
UNIVERSITÀ DEGLI STUDI DI NAPOLI 

“Federico II” 

 

 

 

 

 

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI 

Dottorato di Ricerca in Scienze Chimiche XXIV Ciclo 

 

ORGANIC AND/OR METALLORGANIC FUNCTIONAL MOLECULES AND THEIR 

POLYMERS FOR APPLICATIONS IN ELECTRONICS AND PHOTONICS. 

 

Laura Ricciotti 

 

A DISSERTATION PRESENTED TO THE UNIVERSITY OF NAPLES “FEDERICO II”IN 

CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

 

 

 

Tutor 

Prof. Antonio Roviello 

 

Supervisor 

Prof. Claudio De Rosa 

 

 

 

 

Session 2010-2011 



 

  



 

 

 



 

 i 

ABSTRACT 

 

Organic materials have a tremendous potential to transform the world of circuit, display 

communication technology and renewable energy in near future. In fact organic materials 

have attracted much interest as possible inexpensive and flexible alternatives to inorganic 

devices. 

The aim of this work was the synthesis and characterization of different classes of organic 

semiconducting materials for possible applications as active layer in electronic and 

photonic devices. 

Several synthetic strategies have been developed and promising classes of p and n-type 

organic semiconductors have been prepared. As p-type materials, polythiophenes 3-

substituted by alkoxyphenilic and alkeneoxyphenilic groups were synthesized by adapting 

a synthetic methodology previously reported in the literature [44], based on oxidative 

coupling of thiophene monomers using vanadyl acetylacetonate (VO(acac)2) complex as 

catalyst. In this way, using a very simple and inexpensive procedure we have obtained 

regioregular polythiophenes with over 90% HT content. This promising materials were 

successfully employed as active layers in the field of sensor devices for VOCs detection. 

Successively, we have developed a new synthetic procedure for obtaining poly[3-(4-

alkoxyphenyl)thiophene]s with regioregularity similar to that obtained by McCullough and 

Rieke methods in the synthesis of poly-3-alkylthiophenes, in order to use this class of 

materials in a broader field of applications in organic electronics. This novel synthetic 

methodology, that keeps simplicity and cheapness of the method based on oxidative 

catalysis using VO(acac)2 complex, allows to prepare poly[3-(4-alkoxyphenyl)thiophene]s 
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by oxidative catalysis using different Cu(II) complexes with very high regioregularity, up 

to 99% of HT content and represents an interesting alternative to the more expensive 

classical procedures for the synthesis of poly-3-substituted thiophenes. Remarkable 

potentialities of highly regioregular poly[3-(4-alkoxyphenyl)thiophene]s have emerged 

from preliminary FET measurements, that have shown hole mobility up to 1.0*10
-4

cm
2
V

-

1
s

-1
 and a high stability even when device operated in air. 

For what concerns the developing of new n-type semiconductors, we have synthesized PDI 

derivatives functionalized at the imide nitrogen with a thiadiazole and triazole groups. 

Using the new PDI derivatives as active materials in OTFT devices, we have achieved air 

stable  electron mobility up to 1.6*10
-2

 cm
2
volt

-1
sec

-1
. 

Finally we have investigated the suitability of one of the synthesized highly regioregular 

polythiophene, PT8 and one dithiazole derivative of PDI, TDZ-C7 as possible, 

respectively, donor and acceptor materials in a heterojunction solar cell. Preliminary 

analysis were carried out through cyclic voltammetry (CV) in combination with UV-Vis 

optical absorption and photoluminescence emissions. The low bandgap of PT8 (~1.6 eV), 

its very stable HOMO energy (-5.55 eV) along with a favorable band offset of PT8 and 

TDZ-C7 and quenching of the photoluminescence of the latter upon mixing with the 

former, make this couple of materials excellent candidates to assemble photovoltaic cells. 

 

  



 

 iii 

RINGRAZIAMENTI 

 

Alla fine di questo lungo ed intenso percorso formativo, vorrei ringraziare il mio 

Tutore Prof. Antonio Roviello per la sua costante presenza ed il grande supporto a tutta 

l‟attività sperimentale.  

 

Ringrazio il Prof. Roberto Centore per il suo grande contributo ed il mio relatore Prof. 

Claudio De Rosa per la sua grande disponibilità. 

 

Un ringraziamento particolare và ai miei colleghi Antonio Carella e Fabio Borbone che mi 

hanno costantemente aiutato durante la dura attività di laboratorio, sempre con grande 

disponibilità. In particolare Antonio mi è stato di grande supporto anche per la stesura della 

tesi. 

 

Ringrazio il Prof. Ugo Caruso sempre ben disposto a dare saggi consigli ed intervenire 

tempestivamente in alnumi momenti critici dell‟attività sperimentale. 

 

Ringrazio il Dr. Antonio Cassinese ed il Dr. Mario Barra del Dipartimento di Fisica, 

“Università Federico II” di Napoli per la fondamentale ed assidua collaborazione in tutta 

l‟attività di ricerca. 

 

Ringrazio il Prof. Bruno Pignataro ed il Dr. Sebastiano Cataldo del Dipartimento di 

Chimica “S. Cannizzaro” Università di Palermo per la preziosa collaborazione.  



 

 iv 

Con grande affetto voglio ringraziare tutta la mia famiglia. 

In particolare Gabriele, che ha condiviso con me questa grande avventura, standomi sempre 

accanto e dandomi sempre ottimi consigli. Voglio inoltre ringraziarlo perché ha spinto 

affinché dessi sempre il meglio di me e riuscissi a raggiungere traguardi importanti. 

Veramente poche persone al mondo hanno la sua forza e la sua lungimiranza. 

 

Ringrazio i miei genitori per la grande comprensione e la costante presenza anche nei 

momenti difficili. 

 

Grazie a Lina ed Antonio che con grande simpatia ed affetto mi hanno sempre sostenuta. 

 

Grazie ai miei grandi compagni di vita Kimi e Molly che hanno rallegrato e riempito in 

maniera buffa ed affettuosa le mie dure giornate, soprattutto durante la scrittura della tesi. 



 

 v 

TABLE OF CONTENTS 

 

1 INTRODUCTION .............................................................................................................................. 1 

1.1 Organic Electronics ..................................................................................................................... 1 

1.2 Historical Background of Organic Electronics ............................................................................. 4 

1.3 Electrical Conductivity ................................................................................................................ 6 

1.4 Conduction in Organic Semiconductor Materials ......................................................................... 8 

1.4.1 Band Theory of Solids ............................................................................................................ 9 

1.4.2 Mechanism of Polymer Conductivity .................................................................................... 13 

1.4.3 Molecular Electron-Transfer Theory ..................................................................................... 17 

1.4.4 Organic Charge-Transporting Materials: Hole- and Electron-Transport Classification ........... 20 

1.4.5 Determination of Frontier Orbital Levels............................................................................... 22 

1.4.6 Organic polymer film-forming processes .............................................................................. 24 

1.4.7 Organic Electronics: Commercial Applications ..................................................................... 28 

1.5 ORGANIC FIELD-EFFECT TRANSISTORS (OFETs) ............................................................ 31 

1.5.1 Introduction .......................................................................................................................... 31 

1.5.2 Working Principle of FETs ................................................................................................... 31 

1.5.3 Current-Voltage Characteristics ............................................................................................ 35 

1.5.4 Device Structure ................................................................................................................... 38 

1.5.5 Organic Functional Materials for OFET Devices ................................................................... 39 

1.6 ORGANIC SENSORS............................................................................................................... 46 

1.6.1 Introduction .......................................................................................................................... 46 

1.6.2 Volatile Organic Compounds (VOCs) Detection: Transduction Mechanism .......................... 47 

1.6.3 Conducting Polymers for Volatile Organic Compounds (VOCs) Detection ........................... 50 

1.7 ORGANIC SOLAR CELLS ...................................................................................................... 53 

1.7.1 Introduction .......................................................................................................................... 53 

1.7.2 Principle of Operation ........................................................................................................... 54 



 

 vi 

1.7.3 Electronic Donor-Acceptor Interactions ................................................................................ 56 

1.7.4 Determination of Photovoltaic Performance .......................................................................... 58 

1.7.5 Organic Functional Materials for Photovoltaic Cells ............................................................. 62 

2 EXPERIMENTAL ............................................................................................................................ 65 

2.1 Materials and Methods .............................................................................................................. 65 

2.1.1 Proton Resonance Magnetic Nuclear (
1
H NMR).................................................................... 65 

2.1.2 Optical Microscopy ............................................................................................................... 65 

2.1.3 Differential Scanning Calorimetry......................................................................................... 65 

2.1.4 UV-Vis Spectroscopy ........................................................................................................... 66 

2.1.5 Photoluminescence Spectroscopy (PL) .................................................................................. 66 

2.1.6 Thermogravimetric Analysis (TGA)...................................................................................... 66 

2.1.7 Spin Coating ......................................................................................................................... 66 

2.1.8 Mass Spectrometry................................................................................................................ 66 

2.1.9 Single Crystal X-Ray Crystallography .................................................................................. 67 

2.2 Monomers Synthesis.................................................................................................................. 67 

2.2.1 Synthesis Monomer I ............................................................................................................ 68 

2.2.2 Synthesis Monomer IV ......................................................................................................... 69 

2.3 Synthesis Cu(II) Complexes ...................................................................................................... 71 

2.3.1 Synthesis Cu(Ald1) ............................................................................................................... 72 

2.3.2 Synthesis Cu(Im) .................................................................................................................. 72 

2.4 Synthesis Polythiophenes .......................................................................................................... 73 

2.4.1 Synthesis PT8-VO(acac)2 ...................................................................................................... 74 

2.4.2 Synthesis PT8-Cu(Ald1) ....................................................................................................... 74 

2.4.3 PT8-Cu(Im) .......................................................................................................................... 75 

2.5 Perylene-3,4,9,10-tetracarboxylic acid diimide (PDI) derivatives synthesis ................................ 76 

2.5.1 Synthesis TDZ-C7 ................................................................................................................ 76 

2.5.2 Syntesis TR-C7 ..................................................................................................................... 78 



 

 vii 

3 POLYTHIOPHENES 3-SUBSTITUTED FOR APPLICATIONS IN ELECTRONICS ............... 80 

3.1 Introduction ............................................................................................................................... 80 

3.2 Polythiophenes 3-Substituted for Applications in Organic Sensors ............................................ 82 

3.2.1 Synthesis Methods ................................................................................................................ 85 

3.2.2 Characterization Methods ..................................................................................................... 89 

3.2.3 Detection of VOCs Compounds Using Polythiophenes 3-Substituted .................................... 95 

3.3 Synthesis of Highly Regioregular Poly[3-(4-alkoxyphenyl)-thiophene]s by Oxidative Catalysis 

Using Copper Complexes for Application in Photovoltaics.................................................................... 105 

3.4 Measurement of FET Mobility of PT8-Cu(Ald1) ..................................................................... 125 

4 SYNTHESIS OF ALKYLTHIADIAZOLE AND ALKYLTRIAZOLE-SUBSTITUTED 

PERYLENEBIS (DICARBOXIMIDES) FOR APPLICATION IN FET DEVICES ............................ 127 

4.1 Introduction ............................................................................................................................. 127 

4.2 Alkylthiadiazole and alkyltriazole-substituted perylenebis(dicarboximides) ............................. 129 

4.3 Measurement of FET Mobility of PDI Derivatives ................................................................... 138 

5 OPTOELECTRONIC AND ELECTRICAL PROPERTIES INVESTIGATION OF PT8-

Cu(Ald1) AND TDZ-C7 AS DONOR AND ACCEPTOR MATERIALS IN SOLAR ORGANIC CELLS

  ......................................................................................................................................................... 147 

5.1 Introduction ............................................................................................................................. 147 

5.2 Chemical-Physically Characterizations .................................................................................... 147 

6 CONCLUSIONS ............................................................................................................................. 155 

7 REFERENCES ............................................................................................................................... 161 

 



 

 viii 

LIST OF FIGURES 

 

Figure 1: Conductivity of conductive polymers compared to those of other materials, from quartz (insulator) 

to copper (conductor). Polymers may also have conductivities corresponding to those of 

semiconductors “Ad. from [16]”. .......................................................................................................... 7 

Figure 2: The conductivity of conductive polymers decreases with falling temperature in contrast to the 

conductivities of typical metals, e.g. silver, which increase with falling temperature “Ad. from [16]”. .. 8 

Figure 3: Band formation obtained by mixing of electronic states. .............................................................. 10 

Figure 4: The allowed energy states for an metal, semiconductor, and insulator. ......................................... 11 

Figure 5: Molecular orbitals in polyacetylene. Each carbon atom is in hybridized sp
2
pz double-bond 

configuration. Depending on the mathematical sign (illustrated in blue or red color), the pz-orbital is 

either bonding or anti-bonding, and forms a - or *-bond, respectively. Optical or thermal excitation 

can promote electrons from - into *-orbitals that exhibit lower binding energies “Ad. from ”. ......... 12 

Figure 6: Radical cation (“polaron”) formed by removal of one electron on the 5
th
 carbon atom of a 

undecahexaene chain (a → b). The polaron migration shown in c → e “Ad. from [16]”. ..................... 14 

Figure 7: A soliton is created by isomerisation of cis polyacetylene (a → b) and moves by pairing to an 

adjacent electron (b → e). However, generally solitons made by doping are more important than “bond 

alternation defects” like the one illustrated in the figure “Ad. from [16]”. ........................................... 16 

Figure 8: Intersoliton hopping: charged solitons (bottom) are trapped by dopant counterions, while neutral 

solitons (top) are free to move. A neutral soliton on a chain close to one with a charged soliton can 

interact: the electron hops from one defect to the other “Ad. from [16]”. ............................................. 17 

Figure 9: electron transfer reaction between a naphthalene cation with an anthracene molecule “Ad. from 

[16]”. .................................................................................................................................................. 18 

Figure 10: representation of energy surface of reactant state and product state for electron transfer reaction 

between a naphthalene cation with an anthracene molecule “Ad. from [16]”. ...................................... 18 



 

 ix 

Figure 11: Two parabolic potential energy graphs corresponding to the energy for reactant and product states 

in an electron transfer reaction. ΔG* is the activation barrier that has to be overcome and λ is the 

“reorganization energy” “Ad. from [16]”. ........................................................................................... 19 

Figure 12: Spin-coating process. ................................................................................................................. 25 

Figure 13: The LB sequence: spreading, compression, and deposition. ........................................................ 26 

Figure 14: (a) Schematic structure of a field-effect transistor and applied voltages: L = channel length; W = 

channel width; Vd = drain voltage; Vg = gate voltage; VTh ) threshold voltage; Id ) drain current. (b-d) 

Illustrations of operating regimes of field-effect transistors: (b) linear regime; (c) start of saturation 

regime at pinchoff; (d) saturation regime and corresponding current-voltage characteristics “Ad. from 

[25]”. .................................................................................................................................................. 32 

Figure 15: Representative current-voltage characteristics of an n-channel organic field-effect transistor. (a) 

output characteristics indicating the linear and saturation regimes; (b) transfer characteristics in the 

linear regime (Vd << Vg), indicating the onset voltage (Von) when the drain current increases abruptly; 

(c) transfer characteristics in the saturation regime (Vds > Vg - VTh), indicating the threshold voltage VTh, 

where the linear fit to the square root of the drain current intersects with the x-axis “Ad. from [25]”. .. 37 

Figure 16: Common field-effect transistor configurations. (a) bottom contact, top gate (BC/TG); (b) bottom 

contact, bottom gate (BC/BG); (c) top contact, bottom gate (TC/BG). “Ad. from [25]” ....................... 38 

Figure 17: Small molecule semiconductors, which are commonly known for their hole channel 

characteristics in field-effect transistors “Ad. from [25]”. .................................................................... 40 

Figure 18: Conjugated semiconducting polymers that have shown hole and, in some cases, electron field-

effect transport “Ad. from [25]”. ......................................................................................................... 42 

Figure 19: Organic semiconductors  that show predominantly n-channel behavior in transistors with SiO2 as 

a gate dielectric and gold source-drain electrodes “Ad. from [25]”. ..................................................... 44 

Figure 20: Comparison between the work-function responses of conducting polymer layers to different 

vapors. Initial work function (versus Au reference) was adjusted electrochemically to different initial 

values “Ad. from [28]”........................................................................................................................ 49 



 

 x 

Figure 21: Chemiresistor. B:bulk of the conducting polymer. S:surface. I:interface with the insulating 

substrate. C:interface with the contacts “Ad. from [28]”. ..................................................................... 49 

Figure 22: A PV device (right) is the reverse of a LED (left). In both cases an organic material is sandwiched 

between two electrodes. In PVs electrons are collected at the metal electrode and holes are collected at 

the ITO electrode. The reverse happens in a LED: electrons are introduced at the metal electrode 

(cathode), which recombine with holes introduced at the ITO electrode (anode) “Ad. from [33]”. ...... 54 

Figure 23: Energy levels and light harvesting. Upon irradiation an electron is promoted to the LUMO leaving 

a hole behind in the HOMO. Electrons are collected at the Al electrode and holes at the ITO electrode. 

: workfunction, : electron affinity, IP: ionization potential, Eg: optical bandgap “Ad. from [33]”. ... 55 

Figure 24: Band structure diagram illustrating the HOMO and LUMO energies of MDMO-PPV, P3HT, and 

an “ideal” donor relative to the band structure of PCBM. Energy values are reported as absolute values 

relative to a vacuum “Ad. from [34]”. ................................................................................................. 58 

Figure 25: The quantum efficiency of a silicon solar cell “Ad. from [36]”. .................................................. 60 

Figure 26: I-V curves of an organic PV cell under dark (left) and illuminated (right) conditions. The 

opencircuit voltage (Voc) and the short-circuit current (ISC) are shown “Ad. from [33]”...................... 62 

Figure 27: Several polymers employed in prototypical solar cells “Ad. from [34]”. ..................................... 64 

Figure 28: Molecular structure of the monomers. ........................................................................................ 67 

Figure 29: Molecular structure Cu(II) complexes. ....................................................................................... 71 

Figure 30: Molecular structures of polythiophenes. ..................................................................................... 73 

Figure 31: Molecular structures of PDI derivatives. ..................................................................................... 76 

Figure 32: Different configurational triads in polythiophenes 3-substituted. ................................................ 81 

Figure 33: Synthesis scheme of polythiophenes. .......................................................................................... 83 

Figure 34: Mechanism of polymerization of thiophenes. ............................................................................. 84 

Figure 35: A catalytic cycle of the oxivanadium catalytic system. ............................................................... 84 

Figure 36: Synthesis of 1-bromo-(4-esiloxy)benzene by Williamson etherification. .................................... 86 

Figure 37: Synthesis of monomer (I) by Grignard reaction. ......................................................................... 86 

Figure 38: Scheme of synthesis of monomer (IV). ....................................................................................... 87 



 

 xi 

Figure 39: Scheme of synthesis of the polythiophenes. ................................................................................ 88 

Figure 40: 
1
H-NMR spectrum of PT5-6(II) ................................................................................................. 90 

Figure 41: UV-Vis spectra by polymer films before and after annealing. ..................................................... 92 

Figure 42: Supposed chemical structure consequent to crosslinking reaction. .............................................. 94 

Figure 43: Structure of a chemiresistor device. ............................................................................................ 95 

Figure 44: Cycle sensor device is subdivided in three faces: baseline, step and recovery. ............................ 96 

Figure 45: Sensor responses of PT8 to various VOC vapors. ....................................................................... 98 

Figure 46: Concentration analytes versus variation of the current. ............................................................. 100 

Figure 47: Sensor responses of P5-6(I) to various VOC vapors. ................................................................ 101 

Figure 48: Concentration analytes versus variation of the current. ............................................................. 103 

Figure 49: Vanadyl complex experimented. .............................................................................................. 106 

Figure 50: Molecular structure of Cu(II) catalyst. ...................................................................................... 107 

Figure 51: Synthesis Scheme of Cu(II) complexes. ................................................................................... 107 

Figure 52: Thermogravimetric analysis of Cu(Ald2) complex. .................................................................. 108 

Figure 53: Ortep-3 view of Cu(Im) with ellipsoids drawn at 30% probability level. Hydrogen atoms are 

omitted for clarity. Symmetry transformation used to generate equivalent atoms:_i: -x, -y, -z (the 

molecule lies on a crystallographic inversion centre). Selected bond distances and angles (Å, °): Cu1-

O1 = 1.887(3), Cu1-N1 = 1.983(3), O1-Cu1-N1 = 91.5(1), O1-Cu1-N1_i = 88.5(1), N1-Cu1-N1_i = 

180.0, O1-Cu1-O1_i = 180.0, N1-C1-C2-C3 = -8.2(6), N1-C1-C2-C7 = 174.8(3), O3-C8-C9-C10 = 

0.1(7). ............................................................................................................................................... 111 

Figure 54: Synthesis scheme of polythiophenes using Cu(II) complexes. .................................................. 112 

Figure 55: UV-Vis spectra of polymer films. ............................................................................................. 114 

Figure 56: 1H-NMR spectrum of PT8 prepared by Cu(Ald1) complex. ..................................................... 115 

Figure 57: Deconvolution process applied to thiophenic singlets. .............................................................. 117 

Figure 58: Diads that can are formed in polymerization process. F and B denote the forward and the opposite 

orientations of monomer units defined for propagating terminal radicals, respectively. ..................... 118 

Figure 59: Deconvolution process applied to thiophenic singlets of PT8 prepared using VO(acac)2. .......... 120 



 

 xii 

Figure 60: Synthesis scheme of PT6-8 and PT8Iso. ................................................................................... 122 

Figure 61: UV-Vis spectra of PT6-8 and PT8Iso. ...................................................................................... 123 

Figure 62: Deconvolution process applied to thiophenic singlets. .............................................................. 124 

Figure 63: Film of PT8-Cu(Ald1) deposed via spin-coating onto FET device. ........................................... 125 

Figure 64: Current-voltage characteristics of PT8-Cu(Ald1) based device. ................................................ 126 

Figure 65: Synthesis scheme of PDI functionalized with thiadiazole group. .............................................. 130 

Figure 66: Synthesis scheme of TR-C7. .................................................................................................... 131 

Figure 67: Thermogravimetric analysis of TDZ-C13. ................................................................................ 132 

Figure 68: Absorbance and emission spectra of the PDI derivatives functionalized with thiadiazole group.134 

Figure 69: Absorbance and emission spectra of TR-C7. ............................................................................ 135 

Figure 70: Substrate functionalization with HMDS. .................................................................................. 139 

Figure 71: Current-voltage characyeristics and mobility trends of OTFT devices. ..................................... 142 

Figure 72: AFM images of TDZ-C13 films obtained by thermic evaporation. ........................................... 144 

Figure 73: AFM images of TDZ-ST film obtained by thermic evaporation on functionalized substrate. .... 145 

Figure 74: AFM images of TDZ-ST film obtained by spin-coating on functionalized substrate ................. 146 

Figure 75: Cyclic voltammograms of PT8-CuAld1 and TDZ-C7. .............................................................. 148 

Figure 76: Energy diagram of the orbital frontiers belong to PT8-CuAld1 and TDZ-C7. ........................... 149 

Figure 77: Absorbance and emission spectra of PT8(CuAld1) and TDZ-C7 film obtained by Langmuir-

Blodgett method. .............................................................................................................................. 152 

 

  



 

 xiii 

LIST OF TABLES 

 

Table 1: Quantitative evaluation of monomer I and IV contained in the copolymers compared to 

stoichiometric amounts of monomers are allowed to react: 
a
 experimental values found; 

b
 theoretical 

values. ................................................................................................................................................ 91 

Table 2: Data related to redshift of max for polymer films before and after annealing. ................................. 93 

Table 3: Characteristics of the PT8 based devices. ....................................................................................... 99 

Table 4: Characteristics of the PT5-6(I) based devices. .............................................................................. 104 

Table 5: Thermogravimetric analysis of Cu(II) complexes......................................................................... 109 

Table 6: Crystal data and structure refinement details for Cu(Im). ............................................................. 110 

Table 7: Dates related to max values and vibronic structure of polymer films ............................................ 114 

Table 8: The HT values of PT8 synthesized through Cu(II) complexes. ..................................................... 120 

Table 9: The HT values of PT6-8 and PT8Iso. ........................................................................................... 123 

Table 10: Temperatures of decomposition of PDI derivatives. ................................................................... 133 

Table 11: Values of the fluorescence quantum yields of the PDI derivatives. ............................................. 136 

Table 12: Contact angle values of some substrates functionalized with HMDS. ......................................... 140 

Table 13: Comparison of the mobility values of TDZ-ST and TDZ-C13.................................................... 141 

 

 

 



INTODUCTION 

 1 

1 INTRODUCTION 

1.1 Organic Electronics 

Organic electronics has been the focus of a growing body of investigation in the 

fields of physics and chemistry for more than 20 years. The enormous technological 

interest of organic electronics originates from the special features of polymeric and 

molecular π-conjugated compounds which combine optical and electrical properties of 

inorganic semiconductors with chemical-physical characteristics and easy processability of 

organic polymeric and molecular materials [1]. Furthermore, The attraction of this field has 

been the ability to modify chemical structure in a ways that could directly impact properties 

of the materials when deposited in thin film form [2]. In fact, organic thin films have 

proven useful in a number of applications, some of them now are reaching the consumer 

market. Organic materials used in electronic and optoelectronic devices are generally split 

into two groups: i.e., small molecules and polymers. The former are typically deposited by 

vapor methods in low or high vacuum environments and have a well-defined molecular 

weight. Polymers, on the other hand, must be processed from solution and have a 

molecular weight distribution that is described by the polydispersity of materials, giving 

polymers good glass-forming and mechanical properties. Dendrimers are a class of 

materials that in some ways fall between molecular and polymeric materials. Dendrimers 

are highly branched molecules, whose branches originating from the molecular core They 

typically have very high but at the same time well-defined molecular weights. Thus, while 

dendrimers are molecular in nature, their high molecular weight and irregular shape give 

them bulk properties resembling those of a polymer. While many of the electronic 
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properties of organic materials and their associated devices are similar, the methods used 

for fabricating organic and inorganic based devices are considerably different. The use of 

organic compounds as active materials in electronic and optoelectronic devices opens the 

door to a large number of efficient and potentially low-cost methods for fabricating useful, 

and, in some cases, complicated structures that are inaccessible by conventional methods 

using conventional semiconductors. For example, the techniques available for processing 

and patterning organic materials move far beyond the lithographic methods that govern 

inorganic devices. In fact there are a range of low-cost processes that are unique to organic 

materials, including embossing, imprint lithography, capillary molding and printing, roll-

to-roll and spin-coating. A main challenge is to develop efficient opto-electronic devices, 

such as light-emitting diodes (LEDs), field-effect transistors (FETs), or solar cells, in 

which the inorganic materials traditionally used as active elements are replaced with 

organic materials. Such devices can benefit from the many attractive features of organic 

materials, in particular the possibility to tailor their synthesis to match specific needs and 

the ease of processing thin films over large surfaces at low cost. The transport of charges in 

the organic layers plays a key role in defining the overall performance of these devices. 

The most highly advanced organic devices are organic light emitting diodes (OLEDs). In 

fact, it has been demonstrated that these devices have internal quantum efficiencies near 

unity , and they have been developed so much that they are commercially available in 

small, hand-held, full color displays. While the demonstrated efficiencies for OLEDs are 

very high, their operating voltages can be high, limiting their power efficiencies (optical 

power/electrical power). Incorporating p- and n-type dopants in the transporting layers of 

the devices lowers their operating voltages to levels close to the theoretical limits, i.e., 
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where the operating voltage approaches that of the emitted photon energy. Organic 

materials for use in laser emission have been a subject of investigation since the first report 

of a dye laser. However, the lasers that have become ubiquitous in society for use in 

applications ranging from optical communications, to optical memories, and to biomedical 

testing are entirely based on inorganic semiconductor materials. Nevertheless, organic 

semiconductors combine novel optoelectronic properties with simple fabrication techniques 

and offer the scope for tuning the chemical structure to give desired features (such as 

emission wavelength), making them attractive for using in many laser applications. 

Transistors based on inorganic semiconductors form the basis for a wide range of 

electronic devices that utilize their high speed and small size for integration on a massive 

scale. Organic transistors (OFETs) have the potential to have a great impact. However, they 

will not compete directly with silicon or gallium arsenide due to the lower charge 

mobilities and device lifetimes of organic based systems. Nevertheless, organic transistors 

and circuits are technologically interesting because they have potential to serve in 

inexpensive (perhaps disposable) and flexible electronic circuits. Major applications 

include radio frequency identification tags and flexible display backplanes. These circuits 

can be potentially fabricated by simple printing methods, not requiring the demanding 

environment needed for silicon based circuitry. One of the earliest applications of organic 

optoelectronic devices is in solar cells. Inorganic semiconductor solar cells are well 

developed and are being deployed worldwide; however, the high cost of their manufacture 

ultimately limits their widespread acceptance as a source of renewable energy. The 

potential for low-cost manufacturing afforded by organic devices gives organic solar cells 

the potential to significantly impact the energy landscape, making them useful in a wide 
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range of environments. Chemical sensing is also emerging as an important application for 

organic materials. Uses in military, biomedical, and industrial environments are ubiquitous, 

and having the ability to sensitively detect specific chemicals, both accurately and 

inexpensively, could vastly expand their applications. Research on advanced organic 

materials has led to marked improvements in the sensitivity and versatility of chemical 

sensors. 

1.2 Historical Background of Organic Electronics 

The first studies of the dark and photo-conductivity of anthracene crystals dates 

back to the early 20th century by an Italian scientist named Pochettino [3]. The study of the 

dark conductivity in anthracene was dealt simultaneously with the silicon‟s one in 1910 by 

Konigsberger and Schilling in Germany. A prototype of an organic photovoltaic cell was 

presented in 1913 by Volmer [4]. Anthracene has been used as a model organic 

photoconductor for quite a while. Soon after the invention of the very efficient purification 

method called zone refinement [5],[6], the experimental determination of intrinsic energy 

levels [7], charge-transport properties, effects of impurities, charge generation mechanisms 

[8], recombination, space-charge-limited conduction, electroluminescence [9], and trapping 

effects have been studied in detail, also for other materials. The physical fundamentals can 

be found about studies of Pope and Swenberg [10]. Since the 1970s, the successful 

synthesis and controlled doping of conjugated polymers established the second important 

class of organic semiconductors. In fact The Royal Swedish Academy of Sciences decided 

to award the Nobel Prize in Chemistry for 2000 to Alan J. Heeger, Alan G. MacDiarmid 

and Hideki Shirakawa for the discovery and development of electrically conductive 



INTODUCTION 

 5 

polymers [11]. Conducting polymers have afforded the first applications of organic 

materials as conductive coatings or photoreceptors in electrophotography. Two major 

breakthroughs followed in the 1980s. An efficient photovoltaic cell incorporating an 

organic hetero-junction of p- and n-conducting materials [12] as well as the first thin film 

transistor were successfully demonstrated on the basis of undoped organic semiconductors 

[13]. The main impetus, however, came from the demonstration of high-performance 

electroluminescent diodes from vacuum-evaporated molecular films by Tang and Van 

Slyke in 1987 [14] as well as from conjugated polymers in 1990 [15]. During the last 

twenty years, organic light-emitting devices have progressed and rapidly lead to various 

commercial products. 

  



INTODUCTION 

 6 

1.3 Electrical Conductivity  

Conductivity is defined by Ohm‟s law: 

 

U = R I  (1) 

 

where I is the current (in Amperes) through a resistor and U is the drop in potential (in 

Volts) across it. The proportionality constant R is called the “resistance”, measured in 

Ohms (Ω). R is measured by applying a known voltage across the resistor and measuring 

the current through it. The reciprocal of resistance (R
–1

) is called conductance. Ohm‟s law 

is an empirical law, related to irreversible thermodynamics (Ilya Prigogine, Nobel Prize in 

Chemistry 1977), the flow I as a result of a gradient in potential leads to energy being 

dissipated (RI
2
 J s

–1
). Not all materials obey Ohm‟s law. Gas discharges, vacuum tubes, 

semiconductors and what are termed onedimensional conductors (e.g. a linear polyene 

chain) generally all deviate from Ohm‟s law. In Ohmic material the resistance is 

proportional to the length l of the sample and inversely proportional to the sample cross-

section A: 

 

R = ρ l / A  (2) 

 

where ρ is the resistivity measured in Ω cm (in SI units Ω m). Its inverse σ = ρ
–1

 is the 

conductivity (Figure 1). The unit of conductance is the Siemens (S = Ω 
–1

). The unit of 

conductivity is S m
–1

. 
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Figure 1: Conductivity of conductive polymers compared to those of other materials, from quartz (insulator) 

to copper (conductor). Polymers may also have conductivities corresponding to those of semiconductors “Ad. 

from [16]”. 

 

Conductivity depends on the number density of charge carriers (number of electrons n) and 

how fast they can move in the material (mobility μ): 

 

σ = n μ e  (3) 

 

where e is the electron charge. In semiconductors and electrolyte solutions, one must also 

add in Equation (3) an extra term due to positive charge carriers (holes or cations). 

Conductivity depends on temperature: it generally increases with decreasing temperature 

for “metallic” materials (some of which become superconductive below a certain critical 

temperature Tc), while it generally decreases with lowered temperature for semiconductors 

and insulators (Figure 2) [16]. 
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Figure 2: The conductivity of conductive polymers decreases with falling temperature in contrast to the 

conductivities of typical metals, e.g. silver, which increase with falling temperature “Ad. from [16]”. 

 

1.4 Conduction in Organic Semiconductor Materials 

Electrical conductivity refers to the transport of charge carriers through a medium 

under the influence of an electric field or temperature gradient and is so dependent on the 

number of charge carriers and their mobility. The charge carriers may be generated 

intrinsically or from impurities, in which case they may be electrons, holes, or ions. 

Alternatively, electrons or holes may be injected from electrodes. Therefore conduction 

may be of two types ionic and electronic both and for them there have been a focus of 

intense research, particularly ionic conduction, which has been studied for many years and 

has been the subject of several books. In general, organic systems are insulating materials 

having conductivities ranging from 10
-10

 (Ω cm)
-1

 to 10
-18

 (Ω cm )
-1

, which are many orders 
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of magnitude below the conductivities associated with metals. Indeed, low conductivity 

(and consequent low dielectric constant) is one of the major reasons polymers have found 

widespread acceptance in a myriad of insulating and structural applications throughout the 

electronics industry. Nevertheless, the discovery in 1973 that poly(sulfur nitride) was 

intrinsically conducting provided proof that polymers could be conducting and greatly 

stimulated the search for other conducting organic materials [17]. 

1.4.1 Band Theory of Solids 

When a large number of atoms (e.g., as in metals or semiconductors) or molecules 

(e.g., organic metals) are brought together in the crystalline state, the electronic states mix 

so as to form bands, each band consisting of electronic states whose energies form a 

continuous range. This situation is analogous to the splitting of atomic energy levels as two 

atoms are brought together to form a molecule. For example, the ethylene molecule 

consists of two sp
2
-hybridized carbon atoms, each containing an unpaired electron in a p 

orbital; the two orbitals overlap to form a  bond. According to Hückel theory, the 

interaction of these two p orbitals forms two molecular orbitals corresponding to the  

bonding and  antibonding (*) orbitals (Figure 3), separated by an energy Δ. If these 

orbitals are allowed to interact with the  and  * orbitals of a second ethylene molecule 

stacked directly above the first, two sets of two molecular orbitals are formed that are 

separated by energy 2, where  is the resonance or transfer integral. Likewise, if n 

ethylene molecules are allowed to interact, n states from each of the  and  * orbitals are 

formed. For large values of n, the energy states are close enough together to correspond to 
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a continuous band. The 2n electrons are then allowed to fill the bands in a manner 

analogous to the Aufbau principle for atoms (i.e., electrons are placed in these states in 

pairs starting with the lowest energy state and filling the higher energy states successively). 

The highest occupied state is called the Fermi level.  

 

              

Figure 3: Band formation obtained by mixing of electronic states. 

 

As seen in Figure 3, the band formed from the highest occupied molecular orbital (HOMO) 

in the stack of ethylene molecules is entirely full, but the band formed from the lowest 

unoccupied molecular orbital (LUMO) is entirely empty. According to band theory, if the 

highest filled band (referred to as the valence band) is only partially full, the empty states 

which exist close to the Fermi level will facilitate conduction. In the case of the 

hypothetical stack of ethylene molecules, the HOMO band is completely full. For the stack 
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to be conductive, energy must be supplied to move an electron into the next lowest state, 

which in this case happens to be the lowest energy level in the LUMO band (also called the 

conduction band). This energy gap separating the two bands is called the band-gap energy 

(Eg in eV), and its magnitude determines whether such a material is a semiconductor or an 

insulator (Figure 4). 

 

 

Figure 4: The allowed energy states for an metal, semiconductor, and insulator. 

 

Polyacetylenes and related -conjugated systems, for example, have conductivities that 

classify them as semiconductors. The carbon atom in polyacetylene is sp
2
 hybridized, 

which leaves one p electron out of the bond-forming hybrid orbitals. In principle, such a 

structure might be expected to give rise to extended electronic states formed by overlap of 

the p () electrons and thus provide a basis for metallic behavior in polymers. In practice, 

the quasi-one-dimensional structure just described is not stable. Instead, the  electrons 

overlap in an alternating fashion, resulting in the familiar conjugated  -bond structure of 
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polyacetylene. In energetic terms, bond alternation causes a gap energy (Eg) to be opened at 

the Fermi level that converts the system from a conductor to a semiconductor (Figure 5). 

Physicists refer to this as a Pierls transition. 

 

 

Figure 5: Molecular orbitals in polyacetylene. Each carbon atom is in hybridized sp
2
pz double-bond 

configuration. Depending on the mathematical sign (illustrated in blue or red color), the pz-orbital is either 

bonding or anti-bonding, and forms a - or *-bond, respectively. Optical or thermal excitation can promote 

electrons from - into *-orbitals that exhibit lower binding energies “Ad. from ”. 

 

A major breakthrough in the search for conducting polymers occurred in 1977 [11] with the 

discovery that polyacetylene could be readily oxidized (by electron acceptors such as 

iodine or arsenic pentafluoride) or reduced (by donors such as lithium). The resulting 

material had a conductivity that was orders of magnitude greater than the original, 

untreated sample. This process is often referred to as doping by analogy with the doping of 

inorganic semiconductors, but it contrasts with the inorganic semiconductor doping in that 

doping in polymers is a redox process involving charge transfer with subsequent creation 
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of charged species. The redox reaction may be carried out in the vapor phase, in solution, 

or electrochemically. 

1.4.2 Mechanism of Polymer Conductivity 

The origin of the conduction mechanism has been a source of controversy ever 

since conducting polymers were first discovered. At first, doping was assumed to simply 

remove electrons from the top of the valence band (oxidation) or add electrons to the 

bottom of the conduction band (reduction). This model associates charge carriers with free 

spins (unpaired electrons). However, the measured conductivity in doped polyacetylene 

(and other conducting polymers such as poliyphenylene and polypyrrole) is far greater than 

what can be accounted for on the basis of free spin alone. To account for this phenomenon 

of spinless conductivity, physicists have introduced the concept of transport via structural 

defects in the polymer chain. In a conventional semiconductor, an electron can be removed 

from the valence band and placed in the conduction band, and the structure can be assumed 

to remain rigid. In contrast, an electronic excitation in polymeric materials is accompanied 

by a distortion or relaxation of the lattice around the excitation, which minimizes the local 

lattice strain energy. The combined structural and electronic excitation will now look like a 

defect on the chain. From a chemical viewpoint, this defect is interpreted as a radical cation 

(or radical anion in the case of reduction). Physicists refer to it as a polaron (Figure 6). 

Because these defects represent localized distortions of the lattice, the associated energy 

level must be split off from the continuum of band states.  
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Figure 6: Radical cation (“polaron”) formed by removal of one electron on the 5
th
 carbon atom of a 

undecahexaene chain (a → b). The polaron migration shown in c → e “Ad. from [16]”. 

 

The two polaron states corresponding to a radical cation and radical anion are 

symmetrically disposed around the Fermi level (i.e., the midpoint of the gap). Removal of 

an electron leaves an unpaired spin near the valence band edge (p doping), and addition of 

an electron fills the corresponding state near the conduction band edge (n doping). Further 

oxidation (or reduction) results in the formation of what physicists call a bipolaron. In the 

oxidation case, it is energetically much more favorable to take the second electron from the 

polaron than to form a second polaron [18]; thus, the oxidation process may be viewed as 

leading to the formation of a localized doubly charged species (i.e., a dication, or dianion in 

the case of reduction). The bipolaron is thus identified as a dication or dianion associated 

with a strong local lattice distortion. Because the lattice relaxation around the charges is 

stronger than in the case of a single charge, the electronic states appearing in the band edge 

are further away from the band edges (closer to the Fermi level) than they are for polarons. 
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Coulombic repulsion might be expected to result in charge separation, but separation is 

only feasible if the polymer possesses a degenerate ground state. As discussed earlier, 

bipolarons contain no free spins. All energy levels in the gap are either empty or full. These 

species are believed to be involved in the conduction process. Evidence for their existence 

comes from spectroscopic studies, although the precise mechanism of charge conduction is 

not really known. For one thing, the charges should be fixed in position along the chain by 

the counterion derived from the dopant species. Furthermore, polymers themselves contain 

many defects such as cross-links, chain ends, and bends, and it is difficult to see how even 

a mobile bipolaron or polaron could move past such obstacles. Conduction mechanisms 

have been proposed, at least in the case of polyacetylene itself, that involve a different type 

of defect structure called a soliton. (Figure 7). In fact cis-polyacetylene chain by 

undergoing “thermal” isomerisation to trans structure may create a defect, a stable free 

radical: this is a neutral soliton which although it can propagate along the chain may not 

itself carry any charge. On the other hand, it may contribute to charge transfer between 

different chains. Bulk conductivity in the polymer material is limited by the need for the 

electrons to jump from one chain to the next, i.e., in molecular terms an intermolecular 

charge transfer reaction. It is also limited by macroscopic factors such as bad contacts 

between different crystalline domains in the material.  
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Figure 7: A soliton is created by isomerisation of cis polyacetylene (a → b) and moves by pairing to an 

adjacent electron (b → e). However, generally solitons made by doping are more important than “bond 

alternation defects” like the one illustrated in the figure “Ad. from [16]”. 

 

One mechanism proposed to account for conductivity by charge-hopping between different 

polymer chains is “intersoliton hopping” (Figure 8). Here an electron is jumping between 

localized states on adjacent polymer chains; the role of the soliton is to move around and to 

exchange an electron with a closely located charged soliton, which is localized. The 

mechanism at work in intersoliton hopping is very similar to that operating in most 

conducting polymers somewhere in between the metallic state at high doping and the 

semiconducting state at very low doping. All conjugated polymers do not carry solitons, 

but polarons can be found in most of them. Charge transport in polaron-doped polymers 

occurs via electron transfer between localized states being formed by charge injection on 

the chain. 
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Figure 8: Intersoliton hopping: charged solitons (bottom) are trapped by dopant counterions, while neutral 

solitons (top) are free to move. A neutral soliton on a chain close to one with a charged soliton can interact: 

the electron hops from one defect to the other “Ad. from [16]”. 

1.4.3 Molecular Electron-Transfer Theory 

Electron transfer (ET) reactions, which are also redox reactions, are among the most 

common and simple chemical reactions. The electron donor is oxidised and the acceptor 

reduced. The free energy that drives the reaction is the difference in reduction potentials 

between donor and acceptor. One type of ET reaction, charge separation, takes place after 

photo-excitation to an upper potential energy surface (PES). For example, in 

photosynthesis a series of ET reactions all start from a photo-induced charge separation. 

The molecular electron transfer theory based on contributions by Rudolph Marcus (Nobel 

Prize in Chemistry 1992) [19], so far mainly applied to biopolymers rather than truly 

conductive polymers. An electron transfer reaction corresponds to motion on a potential 

energy surface between two minima, corresponding to different stable localizations of an 

electron. With a naphthalene cation together with an anthracene molecule, the following 

electron transfer reaction may then take place (Figure 9): 
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Figure 9: electron transfer reaction between a naphthalene cation with an anthracene molecule “Ad. from 

[16]”. 

 

Consider the whole system [(C10H8)(C14H10)]
+
. There are two local minima on its energy 

surface: one for [(C10H8)
+
 (C14H10)] corresponding to the reactant state and one for 

[(C10H8)(C14H10)
+
] corresponding to the product state. The latter corresponds to the lowest 

minimum (Figure 10): 

 

 

Figure 10: representation of energy surface of reactant state and product state for electron transfer reaction 

between a naphthalene cation with an anthracene molecule “Ad. from [16]”. 

 

In this system there is a barrier between the two minima. At the left (reactant) minimum the 

bond lengths are those for the naphthalene cation-neutral anthracene combination. At the 

right (product) minimum the bond lengths refer to neutral naphthalene and anthracene 
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cation. The local minima, QR for the reactant state and QP for the product state, are each 

approximately parabolic: if we move any of the atoms away from its equilibrium position 

by change dQ in bond length or bond angle, the energy would increase by (k/2)dQ
2
, where 

k is a force constant corresponding to this deformation. Another contribution to the barrier 

comes from the solvent. If a dissolved charged molecule changes its charge distribution, 

the solvent molecules reorient themselves to minimize the total energy. In the Marcus 

model the PESs are approximated by interacting parabolas. This model uses the important 

fact that the structure undergoes only a rather small change, compared to other chemical 

reactions, in the ET reaction. Figure 11 assumes that ΔG° = 0 (parabolas of equal height). 

 

 

Figure 11: Two parabolic potential energy graphs corresponding to the energy for reactant and product states 

in an electron transfer reaction. ΔG* is the activation barrier that has to be overcome and λ is the 

“reorganization energy” “Ad. from [16]”. 

 

The fundamental equation for the rate in the Marcus model derives from the Arrhenius and 

Eyring rate equation: 
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k = ν κ e
(-ΔG*/ kT)

   (4) 

 

where ν is the frequency of a vibration corresponding to the number of attempts per unit 

time to ascend the barrier. κ is a transmission coefficient. ΔG* is the height of the barrier. 

In the Marcus model another quantity is needed: reorganization energy (λ). If the free 

energy change ΔG
0
 for the reaction is zero, λ is in the simplest case the vertical energy 

difference from the minimum of one parabola up to the other parabola. If ΔG
0
 is negative 

the ET reaction is spontaneous and will run from left to right. In this case the right parabola 

is lower than the left by the amount -ΔG
0
. We then have the following activation energy: 

 

ΔG* = (λ/4)( 1 + ΔG°/λ)
2
   (5) 

 

The activation energy obviously disappears if -ΔG
0 

= λ. If an electrical field is applied so 

that, e.g., the right (product) parabola is lowered, i.e., ΔG° is more negative, this will also 

lead to a reduction in the activation energy ΔG* .From this follows that if a field is applied, 

the electron leaps more easily between donor and acceptor. The Marcus model has been 

mainly applied to electron transfer reactions in biomolecular contexts and in a few cases 

also to semiconductive polymers [20].  

1.4.4 Organic Charge-Transporting Materials: Hole- and Electron-Transport 

Classification 

Organic semiconductor materials can be classified as hole- or electron-transport 

(HT or ET) materials according to whether the majority charge carriers, under a given set 
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of conditions, arise from removal of electrons from the manifold of filled molecular 

orbitals or from the addition of electrons to empty orbitals, respectively. Therefore, 

materials which have low ionization potentials together with low electron affinities usually 

function as hole-transporting materials, whereas materials which have high electron 

affinities together with high ionization potentials usually function as electron-transporting 

materials. Organic HT and ET materials differ from classical inorganic p- and n-type 

semiconductors in that they are generally undoped, and so that very few charge carriers are 

typically present except under an applied field, in which case carriers can be injected from 

electrodes, from other proximate organic materials, or are generated via photoexcitation. 

Charge transport can be described as a series of successive electron-transfer reactions 

between neutral and charged molecular or polymeric repeat units. In the hopping transport 

regime this process involves essentially localized radical cations (HT) or anions (ET) and 

the corresponding neutral species, while the orbitals of a π-conjugated polymer chain can 

facilitate intrachain electron transfer in the superexchange or coherent tunneling regime. 

The tendency of the holes (electrons) to migrate under the influence of a field can be 

described by the hole (electron) mobility, μ , of the material; this has units of velocity per 

unit field and is, in general, dependent on both the electric field and temperature. An 

additional class of materials, ambipolar materials, have similar hole and electron mobilities 

and can act as either HT or ET materials, depending on the dominant injection processes 

occurring under the experimental conditions of interest. In general, development of high-

performance (environmentally stable, high-mobility) organic ET materials has lagged 

behind that of HT materials despite their importance for fabricating organic photovoltaic 

(OPV) cells and n-channel OFETs, which are particularly valuable as components of 
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organic complementary logic circuits, which require both p- and n-channel transistors. In 

fact, HT materials usually show high mobility and these materials can be obtained through 

simple synthesis procedures. Instead, ET materials show low mobilities, environmental 

instability (radical anions can easily be oxidized by oxygen and water ) and difficulties in 

synthesis. To achieve acceptable performance, ET materials must have high electron 

affinity (ideally greater than ≈ 3 eV, but not exceeding ≈ 5 eV) to facilitate injection from 

contacting electrodes in OFETs or to facilitate exciton separation in conjunction with 

typical HT materials for OPV applications. Moreover, ET materials must have good 

intermolecular electronic orbital overlap to facilitate high mobility and good air stability, 

ideally both as neutral and radical anion materials under device operating conditions. [21] 

The criteria for useful ET materials described above can often be met by appending strong 

electron-withdrawing substituents, such as fluoro, cyano, or acyl, to π -conjugated cores 

such as acenes and oligothiophenes, which, in the absence of these substituents, exhibit HT 

properties. Other classes of ET materials, such as the fullerenes, which have been widely 

studied for a variety of applications, have inherently moderate to high electron affinities in 

the absence of electron-withdrawing substituents. 

1.4.5 Determination of Frontier Orbital Levels 

The frontier orbital levels can be determined or estimated using a number of 

spectroscopic techniques, including x-ray photoemission spectroscopy (XPS), ultraviolet 

photoemission spectroscopy (UPS), and inverse photoemission spectroscopy (IPES). The 

central microscopic process in all optoelectronic devices is the absorption or the generation 

of a photon by an electron. The photon generation can happen spontaneously or can be 
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triggered by another photon. We distinguish the following three key processes and 

corresponding device types: photon absorption in photodetectors, spontaneous photon 

emission in light-emitting diodes and stimulated photon emission in laser diodes. 

Typically, photon absorption and generation involve the generation and recombination of 

an electron-hole pair, respectively. The photon energy hv must be equal or larger than the 

energy gap Eg between valence and conduction band (h, Planck's constant; and v, light 

wave frequency). Correspondingly, the maximum light wavelength  = c/v is equal to the 

so-called gap wavelength 

 

g (nm) =  
  

  
   

    

      
  (6) 

 

where c denotes the free-space light velocity. 

The spectroscopic techniques above mentioned, probe directly the occupied and 

unoccupied electronic structure in the molecular interface region. Alternatively, the 

molecular frontier orbital levels can also be estimated from electrochemical analysis such 

as cyclic voltammetry (CV) in combination with UV-Vis optical absorption spectra. The 

Fermi level of a standard or reference electrode (typically silver or platinum) is located 

between the LUMO and HOMO of organic materials. In order for a working electrode 

(correlated to the standard electrode) to grab an electron from the HOMO of the molecule, 

a positive potential (oxidation potential, in reference to the standard electrode) needs to be 

applied to the working electrode and gradually lower the Fermi level of the working 

electrode until it reaches the HOMO level of the organic molecule where an electron can 
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then transfer from the HOMO of the molecule onto the Fermi state of the electrode. This 

electron transfer would exhibit the first oxidation peak Eox in the CV measurement. When 

the working electrode is applied a negative potential (reduction potential, in reference to 

the standard electrode) and gradually increase its Fermi level until it reaches the LUMO 

level of the molecule, an electron can then transfer from the working electrode onto the 

LUMO orbital of the molecule. this corresponds to the first reduction potential peak Ered. 

Once the reductive and the oxidative potentials of both the sample and the ferrocene (X) are 

measured, the sample LUMO and HOMO levels can then be calculated using equation: 

 

HOMO/LUMO level = [–Eox/red – (4.8 – X)] eV  (7) [26] 

 

where X is the Ferrocene oxidation onset (a positive value) versus reference electrode, 

Eox/red is either a HOMO positive oxidation onset Eox (typically for donors) or a LUMO 

negative reduction onset Ered (typically for acceptors). The Ferrocene HOMO is assumed to 

be 4.8 below vacuum level. 

1.4.6 Organic polymer film-forming processes 

Many techniques can be employed to make organic polymer films. Some of the 

most commonly used methods are described below. 

 

 

 

 



INTODUCTION 

 25 

 Spin-Coating 

Spin coating has been used for several decades for the application of thin films. A typical 

process involves depositing a small puddle of a polymer solution onto the center of a 

substrate and then spinning the substrate at high speed (typically expressed in rpm). 

Centripetal acceleration will cause the resin to spread to, and eventually off, the edge of the 

substrate leaving a thin film of polymer on the surface (see Figure 12). Final film thickness 

and other properties will depend on the nature of the material (viscosity, drying rate, 

percent solids, surface tension, etc.) and the parameters chosen for the spin process. Factors 

such as final rotational speed, acceleration, and fume exhaust contribute to how the 

properties of coated films are defined. One of the most important factors in spin coating is 

repeatability. Subtle variations in the parameters that define the spin process can result in 

drastic variations in the coated film [22]. 

 

 

Figure 12: Spin-coating process. 
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 Langmuir-Blodgett films 

The Langmuir-Blodgett (LB) technique is one of the few methods available for 

manipulating the architecture of an assembly of organic molecules. The LB technique 

offers the means to construct similar organic analogs by building up organic layers one 

monolayer at a time and enables precise geometries (e.g., molecular orientation and 

thickness) to be constructed. The technique involves spreading some suitable organic 

molecule onto a water surface, compressing the film to form a compact monolayer, and 

then transferring this layer to a suitable, substrate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: The LB sequence: spreading, compression, and deposition. 
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The material is usually dissolved in an organic solvent and carefully spread onto the 

surface of water contained in a Langmuir trough. The concentration is such that the 

molecules spread to a depth of one monolayer. If the surface pressure F is small, the 

monolayer behaves as a two-dimensional gas obeying the equation  

 

FA = kT   (8) 

 

where A is the area per molecule, k is Boltzmann's constant, and T is absolute temperature. 

The surface pressure is increased by compressing the film by means of a sliding barrier. 

Eventually, a point is reached where all the molecules touch, forming a "perfect" pinhole-

free monolayer. The change in surface pressure as the area per molecule is decreased is 

shown in  

Figure 13. The correct degree of compression is determined by monitoring the surface 

tension of the water, which starts to drop when the molecules are nearly dense-packed. At 

higher pressures, the monolayer will buckle and collapse. Below the collapse pressure, the 

monolayer can be transferred to a suitable substrate by lowering the substrate carefully 

through the film into the water and slowly withdrawing it ( 

Figure 13). Alternatively, transfer may be effected horizontally b y contacting the surface 

with the substrate oriented horizontally to the film surface. These procedures may be 

repeated successively until the required number of monolayers is obtained. The thickness 

will thus be an integral multiple of the length of the amphiphilic species. In this way, 
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ultrathin, compact, pinhole-free (at least in theory) films of constant, well-controlled 

thickness can be prepared [17]. 

1.4.7 Organic Electronics: Commercial Applications 

Organic materials have a tremendous potential to transform the world of circuit, 

display and communication technology in near future. In all of these sectors there is a 

demand for innovation and development of new technologies and applications leading to 

great social benefits as well as economical and ecological advantages. Organic materials 

offer enormous opportunities: They can be readily and cost-effectively synthesized in large 

amounts. They can be chemically tailored in order to full a specific function with high 

performance. Furthermore, they are compatible with low-temperature (< 250 °C) and low-

cost manufacturing techniques. In the context of consumer electronics can be obtained 

large-area and low cost manufacturing, especially interesting for large-area full color 

displays. Moreover, it is possible to obtain flexible and light devices, that hitherto have not 

been found in other fields of research based on inorganic materials. 

Among the most promising electronic and photonic devices are OLEDs, OFETs and OPVs. 

Rapid advances in materials and manufacturing technology are making OLEDs the leading 

technology for a new generation of thinner, lighter, higher-resolution displays for 

computers, televisions, and small hand-held devices. OLED technology is being 

commercialized as a multi-billion dollar market. OLEDs are already used in small displays 

in cellular phones, car stereos, digital cameras, hand-held computer games, and other 

consumer devices such as electric razors and watches. The research activity in OFETs has 

exploded in recent years. Research has proven that the charge carrier mobilities of a variety 
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of organic semiconductors is comparable to that of amorphous silicon. One of the key goals 

now is the integration of these organic transistors using a cost-effective fabrication process. 

Thin films can be fabricated either by solution processing, which is preferred for high-

volume, low-cost production or by vapor deposition, which yields higher performance. For 

patterning, another plethora of alternatives are available such as printing, stamping, 

selective dewetting, and inkjet printing. One foreseen, early application for OFET 

integrated circuits is the radio-frequency identification (RFID) tag. However, even the 

simplest tags require a few thousand transistors. Much more promising is the introduction 

of OFETs in active-matrix displays. The transistors are used as switches to turn on and off 

corresponding pixels. OFET technology has already proven to be successful in that field, 

since the difficulty of today‟s OFETs, requiring relatively large bias voltages, is inferior to 

the advantage offered through large area processing on plastic substrates.  

As the evidence for global warming continues to build, it is becoming clear, that we will 

have to exploit the renewable energy. Photovoltaic offer consumers the ability to generate 

electricity in a clean, quiet and reliable way. Currently, the main barrier that prevents 

photovoltaic cells (PV) technology from providing a large fraction of our electricity is the 

high cost of manufacturing crystalline silicon. If technical difficulties could be surmounted, 

OPV would constitute an ideal example of large-area, low-cost electronics for organic 

materials. In the future, is desirable to think if improved materials and device architectures 

can be fabricated, there is no theoretical reason that prevent OPVs from producing 

efficiencies that are competitive with commercially produced crystalline silicon PV cells, 

reaching 10-20%. Organic PV cells seem to represent a viable future technology as a clean 

and regenerative energy source, generating major social and environmental benefits along 
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with the profits.  

The growth of population and industrial development gave rise to unprecedented air 

pollution that can cause harm to humans and the environment. Efforts to reduce this 

pollution include recognition of the problem, collection of information, definition of 

sources and causes, and the selection and implementation of the appropriate solutions. In 

order to control the emission levels of pollutants, portable devices using arrays of gas 

sensors have been developed over recent years. These so-called electronic noses (e-nose) 

are mainly based on selective layers made from metal oxide semiconductors. However they 

have been shown some drawbacks, which include their poor selectivity and sensitivity, 

high operation temperatures, and instability because of response to humidity. Conjugated 

polymers have been proposed as alternative materials to improve these properties. The easy 

synthesis, the diversity, and the sensitivity at room temperature are the main advantages of 

these polymers over inorganic materials. [23] 
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1.5 ORGANIC FIELD-EFFECT TRANSISTORS (OFETs) 

1.5.1 Introduction 

Organic field-effect transistor devices are being investigated for a number of low-

cost, large-area applications, particularly those that are compatible with flexible plastic 

circuits. The organic materials that have been used as active semiconductor materials 

include both sublimed and solution processed semiconductors such as pentacene, 

oligothiophenes, hexadecafluorocopper, phtalocyanine, polythiophene, etc. This choice of 

materials opens up several possibilities to develop integrated circuit technologies based on 

organic transistors for various large area, low-cost applications. Organic polymer 

transistors have also been integrated with optical devices such as light-emitting diodes, 

electrophoretic cells and liquid crystals. [24] 

1.5.2 Working Principle of FETs 

A field-effect transistor (organic or inorganic) requires the following components 

(shown in Figure 14-a): a thin semiconducting layer, which is separated from a gate 

electrode by the insulating gate dielectric; source and drain electrodes of width W (channel 

width) separated by a distance L (channel length) that are in contact with the 

semiconducting layer. 
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Figure 14: (a) Schematic structure of a field-effect transistor and applied voltages: L = channel length; W = 

channel width; Vd = drain voltage; Vg = gate voltage; VTh ) threshold voltage; Id ) drain current. (b-d) 

Illustrations of operating regimes of field-effect transistors: (b) linear regime; (c) start of saturation regime at 

pinchoff; (d) saturation regime and corresponding current-voltage characteristics “Ad. from [25]”. 

 

The semiconducting layer in the case of an organic FET is usually vacuum sublimed, spin-

coated, or drop-cast depending on the semiconductor. The gate electrode can be a metal or 

a conducting polymer, but very often, highly doped silicon serves as substrate and gate 

electrode at once. As gate dielectrics, inorganic insulators, such as, for example, SiO2 

(thermally grown on Si or sputtered), Al2O3, and Si3N4, or polymeric insulators, such as, 

for example, poly(methylmethacrylate) (PMMA) or poly(4-vinylphenol) (PVP) are 

commonly used depending on the transistor structure. The source and drain electrodes, 

which inject charges into the semiconductor, are usually high work function metals such as 
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gold (also Pd, Pt, and Ag), but conducting polymers, e.g. poly(3,4-

ethylenedioxythiophene), poly(styrenesulfonate) (PEDOT:PSS); polyaniline (PANI), 

which can be printed, are used as well. Voltage is usually applied to the gate electrode (Vg) 

and the drain electrode (Vd). The source electrode is normally grounded (Vs = 0). The 

potential difference between the source and the gate is usually just called the gate voltage 

(Vg), while the potential difference between the source and the drain is referred to as the 

source-drain voltage (Vds). The source is the charge-injecting electrode, as it is always more 

negative than the gate electrode when a positive gate voltage is applied (electrons are 

injected) and more positive than the gate electrode when a negative gate voltage is applied 

(holes are injected). Figure 14 (b-d) illustrates the basic operating regimes and associated 

current-voltage characteristics of a field-effect transistor. First we can assume a simple 

metal-insulator semiconductor (MIS) diode (that is, there is no potential difference between 

source and drain) with a voltage Vg applied to the gate electrode. A positive gate voltage 

for example will induce negative charges (electrons) at the insulator-semiconductor 

interface that were injected from the grounded electrodes. For negative Vg, positive charges 

(holes) will be accumulated. The number of accumulated charges is proportional to Vg and 

the capacitance Ci of the insulator. However, not all induced charges are mobile and will 

thus contribute to the current in a field-effect transistor. Deep traps first have to be filled 

before the additionally induced charges can be mobile. That is, a gate voltage has to be 

applied that is higher than a threshold voltage VTh, and thus, the effective gate voltage is Vg 

- VTh. On the other hand, donor (for n-channel) or acceptor (for p-channel) states and 

interface dipoles can create an internal potential at the interface and thus cause 

accumulation of charges in the channel when Vg = 0 so that in some cases an opposite 
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voltage has to be applied to turn the channel off. When no source-drain bias is applied, the 

charge carrier concentration in the transistor channel is uniform. A linear gradient of charge 

density from the carrier injecting source to the extracting drain forms when a small source-

drain voltage is applied (Vds << Vg, Figure 14-b). This is the linear regime, in which the 

current flowing through the channel is directly proportional to Vds. The potential V(x) 

within the channel increases linearly from the source (x = 0, V(x) = 0) to Vds at the drain 

electrode (x = L, V(x) = Vds). When the source-drain voltage is further increased, a point Vds 

= Vg - VTh is reached, at which the channel is “pinched off” (Figure 14-c). That means a 

depletion region forms next to the drain because the difference between the local potential 

V(x) and the gate voltage is now below the threshold voltage. A space-charge-limited 

saturation current Ids,sat can flow across this narrow depletion zone as carriers are swept 

from the pinch-off point to the drain by the comparatively high electric field in the 

depletion region. Further increasing the source-drain voltage will not substantially increase 

the current but leads to an expansion of the depletion region and thus a slight shortening of 

the channel. Since the potential at the pinch-off point remains Vg - VTh and thus the 

potential drop between that point and the source electrode stays approximately the same, 

the current saturates at a level Ids,sat (Figure 14-d). Note that transistors with short channel 

lengths require thin gate dielectrics, typically L > 10ddielectric, in order to ensure that the field 

created by the gate voltage determines the charge distribution within the channel (gradual 

channel approximation) and is not dominated by the lateral field due to the source-drain 

voltage. Otherwise, a space-charge limited bulk current will prevent saturation and the gate 

voltage will not determine the “on” or “off” state of the transistor. [25] 
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1.5.3 Current-Voltage Characteristics  

The current-voltage characteristics in the different operating regimes of field-effect 

transistors can be described analytically assuming the gradual channel approximation. That 

is, the field perpendicular to the current flow generated by the gate voltage is much larger 

than the electric field parallel to the current flow created by the drain voltage. This is valid 

for long channel transistors but starts to fail for very short channel lengths. In the linear 

regime with Vds ˂˂ Vg, the drain current Id can be described to  

 

Id  =  
 

 
                    (9) 

 

where W is the channel width,  is the charge mobility, Ci is the capacitance per unit area 

of the gate dielectric. The drain current is directly proportional to Vg, and the field-effect 

mobility in the linear regime (lin) can thus be extracted from the gradient of Id versus Vg at 

constant Vds (also applicable for gate voltage dependent mobilities). 

 

lin =  
    

   
   

 

      
  (10) 

 

The channel is pinched off when Vds = Vg - VTh. The current cannot increase substantially 

anymore and saturates (Ids,sat). Thus, Equation 8 is no longer valid. Neglecting channel 

shortening due to the depletion region at the drain, the saturation current can be obtained by 

substituting Vds with Vg - VTh, yielding  
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Ids,sat =  
 

  
               

2  (11) 

 

In the saturation regime, the square root of the saturation current is directly proportional to 

the gate voltage. This equation assumes that the mobility is gate voltage independent. If 

this is not the case, a gate voltage dependent saturation mobility (Isat) can be extracted using 

 

sat(Vg) =  
        

   
   

 

   
   

 

      
   (12) 

 

Figure 15-a shows typical output characteristics (that is the drain current versus source-

drain voltage for different constant gate voltages) of a polymer n-channel transistor with a 

channel length of 200 nm. From the output characteristics, the linear regime at low Vds and 

the saturation regime at high Vds are evident. Figure 15-b shows the transfer characteristics 

(that is the drain current versus gate voltage at constant Vds) of the same transistor in the 

linear regime (Vds , Vg) both as a semilog plot and as a linear plot. From the semilog plot 

one can easily extract the onset voltage (Von) (the voltage at which the drain current 

abruptly increases above a defined low off-current level) and the subthreshold swing (S = 

dVg/d(log Ids)), which depend on the gate dielectric capacitance and the trap states at the 

interface. The gradient of the current increase in the linear regime is directly proportional 

to the mobility according to Equation 9 and is constant if the mobility is gate voltage 

independent. Most semiconductors, however, show gate voltage dependent mobilities, and 
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thus, the curve shape may deviate from being linear. Figure 15-c shows a transfer curve in 

the saturation regime. Here the square root of the drain current should be linearly 

dependent on the gate voltage, and its gradient is proportional to the mobility according to 

Equation 10. Extrapolating the linear fit to zero yields the threshold voltage VTh. Threshold 

voltages can originate from several effects and depend strongly on the semiconductor and 

dielectric used. Built-in dipoles, impurities, interface states, and, in particular, charge traps 

contribute to the threshold voltage.  

 

 

Figure 15: Representative current-voltage characteristics of an n-channel organic field-effect transistor. (a) 

output characteristics indicating the linear and saturation regimes; (b) transfer characteristics in the linear 

regime (Vd << Vg), indicating the onset voltage (Von) when the drain current increases abruptly; (c) transfer 

characteristics in the saturation regime (Vds > Vg - VTh), indicating the threshold voltage VTh, where the linear 

fit to the square root of the drain current intersects with the x-axis “Ad. from [25]”. 

 

Another important parameter of FETs that can be extracted from the transfer characteristics 

is the on/off ratio, which is the ratio of the drain current in the on-state at a particular gate 
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voltage and the drain current in the off-state (Ion/Ioff). For clean switching behavior of the 

transistor, this value should be as large as possible. 

1.5.4 Device Structure 

The most commonly found structures (in relation to the substrate) are the bottom 

contact contact/top gate (BC/TG, Figure 16-a), bottom contact/bottom gate (BC/BG, Figure 

16-b), and top contact/bottom gate (TC/BG, Figure 16-c) structures. Transistors with the 

same components but different geometries can show very dissimilar behavior. 

 

  

Figure 16: Common field-effect transistor configurations. (a) bottom contact, top gate (BC/TG); (b) bottom 

contact, bottom gate (BC/BG); (c) top contact, bottom gate (TC/BG). “Ad. from [25]” 

 

One of the major differences between these device geometries arises from the position of 

the injecting electrodes in relation to the gate. In the bottom contact/bottom gate structure, 

charges are directly injected into the channel of accumulated charges at the semiconductor-

dielectric interface. In the other two structures, the source/drain electrodes and the channel 

are separated by the semiconducting layer. Thus, charges first have to travel through 

several tens of nanometers of undoped semiconductor before they reach the channel. 

However, in the staggered BC/TG and TC/BG configurations, charges are injected not only 
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from the edge of the electrode but also from those parts of the electrode that overlap with 

the gate electrode, contributing to the current depending on distance from the edge (current 

crowding). 

1.5.5 Organic Functional Materials for OFET Devices 

Efficient FET charge transport and therefore high device performance can be 

achieved by the use of proper materials and material combination to fabricate the transistor. 

Source, drain and gate contacts must exhibit large conductivity and ensure ohmic contacts 

to enhance device speed. The gate dielectric must exhibit large dielectric strength to ensure 

charge carrier accumulation in FET channel upon application of the gate field. As far as the 

most important FET materials is concerned, the organic semiconductor, it must satisfy 

general criteria relating both injection and current-carrying characteristics, in particular: (i) 

HOMO and LUMO energies of the individual molecules must be at levels where 

holes/electrons can be incorporated at accessible applied electric field, (ii) solid should be 

extremely pure since impurities act as charge carrier traps, (iii) molecules should be 

preferentially orient with the long molecular axes approximately perpendicular to the FET 

substrate in order to have charge transport along the direction of intermolecular  

stacking, (iv) crystalline domains of the semiconductor must cover the area between source 

and drain contacts uniformly. [26] 

The development of new materials for p-channel transistors continues to be a major area of 

research. Apart from high mobilities, major objectives are stability under ambient 

conditions and under bias stress, as well as easy processing, e.g., from solution, which 

would make organic semiconductors a viable alternative to amorphous silicon. For small 
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molecule, thin-film transistors, pentacene (Figure 17) is still the material with the highest 

mobility, but it must be vacuum sublimed, while solution processing is technologically 

more practical. Various solution processable precursor forms of pentacene were 

synthesized and tested in field-effect transistors, but they usually did not show as high 

mobilities as vacuum-sublimed films. Recently, new soluble pentacene derivatives with 

triisoalkylsilylethynyl groups at the 6,13-positions (Figure 17) were reported that show  

 

 

Figure 17: Small molecule semiconductors, which are commonly known for their hole channel 

characteristics in field-effect transistors “Ad. from [25]”. 

. 
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hole mobilities of up to 0.17 cm
2
V

-1
s

-1 
[25]. Similarly functionalized anthradithiophenes 

(triethylsilylethynyl anthradithiophene, Figure 17) showed even higher mobilities of up to 1 

cm
2
V

-1
s

-1
, probably due to improved -stacking. Solution processable polymer 

semiconductors for p-channel transistors have also shown improved mobility and stability 

under ambient conditions in recent years. One of the most promising building blocks for 

polymer semiconductors remains thiophene. Regioregular poly(3-hexylthiophene) (P3HT, 

Figure 18) used to be the conjugated polymer with the highest hole mobilities of up to 0.1 

cm
2
V

-1
s

-1
 depending on processing conditions. P3HT, however, is very susceptible to 

unintentional doping due to its relatively low ionization potential (4.8 eV) and thus shows 

poor performance under ambient conditions [25]. In order to increase the ionization 

potential while maintaining good transport properties, the conjugation length and thus 

delocalization of charges should be reduced. This can be achieved, e.g., by attaching alkyl 

chains only to some thienylene moieties and thus allowing more rotational freedom, which 

reduces the conjugation length. In fact, has been proved this concept for poly(3,3‟‟‟-

dialkylquaterthiophene)s (PQT-12, Figure 18), which exhibit high field-effect mobilities 

and good air stability.[25] An alternative approach is to incorporate a fused aromatic 

heterocycle that cannot form an extended conjugated pathway with both its neighboring 

monomer units, as shown for thieno[2,3-b]thiophene with sulfur atoms in syn position. 

Recently, the same approach using thieno[2,3-b]thiophene with sulfur atoms in anti 

position (Figure 18) yielded a liquid crystalline, reasonably air-stable semiconducting 

polymer that forms large crystals after annealing and shows the highest hole mobilities 

demonstrated for a semiconducting polymer up to now (0.6 cm
2
V

-1
s

-1
) [25]. 
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One of the main challenges of fabricating a n-channel transistor is the injection of electrons 

into the LUMO level of the semiconductor from a suitable electrode. For p-channel 

transistors, the injection of holes into the HOMO level is easily achieved using  

 

 

Figure 18: Conjugated semiconducting polymers that have shown hole and, in some cases, electron field-

effect transport “Ad. from [25]”. 

 

gold electrodes because the HOMO level of many organic semiconductors is in the range 

of 4.8 to 5.3 eV, which aligns well with the work function of gold (4.8-5.1 eV). The 

LUMO level, on the other hand, often lies much higher, at around 2-3 eV. When gold 

electrodes are used in this case, observation of n-channel behavior cannot be expected due 

to the extremely high injection barrier of 2-3 eV. In order to inject electrons, one needs to 
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use low work function metals, such as calcium, magnesium, or aluminum, that are not 

environmentally stable. Most newly synthesized organic semiconductors are tested using 

convenient gold electrodes, and thus n-channel transport may not be observed due to the 

misalignment of the LUMO level with the work function of gold. Another major obstacle is 

the susceptibility of organic semiconductors to water and oxygen under ambient conditions. 

Organic radical anions as they are present in the channel when a positive gate voltage is 

applied have a very high reducing power and can thus react with water or oxygen that have 

diffused into the organic film. In fact, is necessary to stabilize the charge carriers in 

electron transport materials with respect to H2O reduction. This means that the LUMO of 

this molecules should lie at an energy below approximately -3.7 eV with respect to 

vacuum. However, molecular materials in which negatively charged carriers are not 

thermodynamically susceptible to O2 oxidation would require a far more daunting 

reduction potential of greater than 0.57 V, and thus, LUMO energies less than -4.9 eV. 

However, an overpotential to the charge carrier O2 reaction could, in principle, prevent 

ambient trapping in materials where the LUMO energies are considerably less negative. 

Recent experimental and theoretical studies empirically identified this energetic threshold 

at approximately -4.0 to -4.3 eV, which scales to an overpotential versus O2 reduction of 

approximately 0.9 to 0.6 V. [27]. In order to fabricate n-channel transistors that can be 

processed under the same conditions and with the same electrodes as those used for p-

channel transistors, many new materials were synthesized. A number of design rules have 

guided the search for these so-called “n-type” semiconductors. In order to be able to inject 

electrons into the LUMO level from environmentally stable electrodes, such as gold, the 

LUMO level must be lowered (i.e., increasing the electron affinity) substantially in order to 
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align with the work function of the metal. At the same time, increasing the electron affinity 

of a semiconducting material also improves its environmental stability, that is, its 

sensitivity to oxygen and water. On the basis of known n-channel transistors, it was 

generally assumed that a high electron affinity (at least 3 eV) is necessary to observe n-

channel behavior. This is achieved by taking a known semiconducting core molecule and 

adding strong electron withdrawing groups such as fluorine, cyano, or diimide moieties. At 

the same time, the molecular packing of those molecules might be altered due to these 

changes, which could impede or improve electron transfer.  

 

Figure 19: Organic semiconductors  that show predominantly n-channel behavior in transistors with SiO2 as 

a gate dielectric and gold source-drain electrodes “Ad. from [25]”. 
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A class of molecules with exceptionally high electron affinity are the fullerenes and their 

derivatives (e.g., C60 and PCBM, Figure 19). They were shown to yield n-channel 

transistors with very high electron mobilities. Although a high electron affinity improves 

the environmental stability of the organic semiconductor, the radical anion remains 

thermodynamically unstable, especially toward oxygen in the presence of water. A kinetic 

barrier against diffusion of water and air into the active channel region during operation is 

needed. Very close packing of molecules, as was shown for fluorinated copper 

phthalocyanine, seems to be beneficial in that respect. Very few of the demonstrated n-

channel transistors are stable under ambient conditions; among them are transistors based 

on fluorinated copper phthalocyanine (FCuPC), dicyanoperylene-3,4:9,10-

bis(dicarboximide) (PDI-8CN2), and -diperfluorohexylsexithiophene (DHF-6T) 

(chemical structures in Figure 19). In addition to stability and energetic considerations, the 

orientation of molecules to each other and the associated transfer integrals of electrons play 

a role. The best LUMO-LUMO overlap for electron transport may be different from the 

ideal HOMO-HOMO overlap for hole transport. The molecular packing in crystalline 

semiconductors can strongly affect the observation of p- or n-channel characteristics. This 

may be less important for amorphous polymer semiconductors. Nevertheless, one of the 

few conjugated polymers showing n-channel behavior until recently was 

poly(benzobisimidazobenzophenanthroline) (BBL, Figure 19). 
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1.6 ORGANIC SENSORS 

1.6.1 Introduction 

Desired properties of a chemical sensor include high sensitivity, a large dynamic 

range, high selectivity or specificity to a target analyte, related low cross-sensitivity to 

interferences, perfect reversibility of the physicochemical detection or sensing process 

(short sensor recovery and response times), and long-term stability of the sensor and 

sensing material. Unfortunately, a sensor exhibiting all these properties is a largely 

unrealizable ideal. Sensor sensitivity, selectivity, speed of response, and reversibility are 

determined by the thermodynamics and kinetics of sensor material/analyte interactions. In 

particular, high sensitivity and specificity on the one hand and perfect reversibility on the 

other hand impose contradictory constraints on the sensor design: high sensitivity and 

selectivity are typically associated with strong interactions, whereas perfect reversibility 

requires weak interactions. Consequently, it is necessary to compromise, and, in most 

cases, sensors showing partial selectivity to only some of the detected species are used to 

ensure reversibility. [28] 

The basic strategy for the design of a chemical sensor is to connect a molecular recognition 

site (receptor site) with a signaling unit in such a way that these two functional components 

communicate. In such a system, a binding event between the receptor site and a target 

analyte triggers a change in the measurable properties of the materials. Hence, simply 

stated, factors that can be modified by molecular design are the affinity between the 

receptor site and the target analyte (i.e. binding constant (K) and selectivity) and the 

transduction efficiency of the binding event into an observable signal. The interaction of 
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the analytes with organic polymers can cause changes in their color, mass, work function 

and electrical conductivity. In particular, the transport properties of these materials can 

provide these types of amplification and both the mobility of excitons (excited states) and 

charge carriers (electrons/holes) in conjugated polymers are dramatically influenced by 

small perturbations.  

1.6.2 Volatile Organic Compounds (VOCs) Detection: Transduction Mechanism 

An advantage of polymeric materials is that sensory devices can easily be fabricated 

from these materials on electrodes either by spin coating and/or drop casting from solution 

or anodic electrochemical polymerization from an electrolyte solution. The electrode 

configuration of the sensor will vary according to the sensing mechanism. A potentiometric 

and amperometric signal can be read through a single electrode. Conductometric sensory 

devices, on the other hand, are most easily monitored by passing charge between two 

electrodes. The conductance of a material is a bulk transport property and as a result is 

more sensitive than potentiometric and amperometric methods that are dependent on local 

electronic structure.  

Most conductive polymers, such as polyaniline (PANI), polypyrrole (PP) and 

poly(phenylene sulphide-phenyleneamine) (PPSA), are p-type semiconductors, unstable in 

the undoped state. In contrast, polythiophene (PT) films are stable when undoped or very 

lightly doped. The primary dopants (anions), introduced during the chemical or 

electrochemical polymerization, generally increase the electrical conductivity. Primary 

doping can be accomplished chemically or electrochemically, and its level depends on the 

type of the dopant and on its distribution in the polymer. The nature of the anion strongly 
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influences the morphology of the polymer. Anions can also serve as specific binding sites 

for interaction of the polymer with the analyte gas. The introduction of an electrically 

neutral gas into a conductive polymer can be seen as adding an „inert‟ secondary dopant, 

which, when applied to a primary-doped polymer, induces still further changes in its 

electronic, optical or magnetic properties. The effects of secondary doping are based 

primarily on a change in molecular conformation of the polymer from compact to 

expanded coil. Changes in the electronic properties are related to changes of electronic 

coupling between redox sites in the matrix that define a physical electron transfer pathway 

in the conductive polymer, recognized in conductivity and work function. The electron 

transfer pathway relies on the premise that covalent bonds, hydrogen bonds and Van der 

Waals contacts between atoms modulate electronic coupling differently. The magnitude of 

the electronic coupling depends on the extent of these chemical interactions. A secondary 

dopant differs from a primary dopant in that a charge transfer between the dopant and the 

polymer is carried out. The affinity of the conductive polymer for the secondary dopant can 

be increased by introducing specific binding sites, creating template-synthesized 

nanostructures or using post-treatments. As an example, Figure 20 illustrates typical 

response cross-sensitivity for different types of sensing materials toward a variety of 

vapors. In Figure 21 has been reported the simplest form of chemiresistor. It consists of a 

pair of electrodes forming contacts to the polymer, deposited on an insulating substrate. 
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Figure 20: Comparison between the work-function responses of conducting polymer layers to different 

vapors. Initial work function (versus Au reference) was adjusted electrochemically to different initial values 

“Ad. from [28]”. 

 

When a constant current is applied, the resulting potential difference at the electrodes 

becomes the response signal. But the simplicity of this sensing concept and its realization 

comes at a price. 

 

Figure 21: Chemiresistor. B:bulk of the conducting polymer. S:surface. I:interface with the insulating 

substrate. C:interface with the contacts “Ad. from [28]”. 
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As the polymer interacts with gaseous species it can act either as an electron donor or an 

electron acceptor. If a p-type polymer donates electrons to the gas its hole conductivity 

increases. Conversely, when the same polymer acts as an electron acceptor its conductivity 

decreases. Besides the change in the number of carriers, there can be a change in their bulk 

mobility. It is usually due to conformational changes of the polymer backbone. 

Disadvantages of the response originating in the bulk of the conductive polymers are the 

relatively long time constant (tens of seconds to minutes), often accompanied by hysteresis. 

These effects are caused by slow penetration of gases into the organic material. [29] 

1.6.3 Conducting Polymers for Volatile Organic Compounds (VOCs) Detection 

Examples of conjugated polymers and their derivatives demonstrated for gas 

sensing with wireless and low-power transducers include polyaniline, polythiophenes, 

polypyrrole, polypyrroles and poly(vinyl ferrocene). Conjugated polymers (e.g., 

poly(fluorene)diphenylpropane) originally developed for OLEDs have also been 

demonstrated with wireless resonant sensors as sensing materials with significantly 

suppressed humidity effects. Formulation of conjugated polymers with different dielectric 

and highly conducting additives provides an way to expand the diversity of response 

selectivity to different gases. Recently, two “classic” conjugated polymers with diverse 

response mechanisms to different vapors were applied to transducers these independent 

changes and to demonstrate the power of passive wireless sensors. Poly(3,4-

ethylenedioxythiophene) (PEDOT) was formulated with poly-(4-styrenesulfonate) (PSS) 

and employed for sensing of acetonitrile (ACN), ethanol (EtOH), and water (H2O) vapors 

[29]. The response mechanism of PEDOT-PSS to polar organic vapors involves 
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conformational changes within the polymer chains due to the interaction between the 

dipoles of the vapors and dipoles or charges on the polymer chains. For example, the H2O 

vapor-response mechanism has been shown to involve dipole molecular effects with the 

polar PEDOT-PSS formulation. Another “classic” polymer, polyaniline (PANI), was 

formulated with camphorsulfonic acid (CSA) and employed for sensing ammonia (NH3) 

and H2O vapors [29]. The response mechanism of PANI-CSA to NH3 involved polymer 

deprotonation, whereas the response mechanism to H2O involved formation of hydrogen 

bonds and swelling. New conjugated polymers have been synthesized and implemented for 

VOCs detection with detection limits down to the low part per-million-high part-per-billion 

range with reduced humidity effects. Poly(fluorene)diphenylpropane polymer was applied 

onto a sensor and exposed to different concentrations of trichloroethylene (TCE), water, 

and toluene vapors. Several routes to improve the selectivity and stability of conjugated 

polymers have been identified, including chemical modifications (e.g., side-group 

substitution of heterocycles, copolymerization, introduction of end-groups), doping, charge 

compensation for oxidized polymers by incorporation of functionalized counterions, 

formation of organic-inorganic hybrids, and surface functionalization. Rational 

manipulation of polymerization conditions can also be used to control sensor-related 

properties of conjugated polymers (e.g., molecular weight, monomer connectivity, 

conductivity, band gap, and morphology). It has been found that, under certain conditions, 

regioregular poly(3-hexylthiophenes) self-assemble into highly ordered and partially 

crystalline structures with improved charge carrier mobility [29]. A field-effect transistor 

readout was well suited to benefit from the improved field effect mobility in these 

conjugated polymers. Good contacts between the polythiophene polymer and the metal 
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electrodes of a chemiresistor sensor were provided by combining nanotransfer printing and 

solventless polymerization. Vapor-based polymerization of thiophene resulted in a highly 

oriented polythiophene film. Deposition methods for conjugated polymers can facilitate the 

formation of different morphologies. For example, inkjetted films can exhibit significantly 

different structures compared to films drop-cast from low vapor pressure solvents. The 

increased drying time of regioregular poly(3-hexylthiophene) polymer solution allowed 

polymer molecules to self-assemble into dense 10-30 nm wide nanofibril structures when 

drop-cast [29].  
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1.7 ORGANIC SOLAR CELLS 

1.7.1 Introduction 

Until very recently, the development of solar photovoltaic systems has been 

essentially related to inorganic semiconductors, in particular polycrystalline silicon. While 

the maximum yields approach 25%, the high cost of fabrication of the raw materials yields 

only limited commercial developments. Alternatives using micro-crystalline or amorphous 

silicon have been widely studied; and maximum yields are close to 15%. Nevertheless, 

costs remain problematic due to the use of highly polluting materials, leaving inorganic 

solar cells as poor competitors against other more prevalent energy sources. In parallel, the 

use of organic semiconductors developed during the 1970s and 1980s was envisaged as a 

possible route. There are many foreseeable advantages in commercializing organic and 

polymer-based photovoltaic (PV) systems, including ease of fabrication and manipulation, 

flexibility, low weight and low cost. [31] In fact, deposition of organics by screen printing, 

doctor blading, inkjet printing, and spray deposition is possible because these materials can 

be made soluble. Additionally, these deposition techniques all take place at low 

temperature, which allows devices to be fabricated on plastic substrates for flexible 

devices. In addition to the inherent economics of high-throughput manufacturing, light 

weight and flexibility are qualities claimed to offer a reduction in the price of PV panels by 

reducing installation costs. Flexible PV also opens up niche markets like portable power 

generation and aesthetic PV in building design. [32]  
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1.7.2 Principle of Operation 

Organic solar cells have a planar-layered structure, where the organic light-

absorbing layer is sandwiched between two different electrodes. One of the electrodes must 

be (semi-) transparent, often Indium–tin-oxide (ITO), but a thin metal layer can also be 

used. The other electrode is very often aluminum (calcium, magnesium, gold and others are 

also used). Basically, the underlying principle of a light-harvesting organic PV cell 

(sometimes referred to as photodetecting diodes) is the reverse of the principle in (LEDs) 

(Figure 22) [33] 

 

 

 

 

 

Figure 22: A PV device (right) is the reverse of a LED (left). In both cases an organic material is sandwiched 

between two electrodes. In PVs electrons are collected at the metal electrode and holes are collected at the 

ITO electrode. The reverse happens in a LED: electrons are introduced at the metal electrode (cathode), 

which recombine with holes introduced at the ITO electrode (anode) “Ad. from [33]”. 

 

In LEDs an electron is introduced at the low-workfunction electrode (cathode) with the 

balanced introduction of a hole at the high-workfunction electrode (anode). At some point 

the electron and the hole meets, and upon recombination light is emitted. The reverse 

happens in a PV device. When light inside on device, one photon is absorbed: electron-hole 
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pairs (excitons) are generated at the p-type donor material due to electron transitions from 

π-HOMO to π∗-LUMO bands (Figure 23).  

 

 

Figure 23: Energy levels and light harvesting. Upon irradiation an electron is promoted to the LUMO leaving 

a hole behind in the HOMO. Electrons are collected at the Al electrode and holes at the ITO electrode. : 

workfunction, : electron affinity, IP: ionization potential, Eg: optical bandgap “Ad. from [33]”. 

 

The generation of an electron-hole pair, by photoexcitation, results in an excited but neutral 

state with a limited, finite lifetime; this state is termed an exciton and consists of an 

electron and a hole paired by an energy (Eex) that is smaller than the energy gap between 

the limits of the permitted bands (LUMO and HOMO bands, respectively). If Eg is the 

energy gap, then (Eg - Eex) is the exciton binding energy (around 0.1-0.2 eV in organics). 

The occupation of these excited states, the LUMO by the electron, and the HOMO by the 

hole, is termed a nonrecombined exciton, generally observed in organic materials. This 

quasi-particle diffuses inside the donor material as long as recombination processes (of the 



INTODUCTION 

 56 

hole-electron pair which makes up the exciton) do not take place. Förster (long range) or 

Dexter (between adjacent molecules) transfers can take place between an excited molecule 

(considered as excitation donor) and a molecule that receives the excitation (excitation 

acceptor). If the diffusion length is sufficiently long that the exciton meets an internal field, 

hole and electron separation occurs. The internal field may be obtained at a donor-acceptor 

interface, provided the LUMO level of the acceptor is lower than the excitonic state located 

at the bottom of the conduction band of the donor. More precisely, the condition which 

must be fulfilled is Eex > Ipd-χEa, where IPd is the ionization energy of the acceptor, and χEa 

is the electronic affinity of the acceptor. ([Ipd-χEa] is the energy of electron and hole just 

after the charge transfer at the donor-acceptor interface). Moreover, excitons are considered 

to be localized on specific chain segments. In simple PV devices and diodes based on 

organic semiconductors the primary exciton dissociation site is at the electrode interface. 

This limits the effective light-harvesting thickness of the device, since excitons formed in 

the middle of the organic layer never reaches the electrode interface if the layer is too thick. 

Typical exciton diffusion distances are on the order of 10 nm. Afterwards, carriers migrate 

towards the electrodes. This transport involves the classic mechanism for hopping 

processes in organic materials. Traps can reduce the mobility.  

1.7.3 Electronic Donor-Acceptor Interactions 

Recently, two main approaches have been explored in the effort to develop PV 

viable devices: the donor-acceptor bilayer, commonly achieved by vacuum deposition of 

molecular components, and the so-called bulk heterojunction (BHJ), which is represented 

in the ideal case as a bicontinuous composite of donor and acceptor phases, thereby 
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maximizing the all-important interfacial area between the donors and acceptors. The real 

advantage of these BHJ devices, which can be processed in solution, over vacuum 

deposition is the ability to process the composite active layer from solution in a single step, 

by using a variety of techniques that range from inkjet printing to spin coating and roller 

casting. [34] However, regardless of the preparation‟s method, one feature that extends 

across all classes of organic solar cells is the almost ubiquitous use of fullerenes as the 

electronaccepting component. The high electron affinity and superior ability to transport 

charge make fullerenes the best acceptor component currently available for these devices. 

The state-of-the-art in the field of organic photovoltaics is currently represented by BHJ 

solar cells based on poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-

phenyl-C61-butyric acid methyl ester (PCBM), with reproducible efficiencies approaching 

5%. In principle, the optimization of polymer-fullerene solar cells is based on fine-tuning 

of the electronic properties and interactions of the donor and acceptor components, so as to 

absorb the most light, generate the greatest number of free charges, with minimal 

concomitant loss of energy, and transport the charges to the respective electrodes at a 

maximum rate and with a minimum of recombination. The first constraint is that the donor 

must be capable of transferring charge to the fullerene upon excitation (Figure 24). A 

downhill energetic driving force is necessary for this process to be favorable and the 

driving force must exceed the exciton binding energy. This binding energy is the 

Coulombic attraction of the bound electron-hole pair in the donor, and typical values are 

estimated to be 0.4-0.5 eV. 
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Figure 24: Band structure diagram illustrating the HOMO and LUMO energies of MDMO-PPV, P3HT, and 

an “ideal” donor relative to the band structure of PCBM. Energy values are reported as absolute values 

relative to a vacuum “Ad. from [34]”. 

1.7.4 Determination of Photovoltaic Performance 

The photocurrent action spectrum of solar cells is very informative for the 

characterization of new materials in a device. It represents the ratio of the observed 

photocurrent divided by the incident photon flux as a function of the excitation wavelength 

and is referred to as the incident photon-to-current conversion efficiency (IPCE). [35] The 

photocurrent which is normally measured is obtained outside the solar cell device; 

therefore, IPCE can also be named as external quantum efficiency (EQE), e.g. the current 

obtained outside the photovoltaic device per incoming photon, that is the ratio of the 
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number of carriers collected by the solar cell to the number of photons of a given energy 

incident on the solar cell: 
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where I is the photocurrent in Am
-2

 and P is the incident light power in Wm
-2

. By recording 

the photocurrent response while continuously varying the wavelength of the incident light, 

the conversion efficiency of photons to electrons, namely IPCE, can be determined. The 

IPCE value is expressed as a product of three factors: 

 

                       (14) 

 

where LHE(λ) is the light-harvesting efficiency of active materials, Φinj is the charge 

injection efficiency between the active materials, and Φcol is the charge collection 

efficiency at the external electrodes. The maximum IPCE value (IPCEmax) is a key 

parameter for describing the device and correlating the performance to the dye absorption 

and thereby its molecular structure. The higher the IPCEmax and the broader the spectrum, 

the higher the photocurrent will be (Isc corresponds to the integral IPCE curve). A quantum 

efficiency curve for an ideal solar cell is shown in Figure 25. While quantum efficiency 

ideally has the square shape shown above, the quantum efficiency for most solar cells is 

reduced due to recombination effects. The same mechanisms which affect the collection 

probability also affect the quantum efficiency. For example, front surface passivation 
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affects carriers generated near the surface, and since blue light is absorbed very close to the 

surface, high front surface recombination will affect the "blue" portion of the quantum 

efficiency. Similarly, green light is absorbed in the bulk of a solar cell and a low diffusion 

length will affect the collection probability from the solar cell bulk and reduce the quantum 

efficiency in the green portion of the spectrum. The quantum efficiency can be viewed as 

the collection probability due the generation profile of a single wavelength, integrated over 

the device thickness and normalized to the incident number of photons. [36] 

 

 

Figure 25: The quantum efficiency of a silicon solar cell “Ad. from [36]”. 

 

Therefore, the photocurrent action spectrum inspects the ability of the solar cells to convert 

photons to electrons under the irradiation of light with various wavelengths or intensities, 

which gives the reference of the photon to electron transfer capability of solar cells. 

However, to decide whether a solar cell has the potential to be commercialized or not, the 

most efficient method is to measure the photocurrent and photovoltage under the simulated 
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AM 1.5 solar light. The overall power conversion efficiency (PCE), η, is calculated 

according to the following equation: 

 

    
    

   
     

       

   
  (15) 

 

where Pout is the maximum output electrical power (in Wm
-2

) of the device under 

illumination, Pin (in Wm
-2

) is the light intensity incident on the device, Voc is the open 

circuit voltage, and Isc is the short circuit current in A m
-2

. The parameter FF is known as 

the fill factor, which is defined as 

 

      
         

       
  (16) 

 

where Vmpp and Impp are the voltage and current at the maximum power point in the I-V 

curve, respectively. A typical solar cell I-V curve is shown in Figure 26. When a cell is 

illuminated, the I-V curve is shifted own by the short-circuit current, (Figure 26 right). The 

open-circuit voltage, is the maximum voltage difference attainable between the two 

electrodes, typically around 0.5-1.5V, which is higher than inorganic cells. An ideal device 

would have a rectangular shaped I-V curve and therefore a fill factor FF ≈ 1. At some point 

the charge build-up will reach a maximum equal to the Voc that is limited by the difference 

in workfunctions of the two electrodes. The maximum current that can run through the cell 

is determined by the short-circuit current. This quantity is determined by connecting the 
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two electrodes, whereby the potential across the cell is set to zero, and then illuminating the 

cell while the current flow is measured. Isc yields information about the charge separation 

and transport efficiency in the cell. 

 

 

 

 

 

 

 

Figure 26: I-V curves of an organic PV cell under dark (left) and illuminated (right) conditions. The 

opencircuit voltage (Voc) and the short-circuit current (ISC) are shown “Ad. from [33]”. 

 

1.7.5 Organic Functional Materials for Photovoltaic Cells 

The prototypical BHJ solar cells based on MDMO-PPV/PCBM and P3HT/PCBM 

composites discussed above (Figure 24), show the extent of optimization that is required to 

generate efficient polymer-fullerene solar cells. The photon flux reaching the surface of the 

earth from the sun occurs at a maximum of approximately 1.8 eV (700 nm); however, 

neither MDMO-PPV (Eg = 2.2 eV) nor P3HT (Eg = 1.9 eV) can effectively harvest photons 

from the solar spectrum. It is calculated that P3HT is only capable of absorbing about 46% 

of the available solar photons and only in the wavelength range between 350 nm and 650 
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nm. The limitation in the absorption is primarily due to limited spectral breadth rather than 

the absorption coefficient, as conjugated polymers typically have extremely high 

absorption coefficients on the order of 105 cm
-1

. Developing a polymer that could capture 

all of the solar photons down to 1.1 eV would allow absorption of 77% of all the solar 

photons. Expanding the spectral breadth of absorption in polymer-fullerene composites has 

most commonly been pursued by extending (or shifting) the polymer absorption spectrum 

into the near-infrared region. This is primarily achieved through the use of low-bandgap 

polymers, which has led to efficiencies as high as 3.5% in polymer-fullerene composite 

solar cells. While low-bandgap polymers have often been touted as the solution of this 

problem, merely having a lower energy onset for absorption is not sufficient to harvest 

more solar photons. What is needed is to extend the overlap with the solar spectrum to gain 

broader chromophores that are conjugated to the backbone leads to a broadening of the 

wavelengths at which high photoconversion efficiencies can be achieved. In a direct 

comparison with P3HT/PCBM devices, cells with polymer 1 (Figure 27) afforded 3.2% 

efficiency versus 2.4% with P3HT under the same conditions. The enhanced performance 

of polymer 1 can be attributed to the increased photocurrent in the 400–500 nm range. It is 

interesting to note that despite its irregular structure, copolymer 1 is able to afford highly 

efficient solar cells when blended with PCBM in a 1:1 ratio. Other examples of poly(3-

vinylthiophenes) have also been reported to achieve efficiencies greater than 1%. The 

second and most common approach to increasing the spectral breadth of absorbed photons 

is the use of so-called low-bandgap polymers, which are loosely defined as polymers with a 

bandgap less than 1.5 eV. However, in terms of polymer-based photovoltaic systems, any 

polymer with a bandgap less than that of P3HT (that is, <1.9 eV) is often referred to as a 
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low-bandgap polymer. In several cases efficiencies in the range of 1to 3.5% have been 

achieved. Compounds 2-7 (Figure 27) represent a few of the more successful polymers 

employed to-date. The most common synthetic technique used to achieve low-bandgap 

polymers is the donor-acceptor approach, in which alternating electron-rich and electron-

poor units define the polymer backbone. The best examples of this class reported thus far 

are based almost exclusively on benzothiadiazole (or analogues) as the acceptor in 

combination with several different donor groups. 

 

Figure 27: Several polymers employed in prototypical solar cells “Ad. from [34]”. 
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2 EXPERIMENTAL 

2.1 Materials and Methods 

All the solvents and reagents were analar-grade and were used without further 

purification, as provided by Sigma–Aldrich, Lancaster, Acros, or Carlo Erba. All the 

compounds synthesized were analyzed by chemico-physically characterizations using the 

techniques following: 

2.1.1 Proton Resonance Magnetic Nuclear (
1
H NMR) 

1
H NMR characterizations were performed with 

1
H NMR spectroscopy with a 

Varian VXR 200 MHz, Bruker Drx 400 MHz and Varian Inova 500 MHz spectrometers. 

1
H NMR chemical shifts are reported as  (ppm) compared to the solvent (CHCl3,  = 7.26; 

1,1,2,2-tetrachloroethane,  = 6.0). The following abbreviations are used in describing the 

NMR multiplicities: s, singlet; d, doublet; t, triplet; and m, multiplet. 

2.1.2 Optical Microscopy 

Optical observations were carried out with a Zeiss Axioscope polarizing 

microscope equipped with a Mettler FP90 hot stage. 

2.1.3 Differential Scanning Calorimetry 

Phase-transition temperatures and enthalpies were measured with a PerkinElmer 

Pyris differential scanning calorimeter at 10 °C/min scanning rate under a nitrogen flow. 

Instrument calibration was performed with a Indium sample with 99.99% of purity. 
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2.1.4 UV-Vis Spectroscopy 

UV–Vis absorption spectra were recorded at room temperature with a Jasco V-560 

spectrophotometer. 

2.1.5 Photoluminescence Spectroscopy (PL) 

PL emission spectra were recorded at room temperature with a Jasco FP-750 

spectrofluorometer. 

2.1.6 Thermogravimetric Analysis (TGA) 

Thermogravimetric analyses were performed with a TA Instruments SDT2960 

simultaneous DSC–TGA apparatus under both nitrogen and air flow. 

2.1.7 Spin Coating 

Polymeric films were obtained from organic solvents (chloroform or 1,2-

dichlorobenzene solutions (10 mg/ml or 5 mg/ml), via spin coating, with a P6700 SCS spin 

coater. 

2.1.8 Mass Spectrometry 

Mass spectra were recorded on a MALDI TOF DE-PRO apparatus on 2,5-

dihydroxybenzoic acid (DHB) matrix. 
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2.1.9 Single Crystal X-Ray Crystallography 

Data collection was performed in flowing N2 at -100°C on a Bruker-Nonius Kappa CCD 

diffractometer (MoK radiation, CCD rotation images, thick slices,  scans +  scans to 

fill the asymmetric unit). Cell parameters were determined from 122 reflections in the 

range 3.63°20.34 . 

Semiempirical absorption corrections (multi-scan SADABS) [37] were applied. The 

structure was solved by direct methods (SIR 97 package) [38] and refined by the full 

matrix least-squares method (SHELXL program of SHELX97 package) [39] on F
2
 against 

all independent measured reflections, using anisotropic thermal parameters for all non-

hydrogen atoms. H atoms were placed in calculated positions with Ueq equal to those of the 

carrier atom and refined by the riding method. 

2.2 Monomers Synthesis 

Molecular structure monomers are reported in Figure 28: 

 

 

Figure 28: Molecular structure of the monomers. 
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2.2.1 Synthesis Monomer I 

 Synthesis 1-bromo-4-(hexyloxy)benzene 

4-bromophenol (115.6 mmol) and 1-bromoesane (135.6 mmol) in the presence of K2CO3 

(180.0 mmol) were stirred and refluxed in 67 ml of N,N- dimethylformamide (DMF) for 6 

h. The reaction mixture was cooled and filtered to eliminate K2CO3  not reacted, and the 

solution was diluted with water and extracted with hexane. The total collected hexane 

layers were dried over Na2SO4, and evaporated. The crude product was purified by 

distillation under vacuum.  

Yield: 88% 

1
H NMR (200 MHz, CDCl3,  ppm): 0.89 (t, 3H, 6Hz), 1.36 (m, 6H), 1.74 (m, 2H), 3.87 ( 

t, 2H, J= 6Hz), 6.74 (d, 2H,  J= 9Hz), 7.32 (d, 2H, J= 9Hz). 

 

 Synthesis 3-(4-hexyloxyphenyl)thiophene 

Under nitrogen flux, magnesium (120.0 mmol) and iodine (0.48 mmol) were dissolved in 

100 ml of anhydrous tetrahydrofuran (THF) and stirred at 100°C for 20 min (up to color 

reaction mixture change from red to yellow). After the reaction mixture was left to cool at 

room temperature and 1-bromo-(4-esyloxy)benzene (99.0 mmol) was added drop wise. 

During addition operation, reaction system must be cooled by ice bath to keep temperature 

controlled. Reaction system was stirred at room temperature for 20 min.  

Aside under nitrogen flux, 3-bromothiophene (99.0 mmol) and (1,3-

bis[diphenylphosphino]propane)dichloronickel(II) [Ni(dppp)Cl2] (2.0 mmol) were 

dissolved in 80 ml of anhydrous THF. Reaction mixture containing Grignard react was 

http://en.wikipedia.org/wiki/Dimethylformamide
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added drop wise (without adding residual magnesium). Reaction system was stirred at 

room temperature in nitrogen atmosphere for 12 h. Reaction mixture was dispersed in 600 

ml of water, the precipitate was collected by filtration and recrystallized from methanol. 

After the residue was dissolved in 100 ml of chloroform, treated with active carbon and 

filtrated. Residue was recrystallized from hexane. 

Yield: 62%, mp: 101°C. 

1
H NMR (200 MHz, CDCl3,  ppm): 0.85 (t, 3H), 1.35 (m, 6H), 1.69 (t, 2H), 3.87 (t, 2H), 

6.84 (d, 2H, J= 8 Hz), 7.28 (m, 3H), 7.39 (d, 2H). 

 

Similar synthesis method was used to prepare both Monomer II and Monomer III. 

 

2.2.2 Synthesis Monomer IV 

 Synthesis 3-(4-methoxyphenyl)thiophene 

Under nitrogen flux, magnesium (221.0 mmol) and iodine (0.922 mmol) were dissolved in 

190 ml of anhydrous tetrahydrofuran (THF) and stirred at 100°C for 20 min (up to color 

reaction mixture change from red to yellow). After the reaction mixture was left to cool at 

room temperature and 4-bromoanisole (184.0 mmol) was added drop wise. During addition 

operation, reaction system must be cooled by ice bath to keep temperature controlled. 

Reaction system was stirred at room temperature for 20 min.  

Aside under nitrogen flux, 3-bromothiophene (184.0 mmol) and (1,3-

bis[diphenylphosphino]propane)dichloronickel(II) [Ni(dppp)Cl2] (2.02 mmol) were 
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dissolved in 100 ml of anhydrous THF. Reaction mixture containing Grignard react was 

added drop wise (without adding residual magnesium). Reaction system was stirred at 

room temperature in nitrogen atmosphere for 12 h. Reaction mixture was dispersed in 1 l of 

water, the precipitate was collected by filtration and recrystallized from methanol and after 

heptane. 

Yield: 66%, mp: 127°C. 

1
H NMR (200 MHz, CDCl3,  ppm): 3.80 (s, 3H), 6.85 (d, 2H, J=8Hz), 7.30 (m, 3H), 7.44 

(d, 2H, J=6 Hz). 

 

 Synthesis 3-(4-hydroxyphenyl)thiophene 

Under nitrogen flux, 3-(4-methoxyphenyl)thiophene (63.07 mmol) was treated with 

pyridine chloride (415.4 mmol) at high temperature up to completely system fusion, in 

stirring for 30 min. After the reaction mixture was left to cool at room temperature and 

dispersed in 300 ml of water. The reaction mixture was boiled and left to cool at room 

temperature. The precipitate was filtered and treated with boiling heptane collected by 

filtration and recrystallized from ethanol-water. 

Yield: 78%, mp: 187°C. 

1
H NMR (200 MHz, CDCl3,  ppm): 6.77 (d, 2H. J= 8 Hz), 7.93 (m, 5H). 

 

 Synthesis 3-(4-penteneoxyphenyl)thiophene 

3-(4-hydroxyphenyl)thiophene (45.2 mmol) and 5-bromo-1-pentene (54.2 mmol) in the 

presence of K2CO3 (80.0 mmol) were stirred and refluxed in 16 ml of DMF for 6 h. . 
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Reaction mixture was dispersed in 300 ml of water, the precipitate was collected by 

filtration and recrystallized from methanol. After the residue was dissolved in 100 ml of 

chloroform, treated with active carbon and filtrated. Residue was recrystallized from 

hexane. 

Yield: 45%, mp: 203°C. 

1
H NMR (200 MHz, CDCl3,  ppm): 1.9 (m, 1H), 2.22 (q, 2H), 4.00 (t, 2H, J= 6 Hz), 5.06 

(m, 2H), 5.87 (m, 1H), 6.96 (d, 2H, J= 9 Hz), 7.34 (s, 2H), 7.52 (d, 2H, J= 9 Hz). 

2.3 Synthesis Cu(II) Complexes 

Molecular structure Cu(II) Complexes are reported in Figure 29 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Molecular structure Cu(II) complexes. 
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2.3.1 Synthesis Cu(Ald1) 

Under nitrogen flux, 2,4-dihydroxybenzaldehyde (72.0 mmol), 4-(octyloxy)benzoic 

acid, pyrrolidine pyridine (4.5 mmol) were dissolved in 130 ml of anhydrous THF. Aside 

under nitrogen flux, N,N'-dicyclohexylcarbodiimide (DCC) (60.0 mmol) was dissolved in 

30 ml of anhydrous THF and this solution was added to reaction system previously 

prepared. Reaction mixture was stirred at room temperature in nitrogen atmosphere for 3 h. 

Reaction system was filtered to eliminate urea byproduct. Aside, copper acetate (65.0 

mmol) was dissolved in 400 ml of boiling ethanol; sodium acetate (120 mmol) was 

dissolved in 50 ml of water; these two solution was added to THF solution previously 

prepared and a green precipitate was observed. To increase solid precipitation, 100 ml of 

water were added to the reaction system. The precipitate was collected by filtration and 

washed with ethanol. 

Yield: 40% 

TGA: calcd for (C44H50CuO10): 9.7%. Found: 11.4%. 

 

Similar synthesis method was used to prepare both Cu(Ald2) and Cu(Ald3). 

2.3.2 Synthesis Cu(Im) 

Under nitrogen flux, 2,4-dihydroxybenzaldehyde (72.0 mmol), 4-octiloxibenzoic 

acid, pyrrolidine pyridine (4.5 mmol) were dissolved in 130 ml of anhydrous THF. Aside 

under nitrogen flux, N,N'-dicyclohexylcarbodiimide (DCC) (60.0 mmol) was dissolved in 

30 ml of anhydrous THF and this solution was added to reaction system previously 
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prepared. Reaction mixture was stirred at room temperature in nitrogen atmosphere for 3 h. 

Reaction system was filtered to eliminate urea derivative. Aside, copper acetate (65.0 

mmol) was dissolved in 400 ml of boiling ethanol; sodium acetate (120 mmol) was 

dissolved in 50 ml of water; these two solution was added to THF solution previously 

prepared and a green precipitate was observed. To increase solid precipitation, 100 ml of 

water were added to the reaction system. The precipitate was collected by filtration and 

washed with ethanol. Such precipitate and hexylamine (70.2 mmol) were refluxed in 30 ml 

of chloroform for 10 min. To increase solid precipitation, 40 ml of ethanol were added and 

the mixture system was cooled by ice bath. The resultant precipitate was collected by 

filtration. 

Yield: 40% 

TGA: calcd for (C56H76CuN2O8): 8.1%. Found: 9.1%. 

2.4 Synthesis Polythiophenes 

Molecular structures of polythiophenes are reported in Figure 30 

 

 

 

 

 

 

 

Figure 30: Molecular structures of polythiophenes. 
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2.4.1 Synthesis PT8-VO(acac)2 

In a two-necked , round-bottom flask (1 l), a vacuum–oxygen cycle was performed 

three times. Under a slight oxygen flow, VO(acac)2 (309.2 mmol), anhydrous 1,2-

dichloroethane (1.2 ml), trifluoroacetic anhydride (1.2 ml), and trifluoromethanesulfonic 

acid (TFMSA; 5 l) were introduced into the flask, and the resulting mixture was stirred at 

room temperature for 30 min. The monomer II (4.13 mmol), trifluoroacetic anhydride (0.5 

ml), and 1,2-dichloroethane (6.5 ml) were then added. The obtained mixture was stirred 

under an oxygen atmosphere (pressure = 1.0 atm) for 17 h at room temperature. The 

resulting polymer was recovered by precipitation from methanol (250 ml) containing HCl 

(25 ml, 37% w/w). The crude product was extracted with acetone by a Soxhlet-extraction 

apparatus. 

Yield: 40% 

1
H NMR (500 MHz, 1,1,2,2-tetrachloroethane-d2,  ppm): 0.89 (m, 3H), 1.31 (m, 10H), 

1.78 (m, 2H), 3.96 (m, 2H), 6.89 (m, 3H), 7.28 (d, 2H, J = 8 Hz). 

 

Similar synthesis method was used to prepare PT5, PT6, PT5-6(I), PT5-6(II), PT5-6(III) 

using VO(acac)2 as catalyst. 

2.4.2 Synthesis PT8-Cu(Ald1) 

In a two-necked , round-bottom flask (1 l), a vacuum–oxygen cycle was performed 

three times. Under a slight oxygen flow, Cu(Ald1) (260.0 mmol), 1,2-dichlobenzene (3.5 

ml), trifluoroacetic anhydride (2 ml), and trifluoromethanesulfonic acid (TFMSA; 13 l) 
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were introduced into the flask, and the resulting mixture was stirred at room temperature 

for 10 min. The monomer II (3.47 mmol), trifluoroacetic anhydride (0.8 ml), and 1,2-

dichlorobenzene (3 ml) were then added. The obtained mixture was stirred under an 

oxygen atmosphere (pressure = 1.0 atm) for 48 h at 80°C. The resulting polymer was 

recovered by precipitation from methanol (150 ml) containing HCl (15 ml, 37% w/w). The 

crude product was extracted with acetone by a Soxhlet-extraction apparatus. 

Yield: 30% 

1
H NMR (500 MHz, 1,1,2,2-tetrachloroethane-d2,  ppm): 0.90 (m, 3H), 1.32 (m, 10H), 

1.80 (m, 2H), 3.97 (m, 2H), 6.90 (m, 3H), 7.29 (d, 2H, J = 10 Hz). 

Similar synthesis method was used to prepare PT8-Cu(Ald2) and PT8-Cu(Ald3). 

Moreover, the same method was employed to synthesized PT6-8 and PT8-Iso using 

Cu(Ald1) as catalyst.  

2.4.3 PT8-Cu(Im) 

In a two-necked , round-bottom flask (1 l), a vacuum–oxygen cycle was performed 

three times. Under a slight oxygen flow, Cu(Im) (260.0 mmol), 1,2-dichlobenzene (1 ml), 

trifluoroacetic anhydride (2 ml), and trifluoromethanesulfonic acid (TFMSA; 4.2 l) were 

introduced into the flask, and the resulting mixture was stirred at room temperature for 10 

min. The monomer II (3.47 mmol), trifluoroacetic anhydride (0.8 ml), and 1,2-

dichlorobenzene (5.5 ml) were then added. The obtained mixture was stirred under an 

oxygen atmosphere (pressure = 1.0 atm) for 96 h at 80°C. The resulting polymer was 

recovered by precipitation from methanol (150 ml) containing HCl (15 ml, 37% w/w). The 

crude product was extracted with acetone by a Soxhlet-extraction apparatus. 
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Yield: 23% 

1
H NMR (500 MHz, 1,1,2,2-tetrachloroethane-d2,  ppm): 0.90 (t, 3H, J = 0.90), 1.31 (m, 

10H), 1.77 (m, 2H), 3.99 (m, 2H), 6.90 (m, 3H), 7.29 (d, 2H, J = 10 Hz). 

2.5 Perylene-3,4,9,10-tetracarboxylic acid diimide (PDI) derivatives synthesis 

Molecular structure of PDI derivatives are reported in Figure 31 

 

Figure 31: Molecular structures of PDI derivatives. 

 

2.5.1 Synthesis TDZ-C7 

 Synthesis 5-heptyl-1,3,4-thiadiazol-2-amine 

Caprylic acid (62.4 mmol) and thiosemicarbazide (77.9 mmol) were dissolved with POCl3 

(21 ml) and stirred at 100°C for 1 h. The reaction mixture was cooled, diluted with 94 ml of 

water and refluxed for 4 h. The reaction system was basified using an aqueous solution of 
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sodium hydroxide (1 M) to pH 8 at room temperature. The precipitate was collected by 

filtration and recrystallized from ethanol-water to afford product. 

Yield 50%, mp 190-192°C. 

1
H NMR (200 MHz, CDCl3,  ppm): 0.86 (m, 3H), 1.27 (m, 8H), 1.70, (m, 2H), 2.88 (m, 

2H), 5.42 (s, 2H). 

 

 Synthesis TDZ-C7 

Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) (2.56 mmol), 5-heptyl-1,3,4-

thiadiazol-2-amine (6.0 mmol), zinc chloride (1.18 mmol) with imidazole (3 g) were heated 

under N2 at 180°C for 4 h. The reaction mixture was cooled, an aqueous solution of HCl 12 

M (20 ml) was added and the reaction system reacted under N2 for 2 h at 150°C. The 

reaction mixture was dispersed in 200 ml of water and basified using an aqueous solution 

of sodium hydroxide (1 M) to pH 7 at room temperature. The precipitate was collected by 

filtration and washed by a mixture composed both by aqueous solution with HCl 10% 

weight (200 ml) and methanol (50 ml). The solid was recovered by filtration and washed 

by boiling ethanol. The precipitate was collected by filtration and extracted with 

chloroform by a Soxhlet-extraction apparatus. The chloroform solution was reduced, the 

product recovered by precipitation in methanol and successive filtration. 

 

Yield 45 %. 

Elemental Analysis: calcd for (C42H38N6O4S2): C 66.82%, H 5.07%, N 11.13%, S 8.49%. 

Found: C 66.61%, H 4.93%, N 10.76%, S 8.34%. 
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M (mass spectrum), 756.13 (M + H
+
), required for (C42H38N6O4S2) 754.92. 

1
H NMR (400 MHz, CDCl3,  ppm): 8.81 (d, J = 8 Hz, 4H), 8.76 (d, J = 8 Hz, 4H), 3.25 (t, 

J = 3.25 Hz, 4H), 1.95 (m, 4H), 1.43 (m, 16H), 0.93 (t, J = 0.93, 6H). 

 

Similar synthesis method was used to prepare TDZ-C13.  

Regarding the synthesis method of TDZ-ST, the purification step differs from TDZ-C7 

(see 2.5.1 Paragraph): the reaction mixture was diluted with water and extracted with 

chloroform. The total collected chloroform layers were extracted with water at pH 8. The 

total collected chloroform layers were dried over Na2SO4 and evaporated. 

2.5.2 Syntesis TR-C7 

 Synthesis 5-heptyl-1,2,4-triazole-3,4-diamine 

Caprylic acid (21.7 mmol) and diaminoguanidine hydrochloride (27.8 mmol) were 

dissolved with polyphosphoric acid (PPA) (100 g) and stirred at 150°C for 12 h. The 

reaction mixture was cooled, diluted with 250 ml of water and basified using an aqueous 

solution of sodium hydroxide (1 M) to pH 8 at room temperature. The precipitate was 

collected by filtration and recrystallized from ethanol-water to afford product. 

Yield:30%, mp: 200°C. 

1
H NMR (300 MHz, DMSO-d6,  ppm): 0.84 (t, 3H), 1.25 (m, 8H), 1.58 (m, 2H), 2.47 (t, 

2H), 5.39 (s, 2H), 5.43 (s, 2H),  
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 Synthesis TR-C7 

PTCDA (2.56 mmol)and 5-heptyl-1,2,4-triazole-3,4-diamine (35.5 mmol) were refluxed 

with pyridine and imidazole in nitrogen atmosphere for 12h The reaction mixture was 

dispersed in 200 ml of water and basified using an aqueous solution of sodium hydroxide 

(1 M) to pH 7 at room temperature. The precipitate was collected by filtration and washed 

by a mixture composed both by aqueous solution with HCl 10% weight (200 ml) and 

methanol (50 ml). The solid was recovered by filtration and washed by boiling ethanol. The 

precipitate was collected by filtration. After the compound was dissolved in 100g of PPA 

and stirred at 150°C for 12 h. The reaction mixture was cooled, diluted with 100 ml of 

basified using an aqueous solution of sodium bicarbonate (1 M) to pH 8 at room 

temperature. The precipitate was collected by filtration and recrystallized from DMF. 

Yield: 40%. 

M (mass spectrum), 715.02 (M + H
+
), 738.01 (M + Na

+
), 753.04 (M + K

+
) required for 

(C42H38N10O2) 714.82. 

1
H NMR (400 MHz, CDCl3,  ppm): 8.81 (d, J = 8 Hz, 4H), 8.76 (d, J = 8 Hz, 4H), 3.25 (t, 

J = 3.25 Hz, 4H), 1.95 (m, 4H), 1.43 (m, 16H), 0.93 (t, J = 0.93, 6H). 
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3 POLYTHIOPHENES 3-SUBSTITUTED FOR APPLICATIONS IN 

ELECTRONICS 

3.1 Introduction 

Over the past decade, polythiophenes (PTs) variously substituted in position 3, have 

been widely studied for their electrical and optical applications [37]. In particular, synthesis 

of regioregular polythiophenes have been reported aimed at improving their photonic and 

electronic properties. The regioregularity is given by a regular head-to-tail (HT) connection 

of the repetitive units along the chain; possible configurational triads HT-HT are shown in 

Figure 32. The regioregularity is a fundamental feature for these materials: in fact in 

regioregular polythiophenes, the planarity of the backbone allows a wide delocalization of 

the -electron density and the organization of the macromolecular chains in a stacked 

structure. Both properties improve the electrical conductivity and strongly affect the 

spectroscopic properties. On the contrary, regioirregular sequences produce strong 

interactions between substituent groups in the 3-position and force the polythiophenic 

backbone into a nonplanar conformation, which is detrimental to the electric properties of 

the material. This type of structural organization supports the charge carrier transport, 

dominated by hopping phenomena, and determines the macroscopic conductivity. 

However, different preparation methodologies are described in the literature, based on 

metal-catalyzed cross-coupling of the thiophenic monomers: the 3-substituted thiophenic 

monomer is oxidized by Br2 in the 2- and 5-positions and the dihalogenated product is then 

allowed to react with finely powdered electropositive metals (Rieke metals [41]) or 

Grignard reagents [42] and polymerized. These synthetic procedures lead to highly 
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regioregular polymers (>95%) obtained in good yields, but tedious multistep and expensive 

procedures are required. 

 

 

Figure 32: Different configurational triads in polythiophenes 3-substituted. 

 

As discussed earlier, PTs represent the most important conjugated polymers utilized in a 

broad spectrum of applications such as OLEDs, OFETs, plastic solar cells and organic 

sensors . In particular, The PTs ability to change their color and electrical conductivity in 

response to various analytes, solvents, and environment make these polymers the ideal 

candidates for an all-polymer sensor. The linear-alkyl-substituted polythiophenes have 

been most widely studied due to their ease of synthesis. However, increasingly heteroatom-

substituted PTs are being designed, synthesized and explored in order to engineer 

intelligent properties into the conducting polymer. The possibility of merging host-guest 

chemistry, biological macromolecular assembly, organic self-assembly and inorganic 

structural chemistry to create new conjugated polymer devices and smart materials is a 

rapidly expanding area. Moreover, PTs represent the most widespread organic materials 

utilized in the field of organic solar cells. In fact a combination of P3HT as the electron 
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donor and PCBM as the electron acceptor in the active layer represents the most efficient 

bulk heterojunction solar cell with power conversion efficiency approaching 5%. The 

success of the P3HT/PCBM system is largely associated with careful control and 

optimization of the active layer morphology. 

3.2 Polythiophenes 3-Substituted for Applications in Organic Sensors 

Synthesis and characterizations of polythiophenes 3-substituted by alkoxyphenilic 

and alkeneoxyphenilic groups are reported. Polymerizations were conducted by oxidative 

catalysis using vanadyl acetylacetonate (VO(acac)2) complex through a very simple and 

inexpensive procedure. The choice of this kind of polymer depends on the following 

factors: (i) The monomers can be synthesized on a large scale and with a high degree of 

purity from inexpensive reagents and with a very simple procedure. (ii) Bulky substituents 

on thiophene rings are useful for the selective obtainment, especially in oxidative-coupling-

based methods of synthesis, of long regioregular sequences in the polymers. (iii) These 

polymers are very similar to alkylphenyl thiophenic polymers [43] compared to both the 

solubility features and electric properties. Moreover, in agreement with what has already 

been observed for poly(3-alkoxythiophene) systems, the greater electron donor capability 

of the alkoxylic chain, if compared with one of the alkylic chain, should improve the 

electron-donor character of the polymers. (iv) The presence of double bond in alkyl chain 

can lead to crosslinking reaction on film in different conditions, improving structuring and 

stability of polymers. The polymers were synthesized by oxidation of thiophene monomers 

with molecular oxygen in the presence of VO(acac)2 as a catalyst, trifluoroacetic anhydride 

(TFA) and trifluoromethanesulfonic acid (TFMSA) in 1,2-dichloroethane dry, typically for 
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17 h at room temperature (general reaction scheme is reported in Figure 33). This method 

does not require any leaving groups or removal of the byproduct in the preparation of 

aromatic polymers, using a procedure reported in the literature [44]. Such synthetic 

procedure leads to regioregular polythiophenes with over 90% HT content. Generally, 

thiophenes are polymerized by oxidative coupling reactions in the presence of oxidants. 

The accepted mechanism of this reaction is outlined in Figure 34. Firstly, a thiophene 

nucleus undergoes one-electron oxidation to give a radical cation. The efficiency of this 

step can be inferred from the ionization potential of the compound. 

 

 

Figure 33: Synthesis scheme of polythiophenes. 

 

Secondly, two radical cations couple yield dihydro cation dimers. This coupling reaction is 

more likely to occur in the position with high spin density. Thirdly, the dihydro cation 

dimers release two protons to form a dimerization product that undergoes further oxidation 

followed by proton loss to give the dimerization product. These reactions are repeated and 

lead to polymers. 



POLYTHIOPHENES 3-SUBSTITUTED FOR APPLICATIONS IN ELECTRONICS 

 84 

 

Figure 34: Mechanism of polymerization of thiophenes. 

 

In this system, an active oxidant is a vanadium(V) species which is produced by the 

disproportionation of vanadium(IV) species in V(V) and V(III), as shown in Figure 35. 

After the V(V) species worked as an oxidant, oxidizing the thiophene nucleus,  it converts 

to V(IV) species. Parallely, V(III) is oxidized to V(IV) by the O2 present in the reaction 

environment, closing the catalytic cycle.  

 

 

Figure 35: A catalytic cycle of the oxivanadium catalytic system. 
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The thiophene nucleus is oxidized by V(V) species to give a radical cation, as V(III) 

species react with molecular oxygen to give again V(IV) species, closing the catalytic 

cycle.  

As mentioned earlier, we have employed the polymerization method based on oxidative 

catalysis using VO(acac)2 also to synthesize polythiophenes 3-substituted by 

alkeneoxyphenilic groups. The choice of this kind of substituent was motivated by the 

possibility of realizing cross-linking reactions on polymer films to improve the structuring, 

electrical conductivity and stability to the photo-oxidation reactions of the polymers.  

Finally, the effects of different VOCs on the electrical properties of such materials were 

carefully investigated and their potential application as electrical sensors will be discussed 

in 3.2.3. Paragraph. 

3.2.1 Synthesis Methods 

Synthesis methods that we have developed to obtain the different monomers 

employed in polymerization reactions and the synthesis of different polythiophenes 3-

substituted are discussed in this section. 

 

 Synthesis of monomer (I) 

Preliminary reaction (Figure 36) concerned the synthesis of the intermediate 1-bromo-(4-

esyloxy)benzene by Williamson etherification of 4-bromophenol with 1-bromoesane, in the 

presence of K2CO3 as base in N,N- dimethylformamide (DMF):  

 

http://en.wikipedia.org/wiki/Dimethylformamide
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Figure 36: Synthesis of 1-bromo-(4-esiloxy)benzene by Williamson etherification. 

 

Afterwards, magnesium with iodine in anhydrous tetrahydrofuran was activated and into 

this system was added 1-bromo-4-(hexyloxy)benzene. Then the monomer (I) was prepared 

by Grignard reaction of 4-esyloxyphenyl magnesium bromide with 3-bromothiophene in 

anhydrous THF, in the presence of a catalyst amount of (1,3-

bis[diphenylphosphino]propane)dichloronickel(II) [Ni(dppp)Cl2] (see Figure 37): 

 

 

Figure 37: Synthesis of monomer (I) by Grignard reaction. 

 

In this procedure, the Grignard reagent in situ was prepared. Similar method of synthesis 

was used to prepare both monomer (II) and monomer (III). 

 

 Synthesis of monomer (IV) 

The monomer (IV) was synthesized by a different strategy due to the incompatibility of the 

unsaturation of the alkyl chain under the conditions of Grignard reaction. In this case, the 
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preliminary reaction (Figure 38) concerned about the synthesis of the intermediate 3-(4-

methoxyphenyl)thiophene by Grignard reaction of 4-bromoanisole with 3-bromothiophene.  

 

 

Figure 38: Scheme of synthesis of monomer (IV). 

 

Afterwards, the intermediate 3-(4-methoxyphenyl)thiophene was undergone to hydrolysis 

reaction through BBr3 to obtain 3-(4-hydroxyphenyl)thiophene. In such method, 

Williamson etherification was made between 3-(4-hydroxyphenyl)thiophene and 5-bromo-

1-pentene. 

 

 Synthesis of the polymers 

The synthesis procedure was optimized by the variation of the experimental conditions in a 

wide range of experiments. The polymers were synthesized by oxidation of thiophene 

monomers with molecular oxygen in the presence of VO(acac)2 as a catalyst, TFA and 

TFMSA in anhydrous 1,2-dichloroethane, typically for 17 h at room temperature. Different 

omopolymers and copolymers were synthesized, as shown in Figure 39. 
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Figure 39: Scheme of synthesis of the polythiophenes. 

 

Different typologies of copolymers were obtained through different weight ratios of the 

corresponded monomers, as reported in Figure 39. Several parameters influence the 

polymerization rate like the oxygen pressure, catalyst [VO(acac)2], and TFMSA 

concentration and they also strongly affect the regioregularity of the resulting polymers 

too. An increase in the polymerization rate always leads to a reduction of the 

regioregularity. The reaction time is also an important parameter. Other conditions being 

equal, increasing the reaction time leads to the formation of polymers containing 

significantly long regioirregular sequences together with equally long regioregular 

sequences, determining a sort of block copolymer. A possible explanation of this behavior 

could be suggested according to the observation of Ueda et al. [44] that, during the 

polymerization reaction, a regioregular polymer was mainly produced together with 
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significant fractions of oligomers with a regioirregular end, which is hardly reactive. 

Therefore, until there is monomer in the reaction system, regioregular chains should 

preferably grow, but once the monomers are totally reacted, terminations of regioregular 

chains can react only with regioirregular oligomers. If there is enough time for this process 

to occur, a long sequence with a poor degree of regioregularity could bind to the initial 

regioregular sequence, leading to a polymer showing the optical properties of both 

regioregular and regioirregular poly(3-substituted)thiophenes. In effect, using a time 

reaction of 17 h and 1 atm as oxygen pressure it is possible to obtain the polymers with 

good yield and high regioregularity. Afterwards, the crude product of polymerization is 

extracted with acetone by a Soxhlet-extraction apparatus. Such procedure allows the 

elimination of byproducts and regioirregular oligomers. A polymeric residual obtained is 

soluble in chlorinated organic solvents. 

3.2.2 Characterization Methods  

1
H NMR and UV-Vis analysis were employed to investigate about the structural 

characteristics and to obtain a qualitative evaluation of regioregularity degree of the 

polymers synthesized. 

 

 
1
H-NMR Analysis  

1
H-NMR analysis confirm the polymers structures obtained. Moreover, this method lets 

calculate the real amount of monomer I and IV contained in the copolymers, compared to 

stoichiometric amounts of monomers are allowed to react. In fact, such quantitative 
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evaluation was made through the comparison of methylene proton signals, bonded to 

oxygen atom, and proton vinylic signals. For example, in 
1
H-NMR spectrum of PT5-6(II) 

(Figure 40) by areas ratio of the multiplet at δ=5.00 (CH=CH2) and δ= 3.96 (O-CH2), it is 

possible to estimate that the real percent of monomer IV is 27%, compared to 

stoichiometric amounts of monomer to react (25% weight).  

 

 

Figure 40: 
1
H-NMR spectrum of PT5-6(II) 

 

The related data to all the polymers are reported in Table 1. 
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Table 1: Quantitative evaluation of monomer I and IV contained in the copolymers compared to 

stoichiometric amounts of monomers are allowed to react: 
a
 experimental values found; 

b
 theoretical values. 

 

 

 

 UV-Vis Analysis 

UV-Vis studies were made by polymer films obtained from chloroform solution (10 

mg/ml) via spin-coating. Afterwards, the films were annealed for 15 minutes, at 150°C in 

nitrogen atmosphere. UV-Vis spectra can be assumed as qualitatively diagnostic of the 

regioregularity of poly(3-substituted)thiophenes. McCullough et al. [45] reported that a 

redshift of max could be found in regioregular poly(3-alkylthiophene)s (HT sequences) in 

comparison with regioirregular poly(3-alkylthiophene)s, both in solution and in films. The 

redshift is particularly evident for films: UV-vis spectra of HT sequences show max values 

of 550-560 nm, whereas for regioirregular poly(3-alkylthiophene)s, max is ~450 nm. 

Moreover, a vibronic structure appears in spectra of films of HT sequences with less 

intense secondary peaks at 590-600 and 665-700 nm.  
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Figure 41: UV-Vis spectra by polymer films before and after annealing. 
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The redshift observed for regioregular polymers indicates a longer conjugation length 

depending on a higher degree of planarity of the backbone. UV-Vis spectra of polymer 

films before and after annealing are reported In Figure 41. 

The spectroscopic behavior of the different polymers is very similar, thus confirming the 

good reproducibility of the employed polymerization method. Films prepared by spin 

coating show UV-vis spectra with max and secondary peaks typical of regioregular 3-

substituted polythiophenes. In fact, after annealing (the phenomenon is fewer relevant for 

PT5 and PT8) polymers show a strong redshift of max from 488 to 562 nm and the 

secondary peaks both 590-600 nm and 665-700 nm (see Table 2) due to the strong 

electron-donor efficiency of the 4-alkoxyphenyl groups. 

 

Table 2: Data related to redshift of max for polymer films before and after annealing. 

max (nm) PT5 PT6 PT8 PT5-6(I) PT5-6(II) PT5-6(III) 

before  

annealing 563 492 553 549 488 541 

after  

annealing 561 549 562 549 560 562 

 

Moreover, the films of PT5 and copolymers (containing crosslinkable units) show high 

insolubility after annealing. This phenomenon is compatible with the occurrence of a 

thermally activated cross-linking reaction, in accordance to data of literature [46]. In fact, 

the thermal treatment on polymer film can induce a cycloaddition reaction between vinilic 
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groups, leading to the formation of a covalent bond between two different chains. Probably, 

this occurs through the formation of a cyclobutane unit, as shown in Figure 42. Therefore, 

the film insolubility may result by a more orderly arrangement of the chains, induced by 

crosslinking. 

 

 

Figure 42: Supposed chemical structure consequent to crosslinking reaction. 
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3.2.3 Detection of VOCs Compounds Using Polythiophenes 3-Substituted 

As earlier discussed, the effects of different VOCs on the electrical properties of 

polythiophenes synthesized were widely studied and their potential application as electrical 

sensors were carefully investigated. 

 

In order to realize the sensor devices, the polymers were deposed via drop-casting onto a 

alumina substrate with interdigitated gold electrodes (Figure 43).  

 

 

 

 

 

 

Figure 43: Structure of a chemiresistor device. 

 

The response characteristics of the micro gas sensor films were then investigated against 

various test gases. The response behavior of polymer sensors was characterized by 

measuring the current versus time with a fixed applied voltage (0.5 V) at 20°C, in dark. 

The sensors were tested in a test chamber (GSCS System) in the presence of organic 

volatile gases in dynamic flow, carried by nitrogen. Moreover for each concentration gas it 

were performed three fases: baseline, where the response device is recorded in absence of 

analyte; step, where the response device is recorded in the presence of analyte; recovery, 
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where the response device is again recorded in absence of analyte, going back to initial 

state. Such cycle sensor device is shown in Figure 44. 

 

 

 

 

 

 

 

 

Figure 44: Cycle sensor device is subdivided in three faces: baseline, step and recovery. 

 

The measurements were carried out in the laboratories of the research center ENEA of 

Portici, Italy.  

 

In particular, the experimental results of PT8 and PT5-6(I) based device are fully discussed 

below. 

 

 PT8 Based Device 

PT8 solution (10 mg of polymer in 1 ml of dopant solution constituted by 2 % w/v FeCl3 in 

chloroform), filtered through a 0.2 m PTFE filter, was deposed via drop-casting onto the 

alumina substrate. Afterwards, the device was annealed at 150°C for 15 minutes and its 
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electrical behavior investigated in the presence of various VOCs. Figure 44 summarizes 

sensor responses of PT8 to different VOC vapors. It is evident that each VOC vapor tested 

resulted in a unique sensor response pattern. For all vapors it is observed a positive 

response, indicating that the conductivity of the materials increases in the presence of the 

VOCs, since the conductivity is directly proportional to current value. The sensors 

demonstrated a fast response to all vapors. Moreover, sensor current values returned to the 

initial ones after flushing the chamber for 10 min with nitrogen, showing that these changes 

are completely reversible with absence of hysteresis. The positive response observed to all 

VOCs could be related to oxygen atom into side chain. In fact, side chain containing 

oxygen atom has a high dipole moment. Therefore, stronger electrostatic interactions 

occurred when PT8 is exposed to all tested analytes. The dipole-dipole electrostatic force 

between polar analytes with certain dipole moments and polymer polar alkyl side chains 

could push the polymer molecules closer together, thus reducing hopping distances and 

resulting in a conductance increase.  

As far as acetone is investigated as analyte, the performed tests indicated that the moisture 

does not influence the conductivity of PT8: the experiments run using both moist and dry 

acetone showed in fact the same trend. The tests carried out with ethanol and toluene 

featured visible tails at the base of the peaks (see Figure 45). This behavior could be related 

to a slower analyte desorption as compared to its absorption, allowing the penetration of 

the analyte into the deep layers of the film.  
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Figure 45: Sensor responses of PT8 to various VOC vapors. 
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Finally, the tests made with butanol dry show instead an irregular trend: in this case we can 

assume a fast adsorption of the analyte, that immediately cause an increase in the current 

intensity, followed by a desorption of the dopant agent occurs, with a consequential 

decrease of the current intensity. This process becomes very evident at higher 

concentrations (see Figure 45).  

The main characteristics of the devices are reported in Table 3. It is clear that the 

sensibility values decrease with polarity analyte: the highest value is obtained with toluene, 

followed by butanol and acetone. The ethanol test contrasts this trend, probably due to 

moisture present during the test. The detection limit values follow the same trends; finally, 

the response times are very satisfactory being in all the times lower than 2 minutes. 

 

Table 3: Characteristics of the PT8 based devices. 

Analyte Sensibility 
(S/ppm) 

Detection 

Limit (ppm) 

Response 

Time (s) 

Moist Acetone 2.3∙10
-13

 50 <120 

Acetone dry  2.3∙10
-13

 40 <120 

Moist Ethanol 2.3∙10
-14

 250 <120 

Toluene dry 2.5∙10
-13

 20 <120 

Butanol dry 7.5∙10
-13

 10 <120 

 

Current intensity versus the analyte concentration is reported in Figure 46. For acetone and 

ethanol a linear response is observed while in the case of toluene, this behavior does not 

occur.  
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Figure 46: Concentration analytes versus variation of the current.  
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 PT5-6(I) Based Device 

The same analysis method is used to PT5-6(I). In fact, polymer solution (10 mg of polymer 

in 1 ml of chloroform solution with FeCl3 2%), filtrated through a 0.2 m PTFE filter, was 

deposed via drop-casting onto the alumina substrate. Afterwards, the device was annealed 

at 150°C for 15 minutes and investigated against various VOCs.  

Figure 47 summarizes the sensor responses of PT5-6(I) to different VOC vapors. 

 

 

Figure 47: Sensor responses of P5-6(I) to various VOC vapors. 
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As already observed for PT8, also in this case we have verified that the moisture does not 

influence the conductivity. As far as toluene is investigated as analyte, the tests featured 

drift-up and visible tails at the base of the peaks. In this case we can assume that the 

analyte is able to enter into the deep layers of the film. This irregular trend is reflected also 

in graph reported in Figure 48, in which the current response is plotted versus the 

concentration of the analyte.  

The main parameters that allow us to evaluate the device performances are quite good (see 

Table 4). In fact values of sensibility and noise are satisfactory, thus allowing low detection 

limits, as also shown in Figure 48. Response times are instead high, and this can be caused 

by chemical structure of polymer. Regarding acetone, the tests show that the sensibility 

values are very good, the noise is moderate and device reports low detection limit (see 

Table 4). Moreover, unlike the case of toluene, there is a linear current response of versus 

analyte concentration (Figure 48).  

As far as ethanol is investigated as analyte, we have observed an irregular trend, that can be 

described by two principal events: firstly, a fast adsorption of the analyte occurs, that 

involves an increase of the current intensity. Secondly, the loss of the dopant agent occurs, 

with decreases of the current intensity. This process becomes very evident at higher 

concentrations (Figure 48).  

Moreover the current variation versus analyte concentration is quite regular (see Table 4). 

Finally, as far as butanol is employed as analyte, the tests reports a linear trend, with good 

sensibility values and low detection limits (see Table 4).  
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Figure 48: Concentration analytes versus variation of the current. 
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The main characteristics of PT5-6(I) based devices are summarized in Table 4. 

 

Table 4: Characteristics of the PT5-6(I) based devices. 

Analyte Sensibility 
(S/ppm) 

Detection 

Limit (ppm) 

Response 

Time (s) 

Acetone dry  2.4∙10
-13

 100 240 

Ethanol dry 1.6∙10
-11

 200 298 

Toluene dry 2.33∙10
-12

 <1 596 

Butanol dry 1.32∙10
-11

  <1 297 
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3.3 Synthesis of Highly Regioregular Poly[3-(4-alkoxyphenyl)-thiophene]s by 

Oxidative Catalysis Using Copper Complexes for Application in Photovoltaics. 

While the polyalcoxyphenylthiophene derivatives synthesized by means of vanadyl 

catalyzed oxidative coupling proved extremely useful materials in sensor applications, they 

did not afford good results when tested as active layers in organic solar cells or transistors. 

We identified the main problem in the regioregularity degree that, by using  the vanadyl 

catalyzed oxidative coupling synthetic strategy, did not exceed 90 %. It was therefore 

necessary to develop a new synthetic procedure in order to obtain poly[3-(4-

alkoxyphenyl)thiophene]s with regioregularity similar to that obtained by McCullough and 

Rieke methods in the stynthesis of poly-3-alkylthiophenes.   

To achieve this goal, a deep investigation of the activity of different oxidation catalysts in 

alcoxyphenylthiophene polymerization was carried out. At the beginning, our research was 

addressed towards vanadyl complexes with different ligands but the results were not 

satisfactory. As an example, in Figure 49 the molecular structure of one these new 

complexes is reported: this catalyst was tested both at room temperature and at 80°C: in the 

first case, polymers with regioregularity comparable to that achieved using VO(acac)2 as 

catalyst were obtained, but longer reaction times were required; in the second test 

regioirregular polythiophenes were produced. Similar results were obtained with different 

ligands and therefore it was decided to investigate different metal center, possibly able to 

catalyze regiospecific oxidative reaction between thiophene rings. In this context, we have 

employed different complexes of metals as Mn(II), Fe(II), Co(II), Ni(II), Nb(II) in a wide 

range of conditions, but also in this case no one gave satisfactory results. 
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Figure 49: Vanadyl complex experimented. 

 

We approached copper complexes, encouraged also by previous work reported in the 

literature about regiospecific polymerization of naphthalene systems copper catalyzed [44]. 

After a preliminary investigation of copper acetylacetonate catalyst, which did not afford 

interesting results (regardless the temperature used, regioirregular polythiophene were 

obtained),we finally developed a set of catalysts that, as we will described below, gave 

excellent results. The molecular structure of these catalyst, named Cu(Im), Cu(Ald1), 

Cu(Ald2), are sketched in Figure 50.  

The scheme in Figure 51 summarized instead the synthetic pathway for the preparation of 

Cu(II) complexes. The first step shows the preparation of ligand 3 through the reaction of 

2,4-dihydroxybenzaldehyde with 4-(octyloxy)benzoic acid in the presence of N,N'-

dicyclohexylcarbodiimide (DCC) in THF. This reaction lead to a mixture of two isomers 

with the esterification occurring at position 2 of 2,4-dihydroxybenzaldehyde at position 2 

(minority product) or at position 4 (the prevalent and desired product, ligand 3). 
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Figure 50: Molecular structure of Cu(II) catalyst. 

 

Anyway, only the latter can react with Cu(CH3COO)2 to give the correspondent complex in 

the successive reaction.  

 

 

Figure 51: Synthesis Scheme of Cu(II) complexes. 
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The complexes Cu(Im) and Cu(Ald1) were prepared by reacting 3 with Cu(CH3COO)2 

respectively in the presence or not of hexylamine. Cu(Ald2) and Cu(Ald3) were instead 

obtained by reaction of Cu(CH3COO)2 with 2,4-dihydroxybenzaldehyde or 2-

hydroxybenzaldehyde respectively. All these reactions were carried out in boiling absolute 

ethanol. The chemical synthesis of copper containing complexes were performed following 

a procedure described in literature [48].  

Thermogravimetric analysis were carried out to confirm the structures of the complexes 

obtained: the experiment was performed in air atmosphere in order to obtain CuO as 

residual product after the decomposition. 

As example, the thermogravimetric analysis of Cu(Ald2) is reported in Figure 52. 

 

 

Figure 52: Thermogravimetric analysis of Cu(Ald2) complex. 
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From the thermogram is therefore possible to calculate the weight percentage of CuO 

residue and comparing with the theoretical values; the theoretical and experimental values 

of the weight of the residues are reported in Table 5. 

 

Table 5: Thermogravimetric analysis of Cu(II) complexes. 

Residue 
Cu(Im) 

(weight %) 

Cu(Ald1) 

(weight %) 

Cu(Ald2) 

(weight %) 

Cu(Ald3) 

(weight %) 

Theoretical 8.1 9.7 23.5 26.0 

Experimental 9.1 11.4 21.9 24.7 

 

As is possible to verify in Table 5 the theoretical values are in agreement with those 

experimental. 

 

Regarding Cu(Im) complex, we have obtained single crystals suitable for X-Ray analysis 

by slow evaporation of 1,2-dichlorobenzene solution and its molecular structure has been 

solved and presented in Figure 53. Crystallographic data are reported in Table 6. 

Inside monoclinic cell (space group P21/c) there is one full molecule and other half 

molecule sitting on inversion center. For simplicity one only molecule is presented in 

Figure 53. Copper atom has a square planar coordination with two nitrogen and two 

oxygen atoms with trans configuration.  
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Table 6: Crystal data and structure refinement details for Cu(Im). 

Chemical formula C84 H114 Cu1.5 N3 O12 

Crystal size, mm 0.4  0.5  0.5 

Crystal habitus, colour Prism, orange 

Formula weight 1453.09 

Temperature (K) 173 

 (Å) 0.71069 

Crystal system Monoclinic 

Space group P21/c 

a (Å) 32.380 (3) 

b (Å) 10.450 (1) 

c (Å) 23.042(3) 

 (°) 90 

 (°) 97.96(2) 

 (°) 90 

Volume (Å
3

) 7721.5(7) 

Z 4 

Dcalcd (g·cm
-3

) 0.938 

 (mm
-1

) 0.328 

F(000) 2308 

Theta range (°) 3.04, 27.52 

Reflections collected 50230 

Unique observed reflections 15728 [R(int) = 0.0466] 

Data/parameters 15728/913 

R1
[a]

, wR2
[b]

 [I>2(I)] 0.0586, 0.1528 

R1
[a]

, wR2
[b]

 (all data) 0.1198, 0.2007 

Largest diff. peak and hole (e·Å
-3

) 0.794, -0.706 

 

[a] R1 = Fo-Fc/Fo 

[b] wR2 = [w(Fo2-Fc2)2/w(Fo2)2]1/2
 



POLYTHIOPHENES 3-SUBSTITUTED FOR APPLICATIONS IN ELECTRONICS 

 111 

 

 

Figure 53: Ortep-3 view of Cu(Im) with ellipsoids drawn at 30% probability level. Hydrogen atoms are 

omitted for clarity. Symmetry transformation used to generate equivalent atoms:_i: -x, -y, -z (the molecule 

lies on a crystallographic inversion centre). Selected bond distances and angles (Å, °): Cu1-O1 = 1.887(3), 

Cu1-N1 = 1.983(3), O1-Cu1-N1 = 91.5(1), O1-Cu1-N1_i = 88.5(1), N1-Cu1-N1_i = 180.0, O1-Cu1-O1_i = 

180.0, N1-C1-C2-C3 = -8.2(6), N1-C1-C2-C7 = 174.8(3), O3-C8-C9-C10 = 0.1(7). 

 

The molecules sitting on inversion centre show a perfectly planar coordination whereas for 

the other molecule the square planar coordination is partly distorted (O-Cu-O = 158.4 (I), 

N-Cu-N = 159.1 (1). Phenyl C2 is almost coplanar to coordination plan of the metal (angle 

between average planes is 14.0 (5)°). Instead, in the case of phenyl C9 average plane, the 

dihedral angle drawn with the metal coordination plane is 77.2(3)°. 

 

The different Cu(II) complexes were therefore tested as catalyst in the polymerization 

reaction, based on the 2,5-oxidation of the 3-(4-alkoxiphenyl)-thiophene monomers, as 

sketched in Figure 54. 
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Figure 54: Synthesis scheme of polythiophenes using Cu(II) complexes. 

 

As starting point, we used 4-octiloxyphenylthiophene and the reaction conditions employed 

in the previously discussed vanadyl catalyzed oxidative coupling reaction (section 3.2, 

Figure 33). We then carefully optimized the polymerization after a wide screening of the 

effects of several reaction parameters (temperature, time, catalyst and co-catalyst 

concentration). 

In particular, in the case of Cu(Ald1), Cu(Ald2) and Cu(Ald3) catalyzed polymerization, 

the same optimized reaction parameters were found. The reactions were conducted at 

higher temperature (80°C) and for longer times (48 h) as compared to the case in which 

VO(acac)2 was used as catalyst. Moreover, a solvent with higher boiling point (1,2-

dichlorobenzene) and greater amounts of TFMSA and TFA were employed.  

For what concerns Cu(Im) catalyzed reaction, a comparable amount of TFMSA and TFA 

were employed, but even longer times (96 h) were utilized.  

Using the described copper based catalysts, PT8 polymers were obtained in a yield ranging 

between 23 and 36 %.  

Considering the just discussed data, we can assume that the Cu(II) complexes have lower 

activity as compared to VO(acac)2, because higher temperature, longer times, greater 
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amount of TFMSA and TFA were needed to achieve comparable yields. The lower reaction 

rate can in turn have a good effect on the regioregularity of the obtained polymer as 

described previously. To qualitatively assess the regioregularity degree of poly-(3-(4-

octyloxy)phenyl)thiophenes prepared by using copper complexes as catalysts, we 

performed a careful UV-Vis analysis on thin films of these polymers. 

In Particular polymer films were obtained from 1,2-dichlorobenzene solution (10 mg/ml) 

heated at 100°C, via spin-coating. Afterwards, the films were annealed for 15 minutes, at 

150°C in air. UV-Vis spectra show no changes before and after annealing, as the films are 

already well structured before of annealing process. UV-Vis spectra of polymer films are 

reported in Figure 55. 

From a qualitatively point of view the spectra of PT8 prepared using Cu(Im) and Cu(Ald1) 

appeared more defined while the spectra of PT8 obtained by Cu(Ald2) and Cu(Ald3) 

featured some absorption at ~ 450 nm (see Figure 55).), typical of regioirregular sequences. 

All the spectra polymers prepared through Cu(II) complexes show a stronger redshift of 

max than spectra of PT8 prepared through VO(acac)2. Also the vibronic structure is more 

definite and a higher regioregularity degree can be assumed as compared to the polymers 

prepared by vanadyl catalyzed polymerization (90 %).  

Particularly impressive is the optical behavior of PT8 prepared using Cu(Ald1) that is 

characterized by maximum absorption peak at 618 nm with a shoulder at 678 nm (see 

Table 7 in which the optical features of the different polymer films are reported).  
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Figure 55: UV-Vis spectra of polymer films. 

 

Table 7: Dates related to max values and vibronic structure of polymer films 

PT8 Cu(Ald1) Cu(Ald2) Cu(Ald3) Cu(Im) VO(acac)2 

max (nm) 
618 608 608 563 562 

Vibronic 

Structure 

(nm) 

578 

618 

678 

570 

608 

669 

570 

608 

669 

598 

668 

603 

664 
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While UV-Vis spectra can provide only a qualitative evaluation of the regioregularity of 

the polymers, 
1
H NMR analysis was used in order to investigate deeply the HT content in 

polymers synthesized using Cu(II) and VO(acac)2 complexes as catalysts. 

Particularly, we have investigated the proton on position 4 of the thiophene ring because it 

can be used for the quantitative determination of the regioregularity of reported polymers, 

being in fact protons of the different configurational triads (shown in Figure 32) 

characterized by slightly different resonance values.  

The 
1
H NMR spectrum of PT8 prepared using Cu(Ald1) complex is reported, as example 

in Figure 56, with the insight representing the aromatic part. 

 

Figure 56: 1H-NMR spectrum of PT8 prepared by Cu(Ald1) complex. 
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By performing a decoupling procedure during spectrum acquisition it was possible to avoid 

the partial overlapping of one of benzenic signals (a doublet, without decoupling) with the 

thiophenic singlet under investigation (see aromatic part of the 
1
H NMR spectrum of PT8 

in Figure 56). As earlier discussed (see 3.1 Paragraph), the thiophenic signal is composed 

of a main peak and three other lower signals, corresponding to the four possible 

configurational triads. In Figure 56 the isolated thiophenic peaks relative to PT8 prepared 

by using the 4 different copper catalysts are presented. By operating a deconvolution 

procedure it was moreover possible to separate the different contributions given to this 

signal by the 4 different configurational triads singlet. 

Taking advantage of a previous work reported in the literature on poly(3-

dodecylthiophene) [49] we have assigned each singlet signal to the corresponding 

configurational triads (the higher peak at higher field corresponding to HT-HT triad and 

then moving towards lower fields, in sequence the peaks corresponding to HT-HH, TT-HT 

and TT-HH triads). Then we have measured the area of each peak obtained by 

deconvolution process (see Figure 57), which concurs with the fraction of a corresponding 

triad.  
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Figure 57: Deconvolution process applied to thiophenic singlets. 
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Moreover the observed fractions of diad and triad may be interpreted in terms of the 

statistics of the polymerization involving the propagation steps as it is shown in Figure 58. 

 

 

 

 

 

 

 

 

 

 

Figure 58: Diads that can are formed in polymerization process. F and B denote the forward and the opposite 

orientations of monomer units defined for propagating terminal radicals, respectively.  

 

It has been suggested that the electrochemical polymerizations of polypyrroles and 

polythiophenes take place by the condensation of the radical cation of the monomer with 

the radical cation of the propagating terminal [49]. Moreover the observed fractions of diad 

and triad may be interpreted in terms of the statistics of the polymerization involving the 

propagation steps as it is shown in Figure 58, kxy is the rate constant of step XY. We define 

and use here the fraction FX of X as the radical cation of propagating terminal with the 
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relation that FF + FB = 1 and the additional probability Pxy of step XY with the relations 

that PFF + PFB = 1 and PBF + PBB = 1.  

 

Then we introduce the independent parameters , and  as follows: 

 

      (17) 

                       (18) 

                       (19) 

 

Thus it is worked out the equation system follows, through least squares analysis method: 

 

                             

                    

                          

              (20) 

 

Finally, the resolution of this equation allows obtaining HT values: 

 

                          (21) 

 

The obtained regioregularity degree (defined as the amount of HT dyads) are reported in 

Table 8. We can see that a extremely high regioregularity can be obtained using Cu(II) 
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complexes, with a minimum of 96 % (when Cu(Ald2) is used up to a maximum of 99 % 

(for Cu(Im) and Cu(Ald1)). These values are significantly higher then the regioregularity 

obtained for the same polymers prepared by using VO(acac)2 (see the same NMR analysis 

of the thiophenic peak carried out on this polymer in Figure 59) as catalyst and are 

comparable to the values reached by using the classical McCullough and Rieke methods 

for PAT‟s synthesis. As compared to those methods, it has to be stressed that the novel 

synthetic methodology that we developed is much cheaper and straightforward: the step of 

monomer dibromination is in fact avoided and the employed catalyst is cheaper and not air 

sensitive so that a protected environment is not required.  

An Italian patent request has been submitted for the this novel synthesis of poly-(3-(4-

alcoxyphenyl)thiophenes) endowed with high regioregularity [50]. 

 

Table 8: The HT values of PT8 synthesized through Cu(II) complexes. 

PT8 Cu(Ald1) Cu(Ald2) Cu(Ald3) Cu(Im) VO(acac)2 

  96.25 97.17 98.96 90.0 

 

 

 

 

 

 

Figure 59: Deconvolution process applied to thiophenic singlets of PT8 prepared using VO(acac)2. 
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For what concerns the polymerization mechanism, further studies are needed and we can 

just make some speculation on the basis of some experimental results. We can suppose that 

a redox catalytic cycle occurs, whose Cu(II) oxidize to radical cation the thiophene ring, 

with its reduction to Cu(I). The catalysis may be promoted by the Cu-S interaction between 

the copper atom of the complex and sulfur atom of thiophene. The oxygen can oxidize 

again Cu(I) to Cu(II), with water production in acidic environment and thus closing the 

catalytic cycle.  

After having optimized the just discussed polymerization reaction on the synthesis of PT8, 

we extended this procedure in the synthesis of other systems with the aim of improving the 

processability properties. We have in fact found that PT8 synthesized using Cu(II) 

complexes result insoluble at room temperature, and are soluble only at high temperature 

(higher than 120 ° C) in chlorinated solvent as chloro or o-dichlorobenzene. Accordingly, 

we have decided to synthesized PT6-8 copolymer and PT8Iso omopolymer employing 

Cu(Ald1) and the same optimized conditions of reaction discussed earlier, to obtain both 

soluble and thus processable polymers and high regioregularity (synthesis scheme is 

reported in Figure 60).  
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Figure 60: Synthesis scheme of PT6-8 and PT8Iso. 

 

The UV-Vis spectra of the films of PT6-8 and PT8Iso are shown in Figure 61 from which a 

well defined vibronic structure and low absorbance in the regioirregualr zone (around 450 

nm) can be inferred.  

Also in this case, the quantitative regioregularity degree was calculated by means of 
1
H 

NMR analysis. 
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Figure 61: UV-Vis spectra of PT6-8 and PT8Iso. 

 

In fact HT content of 95.72 and 96.90 %, respectively for PT6-8 and PTIso8, were 

computed, values comparable with those characterizing PT8 synthesized using Cu(Ald1) as 

catalyst (see Table 9).  

 

Table 9: The HT values of PT6-8 and PT8Iso. 

 PT6-8 PT8Iso 

 95.72 96.90 

 

In Figure 62 the 
1
H NMR spectra, limited to the thiophenic proton area, are reported along 

with the deconvolution procedure. 
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Figure 62: Deconvolution process applied to thiophenic singlets. 

 

For what concerns their solubility, PT6-8 is slightly more soluble of PT8, while PT8Iso is 

soluble in chlorinated solvent even at room temperature and can be considered as an 

interesting candidate for application in organic photovoltaics. 
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3.4 Measurement of FET Mobility of PT8-Cu(Ald1) 

As earlier mentioned, we have investigated about the conducibility properties of 

PT8 synthesized using Cu(Ald1), through preliminary measurements of FET mobility. 

In order to realize the FET device, PT8-Cu(Ald1) was deposed on bottom-contact substrate 

by solution (5 mg of polymer in 1 ml of 1,2-dichlorobenzene) which after heating at 120°C 

was filtered with PTFE 0.2 m filter and deposed via spin-coating at 700 rpm. Afterwards, 

the device was annealed at 150°C for 30 minutes.  

The obtained device‟s image is reported in Figure 63. 

 

 

Figure 63: Film of PT8-Cu(Ald1) deposed via spin-coating onto FET device. 

 

PT8-Cu(Ald1) exhibits FET hole mobility up to  = 1.0*10
-4

cm
2
V

-1
s

-1
. As a matter of 

comparison, an analogous transistor based on P3HT as active material was prepared and 

tested under the same experimental conditions. The measured mobility was only one 

magnitude order higher than value shown by the PT8 based transistor and this can be 

considered a very encouraging result considering that further optimization can be 
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performed. The device current-voltage characteristics in saturation regime are shown in 

Figure 64 

 

Figure 64: Current-voltage characteristics of PT8-Cu(Ald1) based device. 

 

The measurements were carried out in the laboratories of the Physic Department, 

University of Naples “Federico II” (Italy), Research Group of Prof. Antonio Cassinese. 
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4 SYNTHESIS OF ALKYLTHIADIAZOLE AND ALKYLTRIAZOLE-

SUBSTITUTED PERYLENEBIS (DICARBOXIMIDES) FOR APPLICATION 

IN FET DEVICES 

4.1 Introduction 

Perylene-3,4,9,10-tetracarboxylic acid diimides (PDI) derivatives represent a class of 

organic compounds that have been extensively investigated and have found, since the 

beginning of the last century, a wide application in the field of high performance industrial 

pigments because of their high color strength, weather fastness and heat stability [51],[52]. 

Today, perylene pigments are mainly used in the coloration of automotive paints, synthetic 

fibers and engineering resins. PDI derivatives present as well a series of other appealing 

features, such as very high fluorescence quantum efficiency, a strong electron acceptor 

character, excellent photochemical stability and two photon absorption properties, that 

make them interesting candidates for use in different subfields of organic electronics and 

photonics: they are among the most promising and versatile n-type semiconductors due to 

their high electron affinity, their remarkable chemical stability, their outstanding optical 

and electronic properties and the considerable variety of possible chemical 

functionalization. The excellent charge transporting character of PDI is favorable for 

organic thin film transistors (OTFT) [53] due to the rapid and effective electron transfer 

process. Furthermore, it is possible to obtain devices that show high-performance, excellent 

mobilities, light weight, mechanical flexibility and low-cost production. PDI derivatives 

have so far been used as active materials in newly developed devices as, fluorescent light 

collectors, organic solar cells and optical power limiters. 
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PDI derivatives are characterized by low energies of LUMO frontier orbitals and this 

feature make them one of the most important class of materials for n-channel OTFT: 

electron transport in organic transistors occurs, in fact, through an hopping mechanism 

between localized LUMO states and the more stable are these ones, the more resistant are 

the anionic radical charge carriers against electronics traps or oxidation toward moisture 

and oxygen. A LUMO energy between -4.0 and -4.3 eV has been identified as the energetic 

threshold featured by an organic material so that it can be used as active layer in OTFT 

efficiently working under ambient conditions.
 

Derivatives of PDI are generally prepared in two different ways, by functionalizing the 

imide nitrogen or the perylene core itself (bay substitution). In both cases, the use of strong 

electron-withdrawing groups has been used to stabilized the LUMO energy of the 

molecule, even if at a different extent. The effect of imide substitution on frontier orbitals 

energy is merely inductive, being the imide nitrogen located on nodal planes of both 

HOMO and LUMO [54] (this, in turn, determines also a little change in the optical 

properties, being HOMO and LUMO stabilized of the same energy amount). Substitution 

in the bay position leads instead in a more dramatic change in both the electronic and 

optical features of the molecule. At the same time anyway, particularly when bulky 

substituent are used, a disruption of molecule planarity can occur, negatively affecting the 

property of charge transporting [55]. Both the kind of derivatives have been used for the 

fabrication of ambient stable OTFT: functionalization of the imide nitrogen with 

fluoroalkyl or fluorophenyl moieties, as well as substitution in the bay position with cyano 

and halogen groups, have allowed the preparation of devices with excellent performance 

and air stability. 
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4.2 Alkylthiadiazole and alkyltriazole-substituted perylenebis(dicarboximides) 

Starting from these considerations, we have synthesized a new class of PDI derivatives 

functionalized at the imide nitrogen with a thiadiazole and triazole group. Thiadiazole and 

triazole have electron withdrawing properties that can help in stabilizing, for inductive 

effect, the LUMO energy of the molecule. Indeed, in a recent work [55], a series of soluble 

PDI, among which a thiadiazole substituted PDI, were electrochemically investigated: it 

was found that the thiadiazole substituted PDI had a first reduction potential about 0.3 V 

more positive than alkyl derivative of PDI. This remarkable difference, correlated to a 

much stable LUMO orbital in thiadiazole containing PDI, suggests the possibility to 

investigate whether this kind of material can be a good active layer for ambient working 

OTFT. Moreover, being the thiadiazole and triazole pentaatomic heterocycles (in addition 

with no orto-hydrogens), we have assumed that in the molecular conformation they 

remains coplanar with the perylene core (unlike what happens instead when the nitrogen is 

substituted with a phenyl ring) and this could lead to a tighter packing that could in turn 

hinder the oxygen penetration and kinetically stabilized the molecule toward oxidation.  

Moreover we have functionalized the heterocycle rings with different alkyl tails, some 

linears and the other swallow-tail like in order to increase the solubility.  

 

Regarding the synthetic pathway for the preparation of PDI derivatives functionalized with 

thiadiazole group, we have developed a particular synthesis strategy that is summarized in 

Figure 65. The first step is the synthesis of the thiadiazole functionalized by a linear heptyl 

or tridecyl tail or by a branched 2-hexylnonyl group. We have prepared the heterocycle 
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through condensation between the proper carboxylic acid and thiosemicarbazide in the 

presence of POCl3 as dehydrating agent. Afterwards, PDI derivatives were obtained by the 

condensation reaction of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) with the 

proper alkyl-thiadiazole at high temperatures (180°C) in solvents as imidazole with zinc 

chloride as a catalyst in nitrogen atmosphere. After 4h, concentrated solution of 

hydrochloric acid was added and the reaction system was allowed to react for 2h at 150°C. 

 

 

Figure 65: Synthesis scheme of PDI functionalized with thiadiazole group. 

 

The scheme for the synthesis of the triazole functionalized PDI is shown in Figure 66. Also 

in this case the first step has been the preparation of the alkyl-triazole, obtained by the 

condensation of caprylic acid and 1,3-diaminoguanidine hydrochloride in the presence of 

polyphosphoric acid (PPA) as dehydrating agent, for 12h at 200°C. Successively, we have 
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obtained PDI derivative intermediate by the condensation reaction of PTCDA with triazole 

refluxed with pyridine and imidazole in nitrogen atmosphere for 12h. 

 

 

Figure 66: Synthesis scheme of TR-C7. 

 

Finally, TR-C7 was synthesized by the cyclization reaction of PDI-derivative intermediate 

in PPA for 12h at 150°C.  

 

The purity of the compounds have been checked by elemental analysis, 
1
H-NMR and 

MALDI mass spectrometry and all the data are consistent with the proposed structure.  

Optical observations with a polarizing microscope and differential scanning calorimetry 

analysis performed on all the chromophores did not indicate the presence of phase 

transition and also the melting point was not detectable because the decomposition process 
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started before. Thus we have decided of investigate deeply about the thermal stability of 

the samples. 

The decomposition temperature of all the PDI derivatives was obtained by means of a 

thermogravimetric analysis. The knowledge of this parameter is of fundamental importance 

during the fabrication of FET devices by thermal evaporation of the molecules: to avoid in 

fact thermal degradation of the chromophores during the process a safe evaporation 

temperature, well below the decomposition temperature, has to be chosen. The analysis 

was performed under nitrogen flow at a rate of 10°C/min and, as example, the thermogram 

of TDZ-C13 (in which the loss of specimen weight is plotted against temperature) was 

reported in Figure 67; the decomposition temperatures, calculated as the temperature 

corresponding to the loss of 5% weight, are reported in Table 10. 

 

Figure 67: Thermogravimetric analysis of TDZ-C13. 
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Table 10: Temperatures of decomposition of PDI derivatives. 

 TDZ-C7 TDZ-C13 TDZ-ST TR-C7 

d°C  372 369 345 

 

All the PDI derivatives obtained present a fair good thermal stability with temperatures of 

decomposition well above 300°C, that allow their safe use in operating conditions. 

 

Successively PDI derivatives were characterized by measurements of relative fluorescence 

quantum yields in solution. The fluorescence quantum yield of a specific molecule is 

defined as the ratio of the number of photons emitted compared to the number of photons 

absorbed: 

 

     
               

                
  (19) 

 

We have calculated fluorescence quantum yields through a dilute solution relative method 

[56] that is based on the comparison of the Φf of the samples with ΦfS of a suitable 

standard. The standard used was quinine sulfate dihydrate which has ΦfS = 0.546 in H2SO4 

1 N when is excited at  = 365 nm according to Melhuish [57].  
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For each sample were carried out the absorbance and emission spectra of diluted 

chloroform solutions and the spectra are reported in Figure 68 (the thiadiazolic derivatives) 

and Figure 69 (the triazole derivative). 

 

Figure 68: Absorbance and emission spectra of the PDI derivatives functionalized with thiadiazole group. 
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Figure 69: Absorbance and emission spectra of TR-C7. 

 

The emission spectra were obtained using excitation wavelength corresponding to second 

peak of the structured absorbance spectrum. Thus plotting the values of emission area 

against the absorbance values corresponding to the absorption maximum, it is possible to 

obtain a set of points that can be fitted by a straight line according to the method of least 

squares. The value of the line‟s slope can be used to calculate Φf trough the following 

expression: 

 

         
 

  
  

  

  
    (20) 

 

where Φf and ΦfS are quantum yield of the sample and standard respectively; B and BS 

are the slopes of the straight line of the sample and standard respectively;  and S are 



SYNTHESIS OF ALKYLTHIADIAZOLE AND ALKYLTRIAZOLE-SUBSTITUTED PERYLENEBIS (DICARBOXIMIDES) FOR 

APPLICATIONS IN FET DEVICES  

 136 

refractive index of the solutions of the sample and standard respectively. The fluorescence 

quantum yields values calculated are reported in Table 11. 

 

Table 11: Values of the fluorescence quantum yields of the PDI derivatives.  

Excitation wavelength used: 
a
 491 nm; 

b
 490 nm; 

c
 492 nm; 

d
 516 nm. 

 TDZ-C7
a
 TDZ-C13

b
 TDZ-ST

c
 TR-C7

d
 

Φf  (%)  78 58 37 

 

As far PDI derivatives functionalized with thiadiazole groups are concerned, quantum 

yields values are quite high. 

 

Discussing more in details the UV-Vis spectra, the thiadiazolic PDI derivatives (Figure 68) 

feature a strong vibronically structured absorptions with maxima ~ 525 nm, an optical 

behavior similar to the PDI derivatives substituted at the imide nitrogen with an alkyl or 

aryl group. Generally, we can identify three peaks in the wide range of 400-550 nm, which 

corresponds to the transitions of 0→2, 1→2 and 0→1. Notably, the emission and 

absorption spectra are well mirrored, giving strong evidence of Frank-Condon principle. It 

has been proven that the imide substituent has a negligible influence on the absorption and 

emission properties bisimide because of the nodes in the orbitals HOMO and LUMO at the 

nitrogen atoms [26]. This causes a decoupling of the chromophore from these single bonds. 

Because of solubility issues, a quantitative determination of molar extinction coefficient ε 

of the PDI derivatives under investigation, was possible only for TDZ-St. In particular, ε 
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value for TDZ-ST was found to be 3.1∙10
4
 in chloroform solution. Slightly higher values 

are to be expected for the other two thiadiazolic PDI derivatives considering the fact that 

they bear smaller, optically inactive, alkyl chain.  

The optical behavior of TR-C7 is slightly different: first of all quantum yields value is 

lower than PDI derivatives functionalized with thiadiazole group (see Table 11). Also 

absorbance and emission spectra (see Figure 69) present some difference. In fact in the 

case of TR-C7 it is observed a partial loss of vibronic structure in the absorbance spectrum 

and a slight red-shift of the emission spectrum. We have assumed that this behavior can be 

related to the increase of conjugation extension in TR-C7 as compared to PDI derivatives 

that strongly influence the absorption and fluorescence peaks.  
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4.3 Measurement of FET Mobility of PDI Derivatives 

Successively we have used the PDI derivatives to fabricate FET bottom contact 

devices in order to measure their mobility both in vacuum and under ambient conditions. 

Such electrical tests were carried out using FET device with SiO2 gate dielectric or SiO2 

functionalized by organosilane self-assembled monolayers (SAMs). It is known that the 

gate dielectric of organic transistors has a greater influence on carrier transport and 

mobility compared to inorganic materials. Organic transistors usually operate in 

accumulation mode and charge transport typically takes place in the first few monolayers 

(2–6 monolayers, depending on the material) of the organic semiconductor adjacent to the 

gate dielectric. As a result, the transistor performance is greatly influenced by properties of 

this interface. Using functionalized gate dielectric, we can obtain: (i) a decrease charge 

carrier traps by shielding the conduction path from surface hydroxyl groups and 

smoothening dielectric surface with a polymer thin layer or molecular monolayer; (ii) 

tailoring the surface energy of the dielectric or the order of interfacial monolayer in order 

to control the molecular orientation, assembly, packing and film morphology of 

semiconductor layer [58]. Moreover, Fontaine et.al [59] demonstrated that this monolayer 

acts as an excellent electrical insulator, with leakage current densities as low 10
-8

 A cm
-2

 

for an average field of 5.8 M V cm
-1

, reduced by about five magnitude orders compared to 

the bare substrates.  

In order to functionalize the SiO2 thermally grown on the silicon substrate used for the 

fabrication of our transistors, the following procedure was employed: first, we have treated 

the Si/SiO2 substrate with a “piranha” solution (50:50 concentrated H2SO4:30% H2O2 
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(v/v)) at 120°C for 15 min in order to obtain the release of the –OH groups from surface. 

Successively, the substrates were exposed to 1,1,1,3,3,3-hexamethyldisilazane (HMDS) 

vapors under rigorously inert atmosphere, into a sealed glass vessel at room temperature for 

4 days. This procedure leads to monolayers of organosilane compounds covalently linked 

to superficial –OH groups. Then, substrates were carefully washed with several organic 

solvents to remove physisorbed coupling agent. Substrate functionalization is reassume in 

scheme of Figure 70. 

 

 

Figure 70: Substrate functionalization with HMDS. 
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Successively we have characterized the self-assembled coupling layer through advancing 

aqueous contact angle (θa) measurements. Contact angle values of some substrates are 

reported in Table 12. The contact angles change from ~ 15° for SiO2 to ~ 110° for the 

silylated surface. Thus this hydrophobic change in θa is consistent with the presence of 

organosilane homogeneous monolayer on the surface. 

 

Table 12: Contact angle values of some substrates functionalized with HMDS. 

 

 

After the substrate functionalization, all the PDI derivatives were thermally evaporated 

both on bare (Si/SiO2) and HMDS functionalized substrates (Si/SiO2/HMDS). For all the 

samples the chamber was heated up to 100°C (maximum value experimental accessible), 

the cell temperature was kept at value not above at 290°C and the deposition rate was set at 

0.06 nm/min, leading deposition time at 4 h. We have developed this deposition procedure 

to prevent sample degradation. In fact, in previous tests, the cell temperature was increased 

up to 320°C and it was utilized 0.5 nm/min as deposition rates. This deposition method led 

to lower values of mobilities due to the organic sample degradation. Therefore through the 

new deposition strategy, values of  = 7.5*10
-4

 cm
2
volt

-1
sec

-1
 for TDZ-ST were reported. 

Sample Contact Angle H2O (°) 

1 107,0+1,4 

2 108,0+0,4 

3 109,9+1,0 

4 106,2+0,2 
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In this case, the highest mobility was measured in vacuum and through functionalized 

substrate (see Table 13). Moreover, For TDZ-ST measurement of mobilities was also made 

with sample deposited by solution (via spin-coating) on functionalized devise. In this case 

lower mobility was reported ( = 5*10
-6

 cm
2
volt

-1
sec

-1
). As for TDZ-C13 measurements, 

the values of  = 1.6*10
-2

 cm
2
volt

-1
sec

-1 
 were indicated (see Table 13). In this case, the 

highest mobilities were measured in vacuum and through a bare substrate. Current-voltage 

characteristics in saturation regime and mobility trends of the devices are shown in  

Figure 71. 

Contrarily regarding mobility measurement of TR-C7, no conduction and field effect were 

observed. We have supposed that this behavior could be related by the degradation 

compound during evaporation process. 

 

Table 13: Comparison of the mobility values of TDZ-ST and TDZ-C13. 

TDZ-ST Si/SiO2 Si/SiO2/HMDS 

 
(cm

2
volt

-1
sec

-1
)

1.4*10
-5
 7.5*10

-4
 

 

TDZ-C13 Si/SiO2 Si/SiO2/HMDS 

 
(cm

2
volt

-1
sec

-1
)

1.6*10
-2
 8.2*10

-3
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TDZ-ST 

 

 

 

 

 

 

 

TDZ-C13 

 

 

 

 

 

 

 

 

Figure 71: Current-voltage characyeristics and mobility trends of OTFT devices. 
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On the base of such deeply investigation, it seems that the mobility values measured on 

functionalized and bare substrates are quite similar, thus we can suppose that the 

performance devices are not affected by superficial treatment. Moreover there is not 

difference between measurements carried out under vacuum and in air, thus we can 

consider that the OTFT devices obtained are very stable under operating conditions.  

Another important parameter that we have considered is the ratio Ion/Ioff in order to value 

OTFTs performances. This value was extracted from the transfer characteristics for TDZ-

ST and TDZ-ST based devices and both show an Ion/Ioff > 10
3
. 

Notably, this value is highly dependent on the voltages used, the device geometry, and the 

dielectric material. Therefore, this value provides a qualitative measure of semiconductor 

performance, but identical parameters must be used to quantify the results when comparing 

different materials. The Ion/Ioff ratio is also a useful measure of purity, because a high off 

current can be indicative of high extrinsic doping levels in the semiconductor [60]. Thus, 

such Ion/Ioff ratio can be considered a very encouraging result considering that further 

optimization of the devices can be performed.  

The devices based on TDZ-C13 and TDZ-ST exhibit respectively Vth of 9.45 and 24 V. 

Such values are in good agreement with ones reported in literature for PDI derivatives [61]. 

 

The surface morphology of the films obtained by thermic evaporation of TDZ-C13 and 

TDZ-ST were deeply analyzed with the atomic force microscopy (AFM) images. The films 

of TDZ-C13 show a growth through elongated islands both on functionalized and bare 

substrates (see Figure 72). 
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TDZ-C13 

 

    Si/SiO2/HMDS     Si/SiO2 

 

 

Figure 72: AFM images of TDZ-C13 films obtained by thermic evaporation. 

 

The average grain size of the functionalized substrate is greater than one bare, but these 

islands seem more separate, furthermore the average surface roughness of the 

functionalized substrate is greater (thickness film of 20 nm with roughness of 4 nm) than 
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one bare (2 nm). In fact TDZ-C13 film is constituted by islands better connected and with 

squared line. These morphological differences appear to affect the electrical response (see 

Table 13). 

Regarding TDZ-ST, the AFM images show that the films obtained by thermic evaporation 

on functionalized and bare substrates are quite similar (AFM images of the film obtained 

on functionalized substrate is reported in Figure 73). The films show the presence of 

columnar structures with height of 30-40 nm and an area of 100-200 nm
2
. 

 

 

Figure 73: AFM images of TDZ-ST film obtained by thermic evaporation on functionalized substrate. 

 

This type of morphology leads to an average surface roughness up to 10 nm (with thickness 

of 20 nm). Furthermore it is possible to observe the presence of circular islands around the 

columnar structures. On the base of the such considerations, we can affirm that the films 

are partially amorphous.  
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The films obtained by solution (5 mg/ml in 1,2-dichlorobenzene) via spin-coating are 

reported in Figure 74. 

 

 

Figure 74: AFM images of TDZ-ST film obtained by spin-coating on functionalized substrate 

 

The films seems amorphous, with corrugated surface. In this case the average surface 

roughness is 10 nm (with thickness of 90 nm). 

 

The measurements and AFM images were carried out in the laboratories of the Physic 

Department, University of Naples “Federico II” (Italy), Research Group of Prof. Antonio 

Cassinese. 
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5 OPTOELECTRONIC AND ELECTRICAL PROPERTIES INVESTIGATION 

OF PT8-Cu(Ald1) AND TDZ-C7 AS DONOR AND ACCEPTOR MATERIALS 

IN SOLAR ORGANIC CELLS 

5.1 Introduction 

In principle, the optimization of organic solar cell is based on fine-tuning of the 

electronic properties and interactions of the donor and acceptor components so to absorb 

more light, generate the greatest number of free charges, with minimal concomitant loss of 

energy, and transport the charges to the respective electrodes at a maximum rate and a 

minimum of recombination.  

Starting from these considerations, We have decided to investigate the optoelectronic and 

electrical properties of PT8-Cu(Ald1) TDZ-C7 for their possible application, respectively 

as donor and acceptor materials in a heterojunction solar cell. 

5.2 Chemical-Physically Characterizations 

Preliminary analysis were carried out through cyclic voltammetry (CV) in combination 

with UV-Vis optical absorption spectra in order to estimate molecular frontier orbital levels 

and Eg values of PT8-Cu(Ald1) and TDZ-C7. 

We have performed CV measurements on thin film, using acetonitrile-NaClO4 as 

electrolytic solution and the redox data were standardized with Ag/AgCl couple. Cyclic 

voltammograms of PT8-Cu(Ald1) and TDZ-C7 are shown in Figure 75. Frontier orbital 

level energies were obtained from onset of oxidation and reduction peaks (values indicated 

by arrows onto voltammograms of Figure 75).  
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PT8-CuAld1 

 

TDZ-C7 

 

Figure 75: Cyclic voltammograms of PT8-CuAld1 and TDZ-C7. 
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From the CV trace it was possible to estimate the HOMO and LUMO energy values of the 

materials under investigation as earlier discussed (using Equation 7 described in 1.4.5 

Paragraph). In particular for PT8 a HOMO energy of -5.55 eV was derived from CV 

measurements and combining this result with the optical bandgap measured by UV-Vis 

analysis, the LUMO energy was estimated in 3.94 eV. For what concerns instead TDZ-C7, 

since both a reduction and an oxidation process is observable in CV graphs, both HOMO 

and LUMO can be directly calculated and a value, respectively for HOMO and LUMO 

energy, of -6.52 and -4.30 eV was found.  

Band-offset of a possible heterojunction is reported in Figure 76.  

 

 

 

 

 

 

 

 

 

 

Figure 76: Energy diagram of the orbital frontiers belong to PT8-CuAld1 and TDZ-C7. 

 

PT8-CuAld1 TDZ-C7 
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On the base of such preliminary investigation, we can assume that PT8 and TDZ-C7 are 

excellent candidate materials in order to assemble photovoltaic cells. 

In fact, the first requirement concerning the electronic levels energy of possible donors and 

acceptors in a heterojunction organic solar cell, is the fact that the donor must be capable of 

transferring charge to the acceptor material upon excitation. A downhill energetic driving 

force is necessary for this process to be favorable and this driving force must exceed the 

exciton binding energy. This binding energy is the Coulombic attraction of the bound 

electron–hole pair in the donor, and typical values are estimated to be 0.4–0.5 eV. It 

appears that a minimum energy difference of 0.3 eV [34] is required to affect the exciton 

splitting and charge dissociation, thus the value of  = 0.36 eV owned by our system is 

compatible with dissociation energy of exciton.  

There are other two important parameters to be considered in the choice of materials for the 

fabrication of an efficient organic solar cell. First, the used materials should be capable in a 

wide range of the solar emission spectrum. One limitation of P3HT is for instance an 

optical bandgap of ~ 1.9-2.0 eV and thus a bad overlap with the low energy zone of the 

solar spectrum. One strategy to increase the efficiency is therefore to use low bandgap 

organic materials to better match solar spectrum [62]. With a Eg of about 1.61 eV, PT8 is 

definitely an interesting material to be used in this context. The second strategy followed in 

the recent works is to use donor materials characterized by a low lying HOMO level [63]. 

This in turn would allow a higher theoretical Voc that has been proved to be dependent from 

the energy difference LUMO(acceptor)-HOMO(donor) [63], [64]. The HOMO energy 

measured for PT8 is low enough to make this material very appealing also in the 
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framework of this second strategy for increasing organic solar cells efficiency. To sum up, 

the electronic features of PT8 and TDZ-C7 indicate these materials as a very interesting 

couple of donor-acceptor materials for the fabrication of an organic heterojunction solar 

cell. 

 

A optical characterization of film of PT8 and TDZ-C7 was successively carried out. This 

technique of thin film deposition was chosen to overcome the problem of low solubility 

affecting both the materials. In fact film are deposited from very diluted solution (in this 

case 1,2-dichlorobenzene was the solvent). Three different systems were prepared: a four 

LB layer structure of PT8 (PT8), a four LB layer structure of TDZ-C7 (TDZ) and a mixed 

structure composed by 4 LB layers of PT8 and 4 LB layers of TDZ-C7 (HJ, the PT8 films 

on the bottom). Uv-Vis and emission spectra are reported in Figure 77. Uv-Vis spectra 

confirms the good control on the thickness of the film obtained by LB technique since the 

spectrum of the mixed structure corresponds exactly to the sum of the 4 layers film of the 

single materials. TDZ shows a broad absorption between 430 nm and 600 nm, while PT8 

shows a absorption maximum at 630 nm. When they are deposed together (HJ film) a 

broad absorption between 400 nm and 650 nm coinciding with the more intense part of the 

solar emission spectrum, condition highly desirable in a solar cell.  

Emission spectra of TDZ and HJ (obtained through two excitation wavelength:  = 470 and 

 = 570 nm) show photoluminescence (PL) quenching of the 46% in the mixed film as 

compared to pure TDZ film. We have assumed that the quenching may be related with 
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energy transfer from TDZ-C7 toward PT8-(CuAld1). In fact there is a partial overlay of the 

absorbtion of PT8 PT8-(CuAld1) with emission spectrum of TDZ-C7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 77: Absorbance and emission spectra of PT8(CuAld1) and TDZ-C7 film obtained by Langmuir-

Blodgett method. 
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Furthermore such PL quenching indicates that efficient charge separation occurred at the 

PT8/TDZ interface, limiting the PL emission from the active layer. For organic 

photovoltaic devices, the separation of excitons into separated electrons and holes only 

occurs at the donor-acceptor interface. In the generally accepted mechanism, direct electron 

transfer from the donor to the acceptor occurs following the diffusion of the exciton to the 

donor–acceptor interface. However, another possible mechanism involves a Förster 

resonance energy transfer (FRET) from the donor to the acceptor after excitation, thus 

generating an exciton in the acceptor. Electron transfer from the donor to the acceptor by 

oxidation of the donor through the excited-state acceptor then leads to a free electron and 

free hole, if the difference between the HOMOs of the two components is sufficient to 

drive the charge transfer [34].  

Therefore, the limited interfacial surface area of the abrupt and flat heterojunction can limit 

device efficiency because excitons generated are far from the interface recombine prior to 

dissociation. If the distance between conjugated polymer and acceptor material is larger 

than the exciton diffusion length, some excitons cannot reach a domain of n-material and 

subsequently recombine to give a PL signal. In contrast, a well-mixed heterointerface, 

ensures more-efficient exciton diffusion and charge separation. As the miscibility of the 

donor and acceptor increases, the size of the phase-separated domains decreases and the 

interfacial surface area between the two components is larger. The excited-state energy can, 

therefore, contribute to the photocurrent of the device instead of being emitted as a PL 

signal.  
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The measurements were carried out in the laboratories of the Chemical Department “S. 

Cannizzaro”, University of Palermo (Italy), Research Group of Prof. Bruno Pignataro and 

Dr. Sebastiano Cataldo. 

 



CONCLUSIONS 

 155 

6 CONCLUSIONS 

The aim of this work was the synthesis and characterization of different classes of 

organic semiconducting materials using various types of synthesis strategy in order to 

realize electronic devices based on these organic semiconductors are employed as active 

materials, with respect to their properties. 

 

In particular, the first part of the work dealt with the synthesis of a particular class of p 

semiconductor like polythiophenes 3-substituted by alkoxyphenilic and alkenoxyphenilic 

groups by adapting a particular synthetic methodology reported in literature [44], based on 

oxidative catalysis using vanadyl acetylacetonate (VO(acac)2) complex. We chose this 

synthetic procedure because it can be considered very simple and inexpensive if compared 

with Rieke [41] and McCullough [42] methods: in fact this method does not require any 

leaving groups or removal of the byproduct in the preparation of aromatic polymers, the 

procedure is very simple and it is possible to obtain regioregular polythiophenes with over 

90% HT content. The choice of using alcoxy and alkenoxy-phenyl sustituent on the 

polythiophene chain was taken in order to red-shift the polymer absorption as compared to 

the traditional P3HT. For what concerns the alkeneoxyphenyl substituent, they were 

moreover chosen with the idea of improving structuring and stability of polymers through 

the possibility of performing crosslinking reaction on film in different conditions. 

The so prepared materials have been used as active layers in the fabrication of sensor 

devices for VOCs detection, in particular some of them were successfully used for 

detection of acetone, ethanol and toluene vapors. Such sensor devices have shown a linear 
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response of analyte concentration, good sensibility values, low detection limits and the 

efficiency device did not decrease even after three weeks of working. 

 

Successively we have developed a new synthetic procedure in order to obtain poly[3-(4-

alkoxyphenyl)thiophene]s with very high regioregularity. Thus such synthesis strategy was 

developed in order to realize polythiophenes that could be employed in a broader range of 

applications of the organic electronic, not only for application in organic sensors. In fact, 

increasing the regioregularity degree of this polymer class it is possible to improve their 

electrical properties, and to design photovoltaic cells where highly regioregular 

polythiophenes can be employed as active materials.  

To achieve this goal, a deep investigation of the activity of different oxidation catalysts in 

alcoxyphenylthiophene polymerization was carried out. At the beginning, our research was 

addressed towards vanadyl complexes with different ligands but the results were not 

satisfactory. Successively several complexes were investigated to find a metal center able 

to catalyze regiospecific oxidative reaction between thiophene rings. In fact oxydant 

complexes of metals as Mn(II), Fe(II), Co(II), Ni(II), Nb(II) were employed in a wide 

range of conditions, but no one given satisfactory results. After a preliminary investigation 

of copper acetylacetonate catalyst, which did not afford interesting results, we finally 

develop a set of catalysts like Cu(Im), Cu(Ald1), Cu(Ald2) and Cu(Ald3) that gave 

excellent results. Thus we have optimized experimental condition through the variation of 

conditions in a wide range of experiments and deeply investigated regioregularity degree of 

the polymers obtained using both UV-vis spectra and 
1
H-NMR analysis. As a result of such 

deep investigation, we found that a extremely high regioregularity can be obtained using 
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Cu(II) complexes, with a minimum of 96 % up to a maximum of 99 %. These values are 

significatively higher then the regioregularity obtained for the same polymers prepared by 

using VO(acac)2 as catalyst and are comparable to the values reached by using the classical 

McCullough and Rieke methods for PAT‟s synthesis. Moreover it is possible to obtain 

highly regioregular poly[3-(4-alkoxyphenyl)thiophene]s through a very simple and 

inexpensive procedure: the step of monomer dibromination is in fact avoided and the 

employed catalyst is cheaper and not air sensitive so that a protected environment is not 

required.  

An Italian patent request has been submitted for the this novel synthesis of poly-(3-(4-

alcoxyphenyl)thiophenes) endowed with high regioregularity. 

Finally we have carried out preliminary measurement of FET mobility and in particular the 

FET device prepared with PT8-Cu(Ald1) as active material, shown hole mobility up to  = 

1.0*10
-4

cm
2
V

-1
s

-1
. This mobility value is only one magnitude order lower than value shown 

by P3HT in both the same measurement conditions and device utilized. 

 

The second part of the thesis work concerns about the synthesis of a new class of n-type 

semiconductor materials as PDI derivatives functionalized at the imide nitrogen with a 

thiadiazole and triazole group. In the latter case, by means of a double condensation 

reaction a molecule with an extended conjugation frame, as compared to classical PDI, 

have been obtained. We have developed this particular synthetic strategy because 

thiadiazole and triazole have electron withdrawing properties that can help in stabilizing, 

for inductive effect, the LUMO energy of the molecule. 
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Different PDI derivatives have been prepared, functionalized on the thiadiazole or the 

triazole with different alkyl tails some linears and the other swallow-tail like in order to 

increase the solubility. 

The purity of the compounds was checked by elemental analysis, 
1
H-NMR and MALDI 

mass spectrometry and all the data are consistent with the structure proposed for PDI 

derivatives.  

A thermal analysis of all the molecules was carried out: no solid phase transition was 

detected neither melting point, being the compounds characterized by a decomposition 

temperature lower than melting temperature. The decomposition temperature were then 

determined by means of thermogravimetric analysis and in all the case a high thermal 

stability was found, with decomposition occurring beyond 300 °C.  

PDI derivatives were moreover characterized for what concerns their emission properties: 

the thiadiazole derivatives presented a good photoluminescence quantum yield, up to 78 %. 

In the case of triazole derivative a lower quantum yield was measured (38 %) and a 

different emission pattern, less structured and more red-shifted. The synthesized PDI 

derivatives were used as active layers in the fabrication of organic thin film transistors: to 

avoid thermal degradation, the temperature set for the evaporation of the films was 

carefully chosen. The FET, characterized by a bottom contact configuration, feature SiO2 

as gate dielectrics or SiO2 functionalized with a HMDS monolayer. The functionalizion of 

SiO2 gate dielectrics was performed in order to obtain a decrease charge carrier traps by 

shielding the conduction path from surface hydroxyl groups and tailoring the surface 

energy of the dielectric in order to control the molecular orientation, assembly, packing and 

film morphology of semiconductor layer. From the electrical characterization of the so 
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obtained transistors, carried out both in vacuum and air atmosphere, it was possible to 

determine the mobility of some of the materials under investigation in this thesis project.  

Good mobility, up to 10
-2

cm
2
volt

-1
sec

-1
, was measured for the evaporated thiadiazole 

derivative. The mobility was good both in air and in vacuum, suggesting a good ambient 

stability of the prepared materials. In one case, a transistor was prepared by depositing the 

active layer by solution technique (spin-coating) and also in this case a clear field effect 

was observed, and a mobility in the order of 10
-5

 was found. For what concerns transitors 

based on the triazole derivative, no field effect was observed probably because of the 

degradation of compound during evaporation process.  

 

In the final part of thesis work, we have investigated the optoelectronic and electrical 

properties of PT8-Cu(Ald1) as donor and TDZ-C7 as acceptor materials in order to realize 

an heterojunction solar cell. Preliminary analysis were carried out through cyclic 

voltammetry (CV) in combination with UV-Vis optical absorption spectra in order to 

estimate molecular frontier orbital levels and Eg values of PT8-Cu(Ald1) and TDZ-C7. On 

the base of such preliminary investigation, we can assume that PT8 and TDZ-C7 are 

excellent candidate materials to assemble photovoltaic cells: the electronic levels are in fact 

positioned so that electron transfer from the acceptor (TDZ-C7) to the donor (PT8) is 

possible, the PT8 bandgap is very low and therefore a good matching with solar emission 

spectrum is obtained and finally, PT8, the possible donor material, feature a low lying 

HOMO energy (-5.55 eV) that is expected to have a positive influence on the Voc of an 

actual solar cell device containing it and so on its overall efficiency. 
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In future, we will propose to improve further the new synthesis method of highly 

regioregular poly[3-(4-alkoxyphenyl)thiophene]s by using Cu(II) complexes in order to 

obtain higher yields. Moreover we will apply this innovative synthesis strategy in order to 

prepare polythiophenes 3-substituted with different groups that will can provide better 

conductivity performances in electrical device when will be employed. 

Concerning n-semiconductor materials, we will synthesize new polymers using PDI 

derivatives functionalized with thiadiazole and triazole groups as monomers. In this way it 

will be possible to obtain new n-semiconductors that will own the remarkable electrical 

properties of the repetitive units whose are formed, and in addition these new polymers will 

hopefully show remarkable stability and processability in order to assemble OTFT devices. 

Moreover we will attempt to assemble a heterojunction solar cell when PT8-Cu(Ald1) as 

donor and TDZ-C7 as acceptor materials will be employed. 
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