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Introduction 
 

The problem 

Earth's observation and other Solar System's planets exploration are 
issues of great relevance nowadays, since matters as environmental 
study, natural disasters' prediction and monitoring, rational 
exploitation of natural resources become, day after day, more and 
more important. 
Concerning these activities, microwave remote sensing is an excellent 
instrument as it allows a continuous and wide coverage monitoring, 
independent of climatic and light conditions, providing rapidly 
available data. Modern radars from satellites supply us with high-
resolution images of the Earth; moreover, they are also unveiling 
details of other planets and moons in the solar systems that were never 
monitored before by any other remote sensing tool. 
Hence, analysis of microwave images of natural areas is a topic of 
increasing interest, since the large amount of disposable SAR images 
does not find a counterpart of methods and applications for the 
relevant information extraction.  
The scenario of new generation sensors suggests developing new 
techniques to analyze radar images of natural surfaces. As a matter of 
fact, by means of low-resolution images it was only possible to 
identify large scale features of an observed scene (e.g., presence of 
mountains and shape of reliefs); conversely, high-resolution images 
advise the possibility of extracting value added information of natural 
areas, presenting a much more precise physical meaning, thus 
providing physical-based information that cannot be trivially deduced 
from the input data. This task can be very useful for a wide range of 
applications, e.g. prevention and monitoring of environmental 
catastrophes [1], [2], geodynamic processes interpretation, land 
classification (extraction of geomorphologic features, land use etc.) 
[3], rural planning, and so on. 
In this thesis the fundamental issue of recovering value added 
information from the analysis of single amplitude-only SAR images of 
natural scenes is dealt with; thus, the provided method is conceived 
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for supporting almost real-time applications in Earth monitoring and 
analysis from any interplanetary mission. 
As the information can be properly defined only in the context of the 
application at issue, and a SAR image is essentially a representation of 
the local scattering properties of the scenario observed by the sensor, 
most of information is carried by the knowledge of electromagnetic 
theory and SAR operating manner.  
In this work an analytical method for the estimation of surface 
roughness fractal parameters, based on the power spectral density 
behavior of SAR images along the range direction, is proposed [4]. 
Such a method uses both reliable electromagnetic-based scattering 
models and radar models to get the value added information from the 
SAR images.  
 

Background 

In the existing literature there is a general lack of algorithms allowing 
the estimation of meaningful geomorphologic parameters of natural 
surfaces from their radar image. This is due to the absence of a 
reliable direct model for microwave imaging of natural surfaces. A 
candidate direct model should originate automatic inverse procedures, 
that should not require supervision of a SAR expert. In addition the 
inverse procedure should be general-purpose, i.e. applicable to any 
type of SAR images, thus coping with the new generation of SAR 
sensors (e.g. Cosmo-SkyMed, TerraSAR-X) that exhibits extremely 
varied characteristics in terms of resolutions, configurations and 
operational modes (strip-map, spot-light, scansar); therefore, the 
available images can be each very different, making the information 
extraction procedure not immediate nor trivial.  
The few existing approaches to the problem cannot be assumed 
reliable for a general-purpose application [5]. More specifically, most 
of the works published on the subject that propose a theoretical 
approach, suffer from an inadequate choice of the scattering functions 
used to describe the electromagnetic phenomenon and do not take into 
account the SAR filtering [6]-[9]. Alternatively, works adopting 
empirical approaches to retrieve significant parameters of the 
observed surface starting from the texture of the relevant radar image, 
do not found on a physical analytical model of SAR images to be used 
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for inversion purposes, thus leading these works to lose in generality 
and applicability, requiring supervision on behalf of an expert [10], 
[11]. 
 

Objectives 

In this thesis both the forward problem and the inverse problem of 
modeling a SAR image via the imaged surface parameters and then 
extracting them from a single amplitude image, are dealt with. 
The first main objective of this work is to provide, for natural 
surfaces, a radar imaging model, which is stochastic and analytical. As 
a matter of fact, the SAR image of any natural area can be seen as the 
image of an element of the ensemble (a particular realization) of the 
stochastic process describing the observed surface: this viewpoint is 
convenient because we are mainly interested in the knowledge of 
compact statistical parameters of a natural surface, i.e. the parameters 
of the stochastic process to which the surface belongs as an element of 
the ensemble, rather than in its complete deterministic behavior, 
which is specific of the particular realization of the stochastic process 
of interest. In other words, for many applications involving spatial 
scales not very large with respect to the image resolution, it is more 
interesting to know some compact parameters (dimensional numbers) 
describing the surface roughness (e.g., fractal dimension and 
topothesy, or standard deviation and correlation length) more than its 
deterministic point-by-point behavior (i.e., a function of two 
independent variables). To accomplish this task, it is necessary to 
evaluate the statistical characterization of the acquired image and 
relate it to that of the observed surface. In this thesis the second order 
statistics of the image are evaluated in closed form, thus providing the 
basis for the enforcement of inversion techniques, leading to the 
estimation of the surface parameters directly from the radar image. 
A reliable radar image modeling requires appropriate descriptions for 
both the observed surface and the backscattered field. Fractal models 
are widely recognized as the best ones to qualitatively and 
quantitatively describe the geometry of natural surfaces with a 
minimum number of independent parameters [14]-[16]. In addition to 
these geometrical models, fractal scattering models have been 
developed in order to properly represent the interaction between the 
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electromagnetic signal and the fractal surface [17]-[19]. Therefore, a 
completely fractal approach for both geometrical and electromagnetic 
issues, is adopted in this thesis. 
The second main goal consists in the implementation of a SAR image 
processing, able to work on a single amplitude SAR image in a 
completely automatic way, that generates maps of the point by point 
fractal parameters of the SAR image. The rational of the processing 
operation founds on the inversion of the developed theoretical model.  
The obtained fractal maps are suitable for a wide range of applications 
and interpretations. Urban areas and man-made structures can be 
automatically distinguished from natural zones. Concerning the latter, 
fractal parameters allow, as an example, the interpretation and 
identification of geodynamic processes leading to the formation of 
volcanic complexes, rather than the separation between rocky 
formations holding different nature and so on. Moreover, the 
presented fractal processing can be used for change detection and 
classification purposes. 
 

Organization of the thesis 

In Chapter 1, fundamental concepts about SAR imaging are 
introduced. Firstly, SAR operating principles are described, in concise 
way, in order to supply the know-how about the SAR image 
formation. Then, significant properties of SAR images are introduced 
and an overall view of the existing sensors constellations is provided.  
The second chapter is directed towards the introduction of fractals. 
The basic properties and parameters of fractal objects are firstly 
presented; then, the two fractal models used in this work for 
describing and synthesizing natural surfaces are discussed, 
respectively the fractional Brownian motion (fBm) and the 
Weierstrass-Mandelbrot (WM) function [14]-[16]. In particular the 
fBm model describes a natural surfaces via only two independent 
parameters strictly related to the surface roughness: the fractal 
dimension D and the increment standard deviation s [mD-2]. 
In Section 3 the developed imaging model is presented. At first, the 
relation linking the SAR image to the radar reflectivity and to the 
electromagnetic backscattered field is investigated: the reflectivity, in 
the small slope regime for the surface, is linearly dependent only on 
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the ground range partial derivative of the surface. Hence, the 
evaluation of the analytical expression of the range derivative process 
is in order. Then, the power spectral densities of this topographic 
derivative process of two cuts of the surface directed respectively 
along azimuth and ground range directions are calculated in closed 
form. Then, exploiting the results obtained in the previous sections, 
the complete statistical characterization of the SAR image in terms of 
the surface fractal parameters is provided. In particular, it is shown 
that the power spectral density (PSD) of the ground range cut of the 
amplitude SAR image exhibits, in an appropriate range of spatial 
frequencies, a power law behavior [20], while that of the azimuth cut 
has a more involved expression. So the complete imaging model, 
absolutely general, independent of the specific choice for the 
scattering function is provided. Finally, the electromagnetic problem 
is faced introducing an appropriate scattering model, the fractal Small 
Perturbation Method (SPM), and evaluating the scattering coefficient 
of the SAR image PSDs in the SPM fractal case. 
In Chapter 4 a complete experimental setup directed towards the 
validation of the theoretical framework presented in the previous 
section is presented. The fundamental issue is to compare the 
theoretically evaluated PSDs of a range and an azimuth cut of the 
SAR image of a natural surface with the corresponding PSDs 
estimated directly from a SAR image. To this aim, a completely 
fractal elaboration chain is worked out: a canonical fractal surface of 
controlled fractal parameters is generated to provide the input to a 
SAR simulator that generate the corresponding simulated SAR image 
[21]. Moreover, key considerations about the spectral estimation 
techniques are supplied. 
In Chapter 5 the fractal parameters estimation from single SAR 
images is investigated. A large numerical setup regarding the fractal 
dimension estimation via linear regression techniques is performed. 
Then, preliminary results on the retrieving of the relative standard 
increment deviation are given, both from a theoretical and a numerical 
point of view. Finally, an algorithm providing the fractal dimension 
map of a single SAR image is presented. Also in this case a wide 
numerical setup, implemented using simulated SAR images for 
validation purposes, is provided. 
The application of the presented fractal processing to actual (single-
amplitude) SAR images is shown in Chapter 6. In particular, four 



12                                                                                          Introduction 

study cases are presented in order to give an idea of the different 
applications that can be carried out. The automatic separation of urban 
areas from rural ones - via fractal dimension estimation -is performed 
using a COSMO-SkyMed spotlight image of a zone in Abruzzo 
(Italy). Then a fractal dimension analysis of a volcanic area, provided 
also with the comparison with the ground truth, is presented 
concerning the Somma - Vesuvius volcanic complex (Campania, 
Italy) exploiting a TerraSAR-X stripmap image. Furthermore, a 
fractal-based analysis for the seismic damage estimation in urban 
areas is performed working on CosmoSky-Med spotlight pre and post 
earthquake images is shown. Finally, preliminary results on the 
application of the fractal processing for the relative standard 
increment deviation s [m1-H] retrieving are shown making use of 
COSMO-SkyMed stripmap images of Burkina Faso (Africa). 
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Chapter 1 
 

SAR images: fundamentals 
 

SAR (Synthetic Aperture Radar) is essentially a complex system 
whose purpose is simply to measure the local interaction between the 
Earth's surface and an incident wave, thus providing very high quality 
SAR images of this interaction. 
As a matter of fact, nowadays, a large amount of SAR images 
exhibiting the most various characteristics are available. Conversely, 
there is lack of methods and applications allowing precise and value 
added information extraction from these data. 
According to the viewpoint, information can only be defined in the 
context of an application. Since the SAR image is simply a 
representation of the local scattering properties of the Earth scenarios, 
all the information is carried by our knowledge of electromagnetic 
theory. As such, the most basic description of information in SAR 
images may be considered to be in terms of solutions of Maxwell's 
equations for the propagation geometry and the scattering scene. 
However, both on theoretical and practical grounds, this viewpoint 
provides only a partial contribution to our understanding of the 
information available. From the point of view of electromagnetic 
theory, two approaches are relevant [2]. The first of these is the 
Forward Problem, in which the properties of the scattering medium 
and the incoming wave are specified and used to predict the scattered 
field. Solutions to this problem are currently available only by 
imposing considerable restrictions on the scattering medium, for 
example, by assuming that all length scales in the medium are large 
(or small) relative to the wavelength, or that only surface (not volume) 
scattering is occurring (or vice versa), or that occultation (shadowing) 
effects can be ignored. Nonetheless, progress in solving the Forward 

Problem has led to scattering models becoming increasingly important 
in SAR image interpretation [3]-[6]. 
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Even within the context of electromagnetic theory, the Forward 
Problem is not the only issue when dealing with information in SAR 
images. Far more important is the Inverse Problem: what properties of 
an unknown scene can be inferred from the observed backscattered 
signal?  
Methods to solve the Inverse Problem mathematically are, naturally, 
couched in terms of the same models as the Forward Problem, with 
all the same limitations, and are normally difficult. However, the real 
source of the difficulty in the Inverse Problem is not the mathematics 
but that there is rarely enough information to provide a unique 
solution. In other words, the number of parameters needed to 
characterize the target in the scattering model exceeds the number of 
independent measurements available at the sensor. 
The approaches that describe information in SAR images through 
electromagnetic theory have the apparent advantage that they map the 
observed signal onto physical properties of the scene, such as 
dielectric constant, geometrical factors (e.g., size, height, and 
roughness), and polarization. In doing so, they provide a link between 
observations and measurable quantities on the ground. 
In this chapter the fundamental concepts concerning SAR images are 
introduced. Being the problem definitely extensive, the main 
objective, in this context, is to provide a basic knowledge of the SAR 
operation and to supply an overall view of the problem of extracting 
information from SAR images. In Section 1.1, the physical principles 
of SAR image formation and the quantities at stake when dealing with 
SAR images are introduced. In section 1.2 some significant 
phenomena regarding SAR images are described. Finally, in section 
1.3 an overview of the existing SAR system is provided, showing the 
variety of imaging radar systems, and consequently of SAR images, 
currently available. 
 

1.1 Principles of SAR image formation 
 

The basic geometry of a SAR system is shown in Figure 1.1. A 
platform moving with velocity � at altitude ℎ carries a side-looking 
radar antenna that illuminates the Earth's surface with pulses of 
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electromagnetic radiation. The direction of travel of the platform is 
known as the azimuth direction; distance from the radar track is 
measured in the range direction. 
 

Fig. 1.1: Geometry of SAR acquisition system 
 

The SAR system can work according to different operational modes of 
acquisition, among them, in this section, the stripmap configuration is 
considered. In this case, the antenna points along a fixed direction 
with respect to the platform flight path and its footprint defines an 
illuminated strip on the observed surface as the sensor moves [1]. 
The SAR raw signal can be evaluated as the superposition of the 
elementary returns from the illuminated surface weighted via its 
reflectivity function, ��∙�: 
 ℎ��ʹ, �ʹ� = �������, �����ʹ − �, �ʹ − �; ��												�1.1� 
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and the unit impulse response of the SAR system ��∙�, in the case of a 
stripmap acquisition mode and of a transmitted chirped pulse, can be 
expressed as: 
 ���ʹ − �, �ʹ − �; �� = exp �−� 4�� Δ�� exp �−� 4�� Δ / "# ×% %��ʹ − � − Δ��&'(& )�ʹ − �* + rect /��ʹ − � − ∆��"#/2 2							�1.2� 
 
where, referring to Fig. 1: 
− P is the generic scattering point on the observed surface and its 

coordinates ��, �, 3� are given in a cylindrical reference system for 
which the azimuth direction coincides with the sensor flight path; 3��, �� is the local incidence angle, which depends on the local 
geometry of the surface; R is the antenna-to-target distance and ∆� = � − �; 

− c is the speed of light, f and � are respectively the carrier 
frequency and the corresponding wavelength, Δ  is the chirp 
bandwidth and # its duration time; 

− (�∙� is the antenna illumination function, * = ��4/56 is the real 
antenna azimuth footprint (we assume that (�∙� is negligible when 
the absolute value of its argument is larger than 1/2, and that it is 
an even function), where 56 is the azimuth dimension of the real 
antenna and �4 is the distance from the line of flight to the centre 
of the scene. 

The evaluation of the Transfer Function of the SAR system is now in 
order. The Fourier Transform (FT) of Eq. (1.1) can be expressed as 
[1]: 
 7�8, 9� = ���, ��:�8, 9, �� exp;−�8�' exp;−�9�' ����					�1.3� 
 
where :�∙�	is the TF of the SAR system in the stripmap acquisition 
mode, given by the following FT: 
 								:�8, 9; �� = ��� − �ʹ, � − �ʹ; ��exp ;−�8��ʹ − ��' × exp;−�9��ʹ − ��' ��ʹ��ʹ										�1.4� 
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It is worth noting that, if the r-dependence in Eq. (1.4) can be 
neglected, Eq. (1.1) becomes a two-dimensional convolution, leading 
to the following simplified expression for Eq. (1.3): 
 7�8, 9� = ���, �� exp�−�8�� exp�−=9�� :�8, 9����� = Γ�8, 9�:�8, 9�										�1.5� 
 
The FT in Eq. (1.4) is susceptible of asymptotic evaluation by 
applying the stationary phase method because of the presence of the 
fast varying phase terms, thus leading to the following expression: 
 

									:�8, 9, �� = exp	 /� 9&4@2 exp A� 8& B ��4C4D )1 + 9�4�+F × 

�G"H � 92@"#/2�(& ) 82D*+											�1.6� 
 
wherein 
 D = 2���4 																																																�1.7� 
 @ = 2��Δ  ⁄ ��"# 																																								�1.8� 
 
In order to provide the final SAR image, the raw signal must be 
elaborated. The main goal of the SAR processor is to adequately 
combine all the received backscattered contributions, which in the raw 
signal are spread out over all the extension ;*, "#/2', to achieve the 
best resolution. 
The standard SAR processing, in the hypothesis that the r-dependence 
in Eq. (1.4) can be neglected, consists in a de-convolution performed 
on ℎ��ʹ, �ʹ� to compensate for the convolution factor ���ʹ, �ʹ, �4� and 
obtain an estimation of the reflectivity function. This operation can be 
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efficiently implemented in the Fourier domain by a simple 
multiplication: 
 ΓM�8, 9� = Γ�8, 9� ∙ G�8, 9� ∙ G∗�8, 9�																							�1.9� 
 
where * stands for the conjugation operator. Combining Eq. (1.9) with 
Eq. (1.6) in case of a space-invariant processing it turns out: 
 �Q��ʹ, �ʹ� = ���, �� exp )−� 4�� �+ sinc U �Δ� ��ʹ − ��V 

sinc U �Δ� ��ʹ − ��V ��	��																			�1.10� 
 
where Δ� and Δ� are the geometrical resolution of the final image in 
azimuth – slant range, respectively, and are equal to: 
 Δ� = 52																																															�1.11� 
 Δ� = "Δ 																																													�1.12� 
 
Hence, the SAR image can be seen as a convolution between the 
reflectivity function and two sinc functions, one in the azimuth and 
one in the range direction, whose main lobes present a -3dB width 
equal to the geometric resolutions of the sensor as defined in Eq. 
(1.11) and Eq. (1.12), respectively. Moreover, this elaboration is 
easily performed in the Fourier domain: as a matter of fact, the 
availability of efficient FFT codes determines a strong decrease in the 
computational complexity with respect to the required convolution in 
the spatial domain. 
The described space-invariant processing is called narrow focusing, it 
is a type of simplified focusing as it determines that only the centre of 
the scene is perfectly focused. To achieve optimum focusing 
performance (wide focusing), in the general space-variant case, the FT 
of the reflectivity function requires to be computed on a deformed 
grid. Efficient processing codes in the Fourier domain have been 
developed to assure wide focusing of the data. Further detailed 
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information concerning these algorithms are beyond the scope of this 
thesis but are widely discussed in the referred literature [1]. 
As regards this work, the key result is presented in Eq. (1.10) which 
clearly shows how the SAR image is essentially equal to a sinc-
convolved version of the reflectivity. 
 

1.2 Fundamental properties of SAR images 
 

The basic quantity measured by a single-frequency single-polarization 
SAR at each pixel of the image is a pair of voltages in the in-phase 
and quadrature channels [2]. As seen in the previous section, these 
measured values represent the effects of the scene on the transmitted 
wave, but not in a direct way. First, the finite bandwidth of the system 
in both range and azimuth implies that measured values are weighted 
averages from a region determined by the point spread function of the 
SAR. Second, numerous weightings need to be applied in the 
processing to convert the measured voltages to "geophysical" units 
corresponding to the complex reflectivity, RCS, or backscattering 
coefficient of the scene. With these provisos, the measurements made 
by the SAR are fundamentally determined by electromagnetic 
scattering processes. 
Among the methods that can be adopted for dealing with a SAR 
image, the approaches that describe SAR images information through 
electromagnetic theory have the apparent advantage that they map the 
observed signal onto physical properties of the scene, such as 
dielectric constant, geometrical factors (e.g., size, height, and 
roughness), and polarization. In doing so, they provide a link between 
observations and measurable quantities on the ground. 
However, some intrinsic phenomena of SAR images, depending on 
electromagnetic and imaging questions, must be taken into account. 
SAR images hold noiselike quality characteristics (typical of coherent 
imaging systems), known as speckle. (It must be stressed that speckle 
is noiselike, but it is not noise; it is a real electromagnetic 
measurement, which is exploited, for example, in SAR 
interferometry.) 
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In distributed targets we can think of each resolution cell as containing 
a number of discrete scatterers. As the wave interacts with the target, 
each scatterer contributes a backscattered wave with a phase and 
amplitude change, so the total returned modulation of the incident 
wave is: 
 

XGYZ = [X\G]Z^
_

\`a 																																			�1.13� 
 
This summation is over the number of scatterers illuminated by the 
beam. The individual scattering amplitudes X\ and phases Φ\ are 
unobservable because the individual scatterers are on much smaller 
scales than the resolution of the SAR, and there are normally many 
such scatterers per resolution cell. 
An immediate conclusion from (1.13) is that the observed signal will 
be affected by interference effects as a consequence of the phase 
differences between scatterers. In fact, speckle can be understood as 
an interference phenomenon in which the principal source of the 
noiselike quality of the observed data is the distribution of the phase 
terms Φ\. Hence scatterers at different parts of the resolution cell will 
contribute very different phases to the return (1.13) even if their 
scattering behavior is identical. 
As a result, we can in practice think of the phase Φ\ as being 
uniformly distributed in ;−�, �' and independent of the amplitude X\. 
The sum (1.13) then looks like a random walk in the complex plane, 
where each step of length X\ is in a completely random direction [7]. 
Another SAR images intrinsic phenomenon is that of the geometric 
distortion due to the range imaging mode. Up to now the slant range 
direction has been considered. In many applications regarding the land 
analysis, i.e. when dealing with SAR images of natural surfaces) it is 
convenient to deal with the ground range direction (see Fig. 1.1). It is 
obvious that a constant slant range resolution Δ� does not correspond 
to a similarly constant ground range resolution, say Δc. The relation 
between the slant and ground range resolution depends on the 
incidence angle 3 (the angle between the illumination direction and 
the normal to the illuminated object): 
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Δc = Δ�sin 3 																																														�1.14� 
 
According to the width relation between the incidence angle 3 and the 
slope of the imaged surface, d, three types of geometric distortion can 
occur: 
− foreshortening: −3 < d < 3. It correspond to a dilatation or 

compression of the resolution cell (pixel) on the ground depending 
on the conditions 0 < d < 3 or −3 < d < 0, respectively; 

− layover: d ≥ 3. It causes an inversion of the image geometry. In 
other words peaks of hills or mountains with a steep slope 
commute with their bases in the slant range, thus causing an 
extremely severe image distortion. A particular case is represented 
by the situation d = 3 corresponding to the compression of the 
area with this slope into a single pixel. 

− shadow: d ≤ 3 − �/2. In this case the region does not produce 
any backscattered signal, and no significant contribution to the 
image is generated by these areas. 

 

1.3 Systems and developments 
 

Over the years a lots of systems have been built and operated by 
different nations. Each one presents different specifications in terms of 
resolutions and working frequencies. Consequently, a large amount of 
SAR data, holding various characteristics, is currently available. Table 
1.1 shows some systems to give an impression of the variety. 
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TABLE 1.1 

Some orbital and airborne SAR systems showing the variety  
of imaging radar systems 

Shuttle 
missions 

SIR-A 1981 40m × 40m L 
SIR-B 1984 25m × 17m L 
SIR-C 1994 10m × 30m L, C, X 
X-SAR/SRTM 2000 25m × 25m C, X 

Satellite 
based 

Lacrosse 1988 < 1m × 1m X 
ERS-1 1991 26m × 28m C 
J-ERS_1 1992 18m × 18m L 
RADARSAT 1995 10m × 9m C 
ENVISAT 2002 25m × 25m C 
TerraSAR-X 2006 < 1m × 1m X 
Radarsat II 2005 3m × 3m C 
SAR-Lupe 2005 < 1m × 1m X 
IGS-2b 2008 30cm ×30cm X 

Airborne 
SAR 

DOSAR 1989 < 1m × 1m S, C, X, Ka 
CARABAS II 1997 3m × 3m VHF 
PAMIR 2003 10cm × 10cm Ku 
Lynx 1999 10cm × 10cm Ku 
MISAR 2003 0.5m ×0.5 m Ka 
RAMSES 1994 10cm × 10cm P, L,S, C, X; 

Ku, Ka, W 
MEMPHIS 1997 20cm × 20cm Ka, W 
E-SAR 1994 1.5m × 1.5m P,L,S,C,X 
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Chapter 2 
 

Fractal models for natural surfaces 
 
In this chapter the fundamentals of fractal geometry are presented. 
This is finalized to introduce quantities and symbols adopted in the 
thesis and to present main concepts and mathematical background 
relevant to model natural surfaces roughness. 
The pioneer of the fractal geometry was the polish mathematician 
Benoit B. Mandelbrot (1924 - 2010) who, in the middle of the 
seventies, provided a mathematical instrument for adequately 
describing the complexity and the irregularity of natural objects [1]-
[4].  
The term fractal (from latin fractus, i.e. "fragmented") indicates a 
large category of objects having fractional geometric dimension. 
The basic idea of the fractal conception, easily comprehensible from 
an intuitive point of view, is that of an object for which the same motif 
recurs on scale smaller and smaller. Hence, fractal geometry is 
invoked for sets that hold a detailed structure on any arbitrary scale, 
they are too irregular to be represented according to classical 
geometry, they hold some self-similarity or self affine properties, they 
are defined in very simple ways, often recursively, and hold a 
somehow defined fractal dimension larger than its topological one. 
These preliminary concepts are introduced and discussed in Section 
2.1 and 2.2. 
Concerning natural surfaces both stochastic and deterministic fractal 
description can be used. In section 2.3 and 2.4 the fractional Brownian 

motion (fBm) and the Weierstrass Mandelbrot (WM) function are 
respectively presented. The former is a regular stochastic process, the 
latter is a predictable process that allows us to model deterministic as 
well as random surfaces. 
Section 2.5 provides a connection between fBm processes and WM 
functions, thus showing that, independently of the mathematical 
employed model, the fractal surface have a common rational.  
Another strength point in favor fractal models is the parameters 
estimation. As a matter of fact, use of geometric models requires their 
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parameters evaluation; in spite of the fact that classical-parameters 
evaluation relies on simple techniques, the values estimated on natural 
surfaces suffer of ambiguity and are not stable. Conversely, in spite of 
the fact that fractal-parameters evaluation may rely on involved 
techniques, the values estimated on natural surfaces are stable and not 
ambiguous. This is a further point in favor of the fractal description, 
which seems to have a perfect match with nature.  
 

2.1 Fractal dimension 
 

A fundamental concept of the fractal geometry is the Hausdorff-

Besicovitch (HB) Dimension, i.e the fractal dimension [1]-[5]. The 
definition of the fractal dimension is based on the concept of the 
Hausdorff measure. Let U be any nonempty subset of a n-dimensional 
Euclidean space, �h: the diameter |U| of U is the greatest distance 
between two points belonging to U. 
A countable (or finite) collection of sets {Ui} covers a set F if i ⊂	⋃ lYY ; furthermore, {Ui} is said to be a δ-cover of F, if 0 <|lY| ≤ n, ∀=. 
The s-dimensional Hausdorff measure 7p�i� of F is defined as 
 7q�i� = limt→47tq�i� ,										n > 0, w > 0																				�2.1� 
 
where 
 

xtq�i� = inf z[|lY|q: {lY|è	~�D	"��G�H~�D	 =	i�
Y`a �					�2.2� 

 
and inf{⋅} is the lower bound. The superscript s in Equation (2.2) is a 
symbol in 7tqand an exponent in |lY|q.   
It can be shown that the Hausdorff measure generalizes, within a 
multiplicative constant, the Lebesgue measure as used, for instance, to 
define the number of points (�4), the length (�a), the area (�&), and 
the volume (��) of Euclidean sets in �h for n = 0, 1, 2, and 3, 
respectively. 
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It is observed that the Hausdorff measure, as defined by means of the 
limit in Equation (2.1), diverges for s smaller than a certain threshold 
D, and equals zero for s greater than D. The critical value s = D for 
which 7q�i� changes from ∞ to 0 is defined as the HB dimension of 
F. In this thesis, the HB dimension of F is used as the fractal 

dimension for the surfaces under study. 
the Hausdorff dimension D is not forced to be an integer number; if 
this is the case, s = n is an integer and the Hausdorff measure 
generalizes, within a multiplicative constant, the Lebesgue measure. It 
appears that Euclidean dimensions are recovered when the Hausdorff 
measure coincides with integer values of D. 
The subset F of �h, with n > 1, is fractal if its fractal dimension D is 
greater than its topological dimension, defined as equal to n − 1. 
Considering, for instance, the case n = 3, a surface in a three-
dimensional space is fractal if its fractal dimension D is greater than 2 
and smaller than 3. 
For natural surfaces, the fractal dimension is directly related to the 
surface roughness in an intuitive way: an almost-smooth fractal 
surface has a fractal dimension slightly greater than 2, because is tends 
to flatten over a classically modeled surface; conversely, an extremely 
rough surface has a fractal dimension that approaches 3, because it 
tends to fill in a classical volume. 
If the surface is represented via a mathematical function, then 
continuity is always verified, whereas derivability of such a 
mathematical fractal is never reached at any point and scale. In turn, 
the fractal dimension is a continuous parameter that quantifies the 
intermediate behavior held by any fractal surface between the two- 
and three-dimensional Euclidean limiting cases. 
 

2.2 Scaling properties 
 

Fractal sets exhibit some form of scale invariance to scaling 
transformations. The self-affine property quantifies such a scaling 
invariance, so that the surface roughness at different scales is related 
through a precise relationship [5], [6]. 
Self-affinity generalizes the self-similarity property. 
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Aset is self-similar if it is invariant with respect to any transformation 
in which all the coordinates are scaled by the same factor.
A set is self-affine if it is invariant with respect to any transformation 
in which the coordinates are scaled by factors that are in a prescribed 
relation; in such a case, the set fractal dimension is linked to the 
relation among the scaling factors. 

Fig. 2.1 Example of similarity transformations

 

Fig. 2.2 Example of affinity transformations

similarity and self-affinity hold in the statistical sense
invariance to corresponding coordinates scaling holds for the 
statistical distribution used to describe the set. 

dimensional Hausdorff measure (s is not forced to be an integer
for fractal sets) scales with a factor �q if coordinates are scaled by
Note that the self-affine behavior is not sufficient to assess that a
function can represent a fractal, because other 
functions may exhibit this property and are not fractals.
However, within some limitations, self-affinity may provide a 
rationale to conceive fractal sets and understand how they differ from 
the Euclidean ones. 
Anyhow, whereas fractal sets hold their self-affinity at any arbitrary 
observation scale, natural surfaces hold this relevan
within inner- and outer- characteristic scales. In other words, natural 
surfaces exhibit fractal characteristics only on a possibly wide but 
limited range of scale lengths; these scale lengths represent the surface 
range of fractalness. Sets that exhibit an infinite range of fractalness 
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are defined as mathematical fractals. Conversely, sets that exhibit a 
finite range of fractalness are defined as physical fractals [5].  
In the following sections, it is shown how to define the spectral 
content of the fractal models. Observation scales correspond to 
surface-spectrum wavelengths: natural surfaces exhibit power-density 
spectra that are fractal only inside a finite bandwidth. This concept is 
further exploited if the observable natural surfaces are introduced—
that is, if the description of the surface is related to a specific  
application. 
Consider a surface to be explored: in particular, the height profile is of 
interest. Any actual instruments would sense, with a finite resolution, 
a limited length range of the observed surface. This can be 
equivalently stated assuming that the sensor is equipped with a band-
pass filter: spatial scales and spectral bandwidth may be equally used 
to imply a finite exploration of the surface geometric properties. Each 
surface scale calls for a corresponding surface wave number; then 
range of fractalness calls for a corresponding fractalness bandwidth. It 
is concluded that a natural surface can be rigorously described by 
means of the corresponding mathematical fractal, provided that 
reference is made to range of scales, or bandwidth, within which the 
surface properties coincide with those of the mathematical fractal. 
 

2.3 Fractal models for natural surfaces 

description 
 

A natural surface can be represented by means of either a stochastic or 
a deterministic fractal set. The choice between these two very 
different representations relies on the applications to be made.  
In this section a stochastic and a deterministic model for the natural 
surfaces description are presented: the fractional Brownian motion 
(fBm) process and the Weierstrass-Mandelbrot (WM) function, 
respectively. 
The former  is a regular stochastic process that provides an analytical 
expression of the probability density function of surface increments; 
the latter is a predictable stochastic process allowing the modeling of 
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both deterministic and stochastic surfaces and providing an analytical 
description of the surface. 
Being the fBm a regular process, it is possible to reconstruct only the 
statistics of the fBm random process from one sample function. 
Conversely, the WM function is a predictable process, so that it is 
possible to predict an entire WM sample function from its knowledge 
on a domain subset.    
These properties are fundamental for the selection of the analysis and 
synthesis procedures of natural surfaces: the former consist of 
estimation of the fractal parameters from fractal-surface realizations; 
the latter are related to generation of fractal surfaces with prescribed 
fractal parameters. 
 

2.3.1 Fractional Brownian Motion process 
 

The fBm process is defined in terms of the corresponding increment 
process. The stochastic process ���, c� describes an isotropic fBm 
surface if, for every �, c, �′, c′, all belonging to R, the increment 
process ���, c� − ���′, c′� satisfies the following relation: 
 ��{���, c� − ����, c�� < �|̅ = 1√2�w#�� G�� �− �&2w&#&����

�� ��, 
                                                                                                         (2.3) 
 # = ��� − �′�& + �c − c��& 
 
wherein H is the Hurst coefficient and s is the incremental standard 
deviation of surface, measured in [m(1−H)], i.e. the standard deviation 
evaluated for increments at unitary distance.  
In order to fully define an fBm process, the value of z at a given point 
should be specified: it is set ��0� = 0 so that the surface is self-affine. 
In the surface modeling and in the scattering problem, this condition is 
encompassed in the reference-system choice. 
It can be demonstrated that a process satisfying Equation (2.3) exists if 0 < 7 < 1, and that with probability 1, an fBm sample surface has a 
fractal dimension: 
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 � = 3 − 7                                       (2.4) 
 
Inspection of Equation (2.3) shows that if # → 0 , then ���, c� −���′, c′� → 0, thus proving that any sample function z is continuous 
with respect to x and y.   
The incremental standard deviation s is related to a characteristic 
length of the fBm surface, the topothesy, T: 
 w = ��a���                                       (2.5) 

 
The topothesy is the distance (measured in [m]) over which chords 
joining points on the surface have a surface-slope mean-square 
deviation equal to unity. 
Then, as far as the number of parameters is concerned, the fBm 
process is a two-parameter regular random process. Definition of the 
fBm process has been done according to H and s in Equation (2.3). 
Other linked parameters, such as the fractal dimension D (see 
Equation (2.4)), can be used. The choice of the two independent 
parameters used to describe the process distribution is dictated by the 
use to be made of the stochastic process and by the mathematical- or 
physical-parameters interpretation. 
Examples of fBm sample surfaces, and corresponding plots, are 
reported in the following discussion to show the influence of the 
fractal parameters on the surface appearance. 
First, the effect of H is displayed by depicting in Figure 2.3, 2.4, 2.5 
the fractal surfaces plots for values of H equal to 0.9, 0.55, 0.2 and 
setting w = 0.01	;m	a��'. These graphs show that the higher the H, 
the smoother the surface appears, thus visually confirming (see 
Equation (2.4)) a direct relationship existing between the fractal 
dimension D and an intuitive concept of “roughness.” 
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Fig. 2.3 Fractal surface with H=0.9, s=0.01[m

0.1
] 

 

 
Fig. 2.4 Fractal surface with H=0.55, s=0.01[m

0.45
] 
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Fig. 2.5 Fractal surface with H=0.2, s=0.01[m

0.8
] 

The dual case is analyzed by changing s and leaving H fixed to a 
constant value. In Figure 2.6, 2.7, 2.8, the cases corresponding to s 
assuming values equal to 0.01, 0.1, 0.7 [m1-H] and H=0.9 are depicted. 
 

 
Fig. 2.6 Fractal surface with s=0.01[m

0.1
], H=0.9  
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Fig. 2.7 Fractal surface with s=0.1[m

0.1
], H=0.9  

 

 
Fig. 2.7 Fractal surface with s=0.7[m

0.1
], H=0.9  

 
The pictures show that the higher s, the rougher the surface appears, 
thus visually confirming a relationship existing between the standard 
increment deviation s and an intuitive concept of “roughness.” More 
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specifically, visual inspection of the figure shows that an increase of 
the topothesy corresponds to a scaling of the graphs along the vertical 
axis, thus equally affecting all the space undulations. 
It can be demonstrated that the second-order characterization of the 
fBm surface is not complete [1], [2]. Conversely the fBm increments' 
pdf holds a gaussian behavior. 
 
By definition, fBm surfaces have increments that are self-affine in the 
statistical sense. Letting � = ��Q + c�Q, �′ = ��Q′ + c�Q′, ∆��#� =���� − ���′�, it turns out:  
 ∀� > 0,																																			∆���#� =� ��∆��#�                              (2.6) 

 
where the symbol  =�  means “exhibits the same statistics as.” 
The fBm is a stochastic process with wide-sense stationary 
increments, but the process itself do not hold the stationarity property. 
Taking into account that z(0) = 0, the autocorrelation of the fBm 
process is computed as follows: 
 ���, ��� = 〈����, �����〉 = 12 〈�&��� + �&���� − ;���� − �����'&〉 
																= 12 〈;���� − ��0�'& + ;����� − ��0�'& − ;���� − �����'&〉 

= �&�a���2 �|�|&� + |��|&� − |�� − �|&��																									�2.7�	 
 
because each quadratic factor has a Gaussian distribution, and its 
expected value coincides with its variance (see Equation (2.3)). 
Hence, the fBm process is nonstationary because its autocorrelation is 
not dependent only on the space lag � − �′ and particular attention 
must be paid in defining and evaluating its spectrum.     
Conversely, according to Equation (2.3) the fBm process of the 
increments over a fixed horizontal distance τ is a stationary isotropic 
zero-mean Gaussian process: 
 ∆��#� ≜ ��0, w&#&�� = ��0, �&�a���#&� 													�2.8� 
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Therefore, evaluation of the structure function ¡�#� of an fBm process 
is straightforward, because, according to the definition given in 
Chapter 2, the structure function coincides with the variance of the 
process increments: 
 ¡�#� = w&#&� = �&�a���#&� 																												�2.9� 
     
It can be shown that the power-density spectrum can be expressed 
in terms of the autocorrelation function as: 
 ¢�£� = � �¤	G�Y£∙¤�

�� / lim¥→� ) 12¦+h �G"H ) ¤4¦+%																																								 %� � B� + #2 , � − #2C �G"H ) �2¦ − |¤|+ ���
�� 2												�2.10� 

 
This equation holds for stationary as well as nonstationary stochastic 
processes. 
Equation (2.10) can be simplified by considering the limit ¦ → ∞. The rect;¤/4¦' states that each component of the variable ¤ cannot exceed 
in module 2q: when ¦ → ∞ it follows that	rect;¤/4¦' → 1. In 
addition, the rect;�/�2¦ − |¤|	�' can be asymptotically �¦ →∞�	replaced by rect;�/2¦': as a matter of fact, this implies to extend, 
for each component, the integration interval of ��∙� of a length |¤|; 
being in that interval the autocorrelation limited, this extracontribution 
divided by �2¦�h vanishes for ¦ → ∞. 
In conclusion:    
 ¢�£� = � �¤	G�Y£∙¤ / lim¥→� ) 12¦+h� � B� + #2 , � − #2C¥

�¥ ��2�
�� 		�2.11� 

 
Thus, the power spectrum can be expressed as follows: 
 ¢�£� = � �¤	G�Y£∙¤���¤��

�� 																											�2.12� 
 
wherein ���¤� is the autocorrelation function averaged over the spatial 
variable r (the term in square brackets in Equation (2.11)) . 
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Equations (2.11) and (2.12) are referred to as the Wiener-Khinchin 
theorem, referring to stationary as well as nonstationary processes. 
Substitution of Equation (2.7) in Equation (2.11) leads to: 
 ¢�£� = � �¤�

�� G�Y£∙¤ / lim¥→� ) 12¦+h �&�a���2 � )¨� + ¤2¨&�¥
�¥+ ¨� − ¤2¨&� − |¤|&�+��2																																									�2.13� 

 
Exchanging the integration limits, it turns out that: 
 ¢�£� = lim¥→� ) 12¦+h 	�&�a���2 � ��	� �¤�

��
¥
�¥ )¨� + ¤2¨&� + ¨� − ¤2¨&�− |¤|&�+ G�Y£∙¤																																																													�2.14� 

 
Computation of the FT of #&� requires resorting to generalized FTs: 
 � |¤|&��
�� G�Y£∙¤�¤ = 2&©&�� ª�1 + 7�ª�−7� 	 1«&©&�= −2&©&�ª&�1 + 7�wG���7� 1«&©&� 																		�2.15� 

 
Equation (2.15) exhibits a singularity in the origin. But, the 
generalized FT is intended to be used after multiplication by a 
function of an appropriate set (essentially a filter), thus rendering it of 
physical interest. Application of the multiplication and shift rules to 
this generalized two-dimensional FT provides: 
 � ¨¤2 ± �¨&��

�� G�Y£∙¤�¤ = 2&G±&Y£∙�� |#|&�G�Y&£∙¤�¤ =�
��  

= −2&ª&�1 + 7�	wG���7� 1«&©&� G±&Y£∙�						�2.16� 
 
Substituting in Equation (2.14) it turns out: 
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¢�£� = �&�a���2 2&©&�ª&�1
+ 7�wG���7� 1«&©&� lim¥→� ) 12¦+&� ��;1¥

�¥− 2a�&� cos�2£ ∙ ��'																																													�2.17� 
 

Evaluating the integral in Equation (2.17) leads to  
 ¢�£� = �&�a���2 2&©&�ª&�1 + 7�wG���7� 1«&©&� 

/1 − 2a�&� 	 lim¥→� ) 12¦+& wG��2¦«6�	wG��2¦«®�«6«® 2					�2.18� 
 
In the limit ¦ → ∞ the sinusoidal term in brackets vanishes, and the 
power-density spectrum of the two-dimensional fBm exhibits an 
appropriate power-law behavior [5], [7], [8]: 
 ¢�£� = ¯4£�°																																						�2.19� 
 
characterized by two spectral parameters - the spectral amplitude, ¯4 
measured in ;m&�&�', and the spectral slope, d - that depend on the 
fractal parameters introduced in the space domain: 
 ¯4 = 2&�©aª&�1 + 7�wG���7��&�a��� =	2&�©aª&�1 + 7�wG���7�w&																													�2.20� 
 d = 2 + 27 = 8 − 2�																														�2.21� 
 

From the constraint on the Hurst exponent, 0 < H < 1, it turns out that 
2 < d < 4, which defines the range of allowed values for the spectral 
slope α. Equations (2.20) and (2.21) state the relation between fractal 
parameters in the spectral domain, ¯4 and α, and their mates H (or D) 
and T (or s) in the space domain. 
Only two fBm parameters are independent. These two independent 
parameters can be selected, according to the corresponding 
constraints, in the spatial domain or, alternatively, in the spectral 
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domain; each one of the introduced pairs of fractal parameters 
describes the surface roughness from a different viewpoint. 

A surface satisfying Equation (2.3) for every τ is self-affine on all 
scales, so that it has details on any arbitrarily small scale: it is 
continuous, but not differentiable at any point. 
This poses problems when using Maxwell differential equations or 
when considering a sensor monitoring the surface. For these reasons 
physical fBm surfaces must be introduced. This is possible because no 
actual natural surface holds property (2.3) at any scale, and some 
properties of fBm mathematical surfaces may be relaxed. 
I has been stated that natural surfaces exhibit a fractal behavior only 
on a wide but limited range of scales.  
Let us consider the limitation to the range of fractalness imposed by 
the sensor applied to monitor the surface. The range of scales of 
interest for a scattering problem is limited on one side by the finite 
linear size l of the illuminated surface, or by the sensor resolution if 
processing of the received signal is implemented; and on the other 
side by the fact that surface variations on scales much smaller than the 
incident wavelength λ do not affect the scattered field. In most 
cases—in particular in remote sensing of natural surfaces at 
microwave frequencies—these limitations due to the employed sensor 
fall between the limits of intrinsic validity for the surface-shape fractal 
model.  
Accordingly, in electromagnetic scattering, physical fBm surfaces are 
considered; an efficient approach on surface modeling relies on 
considering surfaces that satisfy Equation (2.3) only for #± < # < #² 
with #²	of the order of l and #± usually taken of the order of �/10. If #± ≪ #², then such surfaces satisfy Equation (3.25) only in a wide 
but limited range of spatial frequencies 	«± < # < «², with «± ≃1/#² and «² ≃ 1/#±. 
That is why these surfaces are also referred to as band-limited fBm; 
they are stationary, at least in a wide sense, and regular. 
 

2.3.2 Weierstrass-Mandelbrot Function 
 

Among several possible representations of the WM function, the most 
suitable one for modeling natural surfaces is a real function of two 
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independent space variables x and y. A convenient choice is provided 
by the non-normalized WM function z(x,y), amenable to represent 
deterministic as well as random surfaces [5], [9]. 
Consider the superposition of an infinite number of sinusoidal tones: 
 

���, c� = µ [ ¶·¸��·w=�¹«4¸·��	"�wº· + c	wG�º· �
·`��+Ф·¼																																																																												�2.22� 

 
wherein B [m] is the overall amplitude scaling factor; p is the tone 
index; «4;m�a' is the wavenumber of the fundamental component 
(corresponding to � = 0); ¸ > 1 is the seed of the geometric 
progression that accounts for spectral separation of successive tones; 0 < 7 < 1 is the Hurst exponent; and ¶·, Ψ·, Φ· are deterministic or 
random coefficients that account for amplitude, direction, and phase 
of each tone, respectively. 
Equation (2.22) exhibits a non-integer fractal dimension D as soon as ¸ is irrational, and the Hurst exponent is related to the fractal 
dimension � = 3 − 7 as in Equation (2.4). 
For random coefficients ¶·s, the usual choice for their pdf is Gaussian 
with zero mean and unitary variance. 
The coefficients º·s, in the random case, are uniformly distributed in ;−�, �) so that the WM function is isotropic in the statistical sense. 
The random coefficients Φ·s are usually chosen uniformly distributed 
in ;−�, �), and the zero set of the WM function − that is, the set of 
points of intersection with the plane � = 0 − is nondeterministic. 
In the case of a random WM function, the random coefficients, ¶·, Ψ·, Φ·, are usually assumed to be mutually independent.  
The WM function holds the self-affine behavior only for the discrete 
values of � = ¸h unless ¸ → 1: in this case, the WM function 
approaches the self-affine behavior for every scaling factor �. 
Physical WM functions can be obtained just limiting the summation to 
P tones, thus obtaining band-limited WM surfaces: 
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���, c� = µ[¶·¸��·w=�¹«4¸·��	"�wº· + c	wG�º· ¾�a
·`4+Ф·¼																																																																												�2.23� 

 
As in the case of fBm, use of band-limited WM surfaces is physically 
justified by the fact that surface fractality is held on a wide but limited 
range of scales, and any scattering measurement is limited to a finite 
set of scales. Let (X,Y) be the antenna footprint over the surface. The 
lowest spatial frequency of the surface, «4/2� is linked to the 
footprint diameter √*& + ¿&, possibly through an appropriate safety 
factor Àa ∈ �0,1', whereas its upper spatial  
frequency «4¸·�a/2� is related to the electromagnetic wavelength � 
through an appropriate safety factor À& ∈ �0,1', usually set equal 
to 0.1. Accordingly, we can set: 
 «± = «4 = 2�Àa√*& + ¿& 																																	�2.24� 

 
and  
 «² = «4¸�¾�a� = 2�À&�																																	�2.25� 
 
Definitions (2.24) and (2.25) can be combined to provide the number 
of tones, � ∈ �, in terms of the sensor wavelength and footprint: 
 � = Âln�√*& + ¿&	/ÀaÀ&� ln¸ Ã + 1																				�2.26� 
 
where Ä∙Å stands for the ceiling function, defined so as to take the 
upper integer of its argument. 
It can be easily checked that the band-limited WM Surface (2.23) is 
stationary. 
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2.3.3 Connection between fBm and WM models 
 
The connection between these two fractal models is appropriately 
found by comparing the spectral behavior of these two stochastic 
processes. The two representations cannot be equivalent in any respect 
because the independent parameters characterizing the fBm are two, 
for instance H and ¯4, whereas in the WM, four independent 
parameters are considered, µ,7, ¸, 74. However, it can be shown[5] 
that from the spectral point of view, the physical WM process is an 
appropriately sampled version of a band-limited fBm one. 
The relation between Wm and fBm models’ parameters  is: 
 µ& = ¯42�7 «4�&��¸� − ¸���																															�2.27� 
 
Whenever ¸ → 1, the spacing between successive tones of the WM 
functions tends to vanish, and the spectrum tends to become 
continuous, closely approximating that of the fBm process. 
It is concluded that both an fBm and a WM model possesses  the same 
Hurst parameter, and hence, at least in the limit ¸ → 1, hold a self-
affine behavior and the same fractal dimension. Moreover, if B and «4 
are selected according to Equation (2.27), then the power content of 
the WM function and the equivalent fBm process are equal on 
appropriate spectral intervals; in the limit of ¸ → 1, this last result is 
valid on any spectral interval. 
The established link between WM functions and corresponding fBm 
processes generates a handy procedure to realize samples of band-
limited fBm processes by using physical WM functions. It is not 
trivial to obtain realizations of fBm ensemble functions characterized 
by H and ¯4 parameters. The alternative, simpler way consists of 
evaluating, via Equation (2.27), the B parameter for a corresponding 
WM function, whose ensemble elements are certainly easier to 
evaluate via Equation (2.23). In this equation, the H value is equal to 
the Hurst coefficient of the fBm process, selection of the ¸ value states 
how closely the WM discrete spectrum represents the corresponding 
fBm continuous one, and selection of «4 and P values are related to 
the process band limitation. 
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Chapter 3 
 

Imaging Model 
 

In this chapter the overall imaging model that links a SAR image to 
the fractal parameters of the natural scene observed by the sensor is 
presented [1]. Consistently with the fractal stochastic description 
adopted for the remote sensed surface, the imaging process is 
expected to be a stochastic process and its second order stochastic 
characterization is evaluated as a function of the fractal parameters 
describing the surface. The analysis is performed both in the spatial 
domain and in the (spatial) frequency one. Indeed, as in following is 
discussed in details, in imaging theory (and in particular for a SAR 
sensor which is characterized by different spatial resolutions along 
azimuth and range), a meaningful role is played by the power density 
spectra of cuts (along azimuth and ground range) of the image that are 
here evaluated in closed form. 
The complete SAR imaging model is obtained passing through sound 
radar, electromagnetic and geometrical models.  
In Section 3.1 the SAR image autocorrelation is introduced showing 
its dependence on the reflectivity autocorrelation. Hence, in Section 
3.2, the stochastic characterization of the reflectivity is evaluated, 
splitting the overall model in three fundamental steps: the analytical 
dependence of the reflectivity on the scene’s topography, i.e. on the 
surface’s slope(subsection 3.2.1); the evaluation of the fBm derivative 
process (subsection 3.2.2) and the stochastic characterization of the 
last one (subsection 3.2.3).  
In section 3.3 the stochastic characterization of the SAR image, for an 
arbitrary scattering function adopted for describing the 
electromagnetic scattering from the surface, is presented. 
Finally, in section 3.4, the application of the fractal Small 

Perturbation Method (SPM) – used for representing the 
electromagnetic interaction between the fractal surface and the 
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transmitted signal – to the previously obtained results is performed. 
Thus, the second order characterization of the SAR image of a fractal 
surface, in closed form, is obtained. 
 

3.1 SAR image autocorrelation 
 

The direct imaging model links the morphological features 
(topography at a wide range of scales) and the dielectric properties of 
a surface (inputs) to the relevant SAR image (output). 
In this section the direct imaging model for a SAR sensor is presented. 
The overall model is split into two major elements. The first element 
links the SAR image to the scene reflectivity; the second element links 
the reflectivity to the scene parameters via a scattering model. In this 
section a continuous representation for the SAR image is assumed for 
the first part of the following analysis: this (formal) choice is done to 
emphasize the model behavior and to stress the meaning of the 
obtained results. Then, the sampled counterpart of actual 
(bandlimited) SAR images is discussed. 
In order to attain an analytical direct model for the first element, a 
linear relationship is considered for the SAR image, i, that is a filtered 
version of the reflectivity function depending on the resolutions of the 
sensor (cf. Eq (1.10); hereafter, only for the sake of a more intuitive 
comprehension, the symbol �Q that stands for the 'estimated reflectivity' 
is replaced by =, i.e. 'image'), [1], [2]: 
 																=���, ��� = ���, ��sinc U �∆� ��� − ��V ×	 

sinc U �∆� ��� − ��V ����															�3.1� 
 
where x and r, as well as x’ and r’, represent azimuth and slant-range, 
respectively; ���, �� is the two-dimensional reflectivity pattern of the 

scene, and includes the phase factor exp	�−� ÆÇÈ ��; λ is the 

electromagnetic wavelength, and ∆x and ∆r are the azimuth and slant-
range SAR geometric resolutions, respectively. 
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Equation (3.1) is computed by employing the slant-range coordinate. 
It is convenient to reconsider it by means of its ground-range 
counterpart, y. Let us define the reflectivity map in the cylindrical 
coordinate system (x ,r, θ). Assuming that the local incidence angle 
coincides with the sensor look angle, 34, the ground range coordinate 
and the ground range resolution can be calculated by simple 
trigonometric computations: c = � ∗ sin 34	 and ∆c = ∆�/ sin 34 (see 
Fig. 3.1 and Eq. (1.14)), [2].  

 
Fig.3.1: Slant range vs. ground range resolutions. 

 
Hence, in order to provide the statistical characterization of the SAR 
image, it is convenient to rewrite the analytical link in terms of both 
the image and reflectivity autocorrelation functions [1]: 
 �Y�#6′, #®′  = 〈=��′, c′�=∗��′ + #6′, c′ + #®′ 〉 = 	= 〈 1sin& 34�)�, csin 34+ 	sinc U �∆� ��� − ��V% 

sinc � �∆c sin& 34 �c′ − c�� ���c�∗ )�̅, c�sin 34+ 

		%sinc U �∆� ��� + #6� − �̅�V sinc � π∆c sin& 34 �c� + #®� − c� � ��̅�c�〉 = 

= 1sin& 34���#6�c�#®	�Ê	 )#6, #®sin 34+ sinc U �∆� ��� − ��V 
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		sinc U �∆� ��� − � + #6� − #6�V sinc /��c′ − c�∆c sin& 342 sinc /��c� − c + #®� − #® ∆c sin& 34 2.						�3.2� 
 
where the substitutions �̅ = #6 + �	and c� = #® + c have been 
considered and the stationarity of � (that will be proved in the next 
section) has been supposed. 
Assuming: 
 ��8 sinc;D�8� − 8�'sinc¹D�8� − 8 + #Ë� − #Ë ¼ = �qYhÌ¹D�#Ë − #Ë� �¼,										�3.3� 

 
where, in order to obtain the expression at the second member, a 
substitution of variable has been performed. Hence we get: 

 �Y�#6′, #®′  = 1sin& 34�#6 �#®	�Ê )#6, #®sin 34+�qYhÌ U �∆� �#6 − #6� �V 	�qYhÌ � �∆c sin& 34 �#® − #®� ��												�3.4� 
 
Equation (3.4) provides the link, expressed in azimuth/ground-range 
coordinates, between the autocorrelation of the SAR image and the 
autocorrelation of the continuous reflectivity function.  
Some considerations are now in order: 

- the image autocorrelation function is expressed by means of 
convolution integrals, so it is convenient to work in the 
wavenumber domain;  

- in this way, since we demonstrate in the next section that the 
reflectivity is wide sense stationary, the Fourier transform of 
Eq. (3.4), which is the SAR image PSD, can be expressed as 
the reflectivity PSD (¯Ê� multiplied by the Fourier transforms 
of �qYhÌ; 

- the Fourier transforms of �qYhÌ functions in Eq. (3.4) are rectangular 
functions that depend on the sensor resolutions: so we can directly 
consider a version of ¯Ê filtered by means of the aforementioned 
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rectangular functions (see Section 3.3). 
 

3.2 Stochastic characterization of the 

reflectivity 
 

In this section the evaluation of the stochastic characterization of the 
second element of the imaging model, the reflectivity pattern, is 
performed. The rationale of such an evaluation consists in three sound 
logical steps.  
In subsection 3.2.1 the dependence of the reflectivity on the scene’s 
topography is analyzed. This dependence is expressed through the 
local incidence angle, relating the reflectivity function to the slopes, 
and so equivalently to the partial derivatives, of the observed surface. 
Then, in subsection 3.2.2, the calculation of fBm ([3]-[5]) derivative 
process is performed, taking into account that the sensor operates a 
sort of “low-pass filtering” of the surface via the resolutions. Finally, 
in subsection 3.2.3 the closed form evaluation of the autocorrelation of 
the reflectivity process and of the Power Spectral Densities of cuts – 
along the range and azimuth directions – of the reflectivity of the SAR 
image are presented.    
 

3.2.1 Dependence of the reflectivity on the scene’s 

topography 
 

The second element of the imaging model, the reflectivity pattern �, 
taking into account the scattering mechanism relevant to the surface, 
deserves a specific comment. The rationale to get Eq. (3.1) is based on 
a linear model postulating superposition of radar returns (reflectivity) 
for each point of the surface. However, the scattering process is not a 
point-wise one; it could be seen as a point-wise phenomenon only 
under some very specific conditions, e.g., Geometrical Optics, whose 
approximations do not generally hold for microwave images. 
Actually, in SAR images the radar returns pertaining to the same 
resolution cell are merged as dictated by the SAR impulse response, 
whereas those from different resolution cells are separated. Therefore, 
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it is convenient to consider the contributions backscattered from 
different resolution cells as independent from each other, and the 
reflectivity pattern evaluation can be performed separately for each 
resolution cell. 
Accordingly, the reflectivity pattern is expressed in terms of the Radar 
Cross Section (RCS) σ, as [2]: 
 |�|& = Í∆�∆c = Í4,																																								�3.5� 
 
wherein Í4, the backscattering coefficient or Normalized Radar Cross 
Section (NRCS), represents the value of 	Í normalized to the SAR 
resolution area. 
Whatever the electromagnetic model used to evaluate the 
backscattering coefficient is, some general results can be obtained. 
The backscattering coefficient expression is linked to the surface slope 
via the local incidence angle θ, i.e. the angle between the observation 
direction and the normal to the local mean plane approximating the 
considered surface within the resolution cell [3], [6]. Then: 
 |�| = √Í4 =  �3��, ¦��,                              (3.6) 
 
where the function  f  takes a different form depending on the selected 
solution to the scattering problem. Let ¦ and � be the partial 
derivatives of the surface height ���, c� along the two directions 
elected by the SAR sensor, azimuth and ground-range, respectively � 
and y:  
 ¦��, c� = Î���, c�Î� ,																																							�3.7� 
 ���, c� = Î���, c�Îc ,																																							�3.8� 

 
The local incidence angle can be formally expressed as a function of 
the partial derivatives p and q [1], in fact its cosine can be evaluated as 
the scalar product between the propagation unit vector and the surface 
normal unit vector, i.e.:  
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 3 = cos�a ��	 sin 34 + cos 34��& + ¦& + 1 �.																										�3.9� 
 
In the hypothesis of a small slope regime for the surface, a McLaurin 
series expansion of the function	 �3��, ¦�� in Eq. (3.6) with respect to 
p and q can be performed: to the first order, we obtain a linear 
function of the partial derivative p only; as a matter of fact, from Eq. 
(3.9), it is clear that the derivative of θ with respect to q is 
proportional to q itself, implying that the linear term in q of the 
McLaurin expansion is zero.  
Therefore, the modulus of the reflectivity function |���, c�|, is, in a 
first order approximation, linearly linked only to the partial derivative 
p of the surface [1]: 
 |���, c�| =  �3��, ¦�� = D4 + Da���, c� + ���, ¦�,								�3.10�                                    
 D4 =  �3�� = 0, ¦ = 0� 				Da = %Î �3��, ¦��Î� Ï·`4¥`4 ,					�3.11� 
        D4 and Da being the coefficients of the McLaurin series expansion, 
whose expressions depend on the specific scattering model that is 
adopted. In particular, these coefficients are function of the look angle 
of the sensor, which is then an important parameter for the 
determination of the validity limits of the proposed linear model. 
Finally, we note that the obtained result highlights a key property of 
SAR - and, more in general, of side-looking radars - imaging 
behavior, showing a clear mathematical definition of a preferential 
imaging direction due to their particular acquisition geometry.  
The result in Equation (3.10) is valid independently of the selected 
scattering function  �3��, ¦��, hence it holds for whatever 
electromagnetic model (which can be evaluated analytically in closed 
form) is chosen and it presents reasonably a general validity, given the 
small slope regime for the observed surface. In Section 3.4, the 
coefficients of the McLaurin series expansion, D4 and Da are evaluated 
in closed form for a specific scattering function, the fractal SPM one 
[3], [7], [8]. 



54                                                                   Chapter 3 Imaging model 

The above reported analysis can be assumed as a clear and valid 
foundation to assess the statistical characterization of the image. 
Usually, this characterization must be derived from a single amplitude 
SAR image and we cannot set aside the speckle phenomenon, the 
multiplicative noise affecting SAR images: for the sake of a 
theoretical analysis, we can consider the speckle as part of the 
reflectivity. As a matter of fact, radar single-look images hold small 
scale spatial properties (corresponding to high wavenumber spectral 
properties) dominated by the speckle effect. On the subject, some 
hints are provided in Chapter 5. Now a comment about the bandwidths 
of the reflectivity and of the SAR acquisition system is in order. 
Due to the scattering mechanism, the reflectivity function holds a 
finite (spatial frequency) bandwidth: the minimum wavenumber being 
related to the (inverse of the) size of the illuminated area, the 
maximum one being related to the (inverse of the) electromagnetic 
wavelength. Due to the role played by the SAR system, the SAR 
image holds a different but still finite bandwidth: the minimum 
wavenumber being related to the (inverse of the) size of the 
considered area, the maximum one being related to the (inverse of the) 
SAR resolution. Therefore, the image autocorrelation function 
depends on the SAR resolutions: the analytical relationship between 
the reflectivity function (sampled according to SAR resolutions) and 
the parameters of the observed surface is explored. Hence, it is 
necessary to work with a two scale model for the surface description: 
the observed surface is locally approximated by square plane facets 
with dimension equal to that of the resolution cells; over these plane 
facets a microscopic roughness is superimposed so that the 
electromagnetic field backscattered from each resolution cell can be 
evaluated. Hence, the individual returns from each resolution cell are 
dictated by the microscopic scale (below resolution cell) roughness, 
while the overall image texture is related to the macroscopic scale 
(above resolution cell) roughness. 
 

3.2.2 The fBm derivative process 
 

In the previous section it has been shown that the stochastic 
characterization of the SAR image reflectivity involves use of the 
partial derivatives of the sensed surface. 
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As widely discussed in chapter 2, that fractal geometry is the best 
candidate to describe the irregularity and the roughness of natural 
scenes. Among the introduced fractal models, in order to describe the 
natural surfaces observed by the sensor, the regular stochastic fBm 
process is used [cf. Section 2.3.1]. 
In Section 2.3.1, the power spectral density (PSD) of the two-
dimensional fBm process has been given in Eq. (2.19), (2.20), (2.21). 
In this section, since for the SAR image the spectrum evaluation is 
performed on one-dimensional cuts − thus highlighting the different 
spectral behaviors in azimuth and range directions – the power 
spectral density of a one-dimensional fBm profile is also shown.    
An arbitrary one-dimensional cut of an isotropic fBm surface leads to 
an fBm profile described by the corresponding one-dimensional fBm 
process holding  the same fractal parameters H and s.  
The PSD of a topographic one-dimensional fBm profile is then 
introduced [9]: 
 ¢�«� = ¯4�«�°Ð ,																																									�3.12� 
 
wherein k is the wavenumber and ¯4�  and d� are the spectral 
parameters in the one-dimensional case: 
 ¯4� = �7cos��7� 1Γ�1 − 27� w&,																													�3.13� 
 d� = 1 + 27 = 5 − 2�.																																			�3.14� 
 

Note that the spectra of natural surfaces present a power-law behavior 
over a wide range of spatial scales [10]-[12]. 
The formal derivative of an fBm profile is defined as fractional 
Gaussian noise (fGn) [8], [9], and its power spectral density is 
proportional to that of the fBm profile multiplied by k2 [13], [14]: 
 ¢ÑÒh�«� ∝ 1|«|&��a 																																							�3.15� 
 
However, SAR images present a finite spatial extent and are 
discretized according to a non-zero lag sampling. Hence, application 
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to SAR images requires the definition of bandlimited stochastic 
processes, whose analytical form depends on the specific bandlimiting 
procedure applied. In order to get a closed form expression for the 
SAR image power spectrum, it is mandatory to consider the role of the 
resolution cell; this is convenient also because it allows working with 
a two-scale model for the surface. In this context, we want to study the 
canonical case of a fractal surface, with the same fractal parameters, at 
all the scales of interest for the sensor. In fact, a SAR sensor 
discriminates between scales lower and greater than the resolution cell 
size. Therefore, in our case the surface description within the 
resolution cell is introduced as a microscopic fractal roughness 
superimposed to a plane facet (having the dimension of the resolution 
cell) approximating the scene of interest; the macroscopic surface 
description at the resolution cell scale, which is related to the applied 
bandlimiting procedure, is then required in order to evaluate the PSD 
of interest. 
Actually, to cope with the non-differentiability of the fBm process, a 
smoothed version of the original fBm process can be introduced [14]; 
this is a filtered version of the original surface, obtained by 
multiplying it by a differentiable test function, φ: the test function 
support is, for the time being, set equal to [0, εx] ×[0, εy], εx and εy 
being related to the SAR resolutions in azimuth and ground range, 
respectively. Thus, we set: 
 Ô��, c� = Õ aÖ×ÖØ 												= 	��, c� ∈ ;0, Ù6' × ;0, Ù®'0																																										�HℎG�(=wG %       (3.16)  

 �Ú��, c� =  ����, c��Ô�� − ���
�� , c − c′���′�c′												 

= 1Ù6Ù®� � ����®
®�ÖØ , c′���′�c′.6

6�Ö× 				�3.17� 
 
A comment on the relevance of the partial derivatives of the observed 
surface in imaging theory is in order. These are of clear physical 
meaning, providing information on the asymmetry in the SAR data 
structure with respect to the x and y directions, intuitively consistent 
with the existence of a preferential direction of sight of SAR sensors.  
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In fact, as stated in the previous section, the reflectivity function, in a 
first order approximation, depends only on the partial derivative of the 
surface with respect to the ground range coordinate, as can be seen 
from Eq. (3.10). Moreover, the functional �Ú��, c� presented in Eq. 
(3.17) can be seen as a distribution [14]. Hence, for the fBm surface 
the partial derivative with respect to the ground range direction, �·��, c; Ù® , can be defined using the theory of distributions, i.e. 
moving the derivation from the process z��, c� to the test function Ô��, c� [15], thus obtaining: 
 �·��, c; Ù®, Ù6  ≜ Î���, c�Îc  

			=  ����, c�� ÎÔÎc �� − ���
�� , c − c′���′�c′ = 

			= 1Ù6Ù® � � ����, c���
��

6
6�Ö×

¹n�c − c�� − n�c − Ù® − c� ¼�c���� = 

	= 1Ù6Ù® � ¹���′, c� − ����, c − Ù® ¼6
6�Ö×

	���																																				�3.18� 
 

Hence, �·��, c; Ù®  is linearly related to the fBm increment process 
and it is, for this reason, wide sense stationary. 
 

3.2.3 Stochastic characterization of the fBm derivative 

process 
 

Taking into account of the results presented in the previous section, it 
can be deduced that the autocorrelation function of the partial 
derivative process �·��, c� can be evaluated starting from the 
correlation between two increments of the fBm original process: 

 �ÛÜ�#6, #®; Ù®  = 〈�·��, c; Ù®��·�� + #6, c + #®; Ù®�〉= 

= 〈 1�Ù6Ù® & � ¹���′, c� − ����, c − Ù® ¼6
6�Ö×

	��� % 
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% � ¹����� + #6, c + #®  − ����� + #6, c + #® − Ù® ¼6
6�Ö×

	����〉 = 

 

= 1�Ù6Ù® & � � 〈¹���′, c������ + #6, c + #® % − ���′, c� ×%6
6�Ö×

6
6�Ö×

 

����� + #6, c + #® − Ù®  − ����, c − Ù® ����� + #6, c + #®  %%+����, c − Ù® ����� + #6, c + #® − Ù® ¼〉	���	����			�3.19� 
 

wherein #6 and  #® are space lags in the azimuth and ground-range 
direction, respectively: 
 #6 = ��� − �′�&  ;    #® = ��c − c��&               (3.20) 
 
Considering that the autocorrelation of an fBm is given by Eq.(2.7) 
given in section 2.3.1, substituting that equation in Eq.(3.19) it turns 
out: 
 

�ÛÜ�#6, #®; Ù®  = w& 1�Ù6Ù® & � � UÝ#6& + �#® + Ù®�&Ý� %6
6�Ö×

6
6�Ö×

 

																																								+Ý#6& + �#® − Ù®�&Ý� − %2Ý#6& + #®&Ý�V ������� = 													= Ù®�& �¨#6& + �#® + Ù® &¨� + ¨#6& + �#® − Ù® &¨� % %−2Ý#6& + #®&Ý�V.						�3.21� 
 
The autocorrelation function in Eq. (3.21) allows the evaluation of the 
two-dimensional power spectrum. However, in imaging theory (and in 
particular for a SAR sensor which is characterized by different spatial 
resolutions along azimuth and range), a more meaningful role is 
played by the power density spectra of cuts (along azimuth and 
ground range) of the image. Analytical expressions for these spectra 
are here analytically evaluated via a Fourier Transform of the azimuth 
and ground range cuts of the two-dimensional autocorrelation function 
reported in Eq. (3.21): as a matter of fact Eq. (3.21) shows that zp is 
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wide sense stationary and the Wiener-Kintchine theorem can be 
applied. 
 
- For a ground-range cut, from Eq. (3.21) we get: 

 							�·�#®; Ù®  = �ÛÜ�#6 = 0, #®; Ù®  = 

= a& w&Ù®&��& /)ÝÞØÝÖØ + 1+&� − 	2 ÏÞØÖØÏ&� + )ÝÞØÝÖØ − 1+&�2		�3.22�	 
 
leading to [16], [17]:  

 									¢·�«®; Ù®  = 2w&Ù®�a©&�Γ�1 + 27� sin��7� × ¹1 − cos�Ý«®ÝÙ® ¼ 1�Ý«®ÝÙ® a©&� 	.				�3.23� 
 

In this case, the autocorrelation function, Rp, and the PSD, Wp, of 
the derivative process match exactly with those introduced for a 
one-dimensional profile [17].  
Moreover, it is interesting and useful, to evaluate ¢ß· defined as 
the limit of Wp for «®Ù® → 0:  
 ¢ß·�«®  = w&Γ�1 + 27� sin��7� 1Ý«®Ý&��a .													�3.24� 
 
In Eq. (3.24) ¢ß·�«®� provides an asymptotic evaluation and is 
amenable to meaningful interpretation and application: for every 
ky it is analytically obtained by reducing the support of the test 
function; alternatively, for every εy, i.e., for actual radar 
resolutions, it approximates the low spatial wavenumbers regime 
of the estimated PSD. 
 

- For the azimuth cut, from Eq. (3.21) we get: 
 								�·�#6; Ù®  = �ÛÜ�#6, #® = 0; Ù®  =    = w&Ù®�& UÝ#6& + Ù®&Ý� − |#6|&�V.										�3.25� 
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Evaluation of the corresponding PSD requires resorting to 
generalized Fourier Transforms; for the first term of Eq. (3.25) we 
get [1], [16]: 

 

								 �Ý#6& + Ù®&Ý��
�� G�Y\×Þ×�#6 = 

											= 2B�&©�C√�Ù®Ba&©�CK�©a&�|«6|Ù®  1|«6|a&©�
Γ�−7� ,					�3.26� 

 
and for the second term we obtain [16], [17]: 
 

�|#6|&�G�Y\×Þ× = 2Γ�1 + 27�sin��7� 1|«6|a©&�
�

�� .					�3.27� 
 
Thus, we can evaluate in closed form the PSD of zp(x,y) for an 
azimuth cut of the surface: 

 

	¢·�«6; Ù®  = w&Ù®�a©&�
áâ
ââ
ã2B�&©�C√�K�©a&�|«6|Ù®  1�|«6|Ù®�a&©�

Γ�−7� % 
%+2Γ�1 + 27�	sin��7� 1�|«6|Ù®�a©&�2											�3.28� 

 
 where Kν(·) is the modified Bessel function of second type of 

fractional order ν. 
In order to point out the asymptotical spectral behavior of the 
aforementioned spectrum, we can express the function K�©äå�|«6|Ù®  through a power series expansion around the value «6 = 0 stopped to the first order [16]: 
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+2�a&©��|«6|Ù®��a&�� /1 + �|«6|Ù®�&�2 − 47�2Γ )12 + 7+.					�3.29� 
 
Therefore, substituting Eq. (3.29) in Eq. (3.28) we obtain the 
following expression of the spectrum: 
 

								¢ß·�«6; Ù®  = w&Ù®&��a ç√�Γ B−12 − 7CΓ�−7� % + √�Γ B−12 − 7C2�27�Γ�−7� × 

�|«6|Ù®�& + √�	2a©&�Γ B12 + 7C�1 − 27�Γ�−7� 1�|«6|Ù® &��a + ¹√�	2a©&� ×% 
%%Γ B12 + 7CΓ�−7� + 2Γ�1 + 27�sin	��7�è 1�|«6|Ù® &�©aé .					3.29� 

 

Expression (3.24) can be simplified by considering that [16]: 
 √�Γ B12 + 7CΓ�−7� = −2�&�Γ�1 + 27� sin��7�,												�3.30� 

 
so Eq. (3.29) can be written as:         

 

¢ß·�«6; Ù®  = w&Ù®&��a ç√�Γ B−12 − 7CΓ�−7� % + √�Γ B−12 − 7C47Γ�−7� × 
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�|«6|Ù®�& − %2Γ�1 + 27� sin��7�2 − 47 1�|«6|Ù® &��a� . �3.31� 
 
The introduced formulas deserve some significant considerations. 
First of all, differently from the case of the ground-range cut, the 
spectrum of the partial derivative process for the azimuth cut does not 
show a power law behavior, not even asymptotically. 
Owing to the radar preferential direction of sight, in the case of a 
range profile we are considering the derivative along the same 
direction of the performed cut; this implies that the spectrum of the 
derivative process inherits the correlation properties of successive 
increments of the fBm profile. Conversely, for an azimuth profile such 
considerations are not valid anymore: in this case we are considering 
the derivative in the ground range direction whereas the profile 
originates from an azimuth cut of the surface, so the properties of the 
derivative process is not directly linked to the profile behavior. 
 

3.3 Electromagnetic model: the Small 

Perturbation Method 
 

In order to evaluate the reflectivity pattern �, an appropriate scattering 
model is necessary, taking into account the specific geometrical 
characterization used for the observed scene. Hence, we must consider 
the interaction between the electromagnetic field and the fractal 
surface by means of an appropriate fractal scattering model tailored to 
the case at hand. The candidate scattering model should lead to a 
closed form solution for the reflectivity function (and for the 
backscattering coefficient). For rough surfaces only approximate 
solutions are available, each solution being valid under appropriate 
roughness and illumination conditions [3],[7],[8]. In this paper we use 
the SPM which provides the simplest expression for the NRCS and 
shows a range of validity adequate to SAR applications.  
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3.3.1 Small Perturbation Method 
 

The Small Perturbation Method (SPM) suggests a perturbative 
approach for the evaluation of the field scattered from an fBm surface. 
This method is based on the fulfillment of some conditions. 
The first condition is set on the surface profile: surface heights 
variations must be small with respect to the incident field wavelength. 
The second condition enforces a bound on the surface slopes that must 
be much smaller than 1 [3]. 
The SPM expression of the scattered power density is: 
 〈Ýê·¥Ý&〉 = 2�©aΓ&�1 + 7� sin��7���k��&�sin& 3Y + sin& 3q − 2 sin 3Y sin 3q cosìq�&�©&& × 

 X cos& 3q cos& 3Y|êY|&Ýí·¥Ý&�«��&�a��� ,															�3.32� 
 

where 3Y and 3q are respectively the incidence and scattering angle, Ôq 
is the angle between the x-axes and the projection of the radius 
between the center of the scene and the receiver on the x-y plane, k is 
the electromagnetic wavenumber and í·¥ is a coefficient that depends 
on polarization, incidence and scattering angles, and the relative 
complex dielectric constant, Ùî, of the scattering medium. H and T are 
respectively the Hurst coefficient and the topothesy of the illuminated 
fractal surface. 
In the backscattering case, Eq.(3.32) turns into: 
 Í··4 = 4kÆ	"�wÆ3Ýí··Ý& ¯4��2«	wG�3�° 															�3.33� 
 
with ¯4 and d being the spectral amplitude and the spectral slope of 
the illuminated fractal surface defined in Eq. (2.20) and Eq. (2.21) and 3 = 3Y = 3q. 
In Eq. (3.33) it must be k > kmin  defined in (2.24) and θmin < θ < θmax, 
where: 
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3±Yh = wG��a )«±Yh2k +																																					�3.34� 
3±ï6 = çwG��a B\ðñò&\ C 						wG	«±ï6 < 2«Ç& 																													wG	«±ï6 ≥ 2«%                 (3.35) 

 

Indeed, if kmin  k  kmax (cf. Eq. 2.25), Eq. (3.4) holds for any 
incidence angle, except at near vertical incidence. Expressions of βpp 
for the backscattering case are the following:  
 

íóó = "�w3 − �Ùî − wG�&3�a &ô"�w3 + �Ùî − wG�&3�a &ô 																						�3.36� 
                                                     íõõ = �Ùî − 1� wG�&3 − Ùî�1 + wG�&3�UÙî	"�w3 + �Ùî − wG�&3�a &ô V& 													�3.37� 
                                      íóõ = íõó = 0																																								�3.38� 
                           

The analysis of Eq. (3.33) leads to some interesting considerations. 
First of all, we note that the backscattering coefficient is proportional 
to the spectral parameter ¯4, hence to w&, see Eq. (2.20). Furthermore, 
the backscattering coefficient is explicitly frequency-dependent, Í··4 ∝ kÆ�°, in addition to the frequency dependence of surface 
electromagnetic parameters. This frequency dependence becomes 
weaker as d increases, and it disappear when d reaches its maximum 
value, 4 (i.e. H=1, D=2). 
An approximate evaluation of the validity limits for the SPM model is 
given by the following inequality: 
 k&Í& ≅ 2&�©a�& Γ�1 + 7�Γ�1 − 7� )��+& B#±ï6� C&� ≪ 1						�3.39� 
 
where Í is the variance of the surface height. 
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3.3.2 Evaluation of the SAR image reflectivity 

coefficients for the SPM model 
 
In this section the evaluation of the SAR image reflectivity 
coefficients D4, Da, defined in Eq. (3.11), is performed. The results 
presented in Section 3.2.1 are exploited, in order to obtain an 
expression of the reflectivity function as a function of the partial 
derivatives of the surface. In particular, substituting the expression of cos 3 provided in Eq. (3.9) and the corresponding expression of sin 3, 

into Eq. (3.33) and, taking into account that the term Ýí··Ý& can be 
considered constant with θ in the angular interval of interest in the co-
polarized case, the NRCS can be then expressed as 
 

																				Í4 = X4 ��cos34 + �	sin34�&�& + ¦& + 1 �& × 

��sin34 − �	cos34�& + ¦&�& + ¦& + 1 ���a©�� ,							�3.40� 
wherein 
 

X4 = ¯4÷a�&�Ýí··Ý&2&� .																																								�3.41� 
 

Therefore |���, c�|, which is related to Í4 by Eq. (2.5), can be 
evaluated as: 

 		|���, c�| =  �3��, ¦�  = �X4 ��cos34 + �	sin34�&�& + ¦& + 1 � × 

��sin34 − �	cos34�& + ¦&�& + ¦& + 1 ���a©��& .						�3.42� 
 

Performing the McLaurin series expansion of the expression in Eq. 
(3.42) we obtain the coefficients D4 and Da (see Eq. 3.10) relevant to 
the SPM scattering function: 
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 |���, c�| ≅ D4 + Da� = �X4øcos&34	sin��a©��34 % %+cos34	sin��34;2 + �1 + 7�cos&34	sin�&34'�|,						�3.43� 
wherein p is characterized in Section 3.2.3. Therefore, in the case of 
interest, the coefficients a0 and a1, and in turn the validity limits of the 
proposed model, depend on the considered look angle and on the 
fractal parameters of the observed surface. 
 

3.4 Stochastic characterization of the SAR 

image 
 

Exploiting the results obtained in the previous sections, the complete 
statistical characterization of a SAR image is presented in this section. 
According to the theoretical results presented in the previous sections, 
provided that the slopes of the surface are sufficiently low, the image 
is linearly dependent on the partial derivative process zp, whose 
expression is given in Eq. (3.18). Hence the image inherits the same 
statistical characterization of the process	�·��, c�, i.e. it is Gaussian 
distributed with ù = D4	and Í = DawΔcú�a, as we can deduce 
combining Eq. (3.10) and (3.18). 
A discussion is now in order on the role of εx and εy, defining the 
support of the kernel φ mentioned in the previous section, which 
formally determines the effective bandwidth of the imaging system 
whenever applied to the fractal surfaces. As far as the bandwidth is 
concerned, our model implies dealing with two, somehow implicit, 
band-limiting procedures that can be conveniently formalized as two 
filtering steps that we now explicitly discuss. First of all, the 
electromagnetic field impinging on the rough surface performs a low-
pass filtering on the surface according to the electromagnetic 
wavelength, λ. Then, the obtained smoothed process is filtered 
according to the sensor impulse response Eq. (3.1), and spatial scales 
lower than the resolution one are discarded. In our case, assuming x 

and y as coordinates, in azimuth and ground-range directions, 
respectively, and ∆x and ∆y as the corresponding sensor resolutions, 
we can consider, being ∆x, ∆y >> λ, directly the second filtering step 
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and we can take εx and εy coincident with the azimuth and ground-
range resolutions.  
Considering the expression of the SAR image autocorrelation function 
(see Eq. (3.2)), and applying the Wiener-Kintchine theorem, we can 
now provide the power density spectra for a range, ¢Y�«® , and an 
azimuth, ¢Y�«6�, cut of the image in closed form:  

¢Y�«®  = Da&¢·�«®;Δc rect /Δcsin&34 «®� 2                 (3.44) 

 

¢Y(«6) = Da&¢·(«6;Δc)rect /Δ�«6� 2                      (3.45) 

 
Recalling that for the closed form expression obtained in the previous 
section for the power density spectra ¢·�«®;Δc  and ¢·(«6;Δc) in 
Eqs. (3.23), (3.28) and for their asymptotic formulations in Eqs. 
(3.24), (3.31) a meaningful dependence on the fractal parameters of 
the observed surface was found, we can now draw some significant 
considerations. As a matter of fact, image range cuts – in an 
appropriate range of frequencies, i.e. «®∆c ≪ 2� – exhibit spectra 
with a linear behavior in a log-log plane, as shown in Eq. (3.24), thus 
allowing implementation of linear regression techniques to retrieve the 
fractal parameters of the observed scene directly from the 
corresponding radar image. In particular, by comparing Eq. (3.24) 
with the expression of the PSD of a one-dimensional cut of the surface 
in Eq. (3.12), we infer that, in the log-log plane, the slope of the range 
spectrum of a SAR image is equal to that of the imaged surface 
whereas the surface Hurst coefficient is decreased by one.  
Conversely, for azimuth cuts, as we infer from Eq. (3.31), also for 
very low frequencies, the above discussion does not hold any longer; 
the azimuth image spectrum is quite involved and the retrieving 
techniques should be non linear ones.  
For a visual inspection of the obtained theoretical results, in Figs. 3.2-
3.5 the azimuth (dash-dot line) and range (continuous line) spectra of 
an image are shown in a log(k) - log(|W(k)|) plane, where the same 
values of s=0.1 m1-H and a1=1 and different H values (marked in the 
captions) are considered; for comparison purposes, also the behavior 
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of the spectrum of a cut of the original surface relevant to Eq. (3.12) 
(dashed line) is reported in the same graphs. In order to compare the 
spectra behaviors wavenumbers are normalized to the value of the 
considered resolution. 
 

 
Fig. 3.2 Theoretical log-log plots of range  (continuous line) and azimuth (dash-

dot line) image cuts PSD; the dashed line represents the surface cut PSD. All 

the graphs are relevant to H=0.9. 
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Fig. 2.3:  Theoretical log-log plots of 

(dash-dot line) image cuts PSD; the dashed line represents the surface cut PSD

All the graphs are 

Fig. 3.4:  Theoretical log-log plots of 

(dash-dot line) image cuts PSD; the dashed line represents the surface cut PSD. 

All the graphs are relevant to 
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log plots of range  (continuous line) and azimuth 

dot line) image cuts PSD; the dashed line represents the surface cut PSD. 

All the graphs are relevant to H=0.7. 

 
log plots of range  (continuous line) and azimuth 

dot line) image cuts PSD; the dashed line represents the surface cut PSD. 

All the graphs are relevant to H=0.5. 
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Fig. 3.5:   Theoretical log-log plots of range  (continuous line) and azimuth 

(dash-dot line) image cuts PSD; the dashed line represents the surface cut PSD. 

All the graphs are relevant to H=0.3. 

 
The provided figures show clearly the difference in the behaviors of 
range and azimuth image cuts PSDs. The behavior of the range cut 
PSD is linear in the log(«) - log(|S(«)|) plane for sufficiently low 
spatial frequencies, presenting a slope equal to that of the range cut  
PSD (dashed lines) decreased by two (compare Eq. (3.24) and (3.12)). 
Conversely, the plot of the azimuth cut PSD presents a more complex 
behavior that is, actually, not at all a power-law one. 
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Chapter 4 
 

Theoretical Framework Validation 
 

In this chapter a complete experimental setup directed towards the 
validation of the theoretical framework presented in the previous 
section is shown. The fundamental issue is to compare the 
theoretically evaluated PSDs of a range and an azimuth cut of the 
SAR image of a natural surface (respectively Eq. (3.44) and (3.45)) 
with the corresponding PSDs estimated directly from a SAR image. 
To this aim, SAR images of fractal surfaces having controlled and 
known fractal parameters have been generated. First, fBm surfaces [1] 
have been synthesized using the corresponding Weierstrass 
Mandelbrot function [2], then, the latter are used as input for the 
SARAS (SAR image simulator [3]) that provides, after choosing the 
specific sensor to simulate, the corresponding SAR image of the input 
fractal surface. 
 

4.1 Generation of simulated SAR images of 

fractal surfaces 
 

In order to synthesize a band-limited fBm surface of known and 
controlled parameter, a WM function can be used as widely discussed 
in section 2.3.3 [4]. As a matter of fact, calculating, via Equation 
(2.27), the B parameter for the corresponding WM function and 
evaluating the WM ensemble via Eq. (2.23), the obtained WM 
function holds an H value equal to the Hurst coefficient of the 
corresponding fBm process. Furthermore, the ¸ value of Eq. (2.23) is 
set equal to 1.013 (the more ¸ approaches to 1, the better the WM 
function approximates the fBm process). «4 is evaluated via Eq. (2.24) 
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with a safety factor Àa	equal to 0.1 and the surface is generated with 
1424 tones. 
In Fig. 4.1 and 4.2 fBm surfaces of parameters H=0.8, s=0.1 m0.2 and 
H=0.7, s=0.50.3 synthesized via Weierstrass-Mandelbrot functions are 
shown. 

 
Fig. 4.1: Fractal surface of parameter s=0.1 m

0.2
, H=0.8 synthesized via 

a Weierstrass-Mandelbrot function. 

 

 
Fig. 4.2: Fractal surface of parameter s=0.5m

0.3
, H=0.7 synthesized  

via a Weierstrass-Mandelbrot function. 

The so obtained surfaces are used as input Digital Elevation Model 
(DEM) to SARAS, a SAR image advanced simulator [3]. SARAS 
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allows choosing the type of sensor to simulate and the scattering 
function to adopt. It is worth to note that, in this case, it is assumed 
that the observed surface shows the same user-defined fractal 
parameters at all the scales of interest (i.e., both at macroscopic and 
microscopic scales). Envisat images (∆� = 3.986, ∆c = 19.928)	are 
simulated, thus allowing the analysis of the case of extremely different 
resolutions in azimuth and range directions and, as anticipated in 
Section 3.3, the SPM fractal scattering model,[4], [5], consistent with 
the fractal model of the surface with a VV polarization is chosen. Note 
that use of an HH polarization does not significantly change the 
obtained results, as previously stated in Section 3.3.2.  
The Envisat simulated images relevant to the fBm surfaces depicted in 
Fig. 4.1 and 4.2 are shown in Fig. 4.3 and 4.4, respectively. 
 

 
Fig. 4.3: Simulated Envisat image relevant to the fBm surface in Fig. 4.1 
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Fig. 4.4: Simulated Envisat image relevant to the fBm surface in Fig. 4.2 

 

4.2 Spectral estimation for a SAR image 
 

The spectrum estimation problem is not a trivial one: as a matter of 
fact, power law spectra introduce unique difficulties in spectral 
estimation as they greatly suffer leakage effects and high variance 
problems, which can give rise to deep modifications of the original 
spectral slope. Moreover, concerning the spectrum estimation relevant 
to a finite data segment, in order to reduce the variance, the use of a 
large number of samples allowing the evaluation of average spectra 
would be desirable. This condition cannot be satisfied in the practical 
cases of fractal parameters estimation from actual SAR images, as 
spectra relevant to small homogeneous areas of the image must be 
considered to obtain a punctual information. Hence, the limited 
dimension of the data set requires to resort to a spectral estimator able 
to reduce as much as possible both leakage and variance of the 
estimate also in presence of a small number of samples [6], [7]. 
Hence, for our application the use of classical spectral estimators, such 
as the periodogram obtained using Fourier-based techniques, does not 
represent a good solution. Conversely, the Capon estimator [6], [7] 
strongly reduces the above-mentioned negative effects and it is 
particularly well suited when facing short data records. 
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4.2.1 Capon estimator 
 

The Capon estimator essentially performs a filtering which is 
customized for each frequency of interest and which is aimed to 
minimize the total power output, with the constraint that the gain at 
the frequency of interest is unity [6], [7], [8]. In particular, in the 
power law case the sidelobes of the filter are adjusted in order to avoid 
leakage from low frequency components. In order to evaluate the 
power spectrum, the Capon method requires the evaluation of an 
estimate of the autocorrelation matrix. In this paper we use the 
covariance method, which provides an unbiased and consistent 
estimator [8]. According to this method the elements of the 
autocorrelation matrix relevant to a one-dimensional range cut of our 
SAR image, I, of which N samples are available, can be estimated as: 
 

¹�Mû¼Y]= 12(� − �) ü[ ý;� − ='ý;� − �'_�a
h`·

%																			 
+ [ ý;� + ='ý;� − �'._�a�·

h`4 																				�4.1� 
 

The Capon estimate of the spectrum of interest can be then computed 
as: 

 þ̄·�«®  = �∆ceeee*�Mû�aeeee,																																						�4.2� 
 

wherein p is the dimension of the autocorrelation matrix, ∆c is the 
ground range resolution of the SAR image, * stands for conjugate 
transpose and 
 eeee = ¹¹¹¹1				G]&Ç\Ø∆®				G]ÆÇ\Ø∆® 	… 	G]&Ç�·�a�\Ø∆®¼¼¼¼�.											�4.3�	
 

The bias of the Capon estimator is independent of N, but it is 
dependent on p. An increase in p determines a decrease in the bias at 
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the expense of an increased variance. Indeed, note that p∆c is the 
longest lag for which the autocorrelation is estimated and, obviously, 
the range of p is constrained by N. For this estimator the region of 
high accuracy for the estimated spectra is 1/(2�∆c) < «® < 1/(2∆c). Different values of p will be tested in Section 4.3 in order to 
analyze the behavior of the obtained spectral estimates as a function of 
this parameter. 
However, also the aliasing, due to the fact that the imaged surface will 
generally have frequency components at spatial frequencies above the 
Nyquist frequency,  q = 1/(2∆c)	 should be considered. Hence, 
according to the literature on the subject [6], the values of the spectral 
estimate computed for normalized wavenumbers greater than  q/2,	are 
discarded. 
 

4.2.2 Range and azimuth PSD estimation 
 
In order to compare the theoretical PSDs of a range and an azimuth 
cut of the image evaluated in Section 3.4 (Eq. (3.44) and (3.45), 
respectively) with those estimated from the SAR image, it must be 
taken into account that the theoretical spectra are averaged spectra. 
Hence, for each direction, starting from the SAR image, several cuts, 
sufficiently spaced one from each other to be considered uncorrelated, 
are performed. The spectra of these profiles are estimated using the 
Capon estimator and, finally, these spectra are averaged in order to 
obtain the estimated mean PSD. Initially, for the sake of the 
theoretical comparison, 1000 samples profiles are considered and the 
length of the Capon filter is set equal to 250 (a quarter of the total 
number of samples, as suggested in the literature on the subject [8]). 
As an example, in Fig. 4.5, a non-filtered PSD is shown where the 
vertical axes enclose the range of wavenumbers used for estimation. 
In this figure the image estimated spectrum (continuous line) is 
compared with the theoretical one (dash-dot-dot line) computed 
substituting H=0.8 in Eq. (3.23) and the dashed and dash-dot lines 
mark the limit theoretical spectra, i.e. those presenting H=0.999 and 
H=0.001, respectively. Note that, beyond the range of values of H 

equal to ]0,1[ the surface is not a fractal surface, as stated in Chapter 2 
when the fBm process was introduced. 
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Fig. 4.5: Mean PSD of range cut of the image before applying the Capon 

filtering (continuous line) compared with the theoretical one (dash-dot-dot line) 

for a fractal surface with H=0.8, s=0.1 [m
0.2

]. The theoretical spectra for 

H=0.999 (dashed line) and H=0.001 (dash-dot line), which represent the limit of 

H for which a surface holds a fractal behavior, are reported. The two vertical 

axes mark the wavenumbers beyond which the spectrum is cut. 

 
In Fig. 4.6 - 4.10 significant results relevant to comparisons between 
range and azimuth theoretical and estimated and filtered spectra for 
the values of s and H reported in the corresponding captions are 
presented. The theoretical spectra for H=0.999 (dashed line) and 
H=0.001 (dash-dot line), which represent the limit of H for which a 
surface holds a fractal behavior, are also reported in each figure in 
order to clarify the range of slopes inside which the spectrum is 
fractal. 
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Fig. 4.6: Mean PSD of range cut of the image after the application  

of the Capon filter (continuous line) compared with the theoretical  

one (dash-dot-dot line) for a fractal surface with H=0.8, s=0.1 [m
0.2

].  

 
Fig. 4.7: Mean PSD of range cut of the image after the application  

of the Capon filter (continuous line) compared with the theoretical  

one (dash-dot-dot line) for a fractal surface with H=0.7, s=0.1 [m
0.3

].  
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Fig. 4.8: Mean PSD of range

of the Capon filter (continuous line) compared with the theoretical 

one (dash-dot-dot line) for a fractal surface with 

Fig. 4.9: Mean PSD of azimuth cut

Capon filter (continuous line) compared

line) for a fractal surface with 
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range cut of the image after the application  

the Capon filter (continuous line) compared with the theoretical  

dot line) for a fractal surface with H=0.6, s=0.1 [m
0.4

].  

 
g. 4.9: Mean PSD of azimuth cut of the image after the application of the 

Capon filter (continuous line) compared with the theoretical one (dash-dot-dot 

for a fractal surface with H=0.8, s=0.1[m
0.2

]. 
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Fig. 4.10: Mean PSD of azimuth cut of the image after the application of the 

Capon filter (continuous line) compared with the theoretical one (dash

It is worth stressing that, in the presented cases, the estimation is 
performed on profiles of 1000 samples, so that low frequency 
components can be easily estimated. This is not always the case when 
the analysis of actual SAR images is in order: in fact, in actual images, 
we may not have so many samples over an area presenting the same 
fractal parameters. This issue is handled in the next chapter.
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Fig. 4.10: Mean PSD of azimuth cut of the image after the application of the 

Capon filter (continuous line) compared with the theoretical one (dash

line) for a fractal surface with H=0.6, s=0.1[m

 
It is worth stressing that, in the presented cases, the estimation is 
performed on profiles of 1000 samples, so that low frequency 
components can be easily estimated. This is not always the case when 

analysis of actual SAR images is in order: in fact, in actual images, 
we may not have so many samples over an area presenting the same 
fractal parameters. This issue is handled in the next chapter.

Chapter 4 Theoretical framework validation 

 
Fig. 4.10: Mean PSD of azimuth cut of the image after the application of the 

Capon filter (continuous line) compared with the theoretical one (dash-dot-dot 

=0.1[m
0..42

]. 

It is worth stressing that, in the presented cases, the estimation is 
performed on profiles of 1000 samples, so that low frequency 
components can be easily estimated. This is not always the case when 

analysis of actual SAR images is in order: in fact, in actual images, 
we may not have so many samples over an area presenting the same 
fractal parameters. This issue is handled in the next chapter. 
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Chapter 5 
 

Fractal parameters estimation 
 

In this chapter the extraction of the fractal parameters univocally 
representing an fBm surface, the fractal dimension D and the 
increment standard deviation s, directly from a SAR image is treated 
[1], [2]. In Chapter 3 and 4 the theoretical evaluation and the spectral 
estimation of the PSDs of range and azimuth cuts of the image have 
been discussed. In particular, it has been shown that the spectrum of a 
SAR image range cut, in an appropriate range of spatial frequencies, 
presents a power-law behavior. Hence, in a logarithmic plane, the 
image range spectrum holds a linear behavior with a slope related to 
the fractal dimension (equivalently the Hurst coefficient) of the 
imaged surface (cf. Section 3.4), thus allowing linear regression 
techniques for its retrieving. A large numerical setup on the subject, 
that shows the goodness of the implemented method, is provided 
Furthermore, preliminary results relevant to the increment standard 
deviation s extraction are discussed in this chapter. The s retrieving is 
not a trivial task as it is linked to the amplitude of the log – log 
spectrum of a SAR image range cut that depends on several 
parameters besides s. A theoretic treatment directed to the separation 
of s from the other parameters is hereafter presented, together with the 
corresponding experimental results [3]. 
In the second part of this chapter an algorithm providing the fractal 
dimension map, i.e. the map of the point by point D estimated starting 
from a single SAR image is presented. Also in this case a wide 
numerical setup, carried out using simulated SAR images for 
validation purposes, is provided. 
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5.1 Fractal dimension estimation 
 

Taking into account the results presented in Section 3 and 4 pertaining 
to the range cut PSD of a SAR image, the fractal dimension retrieving 
comes as a consequence. As a matter of fact, being this spectrum 
linear in a logarithmic plane, with a slope related to the fractal 
dimension of the imaged surface (see section 3.4), the latter can be 
estimated via linear regression techniques on the spectrum estimated 
starting from the SAR image [1]. In the following subsection, a 
parametric study directed to the analysis of the best setting of the 
Capon filtering ([4], [5]) for the fractal dimension estimation, both for 
1000 samples-cuts and 50 samples-cut (i.e. very small data segment) 
is provided. 
 

5.1.1 Capon filtering analysis for D estimation 
 
Starting from the consideration about the spectral estimation of 
Section 4.2.1, in this subsection, a parametric study directed to the 
analysis of the better length p, to be used for the Capon filtering, is 
performed [6]. 
A key point of the spectral estimation is the dimension of the data 
segment on which the estimation is performed. First, 1000 pixel-cuts 
are used for the D extraction. Depending on the chosen Capon filter 
length, a different number of the original available samples is used, so 
this case allows us to understand which is the optimal value for the 
parameter p. 
In the following, significant results relevant to the fractal dimension 
extraction from simulated SAR images (simulated via SARAS 
simulator [7]) of fractal surfaces with the same value of s=0.1 [m1-H] 
and different values of the Hurst coefficient: D=2.3, D=2.2, D=2.1, is 
shown. For all the three cases the results relevant to the application of 
the Capon spectral estimation in the case of: 
 no filtering (Tab. 5.1) 
 length of filtering = 0.3*N (Tab. 5.2) 
 length of filtering = 0.1*N (Tab. 5.3) 
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are presented, where N is the number of samples of the range cut of 
the image. In all cases an anti-aliasing filtering is performed on the 
estimated spectra, that consists in discarding the frequencies greater 
than  q/2. 
Furthermore, two different linear regression techniques have been 
investigated: 
 linfit: minimization of the chi-square error statistic 

 ladfit: "robust" least absolute deviation method 

in order to compare the performances. Just for the sake of brevity, 
only the results relevant to the linfit case, which is the one that 
perform the better estimation in all the cases, are presented. Besides, 
the linfit procedure allows the evaluation of the unreduced chi-square 
goodness-of-fit statistic, whose values are also reported in Tab. 5.1-
5.3. The obtained estimated samples of the spectra are shown in Fig. 
5.1(A-I) compared with the theoretical ones. 
 

TABLE 5.1 
NO FILTERING CASE APPLIED TO A 1000 PIXELS SAR IMAGE 

 s [m1-H] D estimated D chi-square 

Fig. 5 (A) 0.1 2.3 2.27 3.87 
Fig. 5 (B) 0.1 2.2 2.17 2.60 
Fig. 5 (C) 0.1 2.1 2.11 1.74 

 
TABLE 5.2 

CAPON FILTERING OF LENGTH 0.3*N (LENGTH=300 SAMPLES) 
 s [m1-H] D estimated D chi-square 

Fig. 5 (D) 0.1 2.3 2.27 2.5 
Fig. 5 (E) 0.1 2.2 2.17 1.71 
Fig. 5 (F) 0.1 2.1 2.1 1.32 

 
TABLE 5.3 

 CAPON FILTERING OF LENGTH 0.1*N (LENGTH=100 SAMPLES) 
 s [m1-H] D estimated D        chi-square 

Fig. 5 (G) 0.1 2.3 2.25 1.22 
Fig. 5 (H) 0.1 2.2 2.15 0.73 
Fig. 5 (I) 0.1 2.1 2.08 0.69 
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(A) 

(B) 

(C) 
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(D) 

(E) 

(F) 
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Fig. 5.1: Estimated (samples) and theoretical (continue lines) PSDs of a 1000 

(G) 

(G) (I) 

(H) 
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pixels range cut of a SAR image of a surface whose fractal parameters are 

given in Tab.5.1-5.3. The dashed lines delimit the range of slopes of a fractal. 

 
From the results in Tab. 5.1-5.3, it can be deduced that the best 
estimation is performed when the Capon estimator is applied with a 
filter length equal to 0.3*N. Besides, it is worth stressing that, even if 
the chi-square is reduced when the filter length decreases, the bias 
increases and so the estimate worsens. 
The analysis of these results shows that, as far as the hypothesis of 
small slopes of the surface is valid, the performance of the retrieving 
technique is definitely good, while it starts to get worse when the 
aforementioned hypothesis begins to fail. More precisely, the 
retrieving techniques are efficient because the estimated D values are 
so close to the actual ones to allow the discrimination of slightly 
different (in terms of D) surfaces from their radar images.  
 

5.1.2 Capon filtering analysis for the fractal dimension 

estimation in case of small data segments. 
 
In order to implement the fractal dimension extraction starting from 
actual SAR images, the problem of analyzing very small areas in 
which the fractal parameters can be considered constant must be 
investigated [6]. Hence, in this subsection, the linear regression is 
applied to range cuts of 50 pixels of the SAR images considered in the 
previous sub-section. Obviously, in this case, there are very few 
samples available to perform the spectrum estimation, so the results of 
the retrieving technique are not so good as in the previous case. In 
Tab. 5.4-5.6 the results relevant to the estimation performed without 
the Capon filtering, with a Capon filtering with p=0.3*N (filter 
length=15 samples) and with p=0.1*N (filter length=5 samples) are 
shown, with N=50. Note that the estimated values in Tab. 5.4-5.6 are 
averaged on several elaboration windows taken from different areas of 
each simulated image. 
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TABLE 5.4 

NO FILTERING CASE APPLIED TO A 50 PIXELS SAR IMAGE CUT-OUT 

s [m1-H]  D estimated D chi-square 

0.1  2.3 2.26 0.17 
0.1  2.2 2.15 0.14 
0.1  2.1 2.14 0.18 

 
TABLE 5.5 

CAPON FILTERING OF LENGTH 0.3*N (LENGTH=15 SAMPLES) 

 s [m1-H] D estimated D chi-square 

Fig. 5.2 (A)  0.1 2.3 2.26 0.06 
Fig. 5.2 (B) 0.1 2.2 2.16 0.05 
Fig. 5.2 (C) 0.1 2.1 2.08 0.08 

 
 TABLE 5.6 

 CAPON FILTERING OF LENGTH 0.1*N (LENGTH=5 SAMPLES) 

s [m1-H] D estimated D chi-square 

0.1 2.3 2.19 0.002 
0.1 2.2 2.13 0.002 
0.1 2.1 2.07 0.001 

 
For the sake of brevity, hereafter only the plots of the range cut PSDs 
relevant to the case of  the best filtering, i.e. p=0.3*N, are presented. It 
is worth stressing that, due to the Capon filtering and then to the 
antialiasing filtering performed on an already short data segment, the 
number of samples on which the spectrum estimation is performed is 
significantly reduced. In Fig. 5.2, the PSDs relevant to the results in 
Tab. 5.5 are shown: in this case the number of samples used for the 
estimation is equal to 11. 
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(B) 
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Fig. 5.2 (A-C): Estimated (samples) and theoretical (continue lines) PSDs of a 

range cut of a 50 pixels cut of a SAR image of a surface of fractal parameters 

given in Tab.5.5. The dashed lines delimit the range of slopes of a fractal. 

 
Obviously, due to the small number of samples used for the 
estimation, the results relevant to small data segments (Tab. 5.4-5.6) 
are generally worse than the results of the previous section (Tab. 5.1-
5.3). Nevertheless, also for small data segments, the best filter length 
is equal to 0.3*N. Moreover, the trend of the results in Tab. 5.4-5.6 is 
the same of that in Tab. 5.1-5.3: the chi-square decreases if the filter 
length increase, but the bias increases too, so, for the cases at hand, it 
is not convenient to use a filter length smaller than 0.3*N. 
 

5.2 Relative standard increment deviation 

retrieving 
 

The retrieving of the second fractal parameter, the increment standard 
deviation s [m1-H] (cf. Section 2.3, [8], [9]) - starting from Eq. (3.44) 
and taking into account the asymptotical evaluation of the reflectivity 
spectrum in Eq. (3.24) - is more involved with respect to the fractal 
dimension case. Actually, in this case, if the linear regression is 
enforced to extract the s value, this value will be retrieved from the 

(C) 
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intercept, i.e. from a single value extremely influenced by the 
spectrum slope estimate. Thus, the s estimate would be completely 
dependent on the goodness of the estimate of the other fractal 
parameter. Moreover, the SAR image power spectrum amplitude can 
depend not only on the amplitude coefficient of Eq. (3.44), but also on 
calibration parameters of the specific sensor that cannot be always 
known and controlled. For this reason, in the following preliminary 
analysis, the extraction of a relative value of s, that is retrieved 
considering the ratio of two SAR image power spectra according to 
the theoretical and analytical considerations of the following sections, 
is investigated [3]. 
 

5.2.1 Theoretical framework 
 
Let us recall, in extended way, the expression of the PSD of the range 
cut of SAR images of fractal surfaces: 
 

¢Y�«®  = Da&w&ª(1 + 27)wG�(�7) 1Ý«®Ý&��a rect /Δcsin&34	«®� 2
= ¯4Y Ý«®Ý�°ñrect /Δcsin&34	«®� 2,																														�5.1� 

 

wherein Da, as	stated	in	Eq. �3.43�, is: 
 

Da = �¯4÷a�&�|í±h|&2&� cos34	sin��34 × ;2 + �1 + 7�cos&34	sin�&34'.										�5.2� 
 
with ¯4 given in Eq. (2.20). As Eq. (5.1) and (5.2) show, the spectral 
amplitude of the range cut SAR image PSD, ¯4Y , depends on several 
parameters; including 34 and  ÷ that are known and depend on the 
sensor characteristics, «® that depends on the spatial frequencies and 
is calculable and H, the Hurst coefficient, that can be preliminarily 
estimated with the linear regression discussed in the previous 
paragraph. Further incidental calibration coefficients that modify the 
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spectral amplitude are assumed to be constant for SAR images 
acquired by the same sensor. According to these considerations it can 
be considered the ratio between two SAR image PSDs. Substituting 
Eq. (5.2) and Eq. (2.20) in Eq. (5.1), it turns out: 
 ¢Ya�«® ¢Y&�«®  =

waÆ2÷aa�&�äΓ&(1 + 7a)sin&(�7a)w&Æ2÷&a�&�åΓ&(1 + 7&)sin&(�7&) × 

cos&34a	sin�&�ä34a;2 + (1 + 7a)cos&34a	sin�&34a'& 1Ý«®Ý&�ä�a
cos&34&	sin�&�å34&;2 + (1 + 7&)cos&34&	sin�&34&'& 1Ý«®Ý&�å�a

= 

= waÆw&Æ ∙ Μ�÷a, ÷&, 7a, 7&, 34a, 34&, «® 														(5.3) 

 
wherein 
(∙) is a multiplicative function. If we are considering power 
spectra of SAR images acquired by the same sensor (or of different 
cuts of the same SAR image) the sensor parameters and the 
wavenumber ÷ are the same, so Eq. (5.3) turns into: 
 ¢Ya�«® ¢Y&�«®  = waÆw&Æ ∙ Μ�÷, 34, «®, 7a, 7& 																					(5.4) 

 
Therefore the estimation of the increment standard deviation s, in 
relative, with respect to a controlled value of s, can be performed after 
estimating the PSDs of the SAR image of the region of interest and 
after estimating, trough the last ones, the Hurst coefficients 7aand 7&, 
as follows: 
 

wa = w& 	�¢Ya�«® ¢Ya�«®  ∙ 1Μ�÷, 34, «®, 7a, 7& �
aÆ
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5.2.2 Numerical setup 
 
In order to validate the theoretical analysis presented in the previous 
section, the s parameter extraction is performed, as done for the D, on 
couple of canonical SAR images obtained starting from synthesized 
fractal surface of known and different fractal parameters (cf. Section 
4.1, [7]). The spectra ¢Ya�«®  and ¢Y&�«®  are estimated using the 
Capon estimator widely discussed in Sections 4.2 and 5.1 [5]. Then, 
performing a linear regression on these PSDs, the Hurst coefficient H 
of the SAR image is retrieved. Therefore, the multiplicative factor of 
Eq. (5.4) can be calculated and - through Eq. (5.5) - the ratio of the 
increment standard deviations of two SAR images of constant and 
controlled fractal parameters can be evaluated and compared with the 
theoretical one. Note that, in order to make the estimate more robust, 
the abovementioned operations (evaluation of the multiplicative factor 
 and calculation of the PSDs ratio) are implemented on the PSDs 
integrals, so averaging on all the estimated spectra points.  
In Figures 5.3-5.6 the theoretical and estimated range cuts PSDs ((A) 
and (B) respectively) of SAR images of natural surfaces with several 
fractal parameters are represented. The starting SAR iamges have 
1000x1000 pixels dimensions and the same fractal parameters at all 
scales of interest. In particular, cases of SAR images of fractal 
surfaces having:   
- same Hurst coefficient and different increment standard 

deviations (Fig. 5.3) 
- same increment standard deviation and different Hurst coefficients 

(Fig. 5.4) 
- different Hurst coefficients and different increment standard 

deviations (Fig. 5.5, 5.6) 
are considered. The results relevant to the fractal parameters s and H 
estimations are given in Table 5.7. 
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    (A) 

 

 
(B) 

 
Figure 5.3. Theoretical (A) and estimated (B) spectra relevant to SAR Images of surfaces 

having the following fractal parameters: H1 = H2 = 0.8, s1 = 0.3 m0.2, s2 = 0.1 m0.2 
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(A) 

 

 
(B) 

 
Figure 5.4: Theoretical (A) and estimated (B) spectra relevant to SAR Images 

of surfaces having the following fractal parameters:H1 = 0.9, H2 = 0.7, 

 s1 = 0.1 m
0.1

, s2 = 0.1 m
0.3 
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(A) 

 

 
(B) 

 

Figure 5.5: Theoretical (A) and estimated (B) spectra relevant to SAR Images 

of surfaces having the following fractal parameters:H1 = 0.7, H2 = 0.8, 

 s1 = 0.3 m
0.3

, s2 = 0.08 m
0.2

 

 



5.2 Relative increment standard deviation retrieving                        101 

 

 
(A) 

 

 
(B) 

 

Figure 5.6. Theoretical (A) and estimated (B) spectra relevant to SAR images of 

surfaces having the following fractal parameters:H1 = 0.6, H2 = 0.8, 

 s1 = 0.1 m
0.4

, s2 = 0.05 m
0.2 
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Table 5.7  

Theoretical and estimated fractal parameters relevant  
to the PSDs in Fig. 5.3-5.6 

  
theoretical 

s [m
1-H

] 

theoretical 

H 

estimated 

H 

theoretical 

s ratio 

[m
H

2
-H

1] 

estimated 

s ratio 

[m
H

2
-H

1] 

Fig.5.3 

PSD 
1 

0.3 0.8 0.797 
3.000 2.754 

PSD 
2 

0.1 0.8 0.800 

Fig.5.4 

PSD 
1 

0.1 0.9 0.889 
1.000 1.062 

PSD 
2 

0.1 0.7 0.754 

Fig.5.5 

PSD 
1 

0.3 0.7 0.776 
3.750 3.636 

PSD 
2 

0.08 0.8 0.801 

Fig.5.6 

PSD 
1 

0.1 0.6 0.654 
2.000 1.787 

PSD 
2 

0.05 0.8 0.864 

 
Besides the presented results, some consideration on the fractal 
parameters estimation are in order. The D (equivalently H) retrieving 
is a very delicate issue as its accuracy is strongly influenced by the 
number of samples used for the estimation of the spectrum ( in the 
presented cases 1000x1000 sample range profile have been used to 
validate the theoretical analysis) and as the model goes out of the 
hypotesis of small slopes regime the H estimate becomes worse. The s 
relative estimation, instead, is more robust both with respect to the 
number of samples used for the spectrum estimation and for the 
validity limits of the theoretical model. Moreover, and this is a non 
slight result, the godness of the s estimate is not significantly affected 
by the accuracy of the H estimation: also in cases in which the H 
estimation is less accurate (see Fig. 5.4 PSD 2, Fig. 5.5 PSD 1, Fig 5.6 
PSD 1, 2) the  results on the relative s are comparable with the others 
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5.3 SAR image post-processing for the fractal 

dimension map generation 
 

In order to apply on actual SAR images the fractal retrieving 
techniques described in the previous section, some considerations 
about the extent of the imaged area and so on the number of samples 
which can be used for the spectrum estimation are required. 
In Section 4.2, in order to validate the theoretical results, simulated 
profiles of 1000 samples, holding the same fractal dimension at all 
scales, have been considered. Obviously, an actual SAR image of a 
natural area can present appreciable variations of the fractal dimension 
over the observed scene. Indeed, the fractal dimension is a local 
characteristic of the surface and an effective technique for the its 
retrieving should work on small homogeneous patches of the image. 
Therefore, in order to obtain a map of the fractal dimension starting 
from a SAR image, i.e. a matrix of the point by point estimated D of 
the observed scene, a specific algorithm, based on the inversion and 
estimation logic described in the previous section, has been 
implemented [1], [2], [10]. The proposed algorithm makes use of a 
sliding window which, spanning the entire image, performs in each 
iteration the retrieving of D as described in the previous Sub-sections 
5.1. The choice both of the sliding window dimensions and of the 
number of range cut spectra averaged in each window in order to 
obtain the mean PSD, depends on the specific needs of the user and 
results from a trade-off between estimation accuracy, computational 
time and resolution of the output fractal dimension map. As a matter 
of fact the choice of a larger window allows obtaining a more accurate 
estimate of the fractal dimension (depending on the number of 
samples drawn in the range direction) but makes the resolution of the 
final fractal map worse and increases the computational time. 
Concerning the number of range cut spectra averaged in each window, 
the larger this number the better the PSD estimation, even if the 
computational time increases: in particular, this is true if we assume 
that all the considered range cuts in the window pertain to the same 
type of terrain. 
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5.3.1 Application to simulated SAR images of canonical 

fractal surfaces 
 
In order to evaluate the performance of this algorithm a test on a 
canonical fractal case is presented: the algorithm has been applied to a 
simulated (canonical) speckle-free (corresponding to an infinite 
number of looks) SAR image obtained as described in the previous 
section (i.e. providing as input to the simulator a DEM of a surface 
holding the same fractal parameters at all scales) with several 
dimensions of the elaboration window. In Fig.5.7 the simulated 
Envisat image of 1000x1000 pixels of a natural surface with fractal 
parameters D=2.2, s=0.1 m0.2 is shown. In Fig. 5.8, 5.9 and 5.10 the 
corresponding fractal maps obtained using windows of 51x51 pixels, 
35x35 pixels, 21x21 pixels, respectively, are presented. In Table 5.8 
the statistics of these fractal maps are summarized: in particular, the 
mean and the standard deviation of the estimated fractal dimension are 
provided. 
 

 
Fig. 5.7: Simulated SAR Image of a canonical surface 

fractal parameters s=0.1, D=2.2 
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Fig. 5.8: Fractal map relevant to the SAR image in Fig.5.7 

obtained with a sliding window of dimension 51x51 pixels 

 

 
Fig. 5.9: Fractal map relevant to the SAR image in Fig.5.7 

obtained with a sliding window of dimension 35x35 pixels 



106                                           Chapter 5 Fractal parameters estimation 

 
Fig. 5.10: Fractal map relevant to the SAR image in Fig.5.7 

obtained with a sliding window of dimension 21x21 pixels 
 

Table 5.8 
STATISTICS OF THE FRACTAL MAPS (SPECKLE FREE CASE) 

Figure number 
Sliding window 

dimensions 
D mean 

D standard 

deviation 

Fig. 5.8 51x51 pixels 2.19 0.13 
Fig. 5.9 35x35 pixels 2.11 0.16 
Fig.5.10 21x21 pixels 2.06 0.19 

 
Furthermore, in order to evaluate the performance of this type of post-
processing on SAR images affected by the speckle phenomenon, the 
algorithm has been applied to simulated SAR images generated by the 
SARAS ([7]) and taking into account the speckle effect (cf. Section 
1.2, [11], [12]). In this case, a sliding window of 51x51 pixels has 
been used. As shown in Figs. 5.11-5.14 and summarized in Table 5.9, 
the presence of speckle does not significantly invalidate the 
effectiveness of the estimation for the considered cases: in particular, 
four simulated SAR images have been considered, for which the 
observed surface presents different values of D and s, as summarized 
in Table 5.9. As a matter of fact, the presented spectrum estimation 
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technique performs a sort of intrinsic speckle filtering. First of all, 
averaging several spectra relevant to range cuts sufficiently spaced in 
the azimuth direction to be considered uncorrelated, implies a 
significant mitigation of the speckle effect. Besides, as a result of the 
anti-aliasing filtering, which consists in discarding the high 
frequencies components of the spectrum (see Section 4.2.2), the range 
of frequencies mostly affected by the speckle is discarded. 
 

 
Fig. 5.11: Fractal map relevant to a SAR Image of fractal 

parameters specified in Table 5.9 in presence of speckle. 
 



108                                           Chapter 5 Fractal parameters estimation 

 
Fig. 5.12: Fractal map relevant to a SAR Image of fractal 

parameters specified in Table 5.9 in presence of speckle. 

 

 
Fig. 5.13: Fractal map relevant to a SAR Image of fractal 

parameters specified in Table 5.9 in presence of speckle. 
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Fig. 5.14: Fractal map relevant to a SAR Image of fractal 

parameters specified in Table 5.9 in presence of speckle. 

 
Table 5.9 

STATISTICS OF THE FRACTAL MAPS (SPECKLE CASE) 

Figure 

number 

s [m
1-H

] of the 

imaged surface 

D of the imaged 

surface 
D mean 

D 

standard 

deviation 

Fig. 5.11 0.3 2.3 2.22 0.07 

Fig. 5.12 0.3 2.1 2.14 0.08 

Fig. 5.13 0.5 2.3 2.23 0.06 

Fig. 5.14 0.5 2.1 2.08 0.08 

 

5.3.2 Behavior in presence of man-made structures 
 

Contrary to natural surfaces that can be effectively described using 
fractal models, ([8], [9]), man-made objects does not show a fractal 
behavior, at least at scales ranging from the sensor resolution one and 
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that of the microwave electromagnetic field wavelength. Thus, a 
geometric description in the context of Euclidean geometry is in order 
[13]. From a fractal point of view this means that they show a non-
fractional dimension and, hence, at least in principle, they should be 
clearly separable from fractal objects in SAR images. 
In this subsection the behavior of the SAR image fractal processing 
described in the previous one, in presence of urban features is 
investigated [14]. These latter produce the appearance on the image of 
very bright characteristics, determining strong discontinuities in the 
radar signal. This is due to the presence of multiple scattering 
contributions, mainly generated by the dihedral configuration of soil 
and building walls [13]. The presence of discontinuities affects 
strongly the behavior of the fractal processing, whose rationale is 
based on the evaluation of the image spectrum. 
To investigate the behavior of the fractal filter in presence of multiple 
reflection contributions, SAR images simulated (by means of SARAS 
simulator [7]) superimposing to the reflectivity relevant to a fractal 
DEM, with prescribed fractal parameters, three fifty-pixels-long bright 
lines and one bright point, presenting all the same intensity (Fig. 
5.15). 
 

 
Figure 5.15: Simulated SAR image. 
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In Fig. 5.16 and 5.17 two filtered versions of the test image, obtained 
with elaboration windows of dimensions 35x35 pixels and 71x71pixels 
respectively, are shown. First of all, it is evident that the dimensions of 
the geometric features relevant to the bright objects depend on the 
sliding window dimension. Some quantitative considerations are in 
order. In both Fig. 5.16 and 5.17, the presence of the isolated bright 
point does not significantly affect the fractal map. At the right side of 
the figures there is a square window of the same dimension of the 
elaboration window presenting a constant fractal dimension. Such a 
phenomenon depends on the fact that the level of  spectrum distortion 
due to the presence of a single non fractal point in a whole range line 
(whose length depends on the range-sliding window dimension) that is 
also averaged with a number of fractal spectra (the number of these 
spectra depending on the azimuth-sliding window dimension), does not 
significantly alter the fractality of the area covered by the window. The 
vertical bright line produces in both cases a rectangle showing a width 
equal to that of the used sliding window, and a length equal to that of 
the line summed to the length of the sliding window. The rectangle 
turns out to be dark with respect to the background, in fact it presents 
quite constant values of fractal dimension lower than 2: in this case a 
brilliant point is present in several range lines in the same sliding 
windows, so the averaged spectrum is finally non-fractal. As a matter 
of fact, the algorithm perfectly retrieves the non fractal object, and its 
length can be exactly deduced. A very similar effect is that produced 
by the oblique line. In both Fig. 5.16 and 5.17 we can see an hexagon 
due to the dragging of a window (whose dimensions are those of the 
elaboration window) for all the length of  the starting oblique line The 
most evident difference between the two images is due to the 
processing of the horizontal bright line, which, anyway, cannot be 
related to double reflection contributions, but shows an interesting 
behavior of the filtering. In Fig 5.16 the filtering produces two side by 
side square windows having the same dimension of the sliding 
window, spaced out 15 pixels. This phenomenon depends on the fact 
that a sliding window smaller than the line in the range direction has 
been used. This implies that, for a distance equal to the length of the 
horizontal bright line minus the range dimension of the sliding 
window, during the processing, there is a constant bright line spanning 
all the elaboration window extension, whose spectrum, averaged with 
those of the other range lines present in the windows, does not produce 
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any distortion. This effect does not occur in Fig.5.17, where the size of 
the elaboration window is greater than that of the bright line. In this 
case, we have a 71 pixels-long and 121-pixels wide rectangle (the 
range dimension is given by the sum of the window size and of the 
bright line length). 

 

 
Figure 5.16: Fractal map relevant to the SAR image in Fig. 5.15 obtained using 

a 35x35 pixels sliding window  

 
Figure 5.17: Fractal map relevant to the SAR image in Fig. 5.15 obtained using 

a 71x71 pixels sliding window  
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In conclusion, the above presented test simulation shows how the 
fractal processing, operating on a single (amplitude) SAR image, 
recognizes automatically non-fractal features and how it is possible to 
retrieve the dimension of such objects taking into account the sliding 
window dimensions [14]. 
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Chapter 6 
 

Fractal processing of actual SAR 

images 
 

In this chapter some significant study cases relevant to the application 
of the fractal processing [1] described in Section 5.3 to actual SAR 
images are presented. Depending on the objective of the specific 
application at issue, fractal maps of SAR images can be used for 
different types of analysis of the scene observed by the sensor. The 
automatic separation between urban objects and natural areas, the 
interpretation of geomorphologic features of geological formations, 
the detection of changes from SAR images of the same area acquired 
in different times are examples of the possible analysis to perform. In 
this chapter, four different study cases are investigated, that not only 
exemplify diverse types of applications, but also illustrate the 
goodness of the processing operation on different types of SAR 
images (acquiring sensor, operational mode, resolution).  
In the first section the fractal processing is used in order to distinguish 
- in a complete automatic way, working on a single SAR image - 
urban areas from natural ones.  
In Section 6.2 the fractal processing is applied to a TerraSAR-X 
stripmap image of the Somma - Vesuvius volcanic complex and the 
relevant results are compared with those obtained starting from a 
Digital Elevation Model (DEM) of the scene at issue [2]. 
In Section 6.3 a fractal-based analysis for the seismic damage 
estimation in urban areas, performed working on COSMO-SkyMed 
spotlight (very high resolution) images is presented. Finally, in 
Section 6.4, preliminary results on the application of the fractal 
processing for the relative standard increment deviation s [m1-H] 
retrieving are shown. 
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6.1 Fractal analysis of SAR images: the case of 

Somma-Vesuvius volcanic complex 
 

In this section the results of the application of the processing 
described in Section 5.3 to a SAR image of the Somma - Vesuvius 
volcanic complex (close to Naples in Italy) are presented, together 
with the comparison with the relevant ground truth [2]. This second 
task is not a trivial one: as a matter of fact, the geometrical differences 
(resolution and scene orientation) between the SAR image and the 
DEM of the area of interest should be taken into account. 
Furthermore, the presence of artifacts in the DEM, probably due to the 
particular interpolation technique used for its generation, significantly 
complicates the analysis. 
 

6.1.1 Fractal analysis of the SAR image 
 

First of all, the fractal SAR image post-processing is applied to a 
TerraSAR-X stripmap image of the Somma - Vesuvius volcanic 
complex area. 
The characteristics of the starting image (Fig. 6.1) are the following: 
dimensions 3251x2820, resolution 3mx3m, VV polarization. As said 
in the previous chapter, the choice of the sliding window dimension 
used for the spectral estimation  comes from a trade-off between the 
resolution of the final map, the accuracy of the fractal dimension (D) 
estimation and the computational complexity. In this case, being the 
resolution of the TerraSAR image high, the sliding window dimension 
is set equal to 51x51 pixel, i.e. not very small, in order to guarantee 
the accuracy of the estimation of D [1], [2]. 
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Fig. 6.1: TerraSAR-X stripmap image of the Somma-Vesuvius volcano 

 

 

 
Figure 6.2: Fractal Map relevant to the SAR image in fig. 6.1 

 

D=1.56                                   D=2                                                D=2.48 
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Some considerations about the obtained fractal map (Fig. 6.2) are in 
order. It contains the point by point estimated D values. The fractal 
map present a range of values of the fractal dimension equal to 1.56 < 
D < 2.48 and a mean value equal to Dmean= 2.2 with a standard 
deviation equal to 0.08. As seen in the first section, a fractal object has 
a fractal dimension D: 2 < D < 3, but natural surfaces usually show a 
persistent behavior that is 2 < D < 2.5 [3]-[5]. Therefore, the 
estimation of D is consistent with the theoretical assumptions. 
Concerning the inferior limit, in some areas of the fractal map D 
presents values smaller than 2 (in the grey level palette of Fig. 6.2 the 
grey levels associated from the minimum D value to the maximum D 
value are reported and a white line is set in correspondence to D=2). 
This can be explained considering that, as we can see in Fig. 6.1, some 
layover effects are present in the TerraSAR image. Obviously, this 
phenomenon generates non-fractal features on the amplitude image, 
and, accordingly, in these zones the algorithm recognizes non fractal 
areas. Moreover, at the left upper corner of the fractal map, also some 
buildings, that in the SAR image appear as brilliant points, are 
identifiable as dark spots on the fractal map. In other cases, the areas 
where the fractal dimension D is less or equal to 2 could be also 
interpreted as the surface signature of particular tectonic processes as 
faulting or caldera structural formation. So, the occurrence of different 
fractal dimensions could be used as an indicator in order to 
discriminate the presence of different geodynamic processes during 
the natural evolution of a volcanic complex [6]. 
 

6.1.2 Comparison with the ground-truth 
 
In order to compare the fractal map obtained from the TerraSAR 
image with the ground truth relevant to the scene under survey, a 
Digital Elevation Model (DEM) of the Somma - Vesuvius volcanic 
complex area is used. 
The DEM, obtained through aerophotogrammetry, has a resolution of 
5mx5m and is a mosaic of 4 pieces with dimensions 711x564 pixel. 
The first task consists in matching the TerraSAR image and the DEM. 
To this end, the TerraSAR image (already cut out so that the covered 
geographic area is the same) must be rotated and resampled. The 
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rotation is deduced from the geographic coordinates, while for the 
sampling is used the nearest neighbor method, as other interpolation 
algorithms could significantly invalidate the fractal features of the 
image. Finally, the modified SAR image has the same resolution of 
the DEM. To this one, our post-processing is applied first with the 
same statements of the previous case (same sliding window 
dimensions and same filtering) in order to compare the results and 
then with a smaller sliding window in order to obtain a finer resolution 
for the fractal map. 
 

 

 
Figure 6.3: Fractal map relevant to the resampled SAR image of Fig. 6.1 

obtained with a sliding window of 51x51 pixel 
 

D=1.8             D=2                                                       D=2.67 
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Figure 6.3: Fractal map relevant to the resampled SAR image of Fig. 6.1 

obtained with a sliding window of 35x35 pixel 
 

The fractal statistics of the map in Fig. 6.3 are: 1.8 < D < 2.67, 
Dmean=2.3, standard deviation equal to 0.1. Comparing the last ones 
with those of the previous case, it can be deduced that a small 
variation of the fractal features of the SAR image is present, because 
of the geometrical transformation carried out. In Fig. 6.4 the fractal 
map obtained using a smaller sliding window (35x35 pixels) is shown. 
As the resolution is better and the fractal statistics remain essentially 
the same (1.83 < D < 2.59, Dmean=2.3, standard deviation equal to 
0.1), this last dimension of the sliding window is chosen for the 
comparison with the ground truth.  
The presented fractal dimension estimation algorithm is applied to the 
DEM, taking into account that the regression in this case is done on 
the spectrum of cuts of the surface (cf. Eq. 3.12). Hereafter, the 
obtained fractal map of the DEM is presented together with some 
considerations. 
 

D=1.83          D=2                                                        D=2.59 
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Fig. 6.5: DEM of the Somma-Vesuvius volcanic complex 

 

 

 
Fig. 6.6: Fractal map relevant to the previous DEM 

 

D=1                                          D=2                                                  D=3 



 

124                          Chapter 6 Fractal processing of actual SAR images 

The fractal map shown in Fig. 6.6 presents, in some points, 
characteristics rather different from those obtained from the SAR 
image and from those that it would have if the DEM were perfectly 
fractal. This can be explained considering that the DEM is not fractal 
everywhere: the interpolation used in the DEM generation process is 
not known, but several artifacts (perfectly flat areas) are clearly 
recognizable. In particular, especially in the areas of large height 
variations, the fractal map in Fig. 6.6 presents an anomalous dotted 
effect, whereas the variation of D should be smoother. Viewing the 
spectra relevant to those points, they appear definitely non fractals and 
the estimation seems to be strongly unstable. This confirms the 
presence of artificial features in the DEM. 
The range of values of the fractal dimension of the DEM fractal map 
is: -0.7 < D < 3.5. In Fig. 6.6 is shown the relevant map with values 
set between: 1 < D < 3. The mean value of the map of Fig. 6.6 is 
Dmean=1.7 and the standard deviation is equal to 0.4. This confirms 
that the non-fractal characteristics of the DEM significantly alter the 
retrieved fractal statistic. 
 

6.2 Automatic detection of urban objects 

The SAR image fractal processing presented in section 5.3, whenever 
applied to SAR images of partially rural and partially urban areas, 
works as automatic detector of natural rather than man-made 
structures. As a matter of fact, as widely discussed in Chapter 2, 
fractal objects hold an Hurst coefficient H included in '0,1;, i.e. a 
fractal dimension D included in '2,3; ([3]-[5]); hence, by simply 
estimating the point by point fractal dimension of the imaged scene, 
objects presenting a D out of the fractal range can be identified. 
Hereafter the SAR image post processing is run on a TerraSAR 
stripmap image of an area close to L'Aquila (Abruzzo, Italy) having a 
resolution of 3mx3m (Fig. 6.7). The single look complex-ampiltude 
image captures a scene presenting partly natural elements and partly 
the urban area. In Fig. 6.8, the relevant fractal map is shown. The map 
is obtained via a sliding window of 51x51 pixels. 
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Fig. 6.7: TerraSAR stripmap image of L'Aquila surroundings, partly urban 

and partly rural 
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Fig. 6.8: Fractal map relevant to the previous SAR image obtained with a 

sliding window of 51x51 pixels. 

 
 

1,6 2 2,7 
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The range of retrieved values for the fractal dimension is 1,6 < � <2,7, the grey-level bar placed below the figure shows the 
correspondence of values to the shades of grey, pointing out where the 
value "2", i.e. the limit between what is fractal or not, is set. It is easily 
visible that all the non-fractal objects as buildings or roads are present 
as dark features in the map and are clearly separable from the natural 
areas. Furthermore, it is worth noting that also some image distortion 
as the layover effect  (cf. Section 1.2, [7]) present at the centre and on 
the upper left corner is detected as non fractal. 
In order to exactly compare the non fractal points of the map in Fig. 
6.8 with the correspondent points of the SAR image, the former have 
been superimposed, in red color, to the image. This gives an 
impressive view of the detection performance of the proposed 
algorithm.  
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Fig. 6.9: Superimposition of non fractal points to the starting SAR image 
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6.3 Pre-post event fractal analysis: L'Aquila 

earthquake 
 

In this section the SAR image fractal processing presented in Section 
5.3 is exploited in order to perform an analysis directed to the 
detection of the changes occurred in urban areas owing to seismic 
events. In particular, the area of L'Aquila (Abruzzo, Italy) is 
considered and the objective is the seismic damage estimation relevant 
to the earthquake occurred in 2009. To perform such an analysis, a 
couple of COSMO-SkyMed spotlight images, acquired before and 
after the earthquake, have been used; the corresponding fractal maps 
have been generated and made comparable. The objective is the 
automatic detection of the areas presenting the bigger changes in pre 
and post-event images, via the fractal dimension estimation. The 
images, shown in Fig. 6.10 and 6.11, present a high resolution of 
1mx1m and they have dimension of 9228 x 6411 pixels.  
 

 
Fig. 6.10: COSMO-SkyMed pre-earthquake image of L'Aquila area 
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Fig. 6.11: COSMO-SkyMed post-earthquake image of L'Aquila area 

In Fig. 6.12 and 6.13 the fractal dimension map relevant to the 
COSMO-SkyMed images in Fig. 6.10 and 6.11 are reported. For their 
generation a sliding window of 51x51 pixels is used, thus allowing a 
good accuracy of the fractal dimension estimation. Moreover, in Table 
6.1, the statistics of the fractal maps are reported; these turn out, true 
to form, very similar for the pre-and post-event cases, being the scene 
observed by the sensor essentially the same except for the damaged 
areas. 
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Fig. 6.12: Fractal map relevant to the SAR image in Fig. 6.7 

 

 
Fig. 6.13: Fractal map relevant to the SAR image in Fig. 6.8 
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Table 6.1 

STATISTICS OF THE FRACTAL MAPS IN FIG.6.9 AND 6.10 

 D min D max D mean D stdev 

Fig. 6.12 1.12 2.77 2.25 0.14 

Fig. 6.13 1.1 2.6 2.24 0.14 

 
In order to detect the more damaged areas, the map of the difference 
of the point by point fractal dimension between the pre and post SAR 
image is evaluated. To this aim, the two fractal maps must be firstly 
coregistered to be perfectly superimposable. The coregistration 
problem is not a trivial one as, if the coregistration is performed on the 
starting SAR images (as in the usual applications), it could alter the 
results on the fractal dimension estimation. The fractal processing 
seems to be very sensitive to any further elaboration performed on a 
single look complex SAR image. Hence, concerning geocoding, 
coregistration or any other projection-processing, it is more suitable to 
perform them on the fractal maps, i.e. after the fractal processing, 
rather than on the starting SAR images.  
In our case the coregistration is performed selecting an ensemble of 
ground control points (GCP) from the COSMO-SkyMed single look 
complex images and applying the operation of coregistration on the 
relevant final fractal maps via the selected GCP. This is obviously 
done because the resolution of the final fractal maps is worse than that 
of the starting image (it depends on the sliding-window dimension) 
and so the GCPs can be pick out much more precisely starting from 
the image. 
In Fig. 6.14 the map of the fractal dimension difference between the 
fractal maps in Fig. 6.12 and 6.13 (after the coregistration operation) 
is presented, together with the relevant statistics reported in Table 6.2. 
True to form, the mean value of this difference appears very small, as 
we are considering the difference between fractal maps of the same 
geographic area, at a distance of just one month, so the biggest 
changes (lighter points on the map) occur in the urban zone and reveal 
the damaged objects. 
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Fig. 6.14: Map of the point by point fractal dimension difference between 

fractal maps in Fig. 6.9 and 6.10 

 

6.4 Preliminary results on the relative 

increment standard deviation map generation 
 

In this final section a case study regarding the generation of the fractal 
maps of both the fractal parameters D and s [m1-H] for a COSMO-
SkyMed stripmap image of an area of Burkina Faso (West-Africa) is 
presented [8]. The map of the relative increment standard deviation s 
is generated by an algorithm based on the same rational of that used 
for the fractal dimension map generation. It extracts the local s of the 
imaged surface - according to the operations described in Section 
5.2.2 - working on patches of the SAR image and iterating the 
procedure on the whole image, through a moving window. For the s 
estimation, first of all, a reference PSD is evaluated starting from an 
homogeneous area of the SAR image presenting the sliding window 
dimension; then, with regard to this spectrum, in each window the 
relative s estimation is performed. 



 

134                          Chapter 6 Fractal processing of actual SAR images 

In Fig. 6.16 and 6.17 the fractal maps of both the point by point fractal 
dimension and the relative increment standard deviation, retrieved 
from the SAR image shown in Fig. 6.15, are presented. The starting 
SAR image is a 9277x9192 pixel image with a resolution of 3mx3m. 
 

 
Figure 6.15: COSMO-SkyMed Stripmap image of a rural area of Burkina  

(Africa). 
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Figure 6.16: Fractal dimension (D) map relevant to the SAR image in Fig. 6.15 
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Figure 6.17. Increment standard deviation (s) map relevant to the SAR image 

in Fig. 6.15 

 

The statistics of the fractal maps in Figures 6.16, 6.17 are given in 
Table 6.2 

Table 6.2 

STATISTICS OF THE FRACTAL MAPS IN FIG.6.16 AND 6.17 

 Minimum Maximum Mean 
Standard 

Deviation 

D map 
(Fig. 6.16) 

1.32 2.49 2.20 0.07 

relative s map 
[m

0.82-Hstim
] 

(Figure 6.17) 
0.38 313.12   
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Concerning the fractal dimension map, it can be observed that the D 
mean is a value typical for natural surfaces.  
Regarding the increment standard deviation map, there is a large 
variation range between minimum and maximum but so high values 
for the relative s occur only for very few points in which probably the 
starting SAR image presents features that alter the spectrum 
estimation. The reference spectrum used is represented in Figure 6.18 
and presents an estimated value of D equal to 2.18. 
It is important to note that the increment standard deviation map in 
Fig. 6.17 makes sense only if read together with the relevant fractal 
dimension map, in fact the parameter s has a dimension unit that 
depends on H (equivalently D) [9], [10]. That is why in table 6.2 the 
mean and the standard deviation of s have been omitted: each point of 
the s map has a different dimensional unit depending on the D value 
of the corresponding point in the D map. 
As Fig. 6.16  and 6.17 show, the information content of the maps of 
the fractal parameters D and s is rather different. The s map is 
somehow proportional to the SAR image intensity, as a matter of fact 
the information on the s parameter is held in the spectral amplitude. 
Conversely, the fractal dimension map is completely independent on 
the image intensity, being D related to the correlation properties of the 
image through the spectral slope. Hence a jointly use of these different 
but complementary types of information is one of the most important 
future developments of this work. 
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Conclusions 
 

In this thesis a complete direct model of the SAR imaging process for 
fractal surfaces has been presented. Furthermore a SAR image post-
processing, based on this model's inversion, allowing the extraction of 
fractal parameters representing the scene observed by the sensor − 
starting from a single SAR image − is provided. 
The proposed model, which is in turn based on sound radar, 
electromagnetic and geometrical models, links, in an analytical way, 
the SAR image of a natural surface to the parameters that 
quantitatively describe the surface of interest. In particular, due to the 
fact that a natural surface presents an inherent stochastic behavior, it 
has been computed in closed form, under the hypothesis of small 
slopes of the surface, the statistical characterization of the acquired 
image, that depends on the parameters used for the surface 
characterization. For the description of the natural scenes fractal 
models have been used, as they are widely recognized in literature as 
the best ones representing the roughness of this type of areas. 
Moreover, in order to deal with the scattering problem, fractal models 
that take into account the interaction of the electromagnetic field with 
a fractal surface, have been used too. Therefore the framework of the 
presented SAR imaging model is, for the first time, completely fractal 
based.  
The main theoretical results presented in this thesis can be 
summarized as follows: 
− it has been demonstrated that the reflectivity of the imaged natural 

scene linearly depends, in the hypothesis of small slopes, only on 
the partial derivative along the range direction of the two-
dimensional surface; 

− after adequately evaluating the range derivative process of the 
surface, the two-dimensional autocorrelation function of the 
reflectivity and of the SAR image have been computed in closed 
form; 

− starting from the two-dimensional autocorrelation function, the 
Power Spectral Densities of a range and an azimuth cut of the 
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image have been computed in closed form; the range and azimuth 
PSDs show very different behaviors, analytically highlighting the 
intrinsic asymmetry of a SAR image: in particular, neither of them 
is rigorously fractal but the range one, in an appropriate range of 
wavenumbers, presents a power-law behavior with a slope related 
to the fractal dimension of the observed surface; 

− performing linear regression techniques on the PSD of range cuts 
of the SAR image the fractal dimension D of the observed natural 
surface can be retrieved. 

In order to validate the theoretical results a complete numerical setup 
has been presented as well. First of all, a complete simulation chain 
allowing the generation of a SAR image of a fractal surface of known 
parameters has been implemented. On the simulated image an 
algorithm performing the inversion of the theoretical model has been 
applied: the PSDs of range and azimuth cuts of the image have been 
estimated and then compared with the theoretical ones. The problem 
of spectral estimation of power-law spectra of short data segments of 
SAR images has been taken into account; hence the Capon estimator 
has been used as it minimizes the variance and compensates for 
leakage effect. 
The fractal parameters estimation from single SAR images has been, 
then, treated. Performing linear regression techniques on the SAR 
image range spectrum, the fractal dimension of the imaged surface has 
been estimated. A large numerical setup has been provided in order to 
test the retrieving algorithm. Furthermore, preliminary results on the 
extraction of the second fractal parameter, the increment standard 
deviation, have been presented. 
Finally, an innovative post-processing of the SAR image providing a 
map of the point by point fractal dimension of the scene observed by 
the sensor has been implemented. At first, for validation purpose, it 
has been applied to simulated SAR images of canonical fractal 
surfaces both without and with the speckle effect. Afterwards, some 
study cases relevant to the application of the SAR image post-
processing to actual SAR images have been presented, in order to 
show the potentialities of such a tool. 
The fractal analysis instruments - theoretical and numerical - 
presented in this thesis allow carrying out a wide range of applications 
regarding prevention and monitoring of environmental disasters, 
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geodynamic processes interpretation, land classification (extraction of 
geomorphologic features, land use etc.), rural and urban planning, and 
so on. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Bisogna avere il caos in sé 

 per partorire una stella che danzi. 

Friedrich Nietzsche 


