
Facoltà di Ingegneria

Corso di Dottorato di Ricerca in Ingegneria Informatica ed Automatica
XXIV Ciclo

Dipartimento di Informatica e Sistemistica

Large Scale Benchmarking of Broadband Access

Networks: Issues, Methodologies, and Solutions

Walter de Donato

Ph.D. Thesis

Tutor Coordinator

Prof. Antonio Pescapé Prof. Francesco Garofalo

Cotutor

Prof. Giorgio Ventre
Prof. Nick Feamster

November 2011

To my wife Valeria...
Her love keeps me
going on every day!

Contents

1 Introduction 1
1.1 The Internet scenario . 1

1.1.1 Heterogeneity of access technologies 3
1.1.2 Complexity of Internet applications 12

1.2 Thesis contribution . 14
1.2.1 Characterization of new generation applications 14
1.2.2 IP networks performance evaluation 15
1.2.3 Evaluation of broadband access networks performance 16

1.3 Thesis Organization . 18

2 Characterizing applications to evaluate IP networks performance 20
2.1 Characterization of new generation applications 20

2.1.1 Related work . 20
2.1.2 A new methodology for characterizing multi-channel applications . 25
2.1.3 Experimental analysis: a proof of concept 26

2.2 Evaluation of network performance . 28
2.2.1 IP performance evaluation metrics and techniques 29
2.2.2 Advertising broadband performance 42

3 Evaluating the performance of broadband access networks 45
3.1 A taxonomy for broadband benchmarking approaches 45

3.1.1 Server-based approach . 46
3.1.2 Host-based approach . 48
3.1.3 Router-based approach . 56
3.1.4 Comparison of approaches . 57

3.2 An architecture for benchmarking access networks 59
3.2.1 Architecture overview . 59
3.2.2 Important features the architecture should provide 61

4 HoBBIT: adopting the client-based approach 63
4.1 Architecture components . 63

4.1.1 The management server . 64
4.1.2 The measurement client . 80

CONTENTS iv

4.1.3 Measurement servers . 88
4.1.4 Front-end and map servers . 89

4.2 Measurement campaigns . 91
4.2.1 Connection parameters estimation (CPE) campaign 91
4.2.2 Basic performance evaluation (BPE) campaign 95
4.2.3 BitTorrent performance evaluation (BTPE) campaign 96

4.3 Challenges and solutions . 97
4.3.1 Platform scalability . 97
4.3.2 Real-time reporting at different aggregation levels 103

4.4 A preliminary study of broadband in Italy from the hosts 117
4.4.1 Basic performance evaluation . 117
4.4.2 BitTorrent performance evaluation 119

5 BISmark : adopting the router-based approach 121
5.1 Architecture components . 121

5.1.1 BISmark gateways . 122
5.1.2 The central server . 125
5.1.3 Measurement servers . 133

5.2 Measurements . 133
5.2.1 Active measurements . 134
5.2.2 Passive measurements . 135

5.3 Challenges and solutions . 136
5.3.1 Hardware constraints . 136
5.3.2 Lightweight reliable remote management 137
5.3.3 Measurements collision . 138

5.4 A study of broadband in the USA from the gateway 140
5.4.1 Understanding Throughput . 140
5.4.2 Latency and Buffering . 143

6 Conclusion 147

List of Figures

1.1 Internet users growth and penetration rate. 1
1.2 DSL access network. 4
1.3 DSL fastpath vs interleaving. 5
1.4 Cable access network. 6
1.5 Fiber access network architectures. 7
1.6 Wireless technologies overview: coverage vs speed. 8
1.7 Wimax deployment scenario. 10

2.1 Analyzing traffic at different layers. 26
2.2 Skype: voice call vs file transfer. 28
2.3 Performance testing components. 38
2.4 Latency profile for Cable, DSL and WiMAX. 44

3.1 Taxonomy for broadband benchmarking approaches. 45
3.2 Server-based approach. 46
3.3 Sample bandwidth reported by Youtube Speed Meter. 47
3.4 Host-based approach. 49
3.5 Troubleshooting setup architecture. 54
3.6 SpeedTest.net fancy interface. 55
3.7 Router-based approach. 56
3.8 Overview of an ideal architecture for benchmarking access networks. 60

4.1 Example of connection as seen by HoBBIT 66
4.2 Conceptual design of the HoBBIT database. 69
4.3 Example of AliasID operation. 70
4.4 Client/Server protocol when detecting a new connection. 73
4.5 Client/Server protocol when detecting an existing connection. 75
4.6 UUID requests from HoBBIT clients . 76
4.7 Example of scheduling algorithm in action. 77
4.8 HoBBIT client class diagram. 83
4.9 The List and Experiment classes. 83
4.10 The Update and LogicUnit classes. 84
4.11 The Connection class. 85
4.12 Screenshot of the GuiWelcome graphical interface. 86

LIST OF FIGURES vi

4.13 The GuiWelcome and GuiGetInfo classes. 86
4.14 Screenshot of the GuiGetInfo graphical interface. 87
4.15 Screenshot of the Icon contextual menu. 88
4.16 Slicing of measurement servers network resources. 89
4.17 Screenshot of data visualizations on the front-end interface. 90
4.18 Script defined for the experiment #1. 92
4.19 Script defined for the experiment #2. 94
4.20 Script defined for the experiment #3. 94
4.21 Scalability with simultaneous LIGHT requests 99
4.22 Scalability with simultaneous INVASIVE requests 100
4.23 Scalability with simultaneous CPE requests 101
4.24 Scalability with poissonian CPE requests 102
4.25 Scalability with poissonian CPE requests 102
4.26 Management server response time over 160 K requests. 104
4.27 Complex trigger function for table partitioning. 108
4.28 MeasureOutputs table with array columns. 109
4.29 Views proposed for geographical aggregation of statistics. 110
4.30 Definition of the PerformancePerConnection view. 111
4.31 PerformancePerConnectionM refresh function definition. 111
4.32 PerformancePerConnectionM trigger support function definition. 112
4.33 MeasureOutputs trigger definition. 112
4.34 Modified MeasureOutputs trigger support function definition. 113
4.35 Query to update the materialized view in the first case. 113
4.36 Query to extract statistics from MeasureOutputs. 114
4.37 Optimezed refresh function definition. 115
4.38 Database optimizations performance comparison 116
4.39 Speed metrics over 20 Mbps service plans. 117
4.40 Metrics for interactive applications over 20 Mbps service plans. 118
4.41 Downstream TCP throughput for four ISPs (20 Mbps service plans). . . . 119
4.42 Downstream UDP throughput for four ISPs (20 Mbps service plans). . . . 120

5.1 List of available gateways reported by bdm. 128
5.2 List of measurement servers capabilities returned by bdm mslist. 129
5.3 List of measurement typologies reported by bdm mslist. 130
5.4 Example of measurement results in XML format. 130
5.5 Query interface for the Network Dashboard 131
5.6 Throughput and latency plots from the Network Dashboard 132
5.7 Comparison of various methods of measuring throughput. 141
5.8 PowerBoostTM download behavior for 4 users. 142
5.9 Generating intermittent traffic load . 143
5.10 Latency profiles for different access technologies. 144
5.11 Comcast user with D-LINK modem. 145
5.12 Maintaining low latency by modifying data transfer behavior. 146

List of Tables

2.1 Skype traffic at biflow layer. 27
2.2 Low level metrics for establishing VoIP quality. 43
2.3 Labels across different ISPs and service plans. 44

3.1 Statistics reported by the Ne.Me.Sys. certificate. 53
3.2 Tests currently performed by the SamKnows router. 58
3.3 Comparison of four client-based projects. 59

4.1 Experiments part of the CPE campaign. 91
4.2 Schedule defined for the CPE experiments. 91
4.3 Outputs returned by the experiment #1. 92
4.4 Parameters defined for the experiment #1. 92
4.5 Outputs returned by the experiments #2 and #3. 93
4.6 Parameters defined for the experiment #2. 93
4.7 Parameters defined for the experiment #3. 95
4.8 Experiments part of the periodic basic performance evaluation campaign. . 95
4.9 Schedule defined for the experiments. 96
4.10 BitTorrent performance evaluation campaign selection criterion. 96
4.11 Experiments part of the BitTorrent performance evaluation campaign. . . . 96
4.12 Management server average response time to experiment requests. 103

5.1 Active measurements periodically collected by BISmark 135
5.2 The first BISmark deployment. 140

Chapter 1

Introduction

In this chapter we introduce the scenario in which this study is conducted, outlining the

motivations stimulating our research work. Afterwards, we briefly describe the contribu-

tions provided by this thesis with respect to the literature. The ending part of the chapter

outlines the organization of the thesis.

1.1 The Internet scenario

The Internet today counts about 2.1 billion users worldwide, among which 580 million are

residential broadband subscribers [1]. As reported in Fig. 1.1, these numbers are growing

rapidly and, with the diffusion of broadband access on mobile terminals1, this process is

accelerating further.

Figure 1.1: Internet users growth and penetration rate.

15.1 billion mobile subscribers were reported in 2010 [2]

The Internet scenario 2

Most people rely on Internet connectivity for everyday activities, making broadband

access an essential resource, whose performance have not been widely studied in literature.

On one side, it is a matter of fact that users frequently experience performance prob-

lems, which can be due to causes both internal and external to their network. In the first

case, the user himself can be responsible by not properly configuring his computer or the

devices in his network (e.g. router, access point, set-top-box, ...). In the second case, it

may depend on the access link - bad conditions of wiring (e.g. old wires, low signal/noise

ratio, long distance from the telephone central, ...) or environment (e.g. electromagnetic

interference) - or on the policies adopted by the Internet Service Provider (ISP). Identi-

fying the root cause in this context is not trivial, due to the heterogeneity of available

access technologies, both wired (e.g. DSL, Cable, Fiber, ...) and wireless (e.g. WiFi,

WiMAX, GPRS, UMTS, ...).

On the other side, broadband access networks performance is made crucial by the

diffusion of new generation applications and services, progressively providing - through

a single interface - more interactions among the users and between the users and the

network. This is promoting the development of multi-channel applications (e.g. Skype,

Facebook, GMail, ...) that are specifically designed to transparently manage different

services delivered on different channels, providing a single access point for the users.

Therefore, in order to guarantee a satisfying Quality of Experience (QoE), the access

network has to satisfy tighter and tighter requirements. However, managing the Quality

of Service (QoS) in presence of such applications is even more difficult, because it would

be necessary to treat differently each communication channel depending on its typology.

Benchmarking performance of broadband access networks, however, is not as simple

as running one-time “speed tests”. There exist countless tools to measure Internet per-

formance [3, 4, 5, 6]. Previous work has studied the typical download and upload rates of

home access networks [7, 8]; others have found that modems often have large buffers [8],

and that DSL links often have high latency [9]. These studies have shed some light on

access-link performance, but they have typically run one-time measurements either from

an end-host inside the home (from the “inside out”) or from a server on the wide-area

Internet (from the “outside in”). Because these tools run from end-hosts, they cannot

analyze the effects of confounding factors such as home network cross-traffic, the wireless

network, or end-host configuration. Also, many of these tools run as one-time mea-

surements. Without continual measurements of the same access link, these tools cannot

The Internet scenario 3

establish a baseline performance level or observe how performance varies over time.

Accordingly, many organizations worldwide have been recently active in the develop-

ment of methodologies and in the definition of metrics to evaluate the performance offered

by ISPs. Regulators (e.g. as the Federal Communication Commission (FCC) in the USA

[10, 11, 12], the Office of Communications (OFcom) in the UK [13], and the Authority for

Communications Guarantees (AGCOM) in Italy [14], ...), policymakers (e.g. the Euro-

pean Community [15]), and independent organizations (e.g. DSL Forum [16]) are actively

developing performance-testing metrics for access providers.

1.1.1 Heterogeneity of access technologies

Today people can choose among many different technologies to access the Internet, which

can be divided in two main categories: wired and wireless. In the following paragraphs

we propose a brief overview of the most widely deployed access technologies in order to

highlight their complexity and heterogeneity.

Wired technologies

Among all the wired access technologies, the most common rely on preexisting infrastruc-

tures to exploit the evident economic advantage. Digital Subscriber Line (DSL) reuse

preexisting telephone wires working on higher frequency bands, while Cable reuse exist-

ing coaxial cables deployed by Cable Television (CATV) providers. Apart from those

solutions the only other technology which is resulting progressively successful is based on

optical fibers, which at a higher cost provide much superior performance.

DSL access networks. DSL access networks are based on preexisting telephone lines,

thus relying on an unshielded twisted copper pair wire. Subscribers have dedicated lines

between their own DSL modems and the closest DSL Access Multiplexer (DSLAM). The

DSLAM multiplexes data between the access modems and upstream networks, as shown

in Figure 1.2. The physical connection between a customer’s home and the DSLAM is

often referred to as the last mile. The most common type of DSL access is asymmetric

(ADSL), which provides different upstream and downstream rates. The ITU-T standard-

ization body establishes that the achievable rate for ADSL 1 [17] is 12 Mbps downstream

and 1.8 Mbps upstream. The ADSL2+ specification [18] extends the capacity of ADSL

The Internet scenario 4

Figure 1.2: DSL access network.

links to at most 24Mbps downstream and 3.5Mbps upstream, and some non-standard im-

plementations claim to reach downstream rates up to 28 Mbps (e.g. Free ISP in France).

Although the ADSL technology is theoretically able to reach these speeds, there are many

factors that limit the capacity in practice. An ADSL modem negotiates the operational

rate with the DSLAM (often called the sync rate); this rate depends on the quality of

the last mile, which is mainly determined by the distance to the DSLAM from the user’s

home, bad wiring conditions, and noise on the line. For example, ADSL 1 can reach up

to 6 Mbps with a 4 km distance to the DSLAM.

The most advanced standard of DSL is represented by the Very-high-speed DSL

(VDSL), which is designed to support the wide deployment of triple play services such

as voice, video, data, high definition television (HDTV) and interactive gaming. ITU

G.993.1 standard defines its first release, which is able to reach up to 52 Mbps down-

stream and 16 Mbps upstream rates on a single twisted copper pair wire. ITU G.993.2

standard defines its enhanced version (VDSL2), which supports the transmission of both

asymmetric and symmetric aggregate data rates up to 200Mbps on twisted pairs using a

bandwidth up to 30 MHz. The main limitation of such standard consists in the quick per-

formance deterioration from a theoretical maximum of 250 Mbps at source, to 100 Mbps

at 500 m and 50 Mbps at 1 km.

The best service plan that a DSL provider advertises usually represents the rate that

customers can achieve at IP layer if they have a good connection to the DSLAM. It is

important to notice that the maximum link capacity at IP layer is lower than the sync

rate because of the overhead of underlying protocols. Providers also offer service plans

with lower rates and can rate-limit customers traffic at the DSLAM (e.g. using weighted

fair queuing). Modem configuration can also affect performance. DSL users or providers

The Internet scenario 5

Figure 1.3: DSL fastpath vs interleaving.

configure their modems to operate in either fastpath or interleaved mode. In fastpath

mode, data is exchanged between the DSL modem and the DSLAM in the same order

as they are received, which minimizes latency by preventing error correction from being

applied across frames. Thus, ISPs typically configure fastpath only if the line has a low bit

error rate. Interleaving increases robustness to line noise at the cost of increased latency

by splitting data from each frame into multiple segments and interleaving those segments

with one another before transmitting them. For example, in a batch of frames (see Fig.

1.3), the first frame would contain the first segment from each frame in the original data

stream, the second frame would contain the second, and so on. This mechanism allows

the receiver to apply Forward Error Correction (FEC) techiques to recover from bursty

line errors.

Cable access networks. In cable access networks, groups of users send data over

a shared medium (typically a coaxial cable). At a regional headend, a Cable Modem

Termination System (CMTS) receives these signals and converts them to Ethernet, as

shown in Figure 1.4. The physical connection between a customer’s home and the CMTS

is often referred to as the local loop. Users buy a service plan from a provider that typically

offers a maximum capacity in both the upstream and downstream directions. In cable

networks, the most widely deployed version of the standard is Data Over Cable Service

Interface Specification version 2 (DOCSIS 2.0) [19], which specifies downstream rates up

to 42.88 Mbps and upstream rates up to 30.72 Mbps in the United States. The latest

standard, DOCSIS 3.0, allows for hundreds of megabits per second by bundling multiple

channels. Cable providers often offer service plans with lower rates and shape each user’s

traffic to enforce fairness on the local loop usage. The service plan rate limit is configured

at the cable modem and is typically implemented using a token bucket rate shaper. Many

cable providers also apply PowerBoostTM , which allows users to download (and, in some

cases, upload) at rates that are higher than the contracted ones, for an initial part of a

transfer. The actual rate that a cable user receives will vary with the network utilization of

The Internet scenario 6

other users connecting to the same headend. The CMTS controls the rate at which cable

modems transmit. For instance, Comcast describes that when a CMTS’s port becomes

congested, it ensures fairness by scheduling heavy users on a lower priority queue [20].

Figure 1.4: Cable access network.

Optical access networks. A single strand of fiber offers a total bandwidth of 25 THz,

potential far in excess of the wireless and any other known transmission medium. More

important, optical networks lend themselves well to offloading electronic equipment by

means of optical bypassing, as well as reducing their complexity, footprint, and power

consumption significantly.

Basically, three architectures may be deployed for the fiber access network (see Fig.

1.5) [21]. Point-to-point architectures (Fig. 1.5a) provide individual fibers from the local

exchange to each home. Many fibers are needed, which entails high first installation costs,

but also provides the ultimate capacity and the most flexibility to upgrade services for

customers individually. In the local exchange, as many fiber terminals are needed as there

are homes, so floor space and powering may become issues. Active star architectures (Fig.

1.5b) provide a single fiber which carries all the traffic to an active node close to the end

users, from where individual fibers run to each cabinet/home/building. Only a single

feeder fiber is needed, and a number of short branching fibers to the end users, which

reduces costs; but the active node needs powering and maintenance. It also needs to

withstand a wider range of temperatures than in-door equipment. The active node may

be located in a cabinet at the street curb site (fiber to the cabinet or FTTC), or in the

basement of a multi-dwelling units building (fiber to the building or FTTB) from where

the communication traffic is run throughout the building by copper wired and wireless

local area networks at speeds higher than 100 Mbps. Passive star architectures (Fig.

1.5c) provide a passive optical power splitter/combiner that feeds the individual short

branching fibers to the end users. In addition to the reduced installation costs of a single

The Internet scenario 7

Figure 1.5: Fiber access network architectures.

fiber feeder link, the completely passive nature of the outside plant avoids the costs of

powering and maintaining active equipment in the field.

This architecture has become very popular for the introduction of optical fiber into

access networks, and is widely known as the passive optical network (PON). Typically,

PONs are time-division multiplexing (TDM) single-channel systems, where the fiber in-

frastructure carries a single upstream wavelength channel (from subscribers to a central

office) and a single downstream wavelength channel (from a central office to subscribers).

IEEE 802.3av Ethernet PON (EPON) with a symmetric line rate of 10 Gbps, and ITU-T

G.987 10 Gigabit PON (10G-PON) with an upstream line rate of 2.5 Gbps and a down-

stream line rate of 10 Gbps represent current state-of-the-art commercially available and

widely deployed TDM PON access networks.

Wireless technologies

In the last fifteen years the progress in wireless digital data transmission has been huge

and many different technologies have been proposed to provide access to the Internet.

All these technologies can be divided in three main categories depending on the coverage

distance provided (see Fig. 1.6).

The Internet scenario 8

Figure 1.6: Wireless technologies overview: coverage vs speed.

Low-range access networks. Among the available wireless technologies, Wi-Fi repre-

sents the most famous and widely deployed low-range access technology to the Internet.

The first 802.11 standard [22], approved by the IEEE in the early ’90, defined physical and

data-link layers for wireless LAN (WLAN) using both radio waves at 2.4 GHz, obtaining

little success because of the limited achievable speed (up to 2Mbps). In 1997 its evolution,

standardized as IEEE 802.11a within the 5 GHz band and 802.11b within the 2.4 GHz,

achieved data rates up to 11Mbps. More recently the IEEE 802.11g (2.4 GHz) and

802.11n (2.4/5 GHz) standards respectively support data rates up to 54 and 150 Mbps.

Moreover, the latter can use two adjacent channels simultaneously (channel bonding), to

double the maximum achievable rate.

The 802.11 MAC uses a multiple access technique called CSMA/CA (Carrier Sense

Multiple Access with Collision Avoidance), which requires the stations to sense the chan-

nel before transmissions in order to detect if other stations are currently transmitting.

This technique is similar to the CSMA/CD (Carrier Sense Multiple Access with Collision

Detection) used by the IEEE 802.3 at the base of the Ethernet standard. However, while

with the 802.3 the stations are surely able to detect the presence of other transmissions

on the shared channel, in wireless environments such detection is not always possible.

Therefore, the CSMA/CA differs from the CSMA/CD in that the stations have to wait

for a random time before transmitting also when the channel seems to be clear. Another

important characteristic of the 802.11 MAC is the presence of a packet acknowledge-

ment mechanism to ensure transmission reliability. Basically, when successfully receiving

a packet, a station has to send a special packet (called acknowledgement or briefly ack)

The Internet scenario 9

to the transmitting station. In case the ack is not received, the packet is scheduled for

retransmission.

The mechanisms described above have a clear impact on the QoS parameters observed

in WLANs. For instance, the acknowledgement mechanism can cause large and variable

transmission times in networks with several stations, which introduces more unpredictabil-

ity in the end-to-end path [23]. Moreover, the 2.4 GHz band used by this technology is

usually affected by interferences due to other devices or technologies working at the same

frequencies (e.g. cordless phones, baby monitors, bluetooth devices, ZigBee devices, car

alarms, microwave ovens, video senders, ...), which introduce unpredictable performance

degradation.

Mid-range access networks. Currently, the most common wireless access technol-

ogy considered for metropolitan area networks is WiMAX (Worldwide Interoperability

for Microwave Access), which provides a signal radius of about 50 km. IEEE standard

802.16 defines the air interface and medium access control (MAC) protocol for a wire-

less metropolitan area network (WMAN), intended for providing high-bandwidth wireless

voice and data for residential and enterprise use. The MAC protocol defines both fre-

quency division duplex (FDD) and time division duplex (TDD). Downlink (DL) transmis-

sions from a Base Station (BS) to Subscriber Stations (SSs) are conducted by point-to-

multipoint broadband wireless access using a frequency channel for FDD or a time frame

for TDD. Multiple SSs share one slotted uplink (UL) channel via TDD on a demand ba-

sis for voice, data, and multimedia traffic, and the BS handles bandwidth allocation by

assigning uplink intervals based on requests from SSs.

The standard, first released in 2001, provided wireless transmission in the 10−66 GHz

band, with only a line-of-sight (LOS) capability. In 2003 the IEEE 802.16a standard added

support for 2−11GHz band with non-line-of-site (NLOS) capability. The 802.16m version

of the standard has been released in 2011 and supports data rates of 100 Mbps for mobile

stations and 1 Gbps for fixed ones [24].

Even though WiMax, which implements also handover mechanisms, represents a good

candidate to replace other mobile access technologies, it is mostly deployed as an alterna-

tive to cable and DSL to provide last-mile broadband access (see Fig. 1.7). Its advantage,

indeed, consists in reducing deployment costs and in providing comparable data rates,

considering the necessity to split the total bandwidth among multiple users.

The Internet scenario 10

Figure 1.7: Wimax deployment scenario.

Wide-range access networks. As for wireless wide-range access technologies to the

Internet, cellular and satellite networks represent most of the choices available today.

Cellular access networks. The cellular network is more and more used for In-

ternet access since the introduction of the General Packet Radio Service (GPRS). The

GPRS is actually a set of evolved services based on the GSM infrastructure, which allows

packet-switching based communications on the circuit-switching network of the GSM.

The spread of GPRS was mainly due to the fact that few modifications were required for

the telecom operators to deploy this technology. In particular, it was necessary to add a

node called Serving GPRS Support Node (SGSN) and a gateway called Gateway GPRS

Support Node (GGSN). Moreover, these two components were also useful to progres-

sively upgrade the network to the Universal Mobile Telecommunications System (UMTS)

standard, which has now become very common in Europe for broadband Internet ac-

cess. Over the last decade, the data rates achievable through the cellular network have

increased from 80 Kbps for GPRS, to 236 Kbps for Enhanced Data rates for GSM Evo-

lution (EDGE), then to 384 Kbps with basic UMTS, from 7.2 Mbps to 21 Mbps with

the High Speed Downlink Packet Access (HSDPA) [25], and up to 81 Mbps with Evolved

High Speed Packet Access (HSPA+). However, the complexity of the infrastructure of

the cellular networks still results in unpredictable behavior of network QoS parameters.

The Internet scenario 11

Satellite access networks. A communications satellite is basically a microwave

repeater station revolving around the earth in a specified orbit. Transmission of signals is

performed via transponders working at frequencies larger than 1 GHz, which are usually

capable of providing bandwidths up to 155 Mbps [26]. Most satellites have multiple

transponders (even over 70) which can be used simultaneously to gain higher bandwidth

on demand and, since most of them act as simple retransmission stations, they cannot

regenerate any previously sent signal. The satellite communicates with a ground station

(hub), which consists of an outdoor unit (ODU) - usually a dish transceiver of 4− 10 m

in diameter - and an indoor unit (IDU) responsible for demodulating, demultiplexing

and reconstructing the incoming signal so that the tunneled IP datagrams can be sent

to the high speed backbone Internet. Each satellite subscriber has a small (65− 240 cm

in diameter) low-cost dish antenna, which must have a direct Line-of-Sight (LOS) to

the satellite, and a satellite modem which serves as an interface between the ODU and

customer equipment.

The satellites can be categorized as GEO, MEO, LEO according to their orbit. Geosyn-

chronous Earth Orbit (GEO) satellites are positioned at an altitude of 35786 km, to appear

stationary with respect to certain point on earth, and cover nearly 33% of earth surface.

Their main limitation is represented by the signal propagation delay, which is 250−300ms

one-way. Medium Earth Orbit (MEO) satellites are positioned at 8000 − 20000 km and

have one-way delay of approximately 50− 150 ms. Low Earth Orbit (LEO) satellites op-

erate at 350 − 2000 km altitudes and with an acceptable 10 − 30 ms one-way delay and

take about 90 minutes for one complete revolution. Basically higher orbits imply higher

round-trip-delay, launching cost, coverage, bit-error-rate (BER), signal attenuation and

need for transmission power. Moreover, non stationary systems may require intersatel-

lite links and switching protocols, making them much more complex and requiring a large

amount of satellites to reach global coverage.

The first satellite Internet connectivity had a one-way hybrid model in which the uplink

data stream was usually carried on a preexisting PSTN, ISDN or GPRS. Today, the bi-

directional 2-way model is becoming more and more popular and offers a pure satellite

connection to the Internet, where downlink uses broadcasting and uplink is multiplexed

using e.g. TDMA.

Satellites use different frequencies for uplink (from ground station to satellite) and

downlink (from satellite to ground station). These frequency bands are named S, L, X,

The Internet scenario 12

C, Ku, Ka and V-band which are controlled by IRFB (International Radio Frequencies

Board) and the FCC (Federal Communications Commission). The C-band (3,7-4,2 GHz

downlink, 5,925-6,425 GHz uplink) is the most common together with Ku-band (11,7-12,2

GHz downlink, 14,0-14,5 GHz uplink), but these bands are quickly becoming congested.

Lately, new satellites have been tuned to use the Ka-band (17,7-21,2 GHz downlink, 27,5-

31,0 GHz uplink) which currently offers almost 10 times as much capacity as the Ku-band

[27], but suffers from rain attenuation and higher BER. The V-band, which is designed

to be in range 40-75 GHz, is reserved for future use [28].

Final remarks

As shown above, the scenario of access technologies is highly heterogeneous and many

factors may impact network performance. Hence, the evaluation of network performance

at IP and higher layers represents a complex problem, which cannot be addresses without

taking into account the peculiarities of the underlying technologies. It is also important

to consider that, apart from the adopted technologies, QoS policies adopted by ISPs

or implemented by user devices (e.g. broadband modems/routers) may heavily impact

measurement results, thus making the performance evaluation task even more difficult.

1.1.2 Complexity of Internet applications

Today a change of paradigm is happening in the world of telecommunications: in the

highly heterogeneous and dynamic context of the Internet, the user is becoming the real

fulcrum. We are assisting to a radical change from the Network-Centric view to the User-

Centric view. The user increasingly takes an active role in the network, promoting peer-

to-peer (P2P) and many-to-many interactions. The variety of devices, together with his

mobility, makes today the user a real network “micro-operator”, sharing his broadband

connection and providing both contents and network functionalities. We are therefore

assisting to a shift toward the so-called User-Centric Internet (UCI).

The transition to the UCI view is fostering the development of multi-channel appli-

cations. Such applications provide a single interface to perform heterogeneous activities,

usually exploiting many communication channels. Since traditional approaches indepen-

dently look at channels, the study, monitoring, and control of network traffic is becoming

increasingly uneffective [29]. The main causes are the following:

The Internet scenario 13

• working with multi-channel applications we have also to cope with the problems of

recognizing traffic flows associated with the same application and associating them

with specific activities (e.g. signaling, video streaming, voice, file transfer, ...);

• transport layer port numbers are often randomly chosen or reused for non standard

protocols;

• there is a trend toward an extensive use of encryption, obfuscation and encapsula-

tion in communication channels. Therefore, it is necessary to find new techniques

and analysis methodologies purposely designed for the properties of new generation

applications.

Understanding and characterizing applications behavior and requirements in terms of

network resources is fundamental in many networking fields:

• when operating network planning and dimensioning, the knowledge of traffic pat-

terns allows to take better decisions by taking into account the performance per-

ceived by the users for real applications;

• operators may implement service differentiation techniques able to appropriately

treat each communication channel depending on its typology;

• content delivery networks can take advantage of a detailed knowledge of specific

application to provide an efficient support for its data streams;

• once having a detailed knowledge of legitimate traffic, intrusion and anomaly detec-

tion techniques can more easily identify unwanted patterns.

In the context of multi-channel applications, being able to properly identify each channel

allows to operate decisions at a finer granularity. For instance, an ISP providing both

Internet access and telephony services could be interested in blocking or shaping only

VoIP (Voice over IP) traffic pertaining to a specific competitor. With respect to a multi-

channel application supporting also voice calls (e.g. Skype), the ISP may be forced to

block/shape all its traffic. Such decision could force many users to change provider, thus

resulting in monetary loss. Whereas, the ability to discriminate application activities can

be used to selectively apply rules to them.

Thesis contribution 14

Taking into account the depicted scenario, the evaluation of network performance has

to consider the characteristics of real applications in order to properly capture the behav-

iors observed by the users. Thus, by investigating the characteristics of new generation

applications, specifically designed methodologies and techniques can be adopted.

1.2 Thesis contribution

In Sec. 1.1 we highlighted how the Internet scenario is evolving rapidly on both access

technologies and applications complexity. Evaluating network performance in such condi-

tions becomes challenging, because the number of possible interferences increases together

with the gap between basic performance metrics and user quality of experience.

In the following sections we introduce the contributions of this thesis. We start by

describing the contributions in the area of network traffic analysis and characterization.

Thanks to these activities we have acquired the knowledge necessary to devise a new

methodology to characterize multi-channel applications traffic. This, together with the

analysis of existing access technologies, allowed us to better investigate the evaluation of

network performance, in order to identify the most relevant low-level metrics and to eval-

uate related methodologies, techniques and tools. Exploiting the knowledge previously

acquired, we addressed the evaluation of broadband access networks performance by con-

ducting an extensive analysis of existing methodologies and techniques, which brought

us to design an architecture to conduct large-scale measurements on real broadband net-

works. By implementing such architecture using two different approaches we devised new

methodologies and techniques to enable its deployment.

1.2.1 Characterization of new generation applications

To better address the study of new generation applications, we proposed the definition

of a novel methodology for the characterization of multi-channel applications working at

different abstraction layers. The methodology is based on a multi-layer traffic inspection

and a decomposition approach counting four layers:

• host : aggregates the whole traffic pertaining to a single host;

• service: groups together packets having the same transport protocol and IP address-

port pair;

Thesis contribution 15

• biflow (bidirectional flow)2: aggregates packets having the same 5-tuple, where

source and destination can be swapped, and represents one application channel;

• packet : looks at the properties of each packet (e.g. size, inter-packet time, pay-

load, ...).

According to this decomposition, a biflow corresponds to a channel and, aggregating traffic

at each layer, data is typically inspected at lower layers (e.g. packet-sizes distribution at

host layer).

Combining information collected at these layers can reveal useful patterns in host

interactions, traffic flows statistics, congestion prevention/reaction mechanisms, overlay

communications topologies, geolocalization aspects, etc. For instance, if a host is running

eMule on TCP port 80 and UDP port 53 with obfuscation enabled, it would be difficult to

identify it by independently looking at biflows exploiting port numbers, payload content

or flow statistics. Whereas, characterizing the correlation between host and biflow layers

could reveal patterns peculiar to the application (e.g. TCP/UDP biflows ratio, connec-

tions temporal sequences, ...). Therefore, correlating multiple channels allows to better

identify the application generating them and to identify the application level activities

conducted on each of them.

The proposed methodology identifies different activities performed by multi-channel

applications, thus helping in their characterization. After having characterized the main

properties of traffic generated by specific activities (e.g. in terms of packet size and

inter arrival distributions), it is then possible to evaluate their performance in different

scenarios by conducting active measurements reproducing similar traffic patterns.

1.2.2 IP networks performance evaluation

After acquiring the necessary knowledge about multi-channel applications and their traffic

patterns, we performed an extensive analysis of metrics for network performance evalu-

ation, in order to identify the most relevant parameters to measure for benchmarking

access networks3.

The communication network metrology science identifies the following parameters as

exhaustive for the characterization of performance for a packet-switching network: one-

2Source and destination roles are related to the first packet.
3Most multi-channel applications are utilized by users when they are at home.

Thesis contribution 16

way delay, delay variation (or jitter), round-trip time (RTT), packet loss, packet reorder-

ing, route and bandwidth [30]. Such parameters mostly refer to one direction of the

communication between two end systems and can be measured using both active tech-

niques, which purposely generate synthetic traffic, and passive techniques, which oppor-

tunistically take advantage of user-generated traffic. The IPPM (IP Performance Metrics)

group of IETF (Internet Engineering Task Force) proposed a standard definition for part

of them, while is still working on the others. In the context of Internet broadband access

networks, the DSL Forum, supported by the Verizon ISP, has proposed a standardiza-

tion of infrastructures and techniques to monitor their performance [16, 31]. Furthermore,

many methodologies and techniques are available to measure part of the parameters cited

above with different levels of accuracy and intrusiveness [32, 33].

In general ISPs advertise their broadband plans only in terms of download and (some-

times) upload speeds. Such metric is not sufficient to describe the performance that user

can expect when using various applications. When subscribing to a connectivity plan,

the user should be able to decide which offer better responds to his needs. Driven by

this requirement and by experimental results conducted on real scenarios, we contributed

to the selection of a set of parameters to be presented to the user in a standard format.

Such format, in analogy with “Nutrition Labels” for food items, reports both low-level

parameters - represented as ranges of possible values - and high-level concepts (e.g. time

to download a song, video streaming quality in terms of frames rate) [34]. By analyzing

the parameters proposed in the label on several broadband connections in the USA, we

demonstrated that often Internet plans having the same advertised characteristics present

big differences if considering all the proposed metrics.

Once conducted the previous studies we acquired the knowledge necessary to address

the evaluation of performance in the specific context of broadband access networks.

1.2.3 Evaluation of broadband access networks performance

Focusing our attention on broadband access networks, we performed an extensive analysis

of existing projects addressing their performance evaluation. We detected that none of

them consider all the performance metrics we selected and each of them adopts different

techniques and methodologies to measure the same parameters [35]. As a result of the

analysis we defined a taxonomy dividing all the approaches in three macro-categories

depending on the device hosting the measurement tools:

Thesis contribution 17

• server-based, in which the measurements are conducted from a server in the core

of the network, can be further divided in three categories:

– service-based, in which passive measurements are performed from servers di-

rectly offering a specific service (e.g. Youtube [36]);

– core-based in which active measurements are conducted from dedicated servers

[7, 37];

– isp-based, which provides passive measurements conducted by the ISP itself

[38, 39, 9].

• host-based, in which passive or active measurements are performed from users’

devices (e.g. pc, mobile phone, tablet, ...), can be further divided in two categories:

– client-based, which requires the installation of a software client on users’ pc

[40, 41, 42, 43, 44, 45];

– web-based, in which the execution of a software component inside the Web

browser is required, can be further divided in two sub-categories:

∗ plugin-based, based on a browser plugin [46];

∗ embedded, which embeds the measurement tool into a Flash [47] or Java

[8, 4, 48] container.

• router-based, in which both active and passive measurements are conducted di-

rectly from the router acting as gateway to the Internet for the local network [49].

Server-based approaches resulted to be the most limited. When adopting passive

measurements, since many applications limit their own traffic, they do not guarantee the

saturation of the link. When using active techniques, due to dynamic IP addressing, they

are unable to to determine whether repeated measurements of the same IP address are in

fact measuring the same access link over time.

Both host-based and router-based approaches, operating from the users’ point of view,

are considered the most accurate and scalable. Among them we identify as the most

promising the following approaches: client-based, plugin-based, and router-based. Their

advantage consists in the possibility to execute many repeated measurements over time

on the same access link, which guarantees more statistically valid results. All these three

Thesis Organization 18

approaches have some peculiar advantages and drawbacks. The first two approaches

can easily reach many installations, allowing to obtaining results at a finer geographic

granularity. On the other hand, their measurements are affected by many uncontrollable

confounding factors (e.g. concurrent processes, cross-traffic, ...) and can be executed only

when the computer hosting the tool is switched on. The third approach, being able to

observe all the cross-traffic and operating in a completely controlled environment (i.e.

the router), is able to overcome most confounding factors and to obtain more accurate

measurements. Being usually always active, it also allows to execute continuous and

periodic experiments over long time periods. On the other side, requiring the installation

of a customized device into the local network, it results to be less scalable and more

indicate to collect results at a higher geographic granularity.

As a result of the preceding analysis we identified the ideal characteristics for an archi-

tecture able to evaluate the performance of broadband access networks on a large scale.

Following such guidelines, we designed and implemented two architectures respectively

adopting the router- and client-based approaches, in order to evaluate their potential-

ities and the eventual advantages deriving from a combined approach. Thanks to this

activity we devised new methodologies and techniques to cope with several challenges

arose during the different phases from the design to the deployment. Thanks to the data

collected through these architectures, we also found some interesting results about real

access networks, by identifying and characterizing relevant issues affecting most of them.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2 we report the research

activities we performed on both the analysis and characterization traffic generated by

new generation applications and the identification of relevant metrics, methodologies,

techniques and tools to evaluate network performance.

Our research activities on the evaluation of broadband access networks performance

are reported in Chapter 3, where we propose a taxonomy of existing approaches and

define the guidelines to build an architecture with ideal characteristics to measure access

networks performance on a large scale.

In Chapters 4 and 5 we respectively describe the client- and router-based architectures

we designed, implemented and deployed, by detailing the challenges we faced and the

Thesis Organization 19

solutions we adopted to solve them. For both we also present some findings obtained by

analyzing the data collected by their deployments.

Finally, we draw our conclusions in Chapter 6.

Chapter 2

Characterizing applications to
evaluate IP networks performance

Since understanding how new generation applications behave is important to evaluate

their performance, in this chapter we face their characterization by analyzing the literature

and by proposing a novel methodology. This allowed us to better investigate the evaluation

of network performance, in order to identify the most relevant low-level metrics and to

evaluate related methodologies, techniques and tools.

2.1 Characterization of new generation applications

In the last decade we assisted to a radical change of Internet paradigms: the user, which

has always been a simple content consumer, has become the real fulcrum of the infras-

tructure [50, 51]. It opened, therefore, a completely new scenario in terms of services and

applications, in which the user is involved in new forms of communication combing multi-

ple heterogeneous channels (voice, video, chat, virtual worlds, ...). We proposed for such

applications the following definition:

Definition An application is considered multi-channel if it provides a single interface to

perform heterogeneous activities exploiting multiple communication channels.

2.1.1 Related work

We group existing multi-channel applications into four categories:

• Communication platforms, which allow multimedia interactions among users (e.g.

Skype, Microsoft Live Messenger);

Characterization of new generation applications 21

• Social networking, which provide highly interactive multimedia services (e.g. YouTube,

Facebook, Flickr);

• Virtual worlds, in which users establish social interactions in a virtual reality (e.g.

Second Life) or play a massively multi-player online game (e.g. World of Warcraft);

• Cloud computing, which provides remote access to complex applications (e.g. Google

Docs, EyeOS).

In the following paragraphs we briefly detail some relevant works found in literature

about the characterization of application belonging to such categories.

Communication platforms. One of the first communication platforms that has at-

tracted the attention of the research community is Skype [52]. Skype is an integrated

communication platform which makes use of proprietary protocols and cryptography. For

this reason, this platform presents several aspects of interest which were deeply analyzed

in several studies. Its main features were investigated in [53] with a methodology which

took into account at the same time the generated traffic and the system calls invoked

by the application. The experiments were performed in a controlled environment (i.e the

application was launched on several monitored machines) focusing on the several phases

carried out by Skype like login, firewall traversing, call and conference setup and file

transferring. On the contrary, authors in [54] reported information about the topologi-

cal properties of the Skype overlay network mainly focusing on its super nodes (i.e nodes

which act as relay for the others). Again, the experiments were conducted in a controlled

environment. Another interesting aspect is to identify the traffic generated by Skype.

Such topic was first investigated in [55], where the authors made use of two distinct tech-

niques. The first technique was based on recurrent patterns inside packets payload. The

second one took into account the statistical properties of the generated traffic in terms of

dimension and arrival rate. Both techniques were validated with real traffic collected in

two sites: inside a campus network and an Internet Service Provider. The identification

problem was the topic of another work too. Authors of [56] detailed a methodology to

identify both the traffic generated by Skype and GoogleTalk[57], comparing the results

with those obtained from a model well known in literature that was developed for HTTP

traffic.

Characterization of new generation applications 22

In [58], the authors proposed a methodology to register the evidence of relay operations

(i.e traffic forward for users not able to directly communicate due to firewalls/NATs) inside

the Skype traffic generated by some users. The technique was validated in a controlled

environment with real traffic.

Authors in [59] deepened the congestion control mechanism adopted by Skype. In

this work, several adverse circumstances were emulated to register the Skype reaction. In

order to emulate the network behavior perceived by the application, authors extracted

and analyzed information obtained from the graphical layout like round trip time, jitter,

video resolution and frame rate.

The works [60, 61] proposed characterizations of the Skype traffic. The authors per-

formed separately the characterization of the signaling and video traffic with real traces.

Furthermore, they studied the Skype reaction in terms of generated traffic to different

network conditions making use of a laboratory testbed.

Other analysis of the signaling traffic are reported in [62]. In this work, authors

reported results of passive measurements. They showed how signaling operations cause

a reduced amount of traffic in absolute terms, which however represents an important

percentage of the whole traffic generated by the application.

In [63], authors compared Skype and GoogleTalk in terms of quality of the audio per-

ceived by the user when the network conditions change. They focused on similarities and

difference among codecs and internal mechanisms used by the two applications to avoid

the audio quality degradation when the network conditions are adverse. Furthermore,

they presented a prototype which made use of the positive aspects of both applications.

Regarding the audio quality experienced by the users, [64] proposed a model based on

parameters extracted from network traffic able to quantify the users satisfaction.

Social networking. Regarding the social networking sites which provide multi-channel

interactions, one that has received attention from the research community due to its

popularity is Youtube [65]. It is a platform for content sharing which allows the users to

upload and to explore audio and video files. At the same time, users received additional

information on the viewed contents and related contents. In this way, the users have the

possibility to interact with the system thanks to different channels.

Several aspects related to this platform were studied in literature. In [66] it is proposed

the characterization of traffic exchanged by Youtube and users of a campus, focusing

Characterization of new generation applications 23

on temporal evolution of number of users, video demand, download speed, amount of

downloaded data. Furthermore, they showed in what this type of traffic differs from

traditional Web traffic. Monitoring over several months the information reported on the

Youtube site, the authors inferred additional information about videos like coding bitrate,

duration, dimension, ranking, etc.

Regarding the analysis of the information reported on the Youtube site, another in-

teresting work is [67]. In this study, the authors collected information related to available

contents from not only the Youtube portal but even Daun UCC, the most popular video

sharing system in Korea. The comparison of the results obtained from the two platforms

allowed to generalize part of the detailed findings.

On the other side, authors in [68] reported an analysis of the exchanged traffic between

a campus network users and Youtube focusing on parameters like video popularity, the

request rate per video and per user and on several temporal scales, session duration, etc.

Regarding other interesting studies about social networking sites, it is worth to notice

[69] and [70]. The first one focused on Facebook[71], a social networking platform which

has attracted a relevant amount of users. The authors developed a Facebook application

by taking advantage of the Facebook’s API. Thanks to this application, they collected

information related to 8 million users. The detailed results shed light on the existing

dynamics between the Facebook community and the third party developed applications

in terms of user reaction time and applications peculiarities related to online games.

In [70], authors analyzed the information contained on 4 social networking sites: Flickr

[72], YouTube [65], LiveJournal [73] and Orkut [74]. The analysis is focused on main

aspects of these social networks, shedding light on dynamics already observed in other

users communities.

Virtual worlds. Among the multi-channel applications allowing users to interact in a

virtual environment, it is worth to notice Second Life, due to the high number of users. In

[75], the authors performed analyses to understand the effect on the network of particular

actions engaged by the avatars (i.e. the virtual characters controlled by the users) in the

virtual world. Network parameters like throughput, packet size, inter-arrival time and

the generated traffic volume were related to particular actions in the virtual world like a

tour inside crowded or isolated places, music listening, and the usage different transport

systems. This work took into account even requirements and utilization of the bandwidth.

Characterization of new generation applications 24

In [76], the authors investigated spatial and temporal dynamics in SecondLife. In

order to obtain this information, the authors developed a crawler tool which simulates

an avatar. This avatar tours continuously the virtual world of SecondLife allowing the

collection of information like number and name of the other avatars, objects, traveling

duration, etc.

A similar methodology was used in [77]. This paper shows results of data collected

during a one month of a crawler’s activity. This study shows how some characteristics of

the virtual world like people density per zone, social relations, etc. are really similar to

the ones of the real world. Authors suggested some improvements too.

Another set of successful multi-channel applications in recent years is the IP television

especially the ones based on peer-to-peer system. Applications like TVAnts [78], PPLive

[79], SopCast [80] e PPStream [81] become day by day more popular since they allow

users connected to the peer-to-peer network to exchange multimedia content in streaming

mode. Sometimes, these mechanisms overcome limitation imposed by countries legislation

and copyrights.

In [82], the authors reported several characteristics of the generated signaling and

multimedia traffic, the upstream and downstream traffic, etc. Furthermore, information

about the behavior of several peers in the network is extracted, shedding light on aspects

like the number of peers involved in active data exchanging, peer’s permanence, etc.

In [83], the authors detailed an architecture for multimedia peer-to-peer streaming and

its main features like implementation’s simplicity and reachable performance. Preliminary

results were obtained with a prototype.

[84] proposed a methodology to infer parameters like peer connection duration and re-

connection continuity, content production starting from the clients exchanged information.

Thanks to this methodology, authors collected information about the whole peer-to-peer

network.

Cloud computing. Finally, cloud computing was the focus of several papers. It is

worth to cite [85] and [86]. In [85], the authors claimed that not always cloud computing

services need an intensive communication among pool of servers and, thus, they could be

implemented by using small data centers geographically distributed. This choice would

reduce costs while improving scalability and performance. On the other side, in [86], the

authors detailed an open source architecture for cloud computing services called Eucalip-

Characterization of new generation applications 25

tus. This architecture allows the users to execute and control virtual machines on several

different real machines. The paper analyzed the main aspects of the architecture and

trade-offs among modularity, portability and simplicity.

Final remarks. The analysis of the scientific literature on multi-channel applications

shows how the approaches adopted are too specialized for each application group taken

into account. No methodology has been proposed to study such applications indepen-

dently from the particular scenario. Thus, no general conclusions have been drawn and

no common properties have been detected about these applications.

Therefore, it is necessary to find new techniques and analysis methodologies purposely

designed for the properties of emerging applications. For example, considering the rela-

tions between channels belonging to the same application can reveal behavioral patterns

otherwise not visible: our approach starts from this assumption.

2.1.2 A new methodology for characterizing multi-channel ap-

plications

We propose the definition of a novel methodology for the characterization of multi-channel

applications working at different abstraction layers. The methodology is based on a multi-

layer traffic inspection and a decomposition approach, as depicted in Fig. 2.1, counting

four layers: host, service, biflow (bidirectional flow) and packet. The host layer aggregates

the whole traffic pertaining to a single host. The service layer groups together packets

having the same transport protocol and IP address-port pair. The biflow 1 layer aggregates

packets belonging to the same channel (i.e. having the same 5-tuple, where source and

destination can be swapped). Finally, the packet layer looks at the properties of each

packet (e.g. size, inter-packet time, payload, ...). According to this decomposition, a

biflow corresponds to a channel and, aggregating traffic at each layer, data is typically

inspected at lower layers (e.g. packet-sizes distribution at host layer).

Combining information collected at these layers can reveal useful patterns in host

interactions, traffic flows statistics, congestion prevention/reaction mechanisms, overlay

communications topologies, geolocation aspects, etc. For instance, if the host in Fig. 2.1

is running eMule on TCP port 80 and UDP port 53 with obfuscation enabled, it would

be difficult to identify it by independently looking at biflows exploiting port numbers,

1Source and destination roles are related to the first packet.

Characterization of new generation applications 26

Figure 2.1: Analyzing traffic at different layers.

payload content or flow statistics. Whereas, characterizing the correlation between host

and biflow layers could reveal patterns peculiar to the application (e.g. TCP/UDP biflows

ratio, connections temporal sequences, ...). Therefore, correlating multiple channels has

two main benefits:

• by looking at many biflows belonging to the same application it is possible to detect

the application itself;

• being aware of an application running on a particular host/service can help in as-

sociating a new flow to it, and to identify the related activity.

2.1.3 Experimental analysis: a proof of concept

We applied the proposed methodology to Skype in order to prove its feasibility and bene-

fits. Skype represents an interesting case study since it works on a super-peer based P2P

overlay architecture, its communications are mostly encrypted and the adopted protocols

are secret.

We used TIE [87] to gain knowledge of the traffic associated to each channel (see Tab.

2.1), and we discovered several patterns2 at different layers. We found that, differently

from traditional applications, Skype listens for both TCP and UDP connections on the

2Since Skype exposes different patterns depending on network configuration, we present a preliminary analysis of the
generic super-peer case: public IP address and no firewall restrictions.

Characterization of new generation applications 27

Table 2.1: Skype traffic at biflow layer.

Activity proto
src dst up down up down

port port pkts pkts bytes bytes

Super-peer udp 33837 26137 2 2 71 29
signaling tcp 51236 26137 161 97 19 k 9 k

Normal 57046 33837 1 1 31 123
p2p udp 33837 11229 3 3 527 497

signaling 33837 17983 1 4 22 5 k

File
udp 13524 33837 243 247 6 k 123 k

transfer

Call udp 33837 13524 3 k 4 k 493 k 484 k

same fixed port number (33837), randomly chosen at installation time3. Moreover, when

connected to the P2P network, it always has at least one persistent TCP connection with

a super-peer.

By analyzing host-layer information, we found that port numbers are used more than

once on a short period: this easily reveals which services the host is listening for (i.e.

port 33837). Then, considering the service layer, we discover that the application uses

port 33837 also for outgoing UDP connections. This also reveals both the UDP and TCP

listening ports of peers on the other side. At biflow layer we see that signaling traffic is

mostly composed by many short UDP biflows revealing a few different patterns:

• some of them consist of only two packets (one per direction) of predictable size;

• others present a single query packet and some response packets;

• others present few packets in equal number for upstream and downstream directions

with similar cumulative sizes.

On the other side, file transfers present almost the same number of packets in both

directions, but most bytes fall only in one of them. Finally, voice calls reveal a symmetric

pattern in transferred data. At the packet layer, as shown in Fig. 2.2, the distribution of

file transfer and voice-call payload sizes are significantly different. Combining the previous

observations allows to identify Skype and its activities. For instance, the detection of many

short UDP biflows related to the same service that show known patterns at packet level,

allows to easily infer the Skype random port number. After that, it is straightforward to

3It also listens on ports 443 and 80 to provide connectivity in presence of firewalls.

Evaluation of network performance 28

0 100 200 300 400 500 600
0

0.5

1
Payload Size Distribution

payload size (bytes)

p(
x)

call upstream
call downstream
filesend upstream
filesend downstream

Figure 2.2: Skype: voice call vs file transfer.

label all its communications in a port-based fashion (also for incoming TCP connections).

Moreover, by inspecting the packet-size distribution of each biflow, it is also possible to

discriminate between file transfers and voice calls.

As a final consideration, we can state that the proposed layered methodology can

be used to detect the presence and to identify behavioral patterns of a Skype client

running on a host. Moreover, combining information taken at different layers allows us to

identify the specific activities performed by the application and to isolate the associated

communication channels.

2.2 Evaluation of network performance

The methodology proposed in Sec. 2.1 can be used to identify different activities performed

by multi-channel applications, thus helping to characterize them with higher accuracy. It

applies to any multi-channel application and can detect behaviors and aspects other-

wise not visible. Once characterized the main low-level properties of traffic generated by

specific application-level activities, it is possible to identify the most relevant metrics to

evaluate their performance.

After acquiring the necessary knowledge about multi-channel applications and their

traffic patterns, we performed an extensive analysis of metrics for network performance

evaluation, in order to identify the most relevant parameters to measure for benchmarking

access networks, since most new generation applications are heavily utilized in home

networks.

Evaluation of network performance 29

2.2.1 IP performance evaluation metrics and techniques

Now that the Internet is used for applications with QoS constraints (real-time applications,

etc.), ISPs and their customers negotiate QoS levels through a Service Level Agreement

(SLA). In this context, metrology is useful in verifying that SLAs are met.

Network measurements can be performed actively, purposely generating synthetic traf-

fic, and or passively, opportunistically taking advantage of user-generated traffic.

Passive techniques are carried out by observing network traffic flows. They consist

of capturing packet headers and analyzing them. The best example of a capture tool is

tcpdump, which is based on the libpcap library [88]. These techniques do not add network

traffic, thus result to be network friendly. Passive measurement can be done on two levels:

• Microscopic level : in which measurements are performed on each packet traveling

across the measurement point;

• Macroscopic level : in which measurements are performed on flows, where aggrega-

tion rules are necessary to match packets into flows.

Passive measurement techniques are particularly suitable for traffic engineering because

they show flow dynamics and distribution. The main problem with passive measurement

is the data volume. The volume of captured data can become very large on high-capacity

links. Moreover, it is hard to obtain end-to-end measurements passively: the presence

of traffic traveling between two measurement points cannot be ensured and matching

measurements that are performed from different vantage points is difficult. Consequently,

passive measurements are usually used to determine metrics characterizing one particular

network element.

On the other hand, active measurements are performed by sending probe packets to

the network. The measurement flow travels from source to destination. Upon reach-

ing its destination, it is possible to calculate metrics by analyzing the packets. Active

measurements can determine the end-to-end QoS experienced by a generated flow for a

particular path and then estimate the QoS as it is seen by applications. Additionally,

active measurements offer the flexibility to send probe packets streams with particular

properties (bitrate, packet size, etc.). Their main drawback is that additional network

traffic is introduced. This “intrusive” (or “invasive”) characteristic can potentially mod-

ify the properties that are trying to be measured. First, it can result in measurement

Evaluation of network performance 30

errors or bias; second, it can lead to network overload. Measurement traffic thus has to

be limited to avoid network disturbance and measurement errors.

Since active measurements can better measure network performance, in the following

we focus our attention on them.

Active measurement techniques and tools

Active measurements consist of sending probe packets into the network from a source host

(probe sender) to a destination host (probe receiver). By choosing particular properties

at departure (packet size, inter-departure time, bitrate, etc.), it is possible to calculate

metrics by analyzing the probe stream characteristics (arrival time, inter-arrival time,

etc.) at the destination. Thus, one can determine end-to-end metrics (from the source to

the destination).

Active measurement tools can be classified into the following categories:

• Cooperative: which consist of separate sender and receiver programs that are re-

spectively installed on the source and destination hosts.

• Non-cooperative: which consist of only one program including both the sending and

receiving tasks and avoids to install dedicated software on the target end-system.

• Certain: which are based on forcing routers and hosts to generate ICMP replies,

whose applicability may be limited by firewall rules or router configurations.

Some tools require having a listening TCP socket on the target host (e.g. Web servers).

They use TCP behavior to force the target host to send packets back (e.g. by sending SYN

packets to the target). Since sending large streams of SYN packets can be interpreted as a

denial of service attack, many network sites often use a firewall to filter or limit incoming

SYN traffic, thus disrupting such approach.

To obtain accurate results, certain active measurement techniques require strong time-

related constraints to be achieved:

• Timing accuracy in sending probes;

• Accurate time stamping of probes upon arrival;

• Accurate time synchronization of the source and the destination to allow clock

comparison between the two hosts.

Evaluation of network performance 31

Thus, active measurement techniques will often induce strong constraints on clocks, and

measurement errors will result from clock characteristics. A parameter is always measured

at a specific protocol layer. If the parameter needs to be used at another layer, the result

has to be modified in order to take into account the protocols operating at intermediate

layers. We discuss this “encapsulation effect” in the following paragraph.

Encapsulation effect. Some measurement tools work at protocol layers lower than

application layer. The user must be aware of the significant differences that can exist

between the measured value and the real value of the parameter at the application layer.

A measurement result could also appear incorrect when a parameter value is known at

another layer. For example, the capacity of a channel is often known at the data link

layer, while measurement tools usually work at IP layer, which makes difficult to analyze

their results. To avoid such problem, it is recommended to measure a parameter at the

user level.

Timing considerations. Active measurement techniques often result in constraints to

the clocks in the measuring end-systems (clock accuracy, clock stability, etc.).

Clock uncertainty relates to the following parameters:

• Synchronization error : measures the extent to which two clocks agree on what time

it is;

• Accuracy : measures the extent to which a given clock agrees with Coordinated

Universal Time (UTC).

• Resolution: measures the precision of a given clock.

• Skew : measures the change of accuracy over time.

• Drift : measures the variation of skew over time.

A computer contains two clocks: a hardware clock and a system clock. The hardware

clock allows the computer to keep track of time when the computer is turned off and is used

when the computer is booted up to update the system clock. The latter is implemented as

a counter of timer interrupts that are generated by the computer quartz oscillator. This

value characterizes the granularity of the clock and is called the “tick”, which is usually

of 10 ms.

Evaluation of network performance 32

To improve such granularity the OS uses the clock cycle register (which counts CPU

clock cycles) to interpolate between the interrupts. This technique requires knowing the

number of CPU cycles per time unit. This kind of clock is prone to error:

• Changes in frequency of the quartz oscillator introduce skew.

• Being the measurement of CPU clock cycles per time unit based on the oscillator,

the interpolation inherits its skew.

• The latter measurement suffers from integer arithmetic effects.

Clock synchronization is a complex problem and can be achieved by using Global Po-

sitioning System (GPS) cards, radio clock receivers, or Network Time Protocol (NTP)

servers. The first approach is the most precise and expensive solution, requiring the instal-

lation of exterior antennas, while cheaper radio clock receivers are not accurate for many

reasons. Using NTP servers is then the most common solution for clock synchroniza-

tion, which is expected to be accurate to about 10ms on a WAN. NTP synchronization,

while not perfect, can nevertheless offer significant accuracy given the scale on which mea-

surements are made. For example, when measuring delays to the order of hundreds of

milliseconds, a synchronization error of 10ms may be sufficient.

Metrics for evaluating network performance

The IPPM (IP Performance Metrics) group of IETF (Internet Engineering Task Force) is

active in defining a standard definition of network parameters. We report in the following

paragraph a complete description of such parameters.

One-way delay. The one-way delay is the time it takes a packet to go from source to

destination. It includes propagation delays, transmission delays, and queuing delays in

intermediate systems (routers, switches).

To measure one-way delay, a packet is stamped with the current time and sent to

the destination. At the destination, the packet timestamp and the destination clock

are read out. The delay is then equal to the difference between the two values. This

technique implies that the clocks of the two end-systems are synchronized. One-way

delay measurement is implemented in owping/owampd [89], QoSMet [90] and D-ITG

[91]. These tools can measure one-way delay along the forward and reverse path.

Evaluation of network performance 33

One-way delay variation. Delay variation, often referred to as “jitter”, is a key metric

for many applications. For example, a high delay variation can disrupt the transfer of

continuous media of voice.

Delay variation is computed as the difference between the delay of two consecutive

packets, thus it requires the measurement of one-way delay, but it does not need clock

synchronization because errors will cancel each other when the delay difference is calcu-

lated. One-way delay variation measurement is implemented in QoSMet [90] and D-ITG

[91], which can measure this metric along the forward and reverse path.

Round-trip time (RTT). The RTT, often simply referred to as “latency”, is the delay

from the source to the destination and back.

To measure RTT, a packet is stamped with the current time and sent to the destina-

tion. When the packet is completely received at the destination, it sends a corresponding

response packet back to the source. The RTT is equal to the difference between the re-

ceiving time at the source and the time stamp value. The measurement is easier than

one-way delay measurement, because there is no issue with source and destination clock

synchronization and clock skew is negligible due to the measurement time-scale. The best

known RTT measurement tool is ping, which is a non-cooperative tool that measures

RTT using ICMP echo-request probes. When a host receives such packets, it sends back

echo reply packets that are the same size as echo packets. RTT corresponds then to the

time elapsed by the ICMP reply packets to come back.

Packet loss. The reliability of a path is expressed by the packet loss rate. This metric is

equal to the number of non-received packets divided by the total number of sent packets.

According to IETF recommendations, detection of non-received packets is performed

using timeout values. If the packet fails to arrive within a reasonable period of time,

the packet is considered lost. One-way packet loss measurement is implemented in ow-

ping/owampd [89], QoSMet [90] and D-ITG [91], which can measure loss along the forward

and reverse path. Ping is the better known tool for measuring losses. It determines round-

trip losses of ICMP probe packets and is not able to distinguish a difference between a

loss that occurs in the forward or reverse path.

Evaluation of network performance 34

Packet reordering. Ordered delivery of packets is essential for real-time media stream-

ing applications and the TCP protocol. Packet order must be considered in play-out

buffer dimensioning of real-time streaming applications. Moreover, out-of-order packets

can cause TCP senders to unnecessarily retransmit packets and/or the congestion window

to increase at a slower rate than normal.

The reordering metric measurement is implemented in owping/owampd [89], QoSMet

[90], which can measure it along the forward and reverse path by sending streams of

packets and by analyzing packets sequence numbers.

Route. The route is an ordered sequence of nodes that represent a path from a source

to a destination crossed by the exchanged traffic. Each node is identified by its IP address.

A complete route from a source to a destination may consist of one or more IP addresses.

The route from source to destination can be determined by taking advantage of the

“time to live” (TTL) field of IP packets. Routers have to decrease it by one unit when

processing the packet. If the router decreases the TTL field to zero, it discards the packet.

In this case, the router sends back an ICMP “time exceeded” message informing the sender

that the packet was dropped. To trace the route to the destination, the source first sends

UDP packets to the destination with TTL fixed to 1, which is then discarded by the first

router on the path that sends back an ICMP message to the source to inform it of the

drop. Next, the source sends packets with TTL fixed to 2, and so on. It proceeds in this

way until it receives a reply from the destination.

The reordering metric measurement is implemented by the well known traceroute tool

[92] and by many different variants of it.

Bandwidth. A network path from source to destination represents a sequence of store-

and-forward links, and assuming that the path is fixed and unique (no routing changes or

multipath forwarding occur during the measurements), different bandwidth measurements

can be performed: per-hop capacity, end-to-end capacity, available bandwidth and bulk-

transfer capacity.

Bandwidth is often known at the data link layer and corresponding capacity at the IP

layer depends on the size of the IP packet relative to the layer 2 overhead.

Evaluation of network performance 35

Per-hop capacity. The per-hop capacity (also raw bandwidth) defines the maxi-

mum rate at which packets can be transmitted by a link.

There exist two main models to measure per-hop capacity:

• one-packet model : also known as the Variable Packet Size (VPS) model, it does not

account for intra-flow queuing delay and assumes that delay is linear with respect to

packet size, then proposing to express the packet delay as a function of the packet

size and the capacity of each crossed link. The method consists of determining packet

delays of different sizes from a source to each router that is on the path towards

the destination and inferring capacities using linear regressions. This technique is

implemented by Pathchar [93], Bing [94], clink [95], and pchar [96], which are non-

cooperative tools. In all these implementations, the source reaches each router by

sending probe packets and exploiting the TTL field of IP packets and ICMP “time

exceeded” messages as traceroute. This technique allows the sender to measure the

RTT to each router. This mechanism is repeated for different packet sizes.

• the multi-packet model was introduced to compensate the high cost of one-packet

model in terms of the traffic that must be sent and it is focused on intra-flow queuing

delays. Also this method generates a non-negligible amount of traffic, because it

must send packets of many sizes and many packets per size. However, it does this

once for the entire path, while the one-packet technique does this once for every

link. This technique is implemented in Nettimer [97], which is a non-cooperative

tool. In practice, the largest possible non-fragmented packet with a particular TTL

field is sent, and it is immediately followed by the smallest possible packet. The

smaller packet almost always has a lower transmission delay than the larger packet’s

transmission delay on the next link. Then the smaller packet queues continuously

after the larger packet. The tailgated packet is dropped at a particular router due

to its TTL. The tailgater can then continue without queuing to the destination.

End-to-end capacity. The end-to-end capacity of a path corresponds to the min-

imum per-hop capacity of the links composing it. The packet-pair dispersion method is

able to measure it by generating two back-to-back packets (a packet-pair) which will be

spread out in time when they arrive at the narrow link. The method accuracy is limited

by many factors: cross traffic, packet size, time related errors and uncertainties when re-

Evaluation of network performance 36

ceiving a packet. This technique is implemented by both cooperative and non-cooperative

tools: bprobe [98], sprobe [99], pathrate [100], and Nettimer [97].

Available bandwidth. The available bandwidth of a link, during a certain time in-

terval, corresponds to the difference between the per-hop capacity and the utilization rate.

As for the capacity, The available bandwidth of a path is represented by the minimum

available bandwidth of all the links composing it.

The techniques to measure the available bandwidth can be classified into three cate-

gories:

• Packet Train Dispersion (PTD): consists of sending N > 2 back-to-back packets

of size L (a packet train of length N) to the receiver. The rate at which the N

packets are sent must be larger than the available bandwidth of the tight link.

When arriving at the receiver, one can measure the packet train dispersion (i.e.

the amount of time between the receipt of the last bit of the first packet and the

last bit of the last packet). The model is implemented by cprobe [98], which is a

non-cooperative tool. It sends a short stream of ICMP echo packets to the target

host and assumes that it will respond by sending back ICMP echo-reply packets.

Then the sender measures the dispersion of the ICMP Reply packets.

• Probe Rate Model (PRM) is based on the concept of self-induced congestion and

treats the network as a queue with a service rate equal to the available bandwidth.

If a source sends probes to a destination through the queue at a rate R less than

A, probes will experience similar delays. On the other hand, if R is greater than

A, probes will queue in the network and experience increasing delays. The model is

thus based on the observation that the delays of successive probing packets increase

when the probing rate exceeds the available bandwidth in the path, and consists in

probing the network at different rates and detecting (at the destination) the point

when delays start to increase. At this point, the probing rate is equal to the available

bandwidth.

This model is implemented by Pathload [101] and PathChirp [102], which are coop-

erative tools.

Pathload introduces a technique based on Self Loading Periodic Stream (SLoPS):

the algorithm consists of sending a stream of packets to the receiver. The receiver

Evaluation of network performance 37

measures the delay of each received packet and analyzes its variation. If the delay

is constant, another stream is sent to the receiver at a greater rate. If the delay

increases, another stream is then sent to the receiver at a rate between the two prece-

dent values. This technique is repeated and the algorithm converges by dichotomy

to the available bandwidth value. Due to its iterative nature, this algorithm can

have long convergence times.

PathChirp proposes sending an exponentially spaced “chirp” probing train. The

main advantage of this approach is to minimize the probing traffic load. Indeed, a

single chirp is able to probe the network at different rates. Moreover, using a chirp

of n packets allows pathChirp to exploit n − 1 packet spacings that would require

2n− 2 packets using a packet-pair technique.

• Probe Gap Model (PGM), consists in capturing the relationship between the disper-

sion of a packet-pair and the rate of cross traffic at the bottleneck link of a path. It

makes the same assumptions as PRM, and also assumes that the bottleneck link is

both the tight link and the narrow link. This technique is implemented by Initial

Gap Increasing (IGI) [103] and spruce [104], which are cooperative tools.

Bulk transfer capacity. The BTC (Bulk-Transfer-Capacity) represents the achiev-

able throughput by a TCP connection on the end-to-end path. The IPPM proposes the

following BTC definition: a measure of a network’s ability to transfer significant quanti-

ties of data with a single congestion-aware transport connection. The intuitive definition

of BTC is the expected long time average data rate of a single ideal TCP implementation

over the path in question:

BTC =
data sent

elapsed time
(2.1)

Since several TCP distributions (e.g. Tahoe, Reno, ...) implement in various way

the congestion control algorithms, a BTC measurement methodology should theoretically

define which TCP implementation it works for.

Metrics for evaluating broadband performance

Active monitoring broadband access networks is important to measure the contribution of

the ISP network (i.e. the portion of the end to end path under the provider’s control) to

Evaluation of network performance 38

the overall user experience, which depends on the composite effect of the segments their

applications traverse end to end. Moreover, it enables the measurement of performance

metrics necessary to establish Service Level Agreements for guaranteed and business class

service offerings.

The DSL Forum proposed a management and monitoring architecture [31] and de-

fined some additional methodologies and techniques purposely designed to evaluate per-

formance on broadband access networks [16]. According to the specifications, ISPs can

perform active tests between the Customer Premise Equipment (CPE) (i.e. the router)

and a Network Test Server (NTS) located at their Points of Presence (POP) or in In-

ternet (see Fig. 2.3). The measurements are managed by an Auto-Configuration Server

(ACS) and can be both initiated by the CPE or by a NTS. In the latter case, for security

reasons, the CPE protocol servers will respond only to the IP address of the NTS.

The foreseen diagnostics are based on standard TCP and UDP protocols and allow to

measure the following metrics:

• RTT, packet loss, and jitter are obtained by utilizing an extended version of the

UDP Echo service, called UDP Echo Plus, which adds some performance specific

fields in the packet payload.

• upload and download bulk transfer capacity and service response time are obtained

by performing an FTP or HTTP transaction to a corresponding remotely located

FTP or HTTP server.

To perform the above mentioned measurements the following parameters are recorded:

Figure 2.3: Performance testing components.

Evaluation of network performance 39

• ROMTime: Request time in UTC, which must be specified to microsecond precision.

For HTTP this is the time at which the client sends the GET command, while for

FTP this is the time at which the client sends the RTRV command.

• BOMTime: Begin of transmission time in UTC, which must be specified to mi-

crosecond precision For HTTP this is the time at which the first data packet is

received, while for FTP this is the time at which the client receives the first data

packet on the data connection.

• EOMTime: End of transmission in UTC, which must be specified to microsecond

precision. For HTTP this is the time at which the last data packet is received, while

for FTP this is the time at which the client receives the last packet on the data

connection.

• TestBytesReceived : The test traffic received in bytes during the FTP/HTTP trans-

action including FTP/HTTP headers, between BOMTime and EOMTime.

• TotalBytesReceived : The total number of bytes received on the Interface between

BOMTime and EOMTime.

• TCPOpenRequestTime: Request time in UTC, which must be specified to microsec-

ond precision. For HTTP this is the time at which the TCP socket open (SYN) was

sent for the HTTP connection, while for FTP this is the time at which the TCP

socket open (SYN) was sent for the data connection.

• TCPOpenResponseTime: Response time in UTC, which must be specified to mi-

crosecond precision. For HTTP this is the time at which the TCP ACK to the

socket opening the HTTP connection was received, while for FTP this is the time

at which the TCP ACK to the socket opening the data connection was received.

• PacketsReceived : Incremented upon each valid UDP echo packet received.

• PacketsResponded : Incremented for each UDP echo response sent.

• BytesReceived : The number of UDP received bytes including payload and UDP

header after the UDPEchoConfig is enabled.

Evaluation of network performance 40

• BytesResponded : The number of UDP responded bytes, including payload and UDP

header sent after the UDPEchoConfig is enabled.

• TimeFirstPacketReceived : DTime in UTC, which must be specified to microsecond

precision. The time that the server receives the first UDP echo packet after the

UDPEchoConfig is enabled.

• TimeLastPacketReceived : Time in UTC, which must be specified to microsecond

precision. The time that the server receives the most recent UDP echo packet.

In the following paragraphs we give more details on the methodologies proposed.

Download diagnostics utilizing FTP and HTTP transport. The Download di-

agnostic test is used to test the streaming capabilities and responses of the CPE and the

WAN connection. The measurements are made during the download process, the files

that are downloaded are arbitrary, and are only temporary. The file received is a stream

of arbitrary bytes of a specified length, with no bound on the size.

When using FTP protocol, the server response to the FTP SIZE command gives the

CPE the size of the file being Downloaded, while the response to the RTRV command will

initiate the data sent on the data connection. To validate the measurement success, the

CPE counts the bytes successfully received and compares their amount to the response

to the SIZE command.

When using HTTP protocol, the server response to the HTTP GET includes the first

TCP block of the file and either the HTTP header with the total file size or chunked

encoding. The CPE counts the number of file bytes received successfully and is not

required to retain the file in memory. Once the CPE has successfully received the number

of file bytes specified in the HTTP response or chunked header the HTTP connection is

closed. The CPE counts the number of bytes sent on the interface for the duration of the

test.

Upload diagnostics utilizing FTP and HTTP transport. The Upload diagnostic

test is used to test the streaming capabilities and responses of the CPE and the WAN

connection. The measurements are made during the upload process, the files that are

uploaded are arbitrary, without bound on size, and are only temporary. There are no

storage requirements on the CPE for the uploaded files.

Evaluation of network performance 41

When using FTP protocol, the server response to the FTP STOR command gives the

CPE a ready for transfer and it may begin the file transfer.The CPE counts the number of

bytes sent successfully on the FTP data socket. The CPE is not required to retain the file

in memory. To validate the measurement success, the CPE counts the bytes successfully

received and compares their amount to the response to the SIZE command.

When using HTTP protocol, the server responds to the HTTP PUT with a successful

response when the file has completed the upload, this will indicate a successful test. If

the 200 OK is not received, or the TCP socket is torn down, the test will fail. The CPE

may use chunked encoding and counts the number of bytes sent on the interface for the

duration of the test.

UDP Echo Plus. UDP Echo Plus utilizes the UDP Echo Service and extends it by

additional packet field definitions and new server behaviors and provides improved secu-

rity. The ping tool has been widely used for realizing probing and general debugging in

the IP context due to its ubiquitous availability in network routers and hosts. However,

the viability of using ping measurements suffers from the fact that many routers process

pings with lower priority than actual user packet’s and may delay or discard ICMP echo

requests in a manner that skews the measurement results. The UDP Echo Service by-

passes this issue (unless explicitly port filtered at an intermediate or end host or router),

because its packets traverse the same intermediate nodes and logical queuing paths as the

user data traffic of the same class of service.

UDP Echo Plus is backwards compatible with UDP echo and devices capable of sup-

porting UDP Echo Plus have no distinguishable effect on cooperating devices running

standard UDP echo. However, when both cooperating devices are UDP Echo Plus capa-

ble, the utility of UDP echo is extended by the additional information provided in five

new data fields:

• TestGenSN is the packet’s sequence number set by the UDP client in the echo

request packet, and is left unmodified in the response. It is set to an initial value

upon the first requests and incremented by 1 for each echo request sent by the UDP

client.

• TestRespSN is the UDP Echo server’s count that is incremented upon each valid

echo request packet it receives and responded to. This count is set to 0 when the

Evaluation of network performance 42

UDP Echo server is enabled.

• TestRespRecvTimeStamp is set by the UDP Echo Plus server to record the reception

time of echo request packet and is sent back to the server in this data field of the

echo response packet.

• TestRespReplyTimeStamp is set by the UDP Echo Plus server to record the for-

warding time of the echo response packet.

• TestRespReplyFailureCount is set by the UDP Echo Plus server to record the number

of locally dropped echo response packets. This count is incremented if a valid echo

request packet is received but for some reason can not be responded to (e.g. due to

local buffer overflow, CPU utilization, ...). It is a cumulative count with its current

value placed in all request messages that are responded to. This count is set to 0

when the UDP Echo server is enabled.

By exploiting additional information, UDP Echo Plus is able to discern in which direction

packet drops occur (i.e. one way packet loss per each direction) and packets discarded

in the network from those discarded at the UDP Echo Plus server device, in addition to

measuring one-way delay variation per each direction. Finally, in order to prevent a DoS

(Denial of Service) attack on the CPE, the CPE will only respond to the UDP request

from a predefined Source address on a configurable port number.

Final Remarks

We learned that many parameters should be taken into account to measure network per-

formance and considering them at application layer allows to obtain results closer to the

users’ perspective. Moreover, as a result of our analysis of existing methodologies, tech-

niques and tools to measure network performance, we conclude that there is no best

approach for every context. Depending on the particular conditions in which measure-

ments are conducted, different tools may be used to obtain the most accurate results.

2.2.2 Advertising broadband performance

ISPs usually advertise their broadband plans only in terms of download and (sometimes)

upload speeds. As shown in Sec. 2.2.1, such metrics are not sufficient to describe the

performance that user can expect when using various applications. When subscribing to

Evaluation of network performance 43

Table 2.2: Low level metrics for establishing VoIP quality.

VoIP Quality Acceptable Good

Latency < 300 ms < 150 ms

Jitter < 50 ms < 20 ms

Packet Loss < 3% < 1%

a connectivity plan, the user should be able to decide which offer better responds to his

needs.

Network performance, like food, is characterized by many aspects which affect various

applications in a different way. For instance, a heavy-downloader user would care more

about higher throughput, while a user intrested in making VoIP calls, based on the re-

quirements exposed in Tab. 2.2, would be more satisfied if experiencing low latency, jitter,

and packet loss.

Driven by the requirement described above and by experimental results conducted on

real home networks thanks to the BISmark platform (see Chapter 5), we contributed to

the selection of a set of parameters to be presented to the user in a standard format. As

defined in [34] such format, in analogy with “Nutrition Labels” for food items, reports both

low-level parameters - represented as ranges of possible values - and high-level concepts

(e.g. time to download a song, video streaming quality in terms of frames rate). We

identify as its main properties the accuracy, the measurability, and the representativeness

of applications performance.

The parameters we selected are explained in the following: Sustainable throughput and

Short-term throughput relates to long transfers, while Minimum throughput is evaluated

on high network load or congestion; Baseline last-mile latency and Maximum last-mile

latency respectively represent the minimum and the maximum latency observed on the

last-mile link; Maximum jitter represents the maximum degradation potentially affect-

ing real-time applications; Loss rate and Loss burst length affect both throughput and

real-time applications; Availability is the fraction of time the access link connection is

established.

Particularly, we consider different throughput metrics due to the possible presence of

traffic shaping techniques like PowerBoostTM (see Sec. 1.1.1), which makes short through-

put measurements achieve higher values than they can obtain in the long term. Moreover,

we focus latency measurements on the last-mile link, since it gives the higher contribu-

Evaluation of network performance 44

Network Metric

WiMAX user DSL user 1 DSL user 2 DSL user 3 Cable user 1 Cable user 2

6 Mbps down 6 Mbps down 3 Mbps down 3 Mbps down 22 Mbps down 22 Mbps down
1 Mbps up 0.50 Mbps up 0.38 Mbps up 0.38 Mbps up 4 Mbps up 4 Mbps up

Sustainable 6.0 down 6.0 down 3.0 down 3.0 down 12.5 down 12.5 down

throughput (Mbps) 1.0 up 0.50 up 0.38 up 0.38 up 2.0 up 2.0 up

Short-term 6.0 down 6.0 down 3.0 down 3.0 down 22 down for 8s 18.5 down for 13s

throughput (Mbps) 1.0 up 0.50 up 0.38 up 0.38 up 3.8 up for 20s 7.0 up for 8s

Minimum 6.0 down 6.0 down 3.0 down 3.0 down 12.5 down 12.5 down
throughput (Mbps) 1.0 up 0.50 up 0.38 up 0.38 up 2.0 up 2.0 up

Baseline last-mile
65 8 8 24 8 8

latency (ms)

Maximum last-mile
700 800 300 750

latency (ms)
2000 2000

Loss rate (%) 0.03 0.02 0.05 0.01 0.08 0.01

Loss burst length — — — — — —

Jitter (ms) 8.7 2.4 1.6 2.2 1.4 2.1

Availaility (%) 95.6 95.2 94.8 94.0 94.7 96.6

Table 2.3: Labels applied to six broadband connections from different ISPs and service plans.

tion when evaluating the same metric end-to-end. In addition to these metrics, the label

should also provide information on specific QoS policies adopted by the ISP, to inform

the user about their presence.

We applied the label to six broadband connections across three different ISPs in the

USA, by considering the measurements taken with BISmark for the considered metrics

over one month (see Tab. 2.3). By considering the bold values in table, we demonstrate of

how the label could help in distinguish Internet service plans having the same advertised

characteristics. Indeed, as best shown in Fig. 2.4 users having different access technologies

experience significantly different latencies.

Figure 2.4: Latency profile for Cable, DSL and WiMAX.

Chapter 3

Evaluating the performance of
broadband access networks

Focusing our attention on broadband access networks, we performed an extensive study

of existing projects that address access networks performance evaluation. In the following

sections we first present a taxonomy for broadband benchmarking approaches and then

we define an architecture for benchmarking access networks from the edge.

3.1 A taxonomy for broadband benchmarking ap-

proaches

Based on our study of projects addressing the evaluation of access network performance,

we define a taxonomy dividing all the existing approaches into three macro-categories

depending on the location of the vantage points used to perform the measurements. As

shown in Fig. 3.1, such macro-categories are then further divided in categories and sub-

categories in order to properly distinguish all the significant differences among the existing

approaches.

Figure 3.1: Taxonomy for broadband benchmarking approaches.

A taxonomy for broadband benchmarking approaches 46

3.1.1 Server-based approach

We first consider the macro-category in which measurements are conducted from servers

in the core of the network towards users’ networks (see Fig. 3.2). In general, all the

approaches which make use of vantage points located outside the users’ networks have

limitations, mainly because of the difficulty in accounting for confounding factors in the

user’s home network. Indeed, in most cases users’ networks are connected to the Internet

through a NAT, which hides its potential complex structure behind a single IP address.

Also, most ISPs utilize dynamic IP addressing for their clients, thus making difficult to

measure the same access link repeatedly over time.

The server-based macro-category can be further divided into three categories, as de-

scribed in the following sections.

Figure 3.2: Server-based approach.

Service-based approach

We classify as service-based the approaches in which passive measurements are performed

from servers directly offering a specific service.

The most famous example is the Youtube Speed Meter [36]. This service shows the

history of the registered speeds of YouTube videos watched from users’ location (i.e. a

browser associated with a specific IP address). It also shows aggregate video speed by

city, state, country, and worldwide. The methodology adopted to compute the speeds is

the following.

They first compute the bandwidth of almost every YouTube played video by considering

the amount of data sent to and acknowledged by the user’s machine in a given time

period. Small video responses are excluded as they can add noise to the bandwidth

calculation. The estimated download bandwidth of every video played is associated with

A taxonomy for broadband benchmarking approaches 47

(a) Average bandwidth (Mbps). (b) Day-by-day bandwidth (Mbps).

Figure 3.3: Sample bandwidth reported by Youtube Speed Meter.

a VISITOR INFO1 LIVE cookie and with the IP address that requested the video. For the

daily speed value, as shown in the YouTube speed page, they average the bandwidth for

all videos played from a given cookie and IP address during the course of the day. If a

single laptop user uses multiple network connections and watches videos regularly from

these, they could see different speed measurements and historical data based on which

connection is currently in use. Per-ISP measurements are computed by averaging the daily

averages of all users who use the same ISP and are in the same geographic region. The ISP

speed value is an average of all users across all types of Internet connectivity and service

plans offered by the ISP. There are many factors affecting the measurement conducted,

like the ISP utilized, the distance to Google servers, the computer used, and other devices

in the user’s network such as other computers and Internet connected appliances. This

approach is not very accurate in calculating the downstream bandwidth, because it is

computed on the sender side by indirectly relying on acknowledgments, which may follow

a different path and can be affected by the narrow upstream bandwidth.

Core-based approach

We identify as core-based the approaches which conduct active measurements from ded-

icated servers. Some studies have characterized access network performance by probing

access links from servers in the wide area [7, 37]. Active probing from a fixed set of

servers can characterize many access links because each link can be measured from the

same server. Unfortunately, because the server is often located far from the access net-

work, the measurements may be inaccurate or inconsistent. Isolating the performance of

the access network from the performance of the end-to-end path can be challenging, and

A taxonomy for broadband benchmarking approaches 48

dynamic IP addressing can make it difficult to determine whether repeated measurements

of the same IP address are related to the same access link over time. A remote server also

cannot isolate confounding factors, such as whether the user’s own traffic is affecting the

access-link performance.

ISP-based approach

We classify as ISP-based the approaches providing passive measurements conducted by

the ISP itself. Previous work has characterized access networks using passive traffic mea-

surements from DSL provider networks in Japan [38], France [39], and Europe [9]. These

studies mostly focus on traffic patterns and application usage, but they also infer the

round-trip time and throughput of residential users. However, without active measure-

ments or a vantage point within the home network, it is not possible to measure the actual

performance that users receive from their ISPs, since the user traffic does not always sat-

urate the user’s access network connection. For example, Siekkinen et al. [39] show that

applications (e.g. peer-to-peer file sharing applications) often rate limit themselves such

that performance observed through passive traffic analysis may reflect application rate

limiting, as opposed to the performance of the access link.

3.1.2 Host-based approach

The second macro-category we consider is the one in which passive or active measurements

are performed from users’ devices (e.g. personal computers, laptops, mobile phones,

tablets, ...), as shown in Fig. 3.4. In general, utilizing a vantage point inside the user’s

network provides the advantage of having the same perspective as the user and to easily

scale to a large number of installations. By exploiting users’ devices, they can usually

rely on high computational resources (e.g. CPU, memory) and large storage capabilities.

On the other hand, they have some limitations:

• they cannot consider cross-traffic in the local network while performing measure-

ments;

• they can suffer from computational bottlenecks from other applications in the user’s

device;

• since user devices are rarely switched on all the time, they are not continuously

available.

A taxonomy for broadband benchmarking approaches 49

Figure 3.4: Host-based approach.

The host-based macro-category can be further divided into two categories, as described

in the following sections.

Client-based approach

We classify as client-based the approaches requiring the installation of a stand-alone

software client on users’ personal computer.

This approach has been recently adopted by many projects devoted to measure broad-

band access links performance. We analyze the most relevant.

Grenouille project [40]. In 2000, a group of volunteers started the Grenouille project

to monitor the performance of residential access providers in France. This project now

has thousands of members across all major French cities and Internet service providers.

To participate, users download the Grenouille client, which runs periodic tests to measure

their provider’s performance. The Grenouille client runs on Windows, MacOS, and Linux.

The client performs three types of periodic measurements: round-trip time (RTT), average

FTP download rate, and average FTP upload rate. After collecting these statistics, the

client sends the results to a central server. The server aggregates these measurements to

aggregate statistics for each ISP, SLA, and city. Users can view the performance statistics

for each ISP at www.grenouille.com.

To configure the client, users create an account with Grenouille providing information

about their connection, the city where they live, their ISP, and their SLA. Based on these

parameters, the Grenouille server configures the measurements that the client should

perform. The destination for both the RTT probes and the FTP uploads is always a

Grenouille server (except for Numericable, which has its own upload hosts). The source

of the FTP download depends on the ISP. The client usually downloads the files from a

www.grenouille.com

A taxonomy for broadband benchmarking approaches 50

server inside the user’s own ISP. If the ISP does not have an FTP download server, then

clients download the file from the Grenouille server. The size of the file varies according to

the SLA so that the client does not congest the network for users with slower connections.

Each Grenouille client performs measurements using ping and FTP; the client first

checks that the network card is idle before performing measurements. This minimizes

interference with traffic or activities at the end host that might affect the measurements.

Every 30 minutes, a client performs one FTP download and one upload to estimate

download and upload speeds and estimates the RTT and loss rate with the average of

ten consecutive pings. Clients periodically send the result of these measurements to the

server along with the time elapsed between the end of the performed measurements and

the time in which the client sends the report to the server. The server then timestamps

the measurement by subtracting this time difference from the time at which it receives

the message. This mechanism allows the server to synchronize the measurements from

the clients without requiring the clients’ clocks to be synchronized. The server then

truncates the resulting timestamps to the nearest 30-minute timestamp and averages the

performance measurements it received over that period from the client. The average

values are finally stored in a database.

NETI@Home project [41]. NETI@home is an open-source software (now inactive)

designed to collect network performance statistics from end-systems. It is written in

C++ and tested on the Windows, Solaris, and Linux operating systems. It is designed to

run on end-user machines and collects various statistics about Internet performance. Its

basic approach is to sniff packets sent from and received by the host to infer performance

metrics. By using an external component, the packets are sniffed without setting the

network interface in promiscuous mode and are then sent to NETI@home, where they

are sorted into bidirectional flows to be analyzed. Once a specified number of packets

are analyzed, the data is compressed and sent to a server at the Georgia Institute of

Technology to be stored into a publicly accessible database. Researchers are then able to

sort the data via a Web interface to look for specific data and/or trends.

In order to protect users’ privacy NETI@home provides the opportunity to select a

privacy level that determines what types of data are gathered, and what is not reported.

At the highest privacy setting, no IP addresses are recorded, while at the lowest privacy

setting, all IP addresses are recorded.

A taxonomy for broadband benchmarking approaches 51

Mark-and-Sweep project [42]. Han et al. measured access network performance from

a laptop by exploiting open wireless networks. The method adopted to collect network

information, called mark-and-sweep, focuses on maximizing the amount of collected data

for the amount of human time invested in taking measurements. It utilizes a two-pass

measurement scheme. In the first pass, they drive through an area without stopping,

collecting extensive passive measurements of all access points without associating with

them. These measurements are then used to create a plan for the second pass, in which

they measure once each access point and the associated network at the approximate

location where its signal strength was the strongest. Once it obtains an IP address on the

target wireless LAN, the tool performs five tests:

• pings a test server in the CMCL lab at Carnegie Mellon University;

• attempts to open a TCP connection to the test server on five ports: 25 (SMTP),

80 (HTTP),443 (HTTPS), 587 (authenticated SMTP) and 56123 (a high-numbered

port);

• runs a traceroute towards the test server;

• uses the open source STUN client/server to determine the type of NAT.

• sends UDP packets at 15 Mbps for 4 seconds to measure upstream and downstream

bandwidth by adopting a modified version of nuttcp [105] able to work through

NATs.

The unusual approach utilized is convenient, because it does not require user collabo-

ration. However it does not scale to a large number of access networks, it cannot collect

continuous measurements, and it offers no insights into the specifics of the home network

configuration. Moreover, relying on wireless connectivity the accuracy of measurements,

performed once for each LAN, may be highly compromised.

BSense project [106]. The BSense project integrates both estimated and measured

broadband data and combines it to demographic and geographic data in order to generate

broadband maps. A set of Web services APIs can be used to feed the system with initial

coverage estimations and broadband measurements. The gathered information is stored

in a relational database enabled for spatial information storage and it is then processed via

a data fusion engine, which enables automated and evolving broadband census creation.

A taxonomy for broadband benchmarking approaches 52

Measurements are conducted using a software multi-platform client, written in C++,

and installed by users on their personal computers. During the first startup the client

prompts the user for a valid postcode in Scotland, then asks four basic questions on access

technology type, ISP name, and advertised speeds for the service purchased by the user.

During the normal operation, relying on the D-ITG tool [107], the client measures the

following parameters: upstrean and downstream throughput, latency, and packet loss.

Isposure project [43]. Between is a trusted advisor to the Italian government on na-

tional broadband performance and publishes regular reports through its “Osservatorio

Banda Larga” portal, which informs consumers, business and the ISP industry about is-

sues pertaining to broadband services across Italy. Between has launched the Isposure

broadband analysis service which consumers can use to test the performance of their Inter-

net connection. The Isposure client is a freely-downloadable Windows application which

performs the following tests on users’ connection: download and upload line speed, Web

browsing speeds, gaming speed (i.e. RTT), and DNS lookup times. The measurements

are conducted when no cross-traffic is detected, towards the closest server selected among

the three located in San Francisco, Amsterdam, and Brisbane. Each user can access mea-

surement results from the Isposure Web portal, where per-measurement average values

are shown over configurable time periods (i.e. week, month) on simple plots.

Neubot project [44]. The Neubot project, born from the collaboration between NEXA

Center for Internet & Society and the DAUIN group of University of Torino, provides a

multi-platform client, written in python, available for Ubuntu Linux, Windows XP and

Mac OSX. It is executed in background on user’s workstations and offers a local Web

server which provides an interface to interact with it. Every 30 minutes, if no other traffic

is generated by the host, the client performs measurements, using both HTTP and Bit-

Torrent protocols, of the following parameters: round-trip time, upload, and download

goodput (i.e. the application level throughput). Such measurements are conducted to-

wards a servers hosted in the city of Trento. The results are accessible to the user through

the local Web interface, where per-measurement average values are shown over time on

simple plots. All the results are also sent to a central server, where they are stored for

further processing.

A taxonomy for broadband benchmarking approaches 53

Table 3.1: Statistics reported by the Ne.Me.Sys. certificate.

Statistic Comments

Maximum download bandwidth 95th percentile

Minimum download bandwidth 5th percentile

Average download bandwidth -

Download bandwidth standard deviation -

Maximum upload bandwidth 95th percentile

Minimum upload bandwidth 5th percentile

Average upload bandwidth -

Upload bandwidth standard deviation -

Download failure rate -

Upload failure rate -

Average one-way transmission delay RTT/2

One-way transmission delay standard deviation -

Packet loss probability ICMP

Ne.Me.Sys. project [45]. The italian authority for telecommunications (AGCOM)

approved Ne.Me.Sys., developed by Ugo Bordoni Foundation, as the official software to

measure quality of broadband Internet connections, According to [14], it allows to eval-

uate the quality of a broadband connection thanks to a set of measurements customized

depending on the ISP utilized by the user. The measurements are conducted by a soft-

ware client installed on the user’s personal computer over a variable time period (from 24

to 72 hours). During such period, the user is asked to not interfere with client operation

in any way (e.g. utilizing other networked applications) and the client avoids starting

measurements if other traffic is being generated. The measurements are made towards

two servers located in a so called “Neutral Access Points” located in Rome, which cor-

respond to an Internet exchange point and represents the closest network neutral with

respect to specific ISPs. The client performs the following measurements: upload and

download speed using FTP , and one-way delay and packet loss using ping. The results

are then sent to a central server which extracts a long list of statistics (see Tab. 3.1),

which is exported in PDF format to certificate perceived performance.

Web-based approach

We identify as Web-based the approaches which require the execution of a software com-

ponent inside the Web browser. In general, by just requiring a Web browser, this approach

allows to easily conduct measurements on a large scale. On the other hand, working in

that context, it is difficult for a measurement tool to be accurate, due to the additional

A taxonomy for broadband benchmarking approaches 54

software layers between the tool and the physical devices (e.g. the network interface).

The Web-based category can be further divided into two categories, as reported in the

following paragraphs.

Plugin-based approach The plugin-based approach requires a browser plugin to be

installed into the browser, which represents the vantage point from which the measure-

ments are conducted. This approach has been mostly adopted to perform Web perfor-

mance troubleshooting, which involves measurement of parameters at layers higher then

transport (e.g. application layer).

For instance Cui et al. [46] (Fig. 3.5) designed a troubleshooting setup based on Firefox

and composed of three parts: a plugin for the Web browser, a packet-level capture and a

database repository.

Figure 3.5: Troubleshooting setup architecture.

The browser plugin tracks some critical events during a Web session that are related

to the user’s perceived experience. It tracks paint events to measure the waiting time

elapsed between the user clicking on a Web page and the content of the Web page being

displayed. The plugin adds some event-listeners inside the browser:

• the first painting event tells how long the user needs to wait for the first visual

impact. They define the first impression time as the time interval between the user

clicking on the URL and the first painting event.

• the full page load event measures how long it takes until the entire content of a Web

page, which may consist of several tens of different elements, is displayed. They

A taxonomy for broadband benchmarking approaches 55

define the full load time as the time interval between the user clicking on the URL

and the full page load event.

For each Web element that is loaded, the plugin records a certain number of additional

information (e.g. URI, ...).

This approach has much in common with the client-based one, since browser plugins1

mostly allow to implement the same measurements as stand-alone applications. On the

other hand they differ in their availability and operating software layer. Indeed, in the

first case, the tool is active only when the browser is opened. In the second case, as the

plugin is usually spawned as a thread by the browser process, the scheduling algorithm

operating on the measurements may be different and compete first with other browser

threads and then with other processes running on the host.

Embedded approach We classify as embedded the approaches which include measure-

ment tools into a container appearing on a Web page (e.g. Flash, Java, Silverlight ...).

Most projects and studies adopting this approach typically help users to troubleshoot

performance problems by asking them to run tests from a Web site and running analysis

based on these tests. The most famous is SpeedTest.net [47], which offers a fancy Flash

interface (shown in Fig.3.6) to measure latency, and upload and download speed.

Figure 3.6: SpeedTest.net fancy interface.

Netalyzr [8] measures the performance of commonly used protocols using a Java applet

that is launched from the client’s browser. Network Diagnostic Tool (NDT) [5] and

1Browser plugins, unlike extensions, are usually not limited by restrictions usually applied to javascript
code.

A taxonomy for broadband benchmarking approaches 56

Network Path and Application Diagnostics (NPAD) [4] send active probes to detect issues

with client performance. Glasnost performs active measurements to determine whether

the user’s ISP is actively blocking BitTorrent traffic [48].

Users typically run these tools only once (or, at most, a few times), therefore the

resulting datasets cannot capture a longitudinal view of the performance of any single

access link. Moreover, in this case, there are more additional software layers between

the tool and the physical devices, since the measurements are conducted from inside a

container in the Web page. Even worse, the measurement tools are implemented inside

environments like Java or Flash, which significantly impact their accuracy.

3.1.3 Router-based approach

We consider as third macro-category the one in which both active and passive measure-

ments are conducted directly from the router acting as gateway to the Internet for the

local network (see Fig. 3.7). In general, adopting such a vantage point solves most of the

issues encountered by all the other approaches.

Figure 3.7: Router-based approach.

Indeed, exploiting the home gateway offers the following advantages:

• the router is switched on all day, so it solves the availability problem, thus allowing

to perform measurements at any time and at regular schedules and to perform

continuous passive measurements;

• because the router is involved in any communication between the local network and

the Internet, it can observe any kind of cross-traffic, thus allowing to conduct active

measurements only in positive conditions or to properly correct/explain their results

in all the circumstances;

A taxonomy for broadband benchmarking approaches 57

• the router is a completely controlled environment, so inter-process interference can

be avoided during measurements.

On the other end this approach has a few drawbacks:

• obtaining a large scale deployment is not an easy task, because the only choices

are to ship preconfigured gateways, which is costly, or to request users to upgrade

the firmware of their router, which requires medium-skilled users and a preexisting

compatible router;

• most routers offer low computational resources (i.e. CPU and memory) and small

storage capabilities (e.g. 4 MB flash drives), which makes challenging the imple-

mentation and the management of measurement tools.

The only existing project adopting this approach is SamKnows [49], which has been

funded by UK and US governments to conduct broadband studies in their countries

respectively under the direction of Ofcom (Office of Communications) and FCC (Federal

Communication Commission), and has now contracted with the European Community

for a similar study in Europe. SamKnows deploys gateways in each participant’s home

either directly behind the home user’s modem or behind the home wireless router. The

gateway is a Netgear WNR3500L RangeMax Wireless-N Gigabit router with a 480 MHz

MIPS processor, 8 MB of flash storage, and 64 MB of RAM as well as five 10/100/1000

auto-sensing Ethernet ports and 802.11n Draft 2.0 WiFi. It can be updated and managed

remotely and periodically executes active measurements to estimate the parameters listed

in Tab. 3.2.

3.1.4 Comparison of approaches

The analysis conducted on all the approaches of the proposed taxonomy brought us to

the following conclusions.

There is no perfect approach to address broadband access network performance eval-

uation, since all the approaches have advantages and drawbacks. Among all of them,

the most promising approaches are those working from the users’ side, because they can

better take into account the context in which measurements are performed. We identify

router-based, client-based and plugin-based as the most promising approaches, since they

allow to perform experiments on the same access link scheduled over a long time period.

A taxonomy for broadband benchmarking approaches 58

Table 3.2: Tests currently performed by the SamKnows router.

Parameter Interval

Multi-threaded HTTP download speed 2 hours

Multi-threaded HTTP based upload speed 2 hours

Availability of the connection 30 sec

Jitter 1 hour

Latency (ICMP) 12 min

Latency (UDP) 10 sec

Packet loss (ICMP) 12 min

Packet loss (UDP) 10 sec

DNS query resolution time 1 hour

DNS query failure rate 1 hour

Web page loading time 1 hour

Web page loading failure rate 1 hour

Video streaming performance 2 hours

In other words, they allow to repeat the same experiment many times, thus obtaining

more statistically significant results.

With respect to the measurements conducted, as also noticed by [35], we found that

each existing project adopts different methodologies, techniques, and tools to measure a

similar set of parameters. Moreover, many of them refer to the same parameters with

different names and none of them consider all the performance metrics we selected in

2.2.2. To highlight this aspect we report in Tab. 3.3 a comparison of four client-based

projects on all the essential properties.

As shown they are implemented using different programming languages and not all

of them are open-source, thus making impossible to verify their accuracy. They mostly

measure different aspects of throughput, latency, and packet loss by adopting different

protocols and methodologies. They measure throughput by transferring files having a fixed

size, which may be not optimal for every access network, since on high speed links the

experiment may have a too short duration2. They mostly provide average values, which

may not be accurate enough. Most of them provide a mechanism to avoid measurements

when other applications are generating traffic, and directly ask the user for information

about his geographic location and subscribed broadband plan.

2TCP-based measurements should last at least 15 seconds to allow the slow start phase to finish.

An architecture for benchmarking access networks 59

Table 3.3: Comparison of four client-based projects.

Ne.Me.Sys. NeuBot Isposure BSense

OpenSource yes yes no yes

Language python python Visual C++ C++

Multi-platform
client

yes yes no yes

Throughput
FTP

(1 MB file)

HTTP multi-thread
(50 MB file up)

(90 MB file down),
BitTorrent

(64 KB − 1 MB file)

TCP
multi-thread
on port 80
(15sec)

TCP and UDP
(15sec)

Latency
ping

(1 pps - 10 sec)
ping

(1 pps - 10 sec)
ping

(1 pps - 10 sec)
UDP

(10 pps - 60 sec)

Jitter - - - -

Packet loss
ping

(1 pps - 10 sec)
- -

UDP
(10 pps - 60 sec)

Browsing
experience

- -
HTTP

(top 5 sites)
-

DNS delay - - top 10 sites -

Failure rate yes no no no

Detail
of results

5th & 95th

percentile,
mean,

standard
deviation

mean mean
samples

per tenth of
a second

Measurements
interval

- 30 min 24 hours 30 min

Cross-traffic check yes yes yes no

Geolocation user-aided - user-aided user-aided

Measurements
negotiation

n.d. yes n.d. no

3.2 An architecture for benchmarking access networks

As a result of the analysis conducted in the previous section, we identified the character-

istics an ideal architecture, able to measure broadband access networks on a large scale,

should have. We report in the following sections an overview of such architecture and a

brief list of all the features which can be important to allow its wide deployment.

3.2.1 Architecture overview

In Sec. 3.1 we concluded that the only approaches able to take into account the context

in which measurements are conducted and to perform experiments on the same access

link properly scheduled over a long time period are the router-, client- and plugin-based.

An architecture for benchmarking access networks 60

Hence, we defined an architecture which can work with all such approaches, coping with

all the challenges related to a wide distributed architecture.

Figure 3.8: Overview of an ideal architecture for benchmarking access networks.

An overview of such architecture is shown in Fig. 3.8. It is made of three essential

components:

• Measurement Client : installed on a device part of the users’ network (e.g. personal

computers, laptops, mobile phones, tablets, routers, access points, set-top-boxes ...),

it periodically requests for instructions on experiments to execute and reports back

the obtained results;

• Measurement Server : deployed on a network as close as possible (in network terms)

to the clients and provided with a high capacity connection to the Internet, it acts

as source/destination for active measurements requiring control on both sender an

receiver side;

• Management Server : equipped with high computational resources and storage ca-

pabilities, as well as high capacity link to the Internet, it is responsible for managing

all the experiments conducted by measurement clients and to collect and properly

organize their results.

The management server, which may be clustered or properly distributed to avoid

single-point-of-failure problems, is responsible for the following tasks:

An architecture for benchmarking access networks 61

• monitoring the correct operating state of measurement clients over time;

• managing measurement clients software updates both manually and automatically;

• configuring and planing experiments to be performed by measurement clients, in

order to avoid significant interferences among them and to balance their load on

different measurement servers;

• collecting experiments’ results and properly organizing them in a relational database,

in order to allow the extraction of statistics at different aggregation levels.

Measurement clients, in the best case, should cover all the interested geographic loca-

tions (preferably more clients for each location having different ISPs and plans), and the

measurement servers should be distributed to have at least one of them at the shorter

possible network distance (their number should also be proportional to the number of

clients in a given location).

In addition to these basic components, such architecture may provide some other

optional components which can act to provide incentives for users to be involved in the

experiments. Indeed, users would be happier to participate if the results of conducted

experiments are shown through easily understandable and fancy graphical representations.

To accomplish this goal, the architecture may also include the following components:

• Front-end Web Server : it offers accurate and detailed graphical representations of

statistics both related to single users’ (through a login process) and aggregated at

different layers (publicly accessible), allowing also to compare results among different

ISPs and plans in the same geographic area.

• Mapping Server : it produces geographical representations of extracted statistics to

allow a better understanding of performance on a wide area.

3.2.2 Important features the architecture should provide

In the following we briefly outline the features we believe are essential for an ideal archi-

tecture as the one defined in the previous section:

• measurement clients and servers should support pre-existing measurement tools,

which are commonly well tested and thus more accurate;

An architecture for benchmarking access networks 62

• the management server should be able to allocate resources for measurement servers

without the need to communicate with them, in order to allow also measurements

towards servers not part of the controlled architecture (e.g. servers offering real

services);

• all the basic components should provide a flexible support for underlying measure-

ment tools, in order to allow a proper configuration of their parameters depending

on the context in which they operate;

• with respect to a measured access links, the basic components should be able to

automatically detect and track both its geographical position and ISP service plan,

in order to obtain such information without relying on users’ cooperation (which

may lead to unverifiable mistakes).

Chapter 4

HoBBIT: adopting the client-based
approach

After defining the guidelines reported in Sec. 3.2, in order to easily reach a large scale

deployment and to evaluate the performance of broadband access networks at higher

geographical resolution, we decided to build a client-based platform.

Hence, we designed and developed the HoBBIT 1 (Host Based Broadband Internet

Telemetry) platform, which is specifically targeted to evaluate the performance of broad-

band access networks in Italy.

It provides a multi-platform client application implementing only active measurements

and offers, a as an incentive for the user, a fancy front-end web interface through which

he can visualize all the statistics extracted about his access network up to the detail of a

single experiment. Moreover, the interface gives also the possibility to visualize statistics

at different aggregation levels. For instance, it is possible to visualize the statistics per

geographic area on fancy interactive map.

In this chapter we first describe the design and the implementation of the components

part of the architecture, and then the experiments we are currently performing. Finally

we give some insight on the challenges we had to face and on preliminary results we

obtained by analyzing collected data.

4.1 Architecture components

The architecture designed for HoBBIT includes all the basic components required by the

ideal architecture defined in Sec. 3.2: measurement clients (henceforth clients), measure-

1http://hobbit.comics.unina.it

http://hobbit.comics.unina.it

Architecture components 64

ment servers, management server, front-end server and map server.

The behavior of HoBBIT clients, which can move among different access networks

or may operate together in the same access network, makes it challenging to properly

track their association with a specific access network. This is primarily true for mobile

computers (e.g. laptops, netbooks, mobile phones, tablets, ...), which are today really

common. Therefore, we had to adopt specific solutions to cope with it.

Moreover, we designed the HoBBIT framework to give a high flexibility in the defini-

tion and execution of the experiments and in their assignment to clients.

In the following sections we describe the design and the implementation of the com-

ponents of the architecture.

4.1.1 The management server

In this section we provide a detailed description of the design made for the management

server giving also some insights on the choices adopted to cope with the mobility of the

clients and to maintain a good flexibility for the definition of the experiments.

Requirements analysis and main concepts

The Internet today is an extremely complex environment subject to continuous changes.

The HoBBIT project focuses on that set of links which are subject to commercial con-

tracts, being therefore mainly of interest for the final users. These links are commonly

identified as the last miles, since they connect the user with the first telephone box towards

Internet.

The users of the HoBBIT project range from home users to big corporations and aim

at monitoring the owned network and its connectivity. Since HoBBIT users, by moving

among different access networks, can perform measurements on different access networks,

all the measurements performed by the platform should be maintained by using an access

network centric approach.

The platform should require information about the provider and the contract which

regulates each connection with its nominal values. Each connection should then be mea-

sured both to identify connectivity problems and to collect statistical data. Such mea-

surements should usually follow a predefined schedule in which their duration and the

possible number of repetitions is stated. Furthermore, measurements should be be part

of wider campaign of measurements according to a specific objective.

Architecture components 65

In addition, the platform should take advantage of the geographical position of each

connection (e.g. the municipality), pursuing the goal of collecting measurements and

correlating their results also with the geographical location.

Hence, each installation of the HoBBIT client should perform several measurements

according to the schedule associated to the connection currently in use. The results of

the measurements performed by a specific installation should then be accessible only to

the owner user. Logging into the system with username (i.e. the email address) and

password, he should be able to access to graphical representations and synthetic statistics

about his connections. Moreover, users should be able to visualize measurements results

aggregated per geographical area (e.g. region, province, municipality, ...) and service plan

details (ISP, access tehcnology, ...).

Broadband connection. The main goal of the project is to obtain statistics about

broadband access networks (henceforth connections) at different granularities. We define

the concept of connection through the following reasoning. Since the object of the mea-

surements are the connections (i.e. the last-mile links between home routers and ISPs), it

is possible to detect if different users access to the Internet through the same connection

by comparing the MAC address of their default gateway. However, in some cases such

MAC address is not sufficient. In the example reported in Fig 4.1, in which client 3 and

4 are linked to different interfaces of the same router (i.e. wired and wireless interfaces),

we cannot determine them as utilizing the same connection just relying on the gateway’s

MAC address, because they see different gateway’s MAC addresses. To cope also with

such case, we take into account also their public IP address, which is the same for clients

1 and 2, as well as for 3 and 4. Thus, HoBBIT identifies two clients on the same connec-

tion if they perceive the same gateway’s MAC address or if they report the same public

IP address enough close in time. Thus, by aggregating clients per connection, the plat-

form can coordinate them to cooperate for pursuing the common goal of evaluating its

performance.

Client installation. The HoBBIT client can be installed on devices having at least

a supported operating system (i.e. Microsoft Windows, Linux and Mac OSX) and a

connection to the Internet. Each installation is identified by an UUID (Universally Unique

Identifier) assigned from the management server at registration time. We give more details

Architecture components 66

Figure 4.1: Example of connection as seen by HoBBIT .

on measurement clients in a following section.

Measurement experiment. Ameasurement experiment (henceforth experiment) aims

at measuring specific connection parameters. While the selected parameters depend on

the goal of the experiment, the act of measuring depends on the connection. For this

reason, a measurement experiment is totally defined by a set of parameters and a set of

rules used to measure those parameters. In this way, from the combination of these two

factors, each measurement experiment may produce one or more results. For example,

with a single experiment, by properly configuring parameters and rules, we can estimate

jitter, latency and packet loss.

The platform contemplates experiments classification based on intensity (invasive or

light), type (e.g. network neutrality assessment), and so on, such that it is possible to

easily distinguish and aggregate experiments and their results per class.

The term parameters refer to a list of options which allows to identify an experiment,

while the rules are the values associated to these options. Sometimes, such rules are not

statically defined from the system administrator during the experiment definition: in this

case, the server elaborates the incoming explicit request for it and provides the required

answer to client. Indeed, the rule values depend on a high number of factors most of the

cases not predictable. A classic example is an experiment which requires the IP address

of the measurement server. This choice cannot be provided by the administrator since

it depends on the measurement servers: statically assigning experiments to measurement

servers may be hazardous. For this reason, the client requests form the management server

the IP address to consider for the measurements. Such address is dynamically determined

Architecture components 67

form the server by carefully analyzing the current measurement servers availability.

Finally, during the experiment creation, the administrator defines a bash script that

will be executed by the involved clients.

Measurement campaign. In order to collect meaningful statistical information about

the connections, the platform distinguishes measurements based on the connection’s prop-

erties like geographical position or network provider. Hence, the system is able to manage

measurement campaigns (henceforth campaigns), which group together experiments de-

fined for connections according to well defined criteria. The administrator can define

campaigns for connections established in a specific geographical area, for a set of mu-

nicipalities, for a specific provider or service plan and so on. There exist two different

selection criteria:

• preferential : connections are requested to meet some optional characteristics.

• imperative: connections are strictly requested to meet the defined characteristics

with penalty of exclusion.

Measurement schedule. A measurement experiment may be more or less valuable

according to the time of execution. For this reason, it is of the utmost importance to

plan the experiments with a proper schedule, to allocate experiments in specific days

of the week or temporal slices or during particular days like Christmas or Easter. The

schedule implements a mechanism similar to the experiments rule in order to filter the

experiments performed by each client. The management server communicates to the

clients the list of experiments they should perform, encoded in XML format according to

the specific connection currently in use. In order to avoid the overloading both of clients

and measurement servers, the allocated measurements are limited such that temporal

constraints are met: the sum of experiment durations should not exceed a predefined

threshold. This mechanism, together with the slices allocated by the measurement servers,

allows to limit the network resources used by the clients.

The list of measurements to be performed also contains a time reference:

• experiment duration;

• time to wait before the experiment;

Architecture components 68

• number of retries in case of failure;

• time to wait before a new list of measurements could be requested.

The experiment results are defined in terms of samples. For this reason, the list

also contains a sample rate for each experiment. When the experiment provides a single

aggregated value (e.g. mean, minimum, maximum, ...), such value is considered as a

sample. Finally, for each experiment, the list contains possible outputs.

A specific syntax allows the definition of parameters and values. A null value indicates

that the client must request the real value only when ready to start the experiment. In

this way, the server is free to not specify all the parameters values during the creation of

the list .

Measurement result. When all the experiments in the list are performed, the client

sends the results to the management server, again in XML format. Each result consists of

the set of samples collected during the measurements related to each output parameter.

Since, in most cases, the list of results is not immediately communicated to the server,

the list contains the time information about the end of each experiment. Such additional

information could profitably help debugging operations.

Database design and implementation

We faced the problem of realizing a structure able to hold all the necessary information

and, at the same time, to preserve the functional scheme defined above. The HoB-

BIT database is made of more than twenty tables and about ten functions and stored

procedures. The core of this structure is the Connections table, since all the experiments

are directly associated with its entries, from which them can be aggregated on several

axes.

Design and implementation overview. From the elements gathered in the previous

definitions, we build the conceptual model which organizes all the described elements and

their associations. The HoBBIT database was built starting from that model, which is

shown in Fig.4.2.

The most relevant entities have been highlighted in the diagram. Moreover, each entity

belongs to a competence macro-area. The division in macro-areas is strictly conceptual

Architecture components 69

Figure 4.2: Conceptual design of the HoBBIT database.

and is aimed at explaining in which context the entities are operating and which infor-

mation they hold. The entity representing the connection (Connection) emerges as the

fundamental one for the project, as it describes, with the maximum allowed resolution,

the link on which the measurements are performed. This entity relates with other entities

belonging to the different macro-areas. By means of the geographic section, the mapping

of the connection on the territory can be tracked. The Netlocation section determines

the phone service contract, and indirectly the ISP, that is serving the connection. Fi-

nally, the Measuring section holds the experiments that are active and performed on the

connection, and the results produced by them.

The entity comprising the information about the client application is named Installa-

tion. It is in a many-to-many relationship with Connection: this means that a connection

can host many client applications and a client application can be hosted - not at the same

time - on different connections. This kind of relationships implies that the application

is not bound to performing statistics only on the first connection it happens to operate,

but it can participate in different measurements. The Experiment entity is in charge of

holding the measurement experiments defined by the system administrator. There is no

direct relationship between this entity and Connection because the relationship is actu-

ally between the connection and one instance of an experiment at a given time. In order

to better clarify this relationship, we introduce the concept of experiment scheduler (de-

scribed in details in the previous paragraphs). As a matter of fact, an experiment is just

the definition, according to some parameters, of a given measurement; on the other hand

Architecture components 70

the schedule is the instance of the experiment, in a time interval and with specified values.

In this way and by means of a many-to-many association, we relate a schedule to a

connection, so that many experiments (schedules) can be executed on one connection,

and one schedule can be associated with many connections.

The results of the experiments are stored in the entity MeasureOutput. In this entity

only the information about the results (i.e. which experiment generated them, on which

connection) is stored. A macro-area not strictly bound to the connection is the one

related to the management of the measurement servers. The entities that belong to it are

in charge of the management of the specific servers that participate to the experiments.

In the following we provide a brief description of HoBBIT ’s database tables:

• Connections: holds all the information to uniquely identify connections, such as

the MAC address of the gateway and an alias identifier (AliasID), which is used to

associate among them different interfaces belonging to the same router, as illustrated

in Fig. 4.3a and 4.3b.

Figure 4.3: Example of AliasID operation.

• Installations: maintains all the information to identify a particular instance of

the application client, which is uniquely identified by the UUID value.

• Users: holds the information about the users necessary identify them (i.e. using

the email address) and to access the front-end server for visualizing their statistics.

Architecture components 71

• ISPs: maintains information about all the known ISPs.

• Plans: holds information about all the service plans provided by the ISPs.

• IPClass: maintains all the CIDR IP blocks associated to ISPs.

• Campaigns: holds all the experiment campaigns as defined by administrators, to-

gether with functions to dinamically associate connections with them.

• Experiments: maintains the experiments definition, including the complete set of

input/output parameters and a bash script acting as a wrapper for underlying

measurement tools.

• Schedules: holds all the schedules associated to the experiments (see Sec. 4.2).

• Progresses: maintains the progress of each connection with respect to each exper-

iment.

• MeasureOutputs: holds all the meta-data associated with experiment results.

• Samples: maintains the samples returned by all the experiments.

• FailureLogs: holds a log of all experiments execution failures.

• MeasureServers: maintain basic information about the measurement servers (e.g.

IP address).

• MeasureSlices: holds all the slices in which measurement servers resources are

partitioned, in order to allow the execution of the scheduling algorithm.

The client/server protocol

Such protocol is mainly constituted of two fundamental parts depending on the location

of the client in the network: the first one defines the case when the user contacts the

server from a new station, thus using a connection different from those registered; the

second one, instead, is related to the exchange of information between client and server

when the client station is already registered and thus known to the server. This way, the

user can use multiple connections and participate to different measurement campaigns.

A special condition happens with the first exchange of information between client and

Architecture components 72

server. In this case, the installation is not active yet, being not registered on the server.

A new installation gets registered through a specific query from the client to the server,

which replies with a unique identifier confirming the successful registration. Since then,

the client installation becomes part of the project and participates to its measurement

campaigns.

The first client/server communication. The client/server protocol related to the

first request from the client is described in Fig. 4.4. During the installation, the client

sends an HTTP query to the server, specifying the name and version of its operating

system and the MAC address of the network interface used to connect to the default

gateway. In this query no installation identifier is specified, since this has not been

assigned yet. The server generates a unique identifier (called UUID) associated with

the client and sends it back to the client. The UUID will be used in all subsequent

communications. At the same time the server looks for the client’s MAC address in its

connections database. If the MAC address is already present in the DB, the server will

send all its geographical data associated with the connection, such as the City, Region,

ZIP code, etc., plus the ISP associated with the connection and the service plan. In this

special case the client will not need to estimate the properties of the connection, a relation

between the connection and the new installation will be created, and the next step will

be the registration of the user.

If the MAC address is not in the connection DB, a new connection will be created in

the DB with the MAC address associated with it. The user will indicate the geographical

data, and his commercial plan. The ISP instead is obtained server-side through a whois

request. Afterwards, a relation between the connection and the installation is created.

The client is then ready to execute its first measurements, and thus requests a list of the

measurements that must be performed (this is provided in XML format).

When a new connection is created, a specific measurement campaign - named ”first

connection campaign” - is assigned. This is made of two experiments: an experiment

for the estimation of throughput and an experiment to estimate delay, jitter, packet loss.

The throughput estimation provides a measure of the capacity of the link, which allows

us to evaluate the download rate of the link and, indirectly, the commercial plan of that

connection.

When finished with the measurements requested by the server, the client sends the

Architecture components 73

Figure 4.4: Client/Server protocol when detecting a new connection.

results of each of them in XML format to the server. The server processes the results

and performs an estimate using the collected samples (it calculates the 95th percentile for

Architecture components 74

downstream throughput and the 5th percentile for the upstream throughput). Afterwards,

the ISP is identified and the server is ready to finalize the registration of the new client

installation. Besides the geographical data, the user can optionally add Zone and Place

information. The possible values for the Zone are: industrial area, downtown, historical

area, island, periphery, hills, seaside, mountains, rural area. The user in the beginning

is identified through his email address. After the registration procedure, the server will

update the information associated with the connection and will insert or update the user’s

data.

Following client/server communications. The subsequent communications will ap-

proximately follow the same scheme of the first connection. Before any request, the client

will send its UUID and the MAC address of its gateway to the server. The server will

first verify the correctness and the presence in the DB of the UUID, and then will check

for the MAC address:

• If there is a relation between the installation and the connection, then it means that

the client is behind a gateway from which it previously connected to the server. In

this case, the next step will be the request of a list of measurements.

• If the relation does not exist, it means that the client is using a new connection and

therefore it is necessary to perform a new registration as described earlier.

The described mechanisms provides more flexibility to the application in the case

it runs on mobile devices as notebooks, smartphones, etc. This way, a user changing

position and connection can participate to multiple measurement campaigns and can

actively contribute to reaching the goals of the project.

Other features

Client registration process. As explained earlier, before issuing any request, the

client’s installation is verified by the server through the UUID. This verification is used

to verify that the client is still active and to detect situations in which the client moves

to a different connection.

Let us see in detail the situation in which the user, after installing the client, connects

to the server. In this case, the UUID cannot be sent, because the client does not have

one.

Architecture components 75

Figure 4.5: Client/Server protocol when detecting an existing connection.

The server recognizes the absence of an UUID and interprets the situation as a request

of an identifier. A new client installation is registered and the new UUID is sent to

the client. The client sends the MAC address of its default gateway, which identifies a

connection. The server verifies the presence of the MAC address in the DB. If present,

it creates a relation between the existing connection and the new installation. If the

connection is not in the DB, a new connection is inserted in the DB with the MAC address

passed by the client. After that, the default ”first connection campaign” is assigned to

the connection, after which the client is ready to perform the measurements requested by

the server. It is worth noting that if the connection was already present, the client does

not have to perform the ”first connection campaign” and it can directly proceed to the

user registration.

Let us discuss now the case in which the client is already registered. The client requests

the verification of the UUID and of the connection to the server. If the UUID is not valid

anymore (because the installation has been deleted from the server, or because the UUID

is corrupted) the server will send an error message to the client, which will proceed for

a new registration. If the UUID is valid, the server will search the relation between the

installation and the MAC address sent. This step is necessary in order to verify that the

user is using a connection already registered so that it is possible to proceed with the

measurements. If the relation does not exist it will be created, inserting the connection

if not in the database and notifying the client of the changes.

Architecture components 76

Figure 4.6: UUID requests from HoBBIT clients. (a) The client is not registered yet. (b) The client is
already registered.

Scheduling algorithm for measurement resources. A set of slices are assigned to

each measurement server, depending on the available bandwidth. The slices are stored in

the MeasureSlices table, which is composed of the following fields:

• IDSlice: unique ID of the slice;

• IDServer: ID of the measurement server which the slice belongs to;

• FREE TS: the time, in Unix Epoch format, when the slice will be free again.

The concept of slice is strictly related to the network capacity of the measurement server.

Each of these servers is connected to the network through a 100 Mbps Ethernet link; we

partitioned such capacity in 180 slices of 512 kbps each, reserving some free periods to

avoid bottlenecks and interference between measurements.

When an experiment requires a certain number of slices, those available are verified

and reserved by setting the FRESS TS field to the sum of the time in which the slice has

been requested, the duration of the experiment and a guard time, to avoid overlapping

with other experiments. An example is reported in the following.

Let us refer to Fig.4.7 and suppose that a request to perform the experiment #1 is

issued at time 1000 and that the all the slices of the measurement server are free. This

experiment requires a bandwidth of 1024 Kbps (i.e. two slices), and it has a duration of

15 seconds. The measurement can take place and the slices required are reserved for the

duration of the experiment; therefore the first slices will have a value equal to:

Architecture components 77

Figure 4.7: Example of scheduling algorithm in action.

FREE TS = Duration+ Tollerance (4.1)

Afterwards, at time 1002, the server receives another measurement request for the

experiment #2. It requires a bandwidth of 2048 Kbps (i.e. 4 slices) and a duration of 30

seconds. As there are only 3 slices available, it is necessary to postpone the execution of

the experiment up to when a new slice is free. The waiting time is given by the difference

between the time in which the slice will be free and time in which the request is received:

Wait = timerelease − timenow + tollerance = 1018− 1002 + 3 = 19s (4.2)

This waiting time is sent to the client which requested the measurement, so that it can

postpone the experiment. At this point, it is necessary to reserve all the slices adding to

the time in which the request is received the waiting time, the duration of the experiment

and the guard time:

FREE TS = timenow + wait + duration = 1002 + 19 + 30 + 3 = 1054 (4.3)

Measurement list creation and delivery The exchange of information between

client and server happens through HTTP messages in XML format. When the client

asks for a list of measurements, the server answers with an XML list of experiments. Af-

ter the UUID and the MAC address have been verified, the connection is identified. Then,

Architecture components 78

the experiments associated with the connection are chosen using the following criteria:

• it is possible to execute them at the current time;

• it is possible to execute them in the current day of the week or day of the month;

• the time at which they have been assigned is smaller than the current time plus a

tolerance value;

• they have a number of remaining repetitions larger than zero.

If none of the experiments verifies the above conditions, the client will receive an

empty list of measurements, otherwise the parameters will be parsed. Each parameter is

separated by the character ”;”. A typical string of parameters is:

value1; value2; §foo(p1, p2); value3; §§bar(p1) (4.4)

In this case the function ”foo” is called when the list is created, whereas the function

”bar” is called upon client’s request; up to then the value of the corresponding parameter

will be zero. For each experiment a slice of a measurement server is assigned. The slice

will contain the time interval in which it will become free and is expressed as a timestamp

in Unix epoch format, to which the duration (in seconds) of the experiment is summed.

Not all measurement parameters are statically defined by the administrator. Some of

them are variables that are dynamically set by a request from the client. An example is

assigning a slice to a measurement server for a particularly invasive experiment. In this

case, when the list is created, the value of such parameters will be empty and it will be

automatically filled upon client’s request. The client specifies the values of the parameters

when the request is made. The server, through predefined functions, will calculate the

proper values and will send them to the client.

Measurement results parsing The results of the measurements performed by the

client are sent to the server in XML format. The server processes the results and stores

the samples of each measurement and some information on the results, among which:

• the IP address of the measurement server;

• the IP address of the measuring client;

Architecture components 79

• the measurement parameters;

• the UUID associated with the client’s installation.

Such results, together with the samples of each measurement, are stored and used for

statistics and aggregations.

Plan detection After sending the results, for each new connection it is necessary to

associate the corresponding service plan and ISP. The CIDR IP class to which the client’s

IP belongs is searched for, in order to identify the corresponding ISP. If the corresponding

IP class is not found, a whois query is issued. Once the ISP has been identified, using the

estimated throughput of the connection, the service plan of the connection is identified and

associated with it. If no service plan is identified, a default one is created using the name

of the ISP and the estimated download rate. For example, if we identofy Infostrada as the

provider, and a download rate of 2 Mbps and upload rate of 400 kbps is measured, the

service plan will be named ”Infostrada 2M/400k” and will be associated to the connection.

Connection registration process During the registration, the client does not know

if the connection is already registered on the server. For this reason, the client sends

an HTTP query to the server indicating the MAC address of its default gateway. The

server looks into the database for the connection and sends the geographical information

that identify the connection, if present. The geographical information includes: region,

province, city, postcode, and characteristics of geographical area (e.g. center, periph-

ery, ...).

If not found, the connection needs to be registered and the server sends an empty

string to the client. The client is then ready to register the connection.

If the connection needs to be registered then the client and server will exchange the

geographical information. Optionally, the user can suggest the specific geographical area

in which the connection resides. After the geographical information, the client must obtain

the information related to the ISP and the commercial plan. The client sends a request to

the server, which sends a list of available ISPs. Among these, the server includes the ISP

obtained through the whois query. After selecting the ISP, the client sends to the server

another request: a list of commercial plans associated with the selected ISP. The server

sends the list of all commercial plans and selects the one that has been identified through

Architecture components 80

the throughput estimates as preferred. At this point, the connection is registered with the

parameters selected by the user. The server inserts or updates the connection, the user

and the installation in the DB. After the registration, a set of measurement campaigns is

associated with the registration.

Measurement campaign assignment After the registration of a new connection and

after the creation of a new measurement campaign, a list of experiments, related to one or

more campaigns, is assigned to all the connections verifying specific criteria. When a new

connection is added, all the campaigns that can be associated with it are selected. The

association happens through a list of functions, related to the campaign, which allows

to discriminate the connections that satisfy the characteristics described by the input

parameters of the function. Such functions return a list of connections candidate for the

association with a campaign. In the case a new connection is registered, the functions

accept as input also the connection identifier and return the identifier if the connection is

a possible candidate for the measurement campaign. If the connection satisfies the criteria

of all the functions, then it is associated with the corresponding measurement campaign.

Automatic software update To implement the version control, all the files used by the

client are kept under version control on a Subversion repository hosted by the Management

Server. Every time a client requests a version check, by passing its current version to

the related PHP script, the latest available version is obtained executing the following

command:

svn status -u ../dl \| awk \’{ print $4 }\’

Then, if the latest version number is larger than the current version number, the list of

files modified between the two versions is obtained by executing the following command:

svn diff --summarize -r1 svn://127.0.0.1/

Such list is then encoded in XML format and sent back to the client.

4.1.2 The measurement client

In this section we provide a detailed description of the design of the measurement client,

by giving also some insights on the choices adopted to cope with their mobility and to

Architecture components 81

maintain a good flexibility for the execution of the experiments.

Requirements analysis

The HoBBIT client has been designed taking into account the guidelines described in

the following. On one hand, the client should be able to properly associate experiment

results with a geographical location and with the correct provider and service plan. We

are interested to obtain location information with the maximum detail of the postcode.

On the other hand, it should also be able to identify the user and the connections on

which it performs the experiments, thus allowing to easily point to the related results on

the front-end Web interface, by optionally requesting an authentication procedure.

When a client is installed for the first time, the registration procedure should provide

three phases:

• Estimation of the parameters characterizing the connection to be able to detect the

service plan;

• Collection of the geographical location of the connection and of the email address

of the user;

• Registration of all the information collected on the management server.

The three steps above should be repeated in the case a client is detected on a connection

which was never seen before by the management server. After being properly registered,

the client has to periodically request instructions to the management server about the

experiments to execute. The results obtained should be sent to the management server as

soon as possible. The client should also provide an automatic update procedure, which

would allow us to remotely solve bugs or add new measurement tools or features without

requiring user intervention.

In general, in order to reach a wide deployment, the client should be available for

the most important operating systems (e.g. Microsoft Windows, Apple OSX, Linux) and

should satisfy the following properties:

• Simplicity : the interfaces provided to interact with the client should be clear, intu-

itive and essential;

Architecture components 82

• Non intrusiveness : the client should be as quite as possible to avoid the user to be

annoyed by its presence. This is really important because we point to obtain long

term analysis of performance and implies that the impact of the experiments should

not be perceived by the user.

• Flexibility : the client should provide the support for any underlying tool and should

be able to properly manage their input/output parameters as requested by the

management server.

• Respect of users’ privacy : it should collect only the information strictly necessary

to reach the goal of the project, thus it should just keep the geographical location

of the connection with a coarse-grained precision (e.g. the postcode).

Client design

We designed the HoBBIT client by following the guidelines described above. We adopted

an object oriented approach supported by the UML (Unified Modeling Language) lan-

guage. In the following paragraphs we describe all the objects composing the client

application.

Application overview. As shown in the class diagram in Fig. 4.8, the HoBBIT client

is made of eight classes:

• Connection: manages all the communications with the management server;

• LogicUnit: takes all the decisions on when to perform any action;

• List: manages the execution of a list of experiments;

• Experiment: manages the execution of a single experiment;

• Update: manages the automatic update procedure;

• GuiGetInfo, GuiWelcome, and Icon: manage the graphical interface elements.

We give more insights on each class in the following paragraphs.

Architecture components 83

Update

Connection

List

LogicUnit

Experiment

GuiGetInfo

GuiWelcome

Icon 1N

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1 1 1 1

1 1

Figure 4.8: HoBBIT client class diagram.

The List class. The List class is responsible for managing lists of experiments. We

describe its behavior referring to Fig. 4.9(a). Using a timer (tExp), it periodically re-

quests the list to the management server through the Connection object, which returns

it as an XML file (pXML). It parses such file to extract the list (experiments). It then

checks for the status of the network interface (checkNetwork()) and in turn, if the cur-

rent traffic is above the configured threshold, starts the execution of each experiment by

calling the Experiment class. When the experiment is finished, it collects the results

(postProcessing()) and writes them to file (results). When all the experiments con-

tained in the list are finished, it sends the result file to the management server through the

Connection object. In order to avoid to loose the results of the experiments if the client is

List

-pXml: File

-results: File

-tExp: Timer

- experiment: List

-C: Connection

 . . .

-checkNetwork(): String

-startMeasures(): void

-postProcessing(int): void

 . . .

(a)

Experiment

-processes: String List

-retry: int

-command: Process

-tSOS: Timer

-script: String

 . . .

+init(): void

+killer(String List): void

 . . .

(b)

Figure 4.9: The List and Experiment classes.

Architecture components 84

interrupted during the execution of a list, it scans the temporary folder for partially com-

posed XML files. Any of those files is properly completed and sent to the management

server before requesting a new list.

The Experiment class. The Experiment class is responsible for executing a single

experiment. We describe it referring to Fig. 4.9(b). When instantiated (init()), it

receives from List all the information necessary to execute the experiment: a set of input

and output parameters and a script (script) which utilizes such parameters to run the

underlying tools. It adds to the script the variables corresponding to the input/output

parameters and stores it as a temporary file. It then executes the script (command) and

keeps under control all the processes generated by it (processes). If the execution lasts

more than twice the expected duration (tSOS), the experiment is interrupted together

with all its processes (killer()) and it is repeated up to a maximum number of times

(retry) before giving up.

Update

-timer: Timer

-C: connection

 . . .

-restart(): void

 . . .

(a)

LogicUnit

-tMAC: Timer

-C: Connection

 . . .

-retrieveMAC(): void

-STDCycle(): void

+osVersion(): String

+stopList(): void

 . . .

(b)

Figure 4.10: The Update and LogicUnit classes.

The Update class. The Update class is responsible for managing the software updates.

We describe it referring to Fig. 4.10(a). Using a timer (timer), it periodically contacts

the management server, through the Connection class, to verify if a new version of the

software is available. If so, only the files modified since the current version are downloaded

to a temporary directory and then the client, after notifying the user, is automatically

rebooted (restart()).

Architecture components 85

The LogicUnit class. The LogicUnit class is responsible for managing and synchro-

nizing the interactions among all the other classes. For instance, it avoids the update

procedure to be initiated if an experiment is being executed. We describe it referring

to Fig. 4.10(b). When the HoBBIT client is executed, it creates a LogicUnit object

which is then responsible for creating most of the other objects. Using a timer (tMAC),

it periodically retrieves from the local ARP table the MAC address of the default gate-

way (retrieveMAC()), which is sent to the management server, through Connection, to

check if the access network has changed. Moreover, it manages all the periodic activities

related to the execution of the experiments (STDCycle()) and can request the their in-

terruption (stopList()). It is also responsible for detecting the version of the operating

system (osVersion()).

Connection

-request: NetworkAccessManager []

-reply: NetworkReply []

-IP: String

-rType: int

 . . .

+Req(String): void

+Req(Url): void

+SendExpResults(File): void

 . . .

Figure 4.11: The Connection class.

The Connection class. The Connection class is responsible for managing all the net-

work communications, hiding the their complexity to the other objects. We describe

it referring to Fig. 4.11. By using NetworkAccessManager objects it is able to send

requests (Req()) to a server (IP) and to asynchronously receive the reply using the asso-

ciated NetworkReply object. It is also capable to send and receive files using the same

mechanism. Particularly, it is responsible to send the results obtained by the experiments

to the management server (SendExpResults()) and to request it specific information

(rType).

The GuiWelcome class. The GuiWelcome class is responsible for managing the first

graphical interface shown to the user after installing the software, as shown in Fig. 4.12.

We describe it referring also to Fig. 4.13(a). It first asks the management server to

check if the current connection is already known (checkConnection()). If not, it shows

(gui show()) its graphical interface (Welcome) to inform the user that an estimation of

Architecture components 86

Figure 4.12: Screenshot of the GuiWelcome graphical interface.

the connection parameters is required and he should stop all the applications which use

the network before continuing. After the user clicks on “OK”, it waits for the network to

be effectively unloaded (checkNetwork()) and starts a special campaign of experiments

(see Sec.4.2.1). The progress of the campaign is shown through the progress bar, giving

also a description the experiment currently in progress (setText(), description). At

the end of the process, or if the connection is already known but lacks of some information,

it passes the control to the GuiGetInfo object.

GuiWelcome

-Welcome: Interface Gui

-description: String

 . . .

-checkConnection(): void

-checkNetwork(): void

-setText(int, String): void

+gui_show(String, String): void

 . . .

(a)

Gui GetInfo

-Info: Interface Gui

 . . .

+gui_show(String, String): void

+start(): void

+region(String): void

+province(String): void

+municipality(String): void

 . . .

(b)

Figure 4.13: The GuiWelcome and GuiGetInfo classes.

The GuiGetInfo class. The GuiGetInfo class is responsible for managing the graphical

interface shown to the user when requesting to it information about his geographical loca-

tion and to complete the registration process for the connection. We describe it referring

to Fig. 4.13(b) and 4.14. It shows the ISP and service plan information (gui show()), as

inferred from the results of the special campaign of experiments performed, and allows the

user to correct such result. The interface (Info) can appear in two different forms depend-

Architecture components 87

(a) When the user directly insert the postcode (b) When the user selects step-by-step the location

Figure 4.14: Screenshot of the GuiGetInfo graphical interface.

ing on the user behavior. If the user directly inserts the postcode (see Fig. 4.14(a)), the

interface, automatically populates the other geolocation fields after requesting the neces-

sary information to the management server (region(), province(), municipality()).

Otherwise, if the user selects step-by-step region, province, and municipality (see Fig.

4.14(b)), it transforms the postcode text field into a select box and populates it with

all the possible postcodes associated with the selected municipality. Once the user has

filled in all the mandatory fields and has clicked on “OK”, all the information is sent to

the management server to complete the registration of the connection, which starts the

normal operations (start()).

The Icon class. The Icon class is responsible for managing the icon placed into the

tray bar, as shown in Fig. 4.15. The icon can appear in three different status: static,

which indicates that the application is active, but no experiment is being performed;

rotating, which points out that an experiment is in progress; grayed, which means that

the application has been disabled by the user. By using the contextual menu the user can

perform different actions. If he wants to avoid to be annoyed by the experiments while

using another application (e.g. video streaming), he can disable the application for a time

interval up to 30 minutes or until the next boot. Since automatically detecting a change

of service plan or ISP may be challenging, the user can notify such event explicitly by

modifying such information on the GuiGetInfo form. He can access the front-end Web

Architecture components 88

Figure 4.15: Screenshot of the Icon contextual menu.

interface to visualize the statistics associated to his connections. Moreover, the user can

easily send a report to the developer team in case of problems. The icon is also used to

notify the user in case a new version of the software is detected, but no intervention is

required by the user to perform the update procedure.

Implementation choices

To implement the HoBBIT client we chose the Qt framework [108], which is one of the

most spread multi-platform libraries. Since we want to execute experiments by exploiting

any underlying measurement tool, we had to provide the client with a set of utilities. We

chose bash as the scripting language for implementing the wrapper for each tool, which

is responsible for passing input parameters, retrieving outputs and transforming them in

XML format. We use gawk as interpreter to parse tools output on the fly. We use wget

to implement HTTP based communications between the client and a measurement server

in order to perform specific experiments.

All the above mentioned tools are not natively multi-platform. Since they are all

supported on Unix/Linux operating systems, they are also available for Apple OSX. In

order to support also Microsoft operating systems, we had to include also the cygwin

libraries [109], which include a ported version of all of them.

4.1.3 Measurement servers

HoBBIT platform currently includes two servers dedicated to measurements hosted at

the University of Napoli. They are equipped with Gigabit Ethernet interfaces and their

Architecture components 89

access to the Internet has a capacity of about 200 Mbps. With respect to BISmark , in

HoBBIT the resources are managed differently using a more sophisticated mechanism.

Figure 4.16: Slicing of measurement servers network resources.

As shown in Fig. 4.16 the capacity of each server is partitioned in slices of 512 Kbps,

resulting in 200 slices available on each server. To be conservative, we consider only 180

slices for each server. The scheduling algorithm implemented by the management server

allows to assign a measurement to a specific server only if enough slices are available on

the same server. If the measurement has a duration of 30 seconds and requires 5 Mbps of

bandwidth, then 10 slices will be assigned to it for 30 seconds. When considering a slice

assigned for a certain time interval, we refer to it as timeslot. Each slice is associated to

an independent FREE TS which is managed as described in Sec. 4.1). By implementing

this mechanism in this way, we gained a lot of scalability , because we allow the overlap of

invasive measurements until the capacity of the measurement server is close to saturation.

4.1.4 Front-end and map servers

The HoBBIT platform also includes a front-end Web server which allows users to visualize

the statistics collected by analyzing the experiments conducted on their connections. Cur-

rently users can show plots about each experiment result. For instance, Fig. 4.17(a) shows

two plots related to single upstream TCP and downstream UDP throughput experiments

for the same connection. In addition to the front-end server, the HoBBIT platform also

includes a map server which is based on GeoServer [110] and allows to visualize statistics

aggregated by geographical areas on fancy maps, as shown in Fig. 4.17(b).

Architecture components 90

(a) Plots of upload and download experiments result. (b) When the user selects step-by-step the location.

Figure 4.17: Screenshot of data visualizations on the front-end interface.

Measurement campaigns 91

4.2 Measurement campaigns

As explained in Sec.4.1.1 HoBBIT organizes experiments into campaigns which can be

dynamically associated with client installations. In the following sections we describe the

campaigns currently operating on a deployment of about a hundred clients in Italy.

4.2.1 Connection parameters estimation (CPE) campaign

When a client operates on a specific connection which is seen by the management server for

the first time, this special campaign is executed to estimate its performance parameters,

reported in Tab. 4.1. All the metrics are computed end-to-end by using the UDP transport

protocol.

Table 4.1: Experiments part of the CPE campaign.

ID Measured metrics Required bandwidth (kbps) Duration (sec) Measurement class

#1 Latency, Jitter & Packet loss 512 30 LIGHT

#2 Upstream throughput 2000 15 INVASIVE

#3 Downstream throughput 20000 15 INVASIVE

The results obtained with this campaign are utilized by the management server to infer

the service plan associated with the connection, whose ISP is detected by comparing the

result obtained by a whois protocol query and the entries in the ISPs table. As reported

in Tab. 4.2 it is executed only once for each connection at any time, unless a service plan

or provider change is automatically detected or solicited by the user. All the experiments

are implemented using the D-ITG tool [91].

Table 4.2: Schedule defined for the CPE experiments.

DoW DoM MoY TimeStart TimeStop Repetition FilterFuncion

00:00:00 24:00:00 1

Experiment #1: RTT, jitter and packet loss

As reported in Tab. 4.3, the first experiment defined for the CPE campaign is classified

as LIGHT, requires just one slice to be executed (512 Kbps), and can be repeated only

after 15 minutes. Its execution produces three outputs with sampling rate of one second:

round-trip time, jitter, and packet loss.

Measurement campaigns 92

Table 4.3: Outputs returned by the experiment #1.

Outputs Class Retry SamplingRate RequiredBandwidth

rtt (ms)

LIGHT, 900 3 1000 512jitter (ms)

pkloss (%)

Table 4.4: Parameters defined for the experiment #1.

Name Value Param IsFunction Post Description

ITGSend getOSBased {$UUID, bin bin bin} true false OS dependent ITGSend path

ITGDec getOSBased {$UUID, bin bin bin} true false OS dependent ITGDec path

gawk getOSBased {$UUID, sys bin sys} true false OS dependent gawk path

server getServerIP {$IDExperiment} false true Measurement server IP address

port 3000 false false Measurement service port

proto UDP false false Measurement transport protocol

pps 10 false false Measurement packet rate

psize 56 false false Measurement packet size

snd log file /tmp/snd log file false false Log file path

Tab. 4.4 reports all the optional input parameters of the experiment. Particularly, it

shows that the experiment is configured to generate 10 UDP packets per second having

a size of 56 bytes. It can be noticed that the only parameter requested just before the

execution of the experiment (see Post column) is the server IP address, which allows to

properly execute the scheduling algorithm on the management server.

Execute experiment

$ITGSend -a $server -T $proto -C $pps -c $psize -t ${duration}000 -m rttm \

-Sdp $port -rp 0 -l $snd_log_file

Result XML generation

for out in ${!output[@]}; do

Result header

echo " <measure expid=’$expid’ output=’$out’ scheduleid=’$schedule’ dstip=’$server’ timestamp=’$now’>"

echo " <parameters value=’$params’/>"

echo " <samples sampling_rate=’$srate’>"

Generate and parse samples

case $out in

1) option="-d" ;;

2) option="-j" ;;

3) option="-p" ;;

esac

$ITGDec $snd_log_file $option $srate $stdout | $gawk ’(NR > 1) { print " <sample>" $2 "</sample>" }’

Result footer

echo " </samples>"

echo " </measure>"

done >> $results_file

Figure 4.18: Script defined for the experiment #1.

Measurement campaigns 93

Table 4.5: Outputs returned by the experiments #2 and #3.

Outputs Class Retry SamplingRate RequiredBandwidth

upload throughput (kbps) INVASIVE, 1800 3 1000 2048

download throughput (kbps) INVASIVE, 1800 3 1000 20480

Input and output parameters are used in the context of the script reported in Fig.

4.18, which is defined inside the Script column of the Experiment tuple. It takes care of

the complete measurement process and returns the outputs already in XML format, by

parsing the output of the ITGDec tool on-the-fly with the gawk interpreter.

Experiment #2 and #3: upload and download throughput

The definition of the experiments to estimate upload and download throughput is very

similar to the previous one. As reported in Tab. 4.5, the main difference consist in their

classification as INVASIVE, which allows to repeat them only every half hour. This is mo-

tivated by the fact that the upload and download throughput measurements respectively

require 4 and 40 slices to be executed.

The input parameters required by the two experiments are reported in Tab. 4.6

and 4.7. The upload throughput experiment is performed generating UDP packets at a

constant bitrate of 2 Mbps, by using packets of 1472 bytes. The download throughput

experiment is performed generating UDP packets at a constant bitrate of 20 Mbps, by

using again packets of 1472 bytes. In both experiments, as also reported in Fig. 4.19 and

4.20, the measurements are implemented by using also the wget tool. In the first case it is

utilized to request the result of the experiment to the measurement server, as computed

on the receiver side. In the second case, instead, it allows to initiate the traffic generation

from the server side. In both cases the metrics are evaluated on the receiver side.

Table 4.6: Parameters defined for the experiment #2.

Name Value Param IsFunction Post Description

ITGSend getOSBased {$UUID, bin bin bin} true false OS dependent ITGSend path

gawk getOSBased {$UUID, sys bin sys} true false OS dependent gawk path

wget getOSBased {$UUID, sys bin sys} true false OS dependent wget path

server getServerIP {$IDExperiment} false true Measurement server IP address

port 3000 false false Measurement service port

proto UDP false false Measurement transport protocol

kbps 2000 false false Measurement bitrate

mtu 1472 false false Measurement max packet size

Measurement campaigns 94

Compute parameters

remote_log="${uuid}_$now"

pps=$(((${kbps} * 125) / ${mtu}))

Execute experiment

$ITGSend -a $server -T $proto -C $pps -c $mtu -t ${duration}000 \

-Sdp $port -rp 0 -x /tmp/ITGRecv/$remote_log

Result XML generation

(

Result header

echo " <measure expid=’$expid’ output=’1’ scheduleid=’$schedule’ dstip=’$server’ timestamp=’$now’>"

echo " <parameters value=’$params’/>"

echo " <samples sampling_rate=’${srate}’>"

Generate and parse samples

$wget -O - -q "http://$server/getlog.php?log=$remote_log&srate=$srate" | \

$gawk ’(NR > 1) { print " <sample>" $2 "</sample>" }’

Result footer

echo " </samples>"

echo " </measure>"

) >> $results_file

Figure 4.19: Script defined for the experiment #2.

Compute parameters

pps=$(((${kbps} * 125) / ${mtu}))

Launch remote ITGSend in passive mode

$wget -O $trash -q \-\-post-data="-H -T $proto -C $pps -c $mtu -t ${duration}000 -rp 0 \

-Ssp $port" "http://$server/startitgsend.php"

sleep 2

$ITGRecv -H $server -l $rcv_log_file -Sp $port

Result XML generation

(

Result header

echo " <measure expid=’$expid’ output=’1’ scheduleid=’$schedule’ dstip=’$server’ timestamp=’$now’>"

echo " <parameters value=’$params’/>"

echo " <samples sampling_rate=’${srate}’>"

Generate and parse samples

$ITGDec $rcv_log_file -b $srate /dev/stdout | $gawk ’(NR > 1) { print " <sample>" $2 "</sample>" }’

Result footer

echo " </samples>"

echo " </measure>"

) >> $results_file

Figure 4.20: Script defined for the experiment #3.

Measurement campaigns 95

Table 4.7: Parameters defined for the experiment #3.

Name Value Param IsFunction Post Description

ITGSend getOSBased {$UUID, bin bin bin} true false OS dependent ITGSend path

ITGDec getOSBased {$UUID, bin bin bin} true false OS dependent ITGDec path

ITGRecv getOSBased {$UUID, bin bin bin} true false OS dependent ITGRecv path

gawk getOSBased {$UUID, sys bin sys} true false OS dependent gawk path

wget getOSBased {$UUID, sys bin sys} true false OS dependent wget path

server getServerIP {$IDExperiment} false true Measurement server IP address

port 3000 false false Measurement service port

proto UDP false false Measurement transport protocol

kbps 2000 false false Measurement bitrate

mtu 1472 false false Measurement max packet size

rcv log file /tmp/rcv log file false false Log file path

4.2.2 Basic performance evaluation (BPE) campaign

The second campaign is defined to evaluate the performance of the access network on a

regular basis over a long time period. As shown in Tab. 4.8, its experiments are very

similar to the ones defined for the CPE campaign, with the addition of TCP throughput

measurements. It is worth to notice that the scripts associated to those experiments

are the same as the ones defined in the previous section. To optimize the amount of

information exchanged between the client and the server, such scripts are cached on the

client side, so that only the input parameters are requested every time to the management

server. This allows to keep the possibility to vary the parameters on each execution (e.g.

the imposed generation throughput may be adjusted according to previous results).

Table 4.8: Experiments part of the periodic basic performance evaluation campaign.

ID Measured metrics Required bandwidth (kbps) Duration (sec) Measurement class

#1 Latency, Jitter & Packet loss 512 30 LIGHT

#2 Upstream UDP throughput 2000 15 INVASIVE

#3 Downstream UDP throughput 20000 15 INVASIVE

#4 Upstream TCP throughput 2000 15 INVASIVE

#5 Downstream TCP throughput 20000 15 INVASIVE

With respect to the CPE campaign, it provides a more complex schedule for its ex-

periments. As reported in compact form in Tab. 4.9, we request the execution of each

experiment a certain number of times for five different daytime periods, which represent

peak hours and offload hours, and separately for each day of the week. This allows us to

have enough measurements representative for each of these time periods. This campaign

Measurement campaigns 96

terminates when all the requested repetitions are executed for each time period.

Table 4.9: Compact view of the schedule defined for the experiments.

DoW DoM MoY TimeStart TimeStop Repetition FilterFuncion

lun-dom 00:00:00 07:00:00 84

lun-dom 07:00:00 12:00:00 60

lun-dom 12:00:00 15:00:00 36

lun-dom 15:00:00 20:00:00 60

lun-dom 20:00:00 24:00:00 84

4.2.3 BitTorrent performance evaluation (BTPE) campaign

The third and last campaign currently defined is dedicated to the measurement of Bit-

Torrent [111] performance over a selected set of clients. The goal of such campaign is to

establish if ISPs treat differently the traffic associated with such application. As shown

in Tab. 4.10, the campaign is assigned only to connections having a downstream capacity

larger than 2 Mbps. The experiments provided by this campaign, as shown in Tab. 4.11,

are again based on the same scripts as in the other ones, since we emulate the generation

of BitTorrent traffic generating it towards the default transport protocol port associated

with such protocol (i.e. 6881).

Table 4.10: BitTorrent performance evaluation campaign selection criterion.

Name Value Param IsFunction Post Description

Bandwidth > 2 M cfPlan {;;>2} true false
Selects only connections having down-
load bandwidth more than 2 Mbps

Table 4.11: Experiments part of the BitTorrent performance evaluation campaign.

ID Measured metrics Required bandwidth (kbps) Duration (sec) Measurement class

#1 Latency, Jitter & Packet loss 512 30 LIGHT

#2 Upstream UDP throughput 2000 15 INVASIVE

#3 Downstream UDP throughput 20000 15 INVASIVE

#4 Upstream TCP throughput 2000 15 INVASIVE

#5 Downstream TCP throughput 20000 15 INVASIVE

Challenges and solutions 97

4.3 Challenges and solutions

In this section we describe the most relevant challenges we had to face for the HoB-

BIT platform to work properly when deployed on a large scale.

4.3.1 Platform scalability

One of the main objectives of the HoBBIT platform is to reach a big number of client

installations, in order to obtain statistically significant statistics about broadband access

networks at fine grained aggregation levels. This a is really important aspect because,

as explained in Sec. 3.1, the host-based approaches are affected by many unmanageable

factors.

Scaling to a big number of users determines some scalability issues, which mainly

affect the management server load and the scheduling algorithm (see Sec. 4.1) adopted

to assign measurement requests to specific measurement servers.

In the following sections we present a scalability analysis of most critic resources

managed by HoBBIT .

Scalability analysis of the scheduling algorithm

As explained in Sec. 4.1, the scheduling algorithm adopted by the management server

for assigning resources to specific clients partitions the capacity of measurement servers

in slices. Each experiment requires a certain amount of slices to be executed, thus the

management server is responsible for choosing which server to select and when the client

is allowed to perform the experiment. Indeed, if the required amount of slices is not

available on any server, it is reserved for a future execution on the server which will have

it first.

In order to validate the effectiveness of such algorithm in improving the scalability of

the platform, we conducted some experiments by emulating experiment requests towards

the real management server. One of the main goals of such analysis is to establish how

many measurement servers are needed to support a certain amount of clients given the

campaigns defined in Sec. 4.2.

In the following paragraphs we describe the methodology adopted and the results

obtained by conducting such experiments.

Challenges and solutions 98

Methodology. To evaluate the scalability of the above mentioned algorithm, we created

an emulator of experiment requests generated by HoBBIT client. Written as a simple PHP

script, such emulator is programmed to send requests for different experiment lists to the

management server over a specified time period, thus emulating the presence of more

real clients. This simple approach forces the execution of the algorithm, which allocates

the available slices without the need to execute the experiments. To keep track of all

the operations, the script generates a log file containing, for each request, the information

necessary for our analysis: the request timestamp, the FREE TS value after the allocation of

the experiment, and the waiting time assigned to the client before starting the experiment.

To be conservative, in all the experiments we consider each measurement server to have

180 slices of 512 kbps, for a total usable capacity of about 92 Mbps over the theoretical

100 Mbps.

Simultaneous LIGHT experiments. In this first experiment we configured the em-

ulator to generate 20 simultaneous requests per second for a LIGHT measurement lasting

30 seconds and requiring just one slice, for a total of 2000 requests. As provided by the al-

gorithm, for each experiment the duration is considered augmented by 3 seconds to avoid

border effects, which may cause interference between consecutive experiments.

As reported in Fig. 4.21, we executed the emulator by considering first one mea-

surement server (red line) and then two servers (blue line). The two graphs respectively

report the FREE TS value and the waiting time as affected by the reception of subsequent

requests.

When relying only on one measurement server (i.e. having only 180 available slices)

the waiting time increases linearly, with an increment of 33 seconds every 180 requests,

reaching a maximum of 250 seconds. When working with two servers (i.e. doubling

the slices availability) the waiting time increases again linearly, but with increments of

about 10 seconds, which is about one third of the previous case. This happens because,

having more available slices, the slices already assigned are less frequently reassigned, thus

keeping their FREE TS value smaller. The same behavior is analyzed about the FREE TS

value.

From this simple experiment we were able to establish that doubling the number of

the servers increases the scalability by a factor greater than 2.

Challenges and solutions 99

Figure 4.21: Scalability with simultaneous LIGHT requests. Time to wait for executing an experiment
when receiving 20 simultaneous requests per second.

Simultaneous INVASIVE experiments. In this second experiment we configured

the emulator to generate again 20 simultaneous requests per second for an INVASIVE

measurement lasting 15 seconds. We executed the measurement into two different config-

urations, in order to be respectively equivalent to an upload and a download throughput

experiment. In the first case, the measurement requires just 4 slices, while in the second

40. Also here we repeated both measurements with one and two measurement server.

Fig. 4.22(a) shows the results obtained when requesting the upload throughput mea-

surement. Working with only one measurement server the waiting time is incremented by

18 seconds on every 45 requests, obtaining a maximum waiting time of 650 seconds (i.e.

about 11 minutes). When having an additional server the waiting time is incremented

only every 90 requests, reaching a maximum waiting time of 280 seconds (i.e. less then 5

minutes).

Fig. 4.22(a) shows a similar trend for the download throughput measurement, but one

order of magnitude bigger. Indeed, with one server the maximum waiting time reached is

of 150 minutes with one server and of 66 minutes with two servers.

As expected, with respect to the LIGHT experiment these cases are more critical, since

they occupy many slices on each request. Hence, adding more servers helps in reducing

the waiting times, but with a smaller effect.

Challenges and solutions 100

(a) Upload throughput measurement. (b) Download throughput measurement.

Figure 4.22: Scalability with simultaneous INVASIVE requests. Time to wait for executing an experiment
when receiving 20 simultaneous requests per second.

Simultaneous CPE campaigns. After the evaluation of the scalability of the schedul-

ing algorithm in presence of only one type of request, we made a step towards a more

realistic case. We configured the emulator for generating requests for lists of experiments

as defined by the CPE campaign, which means that each emulated client serially requests

three different experiments corresponding to the following sequence:

1. roud-trip time, jitter, and packet loss measurement lasting 30 seconds and requiring

1 slice;

2. upload throughput measurement lasting 15 seconds and requiring 4 slices;

3. download throughput measurement lasting 15 seconds and requiring 40 slices.

We configured the emulator to generate such kind of requests 20 times per seconds,

for a total of 2000 campaign requests, which correspond to a total of 6000 experiments.

To help in comparing the results with the previous analysis Fig. 4.23 only shows the

waiting time as a function of the first 2000 requests.

Being the set of experiments heterogeneous the waiting time still increases linearly, but

at a smaller rate then with respect to the previous analysis. Particularly, the advantage

obtained when using two servers is still more than double.

Poissonian connection parameters estimation experiments. All the previous

analysis were considered generating requests following an highly unrealistic pattern. In-

Challenges and solutions 101

Figure 4.23: Scalability with simultaneous CPE requests. Time to wait for executing an experiment when
receiving 20 simultaneous requests per second.

deed, in it is very improbable that 20 clients spontaneously generate requests at the same

time and that requests are received at a constant rate. We modified then the emulator

script to generate CPE requests following a poisson distribution.

Hence, we try to emulate the condition in which 500 HoBBIT clients are installed for

the first time in a period of one hour. The script acts for each emulated client according

to the following steps:

1. waits for an exponentially distributed random number of seconds;

2. sends the request for the experiment #1 to the management server;

3. waits for the duration of the experiment #1 plus 3 seconds;

4. sends the request for the experiment #2 to the management server;

5. waits for the duration of the experiment #2 plus 3 seconds;

6. sends the request for the experiment #3 to the management server;

7. waits for the duration of the experiment #3 plus 3 seconds.

Fig. 4.24 shows the results obtained with one and two servers. We observed that a

single server is not able to properly manage the load provided, since the waiting time

grows indefinitely over time. On the other hand, having two servers allows to keep the

waiting time under 100 seconds all the time.

Challenges and solutions 102

Figure 4.24: Scalability with poissonian CPE requests. Time to wait for executing an experiment when
receiving 500 poissonian requests.

Periodic poissonian connection parameters estimation experiments. Despite

the previous experiment considers a more realistic case it does not consider the periodic-

ity which characterizes the normal behavior of a HoBBIT client. In this last experiment

we consider the case in which each emulated client requests a CPE campaign every 30

minutes, which is the default interval used by HoBBIT to request a list of experiments.

Also in this case we consider 500 clients generating requests according to a poisson dis-

tribution.

(a) Single requests from 500 users having increas-
ing available slices.

(b) Periodic requests from up to 550 users having
225 available slices.

Figure 4.25: Time to wait for executing an experiment when receiving poissonian CPE requests.

The experiment has been conducted by operating a binary search for the instability

Challenges and solutions 103

Table 4.12: Management server average response time to experiment requests.

Experiment Total request time (µs) DB Query time (µs) PHP processing time (µs)

Latency, Jitter & Packet loss 0.036 0.024 0.012

Upstream throughput 0.038 0.026 0.012

Downstream throughput 0.039 0.027 0.012

threshold among the one server (180 slices) and two servers (360 slices) case. As shown in

Fig. 4.25(a) the growth of the waiting time becomes unstable when having less than 225

slices. Hence, fixing the number of slices to 225, we tried then to increment the number of

clients by the 5% and the 10%, in order to find another instability threshold. As reported

in Fig. 4.25(b) with 225 slices the system remains stable when having 525 users and

becomes unstable with 550 users.

Management server response time analysis

Another factor to consider about the scalability of the system is bound to the frequent

number of queries received by the management server. Hence, by using the emulator

script used in the previous analysis, we evaluated the load generated on the Web server

when working in the worst case considered by the latest scalability experiment (i.e. 550

clients and 225 slices).

Hence, we considered the difference in time between each reply received and request

sent, by obtaining the average delay values reported in Tab. 4.12. We observed that most

of the delay is due to the database querying process and it is mostly independent on the

experiment type.

For sake of completeness, we report in Fig. 4.26 the timeseries of the delays obtained

over 160 K requests during such experiment.

4.3.2 Real-time reporting at different aggregation levels

Once experimental data is stored into the database, it is important to be able to infer rel-

evant statistics from it. Having a complex database structure, as reported in 4.1.1, makes

it difficult to obtain in realtime when the amount of data is consistent. In details, one

of the main goals of the HoBBIT project is to make public accessible performance statis-

tics at different aggregation levels, by considering geographical locations (i.e. postcodes,

municipalities, provinces, regions), access network properties (e.g. ISP, Plan, IP block,

Challenges and solutions 104

Figure 4.26: Management server response time over 160 K requests.

access technology, ...) and variable time intervals (e.g. hour, day, week, month, ...).

In order to obtain such aggregations, the queries performed on the database need to

execute several JOIN operations, which became really slow when operating on big tables.

Thus, some optimizations are required both in the database structure and the database

management system (DBMS) configuration.

In the following section we describe how we implemented the support for materialized

views in PostgreSQL and how we applied them to the HoBBIT database, validating their

effectiveness with some experiments.

Implementing optimizations in PostgreSQL

Since HoBBIT platform utilizes a PostgreSQL database, after evaluating the possible op-

timizations to adopt for improving querying performance, we evaluated how to implement

them in that context.

Arrays. PostgreSQL allows columns of a table to be defined as variable-length multidi-

mensional arrays of built-in or user-defined base, enum, or composite type. To illustrate

the use of array types, we create this table:

CREATE TABLE salary (

name text,

pay integer[],

schedule text[][]

);

As shown, an array data type is named by appending square brackets ([]) to the

data type name of the array elements. The previous command will create a table named

Challenges and solutions 105

salary with a column of type text(name), a one-dimensional array of type integer (pay),

which represents the employee’s salary by quarter, and a two-dimensional array o of text

(schedule), which represents the employee’s weekly schedule.

An alternative syntax, which conforms to the SQL standard by using the keyword

ARRAY, can be used for one-dimensional arrays:

pay integer ARRAY,

Single elements of an array can be accessed as in the following query example, which

retrieves the names of the employees whose pay changed in the second quarter:

SELECT name

FROM salary

WHERE pay[1] <> pay[2];

The array subscript numbers are written within square brackets. By default Post-

greSQL uses a one-based numbering convention for arrays, that is, an array of n elements

starts with array[1] and ends with array[n].

Materialized Views. PostgreSQL, unlike other commercial DBMS, does not provide

built-in support for materialized views. However, this support can be added by creating a

physical table, populated with the result of a query, and properly setting stored procedures

and triggers necessary to keep it up to date. This allows to implement a variety of

materialization techniques that are not available in other DBMSs.

There are four techniques to be implemented for materialized views:

• Snapshot : creates a physical table as the result of selecting everything out of a view,

and refreshing it at a given interval;

– pro: easy to set up;

– con: gets out of sync quickly.

• Very Lazy : like snapshot, but only out of sync rows get updated at refresh time:

requires keeping track of which rows are out of sync;

– pro: lighter refresh than snapshot;

– cons: still gets out of sync quickly and needs an auxiliary table to implement.

Challenges and solutions 106

• Lazy : starts with a snapshot, refreshes rows that are out of sync at the end of each

transaction;

– pros: always in sync, only affected rows are updated;

– con: there is no after-transaction trigger in PostgreSQL.

• Eager : like Lazy, but updates materialized view after each statement. Uses triggers

after update, insert, and delete on all referenced tables;

– pro: always in sync;

– con: bad in one-to-many relationships updates.

Since we need data to be consistent we focus our attention on the eager technique,

because currently there is no way to put a trigger when transaction is committed to

implement the lazy technique.

Eager materialized views. An eager materialized view is updated whenever the

view changes and this is done with a system of triggers on all the underlying tables. It is

important to consider what actually makes up the data in a materialized view, or where

the data in the view comes from. If the view definition relies on other views, then we have

to consider all the tables that compose that view as well. It is also crucial to consider how

the data in the underlying table relates to or affects the data in the materialized view.

Taking into account the previous aspects, to implement a materialized view using

the eager technique it is necessary to define two functions and several triggers. The

first function allows to refresh a single row of the materialized view and can be created

following these guidelines:

• identify the primary key of the materialized view and, if not present, redefine it to

create one;

• define the function to take as argument that primary key;

• let the function delete the row with that primary key;

• let it select the row with the same key from the original view and insert it into the

materialized view;

Challenges and solutions 107

The second function operates calling the first one only on the rows that have been affected

by the last change. Finally, triggers should be created for every action on every underlying

table (i.e. INSERT, UPDATE, and DELETE), following these guidelines:

• identify the primary key value(s) for the materialized view of the affected rows;

• if there is a many-to-one or many-to-many, many rows in the materialized view will

be affected;

• for DELETE and INSERT, merely call the first refresh function for each primary

key value;

• for UPDATE, identify whether the update is going to change which row(s) in the

materialized view which this row will affect;

• if so, then you will have to refresh rows for both the old and new values;

• otherwise, only the old or new values will do;

• apply the triggers so that they are called after the operation is performed.

Table partitioning. PostgreSQL supports basic table partitioning, and the procedure

to set up a partitioned table can be done according to the steps described in the following:

• create the ”master” table, from which all the partitions will inherit, which will

contain no data;

• create several ”child” tables (henceforth partitions) that each inherit from the master

table, which normally do not add any columns to the set inherited from the master;

• add table constraints to the partition tables to define the allowed key values in each

partition2, as reported in the following example;

CREATE TABLE measurement_2011_11 (

CHECK (date >= DATE ’2011-11-01’

AND date < DATE ’2011-12-01’)

) INHERITS (measurement);

2Constraints have to guarantee no overlap between key values permitted in different partitions.

Challenges and solutions 108

• For each partition, create an index on the key column(s), as well as any other indexes

you might want;

• Define a trigger to redirect data inserted into the master table to the appropriate

partition, as shown in the following example;

CREATE OR REPLACE FUNCTION measurement_insert_trigger()

RETURNS TRIGGER AS $$

BEGIN

INSERT INTO measurement_y2008m01 VALUES (NEW.*);

RETURN NULL;

END;

$$

LANGUAGE plpgsql;

CREATE TRIGGER insert_measurement_trigger

BEFORE INSERT ON measurement

FOR EACH ROW EXECUTE PROCEDURE measurement_insert_trigger();

• Ensure that the constraint exclusion configuration parameter is not disabled in

postgresql.conf, to allow queries to be properly optimized.

By setting the trigger as explained before, we have to redefine the trigger function

each month so that it always points to the current partition. Another solution could be

to insert data and have the server automatically locate the partition into which the row

should be added, by defining a more complex trigger function (see Fig. 4.27).

CREATE OR REPLACE FUNCTION measurement_insert_trigger()

RETURNS TRIGGER AS $$

BEGIN

IF (NEW.logdate >= DATE ’2006-02-01’ AND

NEW.logdate < DATE ’2006-03-01’) THEN

INSERT INTO measurement_y2006m02 VALUES (NEW.*);

ELSIF (NEW.logdate >= DATE ’2006-03-01’ AND

NEW.logdate < DATE ’2006-04-01’) THEN

INSERT INTO measurement_y2006m03 VALUES (NEW.*);

...

ELSIF (NEW.logdate >= DATE ’2008-01-01’ AND

NEW.logdate < DATE ’2008-02-01’) THEN

INSERT INTO measurement_y2008m01 VALUES (NEW.*);

ELSE

RAISE EXCEPTION ’Date out of range’;

END IF;

RETURN NULL;

END;

$$

LANGUAGE plpgsql;

Figure 4.27: Complex trigger function for table partitioning.

Challenges and solutions 109

Optimizing the HoBBIT ’s database

As described in Sec.4.1.1, the HoBBIT ’s database is designed to store measurement results

conducted by every client installed. In detail, Samples and MeasureOutputs tables tend

to grow quickly over time and can easily reach millions of rows. Since all the statistics we

want to extract are based on such tables, we applied the optimization techniques described

in the previous sections to them.

Storing measurement results with array columns. According to the initial database

design, each experiment returning a set of samples for a measured parameter populates

both the MeasureOutputs and Samples tables. Thus, to calculate statistics on a set of

measurement results, we need to execute a JOIN on the tables. This condition is detri-

mental for performance when executing queries and should be avoided.

CREATE TABLE "MeasureOutputs"

(

"Timestamp" timestamp with time zone,

"IDOutput" integer NOT NULL DEFAULT

nextval(’"Measureoutputs_IDOutput_seq"’::regclass),

"Parameters" text,

"IDConnection" integer,

"ClientIp" inet,

"IPServer" inet,

"UUID" uuid,

"OutputNumber" smallint,

"IDExperiment" integer,

"ParametersValue" character varying,

"Samples" double precision[],

"Stats" double precision[],

CONSTRAINT pk PRIMARY KEY ("IDOutput")

);

Figure 4.28: MeasureOutputs table with array columns.

To avoid the JOIN operation we removed the Samples table and modified the MeasureOutputs

table, by adding to it an array column for the samples. After this simple optimization, to

obtain statistics aggregated at higher layers (e.g. per connection), we still need to com-

pute them starting from samples. For example, if 100 experiments have been conducted

for a specific connection and we want to compute the average value of its results, where

each measurement returns 20 samples, we need to execute the calculation over 2000 sam-

ples. Thus, to further improve the performance we added another array column to store

basic statistics pre-calculated on samples, so that in the previous example only 100 val-

ues have to be considered. The resulting MeasureOutputs schema is reported in Fig.4.28

Challenges and solutions 110

and every time a new experiment is executed both the samples returned and the statistics

(e.g. minimum, maximum, average, ...) are inserted into the respective array columns.

Materializing views for quick access to aggregated statistics. As shown in

Sec.4.1.1, the core of the HoBBIT database is represented by the Connections table,

which is associated to most other tables. For instance, the only way to obtain statistics

on a parameter measured by a specific experiment, aggregated by geographical region, is

to execute a JOIN among the MeasureOutputs, Connections and Regions tables. The

same for any other kind of aggregation. Thus, many JOIN operations may be expected

involving the MeasureOutputs and the Connections tables.

To provide statistics aggregated at different levels we designed a set of views as reported

in Fig.4.29 for the geographical case.

Figure 4.29: Views proposed for geographical aggregation of statistics.

As shown in figure, all the views on the third level depend on the PerformancePerConnection

view, which is defined as reported in Fig. 4.30. Hence, we decided to make it a material-

ized view using the eager technique. To create the initial materialized view, we execute

the following SQL command:

CREATE TABLE "PerformancePerConnectionM" AS

SELECT *

FROM "PerformancePerConnection";

Challenges and solutions 111

It populates a new physical table with a snapshot of the previous view. At this point

on the database there are two views: the original and the materialized one. Then, we need

to implement the refresh function which will keep the materialized table up to date when

new entries are added to both Connections and MeasureOutputs tables. The refresh

function requires two parameters: IDCon and IDExp, which are used to select the new

rows added to MeasureOutput table and to insert them into the materialized view, and is

defined as reported in Fig. 4.31. It is worth to notice that if we want to refresh the rows,

we must fist delete previously existing entries, in order to avoid duplicates.

When a new record is inserted in MeasureOutputs, we want that record to be added to

the materialized view along with an automatic update of statistics such as min, max and

average. The effect is that every new row added to MeasureOutputs makes an automatic

insert into PerformancePerConnectionM, which is equivalent to an update of connection

statistics. To automatically refresh the materialized view as changes are made to under-

lying tables, we need to create some triggers on them. Since PerformancePerConnectionM

does not have a primary key, we create a key composed of IDConnection and IDExperiment

on it. According to the HoBBIT specifications, the underlying tables will only be mod-

CREATE OR REPLACE VIEW "PerformancePerConnection" AS

SELECT "Connections"."IDConnection", "MeasureOutputs"."IDExperiment",

min("MeasureOutputs"."Stats"[1]) AS min,

max("MeasureOutputs"."Stats"[2]) AS max,

avg("MeasureOutputs"."Stats"[3]) AS avg

FROM "Connections"

LEFT JOIN "MeasureOutputs" ON "MeasureOutputs"."IDConnection" = "Connections"."IDConnection"

GROUP BY "Connections"."IDConnection", "MeasureOutputs"."IDExperiment"

ORDER BY "Connections"."IDConnection";

Figure 4.30: Definition of the PerformancePerConnection view.

CREATE OR REPLACE FUNCTION refresh_PerformancePerConnectionM(IDCon integer, IDExp integer)

returns void

security definer

language ’plpgsql’ as $$

begin

INSERT INTO "PerformancePerConnectionM"

SELECT *

FROM "PerformancePerConnection"

WHERE "PerformancePerConnection"."IDConnection" = IDCon AND

"PerformancePerConnection"."IDExperiment" = IDExp ;

DELETE

FROM "PerformancePerConnectionM"

WHERE "PerformancePerConnection"."IDConnection" = IDCon AND

"PerformancePerConnection"."IDExperiment" = IDExp ;

end

$$;

Figure 4.31: PerformancePerConnectionM refresh function definition.

Challenges and solutions 112

ified by INSERT INTO operations, thus we only need to setup INSERT INTO triggers.

To properly implement the triggered action we defined a support function as reported in

Fig. 4.32.

CREATE OR REPLACE FUNCTION support_insert_trigger() returns trigger

security definer

language ’plpgsql’ as $$

BEGIN

PERFORM refresh_PerformancePerConnectionM(new.IDConnection,new.IDExperiment);

return null;

END

$$;

Figure 4.32: PerformancePerConnectionM trigger support function definition.

It is worth to notice that by using the PERFORM keyword we explicitly avoid to store

the result of a select statement. For each function, we also need to add a corresponding

trigger to the table itself, so that the database knows which method to call when a

particular event occurs. The SQL command in Fig. 4.33 creates a trigger after and

INSERT INTO operation on the MeasureOutputs table.

CREATE TRIGGER trg_MeasureOutputs AFTER INSERT ON MeasureOutput

FOR EACH ROW EXECUTE PROCEDURE support_insert_trigger();

Figure 4.33: MeasureOutputs trigger definition.

After applying the eager materialization technique to the PerformancePerConnection

view, we investigated on how to further optimize the materialized view. We found that

the refresh function can be properly modified in several points in order to avoid costly

processing. Indeed, the current refresh function includes a SELECT on the original view,

which still requires to join the underlying tables on each execution. This means that we

are constantly re-running a very expensive query.

To avoid this we have to create a mechanism that calculates maximum, minimum and

average according to the data already present in the materialized view. In other words,

we can update the maximum, minimum and average statistics without relying on the

original view.

Recalling that the refresh function is invoked when a new entry is inserted into the

MeasureOutputs table, we identified two different cases which require different operations

with respect to a specific (IDExperiment, IDConnection) couple:

1. there is no previous entry in the table;

Challenges and solutions 113

2. there are previous entries in the table.

In the first case, the refresh function just needs to select from the new tuple some

fields and to insert them into the materialized view (i.e. IDConnection, IDExperiment,

IDOutput, and Stats[]). To do this we had to modify the trigger support function in

order to pass also the IDOutput field to the refresh function, as shown in Fig. 4.34.

Hence, to manage this first case, the refresh function has been modified to perform only

a INSERT INTO operation on the materialized view, as shown in Fig. 4.35, where the

constant value 1 represents the initial number of MeasureOutputs entries having that

(IDExperiment, IDConnection) couple.

CREATE OR REPLACE FUNCTION support_insert_trigger() returns trigger

security definer

language ’plpgsql’ as $$

BEGIN

PERFORM refresh_PerformancePerConnectionM(new.IDOutput,new.IDConnection,new.IDExperiment);

return null;

END

$$;

Figure 4.34: Modified MeasureOutputs trigger support function definition.

INSERT INTO "PerformancePerConnectionM"

SELECT "MeasureOutputs"."IDConnection","MeasureOutputs"."IDExperiment",

"MeasureOutputs"."Stats"[1],

"MeasureOutputs"."Stats"[2],

"MeasureOutputs"."Stats"[3], ’1’

FROM "MeasureOutputs"

WHERE "MeasureOutputs"."IDOutput" = IDOut ;

Figure 4.35: Query to update the materialized view in the first case.

In the second case, being already present other MeasureOutputs entries having the

same (IDExperiment, IDConnection) couple as the new entry, also the materialized

view already contains a row corresponding to it. Thus, the refresh function in this case

has to update such row, which means that only the columns related to the statistics have

to be refreshed. Hence we extract the statistics from the new entry using an SELECT

INTO query which stores them respectively in the NewMin, NewMax, and NewAvg variables

(see Fig. 4.36). Once these variables have been extracted, the refresh function has to

process the respective fields from the materialized view in order to properly update them.

By using a SELECT INTO we store them into the OlnMin, OldMax, and OldAvg variables.

While current minimum and maximum statistics can be obtained by simply comparing old

Challenges and solutions 114

and new variables, the current average is calculated according to the following equation:

CurrAvg =
(OldAvg ∗OldAvgCnt) +NewAvg

OldAvgCnt+ 1
(4.5)

which computes a weighted average of new and old values. The OldAvgCnt variable corre-

spond to the current number of MeasureOutputs entries having the same (IDExperiment,

IDConnection) couple as the new entry. To avoid further processing, this variable is

stored as a column into materialized view.

Finally, the refresh function has to be able to distinguish the first and the second case.

To implement this, its first statement tries to extract the minimum (OldMin) from the

materialized view. It behaves as in the first case if it is null, and as in the second case

otherwise. The complete optimized version of the refresh function is shown in Fig. 4.37.

Partitioning MeasureOutputs table for maintaining good long-term perfor-

mance. Since the MeasureOutputs table tends to grow quickly over time, we decided

to apply a time-based partition on it. In order to be able to adjust the partitioning over

time, we decided to apply a hierarchical partitioning approach in which we initially parti-

tion the table by month. Whenever the HoBBIT user base becomes so large that a single

partition results to be still too big, we partition it per week. Beyond that, if necessary,

we can start partitioning each week by geographical locations, starting from the region

level and so on.

We are currently working on implementing such feature as a procedure that automat-

ically reacts to the conditions of the database.

Validation experiment

By considering the optimizations proposed to reduce the delay of queries on aggregated

statistics, we performed a performance comparison in the following three cases:

A. Original database structure with separated MeasureOutputs and Samples tables;

SELECT INTO NewMin, NewMax, NewAvg

"MeasureOutputs"."Stats"[1],

"MeasureOutputs"."Stats"[2],

"MeasureOutputs"."Stats"[3]

FROM "MeasureOutputs"

WHERE "MeasureOutputs"."IDOutput" = IDOut ;

Figure 4.36: Query to extract statistics from MeasureOutputs.

Challenges and solutions 115

CREATE OR REPLACE FUNCTION refresh_PerformancePerConnectionM(IDOut integer, IDCon integer, IDExp integer)

RETURNS void AS

$BODY$

declare

OldMin double precision;

OldMax double precision;

OldAvg double precision;

OldAvgNum double precision;

NewMin double precision;

NewMax double precision;

NewAvg double precision;

CurrMin double precision;

CurrMax double precision;

CurrAvg double precision;

begin

SELECT INTO OldMin "PerformancePerConnectionM"."min"

FROM "PerformancePerConnectionM"

WHERE "PerformancePerConnectionM"."IDConnection" = IDCon AND

"PerformancePerConnectionM"."IDExperiment" = IDExp ;

IF OldMin is null THEN

INSERT INTO "PerformancePerConnectionM"

SELECT "MeasureOutputs"."IDConnection", "MeasureOutputs"."IDExperiment",

"MeasureOutputs"."Stats"[1], "MeasureOutputs"."Stats"[2],"MeasureOutputs"."Stats"[3],’1’

FROM "MeasureOutputs"

WHERE "MeasureOutputs"."IDOutput" = IDOut ;

ELSE

SELECT INTO OldMax, OldAvg, OldAvgNum

"PerformancePerConnectionM"."max",

"PerformancePerConnectionM"."avg",

"PerformancePerConnectionM"."numavg"

FROM "PerformancePerConnectionM"

WHERE "PerformancePerConnectionM"."IDConnection" = IDCon AND

"PerformancePerConnectionM"."IDExperiment" = IDExp ;

SELECT INTO NewMin, NewMax, NewAvg

"MeasureOutputs"."Stats"[1],

"MeasureOutputs"."Stats"[2],

"MeasureOutputs"."Stats"[3]

FROM "MeasureOutputs"

WHERE "MeasureOutputs"."IDOutput" = IDOut ;

IF NewMin < OldMin THEN CurrMin = NewMin;

ELSE CurrMin=OldMin;

END IF;

IF NewMax > OldMax THEN CurrMax = NewMax;

ELSE CurrMax = OldMax;

END IF;

CurrAvg = ((OldAvg * OldAvgNum) + NewAvg)/(OldAvgNum + 1);

UPDATE "PerformancePerConnectionM"

SET "IDConnection" = IDCon, "IDExperiment" = IDExp, "min" = CurrMin, "max" = CurrMax,

"avg" = OldAvg, "numavg" = OldAvgNum + 1

WHERE "IDConnection" = IDCon AND "IDExperiment" = IDExp ;

END IF;

end

$BODY$

LANGUAGE plpgsql VOLATILE SECURITY DEFINER COST 100;

Figure 4.37: Optimezed refresh function definition.

Challenges and solutions 116

B. Database optimized by removing the Samples table and incorporating the samples

into an array-type column;

C. Database further improved by materializing the PerformancePerConnection view.

In order to evaluate the query delay in such conditions, we populated the tables with

artificial data. All the experiments were made evaluating the time needed to execute the

following query:

SELECT * FROM "PerformancePerConnection";

We first considered the case in which an increasing number of HoBBIT clients is

active for one month and performs the CPE campaign each 30 minutes. If considering a

maximum of 250 clients, each of them associated to a different connection, this results in

a total number of about 1 million MeasureOutputs rows. This case is representative of

the growth of the user base we expect.

Figure 4.38: Query delay obtained with an increasing number of HoBBIT clients operating for one month.

Fig. 4.38 reports the comparison of the delays obtained in the cases A, B and C. As

shown both the optimizations have a big effect on the performance, but only materializing

the view allows to maintain acceptable delays.

A preliminary study of broadband in Italy from the hosts 117

4.4 A preliminary study of broadband in Italy from

the hosts

The current HoBBIT deployment counts about 100 clients in Italy, which totally per-

formed thousands of measurements on as many connections and cover different service

plans of major ISPs in Italy.

By selecting 4 ADSL connections having equivalent service plans (i.e. 20 Mbps down-

stream and 1 Mbps upstream capacity) from different ISPs and counting more than 100

experiments, we conducted a comparison of their perceived performance relying on data

collected by both BPE and BTPE campaigns (see 4.2).

In the following sections we describe two preliminary analysis we conducted on the

selected connections in order to compare their performance.

4.4.1 Basic performance evaluation

By exploiting the data collected by BPE campaigns, we conducted a preliminary analysis

of the performance perceived by the four ADSL connections with respect to speed met-

rics (i.e. upload and download throughput) and metrics for interactive applications (i.e.

latency and jitter).

(a) Download throughhput. (b) Upload throughhput.

Figure 4.39: Speed metrics over 20 Mbps service plans.

We start by analyzing the speed metrics. Fig. 4.39(a) shows how download throughput

is always below the advertised rate and never reaches values greater than 13 Mbps. All

A preliminary study of broadband in Italy from the hosts 118

the connections observe an high variability about this metric. We identify two extreme

cases: one of them fails in executing the download in half cases (i.e. throughput equals

to zero); another never experience values lower than 8.6 Mbps.

Fig. 4.39(b) shows how upload throughput is generically more consistent, but assuming

a few different discrete values. We observe that three connections obtain values higher

than 600 Kbps in more than the 70% of cases, while the remaining never experience values

above 400 Kbps. Moreover, in the 30% of experiments all of them obtain values below

100 Kbps.

Passing to the analysis of metrics for interactive applications, looking at Fig. 4.40(a),

we found latency to be very consistent for all the four ISPs. Only one connection experi-

ence in the 10% of cases values above one second. When considering jitter the situation is

similar (see Fig. 4.40(b)), where another connection in more than 50% of cases experience

high values.

(a) Latency. (b) Jitter.

Figure 4.40: Metrics for interactive applications over 20 Mbps service plans.

On one hand, as a result of this preliminary analysis, we conclude that similar service

plans belonging to different ISPs may obtain significantly different speed performance,

which in some cases are more stable than in others. Moreover, none of them achieve

the advertised download throughput, which may be caused by the limitations of DSL

technology (see Sec. 1.1.1). On the other hand, interactive applications experience similar

performance with the exclusion of some specific cases. We underline that, being the

measurements potentially affected by different kind of interference, the validity of such

A preliminary study of broadband in Italy from the hosts 119

conclusions should be verified on a bigger set of connections for each ISP, having equivalent

service plans.

Figure 4.41: Downstream TCP throughput for four ISPs (20 Mbps service plans).

4.4.2 BitTorrent performance evaluation

By exploiting the data collected by both BTPE and BPE campaigns, we conducted a

preliminary analysis of the performance perceived by the four ADSL connections with

respect to the BitTorrent traffic.

Fig. 4.41 shows the results obtained by downstream TCP throughput measurements

for all the ISPs (we refer to them with the terms ISP1, ISP2, ISP3 and ISP4) when

evaluated by both the BPE and BTPE campaigns. Looking at this figure we can observe

that one of the ISPs (i.e. ISP2) out of four is actually enforcing port based BitTorrent

traffic shaping. Indeed, the throughput obtained when generating BitTorrent traffic is

much lower than that observed when generating generic TCP traffic. Moreover, we notice

that the initial TCP throughput achieved varies among different connections and, in one

case (i.e. ISP4), between generic TCP and BitTorrent.

By analyzing the downstream UDP throughput for the same connections, as shown in

Fig. 4.42, no discrimination are detected for BitTorrent traffic, but we still observe that

none of the connections achieve the advertised rate, even if in this case performance is

A preliminary study of broadband in Italy from the hosts 120

Figure 4.42: Downstream UDP throughput for four ISPs (20 Mbps service plans).

mostly stable over time.

Chapter 5

BISmark : adopting the
router-based approach

Following the guidelines defined in Sec. 3.2, we developed a router-based architecture

named BISmark 1 (Broadband Internet Service benchMARK), which has been realized

in collaboration with the Georgia Institute of Technology of Atlanta. It requires the

installation of a Linux-based wireless router in users’ homes, which acts as the local

network gateway and periodically conducts performance evaluation experiments towards

measurement servers mainly hosted by the MLAB open platform [112].

The gateway sits in the home network directly behind the modem (e.g. cable, DSL, ...),

performs measurements both to the last mile router (extracted as the first publicly

routable IP hop on the path to the Internet) and to servers in the wide area, and sends

their results back to a central repository for further analysis.

5.1 Architecture components

The architecture designed for BISmark includes all the basic components required by

the ideal architecture defined in Sec. 3.2, where Measurement Clients are simply called

“gateways”, and the Management Server is referred to as “central server”, which also

hosts a front-end Web service called “Network Dashboard”.

In the following sections we describe in more details all the components.

1http://projectbismark.net

http://projectbismark.net

Architecture components 122

5.1.1 BISmark gateways

BISmark home gateways consist of off-the-shelf routers running a customized firmware

which enables its special features. The gateway periodically sends and heartbeat UDP

packet to the central server, to allow the monitor of its state. Exploiting this packet

the central server is also able to communicate back to the home router through eventual

NATs, in order to update network configurations, to install software updates or to operate

troubleshooting actions remotely.

We give more details about the currently adopted home routers in the following sec-

tions.

Selected hardware

The first version of the BISmark gateway was based on the Linksys WRT54GL router

[113], which represents one of the most common and cheap wireless routers in the United

States. It is equipped with a 200 MHz Broadcom BCM5352 processor, 16 MB of RAM,

and 4 MB of flash memory, as well as five Fast Ethernet ports (one for WAN and four for

LAN) and a 802.11b/g Wi-Fi adapter provided with two external antennas. Its original

version mounts a proprietary Linux-based firmware which was replaced with a customized

OpenWrt 8.09.2 distribution (codename Kamikaze).

Since working with significantly constrained resources does not allow to operate all

kind of measurements, as detailed in Sec. 5.3, we decided to move to a different platform.

The second version of the BISmark home router was then based on the NOX Box [114],

a small-form-factor computer resembling an off-the-shelf home router/gateway. It is based

on an ALIX 2D13 6-inch by 6-inch single board computer equipped with a 500 MHz AMD

Geode processor, 256 MB of RAM and at least 2 GB of Compact Flash II memory, as

well as three Fast Ethernet ports and a Mini PCI 802.11b/g Wi-Fi adapter provided with

two external antennas. The NOX Box natively runs a standard Debian Linux distribution

which has been customized to avoid writing frequently on the flash memory for common

operations (e.g. system log files). We worked on such platform keeping the same Linux

distribution and porting to it the BISmark packages.

Although the NOX Box allows to perform any kind of experiment, enabling us to

implement also passive measurements on a small controlled deployment, it resulted to

be too expensive (i.e. about 300 US dollars) with respect to the networking equipment

Architecture components 123

provided. Indeed, most home users would have been happier to replace their existing

router with a high-end gateway equipped with latest available technologies (e.g. 802.11n

Wi-Fi adapter).

The latest version of BISmark now runs on top of a customized development version of

OpenWRT (codename Backfire), which is supported by a variety of hardware platforms.

We are currently using NetGear WNDR 3700v2 routers [115], which is equipped with a

680 MHz mips processor, 64 MB of RAM, and 16 MB of flash storage, as well as five

gigabit Ethernet ports (one for WAN and four for LAN) and two Wi-Fi adapters (802.11

b/g/n and 802.11 a/n) respectively working on the 2.4 GHz and 5 GHz frequency bands.

Working with the latest router we were able to reach the best trade-off between price

(i.e. about 130 US dollars) and equipment quality. Indeed, by exploiting part of the

funds we received from Google, Intel, and NSF, we have been able to buy, configure,

and deploy much more routers. As evidence of that, our sign-up model, where users can

request a router signing a form on the project website, has generated over 20 K sign-ups

since we launched it on May 18, 2011, which proves how the opportunity of taking home

a top-of-the-line wireless-n router is enough incentive to join the project.

The BISmark firmware

As reported in the previous section, the latest version of the BISmark firmware is based

on a branch we made from the official OpenWrt development trunk. We worked on

our firmware in collaboration with the Bufferbloat project [116], by contributing also in

developing and testing their CeroWRT distribution, which is aimed at investigating the

problems of latency under load, bufferbloat, wireless-n, QoS, and the effects of various

TCP algorithms on shared networks.

Besides the common functionalities provided by most wireless routers, the BISmark firmware

comes with a set of packages implementing management and measurement functionali-

ties, as required by the architecture design. The firmware currently includes a few main

packages:

• bismark-mgmt: includes all the scripts and configuration files implementing the

lightweight management protocol, which is based on UDP “heartbeat” packets pe-

riodically sent to the central server and allows it to communicate with the home

router;

Architecture components 124

• bismark-active: includes all the configuration files and wrapper scripts enabling

the router to properly manage underlying pre-existing active measurement tools;

• bismark-chrome: includes all the Web pages composing the default Web interface

of the router, which provides BISmark users with handy documentation about the

project, and links to the router configuration interface (based on Luci) and to the

Network Dashboard.

More details on the communication protocols are discussed in Sec. 5.3. In addition to

the main packages, the firmware also includes a small set of well-known active measure-

ment tools:

• D-ITG [107]: platform capable of generating traffic at packet level accurately repli-

cating appropriate stochastic processes for both IDT (Inter Departure Time) and

PS (Packet Size) random variables (exponential, uniform, cauchy, normal, pareto,

...), which also acts as a tool for measuring most network performance metrics (e.g.

one-way delay, round-trip latency, jitter, packet loss, throughput, ...) by using dif-

ferent transport layers (e.g. TCP, UDP, DCCP, SCTP, ...);

• Netperf [117]: benchmarking tool useful to measure the performance of many dif-

ferent types of networks, providing tests for throughput and end-to-end latency by

using different transport protocols (e.g. TCP, UDP, SCTP, ...);

• Shaperprobe [6]: tool that non-intrusively probes network paths and tries to diagnose

the presence of traffic shaping policies;

• fping [118]: tool utilizing the ICMP protocol to send echo requests to any number

of hosts in parallel, sending out packets to hosts specified on the command line in

a round-robin fashion.

The wrapper scripts provided by bismark-active package have the main purpose

of running the previously listed tools feeding them with specific options, as specified in

a configuration file, and to process their outputs in order to extract relevant statistics,

which are then sent to the central server in a purposely defined XML format.

Architecture components 125

Additional Features

Besides the better performing hardware and the support for management and measure-

ments, the BISmark gateway also provides many features that are not available on off-

the-shelf routers:

• Traffic shaping : the routers (optionally) enforce various forms for traffic shaping,

implementing HSFC/SFQ/RED93 based qos script, with SFB available as an option;

• Bufferbloat mitigation: the routers’ firmware has been extensively analyzed and

modified to compensate for and/or mitigate many potential ’bufferbloat’ issues;

• Additional diagnostic tools : the routers are equipped with diagnostic tools for end

users not commonly found in off-the-shelf home routers, including tcpdump, tracer-

oute, and bing;

• Caching Web proxy : the polipo caching Web proxy is also installed, but not enabled

by default.

• Extensibility through advanced package management : additional packages can be

installed to enable PPPoE, VPN, MTR, etc.

We expect that many of the features enabled by our firmware enables, such as traffic

shaping and bufferbloat mitigation, will allow BISmark users to experience better per-

formance from their home networks than they currently enjoy with their existing home

router equipment and configuration.

5.1.2 The central server

The BISmark central server represents the single point of control of the overall platform

and is responsible for many tasks:

• It continuously monitors gateways availability by passively listening to “heartbeat”

packets and, when a router is offline for more than a configurable time period, it

sends a mail notification to the project maintainers;

• It allows the maintainers to remotely configure and update router firmware;

• Exploiting the possibility to enable SSH tunnels with the gateways, it allows the

maintainers to remotely access their console to perform on-demand tests and trou-

bleshooting.

Architecture components 126

• It is in charge of collecting measurement requests, assigning them to a specific

measurement server, and avoiding their collision by means of a purposely designed

scheduling algorithm;

• It acts as central repository to store measurement results, which are received by

gateways in XML format and parsed to populate a PostgreSQL database.

We describe in the following the more relevant aspects of the central server.

The management daemon

In order to enable the remote management of gateways, the central server hosts a daemon

called bdmd (BISmark Devices Management Daemon), which implements a multi-threaded

UDP server and has been developed in C language. The main task assigned to the daemon

is to listen for periodic “heartbeat” probes generated by the BISmark gateways. Such

small UDP packets are the basis of the communication protocol, which we designed to

allow the exchange of short messages between the central server and the gateways also in

presence of NATs.

The protocol requires that every message exchange is always initiated by the home

router and comprises the following ASCII encoded messages:

• Client → Server: all the messages sent from BISmark gateways to the central

server contain their unique identifier, which in the latest firmware version includes

the MAC address of the WAN interface (e.g. OWC43DC7B0ADD9). The following

messages are currently supported:

– ping: it is periodically sent to notify the router availability and its firmware

version and to obtain from the central server the current public IP address of

the gateway;

– measure: it is sent to request the scheduling of a measurement and includes

information about its name and expected duration, as well as the geographical

zone (e.g. NorthAm) and the category of the requested measurement server2.

The expected reply contains the IP address of the measurement server, possible

options specific for each measurement (e.g. the port number to use), and a

number representing the time to wait before starting the experiment;

2Measurement servers can be divided in groups depending on any useful criterion.

Architecture components 127

– log: it is sent as a reply to specific commands (e.g. config), in order to give

a feedback on their effect. It includes the command name, a timestamp, and

the raw output generated by the specific command;

• Server → Client

– pong: it is sent as a reply to the ping command, in order to establish the

possibility to reach the central server. It includes the public IP address of the

gateway and the server current timestamp, which is used to synchronize clocks

at a coarse-grained precision as an alternative to NTP3.

– fwd: it can be solicited by administrators to request the creation of an SSH

tunnel between the central server and a specific gateway; the tunnel can be

then accessed to directly communicate with the gateway using any supported

service (e.g. remotely accessing its Web interface).

– update: it can be solicited by administrators to force the router to update its

firmware, which is downloaded from the official repository using the HTTPS

protocol, in order to guarantee the authenticity of the new firmware. A log

reporting the success (or failure) of the update procedure is then sent to the

central server using a log command;

– config: it can be solicited by administrators to query or modify the current

configuration of BISmark packages. A log reporting the all the current values of

configuration variables is then sent to the central server using a log command;

To allow control messages to be sent asynchronously, bdmd temporarily stores them

on a queue, implemented as a table on a SQLite database, and delivers them as soon as

it receives a probe packet from the destination. Likewise, replies received from gateways

are stored on the same table waiting to be read by administrators. Such mechanism

allows to send command to gateway also when they are offline and assures the delivery

of commands as soon as they are online again. This functionality is really useful when

routers due to some unexpected issue, show up rarely and only short time windows are

available to contact them to operate troubleshooting actions.

Different SQLite tables are used respectively to maintain the current status of all

the deployed routers and to store the information needed to manage the scheduling of

3In some cases NTP protocol is filtered by restrictive firewall policices.

Architecture components 128

measurements. In details, for each measurement server we maintain its measurement

capabilities, which include parameters specific to measurement services.

The management command-line interface

The BISmark central server provides a flexible command-line interface called bdm (BIS-

mark Devices Manager). It enables administrators to remotely monitor, configure, update

and control all the gateways.

bismark@dp4:~$ bdm list

Latest version: 462

Devices:

ID IP VERSION LAST_PROBE

NB105 74.176.79.18 302 2011-11-25 12:20:14

OWA021B7A9BF83 70.179.8.84 462 2011-11-25 16:31:53

OWA021B7A9BF95 67.186.227.63 462 2011-11-25 16:31:57

OWA021B7A9C409 75.68.52.189 462 2011-11-25 16:31:52

OWA021B7A9C655 76.111.39.202 462 2011-11-25 16:33:00

OWA021B7A9C85C 99.151.0.68 462 2011-11-25 16:32:36

OWA021B7AC738A 173.13.170.62 340 2011-11-25 16:32:37

Tunnels:

ID PORT START_TIME

OWC43DC79B5D25 40605 2011-10-28 19:11:53

Pending Messages:

ID FROM TO MESSAGE

1 BDM OWC43DC7A3EE43 fwd 35380

Figure 5.1: List of available gateways reported by bdm.

All the commands supported require as an argument the gateway unique identifier.

We report here a brief description of the main commands:

• config: shows or changes BISmark configuration variables on the gateway;

• upgrade: upgrades the firmware of the specified gateway;

• tunnel: requests to the specified gateway the creation/closure of a reverse tunnel

by using SSH port forwarding;

• console: gives access to the console of the specified gateway by using SSH over a

previously established tunnel;

• exec: executes a command on the console of the gateway by using SSH over a

previously established tunnel;

Architecture components 129

• copy: transfers a file to the /tmp directory on the specified gateway by using scp

over a previously established tunnel;

• list: lists all the gateways which have reported at least once to the central server,

as well as established tunnels and pending messages (see Fig. 5.1). Each line of the

gateways list shows: the ID of the router, the IP address from which it is reporting,

the version number of the BISmark software that it is running, and the date when

the management server last received a report from the device.

• mslist: lists all the properties and capabilities of measurement servers (see Fig.

5.2) along with the currently supported measurement services (see Fig. 5.3). As

explained in Sec. 5.3.3, the FREE TS timestamp is used by the scheduling algorithm.

The MUTEX boolean variable indicates if a certain measurement should be conducted

in mutual exclusion with other activities on the measurement server;

• readmsg: displays the content of pending messages sent by the gateways and re-

moves them from the queue4;

Among the previous commands, upgrade, tunnel and config also allow to specify “ALL”

as destination, which causes the delivery of the command to all the gateways.

bismark@dp4:~$ bdm mslist

Measurement Servers:

IP ZONE FREE_TS SERVICES

143.215.131.173 NorthAm 1322240821 (HTTPDL,:8080/download.php) (HTTPUL,:8080/upload.php) (PING,0)

(ITGDL,1430) (ITGUL,1430) (NETPERF,0) (RTR,1100) (SP,0) (TR,0)

143.225.229.126 Europe 1298564306 (HTTPDL,:8080/download.php) (HTTPUL,:8080/upload.php) (TR,0)

(ITGDL,1430) (ITGUL,1430) (NETPERF,0) (PING,0) (RTR,110)

Figure 5.2: List of measurement servers capabilities returned by bdm mslist.

Data collection and storage

All the measurements conducted by BISmark gateways, produce results in the same pur-

posely designed output format encoded in XML format. On every measurement cycle (by

default 5 minutes) the router performs a dynamic set of experiments, whose composition

depends on the different intervals associated to each measurement type. The execution of

4The messages are also stored on log file for troubleshooting.

Architecture components 130

the experiments set creates a local XML file (stored on volatile memory) which is then up-

loaded to the central server. On the other hand, the central server periodically scans the

folder in which all the measurements are uploaded and parses the XML files to populate

a PostgreSQL database with measurement data. Having such data stored on a DBMS

was useful for many reasons. For instance, it allowed us to easily conduct complex anal-

yses on a big amount of data. Moreover, it also feeds the Network Dashboard front-end

interface with data necessary for plotting measurement results.

As shown in Fig. 5.4, each measurement comes with some meta-data and a fixed set of

statistics. Most wrapper scripts produce one or more <measurement> tags each referring

to a specific measured parameter. Having such standard reporting format allows us to

Measure Service Types:

TYPE MUTEX

HTTPDL yes

HTTPUL yes

ITGDL yes

ITGUL yes

NETPERF yes

PING no

RTR no

SP yes

TCPDL yes

TCPUL yes

TR no

Figure 5.3: List of measurement typologies reported by bdm mslist.

<?xml version="3.0" encoding="UTF-8" standalone="yes"?>

<measurements version="1.3">

<info deviceid="OWA021B7A9C409" />

<traceroute srcip="143.215.131.173" dstip="64.57.21.73" timestamp="1322244741" hops="13">

<hop id="1" ip="143.215.131.1" rtt="1.288" />

<hop id="2" ip="130.207.251.1" rtt="1.454" />

<hop id="3" ip="130.207.254.45" rtt="1.437" />

<hop id="4" ip="130.207.254.185" rtt="1.462" />

<hop id="5" ip="143.215.194.85" rtt="1.865" />

<hop id="6" ip="64.57.21.73" rtt="28.316" />

</traceroute>

<measurement param="RTT" tool="FPING" srcip="75.68.52.189" dstip="128.48.110.150"

timestamp="1322244750" avg="115.600000" std="0.516398" min="115.000000"

max="116.000000" med="116.000000" iqr="1.000000" />

<measurement param="LMRTT" tool="PING" srcip="75.68.52.189" dstip="73.194.80.1"

timestamp="1322244744" avg="11.283000" std="3.994487" min="7.490000"

max="19.226000" med="9.537500" iqr="3.742500" />

<measurement param="JITTER" tool="DITG" srcip="143.215.131.173" dstip="75.68.52.189"

timestamp="1322244956" avg="0.000340" std="0.000086" min="0.000191"

max="0.000438" med="0.000367" iqr="0.000117" />

<measurement param="PKTLOSS" tool="DITG" srcip="143.215.131.173" dstip="75.68.52.189"

timestamp="1322244956" avg="0.000000" std="0.000000" min="0.000000"

max="0.000000" med="0.000000" iqr="0.000000" />

</measurements>

Figure 5.4: Example of measurement results in XML format.

Architecture components 131

Figure 5.5: Network Dashboard query interface. The query interface shows the user a summary of the ISP
service plan associated with the device, as well as the expected upload and download throughput rates
for the service plan. The user can specify the performance parameters he wants to display in the plots,
having also the possibility to compare the results with the median values of the same ISP or location.
The “Passive Measurements” are only enabled on gateways where users gave their explicit permission and
currently show the transferred bytes over time (cumulative and aggregated by well-known port numbers).

manage the results produced by very different tools with a unique set of utilities.

The front-end Interface: Network Dashboard

We have designed and implemented a front-end user interface for BISmark , the Network

Dashboard, that allows the users to observe the network performance data that is measured

and collected from their own home networks and to compare the performance that they

receive to users with similar ISPs service plans. This was implemented in collaboration

with Abhishek Jain and Nick Feamster at the Georgia Institute of Technology. The

Network Dashboard allows users to answer questions such as:

• Is my ISP offering consistent performance over time?

• How does my performance compare to users with similar service plans?

We now describe the current capabilities of the Network Dashboard, in terms of the

information that it provides to the users.

A user can plot various performance parameters using the interface shown in Fig. 5.5.

Using this interface, the user can specify a time interval and the parameter to plot. The

current interface allows a user to plot upload and download throughput, end-to-end and

last-mile latency, and some basics passive measurements of traffic load. The design of the

interface allows for the easy addition of plots of other measurements (e.g. packet loss,

jitter).

Architecture components 132

(a) Download throughput (b) End-to-end Latencies

Figure 5.6: Interactive performance plots. This figure shows an example of the interactive plot interface
provided by Network Dashboard, where performance parameters are reported for a given user over the
course of a week. (a) Shows the download throughput measured with both single- and multi-threaded
TCP transfers. (b) Shows the end-to-end latencies measured towards three different servers. The interface
allows the user to see whether an ISP is providing the promised service over time. The interface also
allows a user to change the observed time interval.

We report in the following two example to better illustrate the features offered by the

Network Dashboard interface. On one side, Fig. 5.6(a) shows the download throughput

rates that a particular user achieves from his upstream ISP over one week measured both

with single- and multi-threaded TCP transfers. On the other side, Fig. 5.6(b) shows

the “end-to-end latency” that a particular user achieves towards three different servers

respectively located in California, in Georgia, and in Italy. For allowing the user to select

a particular date range, the dashboard interface provides some buttons to switch between

preconfigured time intervals ranging from one day to one year or to show all the data

available from the first to the last measure ever. Hovering the pointer over a particular

portion of the graph also shows the absolute values for a particular point. In addition to

time-series plots, the Web interface shows also the upstream and downstream throughput

rates that the user can expect from the service plan, to allow him to compare expected

and achieved rates.

Download of Raw Data Files The central server, after parsing XML files, keeps a

gzip compressed archive of them, which may be useful to properly re-populate database

tables if some bug is detected in parsing scripts. The Network Dashbord, upon explicit

request, allows users to download these XML files, which are accessible through a password

protected page reachable from a “Download XML” link (see. Fig. 5.5). In addition to the

metrics available from the plots, the raw data files also include other active measurements,

Measurements 133

as listed in Table 5.1. By design these other active measurements can be easily integrated

into the graphical front-end, as well.

5.1.3 Measurement servers

As specified by the architecture proposed in Sec.3.2, the measurement servers consist in

high-end servers provided with high capacity access to the Internet. Their role is very

simple: host the sender and receiver side of cooperative active measurement tools. The

measurement server is provided with wrapper scripts (each tool has a dedicated wrapper)

to properly feed tools with the needed command-line options. In case a certain measure-

ment tool does not provide the possibility to enable the initiation of a measurement from

the server side, by using the socat utility we implemented a listener on a specific port

number which is responsible for launching the wrapper script and to pass it the needed

parameters, which are received over the TCP socket from the gateway. For instance, by

exploiting such mechanism, we implemented a reverse traceroute measurement initiated

upon request by the gateway. In addition, in order to cope with unexpected problems

generated by underlying tools, the server periodically checks system resources and kills

and reloads measurement daemons in case of unusual resource consumption or stalled

processes.

Beyond that, the measurement servers do not need to directly communicate with the

central server. Indeed, the scheduling algorithm executed by the central server does not

need to communicate with them. This potentially allows to manage also measurements

conducted towards server not under our control.

Currently the BISmark platform directly hosts two dedicated measurement servers,

one at the University of Napoli and the other at Georgia Institute of Technology. Besides

those servers, the platform also relies on properly configured servers belonging to the

MLAB open platform [112], which counts many servers spread all around the world.

5.2 Measurements

BISmark gateways are capable of conduction both active and passive measurements. Most

gateways deployed only perform active measurements for two major reasons:

• Collecting passive measurements involves privacy issues, thus requiring a formal and

explicit permission by users;

Measurements 134

• The adopted hardware platform does not provide enough resources to perform pas-

sive measurements.

We give in the following sections about the measurements currently supported by our

gateways.

5.2.1 Active measurements

The BISmark gateways periodically perform each active measurement at the frequency

reported in Table 5.1, regardless of whether there is cross traffic on the link. In addition,

they also allow to perform on-demand measurements by exploiting the remote manage-

ment mechanism and to easily add new measurement techniques and tools.

The gateway currently collects measurements relating to throughput, latency, packet

loss, and jitter, as well as DNS delay and failures, and routes.

BISmark measures bulk transfer capacity by performing both single- and multi-threaded

TCP downloads and uploads using Netperf [117] for 15 seconds once every 30 min-

utes. To account for cross-traffic, we count bytes transferred by reading directly from

/proc/net/dev, and compute the passive throughput as the byte count after the TCP

transfer minus the byte count before the transfer, divided by the transfer time. This gives

us the combined throughput of the TCP transfer and the cross traffic.

We also measure end-to-end capacity using ShaperProbe [119] once every twelve hours.

All measurements are synchronized to avoid overlapping of invasive experiments towards

the same measurement server, as will be explained in Sec. 5.3.3.

BISmark gateways measure end-to-end latency to a nearby wide-area host, and two

additional latency metrics we found to be critical:

• last-mile latency : the end-to-end latency to the first public IP hop towards the

Internet;

• last-mile latency-under-load : the last-mile latency when the upstream link is satu-

rated.

It also measures packet loss and jitter, by generating low-rate UDP packet trains using

the D-ITG tool [107], DNS latency and DNS failures, by resolving top-10 domain names

using the well-known nslookup tool, and forward and reverse routes, by initiating standard

traceroute measurements from both the gateway and the selected measurement server.

Measurements 135

Parameter Type Prot. Freq. Comments

BISmark : 17 devices, 3 ISPs

Latency

End-to-end ICMP 5 min Host
Last-mile ICMP 5 min First IP hop

Upstream load ICMP 30 min During upload
Downstream load ICMP 30 min During download

Packet loss End-to-end UDP 15 min D-ITG
Jitter End-to-end UDP 15 min D-ITG

Downstream
Throughput

Single-thread HTTP TCP 30 min curlget to Host
Passive throughput N/A 30 min /proc/net/dev

Capacity TCP 12 hrs D-ITG
Capacity UDP 12 hrs ShaperProbe

Upstream
Throughput

Single-thread HTTP TCP 30 min curlput to Host
Passive throughput N/A 30 min /proc/net/dev

Capacity TCP 12 hrs D-ITG
Capacity UDP 12 hrs ShaperProbe

DNS Delay and Failure UDP 15 min Top-10 Alexa

Table 5.1: Active measurements periodically collected by BISmark .

For each of the above metrics we compute on-the-fly the following set of statistics:

mean, standard deviation, minimum, maximum, median and inter-quartile range. To-

gether with some meta-data (e.g. timestamp, source and destination IP addresses, used

tool, ...), these statistics are sent to the central server as explained in Sec. 5.1.2.

5.2.2 Passive measurements

Pursuing a collaboration in the context of the HNDR (Home Network Data Recorder)

project [120], we added a set of passive measurements to a small subset of BISmark gate-

ways, which were deployed in the city of Atlanta from June to December 2010. In order

to do that we have been forced to switch to the Nox Box platform, because the resources

provided by the Linksys WRT54GL were not sufficient. To cope with privacy issues, all

the data collected is anonymized before sending it to the central server and all the users

involved are formally asked for permission.

Thanks to the generous availability of memory offered by the Nox Box (see Sec. 5.1.1),

we have been able to implement many different passive measurements.

We collected flow level data (capturing on all available network interfaces) using the

TIE platform [87], which is able to associate each flow with a label representing the

application guessed as a function of both the transport-layer port number and the first

packets’ initial payload bytes, by adopting the portload technique [121]. TIE has also

been extended to extract statistics at packet-level (i.e. packet size, inter-packet time)

and related to HTTP requests. We also collected statistics about Wi-Fi at data-link level

(e.g. signal strength and quality, number of transmitted data and beacon packets, ...)

Challenges and solutions 136

using the airodump-ng tool [122], which was configured to listen by default only on the

same channel as the managed Wi-Fi home network. In addition, we monitored ARP

associations and all the events associated to DHCP protocol and gateway, modem and

uplink availability.

By performing this small-scale deployment we were able to evaluate the efficiency

of the selected measurements in characterizing the network usage profile of home users.

Moreover, we found that collecting flow-level and data-link level statistics produces a huge

amount of data, which makes it difficult to guarantee acceptable delays when querying

the related database tables.

5.3 Challenges and solutions

While designing and implementing the platform we had to face some challenges, mostly

caused by the limited resources offered by the gateways. In the following sections we

describe the solutions we adopted to solve such issues.

5.3.1 Hardware constraints

Working with the Linksys WRT54GL router, initially chosen due to its wide diffusion

and low price, we encountered many difficulties. Indeed, providing only 4 MB of flash

and 16 MB of RAM memory, it was challenging to manage the coexistence of the oper-

ating system, the measurement tools and the measurement results. In order to solve this

problem we adopted the following solution:

• we built all the binaries part of the BISmark packages by applying the highest level

of optimizations and by stripping unnecessary symbols.

• we stored on flash memory only the smaller files, while the others were downloaded

at run-time, during the bootstrap process, and stored on ram-disk;

• we implemented all the control and communication logic in ash scripting language,

whose interpreter is a basic component of the OpenWRT operating system and thus

is already included;

• we organized all the measurements to process their output on-the-fly, by exploiting

the awk interpreter and the pipelining mechanism, so that the final output is directly

Challenges and solutions 137

encoded in XML format and temporarily stored on ram-disk, thus allowing us to

avoid the storage of intermediate results;

• we forced the results to be uploaded as soon as possible to free the space occupied

space.

All the previous optimizations allowed us to reduce the need for storage to the essential,

thus gaining enough resources to run all the active measurements listed in Tab. 5.1.

5.3.2 Lightweight reliable remote management

The BISmark gateway was designed aiming at offering both the normal functionalities

of a common home router and the measurements necessary to evaluate the performance

of the access link. Since they are deployed in real houses, where real users just want to

obtain good performance when using their favorite applications, they should try to impact

as less as possible on user perceived performance. Therefore, to pursue this objective, the

traffic generated by both management and measurement activities should be reduced as

much as possible.

Depending on the policies adopted by the ISP, some constraints may prevent the

communications between the gateway and the central server.

On the one hand, some ISPs assign to home routers private IP addresses, thus making

it impossible the central server to initiate a communication with them. In addition, the

BISmark router in some cases may be deployed behind the router originally provided by

the ISP which implements NAT. In such cases the BISmark gateway may result to be

behind multiple NAT levels. Aside from this case, the gateway itself is configured by

default to deny the access to the SSH console from the WAN interface.

On the other end ISPs may apply restrictive outbound filtering rules, which allow

only a small set of destination port numbers to be contacted from the gateway. Hence a

reliable remote management control protocol should be designed to work properly in all

these conditions.

The management protocol we designed, as described in Sec. 5.1.2, is the result of such

guidelines. During normal operations a gateway only generates small UDP packets at

random intervals between 60 and 90 seconds. The variability of such interval allows to

avoid the accidental synchronization between different routers, which may result in burtst

of UDP packets received by the central server. Despite the simplicity of such UDP packet,

Challenges and solutions 138

it enables the implementation of a reliable remote management protocol. Indeed, being

it generated by the gateway, the packet enables the central server to reply with another

UDP packet bypassing any number of NATs. Moreover, to overcome outbound filtering

rules, we configured the bdmd daemon to listen on multiple port numbers, which are tried

by the gateway with a round-robin fashion.

Once such UDP packet is able to reach the central server it allows to create on demand

a reverse SSH tunnel, which can be used to remotely administer the gateway over a secure

and reliable communication channel.

To be completely sure to be able to communicate with gateways once they are deployed

far away and all the previous mechanisms fail for some reason, we provided them with a

recovery tunnel mechanism which automatically creates the reverse tunnel if the gateway

is unable to contact the server for more than 20 minutes.

5.3.3 Measurements collision

The BISmark platform, according to the general properties of the architecture defined in

Sec. 3.2, provides the support form a big number of gateways and multiple measurement

servers, whose number is much smaller. In these conditions arises the problem of avoid-

ing collisions between measurements conducted by different gateways towards the same

measurement server. In addition, since we are interested in measuring the performance

of the access link, each gateway should conduct measurements towards the closest avail-

able measurement server, in order to reduce the effect on the results by additional links

on the path.

Following these guidelines we designed a centralized scheduling algorithm, managed

by the central server, which works with two different class of measurements: LIGHT and

INVASIVE. It is based on a timestamp (called FREE TS) associated to each server and

completely avoids the overlap of INVASIVE measurements towards the same measurement

server. The FREE TS value represents the instant in which the measurement server will

be available to conduct an INVASIVE measurement. Whenever a measurement request is

received along with its duration, the central server selects among the measurement servers

in the same geographical area the one having the smallest FREE TS value. If such value

is in the past with respect to the current time, the measurement is immediately started

and the FREE TS value is incremented by the duration declared for the experiment plus 5

additional seconds, which allow to avoid border effects between consecutive measurements.

Challenges and solutions 139

On the other hand, if the FREE TS value is in the future, the measurement is queued on

the selected server by simply incrementing FREE TS as in the previous case, but the reply

sent back to the gateway forces it to wait for a time period equivalent to the difference

between FREE TS and the current time.

A study of broadband in the USA from the gateway 140

5.4 A study of broadband in the USA from the gate-

way

In the following sections we briefly describe the first BISmark deployment, which allowed

us to conduct an analysis of home access networks in the city of Atlanta, by providing a

detailed view of performance in the context of a broader study conducted in collaboration

with SamKnows [123]. Hence, we report important lessons learnt from this study about

throughput and latency in presence of modem buffering and ISPs traffic shaping policies.

The first BISmark deployment (see Fig. 5.2), which we ran in January 2011, had 14

gateways across AT&T (DSL) and Comcast (Cable), with 2 more on Clear (WiMax).

Among them, the AT&T users form the most diverse set of users in the deployment, with

five distinct service plans.

Our goal with the measurements from this deployment was to achieve depth: the

BISmark platform allowed us to take measurements with detailed knowledge of how every

gateway is deployed; we could also take repeated measurements and conduct specific

experiments on-demand, imposing different settings and configurations.

5.4.1 Understanding Throughput

In this section we explore how the different throughput measuring techniques in BIS-

mark generate different results and how to interpret them. We also explore the traffic

shaping in the Comcast network.

Why Do We Use Different Throughput Measurement Techniques?

Different throughput measurement techniques measure different aspects of throughput.

We compare several methods for measuring throughput from Table 5.1. We normalize

each throughput measurements to the service plan rates advertised by the ISP so that we

can compare performance across access links where users have different service plans.

ISP Technology Total Deployments

Comcast Cable 4
AT&T DSL/FTTN 10
Clear Wimax 2

Table 5.2: The first BISmark deployment.

A study of broadband in the USA from the gateway 141

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Throughput

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Single-threaded HTTP
Passive Throughput
UDP Capacity

Figure 5.7: Comparison of various methods of measuring throughput.

Figure 5.7 shows the normalized throughput reported by the three methods we pre-

sented in Table 5.1 for two AT&T users. The plot is a CDF, and the x-axis denotes the

normalized measurement. As we can see, the three techniques show different measure-

ments. UDP measurements obtained from ShaperProbe produce consistent measurements

of throughput that are closest to the service plan. Single-threaded TCP does not achieve

the same throughput, most likely due to the inefficiencies associated with TCP, and also

potentially protocol overhead and loss on the access link. This technique could also be af-

fected by cross traffic generated by users in the network. Passive measurements provides

a better estimate of the throughput as it accounts for cross traffic and higher-layer proto-

col overhead. What this shows is that the capacity of the access link is fairly consistent,

but the ability of applications to use it is less so.

Effect of Traffic Shaping on Throughput

As explained in Sec. 1.1.1, PowerBoostTM is a technology that allows users to experience

throughput higher than their service plan for short periods of time, which is usually

applied only in downstream. Comcast [124], explains that PowerBoostTM provides higher

throughput for the first 10 MBytes of a download and the first 5 MBytes of an upload. We

measure the shaped throughput for download and upload at the receiver using tcpdump.

Because our tests are intrusive, we conducted them only a few times; however the results

do not vary with choice of traffic generators or ports.

We use BISmark to study the implementation of PowerBoostTM on Comcast access

links. Figure 5.8 shows the observed download throughput for four users. All of them

see PowerBoostTM effects, but, surprisingly, we see many different profiles even in such a

small subset of users. Figure 5.8 shows download profiles for each user (identified by the

A study of broadband in the USA from the gateway 142

Figure 5.8: PowerBoostTM download behavior for 4 users.

modem they use; while the modem does not have an effect on burst rates, it does have an

effect on buffering latencies as we show in Sec. 5.4.2). The user with a D-LINK modem

sees a peak rate of about 21 Mbps for 3 seconds, 18.5 Mbps for a further ten seconds,

and a steady-state rate of 12.5 Mbps. The Motorola user sees a peak rate of 21 Mbps

for about 8 seconds. The PowerBoostTM technology provides token buckets working on

both packet and data rates [125]; it also allows for dynamic bucket sizes. The D-LINK

profile can be modeled as a cascaded filter with rates of 18.5 Mbps and 12.5 Mbps, and

buffer sizes of 10 MBytes and 1 MByte respectively, with the line capacity being 21 Mbps.

Because our results do not vary with respect to the packet size, we conclude that Comcast

does not currently apply buckets based on packet rates.

We repeated these experiments different traffic generators (iperf and D-ITG) and

port numbers and witnessed the same effect in all cases. More important than the ac-

tual numbers is the fact that dynamic traffic shaping exists and that it varies widely even

among a small subset of users. The different rates of the burst suggest that the imple-

mentation could be either a single token bucket in the case of a single burst, or cascaded

buckets in the case of multiple burst sizes.

We also confirm a characteristic of token buckets, the dependence on volume. To

confirm the token bucket assumption, we designed a new experiment by generating inter-

mittent loads with a constant long term rates equal to the maximum burst detected and

varying ON/OFF periods. This experiment confirms a property typical of token bucket

filters: the dependency on the traffic volume. Figure 5.9 shows the effect of intermittent

load (21.5 Mbps for 5 seconds, off for 2 seconds for download, 8 Mbps for 5 seconds, 2

seconds off for upload) on the user with the D-LINK modem. This traffic profile experi-

ences burstiness for longer (nearly 23 seconds as opposed to about ten seconds, compared

with Figure 5.8) as tokens replenish during the OFF period; therefore, the sender can

A study of broadband in the USA from the gateway 143

Figure 5.9: Generating intermittent traffic load confirms that the shaping mechanism is volume-based.

sustain peak rates for longer (although it should be noted that the volume of traffic sent

at higher rates is the same as with continuous loads. By periodically switching ON and

OFF the traffic load, the shaping effect is delayed proportionally to the generated traffic

volume. For instance, the shown intermittent download rate is affected from shaping at

12.5 Mbps only after about 23 seconds, because the OFF periods let the bucket recover

enough tokens to sustain more bursts.

PowerBoostTM also exhibits interesting latency behavior, which we explore in more

detail in the following section 5.4.2.

5.4.2 Latency and Buffering

In this section we explore how latency is affected by access technologies, modem buffering,

and ISP policies.

Fig. 5.10 shows the latency experienced over a two weeks period by three users, one

each in Cable, DSL, and WiMax ISPs. It is clear at a glance, that wired access technologies

obtain much lower latencies than wireless ones. Indeed, Comcast and AT&T users achieve

average latencies nearly one order of magnitude below the Clear one. On the other side,

the two wired technologies observe very different stability for such metric.

The AT&T user (see Fig. 5.10(a)), achieves most of the time a very stable latency

of about 30 ms, with some sporadic spikes up to 400 ms. We discuss the origin of such

effect in Sec. 5.4.2. The Comcast user (see Fig. 5.10(b)) is clearly affected by time-of-day

effects, which cause his latency to increase up to 500 ms during peak hours. Finally,

the WiMax user, despite the high baseline latency of 100 ms, observes consistent latency

values characterized by a random variability around the baseline value.

This simple analysis allows us to confirm that access technologies have a big impact

on metrics like latency and jitter and they suffer from different issues depending on their

A study of broadband in the USA from the gateway 144

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (days)

101

102

La
te

nc
y

(m
s)

(a) Comcast user (Cable).

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (days)

101

102

La
te

nc
y

(m
s)

(b) AT&T user (DSL).

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (days)

101

102

La
te

nc
y

(m
s)

(c) Clear user (WiMax).

Figure 5.10: Latency profiles for different access technologies.

weaknesses.

Latency Under Load

Buffers on DSL and cable modems they absorb bursty traffic and enable smooth outflow

at the configured rate [8]. Buffering only affects latency during periods when the access

A study of broadband in the USA from the gateway 145

Figure 5.11: Comcast user with D-LINK modem.

link is loaded and packets can see substantial delays as they queue up in the buffer. The

capacity of the uplink also affects the latency introduced by buffering. Given a fixed

buffer size, queuing delay will be lower for access links with higher capacities because the

draining rate for such buffers is higher. If the buffer is full, then packets will have more

or less steady latency that is proportional to the size of the buffer. To study the effects

of modem buffers on latency under load, we conduct tests on a user with the Comcast

(12.5 Mbps down; 2 Mbps up) plan. We perform the following experiment: we start

ICMP ping at the rate of 10 pkts/s to the last mile hop. After 30 seconds, we flood the

uplink at 10 Mbps for Comcast using iperf UDP). After 60 seconds, we stop iperf, but

let ping continue for another 30 seconds. The ping measurements 30 seconds on either

side of the iperf test establishes baseline latency. All of the modems we study have

buffers that induce less than one second of delay, but these users see surprising latency

under load profiles due to traffic shaping. Figure 5.11 shows the latency under load for

a Comcast user. This user sees a jump in latency when the flooding begins and about 8

seconds later, another increase in latency.

Packets see lower latencies during PowerBoostTM because, for a fixed buffer, the

latency is inversely proportional to the draining rate. The increase in latency due to

PowerBoostTM (from 200 ms to 700 ms) is proportional to the decrease in the draining

rate at the end of PowerBoostTM (from 7 Mbps to 2 Mbps for this user).

Can data transfer be modified to improve latency under load? We explore

whether a user can modify their data transfer behavior so that large “bulk” flows and

delay-sensitive flows can co-exist without interfering with one another. For instance, such

behavior could be useful if the user wants to play online games or to make VoIP calls while

downloading big files. We compare the impact of a 50 MByte download on a G.711 VoIP

A study of broadband in the USA from the gateway 146

(a) Throughput.

(b) Latency.

Figure 5.12: Maintaining low latency by modifying data transfer behavior.

call in three different conditions: (1) not applying any traffic control, (2) intermittent

traffic at capacity on 10.8 seconds ON and 5.3 seconds OFF cycle, and (3) shaping using

the WonderShaper [126] approach. Figure 5.12 shows the result of this experiment. In (1),

the transfer takes 25.3 seconds; however, just after the PowerBoostTM period, the VoIP

call starts suffering high latency and loss until the end of the transfer. In (2), traffic is sent

in pulses, and the download takes 26.9 seconds. In (3), traffic is sent at just under the long

term rate and the download takes 32.2 seconds. Both (2) and (3) do not increase latency

significantly, this is because they do not deplete the tokens at any time, and therefore

cause no queuing. In approach (2), the ON/OFF periods can be configured depending on

the token bucket parameters,5 and the size of the file to be transferred. Both approaches

achieve similar long-term rates but yield significant latency benefit. The drawback is that

any approach that exploits this behavior would need to know the shaping parameters.

5 If ρr is the rate we want to reserve for real-time applications, and ρt the token rate, the condition
to be satisfied is: (ρb + ρr − ρt) × τon ≤ τoff × (ρt − ρr), where ρb is the sending rate during the pulse,
and τon and τoff are the ON and the OFF times, respectively.

Chapter 6

Conclusion

The Internet today counts about 2.1 billion users worldwide, thus representing a highly

complex system on which huge amounts of data are transferred every day over the IP pro-

tocol. Most people rely on Internet connectivity for everyday activities, making broad-

band access an essential resource, whose performance have not been widely studied in

literature. On one hand, evaluating IP networks performance is a challenging task which

is made even more difficult by the heterogeneity of underlying protocols and technolo-

gies. On the other hand, the complexity of emerging applications makes it difficult to

understand the relation between network and user-perceived performance.

In this thesis we addressed the evaluation IP networks performance with a specific

focus on broadband access networks. We started presenting in Chapter 1 an overview

of the Internet scenario with respect to the heterogeneity of access technologies and the

complexity of new generation applications. Hence, we described in Chapter 2 the research

activities we performed on both the analysis and characterization traffic generated by

new-generation applications and the identification of relevant metrics, methodologies,

techniques and tools to evaluate network performance. We introduce in Chapter 3 our

study on the evaluation of broadband access networks performance, in which we propose

a taxonomy of existing approaches and define the guidelines to build an architecture with

ideal characteristics to measure access networks performance on a large scale. Finally,

we respectively described in Chapters 4 and 5 the host- and router-based architectures

we designed, implemented and deployed, by detailing the challenges we faced and the

solutions we adopted to solve them.

Our thesis includes several contributions to the field of IP networks performance eval-

uation.

148

By analyzing the traffic of new-generation applications, we obtained a better under-

standing of their characteristics and behavior. Such applications are progressively provid-

ing - through a single interface - more interactions among the users and between the users

and the network. We define as multi-channel applications those providing a single in-

terface to perform heterogeneous activities exploiting multiple communication channels.

Very often such applications rely on secret proprietary protocols and their communi-

cations are heavily encrypted, thus making their study a challenging task. Hence, we

proposed a novel methodology which allows to identify different activities performed by

multi-channel applications, thus helping to characterize them with higher accuracy and

to detect behaviors and aspects otherwise not visible.

By performing an extensive study of metrics for measuring network performance, we

established that, among the many metrics defined in literature, their selection and in-

terpretation has to be made depending on the specific scenario and on the considered

network applications. Moreover, different methodologies, techniques, and tools can be

adopted to measure such metrics and their results may be not easily comparable.

Since, thanks to the previous research activities, we identified a complex relation be-

tween the performance of the network and of applications, we found that most users are

not able to properly understand low-level network metrics and how them affect their per-

ceived performance. Moreover, ISPs usually advertise their broadband service plans only

in terms of download and upload speeds, which is not sufficient to describe the perfor-

mance that user can expect when using various applications. Hence, we proposed a novel

approach to present performance metrics to the user in a standard format. In analogy

with “Nutrition Labels” for food items, such format reports both low-level parameters -

represented as ranges of possible values - and high-level concepts (e.g. time to download

a song, video streaming quality in terms of frames rate, ...).

By focusing our research activities on the study of broadband access networks, we

performed an extensive analysis of existing projects addressing their performance eval-

uation, which brought us to the definition of a taxonomy for broadband benchmarking

approaches. We found that most projects adopt different techniques and methodologies

and none of them consider a complete set of network performance metrics. Moreover,

we identified router-, client-, and plugin-based approaches as the most promising, since

they allow to consider the context in which measurements are conducted and to perform

experiments on the same access link properly scheduled over a long time period. The

149

knowledge acquired in the previous activities, brought us to the definition of the ideal

characteristics for an architecture specialized to evaluate the performance of broadband

access networks on a large scale.

Following the guidelines previously defined, we designed and implemented two archi-

tectures respectively adopting the host- and router-based approaches.

On one hand, we adopted a client-based approach, which allows to easily reach large

scale deployments and to evaluate the performance of broadband access networks at higher

geographical resolution. We designed and implemented the HoBBIT platform, which is

specifically targeted to evaluate the performance of broadband access networks in Italy.

During this activity we devised new methodologies and techniques to cope with several

challenges arose during the different phases from the design to the deployment. For

instance, we performed an extensive analysis of the scalability of the platform on both the

management of network resources and on the database performance, in order to quantify

its limitations and to devise the strategies necessary to support its growth.

On the other hand, we adopted a router-based approach, which allows to solve most

of the issues encountered by all the other approaches, but makes it challenging to obtain

a large scale deployment. We designed and implemented the BISmark platform, which is

based on a customized firmware compatible with most off-the-shelf routers. During this

activity we had to face some challenges, mostly caused by the limited resources offered

by the gateways, for which we proposed innovative solutions. Hence, we analyzed the

data collected by SamKnows [49] on his first-stage large scale deployment in the United

States (i.e. 4000 gateways) and by our first BISmark deployment in the city of Atlanta

(i.e. 14 gateways). In the first case we were able to achieve breadth: we classify a large

set of users across a diverse set of ISPs and geographical locations. In the second case we

were able to achieve depth: our platform allows us to conduct measurements with detailed

knowledge of how every gateway is deployed and to conduct repeated measurements and

specific experiments with different settings and configurations. Therefore, we found that

different ISPs use different policies and traffic shaping behaviors that make it difficult

to compare measurements across them. We found also that there is no best ISP for

everyone, since different users may prefer different ISPs depending on their usage profile.

Finally, we detected that modem buffers can introduce latency variations that are orders

of magnitude more than the variations introduced by the ISP.

Thanks to the proposed methodologies and to the realized platforms we enabled the

150

scientific community to better address the study of performance in the context of broad-

band access networks. Indeed, our contributions can help research activities in scenarios

different from broadband access networks. For instance, they can help in the characteriza-

tion and analysis of enforced QoS policies (e.g. bandwidth throttling), network neutrality,

Internet universal services, home networks and applications.

Bibliography

[1] Internet World Stats. http://www.internetworldstats.com/dsl.htm.

[2] 2010 global - key telecoms, mobile and broadband statistics.
https://www.budde.com.au/Research/2010-Global-Key-Telecoms-Mobile-and-Broadband-
Statistics.html.

[3] Netalyzr. http://netalyzr.icsi.berkeley.edu/.

[4] Matt Mathis et al. Network Path and Application Diagnosis.
http://www.psc.edu/networking/projects/pathdiag/.

[5] Richard Carlson. Network Diagnostic Tool. http://e2epi.internet2.edu/ndt/.

[6] P. Kanuparthy and C. Dovrolis. Shaperprobe: End-to-end detection of isp traffic
shaping using active methods. 2011.

[7] Marcel Dischinger, Andreas Haeberlen, Krishna P. Gummadi, and Stefan Saroiu.
Characterizing residential broadband networks. In Proc. ACM SIGCOMM Internet
Measurement Conference, San Diego, CA, USA, October 2007.

[8] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr: Illuminating the
edge network. In Proc. Internet Measurement Conference, Melbourne, Australia,
November 2010.

[9] G Maier, A Feldmann, V Paxson, and M Allman. On dominant characteristics of
residential broadband internet traffic. In ACM Internet Measurement Conference,
2009.

[10] National Broadband Plan. http://www.broadband.gov/.

[11] Karl Bode. FCC: One Million Speedtests and Counting.
http://www.dslreports.com/shownews/FCC-One-Million-Speedtests-And-Counting-109440,
July 2010.

[12] Dave Vorhaus. A New Way to Measure Broadband in America.
http://blog.broadband.gov/?entryId=359987, April 2010.

http://www.internetworldstats.com/dsl.htm
https://www.budde.com.au/Research/2010-Global-Key-Telecoms-Mobile-and-Broadband-
Statistics.html
http://netalyzr.icsi.berkeley.edu/
http://www.psc.edu/networking/projects/pathdiag/
http://e2epi.internet2.edu/ndt/
http://www.broadband.gov/
http://www.dslreports.com/shownews/FCC-One-Million-Speedtests-And-Counting-109440
http://blog.broadband.gov/?entryId=359987

BIBLIOGRAPHY 152

[13] Communications infrastructure report 2011. http://stakeholders.ofcom.org.uk/binaries/research/
telecoms-research/bbspeeds2011/bb-speeds-may2011.pdf , 2001.

[14] Ulteriori disposizioni in materia di qualità e carte dei servizi di accesso ad inter-
net da postazione fissa ad integrazione della delibera n.131/06/csp. Delibera N.
244/08/CSP, 2008.

[15] Eu broadband test. http://www.tp-link.com/en/article/?id=1074, 2011.

[16] TR-143 Amendment 1. Enabling network throughput performance tests and statis-
tical monitoring. DSL Forum Technical Report, 2008.

[17] Asymmetric Digital Subscriber Line (ADSL) Transceivers. ITU-T G.992.1, 1999.

[18] Asymmetric Digital Subscriber Line (ADSL) Transceivers - Extended Bandwidth
ADSL2 (ADSL2Plus). ITU-T G.992.5, 2003.

[19] Data-over-cable service interface specifications: Radio-frequency interface specifica-
tion. ITU-T J.112, 2004.

[20] C. Bastian, T. Klieber, J. Livingood, J. Mills, and R. Woundy. Comcast’s protocol-
agnostisc congestion management system. Internet Engineering Task Force, Decem-
ber 2010. RFC 6057.

[21] T. Koonen. Fiber to the home/fiber to the premises: What, where, and when?
Proceedings of the IEEE, 94(5):911 –934, may 2006.

[22] ANSI/IEEE Stdandard 802.11.
http://standards.ieee.org/getieee802/download/802.11-2007.pdf as of November
2011.

[23] G. Xylomenos, G.C. Polyzos, P. Mahonen, and M. Saaranen. Tcp performance issues
over wireless links. Communications Magazine, IEEE, 39(4):52–58, Apr 2001.

[24] Ieee 802.16m - advanced mobile broadband wireless standard. IEEE Standards
Association. March 31, 2011.

[25] Emir Halepovic, Carey L. Williamson, and Majid Ghaderi. Wireless data traffic: a
decade of change. IEEE Network, 23(2):20–26, 2009.

[26] J. Vinamaki. Ip over satellite. Procedings of Innovaton Dinamic and Mobile Com-
munication, 2004.

[27] G.L. Fong and K. Nour. Broadband and the role of satellite services.
http://www.frost.com/prod/servlet/cpo/11139757 as of November 2011. Frost and
Sullivan.

http://stakeholders.ofcom.org.uk/binaries/research/
 telecoms-research/bbspeeds2011/bb-speeds-may2011.pdf
http://www.tp-link.com/en/article/?id=1074
http://standards.ieee.org/getieee802/download/802.11-2007.pdf
http://www.frost.com/prod/servlet/cpo/11139757

BIBLIOGRAPHY 153

[28] J. Bem, T. Wieckowski, and R. Zielinski. Broadband satellite systems.
http://www.comsoc.org/livepubs/surveys/public/1q00issue/zielinski.html as of
November 2011. Wroclaw University of Technology.

[29] Wei Li, Marco Canini, Andrew W. Moore, and Raffaele Bolla. Efficient applica-
tion identification and the temporal and spatial stability of classification schema.
Comput. Netw., 53:790–809, April 2009.

[30] F. Michaut and F. Lepage. Application-oriented network metrology: metrics and
active measurement tools. Communications Surveys Tutorials, IEEE, 7(2):2 – 24,
quarter 2005.

[31] TR-069 Amendment 2. Cpe wan management protocol. DSL Forum Technical
Report, 2007.

[32] Cesar D. Guerrero and Miguel A. Labrador. Traceband: A fast, low overhead and
accurate tool for available bandwidth estimation and monitoring. Comput. Netw.,
54:977–990, April 2010.

[33] Karthik Lakshminarayanan, Venkata N. Padmanabhan, and Jitendra Padhye.
Bandwidth estimation in broadband access networks. In Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement, IMC ’04, pages 314–321,
New York, NY, USA, 2004. ACM.

[34] S. Sundaresan, N. Feamster, R. Teixeira, A. Tang, K. Edwards, R. Grinter,
M. Chetty, and W. de Donato. Helping users shop for isps with internet nutri-
tion labels. In ACM SIGCOMM Workshop on Home Networks, 2011.

[35] S. Bauer, D. Clark, and W. Lehr. Understanding broadband speed measurements.
In 38th Research Conference on Communication, Information and Internet Policy,
October 2010.

[36] Youtube. http://www.youtube.com/my speed as of November 2011.

[37] D. Croce, T. En-Najjary, G. Urvoy-Keller, and E. Biersack. Capacity estimation of
adsl links. In CoNEXT, 2008.

[38] K. Cho, K. Fukuda, H. Esaki, and A. Kato. The impact and implications of the
growth in residential user-to-user traffic. In ACM SIGCOMM 2006, 2006.

[39] M. Siekkinen, D. Collange, G. Urvoy-Keller, and E. Biersack. Performance limita-
tions of adsl users: A case study. In the Passive and Active Measurement Conference
(PAM), 2007.

[40] Grenouille. Grenouille. http://www.grenouille.com/.

http://www.comsoc.org/livepubs/surveys/public/1q00issue/zielinski.html
 http://www.youtube.com/my_speed
 http://www.grenouille.com/

BIBLIOGRAPHY 154

[41] C. R. Simpson Jr. and G. F. Riley. Neti@home: A distributed approach to col-
lecting end-to-end network performance measurements. In the Passive and Active
Measurement Conference (PAM), 2004.

[42] Dongsu Han, Aditya Agarwala, David G. Andersen, Michael Kaminsky, Konstantina
Papagiannaki, and Srinivasan Seshan. Mark-and-sweep: Getting the inside scoop on
neighborhood networks. In Proc. Internet Measurement Conference, Vouliagmeni,
Greece, October 2008.

[43] Isposure. http://www.isposure.com as of November 2011.

[44] Neubot. http://www.neubot.org as of November 2011.

[45] Ne.me.sys. https://www.misurainternet.it/nemesys.php as of November 2011.

[46] H. Cui and E. Biersack. Trouble shooting interactive web sessions in a home envi-
ronment. In Proceedings of the 2nd ACM SIGCOMM workshop on Home networks,
pages 25–30. ACM, 2011.

[47] Speedtest.net. http://www.speedtest.net as of November 2011.

[48] Glasnost: Bringing Transparency to the Internet.
http://broadband.mpi-sws.mpg.de/transparency.

[49] SamKnows. Measure Your Broadband Accurately. http://testmyisp.com/.

[50] Tzyy Jane Lai and Chih Yung Chen. Virtual community and customer partic-
ipations in user centric internet service ventures. In Management of Engineering
Technology, 2008. PICMET 2008. Portland International Conference on, pages 1020
–1027, july 2008.

[51] M. Boari, A. Corradi, E. Lodolo, S. Monti, and S. Pasini. Coordination for the in-
ternet of services: A user-centric approach. In Communication Systems Software
and Middleware and Workshops, 2008. COMSWARE 2008. 3rd International Con-
ference on, pages 434 –441, jan. 2008.

[52] Skype. http://www.skype.com/ as of November 2011.

[53] S. A. Baset and H. G. Schulzrinne. An analysis of the skype peer-to-peer internet
telephony protocol. In INFOCOM 2006. 25th IEEE International Conference on
Computer Communications. Proceedings, pages 1 –11, april 2006.

[54] Saikat Guha, Neil Daswani, and Ravi Jain. An experimental study of the skype
peer-to-peer voip system, 2006.

[55] Dario Bonfiglio, Marco Mellia, Michela Meo, Dario Rossi, and Paolo Tofanelli. Re-
vealing skype traffic: when randomness plays with you. SIGCOMM Comput. Com-
mun. Rev., 37:37–48, August 2007.

 http://www.isposure.com
 http://www.neubot.org
https://www.misurainternet.it/nemesys.php
http://www.speedtest.net
http://broadband.mpi-sws.mpg.de/transparency
http://testmyisp.com/
http://www.skype.com/

BIBLIOGRAPHY 155

[56] E.P. Freire, A. Ziviani, and R.M. Salles. Detecting voip calls hidden in web traffic.
Network and Service Management, IEEE Transactions on, 5(4):204 –214, december
2008.

[57] Google. http://www.google.com/talk as of November 2011.

[58] K. Suh, D. R. Figueiredo, J. Kurose, and D. Towsley. Characterizing and detecting
skype-relayed traffic. In INFOCOM 2006. 25th IEEE International Conference on
Computer Communications. Proceedings, pages 1 –12, april 2006.

[59] Luca De Cicco, Saverio Mascolo, and Vittorio Palmisano. Skype video responsive-
ness to bandwidth variations. In IN NOSSDAV, 2008.

[60] D. Bonfiglio, M. Mellia, M. Meo, N. Ritacca, and D. Rossi. Tracking down skype
traffic. In INFOCOM 2008. The 27th Conference on Computer Communications.
IEEE, pages 261 –265, april 2008.

[61] Dario Rossi, Marco Mellia, and Michela Meo. A detailed measurement of skype
network traffic, 2008.

[62] D. Rossi, M. Mellia, and M. Meo. Following skype signaling footsteps. In Telecom-
munication Networking Workshop on QoS in Multiservice IP Networks, 2008. IT-
NEWS 2008. 4th International, pages 248 –253, feb. 2008.

[63] B. Sat and B.W. Wah. Analysis and evaluation of the skype and google-talk voip
systems. In Multimedia and Expo, 2006 IEEE International Conference on, pages
2153 –2156, july 2006.

[64] Kuan-Ta Chen, Chun-Ying Huang, Polly Huang, and Chin-Laung Lei. Quantifying
skype user satisfaction. SIGCOMM Comput. Commun. Rev., 36:399–410, August
2006.

[65] Youtube. http://www.youtube.com as of November 2011.

[66] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. Youtube traffic
characterization: a view from the edge. In Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, IMC ’07, pages 15–28, New York, NY, USA,
2007. ACM.

[67] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and Sue Moon.
I tube, you tube, everybody tubes: analyzing the world’s largest user generated
content video system. In Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement, IMC ’07, pages 1–14, New York, NY, USA, 2007. ACM.

[68] M. Zink, K. Suh, Y. Gu, and J. Kurose. Characteristics of youtube network traffic
at a campus network-measurements, models, and implications. Computer Networks,
53(4):501–514, 2009.

http://www.google.com/talk
 http://www.youtube.com

BIBLIOGRAPHY 156

[69] Atif Nazir, Saqib Raza, and Chen-Nee Chuah. Unveiling facebook: a measurement
study of social network based applications. In Proceedings of the 8th ACM SIG-
COMM conference on Internet measurement, IMC ’08, pages 43–56, New York, NY,
USA, 2008. ACM.

[70] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and
Bobby Bhattacharjee. Measurement and analysis of online social networks. In
Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, IMC
’07, pages 29–42, New York, NY, USA, 2007. ACM.

[71] Facebook. http://www.facebook.com as of November 2011.

[72] Flickr. http://www.flickr.com as of November 2011.

[73] Livejournal. http://www.livejournal.com as of November 2011.

[74] Orkut. http://www.orkut.com as of November 2011.

[75] S. Fernandes, R. Antonello, J. Moreira, C. Kamienski, and D. Sadok. Traffic analysis
beyond this world: the case of second life. Nossdav’07, 2007.

[76] Chi-Anh La and Pietro Michiardi. Characterizing user mobility in second life. In
Proceedings of the first workshop on Online social networks, WOSN ’08, pages 79–84,
New York, NY, USA, 2008. ACM.

[77] Matteo Varvello, Fabio Picconi, Christophe Diot, and Ernst Biersack. Is there life
in second life? In Proceedings of the 2008 ACM CoNEXT Conference, CoNEXT
’08, pages 1:1–1:12, New York, NY, USA, 2008. ACM.

[78] Tvants. http://www.tvants.com as of November 2011.

[79] Pplive. http://www.pplive.com as of November 2011.

[80] Sopcast. http://www.sopcast.com as of November 2011.

[81] Ppstream. http://www.ppstream.com as of November 2011.

[82] Thomas Silverston, Olivier Fourmaux, Alessio Botta, Alberto Dainotti, Antonio
Pescapé, Giorgio Ventre, and Kavé Salamatian. Traffic analysis of peer-to-peer iptv
communities. Comput. Netw., 53:470–484, March 2009.

[83] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Y.-S.P. Yum. Coolstreaming/donet: a
data-driven overlay network for peer-to-peer live media streaming. In INFOCOM
2005. 24th Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings IEEE, volume 3, pages 2102 – 2111 vol. 3, march 2005.

 http://www.facebook.com
 http://www.flickr.com
 http://www.livejournal.com
 http://www.orkut.com
 http://www.tvants.com
 http://www.pplive.com
 http://www.sopcast.com
 http://www.ppstream.com

BIBLIOGRAPHY 157

[84] Xiaojun Hei, Yong Liu, and K.W. Ross. Inferring network-wide quality in p2p live
streaming systems. Selected Areas in Communications, IEEE Journal on, 25(9):1640
–1654, december 2007.

[85] K. Church, A. Greenberg, and J. Hamilton. On delivering embarrassingly dis-
tributed cloud services. Hotnets VII, 2008.

[86] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil So-
man, Lamia Youseff, and Dmitrii Zagorodnov. The eucalyptus open-source cloud-
computing system. In In Proceedings of Cloud Computing and Its Applications
[Online, 2008.

[87] A. Dainotti, W. de Donato, and A. Pescapé. Tie: A community-oriented traffic
classification platform. Traffic Monitoring and Analysis, pages 64–74, 2009.

[88] V. Jacobson, C. Leres, and S. McCanne. libpcap, lawrence berkeley laboratory,
berkeley, ca. Initial public release June, 1994.

[89] S. Shalunov, B. Teitelbaum, A. Karp, J. Boote, and M. Zekauskas. A one-way active
measurement protocol (owamp). draft-ietf-ippm-owdp-11. txt, 2004.

[90] J. Prokkola, M. Hanski, M. Jurvansuu, and M. Immonen. Measuring wcdma and
hsdpa delay characteristics with qosmet. In Communications, 2007. ICC’07. IEEE
International Conference on, pages 492–498. IEEE, 2007.

[91] A. Botta, A. Dainotti, and A. Pescapè. Multi-protocol and multi-platform traffic
generation and measurement. INFOCOM 2007 DEMO Session, 2007.

[92] V. Jacobson and S. Deering. Traceroute tool, 1989.

[93] V. Jacobson. Pathchar: A tool to infer characteristics of internet paths, 1997.

[94] P. Beyssac. Bing, a bandwidth measurement tool based on ping.
http://www.cnam.fr/reseau/.

[95] A.B. Downey. Using pathchar to estimate internet link characteristics. In ACM
SIGCOMM Computer Communication Review, volume 29, pages 241–250. ACM,
1999.

[96] B.A. Mah. pchar: A tool for measuring internet path characteristics. http://www.
kitchenlab. org/www/bmah/aSoftware/pchar/, 1999.

[97] K. Lai and M. Baker. Nettimer: A tool for measuring bottleneck link bandwidth.
In Proceedings of the USENIX Symposium on Internet Technologies and Systems,
volume 134, 2001.

[98] R.L. Carter and M.E. Crovella. Measuring bottleneck link speed in packet-switched
networks. Performance evaluation, 27:297–318, 1996.

BIBLIOGRAPHY 158

[99] S. Saroiu, P.K. Gummadi, and S.D. Gribble. Sprobe: A fast technique for measuring
bottleneck bandwidth in uncooperative environments. In IEEE INFOCOM, page 1,
2002.

[100] C. Dovrolis, P. Ramanathan, and D. Moore. What do packet dispersion techniques
measure? In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, volume 2, pages 905–
914. IEEE, 2001.

[101] M. Jain and C. Dovrolis. Pathload: A measurement tool for end-to-end available
bandwidth. In In Proceedings of Passive and Active Measurements (PAM) Work-
shop. Citeseer, 2002.

[102] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell. pathchirp: Ef-
ficient available bandwidth estimation for network paths. In Passive and active
measurement workshop, volume 4, 2003.

[103] N. Hu and P. Steenkiste. Evaluation and characterization of available band-
width probing techniques. Selected Areas in Communications, IEEE Journal on,
21(6):879–894, 2003.

[104] J. Strauss, D. Katabi, and F. Kaashoek. A measurement study of available band-
width estimation tools. In Proceedings of the 3rd ACM SIGCOMM conference on
Internet measurement, pages 39–44. ACM, 2003.

[105] nuttcp. http://www.ppstream.com as of November 2011.

[106] Giacomo Bernardi and Mahesh K. Marina. Bsense: a system for enabling automated
broadband census: short paper. In Proc. of the 4th ACM Workshop on Networked
Systems for Developing Regions (NSDR ’10), June 2010., 2010.

[107] A. Botta, A. Dainotti and A. Pescapé. Multi-protocol and multi-platform traffic
generation and measurement. IEEE INFOCOM, Demo session, May 2007.

[108] Qt libraries. http://qt.nokia.com/ as of November 2011.

[109] Cygwin. http://www.cygwin.com/ as of November 2011.

[110] Geoserver. http://geoserver.org/ as of November 2011.

[111] BitTorrent. http://www.bittorrent.com/.

[112] Measurement Lab. http://measurementlab.net.

[113] Linksys WRT54GL. http://www.linksysbycisco.com/IT/it/products/WRT54GL.

[114] NOX Box. http://noxrepo.org/manual/noxbox.html.

 http://www.ppstream.com
http://qt.nokia.com/
http://www.cygwin.com/
http://geoserver.org/
http://www.bittorrent.com/
http://measurementlab.net
http://www.linksysbycisco.com/IT/it/products/WRT54GL
http://noxrepo.org/manual/noxbox.html

BIBLIOGRAPHY 159

[115] Netgear wndr3700v2. http://www.netgear.com/home/products/wirelessrouters/high-performance/wn
as of November 2011.

[116] Cerowrt liux distribution. http://www.bufferbloat.net/projects/cerowrt as of
November 2011.

[117] S. Seshan and H. Balakrishnan. netperf: Network Performance Utility.
ftp://daedalus.cs.berkeley.edu/pub/netperf, 1996.

[118] Fping Program. ftp://networking.stanford.edu/pub/fping/, 1997.

[119] Shaperprobe. http://www.cc.gatech.edu/∼partha/diffprobe/shaperprobe.html.

[120] K.L. Calvert, W.K. Edwards, N. Feamster, R.E. Grinter, Y. Deng, and X. Zhou. In-
strumenting home networks. ACM SIGCOMM Computer Communication Review,
41(1):84–89, 2011.

[121] G. Aceto, A. Dainotti, W. de Donato, and A. Pescapé. Portload: taking the best
of two worlds in traffic classification. In INFOCOM IEEE Conference on Computer
Communications Workshops, 2010, pages 1–5. IEEE, 2010.

[122] Airodump-ng. http://www.aircrack-ng.org/doku.php?id=airodump-ng as of
November 2011.

[123] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford, and
A. Pescapè. Broadband internet performance: A view from the gateway. In Proc.
ACM SIGCOMM, Toronto, Ontario, Canada, August 2011.

[124] Comcast FAQ. http://customer.comcast.com/Pages/FAQViewer.aspx?Guid=024f23d4-c316-4a58-
October 2007.

[125] R.M. Compton, C.L. Woundy and J.G. Leddy. Method and packet-level device for
traffic regulation in a data network. U.S. Patent 7,289,447 B2, October 2007.

[126] Wondershaper. http://lartc.org/wondershaper/, 2002.

http://www.netgear.com/home/products/wirelessrouters/high-performance/wndr3700.aspx
http://www.bufferbloat.net/projects/cerowrt
http://www.cc.gatech.edu/~partha/diffprobe/shaperprobe.html
http://www.aircrack-ng.org/doku.php?id=airodump-ng
http://customer.comcast.com/Pages/FAQViewer.aspx?Guid=024f23d4-c316-4a58-89f6-f5f3f5dbdcf6
http://lartc.org/wondershaper/

	Introduction
	The Internet scenario
	Heterogeneity of access technologies
	Complexity of Internet applications

	Thesis contribution
	Characterization of new generation applications
	IP networks performance evaluation
	Evaluation of broadband access networks performance

	Thesis Organization

	Characterizing applications to evaluate IP networks performance
	Characterization of new generation applications
	Related work
	A new methodology for characterizing multi-channel applications
	Experimental analysis: a proof of concept

	Evaluation of network performance
	IP performance evaluation metrics and techniques
	Advertising broadband performance

	Evaluating the performance of broadband access networks
	A taxonomy for broadband benchmarking approaches
	Server-based approach
	Host-based approach
	Router-based approach
	Comparison of approaches

	An architecture for benchmarking access networks
	Architecture overview
	Important features the architecture should provide

	HoBBIT: adopting the client-based approach
	Architecture components
	The management server
	The measurement client
	Measurement servers
	Front-end and map servers

	Measurement campaigns
	Connection parameters estimation (CPE) campaign
	Basic performance evaluation (BPE) campaign
	BitTorrent performance evaluation (BTPE) campaign

	Challenges and solutions
	Platform scalability
	Real-time reporting at different aggregation levels

	A preliminary study of broadband in Italy from the hosts
	Basic performance evaluation
	BitTorrent performance evaluation

	BISmark : adopting the router-based approach
	Architecture components
	BISmark gateways
	The central server
	Measurement servers

	Measurements
	Active measurements
	Passive measurements

	Challenges and solutions
	Hardware constraints
	Lightweight reliable remote management
	Measurements collision

	A study of broadband in the USA from the gateway
	Understanding Throughput
	Latency and Buffering

	Conclusion

