Hω := A/Jω (B.67)

defined by the Gelfand ideal Jω. If we consider the case of a pure state

ω := |1〉 〈1| one gets due to the coefficients in (B.66),

Tr(|1〉 〈1 |j〉 〈s|) = δs1δj1, (B.68)

a degenerate covariant tensor field on A

dQk1 ⊗ dQk1 + dPk1 ⊗ dPk1 + idQk1 ⊗ dPk1 − idPk1 ⊗ dQk1, (B.69)

which is a πω-induced pull-back from a Kählerian tensor field living on the

‘quotient’ Hω.This can be seen by setting Qk1 := qk, Pk1 := pk which re-

lates the degenerate pull-back tensor (B.69) to a Riemannian and symplectic

structure

dqk ⊗ dqk + dpk ⊗ dpk + idqk ⊗ dpk − idpk ⊗ dqk

= dqk � dqk + dpk � dpk + idqk ∧ dpk (B.70)

on the GNS-constructed Hilbert space Hω = Cn.

B.3.2 Mixed states

Let us consider next the generalized case of a mixed state ω :=
∑m

i=1 λi |i〉 〈i|
in terms of a rank-m projector with λi > 1 and

∑m
i=1 λi = 1. The coefficients

114



in (B.66) become then

m∑
i=1

Tr(λi |i〉 〈i |j〉 〈s|) =
m∑
i=1

λiδisδij. (B.71)

In this way one finds the degenerate covariant tensor field on A

m∑
i=1

λi(dQki ⊗ dQki + dPki ⊗ dPki + idQki ⊗ dPki − idPki ⊗ dQki)

=
m∑
i=1

dq
(i)
k ⊗ dq

(i)
k + dp

(i)
k ⊗ dp

(i)
k + idq

(i)
k ⊗ dp

(i)
k − idp

(i)
k ⊗ dq

(i)
k

=
m∑
i=1

dq
(i)
k � dq

(i)
k + dp

(i)
k � dp

(i)
k + idq

(i)
k ∧ dp

(i)
k , (B.72)

with λiQki := q
(i)
k , λiPki := p

(i)
k . Again, we may identify this structure with a

pull back tensor field from the corresponding GNS-constructed Hilbert space

Hω =
⊕m

i=1 Cn.

B.3.3 Maximal rank states

It becomes clear that if we consider a (normalizing) multiple of the identity

ω =
1

n
1, c ∈ R0 (B.73)

we may identify an Hermitian inner product

〈A |A〉 1
n
1 :=

1

n
Tr(A†A), (B.74)

which makes out of any vector space of a given C∗-algebra A ∼= Mn(C) a

Hilbert space. This inner product may admit two possible interpretations.

First it recovers the inner product which induces the Hilbert-Schmidt norm

on a finite dimensional Hilbert space of ‘Hilbert Schmidt operators’, whenever
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we encounter the isomorphism

A ∼= H∗ ⊗H (B.75)

in the category of Banach vector spaces.

As second interpretation we identify it with the Hermitian inner product on

a GNS-constructed Hilbert space

Hω := A/Jω ∼= A for ω =
1

n
1, (B.76)

which becomes isomorphic to the matrix Banach space itself, once the Gelfand

ideal Jω turns out to be trivial in the case for maximal mixed state ω = 1
n
1.

This is also the case in the more general situations for states with maximal

rank (m=n),

ω :=
n∑
i=1

λi |i〉 〈i| . (B.77)

Hence, we end up with a GNS-induced Hermitian tensor field, which is non-

degenerate on the whole space A, which in this way becomes a Kählerian

manifold.

Remark B.5. These observations may lead to consider the a family vector

spaces

Aα := (A, 〈A |A〉α) (B.78)

with distinguished, in general degenerate inner products 〈A |A〉α parametrized

by the space of states D(A) according to⋃
α∈D(A)

Aα. (B.79)

Via the GNS-construction over each state one finds⋃
α∈D(A)

Aα/Jα =
⋃

α∈D(A)

Hα
∼=loc D(A)×Hα, (B.80)
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and therefore a Kähler bundle over D(A) (see also [61] and references therein).

Note that a Kähler bundle is not a fiber bundle in the usual sense, since its

‘fibers’ Hα are not isomorphic. The structure

〈dA ⊗ dA〉α (B.81)

provides therefore a family of tensor fields on A being parametrized by α ∈
D(A).

B.4 Covariant tensors on u∗(n) - Construction in the

Bloch representation

Consider a decomposition of the vector space A ∼= Mn(C) of complex matri-

ces according to

A = ReA+ ImA, (B.82)

with

Mn(C) ∼= Rn2 ⊕ iRn2 ∼= u∗(n)⊕ iu∗(n), (B.83)

into two subspaces of Hermitian and anti-Hermitian matrices by decomposing

each element into real and imaginary part

A ≡ A1 + iA2, Ak ∈ u∗(n), (B.84)

with

A1 :=
1

2
(A+ A†) (B.85)

A2 :=
1

2i
(A− A†). (B.86)

By introducing a basis {σj}j∈J of Hermitian matrices on the real subspaces

u∗(n) we identify coordinate functions

qj(A1) := σj(A1) ≡ Tr(σjA1) (B.87)
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pj(A2) := σj(A2) ≡ Tr(σjA2) (B.88)

as particular instances of real-valued linear functionals on u∗(n) defined by

the introduced basis elements. Hence, we have for all Ak ∈ u∗(n)

qj, pj ∈ Lin(u∗(n),R), (B.89)

where we shall note, that q1 and p2 are functionals on distinguished spaces

appearing as two (direct summed) copies of u∗(n).

By means of this functionals we recover the Bloch representation expansions

A1 = q0(A1)1 +
∑
j=1

qj(A1)σj ≡
∑
j=0

qj(A1)σj (B.90)

A2 = p0(A2)1 +
∑
k=1

pk(A2)σk ≡
∑
j=0

pj(A2)σj, (B.91)

where we set σ0 ≡ 1. Within this coordinates, we identify the Hermitian

matrix valued 1-forms

dA1 =
∑
j=0

dqj(A1)σj (B.92)

dA2 =
∑
k=0

dpk(A2)σk (B.93)

on the subspace u∗(n) of Hermitian matrices, which gives rise to an operator

valued 1-form

dA = dA1 + idA2 (B.94)

on A. In this way we may identify an operator valued covariant tensor field

dA† ⊗ dA. (B.95)

It decomposes into

dA1 � dA1 + dA2 � dA2 + idA1 ∧ dA2, (B.96)
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a symmetric and an anti-symmetric operator valued tensor (0,2)-tensor. Here

we may consider the pull-back of the tensor field (B.96) from A to ReA =

u∗(n), whenever we set dA2 ≡ 0. In particular for n = 2 we find

σjdq
0 � dqj +

3∑
j=0

1dqj � dqj + iσlεjkldq
j ∧ dqk. (B.97)

An evaluation with an dual element ω ∈ A∗ ∼= M2(C) gives

Tr(ωσj)dq
0 � dqj +

3∑
j=0

Tr(ω)dqj � dqj + iTr(ωσl)εjkldq
j ∧ dqk. (B.98)

If we set

ω ≡ A1 (B.99)

we find

qjdq0 � dqj + 2q0dqj � dqj + iqlεjkldq
j ∧ dqk. (B.100)

On the other hand, if ω is a multiple of the identity

ω ≡ c1, (B.101)

we end up with an Euclidean tensor field. In particular for c ≡ 1/n we have

3∑
j=0

dqj � dqj. (B.102)

B.5 Tensors from G-orbits - A relation to IOVTs

For a general submanifold N being embedded in the vector space A of a C∗-

algebra of finite dimensional operators, we will find for a given embedding

ι : N ↪→ A, (B.103)
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a pull-back tensor field

ι∗N 〈dA ⊗ dA〉ω (B.104)

on N . In particular we will be interested in the following to consider cases

where N admits the structure of a homogenous space by means of orbits

associated to a unitary representation of a Lie group G in A. By considering

for this purpose a family of actions of G on a given fiducial operator A0 ∈
A, we encounter several possibilities for realizing the embedding of these

orbits in A . There will be indeed different representations of the group

G generating the corresponding orbit G/GA0 in A by acting on this fiducial

point transitively (all invariant actions to be identified are denoted here by

the isotropy group GA0). Hence, we have to distinguish different embedding of

the orbit in dependence of the chosen representation. As a first fundamental

difference we shall distinguish two classes provided by vector representation

actions on the one hand, and adjoint representation actions on the other

hand.

B.5.1 Vector representation induced orbits

By taking into account the n2-dimensional complex vector space structure of

A we may identify vector representations

Q→ Aut(A) = GL(n2,C), (B.105)

in particular by focusing on those given by unitary vector representations of

a unitary subgroup Q ⊂ U(n),

Q→ U(n2) ⊂ GL(n2,C), (B.106)

U(q)U(q′) = U(q q′), (B.107)

with q, q′ ∈ Q.

Remark B.6. The following consideration may become valid also for unitary
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representations of general Lie groups G. For sake of simplicity however,

we shall restrict in this and the following subsection to case of a unitary

representation of a unitary subgroup Q ⊂ U(n2).

The action on a fiducial point A0 ∈ A reads

U(q)A0 ≡ Aq ∈ A, q ∈ Q (B.108)

and defines an embedding of the group manifold Q in the dual algebra A
by means of an orbit Q/QA0 . A particular simple embedding of Q may be

achieved, whenever we have the special setting given by Q = U(n2), A0 = 1,

and U(q) = q, the defining representation. The embedding action (B.108)

reduces to

U(q)1 ≡ q ∈ A, q ∈ Q, (B.109)

It is important to underline this special case, since we will encounter much

more possibilities of realizing the embedding, once we have to deal with more

generic situations given by Q ⊂ U(n).

A homogeneous space Q/QA0 which becomes embedded according to (B.108)

in A induces a pulled back tensor

ι∗Q 〈dA ⊗ dA〉ω = Tr(ω dA†q ⊗ dAq) (B.110)

on the Lie group Q.

To give an explicit expression of the differentials involved in the pulled back

tensor, we need to specify a Lie algebra representation

R : TeQ→ TeU(n), (B.111)

[R(ej), R(ek)] = R([ej, ek]), (B.112)

associated to (B.106) where {ej}j∈J denotes a basis of Hermitian matrices

spanning the Lie algebra TeQ. By the use of anti-Hermitian matrix valued
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left invariant 1-forms

U †(q)dU(q) ≡ iR(ej)θ
j(q) (B.113)

composed out of a basis {θj}j∈J of left invariant 1-forms on the group man-

ifold and a basis {ej}j∈J of Hermitian matrices spanning the tangent space

TeU(n), one finds then

dU(q) = iU(q)R(ej)θ
j, (B.114)

and therefore

dAq = dU(q)A0 = iU(q)R(ej)θ
jA0. (B.115)

In this way the pulled back tensor field reads

Tr(ω dA†q ⊗ dAq) = Tr(AdA0(ω)R(ej)R(ek))θ
j ⊗ θk, (B.116)

admitting a decomposition into a symmetric

Tr(AdA0(ω) [R(ej), R(ek)]+)θj � θk, (B.117)

and an anti-symmetric tensor

iTr(AdA0(ω) [R(ej), R(ek)]−)θj ∧ θk. (B.118)

Here we shall identify the coefficients of the tensor in the above decomposition

by means of

Ljk := Tr(AdA0(ω)R(ej)R(ek)) (B.119)

L(jk) := Tr(AdA0(ω) [R(ej), R(ek)]+)) (B.120)

L[jk] := Tr(AdA0(ω) [R(ej), R(ek)]−). (B.121)

Remark B.7. The symmetric part of the tensor field may become related to a
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Riemannian structure if AdA0(ω) is a Hermitian operator which is positive.

In general however, we may encounter also pseudo-Riemanian structures,

whenever AdA0(ω) turns out to be an element of the sub-algebra u∗k+,k−(n) ⊂
A of Hermitian matrices with k+ positive and k− negative eigenvalues. The

relation of the of the sub-algebra u∗k+,k−(n) with semi-Hermitian structures

has been described in [43].

Remark B.8. For A0 = 1 we will have a trivial isotropy group Q1 = {1}.
In this case the anti-symmetric tensor

Tr(ω [R(ej), R(ek)]−)θj ∧ θk (B.122)

identifies a pull-back structure on the orbit Q/Q1 = Q. It will vanish in

dependence of the state ω in all directions R(ej) with

[R(ej), ω]− = 0 (B.123)

due to

Tr(ω [R(ej), R(ek)]−) = Tr(R(ek) [ω,R(ej)]−). (B.124)

With other words the pulled back tensor on the orbit Q/Q1 = Q will be

degenerate in these directions. On the corresponding quotient space Q/Qω

however, with Qω, an isotropy subgroup of Q being generated by all Hermitian

matrices R(ej) which commute with the state ω, this tensor becomes related to

a non-degenerate and therefore symplectic structure. Moreover, it coincides

with the symplectic tensor

Tr(ω dU † ∧ dU), (B.125)

which has been related to the analysis on degeneracy structures of geometric

phases for multi-level quantum systems discussed in [72].

In particular we may distinguish between different types of pulled back
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tensors according to the three special cases

AdA0(ω) =


ω for A0 = 1

A0A
†
0 for ω = 1

A2
0A
†
0 for ω = A0.

(B.126)

Crucially, the first two cases provide a relation to tensor fields from quantum

state-evaluated IOVTs on Lie groups G as discussed in section 4.5.1. Indeed,

in the second case, A0A
†
0 is a Hermitian operator, which is positive. Hence,

by taking into account a normalizing factor (Tr(A0A
†
0))−1 we shall be able to

close a circle to the IOVT construction as done in section 4.5.1. This will be

discussed for general Lie groups G in detail in subsection B.5.3.

B.5.2 Adjoint representation induced orbits

The unitary representation U(q) ∈ U(n) in (B.106) may induce a non-

equivalent class of embeddings of orbits in A by means of the adjoint action

Aq ≡ U(q)A0U
†(q), (B.127)

on a fiducial point A0 ∈ A. The corresponding isotropy group QA0 becomes

in this case defined by all q ∈ Q for which

[U(q), A0] = 0 (B.128)

holds. The induced pulled back tensor on Q ⊂ A may read then again

formally

ι∗Q 〈dA ⊗ dA〉ω = Tr(ω dA†q ⊗ dAq). (B.129)

The evaluation of the coefficients however, will differ crucially from those in

(B.119)−(B.121) associated to the vector representation induced embedding
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(B.108), as we will show in the following. With the differential dAq given by

dAq = AdU(q)[U
†(q)dU(q), A0] (B.130)

and the operator-valued left invariant 1-forms

U †(q)dU(q) = iR(ej)θj(q) (B.131)

with {θj}j∈J , as defined in section 4.5.1 as a basis of left-invariant 1-forms

on the Lie group manifold Q (with a Lie-algebra admitting a basis {ej}j∈J)

, one finds

Tr(ω(U [iR(ej), A0]U †U [iR(ek), A0]U †))θj ⊗ θk

= −Tr(AdU(q)(ω)[R(ej), A0][R(ek), A0])θj ⊗ θk. (B.132)

This tensor field shows clearly that it is degenerate along the commutant

of A0. Hence, it provides the pull-back tensor field from a non-degenerate

structure on the homogeneous space Q/QA0 .

By focusing on the coefficients of the tensor, evaluated on the identity q0 ≡
1 ∈ Q with U(q0) = 1 we find

Kjk := −Tr(ω[R(ej), A0][R(ek), A0]), (B.133)

admitting via (anti)-symmetrization a decompostion

−Tr(ω[[R(ej), A0], [R(ek), A0]]+)− iTr(ω[[R(ej), A0], [R(ek), A0]]−). (B.134)

Hence, the tensor coefficients may denoted in the following form

Kjk = K(jk) + iK[jk], (B.135)
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decomposed into a symmetric part

K(jk) := −Tr(ω[[R(ej), A0], [R(ek), A0]]+) (B.136)

and an anti-symmetric part

K[jk] := −Tr(ω[[R(ej), A0], [R(ek), A0]]−). (B.137)

Remark B.9. The anti-symmetric part

K[jk] = −Tr([R(ej), A0] [ω, [R(ek), A0]]−) (B.138)

will vanish along all directions [R(ek), A0] for which

[ω, [R(ek), A0]]− = 0 (B.139)

holds. It defines therefore a symplectic structure on the quotient space (Q/QA0)/Qω

with Qω, the isotropy group generated by the corresponding invariant direc-

tions [R(ek), A0]. For the special case ω = 1 one finds therefore only a

symmetric part

Kjk = K(jk) = −Tr([R(ej), A0][R(ek), A0]), (B.140)

which defines a left-invariant metric [72].

The tensor coefficients described in (B.133)-(B.137) may extract local

properties of the orbits. Indeed, by considering variational aspects of these

tensors in the neighborhood of q0 = 1, we may find also global properties

of the orbits encoded by higher rank tensors, like for instance the Riema-

nian curvature associated to a Riemannian metric (B.140). Anti-symmetric

tensors which are symplectic on the other hand, may be used for the con-

structions of volume-forms. More general, by applying k times the tensor
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product on the differential (B.130)

dAq = AdU(q)[iR(ej), A0]θj(q) (B.141)

of the matrix valued function Aq on the orbit, we may consider in this regard

a (0,k)-tensor construction

lk⊗
l=l1

dAq = (i)kU(q)

lk∏
l1

[R(el), A0]U(q)†
lk⊗
l=l1

θl (B.142)

and its evaluation on the tangent spaces according to

(i)k Tr

(
AdU(q)(ω)

lk∏
l=l1

[R(el), A0]

)
lk⊗
l=l1

θl. (B.143)

In this way we may identify for instance the coefficients of a scalar valued

(0,4)-tensor field defined globally on the orbit by

Tr(AdU(q)(ω)[R(el), A0][R(er), A0][R(ej), A0][R(ek), A0]). (B.144)

The later reduces to

Klrjk := Tr(ω[R(el), A0][R(er), A0][R(ej), A0][R(ek), A0]), (B.145)

when evaluated over q0 = 1.

B.5.3 A relation to IOVTs on G: The case ω = 1

Let us restart by considering an inner product

cTr(ωA†A) (B.146)

127



on a C∗-matrix algebra A ∼= Mn(C) which becomes identified with a Hilbert

manifold of Hilbert Schmidt operators in finite dimensions for ω = 1, where

c ∈ R0 denotes a normalization constant. With (B.55), we may promote this

inner product to a tensor field

cTr(ωdA† ⊗ dA), (B.147)

on the vector space A. For ω = 1 we find:

Theorem B.10. Let {θj}j∈J a basis of left-invariant 1-forms on G, and

{Xj}j∈J , a Lie algebra basis of G with {iR(Xj)}j∈J , its representation in the

Lie-Algebra of U(H) associated to a unitary representation U : G → U(H).

The submersion

ι : G → A (B.148)

defined by the action

Ag ≡


U(g)A0U(g)−1, (adjoint represention)

U(g)A0, (vector representation)

(B.149)

induces then a pull-back of the tensor field

β := cTr(dA† ⊗ dA) (B.150)

from A to G, according to

ι∗Gβ =


cTr([R(Xj), A

†
0][R(Xk), A0])θj ⊗ θk,

cTr(A0A
†
0R(Xk)R(Xk))θ

j ⊗ θk
(B.151)

associated to the adjoint and the vector representation acting on A0 ∈ A ∼=
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Mn(C) respectively.

Proof. The pull-back of the tensor field

ι∗Gβ = cTr(dι∗G(A
†)⊗ dι∗G(A)) (B.152)

is provided by the pull-back of a function A ∈ Lin(A) on the dual algebra A
to a function

ι∗G(A) ≡ A(•) : g 7→ Ag (B.153)

on the Lie group manifold G. The pull-back of the function is induced by the

immersion of the Lie-group in dependence of the chosen action in (B.149).

Hence, the pull-back tensor is given by evaluating

cTr(dA†g ⊗ dAg). (B.154)

Let us begin with the adjoint representation, where we consider the relation

d(U(g)U(g)−1) = 0, resp.

dU(g)−1 = −U(g)−1dU(g)U(g)−1, (B.155)

within the exterior derivative

dρg = dU(g)A0U(g)−1 + U(g)A0dU(g)−1

= dU(g)A0U(g)−1 − U(g)A0U(g)−1dU(g)U(g)−1. (B.156)

By multiplication with the identity on the first summand we get

U(g)U(g)−1dU(g)A0U(g)−1 − U(g)A0U(g)−1dU(g)U(g)−1

= U(g)([iR(Xj)θ
j, A0])U(g)−1,

where we identify the left-invariant operator valued-1-forms U(g)−1dU(g) ≡
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iR(Xj)θ
j. Furthermore we find in the last expression the adjoint representa-

tion

AdU(g)[iR(Xj)θ
j, A0]. (B.157)

Since θj is scalar-valued, we may reorganize the operator valued 1-form dρg

into

dAg = AdU(g)[iR(Xj), A0]θj. (B.158)

The pull-back tensor cTr(dA†g ⊗ dAg) reads then

cTr(AdU(g)[−iR(Xj), A
†
0]θj ⊗ AdU(g)[iR(Xk), A0]θk). (B.159)

By defining ⊗ on the θk-spanned module of 1-forms T 0
1 (G) being related via

the pull-back to the tensor product on F := T 0
1 (u∗(H)), we find

cTr(AdU(g)[R(Xj), A
†
0]AdU(g)[R(Xk), A0])θj ⊗ θk

= cTr(AdU(g)([R(Xj), A
†
0][R(Xk), A0]))θj ⊗ θk. (B.160)

By using

Tr(AdUC) = Tr(U(CU−1)) = Tr((CU−1)U) = Tr(C),

for any complex matrix C, we end up with the statement for the case of an

adjoint representation induced immersion.

In the case of a vector representation induced immersion we have to consider

the exterior derivative

dAg = dU(g)A0 = U(g)U−1(g)dU(g)A0 = iU(g)R(Xj)A0θ
j (B.161)

and its tensor product yielding

dA†g ⊗ dAg = A†0R(Xj)R(Xk)A0θ
j ⊗ θk (B.162)
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and therefore the evaluation

cTr(A†0R(Xj)R(Xk)A0)θj ⊗ θk. (B.163)

Corollary B.11. Let Tαjk and T βjk denote the coefficients of the pull-back

tensor on a Lie group G obtained by a corresponding unitary action on (H, α)

according to [3, 55] and into (A, β) according to Theorem B.10 respectively.

Up to a normalization constant c ∈ R, one finds:

(a) If A0 is Hermitian in the adjoint representation then

T βjk = T βkj. (B.164)

(b) If A0 is a normalized rank-1 projector in the adjoint representation then

T β(jk) = Tα(jk) (B.165)

(c) If A0 is a normalized rank-1 projector in the vector representation then

T β[jk] = Tα[jk] (B.166)

Proof. (a) It is clear that the coefficients

cTr([R(Xj), A
†
0][R(Xk), A0]) (B.167)

are symmetric in the indices j and k due to the permutation invariance within

the trace if A†0 = A0.

(b) The expansion shows that these coefficients may be seen furthermore
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decomposed into a sum of two terms17

Tr(A2
0[R(Xj), R(Xk)]+)− Tr(A0R(Xj)A0R(Xk)), (B.168)

where we set the normalization constant c equal −1/2. At this point we

chose the fiducial matrix to be pure, i.e.A2
0 = A0, say

A0 := |0〉 〈0| ∈ u∗(H), (B.169)

and find

Tr(A0[R(Xj), R(Xk)]+)− Tr(A0R(Xj))Tr(A0R(Xk)). (B.170)

(c) For the anti-symmetrized pull-back coefficients in the vector representa-

tion we have

cTr(A2
0[R(Xj), R(Xk)]−) (B.171)

Hence, the second statement is immediate.

In conclusion, we have found a generalization of the symmetric and (anti-

symmetric) part of the pull-back tensor obtained from the Hilbert space. This

tensor field may become non-degenarate and therefore Riemannian (sym-

plectic), whenever it descends from the Lie group G to a unitarily generated

orbit G/G0 in A associated to a fiducial Hermtitian matrix and an unitary

adjoint (vector) representation action φ : G × A → A with isotropy group

G0 := {g ∈ G|φ(g, A0) = ρg = A0 ∈ A}. For a possible application finally, we

will need:

Corollary B.12 (Relation to IOVTs). The fiducial operator A0-dependent

pull-back of

β = cTr(dA† ⊗ dA), (B.172)

17We distinguish the conventions [A,B]+ = 1
2 (AB+BA), [A,B]− = 1

2i (AB−BA), and
[A,B] = AB −BA.
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to a unitarily represented Lie group G, coincides in the vector representation

with an operator valued tensor field (IOVT) evaluated on a linear functional

ρ := cA0A
†
0 ∈ A∗ (B.173)

which is 
positive for c = 1

positive and normalized for c = 1

Tr(A†0A0)

(B.174)

Proof. The vector representation action induces on Tr(A†0A0) the transfor-

mation

Tr((U(g)A0)†U(g)A0) = Tr(A†0U(g)†U(g)A0) = Tr(A†0A0). (B.175)

By comparing the operator valued tensor in (4.76) with

ι∗Gβ = cTr(A0A
†
0R(Xk)R(Xk))θ

j ⊗ θk, (B.176)

we may set ρ := cA0A
†
0 for any A0 ∈ A ∼= Mn(C).

C Tensors from generalized momentum maps

While the Fubini-Study metric identifies a quantum information metric for

pure states [7], we may try to approach possible quantum information metrics

also for the generalized regime of mixed states as seen form the Hilbert space.

Let us for this purpose generalize constructively the notion of a pure state to

a mixed state ρ by means of a convex combination of pure states ρψl := ρl,

according to

ρ :=
∑
l

plρl, and
∑
l

pl = 1. (C.1)
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This suggests to consider a generalized momentum map

µ̃ :
⊕
j

H0 −→ u∗(H), (C.2)

µ̃(|ψ1〉 ⊕ |ψ2〉 ⊕ ...) =
∑
l

plµ(|ψl〉) =
∑
l

pl
|ψl〉 〈ψl|
〈ψl |ψl〉

:= ρ, (C.3)

which is defined on a direct sum of Hilbert spaces. After considering the

pull-back tensor

1

2
Tr(dρ⊗ dρ) =

1

2

∑
l,s

plpsTr(d
|ψl〉 〈ψl|
〈ψl |ψl〉

⊗ d |ψl〉 〈ψl|
〈ψl |ψl〉

) (C.4)

by means of the differentials

d
|ψl〉 〈ψl|
〈ψl |ψl〉

=
|dψl〉 〈ψl|+ |ψl〉 〈dψl|

〈ψl |ψl〉
− |ψl〉 〈ψl| d 〈ψl |ψl〉

〈ψl |ψl〉2
, (C.5)

in the expanded expression

∑
l,s

plps

(
〈dψs ⊗ dψl〉
〈ψl |ψl〉 〈ψs |ψs〉

〈ψl |ψs〉+
〈dψl ⊗ dψs〉
〈ψl |ψl〉 〈ψs |ψs〉

〈ψs |ψl〉

−〈ψs |dψl〉 ⊗ d 〈ψs |ψs〉
2 〈ψl |ψl〉 〈ψs |ψs〉2

〈ψl |ψs〉 −
〈dψl |ψs〉 ⊗ d 〈ψs |ψs〉

2 〈ψl |ψl〉 〈ψs |ψs〉2
〈ψs |ψl〉

−d 〈ψl |ψl〉 ⊗ 〈ψl |dψs〉
2 〈ψs |ψs〉 〈ψl |ψl〉2

〈ψs |ψl〉 −
d 〈ψl |ψl〉 ⊗ 〈dψs |ψl〉
2 〈ψs |ψs〉 〈ψl |ψl〉2

〈ψl |ψs〉

+
d 〈ψl |ψl〉 ⊗ d 〈ψs |dψs〉

2 〈ψs |ψs〉2 〈ψl |ψl〉2
〈ψl |ψs〉 〈ψs |ψl〉

+
〈ψs |dψl〉 ⊗ 〈ψl |dψs〉

2 〈ψl |ψl〉 〈ψs |ψs〉
+
〈dψl |ψs〉 ⊗ 〈dψs |ψl〉

2 〈ψl |ψl〉 〈ψs |ψs〉

)
, (C.6)
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one may impose the constraint

〈ψl |ψs〉 − δls = 0, (C.7)

yielding 〈dψl |ψs〉 = −〈ψl |dψs〉, and find

∑
l

p2
l

(
〈dψl ⊗ dψl〉
〈ψl |ψl〉

− 〈ψl |dψl〉 ⊗ 〈dψl |ψl〉
2 〈ψl |ψl〉2

− 〈dψl |ψl〉 ⊗ 〈ψl |dψl〉
2 〈ψl |ψl〉2

)

+
∑
l 6=s

plps

(
〈ψs |dψl〉 ⊗ 〈ψl |dψs〉
〈ψl |ψl〉 〈ψs |ψs〉

)
. (C.8)

For pure states, this tensor field ‘collapses’ to the Fubini-Study metric as

seen from the Hilbert space in (2.11).
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[83] M. G. A. Paris and J. Řeháček, editors. Quantum State Estimation,

volume 649 of Lecture Notes in Physics, Berlin Springer Verlag, 2004.
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